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Zusammenfassung

Ultrakalte Quantengase bieten eine gut kontrollierbare und variable Plattform zur
Untersuchung von Effekten, die von Quantenkorrelationen herriihren. Diese beiden
Eigenschaften machen sie zu idealen Kandidaten fiir die Realisierung von Quantensim-
ulatoren. Insbesondere bieten ultrakalte Atome den Rahmen fiir den Aufbau von Ver-
suchsanordnungen, die theoretischen Modellen eng entsprechen, die zur Beschreibung
der Quanten-Vielteilchendynamik vorgeschlagen wurden, die z. B. in korrelierten Mate-
rialien vorkommt. Ein wichtiges Merkmal der atomaren Ensembles ist die Moglichkeit,
Aufbauten mit Spinor-Charakter zu realisieren. Ultrakalte Spinor-Atome ermoglichen
die Untersuchung von Quantensystemen, die grundsétzlich auf dem Vorhandensein eines
Spin-Freiheitsgrades beruhen, und die Implementierung hochgradig kontrollierbarer
Sonden zur Verfolgung der Eigenschaften einer grofleren Klasse von Quantensystemen
inner- und auflerhalb des Gleichgewichts. Diese beiden Grenzbereiche von ultrakalten
Spinor-Atomen bilden die beiden Schwerpunkte unserer Studien. Zur Erforschung der
Feinheiten der Dynamik von Spinor-Ensembles verwenden wir eine hochentwickelte
ab-initio-Variationsmethode fiir die zeitliche Entwicklung der Vielkérper-Schrodinger-
Gleichung, namlich die Multi-Layer Multi-Configuration Time-Dependent Hartree Meth-
ode fiir atomare Mixturen oder ML-MCTDHX.

Der erste Teil dieser Arbeit erforscht den itineranten Ferromagnetismus in ultra-
kalten Atomen. Diese Form des Ferromagnetismus beeinflusst die magnetischen Eigen-
schaften von Metallen und ist einer der fundamentalsten Effekte, die durch den Spinor-
charakter der Elektronen entstehen. Sein Auftreten wird iiblicherweise mit starken
kurzreichweitigen abstoflenden Wechselwirkungen zwischen Elektronen mit entgegenge-
setzten Spins assoziiert, die den kinetischen Energievorteil ihrer Paarung im gleichen
Einteilchenzustand aufheben. In einem solchen Rahmen ist das Phanomen des Fer-
romagnetismus mit der Spinpolarisation des Ensembles verbunden. Unsere Studien
konzentrieren sich genau auf die Entschliisselung dieser Beziehung, indem wir die korre-
lierte Dynamik von eindimensionalen ultrakalten Systemen untersuchen, initialisiert in
Konfigurationen, die als ferromagnetisch gelten. Insbesondere untersuchen wir die Sta-
bilitatseigenschaften eines parabolisch gefangenen und spinpolarisierten Fermi-Gases
weniger Teilchen, wenn es durch ein transversales inhomogenes Magnetfeld gestort
wird. Wir zeigen, dass der spinpolarisierte Zustand, der als der Gleichgewichtszustand
eines Ferromagneten im Limes starker Wechselwirkungen vorhergesagt wird, inharent
instabil ist. In ahnlicher Weise wird gezeigt, dass ein Doppeltopf-Aufbau, der in
einer Doménenwand-Struktur aus Spin-Up- und Spin-Down-Atomen initialisiert wurde,
sich zu einem Zustand mit mischbaren Spinkomponenten entwickelt, im Gegensatz zu
den iiblichen Ansichten iiber Ferromagnetismus, wo solche phasengetrennten Zustinde
fiir moderate Abstofungen stabil sind. Trotz der scheinbaren Abwesenheit ferromag-
netischen Verhaltens bleiben in beiden Féllen die Spin-Spin-Korrelationen zwischen
den Atomen wahrend der dynamischen Entwicklung weitgehend ferromagnetisch, was
auf einen anderen Mechanismus hinter der Stabilitat der ferromagnetischen Ordnung
auf der Ebene der Korrelationen zwischen den Teilchen hindeutet. Dieser Mechanis-



mus kann durch die Konkurrenz zwischen Spin-Spin-Wechselwirkungen ferromagnetis-
chen und antiferromagnetischen Charakters beschrieben werden, die aus dem wechsel-
wirkungsgetriebenen beziehungsweise kinetischen Spin-Austausch der Atome entstehen.
Wir zeigen explizit die Existenz dieser Mechanismen und erfassen ihren Haupteinfluss
auf die Zerfallsdynamik der Spinpolarisation, indem wir ein geeignetes Spin-Ketten-
Modell verwenden. Wichtig ist, dass durch dieses Zusammenspiel der Wechselwirkun-
gen die Erzeugung von Quantenkorrelationen héherer Ordnung und von Verschrinkung
aufgedeckt wird. Unsere Ergebnisse liefern einen Ausgangspunkt fiir die Entwicklung
einer Bottom-up-Charakterisierung des itineranten Ferromagnetismus, basierend auf
der Konkurrenz zwischen den ferromagnetischen und antiferromagnetischen Korrela-
tionen, die auf einer fundamentaleren Ebene liegen als die bisher vorgeschlagenen en-
ergetischen Argumente.

Der zweite Teil dieser Arbeit befasst sich mit der Verwendung von Spinor-Fremdteilchen
als Sonden fiir die Quantendynamik von Fermi- und Bose-Polaronen. Ein Polaron ist
ein besonders wichtiges Quasiteilchen in den Materialwissenschaften mit einer Vielzahl
von Anwendungen. Es besteht aus einer Fremdteilchen, die von der Wolke der An-
regungen des Mediums, in dem es sich befindet, umhiillt wird. Diese zusammenge-
setzte Struktur bildet eine eigenstdndige Einheit mit stark veranderten Eigenschaften
im Vergleich zu einer isolierten Fremdteilchen. Unsere Schliisselbeitrige zu diesem
Thema sind die Identifizierung eines wohldefinierten Fermi-Polarons fiir repulsiv wech-
selwirkenden eindimensional gefangenen fermionischen Ensembles und der dynamische
Zerfall des Bose-Polarons im entsprechenden bosonischen Fall. Insbesondere zeigen
wir, dass eine Fremdteilchen, eingebettet in ein eindimensionales Wenig-Korper-Fermi-
Gas aus leichteren Atomen polaronische Eigenschaften annimmt, wie sie durch seine
Energie, sein Residuum und seine Kohérenz angezeigt werden, im Gegensatz zum
Rahmen der Anderson-Orthogonalitatskatastrophe. Weiter haben wir das Phanomen
der zeitlichen Orthogonalitdtskatastrophe in Bose-Polaronen aufgedeckt und charak-
terisiert. Insbesondere zeigen wir, dass nicht-perturbative nicht-lineare Prozesse die
Lebensdauer von Bose-Polaronen fiir starke Wechselwirkungen zwischen dem Medium
und dem Fremdteilchen begrenzen. Fiir die Erforschung dieses Effekts schlagen wir eine
neue Generation von Experimenten vor, die auf zeitabhéngigen spektroskopischen Tech-
niken basieren, und analysieren sie theoretisch. Genauer gesagt, zeigen wir, dass die
Ramsey-Spektroskopie in der Lage ist, den Zusammenbruch des Polaron-Bildes zu iden-
tifieren. Ebenso ist die Pump-Probe-Spektroskopie dazu geeignet, die Lebensdauer des
Bose-Polarons und die Tendenz des Medium-Fremdteilchen-Systems zur Eigenzustands-
Thermalisierung zu erforschen. Dariiber hinaus wurden schwer fassbare Eigenschaften
von eindimensionalen Bose und Fermi-Polaronen identifiziert und quantifiziert, wie
z. B. ihre Quasiteilchen-Residuen, ihre Energien und die effektiven Polaron-Polaron-
Wechselwirkungen im Fall von mehrfachen Fremdteilchen. Unsere Ergebnisse verdeut-
lichen die Bedeutung nichtlinearer Prozesse fiir die addquate Beschreibung der ko-
rrelierten Dynamik polaronischer Quasiteilchen und eréffnen unerforschte Wege fiir
zukiinftige Forschung.



Abstract

Ultracold quantum gases offer a well-controlled and tunable platform to examine ef-
fects stemming from quantum correlations. Both of these properties render them ideal
candidates for realizing quantum simulators. In particular, ultracold atoms provide
the framework for building up experimental setups corresponding closely to theoreti-
cal models proposed to describe the quantum many-body dynamics exhibited e.g. in
correlated materials. An important feature of the atomic ensembles is the feasibility
to realize setups of a spinor character. Spinor ultracold atoms enable the investiga-
tion of quantum systems relying fundamentally on the presence of a spin degree-of-
freedom, and the implementation of highly tunable probes for tracking the in- and
out-of-equilibrium properties of a wider class of quantum setups. These two frontiers
of spinor ultracold atoms constitute the two focal points of our studies. To tackle
the intricacies of the dynamics of spinor ensembles we employ a highly-advanced ab
initio variational method for the time-evolution of the many-body Schrodinger equa-
tion, namely the Multi-Layer Multi-Configuration Time-Dependent Hartree Method
for Atomic Mixtures or ML-MCTDHX.

The first part of this thesis explores itinerant ferromagnetism in ultracold atoms.
This form of ferromagnetism affects the magnetic properties of metals and it is among
the most fundamental effects emanating due to the spinor character of electrons. Its
onset is commonly associated to strong short-range repulsive interactions between elec-
trons with anti-aligned spins, that negate the kinetic energy benefit of their pairing
in the same single-particle state. Within such frameworks, the phenomenon of fer-
romagnetism is connected to the spin-polarization of the ensemble. Our studies fo-
cus exactly on unraveling this latter relation, by studying the correlated dynamics
of one-dimensional ultracold systems, initialized in configurations which are deemed
as ferromagnetic. In particular, we study the stability properties of a parabolically
confined few-body and spin-polarized Fermi gas when perturbed by a transverse inho-
mogeneous magnetic field. We reveal that the spin-polarized state, predicted to be the
equilibrium state of a ferromagnet in the strong interacting limit, is inherently unsta-
ble. Similarly, a double-well setup initialized in a domain-wall structure of spin-up and
spin-down atoms is shown to evolve to a state with miscible spin-components, in con-
trast to the usual views on ferromagnetism where such phase-separated states are stable
for moderate repulsions. Nevertheless, despite the apparent absence of ferromagnetic
behaviour, in both cases the spin-spin correlations among the atoms remain largely fer-
romagnetic throughout the dynamical evolution, hinting at the existence of a different
mechanism behind the stability of ferromagnetic order on the level of interparticle cor-
relations. This mechanism can be characterized by the competition between spin-spin
interactions of ferromagnetic and antiferromagnetic character, which emerge from the
interaction-driven and kinetic spin-exchange of the atoms, respectively. We explicitly
demonstrate the existence of these mechanisms and capture their main influence in the
decay dynamics of the spin-polarization, by employing an appropriate spin chain model.
Importantly, due to this interplay of interactions the generation of higher order quan-



tum correlations and entanglement is revealed. Our findings provide a starting point
for developing a bottom-up characterization of itinerant ferromagnetism based on the
competition between the ferromagnetic and antiferromagnetic correlations, which lie at
a more fundamental level than the energetic arguments proposed thus far.

The second part of this thesis regards the use of spinor impurities as probes of the
quantum dynamics of Fermi and Bose polarons. A polaron is a particularly important
quasi-particle in material science with a wide range of applications. It consists of an
impurity dressed by the excitation cloud of its host. This composite structure forms a
distinct entity, with severely altered properties, compared to an isolated impurity. Our
key contributions in this topic are the identification of a well-defined Fermi polaron for
repulsively interacting one-dimensional confined fermionic ensembles and the dynami-
cal decay of the Bose polaron in the corresponding bosonic case. In particular, we show
that an impurity embedded in an one-dimensional few-body Fermi gas of lighter atoms
accumulates polaronic properties, as indicated by its energy, residue and coherence,
in contrast to the framework of the Anderson orthogonality catastrophe. Further-
more, we have unveiled and characterized the phenomenon of temporal orthogonality
catastrophe in Bose polarons. In particular, we show that non-perturbative non-linear
processes limit the lifetime of Bose polarons for strong impurity-host repulsions. For
the exploration of this effect we propose and theoretically analyze a new generation of
experiments based on time-dependent spectroscopic techniques. More specifically, we
demonstrate that Ramsey spectroscopy is able to identify the break down of the po-
laron picture. Similarly, pump-probe spectroscopy is adequate for exploring the lifetime
of the Bose polaron and the tendency of the bath-impurity system towards eigenstate
thermalization. In addition to the above, elusive properties of one-dimensional Bose
and Fermi polarons were identified and quantified such as their quasi-particle residua,
their energies and the effective polaron-polaron interactions in the case of multiple im-
purities. Our findings outline the importance non-linear processes for the adequate
description of the correlated dynamics of polaronic quasiparticles and opens up several
unexplored avenues of future research.
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Chapter 1

Introduction

Ever since the experimental realization of the first atomic Bose-Einstein Condensate
(BEC) [1,2] ultracold atoms have been a fertile platform for comprehending the complex
physics of many-body systems deep in the quantum regime. Advances in trapping
and cooling techniques have allowed for the realization of elaborate physical scenarios,
involving the controlled confinement of a single or multiple species [3-10] of atoms in
different hyperfine [11-14] or electronic states [10,15,16]. In particular, atomic species
of bosonic [6,9,11,17-19] and fermionic character [8,20,21] or even mixtures thereof
[3-5,7,10] can be generated and cooled all the way to quantum degeneracy, enabling
not only the observation of bosonic [22,23] and fermionic [22-24] superfluidity but also
the study of the impact of different particle statistics on various quantum phenomena
[22,24]. Regarding their confinement, a large variety of external potentials including
for instance, ring shaped [25-28] and box-like [29-32] geometries can be generated.
Atomic ensembles in one or two spatial dimensions have been also realized [33-35] and
intensively studied [23,36], as well as, lattice potentials of various symmetries [37],
with some exotic examples including the honeycomb [38-40] and the Lieb lattices [41].
This tunability of the external confinement allows for the study of several geometric
effects enabling, among others, for the study of Luttinger-liquids [36,42-47], Josephson
junctions [48-51], bosonic [52-55] and fermionic [56-62] Hubbard models and even
topological phenomena [63-76]. The above technological advances combined with the
precise control of interatomic interactions with the aid of Fano-Feshbach resonances [77]
lead to a new era of investigations as they allowed for the long sought after precise analog
quantum simulation of condensed matter models [78-80] and further the generation and
characterization of unexplored new quantum phases of matter [36,81-86].

Out of this plethora of experimentally realizable setups we choose herein to unravel
the physics of ultracold atoms involving spin degrees-of-freedom [14, 87, 88]. Under-
standing the physics emanating in spinor ensembles is paramount, both in terms of
exploring their intrinsic phenomenology, as well as, exploiting their properties to real-
ize novel probes for the ultracold dynamics [89-93]. On the one hand, the almost perfect
isolation of ultracold atoms from environmental effects provides a simpler means to ex-
plore the effect of spin on their equilibrium properties and dynamics. On the other



INTRODUCTION

hand their well-controlled nature offers a platform for experimentally addressing the
effects of theoretically proposed physical mechanisms to the dynamical and equilibrium
properties of quantum matter. In this thesis we exploit the above mentioned bene-
fits of ultracold atoms and apply them to two systems relevant for condensed matter
physics. Regarding the inherent properties of spinor systems one of the most inter-
esting topics constitutes the ferromagnetic properties of repulsive itinerant spin-1/2
Fermi gases [94-101]. In particular, the mechanism behind the emergence of ferromag-
netism [102,103] in metals is conjectured to be related to the interplay of kinetic energy
and interaction [104].

Since 2009, spinor degenerate Fermi gases have been used for the investigation of
magnetic properties of interacting fermions. Early studies [94,96] have focussed on
examining the validity of the Stoner instability [104]. The latter states that when
the interaction energy of short-range repulsively interacting spin-1/2 fermions exceeds
the kinetic energy contribution, the system becomes ferromagnetic in the sense that it
develops a large spontaneous magnetization of the constituting spins. The concept of
the Stoner instability superseded the model of Bloch ferromagnetism [105,106] relying
on the long-range character of the Coulomb interaction, as it proved to be successful in
identifying the common ferromagnetic metals of iron, nikel and cobalt [107]. However,
even shortly after the conceptualization of this instability mechanism in 1930s, a large
amount of issues regarding this description of itinerant ferromagnetism has emerged
[108-112]. Nevertheless, the Stoner instability even to date is regarded as the proper
way to qualitatively understand the phenomenon of metallic ferromagnetism [113,114].

The reliance of the Stoner instability on short-range interactions that naturally
emerge in degenerate Fermi gas ultracold experiments, and the poorly understood in-
tricacies it involves regarding its validity, rendered ultracold gases a promising venue
for the exploration of ferromagnetism [94]. An important problem in the realization of
repulsively interacting Fermi gases is that they constitute a metastable state [115-117],
since for repulsive interactions the eigenspectrum of two- and three-dimensional Fermi
gases features a shallow bound state [77]. Indeed, three-body recombination pro-
cesses [118-121] lead to the formation of Feshbach molecules, resulting in unavoidable
atom losses and reducing the lifetime of repulsive Fermi gases. Nevertheless, the Ket-
terle group in 2009 [94] claimed the identification of a ferromagnetic instability by iden-
tifying a maximum atom loss rate and size of the gas accompanied by a minimum kinetic
energy when the interaction strength of a Fermi gas is suddenly increased (quenched)
to the strong interaction regime. These observations thought to be related to a Stoner
instability but importantly they lacked a direct probing of the spin-configuration of
the system. In fact, later [95] it was realized that these features can be explained via
a resonant enhancement of the two-body Feshbach molecule formation, which domi-
nates the processes related to the Stoner instability for all interaction strengths. In
a followup experiment [96] it was indeed found that the spin fluctuations experienced
in this regime are not consistent with a ferromagnetic instability and it was verified
that the formation rate of ferromagnetic domains is lower than the rate of creation
of Feshbach molecules. Essentially, with this experiment [96] the results of Ref. [95]
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were verified, leading to the temporary conclusion that the Stoner instability cannot
be identified in ultracold atomic systems.

Research of ferromagnetic phenomena in degenerate ultracold Fermi gases has been
reinvigorated, following the experiment of Ref. [97] which demonstrated that the phase
separated state, where spin-1 and spin-| atoms form a domain wall structure, is metastable
[122]. The latter hinted that the ferromagnetic properties of ultracold Fermi gases can
be identified indirectly by studying the decay dynamics of metastable states. This
proposal was advanced further in recent studies involving pump-probe spectroscopy
[100, 101]. These works explicated that the formation of microscopic sized ferromag-
netic domains, possessing a size of the order of the interatomic separation, is faster than
the molecular decay [100]. It was further suggested [101] that these ferromagnetic do-
mains coexist with the Feshbach molecules in an inhomogeneous metastable state which
can be characterized as a “quantum emulsion” of the two phases (see also [123,124]).
The claim of microscopically sized and emulsified ferromagnetic domains is supported
by the selective spectroscopy of the atoms not paired in Feshbach molecules, which are
found to possess properties similar to spin-polarized fermions [101]. Nevertheless, owing
also to the complex character of such a possible emulsified state there is a large amount
of open questions regarding the nature of the ferromagnetic properties emanating in
ultracold quantum gases. The most crucial of these questions is whether the emergence
of ferromagnetism can be solely attributed to the competition between the kinetic and
interaction energy of fermionic spinor ensembles [113,114], supporting then a physical
mechanism in the spirit of the Stoner instability [104]. In this case, understanding,
also, the role of different kinds of exchange interaction processes in the formation of
ferromagnetic domains might be crucial in reconciling the Stoner framework with its
numerous criticisms [108-112].

In this thesis we propose an alternative approach to tackle ferromagnetism in ul-
tracold atom systems by invoking one-dimensional (1D) ensembles [125,126]. One-
dimensional ultracold fermions have the benefit that they do not feature a weakly
bound Feshbach molecule state for effectively positive interactions [127]. As such, the
repulsive Fermi gas is largely stable against three-body recombination [118-121]. In
addition, it has been shown that the static properties and dynamics of 1D fermions,
both in the strong (near infinite) [128-133] and weak (near zero) [134, 135] interac-
tion regime, can be mapped to those referring to an appropriately chosen spin-chain
model. The advantage of such spin-chain models is that they provide an ideal can-
didate for exposing the magnetic properties and microscopic mechanisms of itinerant
systems. More specifically, the well-behaved nature of spin-chain models [107] allows
us to perceive the intricate magnetic interactions of the itinerant systems that they
approximately describe. Moreover, 1D fermions involve several intriguing unresolved
questions regarding the role of the breaking of the SU(2) symmetry, associated with
the total spin of the Fermi gas, and the relation of magnetic properties to phase sep-
aration [130,135-138] which we address within our studies. Particularly, our research
reveals that the ferromagnetic correlations emanating in the 1D ensembles are not con-
nected to the emergence of spin-polarization [K1] or phase separation [K2] among the
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spin-components, as proposed by the Stoner model. Instead, ferromagnetic proper-
ties emerge due to the competition of effective spin-spin interactions originating from
interaction-driven [139-141] and kinetic [142] spin-exchange of the atoms respectively.
Our findings motivate an altered framework for characterizing itinerant ferromagnetism,
based on the interplay of ferromagnetic and antiferromagnetic spin-spin correlations,
that generalizes the energetic arguments inherent in the Stoner model.

The importance of spinor atoms in ultracold setups is not exhausted by the involved
dynamics and stationary properties of spinor gases. Indeed, the spin degree of freedom
offered by one or several spinor impurities immersed in a more extensive atomic back-
ground allows for probing the structures and properties emanating in such composite
systems. In particular, ultracold atoms enable the application of various spectroscopic
techniques [143] such as injection [144], ejection [91,116], Ramsey [145] and pump-
probe [100,101] spectroscopy, allowing for tracking a large class of observables that are
otherwise difficult to measure. Spectroscopic studies provide information regarding the
energy content of a quantum system both in the equilibrium case, as well as, during
its dynamics. Notice that typically ultracold experiments employ absorption or fluo-
rescence imaging [22] where such energy probes are difficult to obtain. In addition,
spectroscopic tools enable the investigation of the overlap between distinct many-body
states of a system [146]. Spinor impurities when combined with spectroscopic tech-
niques provide ideal probes for the few-body or collective excitations of many-body
systems, since the properties of the composite impurity-environment system can be
mapped to the spin-state of the impurity [92,147]. Therefore, understanding the prop-
erties of extensive quantum gases containing a small number of impurity atoms is a
highly relevant application of spinor quantum gases and for this reason consists the
second focal point of our work.

The concept of quasi-particles is a cornerstone of impurity physics. Quasi-particles
refer to composite structures consisting of excitations and/or particles that collectively
propagate, similarly to a new species of particle [148]. One of the first kinds of quasi-
particles examined is the so-called polaron [149-152]. The original concept of a polaron
emerges in condensed matter setups involving deformable crystal structures and itiner-
ant electrons [153]. Such polarons emerge in several classes of technologically relevant
materials such as polar semiconductors and ionic crystals [154], organic semiconduc-
tors [155-157] and even transition metal oxides [158,159]. In these systems it was found
that the motion of electrons leads to deformations of the crystal lattice, i.e the genera-
tion of phonons [153], giving rise to significant modifications of the conduction proper-
ties of the material [152]. In particular, the electrons in these materials are dressed by a
cloud of phonons forming a quasi-particle, which is heavier and subsequently less mobile
than the original electron [152], especially for strong electron-phonon couplings [151].
Besides the different effective mass compared to an electron, the polaron exhibits only
partial coherence (due to the involved phononic excitations of the crystal) which is
quantified by its residue/quasi-particle weight [152,160]. Another intriguing aspect of
polaron physics is the effective interactions between different polarons [161] which are
mediated by their host. These interactions stem from the exchange of background ex-
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citations among the different polarons and are always attractive, even though the bare
particle-particle or particle-background interactions might be repulsive. The formation
of two-body bound states of polarons referred to as bipolarons [162] is especially impor-
tant in condensed matter setups as it has been proposed to explain phenomena such as
the electric conductivity of polymers [163,164] and the organic magnetoresistance [165].
Interestingly, a bipolaron theory for explaining the phenomenon of high-temperature
superconductivity for a certain class of materials has been formulated [166-169], but to
date it remains unclear whether this scenario is realizable [170,171]. This original con-
cept of a polaron has been generalized and extended to different setups, including for
instance the small [172,173], magnetic (or spin) [174] and the exciton polarons [175],
adhering also to different disciplines of physics such as atomic [176] and even bio-
physics [177].

Despite the above mentioned widespread realizations of polaronic quasi-particles
and the presence of several distinct classes of related theoretical models, the behavior
of setups involving highly mobile impurities is far less explored [178], especially in the
intermediate interaction range where the impurity is neither self-localized or weakly in-
teracting with its environment. Ultracold settings allow the control of impurity mobility
as both homonuclear [91,144] and heteronuclear [116] atomic mixtures can be realized
which, in addition, offer tunable interparticle interactions [127]. For these reasons re-
cently there was a immense interest in realizing polarons with mixtures of ultracold
atoms which probe this largely unexplored regime [179]. Moreover, except the scenario
of a bosonic background (Bose polaron) [179,180] as in the case of electron-phonon cou-
pling, ultracold atoms also allow for a fermionic environment giving rise to the so-called
Fermi polaron [117,181]. It is worth mentioning here that the dimensionality of the
background gas is also tunable by manipulating the external confinement [19,34,35]. To
date both Bose [91,182,183] and Fermi [98,116,144, 145] polarons in three-dimensions
have been realized experimentally and their equilibrium properties have been probed
mainly via injection and ejection spectroscopy techniques. Additionally, there exists
a realization of the Fermi polaron in two dimensions [184] and several aspects of the
impurity problem in 1D have been explored both in the fermionic [185] and the bosonic
case [9,89]. These experimental advances sparked a renewed interest in theoretically
describing the properties of those quasi-particles and in the development of existing
and novel approaches for their study [186-189]. Importantly, the presence of polarons
in an ultracold setting opens up also the possibility of dynamical studies. Indeed, the
typical timescales for the dynamics of ultracold polarons lie on the ms regime [22,23],
rather than the fs timescale [107,146] which is the characteristic one for condensed
matter setups. As a result, the spatial and momentum distributions of the impurities
are easily tractable experimentally.

Our work regarding polarons revolves around the study of the impurity problem
in 1D by utilizing appropriate spectroscopic techniques tailored to directly capture the
intricacies of these correlated systems while explicitly taking into account and thus
exposing the effects caused by the existing parabolic confinement. In particular, it
is well-known that 1D Fermi ensembles involve strong quantum fluctuations resulting
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to the phenomenon of the Anderson orthogonality catastrophe which occurs for any
mass ratio between the impurities and their environment in the thermodynamic limit
[190-192]. Indeed, it has been shown that a single impurity interacting with an 1D
Fermi gas causes the macroscopic modification of the quantum state of the latter.
Accordingly, the states of the Fermi-gas in the presence and absence of the impurity
become orthogonal to each other as the particle number of the gas is increased or
equivalently as the thermodynamic limit is approached [192]. This fact implies that
the 1D Fermi polaron cannot occur in the thermodynamic limit. However, recent
experiments showed that the physics in the limit of infinitely large systems can be
well monitored even in the few-body regime evading such difficulties [185]. In our
studies [K3] we demonstrate that impurities embedded in a few-body 1D Fermi gas
accumulate polaronic properties such as a finite quasi-particle residue and well-defined
interaction energy with their environment. In the case of multiple polarons, induced
interactions acting among them are mediated by the excitation of their fermionic host.
Quite remarkably, even in the case of strong repulsive impurity-bath interactions the
1D Fermi polaron appears to be long lived despite the predicted impossibility of its
existence.

For Bose gases the situation is even more complicated. In the thermodynamic
limit, the Anderson orthogonality catastrophe is even more severe as any microscopic
deformation of the order parameter ~ P of the BEC corresponds to a large reduction of
the many-body overlap ~ (1—P)"¢, where N, is the number of condensed atoms. This is
extremely relevant for the study of Bose polarons since non-perturbative mechanisms
that modify the order parameter of an ultracold BEC are well-documented in the
literature. First, it is known that a moving potential within a BEC can induce non-
linear excitations [193-195] such as solitons [196-200] when the velocity that it traverses
the Bose gas exceeds a critical one thus violating the Landau criterion for superfluidity
[201]. In addition, phase separation is a prominent feature in binary ultracold bosonic
mixtures [202-206]. In particular, relying on energetic arguments it can be proven that
if the interspecies interactions exceed a threshold value set by the intraspecies ones, the
miscible state of the two components is no-longer stable [207]. The dynamics during
the manifestation of such an instability have been studied [208-210] demonstrating the
pronounced deformation of the order parameters of the Bose gases which form fillament-
like structures in order to minimize the spatial overlap among the two species. Last but
not least, a feature that is not considered within the condensed matter polaron models
are the additional forces resulting from the density gradients of the environment to the
impurity which inevitably occur when a parabolic confinement is employed [211,212].
Indeed, one of our key findings is that the impurities in confined systems experience
a total potential that is the sum of the external harmonic potential and an additional
potential barrier stemming from their interactions with the density of the bath that
crucially affects their properties [K4-K6]. The above lead to the emergence of intriguing
phenomena such as the temporal orthogonality catastrophe [K4,K5] of Bose polarons,
that signifies the breakdown of the polaron picture. This process occurs for strong
impurity-bath interactions where the rapid expansion of the impurity density results in
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the excitation of its host. Due to this process the Bose polaron becomes short lived [K6]
and after its decay the system tends to an eigenstate thermalized state [213-216].
Our findings showcase the ability of time-resolved spectroscopic techniques to identify
elusive features of the polaron physics, such as the induced polaron-polaron interactions
[K5], and motivate the importance of excitation pathways associated for instance with
the non-linear dynamics of BEC [196-200] for the adequate characterization of the Bose
polaron.

Objectives of this thesis

In this thesis we aim to demonstrate that the ab initio study of the correlated dy-
namics of spinor systems provides valuable insights into the dynamics of correlated
ultracold vapors. In particular, our objective is twofold. First the dynamics of spin-1/2
fermions is studied in order to obtain a deeper understanding of the magnetic mech-
anisms that emanate in these systems. Namely, we initialize the system into a state
that is supposedly stable for sufficiently large repulsions within the framework of Stoner
instability [104] and address the dynamical stability properties of this state embedded
in a quantum environment. By tracking observables related to the magnetization and
the spin-spin correlations of the system we are able to provide insights into

e Whether the standard framework of Stoner instability is adequate to describe the
magnetic properties of spin-1/2 fermions in 1D.

e Whether novel spin-chain models applicable for weakly interacting systems are
able to capture the decay dynamics of the initial state.

e Extend such models to capture the dynamics within the intermediate interaction
regime and characterize the emerging magnetic order.

To achieve the above we further

e Analyze the constituting ingredients of such models and compare to accurate fully
correlated calculations in order to extract the underlying magnetic mechanisms.

e Expose the involved magnetic mechanisms, and exhaustively characterize the
many-body state of the spinor system, as well as, find their imprint on exper-
imentally addressable quantities.

e Clarify the relation of phase separation and ferromagnetism which are inherently
related in the Stoner model picture.

The analysis regarding the Bose and Fermi polarons by employing injection, Ram-
sey and pump-probe spectroscopy also proves quite fruitful [K3-K6]. In these works,
we simulate different spectroscopic sequences to realize polaron states. The main ob-
servable employed in these works is the spectroscopic signal for different environment-
impurity interaction strengths and different pump (dark) times for injection (Ramsey



INTRODUCTION

and pump-probe) spectroscopy. This choice facilitates a direct comparison with a corre-
sponding experiment and demonstrates the direct access on the quasi-particle properties
obtained within the ultracold environment. Our key findings are summarized below.

We unravel the spectrum of Fermi and Bose polarons in the case of one or multiple
quasiparticles.

We identify the emergence of additional spectral features emerging due to the
distinct excitation pathways of polaronic states and the involved two-impurity
mechanisms.

The Ramsey spectroscopy of Bose polarons reveals the phenomenon of “Temporal
orthogonality catastrophe” associated with the fact that the many-body state of
the impurities rapidly becomes almost orthogonal to the non-interacting one.
During this sequence the contrast of the Ramsey spectrum tends to a zero value
even for small dark times.

By means of pump-probe spectroscopy, we characterize the energy redistribution
occurring in the system during the temporal orthogonality catastrophe.

We unveil spectral evidences for the tendency of the bath impurity system to reach
an emergent eigenstate-thermalized state after the manifestation of a temporal
orthogonality catastrophe.



Chapter 2

Theoretical Framework

2.1 Spinor and Pseudospinor condensates

2.1.1 Internal states of atomic systems and ultracold experiments
A. Atomic internal states and their scattering properties

Ultracold atoms constitute one of the most advantageous platforms for studying multi-
component quantum fluids [217,218]. Before commencing our presentation of the par-
ticular setups and physical phenomena addressed within this thesis it is instructive to
present some basic features of ultracold multi-component ensembles and briefly review
some of their history while exposing also their extraordinary level of control and tun-
ability [37]. The first step in realizing a multi-component fluid is to identify which
distinct components can be employed. Atoms possess a variety of different internal
states [219,220] that are experimentally addressable and accordingly mixtures of the
latter can be utilized to realize a multi-component gas [11-14, 22]. However, most
of these internal states are inherently unstable [219] and the thermal equilibration of
the atomic motion during their lifetime is impossible. Naturally, this fact precludes
their use in ultracold experiments. Notable examples constitute the low-lying electron-
ically excited states. These possess a dipole allowed transition to the ground state
leading to a fast spontaneous decay at a ns timescale [219]. Nevertheless, particu-
lar electronically excited states are relevant for ultracold applications. For instance,
17Yh experiments have successfully produced relatively stable bosonic gases utilizing
the metastable (6s6p)3 P, state [10] and even heteronuclear mixtures of Li and Yb in-
cluding this electronically excited atomic species [15,16]. In addition, ultracold atom
experiments utilizing highly excited Rydberg states [221] embedded in a Bose gas of
neutral atoms, are nowadays feasible [222]. Here a particularly striking example con-
stitutes the realization of the Rydberg polaron [223,224].

Within this thesis we are mostly concerned with the application of the different
hyperfine states of the ground state manifold 25, /2 of alkali atoms as the individual
components of our setup. The above mentioned hyperfine states possess an exception-
ally large radiative lifetime (as far as isolated atoms are concerned) [219] which can
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be neglected. In practice, their lifetime is limited by inelastic processes which involve
two [19], three [118-121] or more [225,226] colliding atoms. The kinetic energy of
the reactants is altered due to the change of the particles’ internal states (hyperfine
relaxation) [19] and/or due to the formation of diatomic molecules [77]. There are sev-
eral known cases of individual hyperfine states and mixtures thereof that are relatively
robust against two-body hyperfine relaxation collisions [14]. Examples consist the dif-
ferent mp states of the F/ = 1 [17] and F = 2 [18] manifolds of 'Rb. However, there are
important counterexamples where the collisional relaxation is particularly pronounced.
These include the F' = 2 states of »Na [19] and the F' = 3 [227] and F = 4 [228]
states!of 133Cs [230,231]. Moreover, the molecule formation due to three-body colli-
sions [118-121] is in general a rather slow process for the small atomic densities ~ 104
cm ™3 of ultracold atomic ensembles. However, there exist cases where such processes
have made the experimental realization of particular setups challenging. A relevant ex-
ample is the Bose-Einstein condensation of a '33Cs in its absolute ground state, F' = 3,
mp = 3 [232,233]. Four [225,226] or more body collision processes are even less relevant
than three-body ones due to the low atomic densities and are almost always neglected?.
To date there is a plethora of multi-component mixtures of hyperfine states referring
to atomic species having either bosonic [11,17-19] or fermionic [20,21] character and
exhibiting large lifetimes with a negligible rate of inelastic processes. Except for those
cases, heteronuclear mixtures involving distinct atomic species are possible [6,8,9], al-
lowing among others for the experimental realization mixtures of atoms with different
particle exchange statistics [3-5,7,10].

B. Trapping mechanisms

Another obstacle for experiments with multi-component and particularly spinor gases
has been the underlying trapping mechanisms [22]. Spinor gases refer to n-component
systems whose interactions possess an SU(2) invariance so that they are formally equiv-
alent to a gas of spin-(2n+1)/2 particles [22]. Originally, ultracold experiments utilized
magnetic traps based on the Zeeman effect of the atoms within an inhomogeneous mag-
netic field. This trapping mechanism, however, introduces several hurdles for realizing
spinor setups. First, not all hyperfine states can be trapped in magnetic traps. Indeed,
creating a local maximum of magnetic field in a region where current is absent is im-
possible [237,238]. As a consequence, only states that are low-field seckers, i.e. are
attracted to magnetic field minimums can be trapped. This fact already precludes the
realization of the simplest form of a spinor gas consisting of all the hyperfine states of a
particular F' manifold since the states with my > 0 are not low-field seekers. Additional
detrimental factors arise from the different magnetic moment of the distinct hyperfine

1Within these manifolds there are specific states that can be stabilized against collisional hyperfine
relaxation provided that no other hyperfine state with the same value of F' is occupied. These are the
absolute ground state F' = 3, mr = 3 of '33Cs [229] and the doubly polarized (stretched) state F = 2,
mp = 2 of **Na [19].

2 A notable exception regards the study of Efimov physics [234-236], where four-body collision events
are relevant
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states resulting to unavoidable hyperfine state-dependent confinement potentials [22].
Notice also that atoms moving within a magnetic trap subjected to a time-dependent
magnetic field in their frame of reference even if the latter is a stationary field in the lab
frame. The magnetic field can, therefore, induce transitions between distinct hyperfine
states that might not be able to be confined, leading to the decrease of the lifetime of
the gas. All of these problems were overcome by the development of optical tweezers
(at the era of early experiments they used to be referred to as far-off-resonant traps
or FORT) [14,17,127] for the confinement of neutral polarizable atoms. An optical
tweezer counteracts all the above-described drawbacks as it can be tuned to produce
a confining potential that is equal to all hyperfine states. Optical traps similarly to
magnetic traps also decrease the lifetime of the trapped atoms as the latter can scatter
with the photons of the confining laser resulting to their heating [127]. However the
rate of these scattering events can be substantially reduced via appropriately tuning
the frequency of the applied radiation [219].

An additional benefit of the optical trapping is that it profoundly increases the
tunability of atomic systems. In particular, optical tweezers allow for the realization
of a variety of potentials by modulating the beam parameters or simply adding more
laser fields [37]. In particular lattice structures [37], multi-well potentials [97,239] and
even rectangular box-like potentials [29-32] can be created with relative ease and these
potentials can selectively be either hyperfine-state dependent [240-245] or not [14,22]
according to the experimental needs. Furthermore, even in the case of approximately
harmonic confinement the shape of the trap can be either spherical, pancake-like or
elongated along one spatial directions [33-35], allowing for the study of three-, two-
and 1D systems respectively. Notice that this is not the case for magnetic traps where
the potential is fixed by the geometry of the involved coils without a large room for
variation [22]. A remarkable advantage of optical traps is that removing the need for
magnetic confinement they allow for the use of magnetic and radio-frequency fields
for the manipulation of the atomic states. Indeed, the Zeeman shift possesses impor-
tant applications other than the confinement of atoms. For instance, the magnetic
field can be utilized to manipulate the rates of spin-exchanging elastic collisions [246],
for inducing hyperfine-state-dependent potentials [240-245] and for tuning the energy
gaps between the involved hyperfine states [219,247]. The latter except for the rather
obvious application of enabling hyperfine-state selective coupling schemes via optical
or radiofrequency fields also plays a crucial role for the control of interatomic interac-
tions [21,77,248-250)].

C. Interatomic interactions in ultracold ensembles

The control of interatomic interactions is a remarkable feature of ultracold atom ex-
periments [21,77,248-250], as it renders them exceptional examples of quantum sim-
ulators [78-80]. Elastic collisions between neutral atoms yield two-body interactions
of extremely short-range when compared to the confinement length scale of typical
traps allowing them to be well-approximated as zero-range s-wave collisions [77]. Zero-
range interactions constitute a common approximation employed in different fields of
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theoretical physics [104] and therefore a setup that inherently features them is highly
desirable. In particular considering the low kinetic energy of ultracold atoms their
s-wave interactions for given hyperfine states are completely characterized by only
one parameter, namely the scattering length [77]. Ultracold atom ensembles enable
for the control of these scattering lengths via processes such as Fano-Feshbach reso-
nances [15,21,77,90,251]. Fano-Feshbach resonances occur when the energy of a bound
(molecular) state of a closed collision channel?® lies in the vicinity of the collision thresh-
old of the entrance channel*. In this case even a small coupling among the involved
hyperfine-states referring to the closed and entrance channels results in a sizable shift
of the scattering length of their interactions [77]. Provided that the molecular state
possesses a different magnetic moment than the atoms in the entrance channel its en-
ergy with respect to the threshold can be tuned via the Zeeman effect. This leads to
the control of the scattering length of atoms via a magnetically-tuned Fano-Feshbach
resonance. In systems with reduced dimension (i.e. referring effectively to one- or
two- spatial dimensions) the interatomic interactions can also be tuned by modulating
the confinement along the strongly confined direction [77,248-250,252-256]. In this
case a two particle bound state referring to an excited state along the strongly con-
fined axis (axes) can be tuned to resonance with the threshold of colliding particles
referring to the ground state of strong confinement. This gives rise to the so-called
Confinement induced resonance. It is noteworthy that these resonant effects are able
to tune the scattering length over all values of both positive and negative scattering
lengths [77,248].

Let us also mention in passing that different kind of interactions are also imple-
mentable in ultracold gases. A large class of atoms have quite pronounced magnetic
dipole-dipole interactions [257,258], that cannot be properly accounted by zero-range
scattering models, requiring their treatment as long-ranged ones. In addition, Fano-
Feshbach resonances of higher partial waves such as p-wave ones [256,259,260] can be
invoked although these typically suffer from large two- and three-body inelastic collision
rates [261]. Finally, composite systems of ions embedded in a gas of neutral atoms have
been realized which exhibit charge-induced electric dipole interactions [86, 262, 263].
Nevertheless, neutral atom ensembles possessing tunable s-wave interactions remain
the workhorse of ultracold atom experiments and constitute our focus within this the-
sis. The remainder of this chapter deals with the basic properties of the optical trapping
technique [14,17,127] that as mentioned above spearheaded the experiments of spinor
and multi-component systems. Subsequently we provide the derivation of the effec-
tive 1D Hamiltonians employed within our studies [K1-K6] from the corresponding
experimentally implementable three-dimensional ones.

3A closed channel refers to the energetically prohibited scattering process. In particular, it is
characterized by the transition of the scattering atoms to different hyperfine-states as a result of their
collision with their final total energy being larger than the initial one.

4The threshold energy of a scattering channel refers to the energy of the particles in the appropriate
hyperfine states when they are found at an infinite separation.
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2.1.2 Optical Trapping

The use of optical tweezers is a technique to confine neutral polarizable particles of
size much smaller than the wavelength of optical electromagnetic fields [127, 264, 265].
Accordingly, this technique is not limited to atomic ensembles but it has found applica-
tions in the confinement of larger particles such as molecules [266,267] or even pm-sized
particles [268,269]. The working principle of optical tweezers relies on the interaction
of induced electric dipoles with an inhomogeneous classical electromagnetic field [219].
The Lorentz force exerted by an electromagnetic field to an electric dipole reads

FL:(d-V)E—F%xB, (2.1)

where d is the dipole moment of the particle and E, B denote the electric and magnetic
fields. To proceed we further assume that the field interacts weakly enough with the
polarizable particles so that their induced dipole moment can be expressed in the linear
response approximation as d(t) = Re[a(w)E(t)]. Here, a(w) is the polarizability of
the medium. The polarizability, «(w), is dependent on the frequency of the applied
electromagnetic field and possesses complex values accounting for the phase difference
between the applied electromagnetic field and the induced dipole moment. By using
the above mentioned assumption the force exerted to a polarizable particle reads

a(w) dpem

1
F, ==V E? 2.2
L= [o(w)E?] + o dt (2.2)
R e Y —
=Fy =F;c

where pem = €0 X B is the momentum density of the electromagnetic field and &g is
the vacuum electric permeability. The first term in Eq. (2.2) indicates that the electric-
field acts as a time-dependent potential for the polarizable particles, while the second
term indicates that additional forces stem from the variation of the momentum of the
electromagnetic field in time. Let us now assume that the intensity of the external
electromagnetic field is constant in time. Then the only variation in pe;, stems from
the dipole radiation emitted by the confined particles due to its fluctuating dipole
moment d(t). The emitted dipole radiation possesses a frequency equal to the oscillation
frequency of the induced dipole moment and the confining electromagnetic field which
due to the optical nature of the latter is of the order of several hundreds of THz [219].
Since massive particles such as atoms, molecules or nanodroplets are employed they
are not able to follow this rapidly fluctuating force and as a consequence ((Fy.)) = 0
for the relevant timescales of their motion [127]. Here (()) indicates the time-averaging
over the rapid frequency of the electromagnetic field. Due to the vanishing contribution
of ((Fy)) the Lorentz force can be regarded as conservative, namely ((Fy)) = —V Uy
where the dipole potential reads

Ua(r) = ((~50(w) E%) =

_Refa(w)]

2.3
2600 ( )

In the above expression the definition of the intensity I(r) = gocE3(r)/2 is employed,
where Ej is the amplitude of the electric field. Notice that Fyq produces work during
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each particular oscillation of the electromagnetic field resulting in an increase of the
energy of the particles. Assuming a thermal equilibrium state between the particles
and the tweezer this energy has to be expelled by the emission of dipole radiation [127].
The corresponding scattering rate refers to the fraction of the average power produced
by Fy over the energy of a single trap photon reading

Llr) = il (508 ) = i) 2.4

Atom-photon scattering is an undesirable effect since such a process imparts momen-
tum to the scattered atoms leading to their heating. The resulting heating power is
proportional to the recoil energy Er = (Aw)?/(2mc?), where m refers to the particle
mass, and the scattering rate I'sc. The recoil energy ER is the characteristic energy
scale of photon-particle collisions referring to a value of hxkHz and being of the same
order of magnitude as the achievable trap depths [127] stemming from Eq. (2.3). There-
fore, there is a tradeoff between the realizable strength of the dipole potential Uy and
the heating rate stemming from I'sc, which fundamentally depends on the polarization
properties of the particles, a(w), a fact that we will briefly sketch below for Alkali
atoms.

For a monochromatic source, such as an optical laser, the electric field is expressed
as E = Re[Ey(r)e!*7+“Y] and therefore the induced dipole moment reads

d(t) = Ep(R){Re[a(w)] cos(wt + k - R) + Im[a(w)]sin(wt + k- R)}, (2.5)

where R is the center of mass position of the atom. Equation (2.5) allows us to
gain insight into the interplay of the optical dipole potential amplitude Ugq and the
photon scattering rate I'sc. In particular, the optical potential is proportional to the
amplitude of the in-phase dipole moment oscillations with respect to the electric field.
Similarly the trap scattering rate is proportional to the corresponding out-of-phase
oscillations. Lorentz has shown (strikingly enough before the advent of quantum theory)
that the dipole moment oscillations of atoms can be approximated by a classical model
of driven and damped oscillators [219]. Each oscillator corresponds to a distinct dipole
allowed transition, with the frequency wq ; being given by the energy difference of the
involved states, |Wo) and |¥;), possessing a value in the range of several hundreds
of THz. The damping rate is given by the decay rate v;/2 of the excited state (or
equivalently the natural linewidth of the transition) referring to several MHz. Finally,
the driving amplitude for each transition is scaled via the oscillator amplitude, f; =
Qmwo,j/(eh)|<\lfj|d|\110>|2, where <\I/j|ci|\I/0> is the related dipole matrix element. Notice
that | f;| ~ 0.1 —1. This mapping to a classical oscillator model yields a dipole moment
[219]

e?/m

;—w?) +Hivw

d(t) = Re Z £ 2 E(t)], (2.6)

=a(w)
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while typically different dipole allowed transitions are separated by several THz, allow-
ing each term in a(w) to be treated individually. Eq. (2.6) allows for the identification
of three regimes of different behaviour. Focusing on a single transition, [¥) < |¥;),
the first refers to the large negative detuning regime i.e. w—wy j < 7; where the oscilla-
tions of the dipole moment are in-phase with the electric field and a(w) = Re[a(w)] > 0.
The second regime corresponds to small detunings w — wp ; ~ 7;, where the dipole mo-
ment oscillations are out-of-phase with respect to the electric-field a(w) ~ Im[a(w)].
Finally, for large positive detunings in-phase oscillations are exhibited, however, the
direction of the exhibited polarization is inverted with respect to the electric field,
a(w) = Re[a(w)] < 0. The above imply that the regimes of large negative or positive
detuning are the optimal ones for trapping atomic ensembles as within them the scat-
tering rate I'sc o« Im[a(w)] is minimized and therefore the system remains coherent for
longer times [127]. Furthermore, this model reveals that red detuned laser beams cre-
ate attractive potentials for the atoms while blue-detuned potentials result in repulsive
potentials, see also Eq. (2.3). Notice that the above mentioned model is only valid in
the regime of linear response, which implies that the intensity of the electromagnetic
field is well below a frequency dependent threshold where saturation effects occur. In
practice, this limitation is not constraining since as mentioned above large detunings
are desirable, where such non-linear effects are heavily suppressed even for relatively
strong lasers [127].

As it is evident from above, the confining potential of optical tweezers is deter-
mined by the electronic properties of atomic systems which are hardly affected by the
specifics of the atomic hyperfine structure, especially when the far-detuned regime is
considered [219]. In particular, it can be shown that for linearly polarized light the
trapping potential experienced by all hyperfine states is equivalent [240,245]. This
allows for freely manipulating the spin of the atoms by addressing magnetic dipole
transitions using radiofrequency and static magnetic fields without affecting their op-
tically controlled confinement. The latter allows for the realization of Fano-Feshbach
resonances [15,21,77,90,251] and the study of the magnetic properties of spinor and
pseudospinor systems [14, 87, 88].

Recently, there is also an interest in circularly polarized optical tweezers which
allow for the realization of hyperfine state dependent potentials [270,271]. Recall that
for alkali atoms the two energetically lowest dipole allowed transitions constitute the
n 25’1/2 < (n+1) 2P1/2 and n 25’1/2 < (n+1) 2P3/2 ones that are referred to as Dy
and Dy lines. By assuming an unresolved hyperfine structure for the excited state (a
reasonable approximation for |w — wp| > I') and linear Zeeman splitting among the
different |F, mp) states of n 25, /2 a circularly polarized tweezer results in the hyperfine
state dependent optical potential [127]

T [1— 2
_ Tc¢ ( SgFrmp n +89FmF> I(r), (2.7)

Ua(r) = =
(r) 205 \ w—wop1 W —woDp2

where s = +1, —1 indicates the chirality of the circularly polarized light, wo p1, wo,p2,
wo = (wo,p1 + wo,p2)/2 refer to the resonance frequency of the Dy, D2 lines and their
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average respectively, I' = (I'p; +1 p2)/2 is the average decay rate of the excited P states
and gp corresponds to the Landé factor. The behaviour of Uy(r) is quite intriguing
when the optical tweezer frequency lies in between the D; and Ds lines, wg p1 < w <
wo,p2- In this case the potential created by the D; line is repulsive (blue-detuned)
while the corresponding one from the Dy line is attractive (red-detuned). Then, the
frequency of the confining laser can be tuned such that the contributions from the
D; and Dj lines cancel for a particular hyperfine |F, mp) state which is accordingly
unaffected by the optical tweezer [240,245]. This frequency is referred to as the tuneout
frequency [242,244] and has found applications in recent optical lattice experiments to
generate hyperfine-state dependent potentials [241,243].

2.1.3 Dimensional Reduction of 3D Hamiltonians
A. 1D spin-1/2 fermions

Suppose an ensemble of confined ultracold fermions in two different hyperfine states,
denoted as 1 and |, thus constituting a pseudospin-1/2 system. Here, we will assume
that the confinement is time-independent and that this ensemble is influenced by a
possibly time-dependent field that couples the hyperfine states.

The ab initio Hamiltonian describing such a system consists of three parts H =
Hy + Hgp + Hi. The spin-independent contribution Hy up to an overall shift in energy

- / d*r > Pl(r ( 5V Vo(r)o, )%(r% (2.8)

ae{t,}}

where m is the mass of the atomic species and zﬂa (r) corresponds to the spin-a € {1, ]}
fermionic field operator, satisfying the appropriate anticommutation relations [107,146].
Namely, {ta(r), ¥}, (1)} = Gaad(r — 7'), {Pa(r), Yo (r)} = 0 with 0%, = (6ar —
da))0aq being the spin-z Pauli matrix. Vy(r) refers to the spin independent part of
the confining potential. Such spin-independent confining potentials can be generated
with the use of an optical dipole trap as discussed in Sec. 2.1.2. Usually, in this case
the atomic ensemble occupies only the energetically lowest levels of the potential Vj(r)
and the approximation of harmonic confinement can be employed,

. . 1 0V,
V) A V) + 5 D g | (e rao)(r = i) (2.9)

Here 7y = (71.0,72:0,73;0) corresponds to the position of the global minimum of the ab
initio potential, Vy(r). For most experiments involving optical tweezers the approx-
imate potential of Eq. (2.9) characterizes the system sufficiently well. However, it
is noteworthy that many ultracold atom experiments utilize a non-parabolic potential
(see e.g. [25-32]). For instance, in the case of optical lattice experiments a periodic
potential is realized by employing retro-reflected optical dipole traps [37], where the
precise form of the confining potential is important for the accurate description of the
system.
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The coupling of the hyperfine states by an electric or a magnetic field is also possible
and it introduces a spin-dependent part in the Hamiltonian, namely

Hgsp = /d3r Z ol () [V}C(r;t)agﬁ + Vy(r;t)agﬁ + (VZ(r;t) + B;“) agﬁ} Pa(r),
a,Be{t L}

(2.10)
where me, with ¢ € {z,y,2} correspond to the Pauli matrices. V(r;t) refer to the
components of the spin-dependent potential, which can also possess complex values.
Beg corresponds to the energy difference (Zeeman splitting) of the two hyperfine levels,
generated by the application of a magnetic field along the z-axis [219]. Spin-dependent
potentials can be created by the usage of magnetic fields if the magnetic moments
of the hyperfine states 1 and | are sufficiently different [125] or by employing optical
fields that yields a state dependent AC Stark shift [270,271] (see also 2.1.2). Note,
also, here that only two hyperfine levels are involved and consequently effects such as
the quadratic Zeeman shift [219] only result to a non-linear dependence of the Zeeman
splitting, Beg, on the amplitude of the applied magnetic field.

Typically, the atomic interactions between different hyperfine states are short-
ranged [77] and accordingly due to the Pauli exclusion principle we can neglect the inter-
actions of the fermions in the same hyperfine state, since it holds that lim,_, zﬁx (r)qﬂlé (r') =
limy_yp o (7)o (') = 0 for @ € {1, ]}. In this case the interaction term takes the form

A~

= [ @ a0, ), 2.1)

where U(r,7’) is the atomic scattering potential for the two involved hyperfine states.
Due to the low-collisional energy exhibited in ultracold atoms we can safely neglect
the p-wave or higher partial wave interactions [22,23]. Within this limit, the s-wave
scattering of the atoms can be characterized by a single parameter as being the s-wave
scattering length. By taking also into account that the range of atomic interactions
is much smaller than the length scale of the confinement we can replace U(r,r’) by
a short-ranged pseudo-potential. Conventionally the zero-range regularized Dirac 9
pseudo-potential is employed [77,272]

B 4rha

Up(r,r") = - o(r — T,)8|’I"8—’I"/| (jr—7' o), (2.12)

where the symbol e indicates that the differentiation occurs after the multiplication
of the wavefunction by the factor in the parentheses. The scattering length as can
be tuned by employing a Fano-Feshbach resonance [15,21,77,90,251] between the two
hyperfine levels. A well-known example of such a resonance is exhibited between the
hyperfine states |F = %,mp = —%> and |F = %,mF = %) of %Li atoms for a magnetic
field of 800G [90]. Note also that herein we employ an energy independent as an
assumption that does not hold close to a narrow Fano-Feshbach resonance even on the
ultracold regime due to finite effective-range corrections [77]. For our scope the choice
of an energy independent as is reasonable as we either restrict ourselves to the case of

17



THEORETICAL FRAMEWORK

broad Fano-Feshbach resonances [K1, K2] or because the finite effective-range effects
are negligible for the densities employed within our few-body setups [K3].

Before proceeding, it is helpful to elaborate on the spin-symmetries ‘emanating in the
system. First note that HO and HI commute with the spin operators SZ, Si = S izS
and consequently also commute with the total spin operator 52 = S’+S + S, (S — 1)

where
/ B S Ph)ehshsr), (2.13)
a,f={14}

with ¢ € {z,y,2}. The above imply that both Hy and Hj are invariant under spin-
rotations and hence the spin and spatial directions are not coupled. Indeed, as long as
the terms of Hgp are properly transformed the spin and spatial directions can be rotated
independently from one another. Therefore, in the following while the same symbols
{z,y, z} will be used to denote both the spatial and the spin directions, they have to
be understood as two independent frames or reference. Note here that the above are a
consequence of the SU(2) invariance of the Hamiltonian terms Eq. (2.8) and (2.11) and
consequently hold exclusively for spin-1/2 fermions and not to the bosonic pseudospinor
case that is discussed later on.

The focus of this thesis is the study of the dynamics of 1D ensembles. In order
to effectively reduce the dimensionality of the experimentally realizable 3D systems
a strong confinement along the two transversal spatial directions has to be employed
[22,23,273]. Such a confinement usually involves a tight parabolic trap along the two
perpendicular directions,

Vo(r) = Vip(x) + %mwi(yz + 2?), (2.14)

where the z-axis has been selected as the direction of weak confinement without any
loss of generality (see also the comments above). The frequency of the transverse
confinement w; has to be selected such that the excited states of the harmonic trap
along the y and z directions are not occupied. If that is the case, the 3D field operators
can be expressed in terms of 1D ones as follows

me_ me_ ot

dh(r) = —en W (@), (2.15)

Note here that the above condition is more difficult to be satisfied in the case of fermions
rather than bosons due to the Pauli exclusion principle. Indeed, due to the fact that no
two fermions with the same spin can occupy the same motional state of the potential
Vo(r), Eq. (2.15) only holds for w; > Ex/h. Here, En refers to the N-th energetically
lowest single-particle eigenenergy (SPEE) of Vip(x) with N being the total number of
particles.

By employing Eq. (2.15) the terms Hy and Hgp of the 3D Hamiltonian can be
reduced to 1D effective Hamiltonians by evaluating the corresponding integrals along
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the transverse directions. The 1D effective Hamiltonian for ﬁo reads

. - h? d? 5
o= [ar 30 0 (o Vin) + s ) el (216)
ac{t} e

and the spin-dependent Hamiltonian Hgp reads

fsp = [do 32 dh@) (Valost)rgs + Voot + (Valost) + 550) o) (e,
ae{t}

(2.17)
where V;(x;t) = /=t [dydz e” o (4 Wi(r;t), for i € {x,y,z}. Tt is important
to note here that the dlmensmnal reduction relies on the fact that the spin dependent
potentials are slowly-varying along the transverse directions, %Z , 682\4 < mw? 1, in
order to ensure the absence of spin-excitations along the strongly conﬁned directions.

The dimensional reduction of I:I 1 is more complicated. In particular if the trans-

verse confinement length a; = T

as the phenomenon of the Confinement induced resonance is exhibited [77,248-250,
252-256]. This implies that the actual coupling of the 1D interaction shifts away from

the mean-field value ng = %ZZ‘;S obtained by the evaluation of the y and z integrals
1

appearing in Eq. (2.11). Detailed theoretical [248,252-254] and experimental [249,250]
investigations reveal that the coupling strength of the 1D interaction g;p possesses a
simple analytic form gip = g} (1 — %)*1 [248] and the effective 1D interaction
Hamiltonian reduces to the simple form -

= gin [ de 1)) )i o). (218)

B. 1D spin-1/2 bosons

Similarly to the fermionic case a pseudospin-1/2 bosonic system consists of two oc-
cupied hyperfine states of a bosonic element, e.g. 8"Rb. Notice that in contrast to
spin-1/2 systems all of these systems are artificial due to the spin-statistics theorem,
which dictates that bosons are characterized by an integer spin [146]. The dimensional
reduction of the 3D Hamiltonian for bosons is completely analogous to the fermionic
case. In particular, the terms Hy and Hgp possess exactly the form of Eq. (2.16)
and Eq. (2.17) respectively, when the fermionic field operators are substituted with
bosonic ones. Recall that the bosonic field operators obey the commutation relations
W (), B8, ()] = Saad(r — '), [$a(r), Yo ()] = 0 [146]. However, the interaction
term in the bosonic case is slightly different since intracomponent interactions between
bosons with the same spin are involved. Consequently the 1D interaction term reads

A~

= Y B [ @i @da@ele) + o [ e @@ @),
ac{t} (2.19)
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2
22‘23‘”" (1- K(l\%)alj‘m’ )~ and aqq referring to the 3D scattering length of

the corresponding channel. Notice here that in contrast to the interaction Hamiltonian
for fermions, Eq. (2.18), the interaction Hamiltonian for bosons, Eq. (2.19), does not
commute with the spin operator S§2 = S'g + 5‘5 + 5'2, except in the special case of
g1t = 91, = g1, [87,88]. Due to this property, the system of 1D spin-1/2 bosons does
not possess an SU(2) rotation symmetry in spin space and it is therefore referred to as
a pseudospinor gas.

with goo =

C. Beyond spin-1/2 systems: spin-exchanging collision processes

An ultracold atomic gas can be regarded as a pseudospin-1/2 system if it consists of two
distinct hyperfine states of the same atomic species. Spinor gases possess additionally
an SU(2) invariance regarding rotations in the spin space spanned by the occupied
hyperfine states [87,88]. Therefore, a necessary condition for realizing a (pseudo)spin-
1/2 system is that the population of all possible atomic states except for two can be
neglected. Provided a spin-independent confinement and the absence of radiofrequency
or optical pumping between the different hyperfine states an important consideration is
whether the atomic interactions allow for such a condition to be met. As argued in Sec.
2.1A, transitions between distinct hyperfine states can be induced via inelastic collisions
[19, 118-121, 225, 226], which accordingly have to be negligible for a spinor system,
narrowing the choice of atomic species where such setups are realizable. However,
elastic collisions should be also considered in order to infer the stability of setups
with (pseudo)spin. Indeed, elastic spin-exchanging collisions within hyperfine state
manifolds with F' > 1/2 can lead to the redistribution of the atoms among the different
mp states [87,88]. Accordingly, a poor choice of the correspondence between pseudospin
and hyperfine states can lead to a small lifetime of the pseudospin-1/2 system. Below,
we briefly examine the interaction properties of systems with F' > 1/2 and discuss their
relevance for realizing (pseudo)spin-1/2 systems.

The short-range s-wave elastic collisions emanating in ultracold atoms can be well-
described within the delta pseudopotential approximation of Eq. (2.12) provided that
inelastic collisions are negligible. We can utilize the conservation of angular momentum
among the colliding particles to expand the resulting interaction Hamiltonian in terms
of the different participating two-body collision channels [87,88]. These two-body col-
lision channels are characterized by the conserved angular momentum Ft = 13‘1 + ﬁ’z,
where Fl and FQ refer to the sum of electronic and nuclear angular momenta of the
colliding atoms. Expressed in terms of the above identified channels the interaction
term reads

S 1 & arhlap < . )
Hi=3) —0 2 / d*r L, () Cr, (1), (2.20)
F=0 mp=—F;
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where the channel operators have the form

F F
éthFt (’I") = Z Z <Ft7 mFt|Fa mpg; F, m/F>¢mF (r),&m% (’I”), (221)

mF:—F m/F:—F

with (JM |j1, m1; jams) denoting the Clebsch-Gordan coefficients [219,247] and ¢y, . (r)
referring to the field operators of the |F,mp) hyperfine state which obey the proper
according to the spin-statistics theorem [146] commutation or anticommutation prop-
erties. Here the scattering lengths ap; are allowed to be channel dependent accounting
for such variations of the actual atomic scattering potential. The particle exchange
statistics plays a crucial role since the s-wave character of the interactions implies that
the channels that are characterized by antisymmetric spatial two-body wavefunctions
do not contribute to scattering. Accordingly, for fermionic particles the scattering
lengths for all even-valued channels vanish, i.e. ap,—2, = 0 for n = 0,1,..., while for
bosons all odd-valued channels do not contribute to scattering, namely ag,=2,4+1 = 0 for
n=0,1,.... Based on the above one can derive Eq. (2.18) from Eq. (2.20) by employ-
ing F' = 1/2, indicating that fermionic systems involving the |F' = 1/2,mp = +1/2)
hyperfine states are of spinor character. In particular, it can be shown [87,88] that
[f] L F 2] = 0 and accordingly all systems involving interactions of the form appearing
in Eq. (2.20) possess SU(2) spin-rotational invariance independently of the specific
value of F'. In this sense, they constitute realizations of spin-F' spinor systems. As
mentioned above an important consequence of the SU(2) symmetry of a spin-F' > 1/2
ensemble is the emergence of spin-exchanging interactions. Although the presence of
such properties can be shown for arbitrary F', here we consider as a specific example a
system of F' = 1 bosons, a scenario which is relevant for 8 Rb experiments. The inter-
action part of Eq. (2.20) when expressed in terms of the corresponding field operators
of the |[FF = 1,mp = 0,%1) states reads

- 2 h?

I = ag + 2a0 ~ 2(@0 — GQ) ~

U,
3 0,0 +

/dgr(gﬁg(r)zﬁg(r)l/gl(r)l/;—l(7") + h.e.)],

[az(Um + Uf1,f1 + 01,0 + 071,0) +

2(az — ag)
3
(2.22)

where UmF,m/F = fd?’r(lﬁjnF (r)zﬁjn% (r)@m% (7)1, () is the interaction operator re-
ferring to the involved density-density interactions between the components mg and
m/p while ag, ag correspond to the scattering lengths of the F; = 0, F; = 2 scattering
channels respectively. Eq. (2.22) makes obvious that if as # ag due to the interfer-
ence of the F;} = 2 and F; = 0 scattering channels, it is possible that a scattering

event involving a mp = 1 and a mp = —1 atom allows both of them to transit to the
mp = 0 state. Similarly, the inverse process with a pair of mp = 0 atoms transiting
to the mp = 1 and mp = —1 states is also possible. Therefore, the SU(2) symmetric

interactions for as # ag realize in this case elastic spin-exchanging collisions [87, 88].
Notice that this kind of a spin-exchanging collision preserves the expectation value (F})
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of the ensemble but redistributes the particles between the different spin-states. An-
other important feature of Eq. (2.22) is that different weights correspond to different
density-density interactions, e.g. the mp = 0 atoms interact among themselves with
strength Mw, while the mpr = £1 possess interactions proportional to %
Also, the intercomponent interactions possess different weights based on which mpg
states are coupled. The above imply that the interaction energy stemming from Eq.
(2.22) depends on the distribution of atoms among the different spin-states, resulting
in density induced shifts of the energies of each particular spin state. Those density
shifts can be utilized so that spin-exchange processes can be enhanced or suppressed
via the coincidence or the discrepancy of energies corresponding to the different mpg
components.

Indeed, spin-1 Bose gases possess a rich phase diagram in terms of the occupied mpg
states which can be probed by manipulating the energies of the different hyperfine states
via Zeeman shifts [87,88]. For higher spin bosonic or fermionic gases the phase diagram
becomes even more interesting since more spin-states and more intricate couplings
among them via spin-exchanging collisions are involved [87,88]. However, in the present
effort we are mostly interested in spin-1/2 and pseudospin-1/2 systems immersed in
an environment that consists either of the same or different atomic species. As a
consequence, we intend to suppress as much as possible the effect of spin-exchanging
collisions. Indeed, such a suppression can be achieved by exploiting the Zeeman shift
of hyperfine states, for instance the experiment of Ref. [246] reports that the spin-
exchanging collisions of a 8”Rb spin-1 condensate are essentially negligible for magnetic
fields as low as 45.5 G.

The underlying physical mechanism regarding the suppression of spin exchanging
collisions can be understood by the following energetic argument. The amplitude of the
Zeeman energy shifts in Alkalis is of the order of hx MHz/G, for instance in 8"Rb this
amplitude is ~ 0.7 hx MHz/G [274]. In addition, quadratic Zeeman shifts, that lead
to a non-equidistant distribution of mg levels are important even for relatively weak
magnetic fields. Using as an example 8"Rb Zeeman shifts possessing an amplitude of
several hx MHz can be observed already for magnetic fields of ~ 10 G [274]. Typi-
cal ultracold atom experiments involve interaction energies of hundreds of hx Hz to a
few hx kHz per particle [22-24] generating interaction energy shifts and spin-exchange
processes characterized by an energy scale of the same order of magnitude. Therefore,
a matching between the energies of different mj states that allows for spin-exchange
processes to occur can be achieved only for magnetic fields not exceeding a few Gauss.
A similar argumentation can be employed for hyperfine manifolds possessing a different
total-spin F' and accordingly the coupling between different |F, mp) states can be ne-
glected for large magnetic fields. As a final comment note also that the typical energy
difference between hyperfine levels possessing different F' is of the order of several hx
GHz. In particular for 8 Rb the hyperfine splitting between the two lowest hyperfine
manifolds FF = 1 and F = 2 is Ep—y — Ep—1 = h x 6.83 GHz [274] and as such no
particle exchange occurs among those different manifolds within the ultracold regime.
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2.2 Magnetic properties of Spinor Fermi Gases

One of the main topics analyzed within our work is the properties of spin-1/2 exter-
nally confined ultracold fermions. Here our major motivation is to develop an in-depth
understanding of the underlying magnetic mechanisms of those setups that might be
transferable to condensed matter systems. The link between ultracold and condensed
matter setups is provided by the Stoner model [104] which assumes zero-range inter-
actions and small electron densities, where effects stemming from the lattice geometry
can be ignored, consisting two adequate and feasible assumptions within the ultracold
realm. As a consequence, it is of value to review the basic properties of the Stoner
ferromagnetism and subsequenty briefly discuss the successes and drawbacks of this
model [107,114] in describing itinerant ferromagnetism as understood within the con-
densed matter community.

2.2.1 Stoner model of Ferromagnetism

The Stoner model [104] constitutes the most widely accepted framework to qualitatively
examine the phenomenon of ferromagnetism in systems consisting of itinerant electrons
[107]. The Stoner model is established within the Hartree-Fock approximation [275,276]
and therefore is a mean-field theory. Within the Stoner model the electrons are assumed
to interact with short-range interactions that can be well-treated within the framework
of the zero-range pseudopotential defined in Eq. (2.12). Let us further assume, for
simplicity, a vanishing overall confinement of the electrons, V() = 0. In that case the
Hamiltonian of the d-dimensional spin-1/2 Fermi gas reads [107]

~ A~ Bk P ~ ~ g ~ ~ ~ ~
Hy—uN =" [(gk — 1)0ap — aaﬁ} ¢,Tw¢kﬁ+ﬁ > U g o Ury (2.23)

2
kaS kk'q
252 . . . . . . .
where ¢ = % is the non interacting dispersion relation, p denotes the chemi-

cal potential, By is a spatially dependent magnetic field and L¢ is the spatial ex-
tent (e.g. the volume for d = 3) of the system. Notice that in Eq. (2.23) the
chemical potential contribution ~ —uN has been subtracted from the Hamiltonian,
Hj, since the equilibrium density matrix within the grand canonical ensemble reads
peq = Z  exp[—(Hy, — uN)/(kpT)], where kp and T are the Boltzman constant and
temperature respectively, while Z is the partition function ensuring the normalization
of peq [146]. Tn addition, notice that H}, has been expressed in momentum space where
the non-interacting part is diagonal. This choice implies that the zero-range interaction
potential in the configuration space ~ d(r; — r;) has been transformed to a completely
delocalized one in momentum space where all interaction terms are scaled by the same
amplitude. To proceed the Hartree-Fock approximation is performed neglecting all
two-body correlations, by demanding that the Wick theorem [146] holds, i.e.

<\P‘¢L’1a’l 1&]];’20/2 ¢k2a2¢k10¢1 |\Il> :<\Ij|772£’1a/1 1&"71061 |\Il> <\Ij|772;2’2a’21;k2042 |\Il>

N me (2.24)
- <\Ij’¢k/1a’1¢k2a2’\Ij><\I}’wk/2a’2wk1a1 ’\Ij>
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Note that Eq. (2.24) is only applicable to the case of g = 0, as two-body correlations
can possibly emanate in the interacting case. In addition, since we are interested in
the ground state of the system the self-consistent assumption of a homogeneous density
phase i.e. (\IJWLOt@Zk/ﬁ]\IO = 5kk/<\If|zﬁLa1ﬁk@]\ll> is employed [146]. The above mentioned
assumptions can be incorporated self-consistently by the appropriate truncation of the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) equations [277-280], leading to the
following approximation for the interaction term

A~ HYF =2 [Z(‘I’W;ZT%H‘I’W;ﬂmJFZ(‘I’Hz;iﬂ;ml\l’ﬁ%ﬂ@m
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In order to reveal the magnetic order of the Hamiltonian it is instructive to define the
so-called Stoner gap parameters

o= 2337 (Wbl 10 + (W] 9))
k

Ay = =2 3 (Wl @) = (WLl 9)) (2.26)
k
As = 237 (bl ) — (] e 9 )

k

By invoking Eq. (2.26) we can express the expectation values in Eq. (2.25) with respect
to A = Age,+Ayey +Ae,, where e,, €y, e, refer to the unit vectors in the spin-space.
Following this prescription we obtain the Hamiltonian of the Stoner model

2 % Ld 2 2
Hy = pul =7 ||A = (gn)?]

2.27)
gn A + Be . (
+ Z |:(€k; + ? — ,u) 5aﬂ — #z X wkawk[%
kag
where the total density reads
1 I U
=T D AT dher + b Py | 9). (2.28)
k

The Hamiltonian of Eq. (2.27) represents an ensemble of non-interacting spins with
each particular one corresponding to a different quasimomentum, k. These non-interacting
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spins are subjected to an effective magnetic field. The latter stems from the actual ap-
plied magnetic field By and an effective contribution based on the polarization of the
non-interacting spins A. Hgyr can be easily diagonalized for each-k, yielding the spin-
dependent dispersion relations as a function of the Stoner parameter

|A+Bk€z|
2

EX(A) = <gk + 0 ) +

ST (2.29)

Note that also the eigenstates of Hgyy can be expressed in terms of fermionic field
operators f,li(A) = c,fT(A)zﬂ};T—l—ca(A)%L implying that within the Stoner model the
itinerant spin-1/2 fermions can be mapped to an ensemble of non-interacting fermionic
quasi-particles under the effect of a self-consistent field [107]. Accordingly, their ground
state at temperature T is characterized by the Fermi-Dirac distribution

(W] L (A) frex (A W) = [1 + exp (Ei@t(ki)T_Mﬂ - .

Therefore the knowledge of the solution for every A and p allows us to express the
solution of the Stoner model in terms of the physical parameters g and n by solv-
ing Eq. (2.26) and (2.28) for the Stoner parameter and chemical potential. For a
k-dependent external magnetic field such a solution is non-trivial and it requires a
numerical treatment. However, in the case of a homogeneous external magnetic field
By, = By the ground state properties of the Stoner model can be analyzed in an intu-
itive manner. Indeed, in this case the expansion coefficients cia(A), with o € {1,{}
are k-independent and accordingly the electronic spins have to be polarized in the di-
rection of A/|A| for |A| # 0. Furthermore, Eq. (2.27) reveals that the ground state of
the Stoner model needs to satisfy A x e, = 0, as in the opposite case the polarization
of the particles along A/|A| would precess around the z axis and therefore this state
could not be stationary. Note also that

(2.30)

= — “Bie.  — —
N 4gn 9 o0€z gn 2n 2mh?

2pu—|A+Bgez| 2u+|A+Bgez|
1 — 2kgT 3 _ 2kgT
X ngﬂ e B + ngﬂ e B ,

where Li,(x) refers to the polylogarithm function, rendering the polarization of the
Fermi gas along the z axis (i.e. parallel to the magnetic field) preferable to reduce
the energy stemming from the interaction between the polarization and the external
magnetic field < By. This constitutes a significant simplification as the ground state
of the Stoner model for By = By > 0 is then characterized by A = A.e,, with
A, >0, implying that Eq. (2.26) for A, and A, are trivially satisfied. The Stoner gap
parameter A, and the chemical potential u can be expressed in terms of the interaction
parameter g and the density n as a function of temperature T by solving the coupled
set of transcendental equations

d
2u+(Az+Bg) n 27Th2 2 AZ

—e  2FBT =—= 14+ =2, 2.32

< ‘ ’ ) 2 (mk?BT> ( ”9) (2.52)

(U|Hgp| W) (gn)? — A2 1 A dkgT <kaT)d/2
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Notice that A./(gn) € [0,1] and expresses the polarization of the spin of the system
along the z direction. Accordingly, A,/(gn) can be employed as the order parameter
of ferromagnetism.

2D 3D

0= 0g

F F

2000

0o 1 2 30 1 2 30 1 2 3
9/9.(T = 0) 9/9.(T = 0) 9/9.(T = 0)

Figure 2.1: Phase diagram of the Stoner model of Eq. (2.27) in terms of the temperature
T (in units of the Fermi one, TF) and interaction strength g for (a), (b) one, (c), (d)
two and (e), (f) three spatial dimensions. In all cases the magnetic field is homogeneous
taking the values (a), (c), (e) By = 0 and (b), (d), (f) By = 0.02EF, where Ef is the
Fermi energy. The regimes corresponding to the paramagnetic and the ferromagnetic
phase are denoted by P and F' respectively. The solid blue line provides the critical
interaction strength, g.(T"), as captured by Eq. (2.33) for By = 0.

The finite temperature phase diagram resulting from the solution of Eq. (2.32)
is provided in Fig. 2.1. It becomes evident that independently of the dimensionality
d=1,2,3 and for By = 0, there are two phases appearing in the corresponding phase
diagram. Namely, the paramagnetic phase (see regions labeled as P) characterized by
A, = 0, and the ferromagnetic one (labeled as F') having A, > 0. The paramagnetic
phase appears when the interaction is smaller than a critical value g < g.(T), while
the system transits to the ferromagnetic phase in the opposite case. This second-
order transition can be explained intuitively in view of the Hamiltonian of Eq. (2.23)
where only the kinetic energy and the short-range interaction terms contribute. Indeed,
for small interactions the pairing of two fermions with opposite spin into the same
single-particle state, such that OI'M/?LT(/A%H\IJ) = <\Il]1[1;rc ﬁﬂk 1|¥) is energetically preferable
since it decreases the volume of occupied quasimomenta in k space and hence the
kinetic energy. However, in the large interaction limit such a pairing process costs a
large energy since the interaction energy E scales with the spin component overlap
E; ~ g [d% ny(z)n (z) = gn®[1 — A,/(gn)], see also Eq. (2.31). Accordingly, the
system prefers the spin of its constituting particles to polarize along an (arbitrary for
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By = 0) direction to reduce the interaction energy of the system [104]. The critical
interaction strength g.(7'), can be evaluated by taking the A, — 0% limit of Eq. (2.32)

yielding
-1
1dn
9¢(T) = ( ) : (2.33)
A,=0

2du

which in the particular case of T' = 0 reads g.(7' = 0)D(EFr) = 1, with D(EF) is the
single-particle density of states at the Fermi energy, corresponding to the well-known
Stoner criterion [107]. As it can be seen in Fig. 2.1, the critical temperature prediction
of Eq. (2.33) matches well with the transition points between the ferromagnetic and
paramagnetic phases. The positive shift of the g.(T") with the temperature is qualita-
tively expected as a higher temperature typically leads to larger kinetic energies for the
system. The order parameter of the Stoner model, A,/(gn), is only weakly perturbed
for weak magnetic fields, here By = 0.02 Er. Despite the fact that A, > 0 even within
the paramagnetic region [see Eq. (2.31)], there is still a large and sharp increase of A,
in the vicinity of g.(7'), indicating the presence of a second-order phase transition [281]
from the paramagnetic to the ferromagnetic phase.

2.2.2 Stoner model and beyond: Description of ferromagnetism in
condensed matter settings

For condensed matter systems the zero-ranged interactions introduced in the Hamilto-
nian of Eq. (2.23) should be understood as an approximation to the actual screened
Coulomb interactions [282] experienced by two electrons in the conduction band of
the lattice created by the ionic cores of the material. Accordingly, the Hamiltonian
of Eq. (2.23) can be thought as the continuum limit of the single-band Hubbard
model [283-286]

i =~ S il + U Y alil i, (23
(4,5) {4} i

with ¢t the tunnelling rate, U the on-site interaction and (7, j) indicating summation
over all neighbouring sites. This limit is valid for nng < 1, where n. is the density
of the electrons in the band to be described by the Hubbard model and V; refers to
the volume of the lattice unit cell. Nevertheless, the validity of the Hamiltonian of Eq.
(2.23) can be extended to the ndVy < 1 case if e = h%k?/2m is substituted with the
appropriate dispersion relation for the lattice under consideration. The typical Fermi
energy for metals is of the order of several eV [107]. In addition, the Zeeman splitting for
electrons reads By = gsup|B|, where gs ~ 2 is the gyromagnetic ratio of the electron,
pp ~ 5.788 x 107° eV /T refers to the Bohr magneton and | B| is the magnitude of the
applied magnetic field. Therefore, a Zeeman splitting e.g. of By = 0.02 Er [see Fig. 2.1]
corresponds to an extremely large magnetic field of | B| ~ 100 T. As a consequence, the
effect of the external magnetic field on the magnetization of the material is negligible
and thus in a condensed matter setting we can clearly focus on the By = 0 limit.
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The Fermi temperature for a metal is rather high, namely, Tr = Ep/kp ~ 10* K.
By comparing this value with the phase diagram [see Fig. 2.1(e)] a material at room
temperature is close to the zero temperature limit of the Stoner model, as T/Tr ~ 1072,
This implies that the Stoner criterion for ferromagnetism gD(E)/L? > 1 can be ap-
plied. Indeed, the ferromagnetic metals Fe, Co, Ni possess a large density of states
close to the Fermi energy [107,287] and therefore their ferromagnetic behaviour can be
qualitatively described by the Stoner model [104]. In addition, these materials show a
pronounced difference in the spin-resolved density of states for the spin-1 and spin-|
components in the vicinity of the Fermi energy which supports the development of a
Stoner gap, A, # 0. However, even in this case there are strong quantitative devia-
tions with the experimental observations [107]. The most well known regards the Curie
temperature T, which is the temperature that ferromagnetic materials lose their per-
manent magnetization. It turns out that the Curie temperature is highly overestimated
by the Stoner model, which predicts T ~ Tr ~ 10* K, while the measured value ranges
from T, =~ 627 K for Ni to T¢ = 1390 K for Co.

There are also conceptual problems regarding Stoner ferromagnetism. In partic-
ular, the Stoner model of Eq. (2.27) implies that the ferromagnetic system is in a
state of broken symmetry. While, the three-dimensional Hubbard model without ad-
ditional magnetic field possesses an O(3) symmetry, corresponding to the rotations of
spin-space, the Stoner model for |A| # 0 possesses only an O(2) symmetry of rotations
around the spin-axis defined by A/|A|. In order to achieve such a reduction of sym-
metry, spontaneous symmetry breaking should take place [281]. However, according to
the Mermin-Wagner theorem [111], which has been extended to the case of the Hub-
bard model [288-290], the O(3) continuous symmetry cannot be broken if the Fermi
gas possesses d < 2 dimensions. In contrast to this theorem, as Fig. 2.1(a) and 2.1(d)
reveals the Stoner model predicts that there is a |A| # 0 phase for d = 1,2. This
discrepancy can be attributed to the inability of the employed mean-field theory to de-
scribe spin-wave excitations [108,109]. Interestingly, it was already noted by Slater in
1937 [108] that for investigating the temperature variation of magnetization of the sys-
tem an appropriate spin-wave theory should be employed. The spin-waves correspond
to spatial-dependent fluctuations in the orientation of A/|A| and their quanta corre-
spond to quasi-particles called magnons which are the Goldstone bosons of the broken
O(3) symmetry. For d < 2 thermal fluctuations are supposed to excite long-wavelength
spin-waves, destroying the long-range ferromagnetic order for any finite temperature in
the thermodynamic limit.

Even within the zero-temperature limit, further inconsistencies arise when compar-
ing the viewpoint of Stoner ferromagnetism with the theorems regarding the energetic
ordering of the different manifolds of total spin S. In particular, it is known that the
ground state of Eq. (2.23) for d = 1 has a total spin of S = 0 for even and S = 1/2
for odd total particle numbers [110]. In addition, the eigenenergies have to satisfy
E(S) < E(5), for S < S’, where E(S) is the energetically lowest eigenenergy with
total spin S. In contrast, the Stoner model predicts a ferromagnetic transition at zero
temperature when gD(E)/L > 1 is satisfied. Similarly, it has been shown by Lieb
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in 1989 [112] that for any bipartite lattice (even in the case of broken translational
symmetry) the ground state at half filling, i.e. N. = N, where N, is the number of
particles and NN, the number of sites, possesses spin equal to S = %N s, where
N4, Np refers to the number of A and B sites in a unit cell. This implies that all
bipartite lattices with equal number of A and B sites cannot support ferromagnetism
at half filling. Cases of such lattices include for instance the square, rectangular and
honeycomb lattice for d = 2, the cubic and triclinic lattice for d = 3. The Stoner
criterion, gD(EF) > 1, is unable to incorporate such geometric effects as it only in-
volves the density of states at the Fermi energy and as a consequence it can violate
the Lieb theorem [112]. A particular case of agreement refers to the honeycomb lattice
where the density of states at half filling is zero (since the Fermi energy lies exactly at
the energy level of the Dirac points) and as a consequence the Stoner model predicts
that ferromagnetism is impossible. However, counterexamples are far more common.
For instance, regarding a square or cubic lattice at half filling the density of states is
maximal at the Fermi energy, indicating that according to the Stoner criterion these
lattices are prone to exhibit ferromagnetic phenomena in sharp contrast to the Lieb
theorem [112]. The condition N4 # Np also provides an interesting caveat to Stoner
ferromagnetism. If this condition is satisfied for a particular lattice configuration, its
Fermi energy for half filling lies within a dispersionless (flat) band and consequently
a very large (infinite in the thermodynamic limit) density of states is involved at the
Fermi level [291,292]. Here the Stoner model predicts a ferromagnetic transition for
non-vanishing repulsion, however, according to the Lieb theorem in the presence of
correlations ferrimagnetism [293] is exhibited.

As evident from the above despite the success of the Stoner model in predicting the
development of a gap between the states of spin-1 and spin-| electrons in ferromagnetic
metals [107], this model is too simplistic to capture the intricacies of ferromagnetism
in condensed matter setups. In recent years more involved Hartree-Fock mean field
methodologies addressing the Hubbard model were proposed, which are able to rectify
some of the above mentioned issues by properly accounting for geometric lattice effects
and inhomogeneous phases [113]. Nevertheless, it is generally believed that the Hubbard
model at finite doping can appropriately capture the basics of ferromagnetism, with
no need for involving multi-band models or explicit exchange interactions among the
electrons [114].

A major result that supports the conjecture that the Hubbard model can ade-
quately describe the phenomenon of itinerant ferromagnetism in metals is put forward
by Nagaoka in 1966 [294]. In particular, it was proven that the ground state of the
Hubbard model on a bipartite system in the limit of U — oo and for N, = Ny — 1, i.e.
a single particle lower than half filling, is ferromagnetic in the sense that its ground
state possesses total spin S = % [294]. This finding lead to a new era of investiga-
tions [114,295,296], however, to our knowledge there is no rigorous generalization of
the Nagaoka ferromagnetism to finite U or N, < Nz — 1.
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2.3 Stationary and magnetic properties of confined spin-
1/2 Fermi gases in one-dimension

The direct realization of the above mentioned Stoner instability in ultracold Fermi gases
in its simplest form as described by Eq. (2.27) was not possible [94,96]. The inability
of the experiment to observe such a phenomenon is attributed to the fast decay of
repulsive Fermi gases to diatomic molecular bound states [95]. This process occurs in
the three and two dimensional settings, due to the attractive character of the actual
interatomic potential [77]. This fact necessitates the development of novel techniques
for the adequate characterization of ferromagnetism. In particular, spin-dynamics [97]
and pump-probe spectroscopy [100,101] has been employed for the characterization of
the magnetic properties of the metastable repulsive fraction of a Fermi gas in three
dimensions. Here we propose an alternative bottom-up approach by considering the
magnetic properties of a repulsive 1D Fermi gas, which does not suffer from the com-
peting process of molecule formation [77]. In particular, the magnetic properties of 1D
Fermi gases can be mapped to a spin-chain model in the limiting case of infinite inter-
actions [128-133] and as we will demonstrate within this thesis the same is true within
the opposite regime of weak interactions [134,135]. This mapping between itinerant
and localized magnetic systems is of crucial importance due to the well-understood
character of the magnetic properties of the latter allowing for the understanding of the
related phenomena emerging in the former [107].

An important hindrance of employing 1D fermions for the study of ferromagnetism is
that according to the Lieb-Mattis theorem [110] the ground state is of antiferromagnetic
character independently of the type and strength of the trapping potential and of the
involved interactions. Within our studies we can easily bypass this issue by considering
the excited state of such Fermi gases and in particular their fully polarized states or
spatial domains of polarized particles, which can easily be implemented in the ultracold
environment [97,125]. Moreover, the apparent drawback of an antiferromagnetic ground
state provides further insights into the inner-workings of magnetic systems. As we
will argue, the fact that the ground state of a Fermi gas is always antiferromagnetic
is a consequence of the Anderson kinetic exchange interactions [142] which competes
with ferromagnetism. In this light the Lieb-Mattis theorem can be interpreted as
the proof that the Anderson exchange interactions always dominate the ferromagnetic
processes [139-141] that emanate in those setups.

In the following, we will present the Hamiltonian and review the basic spin sym-
metries of 1D Fermi ensembles. Then we will continue by examining the basic non-
interacting, weakly and strongly interacting magnetic properties of such Fermi systems.
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2.3.1 Hamiltonian and basic symmetries

The Hamiltonian of 1D spinor fermi gases according to Eq. (2.16) and Eq. (2.18) reads

. R h2 d2 R
H= Y [dzdl@)(-5-275+V(@))dal2)
aem}/ < 2m da? > (2.35)
+9 [ do @b @)y o).

It possesses important spin-symmetries as it commutes with the spin-operators

=5 Y [ e dl@olaio). (2:30

a,a’e{t,|}

with i € {z,y,2} and o' , being the spin-i Pauli matrix. First, notice that the S,
operator can be also expressed as S, = h(]% -N 1)/2. This combined with the fact that
H commutes with the total particle operator N = (NT +N 1) implies that the number
of particles within each individual component is a conserved quantity. Therefore, for
a N particle Fermi gas each different S, € {—%, —% +1,..., %} manifold of states
can be treated independently. The S, and S’y symmetries are also important. Indeed,
these symmetries imply that the spin-ladder operators, S =8, + iS’y, also commute
with the Hamiltonian. In turn, the total-spin operator $? = S, S_ + S’Z(Sz — 1), also
commutes both with the Hamiltonian, H , and the S, operators. Consequently, for
each state there are two good quantum numbers namely S and S,, with the available
values of the total spin S depending on the number of spin-1 and spin-| atoms since
S e{lS.|,|S:|+1,..., %} The S+ symmetries have an additional consequence as if we
assume an eigenstate of the system, |¥; .S, S,), with quantum numbers S and S, then
also the states |¥; S, S.+1) = S.19;8,5.)/4/(S—S.)(S+ S, +1) and |¥; S, S.—3) =
S_|w;8,5,)/+/(S+S.)(S— S, +1) (in the case that S > S, 4 1) are eigenstates of
the Hamiltonian and are energetically degenerate with |¥; S, S,). Of course, this also
implies that states with spin S # 0 are a part of a degenerate eigenstate manifold
consisting of at least 25 4 1 states.

The above properties greatly aid in the characterization of the eigenspectrum of H.
Note that due to the commutation of the S operator with H the whole eigenspectrum
of the N particle spin-1/2 Fermi gas can be generated by studying the eigenspectrum
of a single configuration in terms of N4 and V| states. The latter configuration refers
to the case of Ny = N for even N and the configuration Ny = N + 1 for odd N.
Furthermore, even in the case that a homogeneous magnetic field is applied such that
H =H+ BOSZ, the eigenstates of H' are exactly equivalent to the By = 0 case. Their
corresponding eigenenergy is, however, shifted by hByS,, where S, is the corresponding
spin quantum number. Therefore, the eigenspectrum of the Hamiltonian H is relevant
also for more realistic systems that additionally account for the Zeeman splitting of the
hyperfine levels.

Figure 2.2 provides an explicit example for the eigenspectrum of a spin-1/2 Fermi
system within the interaction range, ¢ > —1 /h3w/m. The corresponding physical
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Figure 2.2: The 65 energetically lowest eigenenergies for N = 4 spin-1/2 fermions
confined in a parabolic trap versus the interaction strength g, obtained within ML-
MCTDHX. The total spin S for each eigenstate is encoded in the color of the lines
indicating also the degree of degeneracy, 25 + 1, for each state. The line pattern
indicates the degree of excitation for the center of mass, ncy. Notice also that for
lg| < 1 linear scaling of the interaction axis is employed while for g > 1 we switch to
1/g scaling.

system refers to N = 4 parabolically confined, V(z) = (mw?z?)/2, fermions. The 65
energetically lowest eigenenergies of the system are depicted referring to 31 distinct
manifolds of degenerate eigenstates. In agreement to the above discussion the degree
of degeneracy of these manifolds relies on the total spin of the eigenstates S and it is
given by 25 4 1. Indeed, each manifold can be spanned by the eigenstates referring to
the different allowed S, = —S,—S+1,...,5 which are related by the ladder-operators
S.. The eigenspectrum of Fig. 2.2 exhibits a prominent structure in terms of the
different involved S manifolds. In particular, notice the almost linear dependence of
the eigenenergies on g for weak attractions or repulsions (|g| < 1/2) and the = 1/g
increase of the eigenenergies within the strong interaction regime g > 4. Nevertheless,
we will postpone the detailed discussion of the exhibited magnetic properties in the
interaction regimes g = 0, |g| < 1 and g > 1, which will be analyzed in Sec. 2.3.2,
2.3.3 and 2.3.5 respectively.

Before proceeding, notice that for the complete characterization of the eigenspec-
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trum the symmetries of the Hamiltonian stemming from the external potential V' (x)
are crucial. Of course, there are no generally applicable statements that can be made
since each different confinement potential has to be individually examined. For the
harmonic trap considered in Fig. 2.2 a relevant symmetry is the relative coordinate
and center of mass separation [297]. Indeed, the Hamiltonian operator for the center
of mass

=P

2

Hewm zzjém(—ih > /da: w;(x)(iqpa(x))

ac{t}
N2 - ) (2.37)
+ 5 ( Z /dx x@b&(x)wa(x)),
ac{t}

=X

commutes with the many-body Hamiltonian, H of Eq. (2.35). Therefore, the eigen-
states of the confined fermions can be characterized in terms of the degree of excitation
of the center of mass, ncy. In addition, due to this symmetry the eigenstates with
excited center of mass can be constructed from the corresponding ones with ncy = 0
by (repeatedly) applying the creation operator &gM = /Nmw/(2h)[X +i/(Nmw)P].
Note that each such excitation increases the energy of the eigenstate by hw. In view
of these properties the whole spectrum consisting of 65 eigenenergies presented in Fig.
(2.2) can be constructed in terms of 14 different eigenstates, with S, = 0 and ncy = 0.
This large reduction in the number of independent states appearing in the eigenspec-
trum shows the prominent role of symmetries in reducing the computational effort of
many-body simulations [298] and providing a valuable sanity check of different ap-
proaches [299].

2.3.2 Non-interacting many-body eigenspectrum

A many-body wavefunction basis for expressing the N-body spectrum of the spin-1/2
fermions can be derived in terms of the single-particle eigenspectrum of the confining
potential [146]. Such a construction is particularly useful away from the strong inter-
action limit where the interactions dominate the behaviour of the system. The starting
point is to express the eigenstates of the many-body system in the g = 0 case in terms
of the single-particle eigenstates (SPES), ¢i(z), i = 0,1,..., of the system. Indeed, by
defining the creation and annihilation operators of the spin-1 and spin-| atoms

al, = / dz ¢i(x)dl(z) and ay = / da & (2)dn (@), (2.38)
the many-body Hamiltonian reads
H=Y" " ealbiat+g D Ujn ahal apan. (2.39)
i ae{tl} ikl
o 11,
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Here ¢; correspond to the single-particle eigenenergies (SPEE), while the interaction
matrix elements refer to Uy = [ dz ¢} (z)¢; (z)¢i(x)¢;j(x). Accordingly, the creation
and anihillation operators obey the anticommutation relations {a;q, &; o'} = 0ij6aq and
{Gia, Gjor } = {&}a,d; o+ = 0 [146]. These imply that each single-particle state can be
occupied either singly, by a particle of either spin, or doubly, by two particles of opposite
spin. The latter configuration is commonly referred to as a doublon. For g = 0 the
many-body eigenspectrum is rather trivial. The ground state(s) consists of the state(s)

>mod(N,2) 15]-1 f

GSa) = (&hwa IT aéa| 10), (2.40)
1=0

where o € {1, ]} corresponds to the spin of the ground state which is relevant for odd N.
The ground state eigenenergy is equal to £/ = mod(N, 2)e| n/2)—1 + 2 ZZL]:V({ZJA €; [146].
Furthermore, all other eigenstates with the same S, can be generated by applying one
or multiple single-particle excitation operators TZ‘; = dzadja, with ¢ # j. Indeed, when

Tg acts on a many-body eigenstate it generates a different orthogonal one with an
energy difference €; — ¢€; to the initial eigenstate. Finally, the states with different S,
can be generated by employing the §+ and S_ operators and as discussed previously
they are energetically degenerate with the initial eigenstate.

It is instructive to elaborate on the issue of degeneracy of the many-body eigenspec-
trum for ¢ = 0. Notice that exact degeneracies do not occur in the 1D single-particle
spectrum for a confined system, as the underlying SPES have to be normalizable, see
also Ref. [247]. However, degeneracies can occur due to the different configuration of
particles contributing to a many-body eigenstate [K1,K2|. Indeed, the allowed eigenen-

ergies for g = 0 read

7

Equation (2.41) reveals that there are two classes of degeneracies that can arise in the
many-body eigenspectrum. An example of the first kind of degeneracy occurs if the
condition

€ +€j = 2¢ (2.42)

holds for three different SPEE. In this case, each eigenstate |¥g) has to be degenerate
with [W2,) = TGTG o) and |WE ) = TETE |Wy), for all a, of that yield [W7,,) # 0 #
|¥B ). The above generalize when more than three SPEE are involved, for instance in

the case that four different SPEE fulfill
€ T €5 = € + €. (2.43)

A similar argument can be employed in order to create degenerate many-body eigen-
states related to the eigenenergy coincidence of more than four single-particle levels.
The second kind of degeneracy stems from the fact that given a many-body eigenstate
its energy depends only on the sum of spin-1 and spin-| atoms, n; = n;; + n;|, that
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occupy a given SPES. This implies that a lower bound for the degeneracy of a given
eigenstate is 2V 72Na | where N, is the number of doublons, as the spin of each fermion
not forming a doublon can either be spin-1 or spin-| without affecting the energy of the
many-body eigenstate. This lower bound is exhausted whenever a degeneracy of the
first kind is not possible. A useful tool for categorizing the non-interacting many-body
eigenstates is the vector quantity 7 = (ng,n1,...) that tracks the occupation of each
SPES independently of the spin of the involved fermions. By using 77 we can distin-
guish between the degeneracies of the first and the second type as the former involve
many-body eigenstates of different 77, while the latter refer to eigenstates with equal 7.

The above properties can be easily identified in the eigenspectrum of N = 4 parabol-
ically confined fermions depicted in Fig. 2.2. In particular, the ground state belongs
to the configuration 7 = (2,2,0,...) and reads |GS) = &Ld%&&&&\m, where &;-ra
are the creation operators referring to the SPES of the harmonic oscillator poten-
tial. The ground state is unique (recall that Ny = 2) and possesses an energy of
Egs = 4hw. The excited states with S, = 0 can be obtained by applying the opera-
tors Tf; and the energetically lowest ones correspond to |Ex,) = T3 |GS), belonging to
the 7 = (2,1,1,0,...) configuration with energy Epy = 5hw. Due to the presence of
one doublon the eigenstates should be quadruply degenerate, with the other two states
referring to |Exp) = §+T;1|GS> and |Ex ) = S+T§1|GS>. The quadruple degeneracy
of this energy manifold can be verified by observing that two eigenenergy manifolds of
S =0 and S = 1 become degenerate for ¢ = 0 and £ = 5hw in Fig. 2.2. The degen-
eracy due to SPEE coincidence becomes apparent in the next manifold of degenerate
states at Fpyo = 6hw. In this case there are three different configurations, namely the
n=(210,1,0,...), 7 = (1,2,1,0,...) and @ = (2,0,2,0,...) referring to the same
energy, since €] + €3 = 2e3 = 2hw, satisfying the condition of Eq. (2.42). Consequently,
the degeneracy of this manifold is 4 + 4 + 1 = 9, which can be verified by Fig. 2.2 by
observing that three branches of the S = 0 eigenstates and two referring to the § =1
ones become degenerate for £ = 6hw and g = 0. These arguments can be applied to
degenerate manifolds of increasing energy and thus generate the whole non-interacting
eigenspectrum in terms of the SPES and SPEE.

Regarding the magnetic properties of non-interacting spin-1/2 Fermi gases we ex-
pect that since their many-body eigenspectrum is highly spin-independent their be-
haviour has to be paramagnetic [134]. However, their eigenstates are in general highly
degenerate and therefore very susceptible to perturbations. There are also several
hints that point towards the fact that interactions can modify the magnetic properties
of Fermi gases. As mentioned previously the SU(2) symmetry of the interacting Hamil-
tonian refers to the invariance under rotations of the total spin of the system and not
each individual particle. In contrast, the full Hamiltonian depends on the correlations
between the spins of individual atoms, which are affected by modifying their individ-
ual spins. Another hint towards this direction is provided by the excitation operator
Tl‘;‘ which does not commute with 5’+, S_ and S2 implying that the non-interacting

eigenstates generated from |GS,), by applying TZC]“ operators, might not be eigenstates
of the interacting system g # 0, since in general they do not possess a well defined S
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Term (Hy) Description U AEy

dIT&L&i 1041 Interaction energy of a [ dz ¢} 0
doublon

dj'T&Ldji&iT» i1 # j Inter-SPES interaction [dx gb?gb? 0
energy

dZTTdT. @il agy, @ # j  Spin exchanging interaction [ dz gb%(ﬁ? 0

d%&udﬂdj% i # j Hopping of a doublon [ dx gi)?gb? 2(€; — €;)

Ao o o

C}?ka#?kifm’ Z 7&‘7 Density-mediated hopping [dz ¢ipp7 € — €

G?TCL?%‘WM? i F# ]

G740, 01044, T 7 J Spin-exchanging density-

ROULE '75‘7. pd' b ging y [ dz diy? —

iy G )ALty T # 7 mediated hopping

dLTdL¢di¢&jT7 i # j Creation of a doublon [dz ¢ipjd2  2e, — (€ +€j)

alal agyagy, i #j  Annihilation of a doublon [ dx ¢igj67 (& +€;) — 26

A AU

Fir @5 kG115 Double hopping [ dz ¢ididdr €+ €j — e — €

1,7, k, [ distinct

Table 2.1: Categorization of all interaction terms appearing in an 1D spin-1/2 Fermi
gas. U indicates the coupling constant in terms of the overlaps of the SPES, ¢;(x).
Here, the SPES are assumed real since a confined system is considered. AFEy refers
to the energy difference before and after the application of the interaction term to a
many-body eigenstate for g = 0.

quantum number.

2.3.3 Magnetic properties of weakly interacting systems

In order to get a better understanding of the interacting system it is instructive to study
the qualitative character of the different interaction terms that appear in the Hamilto-
nian of Eq. (2.39). These interaction terms can be categorized in ten classes according
to their effect when applied to a ¢ = 0 many-body eigenstate. This categorization is pro-
vided in Table 2.1. Particularly important are the terms that couple states being degen-
erate for g = 0, since they might lift the degeneracy between the involved states [K1,K2].
There are three classes of such terms possessing this property, which are identified in
Table 2.1 since they possess AEy = 0, where AEy = <\I/|HUH0HU|\I/> (U|Ho| ).
Here, Hy denotes the particular class of terms contributing to H;. The first such class
corresponds to the doublon interaction energy terms

Hdoub Z gUu“(?LITCALLCALwCALZT (244)
7
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They result in the linear increase of the energy with g of all states possessing doublons.
Second, the inter-SPES interaction contributions
A[ijlter = ZgUijji&ZTdhdﬂdiT, (2.45)
i

which encode the interaction energy of two fermions with anti-oriented spins residing
in different SPES. Finally, the spin exchange interaction terms

H® =" gUijalial aaagn, (2.46)
i3

allowing two fermions in different SPES to exchange their spin. Therefore, for small
enough g we expect that the above mentioned terms described in Eq. (2.44), (2.45)
and (2.46) contribute dominantly to the lifting of degeneracy between each degenerate
manifold of states (see Ref. [K1,K2] and [135]). We can therefore justify for small g
the approximation of the full-interaction term as [K2]

. . . . |
Hy~ HP"P + HP' + HF =g | > Uiy — Y Ji (Sz‘ -8 — 47%'7%') , (2.47)

with U; = [dz ¢f(x) and Jij; = [dx ¢7(2)¢3(x). Tt can be seen that the approxima-
tion of Eq. (2.47) introduces ferromagnetic spin-exchange interactions for repulsively
interacting Fermi gases (g > 0) between the different singly occupied SPES and accord-
ingly anti-ferromagnetic spin-exchange interactions for attractively interacting fermions
(9 < 0). The above imply that indeed for non-zero interactions the few-body 1D Fermi
gas exhibits non-trivial magnetic properties.

The approximate interaction term in Eq. (2.47) can be used within degenerate state
first-order perturbation theory in order to lift the degeneracy of the eigenstates observed
within the g = 0 case [135], [K1,K2]. In particular, notice that Eq. (2.47) conserves the
spatial configuration in terms of 77 of the non-interacting states and therefore allows
for the decoupling of the spectrum of the 1D Fermi gas with respect to distinct 7.
This decoupling leads to the mapping of the eigenstates of a configuration 7 to a
Heisenberg-type spin-chain Hamiltonian consisting of N — 2Ny spins and incorporating
long-range interactions [K1]. Notice that J;; > 0 and accordingly a ferromagnetic
(antiferromagnetic) ground state for each different 7 spin-chain is ensured for g > 0
(9 < 0) [107]. The only scaling of the terms in Eq. (2.47) with g at this limit is a
homogeneous linear increase of the interaction strengths and accordingly we expect the
eigenenergies to scale linearly within the |g| < 1 interaction regime.

The above mentioned expectation can be verified e.g. for N = 4 parabolically con-
fined atoms shown in Fig. 2.2. In line with the above argumentation we observe that
the eigenenergies increase linearly within |g| < 1/2. In particular, the slope of the
eigenstates characterized by smaller S = 0 is larger than the corresponding ones for
S =1, with the states possessing S = 2 having a constant energy. This fact indicates
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that the fermions behave ferromagnetically and antiferromagnetically for positive and
negative interactions respectively, in accordance to the predictions of Eq. (2.47). De-
viations from the magnetic order imposed by this approximate form of the interaction
Hamiltonian seem to be insignificant except for the case of large interactions g > 1.
Notice that the behaviour presented in Fig. 2.2 indicated that Eq. (2.47) can be ap-
plied to qualitatively obtain valid results within the g ~ 1 interaction regime, although
the increase of the eigenergies deviates from the predicted linear trend.

In particular, one of the main goals of the works [K1,K2| are to demonstrate that
the approximation of Eq. (2.47) adequately describes and characterizes the magnetic
properties of 1D spin-1/2 Fermi gases for weak and intermediate interactions. Addi-
tionally, Ref. [K1, K2] generalize Eq. (2.47) and extend its validity in the moderate
interaction g &~ €; 41 — ¢; regime and in the case of broken SU(2) symmetry. At first
glance, the approximation that Eq. (2.47) provides may seem ad hoc. Particularly, in
the cases that the SPEE satisfy Eq. (2.42) or Eq. (2.43), for different 4, j, k, [, there are
additional degeneracies between states possessing different 7 in the many-body eigen-
spectrum for g = 0. These states can couple due to interactions involving doublon
creation or anihillation or correlated double hopping, see also Table 2.1. However, de-
tailed calculations in [K1,K2] and [135] demonstrate that the approximate form of Eq.
(2.47) indeed provides the basic underlying framework for understanding the magnetic
properties emanating in the excited states of the confined 1D Fermi gas.

Apart from the numerical evidence provided in the above mentioned works there
are some qualitative arguments that support this behaviour. First, except for the
harmonic oscillator case of equidistant SPEE, in general the energy differences between
distinct SPEE are not equal and thus Eq. (2.42) and (2.43) are rarely satisfied, for very
specific combinations of ¢, j, k, [, with these indices typically attaining quite different
values. This in turn implies that the involved coupling strengths Ujjpr = Uprij =
[dz ¢i(z)¢j(z)p2(x) or Uijiy = [ dz ¢i(x)d;(x)dr(z)¢i(z) are much smaller than the
ones involved in Eq. (2.47) and thus coupling effects are negligible. Moreover, even in
the case of a harmonic oscillator there is an additional symmetry at play, namely the
separation of the relative and the center-of-mass coordinates, Eq. (2.37). The latter
finally prohibits the above mentioned states to couple with one another. Note here
that even when this symmetry is weakly broken, with the SPEE remaining roughly
equidistant, Ref. [K1] reveals that effects beyond Eq. (2.47) remain negligible.

Although as mentioned above exact degeneracies in the SPEE are impossible in
1D setups [247], the double-well or the multi-well confinement provide examples of
external potentials where quasi-degeneracies occur. In these cases the validity condition
lg| < €ix1 — € of Eq. (2.47) breaks down and one expects that it is inadequate for
describing the magnetic properties of the system. However, in Ref. [K2]|, we show that
a generalization of Eq. (2.47) that properly accounts for the magnetic mechanisms
emanating in double-well confined fermionic ensembles is rather straightforward, with
the system maintaining to a large degree its ferromagnetic correlations for repulsive
interparticle interaction strengths, g > 0.
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2.3.4 Strongly interacting 1D spin-1/2 fermions

In the strong interaction regime, namely g < €;4+1 — €;, the SPES are no longer an
adequate basis for characterizing the interacting many-body eigenspectrum. Indeed,
it is known that the diagonalization of the many-body Hamiltonian of Eq. (2.39)
over a finite set of SPES leads to unphysical results as ¢ — oo [300]. The above
demonstrate the large degree of interparticle correlations that is manifested for strong
zero-range repulsions. An important step in understanding the behavior of spinor
fermionic ensembles is the realization that in the limit of strong interactions g — oo
these systems constitute examples of Tonks-Girardeau gases.

The concept of a Tonks-Girardeau gas has been originally introduced in terms of
an 1D infinitely repulsive gas of spinless bosons [301]. A Tonks-Girardeau gas behaves
similarly to an ensemble of distinguishable impenetrable particles, but in addition, it
satisfies the proper for the indistinguishable character of its constituents particle ex-
change properties. It is known [129,302] that infinitely interacting spin-1/2 fermions
form a Tonks-Girardeau gas and a convenient basis for examining their eigenspectrum
can be constructed via employing a mapping to impenetrable particles. The mag-
netic properties of a spin-1/2 fermionic gas proximal to the Tonks-Girardeau regime
are particularly interesting due to their involved underlying exchange statistics of the
spatial and spin degrees of freedom. For this reason, the properties of the above men-
tioned fermionic systems (especially in the few-body regime) are well-studied, mostly
by employing appropriate spin-chain models in the vicinity of the ¢ — oo limit, see
Ref. [128-133] and Sec. 2.3.5. Below, we provide an outline for the construction of the
many-body basis appropriate for the study of strongly interacting spin-1/2 fermions
and provide an intuitive interpretation regarding the character of the involved states.

According to the Tonks-Girardeau framework for infinitely repulsive zero-range in-
teractions the spin-1/2 fermions behave as a collection of impenetrable atoms. This
implies that two fermions cannot reside at the same position and they cannot permeate
one another since such a process involves the crossing of an interaction potential barrier
of infinite amplitude, V' (x;, z;) ~ glLITOlO g0(z;—x;). However, the process of two fermions

permeating one another cannot be formulated in a transparent and rigorous manner due
to the wavefunction symmetrization properties of the many-body setup stemming from
the fermionic nature of its constituents. To address this issue it is useful to study an
analogous setup consisting of distinguishable impenetrable particles. The advantages
of such a study are twofold. First, the distinguishable character of the particles allows
for a straightforward description of the process where one particle permeates another.
For instance, such a process can be characterized by the transfer of population from a
configuration where x; < x; for two particles labeled i and j to a configuration with
x; > x;. Second, given the eigenspectrum of the setup involving distinguishable parti-
cles the eigenstates of the system consisting of indistinguishable particles but obeying
the same Hamiltonian can be evaluated by taking into account the proper symmetriza-
tion of the many-body wavefunction. Notice that the above is true for any atomic
species or mixture and not particularly for spinor fermions, showcasing the generality
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of this approach. The Hamiltonian referring to distinguishable impenetrable particles
is equivalent to a non-interacting one, see also Eq. (2.35), reading

g_i _ﬁi2+v(x.) (2.48)
71.:1 2m da? Y '

with V(z) the external potential and m the atomic mass. Also, hard-wall (Dirichlet)
boundary conditions are incorporated for z; = z; and i # j € {1,..., N}. The descrip-
tion of the stationary properties of this system is more transparent because the ordering
of the z; coordinates of distinguishable particles is well-defined since the corresponding
many-body wavefunction, Wy(x,ze,...,2yx) does not involve the symmetrization of
those coordinates. The ability to define the ordering of the x; is particularly impor-
tant since both the Hamiltonian and the boundary conditions are symmetric under any
permutation of the particle indices, i.e. x1,Z2,...,ZN — Tp,(1), Tp,(2)-- -, Tp,(N), With
P;(1), P;(2),...,P;(N) being the i-th permutation of the indices 1,2,..., N. This sym-
metry properties allows us to invoke the so-called sector wavefunctions for expressing
the eigenstates of the gas of distinguishable atoms, \Ilfi’k (x1,x2,...,2N). In particular,
the eigenstates of Eq. (2.48) read

n 3

Uy (w1, w2, an) = VG (T, 1), Tpy(2)s - - TRy (N))- (2.49)
Here \Illg(ml, xa,...,xN), for k =1,2,... refer to the sector wavefunctions, possessing
the property \Plg(xl,xg, conxN) #Z0ifxp <me <--- < zy and \I/lg(xl,xg, ozn) =0

otherwise. Note that the eigenstates \Ilil’k(:cl, x9,...,xyN) with different j = 1,2,..., NI,
are degenerate since the Hamiltonian of Eq. (2.48) is invariant under any particle
exchange. Accordingly, the energy of each eigenstate of Eq. (2.49) depends solely on &
which refers to the appropriate sector wavefunction.

As it can be readily seen, in order to span the eigenspectrum of the impenetrable dis-
tinguishable particles we have to determine the sector wavefunctions \1110“ (x1,T2,...,TN).
This can be easily achieved by considering a spinless non-interacting Fermi gas. Indeed,
this setup obeys the non-interacting Hamiltonian of Eq. (2.48) and in addition owing to
the Pauli exclusion principle all of its eigenstates satisfy the Dirichlet boundary condi-
tions, i.e. \Ifl}(xl, ey Ty X =X, ..., xn) = 0foralli # j € {1,2,.., N}. Therefore,
the eigenstates of spinless fermions can be viewed as a set of particular solutions for the
eigenvalue problem defined by Eq. (2.48) when the appropriate boundary conditions
are taken into account. Notice that the spinless fermion eigenstates additionally incor-
porate the proper antisymmetrization of the many-body wavefunction for the spatial
coordinates of all fermions. This property implies that there is an one-to-one corre-
spondence between spinless fermionic many-body eigenstates and sector wavefunctions,
namely

N!

1 o P,
,SCN) = W ;(—1)Slgnp“l/lg($pi(1), Tp;(2)) -+ ,SCPZ.(N)), (2.50)

\I’I;c(a:l, T2, ..
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where signP; is the parity of the P; permutation of the atomic indices. Notice that
the many-body wavefunctions of the spinless Fermi gas are trivial to evaluate since
they can be constructed in terms of the corresponding SPES via employing the Slater
determinants

-

Uh(21,20,... 2N Z 1580 gy (2p,1)) Bl (Tpy(2) - - - by (Tpy(v)). (2.51)

In this expression, we have replaced the index k by the vector valued [= (i, 1o, ..., IN),
with {1 < ls < --- < Iy, which contains the indices of the occupied SPES for the sake
of clarity. Therefore, the different sector wavefunctions are obtained by inverting Eq.
(2.50). This process yields

Uz, 29,...,2n8) = VNIO(z1, o, . .. ,a:N)\IJSc(:cl,xg, .oy TN), (2.52)

where §(z1,z9,...,2ny) = 1if 1 < 29 < -+ < xn and O(x1,z9,...,25) = 0 other-
wise. Equations (2.49) and (2.52), define the many-body eigenbasis of distinguishable
particles that diagonalizes the Hamiltonian of Eq. (2.48) and satisfies the appropriate
boundary conditions. In particular, the eigenspectrum consists of distinct degenerate
manifolds of dimension N! referring to the distinct particle orderings but the same
sector wavefunction. The energy of each degenerate manifold is F = vaz 1 €1;, Where ¢;
refers to the i-th lowest SPEE of the single-particle Hamiltonian.

The crucial point that relates the eigenstates of the distinguishable atoms to the
corresponding ones for spin-1/2 fermions is that the Hamiltonian of the latter for g — oo
is equivalent to the one of Eq. (2.48). Accordingly, in order to extract the eigenspectrum
of a spin-1/2 Fermi gas we have to impose the appropriate, for this case, particle
exchange properties of the many-body wavefunction. In particular, for a given spin-
configuration the proper linear combinations of the eigenstates of the distinguishable
system \Ilil’k(wl, Za,...,xN) can be evaluated so that the total wavefunction possesses
the appropriate for spin-1/2 fermions particle exchange symmetry.

The above imply that in order to span the eigenbasis of impenetrable spin-1/2
fermions we can focus only on the spatial- and spin-configuration for 1 < zo < -+ <
xn. Notice that, for a given state of a particular sector the state of all other sectors is
fixed due to the total antisymmetry of the fermionic wavefunction. Therefore, the only
degrees-of-freedom available to the system is first the choice of the sector wavefunction,
which determines the energy of the eigenstate, and second the choice of the spin-
configuration. By taking into account the above the eigenbasis of the system can be
written in a compact form in the second quantization picture

I: &) :\/ﬁ/d% e(:cl,...,xN)w§(x1,...,xN)¢;1(xl) Al (an)[0),  (2.53)

where o = (o, g, ..., an), with a; = {1,]}. It can be verified that the above men-
all’; a

tioned states are orthonormal, i.e. (l;@|l;@) = djj:0qa- Furthermore, their energy

41



THEORETICAL FRAMEWORK

depends only on the spatial configuration [ E {|l_; ay} = ZZ]\L | €1, similarly to the dis-

tinguishable case for g — oo, implying that the eigenstates are arranged in degenerate
manifolds of dimension of 2V, referring in this case to the different available spin-
configurations.

Let us now elaborate on the physical meaning of Eq. (2.53). First, note that in gen-
eral the ordering of indistinguishable particles is meaningless due to the (anti)symmetry
of the many-body wavefunction under particle exchange. However, the states defined
by Eq. (2.53) are special since the particles are sequentially created such that their
positions satisfy 1 < 9 < --- < xny and in addition each created particle, e.g. at
xr = x;, possesses a well-defined spin, here a;. The eigenstates |l_50_2> are addressable
by in situ images of the atomic density that provide simultaneous spatial and spin
resolution. Indeed, if we order the imaged particles according to their position in the
image, with ¢ = 1 being the leftmost and ¢ = N being the rightmost one, we know
that for |l_; @) the probability that the i-th particle possesses spin «; is equal to unity.
Furthermore, the probability to find an i-th particle at a certain position is given by

pi(z) = N!/de 0(x — x;)0(x1, 22, . .. ,.I‘N>’\I/ljc(l‘1,£€2, o)) (2.54)

The above imply that the particles constituting the states \l_; @) are spatially ordered in
a well-defined and experimentally detectable manner despite the fact that the involved
particles are indistinguishable.

Note here that the above mentioned degree of degeneracy of the states |l_: a)is much
larger than the one expected just by considering the symmetries of the system at finite
interaction strength, Eq. (2.35). In analogy to the g = 0 case, for infinite interactions
g — oo the energy of the system is invariant under the spin-flip of any individual particle
and accordingly the system behaves paramagnetically. This invariance does not hold for
finite interaction strengths. As already mentioned, in this case the involved interaction
depends on the spin-spin correlations of each particle pair, which are modified by the
spin-flip of individual fermions. Therefore, we expect that for strong but not infinite
interactions, such that 0 < 1/|g| < 1, the eigenstates |l_: &) with the same I'but different
a, couple leading to the lifting of their degeneracy and importantly giving also rise to
non-trivial magnetic properties.

2.3.5 Spin-chain models for strongly interacting 1D systems
A. Derivation of the spin-chain model

In order to evaluate the spectral properties of spin-1/2 fermions in the strongly inter-
action regime degenerate perturbation theory for small 1/g is employed [128-133]. Let
us define a Taylor expansion of the Hamiltonian H for small 1/g [129]

R .1 dA .1 dA
H(1/g)= lim H+- lim ——+---= lim H—- lim [g¢*— | +.... (2.55)
1/g—0 g 1/g—0d(1/g) 1/g—0 g 1/9—0 dg

42



STAT. AND MAGN. PROP. OF CONF. SPIN-1/2 FERMI GASES IN 1D

Consequently, the perturbation operator reads

A~ A~ ~

Hpore = — lim g2 / dz P}@) 0! (@) ()i (). (2.56)

1/g—0

A major problem in this perturbative formulation is that all matrix elements of the per-
turbation operator (I; @ Hyert|l; @) = 0 vanish when expressed in the Tonks-Girardeau
basis, ]l_géi’ ), since within each of the corresponding basis states it is impossible to
have two particles at exactly the same position. To rectify this problem we assume
that we can form sector wavefunctions that approach asymptotically the proper ones
in the Tonks-Girardeau limit, i.e. \illg(:cl,...,x]v) — Uk(zy,... 2N) for g — oo, and
additionally satisfy the Bethe-Peierls [303] boundary conditions

OVE(z1,... 2N) OVE(xy,...,2N) 2mg =~ ;.
— 2.57
8(:31' —33]') B2 0(331’ ’mN) , ( )

=T Ti=Tj

mz—nvj' (9(.%’1 - :Uj)

for all i # j € {1,2,...,N}. These boundary conditions can be justified by consid-
ering that the Hamiltonian H instead of defining a many-body system of 1D parti-
cles, corresponds to a single-particle Hamiltonian in N-dimensions. In this picture
each interaction term gé(x; —x;) corresponds to a delta-barrier along the hypersurface
x; = x; of the N-dimensional space. From elementary quantum-mechanics [247] it is
well-known that such a delta barrier results to a discontinuity in the first derivative of
the wavefunction at its position which is proportional to the barrier strength. Then, the
wavefunction amplitude leads to the expression of Eq. (2.57). Notice that crossing a
barrier implies that the fictitious IV-dimensional particle tunnels from a region charac-
terized by x; > x; to one corresponding to x; < x; and therefore during tunnelling the
particle ordering changes. Of course, in the many-body picture this tunneling process
corresponds to two particles tunneling through one another. Therefore, we can inter-
pret the fact that the matrix elements (i d’]ﬁpertm @'y = 0 vanish as a manifestation
of the impenetrable nature of the particles in the ¢ — oo limit. However, in the actual
physical case the particles are impenetrable only asymptotically. In this sense, there
is always a probability that the particles tunnel through one another which tends to
vanish as ¢ — oco. The above implies that in order to obtain non-trivial results, the
matrix elements of I:Ipert need to be calculated in the case that the particles are not
impenetrable and afterwards the impenetrable limit, g — oo should be taken.

To this end, let us assume that the eigenfunctions close to 1/g = 0 read

\\p;f,@:/d% VN1, o) B (s )L, (21) DL ()0, (2.58)

where é(xl,...,:rN) =1forz; <29 < --- < zy and é(wl,...,xN) = 0 otherwise.
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Then, the involved matrix elements read as follows

N— i—1 N
_gzN' Z H o) H 6aja ( &%} 50@...10& i+1 9, +15az+1a )
p il st St
= (2.59)
/dejdx H dx] (x1,..., ¢ =2, xiy1 = x, TN)
Jj=i+2
X |‘i16(x1, e B =L, Tl =Ty ,xN)|2.
Moreover, the term |\i/g(x1,...,xi = 2,%41 = 2,...,zN)|? can be substituted by
employing the boundary condition
|\i16(x1, T =TT =T,...,aN) P =
h4 lim 6\110(1:17 N) . a\1]0(1317 a:EN)
2@ |, oz; Ozit1 (2.60)
C lim ovg(z1,...,an)  O¥G(z1,...,2N) 2
T 8.731 8«Tz—&—l

This equation becomes greatly simplified when the limit ¢ — oo is applied. First, the
second limit vanishes as \ifé(ml, oyxn) = Wh(xq,...,2n) = 0 for 7; > z;41. Second,
the derivative of W) (z1,...,2x) along the barrier has to vanish since the amplitude of

the wavefunction tends to zero at each individual point along its extent for g — oc.
Therefore, it holds

8@8(‘7:17"'7*%]\7) =0= 8@8(%1,,%]\]) — _8\1’]8($1,7x]\7) (261)

8(@7 + xiy1) N ox; 0Ti+1

By employing Eq. (2.60) and (2.61) the matrix elements of Eq. (2.59) acquire the
simplified form

N ! N
oA - oo, A
(U316 Hpert |05 1,6y = = > 2 | T ayer | | T] Oaser
4 that] 1
i=1 j=1 j=it2 (2.62)
x [Uo‘io‘; 'UO‘HlaéH - 5aia;5ai+1“§+1] ’

where 0,4 is the Pauli vector and the property of the Pauli matrices o.5 - 05 =

200608y — 005 Was employed. The coupling parameters Jif read

2

alllg(xl, e ,{L‘N)
8:1%

= 9RAN! -
Jll = m /dN:L' 6( _xi+1)0(x17"'a$N)

(2.63)
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These are obviously positive, i.e. J! > 0. Eq. (2.62) reveals that the spin of each
particle spin experiences an effective antiferromagnetic interaction with its “nearest
neighbour”. This effect becomes more evident by relating the above mentioned matrix
elements with the corresponding ones emanating in an antiferromagnetic Heisenberg
spin-chain model with nearest neighbor interactions, namely

N-1
L e [0 ) — (@) S I (81 50— 1) Ja
<\I/;l,a]Hpert|\Il;l,a’> = <04| Jll <Sz . Si—i—l — 4) ‘Oé/>, (264)
1=1

here |@) = |a1) ® |a2) ® -+ - @ |an) refer to the states of a spin-chain consisting of N
localized spin-1/2 particles and S; being the corresponding spin-operators acting on
the i-th spin.

Let us now elaborate on the physical meaning of Eq. (2.64). First, note that in gen-
eral the ordering of indistinguishable particles is meaningless due to the (anti)symmetry
of the many-body wavefunction under particle exchange. However, the states defined
by Eq. (2.58) are special since the particles are sequentially created such that their
spatial positions satisfy 1 < x2 < -+ < xn and in addition each created particle, e.g.
at x = x;, possesses a well-defined spin, here «;. This in turn implies that if all V
particles in the state ]l_;o_é) are imaged in a spatially and spin-resolved manner, then
their spin-configuration when reading the spin of each particle from the left (z — —o0)
to the right (z — +o0) will yield a = (a1, ag, ..., an) with probability equal to 1. In
this way, the spin of the particles constituting the states ]E @) is spatially ordered in a
well defined manner. Therefore, a well-posed question is to ask what is the probability
for strongly interacting atoms initialized in a particular spin-configuration & to reach a
different configuration @’ after some time t. The answer is given by the time-evolution
of the effective spin-system described by Eq. (2.64). Particularly, it states that the
dynamics of the spin degree of freedom of strongly interacting fermions is equivalent to
the one described by a Heisenberg spin chain of N localized spins experiencing inhomo-
geneous interactions given by 2Jil /g. Similarly, one can map the strongly-interacting
eigenstates to the stationary states of the spin-chain model of Eq. (2.64). By para-
phrasing Ref. [129] we can argue that Eq. (2.64) provides a realization of quantum
magnetism of localized spins without the need to localize the atoms via the use of
external potentials.

B. Relation of the strongly-interacting eigenstates and the corresponding
spin-chain model

The analysis of the eigenspectrum of N = 4 parabolically confined interacting particles
agrees to a large degree with the findings presented above, see Fig. 2.2. In particular
it can be seen that the eigenenergies increase proportionally to o< 1/g as the strong
interaction regime is approached for g > 4. To get a better appreciation for the eigen-
states in this strong interaction regime Fig. 2.3 provides several observables relevant for
the characterization of all states within the lowest in energy manifold with ncy = 0,
in the case of Ny = N = 2. Recall, that the states with different value of S, can
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Figure 2.3: (a1)—(ag) Spin-resolved one-body densities, p&l)(x), a € {11}, (b1)—(bs)
Spatially resolved spin-configuration probabilities, P(|ajasasay)) (see text) and (c1)—
(ce) interspecies two-body densities, p%) (z1,2)), for the lowest six eigenstates, [i),

i = 1,...,6, of the Hamiltonian H [Eq. (2.35)]. In all cases Ny = N = 2 and
1/g = 0.06. For comparison, (a;)—(ag) also incorporate the one-body density for the
ground state of a spin-polarized system with N = 4 (rescaled by a factor of 1/2 to
compensate for the increased V). The histograms of (b;)—(bg) result from the sampling
over 1000 simulated single-shot images of the ML-MCTDHX obtained eigenstates.

be constructed in terms of these S, = 0 states by employing the spin-rising, S'Jr, or
spin-lowering, S_ operators.

Figure 2.3 (a;)—(ag) presents the one-body densities, p&l)(:c) = (i|pl(2)da(2)]i),
corresponding to the lowest 6 eigenstates, |i), ¢ = 1,...,6 of the Hamiltonian of Eq.
(2.35) within the strong interaction regime, g = (0.06)~! ~ 16.7. Importantly, these
density distributions are almost completely equivalent for all distinct eigenstates. This
is in agreement, to our discussion in Sec. 2.3.4. Indeed, the spatial degrees-of-freedom
of the low-lying eigenstates of a strongly interacting system are expected to be char-
acterized in terms of the lowest in energy sector wavefunction, W)(z1,...,2x) [Eq.
(2.52)]. In particular, we observe that the density distributions are proximal to the
corresponding one for N = 4 spin-polarized Fermions in line to our argumentation in
Sec. 2.3.4. This pronounced agreement motivates that the different eigenstates of the
system can be characterized in terms of the different occupied spin states. However,
such a characterization is not possible on the level of single-particle density, since the
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corresponding distributions for spin-1 and spin-} fermions lie perfectly on top of one
another. This is a result of the reflection symmetry of the spin with respect to the xy
spin-plane holding within the Ny = N| = 2 configuration®, implying that the exchange
of spin-1 atoms with spin-] ones does not affect the state of the system.

To characterize the different spin-states contributing to each eigenstate, |i), we
employ the spatially resolved spin-configuration probability, P(Jaiae ... an)), see Fig.
2.3(b1)—(bg). This observable probes the spatial ordering of the fermionic spins in a par-
ticular configuration |ajasq ... an). This configuration can be revealed by spin and spa-
tial resolved imaging. In this case, the leftmost particle would be found in the spin-state
a1, the one to its right would be in the as state and so on, see also Sec. 2.3.5A. In terms
of the spin-chain model of Eq. (2.64), P(lanas...an)) = Zﬂ(@,f, (aras...an)|i)|%
In the Tonks-Girardeu limit there is almost only one occupied spatial configuration, [=
(0,1,2,...,N) (Sec. 2.3.4), which corresponds to the lowest in energy sector wavefunc-
tion and thus the spatially resolved spin-configuration probability, P(Jajas...an)),
directly probes the many-body state of the system. To obtain P(]ajaeagay)) we sim-
ulate single-shot images via Monte-Carlo sampling (for details see Ref. [210, 304, 305]
and [K1]) of the N} + Nj-body density distribution, p(Nt+N) = |3)(i|, obtained within
ML-MCTDHX. Then we identify the corresponding spatial configuration |ajasasay)
for each image and finally we make a histogram over a set of single-shot simulations
(here we employ a set size of 1000 images for each distinct |i)), obtaining in this way
an estimation for P(|ajasasay)). Notice that single-atom resolution for few-fermion
systems is now possible by spatially-resolved fluorescence imaging [306-308] rendering
this observable also experimentally accessible. Focussing on the ML-MCTDHX data
[see the histograms in Fig. 2.3(b;)—(bg)] it is evident that the distinct eigenstates of
the system, |i) possess radically different P(Jajaq ... ay)), thus indicating the different
spin-order in each of these states. In addition the prediction for P(|ajasasas)) within
the spin-chain model of Eq. (2.64) given by the crosses in Fig. 2.3(b1)—(bg) captures
very well the spin-order emanating within our ab initio ML-MCTDHX calculations,
revealing its validity within this strong interaction regime.

The magnetic properties in this regime, despite not being easily identifiable within
the level of single-particle densities, can crucially affect the correlations emanating in
the system. To highlight this point we present the intercomponent two-body densities
pﬁ) (x4,2)) = (iW;(J?T)?/’I($¢)¢¢($¢)¢T($T)m for the eigenstates |i), i = 1,...,6 in Fig.
2.3(b1)—(bg). The two-body densities for different eigenstates are prominently different.
In particular, their shape reflects the dominant spin-configuration for each eigenstate.
This is more evident for the eigenstates with S = 1, |2), |3) and |5) where the dominant
states are the Neel | 111)) (| }141)), core-shell domain wall | t4{1) (| {T1{)) and single
domain-wall | M) (| JJ11)) states respectively. Indeed, in these cases the two-body
densities prominently feature the corresponding correlation patterns. For instance, in
Fig. 2.3(b3) we can see that the two-body density possesses non zero values only in
the case that |z4| £ 1 £ |x| or |z|| £ 1 £ |24/, indicating the presence of two domain-

®Note that this property is independent of the total particle number N = Ny 4+ N, and holds for all
S, = NT;Ni = 0 configurations.
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walls among the spin-components at  ~ £1. Similarly, in Fig. 2.3(bs) the presence
of a single domain-wall at = 0 results in the two-body density being non-zero only
for x4z < 0. Overall this example N = 4-body system showcases that, despite the
fact that the single-particle distribution of a strongly interacting spin-1/2 gas is largely
fixed to the distribution of a spin-polarized gas, the correlations are very sensitive to
variations of the magnetic order emerging in the system. The magnetic properties are,
in turn, dictated by the presence of antiferromagnetic effective spin-spin interactions
captured by the spin-chain model of Eq. (2.64).

C. Origin of the spin-spin interactions

Finally, let us examine on the origin of mechanism that generates the effective spin-
spin interactions for strongly interacting spin-1/2 Fermi gases. According to Sec. 2.3.5
the spin-exchange mechanism at play refers to two fermions transmitting through one
another, a process which is possible for 1/g > 0. This process possesses spin-dependence
as two fermions with the same spin are impenetrable due to the Pauli exclusion principle
and have to backscatter even for finite g > 0 while two atoms with opposite spin can
transmit through one another. This in turn implies that “adjacent” fermions possessing
opposite spin have a lower kinetic energy since they are less confined than in the case
of particles occupying the same spin-state. This naturally leads to the emergence
of effective antiferromagnetic interactions for repulsive interparticle coupling strengths.
Although, not clearly stated in the ultracold-atom literature this process can be related
to the well-known phenomenon of the Anderson kinetic exchange interaction [142],
emanating for lattice trapped systems. Indeed, Anderson has shown [142] that for
a lattice of unit filling, n. = 1, and repulsive interactions the spin of the fermions
occupying each lattice site experiences antiferromagnetic interactions with a coupling
strength J = 4t?/U, where t is the hopping parameter and U the onsite interaction.
Ogata and Shiba [309] generalized this result to finite filling factors, n. € [0, 2]

J(ne) = 4—t2ne (1 - Sm(27m)> : (2.65)

27N,

The effective coupling J(n.) decreases from the value J(n. = 1) = 4t2/U, for n. <
1, due to the fact that the fermions are not necessarily nearest neighboring as the
lattice filling decreases. Therefore, the kinetic energy benefit of antiferromagnetic spin-
spin correlations is significantly decreased. Finally, Matveev [310] used this result to
calculate the spin-exchange coupling for zero-range strongly interacting particles in the
case of V(z) = 0 by extrapolating the result of Eq. (2.65) to vanishing lattice length
a — 0 and relating the Hubbard parameters to the corresponding ones of a continuum
system as t = h?/(2ma?), U = g/a and n. = na, where n is the density. As a result,
the following couplings were obtained

B o272 itn3

. 2.66
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The comparison of Eq. (2.66) with the corresponding one for the parabolically confined
case by employing Eq. (2.63) was performed within the Local Density and Thomas-
Fermi approximations in Ref. [129] demonstrating excellent agreement of the order of
1% for as low as N = 6 particles. This last proof of Ref. [129] demonstrates that the
antiferromagnetic character of the spin-chain model of Eq. (2.64) is a direct manifes-
tation of the Anderson kinetic exchange [142]. In our studies [K1,K2] we show that
the influence of this interaction is also significant for weak and intermediate interac-
tions and its interplay with the ferromagnetic Hund interactions [139-141], stemming
from the weak coupling expansion of Eq. (2.47), gives rise to the intriguing magnetic
properties emanating in the latter interaction regimes.

2.4 Bose and Fermi polarons

2.4.1 The Frohlich Hamiltonian

The Bose polaron problem originated from Landau’s prediction of an electron being self
trapped in the polarization field it induces to its surrounding crystal [148]. Although,
Pekar was the first to develop a model to describe this quasi-particle in the strong cou-
pling limit [149,150], Frohlich was the first to develop a phenomenological Hamiltonian
for the description of this phenomenon in both the weak and the strong interaction
limits [152]. The idea of Frohlich was that the polarization field of a crystal can be
described by two contributions, P(r) = Pir(r) + Pyv(r), with Pig(r) stemming from
the deformation of the crystal and Pyy(r) referring to the induced polarization of the
ionic electron clouds. The crucial observation is that both of these modes can be de-
scribed by classical oscillator models [219] since Pir(r) is related to lattice vibrations
and Pyvy(r) to the Lorentz oscillator discussed in section 2.1.2. Therefore, he concluded
that the equations of motion of these polarization contributions read

=1/vr

.. 9 W%R 1 1
Pir(r,t) + wig Pr(r,t) = I\ & D(r;ra(t)),

(2.67)

.. 2 1
Pov(r,t) + ety Pov(r ) = “0% (1= 1) Dirira(o)

=1/vuv

where D(r;7¢(t)) is the electrical displacement created by the moving electron, wir,
wyvy are the frequencies of the corresponding oscillators and €p, €, are the static and
high-frequency dielectric constants of the material. Notice here that all quantities are
measured in cgs units as is customary done in condensed-matter literature. The factors
~vr and yyv in the right hand side of Eq. (2.67) stem from the requirement that within
linear response P(r) = (e(w) —1)/(47)E(r) and D(r) = ¢(w)E(r) for both w — 0 and
w — oo limits. In addition, Pir(r) = 0 for w — 0o was employed, occurring due to the
large mass of the ions when compared to the electrons which also implies wir < wyv.
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The corresponding equation of motion for the electron is simply pei(t) = —4weP(r,t).
The above permit the derivation of the classical Hamiltonian describing the coupling
of the electron to the induced polarization field

H= 21’”%16 +/d3?" {’YIR [PIR( )+WIQRPIR(T7t)} _D(TSTel(t))'PIR(T’t)}

+/d3r {“;V [PUV( )+w%WPUV(r,t)} fD(r;rel(t))'PUv(r,t)}.

(2.68)

A further assumption in deriving the Frohlich Hamiltonian is that the electron is slow
moving. This has two important consequences, first the magnetic field generated by the
motion of the electron can be ignored resulting to an electric displacement that follows
the Maxwell equations V - D(r; 1) = 4med(r — r¢) and V x D(r;7¢) = 0. With the
latter further implying that V x P(r;t) = 0 due to the linear response of the material.
Consequently, a polarization potential ®p(r;t) = —4w [ P(r;t) - dr can be defined. In
addition, the part of the Hamiltonian referring to Pyvy (7, t) can be thought to contribute
a constant shift of the energy since for a slow a moving electron, Pyy(r,t) can follow
its motion adiabatically, i.e. PUV( t) = 0, and thus contributes as time-independent
potential in the frame of reference of the electron ®yv (r—7q) ~ —e2(1—1/ex0)/|r—Tel|-
With these assumptions the potential ®g(7;¢) can be evaluated. Subsequently the
classical Hamiltonian of Eq. (2.68) can be quantized by imposing the quantization
rules (e, - Tel, €, - Pel] = ihdy, and [e, - PR, e, - ir(dPr/dt)] = ik, with ey, e,
denoting the unit vectors and p,v = {z,y, z}.
The final form of the Frohlich Hamiltonian reads

R A2 A 1 4 ~
i7=2d fhop Y (bgbq + 2) ik [ Y - ( ble iata — bqe“’"‘el) , (2.69)
q

2me IRlV

where o« =

2mel7;
h:; 13‘,‘ is the dimensionless interaction parameter of the electron with the
WIR

polarization field and /g = +/h/(2mewir) is the characteristic length scale for the
motion of the electron. The ladder operators bq, b correspond to the creatlon and
annihilation operators respectively of the field Pyg (r ) = [/ (2yrwir)]Y2[B(r) + BT (1)]
expressed in momentum space coordinates. The corresponding real space field operators
are given by B(r) = 3 a ?//Eb ¢'4" and the Hermitian conjugate expression for Bi(r).

The Frohlich Hamiltonian permits solutions for weak coupling strength «, via
second-order Reileigh-Schrondinger perturbation theory [247], which correspond to
the so-called Frohlich polaron, with energy Fp = —ahwir and effective mass m* =
(1 + a/6)m.. In addition, the Frohlich Hamiltonian also captures the solution in the
high energy limit that was attributed to Pekar. Indeed, the variationally optimized
approximation of the total state of the system by a tensor product of the states of
the electron and the polarization field, |¥) = |Vq) ® |¥p), yields a polaron energy
Ep, = —25/256a2 and an effective mass m* = 0.02a*m.. Based on the above men-
tioned energy estimates the crossover among the two polaronic behaviours was esti-
mated at around a = 10. To bridge the crossover among the two polaronic theories
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Feynman devised a variational method based on the path integral approach [160] which
is able to correctly predict the properties of the polaron for all a. The accuracy of the
Feynman path integral method has been numerically verified by several quantum Monte
Carlo techniques [311-314] and also experimentally by measurements of the electron
mobility in semiconductors [315,316].

Before proceeding to the study of the ultracold atom analogue of the polaron let us
note that the phenomenological Hamiltonian of Eq. (2.69), is supported by ab initio
methods and it is relevant for qualitative and sometimes quantitative calculations for
polar semiconductors [161]. In particular, by using the local density approximation
[317] within the framework of the density functional theory [318,319] the electron
Hamiltonian in the presence of electron-phonon coupling reads

H = E Eq,n,sé;n,séq,n,s + Z (/qub};’ybq’y + E V(q)[)gﬁq
q,n,s q,v 2

1 A ~
- \/ﬁ Z Yav [Wn’n/(q’ 7 V)CL’,n’,sCQ’—q,n,sbq,u + h.c|,

! /
q,q",n,n",s

(2.70)

where éjm,s (Cgn,s) and l;;V (bg.,) refer to the electron and phonon creation (annihila-
tion) operators respectively. Furthermore, Eq, s is the dispersion relation of electrons
in the band n with spin s € {1, ]}, wq,, is the dispersion relation of phonons in the mode
v, V(q) are the electron-electron interaction integrals and pg = 3., é;mséqm,s is the
electron density fluctuation operator. Finally, v, (g, g, v) refer to the electron-phonon
coupling matrix elements. In principle, there exist also electron-phonon coupling terms
that are of quadratic or higher-order in the phonon operators, however, they are small
and relevant only if the phonons are not coupled by the linear electron-phonon inter-
action contained in Eq. (2.70) [161]. Electron-doped polar semiconductors, such as
n-GaAs, involve only a small number of electrons in their conduction band acting as
carriers. For this reason their conduction properties do not depend largely on the de-
tails regarding their lattice structure since only electrons of quasimomentum ¢ < 7/a,
where a is the lattice spacing, are relevant. This allows in principle for approximations
that neglect the influence of the ionic potential such as Eq. (2.69) for the study of
their properties. According to [161] the matrix elements of the electron-phonon cou-
pling can be approximated by single-band models as v, ,/(q,q’,v) = v(q), except from
the case that the orbitals n and n/ are degenerate. Within these approximations v(q)
is sensitive on the type of phonons that are coupled to the motion of electrons. For
polar semiconductors, such as GaAs, it turns out that the matrix element scales as
v(q) < 1/|q| in the low ¢ limit for optical phonons (wgq, = woy for ¢ — 0) which are
coupled with the electrons via polar interactions. Accordingly, the Frohlich model is
indeed realized in these systems. Notice that except from the case of the large polaron
examined here, different polaron models, such as the small polaron model attributed
to Holstein [172,173], can be realized by considering the coupling of electrons with
phonons of a different character.
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2.4.2 Impurities in a weakly interacting Bose gas

The starting point for the derivation of an analogous polaron model to Eq. (2.69)
applicable in ultracold experiments [179] is the Hamiltonian of a two component mixture
[see also Eq. (2.8) and Eq. (2.19)] in the absence of external confining potential

i = / ddr Bl (r) [_thBw ggB @g<r>¢3<r>] Up(r) -

+ [ @t 8 [~ gm0 | 1),

with W, (r) referring to the creation operators of the ¢ = B bath and o = I im-
purity species with masses mp and mj respectively. The interaction strengths are
parametrized by gpp for the intraspecies interactions of the bath and gy corresponds to
the interspecies interaction strength. The relation between these interaction strengths
and the corresponding scattering lengths agp and ap; depends on the number of spa-
tial dimensions d. Notice here that the density operator of the bath 1[12(:3)1&3(:3) acts
as a matter-wave potential for the impurities a fact that will be of relevance later on
[see Eq. (2.75) and Sec. 2.4.4].

The definition of a BEC implies that the ¢ = 0 mode of the bath species is pre-
dominantly occupied by N. =~ Np atoms. This enables us to simplify the Hamiltonian
of Eq. (2 71) by expressing the bath field operators in momentum space as Wp(r) =
L= [gm0 + 470, exp(iq - 7)1bg] and approximating 1/1q o = Yg=0 = VN5 =~ VN,
since Np =~ N, > 1 is assumed. This replacement gives a hierarchy to the intraspecies
interaction terms of the bath appearing in Eq (2.71). Indeed, the BEC self-interaction
term o< wq qu Od)q 0¢q o is quartic in ¢q o and accordingly scales with gBBNB,

similarly quadratic terms scale like ggpNp, linear ones according to gppN B/ and
terms with no 1/3q:0 scale with ggp. The thermodynamic limit is defined as the limit
where gpp — 0 and Np — oo such as gppNp =constant, implying that only the quar-
tic and quadratic terms are relevant in this limit. Indeed, the approximation where
the linear and constant terms in @@qzo are dropped consists the so-called Bogoliubov
approximation [23]. Within this approximation the bath Hamiltonian reads

B — By + Z 7%% gBBn 3 (2%% i +¢q¢q) 7 (2.72)

q#0

where Ey = gppnNp/2+ 3, mp(gean)?/(2¢?) is a constant energy shift, and n =

Np/V is the density of the bath atoms. The Hamiltonian ﬁgog is quadratic in ﬁq
and accordingly it can be diagonalized via the Bogoliubov transformation defined by

g = Ugq + viql;iq and 1/;qT =v_gb_q+ u,’;l;:;, with

Uqg = \/ N Ya =~ \/ N -1 (2.73)
V2\ g /2 + 282 V2\ g /2 1 282
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while £ = fL(Q??”LBgBBn)*l/2 denotes the healing length. Notice that ug and vq depend
solely on the amplitude of the wavenumber |g|, when compared to 1/£. Finally, the
Hamiltonian of Bogoliubov phonons reads

2q oy o
Bog E0+2hc]q]\/l+§— b bq, (2.74)

q#0 %,—/

with ¢ = \/gppn/mp and Ej = Ey — 1/230(h*¢*/(2mp) + gppn — hw,y). The
Bogoliubov dispersion relation exhibits an interplay in its character for different values
of |g|. For ¢ < 1/ the dispersion is proximal to acoustic phonons, namely wq = c|q|,
while for ¢ > 1/¢ the dispersion becomes particle-like, i.e. wq &~ h?¢%/(2mp) + mpc?.
Importantly, in the latter limit (¢ > 1/&) the phonon operators are also particle-like

qu’b ~¢q
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Figure 2.4: Feynman diagrams of the phonon-impurity interaction terms (interaction
vertices) involved within the Bogoliubov approximation. (a) Three point vertex corre-
sponding to the emission (top) an absorption (bottom) of a phonon by the impurity.
(b) Four point vertex corresponding to elastic scattering of the impurity with a phonon
and (c) four point vertex coressponding to the simultaneous absorption or emission of
two phonons by the impurity.

The creation or annihilation of Bogoliubov phonons affects the density of the bath
and accordingly it leads to the modification of the matter-wave potential that affects the
impurity see Eq. (2.71). It is therefore instructive to express the bath density operator
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in terms of the Bogoliubov phonon creation and annihilation operators yielding

. . o P 1 e
Wl (2) W (x) (ewwq+e ) + o > e
9.9
- ' Ze“” { Uq + Vg)bg + (u” a7t v*,q)i)f_q}
(2.75)
1 o aroa PO
+ Td e"id—a)r [(uzluq + vgvq) L,bq + v_gugb_gbg
9,9
it oAt
+u ’qubq b_q:|

Therefore, within the Bogoliubov approximation the interaction of the impurity with
the atoms involves four different processes, with their relative prominence scaled by
the bath density n and the healing length £. First, the homogeneous density of the
condensed bath atoms shifts the energy of the system by an amount given by gprn.
Second, the impurity can change its momentum by creating gbk q qqﬁk or absorbing a

phonon qbk +q q¢k7 here gi)k are the field operators for the impurity. A sketch of these
processes in terms of Feynman diagrams is given in Fig. 2.4(a). Note that the charac-
teristic energy scale of such events is given by ~ E,1 = gpry/né~9. Finally, there are
additional terms describing the elastic scattering of impurities with the phonons of the
BEC x gZA)L_q,l;qu,lA)qqgk [s?e FlgA 2.4(b)] or the simultaneous creation o éL_q,_q,IA)Z,IA)LQASk
'+ q'ba'bqPxk of two phonons by the impurity [see Fig. 2.4(c)]. The
energy scale of the latter quartic terms is of the order of ~ Ep,14 = gpré —4_ Similarly to
Sec. 2.4.1 the Bogoliubov-Frohlich Hamiltonian results by neglecting the above men-
tioned quartic terms [see Fig. 2.4(b), 2.4(c)] involving two phonon operators. Within
these approximations the Bogoliubov—Fréhlich Hamiltonian reads

or absorption qg}; +q

A~

HBF Tm + - Z [hw bq + quiq-f-l (i)q + lA)Jr_q)j| , (276)

1/4
where Vg = gprv/n (2 +2€22 > refers to the |g|-dependent matrix elements of the

impurity-phonon coupling and the Hamiltonian terms that contribute as shifts of the
total energy are dropped. The fact that the quartic terms are neglected limits the
regime of applicability of Eq. (2.76) to small gpr such as Epy/Ep < 1 = gpr < he€?,
where E, = he/¢ is the characteristic energy scale of the phonons. Notice here that
except from the coupling strength of the impurity phonon coupling, o = 0423 1/ (aBBE) ~
(Epr2/Ep)?, the mass imbalance of the bath and impurity atoms mp/m; provides a
second independent dimensionless parameter of the Bogoliubov-Fréhlich Hamiltonian
giving rise to a more complex phase diagram than in the condensed matter case of Eq.
(2.69).

To comprehend the interplay of these two parameters it is helpful to transform
HBF to the frame comoving with the polaron. This is achieved via the Lee-Low-Pines
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unitary transformation [320-322] Urrp = exp(i #7- 3. a qI;jII;q) yielding

2
R 1 . s L. i
VP — g + » S {wqbgbq + V(b + bT_q)} + 2 (pl = hqbgbq> . (2.77)
q q

First, notice that [py, HLLP ] = 0 and accordingly in this frame of reference the mo-
mentum of the impurity is a constant of motion. In particular, the last term contains
a contribution that is quartic in the Bogoliubov phonon operators and thus introduces
an effective phonon-phonon interaction. The energy scale of the system is fixed by the
energy of phonons fic/¢ = v/2gppn and the impurity phonon interaction scales with
a g% ; which can be tuned by gp;. Consequently, the value of mp/m; controls the
induced phonon-phonon interaction strength. Therefore, the ultracold environment al-
lows for the systematic study of effects stemming from the Bose polaron mobility by
employing impurities of different masses m; and the phonon-impurity coupling which
is tunable by Fano-Feshbach resonances that affect gg;. Notice that the above are in
direct contrast to the small polaron model of Eq. (2.69) discussed in Sec. 2.4.1 where
the mobility of the polaron is essentially fixed by the phonon frequency as the kinetic
energy of electrons is Ex ~ h?/(2meliR) = hwrr.

2.4.3 The phase-diagram of Bose polarons

As it was made evident in the previous section the behaviour of Bose-polarons depends
on two aspects, namely, the polaron mobility and the phonon-impurity coupling which
can be controlled independently [178]. This fact results to a richer phase diagram for
the Bose polarons than their equivalent in condensed matter systems. To workout
the corresponding phases it is important to understand how the weak (Frohlich po-
laron [152]) and strong (Pekar polaron [149-151]) regimes identified for the case of the
polarons in semiconductors (see Sec. 2.4.1) translate in the case of ultracold bosons.
In the particular case of m; — oo the Hamiltonian in the frame co-moving with
the polaron, HLLP [see Eq. (2.77)], becomes quadratic and can be solved exactly by
employing a displacement operator, |¥) = exp[zq(aZ(a)l;q — aq(a)i):r])]\\I/BE@ ® |pr)
[178,323]. The state |¥pgc) corresponds to the state of the bath in the absence of
phonons, i.e. Bq\\IIBEC> = 0 for all g, and |p;) is the state of the impurity at a particular
polaron momentum pj;. This implies a finite and a-dependent number of phonons,
<\P]l;£l;q|‘ll> = laq(a)|?/2, in the ground state of the polaron and accordingly a well-
defined polaron in the heavy impurity limit. By decreasing m;/mp induced phonon-
phonon interactions are introduced, see Eq. (2.77), and the system is not exactly
solvable by the above approach. Assuming that the influence of the mobility is small
my/mp a mean-field theory can be established based on a displacement operator ansatz
similar to the solution for m; — 0 for the coupled state of phonons and impurity. The
results of this mean-field theory are to lowest order consistent with the ones stemming
from perturbation theory for small o and finite m; [178]. Accordingly, the polaron
that is described by this mean-field approach is the ultracold analogue of the Frohlich
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polaron emanating in condensed matter systems. The regime of applicability of the
Lee-Low-Pines mean field theory defines the weak coupling regime of the Bogoliubov-
Frohlich model.

Similarly to the Pekkar polaron [149-151] the strong coupling limit of the Bologoliubov-
Frohlich model corresponds to the regime where the impurity becomes self-localized due
to its large interaction with the bath phonons [180]. The state of the system in this
limit is described by a product ansatz wavefunction |Wpr) = [¥,,) ® |¥) but expressed
in terms of real space coordinates. The strong coupling wavefunction is a good ap-
proximation of the system in the case of large effective masses, implying @ < 1 and
my/mp < 1 since in this case the impurity evolves almost adiabatically in the potential
created by the phononic cloud. Notice also, that the two-ansatze are equivalent in the
my — oo limit® with both reproducing the exact solution that exists in this regime.

Therefore the mass of the impurity plays a crucial role for the Bogoliubov-Fréhlich
polaron as the weak and strong coupling limits coincide in the limit m;/mp — co. As
my/mp decreases a crossover regime between this two regions appears similarly to the
case of polarons in semiconductors. In this case, there is an open question whether this
regime can be well understood within the variational framework of Feynmann path
integral or whether in the regime mj;/mp ~ 1 a new phase consisting of a mobility
dominated polaron appears [178,323]. For three-spatial dimensions Quantum Monte
Carlo approaches [186] and Renormalization Group methods [187] have been applied
within this regime revealing that the properties of the polaronic states significantly
deviate from the corresponding predictions of the Feynman theory [160]. Their results
hint towards the emergence of a novel mobility dominated regime for the polarons at
my ~ mp and coupling strengths « lying in the crossover of the Frohlich (a« — 0) and
Pekar polaron (o — o0) regimes. However, the experimental verification of the above is
still lacking. This mobility dominated regime is particularly interesting because in novel
materials such as organic semiconductors [155-157], found e.g. in plastic photovoltaics
[324], the lattice vibrations cannot follow the movement of electrons adiabatically and
accordingly mobility effects are significant.

In the case of two-spatial dimensions, d = 2, there is no theoretical consensus on
the phase-diagram of the Bose polaron with different theoretical frameworks currently
available in the literature providing conflicting results [189, 323]. In particular, and
also to the best of our knowledge presently there is no experimental realization of
Bose polarons in two-dimensions. One-dimensional polarons are even less explored
theoretically, but experimental realizations are already present in the literature [9,89].
The study of Bose polarons within the mobility-dominated regime for 1D systems is
one of the main topics we have explored within the works [K4-K6].

SNotice that in this regime m* oc m; — oo and therefore the dispersion relation of the polaron is
pr independent, implying that localized states are eigenstates of the system.
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2.4.4 The effective potential

In section 2.4.2 we have provided the derivation of the Frohlich Hamiltonian for the
case that the system is not confined, V(r) = 0, however, if a trap is imposed to the
system there are some crucial changes that need to be considered. A particularly
important modification is that the expansion of the field operators of the bath in terms
of phonon operators changes within the Bogoliubov approximation. In order to derive
this expansion in the case that a trap is considered first the Gross-Pitaevski equation

h2
_QmB

P (r) = V2 +V(r) + gpp¥(r)*| U(r), (2.78)
where p is the chemical potential, has to be solved yielding the order parameter V(7). In
turn the order parameter corresponds to the macroscopically occupied single-particle
wavefunction of the condensate ¥(r)/\/Np. Subsequently, in order to evaluate the
phonon spectum the above mentioned Gross-Pitaevskii equation is linearized by con-
sidering small fluctuations around the order parameter and employing the ansatz,
Upag(r) = U(r)+(u(r)e™ +u* (r)e™ ). This process generates the so-called Bogolubov-
de Gennes equations of motion and their solution results to an expansion of the field
operator of the form, ¥g(r) = ¥(r) + > [u;(r)b; + v;‘(r)l;;] Plugging this expan-
sion into the bath-impurity interaction term, see Eq. (2.71), generates except from a
phonon-phonon impurity, as for the V() = 0 case, a potential term for the motion of
the impurity that reads

Vit = gt / a0 () 20 () (7). (2.79)

The scaling of this term is E.ry = gn and it is only suppressed when the interactions
between the impurity and the BEC are much smaller than the corresponding inter-
species ones of the bose gas Fer¢/E, < 1= gpr/gpp < V2. Of course, the regime of
vanishing coupling among the impurity and the BEC gp;/gpp < 1 is not particularly
interesting and accordingly as long as there is confinement in the system the effective
potential of Eq. (2.79) has to be taken into account.

For typical experimental conditions the Thomas-Fermi approximation is valid [23].
Within this approximation the kinetic energy of the condensed atoms is neglected and
the solution of the Gross-Pitaevski equation reads ¥(r) = /[u— Vp(r)]/9p0(1 —
Vp(r)). The above implies that the total confinement of the impurity becomes

VI("") - MVB(T) if VB(T) < W

9BB

Viot(T) = { Vi (r) V() > g (2.80)

where Vi(r) is the confining potential in the absence of a coupling with the bath
species (gpr = 0). Equation (2.80) reveals that the confining potential of the impu-
rities is severely modified in the presence of an interacting BEC. In particular, in the
case that the bath and impurity particles refer to the same atomic species, then the
impurity potential reads V;(r) = Vp(r), implying that the strength of the confinement
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within the BEC is renormalized by Vi(r) — (1 — gpr/g9sp)Vi(r), within the spatial
extent of the BEC. This renormalization of the impurity’s trapping potential has dire
consequences since for ggr = gpp the impurity is unconfined as long as it is within
the BEC and for gp; > gpp it is actually expelled from the spatial extent of the BEC
and phase separation is induced. On the contrary, if gg; < 0 the potential that the
impurity experiences is stronger than in its absence. An estimation of the relative
prominence of phonon-impurity interactions when compared to the effective potential

yields Eypp/Feg o % with 8 = 1/3, 8 = 1/2 and 8 = 0.6 for one, two and
three dimensions respectively. Considering that ggpNp controls the depletion of the
Bose gas and therefore cannot become arbitrarily large the above fact leads to the
conclusion that the effective potential is always more prevalent for extensive in particle
number confined BECs. The exploration of the impurity dynamics in different regimes
of gpr within the above-discussed effective potential framework consists one of the main

themes of our works [K4-K6].

2.4.5 Non-linear effects in BECs and their relevance in polaron physics

A basic feature of quasi-particles is their finite quasi-particle residue, Z = [(¥(|g| >
0)|¥(g = 0))|?, where |¥(|g| > 0)) is the state containing the quasi-particle and |¥(g =
0)) refers to the ground state of the system in the absence of coupling. Therefore, a
necessary condition for a correlated state of an impurity with the phononic excitations
of a BEC to be characterized as a Bose polaron refers to 0 < Z < 1. A famous
example where the quasi-particle picture breaks down due to the violation of the above
condition is the Anderson orthogonality catastrophe phenomenon. The latter refers
to an ensemble of polarized fermions perturbed by a localized potential. It has been
shown that in this case the overlap of states with and without the localized potential
vanishes as the N — oo limit is approached.

In the case of a BEC the concept of Anderson orthogonality catastrophe can be
generalized as follows. A BEC involves a large amount of condensed particles, N, ~
Np, with Np denoting the total number of bosons, which occupy a single mesoscopic
wavefunction (order parameter), Wo(z). Let us now assume an infinitesimally small
perturbation of Wy(z) such that Wo(z) — U((z), with [dz U(z)¥((x) =1 — 6P and
AP <« 1. Then the overlap between the resulting many-body wavefunctions will tend
to zero exponentially with the number of condensed atoms as (V| ¥})) = (1 — 6P)Ne
e 9PN The above implies that even an infinitesimal change of the order parameter of
the BEC leads to a phenomenon analogous to the Anderson orthogonality catastrophe
[190-192]. In the literature there are several processes that lead to the modification of
the order parameter of the BEC. First, note that collective modes such as the dipole
and the breathing mode of a BEC also involve alterations of the order parameter scaling
with the amplitude of the excitation. A particularly relevant example when considering
Bose polarons is the formation of solitary waves. An effect that is important on it own
right since studies both within, as well as, beyond the mean-field Gross-Pitaevskii
approximation, see Eq. (2.78), have shown that dark solitons can be spontaneously
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generated via e.g. dragging an impurity barrier through a 1D BEC. In the case of a
polaron system under consideration the impurity can be thought of as a matter-wave
barrier and as a result when its momentum becomes larger that a critical one we expect
similar to the aforementioned dynamics. Note also that the complex-valued Wy (z)
containing such a dark-soliton involves a phase winding as the spatial extent where the
dark soliton lies is crossed and as a consequence its overlap with the order parameter
in the absence of such an excitation is significantly smaller than unity, approaching
zero in the case of slow solitons. Similar effects also arise in higher dimensional setups
which include the formation of vortex and vortex line configurations in two- and three
dimensional BECs respectively when perturbed by a rapidly moving obstacle.

Another important phenomenon that might contribute to a vanishing polaron residue
is the phase separation [202-206]. This process is well studied both within the mean-
field approximation, as well as, in the correlated case [210]. It refers to the occurrence
of an instability when the interspecies interactions between two Bose gases exceed a
threshold value when compared to the intraspecies ones. Indeed, it can be shown that
for gap > \/9a49BB, Where gaa, gpp are the intraspecies interactions for the A and
B species and gap is the intraspecies interaction, the BECs are immiscible, i.e. they
tend to minimize their density overlap, while in the opposite case, gap < \/9449BB,
the gases are miscible [207]. The related dynamics occurring after this instability of
the system is triggered has been characterized, both within the Gross-Pitaevskii frame-
work, as well as in the case that correlations are properly considered [208,210]. It
has been demonstrated that upon crossing the miscibility-immiscibility threshold by
means of quenching the interspecies interaction strength, the density of the different
BEC components forms filament-like structures with a particular interaction-dependent
wave-vector [210]. Interestingly, the behaviour between this wavevector and the interac-
tion strength is modified in the presence of correlations. Of course, such fillamentation
process implies a dramatic alteration of the order parameter of the involved BECs, as-
sociated also with a significant depletion of the condensed atoms in the correlated case.
Hence, also in this case a strongly decaying overlap between the time-evolved and the
initial state is expected during the dynamics. Notice that the effective potential, Sec.
2.4.4, already hints towards the development of a phase separated state for ggr > gpp
and accordingly such a phenomenon seems to be particularly relevant in the case of
Bose polarons.

Although these non-linear dynamics are well-studied for one and two dimensional
systems, within the mean field approximation [207]. Studies that probe the beyond
mean field correlated dynamics have appeared only recently mainly focussing in the
case of 1D [208-210]. As previously mentioned polarons have been nowadays observed
only in one and three dimensions, leading to the conclusion that studying the proper-
ties of the 1D polaron offers an ideal testbed for clarifying the relation of non-linear
phenomena to the polaronic ones. Indeed, considering the possibility of emergent non-
linear excitations motivates us to conjecture that 1D Bose polarons will not be, in
principle, long-lived structures. In particular, one of our aims is to characterize un-
der which conditions the above-mentioned non-linear phenomena can lead to the de-
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cay of polaronic quasi-particles. To examine the lifetime of Bose structures a time-
resolving spectroscopic scheme needs to be employed. For this reason we rely mainly
on Ramsey spectroscopy which allows us to access the structure factor of the polaronic
state [K4,K5]. Another powerful approach employed within this thesis is pump-probe
spectroscopy [K6] which opens the possibility to investigate the dynamical formation
and decay of Bose polarons. The above mentioned spectroscopic schemes are introduced
in sections 2.5.3 and 2.5.4.

2.4.6 Extension to Fermi polarons

Ultracold atom setups allow for studying the dependence of various effects on the par-
ticle statistics [22,24]. In this spirit the Fermi polaron [98,116,117,144, 145,181, 184]
is the fermionic analogue of the Bose polaron [9, 89,91, 179, 180, 182, 183] with the
BEC being substituted by a spin-polarized Fermi gas. The two quasi-particles are
radically different since the extensive gas is a supefluid in the bosonic case [23], while
for fermions it corresponds to impenetrable particles, as two fermions cannot occupy
the same single-particle state due to the Pauli principle [146]. In addition, due to the
short-ranged character of the interatomic interactions, the particles of the Fermi gas are
not interacting among themselves and the only possible interaction channel is provided
by the impurity-bath coupling. The Fermi polaron therefore constitutes a novel and
rather interesting state of matter, that has a quite different character from its bosonic
analogue. Fermi polarons can be thought as extremely spin-imbalanced Fermi ensem-
bles [92,117,181] and therefore they can provide insights for elusive phenomena. More
specifically, Impurities possessing an attractive interaction with their environment thus
forming attractive Fermi polarons can be related to the development of a Fulde-Ferrell-
Larkin-Ovchinnikov (better known as FFLO) phase [325-327] for spin-imbalanced su-
perconductors [328]. Similarly, the lifetime of repulsive impurities forming repulsive
Fermi polarons probes the stability of an extremely spin-imbalanced repulsive Fermi
gas against the formation of Feshbach molecules and thus can be relevant for studies
of ferromagnetism [117].

Fermi polarons are well-studied in two and three dimensional setups. The quasi-
particle properties in such setups can be well-understood within the variational Frame-
work of the Chevy ansatz [329]. In particular, the state of the polaron is approximated
by

Opp) = | VZal_o+ D > bqq dbpagral o, | [FS), (2.81)

{qla<kr} {d'ld'>kF}

where a4, and &Ea correspond to the fermionic creation and anihillation operators
respectively, acting on the state characterized by the wavevector q. Here, a =1 refers
to bath fermions while o =] corresponds to the impurity. Additionaly, kr refers to
the Fermi momentum and |FS) is the state of the ideal Fermi gas (Fermi sea) of spin-
T atoms. For zero temperature [F'S) = []¢g <k d;HO}, with |0) being the vacuum
state. The Chevy ansatz, Eq. (2.81), incorporates ¢4 o as variational parameters, with
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the corresponding quasi-particle residue being Z =1 — 3 ¢ .1 D q/lg >k} g
This ansatz resembles the first-order perturbative correction to the wavefunction of a
free impurity in the presence of interactions, however, the ansatz parameters ¢4 o are
calculated variationally by the minimization of (Upp|Hj|Wpp) [329], where Hj, is given
by Eq. (2.23). This seemingly ad hoc approximation is supported within diagrammatic
methods. Indeed, the variational minimalization of (¥pp|Hj,|¥rp) can be shown to be
equivalent to truncating the self-energy of the impurity, ¥(p; E), to the first non-trivial
order of the corresponding the ladder expansion [330,331].

The Chevy ansatz reproduces the energy of the repulsive and attractive polaron
for positive and negative scattering lengths exhibited respectively in 3D fermionic en-
sembles [135,144]. Noticeably, it has been shown experimentally that the attractive
polaron persists for strong positive scattering lengths, a > (0.847kr)~!, in agreement
to the Chevy ansatz prediction [144]. In addition, the Chevy ansatz possesses also sup-
port from ab initio methods since its predictions are largely reproduced by employing
Quantum Monte Carlo calculations [332,333]. Surprisingly, the Chevy ansatz seems
to be adequate to characterize the Fermi polaron on the wavefunction level. Indeed,
the quasi-particle residue and effective mass of the Fermi polaron is well-predicted as
comparisons with experiment [135,334,335] and Quantum Monte Carlo reveal [186].
The Chevy ansatz is also effective in correctly characterizing the Fermi polaron in 2D
ensembles [116]. This large success of Chevy ansatz, despite its simplicity, is quite
surprising, leading some authors to investigate the underlying theoretical reasons that
lead to its remarkable accuracy [332,336].

However, it is not clear whether a similar expansion can be employed to describe
1D setups. This is because of the concept of the Anderson orthogonality catastrophe
[190-192]. Indeed, it can be shown that the Anderson orthogonality catastrophe is
exhibited for all different impurity-bath mass ratios for an 1D system [191,192]. In
particular, the overlap between the interacting state of a system consisting of Ny 41
atoms, Wy, 11,) and the corresponding non interacting ground state |Wy,) ® |¥y,)

decreases with system size as (Un,41,| [|¥n,) ® |¥1))] o NT_'Y/2, where v > 0 is a
constant depending on the mass ratio m4/m, and interaction strength g. This result
implies that Z — 0 for Ny — oo, invalidating any expansion similar to Eq. (2.81) as
it implies the generation of an infinite series of particle-hole excitations. Equivalently,
it implies that quasi-particles such as the Fermi polaron cannot exist in one-dimension
[186,337,338]. Nevertheless, a recent experiment has shown [185] that thermodynamic
properties of the Ny + 1; 1D Fermi system [339,340] can be reclaimed for Ny as low
as Ny = 8. Owing to this experimental advance it is not clear whether the Anderson
orthogonality catastrophe precludes the creation of a well-defined Fermi polaron. The
exploration of this possibility is the main topic of our work [K3].

2.5 Radiofrequency spectroscopy

The purpose of this section is to outline several applications of radiofrequency spec-
troscopy for the study of ultracold atoms [143,220]. Within this section we treat atoms
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mainly as two level systems, an approximation which within the context of many ultra-
cold experiments is excellent, see also Sec. 2.1. Indeed, in such setups magnetic fields
of the order of 100 G are employed allowing for the selective coupling of individual
hyperfine states by radiofrequency fields [125,246,274]. This selective coupling stems
from the large quadratic Zeeman shift within this regime that heavily detunes all other
possible transitions except the selected one [274]. Another important feature of ultra-
cold atom setups is their relatively long timescales of time-evolution that range from
a few to hundreds of ms, referring to the center-of-mass motion of the atoms [22,23].
In addition, the exhibited coherence times are even longer exceeding the timescale of
a second. The above allow for the application of both adiabatic and diabatic spec-
troscopic techniques, where the particles are transferred among the different hyperfine
levels within much longer or shorter timescales with respect to their center-of-mass
motion, respectively [143]. The large coherence time also allows for any decoherence
effects to be neglected within a good approximation.

In the following we analyze the basic features of adiabatic and diabatic spin-
dynamics and its relevance for spectroscopic applications by utilizing a simple example
system. Subsequently, we examine the protocols of injection, ejection, Ramsey and
pump-probe spectroscopy and outline their relevance for probing ultracold atom se-
tups.

2.5.1 Adiabatic and diabatic spin-dynamics and importance for spec-
troscopic applications

Understanding how particles move when subjected to out-of-equilibrium scenarios in-
volving interactions among themselves and their environment is one of the key paradigms
of the study of ultracold atoms [37]. Of course, in order to address this dynamics tun-
able probes should be developed that are sensitive to the details of atomic motion.
For the construction of such probes it is particularly important that the correlations
of the state of the probe and its environment are well-understood such that useful
information about the latter can be obtained upon studying the former. Within ra-
diofrequency spectroscopy the motional (center-of-mass) state of the atoms is coupled
with an additional (pseudo)spin degree-of-freedom referring to their internal atomic
hyperfine state [91,98,116,144,182,183]. As discussed in previous sections [see e.g. Sec.
2.2 and Sec. 2.3] such processes can possibly give rise to complex correlated dynamics
and novel emergent phenomena (see also [K1,K2]). However, despite the fundamental
interest in understanding the dynamics within these regimes, the latter are not relevant
for spectroscopic applications since they are currently not well-understood. In contrast,
within the regimes where the transfer between the different hyperfine levels is either
much slower (adiabatic) or much faster (diabatic) than the corresponding timescale of
atomic motion, the spin dynamics are predictable and well-characterized. In partic-
ular, this controllable dynamics provides important information for the state of the
system [143]. Indeed, for diabatic spectroscopy’ the spatial distribution and coher-

"Henceforth with the term diabatic or adiabatic spectroscopy we denote the spectroscopic techniques
utilizing pulses that induce diabatic or adiabatic spin-transfer dynamics respectively. Notice that the
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ence of the atomic wavepacket is probed, while for adiabatic spectroscopy information
regarding the energy content in terms of eigenergies and eigenstates of the system is
accessible.

A. Example model

In order to provide a clearer picture for adiabatic and diabatic spectroscopy, we present
here a simple example that allows for the identification of the basic features of both
regimes of spin-dynamics. We consider a single atom in a spin-dependent harmonic trap.
This simple model allows for a comprehensive understanding of the basic principles
of the different spectroscopic schemes since it allows for the coupling of the atomic
spin and motion, without the inclusion of complicating factors occurring in interacting
many-body systems. The Hamiltonian of the system reads

h2 d2 2 ~ ~
O T P
ae{td}
mw? ~ hQR(1) (”r r 72% 7

+ ?(x — 1) %Z)T( (@) + 2

-5 (@) ~ @) |

where m is the atomic mass, w and xg refer to the trapping frequency and the spatial
offset of the parabolizc confinement of the spin-1 with respect to the spin-| ones. Finally,
T(QRt
Qr(t) = Qre (ﬁ : corresponds to the Rabi frequency of the Gaussian-shaped pulse
with phase angle ¢. The Gaussian shape of this pulse enables the different broadening
effects to be distinguished from one another while being of experimental relevance [143].
Finally, A is the detuning of the pulse with respect to the atomic transition. An
important aspect in the following is that for an isolated spin the probability to find a
particle in the spin-1 state is given for 0 < ¢ < 7 by a Gaussian distribution having

the form ,
Pi(A, ¢) = sin? (?) exp [ w2 <¢> (Aﬂ] : (2.83)

The inverse width of the lineshape is W (z) ~ /7/2z + 0.07771 x 2> within an
accuracy of 1074, Here, the first term is determlned by employing first-order time-
dependent perturbation theory and the second one by fitting an exponential function to
the exact data for W (z) — /7 /2z. The increase of the width of the Gaussian lineshape
exhibited in Eq. (2.83) is an example of a power broadening [219]. The amplitude
of the Gaussian is exactly sin?(¢/2) being a manifestation of the so-called pulse-area
theorem [219]. This theorem states that for A = 0 the transfer efficiency between the
states depends only on the time integral of the pulse intensity ¢ = f_oooo dt Qg(t) rather
than its shape.

corresponding pulses will also be referred to as diabatic or adiabatic ones.
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As a last remark notice the use of the rotating wave approximation in Eq. (2.82).
The rotating wave approximation is excellent in the relevant regime for spectroscopic
applications in ultracold ensembles addressing different hyperfine levels. This is due to
the fact the typical energy scale of the hyperfine splitting is A x MHz, while the intended
Rabi frequencies, being of the order of the inverse timescale of atomic motion Qp ~kHz,
are much smaller.

B. Diabatic regime

Diabatic spin-dynamics occurs when the motion of the particles can be neglected within
the timescale that the spins transit between the spin-{ and spin-| states. In the simple
model of Eq. (2.82) the timescale for spin-transfer is given by 7m/Qg, while the atomic
motion occurs within ~ 7/w. Accordingly, the diabatic regime is accessed for Qr > w.
Due to the inability of atoms to move for ¢ < 7/Qp within this regime the kinetic energy
in Eq. (2.82) can be neglected. In this case the Hamiltonian can be approximated by
an integral over localized spins, i.e. H ~ Ho + [ dz lﬁl(x), with

A(w) "8I () @) + 0] @) (@)
1

A ’ A A (2.84)
~1 (2hA — mw?af — 2mwzor) (wi(x)zm(x) - 1/)1(@@%(:5)) ,

and Hy denoting a spin-independent term contributing to a net shift of the energy

Hy = i/dx [mw?®z? + mw?(z — 20)?] (1[4(@@%(&8) + @I(m)zﬁ(x)) . (2.85)
Accordingly, in the diabatic limit the spin-dynamics of the itinerant spin can be mapped
to an analogous system consisting of an ensemble of localized and non-interacting spins.
This ensemble possesses a spatially dependent detuning and its dynamics is driven by a
homogeneous in space pulse. The absence of effective spin-spin interactions is indicative
of the semiclassical nature of this approximation. Assuming that initially the system
is prepared in the ground state of the spin-] configuration subject to Eq. (2.84), the
probability to find a spin-1 particle after the application of the pulse is

=i+ (%) }} at (2)

o ) (a-E) .
AR OE

where ay = \/h/(mw) is the confinement length scale. The result of Eq. (2.86) provides

a great insight into the dynamics. First, the spectrum exhibits a single peak at the
mw2x(2)
2

position AA = , which corresponds to the energy expectation value of a coherent

64



RADIOFREQUENCY SPECTROSCOPY

state with average zero momentum and displaced by xg from the trap center. Indeed,
within the diabatic regime the spatial distribution of the atom cannot change during the
short timescale of transfer among the hyperfine states. Accordingly, the atom transits
from its ground state for spin-| to a coherent state for spin-1 that possess a spatial
wavefunction equivalent to the initial one. Note here that the prefactor of the Gaussian
distribution is smaller than unity even in the resonant case, namely A = mw?x3/2 [see
Eq. (2.86)] revealing that the transfer of spin-] atoms to the spin-1 state is not perfect.
In particular, it reduces the fraction of the displacement, g, over the trapping length-
scale, as oy increases. Nevertheless, this correction is relatively small as it is scaled by
w/Qr < 1 within the diabatic regime. The origin of this correction can be traced back
to Eq. (2.84), where it can be seen that the spatially dependent detuning is a linear
function of x with the slope given by zg. Of course, if the slope of the detuning is large,
then some parts of the density of the spin-| atom will lie beyond the resonance condition
of the pulse