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Summary 

One of the fundamental cognitive operations in which we are engaged 

every day is the categorization of stimuli into distinct classes. Through it we 

simplify our immediate environment, structure incoming information and thus 

reduce cognitive load. Categorization can be done by applying logical rules (e.g. 

sturdy and waterproof indicates good quality) or by memorizing each individual 

item (e.g. a specific brand, such as Bosch or Siemens, indicates good quality). 

These two different categorization mechanisms were investigated in this thesis 

using a novel choice format adaptation of the type II and type VI problems 

introduced by Shepard et al. (1961). In type II problems, items can be optimally 

categorized by applying a two-dimensional eXclusive OR rule (XOR) (e.g. small 

and circular OR big and triangular belong to Category A). In type VI problems, 

there is no rule linking items of a category and the optimal solution is 

memorization. This new adaptation added the much more ecologically valid 

probabilistic monetary feedback. Moreover, it reduced strategy switch variance 

through instructions on the optimal strategies. According to these underlying 

optimal strategies, logical rule finding and memorization, the newly adapted 

problems were referred to as rule-based and stimulus-based tasks, respectively. 

The two tasks were compared using behavioral, attentional, cognitive modeling, 

functional Magnetic Resonance Imaging (fMRI) and model-based fMRI 

approaches. Rule-based and stimulus-based categorization occurred at the 

same rate, making this the first study in the literature to find equal learning points 

in type II and type VI tasks. Striking post-learning behavioral differences were 

found at the reaction time level, with participants needing twice as much time to 

categorize in the stimulus-based task than in the rule-based task. Eye-tracking 

measures revealed differences in attentional allocation suggestive of the 

underlying optimal strategies. Participants in the rule-based task paid more 

attention to the relevant rule-forming features than to the irrelevant features. 

Moreover, attention to features irrelevant to the task decreased steadily as a 

function of learning, but surprisingly, did not cease once the correct rule had 

been found. In the stimulus-based task, attentional allocation was minimally 

altered by learning. The cognitive computations behind the two tasks were 

investigated using a promising new model, the Category Abstraction Learning 
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(CAL, Schlegelmilch et al., 2021) whose architecture mirrored the two types of 

category learning investigated. CAL unraveled that good performance in both 

tasks requires high encoding and retrieval abilities. Unlike the stimulus based 

task, the rule-based task is characterized by sharp generalization gradients, 

reflecting optimal generalization of rule-like information. As expected from 

previous studies, rule-based categorization relied more heavily on the prefrontal 

cortex and hippocampus than stimulus-based categorization. By contrast, 

stimulus-based categorization elicited more striatal and insular involvement than 

rule-based categorization. Model-based fMRI analyses confirmed that the 

prefrontal activity was associated with rule prediction. Collectively, this work 

suggests that rule-based and memorization-based category learning are 

dissociable systems which optimally interact and inform each other.  
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Zusammenfassung 

Einer der grundlegenden kognitiven Vorgänge mit denen wir uns 

tagtäglich beschäftigen ist die Kategorisierung von Reizen in verschiedene 

Klassen. Durch diese vereinfachen wir unsere unmittelbare Umgebung, 

strukturieren eingehende Informationen und reduzieren so die kognitive 

Belastung. Kategorisierung kann durch die Anwendung logischer Regeln (z.B. 

robust und wasserdicht deutet auf gute Qualität hin) oder durch das Einprägen 

einzelner Gegenstände (z.B. eine bestimmte Marke wie Bosch oder Siemens 

deutet auf gute Qualität hin) erfolgen. Diese beiden unterschiedlichen 

Kategorisierungsmechanismen wurden in dieser Arbeit anhand eines 

neuartigen Auswahlformats untersucht, das eine Adaption der von Shepard et 

al. (1961) eingeführten Typ-II- und Typ-VI-Probleme darstellt. Bei Typ-II-

Problemen können Gegenstände durch Anwendung einer zweidimensionalen 

XOR-Regel optimal kategorisiert werden (z.B. klein und rund oder groß und 

dreieckig gehören zur Kategorie A). Bei Typ VI-Problemen gibt es keine Regel 

die Gegenstände einer Kategorie verbindet, die optimale Lösung ist also das 

Auswendiglernen. Diese neue Anpassung umfasst das ökologisch validere 

probabilistische monetäre Feedback. Außerdem reduzierte sie die Varianz in 

Strategiewechseln durch Anweisungen zu optimalen Strategien. Entsprechend 

dieser zugrundeliegenden optimalen Strategien, dem Finden logischer Regeln 

und dem Auswendiglernen, wurden die neu adaptierten Probleme als 

regelbasierte bzw. stimulusbasierte Aufgaben bezeichnet. Die beiden Aufgaben 

wurden mit Hilfe verschiedener Ansätze verglichen, die Verhaltens- und 

Aufmerksamkeitsaufgaben, kognitive Modellierung und funktionelle 

Magnetresonanztomographie (fMRT) umfassen. Die regelbasierte und die 

stimulusbasierte Kategorisierung erfolgte mit der gleichen Geschwindigkeit, so 

dass dies die erste Studie in der Literatur ist, die gleiche Lernpunkte bei Typ-II- 

und Typ-VI-Aufgaben findet. Auffällige Verhaltensunterschiede nach dem 

Lernen wurden auf der Ebene der Reaktionszeit gefunden, wobei die 

Teilnehmer in der reizbasierten Aufgabe doppelt so viel Zeit für die 

Kategorisierung benötigten wie in der regelbasierten Aufgabe. Eye-Tracking-

Messungen zeigten Unterschiede in der Aufmerksamkeitsverteilung, die auf die 

zugrundeliegenden optimalen Strategien schließen lassen. Die 
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Teilnehmer:innen der regelbasierten Aufgabe schenkten den relevanten, 

regelbildenden Merkmalen mehr Aufmerksamkeit als den irrelevanten 

Merkmalen. Darüber hinaus nahm die Aufmerksamkeit auf die für die Aufgabe 

irrelevanten Merkmale in Abhängigkeit vom Lernprozess stetig ab. Sie fielen 

aber überraschenderweise nicht gänzlich weg, sobald die korrekte Regel 

gefunden worden war. Bei der stimulusbasierten Aufgabe wurde die 

Aufmerksamkeitsverteilung durch das Lernen nur minimal verändert. Die 

kognitiven Berechnungen hinter den beiden Aufgaben wurden mit einem 

vielversprechenden neuen Modell untersucht, dem Category Abstraction 

Learning (CAL, Schlegelmilch et al., 2021), dessen Architektur die beiden 

untersuchten Arten des Kategorienlernens widerspiegelt. CAL enthüllte, dass 

eine gute Leistung in beiden Aufgaben hohe Enkodierungs- und 

Abruffähigkeiten erfordert. Im Gegensatz zur stimulusbasierten Aufgabe ist die 

regelbasierte Aufgabe durch scharfe Generalisierungsgradienten 

gekennzeichnet, die eine optimale Generalisierung von regelbasierten 

Informationen widerspiegeln. Wie aufgrund früherer Studien zu erwarten, 

stützte sich die regelbasierte Kategorisierung stärker auf den präfrontalen 

Kortex und den Hippocampus als die reizbasierte Kategorisierung. Im 

Gegensatz dazu löste die stimulusbasierte Kategorisierung eine stärkere 

Beteiligung des Striatums und der Insula aus als die regelbasierte 

Kategorisierung. Modellbasierte fMRT-Analysen bestätigten, dass die 

präfrontale Aktivität mit der Regelvorhersage verbunden war. Insgesamt legt 

diese Arbeit nahe, dass regelbasiertes und auf Auswendiglernen beruhendes 

Kategorienlernen dissoziierbare Systeme sind, die auf optimale Weise 

interagieren und sich gegenseitig informieren.  
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1. Introduction 

Categorization is crucial for survival. Without being able to correctly 

categorize a food item as edible or poisonous, or an incoming animal as predator 

or prey, many species would not be able to survive. For humans, categorization 

is one of the fundamental cognitive operations through which we simplify our 

immediate environment, structure incoming information and thus reduce 

cognitive load (Ashby & Valentin, 2017).  

Due to its uncontested importance, category learning has been 

extensively researched in both humans and animals. The current work focuses 

on one of the multiple branches of human categorization research, namely 

perceptual categorization of visual stimuli (Ashby & Maddox, 2005). Formally, 

this type of categorization (also referred to as classification) is defined as the 

process of placing items into classes or groups based on shared characteristics 

which results in “the act of responding the same to all members of one stimulus 

class and differently to members of other classes” (Cantwell et al., 2017, p. 32). 

Depending on the nature of the classification problem of interest, 

perceptual categorization paradigms mainly employ three different types of 

stimuli: stimuli with separable dimensions and discrete features (i.e. shape: 

square, triangle, circle), stimuli with separable dimensions and continuous 

features (varying length on a continuous scale, Gabor patches) and random dot 

patterns.  

This project used the first class of stimuli with separable dimensions and 

discrete features, and was based on the most influential study to employ these 

type of stimuli: Shepard et al. (1961). By using stimuli with three dimensions and 

binary features, the authors introduced six iconic types of category learning 

problems. Figure 1 depicts six rectangles, each containing one problem type. 

Within each rectangle, the left and right side correspond to category A and B, 

respectively. In type I problems, the two categories can be easily identified by 

applying a uni-dimensional rule (black figures belong to category A). The type II 

problem entitles a two-dimensional eXclusive OR (XOR) rule application (stimuli 

that are black and small OR white and large belong to category A, shape is 

irrelevant). The next three problem types (III, IV and V) follow a rule-plus-
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exception structure - most members of a category follow a uni-dimensional rule 

(i.e. type III black stimuli are category A) with one exception (i.e. the white 

triangle is also category A – type III). The last problem type, type VI, has no rule-

like solution, thus requires stimulus-category label memorization. 

Shepard et al. (1961) showed that when it comes to ease of acquisition, 

the six problem types can be ordered as follows: Type I < Type II < Types III, IV, 

V < Type VI from easiest to most difficult. The impact of this ordering and the 

problems themselves on categorization literature has been tremendous. It has 

led to a redefinition of concept learning, innovation of unsupervised learning 

(Love, 2002) and re-evaluation of the assumption of independence in stimuli 

properties (Love & Markman, 2003). Particularly in the field of cognitive 

modeling, the six problems have always been the skeleton on which all research 

was built; every new category learning model (e.g. ALCOVE (Kruschke, 1993), 

SUSTAIN (Love et al., 2004), DIVA (Kurtz, 2007)) had to first and foremost be 

able to capture Shepard et al. (1961)’s ordering. Noteworthy, despite the 

numerous stimulus sets used to assess, investigate, and apply these problems 

(e.g. geometric forms, algae, instruments, beetles, flowers), the original task 

format has been kept throughout the decades. That is, participants are 

presented with one stimulus at a time and learn with the help of feedback 

Figure 1. Shepard et al. (1961)’s category learning problems. Each rectangle 

corresponds to one problem type. Within each rectangle, the stimuli on the 

left side belong to Category A and the ones on the right side belong to 

Category B. Figure adapted without permission from the original paper. 
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(immediate or delayed) which of the two possible categories the stimulus 

belongs to.  

The current work aimed to advance the standard paradigm, in which 

participants have to identify a stimulus’ category label, to a format in which 

participants have to choose out of two simultaneously presented stimuli, the 

stimulus belonging to a target category (e.g. category A). Introducing the 

element of choice in these problems is not only a meaningful methodological 

advancement (Wang & Ashby, 2020), but also a natural transition towards a 

higher ecological validity. In real life, categorization and choice often co-occur, 

such as when choosing what type of food to order, what type of fruits to eat or 

what genre of book to read. Hence, it is essential that new experimental 

paradigms try to incorporate this aspect.  

This project implemented two-alternative choice categorization in 

Shepard et al. (1961)’s type II and type VI problems. To reiterate, a type II 

problem can be correctly solved by the application of a disjunctive rule (e.g. 

fruits that are small and yellow or big and red are poisonous) whereas in type VI 

the solution requires memorization of each stimulus and its category label (e.g. 

ivy berries and holly berries are poisonous).  

The two problems were selected in an attempt to disentangle two 

category learning systems: declarative and procedural. The idea of distinct 

categorization systems was first postulated by Ashby et al. (1998) in the 

framework of the Competition between Verbal and Implicit Memory Systems 

(COVIS) model. The model posits that there are two distinct competing category 

learning systems: a declarative system, encompassing explicit reasoning 

through clearly verbalizable rules and a procedural system, characterized by 

implicit reasoning which cannot be verbalized. The model distinguished itself 

from contemporary models by assuming that these two systems are also clearly 

separable at a neural level. That is, the declarative system recruits the prefrontal 

and cingulate cortices while the procedural system is striatal-based. 

Over the last two decades, the existence of two separate instead of a 

unitary system of categorization has been intensely debated (Ashby & Maddox, 

2011; Cantwell et al., 2017; Edmunds et al., 2018; Filoteo et al., 2001; Filoteo et 

al., 2005; Maddox & Ashby, 2004; Nomura et al., 2007; Nosofsky & Kruschke, 
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2002). Most studies challenging the COVIS model have done so by comparing 

rule-based and information-integration paradigms (Ashby & Maddox, 2011; 

Ashby, Smith & Rosedahl, 2019). Typically, these paradigms use large stimulus 

sets with discrete dimensions and continuous features (e.g. sinusoidal gratings 

with varying spatial frequency and orientation). While these paradigms do differ 

in terms of stimuli, category and task structure from Shepard et al. (1961)’s 

problems, the core assumptions are conceptually similar. In this framework, 

rule-based tasks are described as tasks in which the optimal solution is a clearly 

verbalizable logical rule – akin to type II problems that require an XOR rule. 

Information-integration tasks on the other hand, are tasks in which the optimal 

strategy involves the integration of different stimulus information at a pre-

decisional stage. Since this integration process cannot be easily verbalized, it is 

regarded as implicit. It can be argued that if performed using a memorization 

strategy, Shepard et al. (1961)’s type VI problem also entails a non-verbalizable 

solution, and thus the problem resembles an information-integration task. 

Therefore, the type VI problem can be used as an equivalent for procedural 

learning. 

Although, at a behavioral level, the literature is leaning towards a 

consensus that these systems are indeed dissociable (but see Stanton & 

Nosofsky, 2007, 2013), the discussion regarding the neural level is far from 

being settled. This thesis contributes to solving this debate by comparing neural 

activity in the two-choice adaptation of type II and type VI problems using 

functional Magnetic Resonance Imaging (fMRI). The neural signatures were 

examined in greater detail with the help of model-based fMRI using the newly 

developed category abstraction learning model (CAL) (Schlegelmilch et al., 

2021, under review). This model is particularly promising in addressing the type 

II / type VI differences, since its internal architecture contains two separate 

networks mirroring the type of learning investigated: a rule network and a 

configural memory network. The rule network solves the task via rule prediction 

and is based on how strongly an observed stimulus feature is associated with 

the available categories. The configural memory network solves the task by 

“memorization” and is based on a recall heuristic, which only activates the 

instance from memory that is most similar to the presented stimulus.  
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Lastly, the present work also addressed the type II / type VI comparison 

from an attentional angle. It was aimed that, by using a well-established proxy 

for overt attention, namely fixation counts (Liversedge & Findlay, 2000), the 

differences between the two problem types would be understood in greater 

detail. This is an important addition to the categorization literature since until 

now there has been only one study to systematically assess attentional 

allocation in Shepard et al. (1961)’s problems, the eye-tracking study by Rehder 

and Hoffman (2005). The authors demonstrated for the first time what had only 

been presumed for four decades, namely that participants allocate attention 

optimally based on the problem type. Moreover, it was found that participants 

started each problem type by fixating evenly on all three dimensions. It was only 

after learning that they abruptly shifted their fixations to the relevant dimensions. 

This observation challenged crucial assumptions of contemporary models such 

as the gradual learning predicted by ALCOVE (Kruschke, 1992) or the 

hypothesis testing mechanisms incorporated in RULEX (Erickson & Kruschke, 

1998). Thus, it is evident that eye-tracking measures can have a powerful impact 

not only on understanding the problems per se but also on current and future 

models of categorization. Consequently, this study revived eye-tracking 

research on Shepard et al. (1961)’s  problems which was deemed long overdue 

considering that most categorization models have attention as a key component 

of their system. 

In order to clearly highlight their underlying strategies and to facilitate 

recognition, the compared problem types will henceforth be referred to as rule-

based (type II) and stimulus-based (type VI). When discussing previous work on 

the problems they will still be referred to by their original terminology as type II 

and type VI. The problems themselves as a collective will be referred to as either 

Shepard et al. (1961)’s problems or Shepard’s problems interchangeably.  

To sum up, this work sets out to adapt these two problems to a novel 

choice format and explore the associated behavioral and attentional 

mechanisms. Moreover, the goal was to gain a deeper understanding of the 

neural mechanisms of rule-based and stimulus-based category learning and to 

shed light on the ongoing debate on whether categorization involves two distinct 

neural systems. 
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This thesis continues with a presentation of past applications of 

Shepard’s problems followed by a detailed description of the rationale and 

structure of the newly developed paradigm (Chapter 2). The next three 

chapters contain empirical work assessing this paradigm. Chapter 3 covers the 

behavioral correlates of the rule-based and stimulus-based task. Chapter 4 

presents eye-tracking assessments of attentional mechanisms elicited during 

the two tasks. In Chapter 5 the cognitive model CAL is introduced and applied 

to the behavioral data. Chapter 6 displays the neural correlates of rule-based 

and stimulus-based categorization using model-free and model-based fMRI. 

Each empirical work chapter contains individual introduction, material and 

methods, results and discussion sections. In Chapter 3, Chapter 4, and 

Chapter 6, the research hypotheses are presented in the introductory sections. 

Chapter 5 contains two additional sections, one describing mechanisms of the 

CAL model and one presenting challenges for the current paradigm. Chapter 7 

concludes the thesis and presents suggestions for future research. 

  



 

18 

 

2. A Novel Two-Way Categorization Paradigm 

As mentioned in the introductory chapter, this project attempted to 

advance the standard Shepard et al. (1961) type II and type VI problems to the 

more ecologically valid choice format. This chapter briefly summarizes past 

adaptations of these problems restricting the literature to human studies that 

included both type II and type VI problems. It has to be acknowledged that 

important work has also been done using type II in combination with other types 

such as type I (Mack et al., 2016) and type IV (Kurtz et al., 2013; Love & 

Markman, 2003). The summary is followed by a section highlighting the 

novelties of the current paradigm and a detailed description of the paradigm. 

2.1 Shepard’s cube 

Before discussing the original implementation, it is noteworthy that in 

addition to introducing the six iconic categorization problems, Shepard et al. 

(1961) also presented a way of visualizing the stimuli to facilitate comparison 

among different stimulus sets. The authors suggested that the three dimensions 

of the stimuli can be regarded as three dimensions of a cube, and each 

dimension’s binary feature can be thought of as vertex. Figure 2 depicts this 

cubic illustration for the type I, type II and type VI problems. The four stimuli with 

grey contour are assigned to one category (equivalent to the left side of each 

Figure 2. Cubic representation of Type I, Type II and Type VI problems. The eight stimuli are 

displayed on a cube by assigning each of their varying dimensions to one of the cube’s 

dimensions. On any of the 12 faces of the cube the four stimuli share one feature. In each cube, 

the four highlighted stimuli belong to one category (i.e. category A) and the remaining ones belong 

to the remaining category (i.e. category B). Figure adapted without permission from Shepard et 

al. (1961). 
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rectangle in Figure 1) and the four without grey contour to the other category 

(equivalent to the right side of each rectangle in Figure 1). Interestingly, this 

depiction is also representative of the problems’ (assumed) complexity level. In 

type I, all members of a category share a face of a cube or plane which translates 

into a low level of complexity. In type II, members of a category are no longer 

located on a face, but on a hyperplane which “cuts” the cube diagonally, 

indicating an increase in complexity with respect to the previous problem. In 

type VI, a category cannot be captured by either a plane or a hyperplane, and 

thus it has the highest level of complexity. Importantly, all Shepard et al. (1961) 

replication studies and studies using any subset of these problems (the current 

work included) follow this cubic visualization when constructing and presenting 

their stimuli.  

2.2 Previous paradigms 

This section contains an extensive description of the previous work using 

Shepard’s problems. The following studies are covered: Shepard et al. (1961), 

Nosofsky et al., (1994), Love (2002), Smith et al. (2004), Rehder and Hoffman 

(2005) and Lewandowsky (2011). For each study, aspects such as the sample 

size, problems used, experimental paradigm and instruction type are covered in 

great detail. This summary is intended as a support for the future researchers 

interested in conducting new studies on these problems, replication studies or 

reviews. The details from these studies that are crucial for the current thesis are 

summarized at the beginning of the next section. 

Shepard et al. (1961) used squares and triangles for concept illustration 

only and more complex stimuli for the actual tasks. These stimuli had a triangular 

format with each vertex representing one dimension. The binary features of 

each dimensions consisted of two thematically related objects. The paper 

provides examples of these objects (e.g. candle and light bulb, violin and 

trumpet), but the full stimulus set is not described. The two category labels 

themselves were not thematically meaningful (e.g. furniture versus instruments), 

and instead were assigned to be either letters, symbols or numbers. All 

participants performed type I, II and VI problems and either of the type III, type 

IV, or type VI problem in a randomized order. Each problem was performed five 
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consecutive times, and for each repetition a different stimulus set was used 

(resulting in a total of five stimulus sets for the whole experiment). Before the 

start of the task, participants were made aware of the stimulus construction. With 

respect to how to perform, they were only told that there will be different types 

of problems with similar difficulty and the beginning of a new problem type will 

be announced beforehand. The stimuli were presented sequentially, and each 

choice was followed by immediate auditory feedback on its correctness. Each 

repetition stopped when participants achieved 32 consecutive classifications. 

Participants completed the problems in one hour sessions, three times a week. 

The total number of sessions differed depending on individual performance. 

After successful completion of each problem type, subjects were asked to 

describe what strategies they used. No suggestions about the existence of any 

rule were made. All in all, six participants were tested. 

Nosofsky et al., (1994) were the first to undergo a replication study with 

a larger sample of 120 participants. The authors made three changes to the 

initial study design. First, the three stimuli dimensions used (shape, size, and 

types of lines inside the shape) were no longer spatially separated. Second, their 

associated categories were simply labeled as “1” or “2” .Third, each participant 

performed only two out of the six problem types, counterbalanced such that all 

problems were equally represented. Each problem stopped when participants 

completed 32 consecutive correct classifications (as in the original paper) but 

an additional constraint was set that all problems would stop after a maximum 

of 400 trials. Subjects received rule-like instruction by being told that the 

“relevant rule and dimensions for the second problem were chosen 

independently of those that were relevant in the first problem” (Nosofsky et al., 

1994, p. 355). The task format was a standard sequential stimulus presentation 

with immediate feedback provided upon choice. Neither feedback type nor 

feedback duration were mentioned. 

The replication by Love (2002) restricted the problem set to type I, type 

II, type IV and type VI with each participant completing only one problem type. 

The sample size was doubled from the previous study (252 participants). This 

time the stimuli’ varying dimensions were randomized: size (small or large), 

color (blue or purple), texture (smooth or dotted) or a diagonal cross (present 
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or absent). Moreover, instead of simply labeling categories (e.g. category 1 or 

category 2), a fourth stimulus feature, border color, acted as a label. Participants 

were instructed that in each trial they have to predict the border color of the 

presented stimulus, and that this color depends on the value of the other 

dimensions. The feedback consisted of a tone (positive if correct, negative if 

incorrect) together with the stimulus surrounded by the right border. The 

complete stimulus was kept on the screen for 1.5 seconds. A 1 second break 

concluded each trial. Irrespective of their performance, the task stopped after 

80 trials. 

Smith et al. (2004) returned to each of the 47 participants performing all 

problem types in a randomized sequential order. The stimuli had the standard 

three possible varying dimensions and resembled those used by Shepard et al. 

(1961) to introduce the concepts and the cube (with the only difference that the 

colors could be either dark gray and white rather than black and white). The two 

categories were labeled as category 1 and category 2. Participants were 

instructed that once they learn “the right category or rules they will work for the 

whole task” (Smith et al., 2004, p. 403), and were announced before the task 

(problem type) had changed. Interestingly, this was the first study in which 

participants were motivated to perform correctly by receiving points for each 

correct classification (no points were deducted for incorrect classification). 

Additionally, they were told that the performers with the highest number of 

points can receive a prize of up to 20 dollars. 

The study by Rehder and Hoffman (2005) returned to assessing only 

type I, type II, type IV and type VI problems. Each participant was assigned to 

one type only, resulting in 18 participants per problem (72 participants in total). 

Due to the eye-tracking nature of the study, the stimuli had spatially separable 

dimensions. The three dimensions were varying text symbols: $ and ¢, ? and !, 

+ and - .The two possible categories were labeled as “red” or “green”. Each 

stimulus classification was followed by auditory feedback (different tones for 

correct and incorrect) and the stimulus remained on the screen for a period of 

4 seconds after feedback. The task stopped after 32 consecutive correct trials. 

After each block of 8 trials participants were informed how close they were to 

this criterion. Each participant was allocated a maximum of 224 trials to reach 
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this goal. The authors do not mention how the participants were instructed, but 

from the discussion, it can be deduced that no rule-like instructions were given. 

The latest study that systematically assessed all problem types was 

Lewandowsky (2011). All participants performed all problem types in a pseudo 

counterbalanced order (i.e. half of the participants started with type I, II, III, the 

other half with type VI, V, and VI). The eight stimuli differed in color (unfilled or 

red), shape (square or circle), and size (small or large) and were assigned to 

either category 1 or 0. Participants performed a maximum of 192 trials, with 

each problem being terminated upon 32 consecutive correct trials. Each trial 

was followed by visual feedback containing only the word “correct” or “wrong” 

for a period of 2 seconds. With respect to instruction type, the authors only 

mention that participants were aware of the change in problem type before the 

start of a new type.  

Lastly, a recent fMRI study by Mack et al. (2020) used the type I, type II 

and type VI problems. The stimuli were more visually complex than those in the 

past studies, and consisted of beetles with the three varying dimensions being 

antenna size (thick or thin), leg size (thick or thin) and mouth type (shower or 

pincer). On each problem type the two stimuli were labeled as either coming 

from an eastern or western hemisphere, liking cold or warmed temperatures or 

living in a rural or urban environment. The subjects were instructed that the 

category assignment was arbitrary. Before the main task, participants were 

familiarized with the stimuli and the task structure through training tasks. 

Moreover, the varying dimensions of the stimuli were highlighted and it was 

emphasized that membership to a category is given by one or more stimulus 

features. To facilitate fMRI data acquisition, each beetle was presented on the 

screen for 3.5 seconds. For acquisition purposes, the feedback was delayed by 

a certain time period which varied randomly between 0.5 and 4.5 seconds. The 

feedback consisted of an image containing the stimulus and the correctness of 

the response given, and was displayed for a duration of 2 seconds. 
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2.3 Methodological highlights 

Important methodological observations can be drawn from the summary 

provided in the previous sections. First, throughout the literature, there have 

been inconsistencies in the instructions participants received prior to 

performing the problems, especially with respect to whether or not rule-like 

solutions are to be expected. These inconsistencies could have fundamentally 

altered the way subjects learned during the task and can hinder comparison 

across studies. Second, in most studies subjects were not questioned on how 

they performed the task, and therefore their strategies are unclear. Third, in 

some of the studies the same stimulus set was used for multiple problem types, 

thus resulting in subjects having to undergo a process of stimulus remapping in 

addition to categorization. Fourth, the feedback modality differed across studies. 

In the studies after 2000 (with the exception of Lewandowsky, 2011), the 

feedback displayed the stimulus to-be categorized together with the correct 

label for a fixed period of time. This aspect alone could have led to a faster 

learning. Lastly, the studies alternate between within-subject design and 

between-subject design which could influence the extent of the effects 

observed. The current work developed a paradigm that, in addition to the two-

choice format, resolves these methodological inconsistencies. 

A within-subject design was used such that all participants performed 

both tasks, each task on a separate day. It was ensured that the participants 

received clear instructions on how to optimally perform both types of problems. 

In addition to eliminating possible sources of variation due to strategy search, 

this is an important methodological advancement since no study up to date 

provided clear strategy instructions on the type VI problem. Although previous 

research has looked into the effect of instruction on type II performance (Kurtz 

et al., 2013), the effect of instructions on type VI is unstudied. To make sure that 

the instructions were followed in the rule-based task, participants were asked 

multiple times throughout the task to report the rule they were using. In the 

stimulus-based task, the subjects were extensively trained and encouraged to 

use a memorization strategy.  

To counteract possible stimulus-remapping concerns, each problem 

was performed with a different stimulus set, and the assignment of stimulus sets 
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to problems was balanced across subjects. Each problem type was performed 

only once. With respect to feedback, the feedback screen was displayed for a 

fixed period of time, and consisted of a presentation of the stimulus together 

with its label. Furthermore, as in Smith et al. (2004), to encourage successful 

learning and concentration throughout the entire task, participants received 

points for each successful classification, and were told that these points will lead 

to more financial compensation at the end of the task. 

With these potential confounds addressed, the current paradigm also 

set to explore two departures from the standard tasks, namely probabilistic 

feedback and category relabeling, whose rationale is highlighted below. 

As far as probabilistic feedback is concerned, up to now no study in the 

category learning literature employed probabilistic feedback in Shepard’s 

problems. From a methodological point of view, probabilistic feedback is 

advantageous because it slows down learning, and thereby ensures that there 

are enough incorrect trials for behavioral analyses and cognitive modeling. From 

a conceptual point of view, the probabilistic feedback brings more ecological 

validity to the paradigm. On a daily basis, individuals do not always receive 

feedback contingent to their classification (e.g. doing good work on a project 

and receiving negative feedback from a colleague – resulting into questioning 

whether the right category for the work done is “good”), and have to go through 

a couple of trials to find the correct category (e.g.  presenting the work to 

multiple unbiased colleagues who give positive feedback, thus confirming that 

the work can indeed be classified as “good”). All in all, these aspects were 

considered reasonable motivation to introduce probabilistic feedback into the 

new paradigm. 

With respect to category labels, the current paradigm stepped aside 

from the conventional category 1 versus category 2 labeling by referring to the 

two classes as valuable or not valuable. This relabeling had both conceptual and 

methodological motives. Conceptually, it was yet another small step towards 

ecological validity since on a daily basis one would rarely be asked to classify 

incoming objects as 1 or 2. Although this is by far not the first attempt to make 

category labels less abstract (e.g. Mack et al., 2020), it is the first to take on a 

value-based angle. This angle has more real-life applicability because most of 
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the objects in daily life are intermixed with their subjective value (expensive 

phones, cars, cheap clothes, food, furniture etc.).  

From a methodological point of view, the paradigm has potential 

important implications for the decision making community. One could argue, 

and perhaps rightfully so, that by displaying two stimuli on the screen and 

assigning value to each of them, the current paradigm is essentially no different 

from a standard, extensively-researched reinforcement learning task 

(Pessiglione et al., 2006). However, in standard reinforcement learning tasks 

stimulus’ features are clearly either predictive or not predictive of reward (e.g. 

small stimuli have a higher reward probability). While this criterion holds for the 

current adaptation of the type VI problem (stimulus-based task), it fails for the 

adaptation of the type II task (rule-based task). Here, the same features (e.g. 

small) can be both predictive and not predictive of reward (e.g. stimuli with a 

small size and a triangular shape are valuable but stimuli with a small size and 

quadratic shape are not valuable). Thus, the current rule-based task opens up 

new doors for the decision making community, in particular for reinforcement 

learning models. 

To summarize, the experimental paradigm applied in this study has five 

important aspects: two-stimulus display presentation, strategy-based 

instructions, within-subject design, probabilistic feedback with the feedback 

display presenting the stimulus and its associated category (in fact this occurs 

indirectly for both stimuli presented) and category relabeling with a value angle. 

These features have the potential to open up new exploratory paths for the 

category learning research and even lead to advancement in the reinforcement 

learning literature.  

2.4 Paradigm description 

2.4.1 Stimuli 

Two sets of eight stimuli were created for the two main tasks. The stimuli 

were visually complex and depicted robot-like figures (humanoids) (Figure 3A) 

and butterflies (Figure 3B). In both sets, the stimuli differed in three dimensions: 

color, number and orientation, each with binary features. The humanoids had 
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green or blue hats, one or two stars on the belly and shoes pointing upwards or 

downwards. The butterflies had antennas pointing upwards or downwards, one 

or two circles on their wings, and red or blue tails. In both stimulus sets, the 

varying dimensions were equidistant from each other and measured 

approximately 3 cm². 

  

Figure 3. Tasks description. A. Representative stimulus pair (left) and category membership 

structure (right) for the rule-based task. The two rule-forming dimensions, Color and Number, 

are highlighted in blue. B. Representative stimulus pair (left) and category membership (right) 

for the stimulus-based task. Color, Number and Orientation are written in orange to emphasize 

that all dimensions are relevant. In both A and B, the four stimuli in the cube circled in the 

corresponding task color are the four valuable stimuli. C. Example trial. Below each screen its 

presentation duration is displayed in seconds. 
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2.4.2 Task structure 

Figure 3C displays an example trial. A trial started with a presentation 

of a two-stimulus pair. At the bottom of the screen the participants could see 

their cumulative score. Participants had 4 seconds to choose the valuable 

stimulus using the left or right arrow key. The chosen stimulus was surrounded 

by a grey rectangle. The two-stimulus pair did not disappear upon choice. The 

choice screen was followed by a wait screen displaying a black fixation cross on 

a white background. After a period of 2 or 4 seconds (randomized across the 

task), the feedback screen appeared. This screen was displayed for 2.5 seconds 

and contained: the two stimuli, with the selected one highlighted, a 50 cents coin 

indicating if the choice was correct (normal coin: correct, coin crossed by a red 

X: incorrect) and the updated cumulative score. If the participants failed to 

answer within the allotted time, the feedback screen was blank and only 

displayed the sentence “Please answer faster!”. The trial ended with a wait 

screen presented for 3 seconds. Irrespective of their performance, participants 

had to complete 160 trials. Throughout the whole task, each choice was followed 

by probabilistic feedback which was pseudorandomized according to the two-

stimulus pair structure.  

2.4.3 Pair structure 

Four stimuli were assigned to the valuable category and four to the not 

valuable category. 16 unique two-stimulus pairs were constructed such that in 

each pair one stimulus was valuable and the other one was not valuable. Care 

was taken that the stimuli within a pair differed in more than one feature so that 

the participant cannot completely rule out a feature based on feedback. In other 

words, there was no pair in which all but one feature was kept constant (same 

color of the hat, same shoes orientation but different number of starts on the 

belly). Each individual stimulus was used in four pairs. A pair formed of stimulus 

1 on the left side and stimulus 8 on the right side was considered different from 

a pair with stimulus 8 on the left side and stimulus 1 on the right side. The 16 

pairs were presented 10 times with a minimum of one trial gap before the same 

pair was presented again. The probabilistic feedback was pseudorandomized 

such that in 2 out of the 10 repetitions (20 % of the cases) each pair was 
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associated with the misleading feedback (explained in detail in Chapter 

3.3.2.5).  

2.4.4 Rule-Based Task 

One set of stimuli was randomly chosen for this task (e.g.: Figure 3A 

left). Similar to Shepard et al. (1961), the stimuli were represented in a cubic 

perceptual space, each dimension corresponding to one dimension of the cube. 

As before, four stimuli were assigned to the valuable category (i.e. the ones with 

a blue contour in Figure 3A left) and the remaining four were assigned to the 

not valuable category (i.e. the ones with a black contour in Figure 3A left). As 

in the original Type II problem, the stimuli could be correctly classified by using 

a disjunctive rule XOR rule (i.e. humanoids with blue hats and one star on the 

belly are valuable or humanoids with green hats and two starts on the belly are 

valuable; Figure 3A right). All in all, based on the rule-forming dimensions, there 

were three possible conditions: color and orientation relevant, number 

irrelevant; color and number relevant, orientation irrelevant; number and 

orientation relevant, color irrelevant. 

Prior to the task, the nature of the stimuli (humanoids or butterflies) and 

their varying dimensions (color, number, orientation) were explained. Moreover, 

participants were clearly instructed that the task entails rule application. To 

further encourage rule-learning, they were told that they will have to report the 

rule multiple times throughout the task. 

2.4.5 Stimulus-Based Task 

The remaining set of stimuli was used for this task (i.e. if the rule-based 

task used the humanoids stimulus set, the stimulus-based task used the 

butterflies stimulus set; Figure 3B left). The four valuable stimuli were selected 

according to Shepard et al. (1961)’s Type VI problem to not have any rule-like 

connection between them. This resulted in two possible conditions depending 

on which four stimuli were assigned to the valuable category (i.e. one in which 

the stimuli with the orange contour were valuable and one in which the stimuli 

with the black contour were valuable; Figure 3B right). 
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As in the rule-based task, participants were clearly instructed on the 

nature of the stimuli (humanoids or butterflies). Additionally, they were 

instructed on the optimal strategy to perform the task, namely stimulus-category 

memorization, and were encouraged to use it. 
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3. Dissociable Behavioral Signatures 

3.1 Introduction and Hypotheses 

Over the past decades, almost all studies have successfully replicated 

Shepard et al. (1961) ’s initial ordering. To reiterate, the authors found that in 

terms of difficulty, the six problems can be ordered as follows: type I < type II < 

type III, type IV, type V < type VI. Figure 4 displays a summary by Smith et al. 

(2004) of the findings of four of these studies. It can be seen that, although the 

overall number of errors has fluctuated across studies, the pattern has been 

relatively stable. More importantly for the current work, type VI performance has 

consistently fallen behind type II performance. It has to be mentioned that even 

in the study Lewandowsky (2011) in which the full ordering was not replicated 

(due to performance in type II task resembling the ones in type III, IV and V), 

type II was still found to be by far less difficult than type VI.  

Figure 4. Performance summary of four replication studies of Shepard et al. (1961). A. 

Performance in the original study. B. Performance in Nosofsky et al. (1994). C. performance in 

Love (2002). D. Performance in Smith et al. (2004). Figure retrieved, caption adapted without 

permission from Smith et al. (2004). 
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The category learning literature in general and the modeling literature in 

particular, have been focusing so far on capturing the “type II performance 

advantage”, mostly with respect to the type IV problems (Kurtz et al., 2013). The 

current work departed from this avenue and underwent a detailed comparison 

of the type II and type VI problems. Specifically, it was aimed to explore for the 

first time how the two problems behave in a two-alternative choice format. The 

interest in comparing single-stimulus display to paired display has just begun to 

arise in the categorization literature. A recent study by Wang and Ashby (2020) 

assessed differences between single and two-stimulus pair displays in 

unstructured categorization (i.e. members of a category cannot be found by 

either rule-learning or memorization), and found a performance advantage when 

using the latter. In line of this evidence, similar effects would have been 

expected in the current study. However, the present paradigm also included 

probabilistic feedback, which is well-known to slow down learning. Thus, any 

two-stimulus display advantage could have been overridden by the “misleading” 

feedback.  

Up until now, all studies addressing the type II and type VI problems 

have been concentrating on accuracy measures. To date, only the study by 

Love (2002) reported reaction times, but these were not analyzed further. 

Interestingly, despite their large difference in accuracy, the two problems had 

similar mean reaction times (Mtype II = 1.68 seconds, SE type II = 0.97, Mtype IV = 1.69, 

SEtype IV = 0.93). This aspect could indicate previously unaddressed similarities 

between the two problems, and therefore called for further investigation. 

Consequently, in addition to accuracy measures, this work took a closer look at 

reaction times and their evolution across the two tasks.  

The accuracy and reaction time data were used to assess the following 

hypotheses: 

H1: Regardless of problem type, there will be a difference in the overall numbers 

of errors between the current adaptation and past adaptations of Shepard’s 

problems.  

H2: More errors will be made in the stimulus-based task than in the rule-based 

task. 
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H3: The rule-based task will be learned faster than the stimulus-based task. 

H4: The rule-based task and the stimulus-based task will not differ with respect 

to reaction time. 

3.2 Materials and Methods 

3.3.1 Participants 

The study was approved by the local Ethics Committee of the Hamburg 

Medical Association (ethics number PV5947). Participants were screened for 

history of psychiatric or neurological disorders and current use of psychoactive 

medications. For eye-tracking reasons, participants with diopters below -4 or 

above +4 were not invited to take part in the study. Out of the 53 tested 

participants, only those who successfully completed the task were included in 

the analyses. Successful performance was defined in the rule-based task as 

being able to report the correct rule at the end of the task and in the stimulus-

based task as minimum of 20 consecutive correct trials. This resulted in a 

sample of 30 participants (20 females, 10 males, Mage = 26.26, SDage = 2.81). 

3.3.2 Training tasks 

3.3.2.1 Stimuli 

Two sets of eight stimuli were created. Each set consisted of geometrical 

figures with three dimensions. The first set contained figures which varied in 

color (red or blue), shape (square or triangle) and filling (filled or not filled) 

(Figure 5A). The second stimulus set contained figures with varying color 

(green or purple), shape (star or pentagon) and contour (with or without 

contour) (Figure 5B).  

3.3.2.2 Task Structure  

The structure of the training tasks only differed from the one of the main 

tasks in timing and numbers of trials performed (Figure 5C). In each trial 

participants were asked to identify the valuable figure within 3.5 seconds, waited 
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for the feedback for a random period between 1 and 3 seconds, and had only a 

1 second inter-trial break. The task ended when the participants completed 15 

correct consecutive trials, i.e. correctly selecting a valuable stimulus 15 times. 

The underlying category structure of the training task depended on the 

type of learning investigated in the main task, namely rule-based or stimulus-

based. Thus, two training task versions were created: deterministic rule-based 

training task and deterministic stimulus-based training task.  

3.3.2.3 Deterministic Rule-Based Training Task 

One of the two sets of stimuli was randomly chosen. As in the main task, 

category assignments were done based on a disjunctive rule (XOR) (Figure 1, 

type II). In other words, the four valuable stimuli could be identified by using a 

combination of two dimensions (i.e. color and shape). For example, for the 

stimulus set in Figure 5A, the disjunctive rule was: red circles and blue squares 

or blue circles and red squares.  

Figure 5. Deterministic training tasks. A. Representative pair for the deterministic rule-based 

training task. Stimuli differ in color (red or blue), shape (circle or square) and filling (filled or not 

filled). B. Representative pair for the deterministic stimulus-based task. Stimuli differ in color 

(green or purple), shape (pentagon or star) and contour (with or without). C. Example trial. The 

numbers on top of each screen indicate its presentation duration in seconds. 
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Before performing the task, participants were instructed that they can 

correctly identify the valuable stimuli by applying a rule. In addition, they were 

aware that depending on the stimulus set assigned, the filling or the contour 

dimension was irrelevant. At the end of the task, the participants had to report if 

they found the underlying rule and were asked to describe it.  

3.3.2.4 Deterministic Stimulus-Based Training Task  

The remaining stimulus set was used (i.e. if the deterministic rule-based 

task used the set in Figure 5A, then the stimulus-based versions used the set 

in Figure 5B). As in the main task, the category structure was constructed such 

that it could not be predicted by any rule or pattern (Figure 1, type VI). At the 

end of the task, participants were presented with all eight stimuli and had to 

indicate for each one of them whether it was a valuable stimulus or not.  

3.3.2.5 Probabilistic Training Task 

Previous pilots revealed that participants often have a poor 

understanding or representation of probabilities. The probabilistic training task 

started with a text explaining the concept of probabilistic feedback using the 

example of an 80 % – 20 % reward contingency. It was clarified that an 80 % – 

20 % reward contingency means that in 20 % of the cases a correct choice will 

be followed by negative feedback and a negative reward (no points added), and 

in 20 % of the cases an incorrect choice will be followed by positive feedback 

and a positive reward (10 points added). It was emphasized that the 80 / 20 ratio 

is constant throughout the task (sampling without replacement), meaning that in 

every trial there was an 80 % probability to get the true feedback and reward 

and a 20 % probability to get a misleading feedback and reward. Participants 

were assured that since both correct and incorrect choices are followed by 

misleading feedback, the overall score is not negatively impacted by the 

probabilistic feedback.  

The participants performed the exact same task as in the deterministic 

training version (rule-based or stimulus-based) with the only difference being 

that instead of deterministic feedback they received probabilistic feedback. 

Importantly, the participants knew before starting the task which stimuli were 
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the four valuable ones (these corresponded to the ones in the deterministic 

version of the task). The task only aimed to familiarize the subject with the 

probabilistic feedback. Participants were instructed to pay attention to the 

received feedback. After approximately five minutes, the task stopped.  

Note that since the purpose of this task was for the participants to 

understand the concept of probabilistic feedback, it was performed only once. 

That is, each participant performed either a rule-based probabilistic training task 

or a stimulus-based training task. 

3.3.3 Exposure Task 

Each of the main tasks was preceded by an exposure task. The stimuli 

used in this task were the same as the ones used in the corresponding main 

task. In addition, eight catch stimuli were introduced which were distortions of 

the main stimuli (Figure 6A). Namely, these stimuli had features that were not 

present in the original stimulus set: a new color, a different orientation, or a 

different number of circles / stars. On each trial participants saw one stimulus 

Figure 6. Exposure task. A. Example catch stimuli. B. Example trial. 

Above each screen its presentation duration is displayed in seconds. 
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together with the question “Is this one of our humanoids?” or “Is this one of our 

butterflies?” depending on the stimulus set. Participants had to choose “yes” if 

the stimulus presented was seen in the instruction sheets, and choose “no” if 

the stimulus was not previously seen. The two response options were displayed 

on the screen below the question. Upon selection, the chosen option was 

highlighted in grey. Participants had 4 seconds to decide, after which a black 

fixation cross would appear on the screen. The cross stayed on the screen for 

2 or 4 seconds (time interval randomly chosen) and was followed by a new trial. 

No feedback was presented. Participants completed 40 trials containing four 

repetitions of the original stimuli in randomized order, intermixed with one 

presentation of each of the catch stimuli. Additionally, after every fourth trial, a 

null event was inserted, where a fixation cross appeared for 4 seconds instead 

of a stimulus.  

3.3.4 Procedure 

The data was collected on two separate days with the in-between testing 

time ranging from two days to four weeks. Prior to testing, participants were 

seen by a physician, who informed them about the MR safety measures and 

assessed whether they can safely take part in the experiment. On Day 1 

participants gave informed consent and were instructed about the type of task 

they were about to perform (rule-based or stimulus-based). First, they 

completed one of the two possible deterministic training tasks and the 

corresponding probabilistic training task (i.e. deterministic rule-based training 

task followed by a probabilistic rule-based training task). Following a short break, 

participants were given the corresponding instructions for the main task.  

One initial eye-tracking calibration was done as soon as the participants 

entered the scanner to optimize head position prior to scanning. After five 

minutes of pre-measurements (explained in Chapter 6.3), a new calibration was 

completed and the exposure task started. The task lasted approximately eight 

minutes and participants were allowed to rest their eyes for two minutes before 

starting the main task. The main task was split into five sessions of 32 trials each 

lasting approximately eight minutes. Every session was preceded by an eye-

tracker calibration and followed by a short break. If the participants were 
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performing the rule-based task, they were asked during the break if they had 

already found the rule and if they could describe it. No feedback was given 

regarding rule correctness. If the participants were performing the stimulus-

based task, they were only asked to rest their eyes until the next session started. 

Each session lasted approximately six minutes.  

Participants were only invited to Day 2 if they successfully completed 

Day 1. On Day 2, subjects performed the remaining deterministic training task 

(e.g. if they completed the rule-based task in Day 1, they performed the 

stimulus-based task in Day 2) and were subsequently asked to explain the 

concept of probabilistic feedback. Then, the instructions for the main task were 

presented and clarified. The rest of the testing day continued exactly as in Day 1. 

Participants were compensated with 30 Euros for participating in Day 1 

and 25 Euros for participating in Day 2. Depending on their performance, they 

could earn up to 5 Euros more on each testing day. 

3.3.5 Data Acquisition 

The software Psychophysics Toolbox Version 3 (PTB-3) running in 

Matlab R2014b (Neurobehavioral Systems, Inc., Berkeley, CA, USA) was used 

to control stimulus presentation and data acquisition. The setup contained a 

single PC with three external monitors: two in the control room and one in the 

scanner room. The main stimulus presentation screen with a resolution of 1920 

x 1080 pixels was mirrored into the scanner using an MR compatible screen 

from the NordicNeuroLab (resolution: 3840 x 2160, pixel pitch 0.076225 (H) x 

0.2247 (V), refresh rate 60 Hz). Responses were recorded using an MR 

compatible button box with a diamond arrangement.  

3.4 Results 

Examples of individual performance curves are depicted in Figure 7. 

The top and middle rows of the figure illustrate two representative subjects 

performing the rule-based (left) and stimulus-based (right) task. The bottom row 

of Figure 7 displays two non-performers, participants who failed to perform the 

task (since non-performers in Day 1 were not invited to Day 2 there was no 

subject who failed to learn both tasks). These plots indicate that learning 
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seemed to occur in an all or nothing fashion (sudden switch from mostly 

incorrect to perfect accuracy), particularly in the rule-based task. Noteworthy, 

the curves displayed do not indicate that either task was learned faster than the 

other.  

To facilitate comparison with previous studies, the total percentage of 

errors in each condition was calculated. The first calculations suggested that the 

two conditions had a similar mean number of errors (Mrule-based = 13.25 %, SDrule-

based = 10 %; Mstimulus-based  = 13.95 %, SDstimulus-based  = 6.65 %). The differences in 

standard deviations indicated the need for closer inspection. It was found that 

the rule-based mean was heavily skewed due to one participant who had a 47% 

error rate. This participant was a late learner and only reported the correct rule 

after the last scanning session. Without this participant, the overall mean error 

was 12.1 % and the standard deviation approached the one in the stimulus-

Figure 7. Example data from individual subjects. The x-axis of each plot indicates trial number. Y- 

axis of each plot indicates accuracy with 0 = incorrect (subjects selected the non-valuable 

stimulus) and 1 = correct (subjects selected the valuable stimulus).Dots indicate learning points. 

Top: subject with a good performance in both tasks. Middle: subject with a medium performance 

in both tasks. Bottom: left, subject who failed to learn the rule-based task, right: subject who failed 

to learn the stimulus-based task. 
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based task (SD = 7.8 %). No particularly late learner was found in the stimulus-

based group (no participant exceeded 31 % error rate). From all past studies for 

which error percentages could be retrieved (which are in fact the studies in 

Figure 4 shown in the introduction of this chapter), the present values were 

closest to the ones in Nosofsky et al. (1994) (in all other studies the minimum 

error percentage exceeded 20 % while in the current study the minimum was 

4.3 %). Nevertheless, as opposed to Nosofsky et al. (1994) who found an 

approximately 10 % error gap between the two conditions (type II approximately 

5 %, type VI approximately 15 %), this study only found a small 1.8% gap. The 

gap was even smaller when the slow learner was included.  

The more recent studies employing these problems have opted for 

presenting the proportion of correct responses rather than error percentages 

(e.g. Lewandowsky, 2011; Mack et al., 2020). Therefore, the current section also 

reports proportion of correct responses. The block-wise evolution of the group 

proportion is displayed in Figure 8A. It can be observed that, although the 

average accuracy curves of the two tasks overlapped at the beginning, they 

started diverging after block 4. After this, performance in the stimulus-based 

task stayed below the one in rule-based task until the last block. 

To further asses these observations, a mixed effects logistic regression 

was conducted using the lme4 (Bates et al., 2014) and afex (Singmann et al., 

2021) packages in R (R Core Team, 2013). A logistic regression was ran since 

the variable of interest, accuracy, was coded as a dichotomous variable (0 = 

incorrect, 1 = correct). Following Barr et al. (2013)’s advice to include all 

possible sources of variation in the model, the largest theoretically reasonable 

structure was fitted. The predictors of interest trial (all 160 trials, scaled with the 

R function scale), task type (0 = stimulus-based, 1 = rule-based) and task order 

(0 = started with the stimulus-based task in Day 1, 1 = started with the rule-

based task Day 1) were treated as fixed effects. The stimulus type (0 = 

butterflies, 1 = humanoids) and the by-subject trial effects were included as 

random effects. Thus, the resulting regression formula was y ~ trial*task*start + 

(1|stim_type) + (1+trial|subject). As in Wang and Ashby (2020), p values were 

determined using the Type 3 Likelihood Ratio Test as implemented in the mixed 

function in the afex package. This test provides p-values for nonzero differences 
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in explained variance between the full model, containing all the predictors of 

interest and reduced models (Table 1) (Singmann et al., 2021).  

  

Figure 8. Group behavioral performance (N = 30). A. Average accuracy in the rule-based task 

versus stimulus-based task. One block consists of 16 trials. On the y-axis 1 indicates perfect 

accuracy and 0.5 indicates chance level. Shaded areas represent standard errors. B. Average 

reaction time in the rule-based task versus stimulus-based task. One block consists of 16 trials. 

Shaded areas indicate standard error. C. Histogram of learning points in each task. Learning 

point was defined as the point after which the participant completed seven consecutive correct 

trials. Lines indicate the best fitting distributions for each task. D. Learning points as a function of 

task order (started with). Transparent circles indicate individual learning points. Filled circles 

indicate the respective group mean and the corresponding standard error. 
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Table 1 

Accuracy mixed effects logistic regression results. 

Effect df Chi-sq p 

task 1 11.48 < .001 

trial 1 65.09 < .001 

start 1 0.58 .445 

task*trial 1 26.44 < .001 

task*start 1 36.26 < .001 

trial*start 1 0.50 .481 

task*trial*start 1 1.71 .191 

Note. Type 3 Likelihood Ratio Tests (full versus reduced model).  

 

The observations drawn from Figure 8A were confirmed by the 

regression analysis. There was a significant interaction between trial and task 

type, whose directionality was in line with the one depicted in the plot (Estimate 

= -0.31, SE = 0.11, p < .01). Additionally, a significant task-by-order interaction 

revealed that the overall task accuracy was smaller for the task performed in 

Day 1. 

Differences between the two tasks also appeared in the reaction time 

(RT) data. The overall mean in the rule-based task was approximately half a 

second smaller than the one in the stimulus-based task (Mrule-based = 1.54, SErule-

based = 0.05; Mstimulus-based = 1.92, SEstimulus-based = 0.05). Moreover, Figure 8B 

indicates that although RT decreased in both tasks as a consequence of 

learning, the reduction in the rule-based task was more drastic (by 

approximately one second) than the one in the stimulus-based task. These 

observations were investigated further using linear mixed effects models. This 

time, since the dependent variable (RT) was a continuous variable following a 

gamma distribution, the analysis was performed using a gamma link function. 

The full model (presented in Table 2) was identical to the one used for the 
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accuracy data. As expected, adding the interaction between trial and task 

explained more variance that the model without the interaction term. The 

estimate of this interaction confirmed that RT reduction was less strong in the 

stimulus-based task than in the rule-based task (Estimate = 0.09, SE = 0.01, p 

<.001). In addition, participants that started with the stimulus-based task had a 

lower average RT in the rule-based task than when the rule-based task was 

performed first (Estimate = 0.04, SE = 0.01, p < .01).  

 

Table 2 

Reaction time mixed effects model results. 

Effect df Chi-sq p 

trial 1 705.40 <.001 

task 1 45.37 <.001 

start 1 0.13 .714 

task*trial 1 126.25 <.001 

task*start 1 8.10 .004 

trial*start 1 0.79 .375 

task*trial*start 1 2.68 .102 

Note. Type 3 Likelihood Ratio Tests (full versus reduced model). 

 

It was hypothesized that the rule-based task would be learned faster than 

the stimulus-based task. This hypothesis was investigated by looking at learning 

point differences between the two tasks. Various approaches were tested to 

correctly identify these learning points such as a certain number of consecutive 

correct trials, filter and smoothing algorithms (Smith et al., 2004). The most 

reliable approach proved to be defining the learning point as the point in time 

(trial) after which seven consecutive correct choices were made (ignoring the 

trials in which participants failed to respond). The histograms of each task’s 

learning points showed a considerable overlap (Figure 8C). This observation 
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was confirmed by a negative binomial generalized linear model, justified by the 

learning points’ distribution being best approximated by a negative binomial 

distribution. This model tested the effect of task type, task order and their 

interaction on the mean learning points. Indeed, there was no effect of task type 

on the learning points, indicating that the two tasks were learned at the same 

rate. The linear model also indicated a significant effect of task order, with 

participants learning faster in either rule-based or stimulus-based task when 

they started with the opposite task. However, this effect was more pronounced 

in the rule-based task and minimal in the stimulus-based task (Figure 8D). 

3.5 Discussion 

This chapter assessed Shepard et al. (1961)’s type II and type VI 

problems (referred to as the rule-based and stimulus-based task) in a novel 

choice context followed by probabilistic feedback. Behavioral analyses revealed 

both similarities and differences between the two category learning problems. 

Strong differences were observed with respect to accuracy and RT. The 

participants performed consistently worse in the stimulus-based task than in the 

rule-based task. The total number of errors participants made was smaller than 

in previous replication studies and matched (partially) only one previous study 

(Nosofsky et al., 1994). Unexpectedly, the two tasks also differed with respect 

to RT. The RT data showed a one second gap between the two tasks, which was 

caused mainly by the small post-learning reduction in reaction time in the 

stimulus-based task. Contrary to all previous studies, the two problems were 

similar with respect to speed of learning. This speed was influenced by task 

order, albeit the effect was mostly present in the rule-based task. 

Since the type VI problem has been repeatedly found to be more difficult 

than the type II problem, the overall accuracy differences (although smaller than 

in previous studies) were not surprising. On the other hand, the reaction time 

discrepancies call for discussion. It is argued that these discrepancies could 

originate either from distinct processing times or from distinct decision times. 

As far as processing time is concerned, the drastic drop in reaction time in the 

rule-based task could illustrate that once the task was learned (correct rule was 

found) participants could have saved processing time by switching from 
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processing three dimensions to only two dimensions. This was not the case in 

the stimulus-based task, in which irrespective of when learning occurred, all 

three dimensions had to be processed in order to correctly identify the valuable 

stimuli. Regarding decision time, the abrupt decrease in rule-based reaction 

time could be a result of straightforward, time-effective rule application in 

determining category membership. However, in the stimulus-based task the lack 

of substantial reduction could be reflective of a time-costly decision strategy. 

Assuming a similarity-based strategy, that is, that participants were comparing 

the two stimuli on the screen with all stimuli stored in memory, the decision of 

which stimulus was the valuable one, could only be made after all similarities to 

previously stored valuable stimuli had been computed. Clearly, these 

calculations take much more computing time than simple rule application 

(further details of this similarity-based mechanism can be found in Chapter 5.2). 

Nevertheless, a definite conclusion cannot be drawn without employing 

an experimental paradigm tailored to separate processing and decision times 

(i.e. Stanford et al., 2010). The categorization literature has not yet employed 

this type of paradigm in stimuli with clearly separable dimensions. Hence, this 

work could potentially inspire the development and application of these 

paradigms.  

It is worth mentioning that the current reaction times were not in line with 

those found in Love (2002), neither in the overall mean values nor in the mean 

difference between the two tasks. It can be speculated that these differences 

were not simply due to paradigm change, and were instead a marker of 

adequate instructions. In Love (2002) instructions only specified that the 

category label (which was in this case a fourth stimulus feature) depended on 

the other three dimensions. Thus, the fact that almost equal mean RTs were 

found (Mtype II = 1.68, Mtype VI = 1.69) could suggest, that unlike in the current 

study, participants used the same strategies in the two problem types.  

One significant aspect of discussion concerns the lack of difference in 

learning points which directly refuted the main hypothesis that the rule-based 

task would be learned faster than the stimulus-based task. This puzzling finding 

could be attributed to three of the paradigm’s novel features: instruction type, 

display type or feedback type.  
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First, the idea that the instruction type impacts learning point distribution 

in Shepard’s problem arises from the work of Kurtz et al. (2013). The authors 

studied the role of instruction type on the initial ordering focusing on type II and 

type IV problems. To reiterate, in type II problems, items can be categorized by 

using a disjunctive rule, whereas in type IV problems a rule-plus exception 

strategy is needed. It was found that the type II learning advantage was present 

when the participants were explicitly asked to solve the task by applying a rule, 

but disappeared in the absence of rule-like instructions. Nevertheless, the effect 

of instructions on type IV problems was not assessed. It is plausible that if the 

participants had been instructed about the rule-plus- exception strategy, they 

would have learned faster than without instructions, perhaps even as fast as in 

the type II problem. In a similar vein, it is also plausible that in the present study, 

the clear instructions to solve the stimulus-based task using a memorization 

strategy speeded up learning to the extent that the performance in this task 

“caught up” with the one in the rule-based task. This is an exciting avenue that 

is yet to be taken. Future work could aim to investigate the effect of instructions 

on all Shepard’s problems. A deeper understanding of how instructions alter the 

initial ordering could not only advance the current understanding of these 

complex problems but also fine tune current category learning models (perhaps 

by adding an instruction type parameter). 

Second, the absence of a difference between learning points could be 

attributed to the display type, i.e. presenting two stimuli on the screen instead 

of one. One could argue that the pair display could have been particularly helpful 

for the stimulus-based task. Assuming a similarity-based strategy, the two-pair 

display could have reduced the number of stimuli to be retrieved from memory 

by at least a factor of one (retrieving 6 stimuli instead of 7) 1 and could have led 

to faster learning. Even if no retrieval per se occurred, the second stimulus could 

have sped up learning simply by easing stimulus recognition (i.e. recognizing 

one of the two stimuli as being valuable or not valuable). Nonetheless, the pair 

                                                 

1 Recent theories proposed that this retrieving mechanism would be too cognitively 
in real-life and that instead of retrieving all exemplars at once, participants either retrieve 
them sequentially or only retrieve the most recent ones. Nonetheless, both scenarios benefit 
from the presentation of two stimuli on the screen. 
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display should have also facilitated learning in the rule-based task by allowing 

participants to either exclude potential rules faster or to simultaneously test 

multiple rules. Thus, with learning in both tasks being potentially accelerated by 

the pair presentation, the display type alone could not have been the sole reason 

for the two tasks being learned at the same time.  

From a different angle, the paired presentation could have had the 

opposite effect, that of hindering learning. Given that the mean accuracy in the 

stimulus-based task stayed below one throughout the whole task, the concern 

could be raised that the reason why the tasks were learned equally fast is that 

the stimulus-based task was not in fact fully learned. Instead of learning each 

stimulus and its value, the participants could have instead just memorized 

certain pairs of stimuli. Although rather unlikely taking into account the 

randomized order of pair presentation and that a stimulus appeared in more 

than one pair, the individual and group pair-wise accuracy were inspected to 

exclude this potential confound. Both individual and group data (shown in 

Figure 9) indicated that in both tasks all pairs were successfully learned, ruling 

out incomplete learning as an explanation for the similar distributions of the 

learning points. 

Figure 9. Pair-wise group accuracy (N = 30). X-axis indicates the number of times a specific pair 

has been presented or repeated. Y-axis indicates the cumulative sum of the accuracy (a 

cumulative sum of 4 at repetition number 6 indicates that the participant responded correctly 4 

out of 6 times when presented with that pair). Note: stimulus coding differs between the tasks, 

stimulus 2 in the rule-based task is different from stimulus 2 in the stimulus-based task. Error 

bars indicate standard error. 
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Third, unlike most previous categorization tasks, the present tasks used 

probabilistic feedback, which could have altered the classic type II / rule-based 

advantage. Previous pilot tests showed that introducing probabilistic feedback 

slowed down learning in the rule-based task. It was assumed that since the 

stimulus-based task resembles a reinforcement learning task (in which learning 

is slowed down by the probabilistic reward scheme), introducing probabilistic 

feedback would have had the same effect. However, this assumption was not 

explicitly tested and might not have been correct. It could be the case that since 

the participants were aware that they cannot fully trust the received feedback, 

they compensated for the lack of “trustworthy” feedback by being more 

attentive during this task than during a standard deterministic task. This 

compensation could have resulted in faster learning. To rule out this possibility, 

the learning points in the main stimulus-based task were compared with those 

in the deterministic stimulus-based training task.  

To reiterate, the deterministic stimulus-based training task had the same 

structure as the main task with the important difference that the feedback was 

100 % contingent to the choice made (a correct choice would get positive 

feedback). The data displayed in Figure 10 revealed that participants learned 

Figure 10. Learning points distributions (N = 27). In orange, the original learning 

point distribution of the main stimulus-based (SB) task (main task SB). In purple, 

the learning point distribution of the deterministic stimulus-based training task 

(training SB). Learning points were defined as the point after which the subject 

made seven consecutive correct trials. Three subjects are missing from the 

original sample of 30 due to equipment malfunction. 
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much faster in the training task than in the main task, thus confirming that the 

probabilistic feedback had the initially assumed effect. While one could argue 

that faster learning in the training task could be attributed to the simpler stimuli, 

the large difference in learning points speaks for the feedback as the main 

driving factor. Thus, the probabilistic feedback is an unlikely contributor to the 

absence of a difference in speed of acquisition. 

In conclusion, the current paradigm managed to offer novel behavioral 

insights into rule-based and stimulus-based categorization. By taking a new 

approach in terms of instruction type and stimulus presentation, these tasks 

challenged the traditional type II and type VI problems and the established type 

II learning advantage. The behavioral analyses unraveled the explanatory 

potential of reaction times, by showing a striking difference in the development 

of participants’ speed due to learning across the two tasks. All in all, the rule-

based and stimulus-based task highlight yet again the richness of Shepard’s 

problems and that despite six decades of research, there are many behavioral 

subtleties left to explore. 
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4. Dissociable Attentional Signatures 

4.1 Introduction and Hypotheses 

Categorization and selective attention are closely intermixed. Without 

being able to direct attention to the dimensions predictive of a certain category 

label, categorizers would be extremely inefficient or fail altogether (McColeman 

et al., 2014). Consequently, most category learning models rely heavily on 

selective attention mechanisms. Some of the most successful models in 

explaining Shepard’s problems such as ALCOVE (Kruschke, 1992), RULEX 

(Nosofsky & Palmeri, 1998), ATRIUM (Erickson & Kruschke, 1998) and 

SUSTAIN (Love et al., 2004) are no exception. All these models contain 

attentional weights which encode the amount of attention paid to each stimulus 

dimension. These weights are crucial in computing associations between a 

stimulus and a category label. The models do however make different 

assumptions on how these weights are calculated and updated throughout the 

task. For example, the ALCOVE model proposes that attention is first allocated 

to all stimuli dimensions (equal attentional weights), and as the model learns the 

right category membership, attention shifts to the most diagnostic dimension in 

an error-driven fashion (the relevant dimension gets higher weights, Kruschke, 

1992). RULEX on the other hand, advocates for the opposite mechanism, 

namely that attention is first paid to only one dimension and is progressively 

distributed to more dimensions if needed (Kim & Rehder, 2011). ATRIUM takes 

a different approach and conceptualizes attention as a mechanism that controls 

the interaction between a rule-learning system and an exception storing system 

(Erickson & Kruschke, 1998). SUSTAIN no longer separates these two systems, 

and instead stores both rule-learned and exception-learned items, in 

compartments called “clusters”, whose formation is controlled by attentional 

weights (Love et al., 2004; Mack et al., 2018).  

Understanding selective attention is essential for understanding the 

categorization process. It is evident that this understanding cannot be complete 

by using only model-based attentional estimates. Therefore, model-based 

estimations of attentional mechanisms should be complemented by empirical 

measurements of attentional processes. Selective attention in categorization 
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can be assessed through the use of experimental paradigms cleverly 

constructed to elicit different attentional mechanisms (e.g. Best et al., 2013; 

Carvalho & Goldstone, 2017; Deng & Sloutsky, 2016) or using indirect measures 

of attention (e.g. switch frequency, Matsuka & Corter, 2008). However, more 

direct investigations of attention can be accomplished by using eye-tracking 

methods. Eye-tracking has become an established measure of overt attention 

which is defined as attention-triggered eye-movements to a spatial location 

(Liversedge & Findlay, 2000). Although several categorization studies have 

successfully employed eye-tracking (Hoffman & Rehder, 2010; Kim & Rehder, 

2011; Vigo et al., 2013; Carvalho & Goldstone, 2017; Zaki & Salmi, 2019), its 

application to the Shepard’s problems has been scarce. In fact, up until now 

only two eye-tracking studies have investigated problems that resemble the 

original six problems (Watson & Blair, 2008; Blair et al., 2009) and only one study 

has systematically investigated attention in a subset of the original problems 

(Rehder and Hoffman, 2005). These studies are briefly summarized below. The 

study by Watson and Blair (2008) is not revised since the same data as in Blair 

et al. (2009) was used (with the focus on attention mechanisms during the 

feedback). 

Blair et al. (2009) used a paradigm in which eight stimuli with binary 

dimensions could be categorized in four possible categories (no stimulus could 

belong to multiple categories). The resemblance to Shepard et al. (1961) comes 

from the way in which these categories were constructed: one of them could be 

found by using a uni-dimensional rule (akin to the type I problem), one by using 

a two-dimension rule (akin to the type II problem) and two by memorization (akin 

to the type VI problem). The authors found that participants fixated longer on 

the features relevant to the one- and the two-dimension rules. With respect to 

the memorization category, participants spent an equal amount of time fixating 

on two dimensions and a slightly longer time fixating on the third dimension. 

Moreover, it was found that the sequence of fixations within a trial mirrors the 

dimensions’ relevance, such that relevant dimensions are fixated on first. It has 

to be highlighted that the authors restricted the analyses to the period after 

learning.  
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The Rehder and Hoffman (2005) paradigm was explained in detailed in 

Chapter 2.1. In short, the authors recorded eye-tracking data of standard type 

I, II, IV and VI problems. As in the original study, in each problem there were 

only two possible categories. Noteworthy, unlike the study by Blair et al. (2009), 

here the analyses also included the fixations prior to learning. It was found that 

in both type II and type VI problems, participants started by fixating all three 

dimensions. As learning progressed, participants in the type II problem switched 

from fixating all three dimensions to fixating only two dimensions. Unlike Blair et 

al. (2009), there were no post-learning fixations on a third dimension. In type VI 

problems, participants fixated on all three dimensions throughout the task, and 

no change occurred with learning. These findings were extremely important 

since it was the first time it was empirically demonstrated that participants learn 

to attend selectively to dimensions diagnostic for the problem at hand.  

Given that all models used to explain the Shepard et al. (1961) problems 

have made powerful assumptions about attentional mechanisms, the scarcity of 

accompanying eye-tracking studies is surprising. Thus, this work aimed to 

contribute to the literature by using eye-tracking measurements of the current 

adaptation of type II and type VI problems. Aside from filling in a literature gap, 

these measurements are particularly valuable for the current study since two 

distinct categorization types are compared, rule-based and stimulus-based. To 

facilitate comparison with Rehder and Hoffman (2005), these differences will be 

investigated with respect to fixation counts rather than fixation durations. Given 

that this was the first two-stimulus display adaptation of the problems, the first 

step was to get a general understanding of fixation patterns in this format. As in 

the previous studies, the main goal was to assess whether attention was 

allocated optimally across the two tasks. This question was particularly 

important, since unlike previous studies, here clear instructions on the optimal 

strategies (rule application versus memorization) were provided.  

Since the two problem types employ two behaviorally distinct strategies, 

it was expected that they would also elicit distinct attentional strategies. Due to 

the current work being more similar to Rehder and Hoffman (2005) than to Blair 

et al. (2009), the two hypotheses formulated was based on the former such that: 
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H1: It was expected that in the rule-based task, after learning, participants will 

fixate only on the rule-forming dimensions.  

H2: In the stimulus-based task, it was expected that participants would fixate all 

three dimensions equally throughout the task. 

4.2 Materials and Methods 

4.2.1 Participants 

Due to technical failures of the eye-tracking equipment, data from only 

22 participants could be used for the rule-based task analyses (10 males, 12 

females, Mage = 25.54, SDage = 2.79) and data from only 17 participants could be 

used for the stimulus-based task analyses (8 males, 9 females, Mage = 25.53, 

SDage = 2.62). 

4.2.2 Acquisition parameters 

Eye movements were recorded under constant lighting conditions from 

the right eye using the Eyelink Eye Tracking system (EyeLink 1000, SR 

Research, Ottawa, ON, Canada). The recording was done at a sampling rate of 

500 Hz with a spatial resolution of 0.01 and a spatial accuracy of 0.5. In any 

given trial, the size of the two stimuli (both butterflies and humanoids) was 7.94 

cm x 25.2 cm, which corresponded to 3.77 x 11.97 degrees of visual angle at a 

distance of 120 cm. The stimuli did not change in size during the feedback 

period. The size of the reward coin was 3.97 cm x 2.64 cm corresponding to 

1.53 x 1.26 degrees of visual angle. 

4.2.3 Preprocessing 

The unprocessed EyeLink files were imported and converted into usable 

matrices using the package “eyelinker” from R (Barthelme, 2019). For both left 

and right stimuli, three equally sized areas of interest (AOIs) were defined 

(7.93 cm x 6.61 cm), each containing one of the varying dimensions (color, 

number or orientation) (Figure 11). 
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Raw data inspection indicated that the eye-tracking data suffered from 

considerable drifts, that is, all data points seemed to have been displaced by a 

certain factor from their true location (Figure 12 left). These drifts could not be 

attributed to poor calibration because they also occurred in subjects with perfect 

calibration. To correct for this artifact, the data was feedback centered. First, the 

cluster of fixations corresponding to the feedback coin was identified. Second, 

the center of this cluster was calculated by taking the mean of all the points 

included. Third, the displacement factor was computed by calculating the 

distance between the center of this cluster and the actual center of the screen 

(X coordinate: 969, Y coordinate: 540). Lastly, all points were shifted by this 

displacement factor. Visual inspection of individual data revealed that this 

procedure restored the data points to their correct position and thus 

considerably improved the quality of the data (Figure 12 right). 

Fixations with a duration shorter than 100 ms and longer than 1300 ms 

were excluded from subsequent analyses (van Renswoude et al., 2018). Given 

that this project focused on disentangling rule-based and stimulus-based 

strategies, all analyses were conducted on a time window starting with the two-

stimulus presentation and ending with a button press (when the participant 

selected one of the two figures). The choice of this time window was further 

motivated by the fact that on average participants responded after 1.52 seconds 

Figure 11. Area of interest definition. Dashed grey lines mark the three 

areas of interest (AOI) for the humanoid stimuli (left) and for the butterfly 

stimuli (right). All AOIs have equally-sized areas. 
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in the rule-based task and 1.91 seconds in the stimulus-based task. Therefore, 

including the whole 4-second time window of stimuli presentation would have 

led to including 2 seconds of data points that were quite likely reflective of 

exploration or fatigue and not of the strategies of interest. Trials in which 

participants failed to respond were discarded. 

4.3 Results 

Given the novelty of these two tasks, the first analyses focused on 

obtaining a general overview of the fixation pattern. Here, the fixation differences 

between the two tasks were investigated using a generalized linear mixed 

effects regression with a Poisson distribution. A Poission distribution was 

chosen since the dependent variable, the number of fixations until choice, 

followed a Poisson distribution. The fixed effects were task (1 = rule-based task, 

0 = stimulus-based task), stimulus (1 = humanoids, 0 = butterflies) and AOI 

(three levels: AOI 1, AOI 2 and AOI 3, definition based on Figure 11). The 

random effects structure included subject and by trial-subject effects (Barr et 

al., 2013). All in all, this resulted in the following regression formula: y ~ 

task*stimulus*AOI + (1 + trial|subject). This model as well as all next models in 

this chapter were fitted in R using the lme4 package (Bates et al., 2014). 

Figure 12. Drift correction. Example data from one participant before shifting (left) and after 

shifting (right). Dashed rectangles indicate the stimuli location and their corresponding areas of 

interest as defined in Figure 11. 
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The results revealed a significant main effect of task, such that overall, 

participants needed less fixations to reach a decision in the rule-based task than 

in the stimulus-based task (Estimate = -0.48, SE = 0.04, z = -12.24, p < .001). 

Follow-up analyses showed that this difference was mainly due to participants 

in the stimulus-based butterfly condition needing significantly more fixations 

than those in the stimulus-based humanoid condition (Figure 13A) (Estimate = 

2.44, SE = 0.17, z = 14.21, p < .001). 

Next, the distribution of fixations across the three areas of interest was 

examined. Figure 13B indicates an AOI 2 fixation bias (center of the stimuli) 

which was confirmed by significant pairwise comparisons across dimensions 

(AOI 1 – AOI 2 with Estimate = -0.82, SE = 0.02 and p < .001; AOI 2 – AOI 3 with 

Figure 13. Descriptive eye-tracking results (NRB = 22, NSB = 17). A. Mean fixation count in the 

rule-based and stimulus-based task split by stimulus type. B. Mean fixation count on each of the 

three areas of interest (AOI), split by stimulus type. 𝑁𝑅𝐵
ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑𝑠 = 16, 𝑁𝑆𝐵

ℎ𝑢𝑚𝑎𝑛𝑜𝑖𝑑𝑠 = 6, 𝑁𝑅𝐵
𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑖𝑒𝑠

 

= 6, 𝑁𝑆𝐵
𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑖𝑒𝑠

 = 11. C. Curves display block-wise evolution of the left bias between the two 

tasks. D. Curves represent block-wise differences in fixations on the chosen versus unchosen 

stimuli. Each block consisted of 16 trials. Error bars indicate standard errors. 
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Estimate = 1.99, SE = 0.37, p < .001). The overall fixation pattern differed 

significantly between the two stimuli. Regardless of task type, participants 

allocated almost double the amount of fixations to the AOI 2 of the humanoids 

(corresponding to the belly) than to either of the two external features. This was 

not the case for the butterflies conditions in which AOI 1 (corresponding to the 

antennas) received most fixations followed closely by the AOI 2 (the wings 

region). Due to the different instructions and strategies used in the two tasks, 

the separate AOIs by-task interactions were not followed up in this analysis but 

were the scope of a separate analysis on dimension relevance (below).  

The second analysis focused on the general trial-wise evolution of the 

attentional allocation. As above, this analysis was also a generalized linear mixed 

effects model with a Poisson distribution with the number of fixations until choice 

as dependent variable. This time, the fixed effects were the variables: task (1 = 

rule-based, 0 = stimulus-based), trial (all 160 trials, scaled), left (1 = fixation on 

the left side of the screen, 0 = fixation on the right side of the screen) and chosen 

(1 = fixation on the chosen stimulus, 0 = fixation on the unchosen stimulus). The 

random effects structure was identical to the one in the previous analysis. Thus, 

the final regression equation was: y ~ task*trial*left*chosen + (1 + trial|subject). 

Figure 13C shows a general reduction of fixation count with task 

progression but this reduction affected more the rule-based task than the 

stimulus-based task (significant task-by-trial interaction, Estimate = -0.05, 

SE = 0.03, z = 1.99, p < .05). Participants also exhibited a left bias (Estimate =  -

0.16, SE = 0.03, z = -5.46, p < .001) which was was more pronounced in the 

stimulus-based task (significant task-by-left interaction, Estimate = 0.15, SE = 

0.56, z = 2.67, p < .01).  

When looking at attention distribution in relation to choice, participants 

fixated significantly more often on the chosen stimulus rather than on the 

unchosen stimulus in both tasks. This gap was stronger in the rule-based task 

than in the stimulus based task (significant task-by-chosen interaction, 

Estimate = 0.25, SE = 0.04, z = 6.65, p < .001). Figure 13D depicts that in the 

stimulus-based task, the fixation count on the chosen and unchosen stimuli, as 

well as the difference between the two, stabilized after block 6. In the rule-based 

task on the other hand, both the fixation count and the difference continously 
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decreased to such an extent that in the last block there was no longer a 

difference between chosen and unchosen stimuli. 

Once the general fixation pattern was described, the next analyses 

assessed whether the fixation allocation to the stimuli’ dimensions were indeed 

reflective of the two different strategies used in the two tasks.  

To reiterate, it was expected that in the rule-based task participants 

would learn to allocate attention to the two dimensions forming the disjuctive 

XOR rule (e.g. the color and number dimensions when the correct rule was blue 

hat and one star or green hat and two stars) and to disregard the dimension 

which is not part for the rule (e.g. the orientation dimension). To test this 

hypothesis, the data had to be recoded according to dimension relevance. As 

described in Chapter 2.3.4, each participant was assigned a task version that 

could be solved with one of three possible rules. The valuable stimuli could be 

correctly identified either by a combination of color and number (N = 6), color 

and orientation (N = 8) or number and orientation (N = 9). Since the main 

purpose of the task was to test differences in attentional allocation between the 

relevant and irrelevant dimensions, all fixations were re-grouped based on their 

role within the rule-forming dimensions. Based on its location, each fixation was 

assigned to one of three possible groups: relevant 1 or relevant 2 if it was located 

on one of the two dimensions forming the rule, or irrelevant if it was on the third 

dimension which was not relevant to the rule. For example, if the correct 

disjunctive rule was a combination of color and orientation (i.e. humanoids with 

blue hats and upwards shoes are valuable), the fixations on AOI 1 (the AOI 

corresponding to the color dimension for humanoids) were assigned to the 

relevant 1 group. The fixations on AOI 3 (the AOI corresponding to the 

orientation dimension for humanoids) were assigned to the relevant 2 group, 

and the fixations on AOI 2 (corresponding to the number dimension for 

humanoids) to the irrelevant group (Figure 11). Note that this was done for both 

stimuli presented on the screen on each trial. Fixations outside of these AOIs 

were not included in the analysis. The recoded data was inspected using a 

generalized linear mixed effects model with a Poisson distribution. As in the 

analyses above, the dependent variable was the number of fixations. The fixed 

effects of interest were trial (all 160, scaled), relevance (0 = relevant 1, 1 = 
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relevant 2, 2 = irrelevant) while the random effects included subject and by-trial 

subject effects. Thus, the final regression formula was y ~ 

trial*relevance+(1+trial|subject).  

The analysis revealed an overall significant difference between all three 

levels of relevance, with the strongest discrepancy being seen between the 

relevant 1 and irrelevant dimensions (Estimate relevant 1 – relevant 2 = -.25, 

Estimate relevant 1 – irrelevant = -0.93, Estimate relevant 2 – irrelevant = -.67, 

p < .001 for all comparisons). Figure 14A displays the evolution of fixations on 

the relevant and irrelevant dimensions. It can be seen that while fixation count 

on all dimensions decreased with task progression, the irrelevant dimension 

shows the steepest trial-wise decrease. This was confirmed by the lack of a 

significant trial-by-relevance interaction for the relevance dummy coded group 

(reference group: relevant dimension 1) and a significant trial-by-relevance 

interaction for the irrelevant dummy coded group (reference group relevant 

dimension 1, Estimate = -0.41, SE = 0.03, z = -16, p < .001). Noteworthy, while 

the number of fixations on the relevant dimensions seemed to stabilize around 

block 6, the number of fixations on the irrelevant dimension continued to drop.   

Figure 14. Strategy-dependent attentional allocation. A. Rule-based task. Curves indicate block-

wise evolution of attentional allocation to the relevant and irrelevant dimensions (N = 22). B. 

Stimulus-based task. Curves indicate block-wise attentional distribution to each area of interest 

(AOI). Each block consists of 16 trials. Shaded areas indicate standard errors. 
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Concerning the stimulus-based task, it was hypothesised that since no 

single dimension is predictive of category membership, participants would 

distribute their attention evenly to all three dimensions. Therefore, since no 

dimension was more relevant than the other, the original fixation location coding 

was kept. As in the rule-based task, this hypothesis was investigated by looking 

at the trial-wise evolution of fixations on the three AOIs. A generalized linear 

mixed effects model with a Poisson distribution was applied, with fixation count 

as dependednt variable, trial (all 160 scaled) and AOI (3 levels, 0 = AOI 1, 

1 = AOI 2, 3 = AOI 3) as fixed effects, and subject and the by-subject trial effects 

as random effects. The final model equation was y ~ trial*AOI + (1 + 

trial|subjects). 

Figure 14B indicates that on average fixations were distributed evenly 

on AOI 1 and AOI 2, although AOI 1 had considerably more variation. The 

regression results confirmed this observation through a small significant 

difference in mean fixation count (dummy variable AOI 1 – AOI 2, 

Estimate = 0.06, SE = 0.02, p < .001). On the other hand, AOI 3 had a rather 

small mean fixation count, which differed largely from AOI 1 and AOI 2 (dummy 

variable AOI1 - AOI 3, Estimate = – 1.92, SE = 0.03, z = -49, p < .001).  

Figure 14B also shows that fixation counts on AOI 1 and AOI 2 slightly 

decreased during the first five blocks and only stabilized from block 6 onwards. 

Nevertheless, this small block effect was not significant (non-significant trial x 

dummy variable AOI 1 – AOI 2 interaction). In contrast, the fixation count on AOI 

3 dropped more steeply than the other two AOIs and this effect reached 

significance (significant trial-by-dummy variable AOI 1 – AOI 3 interaction, 

Estimate = -0.24, SE = 0.03, z = -6.41, p < .001). 

4.4 Discussion 

This chapter focused on understanding attentional allocation in rule-

based and stimulus-based learning. This study was the third eye-tracking study 

employing Shepard et al. (1961)’s problems, and the first to address them with 

the atypical two-stimulus display.  

The descriptive analyses suggested that in terms of attention, the 

stimulus-based task was more taxing than the rule-based task. This aspect was 
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highlighted by three findings. Firstly, the participants needed more fixations to 

reach a decision in the stimulus-based task than in the rule-based task. 

Secondly, although a left bias was present in both tasks, this bias was 

considerably more pronounced in the stimulus-based task. Thirdly, the fixation 

gap between the chosen-unchosen stimuli was only minimal in the stimulus-

based task as opposed to the rule-based task, indicating that participants had to 

pay considerable attention to both stimuli from the beginning to the end of the 

task. Unfortunately, no direct comparison to previous data was possible since 

the study by Rehder and Hoffman (2005) did not provide mean fixation count 

data. Indirect connections can however be drawn to Blair et al. (2009), which 

found that participants fixated longer on stimuli belonging to the categories that 

required memorization than to the stimuli belonging to the category that 

required a two-dimension rule. It could be speculated that this  finding also 

supported the claim that stimulus-based categorization has higher attentional 

demands than rule-based categorization. Even without these indirect 

connections, it can be argued that since the type VI problem has been 

consistenly found to be more difficult than the type II problem, it was to be 

expected that its increased level of difficulty would translate in higher attentional 

demands. 

To get a better understanding of the attentional differences between the 

two tasks, the data was analyzed with respect to the two distinct categorization 

strategies. The results revealed signatures of strategy-dependent attentional 

allocation, albeit in different ways than hypothesized. 

In the rule-based task it was expected that after learning, participants 

would completely disregard the irrelevant dimension and only fixate on the 

relevant dimensions. The findings from the relevance analyses indicated that 

this hypothesis was only partially confirmed. Although, as expected, most 

fixations were allocated to the relevant dimensions after learning, fixations on 

the irrelevant dimensions did not completely cease. Surprisingly, the fixation 

count on the irrelevant dimension continued to fluctuate long after the fixation 

count on the relevant dimensions had stabilized.  

The finding that all three dimensions were still attended by the end of 

the task is in disagreement with the previous work which showed that only two 
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dimensions were attended by the end of the type II problem. It could be argued 

that this discrepancy could be solely attributed to the fact that the current study 

used two different stimulus sets and not the standard one stimulus set used in 

Rehder and Hoffman (2005). This idea is strengthened by the results showing 

that the humanoids and butterflies differed in their overall fixation pattern. To 

rule out this possibility the by-stimulus group data was investigated. Although 

data loss did not allow for a thorough statistical analysis of the stimulus effect 

(uneven small groups NRB
butterflies = 6, NRB

humanoids = 16), visual inspection 

confirmed that in both stimulus groups the fixation count on the irrelevant 

dimension fluctuated long after learning but did not reach zero. 

With the stimulus confound ruled out, it follows that the presence of 

fixations on the irrelevant dimension together with the steady decrease were 

indicative of an additional attentional mechanism. One simple explanation could 

be that since participants had to attend to two stimuli instead of one (as in 

Rehder & Hoffman, 2005), the fixations on the irrelevant dimension were just 

explorative and motivated solely by a “getting to know” the environment 

mechanism. However, the underlying mechanism could be more complex and 

could indicate a strategy optimization attempt. Given that in the second half of 

the task the participants needed on average only a small number of fixations to 

choose the valuable stimulus, the third fixation could be a shortcut to rule-

application via recognition. In certain trials participants could find it easier to 

make one fixation to each dimension in the hope of recognizing the stimulus as 

valuable or not, rather than applying a rule. Nevertheless, either due to the clear 

instructions to solve the task by rule application or due to the shortcut failing, 

the participants could be gradually giving up this avenue – hence, the 

continuous block-wise drop. 

On the other hand, rather than a tentative optimization, attention to the 

third dimension could be a consequence of probabilistic feedback. As described 

in Chapter 2.3, the pseudo-randomized probabilistic feedback ensured that up 

until the end of the task subjects will occasionally receive negative feedback 

(even though they chose the correct, valuable stimulus). A recent study by Arbel 

et al. (2020) showed that negative feedback results in a higher change in fixation 

probability (whether an AOI will be fixated or not) than positive feedback. This 
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finding could be directly translated to the current task by attributing the third 

fixation to a post-negative feedback caution. In other words, even after the 

correct rule was found and successfully applied, the impact of the negative 

feedback could have been so strong that it resulted in a short-term rule doubt, 

and a reassessment of all dimensions. It could have also been the case that this 

fixation was an involuntary error caused by the negative feedback, which got 

corrected in the upcoming trials.  

It has to be mentioned that although their paradigms were considerably 

different from the current one (not only in the number of categories but also in 

category size), Blair et al. (2009) did find that after learning participants also 

attended to the irrelevant dimension. Moreover, the mean duration of these 

fixations was far from negligible (approximately 400 ms when the fixation on the 

relevant dimensions had a mean of 800 and 500 ms). Due to the regularity at 

which they occurred in a trial sequence, the authors suggested that they were 

“essentially noise that was uniformly distributed in time” (Blair et al., 2009, p. 

1203). This conclusion is weakened by the present findings. Although it is 

difficult to pinpoint the source of these fixations (especially considering that Blair 

et al. (2009)’s paradigm had neither two-stimulus display nor probabilistic 

feedback), there seems to be more to the story than noise or artifacts. It is hoped 

that this aspect will be researched further in the future. 

As far as the stimulus-based task is concerned, the hypothesis that all 

three dimensions would be attended equally was also not fully confirmed. Even 

though participants did pay attention to all three dimensions, this attention was 

not distributed evenly. A comparison to the previous study was useful in 

understanding this aspect. At a first glance, the current results also seemed to 

disagree with Rehder and Hoffman (2005). The authors found that in the type VI 

problem all three dimensions were fixated throughout the task. Figure 14B 

depicts that in this study participants focused on two dimensions and paid little 

to no fixation to the third dimension. While this distinction could be introduced 

by the difference in display type (one versus two stimuli), the more likely 

explanation is that the low fixation count was a color artifact. Despite the fact 

that the low sample size did not allow for a thorough follow-up analysis, visual 

inspection of the by-stimulus group data supported this idea. This data indicated 



 

63 

 

that in the stimulus-based humanoids group, AOI 1 (corresponding to the color 

dimension in humanoids) had the lowest, zero approaching fixation count while 

in the butterflies group, AOI 3 (corresponding to the color dimension in the 

butterfly group) had the lowest fixation count. Since the butterfly group was 

almost twice as big as the humanoids group (due to data loss), the average data 

was pushed towards the mean of the butterfly group. Assuming a color artifact, 

it remains that the participants indeed allocated attention evenly to all three 

dimensions as in Rehder and Hoffman (2005), but the attention on the color 

dimension was only covert, and thus not reflected in the number of fixations. 

It has to be highlighted that the differences between the current tasks 

and Rehder and Hoffman (2005) could be due to three important methodological 

differences. First, the current study only included fixations during the choice 

period, namely fixations which occurred in the time window between stimuli 

presentation and response. It is not clear which time window was used in the 

previous study. It is not specified whether the analyzed fixations occurred only 

during the “categorization time” (starting from stimulus presentation and ending 

with response) or whether all the fixations within a trial were considered, 

including those from  the “feedback time”. If the latter is true, unlike the current 

study, the previous findings could be reflective of not only the strategies used 

to categorize the stimulus, but also of those used to integrate the feedback. 

Previous research (Arbel et al., 2020; Blair et al., 2009) has shown that the 

attentional mechanisms during feedback are complex and depend on various 

factors, such as response correctness, which might not be as relevant to the 

categorization process per se. 

Second, in Rehder and Hoffman (2005) participants finished the task 

after they completed 32 correct trials in a row. To facilitate comparison across 

performances, the authors “assumed that their eye movement data for the 

remaining blocks would have been identical to their last actual four blocks” 

(Rehder & Hoffman, 2005, p. 978). The authors report an average stopping point 

at 14.11 blocks in the type II and 22.94 blocks in the type VI problem (a block 

contained eight trials). The average curves presented in the paper ranged up to 

block 28. This implies that for an average of 14 and 6 blocks respectively, the 

evolution of attentional allocation was only assumed. This was not the case in 
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the current study where attention was monitored for the same fixed number of 

trials, and thus the attentional curves indicate the true mean. It could be 

speculated that attention could have evolved differently than assumed in the 

previous study, perhaps more similarly to the current tasks. This aspect would 

have been particularly interesting in the rule-based task in order to see if 

participants undergo further rule optimization.  

Third, this study differed from the Rehder and Hoffman (2005) with 

respect to instructions. As mentioned in Chapter 2.1, the authors did not specify 

how the participants were instructed, and it can only be deduced from the 

discussion that no rule-like instructions were given. If this were the case, one 

could expect that the different instruction type led to different attentional 

allocation strategies. Nevertheless, the strongest effect of instruction type would 

have likely appeared at the beginning of each task. That is, participants in the 

present study would have started with another fixation pattern than those in the 

previous study. However, this was not the case since in both studies participants 

started by fixating all three dimensions. Instruction could have nonetheless 

impacted attention at a later stage. Without further research on effects of 

instruction type on categorization, it is difficult to speculate what this effect might 

be.  

While the two tasks clearly differed in their attentional demands and 

patterns, some similarities did arise. Firstly, in both tasks participants distributed 

attention based on the instructed optimal strategy. Secondly, without the color 

bias in the stimulus-based task, it can be argued that in both tasks participants 

started by fixating all three dimensions almost equally. This argument would 

confirm Rehder and Hoffman (2005)’s conclusion that rather than sequentially 

attending to one dimension until its diagnostic value is established (hypothesis 

testing), participants start by fixating all dimensions. The current results 

strengthen their conclusion by proving (in the rule-based case) and assuming 

(in the stimulus-based case) that the “all dimensions start” also exists when 

participants are explicitly instructed on how to perform the task. Thirdly, in both 

tasks the fixation pattern did not stabilize after learning. Instead, despite the fact 

that learning was completed on average by block 4, the fixation count on the 

relevant dimensions (rule-based task) and on the three AOIs (stimulus-based 
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task) only stabilized after block 6. Interestingly, a similar phenomenon was also 

reported by Rehder and Hoffman (2005). The authors found that fixation on the 

relevant dimensions followed but not preceeded perfect accuracy. Nonetheless, 

in their study attentional allocation “settled” shortly after learning. One could 

assume that in both studies learning was immediately followed by a process of 

optimization, either of the current strategy or its implementation. The fact that 

this process took two blocks in this study rather than a few trials as in the 

previous study could be attributed to the two-stimulus display together with the 

probabilistic feedback. In other words, subjects simply had more optimization 

strategies to try in the current paradigm than in the typical one-stimulus 

deterministic setup.  

Although the eye-tracking data has been in general successful at 

capturing attentional strategies unique to each task, there are some noteworthy 

limitations to the study. As previously mentioned in this chapter, the data set 

suffered from considerable technical problems during acquisition, resulting in 

the exclusion of many participants. This on its own hindered the balance of the 

design and impaired subgroup analyses by stimulus type (in both tasks) or by 

rule-type (in the rule-based task). The relatively small overall number of fixations 

in both tasks could have been caused by data loss. Unfortunately, since no 

previous study tested Shepard’s problems with two stimuli on the screen and 

Rehder and Hoffman (2005) did not report fixation counts, one can neither 

confirm nor rule out this possibility. Moreover, having the dimension color in the 

stimulus set hindered the ability to observe fixation allocation on AOI 3 in the 

stimulus-based task and quite likely affected the overall fixation count in the rule-

based task as well. While the color dimensions added more ecological validity 

to the study (in real-life when these problems are encountered the items to be 

categorized are almost always colored), perhaps at such an early stage of the 

eye-tracking literature on Shepard’s problems, it would be advisable for future 

studies to either avoid using color as a varying dimension, or include color 

variations in more dimensions. The vertical format of the stimuli was also a 

potential caveat. Although the stimuli were more ecologically valid than the text 

symbols used in Rehder and Hoffman (2005) or the amoeba-like 

microorganisms used in Blair et al. (2009), the vertical positioning of the relevant 



 

66 

 

dimensions contaminated the data with microsaccades via the middle 

dimension (AOI 2). While it is hoped that most of these microsaccades were 

eliminated by setting the threshold for fixation at 100 ms, an AOI 2 bias was still 

found (Figure 13B). It follows that one cannot disentangle whether this bias was 

a stimulus confound or an attentional strategy. It is encouraged that next studies 

would take a step back to triangularly-structured stimuli to avoid this potential 

confound. 

In conclusion, despite its potential limitations, the current study was able 

to capture differences in attentional allocation between the rule-based and 

stimulus-based tasks. While attention (covert or overt) was distributed evenly 

across dimensions in the stimulus-based task, the rule-based task was 

characterized by more fixations to the relevant dimensions than to the irrelevant 

one. It is hoped that the findings of this study will contribute to a better 

understanding of type II and type VI problems and that this work was a first step 

in reviving eye-tracking research on the Shepard et al. (1961)’s problems. 
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5. Dissociable Computational Signatures 

5.1 Introduction 

The importance of Shepard et al. (1961)’ problems and their ordering in 

category learning models has been paramount. Numerous models have been 

developed either based on the problems or with the main goal of explaining their 

ordering. These models have “come in many flavors” (Blair et al., 2009, p. 330), 

some of which are: exemplar models (e.g. GCM and extensions, Nosofsky, 1986; 

ALCOVE, Kruschke, 1992), cluster models (e.g. the rational model, Anderson, 

1991; SUSTAIN, Love et al., 2004), connectionist models (e.g. configural cue-

model and extensions, Gluck et al., 1989; DALR, Gluck et al., 1992; EXIT, 

Kruschke, 2001; DIVA, Kurtz, 2007), rule models (e.g. RULEX, Nosofsky & 

Palmeri, 1998), hybrid models (e.g. ATRIUM, Erickson & Kruschke, 1998), and 

software agents (e.g. CBSA, Pape & Kurtz, 2013).  

It was established that one of the biggest challenges for the above-

mentioned categorization models was to be able to capture the type II 

advantage, the ease of acquisition of type II problems with respect to the other 

problems, in particular with respect to type IV problems. Therefore, the most 

successful models were deemed those who were able to capture the nuances 

of this advantage: ALCOVE, DIVA, RULEX and SUSTAIN. The work by Kurtz et 

al. (2013) called the type II advantage into question and discovered that its 

evidence is far from unequivocal. In fact, the advantage occurs only under 

certain experimental manipulations, specifically, when rule-like instructions are 

given and the stimulus set contains easily verbalizable dimensions. The authors 

proposed that these findings cast doubt on the explanatory power of previously 

successful models, since these models would have difficulty in capturing an 

equality in ease of acquisition between the type II and type VI problems. 

Moreover, past models would likely fail in predicting cases in which the type IV 

problems would be learned faster than type II ones (type IV advantage). The 

concerns of Kurtz et al. (2013) have remained unaddressed until recently, when 

a new category learning model, Categorization Abstraction Learning (CAL, 

Schlegelmilch et al., 2021) solved both type II and type IV advantages by 

implementing an interaction mechanism between rule prediction and 
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memorization. The model explained each advantage by a stronger usage of 

either the rule-learning or the memorization mechanism. 

Another previously unaddressed critique to the state-of-the art models 

was the distribution of selective attention. The common denominator of these 

models was the assumption that optimal distribution of selective attention 

precedes the cessation of errors. The eye-tracking study by Rehder and 

Hoffman (2005) provided empirical evidence that the order of these processes 

is in fact reversed by showing that attention was still paid to irrelevant features 

after optimal performance had been achieved. CAL resolved this discrepancy 

by assuming self-confirmatory attention learning as opposed to the standard 

error-driven attention used by previous models. Put simply, the model proposed 

that first the features most predictive to the correct classification rule are 

determined, and then attention is allocated to these features, thereby “self-

confirming” their importance.  

This work applied the newly developed CAL to the current two-stimulus 

display adaptation of the type II and type VI problems. Three main arguments 

deemed CAL the most suitable candidate for explaining performance in the 

newly designed categorization task. First, CAL’s rule prediction and 

memorization mechanisms mirror the types of learning of interest in the current 

study, rule-based and stimulus-based categorization. Second, CAL’s ability to 

capture a lack of type II advantage was a strong argument for employing the 

model since the behavioral findings (Chapter 3) also refuted this advantage. 

Third, the implementation of self-confirmatory attentional learning, as opposed 

to error-driven attentional allocation, aligns with the eye-tracking findings in 

Chapter 4, namely that participants still allocated fixations to the irrelevant 

dimensions long after the learning criterion had been reached.  

Due to the novelty of the current paradigm and of CAL itself, the present 

work was exploratory. The main goals were to assess whether CAL could 

reliably capture participants’ behavior in the new experimental paradigm, and 

whether the model could reveal new insights about the rule-based and stimulus-

based task, at a behavioral as well as at a neural level. 
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5.2 Category Abstraction Learning 

CAL is thoroughly introduced in Schlegelmilch et al. (2021). Each of its 

aspects is beautifully argumented from both conceptual and methodological 

perspectives. This section only aims to give a general understanding of the 

model’s core features. Notably, the current description was restricted to stimuli 

with two discrete features belonging to two possible categories. The model can 

also accommodate continuous features, as well as more categories. 

CAL is built on two networks: rule network and configural memory. As 

their names suggest, the rule network is responsible for rule-like learning, 

whereas the configural memory network is responsible for memory- (stimulus-) 

based learning. Before each network is explained in more detail, four of CAL’s 

mechanisms warrant explanation: similarity- and dissimilarity-based 

generalization, rule-learning, contextual modulation and feature attention. 

5.2.1 Key Concepts 

In terms of learning, CAL assumes that participants learn simultaneously 

about present and absent categories. Learning about the present category 

occurs via similarity-based generalization (akin to GCM) and learning about the 

absent category occurs via dissimilarity-based generalization (contrasting). The 

following example helps to distinguish between the two. A set of objects with 

five possible lengths is given: 1, 2, 3, 4 or 5. Out of this set, the object with a 

length of 1 was classified as 𝐾. The categories of the other objects are unknown. 

The model learns about the category membership of the other objects by 

computing psychological distances between the object with a length of 1 and all 

remaining objects2. These distances are indicators of similarity and dissimilarity 

of the objects with respect to the object of length 1. CAL learns about objects 

belonging to category 𝐾 (𝑤 in Figure 15 coming from each feature) by 

computing similarities to the object of length 1. For example, objects with length 

2 or 3 are highly similar to the object with length 1 and thus more likely to belong 

                                                 

2 As in all similarity-based approaches, a distance between a stimulus and itself is 
also computed. This aspect is omitted from the explanation for simplification but it is included 
in the model. 



 

70 

 

to category 𝐾. Conversely, the model abstracts about the absent category 𝑛𝑜𝑡 𝐾 

by computing dissimilarities to object 1. Thus, stimuli with length 4 or 5 which 

are highly dissimilar to the object of length 1 are more likely to belong to 

category 𝑛𝑜𝑡 𝐾. CAL assumes that the behavior of this generalization, 

represented by the generalization gradient  , is directly correlated to rule-

learning. For example, if the generalization from object 1 to object 5 is steep 

(referred to as a narrow gradient), this is indicative of a strong rule such as: 

objects 1 and 2 belong to category  𝐾 and objects 3, 4 and 5 belong to category 

𝑛𝑜𝑡 𝐾 (akin to a softmax function with a high temperature). However, if the 

generalization is gradual (wider gradient), the previously mentioned rule 

becomes weak, and there is no strong delineation between category  𝐾 and 

category 𝑛𝑜𝑡 𝐾 (objects 2, 3, 4 and 5 cannot be separated - akin to softmax 

function with a low temperature). In other words, a wide gradient indicates weak 

rules or the absence of rule-learning. It is important to note that CAL’s 

conceptualization of similarity and dissimilarity-based generalization as two 

inversely related functions of the same mechanisms is a novel approach. 

Previous category learning models have treated them as distinct mechanisms. 

Another important aspect about rule-learning in CAL is that the model 

has a preference for simple, uni-dimensional rules. When a uni-dimensional rule 

fails, CAL does not correct it, as previous error-driven models do. Instead, CAL 

stores it unaltered and searches if the rule failure can be attributed to the 

context. A good example is the rule “new is better”. In category learning terms 

this rule can be translated as: objects with the feature “new” on the age 

dimension belong to the category “better”. This rule is successful for items that 

take on the feature “electronics” on the type dimension (e.g. computers) but it 

fails for items with the feature “alcoholic drinks” on the type dimension (e.g. 

whiskey). Thus, one learns that the rule “new items” indeed predicts the 

category “better” but in the context of “alcoholic drinks” its inverse has to be 

applied: “old is better”. CAL refers to this process as contextual modulation and 

implements it through variables called contextual modulators, whose role is to 

adapt the rule predictions to the right context. A note needs to be made that 

CAL imposes the constraint that a given dimension can be either modulated or 

a modulator. 
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The contextual modulator mechanism also has implications at the 

attentional level, precisely on how attention is distributed to each feature, 

referred to as feature attention. That is, subjects have to keep track not only of 

the extent to which a certain dimension predicts categorization, but also of the 

context in which the prediction is not successful and needs to be reversed. The 

model takes this into account by computing two distinct attentional variables: 

one coding for attention to an object’ dimensions 𝛼 and one coding for attention 

to the context 𝛽. The values of these variables depend on how successful a 

dimension was in predicting the correct classification (as a rule-predictor or as 

a modulator) in the previous trials. 

Next, each network is explained in more detail by using the example 

depicted in Figure 15. Since CAL has a preference for uni-dimensional rules, 

the description starts with the rule network. The configural memory network is 

introduced next, followed by the calculation of the overall prediction from the 

two networks. 
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 Figure 15. Category Abstraction Learning(CAL) 

model. Example of how CAL processes an incoming 

stimulus with a blue hat, two stars on the belly and 

shoes pointing downwards. Left: rule network. In each 

trial, CAL learns about present features (i.e. w11) and 

abstracts about absent features (i.e. 𝑤12). Evidence 

weights are computed for both present (valuable) and 

absent (not valuable) categories (i.e. 𝑤
11

 and 𝑤
11

). 

For each of the current stimulus’ features, a ratio r is 

computed by taking the logarithm of the evidence for 

the present category divided by the evidence for the 

absent category. These ratios are later weighted by 

how much attention is paid to the specific dimension 

(𝛼𝑚), whether this dimension is contextually modulated 

(i.e.𝑣122) and how much attention was paid to the 

specific modulator (𝛽𝑛). The overall prediction of the 

network 𝑅′ is the sum of these weighted ratios. Right: 

configural memory. When the rule network fails, CAL 

switches to memorization. Category associations are 

computed for both present and absent categories (𝑎
𝑌

 

and 𝑎
𝑌

) by comparing the current stimulus with all 

stimuli previously stored in memory. These 

associations are used to compute the overall prediction 

𝐻. Throughout the figure, the coin indicates the 

valuable category, the crossed coin indicates the not 

valuable category. 𝑚 is the number of dimensions that 

are modulated (𝑚 = 3) and 𝑛 is the number of possible 

modulator dimensions (𝑛 = 3). For 𝑟 and 𝑤 the first 

number in the indices indicates the dimension, the 

second number in the indices indicates the feature. For 

the modulators 𝑣, the red numbers indicate which 

dimensions is modulated, the second number indicates 

which dimension is the modulator and the third number 

indicates the specific feature within that modulator.  
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5.2.2 Rule Network  

Like previous models, CAL assumes that stimulus dimensions are 

processed independently. In the humanoids’ case each of the three varying 

dimensions (color, number and orientation) are treated as a separate dimension 

and their binary features are treated as nodes of each dimension. The set of 

dimensions is referred to as 𝑀, with 𝑚 denoting each individual dimension (here: 

1, 2 or 3). The set of features corresponding to a dimension is referred to as 𝐼 

with 𝑖 denoting each individual feature (here: 1 or 2). In the current example, the 

humanoid with a blue hat, two stars on the belly and downwards pointing shoes 

is coded as follows: the blue hat is coded 11 (dimension 1, feature 1), the two 

stars are coded as 22 (dimension 2, feature 2) and the upwards pointing shoes 

are coded as 31 (dimension 3, feature 1). For each feature of the incoming 

stimulus (i.e. 11) associative weights 𝑤 are computed for both the present and 

the absent category, in this case for both the valuable (i.e. w11 ) and the non-

valuable category (i.e. w11 ). The associative weights to the valuable category 

are a product of how much attention was paid to the respective dimension, the 

information learned in the past about the feature via excitatory generalization 

(described above) and prior belief about the membership of that feature to the 

valuable category. Conversely, the associative weights to the not-valuable 

category are a product between how much attention was paid to the specific 

dimension, the information learned via inverse generalization about the feature 

and the prior belief on whether this feature belongs to the valuable category. At 

this stage, the model uses its first free parameter 𝜸, which controls the extent 

of excitatory and inverse generalization. 𝛾 reflects how much information 

participants are actually generalizing and how refined this generalization is. In 

other words, if the information gradient from blue hat to green hat is sharp 

(which would indicate that blue hat belongs to the valuable category and the 

green hat belongs to the not-valuable category) or weak (it can barely be 

discriminated to which category blue hats or green hats belong to). 
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The associative weights are then used to compute dimension-wise 

evidence ratios: 

 𝑟𝑚𝐼 = ln (
𝑤𝑚𝐼 + .1

𝑤𝑚𝐼  +  .1
) , (1) 

where 𝑚 and 𝑖 take the above-mentioned values. The absolute value of 

𝑟𝑚𝐼  indicates the strength of the evidence for a certain rule, and its sign reflects 

whether this evidence was for or against the rule (+ or - , respectively). As a last 

step, this product is multiplied by the appropriate contextual modulator. For 

example, it could be that, although in the past the blue (11) hat was predictive 

of the valuable category, together with two stars on the belly it led to error (the 

stimulus belonged to the not-valuable category). In this case, the model 

recognizes the two stars (22) as a contextual modulator 𝑣1of the color 

dimension, dimension 1 (full notation being 𝑣122 as in Figure 15). This 

modulation is governed by the second free parameter 𝝎 which indicates the 

extent to which the participants are actually integrating the information from the 

context (i.e. whether they are able to recognize and incorporate the context in 

the prediction). The association between a rule prediction and a response is 

controlled by a gating mechanism 𝑧𝑚𝐼𝑘 , where 𝑘 takes the value of the possible 

responses (here   or  ). First, each of these ratios is weighted by how much 

attention was paid to their respective dimension (e.g. 𝑟11 by 𝛼1, 𝑟22 by 𝛼2). Then, 

this product is adjusted depending on whether modulation occurs or not. If no 

modulation occurs, the weighted ratio is gated onto its corresponding response 

(e.g. if 𝑟𝑚𝐼. indicates  ,  𝑧𝑚𝐼𝑘 will also indicate  ). If modulation does occur, 

𝑧𝑚𝐼𝑘   weights 𝑟𝑚𝐼 by the corresponding modulator and gates it to the “opposite” 

response (i.e. ).  

5.2.3 Configural Memory 

The architecture of the configural memory network is akin to the one in 

previous similarity-based models (e.g. GCM). The network responds to an 

incoming stimulus by computing psychological distances 𝑑𝑦 between the 

current stimulus and previously stored stimuli (Figure 15 first cube from below). 

These distances are used to calculate the strongest neighbor of the current 

stimulus. The strongest neighbor concept is similar to selecting a nearest 
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neighbor which is weighted by how strong this neighbor was encoded. This 

encoding strength is governed by the third free parameter 𝛌 which controls for 

the degree to which a stimulus is encoded and the ability to retrieve it (CAL 

assumes that encoding strength and retrieval are directly correlated). In the 

case illustrated in Figure 15, the strongest neighbor is the humanoid with a blue 

hat, one star on the belly and shoes pointing downwards (second cube from 

below). As in the rule network, associative weights between the selected 

stimulus and the valuable category (𝑎𝑌  ) and associative weights between the 

selected stimulus and the not-valuable category (𝑎𝑌 ) are calculated.  

It has to be highlighted that CAL recruits the configural memory when 

the rule network fails to predict correct classification or when exceptions from 

the rule appear. It follows that in addition to prior knowledge about the stimulus, 

in configural memory the association 𝑎𝑌 of a stimulus to any category also highly 

depends on the current state of the rule network. Therefore, information on 

whether the current rule is successful or not and its evidence (the 𝑟 ratio of the 

most attended to dimension) is also included in the calculation of 𝑎𝑌  and 𝑎𝑌 . 

That is, if the rule network strongly predicts that “blue hats are valuable” and 

this prediction has been repeatedly correct, the configural memory network will 

learn very little about the current stimulus and the contribution to the overall 

predictions will be minimal. However, if the rule turns out to be incorrect, the 

memory network will learn a lot about the stimulus and will greatly contribute to 

the overall prediction. As in the rule network, an evidence ratio is computed but 

this time for the selected stimulus as a whole instead of its individual features:  

 𝐻 = ln (
𝑎𝑌

𝑎𝑌

) (2) 

5.2.4 Overall prediction  

As mentioned above, CAL assumes that rule-learning and memorization 

are not separated, but interact and inform each other. This was reflected in the 

configural memory in the calculation of the associative weights 𝑎𝑌. In the rule 

network, the interaction becomes apparent in the network’s final prediction. The 

final prediction of the rule network 𝑅′is divided by the strongest prediction of the 

configural memory, such that: 
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 𝑅′ =  
1

1 + max(|𝑎𝑌|)
∑ 𝑧𝑚

𝑚

 (3) 

The role of this division is to capture that when rule-learning is strong, a 

strong prediction from the memory network is indicative of an exception from 

the rule (note: exceptions are exceptions from both modulated and 

unmodulated rules). 

Lastly, the predicted trial-wise probability that a stimulus 𝑆 belongs to the 

valuable category is a logistic function containing the prediction from both the 

rule network 𝑅′  and the configural memory network 𝐻 as follows: 

 𝑝( |𝑆) =
1

1 + exp (−2.5 |𝑅′ + 𝐻 |)
 (4) 

It should be mentioned that for a two-stimulus display, these probabilities 

and their underlying calculations are computed for each stimulus on the screen, 

and then the stimulus with the highest probability is ultimately selected. 

5.3 Challenges for the current paradigm 

Two aspects were particularly challenging when adapting the model to 

the current paradigm. First, CAL was previously designed to accommodate one-

stimulus display paradigms. The two-stimulus display raised questions on how 

the second stimulus would be best addressed, namely whether the updating 

process should take into account the stimulus position on the screen (left or 

right) or rather its category membership, since each pair display contained both 

a valuable and a not-valuable stimulus. Drawing inspiration from the 

reinforcement learning literature, the best option was found to be implementing 

a “fictitious RL” mechanism (Gläscher et al., 2009) which proposes separate 

learning rates for the chosen and unchosen option. Similarly, it was 

conceptualized that in the current paradigm participants would learn at different 

rates about the valuable and not-valuable stimuli. Instead of learning rates, in 

the current model this aspect was implemented at the level of generalization 

and contrasting, by “splitting” the corresponding γ parameter in two, a γ𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 

and γ𝑛𝑜𝑡−𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒. As in Gläscher et al. (2009), differentiating learning based on 
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category membership captures participants’ knowledge that in any given trial 

the category membership of the two stimuli was anticorrelated.  

The second challenge was addressing the aspect that subjects were 

aware of the probabilistic nature of the feedback. As described in Chapter 3.3.2, 

participants were thoroughly instructed about the concept and performed 

training tasks to familiarize themselves with it. The option of introducing an 

additional “ignore feedback” parameter was considered, but this raised 

additional difficulties in setting suitable constraints for when this parameter 

should cancel the feedback-based updating (i.e. how many errors can be 

ignored so a rule is still considered correct). The alternative option was to 

suppose that under probabilistic feedback, rule-learning is more supervised. To 

capture this aspect, a “congruence check” between rule errors and the memory 

prediction was introduced. In other words, when the feedback suggests that the 

rule is erroneous, a check is run on whether this a true rule error that matches 

the memory prediction, and the respective item is indeed an exception stimulus 

(the memory network in CAL is assumed to be always “right”). Since CAL 

recruits the memory network when rules are erroneous, this mechanism 

prevents wrong updating by double-checking if the respective stimulus was 

indeed a stimulus strongly stored in memory (i.e. an exception from the rule). It 

has to be highlighted that this “congruence check” acts mostly at the rule-

learning stage, and thus is mostly beneficial for the rule-based task. It was 

considered that, since memorization always tends to the true category in CAL 

(which would be the case even in probabilistic feedback), no equivalent was 

needed for the stimulus-based task. 

5.4 Hypotheses 

As mentioned previously, one of the main goals of applying CAL to the 

current data was to explore model-based differences between the two tasks 

which could potentially complement the understanding of the model-free 

behavioral differences. The primary target for assessing these differences were 

the four free parameters. For a better overview, these parameters and their 

associated cognitive functions are summarized in Table 3. 
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Table 3 

CAL’s free parameters and their associated cognitive functions. 

Parameter Main Role Cognitive Functions Interpretation 

𝛄𝒗𝒂𝒍𝒖𝒂𝒃𝒍𝒆 

(gamma 

valuable) 

Similarity / 

Dissimilarity 

generalization of valuable 

category (and modulator) 

larger values 

indicate wider 

generalization 

gradients 

𝛄𝒏𝒐𝒕−𝒗𝒂𝒍𝒖𝒂𝒃𝒍𝒆 

(gamma not -

valuable 

Similarity / 

Dissimilarity 

generalization to not-

valuable category (and 

modulator) 

larger values 

indicate wider 

generalization 

gradients 

𝝀 (lambda) Configural 

Memory 

(extent of 

encoding) 

- encoding strength 

- moderates encoding of 

exceptions 

 

larger values 

indicate stronger 

memory 

𝝎 (omega) Contextual 

Modulation 

(sensitivity to 

context ) 

- extent of information-

integration from context 

larger values, 

stronger 

contextual 

modulation 

Adapted from Schlegelmilch et al. (2021) 

 

It was expected that the four parameters will differ between the two tasks 

as follows: 

H1: γ𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 values will be lower in the rule-based task than in the stimulus-

based task. This difference is expected due to the rule-like instructions in the 

rule-based task which should lead to narrower generalization gradients 

(stronger rule-learning). 

H2: The 𝜆 values will be higher in the stimulus-based task than in the rule-based 

task, reflecting that participants used a memorization-based strategy in the 

former. 
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H3: Since the rule-based task can be solved by XOR rule, which is essentially a 

uni-dimensional rule which requires contextual modulation, the 𝜔 values will be 

higher in this task than in the stimulus-based task which should entail little to no 

contextual modulation. 

H4: There will be a significant difference between γ𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 and γ𝑛𝑜𝑡−𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒, 

reflecting the assumed learning difference between valuable and not-valuable 

stimuli. 

5.5 Materials and Methods 

For both the rule-based and stimulus-based task, the model was fitted 

to individual data (N = 30). The best-fitting parameters were estimated using a 

differential evolution (DE) optimization method as implemented in the R package 

DEoptim (Ardia et al., 2015). Being an evolutionary algorithm, DE “optimizes a 

problem by iteratively improving a candidate solution based on an evolutionary 

process” (Georgioudakis & Plevris, 2020). 500 iterations were used. In the 

original manuscript, this optimization was proven superior to parameter grid 

searches or gradient-based methods (Schlegelmilch et al., 2021).  

CAL performance was assessed against a random agent model. Trial-

wise log-likelihoods were computed separately for each fitted participant in the 

rule-based task and stimulus-based task. Trials in which participants failed to 

respond were not included. For the random agent model, the log-likelihoods 

were computed by assuming constant random choice, in other words, a 

predicted probability of 0.5 % in each trial. In order to obtain a more accurate 

model comparison, in the log-likelihood calculation for each assumed random 

agent the number of trials was matched to the raw data. For example, if one 

participant provided a response in 156 trials, its corresponding random agent 

was calculated assuming 156 trials. These calculations were done separately for 

the rule-based random agent and stimulus-based random agent. The CAL mean 

log-likelihood of each task was compared with the mean log-likelihood of the 

corresponding random agent model.  
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5.6 Results 

CAL’s model fits for the two tasks outperformed by far those of the 

random agent model (CAL log-likelihoodrule-based = -37.45; random agent log-

likelihoodrule-based = -110.30; CAL log-likelihoodstimulus-based = -51.19; random agent 

log-likelihoodstimulus-based = -110.14). Figure 16 contains examples of fitted 

participants. The CAL curves indicate the match between the CAL prediction 

and the participant’s response, with 1 indicating a perfect match. It can be 

observed that for the well-fitted participants (Figure 16 top) CAL managed to 

capture not only most of the correct responses but also most of the errors that 

Figure 16. Example CAL predictions. Dots represent participants’ choice data where 0 indicates 

an incorrect response and 1 indicates a correct response. Solid lines indicate the fit between 

CAL’s prediction where 0 indicates no fit between the model prediction and participant’s 

response (i.e. the model predicted a correct response although the participant answered 

incorrectly) while 1 indicates a perfect fit (i.e. the model predicted a correct response and the 

participant responded correctly). Dashed lines indicate chance level. Left: accuracy and fit of 

three subjects in the rule-based task. Right: accuracy and fit of three subjects in the stimulus-

based task. Both sides indicate a participant whose data was fit well by the model (top), a 

participant whose data was moderately fit (middle) and a participant whose data was poorly fit 

(bottom).  
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participants made. The model only failed to predict three errors up to learning 

and two errors towards the end of the task, which were likely due to fatigue. For 

the participants with moderate fits (Figure 16 middle), the model was not able 

to capture the errors for a certain period during learning. For example, for the 

rule-based participants, some of the errors made between trials 50 and 70 were 

not captured by the model. Nevertheless, the predictions quickly improved and 

the model managed to “learn” at approximately the same time as the participant. 

As far as the group performance is concerned, on average CAL fitted 

the rule-based data slightly better than the stimulus-based data, having an 

overall accuracy of 84 % (SE = 14.95 %) for the participants in the rule-based 

task as opposed to 79 % (SE = 15.46 %) in the stimulus-based task. The inferior 

fit of the stimulus-based task becomes apparent when looking at the block-wise 

raw and predicted accuracies in Figure 17. It can be observed, that the model 

overestimated performance in the stimulus-based task. In the data, the stimulus-

based performance after learning (block 5 to block 10) stayed below the one in 

the rule-based task and never reached 1. By contrast, the predicted stimulus-

based performance matched the post-learning performance in the rule-based 

Figure 17. Comparison between group data and CAL predictions. A. Block-wise mean accuracy 

of each tasks’ raw data (N = 30). B. CAL’s predicted block-wise accuracy. A block consists of 16 

trials. Shaded areas indicate standard errors.  
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task (and even slightly exceeded it) and stabilized around 1 in the last blocks. 

Nevertheless, CAL successfully predicted that the rule-based task and the 

stimulus-based task were learned at approximately the same time.  

To get a better understanding of CAL’s predictions, it was assessed how 

the models’ accuracy correlates with each participant’s behavior. For both tasks, 

there was a strong positive correlation between the model and participants’ 

mean overall accuracy, both in the rule-based task and the stimulus-based task 

(Spearman rho’s rule-based = 0.93, p < .001; Spearman rho’s stimulus-based = 0.85, 

p < .001). The opposite relationship was found between the model accuracy and 

participants’ individual learning points (as described in Chapter 3.4 and 

displayed in Figure 8). There was a strong negative relationship between model 

accuracy and learning points. However, this correlation was stronger for the 

rule-based task than for the stimulus-based task (Spearman rho’s rule-based = -0.81, 

p < .001; Spearman rho’s stimulus-based = -0.64, p < .001). 

Next, the first three hypotheses were investigated, which proposed task-

related differences between the fitted parameters. Figure 18 contains the 

distributions of the best-fitting parameters in each task condition. Differences 

between the two tasks could be observed in the γ𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 and 𝜔 parameters. 

Statistical analyses confirmed these observations. The differences in γ𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 

were assessed with a paired samples t-test which indicated a significantly 

smaller mean γ𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒  in the rule-based task (Mrule-based = -1.05, SE = 0.2) than 

in the stimulus-based task (Mstimulus-based = -0.03, SE =0.31, t(29) = -2.4, p = 0.02). 

Although the γ𝑛𝑜𝑡−𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 values suggested a similar pattern, their difference 

was minimal and not statistically significant. A Wilcoxon signed-rank test 

revealed that the 𝜔 values were significantly lower for the rule-based 

participants (Mdnrule-based = -1.36) as opposed to the stimulus-based participants 

(Mdnstimulus-based = 0.32, Z = -2.09, p = .03). With respect to the 𝜆 parameter, 

although the values in the stimulus-based task were higher than in the rule-

based task, their difference did not reach significance (Mdnrule-based = 0.56, 

Mdnstimulus-based = 1.63).  

The last hypothesis, which posed a distinction between the two 

generalization parameters 𝛾, was evaluated using Wilcoxon signed-ranks tests. 

The results revealed that in both tasks the median γ𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒  values were smaller 
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than γ𝑛𝑜𝑡−𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒   values, but this distinction only reached significance in the 

rule-based task (Mdn𝛾𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒  = -0.97, Mdn 𝛾𝑛𝑜𝑡−𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒  = 1.61, Z = -4.47, 

p < .001). 

Next, it was explored whether there was a relationship between the fitted 

parameters and participants’ performance. Figure 19 displays the individual 

estimated parameters plotted against the mean accuracy of each participant. 

The 𝜆 plot suggests a very strong positive correlation between the lambda 

values and mean accuracy in both tasks. A Spearman’s rho correlation 

confirmed this observation (rhorule-based = 0.91, p < .001; rhostimulus-based = 0.83, 

p < .001). As far as the other parameters are concerned, a correlation was found 

between 𝜔 values and accuracy in the rule-based task only (rhorule-based = 0.62, 

p < .001). With respect to the generalization parameters, as indicated in the plot, 

γ𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒  did not correlate with accuracy and γ𝑛𝑜𝑡−𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒  showed only a weak 

Figure 18. Histograms of estimated parameters. Dashed lines indicate group means while 

continuous lines indicate group medians. The color of each line indicates whether it is 

representative of the rule-based or stimulus-based task. 
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correlation with the performance in the stimulus-based (rhostimulus-based = 0.38, 

p = .03).  

5.7 Discussion 

This chapter described the first attempt to model the two-stimulus 

display adaptation of type II and type VI problems using the newly developed 

CAL model. The model was the strongest candidate for the current work not 

only owing to its ability to capture previously unaddressed shortcomings, but 

also due to its networks mirroring the two investigated learning types: rule-

based and stimulus-based. Since this was a pioneer work, it was first assessed 

whether the model was able to fit each task well, and whether it captured the 

performance differences between the two. CAL’s accuracy exceeded 75% on 

both tasks, and more importantly, was able to capture the lack of type II 

Figure 19 Correlations between CAL parameters and participants’ accuracy. X-axes indicate 

individual participants parameter value. Y-axes indicate participants mean accuracy in 

proportions (1 = perfect accuracy).  



 

85 

 

advantage in the group performance. The model did however, predict slightly 

steeper learning in both tasks compared to the raw data and overestimated the 

group performance in the stimulus-based task.  

While a larger sample size would have quite likely led to a higher model 

fit, some qualitative explanations can also be proposed. As far as the rule-based 

task is concerned, the fast learning could be explained by the effect of rule-like 

instructions proposed by Schlegelmilch et al. (2021). Specifically, in CAL, rule-

like instructions affect rule-learning by leading to sharper generalization 

gradients, which in turn quickly activate contextual modulation. Given the rule-

like instruction of the current task, and the found distribution of the 𝜔 values, 

this assumption could already explain the predicted fast learning in the task. The 

slight mismatch between the predicted mean accuracy and raw data could be 

due to the implemented “congruency check” (described in Section 5.3 of this 

chapter) being highly efficient. It is plausible that participants’ “congruency 

check” is less optimal and that perhaps they did not double-check in their 

memory after every single rule error.  

With respect to the stimulus-based task, the overestimation of accuracy 

could be attributed to either the probabilistic feedback or the instruction type. 

CAL starts by trying to form simple rules, and when these rules fail it recruits the 

configural memory. Without taking the instructions into account, the structure of 

the stimulus-based task (in which simple rules fail) together with the probabilistic 

feedback quite likely resulted in a considerable amount of negative feedback 

early in the task. Therefore, the participants could have switched to the 

configural memory early in the task, and thus quickly became very efficient. A 

similar argument can be made about the instruction type, which is that 

participants started memorizing early on, and consequently the memory 

network made strong predictions early on. Nonetheless, in order to disentangle 

these mechanisms more research is needed. In particular, future studies could 

attempt to simulate the type VI problems or the stimulus-based task under 

different experimental conditions (e.g. with and without instruction, with and 

without probabilistic feedback). 

This chapter also investigated whether CAL’s free parameters 

(summarized in Table 3) would give insights into the differences between the 
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two tasks. Although a core assumption of CAL is that both networks are highly 

interconnected and inform each other, the generalization parameters 𝛾 and the 

contextual modulation parameter 𝜔 play a stronger role in the rule network. 

Thus, it was expected that these two parameters would reveal important aspects 

about the rule-based task. Conversely, the “main” parameter in the configural 

network, which governed the encoding strength, was expected to have higher 

values in the stimulus-based task. 

Concerning the rule network parameters, the 𝛾valuable findings aligned 

with the expected differences. Aside from a reassurance that two distinct 

strategies were used in the two tasks, the lower 𝛾valuable values in the rule-based 

task are an indirect argument that most participants showed strong rule-learning 

(which requires sharp generalization gradients). However, the findings with 

respect to 𝜔 values hint that this argument should be regarded with caution.  

Contrary to the initial hypothesis, the 𝜔 values were lower in the rule-

based task than in the stimulus-based task. This was surprising since the XOR 

nature of the rule-based task was expected to elicit high contextual modulation. 

Although puzzling, one potential explanation could be found when looking at the 

training tasks. In the deterministic rule-based training task (described in detail 

in Chapter 3.3.2), participants were instructed that one dimension was 

irrelevant (they were also told which one). Although the main task instructions 

did not explicitly say that only one dimension would be irrelevant (participants 

were told that “some dimensions could be irrelevant”) participants might have 

extrapolated from the training task, and could have expected an XOR rule. 

Therefore, participants could have needed less information from the context. 

Nonetheless, the high 𝜔 values in the stimulus-based task remain difficult to 

interpret. It could be the case that this is a previously unstudied effect of 

memorization instruction in type VI problems. On the other hand, one could 

argue potential transfer effects from the rule-based task in some participants. 

Nonetheless, owing to the minimum two-day time gap between the two tasks, 

this explanation is rather unlikely. It remains a possibility that despite the 

instructions discouraging rule-like learning, some participants could have 

attempted to find a rule solution. When asking participants to report how they 

solved the six problems, Shepard et al. (1961) found that some participants 
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reported rule-like solutions to type VI problems. Although the high stimulus-

based 𝜆 values from the configural memory network (discussed below) refute 

this idea as a sole explanation, it cannot be excluded that a certain degree of 

rule-learning could have occurred in some participants at certain stages of the 

task. For example, some participants could have entertained a rule-like solution 

at the beginning of the task, before they realized that this strategy was 

unsuccessful. Another possibility could be the usage of rules as a “cognitive 

shortcut” at the end of the task after the stimuli have already been memorized. 

This shortcut could have been taken either due to boredom in the early learners 

or because certain participants, despite using the memorization strategy as 

instructed, generally found rule-application easier, and therefore applied it after 

learning had been completed. Nonetheless, no definite conclusion can be drawn 

without an empirical measure of contextual modulation. It is encouraged that 

future studies would attempt to develop a direct measure of this mechanism. 

Regarding the configural memory network, the 𝜆 values were higher in 

the stimulus-based task than in the rule-based task, but this comparison did not 

reach significance. The high 𝜆 values in the stimulus-based task, combined with 

the high 𝛾valuable values, speak strongly in favor of a general memorization-

based strategy. To reiterate, high 𝛾valuable values in the stimulus-based task 

reflect wide generalization gradients which can be interpreted in this case as 

weak or absent rule-learning, and thereby memorization. Moreover, the strong 

correlation between the 𝜆 values and the high accuracy in the stimulus-based 

task have a straightforward explanation: the stronger the encoding and retrieval, 

the better the memorization, hence, the higher the performance. 

The finding that rule-based performance also positively correlates with 

𝜆 values, in addition to certain participants having high 𝜆 values, are less 

straightforward to interpret. It has to be noted that CAL does not assume that 

strong encoding strength is anticorrelated with rule-learning. Instead, strong 

encoding strength is also regarded as a strong ability to retrieve stimuli that are 

exceptions from the rules – which could still indicate a potentially successful 

rule-based strategy. Furthermore, considering the probabilistic feedback, it is 

reasonable that subjects could have stored items in memory which were only 

temporarily regarded as a rule exception. Nonetheless, the high 𝜆 values could 
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also be explained by certain participants temporarily ignoring the rule-like 

instructions. This process could be either voluntarily due to participants trusting 

their memorization abilities more than their pattern-finding abilities or 

involuntary due to an uncertainty state induced by the probabilistic environment 

or simply because despite instructions, memorization could just not be “turned 

off”. 

The current application of CAL adapted to the two-stimulus display by 

employing two generalization gradients, γ𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 and γ𝑛𝑜𝑡−𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 as opposed 

to only one γ, as it was initially conceptualized. The underlying motivation was 

that the participants would learn differently about the valuable and not-valuable 

members, especially given that only the valuable stimuli were rewarded. The 

findings were in line with the idea of category-dependent difference in learning, 

with γ𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 values being smaller than the γ𝑛𝑜𝑡−𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 in both task conditions. 

This result suggests the fact that only the valuable stimuli were rewarded was 

reflected in sharper generalization gradients. In other words, participants 

abstracted information more efficiently in the valuable stimuli.  

It has to be mentioned that this chapter presented just a small step in 

modeling the current task with CAL. Future work will attempt to directly compare 

performance of CAL on the current paradigm with previously established 

models such as SUSTAIN. More attempts will be made to better capture the 

effect of probabilistic feedback in both computational and cognitive sound 

manners. For example, inspiration can be drawn from a recent model-based 

EEG study of probabilistic categorization tasks (Sewell et al., 2018), which 

modeled the degree of feedback discounting in each participant. Furthermore, 

potential ideas for improvement can be found in CAL’s predictions about 

attentional allocation. It is quite likely that the assessment of the two sets of 

attentional parameters also in combination with high-quality neural data would 

unravel new aspects about the two tasks that could be implemented in CAL to 

obtain a better fit.  

All in all, using the new CAL model brought this work a step closer to 

understanding the cognitive computations behind the performance in the two 

tasks. CAL revealed that for both rule-based and stimulus-based learning, high 

encoding and retrieval strength are advantageous. Furthermore, in both tasks 
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participants assign more weight to the valuable stimuli than to the not-valuable 

stimuli, mechanism implemented by a sharpening of the generalization 

gradients. Overall, rule-based strategies are characterized by narrower 

generalization gradients than stimulus-based strategies.  

While this chapter focused on the explanatory power of CAL’s free 

parameters, the next chapter investigated what neural questions CAL’s trial-

wise estimates can answer about the two problems. 
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6. Dissociable Neural Signatures 

6.1 Introduction and Hypotheses 

The existence of multiple category learning systems is still controversial. 

Ever since its first formulation, the propositions of the COmpetition between 

Verbal and Implicit model (COVIS) have been fundamental in testing whether 

verbal (declarative) and implicit (procedural) category learning rely on multiple 

behavioral and neural systems (Ashby & Valentin, 2017). The most common 

approach in these assessments was the usage of rule-based tasks and 

information-integration tasks as means to compare declarative and procedural 

learning. Although considerable behavioral work has been done recently on 

investigating the multiple systems (or lack thereof) (Ashby & Valentin, 2016; 

Casale et al., 2012; Donkin et al., 2015; Edmunds et al., 2018; Smith et al., 2014; 

Smith & Church, 2018; Wills et al., 2019), fMRI work has been comparatively 

scarce (some of the most recent ones being Milton & Pothos, 2011; 

Waldschmidt & Ashby, 2011). Evidence from this fMRI work leaned towards a 

consensus that the two types of learning involve two separate neural systems 

such that declarative category learning is characterized by prefrontal and medial 

temporal role activation, while procedural category learning is strongly striatal-

based. Nevertheless, recent behavioral studies have brought strong criticism to 

the paradigms used in these fMRI studies, such as erroneous identification of 

the underlying strategies and extrapolation from group data that averages over 

strategy subgroups (Edmunds et al., 2018). In light of this evidence, the findings 

suggesting two dissociable neural systems are called into question. 

Given the concerns raised about the employed paradigms, in addition to 

the lack of recent fMRI studies, it is argued that the neuroscientific community 

could benefit from new fMRI perspectives. Accordingly, this work took a different 

approach and investigated the neural correlates of declarative and procedural 

categorization by using a two-stimulus adaptation of Shepard’s type II and type 

VI problems. Due to their underlying optimal strategies, i.e. rule-like solution as 

opposed to non-verbalizable solution, the two problem types were treated as 

proxy for the two learning types. It is worth mentioning that although participants 

might be using an exemplar-based approach in the current adaptation of type 
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VI problem, this approach has been previously regarded as an equivalent for 

the implicit system in COVIS (Erickson & Kruschke, 1998; Pickering, 1997 as 

cited in Ashby et al., 2003).  

To date, there have only been two other fMRI studies addressing 

Shepard’s type II and type VI problems. Mack et al. (2016) used Shepard’s type 

I and II problems to study how new concepts are represented in the 

hippocampus, and whether this representation changes dynamically as a 

function of task goal. The authors found that switching from type I problem to 

type II problem and vice versa correlated strongly with hippocampal 

involvement, representing goal-related concept update. Moreover, the updating 

process itself was associated with a coupling between ventromedial prefrontal 

cortex (vmPFC) and hippocampus. In a follow-up paper, Mack et al. (2020) 

employed type I, II and VI problems to test whether the vmPFC adapts to the 

changing goals by “compressing” information irrelevant to the task at hand. This 

dynamic reduction hypothesis was confirmed by a strong correlation between 

vmPFC and problem complexity. The vmPFC had the highest compression 

score in the type I problem which required the most information reduction (only 

one dimension has to be attended to solve the task), and the lowest compression 

score in the type VI tasks which required the least information reduction (all 

features have to be attended to solve the task). Two aspects are worthy of note 

here. First, the focus of the studies was on the effects of task-goal changes and 

not on the problems per se. Second, in both studies, no clear instructions were 

given on how to perform the task (in fact no study up to date has instructed 

participants on how to perform type VI), and therefore it is likely that the 

observed activity corresponded not only to procedural or declarative learning 

but also to additional processes (i.e. search for appropriate strategy). By 

contrast, the current work focused on the differences between the two problem 

types and their unique neural signatures. It was intended that through strategy 

instructions encouraging the corresponding optimal solution, effects of goal or 

strategy changes would be reduced, and thus a cleaner picture of the 

differences between the two would be obtained. 

An important common aspect of the two studies mentioned above was 

the use of model-based fMRI. This technique has been popular in decision 
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making literature (Bayer et al., 2020; Doll et al., 2012; Gläscher et al., 2010; 

Gläscher & O’Doherty, 2010), and has been gaining attention in the category 

learning literature (Davis et al., 2012a, 2012b). In short, while conventional fMRI 

analyses reveal the involvement of a certain region in a cognitive task or 

condition, model-based fMRI allows testing of more specific hypotheses about 

the relationship between the cognitive processes and neural activity (Wilson & 

Niv, 2015). This is done by fitting a suitable cognitive model to the behavioral 

data and then correlating the latent variables of interest with the neural activity. 

The model of choice in Mack et al. (2016) and Mack et al. (2020) was SUSTAIN 

which was particularly beneficial for investigating the goal-related attentional 

changes of interest. By contrast, the current work focused on the underlying 

learning strategies per se. Thus, the neural activity was correlated with the trial-

wise predictions of rule-learning and configural memory derived from the newly 

developed CAL model described in Chapter 5.2. It was aimed that by taking this 

detailed approach, the computations carried out by each region would become 

clearer, and would help elucidate whether they are reminiscent of one or two 

category learning systems. 

Since the neural correlates were investigated with both conventional 

analyses (referred henceforth as model-free) and model-based approaches, 

separate hypotheses were formulated for each approach.  

6.1.1 Model-free hypotheses 

In light of the past research two model-free hypotheses were formulated:  

H1: The rule-based task will elicit more activity in the prefrontal cortex and 

hippocampus than the stimulus-based task. 

H2: The stimulus-based task will engage striatal regions more strongly than the 

rule-based task. 

6.1.2 Model-based hypotheses 

Given that this is the first model-based fMRI application of the CAL 

model, the current work was mainly exploratory. It was expected that the two 

CAL networks, the rule network and configural memory (described in detail in 
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Chapter 5.2) would differentially correlate with brain activity in the rule-based 

and stimulus-based task such that: 

H1: Activity in the prefrontal cortex and hippocampus will correlate more 

strongly with the trial-wise estimates from the rule network than activity in striatal 

regions. 

H2: Activity in the striatal regions will correlate more strongly with trial-wise 

estimates from the configural memory network than the activity in the prefrontal 

cortex and hippocampus.  

6.2 Materials and Methods 

6.2.1 Participants 

Of the 30 participants that successfully completed behavioral tasks, 

three participants had to be excluded from the fMRI analyses due to technical 

problems during data acquisition. The remaining sample contained 8 males and 

19 females (Mage = 25.5, SDage = 2.77). 

6.2.2 Data Acquisition 

Event-related fMRI data was collected using a 3T Siemens Scanner 

(Siemens, Erlangen, Germany) with a 32-channel head coil. An MR-compatible 

mirror for eye-tracking recordings was attached to the coil so that participants 

could see the mirrored image of the MR compatible screen. The fMRI images 

were acquired using multiband gradient Echo-Planar Imaging (EPI) with a TR of 

1636 ms, TE of 29 ms (FoV = 224 mm, flip angle = 70 degrees, multiband factor 

= 2). Each volume contained 54 slices, with a 2x2x2 voxel size and 2 mm slice 

thickness. A field map was acquired on each testing day after the localizer (TE1= 

5.51 ms, TE2 = 7.91 ms). At the end of Day 2, a high resolution anatomical T1-

weighted image (MPRAGE protocol) and a medial temporal lobe T2-weighted 

image (28 slices, TR = 9520 ms, TE = 80 ms) were acquired. The physiological 

responses (respiration and skin conductance) measured during both scanning 

sessions with a Biopac MP 100 (Biopac Systems, Inc) are not part of this 

manuscript. 
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6.2.3 Preprocessing 

Data was pre-processed and analyzed using the SPM12 software 

(Welcome Department of Cognitive Neurology, London, UK) running under 

Matlab R2014b (Neurobehavioral Systems, Inc., Berkeley, CA, USA). The first 

five images from each scanning session were discarded in order to avoid spin 

saturation confounds. In the first pre-processing step, the day-specific field map 

was applied to the functional volumes to correct for possible magnetic field 

inhomogeneities. No slice timing correction was performed due to the small TR 

of 1636 ms. Next, the functional images were realigned and unwarped to 

remove susceptibility-by-movement artifacts. The resulting images were 

coregistered to their corresponding subject-specific anatomical images (T1-

weighted). Anatomical images were segmented into gray matter, white matter 

and cerebral spinal fluid probability maps. Based on these maps, the 

“Diffeomorphic Anatomic Registration Through an Exponentiated Lie Algebra” 

(DARTEL) SPM toolbox was used to normalize the images into the Montreal 

Neurological Institute (MNI) standard stereotaxic space. In the last pre-

processing step, all functional images were smoothed using a Gaussian kernel 

with a full width half maximum of 6 mm to increase the signal-to-noise ratio and 

fulfill the requirement of random Gaussian field theory. 

6.3. Results 

6.3.1 Model-free fMRI 

6.3.1.1 Statistical analyses 

The model-free hypotheses were investigated using a general linear 

model as implemented in SPM using a mass univariate approach. This approach 

entails a first-level analysis, in which the subjects are modeled individually, and 

a second level-analysis in which the group data is modeled.  

Within the first-level analysis, subject-level models are defined which 

include the predictors of interest. The dependent variable in this analysis is the 

activity within a single voxel. The within-subject character of the study facilitated 

the inclusion of both tasks within the same model, such that the two different 
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tasks were regarded as two conditions of the same task. Within each task, a 

distinction was made between the choice period of the task and the feedback 

period of the task. Importantly, the full choice period was included in the model 

irrespective of when participants made a choice. The trials in which participants 

failed to respond were excluded from the analysis. Thus, the predictors of 

interest were: rule-based choice, rule-based feedback, stimulus-based choice, 

and stimulus-based feedback. In order to increase the specificity of the model, 

each choice regressor was parametrically modulated by the respective choice, 

and each feedback regressor was parametrically modulated by the accuracy. 

No nuisance regressors were included in the model. The regressors of interest 

and their corresponding parametric modulators were subsequently convolved 

with the canonical hemodynamic response function (HRF). Serial correlations 

were accounted for using the SPM12 ‘FAST’ method. For all other estimation 

parameters, the default values from SPM12 were used. 

The second-level analysis was based on subject-specific beta images 

from the rule-based choice and stimulus-based choice regressors. The first 

contrast tested for regions that are more active during the rule-based task as 

opposed to the stimulus-based task. Thus, the rule-based choice beta estimates 

were assigned a weight of 1, and the stimulus-based choice beta estimates were 

assigned a weight of -1. The second contrast tested the reverse differences, 

namely which regions are more active during the stimulus-based task than in 

the rule-based task, and therefore the rule-based choice betas were assigned a 

weight of -1 and the stimulus-based choice betas were assigned a weight of 1.  

All contrasts of interest were assessed using one sample t-tests. Results 

were family-wise error corrected for multiple comparisons within specified 

anatomical masks. All anatomical masks were retrieved from Harvard-Oxford 

cortical and subcortical structural atlases (www.fmrib.ox.ac.uk/fsl) except for the 

vmPFC mask which was retrieved from a previous study (Clithero & Rangel, 

2014). All results were considered significant at pFWE < .05. 
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6.3.1.2 Results 

The first model-free hypothesis was addressed by contrasting the 

activity during choice in the rule-based task to the activity during choice in the 

stimulus-based task within the two regions of interest. This contrast (Figure 

20A) revealed strong bilateral hippocampal involvement (peak voxel x, y, z = 24, -

10, -18, Z = 5.49, pFWE < .0001) as well as anterior and central vmPFC (peak 

voxel x, y, z = -4, 52, -2, Z = 5.57, pFWE < .0001) (Table 4). The corresponding mean 

first-level beta estimates are presented in Figure 20B. It can be seen that the 

Figure 20. Group model-free fMRI results (N = 27). A. Second-level contrast rule-based > 

stimulus-based. Brighter regions indicate higher t-values. Results thresholded at p < .001 for 

visualization purposes. Both statistical maps are overlaid onto the group anatomical image (mean 

T1). Color scale indicated t-values. B. First-level beta estimates (in arbitrary units) for the peak 

voxel in the respective region of interest. Blue bars indicate mean betas for the rule-based choice 

regressor. Orange bars indicate mean betas for the stimulus-based choice regressor extracted 

from peak voxels (coordinates listed in Table 4). Error bars indicate standard errors.  
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two tasks were characterized in both regions by a decrease with respect to the 

model’s implicit baseline, with the stimulus-based task decreasing more 

drastically than the rule-based task (all paired t-tests within each region 

significant at p < .001). 

 

Table 4 

Group fMRI results for the rule-based > stimulus-based t-contrast. 

Region Side 

Peak voxel 

MNI 

coordinates 

x  y  z (mm) 
Cluster size Z score 

Hippocampus 

 

left -32 -30 -12 51 5.06 

right 24 -10 -18 105 5.49 

vmPFC 

 

anterior -4 52 -2 96 5.57 

central -4 46 2 157 5.18 
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The second model-free hypothesis posing that the stimulus-based task 

will correlate more strongly with striatal activity than the rule-based task was 

tested using the reverse contrast within the ventral striatal regions. Compared 

to the rule-based task, the stimulus-based task elicited higher bilateral caudate 

(peak voxel x, y, z = 12 16 0, Z = 5.62, p < .0001) and putamen activity (peak voxel 

x, y, z = -16 10 -4, Z = 4.78, p < .0001) (Figure 21A). Exploratory analyses indicated 

also a bilateral insular contribution (peak voxel x, y, z = 34 22 2, Z = 5.48, p < 

.0001). The corresponding beta values (Figure 21B) suggest that both tasks 

were characterized by an increase with respect to the implicit baseline, with the 

Figure 21. Group model-free fMRI results (N = 27). A. Second-level contrast stimulus-based > 

rule-based. Brighter regions indicate higher t-values. Results thresholded at p < .001 for 

visualization purposes. Both statistical maps are overlaid onto the group anatomical image (mean 

T1). B. First-level beta estimates for the peak voxel in the respective region of interest (Table 5). 

Blue bars indicate mean betas for the rule-based choice regressor. Orange bars indicate mean 

betas for the stimulus-based choice regressor. Error bars indicate standard errors.  
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stimulus-based task increasing more than the rule-based task in all regions 

(paired t-tests, p < .05). 

 

Table 5 

Group fMRI results for the stimulus-based > rule-based t-contrast. 

Region Side 

Peak voxel MNI 

coordinates 

x  y  z (mm) 
Cluster size Z score 

Caudate 

 

left -10 12 8 111 5.05 

right 12 16 0 151 5.62 

Putamen 

 

left -16 10 -4 31 4.78 

right 14 8 -8 7 3.74 

Insula 

left -30 22 4 62 5.40 

right 34 22 2 51 5.48 

 

6.3.2 Model-based fMRI 

6.3.2.1 Statistical analyses 

The model-based hypotheses were investigated employing a similar 

approach to the one used in the model-free statistical analyses. For the first-

level analyses, the predictors of interest remained: rule-based choice, rule-

based feedback, stimulus-based choice and stimulus-based feedback. 

However, this time, two separate first-level models were run. In the first model, 

all predictors of interest were modulated by the trial-wise estimates from the rule 

network (explained below). In the second model, all predictors of interest were 

modulated by the trial-wise estimates from the configural memory network 

(explained below). Within each model, the feedback was additionally modulated 

by time, which was implemented as a regressor containing the corresponding 

trial-number. This modulation was introduced to capture variation due to 
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learning effects (i.e. the fact that the more learning progressed the less 

participants relied on the feedback). 

As far as the estimates in the rule network are concerned, the variable 

of interest in this analysis was the evidence ratio computed by this network. As 

explained in Chapter 5.2, within the rule network, trial-wise evidence ratios are 

computed for each stimulus dimension. These ratios are subsequently weighted 

by the attention paid to each dimension and by the extent to which each 

dimension was contextually modulated. An average prediction is computed by 

taking the mean of the weighted ratios of all dimensions. The sign of these 

predictions signals whether the evidence was for or against the current rule. The 

absolute value of these predictions indicates the strength of the evidence for the 

current rule. Since the current analysis focused on explaining rule-learning and 

not rule correctness, the absolute values were used. This variable is 

subsequently referred to as rule prediction.  

With respect to the configural memory, the variable of interest in this 

analysis was also the evidence ratio computed by this network. As described in 

Chapter 5.2, the memory network computes stimulus-wise evidence ratios. As 

in the rule network, the sign of this ratios, indicates whether the evidence was 

for or against a stimulus belonging to a certain category, while the absolute value 

indicates the strength of the evidence. Since the current analysis focused on 

memorization per se and not its correctness, the absolute values were taken. 

This variable is subsequently referred to as memory prediction. 

Owing to the two-stimulus display, the current adaptation of CAL 

computes the above-described variables for both the left and the right stimulus. 

The current analyses included only the predictions corresponding to the chosen 

stimulus. If a participant failed to respond, the specific trial was discarded. It has 

to be mentioned that as in the model-free analyses, the model-based analyses 

concentrated on the choice part of each task. Nevertheless, given that each 

specific parametric modulator relies on input from the feedback, the variables 

of interest were also included as parametric modulators for the feedback 

regressors to account for the feedback-related variance.  

The second-level analyses were carried out in the same manner as the 

model-free second-level analyses with the only differences being that two 
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separate analyses were run corresponding to the two first-level models, and that 

at the second level the subject-specific beta images were the rule-based and 

stimulus based parametric modulators. 

6.3.2.2 Results  

The hypothesis concerning the higher correlation between the rule 

network estimates and activity in the prefrontal and hippocampal region in the 

rule-based task than in the stimulus-based task was assessed using the model 

with rule prediction as parametric modulator. Specifically, the rule prediction 

parametric modulator corresponding to the choice period in the rule-based task 

was compared against the rule prediction parametric modulator corresponding 

to the choice period in the stimulus-based task. Regarding the expected regions 

of interest, the analysis revealed a correlation between hippocampal activity and 

rule prediction (whole brain p < .01, uncorrected), but the activity did not survive 

small volume correction. In addition, a significant correlation between rule 

prediction and vmPFC activity (Figure 22A) was found (voxel x, y, z = 2, 36, 0, Z = 

3.85, pFWE = 0.01). The first-level beta estimates corresponding to this voxel are 

displayed in Figure 22B. Beta values indicate that the rule-based task was 

characterized by a weak increase vmPFC activity associated with prediction, 

while the stimulus-based task was characterized by a decrease in vmPFC 

associated with rule prediction (comparison significant at p < .001). Further 

exploratory analyses revealed a cluster in the posterior division of the left 

cingulate gyrus whose peak voxels survived small volume correction within the 

corresponding anatomical mask (cluster size = 25, peak voxel x, y, z = -8, -42, 38, 

Z = 4.85, pFWE < .001). The beta estimates within these regions exhibited the 

same pattern as those within vmPFC (also significant at p < .001). 
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The hypothesis posing a higher correlation between configural memory 

estimates and activity in the striatal regions in the stimulus-based task than in 

the rule-based task was tested using the model with memory prediction as a 

parametric modulator. The contrast between memory prediction during the 

stimulus-based task and memory prediction in the rule-based task was 

investigated. This contrast did not reveal any activity within the caudate, 

putamen or nucleus accumbens. Further exploration indicated a cluster of 

activation in the right supplementary motor area, but the constituent voxels did 

not survive small volume correction in the corresponding anatomical mask. 

Further exploratory analyses (Figure 23A) indicated memory prediction 

correlates within the right precentral gyrus (peak voxel x, y, z = 44, 4, 30, Z = 4.09, 

pFWE = 0.01) and left middle frontal gyrus (cluster size = 106, peak voxel x, y, z = -

Figure 22. Model-based fMRI rule prediction results (N = 27). A. Second-level contrast rule-

based > stimulus-based. Brighter regions indicate higher t-values. Results thresholded at p < .001 

for visualization purposes. Both statistical maps are overlaid onto the group anatomical image 

(mean T1). B. First-level beta estimates for the peak voxel in the respective region of interest. 

Blue bars indicate mean betas for the rule prediction parametric modulator in the rule-based 

task. Orange bars indicate mean betas for the rule prediction parametric modulator in the 

stimulus-based task. Error bars indicate standard errors.  
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50, 22, 34, Z = 4.73, pFWE = 0.001). The beta estimates in both regions (Figure 

23B) suggested an increase in the stimulus-based task associated with the 

memory prediction, and a decrease in the rule-based task (paired t-test within 

each anatomical region significant at p < .001). 

6.4. Discussion 

This chapter investigated declarative and procedural categorization by 

using a new adaptation of Shepard’s type II and type VI problems. The two 

learning types were first addressed using model-free fMRI analyses which 

revealed more hippocampal and vmPFC involvement in the rule-based task than 

in the stimulus-based task. By contrast, the stimulus-based task engaged the 

Figure 23. Model-based fMRI memory prediction results. (N = 27). A. Second-level contrast 

stimulus-based > rule-based. Brighter regions indicate higher t-values. Results thresholded at 

p < .001 for visualization purposes. Both statistical maps are overlaid onto the group anatomical 

image (mean T1). B. First-level beta estimates for the peak voxel in the respective region of 

interest. Blue bars indicate mean betas for the memory prediction parametric modulator in the 

rule-based task. Orange bars indicate mean betas for the memory prediction parametric 

modulator in the stimulus-based task. Error bars indicate standard errors.  
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ventral striatum and insula more strongly than the rule-based task. The role of 

these regions was examined further with model-based fMRI analyses using 

latent variables extracted from the CAL model. CAL was particularly suitable for 

the current analyses since it offers trial-wise estimates of rule-learning (referred 

to as rule prediction) and memorization (referred to as memory prediction). As 

expected, there was higher rule prediction vmPFC activity in the rule-based task 

as opposed to the stimulus-based task. Although there were indications of 

hippocampal recruitment, this region did not survive correction for multiple 

comparisons. Instead, rule prediction activity was found in ACC, whose pattern 

of activity mirrored the one in the vmPFC. No neural correlates of memory 

prediction were found in the striatal regions. However, memory prediction 

related activity was present in the right precentral gyrus and middle frontal 

gyrus. 

One overarching goal of the model-free and model-based analyses was 

to shed light into the discussion on whether the two learning types involve two 

distinct neural systems. As far as the model-free analyses are concerned, the 

second-level results seemingly provide support for the two systems theory 

where the declarative learning recruits hippocampus and vmPFC and the 

procedural one recruits the ventral striatum. Nonetheless, the negative first-level 

beta estimates associated with contrasting the rule-based against the stimulus-

based activity should be regarded with care. In both vmPFC and hippocampus, 

the mean beta-estimates decreased with respect to the model implicit baseline, 

with the stimulus-based task estimates being significantly lower than the rule-

based task estimates. As far as the hippocampus is concerned, previous work 

has found a general decrease in hippocampal activity during categorization 

irrespective of the category type (Seger et al., 2011). However, the negative 

beta estimates could indicate a continuous hippocampal involvement thorough 

the task. It has been shown that during periods of rest the medial temporal role 

activity is considerably high even higher than during active baseline condition, 

and that this effect has previously reversed the sign of activity during memory 

tasks (Stark & Squire, 2001). It is a possibility that this is also the case in the 

current task, and that the same rationale could also extend to the vmPFC 
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estimates and therefore, in both cases the negative beta-estimates do not 

indicate deactivation. 

Regarding the vmPFC differences, parallels could be drawn to the 

mechanism of neural compression described by Mack et al. (2020). It can be 

speculated, that in both conditions vmPFC performs information reduction, and 

the fact that the vmPFC estimates were higher in the rule-based task as opposed 

to the stimulus-based task is directly correlated with the fact that more 

information has to be compressed in the rule-based task as opposed to the 

stimulus-based task.  

Concerning the hippocampal results, in light of the well-known general 

role of hippocampus in encoding and retrieving of objects from memory (Squire, 

2004) and the recent findings of its correlation with recognition strength in rule-

plus-exception categorization (Davis et al., 2012a) it was not surprising that the 

region was involved in both tasks. The higher recruitment in the rule-based task 

compared to the stimulus-based task could reflect that in addition to storing and 

retrieval, the rule-based task also entails a strong coupling between vmPFC and 

hippocampus during rule-learning (Mack et al., 2016). While vmPFC is 

compressing the unnecessary information and predicts rules (as found in the 

present model-based analyses), the hippocampus stores the tested rules and is 

responsible for dynamically accessing them (Nomura et al., 2007). 

The exploratory analyses on which regions are more active in the rule-

based task as opposed to the rule-based task also revealed insular activity. No 

hypotheses were postulated regarding this region, since it is mostly known for 

its role in emotion regulation (Giuliani et al., 2011; Grecucci et al., 2013; Steward 

et al., 2016) and in the saliency network (Menon & Uddin, 2010). However, 

insular recruitment was found in previous categorization work. Although its 

direct involvement in categorization has not been previously discussed, the 

findings seem to suggest a role in item recognition (Seger et al., 2000) and 

correct categorization of deterministic trials in tasks in which not all members of 

a category have a deterministic association with the category label (Seger et al., 

2010). It could be argued that the higher insular activity during the stimulus-

based task as opposed to rule-based task is suggestive of a stronger need for 
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object recognition in the former rather than the latter. Additional interpretations 

are difficult without further research. 

The model-free hypotheses proposing more ventral striatum activity in 

the stimulus-based task than the rule-based task was confirmed. This fits well 

with the numerous findings of procedural learning relying more strongly on 

striatum than declarative learning (Nomura & Reber, 2008; Seger & Miller, 

2010). Although significantly smaller than in the stimulus-based, the first-level 

beta estimates in the rule-based were far from zero. While this could be solely 

explained by previous work showing that the striatum plays an important role in 

categorization tasks, regardless of the strategy employed (Seger et al., 2010), 

alternative explanations are also plausible. The caudate has been found to play 

an important role in rule switching (Cools et al., 2004), and thus its recruitment 

could be crucial in the current rule-based task since participants are quite likely 

switching between multiple rules until finding the correct one. Nonetheless, 

since the activity in putamen was also far from zero, the more likely explanation 

is that the positive beta-estimates are reminiscent of prediction errors 

(O’Doherty et al., 2004). This signal could be higher in the present study than in 

previous categorization tasks, due to the current tasks giving monetary 

feedback as opposed to cognitive feedback (Daniel & Pollmann, 2010). It has 

been previously shown (Haruno & Kawato, 2006) that the caudate and putamen 

are computing two distinct prediction errors. The putamen computes a stimulus-

action-reward association which occurs at stimulus onset. The caudate 

computes the well-known reward prediction error, the comparison between the 

outcome and reward at the feedback stage (caudate). Assuming that the 

underlying cognitive mechanisms closely matched those in CAL’s rule network 

(i.e. evidence ratios are computed for both valuable and not-valuable 

categories), one could speculate that in the current case both types of prediction 

errors play a role during the choice stage, and therefore both the caudate and 

the putamen are simultaneously recruited (perhaps due to the reward prediction 

error being temporarily revised). 

As far as the model-based results are concerned, the rule prediction 

patterns found in vmPFC and ACC are consistent with previous work in category 

learning  and decision making (Badre et al., 2010; Hartstra et al., 2010; O’Bryan 
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et al., 2018). In the framework of COVIS, there has been evidence suggesting 

that vmPFC generates rules and runs hypothesis testing (Ashby & Maddox, 

2011; Ashby & Valentin, 2017; Carpenter et al., 2016; Schnyer et al., 2009) and 

ACC selects the appropriate rule (Maddox & Ashby, 2004).The rule prediction 

variable computed by CAL encompasses all these processes. Future work could 

attempt to model these three processes separately. A possibility could be 

breaking down CAL’s rule prediction variable into its constituent parts: uni-

dimensional rule, contextual modulation, integration from all three dimensions 

and correlating each part with neural activity.  

With respect to memory prediction, the absence of correlates in the 

ventral striatum was surprising. The underlying cause could be found in the task 

or in the mechanisms behind the memory prediction variable. As far as the task 

type is concerned, it could be the case that the assumption that the stimulus-

based task is a suitable substitute for procedural learning might have been 

erroneous. Within the COVIS framework, previous research has highlighted that 

a marker for procedural learning is a strong stimulus-response association 

(Ashby & Valentin, 2017). From its structure, the current stimulus-based task 

does not allow for such associations to form since a valuable stimulus could be 

located either left or right of the stimulus. Furthermore, although cumbersome, 

the stimulus-based task could be solved via explicit verbalizable rules which 

would directly counteract the assumption of procedural learning. Parallels can 

be drawn between the current study and the study by Milton and Pothos (2011), 

which in the context of COVIS used a substitute of the information-integration 

task that shared the characteristics of the current stimulus-based task. Namely, 

the authors used a task, referred to as complex task, which could not be solved 

by either a uni- or a two-dimensional rule and in which a verbalizable solution, 

although suboptimal and cognitively demanding, was nevertheless possible. 

This procedural learning substitute did not elicit any activity in the caudate or 

putamen regions. Therefore, it cannot be completely ruled out that the lack of 

memory prediction in the ventral striatum could be due to the stimulus-based 

task not adequately representing the procedural system. However, the strong 

caudate and putamen recruitment in the model-free analysis make this 

explanation rather unlikely. 
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With regard to the memory prediction variable, it should be revised that 

the parameter 𝜆 , which controls the encoding and retrieval strength, has an 

important role in its calculation. As discussed in Chapter 5.7, although the 

median values of this parameter were higher in the stimulus-based task, many 

participants also had high 𝜆 values in the rule-based task. Moreover, in both 

tasks, there was a positive correlation between 𝜆 values and accuracy. 

Therefore, it is probable that for a certain sample of participants or for a certain 

time period during the task, 𝜆 was similar between the two tasks. On the other 

hand, it could be the case that selecting only the predictions for the valuable 

stimulus might have been inadequate for capturing memory predictions. Future 

work could attempt to use an average prediction from the left and right stimuli. 

Despite its potential limitations, the memory prediction did reveal 

meaningful activity in the right precentral gyrus and left middle frontal gyrus. 

These regions were also active in the study by Milton and Pothos (2011) with 

declarative and procedural learning both recruiting the left middle frontal gyrus, 

while the right precentral gyrus was unique to the complex (procedural) task. 

Previous findings indicate that the left middle frontal gyrus is recruited more 

when the items are more difficult to categorize (near decision boundaries, 

DeGutis & D’Esposito, 2007). Therefore, it could be argued that the correlation 

between memory prediction and this region was due to items being harder to 

categorize in the stimulus-based task than in rule-based task. With regards to 

the right precentral gyrus, this region has been previously found to play a role 

in increasing discriminability of stimulus features (Folstein et al., 2013). Its higher 

role in the stimulus-based task could be due to the fact that memory prediction 

entails the computation of feature-wise psychological distances between the 

current stimuli and the previously stored stimuli, for which is crucial that the 

features are highly discriminable.  

While some limitations to this study have already been discussed above, 

two more are worthy of note. As previously mentioned, the negative beta 

estimates pose difficulty in interpretation. The use of an active baseline may 

have prevented this issue. Additionally, an active baseline could have helped in 

drawing more definite conclusions on the activation unique to each task. 

Although the interpretation of first-level beta estimates is meaningful, these 
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estimates are nonetheless computed with respect to the assumed model’s 

implicit baseline. It is encouraged that future fMRI work on Shepard’s problems 

take this aspect into consideration. 

Since this was the very first application of CAL to fMRI data, the 

methodology still has room for improvement. As far as the model itself is 

concerned, several possible improvements have already been highlighted in 

Chapter 5.7. Concerning the model-based implementation, it could be that 

applying the rule prediction and memory prediction as parametric modulators 

of both the choice period and the feedback period might have not been ideal. In 

future it could be beneficial to break down these variables into estimates unique 

to stimulus choice and feedback presentation. Future analysis could also greatly 

benefit from assessing the rule and memory prediction correlates at different 

stages during the learning process.  

The current work sought to contribute to the debate on whether 

declarative and procedural category learning recruit two distinct neurobiological 

systems. The evidence from this study tends to favor a single system theory. 

While both model-free and model-based second-level analyses suggested a 

system separation, the first-level estimates tend towards a more unitary system. 

It is definitely not claimed that the two types of learning recruit regions such as 

the vmPFC, hippocampus and striatum equally. Instead, although declarative 

and procedural learning might rely on overlapping regions, these regions 

dynamically adapt to the current learning type by undergoing different 

computations. Since the current paradigm aimed to dissociate between the two 

learning types by providing strategy instructions based on the learning type, no 

statements can be made on whether the two systems are competing as 

assumed in the COVIS model. Future work could consider using the same tasks 

without instructions and apply computational modeling to identify the strategies 

used by each participant. Although the proposition of a unitary system is 

controversial given the numerous studies suggesting otherwise (summarized in 

Ashby & Maddox, 2011; Ashby & Valentin, 2017; Wang & Ashby, 2020), the 

recent study by Carpenter et al. (2016), which based on the criteria of Edmunds 

et al. (2018) used the least confounded behavioral paradigm, together with the 

critical review by Wills et al. (2019) forecast a merging of the two systems.   
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7. Conclusions and Future Directions 

This work presented a detailed comparison of rule-based and stimulus-

based categorization through in-depth analyses of behavioral, ocular, 

computational and neural mechanisms. To carry out this comparison, a novel 

two-way categorization paradigm was designed. The starting point in the 

paradigm development were the influential Shepard et al. (1961) categorization 

problems, in particular the type II problem and type VI problem. While the former 

can be optimally solved using a two-dimensional logical rule, the latter can be 

optimally solved through memorization. This thesis deviated from the standard 

format of these problems by implementing the more ecologically valid two-

stimulus display and probabilistic monetary feedback. To obtain a cleaner 

picture of the two learning types, unconfounded by strategy switches, the 

paradigm was accompanied by instructions on how to optimally perform each 

problem type. To capture the studied strategies, the current adaptation of type 

II and type VI problems were referred to as rule-based and stimulus-based 

categorization.  

Both rule-based and stimulus-based categorization were solved at the 

same rate, making this the first study to find a lack of type II learning advantage 

with respect to type VI problems. The two tasks showed a striking behavioral 

distinction with respect to post-learning RT, which decreased half as much in 

the rule-based task than in the stimulus-based task. An overall distinction in 

mean accuracy was present, but minimal.  

The two tasks were characterized by distinguishable attentional 

strategies. Learning a rule entailed that participants’ attention dynamically 

changed during the task, and upon learning, more attention was allocated to 

rule-forming dimensions. By contrast, memorization required little fluctuation in 

attention throughout the task, with attention being evenly distributed (covertly 

or overtly) on all stimuli dimensions. The eye-tracking results favored the line of 

research which proposes that participants start by fixating all dimensions (e.g. 

ALCOVE) to the line of research which assumes that only one dimension is 

initially fixated (RULEX). Importantly, the present data corroborated the 

previously controversial finding that attention to task-irrelevant dimensions does 

not cease before learning.  
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A powerful new computational model (CAL) was applied to the 

behavioral data to enhance understanding of the cognitive processes underlying 

the two learning strategies. Particularly noteworthy is the fact that CAL 

succeeded in capturing the unprecedented equal learning speed of the rule-

based and stimulus-based tasks. CAL’s free parameters unraveled that strong 

encoding and retrieval abilities are crucial for high performance in both tasks, 

and that participants generalize more sharply about members of the target 

(valuable) category than the non-target (not-valuable) category. In addition, 

participants in the rule-based task displayed narrower generalization gradients, 

which suggested optimal application of the instructed rule strategies.  

Conventional fMRI analyses outlined differential recruitment of candidate 

brain regions. The rule-based task elicited more vmPFC and hippocampal 

activity while the stimulus-based task recruited the insula, caudate and putamen 

more strongly. By applying CAL for the first time to neural data, this thesis 

managed to show that computing rule predictions requires vmPFC and ACC 

involvement. On the other hand, memory predictions are associated with frontal 

regions, namely the right precentral gyrus and left middle frontal gyrus. Parallels 

could be drawn between the present study and the recently introduced concept 

of neural compression (Mack et al., 2020). 

It is strongly believed that the newly developed paradigm will open many 

exciting research avenues. An important matter for future work is the 

implementation of a generalization phase in both learning tasks. Generalization 

is a crucial part of categorization (Seger & Peterson, 2013), and thereby the 

understanding of these two types will not be complete without understanding 

how new items are approached. Furthermore, much is left to explore concerning 

the current paradigm. For example, one could investigate the effect of different 

instruction types or lack thereof on the current tasks. Particularly beneficial for 

the literature would be assessing the effect of instructions encouraging rule-like 

and memorization strategies on the stimulus-based task. It has to be highlighted 

that this thesis concentrated mainly on the processes preceding the 

categorization decision. Future studies could attempt a detailed examination of 

attentional and neural mechanisms during feedback, by examining effects of 

negative and positive feedback on the learning strategies.  
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Work is being currently done to find new cognitively sound approaches 

to better address the probabilistic feedback within the CAL framework. It is 

strongly believed that these improvements will greatly benefit from the model-

based fMRI approaches. An unaddressed potential of CAL lies in the model’s 

attentional components. In future, these estimates will be analyzed in great detail 

and compared against current and future eye-tracking data sets. This has the 

potential of not only further improving model fit, but also achieving the most 

detailed description of type II and type VI problems. Although ambitious, it can 

be posed that, in future, CAL’s generalization gradients could be a new modality 

to examine whether a rule-based strategy was used or not. 

An exciting possibility is also the study of strategy switch within the two 

tasks. Ashby and Maddox (2011) argue that interactions between procedural 

and declarative learning can be best investigated by employing paradigms in 

which subjects have to alternate between the two. In this vein, it could be 

possible to merge the rule-based task and stimulus-based task into one 

paradigm.  

To conclude, in light of all the above findings one could propose that with 

adequate instructions on the optimal strategies, rule-based and stimulus-based 

categorization can be learned equally fast. Regardless of the categorization 

problem, good performance is associated with strong encoding and retrieval 

abilities. Stimulus-based categorization will nevertheless remain more time 

consuming than rule-based categorization due to participants needing to 

allocate a considerable amount of attention to all stimuli dimensions, as opposed 

to just the relevant ones. Both categorization types recruit a complex network 

consisting of vmPFC, dorsal PFC, ACC, hippocampus and ventral striatum 

which adapt their activation and interactions accordingly to the specific problem 

type. Hence, rule-based and stimulus-based categorization are dissociable 

category learning systems.  
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