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Zusammenfassung

Ultrakalte Quantengase bieten eine gut kontrollierbare und variable Plattform zur
Untersuchung von Effekten, die von Quantenkorrelationen herrühren. Diese beiden
Eigenschaften machen sie zu idealen Kandidaten für die Realisierung von Quantensim-
ulatoren. Insbesondere bieten ultrakalte Atome den Rahmen für den Aufbau von Ver-
suchsanordnungen, die theoretischen Modellen eng entsprechen, die zur Beschreibung
der Quanten-Vielteilchendynamik vorgeschlagen wurden, die z. B. in korrelierten Mate-
rialien vorkommt. Ein wichtiges Merkmal der atomaren Ensembles ist die Möglichkeit,
Aufbauten mit Spinor-Charakter zu realisieren. Ultrakalte Spinor-Atome ermöglichen
die Untersuchung von Quantensystemen, die grundsätzlich auf dem Vorhandensein eines
Spin-Freiheitsgrades beruhen, und die Implementierung hochgradig kontrollierbarer
Sonden zur Verfolgung der Eigenschaften einer größeren Klasse von Quantensystemen
inner- und außerhalb des Gleichgewichts. Diese beiden Grenzbereiche von ultrakalten
Spinor-Atomen bilden die beiden Schwerpunkte unserer Studien. Zur Erforschung der
Feinheiten der Dynamik von Spinor-Ensembles verwenden wir eine hochentwickelte
ab-initio-Variationsmethode für die zeitliche Entwicklung der Vielkörper-Schrödinger-
Gleichung, nämlich die Multi-Layer Multi-Configuration Time-Dependent Hartree Meth-
ode für atomare Mixturen oder ML-MCTDHX.

Der erste Teil dieser Arbeit erforscht den itineranten Ferromagnetismus in ultra-
kalten Atomen. Diese Form des Ferromagnetismus beeinflusst die magnetischen Eigen-
schaften von Metallen und ist einer der fundamentalsten Effekte, die durch den Spinor-
charakter der Elektronen entstehen. Sein Auftreten wird üblicherweise mit starken
kurzreichweitigen abstoßenden Wechselwirkungen zwischen Elektronen mit entgegenge-
setzten Spins assoziiert, die den kinetischen Energievorteil ihrer Paarung im gleichen
Einteilchenzustand aufheben. In einem solchen Rahmen ist das Phänomen des Fer-
romagnetismus mit der Spinpolarisation des Ensembles verbunden. Unsere Studien
konzentrieren sich genau auf die Entschlüsselung dieser Beziehung, indem wir die korre-
lierte Dynamik von eindimensionalen ultrakalten Systemen untersuchen, initialisiert in
Konfigurationen, die als ferromagnetisch gelten. Insbesondere untersuchen wir die Sta-
bilitätseigenschaften eines parabolisch gefangenen und spinpolarisierten Fermi-Gases
weniger Teilchen, wenn es durch ein transversales inhomogenes Magnetfeld gestört
wird. Wir zeigen, dass der spinpolarisierte Zustand, der als der Gleichgewichtszustand
eines Ferromagneten im Limes starker Wechselwirkungen vorhergesagt wird, inhärent
instabil ist. In ähnlicher Weise wird gezeigt, dass ein Doppeltopf-Aufbau, der in
einer Domänenwand-Struktur aus Spin-Up- und Spin-Down-Atomen initialisiert wurde,
sich zu einem Zustand mit mischbaren Spinkomponenten entwickelt, im Gegensatz zu
den üblichen Ansichten über Ferromagnetismus, wo solche phasengetrennten Zustände
für moderate Abstoßungen stabil sind. Trotz der scheinbaren Abwesenheit ferromag-
netischen Verhaltens bleiben in beiden Fällen die Spin-Spin-Korrelationen zwischen
den Atomen während der dynamischen Entwicklung weitgehend ferromagnetisch, was
auf einen anderen Mechanismus hinter der Stabilität der ferromagnetischen Ordnung
auf der Ebene der Korrelationen zwischen den Teilchen hindeutet. Dieser Mechanis-



mus kann durch die Konkurrenz zwischen Spin-Spin-Wechselwirkungen ferromagnetis-
chen und antiferromagnetischen Charakters beschrieben werden, die aus dem wechsel-
wirkungsgetriebenen beziehungsweise kinetischen Spin-Austausch der Atome entstehen.
Wir zeigen explizit die Existenz dieser Mechanismen und erfassen ihren Haupteinfluss
auf die Zerfallsdynamik der Spinpolarisation, indem wir ein geeignetes Spin-Ketten-
Modell verwenden. Wichtig ist, dass durch dieses Zusammenspiel der Wechselwirkun-
gen die Erzeugung von Quantenkorrelationen höherer Ordnung und von Verschränkung
aufgedeckt wird. Unsere Ergebnisse liefern einen Ausgangspunkt für die Entwicklung
einer Bottom-up-Charakterisierung des itineranten Ferromagnetismus, basierend auf
der Konkurrenz zwischen den ferromagnetischen und antiferromagnetischen Korrela-
tionen, die auf einer fundamentaleren Ebene liegen als die bisher vorgeschlagenen en-
ergetischen Argumente.

Der zweite Teil dieser Arbeit befasst sich mit der Verwendung von Spinor-Fremdteilchen
als Sonden für die Quantendynamik von Fermi- und Bose-Polaronen. Ein Polaron ist
ein besonders wichtiges Quasiteilchen in den Materialwissenschaften mit einer Vielzahl
von Anwendungen. Es besteht aus einer Fremdteilchen, die von der Wolke der An-
regungen des Mediums, in dem es sich befindet, umhüllt wird. Diese zusammenge-
setzte Struktur bildet eine eigenständige Einheit mit stark veränderten Eigenschaften
im Vergleich zu einer isolierten Fremdteilchen. Unsere Schlüsselbeiträge zu diesem
Thema sind die Identifizierung eines wohldefinierten Fermi-Polarons für repulsiv wech-
selwirkenden eindimensional gefangenen fermionischen Ensembles und der dynamische
Zerfall des Bose-Polarons im entsprechenden bosonischen Fall. Insbesondere zeigen
wir, dass eine Fremdteilchen, eingebettet in ein eindimensionales Wenig-Körper-Fermi-
Gas aus leichteren Atomen polaronische Eigenschaften annimmt, wie sie durch seine
Energie, sein Residuum und seine Kohärenz angezeigt werden, im Gegensatz zum
Rahmen der Anderson-Orthogonalitätskatastrophe. Weiter haben wir das Phänomen
der zeitlichen Orthogonalitätskatastrophe in Bose-Polaronen aufgedeckt und charak-
terisiert. Insbesondere zeigen wir, dass nicht-perturbative nicht-lineare Prozesse die
Lebensdauer von Bose-Polaronen für starke Wechselwirkungen zwischen dem Medium
und dem Fremdteilchen begrenzen. Für die Erforschung dieses Effekts schlagen wir eine
neue Generation von Experimenten vor, die auf zeitabhängigen spektroskopischen Tech-
niken basieren, und analysieren sie theoretisch. Genauer gesagt, zeigen wir, dass die
Ramsey-Spektroskopie in der Lage ist, den Zusammenbruch des Polaron-Bildes zu iden-
tifieren. Ebenso ist die Pump-Probe-Spektroskopie dazu geeignet, die Lebensdauer des
Bose-Polarons und die Tendenz des Medium-Fremdteilchen-Systems zur Eigenzustands-
Thermalisierung zu erforschen. Darüber hinaus wurden schwer fassbare Eigenschaften
von eindimensionalen Bose und Fermi-Polaronen identifiziert und quantifiziert, wie
z. B. ihre Quasiteilchen-Residuen, ihre Energien und die effektiven Polaron-Polaron-
Wechselwirkungen im Fall von mehrfachen Fremdteilchen. Unsere Ergebnisse verdeut-
lichen die Bedeutung nichtlinearer Prozesse für die adäquate Beschreibung der ko-
rrelierten Dynamik polaronischer Quasiteilchen und eröffnen unerforschte Wege für
zukünftige Forschung.
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Abstract

Ultracold quantum gases offer a well-controlled and tunable platform to examine ef-
fects stemming from quantum correlations. Both of these properties render them ideal
candidates for realizing quantum simulators. In particular, ultracold atoms provide
the framework for building up experimental setups corresponding closely to theoreti-
cal models proposed to describe the quantum many-body dynamics exhibited e.g. in
correlated materials. An important feature of the atomic ensembles is the feasibility
to realize setups of a spinor character. Spinor ultracold atoms enable the investiga-
tion of quantum systems relying fundamentally on the presence of a spin degree-of-
freedom, and the implementation of highly tunable probes for tracking the in- and
out-of-equilibrium properties of a wider class of quantum setups. These two frontiers
of spinor ultracold atoms constitute the two focal points of our studies. To tackle
the intricacies of the dynamics of spinor ensembles we employ a highly-advanced ab
initio variational method for the time-evolution of the many-body Schrödinger equa-
tion, namely the Multi-Layer Multi-Configuration Time-Dependent Hartree Method
for Atomic Mixtures or ML-MCTDHX.

The first part of this thesis explores itinerant ferromagnetism in ultracold atoms.
This form of ferromagnetism affects the magnetic properties of metals and it is among
the most fundamental effects emanating due to the spinor character of electrons. Its
onset is commonly associated to strong short-range repulsive interactions between elec-
trons with anti-aligned spins, that negate the kinetic energy benefit of their pairing
in the same single-particle state. Within such frameworks, the phenomenon of fer-
romagnetism is connected to the spin-polarization of the ensemble. Our studies fo-
cus exactly on unraveling this latter relation, by studying the correlated dynamics
of one-dimensional ultracold systems, initialized in configurations which are deemed
as ferromagnetic. In particular, we study the stability properties of a parabolically
confined few-body and spin-polarized Fermi gas when perturbed by a transverse inho-
mogeneous magnetic field. We reveal that the spin-polarized state, predicted to be the
equilibrium state of a ferromagnet in the strong interacting limit, is inherently unsta-
ble. Similarly, a double-well setup initialized in a domain-wall structure of spin-up and
spin-down atoms is shown to evolve to a state with miscible spin-components, in con-
trast to the usual views on ferromagnetism where such phase-separated states are stable
for moderate repulsions. Nevertheless, despite the apparent absence of ferromagnetic
behaviour, in both cases the spin-spin correlations among the atoms remain largely fer-
romagnetic throughout the dynamical evolution, hinting at the existence of a different
mechanism behind the stability of ferromagnetic order on the level of interparticle cor-
relations. This mechanism can be characterized by the competition between spin-spin
interactions of ferromagnetic and antiferromagnetic character, which emerge from the
interaction-driven and kinetic spin-exchange of the atoms, respectively. We explicitly
demonstrate the existence of these mechanisms and capture their main influence in the
decay dynamics of the spin-polarization, by employing an appropriate spin chain model.
Importantly, due to this interplay of interactions the generation of higher order quan-



tum correlations and entanglement is revealed. Our findings provide a starting point
for developing a bottom-up characterization of itinerant ferromagnetism based on the
competition between the ferromagnetic and antiferromagnetic correlations, which lie at
a more fundamental level than the energetic arguments proposed thus far.

The second part of this thesis regards the use of spinor impurities as probes of the
quantum dynamics of Fermi and Bose polarons. A polaron is a particularly important
quasi-particle in material science with a wide range of applications. It consists of an
impurity dressed by the excitation cloud of its host. This composite structure forms a
distinct entity, with severely altered properties, compared to an isolated impurity. Our
key contributions in this topic are the identification of a well-defined Fermi polaron for
repulsively interacting one-dimensional confined fermionic ensembles and the dynami-
cal decay of the Bose polaron in the corresponding bosonic case. In particular, we show
that an impurity embedded in an one-dimensional few-body Fermi gas of lighter atoms
accumulates polaronic properties, as indicated by its energy, residue and coherence,
in contrast to the framework of the Anderson orthogonality catastrophe. Further-
more, we have unveiled and characterized the phenomenon of temporal orthogonality
catastrophe in Bose polarons. In particular, we show that non-perturbative non-linear
processes limit the lifetime of Bose polarons for strong impurity-host repulsions. For
the exploration of this effect we propose and theoretically analyze a new generation of
experiments based on time-dependent spectroscopic techniques. More specifically, we
demonstrate that Ramsey spectroscopy is able to identify the break down of the po-
laron picture. Similarly, pump-probe spectroscopy is adequate for exploring the lifetime
of the Bose polaron and the tendency of the bath-impurity system towards eigenstate
thermalization. In addition to the above, elusive properties of one-dimensional Bose
and Fermi polarons were identified and quantified such as their quasi-particle residua,
their energies and the effective polaron-polaron interactions in the case of multiple im-
purities. Our findings outline the importance non-linear processes for the adequate
description of the correlated dynamics of polaronic quasiparticles and opens up several
unexplored avenues of future research.
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Chapter 1

Introduction

Ever since the experimental realization of the first atomic Bose-Einstein Condensate
(BEC) [1,2] ultracold atoms have been a fertile platform for comprehending the complex
physics of many-body systems deep in the quantum regime. Advances in trapping
and cooling techniques have allowed for the realization of elaborate physical scenarios,
involving the controlled confinement of a single or multiple species [3–10] of atoms in
different hyperfine [11–14] or electronic states [10,15,16]. In particular, atomic species
of bosonic [6, 9, 11, 17–19] and fermionic character [8, 20, 21] or even mixtures thereof
[3–5, 7, 10] can be generated and cooled all the way to quantum degeneracy, enabling
not only the observation of bosonic [22,23] and fermionic [22–24] superfluidity but also
the study of the impact of different particle statistics on various quantum phenomena
[22, 24]. Regarding their confinement, a large variety of external potentials including
for instance, ring shaped [25–28] and box-like [29–32] geometries can be generated.
Atomic ensembles in one or two spatial dimensions have been also realized [33–35] and
intensively studied [23, 36], as well as, lattice potentials of various symmetries [37],
with some exotic examples including the honeycomb [38–40] and the Lieb lattices [41].
This tunability of the external confinement allows for the study of several geometric
effects enabling, among others, for the study of Luttinger-liquids [36,42–47], Josephson
junctions [48–51], bosonic [52–55] and fermionic [56–62] Hubbard models and even
topological phenomena [63–76]. The above technological advances combined with the
precise control of interatomic interactions with the aid of Fano-Feshbach resonances [77]
lead to a new era of investigations as they allowed for the long sought after precise analog
quantum simulation of condensed matter models [78–80] and further the generation and
characterization of unexplored new quantum phases of matter [36,81–86].

Out of this plethora of experimentally realizable setups we choose herein to unravel
the physics of ultracold atoms involving spin degrees-of-freedom [14, 87, 88]. Under-
standing the physics emanating in spinor ensembles is paramount, both in terms of
exploring their intrinsic phenomenology, as well as, exploiting their properties to real-
ize novel probes for the ultracold dynamics [89–93]. On the one hand, the almost perfect
isolation of ultracold atoms from environmental effects provides a simpler means to ex-
plore the effect of spin on their equilibrium properties and dynamics. On the other
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INTRODUCTION

hand their well-controlled nature offers a platform for experimentally addressing the
effects of theoretically proposed physical mechanisms to the dynamical and equilibrium
properties of quantum matter. In this thesis we exploit the above mentioned bene-
fits of ultracold atoms and apply them to two systems relevant for condensed matter
physics. Regarding the inherent properties of spinor systems one of the most inter-
esting topics constitutes the ferromagnetic properties of repulsive itinerant spin-1/2
Fermi gases [94–101]. In particular, the mechanism behind the emergence of ferromag-
netism [102,103] in metals is conjectured to be related to the interplay of kinetic energy
and interaction [104].

Since 2009, spinor degenerate Fermi gases have been used for the investigation of
magnetic properties of interacting fermions. Early studies [94, 96] have focussed on
examining the validity of the Stoner instability [104]. The latter states that when
the interaction energy of short-range repulsively interacting spin-1/2 fermions exceeds
the kinetic energy contribution, the system becomes ferromagnetic in the sense that it
develops a large spontaneous magnetization of the constituting spins. The concept of
the Stoner instability superseded the model of Bloch ferromagnetism [105,106] relying
on the long-range character of the Coulomb interaction, as it proved to be successful in
identifying the common ferromagnetic metals of iron, nikel and cobalt [107]. However,
even shortly after the conceptualization of this instability mechanism in 1930s, a large
amount of issues regarding this description of itinerant ferromagnetism has emerged
[108–112]. Nevertheless, the Stoner instability even to date is regarded as the proper
way to qualitatively understand the phenomenon of metallic ferromagnetism [113,114].

The reliance of the Stoner instability on short-range interactions that naturally
emerge in degenerate Fermi gas ultracold experiments, and the poorly understood in-
tricacies it involves regarding its validity, rendered ultracold gases a promising venue
for the exploration of ferromagnetism [94]. An important problem in the realization of
repulsively interacting Fermi gases is that they constitute a metastable state [115–117],
since for repulsive interactions the eigenspectrum of two- and three-dimensional Fermi
gases features a shallow bound state [77]. Indeed, three-body recombination pro-
cesses [118–121] lead to the formation of Feshbach molecules, resulting in unavoidable
atom losses and reducing the lifetime of repulsive Fermi gases. Nevertheless, the Ket-
terle group in 2009 [94] claimed the identification of a ferromagnetic instability by iden-
tifying a maximum atom loss rate and size of the gas accompanied by a minimum kinetic
energy when the interaction strength of a Fermi gas is suddenly increased (quenched)
to the strong interaction regime. These observations thought to be related to a Stoner
instability but importantly they lacked a direct probing of the spin-configuration of
the system. In fact, later [95] it was realized that these features can be explained via
a resonant enhancement of the two-body Feshbach molecule formation, which domi-
nates the processes related to the Stoner instability for all interaction strengths. In
a followup experiment [96] it was indeed found that the spin fluctuations experienced
in this regime are not consistent with a ferromagnetic instability and it was verified
that the formation rate of ferromagnetic domains is lower than the rate of creation
of Feshbach molecules. Essentially, with this experiment [96] the results of Ref. [95]
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were verified, leading to the temporary conclusion that the Stoner instability cannot
be identified in ultracold atomic systems.

Research of ferromagnetic phenomena in degenerate ultracold Fermi gases has been
reinvigorated, following the experiment of Ref. [97] which demonstrated that the phase
separated state, where spin-↑ and spin-↓ atoms form a domain wall structure, is metastable
[122]. The latter hinted that the ferromagnetic properties of ultracold Fermi gases can
be identified indirectly by studying the decay dynamics of metastable states. This
proposal was advanced further in recent studies involving pump-probe spectroscopy
[100, 101]. These works explicated that the formation of microscopic sized ferromag-
netic domains, possessing a size of the order of the interatomic separation, is faster than
the molecular decay [100]. It was further suggested [101] that these ferromagnetic do-
mains coexist with the Feshbach molecules in an inhomogeneous metastable state which
can be characterized as a “quantum emulsion” of the two phases (see also [123, 124]).
The claim of microscopically sized and emulsified ferromagnetic domains is supported
by the selective spectroscopy of the atoms not paired in Feshbach molecules, which are
found to possess properties similar to spin-polarized fermions [101]. Nevertheless, owing
also to the complex character of such a possible emulsified state there is a large amount
of open questions regarding the nature of the ferromagnetic properties emanating in
ultracold quantum gases. The most crucial of these questions is whether the emergence
of ferromagnetism can be solely attributed to the competition between the kinetic and
interaction energy of fermionic spinor ensembles [113, 114], supporting then a physical
mechanism in the spirit of the Stoner instability [104]. In this case, understanding,
also, the role of different kinds of exchange interaction processes in the formation of
ferromagnetic domains might be crucial in reconciling the Stoner framework with its
numerous criticisms [108–112].

In this thesis we propose an alternative approach to tackle ferromagnetism in ul-
tracold atom systems by invoking one-dimensional (1D) ensembles [125, 126]. One-
dimensional ultracold fermions have the benefit that they do not feature a weakly
bound Feshbach molecule state for effectively positive interactions [127]. As such, the
repulsive Fermi gas is largely stable against three-body recombination [118–121]. In
addition, it has been shown that the static properties and dynamics of 1D fermions,
both in the strong (near infinite) [128–133] and weak (near zero) [134, 135] interac-
tion regime, can be mapped to those referring to an appropriately chosen spin-chain
model. The advantage of such spin-chain models is that they provide an ideal can-
didate for exposing the magnetic properties and microscopic mechanisms of itinerant
systems. More specifically, the well-behaved nature of spin-chain models [107] allows
us to perceive the intricate magnetic interactions of the itinerant systems that they
approximately describe. Moreover, 1D fermions involve several intriguing unresolved
questions regarding the role of the breaking of the SU(2) symmetry, associated with
the total spin of the Fermi gas, and the relation of magnetic properties to phase sep-
aration [130, 135–138] which we address within our studies. Particularly, our research
reveals that the ferromagnetic correlations emanating in the 1D ensembles are not con-
nected to the emergence of spin-polarization [K1] or phase separation [K2] among the
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spin-components, as proposed by the Stoner model. Instead, ferromagnetic proper-
ties emerge due to the competition of effective spin-spin interactions originating from
interaction-driven [139–141] and kinetic [142] spin-exchange of the atoms respectively.
Our findings motivate an altered framework for characterizing itinerant ferromagnetism,
based on the interplay of ferromagnetic and antiferromagnetic spin-spin correlations,
that generalizes the energetic arguments inherent in the Stoner model.

The importance of spinor atoms in ultracold setups is not exhausted by the involved
dynamics and stationary properties of spinor gases. Indeed, the spin degree of freedom
offered by one or several spinor impurities immersed in a more extensive atomic back-
ground allows for probing the structures and properties emanating in such composite
systems. In particular, ultracold atoms enable the application of various spectroscopic
techniques [143] such as injection [144], ejection [91, 116], Ramsey [145] and pump-
probe [100,101] spectroscopy, allowing for tracking a large class of observables that are
otherwise difficult to measure. Spectroscopic studies provide information regarding the
energy content of a quantum system both in the equilibrium case, as well as, during
its dynamics. Notice that typically ultracold experiments employ absorption or fluo-
rescence imaging [22] where such energy probes are difficult to obtain. In addition,
spectroscopic tools enable the investigation of the overlap between distinct many-body
states of a system [146]. Spinor impurities when combined with spectroscopic tech-
niques provide ideal probes for the few-body or collective excitations of many-body
systems, since the properties of the composite impurity-environment system can be
mapped to the spin-state of the impurity [92,147]. Therefore, understanding the prop-
erties of extensive quantum gases containing a small number of impurity atoms is a
highly relevant application of spinor quantum gases and for this reason consists the
second focal point of our work.

The concept of quasi-particles is a cornerstone of impurity physics. Quasi-particles
refer to composite structures consisting of excitations and/or particles that collectively
propagate, similarly to a new species of particle [148]. One of the first kinds of quasi-
particles examined is the so-called polaron [149–152]. The original concept of a polaron
emerges in condensed matter setups involving deformable crystal structures and itiner-
ant electrons [153]. Such polarons emerge in several classes of technologically relevant
materials such as polar semiconductors and ionic crystals [154], organic semiconduc-
tors [155–157] and even transition metal oxides [158,159]. In these systems it was found
that the motion of electrons leads to deformations of the crystal lattice, i.e the genera-
tion of phonons [153], giving rise to significant modifications of the conduction proper-
ties of the material [152]. In particular, the electrons in these materials are dressed by a
cloud of phonons forming a quasi-particle, which is heavier and subsequently less mobile
than the original electron [152], especially for strong electron-phonon couplings [151].
Besides the different effective mass compared to an electron, the polaron exhibits only
partial coherence (due to the involved phononic excitations of the crystal) which is
quantified by its residue/quasi-particle weight [152, 160]. Another intriguing aspect of
polaron physics is the effective interactions between different polarons [161] which are
mediated by their host. These interactions stem from the exchange of background ex-
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citations among the different polarons and are always attractive, even though the bare
particle-particle or particle-background interactions might be repulsive. The formation
of two-body bound states of polarons referred to as bipolarons [162] is especially impor-
tant in condensed matter setups as it has been proposed to explain phenomena such as
the electric conductivity of polymers [163,164] and the organic magnetoresistance [165].
Interestingly, a bipolaron theory for explaining the phenomenon of high-temperature
superconductivity for a certain class of materials has been formulated [166–169], but to
date it remains unclear whether this scenario is realizable [170,171]. This original con-
cept of a polaron has been generalized and extended to different setups, including for
instance the small [172, 173], magnetic (or spin) [174] and the exciton polarons [175],
adhering also to different disciplines of physics such as atomic [176] and even bio-
physics [177].

Despite the above mentioned widespread realizations of polaronic quasi-particles
and the presence of several distinct classes of related theoretical models, the behavior
of setups involving highly mobile impurities is far less explored [178], especially in the
intermediate interaction range where the impurity is neither self-localized or weakly in-
teracting with its environment. Ultracold settings allow the control of impurity mobility
as both homonuclear [91,144] and heteronuclear [116] atomic mixtures can be realized
which, in addition, offer tunable interparticle interactions [127]. For these reasons re-
cently there was a immense interest in realizing polarons with mixtures of ultracold
atoms which probe this largely unexplored regime [179]. Moreover, except the scenario
of a bosonic background (Bose polaron) [179,180] as in the case of electron-phonon cou-
pling, ultracold atoms also allow for a fermionic environment giving rise to the so-called
Fermi polaron [117, 181]. It is worth mentioning here that the dimensionality of the
background gas is also tunable by manipulating the external confinement [19,34,35]. To
date both Bose [91, 182, 183] and Fermi [98, 116, 144,145] polarons in three-dimensions
have been realized experimentally and their equilibrium properties have been probed
mainly via injection and ejection spectroscopy techniques. Additionally, there exists
a realization of the Fermi polaron in two dimensions [184] and several aspects of the
impurity problem in 1D have been explored both in the fermionic [185] and the bosonic
case [9, 89]. These experimental advances sparked a renewed interest in theoretically
describing the properties of those quasi-particles and in the development of existing
and novel approaches for their study [186–189]. Importantly, the presence of polarons
in an ultracold setting opens up also the possibility of dynamical studies. Indeed, the
typical timescales for the dynamics of ultracold polarons lie on the ms regime [22, 23],
rather than the fs timescale [107, 146] which is the characteristic one for condensed
matter setups. As a result, the spatial and momentum distributions of the impurities
are easily tractable experimentally.

Our work regarding polarons revolves around the study of the impurity problem
in 1D by utilizing appropriate spectroscopic techniques tailored to directly capture the
intricacies of these correlated systems while explicitly taking into account and thus
exposing the effects caused by the existing parabolic confinement. In particular, it
is well-known that 1D Fermi ensembles involve strong quantum fluctuations resulting
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to the phenomenon of the Anderson orthogonality catastrophe which occurs for any
mass ratio between the impurities and their environment in the thermodynamic limit
[190–192]. Indeed, it has been shown that a single impurity interacting with an 1D
Fermi gas causes the macroscopic modification of the quantum state of the latter.
Accordingly, the states of the Fermi-gas in the presence and absence of the impurity
become orthogonal to each other as the particle number of the gas is increased or
equivalently as the thermodynamic limit is approached [192]. This fact implies that
the 1D Fermi polaron cannot occur in the thermodynamic limit. However, recent
experiments showed that the physics in the limit of infinitely large systems can be
well monitored even in the few-body regime evading such difficulties [185]. In our
studies [K3] we demonstrate that impurities embedded in a few-body 1D Fermi gas
accumulate polaronic properties such as a finite quasi-particle residue and well-defined
interaction energy with their environment. In the case of multiple polarons, induced
interactions acting among them are mediated by the excitation of their fermionic host.
Quite remarkably, even in the case of strong repulsive impurity-bath interactions the
1D Fermi polaron appears to be long lived despite the predicted impossibility of its
existence.

For Bose gases the situation is even more complicated. In the thermodynamic
limit, the Anderson orthogonality catastrophe is even more severe as any microscopic
deformation of the order parameter ∼ P of the BEC corresponds to a large reduction of
the many-body overlap∼ (1−P )Nc , whereNc is the number of condensed atoms. This is
extremely relevant for the study of Bose polarons since non-perturbative mechanisms
that modify the order parameter of an ultracold BEC are well-documented in the
literature. First, it is known that a moving potential within a BEC can induce non-
linear excitations [193–195] such as solitons [196–200] when the velocity that it traverses
the Bose gas exceeds a critical one thus violating the Landau criterion for superfluidity
[201]. In addition, phase separation is a prominent feature in binary ultracold bosonic
mixtures [202–206]. In particular, relying on energetic arguments it can be proven that
if the interspecies interactions exceed a threshold value set by the intraspecies ones, the
miscible state of the two components is no-longer stable [207]. The dynamics during
the manifestation of such an instability have been studied [208–210] demonstrating the
pronounced deformation of the order parameters of the Bose gases which form fillament-
like structures in order to minimize the spatial overlap among the two species. Last but
not least, a feature that is not considered within the condensed matter polaron models
are the additional forces resulting from the density gradients of the environment to the
impurity which inevitably occur when a parabolic confinement is employed [211, 212].
Indeed, one of our key findings is that the impurities in confined systems experience
a total potential that is the sum of the external harmonic potential and an additional
potential barrier stemming from their interactions with the density of the bath that
crucially affects their properties [K4–K6]. The above lead to the emergence of intriguing
phenomena such as the temporal orthogonality catastrophe [K4,K5] of Bose polarons,
that signifies the breakdown of the polaron picture. This process occurs for strong
impurity-bath interactions where the rapid expansion of the impurity density results in
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the excitation of its host. Due to this process the Bose polaron becomes short lived [K6]
and after its decay the system tends to an eigenstate thermalized state [213–216].
Our findings showcase the ability of time-resolved spectroscopic techniques to identify
elusive features of the polaron physics, such as the induced polaron-polaron interactions
[K5], and motivate the importance of excitation pathways associated for instance with
the non-linear dynamics of BEC [196–200] for the adequate characterization of the Bose
polaron.

Objectives of this thesis

In this thesis we aim to demonstrate that the ab initio study of the correlated dy-
namics of spinor systems provides valuable insights into the dynamics of correlated
ultracold vapors. In particular, our objective is twofold. First the dynamics of spin-1/2
fermions is studied in order to obtain a deeper understanding of the magnetic mech-
anisms that emanate in these systems. Namely, we initialize the system into a state
that is supposedly stable for sufficiently large repulsions within the framework of Stoner
instability [104] and address the dynamical stability properties of this state embedded
in a quantum environment. By tracking observables related to the magnetization and
the spin-spin correlations of the system we are able to provide insights into

• Whether the standard framework of Stoner instability is adequate to describe the
magnetic properties of spin-1/2 fermions in 1D.

• Whether novel spin-chain models applicable for weakly interacting systems are
able to capture the decay dynamics of the initial state.

• Extend such models to capture the dynamics within the intermediate interaction
regime and characterize the emerging magnetic order.

To achieve the above we further

• Analyze the constituting ingredients of such models and compare to accurate fully
correlated calculations in order to extract the underlying magnetic mechanisms.

• Expose the involved magnetic mechanisms, and exhaustively characterize the
many-body state of the spinor system, as well as, find their imprint on exper-
imentally addressable quantities.

• Clarify the relation of phase separation and ferromagnetism which are inherently
related in the Stoner model picture.

The analysis regarding the Bose and Fermi polarons by employing injection, Ram-
sey and pump-probe spectroscopy also proves quite fruitful [K3–K6]. In these works,
we simulate different spectroscopic sequences to realize polaron states. The main ob-
servable employed in these works is the spectroscopic signal for different environment-
impurity interaction strengths and different pump (dark) times for injection (Ramsey
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and pump-probe) spectroscopy. This choice facilitates a direct comparison with a corre-
sponding experiment and demonstrates the direct access on the quasi-particle properties
obtained within the ultracold environment. Our key findings are summarized below.

• We unravel the spectrum of Fermi and Bose polarons in the case of one or multiple
quasiparticles.

• We identify the emergence of additional spectral features emerging due to the
distinct excitation pathways of polaronic states and the involved two-impurity
mechanisms.

• The Ramsey spectroscopy of Bose polarons reveals the phenomenon of “Temporal
orthogonality catastrophe” associated with the fact that the many-body state of
the impurities rapidly becomes almost orthogonal to the non-interacting one.
During this sequence the contrast of the Ramsey spectrum tends to a zero value
even for small dark times.

• By means of pump-probe spectroscopy, we characterize the energy redistribution
occurring in the system during the temporal orthogonality catastrophe.

• We unveil spectral evidences for the tendency of the bath impurity system to reach
an emergent eigenstate-thermalized state after the manifestation of a temporal
orthogonality catastrophe.
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Chapter 2

Theoretical Framework

2.1 Spinor and Pseudospinor condensates

2.1.1 Internal states of atomic systems and ultracold experiments

A. Atomic internal states and their scattering properties

Ultracold atoms constitute one of the most advantageous platforms for studying multi-
component quantum fluids [217,218]. Before commencing our presentation of the par-
ticular setups and physical phenomena addressed within this thesis it is instructive to
present some basic features of ultracold multi-component ensembles and briefly review
some of their history while exposing also their extraordinary level of control and tun-
ability [37]. The first step in realizing a multi-component fluid is to identify which
distinct components can be employed. Atoms possess a variety of different internal
states [219, 220] that are experimentally addressable and accordingly mixtures of the
latter can be utilized to realize a multi-component gas [11–14, 22]. However, most
of these internal states are inherently unstable [219] and the thermal equilibration of
the atomic motion during their lifetime is impossible. Naturally, this fact precludes
their use in ultracold experiments. Notable examples constitute the low-lying electron-
ically excited states. These possess a dipole allowed transition to the ground state
leading to a fast spontaneous decay at a ns timescale [219]. Nevertheless, particu-
lar electronically excited states are relevant for ultracold applications. For instance,
174Yb experiments have successfully produced relatively stable bosonic gases utilizing
the metastable (6s6p)3P2 state [10] and even heteronuclear mixtures of Li and Yb in-
cluding this electronically excited atomic species [15, 16]. In addition, ultracold atom
experiments utilizing highly excited Rydberg states [221] embedded in a Bose gas of
neutral atoms, are nowadays feasible [222]. Here a particularly striking example con-
stitutes the realization of the Rydberg polaron [223,224].

Within this thesis we are mostly concerned with the application of the different
hyperfine states of the ground state manifold 2S1/2 of alkali atoms as the individual
components of our setup. The above mentioned hyperfine states possess an exception-
ally large radiative lifetime (as far as isolated atoms are concerned) [219] which can
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be neglected. In practice, their lifetime is limited by inelastic processes which involve
two [19], three [118–121] or more [225, 226] colliding atoms. The kinetic energy of
the reactants is altered due to the change of the particles’ internal states (hyperfine
relaxation) [19] and/or due to the formation of diatomic molecules [77]. There are sev-
eral known cases of individual hyperfine states and mixtures thereof that are relatively
robust against two-body hyperfine relaxation collisions [14]. Examples consist the dif-
ferent mF states of the F = 1 [17] and F = 2 [18] manifolds of 87Rb. However, there are
important counterexamples where the collisional relaxation is particularly pronounced.
These include the F = 2 states of 23Na [19] and the F = 3 [227] and F = 4 [228]
states1of 133Cs [230, 231]. Moreover, the molecule formation due to three-body colli-
sions [118–121] is in general a rather slow process for the small atomic densities ∼ 1014

cm−3 of ultracold atomic ensembles. However, there exist cases where such processes
have made the experimental realization of particular setups challenging. A relevant ex-
ample is the Bose-Einstein condensation of a 133Cs in its absolute ground state, F = 3,
mF = 3 [232,233]. Four [225,226] or more body collision processes are even less relevant
than three-body ones due to the low atomic densities and are almost always neglected2.
To date there is a plethora of multi-component mixtures of hyperfine states referring
to atomic species having either bosonic [11, 17–19] or fermionic [20, 21] character and
exhibiting large lifetimes with a negligible rate of inelastic processes. Except for those
cases, heteronuclear mixtures involving distinct atomic species are possible [6, 8, 9], al-
lowing among others for the experimental realization mixtures of atoms with different
particle exchange statistics [3–5,7, 10].

B. Trapping mechanisms

Another obstacle for experiments with multi-component and particularly spinor gases
has been the underlying trapping mechanisms [22]. Spinor gases refer to n-component
systems whose interactions possess an SU(2) invariance so that they are formally equiv-
alent to a gas of spin-(2n+1)/2 particles [22]. Originally, ultracold experiments utilized
magnetic traps based on the Zeeman effect of the atoms within an inhomogeneous mag-
netic field. This trapping mechanism, however, introduces several hurdles for realizing
spinor setups. First, not all hyperfine states can be trapped in magnetic traps. Indeed,
creating a local maximum of magnetic field in a region where current is absent is im-
possible [237, 238]. As a consequence, only states that are low-field seekers, i.e. are
attracted to magnetic field minimums can be trapped. This fact already precludes the
realization of the simplest form of a spinor gas consisting of all the hyperfine states of a
particular F manifold since the states with mf ≥ 0 are not low-field seekers. Additional
detrimental factors arise from the different magnetic moment of the distinct hyperfine

1Within these manifolds there are specific states that can be stabilized against collisional hyperfine
relaxation provided that no other hyperfine state with the same value of F is occupied. These are the
absolute ground state F = 3, mF = 3 of 133Cs [229] and the doubly polarized (stretched) state F = 2,
mF = 2 of 23Na [19].

2A notable exception regards the study of Efimov physics [234–236], where four-body collision events
are relevant
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states resulting to unavoidable hyperfine state-dependent confinement potentials [22].
Notice also that atoms moving within a magnetic trap subjected to a time-dependent
magnetic field in their frame of reference even if the latter is a stationary field in the lab
frame. The magnetic field can, therefore, induce transitions between distinct hyperfine
states that might not be able to be confined, leading to the decrease of the lifetime of
the gas. All of these problems were overcome by the development of optical tweezers
(at the era of early experiments they used to be referred to as far-off-resonant traps
or FORT) [14, 17, 127] for the confinement of neutral polarizable atoms. An optical
tweezer counteracts all the above-described drawbacks as it can be tuned to produce
a confining potential that is equal to all hyperfine states. Optical traps similarly to
magnetic traps also decrease the lifetime of the trapped atoms as the latter can scatter
with the photons of the confining laser resulting to their heating [127]. However the
rate of these scattering events can be substantially reduced via appropriately tuning
the frequency of the applied radiation [219].

An additional benefit of the optical trapping is that it profoundly increases the
tunability of atomic systems. In particular, optical tweezers allow for the realization
of a variety of potentials by modulating the beam parameters or simply adding more
laser fields [37]. In particular lattice structures [37], multi-well potentials [97, 239] and
even rectangular box-like potentials [29–32] can be created with relative ease and these
potentials can selectively be either hyperfine-state dependent [240–245] or not [14, 22]
according to the experimental needs. Furthermore, even in the case of approximately
harmonic confinement the shape of the trap can be either spherical, pancake-like or
elongated along one spatial directions [33–35], allowing for the study of three-, two-
and 1D systems respectively. Notice that this is not the case for magnetic traps where
the potential is fixed by the geometry of the involved coils without a large room for
variation [22]. A remarkable advantage of optical traps is that removing the need for
magnetic confinement they allow for the use of magnetic and radio-frequency fields
for the manipulation of the atomic states. Indeed, the Zeeman shift possesses impor-
tant applications other than the confinement of atoms. For instance, the magnetic
field can be utilized to manipulate the rates of spin-exchanging elastic collisions [246],
for inducing hyperfine-state-dependent potentials [240–245] and for tuning the energy
gaps between the involved hyperfine states [219, 247]. The latter except for the rather
obvious application of enabling hyperfine-state selective coupling schemes via optical
or radiofrequency fields also plays a crucial role for the control of interatomic interac-
tions [21,77,248–250].

C. Interatomic interactions in ultracold ensembles

The control of interatomic interactions is a remarkable feature of ultracold atom ex-
periments [21, 77, 248–250], as it renders them exceptional examples of quantum sim-
ulators [78–80]. Elastic collisions between neutral atoms yield two-body interactions
of extremely short-range when compared to the confinement length scale of typical
traps allowing them to be well-approximated as zero-range s-wave collisions [77]. Zero-
range interactions constitute a common approximation employed in different fields of
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theoretical physics [104] and therefore a setup that inherently features them is highly
desirable. In particular considering the low kinetic energy of ultracold atoms their
s-wave interactions for given hyperfine states are completely characterized by only
one parameter, namely the scattering length [77]. Ultracold atom ensembles enable
for the control of these scattering lengths via processes such as Fano-Feshbach reso-
nances [15,21,77,90,251]. Fano-Feshbach resonances occur when the energy of a bound
(molecular) state of a closed collision channel3 lies in the vicinity of the collision thresh-
old of the entrance channel4. In this case even a small coupling among the involved
hyperfine-states referring to the closed and entrance channels results in a sizable shift
of the scattering length of their interactions [77]. Provided that the molecular state
possesses a different magnetic moment than the atoms in the entrance channel its en-
ergy with respect to the threshold can be tuned via the Zeeman effect. This leads to
the control of the scattering length of atoms via a magnetically-tuned Fano-Feshbach
resonance. In systems with reduced dimension (i.e. referring effectively to one- or
two- spatial dimensions) the interatomic interactions can also be tuned by modulating
the confinement along the strongly confined direction [77, 248–250, 252–256]. In this
case a two particle bound state referring to an excited state along the strongly con-
fined axis (axes) can be tuned to resonance with the threshold of colliding particles
referring to the ground state of strong confinement. This gives rise to the so-called
Confinement induced resonance. It is noteworthy that these resonant effects are able
to tune the scattering length over all values of both positive and negative scattering
lengths [77,248].

Let us also mention in passing that different kind of interactions are also imple-
mentable in ultracold gases. A large class of atoms have quite pronounced magnetic
dipole-dipole interactions [257, 258], that cannot be properly accounted by zero-range
scattering models, requiring their treatment as long-ranged ones. In addition, Fano-
Feshbach resonances of higher partial waves such as p-wave ones [256, 259, 260] can be
invoked although these typically suffer from large two- and three-body inelastic collision
rates [261]. Finally, composite systems of ions embedded in a gas of neutral atoms have
been realized which exhibit charge-induced electric dipole interactions [86, 262, 263].
Nevertheless, neutral atom ensembles possessing tunable s-wave interactions remain
the workhorse of ultracold atom experiments and constitute our focus within this the-
sis. The remainder of this chapter deals with the basic properties of the optical trapping
technique [14, 17, 127] that as mentioned above spearheaded the experiments of spinor
and multi-component systems. Subsequently we provide the derivation of the effec-
tive 1D Hamiltonians employed within our studies [K1–K6] from the corresponding
experimentally implementable three-dimensional ones.

3A closed channel refers to the energetically prohibited scattering process. In particular, it is
characterized by the transition of the scattering atoms to different hyperfine-states as a result of their
collision with their final total energy being larger than the initial one.

4The threshold energy of a scattering channel refers to the energy of the particles in the appropriate
hyperfine states when they are found at an infinite separation.
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2.1.2 Optical Trapping

The use of optical tweezers is a technique to confine neutral polarizable particles of
size much smaller than the wavelength of optical electromagnetic fields [127, 264, 265].
Accordingly, this technique is not limited to atomic ensembles but it has found applica-
tions in the confinement of larger particles such as molecules [266,267] or even µm-sized
particles [268, 269]. The working principle of optical tweezers relies on the interaction
of induced electric dipoles with an inhomogeneous classical electromagnetic field [219].
The Lorentz force exerted by an electromagnetic field to an electric dipole reads

FL = (d ·∇)E +
dd

dt
×B, (2.1)

where d is the dipole moment of the particle and E, B denote the electric and magnetic
fields. To proceed we further assume that the field interacts weakly enough with the
polarizable particles so that their induced dipole moment can be expressed in the linear
response approximation as d(t) = Re[α(ω)E(t)]. Here, α(ω) is the polarizability of
the medium. The polarizability, α(ω), is dependent on the frequency of the applied
electromagnetic field and possesses complex values accounting for the phase difference
between the applied electromagnetic field and the induced dipole moment. By using
the above mentioned assumption the force exerted to a polarizable particle reads

FL =
1

2
∇
[
α(ω)E2

]
︸ ︷︷ ︸

≡Fd

+
α(ω)

ε0

dpem

dt︸ ︷︷ ︸
≡Fsc

, (2.2)

where pem = ε0E ×B is the momentum density of the electromagnetic field and ε0 is
the vacuum electric permeability. The first term in Eq. (2.2) indicates that the electric-
field acts as a time-dependent potential for the polarizable particles, while the second
term indicates that additional forces stem from the variation of the momentum of the
electromagnetic field in time. Let us now assume that the intensity of the external
electromagnetic field is constant in time. Then the only variation in pem stems from
the dipole radiation emitted by the confined particles due to its fluctuating dipole
moment d(t). The emitted dipole radiation possesses a frequency equal to the oscillation
frequency of the induced dipole moment and the confining electromagnetic field which
due to the optical nature of the latter is of the order of several hundreds of THz [219].
Since massive particles such as atoms, molecules or nanodroplets are employed they
are not able to follow this rapidly fluctuating force and as a consequence 〈〈Fsc〉〉 = 0
for the relevant timescales of their motion [127]. Here 〈〈〉〉 indicates the time-averaging
over the rapid frequency of the electromagnetic field. Due to the vanishing contribution
of 〈〈Fsc〉〉 the Lorentz force can be regarded as conservative, namely 〈〈Fd〉〉 = −∇Ud

where the dipole potential reads

Ud(r) = 〈〈−1

2
α(ω)E2〉〉 = −Re[α(ω)]

2ε0c
I(r). (2.3)

In the above expression the definition of the intensity I(r) = ε0cE
2
0(r)/2 is employed,

where E0 is the amplitude of the electric field. Notice that Fd produces work during
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each particular oscillation of the electromagnetic field resulting in an increase of the
energy of the particles. Assuming a thermal equilibrium state between the particles
and the tweezer this energy has to be expelled by the emission of dipole radiation [127].
The corresponding scattering rate refers to the fraction of the average power produced
by Fd over the energy of a single trap photon reading

Γsc(r) =
1

~ω
〈〈 d

dt

(
1

2
α(ω)E2

)
〉〉 =

Im[α(ω)]

~ε0c
I(r). (2.4)

Atom-photon scattering is an undesirable effect since such a process imparts momen-
tum to the scattered atoms leading to their heating. The resulting heating power is
proportional to the recoil energy ER = (~ω)2/(2mc2), where m refers to the particle
mass, and the scattering rate Γsc. The recoil energy ER is the characteristic energy
scale of photon-particle collisions referring to a value of h×kHz and being of the same
order of magnitude as the achievable trap depths [127] stemming from Eq. (2.3). There-
fore, there is a tradeoff between the realizable strength of the dipole potential Ud and
the heating rate stemming from Γsc, which fundamentally depends on the polarization
properties of the particles, α(ω), a fact that we will briefly sketch below for Alkali
atoms.

For a monochromatic source, such as an optical laser, the electric field is expressed
as E = Re[E0(r)ei(k·r+ωt)] and therefore the induced dipole moment reads

d(t) = E0(R){Re[α(ω)] cos(ωt+ k ·R) + Im[α(ω)] sin(ωt+ k ·R)}, (2.5)

where R is the center of mass position of the atom. Equation (2.5) allows us to
gain insight into the interplay of the optical dipole potential amplitude Ud and the
photon scattering rate Γsc. In particular, the optical potential is proportional to the
amplitude of the in-phase dipole moment oscillations with respect to the electric field.
Similarly the trap scattering rate is proportional to the corresponding out-of-phase
oscillations. Lorentz has shown (strikingly enough before the advent of quantum theory)
that the dipole moment oscillations of atoms can be approximated by a classical model
of driven and damped oscillators [219]. Each oscillator corresponds to a distinct dipole
allowed transition, with the frequency ω0,j being given by the energy difference of the
involved states, |Ψ0〉 and |Ψj〉, possessing a value in the range of several hundreds
of THz. The damping rate is given by the decay rate γj/2 of the excited state (or
equivalently the natural linewidth of the transition) referring to several MHz. Finally,
the driving amplitude for each transition is scaled via the oscillator amplitude, fj =

2mω0,j/(e~)|〈Ψj |d̂|Ψ0〉|2, where 〈Ψj |d̂|Ψ0〉 is the related dipole matrix element. Notice
that |fj | ∼ 0.1−1. This mapping to a classical oscillator model yields a dipole moment
[219]

d(t) = Re

[
∑

j

fj
e2/m

(ω2
0,j − ω2) + iγjω




︸ ︷︷ ︸
≡α(ω)

·E(t)

]
, (2.6)
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while typically different dipole allowed transitions are separated by several THz, allow-
ing each term in α(ω) to be treated individually. Eq. (2.6) allows for the identification
of three regimes of different behaviour. Focusing on a single transition, |Ψ0〉 ↔ |Ψj〉,
the first refers to the large negative detuning regime i.e. ω−ω0,j � γj where the oscilla-
tions of the dipole moment are in-phase with the electric field and α(ω) ≈ Re[α(ω)] > 0.
The second regime corresponds to small detunings ω−ω0,j ≈ γj , where the dipole mo-
ment oscillations are out-of-phase with respect to the electric-field α(ω) ≈ Im[α(ω)].
Finally, for large positive detunings in-phase oscillations are exhibited, however, the
direction of the exhibited polarization is inverted with respect to the electric field,
α(ω) ≈ Re[α(ω)] < 0. The above imply that the regimes of large negative or positive
detuning are the optimal ones for trapping atomic ensembles as within them the scat-
tering rate Γsc ∝ Im[α(ω)] is minimized and therefore the system remains coherent for
longer times [127]. Furthermore, this model reveals that red detuned laser beams cre-
ate attractive potentials for the atoms while blue-detuned potentials result in repulsive
potentials, see also Eq. (2.3). Notice that the above mentioned model is only valid in
the regime of linear response, which implies that the intensity of the electromagnetic
field is well below a frequency dependent threshold where saturation effects occur. In
practice, this limitation is not constraining since as mentioned above large detunings
are desirable, where such non-linear effects are heavily suppressed even for relatively
strong lasers [127].

As it is evident from above, the confining potential of optical tweezers is deter-
mined by the electronic properties of atomic systems which are hardly affected by the
specifics of the atomic hyperfine structure, especially when the far-detuned regime is
considered [219]. In particular, it can be shown that for linearly polarized light the
trapping potential experienced by all hyperfine states is equivalent [240, 245]. This
allows for freely manipulating the spin of the atoms by addressing magnetic dipole
transitions using radiofrequency and static magnetic fields without affecting their op-
tically controlled confinement. The latter allows for the realization of Fano-Feshbach
resonances [15, 21, 77, 90, 251] and the study of the magnetic properties of spinor and
pseudospinor systems [14,87,88].

Recently, there is also an interest in circularly polarized optical tweezers which
allow for the realization of hyperfine state dependent potentials [270,271]. Recall that
for alkali atoms the two energetically lowest dipole allowed transitions constitute the
n 2S1/2 ↔ (n + 1) 2P1/2 and n 2S1/2 ↔ (n + 1) 2P3/2 ones that are referred to as D1

and D2 lines. By assuming an unresolved hyperfine structure for the excited state (a
reasonable approximation for |ω − ω0| � Γ) and linear Zeeman splitting among the
different |F,mF 〉 states of n 2S1/2 a circularly polarized tweezer results in the hyperfine
state dependent optical potential [127]

Ud(r) =
πc2Γ̄

2ω̄3
0

(
1− sgFmF

ω − ω0,D1
+

2 + sgFmF

ω − ω0,D2

)
I(r), (2.7)

where s = +1,−1 indicates the chirality of the circularly polarized light, ω0,D1, ω0,D2,
ω̄0 = (ω0,D1 + ω0,D2)/2 refer to the resonance frequency of the D1, D2 lines and their
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average respectively, Γ̄ = (ΓD1+ΓD2)/2 is the average decay rate of the excited P states
and gF corresponds to the Landé factor. The behaviour of Ud(r) is quite intriguing
when the optical tweezer frequency lies in between the D1 and D2 lines, ω0,D1 < ω <
ω0,D2. In this case the potential created by the D1 line is repulsive (blue-detuned)
while the corresponding one from the D2 line is attractive (red-detuned). Then, the
frequency of the confining laser can be tuned such that the contributions from the
D1 and D2 lines cancel for a particular hyperfine |F,mF 〉 state which is accordingly
unaffected by the optical tweezer [240,245]. This frequency is referred to as the tuneout
frequency [242,244] and has found applications in recent optical lattice experiments to
generate hyperfine-state dependent potentials [241,243].

2.1.3 Dimensional Reduction of 3D Hamiltonians

A. 1D spin-1/2 fermions

Suppose an ensemble of confined ultracold fermions in two different hyperfine states,
denoted as ↑ and ↓, thus constituting a pseudospin-1/2 system. Here, we will assume
that the confinement is time-independent and that this ensemble is influenced by a
possibly time-dependent field that couples the hyperfine states.

The ab initio Hamiltonian describing such a system consists of three parts Ĥ =
Ĥ0 + ĤSD + ĤI. The spin-independent contribution Ĥ0 up to an overall shift in energy
reads

Ĥ0 =

∫
d3r

∑

α∈{↑,↓}

ψ̂†α(r)

(
− ~2

2m
∇2 + V0(r)σzαα

)
ψ̂α(r), (2.8)

where m is the mass of the atomic species and ψ̂α(r) corresponds to the spin-α ∈ {↑, ↓}
fermionic field operator, satisfying the appropriate anticommutation relations [107,146].

Namely, {ψ̂α(r), ψ̂†α′(r
′)} = δαα′δ(r − r′), {ψ̂α(r), ψ̂α′(r

′)} = 0 with σzαα′ = (δα↑ −
δα↓)δαα′ being the spin-z Pauli matrix. V0(r) refers to the spin independent part of
the confining potential. Such spin-independent confining potentials can be generated
with the use of an optical dipole trap as discussed in Sec. 2.1.2. Usually, in this case
the atomic ensemble occupies only the energetically lowest levels of the potential V0(r)
and the approximation of harmonic confinement can be employed,

V eff
0 (r) ≈ V eff

0 (r0) +
1

2

3∑

i,j=1

∂2V0

∂ri∂rj

∣∣∣∣
r=r0

(ri − ri;0)(rj − rj;0). (2.9)

Here r0 = (r1;0, r2;0, r3;0) corresponds to the position of the global minimum of the ab
initio potential, V0(r). For most experiments involving optical tweezers the approx-
imate potential of Eq. (2.9) characterizes the system sufficiently well. However, it
is noteworthy that many ultracold atom experiments utilize a non-parabolic potential
(see e.g. [25–32]). For instance, in the case of optical lattice experiments a periodic
potential is realized by employing retro-reflected optical dipole traps [37], where the
precise form of the confining potential is important for the accurate description of the
system.
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The coupling of the hyperfine states by an electric or a magnetic field is also possible
and it introduces a spin-dependent part in the Hamiltonian, namely

ĤSD =

∫
d3r

∑

α,β∈{↑,↓}

ψ̂†α(r)
[
Vx(r; t)σxαβ + Vy(r; t)σyαβ +

(
Vz(r; t) + Beff

2

)
σzαβ

]
ψ̂β(r),

(2.10)
where σiαβ, with i ∈ {x, y, z} correspond to the Pauli matrices. Vx(r; t) refer to the
components of the spin-dependent potential, which can also possess complex values.
Beff corresponds to the energy difference (Zeeman splitting) of the two hyperfine levels,
generated by the application of a magnetic field along the z-axis [219]. Spin-dependent
potentials can be created by the usage of magnetic fields if the magnetic moments
of the hyperfine states ↑ and ↓ are sufficiently different [125] or by employing optical
fields that yields a state dependent AC Stark shift [270, 271] (see also 2.1.2). Note,
also, here that only two hyperfine levels are involved and consequently effects such as
the quadratic Zeeman shift [219] only result to a non-linear dependence of the Zeeman
splitting, Beff , on the amplitude of the applied magnetic field.

Typically, the atomic interactions between different hyperfine states are short-
ranged [77] and accordingly due to the Pauli exclusion principle we can neglect the inter-

actions of the fermions in the same hyperfine state, since it holds that limr→r′ ψ̂
†
α(r)ψ̂†α(r′) =

limr→r′ ψ̂α(r)ψ̂α(r′) = 0 for α ∈ {↑, ↓}. In this case the interaction term takes the form

ĤI =

∫
d3r d3r′ ψ̂†↑(r)ψ̂†↓(r

′)U(r, r′)ψ̂↓(r
′)ψ̂↑(r), (2.11)

where U(r, r′) is the atomic scattering potential for the two involved hyperfine states.
Due to the low-collisional energy exhibited in ultracold atoms we can safely neglect
the p-wave or higher partial wave interactions [22, 23]. Within this limit, the s-wave
scattering of the atoms can be characterized by a single parameter as being the s-wave
scattering length. By taking also into account that the range of atomic interactions
is much smaller than the length scale of the confinement we can replace U(r, r′) by
a short-ranged pseudo-potential. Conventionally the zero-range regularized Dirac δ
pseudo-potential is employed [77,272]

Up(r, r′) =
4π~2as
m

δ(r − r′) ∂

∂|r − r′|
(
|r − r′| •

)
, (2.12)

where the symbol • indicates that the differentiation occurs after the multiplication
of the wavefunction by the factor in the parentheses. The scattering length as can
be tuned by employing a Fano-Feshbach resonance [15,21,77,90,251] between the two
hyperfine levels. A well-known example of such a resonance is exhibited between the
hyperfine states |F = 1

2 ,mF = −1
2〉 and |F = 1

2 ,mF = 1
2〉 of 6Li atoms for a magnetic

field of 800G [90]. Note also that herein we employ an energy independent as an
assumption that does not hold close to a narrow Fano-Feshbach resonance even on the
ultracold regime due to finite effective-range corrections [77]. For our scope the choice
of an energy independent as is reasonable as we either restrict ourselves to the case of
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broad Fano-Feshbach resonances [K1, K2] or because the finite effective-range effects
are negligible for the densities employed within our few-body setups [K3].

Before proceeding, it is helpful to elaborate on the spin-symmetries emanating in the
system. First note that Ĥ0 and ĤI commute with the spin operators Ŝz, Ŝ± = Ŝx± iŜy
and consequently also commute with the total spin operator Ŝ2 = Ŝ+Ŝ− + Ŝz(Ŝz − 1),
where

Ŝi =
~
2

∫
d3r

∑

α,β={↑,↓}

ψ̂†α(r)σiαβψ̂β(r), (2.13)

with i ∈ {x, y, z}. The above imply that both Ĥ0 and ĤI are invariant under spin-
rotations and hence the spin and spatial directions are not coupled. Indeed, as long as
the terms of ĤSD are properly transformed the spin and spatial directions can be rotated
independently from one another. Therefore, in the following while the same symbols
{x, y, z} will be used to denote both the spatial and the spin directions, they have to
be understood as two independent frames or reference. Note here that the above are a
consequence of the SU(2) invariance of the Hamiltonian terms Eq. (2.8) and (2.11) and
consequently hold exclusively for spin-1/2 fermions and not to the bosonic pseudospinor
case that is discussed later on.

The focus of this thesis is the study of the dynamics of 1D ensembles. In order
to effectively reduce the dimensionality of the experimentally realizable 3D systems
a strong confinement along the two transversal spatial directions has to be employed
[22, 23, 273]. Such a confinement usually involves a tight parabolic trap along the two
perpendicular directions,

V0(r) = V1D(x) +
1

2
mω2
⊥(y2 + z2), (2.14)

where the x-axis has been selected as the direction of weak confinement without any
loss of generality (see also the comments above). The frequency of the transverse
confinement ω⊥ has to be selected such that the excited states of the harmonic trap
along the y and z directions are not occupied. If that is the case, the 3D field operators
can be expressed in terms of 1D ones as follows

ψ̂†α(r) =

√
mω⊥
π~

e−
mω⊥

2~ (y2+z2)ψ̂†α(x). (2.15)

Note here that the above condition is more difficult to be satisfied in the case of fermions
rather than bosons due to the Pauli exclusion principle. Indeed, due to the fact that no
two fermions with the same spin can occupy the same motional state of the potential
V0(r), Eq. (2.15) only holds for ω⊥ � EN/~. Here, EN refers to the N -th energetically
lowest single-particle eigenenergy (SPEE) of V1D(x) with N being the total number of
particles.

By employing Eq. (2.15) the terms Ĥ0 and ĤSD of the 3D Hamiltonian can be
reduced to 1D effective Hamiltonians by evaluating the corresponding integrals along
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the transverse directions. The 1D effective Hamiltonian for Ĥ0 reads

Ĥ0 =

∫
dx

∑

α∈{↑,↓}

ψ̂†α(x)

(
− ~2

2m

d2

dx2
+ V1D(x) + ~ω⊥

)
ψ̂α(x), (2.16)

and the spin-dependent Hamiltonian ĤSD reads

ĤSD =

∫
dx

∑

α∈{↑,↓}

ψ̂†α(x)
(
Ṽx(x; t)σxαβ + Ṽy(x; t)σyαβ +

(
Ṽz(x; t) + Beff

2

)
σzαβ

)
ψ̂β(x),

(2.17)

where Ṽi(x; t) =
√

mω⊥
π~
∫

dydz e−
mω⊥

2~ (y2+z2)Vi(r; t), for i ∈ {x, y, z}. It is important
to note here that the dimensional reduction relies on the fact that the spin dependent
potentials are slowly-varying along the transverse directions, ∂2Vi

∂y2 ,
∂2Vi
∂z2 � mω2

⊥, in
order to ensure the absence of spin-excitations along the strongly confined directions.

The dimensional reduction of ĤI is more complicated. In particular, if the trans-

verse confinement length a⊥ =
√

~
mω⊥

defines a length scale of similar magnitude as

as the phenomenon of the Confinement induced resonance is exhibited [77, 248–250,
252–256]. This implies that the actual coupling of the 1D interaction shifts away from

the mean-field value gMF
1D = 2~2as

ma2
⊥

obtained by the evaluation of the y and z integrals

appearing in Eq. (2.11). Detailed theoretical [248,252–254] and experimental [249,250]
investigations reveal that the coupling strength of the 1D interaction g1D possesses a
simple analytic form g1D = gMF

1D (1− |ζ(1/2)|as√
2a⊥

)−1 [248] and the effective 1D interaction

Hamiltonian reduces to the simple form

ĤI = g1D

∫
dx ψ̂†↑(x)ψ̂†↓(x)ψ̂↓(x)ψ̂↑(x). (2.18)

B. 1D spin-1/2 bosons

Similarly to the fermionic case a pseudospin-1/2 bosonic system consists of two oc-
cupied hyperfine states of a bosonic element, e.g. 87Rb. Notice that in contrast to
spin-1/2 systems all of these systems are artificial due to the spin-statistics theorem,
which dictates that bosons are characterized by an integer spin [146]. The dimensional
reduction of the 3D Hamiltonian for bosons is completely analogous to the fermionic
case. In particular, the terms Ĥ0 and ĤSD possess exactly the form of Eq. (2.16)
and Eq. (2.17) respectively, when the fermionic field operators are substituted with
bosonic ones. Recall that the bosonic field operators obey the commutation relations
[ψ̂α(r), ψ̂†α′(r

′)] = δαα′δ(r − r′), [ψ̂α(r), ψ̂α′(r
′)] = 0 [146]. However, the interaction

term in the bosonic case is slightly different since intracomponent interactions between
bosons with the same spin are involved. Consequently the 1D interaction term reads

ĤI =
∑

α∈{↑,↓}

gαα
2

∫
dx ψ̂†α(x)ψ̂†α(x)ψ̂α(x)ψ̂α(x) + g↑↓

∫
dx ψ̂†↑(x)ψ̂†↓(x)ψ̂↓(x)ψ̂↑(x),

(2.19)

19



THEORETICAL FRAMEWORK

with gαα′ =
2~2aαα′
ma2
⊥

(1− |ζ(1/2)|aαα′√
2a⊥

)−1 and aαα′ referring to the 3D scattering length of

the corresponding channel. Notice here that in contrast to the interaction Hamiltonian
for fermions, Eq. (2.18), the interaction Hamiltonian for bosons, Eq. (2.19), does not
commute with the spin operator Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z , except in the special case of
g↑↑ = g↓↓ = g↑↓ [87, 88]. Due to this property, the system of 1D spin-1/2 bosons does
not possess an SU(2) rotation symmetry in spin space and it is therefore referred to as
a pseudospinor gas.

C. Beyond spin-1/2 systems: spin-exchanging collision processes

An ultracold atomic gas can be regarded as a pseudospin-1/2 system if it consists of two
distinct hyperfine states of the same atomic species. Spinor gases possess additionally
an SU(2) invariance regarding rotations in the spin space spanned by the occupied
hyperfine states [87, 88]. Therefore, a necessary condition for realizing a (pseudo)spin-
1/2 system is that the population of all possible atomic states except for two can be
neglected. Provided a spin-independent confinement and the absence of radiofrequency
or optical pumping between the different hyperfine states an important consideration is
whether the atomic interactions allow for such a condition to be met. As argued in Sec.
2.1A, transitions between distinct hyperfine states can be induced via inelastic collisions
[19, 118–121, 225, 226], which accordingly have to be negligible for a spinor system,
narrowing the choice of atomic species where such setups are realizable. However,
elastic collisions should be also considered in order to infer the stability of setups
with (pseudo)spin. Indeed, elastic spin-exchanging collisions within hyperfine state
manifolds with F > 1/2 can lead to the redistribution of the atoms among the different
mF states [87,88]. Accordingly, a poor choice of the correspondence between pseudospin
and hyperfine states can lead to a small lifetime of the pseudospin-1/2 system. Below,
we briefly examine the interaction properties of systems with F > 1/2 and discuss their
relevance for realizing (pseudo)spin-1/2 systems.

The short-range s-wave elastic collisions emanating in ultracold atoms can be well-
described within the delta pseudopotential approximation of Eq. (2.12) provided that
inelastic collisions are negligible. We can utilize the conservation of angular momentum
among the colliding particles to expand the resulting interaction Hamiltonian in terms
of the different participating two-body collision channels [87, 88]. These two-body col-
lision channels are characterized by the conserved angular momentum F̂t = F̂1 + F̂2,
where F̂1 and F̂2 refer to the sum of electronic and nuclear angular momenta of the
colliding atoms. Expressed in terms of the above identified channels the interaction
term reads

ĤI =
1

2

2F∑

Ft=0

4π~2αF
m

Ft∑

mFt=−Ft

∫
d3r Ĉ†FtmFt(r)ĈFtmFt(r), (2.20)
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where the channel operators have the form

ĈFtmFt(r) =

F∑

mF=−F

F∑

m′F=−F

〈Ft,mFt|F,mF ;F,m′F 〉ψ̂mF (r)ψ̂m′F (r), (2.21)

with 〈JM |j1,m1; j2m2〉 denoting the Clebsch-Gordan coefficients [219,247] and ψ̂mF (r)
referring to the field operators of the |F,mF 〉 hyperfine state which obey the proper
according to the spin-statistics theorem [146] commutation or anticommutation prop-
erties. Here the scattering lengths aFt are allowed to be channel dependent accounting
for such variations of the actual atomic scattering potential. The particle exchange
statistics plays a crucial role since the s-wave character of the interactions implies that
the channels that are characterized by antisymmetric spatial two-body wavefunctions
do not contribute to scattering. Accordingly, for fermionic particles the scattering
lengths for all even-valued channels vanish, i.e. aFt=2n = 0 for n = 0, 1, . . . , while for
bosons all odd-valued channels do not contribute to scattering, namely aFt=2n+1 = 0 for
n = 0, 1, . . . . Based on the above one can derive Eq. (2.18) from Eq. (2.20) by employ-
ing F = 1/2, indicating that fermionic systems involving the |F = 1/2,mF = ±1/2〉
hyperfine states are of spinor character. In particular, it can be shown [87, 88] that
[ĤI , F̂

2] = 0 and accordingly all systems involving interactions of the form appearing
in Eq. (2.20) possess SU(2) spin-rotational invariance independently of the specific
value of F . In this sense, they constitute realizations of spin-F spinor systems. As
mentioned above an important consequence of the SU(2) symmetry of a spin-F > 1/2
ensemble is the emergence of spin-exchanging interactions. Although the presence of
such properties can be shown for arbitrary F , here we consider as a specific example a
system of F = 1 bosons, a scenario which is relevant for 87Rb experiments. The inter-
action part of Eq. (2.20) when expressed in terms of the corresponding field operators
of the |F = 1,mF = 0,±1〉 states reads

ĤI =
2π~2

m

[
a2(Û1,1 + Û−1,−1 + Û1,0 + Û−1,0) +

a0 + 2a2

3
Û0,0 +

2(a0 − a2)

3
Û1,−1

+
2(a2 − a0)

3

∫
d3r
(
ψ̂†0(r)ψ̂†0(r)ψ̂1(r)ψ̂−1(r) + h.c.

)]
,

(2.22)

where ÛmF ,m′F =
∫

d3r
(
ψ̂†mF (r)ψ̂†

m′F
(r)ψ̂m′F (r)ψ̂mF (r) is the interaction operator re-

ferring to the involved density-density interactions between the components mF and
m′F while a0, a2 correspond to the scattering lengths of the Ft = 0, Ft = 2 scattering
channels respectively. Eq. (2.22) makes obvious that if a2 6= a0 due to the interfer-
ence of the Ft = 2 and Ft = 0 scattering channels, it is possible that a scattering
event involving a mF = 1 and a mF = −1 atom allows both of them to transit to the
mF = 0 state. Similarly, the inverse process with a pair of mF = 0 atoms transiting
to the mF = 1 and mF = −1 states is also possible. Therefore, the SU(2) symmetric
interactions for a2 6= a0 realize in this case elastic spin-exchanging collisions [87, 88].
Notice that this kind of a spin-exchanging collision preserves the expectation value 〈F̂z〉
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of the ensemble but redistributes the particles between the different spin-states. An-
other important feature of Eq. (2.22) is that different weights correspond to different
density-density interactions, e.g. the mF = 0 atoms interact among themselves with

strength 2π~2(a0+2a2)
3m , while the mF = ±1 possess interactions proportional to 2π~2a2

m .
Also, the intercomponent interactions possess different weights based on which mF

states are coupled. The above imply that the interaction energy stemming from Eq.
(2.22) depends on the distribution of atoms among the different spin-states, resulting
in density induced shifts of the energies of each particular spin state. Those density
shifts can be utilized so that spin-exchange processes can be enhanced or suppressed
via the coincidence or the discrepancy of energies corresponding to the different mF

components.

Indeed, spin-1 Bose gases possess a rich phase diagram in terms of the occupied mF

states which can be probed by manipulating the energies of the different hyperfine states
via Zeeman shifts [87,88]. For higher spin bosonic or fermionic gases the phase diagram
becomes even more interesting since more spin-states and more intricate couplings
among them via spin-exchanging collisions are involved [87,88]. However, in the present
effort we are mostly interested in spin-1/2 and pseudospin-1/2 systems immersed in
an environment that consists either of the same or different atomic species. As a
consequence, we intend to suppress as much as possible the effect of spin-exchanging
collisions. Indeed, such a suppression can be achieved by exploiting the Zeeman shift
of hyperfine states, for instance the experiment of Ref. [246] reports that the spin-
exchanging collisions of a 87Rb spin-1 condensate are essentially negligible for magnetic
fields as low as 45.5 G.

The underlying physical mechanism regarding the suppression of spin exchanging
collisions can be understood by the following energetic argument. The amplitude of the
Zeeman energy shifts in Alkalis is of the order of h× MHz/G, for instance in 87Rb this
amplitude is ∼ 0.7 h× MHz/G [274]. In addition, quadratic Zeeman shifts, that lead
to a non-equidistant distribution of mF levels are important even for relatively weak
magnetic fields. Using as an example 87Rb Zeeman shifts possessing an amplitude of
several h× MHz can be observed already for magnetic fields of ∼ 10 G [274]. Typi-
cal ultracold atom experiments involve interaction energies of hundreds of h× Hz to a
few h× kHz per particle [22–24] generating interaction energy shifts and spin-exchange
processes characterized by an energy scale of the same order of magnitude. Therefore,
a matching between the energies of different mf states that allows for spin-exchange
processes to occur can be achieved only for magnetic fields not exceeding a few Gauss.
A similar argumentation can be employed for hyperfine manifolds possessing a different
total-spin F and accordingly the coupling between different |F,mF 〉 states can be ne-
glected for large magnetic fields. As a final comment note also that the typical energy
difference between hyperfine levels possessing different F is of the order of several h×
GHz. In particular for 87Rb the hyperfine splitting between the two lowest hyperfine
manifolds F = 1 and F = 2 is EF=2 − EF=1 ≈ h × 6.83 GHz [274] and as such no
particle exchange occurs among those different manifolds within the ultracold regime.
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2.2 Magnetic properties of Spinor Fermi Gases

One of the main topics analyzed within our work is the properties of spin-1/2 exter-
nally confined ultracold fermions. Here our major motivation is to develop an in-depth
understanding of the underlying magnetic mechanisms of those setups that might be
transferable to condensed matter systems. The link between ultracold and condensed
matter setups is provided by the Stoner model [104] which assumes zero-range inter-
actions and small electron densities, where effects stemming from the lattice geometry
can be ignored, consisting two adequate and feasible assumptions within the ultracold
realm. As a consequence, it is of value to review the basic properties of the Stoner
ferromagnetism and subsequenty briefly discuss the successes and drawbacks of this
model [107, 114] in describing itinerant ferromagnetism as understood within the con-
densed matter community.

2.2.1 Stoner model of Ferromagnetism

The Stoner model [104] constitutes the most widely accepted framework to qualitatively
examine the phenomenon of ferromagnetism in systems consisting of itinerant electrons
[107]. The Stoner model is established within the Hartree-Fock approximation [275,276]
and therefore is a mean-field theory. Within the Stoner model the electrons are assumed
to interact with short-range interactions that can be well-treated within the framework
of the zero-range pseudopotential defined in Eq. (2.12). Let us further assume, for
simplicity, a vanishing overall confinement of the electrons, V (r) = 0. In that case the
Hamiltonian of the d-dimensional spin-1/2 Fermi gas reads [107]

Ĥh−µN̂ =
∑

kαβ

[
(εk − µ)δαβ −

Bk

2
σzαβ

]
ψ̂†kαψ̂kβ+

g

Ld

∑

kk′q

ψ̂†k+q↑ψ̂
†
k′−q↓ψ̂k′↓ψ̂k↑, (2.23)

where εk = ~2k2

2m is the non interacting dispersion relation, µ denotes the chemi-
cal potential, Bk is a spatially dependent magnetic field and Ld is the spatial ex-
tent (e.g. the volume for d = 3) of the system. Notice that in Eq. (2.23) the
chemical potential contribution ∼ −µN̂ has been subtracted from the Hamiltonian,
Ĥh, since the equilibrium density matrix within the grand canonical ensemble reads
ρ̂eq = Z−1 exp[−(Ĥh − µN̂)/(kBT )], where kB and T are the Boltzman constant and
temperature respectively, while Z is the partition function ensuring the normalization
of ρ̂eq [146]. In addition, notice that Ĥh has been expressed in momentum space where
the non-interacting part is diagonal. This choice implies that the zero-range interaction
potential in the configuration space ∼ δ(ri − ri) has been transformed to a completely
delocalized one in momentum space where all interaction terms are scaled by the same
amplitude. To proceed the Hartree-Fock approximation is performed neglecting all
two-body correlations, by demanding that the Wick theorem [146] holds, i.e.

〈Ψ|ψ̂†
k′1α

′
1
ψ̂†
k′2α

′
2
ψ̂k2α2ψ̂k1α1 |Ψ〉 =〈Ψ|ψ̂†

k′1α
′
1
ψ̂k1α1 |Ψ〉〈Ψ|ψ̂†k′2α′2ψ̂k2α2 |Ψ〉

− 〈Ψ|ψ̂†
k′1α

′
1
ψ̂k2α2 |Ψ〉〈Ψ|ψ̂†k′2α′2ψ̂k1α1 |Ψ〉.

(2.24)
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Note that Eq. (2.24) is only applicable to the case of g = 0, as two-body correlations
can possibly emanate in the interacting case. In addition, since we are interested in
the ground state of the system the self-consistent assumption of a homogeneous density
phase i.e. 〈Ψ|ψ̂†kαψ̂k′β|Ψ〉 = δkk′〈Ψ|ψ̂†kαψ̂kβ|Ψ〉 is employed [146]. The above mentioned
assumptions can be incorporated self-consistently by the appropriate truncation of the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) equations [277–280], leading to the
following approximation for the interaction term

ĤI ≈ ĤMF
I =

g

Ld

[∑

kk′
〈Ψ|ψ̂†k↑ψ̂k↑|Ψ〉ψ̂

†
k↓ψ̂k↓ +

∑

kk′
〈Ψ|ψ̂†k↓ψ̂k↓|Ψ〉ψ̂

†
k↑ψ̂k↑

−
∑

kk′
〈Ψ|ψ̂†k↑ψ̂k↓|Ψ〉ψ̂

†
k↓ψ̂k↑ −

∑

kk′
〈Ψ|ψ̂†k↓ψ̂k↑|Ψ〉ψ̂

†
k↑ψ̂k↓

−
∑

kk′
〈Ψ|ψ̂†k↑ψ̂k↑|Ψ〉〈Ψ|ψ̂

†
k↓ψ̂k↓|Ψ〉

+
∑

kk′
〈Ψ|ψ̂†k↑ψ̂k↓|Ψ〉〈Ψ|ψ̂

†
k↓ψ̂k↑|Ψ〉

]
.

(2.25)

In order to reveal the magnetic order of the Hamiltonian it is instructive to define the
so-called Stoner gap parameters

∆x =
g

Ld

∑

k

(
〈Ψ|ψ̂†k↑ψ̂k↓|Ψ〉+ 〈Ψ|ψ̂†k↓ψ̂k↑|Ψ〉

)
,

∆y =
−ig
Ld

∑

k

(
〈Ψ|ψ̂†k↑ψ̂k↓|Ψ〉 − 〈Ψ|ψ̂†k↓ψ̂k↑|Ψ〉

)
,

∆z =
g

Ld

∑

k

(
〈Ψ|ψ̂†k↑ψ̂k↑|Ψ〉 − 〈Ψ|ψ̂†k↓ψ̂k↓|Ψ〉

)
.

(2.26)

By invoking Eq. (2.26) we can express the expectation values in Eq. (2.25) with respect
to ∆ = ∆xex+∆yey+∆zez, where ex, ey, ez refer to the unit vectors in the spin-space.
Following this prescription we obtain the Hamiltonian of the Stoner model

ĤSM − µN̂ =
Ld

4g

[
|∆|2 − (gn)2

]

+
∑

kαβ

[(
εk +

gn

2
− µ

)
δαβ −

∆ +Bkez
2

· σαβ
]
ψ̂†kαψ̂kβ,

(2.27)

where the total density reads

n =
1

Ld

∑

k

〈Ψ|ψ̂†k↑ψ̂k↑ + ψ̂†k↓ψ̂k↓|Ψ〉. (2.28)

The Hamiltonian of Eq. (2.27) represents an ensemble of non-interacting spins with
each particular one corresponding to a different quasimomentum, k. These non-interacting
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spins are subjected to an effective magnetic field. The latter stems from the actual ap-
plied magnetic field Bk and an effective contribution based on the polarization of the
non-interacting spins ∆. ĤSM can be easily diagonalized for each-k, yielding the spin-
dependent dispersion relations as a function of the Stoner parameter

E±k (∆) =
(
εk +

gn

2Ld

)
± |∆ +Bkez|

2
(2.29)

Note that also the eigenstates of ĤSM can be expressed in terms of fermionic field
operators f̂ †k±(∆) = c±k↑(∆)ψ̂†k↑+c

±
k↓(∆)ψ̂†k↓ implying that within the Stoner model the

itinerant spin-1/2 fermions can be mapped to an ensemble of non-interacting fermionic
quasi-particles under the effect of a self-consistent field [107]. Accordingly, their ground
state at temperature T is characterized by the Fermi-Dirac distribution

〈Ψ|f̂ †k±(∆)f̂k±(∆)|Ψ〉 =

[
1 + exp

(
E±k (∆)− µ

kBT

)]−1

. (2.30)

Therefore the knowledge of the solution for every ∆ and µ allows us to express the
solution of the Stoner model in terms of the physical parameters g and n by solv-
ing Eq. (2.26) and (2.28) for the Stoner parameter and chemical potential. For a
k-dependent external magnetic field such a solution is non-trivial and it requires a
numerical treatment. However, in the case of a homogeneous external magnetic field
Bk = B0 the ground state properties of the Stoner model can be analyzed in an intu-
itive manner. Indeed, in this case the expansion coefficients c±kα(∆), with α ∈ {↑, ↓}
are k-independent and accordingly the electronic spins have to be polarized in the di-
rection of ∆/|∆| for |∆| 6= 0. Furthermore, Eq. (2.27) reveals that the ground state of
the Stoner model needs to satisfy ∆× ez = 0, as in the opposite case the polarization
of the particles along ∆/|∆| would precess around the z axis and therefore this state
could not be stationary. Note also that

〈Ψ|ĤSM |Ψ〉
N

=
(gn)2 − |∆|2

4gn
− 1

2
B0ez ·

∆

gn
− dkBT

2n

(
mkBT

2π~2

)d/2

×
[
Li d

2
+1

(
−e

2µ−|∆+B0ez |
2kBT

)
+ Li d

2
+1

(
−e

2µ+|∆+B0ez |
2kBT

)]
,

(2.31)

where Lip(x) refers to the polylogarithm function, rendering the polarization of the
Fermi gas along the z axis (i.e. parallel to the magnetic field) preferable to reduce
the energy stemming from the interaction between the polarization and the external
magnetic field ∝ B0. This constitutes a significant simplification as the ground state
of the Stoner model for Bk = B0 ≥ 0 is then characterized by ∆ = ∆zez, with
∆z ≥ 0, implying that Eq. (2.26) for ∆x and ∆y are trivially satisfied. The Stoner gap
parameter ∆z and the chemical potential µ can be expressed in terms of the interaction
parameter g and the density n as a function of temperature T by solving the coupled
set of transcendental equations

Li d
2

(
−e

2µ±(∆z+B0)
2kBT

)
= −n

2

(
2π~2

mkBT

) d
2
(

1± ∆z

ng

)
. (2.32)
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Notice that ∆z/(gn) ∈ [0, 1] and expresses the polarization of the spin of the system
along the z direction. Accordingly, ∆z/(gn) can be employed as the order parameter
of ferromagnetism.
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Figure 2.1: Phase diagram of the Stoner model of Eq. (2.27) in terms of the temperature
T (in units of the Fermi one, TF ) and interaction strength g for (a), (b) one, (c), (d)
two and (e), (f) three spatial dimensions. In all cases the magnetic field is homogeneous
taking the values (a), (c), (e) B0 = 0 and (b), (d), (f) B0 = 0.02EF, where EF is the
Fermi energy. The regimes corresponding to the paramagnetic and the ferromagnetic
phase are denoted by P and F respectively. The solid blue line provides the critical
interaction strength, gc(T ), as captured by Eq. (2.33) for B0 = 0.

The finite temperature phase diagram resulting from the solution of Eq. (2.32)
is provided in Fig. 2.1. It becomes evident that independently of the dimensionality
d = 1, 2, 3 and for B0 = 0, there are two phases appearing in the corresponding phase
diagram. Namely, the paramagnetic phase (see regions labeled as P ) characterized by
∆z = 0, and the ferromagnetic one (labeled as F ) having ∆z > 0. The paramagnetic
phase appears when the interaction is smaller than a critical value g < gc(T ), while
the system transits to the ferromagnetic phase in the opposite case. This second-
order transition can be explained intuitively in view of the Hamiltonian of Eq. (2.23)
where only the kinetic energy and the short-range interaction terms contribute. Indeed,
for small interactions the pairing of two fermions with opposite spin into the same
single-particle state, such that 〈Ψ|ψ̂†k↑ψ̂k↑|Ψ〉 = 〈Ψ|ψ̂†k↓ψ̂k↓|Ψ〉 is energetically preferable
since it decreases the volume of occupied quasimomenta in k space and hence the
kinetic energy. However, in the large interaction limit such a pairing process costs a
large energy since the interaction energy EI scales with the spin component overlap
EI ∼ g

∫
ddx n↑(x)n↓(x) = gn2[1 − ∆z/(gn)], see also Eq. (2.31). Accordingly, the

system prefers the spin of its constituting particles to polarize along an (arbitrary for
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B0 = 0) direction to reduce the interaction energy of the system [104]. The critical
interaction strength gc(T ), can be evaluated by taking the ∆z → 0+ limit of Eq. (2.32)
yielding

gc(T ) =

(
1

2

dn

dµ

∣∣∣∣
∆z=0

)−1

, (2.33)

which in the particular case of T = 0 reads gc(T = 0)D(EF ) = 1, with D(EF ) is the
single-particle density of states at the Fermi energy, corresponding to the well-known
Stoner criterion [107]. As it can be seen in Fig. 2.1, the critical temperature prediction
of Eq. (2.33) matches well with the transition points between the ferromagnetic and
paramagnetic phases. The positive shift of the gc(T ) with the temperature is qualita-
tively expected as a higher temperature typically leads to larger kinetic energies for the
system. The order parameter of the Stoner model, ∆z/(gn), is only weakly perturbed
for weak magnetic fields, here B0 = 0.02 EF . Despite the fact that ∆z > 0 even within
the paramagnetic region [see Eq. (2.31)], there is still a large and sharp increase of ∆z

in the vicinity of gc(T ), indicating the presence of a second-order phase transition [281]
from the paramagnetic to the ferromagnetic phase.

2.2.2 Stoner model and beyond: Description of ferromagnetism in
condensed matter settings

For condensed matter systems the zero-ranged interactions introduced in the Hamilto-
nian of Eq. (2.23) should be understood as an approximation to the actual screened
Coulomb interactions [282] experienced by two electrons in the conduction band of
the lattice created by the ionic cores of the material. Accordingly, the Hamiltonian
of Eq. (2.23) can be thought as the continuum limit of the single-band Hubbard
model [283–286]

ĤHub = −t
∑

〈i,j〉

∑

α∈{↑,↓}

â†iαâjα + U
∑

i

â†i↑â
†
i↓âi↓âi↑, (2.34)

with t the tunnelling rate, U the on-site interaction and 〈i, j〉 indicating summation
over all neighbouring sites. This limit is valid for ndeVs � 1, where ne is the density
of the electrons in the band to be described by the Hubbard model and Vs refers to
the volume of the lattice unit cell. Nevertheless, the validity of the Hamiltonian of Eq.
(2.23) can be extended to the ndeVs / 1 case if εk = ~2k2/2m is substituted with the
appropriate dispersion relation for the lattice under consideration. The typical Fermi
energy for metals is of the order of several eV [107]. In addition, the Zeeman splitting for
electrons reads B0 = gsµB|B|, where gs ≈ 2 is the gyromagnetic ratio of the electron,
µB ≈ 5.788× 10−5 eV/T refers to the Bohr magneton and |B| is the magnitude of the
applied magnetic field. Therefore, a Zeeman splitting e.g. of B0 = 0.02 EF [see Fig. 2.1]
corresponds to an extremely large magnetic field of |B| ∼ 100 T. As a consequence, the
effect of the external magnetic field on the magnetization of the material is negligible
and thus in a condensed matter setting we can clearly focus on the B0 = 0 limit.
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The Fermi temperature for a metal is rather high, namely, TF = EF /kB ∼ 104 K.
By comparing this value with the phase diagram [see Fig. 2.1(e)] a material at room
temperature is close to the zero temperature limit of the Stoner model, as T/TF ≈ 10−2.
This implies that the Stoner criterion for ferromagnetism gD(E)/L3 > 1 can be ap-
plied. Indeed, the ferromagnetic metals Fe, Co, Ni possess a large density of states
close to the Fermi energy [107,287] and therefore their ferromagnetic behaviour can be
qualitatively described by the Stoner model [104]. In addition, these materials show a
pronounced difference in the spin-resolved density of states for the spin-↑ and spin-↓
components in the vicinity of the Fermi energy which supports the development of a
Stoner gap, ∆z 6= 0. However, even in this case there are strong quantitative devia-
tions with the experimental observations [107]. The most well known regards the Curie
temperature TC , which is the temperature that ferromagnetic materials lose their per-
manent magnetization. It turns out that the Curie temperature is highly overestimated
by the Stoner model, which predicts TC ≈ TF ∼ 104 K, while the measured value ranges
from Tc ≈ 627 K for Ni to TC ≈ 1390 K for Co.

There are also conceptual problems regarding Stoner ferromagnetism. In partic-
ular, the Stoner model of Eq. (2.27) implies that the ferromagnetic system is in a
state of broken symmetry. While, the three-dimensional Hubbard model without ad-
ditional magnetic field possesses an O(3) symmetry, corresponding to the rotations of
spin-space, the Stoner model for |∆| 6= 0 possesses only an O(2) symmetry of rotations
around the spin-axis defined by ∆/|∆|. In order to achieve such a reduction of sym-
metry, spontaneous symmetry breaking should take place [281]. However, according to
the Mermin-Wagner theorem [111], which has been extended to the case of the Hub-
bard model [288–290], the O(3) continuous symmetry cannot be broken if the Fermi
gas possesses d ≤ 2 dimensions. In contrast to this theorem, as Fig. 2.1(a) and 2.1(d)
reveals the Stoner model predicts that there is a |∆| 6= 0 phase for d = 1, 2. This
discrepancy can be attributed to the inability of the employed mean-field theory to de-
scribe spin-wave excitations [108, 109]. Interestingly, it was already noted by Slater in
1937 [108] that for investigating the temperature variation of magnetization of the sys-
tem an appropriate spin-wave theory should be employed. The spin-waves correspond
to spatial-dependent fluctuations in the orientation of ∆/|∆| and their quanta corre-
spond to quasi-particles called magnons which are the Goldstone bosons of the broken
O(3) symmetry. For d ≤ 2 thermal fluctuations are supposed to excite long-wavelength
spin-waves, destroying the long-range ferromagnetic order for any finite temperature in
the thermodynamic limit.

Even within the zero-temperature limit, further inconsistencies arise when compar-
ing the viewpoint of Stoner ferromagnetism with the theorems regarding the energetic
ordering of the different manifolds of total spin S. In particular, it is known that the
ground state of Eq. (2.23) for d = 1 has a total spin of S = 0 for even and S = 1/2
for odd total particle numbers [110]. In addition, the eigenenergies have to satisfy
E(S) < E(S′), for S < S′, where E(S) is the energetically lowest eigenenergy with
total spin S. In contrast, the Stoner model predicts a ferromagnetic transition at zero
temperature when gD(E)/L > 1 is satisfied. Similarly, it has been shown by Lieb
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in 1989 [112] that for any bipartite lattice (even in the case of broken translational
symmetry) the ground state at half filling, i.e. Ne = Ns, where Ne is the number of
particles and Ns the number of sites, possesses spin equal to S = NA−NB

2(NA+NB)Ns, where
NA, NB refers to the number of A and B sites in a unit cell. This implies that all
bipartite lattices with equal number of A and B sites cannot support ferromagnetism
at half filling. Cases of such lattices include for instance the square, rectangular and
honeycomb lattice for d = 2, the cubic and triclinic lattice for d = 3. The Stoner
criterion, gD(EF ) ≥ 1, is unable to incorporate such geometric effects as it only in-
volves the density of states at the Fermi energy and as a consequence it can violate
the Lieb theorem [112]. A particular case of agreement refers to the honeycomb lattice
where the density of states at half filling is zero (since the Fermi energy lies exactly at
the energy level of the Dirac points) and as a consequence the Stoner model predicts
that ferromagnetism is impossible. However, counterexamples are far more common.
For instance, regarding a square or cubic lattice at half filling the density of states is
maximal at the Fermi energy, indicating that according to the Stoner criterion these
lattices are prone to exhibit ferromagnetic phenomena in sharp contrast to the Lieb
theorem [112]. The condition NA 6= NB also provides an interesting caveat to Stoner
ferromagnetism. If this condition is satisfied for a particular lattice configuration, its
Fermi energy for half filling lies within a dispersionless (flat) band and consequently
a very large (infinite in the thermodynamic limit) density of states is involved at the
Fermi level [291, 292]. Here the Stoner model predicts a ferromagnetic transition for
non-vanishing repulsion, however, according to the Lieb theorem in the presence of
correlations ferrimagnetism [293] is exhibited.

As evident from the above despite the success of the Stoner model in predicting the
development of a gap between the states of spin-↑ and spin-↓ electrons in ferromagnetic
metals [107], this model is too simplistic to capture the intricacies of ferromagnetism
in condensed matter setups. In recent years more involved Hartree-Fock mean field
methodologies addressing the Hubbard model were proposed, which are able to rectify
some of the above mentioned issues by properly accounting for geometric lattice effects
and inhomogeneous phases [113]. Nevertheless, it is generally believed that the Hubbard
model at finite doping can appropriately capture the basics of ferromagnetism, with
no need for involving multi-band models or explicit exchange interactions among the
electrons [114].

A major result that supports the conjecture that the Hubbard model can ade-
quately describe the phenomenon of itinerant ferromagnetism in metals is put forward
by Nagaoka in 1966 [294]. In particular, it was proven that the ground state of the
Hubbard model on a bipartite system in the limit of U →∞ and for Ne = Ns − 1, i.e.
a single particle lower than half filling, is ferromagnetic in the sense that its ground
state possesses total spin S = Ne

2 [294]. This finding lead to a new era of investiga-
tions [114, 295, 296], however, to our knowledge there is no rigorous generalization of
the Nagaoka ferromagnetism to finite U or Ne < Ns − 1.
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2.3 Stationary and magnetic properties of confined spin-
1/2 Fermi gases in one-dimension

The direct realization of the above mentioned Stoner instability in ultracold Fermi gases
in its simplest form as described by Eq. (2.27) was not possible [94, 96]. The inability
of the experiment to observe such a phenomenon is attributed to the fast decay of
repulsive Fermi gases to diatomic molecular bound states [95]. This process occurs in
the three and two dimensional settings, due to the attractive character of the actual
interatomic potential [77]. This fact necessitates the development of novel techniques
for the adequate characterization of ferromagnetism. In particular, spin-dynamics [97]
and pump-probe spectroscopy [100,101] has been employed for the characterization of
the magnetic properties of the metastable repulsive fraction of a Fermi gas in three
dimensions. Here we propose an alternative bottom-up approach by considering the
magnetic properties of a repulsive 1D Fermi gas, which does not suffer from the com-
peting process of molecule formation [77]. In particular, the magnetic properties of 1D
Fermi gases can be mapped to a spin-chain model in the limiting case of infinite inter-
actions [128–133] and as we will demonstrate within this thesis the same is true within
the opposite regime of weak interactions [134, 135]. This mapping between itinerant
and localized magnetic systems is of crucial importance due to the well-understood
character of the magnetic properties of the latter allowing for the understanding of the
related phenomena emerging in the former [107].

An important hindrance of employing 1D fermions for the study of ferromagnetism is
that according to the Lieb-Mattis theorem [110] the ground state is of antiferromagnetic
character independently of the type and strength of the trapping potential and of the
involved interactions. Within our studies we can easily bypass this issue by considering
the excited state of such Fermi gases and in particular their fully polarized states or
spatial domains of polarized particles, which can easily be implemented in the ultracold
environment [97,125]. Moreover, the apparent drawback of an antiferromagnetic ground
state provides further insights into the inner-workings of magnetic systems. As we
will argue, the fact that the ground state of a Fermi gas is always antiferromagnetic
is a consequence of the Anderson kinetic exchange interactions [142] which competes
with ferromagnetism. In this light the Lieb-Mattis theorem can be interpreted as
the proof that the Anderson exchange interactions always dominate the ferromagnetic
processes [139–141] that emanate in those setups.

In the following, we will present the Hamiltonian and review the basic spin sym-
metries of 1D Fermi ensembles. Then we will continue by examining the basic non-
interacting, weakly and strongly interacting magnetic properties of such Fermi systems.
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2.3.1 Hamiltonian and basic symmetries

The Hamiltonian of 1D spinor fermi gases according to Eq. (2.16) and Eq. (2.18) reads

Ĥ =
∑

α∈{↑,↓}

∫
dx ψ̂†α(x)

(
− ~2

2m

d2

dx2
+ V (x)

)
ψ̂α(x)

+g

∫
dx ψ̂†↑(x)ψ̂†↓(x)ψ̂↓(x)ψ̂↑(x).

(2.35)

It possesses important spin-symmetries as it commutes with the spin-operators

Ŝi =
~
2

∑

α,α′∈{↑,↓}

∫
dx ψ̂†α(x)σiαα′ψ̂α′(x). (2.36)

with i ∈ {x, y, z} and σiαα′ being the spin-i Pauli matrix. First, notice that the Ŝz
operator can be also expressed as Ŝz = ~(N̂↑−N̂↓)/2. This combined with the fact that

Ĥ commutes with the total particle operator N̂ = (N̂↑ + N̂↓) implies that the number
of particles within each individual component is a conserved quantity. Therefore, for
a N particle Fermi gas each different Sz ∈ {−N

2 ,−N
2 + 1, . . . , N2 } manifold of states

can be treated independently. The Ŝx and Ŝy symmetries are also important. Indeed,
these symmetries imply that the spin-ladder operators, Ŝ± = Ŝx ± iŜy, also commute
with the Hamiltonian. In turn, the total-spin operator Ŝ2 = Ŝ+Ŝ− + Ŝz(Ŝz − 1), also
commutes both with the Hamiltonian, Ĥ, and the Ŝz operators. Consequently, for
each state there are two good quantum numbers namely S and Sz, with the available
values of the total spin S depending on the number of spin-↑ and spin-↓ atoms since
S ∈ {|Sz|, |Sz|+1, . . . , N2 }. The Ŝ± symmetries have an additional consequence as if we
assume an eigenstate of the system, |Ψ;S, Sz〉, with quantum numbers S and Sz then
also the states |Ψ;S, Sz+ 1

2〉 = Ŝ+|Ψ;S, Sz〉/
√

(S − Sz)(S + Sz + 1) and |Ψ;S, Sz− 1
2〉 =

Ŝ−|Ψ;S, Sz〉/
√

(S + Sz)(S − Sz + 1) (in the case that S ≥ Sz ± 1) are eigenstates of
the Hamiltonian and are energetically degenerate with |Ψ;S, Sz〉. Of course, this also
implies that states with spin S 6= 0 are a part of a degenerate eigenstate manifold
consisting of at least 2S + 1 states.

The above properties greatly aid in the characterization of the eigenspectrum of Ĥ.
Note that due to the commutation of the Ŝ± operator with Ĥ the whole eigenspectrum
of the N particle spin-1/2 Fermi gas can be generated by studying the eigenspectrum
of a single configuration in terms of N↑ and N↓ states. The latter configuration refers
to the case of N↑ = N↓ for even N and the configuration N↑ = N↓ + 1 for odd N .
Furthermore, even in the case that a homogeneous magnetic field is applied such that
Ĥ ′ = Ĥ +B0Ŝz, the eigenstates of Ĥ ′ are exactly equivalent to the B0 = 0 case. Their
corresponding eigenenergy is, however, shifted by ~B0Sz, where Sz is the corresponding
spin quantum number. Therefore, the eigenspectrum of the Hamiltonian Ĥ is relevant
also for more realistic systems that additionally account for the Zeeman splitting of the
hyperfine levels.

Figure 2.2 provides an explicit example for the eigenspectrum of a spin-1/2 Fermi
system within the interaction range, g ≥ −1

√
~3ω/m. The corresponding physical
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Figure 2.2: The 65 energetically lowest eigenenergies for N = 4 spin-1/2 fermions
confined in a parabolic trap versus the interaction strength g, obtained within ML-
MCTDHX. The total spin S for each eigenstate is encoded in the color of the lines
indicating also the degree of degeneracy, 2S + 1, for each state. The line pattern
indicates the degree of excitation for the center of mass, nCM. Notice also that for
|g| < 1 linear scaling of the interaction axis is employed while for g > 1 we switch to
1/g scaling.

system refers to N = 4 parabolically confined, V (x) = (mω2x2)/2, fermions. The 65
energetically lowest eigenenergies of the system are depicted referring to 31 distinct
manifolds of degenerate eigenstates. In agreement to the above discussion the degree
of degeneracy of these manifolds relies on the total spin of the eigenstates S and it is
given by 2S + 1. Indeed, each manifold can be spanned by the eigenstates referring to
the different allowed Sz = −S,−S + 1, . . . , S which are related by the ladder-operators
Ŝ±. The eigenspectrum of Fig. 2.2 exhibits a prominent structure in terms of the
different involved S manifolds. In particular, notice the almost linear dependence of
the eigenenergies on g for weak attractions or repulsions (|g| < 1/2) and the ≈ 1/g
increase of the eigenenergies within the strong interaction regime g > 4. Nevertheless,
we will postpone the detailed discussion of the exhibited magnetic properties in the
interaction regimes g = 0, |g| � 1 and g � 1, which will be analyzed in Sec. 2.3.2,
2.3.3 and 2.3.5 respectively.

Before proceeding, notice that for the complete characterization of the eigenspec-
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trum the symmetries of the Hamiltonian stemming from the external potential V (x)
are crucial. Of course, there are no generally applicable statements that can be made
since each different confinement potential has to be individually examined. For the
harmonic trap considered in Fig. 2.2 a relevant symmetry is the relative coordinate
and center of mass separation [297]. Indeed, the Hamiltonian operator for the center
of mass

ĤCM =
1

2Nm

(
≡P̂︷ ︸︸ ︷

−i~
∑

α∈{↑,↓}

∫
dx ψ̂†α(x)

d

dx
ψ̂α(x)

)2

+
Nmω2

2

( ∑

α∈{↑,↓}

∫
dx xψ̂†α(x)ψ̂α(x)

︸ ︷︷ ︸
≡X̂

)2

,

(2.37)

commutes with the many-body Hamiltonian, Ĥ of Eq. (2.35). Therefore, the eigen-
states of the confined fermions can be characterized in terms of the degree of excitation
of the center of mass, nCM. In addition, due to this symmetry the eigenstates with
excited center of mass can be constructed from the corresponding ones with nCM = 0
by (repeatedly) applying the creation operator â†CM =

√
Nmω/(2~)[X̂ + i/(Nmω)P̂ ].

Note that each such excitation increases the energy of the eigenstate by ~ω. In view
of these properties the whole spectrum consisting of 65 eigenenergies presented in Fig.
(2.2) can be constructed in terms of 14 different eigenstates, with Sz = 0 and nCM = 0.
This large reduction in the number of independent states appearing in the eigenspec-
trum shows the prominent role of symmetries in reducing the computational effort of
many-body simulations [298] and providing a valuable sanity check of different ap-
proaches [299].

2.3.2 Non-interacting many-body eigenspectrum

A many-body wavefunction basis for expressing the N -body spectrum of the spin-1/2
fermions can be derived in terms of the single-particle eigenspectrum of the confining
potential [146]. Such a construction is particularly useful away from the strong inter-
action limit where the interactions dominate the behaviour of the system. The starting
point is to express the eigenstates of the many-body system in the g = 0 case in terms
of the single-particle eigenstates (SPES), φi(x), i = 0, 1, . . . , of the system. Indeed, by
defining the creation and annihilation operators of the spin-↑ and spin-↓ atoms

â†i↑ =

∫
dx φi(x)ψ̂†↑(x) and âi↑ =

∫
dx φ∗i (x)ψ̂↑(x), (2.38)

the many-body Hamiltonian reads

Ĥ =
∑

i

∑

α∈{↑,↓}

εi â
†
iαâiα

︸ ︷︷ ︸
≡Ĥ0

+ g
∑

i,j,k,l

Uijkl â
†
i↑â
†
j↓âk↓âl↑

︸ ︷︷ ︸
≡ĤI

. (2.39)
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Here εi correspond to the single-particle eigenenergies (SPEE), while the interaction
matrix elements refer to Uijkl =

∫
dx φ∗k(x)φ∗l (x)φi(x)φj(x). Accordingly, the creation

and anihillation operators obey the anticommutation relations {âiα, â†jα′} = δijδαα′ and

{âiα, âjα′} = {â†iα, â
†
jα′} = 0 [146]. These imply that each single-particle state can be

occupied either singly, by a particle of either spin, or doubly, by two particles of opposite
spin. The latter configuration is commonly referred to as a doublon. For g = 0 the
many-body eigenspectrum is rather trivial. The ground state(s) consists of the state(s)

|GSα〉 =

(
â†bN

2
cα

)mod(N,2)


bN

2
c−1∏

i=0

âi↑âi↓



†

|0〉, (2.40)

where α ∈ {↑, ↓} corresponds to the spin of the ground state which is relevant for odd N .

The ground state eigenenergy is equal to E = mod(N, 2)εbN/2c−1 + 2
∑bN/2c−1

i=0 εi [146].
Furthermore, all other eigenstates with the same Sz can be generated by applying one
or multiple single-particle excitation operators T̂αij = â†iαâjα, with i 6= j. Indeed, when

T̂αij acts on a many-body eigenstate it generates a different orthogonal one with an
energy difference εi − εj to the initial eigenstate. Finally, the states with different Sz
can be generated by employing the Ŝ+ and Ŝ− operators and as discussed previously
they are energetically degenerate with the initial eigenstate.

It is instructive to elaborate on the issue of degeneracy of the many-body eigenspec-
trum for g = 0. Notice that exact degeneracies do not occur in the 1D single-particle
spectrum for a confined system, as the underlying SPES have to be normalizable, see
also Ref. [247]. However, degeneracies can occur due to the different configuration of
particles contributing to a many-body eigenstate [K1,K2]. Indeed, the allowed eigenen-
ergies for g = 0 read

E0 =
∑

i

εi(ni↑ + ni↓). (2.41)

Equation (2.41) reveals that there are two classes of degeneracies that can arise in the
many-body eigenspectrum. An example of the first kind of degeneracy occurs if the
condition

εi + εj = 2εk (2.42)

holds for three different SPEE. In this case, each eigenstate |Ψ0〉 has to be degenerate
with |ΨA

αα′〉 = T̂αikT̂
α′
jk |Ψ0〉 and |ΨB

αα′〉 = T̂αkiT̂
α′
kj |Ψ0〉, for all α, α′ that yield |ΨA

αα′〉 6= 0 6=
|ΨB

αα′〉. The above generalize when more than three SPEE are involved, for instance in
the case that four different SPEE fulfill

εi + εj = εk + εl. (2.43)

A similar argument can be employed in order to create degenerate many-body eigen-
states related to the eigenenergy coincidence of more than four single-particle levels.
The second kind of degeneracy stems from the fact that given a many-body eigenstate
its energy depends only on the sum of spin-↑ and spin-↓ atoms, ni = ni↑ + ni↓, that

34



STAT. AND MAGN. PROP. OF CONF. SPIN-1/2 FERMI GASES IN 1D

occupy a given SPES. This implies that a lower bound for the degeneracy of a given
eigenstate is 2N−2Nd , where Nd is the number of doublons, as the spin of each fermion
not forming a doublon can either be spin-↑ or spin-↓ without affecting the energy of the
many-body eigenstate. This lower bound is exhausted whenever a degeneracy of the
first kind is not possible. A useful tool for categorizing the non-interacting many-body
eigenstates is the vector quantity ~n = (n0, n1, . . . ) that tracks the occupation of each
SPES independently of the spin of the involved fermions. By using ~n we can distin-
guish between the degeneracies of the first and the second type as the former involve
many-body eigenstates of different ~n, while the latter refer to eigenstates with equal ~n.

The above properties can be easily identified in the eigenspectrum of N = 4 parabol-
ically confined fermions depicted in Fig. 2.2. In particular, the ground state belongs
to the configuration ~n = (2, 2, 0, . . . ) and reads |GS〉 = â†1↓â

†
1↑â
†
0↓â
†
0↑|0〉, where â†iα

are the creation operators referring to the SPES of the harmonic oscillator poten-
tial. The ground state is unique (recall that Nd = 2) and possesses an energy of
EGS = 4~ω. The excited states with Sz = 0 can be obtained by applying the opera-
tors T̂αij and the energetically lowest ones correspond to |Exα〉 = T̂α21|GS〉, belonging to
the ~n = (2, 1, 1, 0, . . . ) configuration with energy EEx = 5~ω. Due to the presence of
one doublon the eigenstates should be quadruply degenerate, with the other two states
referring to |Ex↑↑〉 = Ŝ+T̂

↑
21|GS〉 and |Ex↓↓〉 = Ŝ+T̂

↓
21|GS〉. The quadruple degeneracy

of this energy manifold can be verified by observing that two eigenenergy manifolds of
S = 0 and S = 1 become degenerate for g = 0 and E = 5~ω in Fig. 2.2. The degen-
eracy due to SPEE coincidence becomes apparent in the next manifold of degenerate
states at EEx2 = 6~ω. In this case there are three different configurations, namely the
~n = (2, 1, 0, 1, 0, . . . ), ~n = (1, 2, 1, 0, . . . ) and ~n = (2, 0, 2, 0, . . . ) referring to the same
energy, since ε1 + ε3 = 2ε2 = 2~ω, satisfying the condition of Eq. (2.42). Consequently,
the degeneracy of this manifold is 4 + 4 + 1 = 9, which can be verified by Fig. 2.2 by
observing that three branches of the S = 0 eigenstates and two referring to the S = 1
ones become degenerate for E = 6~ω and g = 0. These arguments can be applied to
degenerate manifolds of increasing energy and thus generate the whole non-interacting
eigenspectrum in terms of the SPES and SPEE.

Regarding the magnetic properties of non-interacting spin-1/2 Fermi gases we ex-
pect that since their many-body eigenspectrum is highly spin-independent their be-
haviour has to be paramagnetic [134]. However, their eigenstates are in general highly
degenerate and therefore very susceptible to perturbations. There are also several
hints that point towards the fact that interactions can modify the magnetic properties
of Fermi gases. As mentioned previously the SU(2) symmetry of the interacting Hamil-
tonian refers to the invariance under rotations of the total spin of the system and not
each individual particle. In contrast, the full Hamiltonian depends on the correlations
between the spins of individual atoms, which are affected by modifying their individ-
ual spins. Another hint towards this direction is provided by the excitation operator
T̂αij which does not commute with Ŝ+, Ŝ− and Ŝ2 implying that the non-interacting

eigenstates generated from |GSα〉, by applying T̂αij operators, might not be eigenstates
of the interacting system g 6= 0, since in general they do not possess a well defined S
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Term (ĤU ) Description U ∆E0

â†i↑â
†
i↓âi↓âi↑ Interaction energy of a

doublon

∫
dx φ4

i 0

â†i↑â
†
j↓âj↓âi↑, i 6= j Inter-SPES interaction

energy

∫
dx φ2

iφ
2
j 0

â†i↑â
†
j↓âi↓âj↑, i 6= j Spin exchanging interaction

∫
dx φ2

iφ
2
j 0

â†i↑â
†
i↓âj↓âj↑, i 6= j Hopping of a doublon

∫
dx φ2

iφ
2
j 2(εi − εj)

â†i↑â
†
k↓âk↓âj↑, i 6= j

Density-mediated hopping
∫

dx φiφjφ
2
k εi − εj

â†k↑â
†
i↓âj↓âk↑, i 6= j

â†k↑â
†
i↓âk↓âj↑, i 6= j Spin-exchanging density-

mediated hopping

∫
dx φiφjφ

2
k εi − εj

â†i↑â
†
k↓âj↓âk↑, i 6= j

â†k↑â
†
k↓âi↓âj↑, i 6= j Creation of a doublon

∫
dx φiφjφ

2
k 2εk − (εi + εj)

â†i↑â
†
j↓âk↓âk↑, i 6= j Annihilation of a doublon

∫
dx φiφjφ

2
k (εi + εj)− 2εk

â†i↑â
†
j↓âk↓âl↑, Double hopping

∫
dx φiφjφkφl εi + εj − εk − εl

i, j, k, l distinct

Table 2.1: Categorization of all interaction terms appearing in an 1D spin-1/2 Fermi
gas. U indicates the coupling constant in terms of the overlaps of the SPES, φi(x).
Here, the SPES are assumed real since a confined system is considered. ∆E0 refers
to the energy difference before and after the application of the interaction term to a
many-body eigenstate for g = 0.

quantum number.

2.3.3 Magnetic properties of weakly interacting systems

In order to get a better understanding of the interacting system it is instructive to study
the qualitative character of the different interaction terms that appear in the Hamilto-
nian of Eq. (2.39). These interaction terms can be categorized in ten classes according
to their effect when applied to a g = 0 many-body eigenstate. This categorization is pro-
vided in Table 2.1. Particularly important are the terms that couple states being degen-
erate for g = 0, since they might lift the degeneracy between the involved states [K1,K2].
There are three classes of such terms possessing this property, which are identified in
Table 2.1 since they possess ∆E0 = 0, where ∆E0 = 〈Ψ|ĤUĤ0ĤU |Ψ〉 − 〈Ψ|Ĥ0|Ψ〉.
Here, ĤU denotes the particular class of terms contributing to ĤI . The first such class
corresponds to the doublon interaction energy terms

Ĥdoub
U =

∑

i

gUiiiiâ
†
i↑â
†
i↓âi↓âi↑. (2.44)
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They result in the linear increase of the energy with g of all states possessing doublons.
Second, the inter-SPES interaction contributions

Ĥ inter
U =

∑

i 6=j
gUijjiâ

†
i↑â
†
j↓âj↓âi↑, (2.45)

which encode the interaction energy of two fermions with anti-oriented spins residing
in different SPES. Finally, the spin exchange interaction terms

Ĥexc
U =

∑

i 6=j
gUijij â

†
i↑â
†
j↓âi↓âj↑, (2.46)

allowing two fermions in different SPES to exchange their spin. Therefore, for small
enough g we expect that the above mentioned terms described in Eq. (2.44), (2.45)
and (2.46) contribute dominantly to the lifting of degeneracy between each degenerate
manifold of states (see Ref. [K1, K2] and [135]). We can therefore justify for small g
the approximation of the full-interaction term as [K2]

ĤI ≈ Ĥdoub
U + Ĥ inter

U + Ĥexc
U = g


∑

i

Uin̂i↑n̂i↓ −
∑

j 6=i
Jij

(
Ŝi · Ŝj −

1

4
n̂in̂j

)
 , (2.47)

with Ui =
∫

dx φ4
i (x) and Jij =

∫
dx φ2

i (x)φ2
j (x). It can be seen that the approxima-

tion of Eq. (2.47) introduces ferromagnetic spin-exchange interactions for repulsively
interacting Fermi gases (g > 0) between the different singly occupied SPES and accord-
ingly anti-ferromagnetic spin-exchange interactions for attractively interacting fermions
(g < 0). The above imply that indeed for non-zero interactions the few-body 1D Fermi
gas exhibits non-trivial magnetic properties.

The approximate interaction term in Eq. (2.47) can be used within degenerate state
first-order perturbation theory in order to lift the degeneracy of the eigenstates observed
within the g = 0 case [135], [K1,K2]. In particular, notice that Eq. (2.47) conserves the
spatial configuration in terms of ~n of the non-interacting states and therefore allows
for the decoupling of the spectrum of the 1D Fermi gas with respect to distinct ~n.
This decoupling leads to the mapping of the eigenstates of a configuration ~n to a
Heisenberg-type spin-chain Hamiltonian consisting of N −2Nd spins and incorporating
long-range interactions [K1]. Notice that Jij > 0 and accordingly a ferromagnetic
(antiferromagnetic) ground state for each different ~n spin-chain is ensured for g > 0
(g < 0) [107]. The only scaling of the terms in Eq. (2.47) with g at this limit is a
homogeneous linear increase of the interaction strengths and accordingly we expect the
eigenenergies to scale linearly within the |g| � 1 interaction regime.

The above mentioned expectation can be verified e.g. for N = 4 parabolically con-
fined atoms shown in Fig. 2.2. In line with the above argumentation we observe that
the eigenenergies increase linearly within |g| < 1/2. In particular, the slope of the
eigenstates characterized by smaller S = 0 is larger than the corresponding ones for
S = 1, with the states possessing S = 2 having a constant energy. This fact indicates

37



THEORETICAL FRAMEWORK

that the fermions behave ferromagnetically and antiferromagnetically for positive and
negative interactions respectively, in accordance to the predictions of Eq. (2.47). De-
viations from the magnetic order imposed by this approximate form of the interaction
Hamiltonian seem to be insignificant except for the case of large interactions g � 1.
Notice that the behaviour presented in Fig. 2.2 indicated that Eq. (2.47) can be ap-
plied to qualitatively obtain valid results within the g ≈ 1 interaction regime, although
the increase of the eigenergies deviates from the predicted linear trend.

In particular, one of the main goals of the works [K1, K2] are to demonstrate that
the approximation of Eq. (2.47) adequately describes and characterizes the magnetic
properties of 1D spin-1/2 Fermi gases for weak and intermediate interactions. Addi-
tionally, Ref. [K1, K2] generalize Eq. (2.47) and extend its validity in the moderate
interaction g ≈ εi+1 − εi regime and in the case of broken SU(2) symmetry. At first
glance, the approximation that Eq. (2.47) provides may seem ad hoc. Particularly, in
the cases that the SPEE satisfy Eq. (2.42) or Eq. (2.43), for different i, j, k, l, there are
additional degeneracies between states possessing different ~n in the many-body eigen-
spectrum for g = 0. These states can couple due to interactions involving doublon
creation or anihillation or correlated double hopping, see also Table 2.1. However, de-
tailed calculations in [K1,K2] and [135] demonstrate that the approximate form of Eq.
(2.47) indeed provides the basic underlying framework for understanding the magnetic
properties emanating in the excited states of the confined 1D Fermi gas.

Apart from the numerical evidence provided in the above mentioned works there
are some qualitative arguments that support this behaviour. First, except for the
harmonic oscillator case of equidistant SPEE, in general the energy differences between
distinct SPEE are not equal and thus Eq. (2.42) and (2.43) are rarely satisfied, for very
specific combinations of i, j, k, l, with these indices typically attaining quite different
values. This in turn implies that the involved coupling strengths Uijkk = Ukkij =∫

dx φi(x)φj(x)φ2
k(x) or Uijkl =

∫
dx φi(x)φj(x)φk(x)φl(x) are much smaller than the

ones involved in Eq. (2.47) and thus coupling effects are negligible. Moreover, even in
the case of a harmonic oscillator there is an additional symmetry at play, namely the
separation of the relative and the center-of-mass coordinates, Eq. (2.37). The latter
finally prohibits the above mentioned states to couple with one another. Note here
that even when this symmetry is weakly broken, with the SPEE remaining roughly
equidistant, Ref. [K1] reveals that effects beyond Eq. (2.47) remain negligible.

Although as mentioned above exact degeneracies in the SPEE are impossible in
1D setups [247], the double-well or the multi-well confinement provide examples of
external potentials where quasi-degeneracies occur. In these cases the validity condition
|g| � εi+1 − εi of Eq. (2.47) breaks down and one expects that it is inadequate for
describing the magnetic properties of the system. However, in Ref. [K2], we show that
a generalization of Eq. (2.47) that properly accounts for the magnetic mechanisms
emanating in double-well confined fermionic ensembles is rather straightforward, with
the system maintaining to a large degree its ferromagnetic correlations for repulsive
interparticle interaction strengths, g > 0.
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2.3.4 Strongly interacting 1D spin-1/2 fermions

In the strong interaction regime, namely g � εi+1 − εi, the SPES are no longer an
adequate basis for characterizing the interacting many-body eigenspectrum. Indeed,
it is known that the diagonalization of the many-body Hamiltonian of Eq. (2.39)
over a finite set of SPES leads to unphysical results as g → ∞ [300]. The above
demonstrate the large degree of interparticle correlations that is manifested for strong
zero-range repulsions. An important step in understanding the behavior of spinor
fermionic ensembles is the realization that in the limit of strong interactions g → ∞
these systems constitute examples of Tonks-Girardeau gases.

The concept of a Tonks-Girardeau gas has been originally introduced in terms of
an 1D infinitely repulsive gas of spinless bosons [301]. A Tonks-Girardeau gas behaves
similarly to an ensemble of distinguishable impenetrable particles, but in addition, it
satisfies the proper for the indistinguishable character of its constituents particle ex-
change properties. It is known [129, 302] that infinitely interacting spin-1/2 fermions
form a Tonks-Girardeau gas and a convenient basis for examining their eigenspectrum
can be constructed via employing a mapping to impenetrable particles. The mag-
netic properties of a spin-1/2 fermionic gas proximal to the Tonks-Girardeau regime
are particularly interesting due to their involved underlying exchange statistics of the
spatial and spin degrees of freedom. For this reason, the properties of the above men-
tioned fermionic systems (especially in the few-body regime) are well-studied, mostly
by employing appropriate spin-chain models in the vicinity of the g → ∞ limit, see
Ref. [128–133] and Sec. 2.3.5. Below, we provide an outline for the construction of the
many-body basis appropriate for the study of strongly interacting spin-1/2 fermions
and provide an intuitive interpretation regarding the character of the involved states.

According to the Tonks-Girardeau framework for infinitely repulsive zero-range in-
teractions the spin-1/2 fermions behave as a collection of impenetrable atoms. This
implies that two fermions cannot reside at the same position and they cannot permeate
one another since such a process involves the crossing of an interaction potential barrier
of infinite amplitude, V (xi, xj) ∼ lim

g→∞
gδ(xi−xj). However, the process of two fermions

permeating one another cannot be formulated in a transparent and rigorous manner due
to the wavefunction symmetrization properties of the many-body setup stemming from
the fermionic nature of its constituents. To address this issue it is useful to study an
analogous setup consisting of distinguishable impenetrable particles. The advantages
of such a study are twofold. First, the distinguishable character of the particles allows
for a straightforward description of the process where one particle permeates another.
For instance, such a process can be characterized by the transfer of population from a
configuration where xi < xj for two particles labeled i and j to a configuration with
xi > xj . Second, given the eigenspectrum of the setup involving distinguishable parti-
cles the eigenstates of the system consisting of indistinguishable particles but obeying
the same Hamiltonian can be evaluated by taking into account the proper symmetriza-
tion of the many-body wavefunction. Notice that the above is true for any atomic
species or mixture and not particularly for spinor fermions, showcasing the generality
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of this approach. The Hamiltonian referring to distinguishable impenetrable particles
is equivalent to a non-interacting one, see also Eq. (2.35), reading

Ĥ =

N∑

i=1

[
− ~2

2m

d2

dx2
i

+ V (xi)

]
, (2.48)

with V (x) the external potential and m the atomic mass. Also, hard-wall (Dirichlet)
boundary conditions are incorporated for xi = xj and i 6= j ∈ {1, . . . , N}. The descrip-
tion of the stationary properties of this system is more transparent because the ordering
of the xi coordinates of distinguishable particles is well-defined since the corresponding
many-body wavefunction, Ψd(x1, x2, . . . , xN ) does not involve the symmetrization of
those coordinates. The ability to define the ordering of the xi is particularly impor-
tant since both the Hamiltonian and the boundary conditions are symmetric under any
permutation of the particle indices, i.e. x1, x2, . . . , xN → xPi(1), xPi(2) . . . , xPi(N), with
Pi(1), Pi(2), . . . , Pi(N) being the i-th permutation of the indices 1, 2, . . . , N . This sym-
metry properties allows us to invoke the so-called sector wavefunctions for expressing
the eigenstates of the gas of distinguishable atoms, Ψj,k

d (x1, x2, . . . , xN ). In particular,
the eigenstates of Eq. (2.48) read

Ψj,k
d (x1, x2, . . . , xN ) = Ψk

0(xPj(1), xPj(2), . . . , xPj(N)). (2.49)

Here Ψk
0(x1, x2, . . . , xN ), for k = 1, 2, . . . refer to the sector wavefunctions, possessing

the property Ψk
0(x1, x2, . . . , xN ) 6= 0 if x1 < x2 < · · · < xN and Ψk

0(x1, x2, . . . , xN ) = 0

otherwise. Note that the eigenstates Ψj,k
d (x1, x2, . . . , xN ) with different j = 1, 2, . . . , N !,

are degenerate since the Hamiltonian of Eq. (2.48) is invariant under any particle
exchange. Accordingly, the energy of each eigenstate of Eq. (2.49) depends solely on k
which refers to the appropriate sector wavefunction.

As it can be readily seen, in order to span the eigenspectrum of the impenetrable dis-
tinguishable particles we have to determine the sector wavefunctions Ψk

0(x1, x2, . . . , xN ).
This can be easily achieved by considering a spinless non-interacting Fermi gas. Indeed,
this setup obeys the non-interacting Hamiltonian of Eq. (2.48) and in addition owing to
the Pauli exclusion principle all of its eigenstates satisfy the Dirichlet boundary condi-
tions, i.e. Ψk

f (x1, . . . , xi, . . . , xj = xi, . . . , xN ) = 0 for all i 6= j ∈ {1, 2, .., N}. Therefore,
the eigenstates of spinless fermions can be viewed as a set of particular solutions for the
eigenvalue problem defined by Eq. (2.48) when the appropriate boundary conditions
are taken into account. Notice that the spinless fermion eigenstates additionally incor-
porate the proper antisymmetrization of the many-body wavefunction for the spatial
coordinates of all fermions. This property implies that there is an one-to-one corre-
spondence between spinless fermionic many-body eigenstates and sector wavefunctions,
namely

Ψk
f (x1, x2, . . . , xN ) =

1√
N !

N !∑

i=1

(−1)signPiΨk
0(xPi(1), xPi(2), . . . , xPi(N)), (2.50)

40



STAT. AND MAGN. PROP. OF CONF. SPIN-1/2 FERMI GASES IN 1D

where signPi is the parity of the Pi permutation of the atomic indices. Notice that
the many-body wavefunctions of the spinless Fermi gas are trivial to evaluate since
they can be constructed in terms of the corresponding SPES via employing the Slater
determinants

Ψ
~l
f (x1, x2, . . . , xN ) =

1√
N !

N !∑

i=1

(−1)signPiφl1(xPi(1))φl2(xPi(2)) . . . φlN (xPi(N)). (2.51)

In this expression, we have replaced the index k by the vector valued ~l = (l1, l2, . . . , lN ),
with l1 < l2 < · · · < lN , which contains the indices of the occupied SPES for the sake
of clarity. Therefore, the different sector wavefunctions are obtained by inverting Eq.
(2.50). This process yields

Ψ
~l
0(x1, x2, . . . , xN ) =

√
N !θ(x1, x2, . . . , xN )Ψ

~l
f (x1, x2, . . . , xN ), (2.52)

where θ(x1, x2, . . . , xN ) = 1 if x1 < x2 < · · · < xN and θ(x1, x2, . . . , xN ) = 0 other-
wise. Equations (2.49) and (2.52), define the many-body eigenbasis of distinguishable
particles that diagonalizes the Hamiltonian of Eq. (2.48) and satisfies the appropriate
boundary conditions. In particular, the eigenspectrum consists of distinct degenerate
manifolds of dimension N ! referring to the distinct particle orderings but the same
sector wavefunction. The energy of each degenerate manifold is E =

∑N
i=1 εli , where εi

refers to the i-th lowest SPEE of the single-particle Hamiltonian.

The crucial point that relates the eigenstates of the distinguishable atoms to the
corresponding ones for spin-1/2 fermions is that the Hamiltonian of the latter for g →∞
is equivalent to the one of Eq. (2.48). Accordingly, in order to extract the eigenspectrum
of a spin-1/2 Fermi gas we have to impose the appropriate, for this case, particle
exchange properties of the many-body wavefunction. In particular, for a given spin-
configuration the proper linear combinations of the eigenstates of the distinguishable
system Ψj,k

d (x1, x2, . . . , xN ) can be evaluated so that the total wavefunction possesses
the appropriate for spin-1/2 fermions particle exchange symmetry.

The above imply that in order to span the eigenbasis of impenetrable spin-1/2
fermions we can focus only on the spatial- and spin-configuration for x1 < x2 < · · · <
xN . Notice that, for a given state of a particular sector the state of all other sectors is
fixed due to the total antisymmetry of the fermionic wavefunction. Therefore, the only
degrees-of-freedom available to the system is first the choice of the sector wavefunction,
which determines the energy of the eigenstate, and second the choice of the spin-
configuration. By taking into account the above the eigenbasis of the system can be
written in a compact form in the second quantization picture

|~l; ~α〉 =
√
N !

∫
dNx θ(x1, . . . , xN )Ψ

~l
f (x1, . . . , xN )ψ̂†α1

(x1) . . . ψ̂†αN (xN )|0〉, (2.53)

where α = (α1, α2, . . . , αN ), with αi = {↑, ↓}. It can be verified that the above men-
tioned states are orthonormal, i.e. 〈~l; ~α|~l′; ~α′〉 = δ~l~l′δ~α~α′ . Furthermore, their energy
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depends only on the spatial configuration ~l, E{|~l; ~α〉} =
∑N

i=1 εli , similarly to the dis-
tinguishable case for g →∞, implying that the eigenstates are arranged in degenerate
manifolds of dimension of 2N , referring in this case to the different available spin-
configurations.

Let us now elaborate on the physical meaning of Eq. (2.53). First, note that in gen-
eral the ordering of indistinguishable particles is meaningless due to the (anti)symmetry
of the many-body wavefunction under particle exchange. However, the states defined
by Eq. (2.53) are special since the particles are sequentially created such that their
positions satisfy x1 < x2 < · · · < xN and in addition each created particle, e.g. at
x = xi, possesses a well-defined spin, here αi. The eigenstates |~l; ~α〉 are addressable
by in situ images of the atomic density that provide simultaneous spatial and spin
resolution. Indeed, if we order the imaged particles according to their position in the
image, with i = 1 being the leftmost and i = N being the rightmost one, we know
that for |~l; ~α〉 the probability that the i-th particle possesses spin αi is equal to unity.
Furthermore, the probability to find an i-th particle at a certain position is given by

ρi(x) = N !

∫
dNx δ(x− xi)θ(x1, x2, . . . , xN )|Ψ~l

f (x1, x2, . . . , xN )|2. (2.54)

The above imply that the particles constituting the states |~l, ~α〉 are spatially ordered in
a well-defined and experimentally detectable manner despite the fact that the involved
particles are indistinguishable.

Note here that the above mentioned degree of degeneracy of the states |~l; ~α〉is much
larger than the one expected just by considering the symmetries of the system at finite
interaction strength, Eq. (2.35). In analogy to the g = 0 case, for infinite interactions
g →∞ the energy of the system is invariant under the spin-flip of any individual particle
and accordingly the system behaves paramagnetically. This invariance does not hold for
finite interaction strengths. As already mentioned, in this case the involved interaction
depends on the spin-spin correlations of each particle pair, which are modified by the
spin-flip of individual fermions. Therefore, we expect that for strong but not infinite
interactions, such that 0 < 1/|g| � 1, the eigenstates |~l; ~α〉 with the same ~l but different
~α, couple leading to the lifting of their degeneracy and importantly giving also rise to
non-trivial magnetic properties.

2.3.5 Spin-chain models for strongly interacting 1D systems

A. Derivation of the spin-chain model

In order to evaluate the spectral properties of spin-1/2 fermions in the strongly inter-
action regime degenerate perturbation theory for small 1/g is employed [128–133]. Let
us define a Taylor expansion of the Hamiltonian Ĥ for small 1/g [129]

Ĥ(1/g) = lim
1/g→0

Ĥ +
1

g
lim

1/g→0

dĤ

d(1/g)
+ · · · = lim

1/g→0
Ĥ − 1

g
lim

1/g→0

(
g2 dĤ

dg

)
+ . . . . (2.55)
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Consequently, the perturbation operator reads

Ĥpert = − lim
1/g→0

g2

∫
dx ψ̂†↑(x)ψ̂†↓(x)ψ̂↓(x)ψ̂↑(x). (2.56)

A major problem in this perturbative formulation is that all matrix elements of the per-
turbation operator 〈~l; ~α|Ĥpert|~l; ~α′〉 = 0 vanish when expressed in the Tonks-Girardeau

basis, |~l; ~α′〉, since within each of the corresponding basis states it is impossible to
have two particles at exactly the same position. To rectify this problem we assume
that we can form sector wavefunctions that approach asymptotically the proper ones
in the Tonks-Girardeau limit, i.e. Ψ̃k

0(x1, . . . , xN ) → Ψk
0(x1, . . . , xN ) for g → ∞, and

additionally satisfy the Bethe-Peierls [303] boundary conditions

∂Ψ̃k
0(x1, . . . , xN )

∂(xi − xj)

∣∣∣∣
xi→x+

j

−∂Ψ̃k
0(x1, . . . , xN )

∂(xi − xj)

∣∣∣∣
xi→x−j

=
2mg

~2
Ψ̃k

0(x1, . . . , xN )

∣∣∣∣
xi=xj

, (2.57)

for all i 6= j ∈ {1, 2, . . . , N}. These boundary conditions can be justified by consid-
ering that the Hamiltonian Ĥ instead of defining a many-body system of 1D parti-
cles, corresponds to a single-particle Hamiltonian in N -dimensions. In this picture
each interaction term gδ(xi−xj) corresponds to a delta-barrier along the hypersurface
xi = xj of the N -dimensional space. From elementary quantum-mechanics [247] it is
well-known that such a delta barrier results to a discontinuity in the first derivative of
the wavefunction at its position which is proportional to the barrier strength. Then, the
wavefunction amplitude leads to the expression of Eq. (2.57). Notice that crossing a
barrier implies that the fictitious N -dimensional particle tunnels from a region charac-
terized by xi > xj to one corresponding to xi < xj and therefore during tunnelling the
particle ordering changes. Of course, in the many-body picture this tunneling process
corresponds to two particles tunneling through one another. Therefore, we can inter-
pret the fact that the matrix elements 〈~l; ~α|Ĥpert|~l; ~α′〉 = 0 vanish as a manifestation
of the impenetrable nature of the particles in the g →∞ limit. However, in the actual
physical case the particles are impenetrable only asymptotically. In this sense, there
is always a probability that the particles tunnel through one another which tends to
vanish as g → ∞. The above implies that in order to obtain non-trivial results, the
matrix elements of Ĥpert need to be calculated in the case that the particles are not
impenetrable and afterwards the impenetrable limit, g →∞ should be taken.

To this end, let us assume that the eigenfunctions close to 1/g = 0 read

|Ψ̃;~l, ~α〉 =

∫
dNx

√
N !θ̃(x1, . . . , xN )Ψ̃

~l
0(x1, . . . , xN )ψ̂†α1

(x1) . . . ψ̂†αN (xN )|0〉, (2.58)

where θ̃(x1, . . . , xN ) = 1 for x1 ≤ x2 ≤ · · · ≤ xN and θ̃(x1, . . . , xN ) = 0 otherwise.
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Then, the involved matrix elements read as follows

〈Ψ̃;~l, ~α|Ĥpert|Ψ̃;~l, ~α′〉 =

−g2N !

N−1∑

i=1



i−1∏

j=1

δαjα′j






N∏

j=i+2

δαjα′j



(
δαiα′iδαi+1α′i+1

− δαiα′i+1
δαi+1α′i

)

×
∫ N−1∑

i=1

dxjdx
N∏

j=i+2

dxj θ̃(x1, . . . , xi = x, xi+1 = x, . . . , xN )

× |Ψ̃~l
0(x1, . . . , xi = x, xi+1 = x, . . . , xN )|2.

(2.59)

Moreover, the term |Ψ̃~l
0(x1, . . . , xi = x, xi+1 = x, . . . , xN )|2 can be substituted by

employing the boundary condition

|Ψ̃~l
0(x1, . . . , xi = x,xi+1 = x, . . . , xN )|2 =

~4

4m2g2

∣∣∣∣ lim
xi→x−i+1

(
∂Ψ̃k

0(x1, . . . , xN )

∂xi
− ∂Ψ̃k

0(x1, . . . , xN )

∂xi+1

)

− lim
xi→x+

i+1

(
∂Ψ̃k

0(x1, . . . , xN )

∂xi
− ∂Ψ̃k

0(x1, . . . , xN )

∂xi+1

)∣∣∣∣
2

.

(2.60)

This equation becomes greatly simplified when the limit g → ∞ is applied. First, the

second limit vanishes as Ψ̃
~l
0(x1, . . . , xN ) → Ψ

~l
0(x1, . . . , xN ) = 0 for xi > xi+1. Second,

the derivative of Ψ
~l
0(x1, . . . , xN ) along the barrier has to vanish since the amplitude of

the wavefunction tends to zero at each individual point along its extent for g → ∞.
Therefore, it holds

∂Ψ̃k
0(x1, . . . , xN )

∂(xi + xi+1)
= 0⇒ ∂Ψ̃k

0(x1, . . . , xN )

∂xi
= −∂Ψ̃k

0(x1, . . . , xN )

∂xi+1
. (2.61)

By employing Eq. (2.60) and (2.61) the matrix elements of Eq. (2.59) acquire the
simplified form

〈Ψ̃;~l, ~α|Ĥpert|Ψ̃;~l, ~α′〉 = −
N−1∑

i=1

J
~l
i

4



i−1∏

j=1

δαjα′j






N∏

j=i+2

δαjα′j




×
[
σαiα′i · σαi+1α′i+1

− δαiα′iδαi+1α′i+1

]
,

(2.62)

where σαα′ is the Pauli vector and the property of the Pauli matrices σαβ · σγδ =

2δαδδβγ − δαβδγδ was employed. The coupling parameters J
~l
i read

J
~l
i =

2~4N !

m2

∫
dNx δ(xi − xi+1)θ̃(x1, . . . , xN )

∣∣∣∣∣
∂Ψ̃

~l
0(x1, . . . , xN )

∂xi

∣∣∣∣∣

2

. (2.63)
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These are obviously positive, i.e. J
~l
i > 0. Eq. (2.62) reveals that the spin of each

particle spin experiences an effective antiferromagnetic interaction with its “nearest
neighbour”. This effect becomes more evident by relating the above mentioned matrix
elements with the corresponding ones emanating in an antiferromagnetic Heisenberg
spin-chain model with nearest neighbor interactions, namely

〈Ψ̃;~l, ~α|Ĥpert|Ψ̃;~l, ~α′〉 = 〈~α|
N−1∑

i=1

J
~l
i

(
Ŝi · Ŝi+1 −

1

4

)
|~α′〉, (2.64)

here |~α〉 = |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN 〉 refer to the states of a spin-chain consisting of N
localized spin-1/2 particles and Ŝi being the corresponding spin-operators acting on
the i-th spin.

Let us now elaborate on the physical meaning of Eq. (2.64). First, note that in gen-
eral the ordering of indistinguishable particles is meaningless due to the (anti)symmetry
of the many-body wavefunction under particle exchange. However, the states defined
by Eq. (2.58) are special since the particles are sequentially created such that their
spatial positions satisfy x1 < x2 < · · · < xN and in addition each created particle, e.g.
at x = xi, possesses a well-defined spin, here αi. This in turn implies that if all N
particles in the state |~l, ~α〉 are imaged in a spatially and spin-resolved manner, then
their spin-configuration when reading the spin of each particle from the left (x→ −∞)
to the right (x → +∞) will yield α = (α1, α2, . . . , αN ) with probability equal to 1. In
this way, the spin of the particles constituting the states |~l, ~α〉 is spatially ordered in a
well defined manner. Therefore, a well-posed question is to ask what is the probability
for strongly interacting atoms initialized in a particular spin-configuration ~α to reach a
different configuration ~α′ after some time t. The answer is given by the time-evolution
of the effective spin-system described by Eq. (2.64). Particularly, it states that the
dynamics of the spin degree of freedom of strongly interacting fermions is equivalent to
the one described by a Heisenberg spin chain of N localized spins experiencing inhomo-

geneous interactions given by 2J
~l
i/g. Similarly, one can map the strongly-interacting

eigenstates to the stationary states of the spin-chain model of Eq. (2.64). By para-
phrasing Ref. [129] we can argue that Eq. (2.64) provides a realization of quantum
magnetism of localized spins without the need to localize the atoms via the use of
external potentials.

B. Relation of the strongly-interacting eigenstates and the corresponding
spin-chain model

The analysis of the eigenspectrum of N = 4 parabolically confined interacting particles
agrees to a large degree with the findings presented above, see Fig. 2.2. In particular
it can be seen that the eigenenergies increase proportionally to ∝ 1/g as the strong
interaction regime is approached for g > 4. To get a better appreciation for the eigen-
states in this strong interaction regime Fig. 2.3 provides several observables relevant for
the characterization of all states within the lowest in energy manifold with nCM = 0,
in the case of N↑ = N↓ = 2. Recall, that the states with different value of Sz can

45



THEORETICAL FRAMEWORK

-4 0 4

-4 0 4

-4

0

4

0

0.2

0.4

0

0.2

0.4

-4 0 4

-4 0 4

-4 0 4

-4 0 4

-4 0 4

-4 0 4

-4 0 4

-4 0 4

-4 0 4

-4 0 4

0

0.2

0.4

Figure 2.3: (a1)–(a6) Spin-resolved one-body densities, ρ
(1)
α (x), α ∈ {↑, ↓}, (b1)–(b6)

Spatially resolved spin-configuration probabilities, P (|α1α2α3α4〉) (see text) and (c1)–

(c6) interspecies two-body densities, ρ
(2)
↑↓ (x↑, x↓), for the lowest six eigenstates, |i〉,

i = 1, . . . , 6, of the Hamiltonian Ĥ [Eq. (2.35)]. In all cases N↑ = N↓ = 2 and
1/g = 0.06. For comparison, (a1)–(a6) also incorporate the one-body density for the
ground state of a spin-polarized system with N = 4 (rescaled by a factor of 1/2 to
compensate for the increased N). The histograms of (b1)–(b6) result from the sampling
over 1000 simulated single-shot images of the ML-MCTDHX obtained eigenstates.

be constructed in terms of these Sz = 0 states by employing the spin-rising, Ŝ+, or
spin-lowering, Ŝ− operators.

Figure 2.3 (a1)–(a6) presents the one-body densities, ρ
(1)
α (x) = 〈i|ψ̂†α(x)ψ̂α(x)|i〉,

corresponding to the lowest 6 eigenstates, |i〉, i = 1, . . . , 6 of the Hamiltonian of Eq.
(2.35) within the strong interaction regime, g = (0.06)−1 ≈ 16.7. Importantly, these
density distributions are almost completely equivalent for all distinct eigenstates. This
is in agreement, to our discussion in Sec. 2.3.4. Indeed, the spatial degrees-of-freedom
of the low-lying eigenstates of a strongly interacting system are expected to be char-

acterized in terms of the lowest in energy sector wavefunction, Ψ
~l
0(x1, . . . , xN ) [Eq.

(2.52)]. In particular, we observe that the density distributions are proximal to the
corresponding one for N = 4 spin-polarized Fermions in line to our argumentation in
Sec. 2.3.4. This pronounced agreement motivates that the different eigenstates of the
system can be characterized in terms of the different occupied spin states. However,
such a characterization is not possible on the level of single-particle density, since the
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corresponding distributions for spin-↑ and spin-↓ fermions lie perfectly on top of one
another. This is a result of the reflection symmetry of the spin with respect to the xy
spin-plane holding within the N↑ = N↓ = 2 configuration5, implying that the exchange
of spin-↑ atoms with spin-↓ ones does not affect the state of the system.

To characterize the different spin-states contributing to each eigenstate, |i〉, we
employ the spatially resolved spin-configuration probability, P (|α1α2 . . . αN 〉), see Fig.
2.3(b1)–(b6). This observable probes the spatial ordering of the fermionic spins in a par-
ticular configuration |α1α2 . . . αN 〉. This configuration can be revealed by spin and spa-
tial resolved imaging. In this case, the leftmost particle would be found in the spin-state
α1, the one to its right would be in the α2 state and so on, see also Sec. 2.3.5A. In terms
of the spin-chain model of Eq. (2.64), P (|α1α2 . . . αN 〉) =

∑
~l
|〈Ψ̃,~l, (α1α2 . . . αN )|i〉|2.

In the Tonks-Girardeu limit there is almost only one occupied spatial configuration, ~l =
(0, 1, 2, . . . , N) (Sec. 2.3.4), which corresponds to the lowest in energy sector wavefunc-
tion and thus the spatially resolved spin-configuration probability, P (|α1α2 . . . αN 〉),
directly probes the many-body state of the system. To obtain P (|α1α2α3α4〉) we sim-
ulate single-shot images via Monte-Carlo sampling (for details see Ref. [210, 304, 305]
and [K1]) of the N↑ +N↓-body density distribution, ρ̂(N↑+N↓) = |i〉〈i|, obtained within
ML-MCTDHX. Then we identify the corresponding spatial configuration |α1α2α3α4〉
for each image and finally we make a histogram over a set of single-shot simulations
(here we employ a set size of 1000 images for each distinct |i〉), obtaining in this way
an estimation for P (|α1α2α3α4〉). Notice that single-atom resolution for few-fermion
systems is now possible by spatially-resolved fluorescence imaging [306–308] rendering
this observable also experimentally accessible. Focussing on the ML-MCTDHX data
[see the histograms in Fig. 2.3(b1)–(b6)] it is evident that the distinct eigenstates of
the system, |i〉 possess radically different P (|α1α2 . . . αN 〉), thus indicating the different
spin-order in each of these states. In addition the prediction for P (|α1α2α3α4〉) within
the spin-chain model of Eq. (2.64) given by the crosses in Fig. 2.3(b1)–(b6) captures
very well the spin-order emanating within our ab initio ML-MCTDHX calculations,
revealing its validity within this strong interaction regime.

The magnetic properties in this regime, despite not being easily identifiable within
the level of single-particle densities, can crucially affect the correlations emanating in
the system. To highlight this point we present the intercomponent two-body densities

ρ
(2)
↑↓ (x↑, x↓) = 〈i|ψ̂†↑(x↑)ψ̂

†
↓(x↓)ψ̂↓(x↓)ψ̂↑(x↑)|i〉 for the eigenstates |i〉, i = 1, . . . , 6 in Fig.

2.3(b1)–(b6). The two-body densities for different eigenstates are prominently different.
In particular, their shape reflects the dominant spin-configuration for each eigenstate.
This is more evident for the eigenstates with S = 1, |2〉, |3〉 and |5〉 where the dominant
states are the Neel | ↑↓↑↓〉 (| ↓↑↓↑〉), core-shell domain wall | ↑↓↓↑〉 (| ↓↑↑↓〉) and single
domain-wall | ↑↑↓↓〉 (| ↓↓↑↑〉) states respectively. Indeed, in these cases the two-body
densities prominently feature the corresponding correlation patterns. For instance, in
Fig. 2.3(b3) we can see that the two-body density possesses non zero values only in
the case that |x↑| ' 1 ' |x↓| or |x↓| ' 1 ' |x↑|, indicating the presence of two domain-

5Note that this property is independent of the total particle number N = N↑+N↓ and holds for all

Sz =
N↑−N↓

2
= 0 configurations.
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walls among the spin-components at x ≈ ±1. Similarly, in Fig. 2.3(b5) the presence
of a single domain-wall at x = 0 results in the two-body density being non-zero only
for x↑x↓ < 0. Overall this example N = 4-body system showcases that, despite the
fact that the single-particle distribution of a strongly interacting spin-1/2 gas is largely
fixed to the distribution of a spin-polarized gas, the correlations are very sensitive to
variations of the magnetic order emerging in the system. The magnetic properties are,
in turn, dictated by the presence of antiferromagnetic effective spin-spin interactions
captured by the spin-chain model of Eq. (2.64).

C. Origin of the spin-spin interactions

Finally, let us examine on the origin of mechanism that generates the effective spin-
spin interactions for strongly interacting spin-1/2 Fermi gases. According to Sec. 2.3.5
the spin-exchange mechanism at play refers to two fermions transmitting through one
another, a process which is possible for 1/g > 0. This process possesses spin-dependence
as two fermions with the same spin are impenetrable due to the Pauli exclusion principle
and have to backscatter even for finite g > 0 while two atoms with opposite spin can
transmit through one another. This in turn implies that “adjacent” fermions possessing
opposite spin have a lower kinetic energy since they are less confined than in the case
of particles occupying the same spin-state. This naturally leads to the emergence
of effective antiferromagnetic interactions for repulsive interparticle coupling strengths.
Although, not clearly stated in the ultracold-atom literature this process can be related
to the well-known phenomenon of the Anderson kinetic exchange interaction [142],
emanating for lattice trapped systems. Indeed, Anderson has shown [142] that for
a lattice of unit filling, ne = 1, and repulsive interactions the spin of the fermions
occupying each lattice site experiences antiferromagnetic interactions with a coupling
strength J = 4t2/U , where t is the hopping parameter and U the onsite interaction.
Ogata and Shiba [309] generalized this result to finite filling factors, ne ∈ [0, 2]

J(ne) =
4t2

U
ne

(
1− sin(2πne)

2πne

)
. (2.65)

The effective coupling J(ne) decreases from the value J(ne = 1) = 4t2/U , for ne <
1, due to the fact that the fermions are not necessarily nearest neighboring as the
lattice filling decreases. Therefore, the kinetic energy benefit of antiferromagnetic spin-
spin correlations is significantly decreased. Finally, Matveev [310] used this result to
calculate the spin-exchange coupling for zero-range strongly interacting particles in the
case of V (x) = 0 by extrapolating the result of Eq. (2.65) to vanishing lattice length
α→ 0 and relating the Hubbard parameters to the corresponding ones of a continuum
system as t = ~2/(2ma2), U = g/a and ne = na, where n is the density. As a result,
the following couplings were obtained

J [V (x) = 0] =
2π2

3

~4n3

m2g
. (2.66)
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The comparison of Eq. (2.66) with the corresponding one for the parabolically confined
case by employing Eq. (2.63) was performed within the Local Density and Thomas-
Fermi approximations in Ref. [129] demonstrating excellent agreement of the order of
1% for as low as N = 6 particles. This last proof of Ref. [129] demonstrates that the
antiferromagnetic character of the spin-chain model of Eq. (2.64) is a direct manifes-
tation of the Anderson kinetic exchange [142]. In our studies [K1, K2] we show that
the influence of this interaction is also significant for weak and intermediate interac-
tions and its interplay with the ferromagnetic Hund interactions [139–141], stemming
from the weak coupling expansion of Eq. (2.47), gives rise to the intriguing magnetic
properties emanating in the latter interaction regimes.

2.4 Bose and Fermi polarons

2.4.1 The Fröhlich Hamiltonian

The Bose polaron problem originated from Landau’s prediction of an electron being self
trapped in the polarization field it induces to its surrounding crystal [148]. Although,
Pekar was the first to develop a model to describe this quasi-particle in the strong cou-
pling limit [149,150], Fröhlich was the first to develop a phenomenological Hamiltonian
for the description of this phenomenon in both the weak and the strong interaction
limits [152]. The idea of Fröhlich was that the polarization field of a crystal can be
described by two contributions, P (r) = PIR(r) +PUV(r), with PIR(r) stemming from
the deformation of the crystal and PUV(r) referring to the induced polarization of the
ionic electron clouds. The crucial observation is that both of these modes can be de-
scribed by classical oscillator models [219] since PIR(r) is related to lattice vibrations
and PUV(r) to the Lorentz oscillator discussed in section 2.1.2. Therefore, he concluded
that the equations of motion of these polarization contributions read

P̈IR(r, t) + ω2
IRPIR(r, t) =

≡1/γIR︷ ︸︸ ︷
ω2

IR

4π

(
1

ε∞
− 1

ε0

)
D(r; rel(t)),

P̈UV(r, t) + ω2
UVPUV(r, t) =

ω2
UV

4π

(
1− 1

ε∞

)

︸ ︷︷ ︸
≡1/γUV

D(r; rel(t)),

(2.67)

where D(r; rel(t)) is the electrical displacement created by the moving electron, ωIR,
ωUV are the frequencies of the corresponding oscillators and ε0, ε∞ are the static and
high-frequency dielectric constants of the material. Notice here that all quantities are
measured in cgs units as is customary done in condensed-matter literature. The factors
γIR and γUV in the right hand side of Eq. (2.67) stem from the requirement that within
linear response P (r) = (ε(ω)−1)/(4π)E(r) and D(r) = ε(ω)E(r) for both ω → 0 and
ω →∞ limits. In addition, PIR(r) = 0 for ω →∞ was employed, occurring due to the
large mass of the ions when compared to the electrons which also implies ωIR � ωUV.
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The corresponding equation of motion for the electron is simply ṗel(t) = −4πeP (r, t).
The above permit the derivation of the classical Hamiltonian describing the coupling
of the electron to the induced polarization field

H =
p2

el

2me
+

∫
d3r

{γIR

2

[
Ṗ 2

IR(r, t) + ω2
IRPIR(r, t)

]
−D(r; rel(t)) · PIR(r, t)

}

+

∫
d3r

{γUV

2

[
Ṗ 2

UV(r, t) + ω2
UVPUV(r, t)

]
−D(r; rel(t)) · PUV(r, t)

}
.

(2.68)

A further assumption in deriving the Fröhlich Hamiltonian is that the electron is slow
moving. This has two important consequences, first the magnetic field generated by the
motion of the electron can be ignored resulting to an electric displacement that follows
the Maxwell equations ∇ ·D(r; rel) = 4πeδ(r − rel) and ∇×D(r; rel) = 0. With the
latter further implying that ∇×P (r; t) = 0 due to the linear response of the material.
Consequently, a polarization potential ΦP (r; t) = −4π

∫
P (r; t) · dr can be defined. In

addition, the part of the Hamiltonian referring to PUV(r, t) can be thought to contribute
a constant shift of the energy since for a slow a moving electron, PUV(r, t) can follow
its motion adiabatically, i.e. P̈UV(r; t) = 0, and thus contributes as time-independent
potential in the frame of reference of the electron ΦUV(r−rel) ≈ −e2(1−1/ε∞)/|r−rel|.
With these assumptions the potential ΦIR(r; t) can be evaluated. Subsequently the
classical Hamiltonian of Eq. (2.68) can be quantized by imposing the quantization
rules [eµ · r̂el, eν · p̂el] = i~δµν and [eµ · P̂IR, eν · γIR(dP̂IR/dt)] = i~δµν , with eµ, eν
denoting the unit vectors and µ, ν = {x, y, z}.

The final form of the Fröhlich Hamiltonian reads

Ĥ =
p̂2

el

2me
+~ωIR

∑

q

(
b̂†q b̂q +

1

2

)
+ i~ωIR

√
4πα

`−1
IR V

∑

q

1

q

(
b̂†qe
−iq·r̂el − b̂qeiq·r̂el

)
, (2.69)

where α =
2πe2`−1

IR

~γIRω
3
IR

is the dimensionless interaction parameter of the electron with the

polarization field and `IR =
√

~/(2meωIR) is the characteristic length scale for the

motion of the electron. The ladder operators b̂†q, b̂q correspond to the creation and

annihilation operators respectively of the field P̂IR(r) = [~/(2γIRωIR)]1/2[B̂(r) + B̂†(r)]
expressed in momentum space coordinates. The corresponding real space field operators
are given by B̂(r) =

∑
q

q/q√
V
b̂qe

iq·r and the Hermitian conjugate expression for B̂†(r).

The Fröhlich Hamiltonian permits solutions for weak coupling strength α, via
second-order Reileigh-Schröndinger perturbation theory [247], which correspond to
the so-called Fröhlich polaron, with energy EFr = −α~ωIR and effective mass m∗ =
(1 + α/6)me. In addition, the Fröhlich Hamiltonian also captures the solution in the
high energy limit that was attributed to Pekar. Indeed, the variationally optimized
approximation of the total state of the system by a tensor product of the states of
the electron and the polarization field, |Ψ〉 = |Ψel〉 ⊗ |ΨP 〉, yields a polaron energy
EPe = −25/256α2 and an effective mass m∗ = 0.02α4me. Based on the above men-
tioned energy estimates the crossover among the two polaronic behaviours was esti-
mated at around α ≈ 10. To bridge the crossover among the two polaronic theories
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Feynman devised a variational method based on the path integral approach [160] which
is able to correctly predict the properties of the polaron for all α. The accuracy of the
Feynman path integral method has been numerically verified by several quantum Monte
Carlo techniques [311–314] and also experimentally by measurements of the electron
mobility in semiconductors [315,316].

Before proceeding to the study of the ultracold atom analogue of the polaron let us
note that the phenomenological Hamiltonian of Eq. (2.69), is supported by ab initio
methods and it is relevant for qualitative and sometimes quantitative calculations for
polar semiconductors [161]. In particular, by using the local density approximation
[317] within the framework of the density functional theory [318, 319] the electron
Hamiltonian in the presence of electron-phonon coupling reads

Ĥ =
∑

q,n,s

Eq,n,sĉ
†
q,n,sĉq,n,s +

∑

q,ν

ωq,ν b̂
†
q,ν b̂q,ν +

∑

q

V (q)ρ̂†qρ̂q

+
1√
2N

∑

q,q′,n,n′,s

ωq,ν

[
γn,n′(q, q

′, ν)ĉ†q′,n′,sĉq′−q,n,sb̂q,ν + h.c
]
,

(2.70)

where ĉ†q,n,s (ĉq,n,s) and b̂†q,ν (b̂q,ν) refer to the electron and phonon creation (annihila-
tion) operators respectively. Furthermore, Eq,n,s is the dispersion relation of electrons
in the band n with spin s ∈ {↑, ↓}, ωq,ν is the dispersion relation of phonons in the mode

ν, V (q) are the electron-electron interaction integrals and ρ̂q =
∑

q′,n,s ĉ
†
q,n,sĉq,n,s is the

electron density fluctuation operator. Finally, γn,n′(q, q
′, ν) refer to the electron-phonon

coupling matrix elements. In principle, there exist also electron-phonon coupling terms
that are of quadratic or higher-order in the phonon operators, however, they are small
and relevant only if the phonons are not coupled by the linear electron-phonon inter-
action contained in Eq. (2.70) [161]. Electron-doped polar semiconductors, such as
n-GaAs, involve only a small number of electrons in their conduction band acting as
carriers. For this reason their conduction properties do not depend largely on the de-
tails regarding their lattice structure since only electrons of quasimomentum q � π/a,
where a is the lattice spacing, are relevant. This allows in principle for approximations
that neglect the influence of the ionic potential such as Eq. (2.69) for the study of
their properties. According to [161] the matrix elements of the electron-phonon cou-
pling can be approximated by single-band models as γn,n′(q, q

′, ν) ≈ γ(q), except from
the case that the orbitals n and n′ are degenerate. Within these approximations γ(q)
is sensitive on the type of phonons that are coupled to the motion of electrons. For
polar semiconductors, such as GaAs, it turns out that the matrix element scales as
γ(q) ∝ 1/|q| in the low q limit for optical phonons (ωq,ν = ω0 for q → 0) which are
coupled with the electrons via polar interactions. Accordingly, the Fröhlich model is
indeed realized in these systems. Notice that except from the case of the large polaron
examined here, different polaron models, such as the small polaron model attributed
to Holstein [172, 173], can be realized by considering the coupling of electrons with
phonons of a different character.
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2.4.2 Impurities in a weakly interacting Bose gas

The starting point for the derivation of an analogous polaron model to Eq. (2.69)
applicable in ultracold experiments [179] is the Hamiltonian of a two component mixture
[see also Eq. (2.8) and Eq. (2.19)] in the absence of external confining potential

Ĥ =

∫
ddr Ψ̂†B(r)

[
− ~2

2mB
∇2 +

gBB
2

Ψ̂†B(r)Ψ̂B(r)

]
Ψ̂B(r)

+

∫
ddr Ψ̂†I(r)

[
− ~2

2mI
∇2 + gBIΨ̂

†
B(r)Ψ̂B(r)

]
Ψ̂I(r),

(2.71)

with Ψσ(r) referring to the creation operators of the σ = B bath and σ = I im-
purity species with masses mB and mI respectively. The interaction strengths are
parametrized by gBB for the intraspecies interactions of the bath and gBI corresponds to
the interspecies interaction strength. The relation between these interaction strengths
and the corresponding scattering lengths aBB and aBI depends on the number of spa-
tial dimensions d. Notice here that the density operator of the bath ψ̂†B(x)ψ̂B(x) acts
as a matter-wave potential for the impurities a fact that will be of relevance later on
[see Eq. (2.75) and Sec. 2.4.4].

The definition of a BEC implies that the q = 0 mode of the bath species is pre-
dominantly occupied by Nc ≈ NB atoms. This enables us to simplify the Hamiltonian
of Eq. (2.71) by expressing the bath field operators in momentum space as Ψ̂B(r) =

L−d/2[ψ̂q=0 +
∑

q 6=0 exp(iq · r)ψ̂q] and approximating ψ̂†q=0 = ψ̂q=0 =
√
NB ≈

√
Nc

since NB ≈ Nc � 1 is assumed. This replacement gives a hierarchy to the intraspecies
interaction terms of the bath appearing in Eq. (2.71). Indeed, the BEC self-interaction

term ∝ ψ̂†q=0ψ̂
†
q=0ψ̂q=0ψ̂q=0 is quartic in ψ̂q=0 and accordingly scales with gBBN

2
B,

similarly quadratic terms scale like gBBNB, linear ones according to gBBN
1/2
B and

terms with no ψ̂q=0 scale with gBB. The thermodynamic limit is defined as the limit
where gBB → 0 and NB →∞ such as gBBNB =constant, implying that only the quar-
tic and quadratic terms are relevant in this limit. Indeed, the approximation where
the linear and constant terms in ψ̂q=0 are dropped consists the so-called Bogoliubov
approximation [23]. Within this approximation the bath Hamiltonian reads

ĤBog
B = E0 +

∑

q 6=0

~2q2

2mB
ψ̂†qψ̂q +

gBBn

2

∑

q 6=0

(
2ψ̂†qψ̂q + ψ̂†qψ̂

†
q + ψ̂qψ̂q

)
, (2.72)

where E0 = gBBnNB/2 +
∑

q=0mB(gBBn)2/(2q2) is a constant energy shift, and n =

NB/V is the density of the bath atoms. The Hamiltonian ĤBog
B is quadratic in ψ̂q

and accordingly it can be diagonalized via the Bogoliubov transformation defined by

ψ̂q = uq b̂q + v∗−q b̂
†
−q and ψ̂q

†
= v−q b̂−q + u∗q b̂

†
q, with

uq =
1√
2

√
1 + ξ2q2

ξq
√

2 + ξ2q2
+ 1, vq = − 1√

2

√
1 + ξ2q2

ξq
√

2 + ξ2q2
− 1, (2.73)
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while ξ = ~(2mBgBBn)−1/2 denotes the healing length. Notice that uq and vq depend
solely on the amplitude of the wavenumber |q|, when compared to 1/ξ. Finally, the
Hamiltonian of Bogoliubov phonons reads

ĤBog
B = E′0 +

∑

q 6=0

~ c|q|
√

1 +
ξ2q2

2︸ ︷︷ ︸
≡ωq

b̂†q b̂q, (2.74)

with c =
√
gBBn/mB and E′0 = E0 − 1/2

∑
q 6=0(~2q2/(2mB) + gBBn − ~ωq). The

Bogoliubov dispersion relation exhibits an interplay in its character for different values
of |q|. For q � 1/ξ the dispersion is proximal to acoustic phonons, namely ωq ≈ c|q|,
while for q � 1/ξ the dispersion becomes particle-like, i.e. ωq ≈ ~2q2/(2mB) +mBc

2.
Importantly, in the latter limit (q � 1/ξ) the phonon operators are also particle-like

b̂q ≈ ψ̂q, b̂†q ≈ ψ̂†q.

Figure 2.4: Feynman diagrams of the phonon-impurity interaction terms (interaction
vertices) involved within the Bogoliubov approximation. (a) Three point vertex corre-
sponding to the emission (top) an absorption (bottom) of a phonon by the impurity.
(b) Four point vertex corresponding to elastic scattering of the impurity with a phonon
and (c) four point vertex coressponding to the simultaneous absorption or emission of
two phonons by the impurity.

The creation or annihilation of Bogoliubov phonons affects the density of the bath
and accordingly it leads to the modification of the matter-wave potential that affects the
impurity see Eq. (2.71). It is therefore instructive to express the bath density operator
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in terms of the Bogoliubov phonon creation and annihilation operators yielding

Ψ̂†B(x)Ψ̂B(x) = n+

√
NB

Ld

∑

q

(
eiq·rψ̂q + e−iq·rψ̂†q

)
+

1

Ld

∑

q,q′
e−i(q

′−q)·rψ̂†q′ψ̂q

= n+

√
NB

Ld

∑

q

eiq·r
[
(uq + vq)b̂q + (u∗−q + v∗−q)b̂†−q

]

+
1

Ld

∑

q,q′
e−i(q

′−q)·r
[
(u∗q′uq + v∗q′vq)b̂†q′ b̂q + v−q′uq b̂−q′ b̂q

+ u∗q′v
∗
−q b̂
†
q′ b̂
†
−q

]
.

(2.75)

Therefore, within the Bogoliubov approximation the interaction of the impurity with
the atoms involves four different processes, with their relative prominence scaled by
the bath density n and the healing length ξ. First, the homogeneous density of the
condensed bath atoms shifts the energy of the system by an amount given by gBIn.
Second, the impurity can change its momentum by creating ∝ φ̂†k−q b̂

†
qφ̂k or absorbing a

phonon ∝ φ̂†k+q b̂qφ̂k, here φ̂k are the field operators for the impurity. A sketch of these
processes in terms of Feynman diagrams is given in Fig. 2.4(a). Note that the charac-
teristic energy scale of such events is given by ∼ EpI = gBI

√
nξ−d. Finally, there are

additional terms describing the elastic scattering of impurities with the phonons of the
BEC∝ φ̂†k−q′ b̂

†
q+q′ b̂qφ̂k [see Fig. 2.4(b)] or the simultaneous creation∝ φ̂†k−q′−q′ b̂

†
q′ b̂
†
qφ̂k

or absorption ∝ φ̂†k+q′+q′ b̂q′ b̂qφ̂k of two phonons by the impurity [see Fig. 2.4(c)]. The

energy scale of the latter quartic terms is of the order of ∼ EpI4 = gBIξ
−d. Similarly to

Sec. 2.4.1 the Bogoliubov-Fröhlich Hamiltonian results by neglecting the above men-
tioned quartic terms [see Fig. 2.4(b), 2.4(c)] involving two phonon operators. Within
these approximations the Bogoliubov-Fröhlich Hamiltonian reads

ĤBF =
p̂2
I

2mI
+

1

Ld

∑

q

[
~ωq b̂

†
q b̂q + Vqe

iq·r̂I (b̂q + b̂†−q)
]
, (2.76)

where Vq = gBI
√
n
(

ξ2q2

2+ξ2q2

)1/4
refers to the |q|-dependent matrix elements of the

impurity-phonon coupling and the Hamiltonian terms that contribute as shifts of the
total energy are dropped. The fact that the quartic terms are neglected limits the
regime of applicability of Eq. (2.76) to small gBI such as EpI4/Ep � 1⇒ gBI � ~cξ2,
where Ep = ~c/ξ is the characteristic energy scale of the phonons. Notice here that
except from the coupling strength of the impurity phonon coupling, α = α2

BI/(αBBξ) ∼
(EpI2/Ep)2, the mass imbalance of the bath and impurity atoms mB/mI provides a
second independent dimensionless parameter of the Bogoliubov-Fröhlich Hamiltonian
giving rise to a more complex phase diagram than in the condensed matter case of Eq.
(2.69).

To comprehend the interplay of these two parameters it is helpful to transform
HBF to the frame comoving with the polaron. This is achieved via the Lee-Low-Pines
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unitary transformation [320–322] ÛLLP = exp(i r̂I ·
∑

q qb̂
†
q b̂q) yielding

ĤLLP = gBIn+
1

Ld

∑

q

[
ωq b̂
†
q b̂q + Vq(b̂q + b̂†−q)

]
+

1

2mI

(
p̂I −

∑

q

~qb̂†q b̂q

)2

. (2.77)

First, notice that [p̂I , Ĥ
LLP ] = 0 and accordingly in this frame of reference the mo-

mentum of the impurity is a constant of motion. In particular, the last term contains
a contribution that is quartic in the Bogoliubov phonon operators and thus introduces
an effective phonon-phonon interaction. The energy scale of the system is fixed by the
energy of phonons ~c/ξ =

√
2gBBn and the impurity phonon interaction scales with

α ∝ g2
BI which can be tuned by gBI . Consequently, the value of mB/mI controls the

induced phonon-phonon interaction strength. Therefore, the ultracold environment al-
lows for the systematic study of effects stemming from the Bose polaron mobility by
employing impurities of different masses mI and the phonon-impurity coupling which
is tunable by Fano-Feshbach resonances that affect gBI . Notice that the above are in
direct contrast to the small polaron model of Eq. (2.69) discussed in Sec. 2.4.1 where
the mobility of the polaron is essentially fixed by the phonon frequency as the kinetic
energy of electrons is EK ∼ ~2/(2me`IR) = ~ωIR.

2.4.3 The phase-diagram of Bose polarons

As it was made evident in the previous section the behaviour of Bose-polarons depends
on two aspects, namely, the polaron mobility and the phonon-impurity coupling which
can be controlled independently [178]. This fact results to a richer phase diagram for
the Bose polarons than their equivalent in condensed matter systems. To workout
the corresponding phases it is important to understand how the weak (Fröhlich po-
laron [152]) and strong (Pekar polaron [149–151]) regimes identified for the case of the
polarons in semiconductors (see Sec. 2.4.1) translate in the case of ultracold bosons.

In the particular case of mI → ∞ the Hamiltonian in the frame co-moving with
the polaron, ĤLLP [see Eq. (2.77)], becomes quadratic and can be solved exactly by

employing a displacement operator, |Ψ〉 = exp[
∑

q(a∗q(α)b̂q − aq(α)b̂†q)]|ΨBEC〉 ⊗ |pI〉
[178, 323]. The state |ΨBEC〉 corresponds to the state of the bath in the absence of
phonons, i.e. b̂q|ΨBEC〉 = 0 for all q, and |pI〉 is the state of the impurity at a particular
polaron momentum pI . This implies a finite and α-dependent number of phonons,
〈Ψ|b̂†q b̂q|Ψ〉 = |aq(α)|2/2, in the ground state of the polaron and accordingly a well-
defined polaron in the heavy impurity limit. By decreasing mI/mB induced phonon-
phonon interactions are introduced, see Eq. (2.77), and the system is not exactly
solvable by the above approach. Assuming that the influence of the mobility is small
mI/mB a mean-field theory can be established based on a displacement operator ansatz
similar to the solution for mI → 0 for the coupled state of phonons and impurity. The
results of this mean-field theory are to lowest order consistent with the ones stemming
from perturbation theory for small α and finite mI [178]. Accordingly, the polaron
that is described by this mean-field approach is the ultracold analogue of the Fröhlich
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polaron emanating in condensed matter systems. The regime of applicability of the
Lee-Low-Pines mean field theory defines the weak coupling regime of the Bogoliubov-
Fröhlich model.

Similarly to the Pekkar polaron [149–151] the strong coupling limit of the Bologoliubov-
Fröhlich model corresponds to the regime where the impurity becomes self-localized due
to its large interaction with the bath phonons [180]. The state of the system in this
limit is described by a product ansatz wavefunction |ΨpI〉 = |Ψp〉 ⊗ |ΨI〉 but expressed
in terms of real space coordinates. The strong coupling wavefunction is a good ap-
proximation of the system in the case of large effective masses, implying α � 1 and
mI/mB � 1 since in this case the impurity evolves almost adiabatically in the potential
created by the phononic cloud. Notice also, that the two-ansatze are equivalent in the
mI →∞ limit6 with both reproducing the exact solution that exists in this regime.

Therefore the mass of the impurity plays a crucial role for the Bogoliubov-Fröhlich
polaron as the weak and strong coupling limits coincide in the limit mI/mB →∞. As
mI/mB decreases a crossover regime between this two regions appears similarly to the
case of polarons in semiconductors. In this case, there is an open question whether this
regime can be well understood within the variational framework of Feynmann path
integral or whether in the regime mI/mB ≈ 1 a new phase consisting of a mobility
dominated polaron appears [178, 323]. For three-spatial dimensions Quantum Monte
Carlo approaches [186] and Renormalization Group methods [187] have been applied
within this regime revealing that the properties of the polaronic states significantly
deviate from the corresponding predictions of the Feynman theory [160]. Their results
hint towards the emergence of a novel mobility dominated regime for the polarons at
mI ≈ mB and coupling strengths α lying in the crossover of the Fröhlich (α→ 0) and
Pekar polaron (α→∞) regimes. However, the experimental verification of the above is
still lacking. This mobility dominated regime is particularly interesting because in novel
materials such as organic semiconductors [155–157], found e.g. in plastic photovoltaics
[324], the lattice vibrations cannot follow the movement of electrons adiabatically and
accordingly mobility effects are significant.

In the case of two-spatial dimensions, d = 2, there is no theoretical consensus on
the phase-diagram of the Bose polaron with different theoretical frameworks currently
available in the literature providing conflicting results [189, 323]. In particular, and
also to the best of our knowledge presently there is no experimental realization of
Bose polarons in two-dimensions. One-dimensional polarons are even less explored
theoretically, but experimental realizations are already present in the literature [9,89].
The study of Bose polarons within the mobility-dominated regime for 1D systems is
one of the main topics we have explored within the works [K4–K6].

6Notice that in this regime m∗ ∝ mI → ∞ and therefore the dispersion relation of the polaron is
pI independent, implying that localized states are eigenstates of the system.
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2.4.4 The effective potential

In section 2.4.2 we have provided the derivation of the Fröhlich Hamiltonian for the
case that the system is not confined, V (r) = 0, however, if a trap is imposed to the
system there are some crucial changes that need to be considered. A particularly
important modification is that the expansion of the field operators of the bath in terms
of phonon operators changes within the Bogoliubov approximation. In order to derive
this expansion in the case that a trap is considered first the Gross-Pitaevski equation

µΨ(r) =

[
− ~2

2mB
∇2 + V (r) + gBB|Ψ(r)|2

]
Ψ(r), (2.78)

where µ is the chemical potential, has to be solved yielding the order parameter Ψ(r). In
turn the order parameter corresponds to the macroscopically occupied single-particle
wavefunction of the condensate Ψ(r)/

√
NB. Subsequently, in order to evaluate the

phonon spectum the above mentioned Gross-Pitaevskii equation is linearized by con-
sidering small fluctuations around the order parameter and employing the ansatz,
ΨBdG(r) = Ψ(r)+(u(r)eiωt+v∗(r)eiω

∗t). This process generates the so-called Bogolubov-
de Gennes equations of motion and their solution results to an expansion of the field
operator of the form, Ψ̂B(r) = Ψ(r) +

∑
j [uj(r)b̂j + v∗j (r)b̂†j ]. Plugging this expan-

sion into the bath-impurity interaction term, see Eq. (2.71), generates except from a
phonon-phonon impurity, as for the V (r) = 0 case, a potential term for the motion of
the impurity that reads

V̂eff = gBI

∫
ddr |Ψ(r)|2Ψ̂†I(r)Ψ̂I(r). (2.79)

The scaling of this term is Eeff = gn and it is only suppressed when the interactions
between the impurity and the BEC are much smaller than the corresponding inter-
species ones of the bose gas Eeff/Ep � 1⇒ gBI/gBB �

√
2. Of course, the regime of

vanishing coupling among the impurity and the BEC gBI/gBB � 1 is not particularly
interesting and accordingly as long as there is confinement in the system the effective
potential of Eq. (2.79) has to be taken into account.

For typical experimental conditions the Thomas-Fermi approximation is valid [23].
Within this approximation the kinetic energy of the condensed atoms is neglected and
the solution of the Gross-Pitaevski equation reads Ψ(r) =

√
[µ− VB(r)]/gBBθ(µ −

VB(r)). The above implies that the total confinement of the impurity becomes

Vtot(r) =

{
VI(r)− gBI

gBB
VB(r) if VB(r) < µ

VI(r) if VB(r) > µ
, (2.80)

where VI(r) is the confining potential in the absence of a coupling with the bath
species (gBI = 0). Equation (2.80) reveals that the confining potential of the impu-
rities is severely modified in the presence of an interacting BEC. In particular, in the
case that the bath and impurity particles refer to the same atomic species, then the
impurity potential reads VI(r) ≈ VB(r), implying that the strength of the confinement
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within the BEC is renormalized by VI(r) → (1 − gBI/gBB)VI(r), within the spatial
extent of the BEC. This renormalization of the impurity’s trapping potential has dire
consequences since for gBI = gBB the impurity is unconfined as long as it is within
the BEC and for gBI > gBB it is actually expelled from the spatial extent of the BEC
and phase separation is induced. On the contrary, if gBI < 0 the potential that the
impurity experiences is stronger than in its absence. An estimation of the relative
prominence of phonon-impurity interactions when compared to the effective potential

yields EpI2/Eeff ∝ (gBBNB)β√
NB

, with β = 1/3, β = 1/2 and β = 0.6 for one, two and

three dimensions respectively. Considering that gBBNB controls the depletion of the
Bose gas and therefore cannot become arbitrarily large the above fact leads to the
conclusion that the effective potential is always more prevalent for extensive in particle
number confined BECs. The exploration of the impurity dynamics in different regimes
of gBI within the above-discussed effective potential framework consists one of the main
themes of our works [K4–K6].

2.4.5 Non-linear effects in BECs and their relevance in polaron physics

A basic feature of quasi-particles is their finite quasi-particle residue, Z = |〈Ψ(|g| >
0)|Ψ(g = 0)〉|2, where |Ψ(|g| > 0)〉 is the state containing the quasi-particle and |Ψ(g =
0)〉 refers to the ground state of the system in the absence of coupling. Therefore, a
necessary condition for a correlated state of an impurity with the phononic excitations
of a BEC to be characterized as a Bose polaron refers to 0 < Z < 1. A famous
example where the quasi-particle picture breaks down due to the violation of the above
condition is the Anderson orthogonality catastrophe phenomenon. The latter refers
to an ensemble of polarized fermions perturbed by a localized potential. It has been
shown that in this case the overlap of states with and without the localized potential
vanishes as the N →∞ limit is approached.

In the case of a BEC the concept of Anderson orthogonality catastrophe can be
generalized as follows. A BEC involves a large amount of condensed particles, Nc ≈
NB, with NB denoting the total number of bosons, which occupy a single mesoscopic
wavefunction (order parameter), Ψ0(x). Let us now assume an infinitesimally small
perturbation of Ψ0(x) such that Ψ0(x)→ Ψ′0(x), with

∫
dx Ψ∗0(x)Ψ′0(x) = 1− δP and

∆P � 1. Then the overlap between the resulting many-body wavefunctions will tend
to zero exponentially with the number of condensed atoms as 〈Ψ0|Ψ′0〉 = (1− δP )Nc ∝
e−δPN . The above implies that even an infinitesimal change of the order parameter of
the BEC leads to a phenomenon analogous to the Anderson orthogonality catastrophe
[190–192]. In the literature there are several processes that lead to the modification of
the order parameter of the BEC. First, note that collective modes such as the dipole
and the breathing mode of a BEC also involve alterations of the order parameter scaling
with the amplitude of the excitation. A particularly relevant example when considering
Bose polarons is the formation of solitary waves. An effect that is important on it own
right since studies both within, as well as, beyond the mean-field Gross-Pitaevskii
approximation, see Eq. (2.78), have shown that dark solitons can be spontaneously
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generated via e.g. dragging an impurity barrier through a 1D BEC. In the case of a
polaron system under consideration the impurity can be thought of as a matter-wave
barrier and as a result when its momentum becomes larger that a critical one we expect
similar to the aforementioned dynamics. Note also that the complex-valued Ψ0(x)
containing such a dark-soliton involves a phase winding as the spatial extent where the
dark soliton lies is crossed and as a consequence its overlap with the order parameter
in the absence of such an excitation is significantly smaller than unity, approaching
zero in the case of slow solitons. Similar effects also arise in higher dimensional setups
which include the formation of vortex and vortex line configurations in two- and three
dimensional BECs respectively when perturbed by a rapidly moving obstacle.

Another important phenomenon that might contribute to a vanishing polaron residue
is the phase separation [202–206]. This process is well studied both within the mean-
field approximation, as well as, in the correlated case [210]. It refers to the occurrence
of an instability when the interspecies interactions between two Bose gases exceed a
threshold value when compared to the intraspecies ones. Indeed, it can be shown that
for gAB ≥

√
gAAgBB, where gAA, gBB are the intraspecies interactions for the A and

B species and gAB is the intraspecies interaction, the BECs are immiscible, i.e. they
tend to minimize their density overlap, while in the opposite case, gAB <

√
gAAgBB,

the gases are miscible [207]. The related dynamics occurring after this instability of
the system is triggered has been characterized, both within the Gross-Pitaevskii frame-
work, as well as in the case that correlations are properly considered [208, 210]. It
has been demonstrated that upon crossing the miscibility-immiscibility threshold by
means of quenching the interspecies interaction strength, the density of the different
BEC components forms filament-like structures with a particular interaction-dependent
wave-vector [210]. Interestingly, the behaviour between this wavevector and the interac-
tion strength is modified in the presence of correlations. Of course, such fillamentation
process implies a dramatic alteration of the order parameter of the involved BECs, as-
sociated also with a significant depletion of the condensed atoms in the correlated case.
Hence, also in this case a strongly decaying overlap between the time-evolved and the
initial state is expected during the dynamics. Notice that the effective potential, Sec.
2.4.4, already hints towards the development of a phase separated state for gBI > gBB
and accordingly such a phenomenon seems to be particularly relevant in the case of
Bose polarons.

Although these non-linear dynamics are well-studied for one and two dimensional
systems, within the mean field approximation [207]. Studies that probe the beyond
mean field correlated dynamics have appeared only recently mainly focussing in the
case of 1D [208–210]. As previously mentioned polarons have been nowadays observed
only in one and three dimensions, leading to the conclusion that studying the proper-
ties of the 1D polaron offers an ideal testbed for clarifying the relation of non-linear
phenomena to the polaronic ones. Indeed, considering the possibility of emergent non-
linear excitations motivates us to conjecture that 1D Bose polarons will not be, in
principle, long-lived structures. In particular, one of our aims is to characterize un-
der which conditions the above-mentioned non-linear phenomena can lead to the de-
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cay of polaronic quasi-particles. To examine the lifetime of Bose structures a time-
resolving spectroscopic scheme needs to be employed. For this reason we rely mainly
on Ramsey spectroscopy which allows us to access the structure factor of the polaronic
state [K4,K5]. Another powerful approach employed within this thesis is pump-probe
spectroscopy [K6] which opens the possibility to investigate the dynamical formation
and decay of Bose polarons. The above mentioned spectroscopic schemes are introduced
in sections 2.5.3 and 2.5.4.

2.4.6 Extension to Fermi polarons

Ultracold atom setups allow for studying the dependence of various effects on the par-
ticle statistics [22, 24]. In this spirit the Fermi polaron [98, 116, 117, 144, 145, 181, 184]
is the fermionic analogue of the Bose polaron [9, 89, 91, 179, 180, 182, 183] with the
BEC being substituted by a spin-polarized Fermi gas. The two quasi-particles are
radically different since the extensive gas is a supefluid in the bosonic case [23], while
for fermions it corresponds to impenetrable particles, as two fermions cannot occupy
the same single-particle state due to the Pauli principle [146]. In addition, due to the
short-ranged character of the interatomic interactions, the particles of the Fermi gas are
not interacting among themselves and the only possible interaction channel is provided
by the impurity-bath coupling. The Fermi polaron therefore constitutes a novel and
rather interesting state of matter, that has a quite different character from its bosonic
analogue. Fermi polarons can be thought as extremely spin-imbalanced Fermi ensem-
bles [92,117,181] and therefore they can provide insights for elusive phenomena. More
specifically, Impurities possessing an attractive interaction with their environment thus
forming attractive Fermi polarons can be related to the development of a Fulde-Ferrell-
Larkin-Ovchinnikov (better known as FFLO) phase [325–327] for spin-imbalanced su-
perconductors [328]. Similarly, the lifetime of repulsive impurities forming repulsive
Fermi polarons probes the stability of an extremely spin-imbalanced repulsive Fermi
gas against the formation of Feshbach molecules and thus can be relevant for studies
of ferromagnetism [117].

Fermi polarons are well-studied in two and three dimensional setups. The quasi-
particle properties in such setups can be well-understood within the variational Frame-
work of the Chevy ansatz [329]. In particular, the state of the polaron is approximated
by

|ΨFP〉 =


√Zâ†q=0↓ +

∑

{q|q≤kF }

∑

{q′|q′>kF }

φq,q′ â
†
q′↑âq↑â

†
q−q′↓


 |FS〉, (2.81)

where âqα and â†qα correspond to the fermionic creation and anihillation operators
respectively, acting on the state characterized by the wavevector q. Here, a =↑ refers
to bath fermions while α =↓ corresponds to the impurity. Additionaly, kF refers to
the Fermi momentum and |FS〉 is the state of the ideal Fermi gas (Fermi sea) of spin-

↑ atoms. For zero temperature |FS〉 =
∏
{q|q≤kF } â

†
q↑|0〉, with |0〉 being the vacuum

state. The Chevy ansatz, Eq. (2.81), incorporates φq,q′ as variational parameters, with
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the corresponding quasi-particle residue being Z = 1 −∑{q|q≤kF }
∑
{q′|q′>kF } |φq,q′ |

2.
This ansatz resembles the first-order perturbative correction to the wavefunction of a
free impurity in the presence of interactions, however, the ansatz parameters φq,q′ are

calculated variationally by the minimization of 〈ΨFP|Ĥh|ΨFP〉 [329], where Ĥh is given
by Eq. (2.23). This seemingly ad hoc approximation is supported within diagrammatic
methods. Indeed, the variational minimalization of 〈ΨFP|Ĥh|ΨFP〉 can be shown to be
equivalent to truncating the self-energy of the impurity, Σ(p;E), to the first non-trivial
order of the corresponding the ladder expansion [330,331].

The Chevy ansatz reproduces the energy of the repulsive and attractive polaron
for positive and negative scattering lengths exhibited respectively in 3D fermionic en-
sembles [135, 144]. Noticeably, it has been shown experimentally that the attractive
polaron persists for strong positive scattering lengths, a > (0.847kF )−1, in agreement
to the Chevy ansatz prediction [144]. In addition, the Chevy ansatz possesses also sup-
port from ab initio methods since its predictions are largely reproduced by employing
Quantum Monte Carlo calculations [332, 333]. Surprisingly, the Chevy ansatz seems
to be adequate to characterize the Fermi polaron on the wavefunction level. Indeed,
the quasi-particle residue and effective mass of the Fermi polaron is well-predicted as
comparisons with experiment [135, 334, 335] and Quantum Monte Carlo reveal [186].
The Chevy ansatz is also effective in correctly characterizing the Fermi polaron in 2D
ensembles [116]. This large success of Chevy ansatz, despite its simplicity, is quite
surprising, leading some authors to investigate the underlying theoretical reasons that
lead to its remarkable accuracy [332,336].

However, it is not clear whether a similar expansion can be employed to describe
1D setups. This is because of the concept of the Anderson orthogonality catastrophe
[190–192]. Indeed, it can be shown that the Anderson orthogonality catastrophe is
exhibited for all different impurity-bath mass ratios for an 1D system [191, 192]. In
particular, the overlap between the interacting state of a system consisting of N↑ + 1↓
atoms, |ΨN↑+1↓〉 and the corresponding non interacting ground state |ΨN↑〉 ⊗ |Ψ1↓〉
decreases with system size as 〈ΨN↑+1↓ |

[
|ΨN↑〉 ⊗ |Ψ1↓〉

]
∝ N

−γ/2
↑ , where γ > 0 is a

constant depending on the mass ratio m↑/m↓ and interaction strength g. This result
implies that Z → 0 for N↑ → ∞, invalidating any expansion similar to Eq. (2.81) as
it implies the generation of an infinite series of particle-hole excitations. Equivalently,
it implies that quasi-particles such as the Fermi polaron cannot exist in one-dimension
[186,337,338]. Nevertheless, a recent experiment has shown [185] that thermodynamic
properties of the N↑ + 1↓ 1D Fermi system [339, 340] can be reclaimed for N↑ as low
as N↑ = 8. Owing to this experimental advance it is not clear whether the Anderson
orthogonality catastrophe precludes the creation of a well-defined Fermi polaron. The
exploration of this possibility is the main topic of our work [K3].

2.5 Radiofrequency spectroscopy

The purpose of this section is to outline several applications of radiofrequency spec-
troscopy for the study of ultracold atoms [143,220]. Within this section we treat atoms
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mainly as two level systems, an approximation which within the context of many ultra-
cold experiments is excellent, see also Sec. 2.1. Indeed, in such setups magnetic fields
of the order of 100 G are employed allowing for the selective coupling of individual
hyperfine states by radiofrequency fields [125, 246, 274]. This selective coupling stems
from the large quadratic Zeeman shift within this regime that heavily detunes all other
possible transitions except the selected one [274]. Another important feature of ultra-
cold atom setups is their relatively long timescales of time-evolution that range from
a few to hundreds of ms, referring to the center-of-mass motion of the atoms [22, 23].
In addition, the exhibited coherence times are even longer exceeding the timescale of
a second. The above allow for the application of both adiabatic and diabatic spec-
troscopic techniques, where the particles are transferred among the different hyperfine
levels within much longer or shorter timescales with respect to their center-of-mass
motion, respectively [143]. The large coherence time also allows for any decoherence
effects to be neglected within a good approximation.

In the following we analyze the basic features of adiabatic and diabatic spin-
dynamics and its relevance for spectroscopic applications by utilizing a simple example
system. Subsequently, we examine the protocols of injection, ejection, Ramsey and
pump-probe spectroscopy and outline their relevance for probing ultracold atom se-
tups.

2.5.1 Adiabatic and diabatic spin-dynamics and importance for spec-
troscopic applications

Understanding how particles move when subjected to out-of-equilibrium scenarios in-
volving interactions among themselves and their environment is one of the key paradigms
of the study of ultracold atoms [37]. Of course, in order to address this dynamics tun-
able probes should be developed that are sensitive to the details of atomic motion.
For the construction of such probes it is particularly important that the correlations
of the state of the probe and its environment are well-understood such that useful
information about the latter can be obtained upon studying the former. Within ra-
diofrequency spectroscopy the motional (center-of-mass) state of the atoms is coupled
with an additional (pseudo)spin degree-of-freedom referring to their internal atomic
hyperfine state [91,98,116,144,182,183]. As discussed in previous sections [see e.g. Sec.
2.2 and Sec. 2.3] such processes can possibly give rise to complex correlated dynamics
and novel emergent phenomena (see also [K1,K2]). However, despite the fundamental
interest in understanding the dynamics within these regimes, the latter are not relevant
for spectroscopic applications since they are currently not well-understood. In contrast,
within the regimes where the transfer between the different hyperfine levels is either
much slower (adiabatic) or much faster (diabatic) than the corresponding timescale of
atomic motion, the spin dynamics are predictable and well-characterized. In partic-
ular, this controllable dynamics provides important information for the state of the
system [143]. Indeed, for diabatic spectroscopy7 the spatial distribution and coher-

7Henceforth with the term diabatic or adiabatic spectroscopy we denote the spectroscopic techniques
utilizing pulses that induce diabatic or adiabatic spin-transfer dynamics respectively. Notice that the
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ence of the atomic wavepacket is probed, while for adiabatic spectroscopy information
regarding the energy content in terms of eigenergies and eigenstates of the system is
accessible.

A. Example model

In order to provide a clearer picture for adiabatic and diabatic spectroscopy, we present
here a simple example that allows for the identification of the basic features of both
regimes of spin-dynamics. We consider a single atom in a spin-dependent harmonic trap.
This simple model allows for a comprehensive understanding of the basic principles
of the different spectroscopic schemes since it allows for the coupling of the atomic
spin and motion, without the inclusion of complicating factors occurring in interacting
many-body systems. The Hamiltonian of the system reads

Ĥ =

∫
dx

[ ∑

α∈{↑,↓}

ψ̂†α(x)

(
− ~2

2m

d2

dx2

)
ψ̂α(x) +

mω2

2
x2ψ̂†↓(x)ψ̂↓(x)

+
mω2

2
(x− x0)2ψ̂†↑(x)ψ̂↑(x) +

~ΩR(t)

2

(
ψ̂†↑(x)ψ̂↓(x) + ψ̂†↓(x)ψ̂↑(x)

)

− ~∆

2

(
ψ̂†↑(x)ψ̂↑(x)− ψ̂†↓(x)ψ̂↓(x)

)]
,

(2.82)

where m is the atomic mass, ω and x0 refer to the trapping frequency and the spatial
offset of the parabolic confinement of the spin-↑ with respect to the spin-↓ ones. Finally,

ΩR(t) = ΩRe
−π(ΩRt)

2

φ2 corresponds to the Rabi frequency of the Gaussian-shaped pulse
with phase angle φ. The Gaussian shape of this pulse enables the different broadening
effects to be distinguished from one another while being of experimental relevance [143].
Finally, ∆ is the detuning of the pulse with respect to the atomic transition. An
important aspect in the following is that for an isolated spin the probability to find a
particle in the spin-↑ state is given for 0 < φ ≤ π by a Gaussian distribution having
the form

P↑(∆, φ) = sin2

(
φ

2

)
exp

[
−W 2

(
φ

π

)
∆2

Ω2
R

]
. (2.83)

The inverse width of the lineshape is W (x) ≈
√
π/2x + 0.07771 × x3.709 within an

accuracy of 10−4. Here, the first term is determined by employing first-order time-
dependent perturbation theory and the second one by fitting an exponential function to
the exact data for W (x)−

√
π/2x. The increase of the width of the Gaussian lineshape

exhibited in Eq. (2.83) is an example of a power broadening [219]. The amplitude
of the Gaussian is exactly sin2(φ/2) being a manifestation of the so-called pulse-area
theorem [219]. This theorem states that for ∆ = 0 the transfer efficiency between the
states depends only on the time integral of the pulse intensity φ =

∫∞
−∞ dt ΩR(t) rather

than its shape.

corresponding pulses will also be referred to as diabatic or adiabatic ones.
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As a last remark notice the use of the rotating wave approximation in Eq. (2.82).
The rotating wave approximation is excellent in the relevant regime for spectroscopic
applications in ultracold ensembles addressing different hyperfine levels. This is due to
the fact the typical energy scale of the hyperfine splitting is h×MHz, while the intended
Rabi frequencies, being of the order of the inverse timescale of atomic motion ΩR ∼kHz,
are much smaller.

B. Diabatic regime

Diabatic spin-dynamics occurs when the motion of the particles can be neglected within
the timescale that the spins transit between the spin-↑ and spin-↓ states. In the simple
model of Eq. (2.82) the timescale for spin-transfer is given by π/ΩR, while the atomic
motion occurs within ∼ π/ω. Accordingly, the diabatic regime is accessed for ΩR � ω.
Due to the inability of atoms to move for t < π/ΩR within this regime the kinetic energy
in Eq. (2.82) can be neglected. In this case the Hamiltonian can be approximated by
an integral over localized spins, i.e. Ĥ ≈ Ĥ0 +

∫
dx Ĥ(x), with

Ĥ(x) =
~ΩR

2
e
−π(ΩRt)

2

φ2

(
ψ̂†↑(x)ψ̂↓(x) + ψ̂†↓(x)ψ̂↑(x)

)

− 1

4

(
2~∆−mω2x2

0 − 2mω2x0x
) (
ψ̂†↑(x)ψ̂↑(x)− ψ̂†↓(x)ψ̂↓(x)

)
,

(2.84)

and Ĥ0 denoting a spin-independent term contributing to a net shift of the energy

Ĥ0 =
1

4

∫
dx

[
mω2x2 +mω2(x− x0)2

] (
ψ̂†↑(x)ψ̂↑(x) + ψ̂†↓(x)ψ̂↓(x)

)
. (2.85)

Accordingly, in the diabatic limit the spin-dynamics of the itinerant spin can be mapped
to an analogous system consisting of an ensemble of localized and non-interacting spins.
This ensemble possesses a spatially dependent detuning and its dynamics is driven by a
homogeneous in space pulse. The absence of effective spin-spin interactions is indicative
of the semiclassical nature of this approximation. Assuming that initially the system
is prepared in the ground state of the spin-↓ configuration subject to Eq. (2.84), the
probability to find a spin-↑ particle after the application of the pulse is

P↑(∆, φ) =

{
1 +

[
W

(
φ

π

)
x0

αt

ω

ΩR

]2
}− 1

2

sin2

(
φ

2

)

× exp


−

W 2
(
φ
π

)

Ω2
R

(
∆− mω2x2

0
2~

)2

1 +
[
W
(
φ
π

)
x0
αt

ω
ΩR

]2


 ,

(2.86)

where αt =
√
~/(mω) is the confinement length scale. The result of Eq. (2.86) provides

a great insight into the dynamics. First, the spectrum exhibits a single peak at the

position ~∆ =
mω2x2

0
2 , which corresponds to the energy expectation value of a coherent
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state with average zero momentum and displaced by x0 from the trap center. Indeed,
within the diabatic regime the spatial distribution of the atom cannot change during the
short timescale of transfer among the hyperfine states. Accordingly, the atom transits
from its ground state for spin-↓ to a coherent state for spin-↑ that possess a spatial
wavefunction equivalent to the initial one. Note here that the prefactor of the Gaussian
distribution is smaller than unity even in the resonant case, namely ∆ = mω2x2

0/2 [see
Eq. (2.86)] revealing that the transfer of spin-↓ atoms to the spin-↑ state is not perfect.
In particular, it reduces the fraction of the displacement, x0, over the trapping length-
scale, as αt increases. Nevertheless, this correction is relatively small as it is scaled by
ω/ΩR � 1 within the diabatic regime. The origin of this correction can be traced back
to Eq. (2.84), where it can be seen that the spatially dependent detuning is a linear
function of x with the slope given by x0. Of course, if the slope of the detuning is large,
then some parts of the density of the spin-↓ atom will lie beyond the resonance condition
of the pulse |∆−mω2x2/(2~)| < ΩR. Consequently, these will not be transferred to the
spin-↑ state after the application of the pulse resulting to a reduced overall efficiency.
Finally, let us comment that the main broadening mechanism is the power broadening.
In particular, the lineshape remains Gaussian with a comparable but slightly increased
width when compared to the fixed spin case, Eq. (2.83). This increase stems from the
part of the density that is off-resonant.
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Figure 2.5: (a) Schematic illustration of the transfer between the spin states within the
diabatic regime. (b) Spin transfer spectra for ΩR = 10 ω, x0 = 1 αt and x0 = 5 αt (see
legend) and comparison with the approximate profile of Eq. (2.84). Density evolution
of the (c1), (d1) spin-↑ and the (c2), (d2) spin-↓ component for (c1), (c2) x0 = 1 αt
and (d1), (d2) x0 = 5 αt and ΩR = 10 ω for the resonant cases ∆ = 0.5 ω and
∆ = 12.5 ω respectively. Light blue dashed lines in (c2) and (d2) demonstrate the
expected trajectory corresponding to a coherent state with zero momentum at x = 0
created at t = 0.

It is instructive to compare the approximate yet analytical results of Eq. (2.86)
to an exact simulation of Eq. (2.82). Figure 2.5(b) provides a comparison between
the exact injection spectrum for Ω = 10 ω [Eq. (2.82)] and the analytical prediction
obtained within the diabatic approximation [Eq. (2.86)]. It can be seen that the
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exact spectrum closely follows the approximate one, showing a peak at a finite value

of ∆/ω, given by ∆+ =
mω2x2

0
2~ =

ωx2
0

2α2
t
. Notice also that for resonant detunings and

in the x0 = 1 αt case the transfer to the spin-↑ is almost perfect P↑(∆+) > 0.99,
while for x0 = 5 αt the transfer efficiency is significantly lower that unity, specifically
P↑(∆+) ≈ 0.83. As mentioned previously, according to the diabatic approximation,
the mechanism responsible for the reduction of the transfer efficiency is that of the

edges of the initial density distribution, recall that ρ
(1)
σ (x; t) = 〈Ψ(t)|ψ̂†σ(x)ψ̂σ(x)|Ψ(t)〉,

with σ ∈ {↑, ↓}, become off-resonant when a steep detuning gradient emanates in the
spatial extent of the initial density. Indeed, this process can be verified within the
exact calculation. For x0 = 1 αt we observe that for t > 0 the density of the spin-↓
atoms is almost completely nullified, see Fig. 2.5(c1). However, for x0 = 5 αt, Fig.
2.5(d1) reveals that the density within the edges of the initial spin-↓ configuration
remains in the same component after the application of the pulse, as the former seem
to be outside the resonant region. Furthermore, we can demonstrate that a coherent
state of the spin-↑ configuration is populated after the diabatic pulse. In particular,
Fig. 2.5(c1) and 2.5(d2) demonstrate that the dipole oscillations undergone by the
density transferred to the spin-↑ configuration match the trajectory of a coherent state
generated at x(t = 0) = 0, namely, x(t) = x0 − x0 cos(ωt).

The above examined example reveals the key features of diabatic spectroscopy. The
defining aspect of this spectroscopic scheme is that it addresses the state of the system
in terms of dynamically evolving wavepackets the properties of which can be manipu-
lated by modifying the overall preparation scheme. Indeed, the application of a diabatic
pulse results to the creation of a wavepacket with an almost identical shape to the ini-
tial one, which enables the probing of different properties of the system by varying its
initial state. This is a desirable feature for the study of e.g. the quasiparticle states of a
many-body system since they possess typically a large overlap with the corresponding
non-interacting states [179, 329] which can be employed to initialize a diabatic pulse
scheme, see also Sec. 2.4.5. The spectroscopic signal provided by the shift of the spec-
tral line probes the energy of the excited wavepacket with an uncertainty stemming
from the intensity of the pulse. Therefore, a lower intensity, in terms of ΩR, is prefer-
able in order to suppress this broadening effect and accordingly increase the spectral
resolution. However, due to the semiclassical character of the excited wavepacket the
spectral response is not adequate to fully characterize the initial state. Finally, for
most applications the characteristic energy associated with the pulse, ~ΩR, has to be
kept much larger than the fluctuations of the detuning in the spatial extent of the
wavepacket to ensure that its entirety satisfies the criterion |∆(x)| < ΩR at resonance
and therefore making an efficient transfer between the hypefine states possible.

C. Adiabatic regime

Adiabatic spin-dynamics occurs when the rate of transfer among the spin-↑ and spin-↓
states is much lower than the inverse characteristic timescale of atomic motion. This
implies that within the adiabatic regime the energy scale related to the Rabi frequency,
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~ΩR is much smaller than the characteristic one for the atomic (center-of-mass) mo-
tion. Consequently, the latter corresponds to the dominant energy scale of the system.
Within our example system, Eq. (2.82), it is thus instructive to express the Hamil-
tonian in terms of the different eigenstates in the case ΩR = 0. To achieve this, we
expand the field operators as

ψ̂†↓(x) =
∞∑

n=0

ϕn(x)â†n, and, ψ̂†↑(x) =
∞∑

n=0

ϕn(x− x0)b̂†n, (2.87)

where ϕn(x) corresponds to the n-th eigenfunction of the harmonic oscillator and â†n
and b̂†n refer to the creation operators of the corresponding modes. By employing Eq.
(2.87) the Hamiltonian of Eq. (2.82) can be expressed as follows

Ĥ =
~(∆ + 1)

2
N̂ +

∞∑

n=0

~ωn â†nân +
∞∑

n=0

~ (ωn−∆) b̂†nb̂n

+
~ΩR

2
e−

(ΩRt)
2

π

∞∑

n=0

∞∑

m=0

(〈
n

∣∣∣∣D̂
(

x0√
2αt

)∣∣∣∣m
〉
â†nb̂m + h.c.

)
,

(2.88)

where N̂ is the particle number operator, D̂(α) = exp(αâ† − α∗â) is the displacement
operator and |n〉 = (â†)n/

√
n!|0〉 is the n-th eigenstate of the harmonic oscillator.

The relation between the eigenfunction and eigenstates reads ϕn(x) ≡ 〈x|n〉. The
interpretation of Eq. (2.88) is that the eigenenergies of spin-↑ and spin-↓ states form
two ladders of equidistant levels with a spacing given by ~ω, which are offsetted by the
detuning of the pulse, ~∆ [see Fig. 2.6(a)]. In principle, the pulse couples all of the spin-
↑ states with all of the spin-↓ ones with a state-dependent amplitude Zn,mΩR ≤ ΩR,
where Zn,m = |〈n|D̂

(
x0/
√

2αt
)
|m〉| ≤ 1 is referred to as the Frank-Condon coefficient

[219]. In order to transfer the spin-↑ atom to the spin-↓ configuration the condition

|E↑n − E↓m| ∼ ~|Zn,mΩR|, (2.89)

needs to be satisfied [see also Eq. (2.83)], where E↑n and E↓m refer to the energy of
the involved spin-↑ and spin-↓ state respectively. This condition can only hold for
distinct pairs of spin-↑ and spin-↓ states [see Fig. 2.6(a)]. Indeed, let us suppose that
a spin-↓ state with index m and a spin-↑ state which possesses an index n satisfy Eq.
(2.89). In this case the spin-↑ states n ± 1 will not be able to satisfy the resonance

condition with the mth spin-↓ one since |E↑n±1−E↓m| > ||E↑n−E↓m|−~ω| ≈ ~ω � ~ΩR.
Therefore, the system can be treated within the adiabatic approximation as a collection
of non-interacting spin-1/2 particles with a spin-dependent Rabi-frequency, Zn,mΩR,
and detuning ∆−nω [see Fig. 2.6(a)]. The shift of the Rabi-frequency, however, implies
that the flip angle of the pulse does not refer to its bare value, φ, for an isolated spin
but it is rather equal to φ̃n,m = Zn,mφ. The latter further results to the variation of
its value for each different pair of states, n,m. The spectrum in the adiabatic case for
a system initialized in the ground-state of spin-↓ reads

P↑(∆, φ) =

∞∑

n=0

sin2

(
Zn,0φ

2

)
exp

[
−W 2

(
Zn,0φ

π

)
(∆− nω)2

Z2
n,0Ω2

R

]
. (2.90)
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Note that spectrum consists of several non-overlapping peaks at ∆ = nω, with n =
0, 1, 2, . . . (recall that ΩR � ω within the adiabatic regime). Each peak of the adiabatic
spectrum posseses similar characteristics to a corresponding one referring to a localized
spin with φ → Zn,0φ and ΩR → Zn,0ΩR. Note that within adiabatic spectroscopy the
perfect preparation of any particular spin-↑ state is possible as long as the flip angle is
set to φ = π/Zn,0.
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Figure 2.6: (a) Coupling scheme between the different eigenstates within the adiabatic
spectroscopy regime. (b) Spin transfer spectra for ΩR = 0.1ω, x0 = 1 and φ = π, 1.28π
when compared to the approximate profile of Eq. (2.90). (c) Transfer probability for
the first four resonances and varying φ with ΩR = 0.1ω, x0 = 1 (see legend). (d) Spin
transfer spectra for ΩR = 0.1ω, x0 = 5 and φ = π.

Figure 2.6(b) demonstrates the spectrum obtained for ΩR = 0.1 ω and x0 = 1,
within Eq. (2.82) when contrasted to the spectrum obtained within the adiabatic
approximation, Eq. (2.90). It can be seen that the approximate spectrum matches
almost perfectly the exact one for the employed flip angles φ = π and φ = 1.28π ≈
π/Z0,0. The observed difference in the heights of the peaks for different ∆ can be
understood within the picture of the renormalization of the flip angle of the pulse,
namely φ→ Zn,0φ.
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The basic features of the adiabatic spectroscopy is that it involves transitions be-
tween distinct eigenstates of the system, which is in direct contrast to the transitions
between wavepacket states that diabatic spectroscopy resolves. Adiabatic spectroscopy
provides information on the eigenenergies of the system being related to the position of
the resonances [219]. Furthermore, their Frank-Condon overlaps with the initial state
are imprinted in the heights of the corresponding spectral features. In addition, since
the employed intensities are small there is no significant broadening of the spectral
lines, in contrast to the diabatic case. In principle, adiabatic spectroscopy can be em-
ployed to prepare a system at any state that possesses a finite Frank-Condon overlap
with the initial state. However, in practice such a preparation scheme becomes largely
inefficient, since the time that the pulse should be applied increases with reducing
Zn,0. This increase of the exposure time implies that imperfections of the employed
setup such as decoherence or variations of the applied field become important for the
accurate description of the system [143, 219, 220]. Note also that the Frank-Condon
overlap characterizing the transitions among different states of a many-body system
can decrease drastically upon increasing the system size [190–192]. This is particularly
relevant for spinor systems embedded within a more extensive structureless gas. In
this case, the excited states of the spinor system are decaying by transferring energy
to their environment, which, owing to its extensiveness, dramatically limits the Frank-
Condon overlap of the state accessed after the decay. Such a decay process leads to a
lifetime broadening [219] accompanied with a reduced amplitude of the spectral peaks.
As a countermeasure to this process larger Rabi-frequencies could be employed so that
ΩR > Γ, where Γ is the decay rate of the state. However, in the case that Γ is of the
order of the characteristic timescale of atomic motion, this measure is ineffective and
spectroscopic techniques relying on diabatic pulses such as Ramsey spectroscopy [see
Sec. 2.5.3] have to be employed [143].

2.5.2 Injection and ejection spectroscopy

The simplest spectroscopic techniques that can be employed for the study of struc-
tures emanating in Bose and Fermi gases refer to the injection and ejection spec-
troscopy [91, 98, 116, 144, 182, 183]. Within these spectroscopic schemes, two different
hyperfine levels are involved, the first one, denoted here as spin-↑, corresponds to the
configuration the behaviour of which is to be studied, while the second one, spin-↓,
is a different hyperfine level where the system possesses well-known properties. The
difference of the two spectroscopic techniques lies in the initial preparation of the spin
degree-of-freedom of the system. Within ejection or direct spectroscopy [144, 183] the
system is prepared in the ground state |Ψ0↑〉 of the configuration that is to be probed,
spin-↑, and subsequently a pulse is applied so as to drive the atoms to the spin-↓ con-
figuration. Injection or indirect spectroscopy is the reverse process [91, 98, 116, 182],
i.e. the atoms are initially prepared in the spin-↓ ground state, |Φ0↓〉, and then by
applying a radiofrequency pulse the population is transferred to the configuration un-
der study, namely the spin-↑ state. The spectroscopic signal in both processes is the
fraction of atoms that has been successfully transferred after the application of the
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pulse to the spin-state that is different from the one that the system was initially
prepared [98,116,144].

Ejection and injection spectroscopy are particularly suited for the study of the sys-
tem corresponding to the spin-↑ configuration in terms of its eigenstates and eigenener-
gies. This is achieved by ensuring that the applied pulse operates within the adiabatic
spin-transfer regime, see Sec. 2.5.1C. In the single spin case Ns = 1 and within the adi-
abatic regime of ejection spectroscopy the energy of the initial |Ψ0↑〉 can be identified
in terms of its relation to the known eigenenergies of the spin-↓ configuration corre-
sponding to |Φi↓〉 by examining the position of the different spectroscopic resonances.
In addition, the analysis of the heights of each individual peak of the ejection spectrum
reveals the Frank-Condon overlaps Z0,i = |〈Ψ0↑|Ŝ+|Φi↓〉|, between the above mentioned
states. Within adiabatic injection spectroscopy for Ns = 1 the states of the spin-↑ con-
figuration possessing a finite Frank-Condon overlap with the ground state |Ψ0↓〉 can
be populated, with their energy being imprinted in the location of the spectral peaks.
Similarly, their overlap with the initial state, Zi,0 = |〈Ψi↑|Ŝ+|Φ0↓〉|, is captured by the
amplitude of the spectral features. Another, advantage of these spectroscopy schemes
is that realizations utilizing different phase angles φ of the applied pulse can be used
to probe Rabi oscillations [116] between the initial spin-↓ and the final spin- ↑ states,
yielding information regarding the coherence properties of the system.

When applied to systems containing a large number of spins, Ns > 1, injection and
ejection spectroscopy work optimally when states with a high Frank-Condon overlap
are addressed Zi,j ≈ 1 and in particular in the case that the involved spins are largely
non-interacting and exhibit a slow rate of decoherence. In this case, the energy shifts
between the sectors with different Sz, as well as, the coupling matrix elements between
Sz and Sz±1 states are roughly constant and the system can be treated as an effective
pseudospin-Ns/2 single spin system. In this case the Ns = 1 results outlined above also
carry over to Ns > 1 allowing for a straightforward characterization of the system via
injection or ejection spectroscopy [91, 98, 116, 144, 182, 183]. In the more complicated
case where the Zi,j � 1 and/or spin-spin interactions are prominent a more careful
analysis is required and additional observables must be employed since the above men-
tioned mapping is no longer possible, see also [K3]. The decoherence effects might be
suppressed by employing stronger pulses, however different spectroscopic techniques
might be preferable in this case (see also the discussion in Sec. 2.5.3).

Let us also note in passing that pulses resulting to diabatic spin-transfer are not
particularly useful within injection and ejection spectroscopy. Indeed, due to the large
intensities of such pulses the atomic motion is negligible during their application and
therefore the corresponding spectrum provides information only regarding the semi-
classical energy ~ → 0 of the spins (see Sec. 2.5.1B) which in turn offers only a crude
characterization of the involved states [341]. In addition, injection and ejection spec-
troscopy do not utilize the strength of diabatic pulses referring to the formation of
dynamically evolving wavepacket states after their application.

Finally, let us note that both the injection [91, 98, 116, 182] and ejection [144, 183]
spectroscopy have been applied for investigating experimentally the polaron problem.
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Indeed, injection spectroscopy has been employed as the workhorse for examining the
equilibrium properties of Bose and Fermi polarons since it allows for addressing also
the excited states of the system. In particular, injection spectroscopy allows for the
experimental realization of the repulsive Bose [91,182] or Fermi [98,116] polaron, that
constitutes an excited state of the composite bath impurity system in two and three
spatial dimensions. Nevertheless, injection spectroscopy does not provide information
regarding the dynamics of impurities or the polaron formation and lifetime, motivating
the development of time-dependent spectroscopy schemes that are able to resolve the
intriguing polaron dynamics.

2.5.3 Ramsey spectroscopy

A powerful alternative to injection and ejection radiofrequency spectroscopy is the
so-called Ramsey spectroscopy [145,147]. In particular, the injection and ejection tech-
niques mainly rely on a large Frank-Condon coefficient among the initial and the finite
state, i.e. 〈Ψf |Ŝ+|Φi〉 ≈ 1 allowing for adiabatic pulses to be efficiently employed. This
is especially relevant in the many-body case, involving multiple spins. In particular
the violation of the above mentioned condition leads to a complex dynamical response.
This complex response of the system although theoretically interesting implies that
the injection and ejection spectra cannot adequately characterize the system if not
supported by the measurement of additional observables. Another drawback of these
schemes is that they do not possess any time-resolution. Indeed, a state that is decay-
ing to multiple different ones is only characterized by a lifetime dependent broadening
of the corresponding spectral line [143,219], see Sec. 2.5.1C.

Ramsey spectroscopy rectifies these issues by providing information regarding the
decay rate exhibited by a state with a finite lifetime [145]. More specifically, Ramsey
spectroscopy relies on the application of two hard π/2 pulses with a varying dark time
in between them and possibly different polarizations, see Fig. 2.7(a). A hard pulse
refers to an intense pulse resulting to diabatic spin-transfer for which the coupling of
the spatial degree of freedom with the spin one can be neglected. Namely, for a hard
pulse P↑(∆, φ) ≈ sin2(φ/2) for ∆ close to resonance, see also Eq. (2.86). This scheme
can be described better by invoking the concept of the Bloch sphere, see Fig. 2.7(b). In
this picture, the application of a hard pulse can be regarded as a rotation of the total
spin of the ensemble on this Bloch sphere along a particular spin-axis which can be
related to the polarization of the pulse. Initially the system is prepared in a long-lived
spin-↓ state and therefore the spin of the system lies in the South pole of the Bloch
sphere corresponding to a spin Sz = −Ns

2 , where Ns is the number of spins [Fig.2.7(c)].
Then the sequence is initiated by the first π/2 pulse that rotates the spin of the system
along the y axis of the Bloch sphere by an angle of π/2. The fact that the pulse is
hard implies that all of the spins after the end of this pulse end up in the superposition
state |↑〉+|↓〉√

2
, i.e. their spin is aligned along the x axis, see Fig. 2.7(b). Subsequently,

the system is left to evolve in the absence of fields for a dark-time, td. During this
dark-time the spin of the system precesses along the equator of the Bloch sphere due
to the different energies of the spin-↑ and spin-↓ states [2.7(b), (c)]. Subsequently, the
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〈Sx(td)〉 and 〈Sy(td)〉 projections of the total-spin, 〈S(td)〉 = 〈Ψ(td)|Ŝ|Ψ(td)〉, can be
probed by applying a second π/2 pulse along the y or x spin-axis (i.e. possessing a
phase difference of ∆θ = 0 or ∆θ = π/2 to the first one) respectively. This last sequence
rotates the spin so that the polarization of the particles along the z axis, 〈Sz(td + te)〉
after the second pulse refers to the value of 〈Sx(td)〉 or 〈Sy(td)〉 before the second pulse
is applied, see Fig. 2.7(c).

Figure 2.7: Schematic illustration of (a), (b), (c) the Ramsey and (d), (e), (f) the
pump-probe spectroscopy schemes. (a), (d) Indicative pulse sequences expressed in
terms of the time-dependence of the Rabi-frequency on the applied radiofrequency field,
ΩR(t). (b), (d) Bloch sphere representations demonstrating the anticipated behaviour
of the total spin 〈S(t)〉 at certain times during the dynamics. ∆θ refers to the phase
difference among the two pulses of the Ramsey scheme. (c), (f) Dynamical evolution
of the z projection of total spin 〈Sz(t)〉.

For spatially fixed non-interacting spins Ramsey spectroscopy yields the rather triv-
ial result of 〈Ψ(td)|Ŝx + iŜy|Ψ(td)〉 = Ns

2 exp(i
E↑−E↓

~ td), where Eα corresponds to the
energy of the spin-α state, with α ∈ {↑, ↓}. However, in the case that either the spins
interact or the spin-↑ state is coupled to another degree of freedom, the situation be-
comes more complicated. Indeed, in this case the first π/2 pulse maps the system from
the state |Ψ(−te)〉 = |Ψ0〉 ⊗ | ↓〉⊗Ns to the state |Ψ(0)〉 = 2−Ns/2(1 + Ŝ+)Ns |Ψ(−te)〉,
where Ns is the number of constituent spins, which during the dark time undergoes
non-trivial dynamics.

Particularly enlightening is the case of Ns = 1 [92,147] where the spin is coupled to
one or several auxilliary degrees-of-freedom. In this case and for ideal Ramsey pulses,
i.e. ΩRamsey

R → ∞, te ∼ π/(2ΩRamsey
R ) → 0, the components of the spin during the
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dark-time read

C(td) = 〈Ψ(td)|Ŝx + iŜy|Ψ(td)〉 =
1

2
〈Ψ(−te)|Ŝ−e

i
~ (Ĥ−E0)tdŜ+|Ψ(−te)〉. (2.91)

Eq. (2.91) shows that the amplitude of the contrast |C(td)| =
√
〈Ŝx(td)〉2 + 〈Ŝy(td)〉2

provides information on the overlap of the time-evolved state projected to the spin-↑
configuration, |Ψ↑(td)〉 = e−

i
~ ĤtdŜ+|Ψ(−te)〉 with the initial state with spin-↓, |Ψ(−te)〉.

The decrease of the amplitude of the contrast, |C(td)|, implies that the energy imported
to the system by the initial π/2-pulse is redistributed to the degrees-of-freedom that
are coupled to the spin. Therefore, Ramsey spectroscopy allows for tracking the time-
dependence of such energy transfer processes and the identification of the lifetime of
such states. In addition the phase of 〈Ψ(td)|Ŝx + iŜy|Ψ(td)〉 corresponds to the phase
difference accumulated during the dark time, with respect to the initial state. In par-
ticular, the Ramsey contrast can be expressed in terms of the structure factor C(td) =

〈Ψ0|e+iĤ′0td/~e−iĤ
′td/~|Ψ0〉 ≡ S(td), where S(t) is the structure factor of the spinless

system and the spin-independent Hamiltonians that read Ĥ ′0 ≡ [〈↓ |⊗Ns ]Ĥ| ↓〉⊗Ns and
Ĥ ′ ≡ [〈↑ |⊗Ns ]Ĥ| ↑〉⊗Ns . Therefore, the appropriate selection of the spin-↓ state allows
for the experimental characterization of the spin-↑ configuration enabling the study of
the structures emerging therein.

Notice that the mapping of the Ramsey contrast to the structure factor does not
hold for Ns > 1 since in this case the former reads

C(td) =
1

2Ns

Ns−1∑

n=0

Ns −m
m+ 1

(
Ns

m

)2

〈Ψ(−te)|(Ŝ−)m+1e
iĤtd

~ Ŝ+e
− iĤtd~ (Ŝ+)m|Ψ(−te)〉.

(2.92)
It is straightforward to check that Eq. (2.92) reduces to Eq. (2.91) for Ns = 1.
However, these two expressions have very different physical interpretation. Indeed,
Eq. (2.92) reveals that the Ramsey contrast in the many-body case is a function of
the overlaps of the time-evolved many-body states with m and m + 1 spin-↑ particles
for m = 0, 1, . . . , Ns − 1. Correlations between the spin-↑ particles can dramatically
affect the values of these overlaps for distinct m and accordingly they cannot be related
in the generic case to the structure factor of a single excitation referring to the term
with m = 0. One additional caveat of Eq. (2.92) is that the amplitude of the contrast
crucially depends on the relative phase between the different terms involving a different
number of spin-↑ atoms. This implies a relaxation rate of the Ramsey signal due to
the decoherence of the spin in the different involved Sz sectors of a many-body system.
Therefore, in contrast to the Ns = 1 case, for Ns > 1 a dynamically decreasing |C(td)|
does not necessarily imply energy migration among the spin and the degrees-of-freedom
that are coupled to it, since spin-spin correlations also play an important role. The
above complicating factors of the many-body Ramsey spectroscopy can be circumvented
in the absence of two-body correlations allowing the system to be treated within mean-
field theory [92,147]. However, in the correlated case the interpretation of the Ramsey
response of a system consisting of Ns > 1 spins is rather challenging and in general it
should be supported by other independent observables.
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With respect to the impurity problem, Ramsey spectroscopy has been applied re-
cently [145] to study the heteronuclear Fermi-polaron in order to reveal the formation
and fate of such quasi-particles. Motivated by this application we have also exploited
Ramsey spectroscopy extensively [K4, K5] to demonstrate the decay dynamics of con-
fined Bose polarons in the strongly interacting regime. Due to the recent shift of
the community’s focus in addressing the intricate Bose and Fermi polaron dynam-
ics [9, 89,145,342–347] experiments.

2.5.4 Pump-probe spectroscopy

The pump-probe spectroscopy scheme is a time-resolving spectroscopy approach that
allows also for spectral resolution [143]. As we discussed above Ramsey spectroscopy
yields information about the proximity of the time-evolving state to the initial one both
with respect to the actual overlap of the states as well as their relative phase. However,
it is not able to reveal how the energy of the system is redistributed. This issue can be
solved within pump-probe spectroscopy.

In the most general case pump-probe spectroscopy consists of a sequence of two
pulses. The first one is the pump pulse which acts on a degree of freedom of the sys-
tem leading to its excitation and subsequent out of equilibrium dynamics. The second
pulse being referred to as the probe pulse is applied after a variable delay time from
the pump one and its role is to characterize the induced dynamics, Fig. 2.7(d), (e), (f).
The second pulse can either probe the state [100,101] of the degree-of-freedom excited
by the first pulse or a different one that is also optically addressable, see e.g. [348–355].
Herewith, we focus on the former case, as we deem it more relevant for applications
in ultracold atoms. An important aspect of pump-probe spectroscopy is the field-free
evolution of the system during the time interval between the two pulses, the so-called
dark time. Within this time interval the initial excitation has time to energetically
redistribute among the different dynamical modes of the system, as was also the case
in Ramsey spectroscopy. However, in contrast to Ramsey spectroscopy within pump-
probe spectroscopy this energy redistribution can be probed directly by the second
pulse that allows for finite spectral resolution of the dynamics of the system. Es-
sentially, the proposed pump-probe sequence refers to the ejection spectroscopy of an
excitation (selectively) induced by a diabatic injection pulse. A notable drawback of
the pump-probe technique is that the temporal and spectral resolution provided by
this approach are limited by the Heisenberg time-energy uncertainty relation [247] and
therefore a compromise between the two uncertainties has to be found. Accordingly,
Ramsey spectroscopy is typically better in identifying the decay rate of a spin-excited
state, while pump-probe spectroscopy allows for identifying how the energy is redis-
tributed among the different degrees-of-freedom of the system. Finally, let us stress that
the pump-probe framework can be employed in a variety of different setups [348–355]
providing important information inaccessible by other spectroscopic techniques.

Within the ultracold setting pump-probe spectroscopy has played a pivotal role in
addressing the development of anti-bunching correlations in the repulsive metastable
branch of mass-balanced Fermi gases for positive scattering lengths [100, 101]. This
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development as already mentioned in previous sections, see for instance Sec. 2.2, revi-
talized the interest in the study of the ferromagnetic properties in ultracold Fermions
[94, 96–98, 100, 101]. In addition to the above mentioned application, the pump-probe
spectroscopy technique is a powerful tool for studying the Bose and Fermi polarons
especially focussing on understanding their dynamical properties In particular, within
our work [K6] we have employed pump-probe spectroscopy to monitor the dynamical
energy redistribution emanating after the decay of strongly repulsively interacting Bose
polarons. Another feature of pump-probe spectroscopy that can be utilized in the fu-
ture is its relative robustness when the number of involved spinor atoms is increased
when compared to Ramsey and injection or ejection spectroscopy. Indeed, this charac-
teristic of the pump-probe scheme allows to address questions related to the crossover
from the polaron limit of a single impurity [K6] embedded in an extensive environment
to the two component gas case where both components have almost equal prevalence
in the dynamics [100, 101]. These questions are particularly relevant in the Fermi po-
laron case [98, 116,117,144,145,181,184] the study of which is largely tied to realizing
few-body analogues of extensive phases, see also Sec. 2.4.6.

2.6 Many-Body Methodological Approach: ML-MCTDHX

the adequate description of quantum many-body systems is a highly challenging task
due to the difficulty of modelling the effect of quantum correlations. The latter re-
fer to statistical dependencies of the states of the constituent particles of the system,
stemming from the non-trivial structure of the underlying many-body wavefunction
describing them. Indeed, quantum correlations cannot be properly captured by the
widely used mean-field theories and their variants since they are generically neglected.
Instead, addressing the many-body Schrödinger equation, at least up to a certain de-
gree, is required for appropriately taking quantum correlations into account. Such an
approach is, of course, quite computationally challenging, since the dimensionality of
the this partial differential equation increases linearly with number of particles, and
therefore, an exponential scaling of the number of available states is involved as the
system size increases.

A prominent class of numerical approaches that allow for the study of quantum cor-
relations refers to the ab initio and numerically exact methods. Ab initio implies that
the method addresses directly the many-body Schrödinger equation and does not invoke
any further assumptions for its simplification. In turn, numerically exact means that
by increasing the computational effort of the calculation one can obtain, in principle,
results that are as precise as the numerical precision of the computing machine allows.
The simplest and most well-known example of such a method is the so-called full config-
uration interaction (also known as the exact diagonalization) approach [107, 300, 356].
Within this numerical technique the state of each particle is restricted to a finite-
dimensional subspace of the available Hilbert space, and subsequently all possible con-
figurations that the particles can occupy are considered as the basis of the corresponding
many-body Hilbert space. This approach allows for solving the corresponding many-
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body Schrödinger equation within this truncated many-body basis by employing stan-
dard linear-algebra techniques. The ab initio character of this technique stems from
the absence of approximations, besides the truncation of the underlying single-particle
basis. Configuration interaction is also numerically exact because as a larger number
of single-particle basis states are considered the accuracy of the method is increased.
Therefore, asymptotically the accuracy is only limited by the numerical one. Never-
theless, the capacity of this method to feasibly perform calculations is severely limited
by the system size since the complexity scales exponentially with the particle number
of the system. Several sophisticated numerical approaches have been developed that
severely improve this aspect of computational complexity when compared to configu-
ration interaction while retaining an ab initio and numerically exact character. Indica-
tively, we mention, here, the density matrix renormalization methods [357, 358], the
matrix product states approaches [359–362], several Quantum Monte Carlo techniques
including the diagramatic [313,336,363] and diffusion [189,364,365] ones. Furthermore,
there exist several variational methods exploiting powerful ansatze [300] that can, on
the one hand, efficiently truncate the many-body Hilbert space for computational effi-
ciency, while on the other hand, they are general enough such that they can represent
the whole many-body Hilbert space at a particular limit, ensuring this way numerical
accuracy.

The numerical approach that we shall employ to tackle the correlated dynamics of
ultracold atomic mixtures presented within this thesis belongs to this latter category
of variational ab initio and numerically exact methods. Namely, it refers to the Multi-
Layer Multi-Configuration Time-Dependent Hartree method for bosonic and fermionic
mixtures (ML-MCTDHX) [366–368]. The ML-MCTDHX approach is a member of
the family of numerical techniques that are descendants of the Multi-Configuration
Time-Dependent Hartree (MCTDH) method [369, 370]. The distinctive feature of
this class of numerical approaches is that they employ a variational ansatz involv-
ing a time-dependent and variationally optimized basis for expressing the many-body
wavefunction of the system. This ansatz allows for a rather computationally efficient
treatment of the quantum dynamics as compared to the case where a stationary ba-
sis employed, as e.g. within the configuration interaction approach. MCTDH has
been a very successful method for simulating the quantum dynamics of distinguish-
able molecular degrees-of-freedom in quantum chemistry (see for instance Ref. [370]
and references therein) and has inspired several related approaches, employed for the
study of a wide range of distinct physical systems. For our purposes the most relevant
such extensions regard the Multi-Configuration Time-Dependent Hartree methods for
fermions (MCTDHF) [371,372] and for bosons (MCTDHB) [373,374] which enable the
treatment of indistinguishable particles of fermionic and bosonic character respectively.
ML-MCTDHX is the successor to these methods as it enables the simulation of bosonic
and fermionic ensembles [375], as well as, any mixture thereof. In particular, it uses a
multi-layered structure [376–378] of the many-body wavefunction ansatz which provides
access to the correlations developed among the distinct species of a multicomponent
mixture in an efficient manner.
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In the following we provide a brief description of the ML-MCTDHX method [366]
especially when applied to the class of systems decribed in Ref. [K1–K6]. Subsequently,
we discuss several aspects regarding its convergence and its relevance for the study of
the particular setups employed within this thesis.

2.6.1 Basic elements of the ML-MCTDHX approach

The key feature of ML-MCTDHX is that it relies on a time-dependent and variation-
ally optimized many-body basis set in order to represent the instantaneous many-body
wavefunction. Despite its increased numerical efficiency, ML-MCTDHX further consti-
tutes a versatile platform for tackling a wide variety of many-body scenarios involving
fermionic and bosonic particles. Indeed, its multi-layer ansatz for the total wavefunc-
tion is based on a coarse-graining cascade, where strongly correlated degrees of freedom
are grouped together and treated as subsystems, which mutually couple to each other.
This layered structure of the ML-MCTDHX ansatz allows for its adaptation to the
system specific intra- and inter-species correlations patterns, which in turn enables the
efficient and accurate simulation of a large class of many-body systems.

In principle, ML-MCTDHX is able to treat systems involving any number of bosonic
or fermionic species. In addition, there is no restriction to the spatial dimensional-
ity of each species, while they can also be coupled with a spin degree-of-freedom of
an arbitrary magnitude S. Of course, for increasing complexity of the system and,
equivalently, the variational many-body wavefunction, the numerical effort becomes
substantially larger. For our purposes we restrict our discussion to the case of a bi-
nary ultracold 1D gas possessing an additional spin-1/2 degree-of-freedom for one of
the constituting species. Importantly, the particle exchange symmetry of the indis-
tinguishable particles constituting each species is explicitly taken into account within
ML-MCTDHX. However, in the following we will employ a unified notation for express-
ing the corresponding many-body wavefunction ansatz and equations of motion in both
the bosonic and fermionic cases, and only briefly comment on the differences that the
distinct statistics introduce.

A. The Hamiltonian

Before analyzing the ML-MCTDHX ansatz and the corresponding equations of motion,
let us briefly discuss the typical form of the considered many-body Hamiltonian. The
most generic form of Hamiltonian treated within this thesis, refers to a mixture of two
species A and B externally confined along one spatial axis. In addition, the species B
possesses a spin-1/2 degree-of-freedom the states of which are possibly coupled by an
external field. The species possess intra- and interspecies interactions depending on the
spin of the B particles. The most general Hamiltonian describing the above-mentioned
physical scenario reads

Ĥ =
∑

α∈{A,↑,↓}

Ĥαα + Ĥ↑↓ +
∑

α∈{A,↑,↓}

V̂αα + V̂↑↓ + ŴA↑ + ŴA↓. (2.93)
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The first kind of terms appearing in Eq. (2.93), are the single-particle ones which
can either be diagonal or off-diagonal on the spin-indices

Ĥαα′ ≡
∫

dx Ψ̂†α(x) hαα′

(
x,

d

dx

)
Ψ̂α′(x), (2.94)

where hαα′
(
x, d

dx

)
= 〈xα|ĥ (x̂, p̂) |xα′〉 are the matrix elements of the corresponding

single-particle operator in the configuration space, |xα〉 = Ψ̂†α(x)|0〉. Here, for the
sake of simplicity, we have encoded the particle exchange statistics of the species with
spin-state α in the proper commutation (ζ = 1) or anticommutation (ζ = −1) prop-

erties of the corresponding field operators, i.e. [Ψ̂α(x), Ψ̂†α(x′)]ζ = Ψ̂α(x)Ψ̂†α(x′) −
ζΨ̂†α(x′)Ψ̂α(x) = δ(x − x′). The kinetic energy contribution and the spin-independent
potential terms contribute to the diagonal elements in the spin-indices Ĥαα, while spin-
dependent potentials or spin-orbit coupling terms (not discussed within this thesis)
contribute to the non-diagonal part, Ĥ↑↓.

The interaction terms read

K̂αα′ =

∫
dx1dx2 Ψ̂†α(x1)Ψ̂†α′(x2) kαα′ (x1, x2) Ψ̂α′(x2)Ψ̂α(x1), (2.95)

where kαα′ = 〈x1α;x2α|k̂ (x̂1, x̂2) |x1α;x2α〉 denote the interaction matrix elements in

the two particle configuration space, |xα;x′α′〉 = Ψ̂†α(x)Ψ̂†α′(x
′)|0〉. For convenience,

in Eq. (2.93), we have introduced different notation for the distinct types of interac-
tion. The interspecies interactions are denoted as Ŵαα′ ≡ K̂αα′ and wαα′(x1, x2) ≡
kαα′(x1, x2), for α = A and α′ ∈ {↑, ↓}. While, the intraspecies interaction terms
correspond to all other cases of α, α′ ∈ {A, ↑, ↓} and are defined as V̂αα′ ≡ K̂αα′

and vαα′(x1, x2) ≡ kαα′(x1, x2). Let us remark again that the interactions employed
throughout this thesis are zero-ranged, namely kαα′(x1, x2) = δ(x1 − x2) and as a con-

sequence for a fermionic species with spin-state α, V̂αα = 0 holds, since (Ψ̂†α(x))2 = 0.
However, it is instructive to consider within this section the more general case that
includes also finite range interactions, where all terms appearing in Eq. (2.93) are
non-trivial.

B. Many-body ansatz

Let us now elaborate on the many-body ansatz that we employ in order to solve within
the ML-MCTDHX approach the many-body Schrödinger equation i d

dt |Ψ(t)〉 = Ĥ|Ψ〉.
Notice that herewith ~ = 1 and Ĥ is defined as in Eq. (2.93). As a first step, in order to
account for the development of interspecies correlations the many-body wavefunction
is expanded in terms of D distinct natural species functions, |Ψ̃σ

k(t)〉, i = 1, . . . , D, for
the species σ = A and σ = B that form the so-called truncated Schmidt decomposition
of order D [379], namely

|Ψ(t)〉 =
D∑

k=1

√
λk(t)|Ψ̃B

k (t)〉 ⊗ |Ψ̃I
k(t)〉, (2.96)
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where λk refer to the corresponding expansion (Schmidt) coefficients. Note here that the
expansion of Eq. (2.96) has a pronounced physical interpretation. Indeed, in the case
of entanglement among the species two or more λk’s possess non zero values adhering
to the intraspecies correlations emanating in the system [379]. In the opposite case of
the absence of entanglement λ1 = 1 and λk = 0, for k = 2, . . . , D and accordingly,
Eq. (2.96) has a tensor product form. For computational convenience, the Schmidt
decomposition within the ML-MCTDHX ansatz is encoded via the equivalent form

|Ψ(t)〉 =

D∑

k,l=1

Akl(t)|ΨB
k (t)〉 ⊗ |ΨI

l (t)〉, (2.97)

which is connected to the Schmidt decomposition via a unitary transformation |Ψ̃σ(t)〉 =
Û(t)|Ψσ(t)〉, and therefore contains equivalent information with Eq. (2.96).

To properly account for the intraspecies correlations emanating in the system each
|Ψσ

k(t)〉, k = 1, . . . , D, is then expanded in terms of a time-dependent number-state
basis

|Ψσ
k(t)〉 =

∑

~n

Cσk;~n(t)|~n(t)〉σ, (2.98)

where Aσk;~n(t) refer to the expansion coefficients and ~n = (n1, . . . , nMσ) is the vector of
particle occupations of each of the Mσ distinct time-dependent single-particle functions,
|φσj (t)〉, j = 1, . . . ,Mσ, that satisfy

∑M
j=1 nj = Nσ. These number states are defined in

terms of time-dependent single-particle functions according to the following expansion

|~n(t)〉σ =
1√∏Mσ
j=1 nj !

Mσ∏

j=1

[
â†j;σ(t)

]nj |0〉, (2.99)

where the creation and anihillation operators âi;σ(t), â†j;σ(t) correspond to creation or
anihillation of a particle in the |φσj (t)〉, j = 1, . . . ,Mσ state. These operators follow the

proper commutation or anticommutation relations for the σ species, [âi;σ(t), â†j;σ(t)]ζσ =
δij .

Finally the single-particle functions themselves are expressed in terms of a time-
independent single-particle basis, χl(x). The latter expansion for the A species that do
not possess a spin degree-of-freedom reads

|φAj (t)〉 =

M∑

k=1

φAj;l(t)

∫
dx χl(x)Ψ̂†A(x)

︸ ︷︷ ︸
≡â†j;A(t)

|0〉. (2.100)

While for the spinor species B the spin-1/2 degree-of-freedom is explicitly taken into
account

|φBj (t)〉 =

[M∑

k=1

∫
dx φBj;l↑(t)χl(x)Ψ̂†↑(x) + φBj;l↓(t)χl(x)Ψ̂†↓(x)

]

︸ ︷︷ ︸
≡â†j;B(t)

|0〉. (2.101)
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Accordingly, the time-evolution of the many-body wavefunction, |Ψ(t)〉, is determined
by the time-evolution of the expansion coefficients Akl(t), C

σ
k,~n(t) and φσj;l(t), which

can be obtained by solving the ML-MCTDHX equations of motion. The later are
determined by employing a variational principle such as the Dirac-Frenkel one [380,381]
or the Lagrangian one [382] and utilizing the wavefunction expansion explicated in Eq.
(2.97), (2.98), (2.100) and (2.101).

C. The ML-MCTDHX equations of motion

A suitable framework to derive the ML-MCTDHX equations of motion is the Langrange
variational principle, namely

S =

∫ tf

ti

dτ 〈Ψ(τ)|Ĥ − i d

dτ
|Ψ(τ)〉, (2.102)

where Ĥ is given by Eq. (2.93) and |Ψ(t)〉 is expanded according to Eq. (2.97), (2.98),
(2.100) and (2.101). We further introduce the constraint of the wavefunction normal-
ization 〈Ψ(t)|Ψ(t)〉 = 1, as well as, the species and single-particle function orthogonality
〈Ψσ

k(t)|Ψσ
l (t)〉 = δkl and 〈φσi (t)|φσj (t)〉 = δij respectively, for both species σ ∈ {A,B}.

Note here that due to the structure of the ML-MCTDHX ansatz of Eq. (2.97),
(2.98), (2.100) and (2.101) the variational principle Eq. (2.102), does not provide a
unique solution for Akl(t), C

σ
k,~n(t) and φσj;l(t). Indeed, by performing proper unitary

transformations for the different coefficients the same information regarding the time-
evolution can be encoded among the coefficients in distinct ways, without altering the
overall many-body state of the system |Ψ(t)〉. In the related literature this property
is referred to as the “gauge degree of freedom of multiconfiguration time-dependent
Hartree methods”. Within our implementation the gauge fixing is implemented by
demanding that the increment of the species and single-particle functions is orthogonal
to their instantaneous values, namely

〈Ψσ
k(t)| d

dt
|Ψσ

l (t)〉 = 0 and 〈φσi (t)| d
dt
|φσj (t)〉 = 0, (2.103)

where k, l = 1, . . . , D and i, j = 1, . . . ,Mσ. For this choice, the equations of motion
obtain an intuitive form. In particular, Akl(t) obeys

i
dAkl
dt

=
M∑

r,s=1

〈ΨA
k (t)|〈ΨB

l (t)|Ĥ|ΨA
r (t)〉|ΨB

s (t)〉 Ars(t), (2.104)

possessing exactly the same form as the many-body Schrödinger equation, but notably
the matrix elements of the Hamiltonian has a time-dependence stemming from the
time-evolving species-functions. The equation of motion for Cσk,~n is

i
dCσk,~n

dt
=σ〈~n(t)|(1− P̂σ)

{(
Ĥσ + V̂σ

)
|Ψσ

k(t)〉

+
D∑

p,q,r,s=1

[
(ρ(Nσ)
σ )−1

]
k;p

[
ρ

(Nσ+Nσ̄)
σσ̄

]
pr;qs
〈Ψσ̄

r (t)|Ŵσσ̄|Ψσ̄
s (t)〉 |Ψσ

q (t)〉
}
,

(2.105)
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here σ ∈ {A,B} and σ̄ is defined as σ̄ 6= σ. For this reason we have employed the
definitions ĤA = ĤAA and V̂A = V̂AA, but ĤB = Ĥ↑↑ + Ĥ↓↓ + Ĥ↑↓ and V̂B = V̂↑↑ +

V̂↓↓+ V̂↑↓, as well as ŴAB = ŴA↑+ŴA↓. The single-species density matrices, appearing
in Eq. (2.105), read

[
ρ̂

(NA)
A

]
k′;k

= 〈ΨA
k′(t)|ρ̂

(NA)
A |ΨA

k (t)〉 =

D∑

l=1

A∗k′lAkl,

[
ρ̂

(NB)
B

]
l′;l

= 〈ΨB
l′ (t)|ρ̂

(NB)
B |ΨB

l (t)〉 =
D∑

k=1

A∗kl′Akl,

(2.106)

with
[
(ρ

(Nσ)
σ )−1

]
k;p

denoting the inverse of the corresponding matrix. Similarly, the

two species density matrix is defined as

[
ρ̂

(NA+NB)
AB

]
k′l′;kl

= 〈ΨA
k′(t)|〈ΨB

l′ (t)|ρ̂
(NA+NB)
AB |ΨA

k (t)〉|ΨB
l (t)〉 = A∗k′l′Akl. (2.107)

The final quantity to be defined is the projector P̂σ =
∑M

k=1 |Ψσ
k(t)〉〈Ψσ

l (t)|, which
ensures that the gauge fixing condition 〈Ψσ

k(t)| d
dt |Ψσ

l (t)〉 = 0 is satisfied for all k, l =
1, . . . , D.

Finally, the equation of motion for the single-particle functions reads

i
d

dt
|φσj (t)〉 =(1− P̂ (1)

σ )

{
ĥσ|φσj (t)〉

+

Mσ∑

p,q,r,s=1

[
(ρ(1)
σ )−1

]
j;p

[
ρ(2)
σσ

]
pr;qs
〈φσr (t)|v̂σ(x̂1, x̂2)|φσs (t)〉 |φσq (t)〉

+

Mσ∑

p,q,r,s=1

[
(ρ(1)
σ )−1

]
j;p

[
ρ

(2)
σσ̄

]
pr;qs
〈φσ̄r (t)|ŵσσ̄(x̂1, x̂2)|φσ̄s (t)〉 |φσq (t)〉

}
.

(2.108)

Similarly to Eq. (2.105), also in this case σ ∈ {A,B} and σ̄ 6= σ hold. The definitions
of the first-quantization operators are ĥA = ĥAA and v̂A = v̂AA regarding the scalar A
species. For the spinor species we have

ĥB = ĥ↑↑| ↑〉〈↑ |+ ĥ↓↓| ↓〉〈↓ |+ ĥ↑↓(| ↑〉〈↓ |+ | ↓〉〈↑ |), (2.109)

for the single-particle terms and

v̂B = v̂↑↑| ↑〉1| ↑〉2 1〈↑ |2〈↑ |+ v̂↓↓| ↓〉1| ↓〉2 1〈↓ |2〈↓ |
+ v̂↑↓ (| ↑〉1| ↓〉2 1〈↑ |2〈↓ |+ | ↓〉1| ↑〉2 1〈↓ |2〈↑ |) ,

(2.110)

for the corresponding interspecies interaction ones. Finally, the interspecies interaction
operator reads ŵAB = ŵA↑| ↑〉B B〈↑ | + ŵA↓| ↓〉B B〈↓ |. The one and two-body
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density operators are defined in terms of the time-dependent creation and annihilation
operators as

[
ρ̂(1)
σ

]
i;j

= 〈Ψ(t)|α†i;σ(t)αj;σ(t)|Ψ(t)〉,
[
ρ̂

(2)
σσ′
]
ij;kl

= 〈Ψ(t)|α†i;σ(t)α†j;σ′(t)αl;σ′(t)αk;σ(t)|Ψ(t)〉.
(2.111)

The final quantity to be defined is the projector P̂
(1)
σ =

∑Mσ
j=1 |φσj (t)〉〈φσj (t)|, which

ensures that the gauge fixing condition 〈φσi (t)| d
dt |φσj (t)〉 = 0 is satisfied for all i, j ∈

{1, . . . ,Mσ}.
As a last remark, let us briefly discuss the basic properties of the ML-MCTDHX

equations of motion. The equation-of-motion for the Ai,j(t) coefficients, Eq. (2.104),
yields D2 coupled linear differential equations. These equations correspond to a con-
figuration interaction approach within the time-dependent and variationally optimized
many-body basis. Regarding the expansion of species functions and the Cσk,~n(t) coef-

ficients there are D(dim{|~n(t)〉A} + dim{|~n(t)〉B}) non-linear integrodifferential equa-

tions. Here, the dimension of the many-body basis is dim{|~n(t)〉σ} =
(Nσ+(1+δσB)Mσ−1

Nσ

)

for a bosonic and dim{|~n(t)〉σ} =
((1+δσB)Mσ

Nσ

)
for a fermionic species σ. Finally, the

equations-of-motion for the MA + MB single-particle functions, yield a further set of
M(MA + 2MB) non-linear integrodifferential equations.

2.6.2 Limiting cases of the ML-MCTDHX approach and convergence

Having analyzed the basic ingredients of ML-MCTDHX methodology, an important
question that we need to address is how one can judge the accuracy of this approach. As
it was made evident in Sec. 2.6.1B and 2.6.1C, ML-MCTDHX relies on a variationally
optimized truncation of the many-body Hilbert space at each particular time-instant
of the quantum evolution. The order of the truncation is given by the number of
basis states employed within each layer of the ML-MCTDHX ansatz. Accordingly,
each ML-MCTDHX calculation is inherently characterized by the set of parameters
C = {D,MA,MB,M}. One of the main tasks that need to be performed, in order
to estimate the reliability of a given ML-MCTDHX calculation, is to appreciate the
convergence of the approach as a function of the set of parameters C.

In order to better the convergence of the method we provide below a few re-
marks regarding the limiting cases of the ML-MCTDHX approach. Considering a
minimal ML-MCTDHX calculation with Mσ = 1 for a bosonic species σ, it can be
shown that the equation-of-motion for |φσ1 (t)〉, Eq. (2.108), is equivalent to the Gross-
Pitaevskii equation [383, 384]. Consequently, the species σ does not possess any cor-
relations since the probability to find any two particles at two certain positions are

completely independent ρ
(2)
αα′(x1, x2) = ρ

(1)
α (x1)ρ

(1)
α′ (x2), where the spin-states α, α′ cor-

respond to the available ones of species σ. Similarly, for Mσ = Nσ and a fermionic
σ species the equations of motion correspond to the well-known Hartree-Fock equa-
tions [275,276]. In addition, all correlations except from the trivial ones, stemming from
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the fermionic nature of the particles, are neglected. In particular, due to the Wick the-

orem, ρ
(2)
αα′(x1, x2) = [1 − |g(1)

αα′(x1, x2)|2]ρ
(1)
α (x1)ρ

(1)
α′ (x2) within the Hartree-Fock case,

where g
(1)
αα′(x, x

′) = 〈Ψ|Ψ̂†α′(x′)Ψ̂α(x)|Ψ〉/[ρ(1)
α′ (x′)ρ

(1)
α (x)]1/2 is the one-body coherence

function. Notice that if one of the above mean-field cases is true, the Schmidt decom-
position of Eq. (2.96) dictates that D = 1, corresponding to a product state ansatz
neglecting the entanglement among the species A and B. Therefore, in the simplest
case where D = 1 and MA, MB satisfying the mean-field condition, the ML-MCTDHX
method corresponds to a mean-field approach where all non-trivial correlations are
neglected.

The above are to be contrasted to the opposite case. Considering MA = M and

MB = 2M, it follows that P̂
(1)
σ = 1. Further, assuming a non-truncated Schmidt

decomposition with D = min(dim{|~n(t)〉A}, dim{|~n(t)〉B}), it can be proven that P̂σ =
1. In the above expressions the unity operator 1 is understood within the accuracy
provided by the primitive basis of a finite dimension M. Substituting the projection

operators P̂σ and P̂
(1)
σ in Eq. (2.105) and (2.108) yields d

dtC
σ
k,~n(t) = 0 and d

dt |φσj (t)〉 = 0.
Therefore, in this limit the many-body basis is time-independent. The ML-MCTDHX
approach in this case reduces to the full-configuration interaction method, which is the
prototypical ab initio and numerically exact method, see also Eq. (2.104). This implies
that as the number of basis states in ML-MCTDHX is increased from the minimal
value the approach is able to capture the effect of quantum correlations and as C =
{min(dim{|~n(t)〉A}, dim{|~n(t)〉B}),M, 2M,M} is approached, it takes all correlations
into account.

Another relevant feature of the ML-MCTDHX multi-layered ansatz is the ability to
treat intra- and inter-species correlations independently. In particular, D = 1 can also
be employed outside of the mean-field regime (i.e. Mσ 6= 1 for bosons and Mσ 6= Nσ for
fermions). This allows us to find the best approximation of the many-body state by in-
creasing Mσ, and therefore including intraspecies correlations, while the entanglement
among the species is excluded. This approach corresponds to the species mean-field
case. When the species mean-field is compared to full ML-MCTDHX calculations it is
able to exploit the role of entanglement in the studied system [366,385,386]. Similarly,
the number of Schmidt modes can be set to D = min(dim{|~n(t)〉A}, dim{|~n(t)〉B}),
even though the number of single-particle functions does not satisfy the configura-
tion interaction criterion MA = M and MB = 2M. This approach can be useful
when the system under study involves strong interspecies correlations. In this case
the ML-MCTDHX reduces to one of the proposed multi-species methods MCTDH-BB
(MCTDH for Bose-Bose mixtures), MCTDH-BF (MCTDH for Bose-Fermi mixtures)
and MCTDH-FF (MCTDH for Bose-Fermi mixtures) [387], depending on the statistics
of the individual components.

The above show that depending on the particular set of parameters C = {D,MA,MB,M},
different orders of approximation can be realized. In contrast, to the configuration inter-
action method the multiple parameters that control the accuracy of the ML-MCTDHX
method can be tuned independently in order to adapt the many-body ansatz to the
correlation patterns emerging in the system. In this way, ML-MCTDHX can achieve

83



THEORETICAL FRAMEWORK

as precise results as the configuration interaction approach but with a much reduced
computational effort, allowing for the treatment of mesoscopic systems. Practically, in
order to ensure convergence each one of the parameters D, MA and MB is increased,
and the results corresponding to different sets of C and C ′ are compared. Typically,
these comparisons rely on the observables of interest for the particular application,
since they are usually good indicators for the variation of the many-body wavefunction
for distinct C. Nevertheless, convergence indicators might involve particular quantities
based on the deviation of an appropriate observable, such as the one-body density, for
two sets of parameters C and C ′. Another, convergence indicator is provided by utiliz-
ing the eigenvalues of the one-body density matrix, ni and the Schmidt weights λi. The
related convergence checks involve the comparison of their temporal evolution for dif-
ferent C or the verification that the value corresponding to minimum one, min(ni) and
min(λi), does not exceed a given threshold, typically 10−4. For a detailed discussion
on how the convergence tests are performed we refer the interested reader to Ref. [366].
Note also that convergence is also tested with respect to M. In this case, we employ
large increments of M, since the effect of this parameter on the computational effort
is typically small.

2.6.3 Efficiency of ML-MCTDHX method for addressing the impurity
problem

Before proceeding, it is important to mention that the ML-MCTDHX ansatz of Eq.
(2.97), (2.98), (2.100) and (2.101) is particularly suited for exploring the properties of a
small number of impurities, especially when they are embedded in a BEC. First, recall
that a Bose gas corresponds to a perfect BEC if and only if one single-particle state is
occupied by all constituting particles. This fact implies that the many-body state of
a perfect BEC is described exactly for MA = 1. In practice, away from the thermo-
dynamic limit the BEC is slightly depleted, but for small intraspecies interactions this
depletion is suppressed, especially when considering moderate particle numbers, e.g.
NA ≈ 100 and weak intraspecies interactions. For such setups convergence is achieved
for a small number of MA < 4. Strikingly, it has been shown [200, 210, 386, 388], that
in this case, even the non-equilibrium dynamics of a Bose gas proximal to a BEC state
can be accurately explored by involving only such a small number of single-particle
states.

In addition, it is well-known that the quasi-particle states such as polarons involve
a large overlap with the ground state of the system involving non-interacting impurities
with its environment [161]. Note that this is also true in the case of Fermi polarons
[329]. Therefore, the expected entanglement among the impurities and the bath is
rather small, implying that a Schmidt decomposition of low order, D ≈ 6 − 9, see
also Eq. (2.96), suffices for the accurate representation of such quasiparticle states.
Therefore, the study of the expected correlation properties of the Bose polaron problem
motivates by itself a truncation scheme of the many-body wavefunction in terms of a
small number of single-particle and single species basis states which lies at the heart
of the ML-MCTDHX framework. Indeed, this fact allows for the optimal trucation of
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the many-body wavefunction and the numerically efficient treatment of the stationary
and dynamical properties of impurities immersed in a bosonic environment. Similarly,
also in the case of a fermionic environment the small amount of entanglement involved
in a Fermi polaron problem, allows us to efficiently reach system sizes referring to the
crossover from few- to many-body physics predicted experimentally in Ref. [185].

2.6.4 Advantages of spectroscopic simulations

As it was discussed in Sec. 2.5 radiofrequency spectroscopy allows to experimentally
address several important properties of the system under study such as the dynamical
structure factor. The purpose of this section is to demonstrate that the simulation of
such spectroscopy schemes is also of theoretical relevance since they offer an optimal
way for addressing properties of the system, with minimal cost when compared to their
direct evaluation and without employing any additional approximations.

The structure factor of a many-body system is defined as

S(t) = 〈Ψ(0)| exp(+
i

~
Ĥ0t) exp(− i

~
Ĥt)|Ψ(0)〉. (2.112)

Despite the simple form of this quantity its calculation is quite challenging. The reason
is that it relies on the many-body overlap of two distinct many-body wavefunctions,
namely |Ψ0(t)〉 = exp(− i

~Ĥ0t)|Ψ(0)〉 and |Ψ(t)〉 = exp(− i
~Ĥt)|Ψ(0)〉. Such an overlap

cannot be expressed in terms of few-body operators and therefore the full many-body
wavefunction have to be utilized in its calculation. If the states |Ψ0(t)〉 and |Ψ(t)〉 are
expressed in terms of the same many-body basis, |~n〉, the many-body overlap corre-
sponds to a vector-vector multiplication

〈Ψ0(t)|Ψ(t)〉 =
∑

~n

A∗0;~n(t)A~n(t). (2.113)

Accordingly, given A∗~n and A~n the computational cost of calculating 〈Ψ0|Ψ(t)〉 scales
proportionately to the size of the underlying many-body basis i.e. exponentially with
the system size in terms of the particle number N . The computational cost for calcu-
lating A~n strongly depends on the many-body wavefunction ansatz employed by the
computational method and it is generally non-negligible (except in the case of the
configuration interaction methods). Within (ML-)MCTDHX, a time-dependent many-
body basis |~n〉 = |~n(t)〉 is employed in order to greatly reduce the required many-body
basis size for the accurate representation of the time-evolved wavefunction |Ψ(t)〉. How-
ever, this implies that in order to evaluate a many-body overlap as in Eq. (2.113) the
transformation matrix between the distinct many-body bases has to be evaluated. In
the case of MCTDHF and MCTDHB the corresponding matrix elements correspond to
Slater determinants and permanents respectively,

〈~n(t)|~m(t)〉 =
1√
N !

N !∑

i=1

ζsignPi〈φn1(t)|φmPi(1)
(t)〉 . . . 〈φnN (t)|φmPi(N)

(t)〉, (2.114)
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where ζ = 1 for bosons and ζ = −1 for fermions. For multi-species systems similar over-
lap integrals need to be evaluated independently for each node. Therefore, even though
the number of elements contributing to the vector-vector multiplication is significantly
reduced due to the variationally optimal truncation of the many-body basis, there is
a large overhead stemming from the transformation among the different many-body
bases that two different ML-MCTDHX calculations involve. A more efficient route
to perform such an evaluation is to employ a basis that is simultaneously optimized
to represent both many-body wavefunctions |Ψ(t)〉 and |Ψ0(t)〉. This can be achieved
within ML-MCTDHX by employing an additional pseudospin degree of freedom such
that the total wavefunction |Ψ̃(0)〉 reads

|Ψ̃(0)〉 =
1√
2
|Ψ(0)〉 ⊗ | ↑〉+

1√
2
|Ψ0(0)〉 ⊗ | ↓〉, (2.115)

and it evolves according to the Hamiltonian

ˆ̃H = Ĥ0P̂↓ + ĤP̂↑, (2.116)

where P̂α corresponds to the projection operator to the spin-state α ∈ {↑, ↓}. By
following this prescription the overlap 〈Ψ(t)|Ψ0(t)〉 maps exactly to the expectation
value of the spin operators 〈Ψ(t)|Ψ0(t)〉 = 〈Ψ̃(t)|Ŝx + iŜy|Ψ̃(t)〉. The latter can be
calculated very efficiently since it comprises of an operator acting only on a single
degree of freedom possessing only two available states. The time-evolution of the system

characterized by s̃ ≡ { ˆ̃H, |Ψ̃(t)〉}, see Eq. (2.115), (2.116) can be addressed within
the ML-MCTDHX methodology of spinor systems see Sec. 2.6.1. The corresponding
computational cost is not much larger than the one corresponding to the individual
systems s1 ≡ {Ĥ, |Ψ(t)〉} and s2 ≡ {Ĥ0, |Ψ0(t)〉}. Indeed, the additional spin-degree
of freedom is related to an increase of the primitive single-particle states, while the
correlations contributing to |Ψ̃(t)〉 are equivalent to the ones emanating in |Ψ(t)〉 and
|Ψ0(t)〉. Accordingly the numbers of single-particle and single species functions that
need to be employed in order to achieve convergence for s̃ is slightly larger than the
corresponding ones of the individual systems s1 and s2. Notice that the above system
s̃, characterized by Eq. (2.115) and (2.116), resulted from considerations regarding the
optimization of the structure factor, Eq. (2.112), calculations within ML-MCTDHX.
Nevertheless, s̃ models the process of Ramsey spectroscopy and in particular the time
evolution during the dark time see Sec. 2.5.3. Furthermore, 〈Ψ̃(t)|Ŝx + iŜy|Ψ̃(t)〉
refers to the main observable addressed by a Ramsey sequence, see Eq. (2.91). As
a consequence, we conclude that spectroscopic simulations might offer an useful tool
for extracting quantities of interest from the many-body dynamics of a system in the
absence of approximations. The above imply that apart from a field of fundamental
research, spinor setups provide an efficient framework to monitor properties of a large
class of systems even on the methodological level.
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Chapter 3

Outline of scientific contributions

3.1 Itinerant ferromagnetism in 1D few-fermion gases

The phenomenon of itinerant ferromagnetism is thought of being qualitatively well-
described in terms of the Stoner model [104]. As also discussed in Sec. 2.2.1, Stoner
ferromagnetism occurs for strong short-range repulsive interactions between fermions
with anti-oriented spins. In that case, the involved large interaction energy counteracts
the kinetic energy benefit obtained by pairing two fermions with opposite spin in a par-
ticular single-particle state making such configurations unfavourable. The ground state
of the ferromagnet refers either to a state with phase-separated or particle-imbalanced
spin-components. However, the experimental verification of this form of ferromag-
netism in ultracold atom ensembles has provided to date somewhat inconclusive evi-
dence [94,96–98,100,101], mainly due to the competition of ferromagnetic phenomena
with the process of Feshbach molecule creation [95] (see also Sec. 2.3).

Below, we outline our strategy to compare the magnetic properties of the excited
states of spin-1/2 1D few-body fermionic gases with the expected ones within the
Stoner model. Indeed, as already mentioned in detail in Sec. 2.3, ultracold 1D setups
provide a alternative promising route for the study of itinerant ferromagnetism since
they are characterized by short-range interactions of tunable strength accompanied
by a suppressed rate of Feshbach molecule formation [77] in the interaction regime
where itinerant ferromagnetism is expected. To expose the emergence of ferromagnetic
phenomena we have focussed on identifying the stability properties of the spin-polarized
[K1] and phase separated states [K2] while properly accounting for all correlations
emanating in the system. It turns out that these two classes of states are favored in the
ferromagnetic regime of the Stoner model, allowing us to directly examine its validity
in the presence of correlations.

87



OUTLINE OF SCIENTIFIC CONTRIBUTIONS

3.1.1 Dynamical stability of parabolically trapped spin-polarized fermions
[K1]

The study of the stability of the spin-polarized states constitutes an excellent starting
point for any study that deals with ferromagnetic phenomena, since these states can be
unambiguously characterized as ferromagnetic. Indeed, for a spin-polarized ensemble
all the magnetic moments of the fermions are oriented in the same well-defined direction
and accordingly both the magnetization and the pairwise spin-alignment are maximal.
Note that the spin-polarization and spin-alignment in the are generically not equivalent.
For instance, a linear superposition of two spin-polarized states with opposite orienta-
tions, e.g. the NOON state defined as |NOON〉 = (| ↑↑ . . . ↑〉+| ↓↓ . . . ↓〉)/

√
2, possesses

maximal spin-alignment, since any two spins are perfectly aligned among themselves.
But importantly, it does not have maximal polarization since 〈NOON|Ŝ|NOON〉 = 0,
with Ŝ being the total spin vector.

The distinction between the pairwise spin-alignment and spin-polarization, enables
us to examine the validity of the Stoner model for describing the response of fully-
polarized states subjected to perturbations. Within the Stoner model the spin of each
atom is interacting with the mean effective magnetic field resulting from the spin of
all other atoms (see also the discussion in Sec. 2.2.1). This framework dictates that
ferromagnetic phenomena emanate when this effective magnetic field, the so-called
Stoner gap parameter, ∆ becomes non-zero [104]. Importantly, the Stoner gap is
proportional to the magnitude of the spin-polarization, P (1), namely |∆| ∝ gP (1),
where g is the interaction strength between anti-oriented spins. Therefore, within the
Stoner model the phenomenon of ferromagnetism relies on the stability of the spin-
polarization of the fermionic ensemble.

Within [K1] we devise a setup that allows us to identify whether this picture of
ferromagnetism, inherently connected with the spin-polarization, adequately describes
the magnetic phenomena emanating within repulsively interacting Fermi gases. In par-
ticular, we utilize an initial fully spin-polarized state realizing the highest possible value
of |∆| for a particular value of g. Subsequently, the stability of the initially imprinted
polarization is probed by employing an inhomogeneous magnetic field perpendicular
to the polarization axis. This choice of spatially-dependent magnetic field breaks the
spin-symmetries of the many-body system that would otherwise prevent the decay of
spin-polarization. This allows us to isolate the effects stemming from the presence of
contact interactions in the spin-dynamics of the system and explicate their relation to
the stability properties of spin-polarization and spin-alignment.

In particular, we observe that the spin-polarization of the system is not stable
for any-interaction strength. However, ferromagnetic order is realized in the form of
stable spin-spin correlations, implying that an almost perfect pairwise spin-alignment
is present beyond a certain threshold value of interaction strength g for both attrac-
tive and repulsive couplings, provided that the system does not approach the Tonks-
Girardeau limit for g → ∞. This signifies that a different mechanism, rather than
the emergence of a Stoner gap, |∆| > 0, explains the ferromagnetic properties of
the system. This mechanism refers to an effective ferromagnetic spin-spin interaction
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among the fermions. The origin of this interaction can be traced back to the weak-
coupling expansion of the interaction Hamiltonian referring to a Fermi gas, see Eq.
(2.47). To expose the importance of this mechanism we develop an effective spin-chain
model based on the presence of the above mentioned effective ferromagnetic interac-
tion, which is an extension of the one employed within Ref. [135]. The success of
this model in capturing the essence of the ab initio results, demonstrates to the best
of our knowledge for the first time, the importance of the weak-coupling expansion
for understanding the inherent magnetic order of confined systems in the weak and
moderate interaction regimes. Importantly, during the demagnetization dynamics a
NOON state, |NOON〉 = Û(θ)(| ↑↑ . . . ↑〉 + | ↓↓ . . . ↓〉)/

√
2, characterized by net zero

spin-polarization but perfect spin-alignment is (almost perfectly) realized, up to a ho-
mogeneous rotation of all spins, Û(θ). The emergence of such a highly-entangled state
explicates the importance of correlations among spin-states for the adequate description
of the spin-dynamics and, quite strikingly, provides an avenue to realize such highly en-
tangled states in fermionic ultracold ensembles. Indeed, within Ref. [K1] we explicitly
explore the possibility of an experimental implementation of our setup. As we demon-
strate by performing single-shot image simulations [200], state-of-the-art experiments
are able to to identify the different regimes of spin-dynamics and explicitly characterize
the spin-polarization and spin-alignment properties of the fermionic ensemble.

One important difference of the spin-chain models stemming from Eq. (2.47) to the
Stoner model, Eq. (2.27), is that the former consitute multi-band models while the
latter refers to a single band. As we have outlined in Sec. 2.2.2 it is an open question
whether effects that originate from the coupling of multiple bands are required in order
to properly describe itinerant ferromagnetism in condensed matter systems [114]. If we
have to draw an analogy between the parabolically confined gas examined in [K1] and a
specific condensed matter setup, we have to acknowledge that the solid-state analogue
of a harmonically trapped Fermi gas is the electronic state of a single atom. Therefore,
our findings within this work motivate but cannot address whether ferromagnetic spin-
spin interactions stemming from the coupling of different “bands” are essential for
itinerant ferromagnetism. To proceed along these lines, it is crucial to investigate how
the ferromagnetic properties of the system generalize from the case of a single-well trap
to a multi-well system. Such a generalization, when expressed in terms of an analogous
condensed matter system, would probe the crossover from the electronic state of a
single atom to the corresponding one of a crystal lattice and it is therefore a highly
desirable and also a non-trivial extension.

3.1.2 Relation of ferromagnetism and phase separation [K2]

Motivated by the possible extension of our results in [K1] towards the analogue of a
condensed matter crystal we examine, in [K2], the double-well case, which, in the sense
outlined above, is analogous to a diatomic molecule. Indeed, a double-well setup offers
the simplest framework to identify the interplay of ferromagnetism and the hybridiza-
tion of the single-particle states belonging to distinct wells due to tunnelling. Note that
in [K1] we have shown that, for a single-well, repulsive zero-range interactions lead to
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the development of ferromagnetic correlations among the unpaired particles. There-
fore, an intriguing prospect is to examine whether the composite system with two such
wells being coupled via tunnelling retains such a ferromagnetic order. Furthermore, the
magnetic properties of the double-well system might diverge significantly from those ex-
pected within the well-established Stoner framework [104]. Thus their characterization
is also important at a more fundamental level.

In the latter context, one particularly relevant concept is the interplay of ferro-
magnetism and phase separation, which according to the Stoner model is prevalent in
spatially inhomogeneous systems. Concretely, within the Stoner framework, inhomo-
geneous systems can be treated by substituting the global value of the gap parameter
with a local one, ∆ → ∆(x) [389, 390]. Notice that, |∆(x)| ∝ P (1)(x), with P (1)(x)
denoting the local spin-polarization [389, 390]. In this case Stoner ferromagnetism can
appear even for population balanced spin-↑ and spin-↓ particles, such that Sz = 0.
Ferromagnetism is then manifested by the formation of ferromagnetic domains. The
ferromagnetic domains refer to spatial regions possessing a high magnitude of spin-
polarization |P (1)(x)| � 0 that are separated by domain-walls. These correspond es-
sentially to regions where the value of P (1)(x) continuously changes magnitude and
possibly direction, interpolating between the P (1)(x) values characterizing the respec-
tive adjacent domains. Obviously, the above imply the development of a pronounced
phase separation among the spin-↑ and spin-↓ atoms.

Experimentally, by artificially preparing a phase separated state within a 3D Fermi
gas, it has been found that the initially prepared phase separation is metastable [97],
with its decay attributed to the formation of Feshbach molecules [95]. However, more
recent pump-probe studies have shown that no macroscopic phase separation can be
observed [100,101]. Their findings reveal, instead, that the maximum size of ferromag-
netic domains is of the order of only a few interparticle spacings. In particular, they
have proposed the existence of a quantum emulsion state [123,124] where the Fermi gas
is in a state where Feshbach molecules and unpaired fermions coexist, with the latter
showing phase separation in the scale of a few interparticle spacings. Therefore, the
above experiments can be interpreted in a way that they support the presence of a fer-
romagnetic instability similar to the Stoner model one. Nevertheless, the complicating
factor of Feshbach molecule formation prevents them from providing a decisive test for
the Stoner mechanism. Within the literature referring to 1D Fermi gases, which do
not exhibit Feshbach molecule formation, there are several findings that support the
interplay of magnetic properties and phase separation [130,135–138]. However, there is
not any systematic study elaborating on this relation and comparing it to the scheme
that the Stoner model provides.

A significant part of the above outstanding open questions can be addressed by
investigating the magnetic properties of the simple setup examined in [K2]. Partic-
ularly, we have employed a few-fermion system confined in a double-well potential
in a population-balanced state where the spin-↑ particles occupy the left well, while
the spin-↓ fermions occupy the right one. For this system, the Stoner model predicts
that beyond a critical interaction strength the tunnelling dynamics, characterizing the
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g = 0 case, will cease to exist as the fermions will become localized in their corre-
sponding wells, rendering the phase separation stable. Strikingly, in [K2] we explicitly
demonstrate that this expectation is not realized within the correlated case. Instead
of a stable phase separation we observe an interaction regime where the phase sepa-
ration is metastable and the spin-↑ and spin-↓ particles, periodically and collectively,
tunnel among the wells over a large time scale in comparison to the corresponding
non-interacting one (g = 0).

We analyze this dynamical feature of the magnetic properties of the fermionic en-
semble which in detail within [K2]. For this, a new tight-binding model that extends
the XXZ Heisenberg models of Ref. [135] and [K1] was developed based on the weak-
coupling expansion of Eq. (2.47). Specifically, this model consists of an ensemble of
Hubbard dimers for the particles occupying the different “bands” of the double-well
potential, referring to the distinct manifolds of quasi-degenerate single-particle eigen-
states (SPES). These bands are coupled by ferromagnetic spin-spin interactions, acting
locally on each particular well. Based on this model, we have shown that during the
metastable decay dynamics of the phase separation, the system exhibits stable ferro-
magnetic spin-spin correlations within each of the wells of the external trap throughout
the time-evolution. This behaviour is persevered even when the SU(2) symmetry asso-
ciated with the total spin of the system is broken by a spin-dependent linear gradient
potential. The exhibited dynamics in this latter case are in analogy to the one observed
for a parabolic confinement [K1].

These results have important implications for the understanding of ferromagnetism
in itinerant systems. In particular, the ferromagnetic Hund interaction which is re-
sponsible for the stable intrawell ferromagnetic correlations is shown to act only among
single-particle states that possess a significant density-density overlap. Indeed, the
above imply that the distinct SPES interact ferromagnetically for a harmonic trap,
while the same is true only for the states localized within a particular well for a
double-well confinement. Furthermore, the metastability of the phase separation for
the double-well setup is attributed to the tunneling among the wells. In turn the tun-
neling, introduces antiferromagnetic Anderson exchange interactions, leading to the
dephasing of the eigenstates with ferromagnetic correlations that are involved in the
decay dynamics of the initial state. However, these Anderson exchange interactions are
found to be extremely weak and, as a consequence, the phase separation within this
interaction regime can be stabilized even for small amplitude spin-dependent potentials
that break the SU(2) symmetry.

In conclusion, the findings of Ref. [K1,K2] provide a solid starting point for devel-
oping a bottom-up characterization of itinerant ferromagnetism. Our approach, gener-
alizes the concept of Stoner instability which relies on the relative prominence of kinetic
and interaction energies, in the sense that it reveals a more fundamental interplay of
competing spin-spin correlation effects. Indeed, within our studies, the overall magnetic
behaviour of our few-body setups is driven by the competition of antiferromagnetic in-
teractions, stemming from the kinetic energy benefit of such a spin-alignment and the
ferromagnetic spin-spin couplings, stemming from the density-density repulsion of anti-
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oriented spins. The simultaneous presence of the above mentioned competing spin-spin
interactions seems to be a pivotal point, since it promotes the development of higher-
order spin-spin correlations. In particular, as explicated within the arguably quite
simple spin-chain models that we have employed, the system is forced to compromise
between developing ferromagnetic and antiferromagnetic spin-spin correlations. Indeed,
due to the simultaneous presence of spin-spin interactions favouring opposite magnetic
orders, the dynamics drive the system away from the product states of either ferromag-
netic (spin-polarized, phase separated) or antiferromagnetic (e.g. Neel-like [107, 391])
nature favoring configurations that involve a high degree of entanglement. The bottom-
up approach for the study of itinerant ferromagnetism can provide important insights
in a large class of fermionic systems. In particular, we envisage several avenues for
further research which will be outlined in detail later on, see Chapter 5.

3.2 Spectroscopic properties of Bose and Fermi Polarons

The second part of this thesis addresses the correlation mechansms and dynamics of
Fermi [K3] and Bose polarons [K4–K6] in 1D. More specifically, we focus on unveiling
the existence and stability properties of these quasi-particles. Major findings of our
investigations are the existence of well-defined and long-lived repulsive Fermi polarons
and the unstable character of Bose polarons for strong impurity-bath repulsions. Im-
portantly, the emergent interactions among polarons mediated by their environment
are also explored in some detail. To characterize these states we mainly rely on spec-
troscopic probes, which expose the utility of spinor ultracold atoms as a tool to analyze
the emergent order in composite systems and provide a strong connection to state-of-
the-art experiments.

3.2.1 Reverse radiofrequency spectroscopy of Fermi polarons in few-
body ensembles [K3]

Our study into the Fermi polaron problem focusses on the existence of this quasi-particle
within an 1D (confined) setup. As already mentioned in Sec. 2.4.5, fermionic ensembles
perturbed by a localized impurity potential exhibit the phenomenon of the Anderson
orthogonality catastrophe [190–192]. This effect implies that the ground state of the
system involving the impurity potential is orthogonal to the one without it in the ther-
modynamic limit. Here, the thermodynamic limit refers to the case that the number
of fermions tends to infinity as their density is kept fixed. Note that a localized im-
purity potential can be mapped to an infinitely heavy impurity, possessing short-range
interactions with its environment. It follows that in the infinite mass limit the presence
of a quasi-particle such as a Fermi polaron, referring to an impurity coupled with the
excitations of its fermionic environment, is ill-defined for all dimensions. Notably, it is
shown that in 1D setups the Anderson orthogonality catastrophe phenomenon occurs
for every mass ratio [192], rendering the concept of a Fermi polaron ill-defined in the
thermodynamic limit of 1D systems.
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In direct contrast to the above mentioned result, the recent experiment of Ref. [185]
has demonstrated that certain properties of 1D composite Fermi systems quickly con-
verge to the corresponding ones of the thermodynamic limit. In particular, ejec-
tion spectroscopy studies [185] reveal that the interaction energy of a single impurity
immersed in Fermi gas quickly converges to the thermodynamic limit prediction by
McGuire [339, 340], even for small particle numbers NF = 8. These show that sev-
eral important properties of 1D Fermi systems in their thermodynamic limit are also
present in setups with a small particle number. This result is quite counterintuitive,
given that 1D systems exhibit Anderson orthogonality catastrophe. Indeed, since the
state of the interacting system in the thermodynamic limit is orthogonal to the corre-
sponding non-interacting one, it is surprising that it possesses similar properties to a
few-body system where the states with zero and finite interaction are not orthogonal.
Note that the Anderson orthogonality catastrophe refers to a decrease of the overlap
between the non-interacting, |Ψ0〉, and interacting states, |Ψint〉, that scales polynomi-

ally with the particle number, i.e. 〈Ψ0|Ψint〉 ∝ N
−γ/2
F , with an mass and interaction

dependent exponent γ > 0 [192]. Therefore the Anderson orthogonality catastrophe
phenomenon slowly sets in as the particle number increases. As a consequence, the
results of Ref. [185] can be interpreted as indicating the existence of the Fermi polaron
in 1D systems, that vanishes only asymptotically for N →∞.

Motivated by the above, we directly examine the polaronic properties emanating
in impurities embedded in a Fermi gas. To this end, we have employed injection spec-
troscopy by utilizing an adiabatic pulse that drives the impurities from their spin-↓
state which is non-interacting with their host to the corresponding spin-↑ which in-
volves a finite interaction among the impurites and their environment. The adiabatic
character of the spectroscopic scheme allows us to directly address the many-body state
overlap of the polaronic and non-interacting states and therefore to directly probe the
Anderson orthogonality catastrophe. In addition, we have employed a mass-imbalanced
setup where the impurities correspond to 40K atoms while their environment refers to
6Li ones. Except for the experimental relevance of the above mentioned system, the
mass-imbalanced case has been selected, since the distinct bath and impurity species
do not exhibit a spinor character that would complicate the interpretation of their
response due to magnetic effects as in Ref. [K1,K2].

By examining the injection spectrum of such few-body setups we reveal the ex-
istence of several excitation pathways for the Fermi polaron, which we subsequently
analyze in detail. Importantly, we observe that the presence of an initially excited
impurity gives rise to a significantly modified spectrum when comparing to the corre-
sponding ground state. In the case of two 40K impurities the excitation pathways of
the ground and excited impurity states cause interference effects to occur during the
spin-transfer dynamics, resulting in a complex spectrum. In the case of strong inter-
actions among the two atomic species, this interference gives rise to multiple distinct
spectral peaks, from which only one is of a two-polaron character while the remaining
ones refer to different motionally excited states of a single Fermi polaron. We verify
that this behaviour is not observable for weaker impurity-bath interactions where only
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one spectroscopic resonance is prominent. The polaron energy shift and residue are also
studied, indicating, quite expectedly, the increasing positive shift of the repulsive Fermi
polaron for stronger interaction strengths. This mechanism is also associated with the
decrease of the polaron residue. In line with recent studies [98], the presence of induced
interactions between the polarons is indicated by a positive shift of the two-polaron
resonance when compared to the single polaron one. However, the non-sizeable nature
of this shift, being of the order of 2%, suggests that in order to infer the presence of
induced interactions an alternative measure is needed. Inspecting the relative distance
between the resulting quasiparticles, a quantity that can be probed experimentally via
in situ spin-resolved single-shot measurements [210, 304, 305], we observe its decrease
which concordantly dictates the presence of induced interactions. The latter are found
to be attractive despite the repulsive nature of the impurity-bath interactions in the
system. This fact persists upon enlarging the fermionic sea and considering different
atomic species.

As a last remark, let us note that the Fermi polarons are, quite surprisingly, found
to be long lived structures. To examine their lifetime we have employed a Ramsey-like
spectroscopy scheme where we excite the impurities to their polaronic state and after
a variable dark time we apply a second pulse, identical to the first one, to transfer
them back to the state that is not interacting with their environment. The fraction
of atoms transferred to the non-interacting state by the second pulse, F , constitutes
our main observable. This sequence reveals irrespectively of the particular state or the
interaction strength that the polarons remain coherent during the dynamics and there
is no sign of a decay of the repulsive 1D Fermi polaron.

3.2.2 Ramsey spectroscopy of the Bose polaron and evidence towards
an orthogonality catastrophe phenomenon [K4]

Having unveiled the presence of a stable Fermi polaron in 1D, we next turn our at-
tention to the study of the stability of the Bose polaron. This premise seems at first
somewhat strange since the Bose polaron is thought to be stable even in 1D. This is
because the form of the Bogoliubov-Fröhlich Hamiltonian, Eq. (2.76), is independent of
the dimensionality of the system [179]. Moreover, recent experiments have also realized
1D Bose polaron states. However, as also mentioned in Sec. 2.4.5, ultracold atom en-
sembles encompass a variety of competing effects regarding the Bose polaron formation.
These refer to the possible pathways via which different non-linear excitations of the
BEC host can be manifested, when it is perturbed by a mobile impurity. Here, we are
particularly interested in two such mechanisms, namely the emergence of phase sepa-
ration, characterized by the immiscibility of the BEC plus impurity mixture [202–207]
and the pattern formation [200, 207–210, 386, 388], stemming from the violation of the
Landau criterion for a rapidly moving impurity.

The above motivate the use of Ramsey spectroscopy for the study of such states,
which are generically expected not to be long-lived. Recall here that the Ramsey spec-
troscopic scheme does not rely on a finite overlap of the many-body states characterized
by vanishing and finite interactions between the impurity and its environment, i.e. the
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Frank-Condon coefficient, see also Sec. 2.5.3. Accordingly, within this framework we
are able to track the impurity dynamics even in the case that the state accessed by the
interacting system is almost completely orthogonal to the non-interacting one. Another
benefit of the Ramsey spectroscopy is that it allows for the time-dependent characteri-
zation of the dynamics of the impurity by tracking the stability properties of the Bose
polarons in terms of the spectroscopic contrast.

The description of the employed spectroscopic protocol has been provided in detail
in Sec. 2.5.3. Here we only briefly recapitulate it below. Initially, the impurity is pre-
pared in its pseudospin-↓ state, which is not interacting with the bosonic environment,
such that both the impurity and the bosonic bath are in their corresponding ground
state configurations. To trigger the dynamics, an intense π/2 radiofrequency pulse
acts upon the spin degree of freedom of the impurity, which maps the pseudospin-↓
impurity to the superposition state |ψS〉i ≡

|↑〉+|↓〉√
2

[145]. Subsequently, the system is

left to evolve in the absence of radiofrequency fields for a dark time t = td. After this
step the real and imaginary parts of the Ramsey contrast can be probed by measur-
ing the magnetization of the pseudospin impurity along the x and y pseudospin axes
respectively. Importantly, since a single impurity is employed the Ramsey contrast is
equivalent to the structure factor 〈Ψ(t)|Ŝx + iŜy|Ψ(t)〉 = S(t) (see also Eq. 2.91). In
this work we are mostly interested in the absolute value of the structure factor, |S(t)|,
yielding the Lodschmidt echo, or fidelity, of the polaronic state with the initial one,
which is inherently connected with the concept of the quasi-particle residue [92,147].

The Ramsey spectroscopy of repulsive Bose polarons reveals, that for impurity-
bath interactions smaller than the intraspecies ones of the BEC, namely gBI ≤ gBB,
the structure factor possesses an oscillatory behaviour in time with 0 < |S(t)| ≤ 1. This
finding signifies that for these interaction regimes the Bose polaron is a well defined and
stable quasiparticle. A valuable tool for the characterization of the dynamics is provided
by an effective potential approach which allows for qualitatively understanding the be-
haviour of the system. This effective potential regards the density of the bosonic bath
acting merely as a repulsive potential for the impurity, and thus modifying its effective
confinement. More specifically, for gBI < gBB, this effective potential corresponds to a
harmonic oscillator with a modified trapping frequency, ωeff = ω

√
1− gBI/gBB, where

ω is the frequency of the original externally imposed parabolic potential. The above
imply that the population of the impurity, which is transferred to the spin-↑ state and
is exposed to a finite interaction with the bosonic host, experiences a weaker confine-
ment ωeff < ω compared to its initial state. In turn a breathing mode is induced for
the spin-↑ atoms which can be clearly observed by examining the time-evolution of
the spin-resolved impurity density. This breathing mode is associated with a periodic
modulation of the density overlap between the spin-↓ and spin-↑ states, leading to the
exhibited behaviour of |S(t)|. In the case of gBI ≈ gBB a similar phenomenology is ob-
served, however the imprint of the dynamics to the Ramsey signal is more pronounced.
In this case, the effective potential can be shown to possess an almost square-well shape.
Accordingly, the initial pulse induces a prominent dynamics for the spin-↑ density of
the impurity. The later diffuses within the BEC background by breaking up into two
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filament-like structures [208–210], and subsequently revives at the trap center. The
above imply that the value of the structure factor reduces to |S(t)| ≈ 0 for the times
that the spin-↑ forms filaments and reaches a value |S(t)| ≈ 1 when the density revives.
The stability of these oscillations of |S(t)| against damping indicate the long-lived na-
ture of the Bose polaron that persists within the gBI ≈ gBB interaction regime. This
will be further explicated later on, via the use of pump-probe spectroscopy, see also
Sec. 3.2.4.

However, the situation becomes drastically different when the bath-impurity inter-
actions are significantly larger that the intraspecies ones, i.e. gBI > gBB. In that case,
after a brief time interval, roughly t < 20ω−1, where |S(t)| exhibits an oscillatory pat-
tern with a decaying amplitude, the structure factor saturates to a value |S(t)| → 0. By
inspecting the corresponding one-body density of the spin-↑ configuration we observe
that initially the density of the impurity splits into two filaments which are expelled
from the spatial extent of the BEC. The dynamics in this case is reminiscent of the
one occurring when a binary Bose gas is quenched from the miscible to the immis-
cible phase [208–210], triggering in this way the phase separation. After this initial
expansion, the filaments perform damped oscillations around the Thomas-Fermi radius
of the BEC. Obviously, this attenuation of the dynamics implies that the energy of
the impurity is not constant in time and consequently it cannot be explained solely
based on the effective potential, in contrast to gBI ≤ gBB. The above mentioned phe-
nomenon is referred to as the (temporal) orthogonality catastrophe, since the state of
the many-body system at long times t ≥ 100ω−1 is almost orthogonal to the initial one.

To qualitatively comprehend the mechanism leading to the temporal orthogonality
catastrophe, we consider the Landau criterion for the superfluidity of the BEC [201]
when the latter is perturbed by a mobile impurity [197, 199, 200]. The deformation
of the effective potential for gBI > gBB, gives us, also in this case, an intuitive pic-
ture regarding the motion of the impurity within its environment. In particular, for
gBI > gBB, the effective potential possesses a double-well structure, with the initial
state of the impurities being on the top of the potential barrier and the corresponding
potential minima located at the edges of the BEC, i.e. at x = ±RTF, where RTF

denotes the Thomas-Fermi radius of the environment. The repulsive character of this
potential expels the impurity from the trap center, leading to its acceleration. This ac-
celeration implies that increasing values of impurity momentum are accessed, enabling
the violation of the Landau criterion for the superfluidity of the BEC background [200].
In particular, when the velocity of the impurity exceeds a critical value, phononic ex-
citations are induced in its bosonic host [201], resulting to the transfer of energy from
the impurity to the BEC, which is indeed observed in our calculations. This transfer of
energy is the mechanism that leads to the apparent dissipation of the spin-↑ impurity
dynamics and the accumulation of the corresponding density at the periphery of the
Bose gas at x = ±RTF.

The study of Ref. [K4] provides important information regarding the Bose polaron
properties and the characterization of the distinct regimes of polaron dynamics when the
bath-impurity interactions are abruptly switched on. However, an important concept
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that is not discussed within this study refers to induced polaron-polaron interactions
mediated by their host. This subject is particularly important, since it gives rise to
composite structures, such as the bipolaron [162, 164, 166, 365], referring to a bound
state of polarons emanating due to their induced attraction. Such states are thought
to be important in a variety of systems, however they still lack a decisive experimental
identification and characterization.

3.2.3 Multiple Bose polarons and their induced interactions [K5]

In order to examine the effect of induced interactions in Bose polaron systems we focus
on the case of a small impurity number (mainly referring to two) and examine the
properties of the resulting polaronic states with respect to the case where no interaction
effects are exhibited. The main tools for this characterization are the examination of
the ground state of two impurities embedded in a parabolically confined Bose gas and
Ramsey spectroscopy to monitor the polaron generation and decay. As discussed in
Sec. 2.5.3, Ramsey spectroscopy is not particularly suited for studies of multiple polaron
states, since the relation of the Ramsey contrast and the dynamical structure factor,
holding for NI = 1, does not carry over to NI > 1. Nevertheless, as we explicitly
demonstrate in Ref. [K5] this spectroscopic scheme provides significant insights for the
polaron dynamics also when considering multiple impurities.

As a first attempt to address the question of impurity-impurity interactions medi-
ated by their environment we resort to the equilibrium properties of two Bose polarons.
Similarly, to the Fermi polaron case the difference in the Bose polaron energy between
a two-polaron state and a single-polaron one hardly reveals the presence of any induced
polaron-polaron interactions. A notable exception is the case of strong impurity-bath
attractions. There, a large energy decrease is observed for the two-polaron case, even
when the impurities interact repulsively via s-wave interactions, suggesting the presence
of a strong impurity-impurity induced effective attraction.

Motivated by our findings regarding Fermi polarons [K3], we demonstrate that the
relative distance among the impurities is, also in the bosonic case, a valuable quantity
to characterize the polaron-polaron interactions. To elucidate the imprint of induced
interactions in the relative distance of the impurities, we compare our findings to an
effective potential approach [K4]. In particular, this approach takes into account the
deformation of the impurity density due to its interaction with the bosonic environment
for gBI 6= 0, but it completely neglects the effects stemming from induced impurity-
impurity interactions, which are mediated by the density fluctuations of the BEC.
Therefore, the effective potential consists our benchmark regarding non-interacting im-
purities which we employ for the identification and characterization of their induced
interactions. When these density fluctuations of the BEC are taken into account within
our fully correlated ML-MCTDHX calculations (Sec. 2.6), the presence of a polaron-
polaron attraction is revealed by the reduced value of the impurity-impurity distance
when compared to the effective potential prediction. Particularly, in the case that the
s-wave scattering among the impurities is zero, gII = 0, the distance between them is
shown to be smaller than the prediction of the effective potential for all gBI 6= 0, indi-
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cating the presence of induced attraction, independently of the repulsive or attractive
character of gBI . However, in the case of repulsive s-wave interactions among the im-
purities, gII > 0, there is a large reduction of the strength of the induced interactions.
Importantly, the relative distance between the impurities is larger than the correspond-
ing one for gII = 0, showing that the s-wave repulsion between the impurities largely
counteracts the induced attraction mediated by the bosonic host. Strikingly, in the
intermediate and temporal orthogonality catastrophe regimes, gBI ' gBB, the relative
distance for gII > 0 indicates a sizable net repulsion of the impurities, since its value
becomes larger than the effective potential prediction.

A particularly important aspect of our study is the exploration of the attractive
bath-impurity interaction regime. Regarding the above mentioned stationary properties
we observe pronounced induced interactions in the gBI < 0 regime. In particular, for
strong gBI < 0, associated with a large decrease of the polaron energy, we identify
the emergence of the bipolaron [162, 164, 166, 365]. The latter refers to a composite
structure of two polarons which are bound together by the strong attractive impurity-
impurity mediated interactions. By examining the dynamics for gBI < 0 in terms of the
Ramsey spectroscopy we observe a response similar to the weakly repulsive impurity
case, see also Sec. 3.2.2. This response is characterized by an oscillatory behaviour of
the Ramsey contrast due to the presence of the attractive Bose polaron, indicating a
stable polaron with residue, Z < 1. However, in this case, depending on the magnitude
of gBI < 0, the bosonic environment is prominently deformed. In particular, as a result
of the attractive nature of the impurity-bath interactions the impurities experience an
effectively stronger confining potential, leading to their increased localization tendency
at the trap center. Accordingly, the bath particles are attracted to this increased
impurity density, leading to the development of a BEC density peak which accompanies
the impurity one. This additional structure and the associated strong excitation of the
bosonic environment implies a significant reduction of the polaron residue. The above
explain the prominent fluctuations of the Ramsey contrast associated with the large
amplitude fluctuations of the dynamical structure factor in the course of the dynamics.

The study of the two and three impurity dynamics in the repulsive case yields sim-
ilar results to the single impurity case (NI = 1), analyzed in Ref. [K4]. In the Ramsey
contrast three impurity-bath interaction regimes are mainly observed referring to weak,
0 < gBI < gBB, intermediate, gBI ≈ gBB, and strong, gBI > gBB, interactions. In the
weak and strong coupling regimes the behaviour of the system is similar to NI = 1,
with the only difference being that for gBI > gBB the temporal orthogonality catastro-
phe seems to occur faster for NI > 1. The same information can be deduced from the
time-evolution of the one-body density of the impurities. Significant deviations from
the NI = 1 case occur in the intermediate regime gBI ≈ gBB. Here, the amplitude
of the oscillations of the Ramsey contrast drops significantly at the later stages of the
dynamics. This behaviour can be explained in terms of the emergence of mediated in-
teractions, resulting in the development of impurity-impurity correlations, which lead
to the dephasing of the single and two-polaron terms that contribute to the Ramsey
contrast, see also Eq. (2.92). In agreement to this interpretation, the one-body density
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for NI = 2 is found to be almost identical to the corresponding one for NI = 1, support-
ing that the descrepancy for different particle numbers is related to the emergence of
induced correlations. As a final comment, the boundaries between the weak and strong
interaction regimes are significantly affected by the increase of the impurity number,
with the onset of the orthogonality catastrophe shifting to lower values of gBI/gBB for
increasing NI .

3.2.4 Pump-Probe spectroscopy of Bose polarons: lifetime and relax-
ation of the quasiparticle structures [K6]

Having identified the existence of polaronic excitations in Ref. [K4, K5], we turn our
attention to the study of their dynamical formation, lifetime and decay. To identify
these properties, a protocol that provides access to the spectral features of the impuri-
ties state, during distinct stages of the dynamics, needs to be employed. As mentioned
in Sec. 2.5.4, such a time-dependent spectroscopic scheme is provided by the so-called
pump-probe spectroscopy, which allows for probing the dynamics with simultaneous
temporal and spectral resolution. Indeed, within this scheme we can identify the evo-
lution of the energy distribution among the different excited modes of the system and
from that infer the formation or death of quasi-particle excitations.

In Ref [K6] we assume the pump-probe spectroscopic scheme that is briefly outlined
below. Initially, the impurities reside in a particular spin state, | ↓〉, characterized by
zero interaction between them and their bosonic environment. In addition, both the
impurities and the bath are assumed to be in their corresponding ground states. At
t = −te a strong pump pulse is applied in order to transfer, as efficiently as possible, the
impurities from their spin-↓ state to the spin-↑ one. The latter is resonantly interacting
with the bath with an interaction strength gBI . After this pump sequence an optical
blast transition annihilates the remaining spin-↓ atoms, resulting to the projection of
the spin degree-of-freedom to the | ↑〉 state. Subsequently, the system is left to evolve
in the absence of a coupling among the spin-states for a dark time, td. After the end
of this dark time the nonequilibrium dynamics of the impurities is monitored via the
application of a pump pulse that transfers the spin-↑ impurities to their spin-↓ state.
The employed spectroscopic signal is the fraction of impurity atoms that are transferred
to the spin-↓ state after the end of the pump pulse.

Before proceeding further, it is instructive to elaborate on the parameters employed
within our pump-probe setup and their relevance for exposing the dynamical formation
of the polaron. In particular, a strong pump pulse is applied, resulting in a spatial
configuration of the many-body system that remains as proximal as possible to the
initial one, while all the spins are flipped. More specifically, the pump pulse satisfies

1
NI !〈Ψ(0)|(Ŝ+)NI |Ψ(−te)〉 ≈ 1, where Ŝ+ = Ŝx + iŜy refers to the spin-rising operator
and |Ψ(−te)〉, |Ψ(0)〉 to the many-body state before or after the pulse respectively.
The above ensure that polarons are not able to form during the pump pulse, as the
spatial state of the mixture remains largely unperturbed during its application. The
corresponding parameters of the probe pulse are selected, such that they compromise
between the spectral and temporal resolution of the polaron dynamics. Indeed, a
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strong probe pulse inevitably results to a significant power broadening, implying a lower
spectral resolution (since the error in the determination of the position of spectral lines

scales as δ∆probe ≈ Ωprobe
R0 ). Furthermore, a probe pulse of lower intensity, despite its

higher spectral resolution, relies on longer pulse times in order to obtain a measurable
spectroscopic signal. For longer probe pulses the dynamics of the spatial degree-of-
freedom of the system is not suppressed during their application, reducing the obtained
temporal resolution of the system dynamics. As a heuristic argument the spectral
resolution can be related with the temporal one via the Heisenberg uncertainty equation
δEδt ≈ ~, yielding δtd ≈ (δ∆probe)−1 ≈ (Ωprobe

R0 )−1. For a trapped system the relevant
energy and time scales are ~ω and ω−1 respectively. Consequently, a natural choice
for the Rabi frequency of the probe pulse is Ωprobe

R0 = 1 so as to balance the resolution

of pump-probe spectroscopy for both time and energy. This choice of Ωprobe
R0 = 1 is

adopted throughout our work [K6].

Based on the above mentioned protocol we have qualitatively characterized the
dynamics of the impurities in terms of the quasi-particle formation. To achieve this, we
rely on paradigmatic cases, referring to the regimes of different qualitative responses,
identified in [K4, K5]. Below we summarize the information that we were able to
extract regarding the dynamical formation, the decay of polaronic excitations and their
dependence on the bath-impurity interaction strength.

For attractive bath-impurity interactions strong evidence for stable polaronic exci-
tations has been provided in Ref. [K5]. In Ref. [K6], we put this expectation to a test
by considering the case of gBI = −|gBB| = −0.5. The dynamics for NI = 1 is char-
acterized by a system that remains close to its initial state and populates well-defined
polaronic states having a large residue, for all times td < 300. However, introducing
multiple impurities, their energy is not as well defined as in the single-impurity case.
The large uncertainty in the impurity energy can be attributed to the emergence of
large impurity-impurity induced interactions, resulting to collisional broadening of the
spectral line. For large times we observe that the impurities mainly reside in a polaronic
state with well-defined energy, but the reduced amplitude of this peak implies a dra-
matically reduced contrast when compared to the single-impurity case. This fact can
be also regarded as an evidence for the presence of induced interactions. Similar argu-
ments also hold for fermionic impurities, however, the features of induced interactions
become less prominent than in the bosonic case.

For repulsive impurity-bath interactions, Ref. [K4, K5] reveal the appearance of
three distinct regimes of dynamical response. First the regime of small interactions,
gBI < gBB, where a dynamics similar to the case of attractive interactions is expected.
Second, the regime around gBI = gBB, where the periodic evolution between the initial
state and a state characterized by filament formation has been observed. Finally, the
regime of orthogonality catastrophe, for gBI > gBB, where the impurity is expelled
from the bosonic environment and subsequently it progressively gets accumulated in
the periphery of the Bose gas. The case of weakly interacting impurities, gBI < gBB,
is not discussed in Ref. [K6] for the sake of brevity, as it is completely analogous to the
case of attractive interactions (see also [K5]). For this reason, in this work, we focus on
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the dynamical formation of Bose polarons, by considering two examples, namely the
gBI ≈ gBB and gBI > gBB regimes, which exhibit a more involved dynamical response.

Our results for gBI = gBB = 0.5, reveal the appearance of fringes in the probe
spectrum for times corresponding to the delocalization of the initial wavepacket. This
pattern can be explained by the interference of the two filaments of the impurity density
[K4]. In particular, the emergence of this pattern is a signature of at least two many-
body states being predominantly occupied during the dynamics, which, due to their
coherence, lead to the manifestation of fringes in the probe spectrum. This argument is
further supported by the almost perfect coherence between the filaments, as captured
by the one-body coherence function. The contrast of these fringes appears to possess a
larger amplitude in the single-impurity case, rather than for NI = 2 bosonic impurities.
This effect can be attributed to the presence of impurity-impurity induced interactions
for NI = 2, which lead to the reduction of the coherence of the ensemble. Revival
events are also identified for larger times, when a well-defined polaronic peak similar
to the one for t = 0 is exhibited. The revival of the polaronic resonance also occurs
for large evolution times and for both impurity numbers, demonstrating the robustness
of the polaron in the gBI = gBB regime. As a final comment note that the exchange
symmetry of the impurities seems to not affect the stability properties of the Bose
polaron, since the pump-probe spectra for NI = 2 fermions are qualitatively similar to
the bosonic case.

As already established in Ref. [K4,K5], for large interactions, e.g. gBI = 3gBB = 1.5,
we observe the phenomenon of the temporal orthogonality catastrophe. For td = 0 and
for NI = 1, two dominant polaronic peaks occur. The first one is close to the resonance
of the pump pulse, ∆+, resembling the initial distribution, while the second is shifted
to larger values. Both of these peaks decay significantly already for td = 2, giving
rise to a much wider distribution centered around ∆+, as well as, to a significant peak
at ∆probe = 0, indicating the presence of quasi-free particles. This behaviour demon-
strates that the temporal orthogonality catastrophe, which leads to a finite lifetime of
polaronic excitations, is at least as fast as the formation of these excitations themselves.
Furthermore, the dynamical behaviour imprinted in the probe spectrum remains qual-
itatively equivalent, as the number of impurities increases. Quantitatively, the decay
of the polarons is faster for NI = 2, as already for td = 0, the amplitude of the polaron
peaks is significantly reduced when compared to the NI = 1 case. Induced interactions
are also manifested for this value of dark-time, as the dominant peak at ∆probe = ∆+

splits into two for NI = 2. For larger td the distribution of energies along different
dynamical modes saturates, leading to the manifestation of a quasi-stable state. The
most prevalent feature of this energy distribution is the quasi-free particle peak, which
posseses a large amplitude 〈N̂↓(td)〉/NI ≈ 0.5, alongside a wide distribution of lower
amplitude, around ∆probe ≈ ∆+. The only notable difference between the spectra for
different particle numbers is the presence of fringes in the probe spectrum with NI = 1.
This can be attributed to the larger single-particle coherence, due to the absence of in-
duced impurity-impurity interactions. Fermionic impurities behave similarly to bosonic
ones. However, for fermions the initial stages of the temporal orthogonality catastrophe
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seem to occur for smaller times. Indeed, in the corresponding td = 0 spectrum a rather
wide feature is observed in the vicinity of ∆+, in contrast to the sharp peaks in the
NI = 1 and the bosonic NI = 2 cases. Nevetheless, the subsequent evolution of the
probe spectra in the case of fermionic impurities is qualitatively similar to the bosonic
one with some minor shifts in the positions of the spectral lines, owing to the different
statistics.

An intriguing aspect of the polaronic dynamics in the strongly interacting regime is
the eigenstate thermalization of the ensemble, following the orthogonality catastrophe.
In particular, it is found that the pump-probe spectrum for large dark times of the
order of ∼ 100ω−1 saturates, being largely independent of the precise value of the dark
time, impurity number and even their bosonic or fermionic flavor. By directly fitting
the one-body density matrix of the impurity to an appropriate thermal distribution
we can demonstrate that the final state of the impurity, corresponds to an eigenstate
thermalized one. The corresponding effective temperature is found to be rather large
when compared to the energy scale of the trap further exposing the incoherent nature
of the state accessed after the temporal ortogonality catastrophe.

Concluding, the results of [K4–K6] demonstrate the important role of the inhomo-
geneity of the BEC density and the modification of the polaronic properties due to the
presence of an effective potential, see Eq. (2.80). In particular, we are able to charac-
terize the regimes of qualitatively distinct dynamics and provide signatures of induced
interactions where the concept of the effective potential plays a prominent role. The
identification of trap-induced effects, provided herein, is highly relevant for future Bose
polaron experiments and offers several new prospects for further study, a subject that
is further discussed in Chapter 5.
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4.1 Magnetic properties of 1D degenerate few-fermion gases

4.1.1 Probing ferromagnetic order in few-fermion correlated spin-flip
dynamics
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Abstract
Weunravel the dynamical stability of a fully polarized one-dimensional ultracold few-fermion spin-
1/2 gas subjected to inhomogeneous driving of the itinerant spins. Despite the unstable character of
the total spin-polarization the existence of an interaction regime is demonstratedwhere the spin-
correlations lead to almostmaximally aligned spins throughout the dynamics. The resulting
ferromagnetic order emerges from the build up of superpositions of states ofmaximal total spin. They
comprise a decaying spin-polarization and a dynamical evolution towards an almost completely
unpolarizedNOON-like state. Via single-shot simulations we demonstrate that our theoretical
predictions can be detected in state-of-the-art ultracold experiments.

1. Introduction

Magnetism constitutes a principal feature of a large class ofmaterials and represents amacroscopic
phenomenon of quantumorigin [1–3]. In conductors themagnetic properties of the delocalized (itinerant)
electrons are qualitatively understood in terms of the Stoner instability [4]. To verify and emulate the latter
mechanismultracold fermionic ensembles have been employed [5–7]. However, the nature of the interparticle
interaction exhibited in three-dimensional ultracold gases hindered the study of itinerant ferromagnetism as the
repulsive Fermi gas ismetastable due to bosonic Feshbachmolecule formation [8]. Utilizing fast interaction
quenches, it has been shown that no ferromagnetic phase can be achieved as the decay intomolecules is faster
than the formation of ferromagnetic domains [6, 7]. Instead, recent pump-probe experiments [9] indicate that
the formation rate of ferromagetic domainswith a size comparable to the interatomic separation is larger than
the correspondingmolecular decay rate. Furthermore, ferromagnetic properties have been observed indirectly
either by the spectroscopic study of strongly particle-imbalanced [10, 11] (supplemented by [12]) and particle-
balanced [9] two-component Fermimixtures or by employing a binary Fermi gas prepared in amagnetic
domainwall structure [13]. The latter experimental evidence poses the questionwhether stable ferromagnetism
can be observed in the absence ofmolecule formation.

A controllable setting that can shed light on such inquiries is the experimentally accessible few-fermion
quasi-one dimensional (1D) gas [14]. Owing to its 1D character, a shallow two-body bound state for effectively
repulsive interactions is absent and thus themolecule formation is suppressed.Moreover, the experimental
[15, 16] and theoretical [17–21] study of themagnetic properties of few-fermion systems has led to the insight
that for near zero and infinite interactions there is an approximatemapping of the 1D spin-1/2 Fermi gas to an
effective spin-chainmodel [22–28].Most importantly, these spinor systems possess experimentally accessible
eigenstates of ferromagnetic nature4, namely the interaction-independent spin-polarized states. Consequently,
the study of the dynamical stability of these ferromagnetic states is essential for our understanding of the
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magnetic properties of 1D systems. The study of themechanisms emanating in 1D systemsmight in turn
provide important insights for higher dimensional settings.

We study the dynamical stability of the fully polarized 1Dparabolically-confined few-fermion spin-1/2 gas
under the effect of inhomogeneous Rabi coupling of the spin-states. This coupling scheme introduces a spatially
dependent spin-flip transition amplitude and thus probes the stability of the initial state by breaking the spin-
symmetries of the unperturbed system (see below). An argumentation based on theHartree–Fock (HF)
framework of the Stonermodel testifiedwithin the time-dependentHartree–Fock (TDHF) [29] showed that the
spin-polarization of the Fermi gas is stable for interparticle repulsions that exceed the kinetic and spin-flip
contributions [30, 31]. Inspecting the correlated spin-flip dynamics within the latter interaction regime (where
TDHFpredicts stable ferromagnetism)we reveal that themany-body (MB) spin–spin correlator exhibits
ferromagnetic spin–spin correlations throughout the dynamics.Moreover and in contrast to the TDHF results
theMB state of the ferromagnetically correlated gas shows an unstable polarization fluctuating between fully
polarized and almost completely unpolarized. This outcome cannot be retrievedwithin theHF description and
exposes the crucial role of correlations in themagnetic properties of spin-1/2 fermions even away from the
strongly interacting regime.We show that the decay of the polarization and the emerging correlated spin-order
can be understood by generalizing the spin-chainmodel of [28]. The coupling of the initial state to lower spin-S
values is found to cause the dephasing of the collective Larmor precession of the spins. This dephasing
dynamically leads the system to an almost equal superposition of the two ferromagnetic fully polarized states of
opposite spin-orientation i.e. aNOON-like state [32, 33]with zero total polarization. Forweaker and stronger
interactions lying outside the above-mentioned ferromagnetically ordered regime the systemundergoes a
demagnetization dynamics which is identified and characterized. Our results generalize to other particle
numbers within the few-body regime. The employed setup can be implemented in state-of-the-art 40K
experiments and the corresponding findings can be probed byfluorescence imaging techniques. Additionally,
we showcase that ourfindings can be generalized to a broader class of dynamical scenarios characterized by
different initial states andRabi-coupling potentials.We explicitly demonstrate the robustness of our results
against commonnoise sources exhibited in such experiments by performing simulations of single-shot images.

The presentation of our results proceeds as follows. In section 2we discuss the setup and the basic
observables used for the interpretation of the spin-dynamics. In section 3we present our results for the
correlated spin-flip dynamics employing theMulti-Configuration Time-DependentMethod for Fermions
(MCTDHF) [34–39] and interpret them in terms of two approximatemethods for the caseN=3. Section 4
provides a generalization of our findings to the case ofN=5 fermions. In section 5we also demonstrate that the
observed dynamical phenomena persist for different initial states and inhomogeneous Rabi-couplings. A
possible experimental probe of our predictions and its feasibility are discussed in section 6. In section 7we
summarize our results and provide an outlook. Appendix A addresses our numericalmethodology based on
MCTDHF. The numerical implementation of the single-shot simulations for spinor fermions is briefly
discussed in appendix B. Finally, in appendix Cwe derive the effective spin-chainmodel for our system.

2. Setup

Weconsider an interacting systemofN spin-1/2 fermions ofmassm, confined in an 1Dparabolic trap of
frequencyω. The interparticle interaction emanating in such systems is well-described by the s-wave contact
interaction of strength, g [40]. The latter can bemanipulated by exploiting either Fano-Feshbach or confinement

induced resonances [8]. TheMBHamiltonian thatmodels such a system reads H H HI0= +˜̂ ˆ ˆ , where the single-
particleHamiltonian H0

ˆ is

H x x
m x

m x xd
2

d
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The corresponding interparticle interaction term is encoded by

H g x x x x xd , 2I ò y y y y=    ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )† †

where xyaˆ ( ) denotes the fermionic field-operator with spin ,a Î  { }. TheHamiltonian Ĥ̃ exhibits several

crucial spin-symmetries. It can be shown that Ĥ̃ commutes with each component of the total spin-vector
operator

S x x x
2

d , 3,


òå sy y=
aa

a a a a
¢

¢ ¢ˆ ˆ ( ) ˆ ( ) ( )†

where s denotes the Pauli vector. Additionally, it possesses a SU(2) symmetry stemming from its commutation
with the total spin-magnitude operator
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These symmetries imply that the eigenvalues of Sẑ and S
2ˆ define good quantumnumbers. Consequently, the

ferromagnetic fully spin-polarized state, x x xd 0F i
N

i0
1 ò f yY ñ =  ñ=

-
∣ ( ) ˆ ( )∣†

, wherefi(x) refers to the ith

eigenfunction of the 1Dharmonic oscillator, is the energetically lowest eigenstate of Ĥ̃ (note that H 0I FY ñ =ˆ ∣ )
with total spin eigenvalues S Sz

N

2
= = .

To controllably probe the stability of such a ferromagnetic state 0 FY ñ = Y ñ∣ ( ) ∣ under coherent processes that

break both Sẑ and S
2ˆ symmetries we employ an inhomogeneous Rabi coupling between the spin  and  states.

Note here that similar Rabi-coupling techniques have been employed in several experiments e.g. see [41–44]
involving binary bosonicmixtures. The resultingHamiltonian of the total system reads

H H H H , 5S I0= + +ˆ ˆ ˆ ˆ ( )
where the externally-imposed Rabi coupling term is

H B x x xd e . 6S
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In particular, HS
ˆ induces spin-flip transitionswith a spatially dependent transition amplitude,modelled by a

Gaussian of widthw and intensityB0. This coupling scheme can be realized in ultracold experiments by optical
Raman dressing of the two lowest hyperfine levels of K40 (see also section 4).We choose the valuesw=2 and
B 2.5 80 p= (in harmonic oscillator units) leading to an average precession (Larmor) frequency, 0.85Lw » ,
for the spins which is lower than all collectivemode frequencies (e.g.ωR≈ 2 for the breathingmode). This choice
enables us to avoid spin segregation phenomena [28] occurringwhen the length scale of themodulationw is
smaller than that of the trap l m w=w .

Our goal is to inspect the stability of the ferromagnetismwhen the HS
ˆ term, equation (6), is abruptly

switched on at t=0. To achieve this we track twomain observables, directly relatedwith the system’s broken
symmetries. Namely, the normalized spin polarizationmagnitude SPS N

1 2


= á ñ∣ ˆ ∣( ) and the spin–spin correlator

C
S S
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N N N N
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(1)
S expresses the averaged spin-order (magnetization) and refers to the

magnitude of the polarization. Due to its one-body characterP(1)S does not probe the correlations thatmight
emerge in the systemdespite being affected by them. For this purpose we employ the spin–spin correlator,C(2)

S ,
which probes the alignment of each two spins and serves as an indicator for the distinction of ferromagnetic
C(2)
S ≈1, antiferromagnetic CS

2( )≈−1 and paramagneticC(2)
S ≈0 spin–spin correlations.

3. Analysis of the spin-flip dynamics

3.1.Many-body correlated spin-flip dynamics
Figures 1(a) and (b) present ourMB results for the paradigmatic case ofN=3 fermions obtained viaMCTDHF,
that enables us to capture all interparticle correlation effects [34–39]. TheMCTDHFmethod is a variational,
numerically exact, ab initiomethod for solving the time-dependentMB Schrödinger equationwhich includes all
correlation effects. It is based on expanding theMBwavefunction in terms of a time-dependent variationally
optimized basis. In this way it enables us to efficiently truncate theMBHilbert space relevant for our systemby
using a computationally feasible basis size. TheMCTDHFmethod exhibits increased numerical efficiencywhen
compared to an expansion relying on a time-independent basis since the number of basis states can be
significantly reduced. A detailed discussion on the capabilities and theMBwavefunction ansatz of the above-
mentionedmethod is presented in appendix A.

Forweak repulsive or attractive interactions, g 0.5<∣ ∣ , a rapid demagnetization (see the decaying behaviour
ofPS

(1)) is observed, accompanied by a loss of the spin alignment,C(2)
S , at a time scale∼20. Partial revivals of both

PS
(1) andC(2)

S appear over regular time intervals for later times. Our results for this interaction interval are
compliant with the spin-dynamics analysed in [28, 45] andwe shall refer to this regime as theweak-g
demagnetization regime. Indeedwithin this regime each of the particles precesses with a different Larmor
frequency leading to the loss of the polarizationmagnitudeP(1)S after a few precession cycles. For intermediate
interactions of either sign, i.e. g0.5 4< <∣ ∣ , the decay and revival of PS

1( ) also occurs but at a drastically
increased time-scale (which increases further for larger g∣ ∣)when compared to theweak-g demagnetization
regime. In contrast,C(2)

S indicates that the spins are close to bemaximally aligned (e.g.C(2)
S �0.85 for 2<g<4

andC(2)
S �0.95 for g∼−2 infigure 1(b)) throughout the evolution, signifying ferromagnetic spin-correlations.

Therefore, ferromagnetism is unstable in this interaction interval as the polarization (P(1)S ) of the ensemble
features largefluctuations despite the ferromagnetic order captured byC(2)

S which is almost perfect. Hence, we
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refer to this regime as ferromagnetically ordered. In particular, it involves a different spin-order than
ferromagnetism, as its order is inferred by the ferromagnetic spin–spin correlations rather than the polarization.
For g>4 a suppression of the ferromagnetic spin–spin correlations occurs as the amplitude of theC(2)

S

oscillations increases for stronger g, see figure 1(b). For instance, at g≈10,C(2)
S fluctuates between the values 0.5

and unity.P(1)S is also oscillatory taking values between unity and 1/3, with a significantly smaller oscillation
frequency than CS

2( ) (see figure 1(a)). In the following this interaction interval (g> 4) is referred to as the strong-g
demagnetization regime.

3.2. Spin-flip dynamicswithin TDHF
Todemonstrate the crucial role of correlations within theMBdynamics we compare the aboveMBfindings with
the TDHF approximation presented infigures 1(c) and (d). For weak g∣ ∣ ( g 0.5<∣ ∣ ) the demagnetization
dynamics is qualitatively captured by the TDHF approximation.However, upon increasing g∣ ∣, (in particular for

g0.5 4< <∣ ∣ )TDHFpredicts no loss of PS
1( ) in contrast to theMB case (comparefigures 1(a) and (c)), while a

similar spin-correlation dynamics is observed compare figures 1(b) and 1(d). This behaviour of the TDHF can be
interpreted in terms of the Stonermodel [4, 30], see figure 2(a). Indeed, withinHF the interaction energy of
contact interacting spin-1/2 fermions is proportional to the density overlap between the two spin-components
[4, 30]. Therefore, for large enough g the system initialized in a spin-polarized state characterized by zero
interaction energy, cannot access states with a single (ormore) spin-flips due to their large interaction energy.
Thus, each of the spins has to preccess with the same frequency resulting in the constant polarizationmagnitude,
P(1)S . For strong g>4, Rabi oscillations between the ferromagnetic initial state FY ñ∣ (characterized by P(1)S =1,
C(2)
S =1) and the pairedHF ground states x x x x x x xd 0HF 3

0 1 0 2 1 3 1 2 3ò f f f y y yY ñ ~ ña a ∣ ( ) ( ) ( ) ( ) ( ) ( )∣† † † (referring
toP(1)S =1/3,C(2)

S =−1/2) take place. This indicates that the interparticle repulsion between the paired
fermions exactly balances the energy benefit of their pairing in the same state and corresponds to the Stoner
instability of the ground state. It is important to note here that these Rabi oscillations are absent in theMB case,
see alsofigures 1(c) and (d) for g≈5.

Concluding, the ferromagnetically ordered regime exhibited in theMB case corresponds to a stable
ferromagnetic onewithin theHF framework. This observation exposes the correlated nature of the
ferromagnetically ordered regime. In both cases the interaction regime is limited to intermediate values of g and
in particular to g0.5 4< <∣ ∣ (see figures 1(b), (d)). However, for g>4 themechanism that breaks the spin-
order differs. In theHF case the ground state Stoner instability takes placewhich is forbidden for any finite
repulsive interaction in theMB case [46, 47]. Instead, it is known that the unpaired states ofmaximum S (see
figure 1(b)) and theMB antiferromagnetic ground states exhibit a crossing in the Tonks-Girardeau limit
[16–21]. In our case due to the breaking of the SU(2) symmetry the above consist an avoided crossing [27, 48, 49]
which is approached for increasing g>4. Aswe shall argue in section 3.4, thefluctuations ofC(2)

S in the strong-g
demagnetization regime for theMB case can be attributed to this avoided crossing.

Figure 1.Time evolution of (a), (c), (e) the spin polarizationmagnitude PS
(1) and (b), (d), (f) the spin–spin correlatorC(2)

S for varying g.
The presented results refer toN=3 fermions by employing (a), (b)MCTDHF, (c), (d)TDHF and (e), (f) the generalized spin-chain
approach.
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3.3. Effective spin-chainmodel
Touncover themainmechanisms responsible for the emergence of the ferromagnetically ordered regime
( g0.5 4< <∣ ∣ )we employ an extended version of the spin-chainmodel (see appendix C) presented in [28]. Our
spin-chainmodel incorporates additional effectivemagnetic field terms (for details see appendix C)when
compared to [28], that are necessary for the treatment of generic spin-1/2 fermion systemswith a single
conserved spin-component (here Sx̂).Within thismodel theN-bodywavefuntion is decomposed as

t tn nY ñ = å Y ñ ∣ ( ) ∣ ( ) with t A t c c... 0n n n n; N N1 1
Y ñ = å ña a a a
   ∣ ( ) ( ) ˆ ˆ ∣† † . The operator cnaˆ† creates a fermion in the

eigenstate x x xd 0n nòc c yñ = ña a
a∣ ( ) ˆ ( )∣†

of H HS0 +ˆ ˆ , see equations (1) and (6) n n n, , N1= ¼
 ( ) and

, , N1a a a= ¼
 ( ) denote the spatial and spin configuration respectively. The crucial approximation in this

model is that all the interaction terms, HI
nd ˆ , that couple different spatial configurations n


can be neglected. By

setting H H HI I I
neff

º -
d ˆ ˆ ˆ , the different spatial configurations n


are decoupled. It can be shown that the time-

evolution of each tnY ñ∣ ( ) can be described by anXXZ spin-chain consisting ofN-spins [28]. The employed
approximation limits the expected range of validity of the spin-chainmodel to small interaction values,

g m 13w< = , where the interaction energy is smaller than the energy spacing between the single-particle
eigenstates.

The polarization dynamics within the spin-chainmodel complywith theMB results within theweak-g
demagnetization ( g 0.5<∣ ∣ ) and the ferromagnetically ordered regime ( g0.5 4< <∣ ∣ ) comparefigures 1(e)
and (a).Moreover, by comparingC(2)

S (see figures 1(b) and (f)) between the twomethodswe observe that the
spin-correlation dynamics is almost identical in theweak-g demagnetization regime, where the approximations
that the spin-chainmodel employs are valid. On the contrary, in the ferromagnetically ordered regime the
ferromagnetic spin-correlations are overestimated by the spin-chainmethod [hardly visible infigures 1(b) and
(f)]. Finally, for increasing interactions (g 4> )no strong-g demagnetization regime appears within the spin-
chainmodel, signifying the break down of its validity. This behaviour is clearly imprinted inC(2)

S for large g
(compare figures 1(f) and (b) for g 8» ). To interpret the spin-chain dynamics in the ferromagnetic and strong-
g demagnetization regimewe note that the configuration n 0, 1, 2=

 ( ) possesses approximately 99.72%of the
contribution to 0Y ñ∣ ( ) and thus it almost completely dictates the dynamics of the systemwithin the spin-chain
approximation. TheMBpolarization P(1)S dynamics within the ferromagnetically ordered regime is well-
captured by the spin-chainmodel allowing us to conclude that this behaviour emerges due to the spin-dynamics
of the different states (characterized by distinct a )within the dominant n 0, 1, 2=

 ( ) spatial configuration. In
contrast, the (small) depletion ofCS

(2) in the same regime (seefigure 1(b)) is absent in the spin-chain
approximation, leading to the conclusion that it stems from the neglected couplings to different spatial

configurations, contained in HI
nd ˆ . The latter couplings, however, are not as strong as to prohibit the spin-chain

model to capture the spin-order emergingwithin theMB evolution in this interaction regime. Regarding the
absence of a strong-g demagnetization regimewe remark here that the coupling between the antiferromagnetic
ground states belonging to the spatial configuration n 0, 0, 1=

 ( ) and the initially populated states of the
dominant n 0, 1, 2=

 ( ) configuration is neglected by the spin-chainmodel.

Figure 2. Spin-flip transitions of a spin-polarized few-fermion gas. (a)According toHF eachN-body state corresponds to a single
N-body (determinantal) configuration sketched here by the kets. For increasing interaction strength g, states with anti-oriented spins
accumulate large interaction energies EI

HF that forbid spin-flip transitions from the fully polarized state (see crossed arrows). (b) In the
MB case the interaction part of theHamiltonian HI

MB for small spin-flip coupling and g approaches a XXZmodel [28], which allows
for spin-flip transitions between all states withmaximal total spin S2. Note here that for small interaction strength, g, and spin-flip
couplingwe can neglect paired states due to their large energy offset from the spin-polarized one.
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At this point it becomes clear that the ferromagnetic order exhibited in 1D spin-1/2 Fermi gases greatly
deviates from the standardHFdescription. Additionally, the emerging spin-order is different than the one
perceived as ferromagnetic in the literature. Indeed, its defining characteristic is the stability of the spin–spin
correlations rather than the polarization. The spin-chainmodel seems to capture well some of the characteristics
of this emerging order. In the following by analysing in parallel theMB and spin-chain dynamics wewill shed
light onto the underlyingmicroscopicmechanisms of the ferromagnetically ordered regime.

3.4. Analysis of themicroscopicmechanisms
To identify the underlyingmechanisms of theMB spin-dynamics we invoke the spectrumof the spin-
polarization, namely P t P td eS

t
S

1 i 1 2 òW = W{ }( ) ∣ ( )∣( ) ( ) , presented infigures 3(a) and (b) for−2<g<10 and
g 1<∣ ∣ respectively. Recall that each branch in the spectrumofPS

(1) corresponds to an energy difference between

two eigenenergies of Ĥ , (see equation (5)). For g=0 three distinct Larmor frequencies5 occur that correspond
to the three energy differences among the occupied single-particle eigenstates in the spatial configuration
n 0, 1, 2=
 ( ). For g¹ 0 amultitude of interaction-dependent frequency branches emerge from each Larmor
frequency. The failure of TDHF to capture even on the qualitative level the spin dynamics even for low g is
evident in PS

1 W{ }( )( ) . Indeed, the TDHF captures only one frequency per particle for g 0.1<∣ ∣ (seefigure 3(c))
in contrast to themultitude of interaction-dependent frequency branches emerging from each Larmor
frequency in the correlated case (seefigure 3(b)). Thuswe can conclude that the build up of correlations in the
MB case even for very small g completely invalidates theHFpicture for the spin dynamics. Such correlations are
of particular importance in the ferromagnetically ordered regime. In this case, three dominant branches appear
in the vicinity ofΩ≈0.85 (see alsofigure 3(b) for g≈ 1)within the correlated case that lead to the beating
dynamics ofP(1)S , observed infigures 1(a), (b).

The origin of the above-mentioned frequencies can be exposed by comparing PS
1{ }( ) , with the energy

differences of the eigenstates of the spin-chainmodel. As anticipated by our discussion in section 3.3 the
eigenstates of the configuration n 0, 1, 2=

 ( ) are expected towell capture the P(1)S dynamics. The eigenspectrum

Figure 3. (a), (b) Spectrumof the polarization vector PS
1{ }( ) forN=3 fermions withinMCTDHF. ,

g1

2

1

2
 refers to the

antiferromagnetic ground states. (c) PS
1{ }( ) within TDHF. (d)Eigenspectrum for all states within the n 0, 1, 2=

 ( ) configuration
and the spin-chainmodel. (e)Expectation value of the S

2ˆ operator for selected eigenstates of the spin-chainmodel. The dotted lines

indicate the value of S
2á ñˆ for S 1

2
= and S 3

2
= . (f)Comparison of (a)with the eigenenergy differences within the spin-chainmodel.

5
Note here the perturbative nature of HS

ˆ , equation (6), which ismanifested by the fact that the Larmor frequency of the occupied states does
not deviatemore than 12% from its average valueΩL≈0.85.
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of the spin-chainHamiltonian H Hn 0,1,2=ˆ ˆ( ) is presented infigure 3(d). The spin-chain eigenstates within the
weak-g demagnetization regime ( g 0.5<∣ ∣ ) are ordered in terms of increasing Sx due to the Zeeman effect

induced by the effectivemagnetic field along the x axis that HS
ˆ , equation (6), introduces.Within this weak-g

demagnetization regime an avoided crossing between the distinct eigenstates of the same Sx
1

2
=  occurs which

can be attributed to the breaking of the S
2ˆ symmetry by the inhomogeneity of the HS

ˆ term. The states of the spin-
chainmodel can be labelled as S S, xñ∣ ℓ in the repulsive ( = +ℓ ) and attractive (ℓ=−) part of the
ferromagnetically ordered regime ( g0.5 4< <∣ ∣ ). This is possible because S is an approximate good quantum
numberwithin this interaction range. This property can be identified by examining the expectation value of

S S S S S S, ,x x
2 2á ñ º á ñˆ ∣ ˆ ∣ℓ ℓ. Figure 3(e) presents this expectation value for the states with Sx

1

2
= and varying

interaction strength. It becomes evident that for increasing g∣ ∣ the S
2á ñˆ of one of these states [i.e. ,3

2

1

2

+
and

,3

2

1

2

-
in the case of g> 0 and g< 0 respectively] approaches the value S 1

2 3

2

3

2
^ = +( )⟨ ⟩ , indicating that

S 3

2
» .Moreover, the states , , ,3

2

1

2

3

2

1

2
ñ ñ- {∣ ∣ }and , , ,3

2

1

2

3

2

1

2
ñ ñ+ {∣ ∣ } in the case of g>0 and g<0

respectively tend to S 1
2 1

2

1

2
á ñ = +ˆ ( ).We remark here that the states with Sx

1

2
= - exhibit a similar behaviour

as the aforementioned Sx
1

2
= case and the eigenstates ,3

2

3

2
 ñ∣ correspond to fully polarized states along the x

axis with S 1
2 3

2

3

2
^ = +( )⟨ ⟩ for all g (not shownhere for brevity). By employing the spin-chain eigenspectrum,

figure 3(d), we can identify all the energy branches appearing infigure 3(b)with the corresponding eigenenergy
differences of the spin-chainmodel.Most importantly, figure 3(f) presents this identificationwithin the
ferromagnetically ordered regime ( g0.5 4< <∣ ∣ ). As it can be seen the energy differences between the spin-
chain eigenstates with S E S S, , , ,x x

3

2

3

2

3

2
» D ñ ¢ñ ¢{∣ ∣ }ℓ ℓ , possess themain contribution to PS

1{ }( ) in the

ferromagnetically ordered regime as theymatchwell with the dominant energy branches appearing in theMB
dynamics. Based on this identificationwe can draw several conclusions regarding the order exhibited within the
ferromagnetically ordered regime. First, the ferromagnetic spin-correlations emanate from the predominant
occupation ofMB eigenstates with S 3 2» each characterized by a different value of Sx. The frequency

differenceΔΩ between the highest ( E , , ,3

2

3

2

3

2

1

2
D {∣ ⟩ ∣ ⟩ℓ) and lowest lying ( E , , ,3

2

1

2

3

2

3

2
D - - {∣ ⟩ ∣ ⟩ℓ ) of the

above-mentioned dominant branches (see alsofigure 3(d)) results in the dephasing of the initial superposition.
In terms of the spin- and spin- states thismeans that the systemperforms spin-flips between the different

states with S 3

2
= and varying Sz leading to the decay of P

(1)
S , see figure 2(b). The corresponding timescale is

Dt » p
DW

.DW is attributed to the energy shift of the ,3

2

1

2
 ñ∣ ℓ states frombeing equidistantly spacedwhich is

induced by an avoided crossing at g=0, as infigure 3(d). The increase of g∣ ∣within the ferromagnetically
ordered regime, leads to a decrease ofΔΩ (or equivalently increase of τD) giving rise to the observed PS

(1)

dynamics (figures 1(a) and (e)).
Regarding the strong-g demagnetization regime (see figure 3(a) for g> 4) the frequency branches that

correspond to the ,3

2

1

2
 ñ+∣ states deviate fromΩ≈0.85 as they couple to the antiferromagnetic ground states

of S 1

2
» and Sx

1

2
=  character. Due to the samemechanism additional branches also appear in PS

1{ }( ) (see
the corresponding arrows infigure 3(a)) that contribute to the complex P(1)S dynamics exhibited in this
interaction regime (seefigure 1(a)) and results in the oscillatory patterns of CS

2( ) (see figure 1(b), and also our
discussion in section 3.2).

3.5. Characterization of entanglement in the ferromagnetically ordered regime
The separation of the energy scales 0.05DW ~ (see figure 3(c)) and the average Larmor frequency,

E , , , 0.85L
1

3

3

2

3

2

3

2

3

2
W = D ñ - ñ ~{∣ ∣ } observed infigure 3, enables us to further characterize the superpositions

that emerge in the ferromagnetically ordered regime. To this endwe introduce the precessing bases

S S, e ,j t
S t

j
3

2
i 3

2
x L

1
2ñ = ñ¢

W∣ ∣( ) ˆ ( j x y z, ,Î { }) and project theMBwavefunction obtainedwithinMCTDHF to these

basis states. Note that if all the particles were collectively precessing with the frequencyΩL then

S t, z t
3

2

3

2
á = Y ñ¢∣ ∣ ( ) ∣( ) would be constant in time.However, as we have already enstablished in section 3.2, this is

not the case. Figure 4(a) presents the results of this projection for a representative case (g= 2)within the
ferromagnetically ordered regime.We observe a low-frequency (∼ΔΩ) population transfer from the state

S, z t
3

2

3

2
= ñ¢∣ ( ) to the state S, z t

3

2

1

2
= - ñ¢∣ ( ) . For t>350 the lattermechanism results in S 0z tá ñ »¢ˆ ( ) , as

S, z t
3

2

1

2
= - ñ¢∣ ( ) possesses approximatively a three times larger population as compared to S, z t

3

2

3

2
= ñ¢∣ ( ) . The

nature of this superposition can be understood by transforming to the orthogonal precessing axis, y′(t) (see
figure 4(b)). In this case the populations of S, y t

3

2

3

2
= ñ¢∣ ( ) and S, y t

3

2

3

2
= - ñ¢∣ ( ) are almost equal for t>350,

signifying the tendency to dynamically approach aNOON state, characterized by S 0y tá ñ »¢ˆ ( ) , i.e. t0Y ñ ~∣ ( )
S S, e ,y t y t

1

2

3

2

3

2
i 3

2

3

2
= ñ + = - ñf

¢ ¢(∣ ∣ )( ) ( ) with a relative phasef. These results combinedwith the conserved
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quantity S 0xá ñ =ˆ explain the decay of the totalmagnetization P(1)S → 0 for t>350. Accordingly, the spin-
dynamics within the ferromagnetically ordered regime describes the dynamical evolution of a fully polarized
state to a superposition one consisting of two antiparallel-oriented fully polarized states.

4. Spin dynamics forN=5 fermions

Wenext demonstrate the robustness of ourmain findings for the case of larger particle numbers by examining a
system consisting ofN=5 fermions.

Figures 5(a)–(f) presentP(1)S andC(2)
S forN=5 fermionswithin the three different approaches employed

above, i.e. theMCTDHF, TDHF and spin-chain approach. A similar spin-dynamics as for theN=3 case is
observed for both quantities, but in different interaction regimes, caused by the increase ofN. The
ferromagnetically ordered regime occurs in the range g0.5 2< <∣ ∣ , where bothP(1)S and CS

2( ) possess a value
proximal to unitywithin the TDHF approach (see figures 5(c) and (d)). In the same range theMB treatment
provided byMCTDHF reveals that P(1)S is decaying (see figure 5(a)), a featurewhich is alsowell captured by the
spin-chainmethod (seefigure 5(e)). The only additional structures that emerge in theMB spin-flip dynamics
when compared to theN=3 case are very narrow interactionwindowswhereC(2)

S gets significantly depleted
fromunity (seefigure 5(b), g 2.5» ). These regions can be attributed to avoided crossings between the different
spin-states of the dominant spatial configuration n 0, 1, 2, 3, 4=

 ( )with states characterized by spatial
configurationswith double occupations of single-particle spatialmode(s) [e.g. n 0, 1, 2, 2, 3¢ =

 ( )].
Inspecting PS

1{ }( ) forN=5 fermions, see figure 5(g), similarmicroscopicmechanisms to theN=3 case
can be observed in both theweak-g and the ferromagnetically ordered regime.Despite the fact thatmore states
are involved, themain features essentially remain the same. Theweak-g demagnetization regime originates from
themultitude of branches emerging from the five available non-interacting Larmor frequencies. However, only
five (which can be identified as the energy differences between the S, x

5

2
∣ ⟩ℓ states) possess a significant amplitude

Figure 4.Time evolution of the populations of the S, i t
3

2
ñ¢∣ ( ) states of the n 0, 1, 2=

 ( ) configuration forN=3, g=2within
MCTDHF. (a) i′(t)=z′(t) and (b) i′(t)=y′(t).

Figure 5.Time evolution of (a), (c), (e) the spin polarizationmagnitude PS
(1) and (b), (d), (f) the spin–spin correlatorC(2)

S for varying g.
The presented results refer toN=5 fermions by employing (a), (b) theMCTDHF, (c), (d) the TDHF and (e), (f) the generalized spin-
chain approach. (g) Spectrumof the polarization vector PS

1{ }( ) forN=5 fermionswithinMCTDHF. Time evolution of the
populations of the S, i t

5

2
ñ¢∣ ( ) states of the n 0, 1, 2, 3, 4=

 ( ) configuration forN=5, g=1withinMCTDHF. (h) i′(t)=z′(t) and
(i) i′(t)=y′(t).
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for g 0.5>∣ ∣ . The frequency difference,ΔΩ, between the highest and lowest lying of the above five branches (see
figure 5(g)) gives rise to the decay ofPS

(1)within the ferromagnetically ordered regime observed infigure 5(a).
Finally, we show that even the superpositions emerging in the dynamics are of the same character as for

N=3 fermions. To reveal this we construct the precessing basis analogously to the caseN=3, namely
S t S, e ,j

S t
j

5

2
i 5

2
x L

1
2¢ ñ = ñW∣ ( ) ∣ˆ , E , , ,L

1

5

5

2

5

2

5

2

5

2
W = D ñ - ñ{∣ ∣ } and expand theMBwavefunction in terms of the

latter. Figures 5(h) and (i) present the results of this expansion for the axes z′(t) and y′(t) respectively and for
g=1within the ferromagnetically ordered regime. Figure 5(h) demonstrates that the collective precession of
the spins characterized by S t, 1z t

5

2

5

2
2á = Y ñ =¢∣ ∣ ( ) ∣( ) gets quickly dephased. At later times t≈350 the

dephasing of the collective Larmor precession leads to the formation of aNOON-like state characterized by
S t S t, , 1 2y t y t

5

2

5

2
2 5

2

5

2
2á = Y ñ = á = - Y ñ »¢ ¢∣ ∣ ( ) ∣ ∣ ∣ ( ) ∣( ) ( ) (see figure 5(i)), compliant with ourN=3 results.

5.Generalization to other dynamical systems

Belowwe demonstrate that the above identified ferromagnetic properties are not restricted to the previously
examined out-of-equilibrium scenario. Indeed, wewill show that the 1D spin-1/2 Fermi gas exhibits a similar
spin-dynamics for different initial states characterized by S N

2
» within the ferromagnetic-like regime, which,

furthermore, does not depend on the exact formof the Rabi coupling potential6. The special feature of the
specific dynamical protocol investigated in the previous sections is that it can be readily implemented in state-of-
the-art experiments (see also section 6).

It can be shown that any initial state which is dominated by the states of the n N0, , 1= ¼ -
 ( ) spatial

configurationwith S N

2
= possesses a similar spin–spin correlation dynamics to the ferromagnetic one,

x x xd 0F i i0
2 ò f yY ñ =  ñ= ∣ ( ) ˆ ( )∣†

. The reason is that the time-evolution of the expectation value of S
2ˆ reads

7t S t t S S S S t S
3

2
;

3

2
; e e

3

2
; 1

3

2
; .

S
x x

H H
x

S
x

2
2

2
2

x
N

N

t t

x
N

N

2

2 i i

2

2
^ ^^ ^  å åY Y = Y + - Y

=-

-

=-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )⟨ ( )∣ ∣ ( )⟩ ( ) ( )

This equation stems from the fact that the quantumnumbers S N

2
= and S , ,x

N N

2 2
Î - ¼{ }uniquely identify a

singleN-body state of the n N0, , 1= ¼ -
 ( ) configuration. Additionally, the Sx̂ operator commutes with both

S
2ˆ and Ĥ cancelling all cross terms thatwould appear in the first termof equation (7). Therefore, within the

ferromagnetically ordered regimewhere t S t 1N N2

2 2
áY Y ñ » +( )( )∣ ˆ ∣ ( ) , for 0 FY ñ = Y ñ∣ ( ) ∣ , all of the contributing

expectation values need to satisfy S S S; e e ; 1N
x

H H N
x

N N

2

2

2 2 2

t ti i
 á ñ » +- ( )∣ ˆ ∣ˆ ˆ , since the probabilities are positive

definite, i.e. t S; 0x
3

2
2áY ñ >∣ ( )∣ ∣ . This implies that for all initial states which satisfy S0 ; 1

S x
3

2
2

x
N

N

2

2å áY ñ »
=-

∣ ( )∣ ∣
the correlation dynamics within the ferromagnetically ordered regime is stable.

To provide concrete numerical evidence supporting the above-mentioned theoretical argument, we present
infigure 6, the time-evolution of the polarization, P(1)S , and the spin–spin correlator,C(2)

S , utilizing the
Hamiltonian of equation (5), in the case of the initial state [16]

x
x x x

x x x

x x x

x x x
d

3
0 . 8S Sz3 2, 1 2

3 0 1 0 2 0 3

1 1 1 2 1 3

2 1 2 2 2 3

1 2 3
^ ^ ^ò

f f f
f f f
f f f

y y yY == =   ∣ ⟩ !
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )∣ ⟩ ( )† † †
/ /

As it can be clearly seen the correlation dynamics (see figure 6(b)) is almost identical to the one observed in

section 3.1 for the fully spin-polarized initial state, x x xd 0F i i0
2 ò f yY ñ =  ñ= ∣ ( ) ˆ ( )∣†

(see alsofigure 1(b)).Most
importantly, the ferromagnetically ordered regime appears in the g0.5 4< <∣ ∣ interaction range, characterized
by C 1S

2 » , while losses of spin-alignment (i.e.C2
S< 1) are found outside of this interaction regime. The

polarization dynamics (see figure 6(a)), however, shows different patterns from the dynamics obtainedwith FY ñ∣ ,

since the initial polarization in the present case is PS
2 1

3
=( ) rather than unity. Nevertheless, within the

ferromagnetically ordered regimewe observe largefluctuations of the polarizationwhile the spin–spin correlator
is almost constant, similarly to the dynamics that the systemwith 0 FY = Y∣ ( )⟩ ∣ ⟩ follows (see figures 1(a), (b)).

According to our previous discussion (see section 2) the Rabi-coupling between the spin- and the spin-
states is assumed to beweak and the characteristic length of itsmodulation is larger than the length scale of the

trap,
m


w
. Due to these assumptions it is reasonable to approximate the Rabi-coupling potential by its Taylor

series.We can, thus, demonstrate that our results generalize to all Rabi-coupling potentials with a non-vanishing

6
Herewe assume aweak and spatially slowly varying coupling of the spin- and spin- states.
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second-order derivative7 by showing that a similar dynamics as in section 3.1 can be obtained for the parabolic
spin-coupling potential

H m x x x x
1

2
d . 9S

x2 2

,
ò åw y s y¢ = D

a b
a ab bˆ ( ) ˆ ( ) ˆ ( ) ( )†

For our simulationswe employ 0.1wD = , while the system is initialized in the fully polarized state, FY ñ∣ ,
though as argued above a similar dynamics takes placewhen the system is initialized in the S Sz3 2, 1 2Y ñ= =∣ state
(results not shownhere for brevity). As it can be seen, the behaviour of the system in terms of the spin-
polarization, P(1)S (see figure 6(c)) and the spin–spin correlations,C(2)

S (see figure 6(d)) is almost identical to the
case of HS

ˆ , equation (6) (see alsofigures 1(a) and (b)), with deviations occurring onlywithin the g≈0 region
(compare figures 6(c) and (b)).We also note that in the case of strong spin-dependent potentials, where the exact
shape of the Rabi-coupling potentialmight play an important role, spin segregation phenomena are induced
[28, 45]. These competewith the ferromagnetic order identified here, as the overlap of the spin-densities
provides an upper bound for S

2á ñˆ and therefore such investigations lie beyond the scope of this work.

6. Experimental realization

Our setup canbe realizedusing 40Katomsunder the influenceof aRamancouplingof the twoenergetically lowest
hyperfine states,while the observablesP(1)S andC(2)

S are accessible byfluorescence imaging. Belowwepropose a
possible experimental realization inorder toprobeourfindings. The robustness of the suggestedmeasurement
scheme is demonstratedby comparingourMCTDHFresultswith simulated sets of single-shot images that contain
additional noise emulating thisway thenoise sources inherent in a corresponding experiment [14–16].

The effectiveRabi coupling scheme, see HS
ˆ equation (6), canbeachievedby employing a two-photon resonant,

δ=0,Raman transitionvia twoGaussian focussed laser beams.To incorporatenon-negligible interatomic interactions
oneneeds to apply abiasmagneticfield close to thepoint of an s-wavebroadFano-Feshbach resonance [8]. For K40

atomsabroad s-waveFano-Feshbach resonancebetween thehyperfine states S F m; , F
2

1 2
9

2

9

2
ñ = = = - ñ∣ ∣ and

S F m; , F
2

1 2
9

2

7

2
ñ = = = - ñ∣ ∣ , is locatedat themagneticfield strengthBFF=202.10G [50].

Fluorescence imaging is commonly used toprobe the state of the system in few-atom (N< 10) experiments
[14].Here a certain number of atoms is ejected from the trap and recaptured into amagneto-optical trap [51].

Figure 6.Time evolution of (a), (c) the spin polarizationmagnitudeP(1)S and (b), (d) the spin–spin correlatorC(2)
S for varying g. The

presentedN=3 results are derivedwithinMCTDHF (a), (b)with 0 S Sz3 2, 1 2Y ñ = Y ñ= =∣ ( ) ∣ as initial state (see text) and by
employing theHamiltonian Ĥ or (c), (d)with 0 0Y ñ = Y ñ∣ ( ) ∣ and H HS+ ¢˜̂ ˆ .

7
TheHomogeneous term that is also contributing to the Taylor expansion ofHS, equation (6), preserves both of the Sẑ and S

2ˆ symmetries
of Ĥ̃ and consequently the its only effect is to shift the collective Larmor precession frequency.
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Subsequently, the number of ejectedparticles canbe inferred bymeasuring the intensity of the scattered light.We
show thatP(1)S andC(2)

S canbe experimentally detectedusingfluorescence imaging.P(1)S andC(2)
S dependon the

average and the variance of themagnitude of the spin polarization respectively. Because of the employedRaman
scheme theHamiltonian (6) is implemented in the interaction picture. This implies that in the Schrödinger picture
and in the absence of theRamanfields theorientation of the spin-vector precesses around the z spin-axiswith
frequency B B2 44.8 0.156G 1

FFw p= ´ + -
-[ ( )]MHz (whereB refers to thebiasmagneticfield). w

corresponds to the energy offset between the ñ∣ and ñ∣ states of K40 formagneticfields in the vicinity of BFF. As a
consequence only the spin-polarization along the z axis (i.e. population-imbalance in the occupation of the
hyperfine states ,ñ ñ∣ ∣ ) in spin–space can bedirectly probed. Tomeasure the spin-state in such atomic systems
Ramsay spectroscopy is employed to coherently rotate the rotating xor y axes in the interaction picture to the
stationary z axis, which is common forbothpictures.ARamsay spectroscopy sequence (described in the
interaction picture) is utilized. Initially all of the atoms are prepared in theN-body state 0Y ñ∣ ( ) , namely all atoms
reside in the ñ∣ hyperfine state.At time t=0 the inhomogeneousRaman coupling of the hyperfine states is
suddenly switched on and the fermions are exposed to it for time t. By the endof this process, theMBwavefunction
has evolved from 0Y ñ∣ ( ) to tY ñ∣ ( ) (in the interactionpicture)under the influenceof Ĥ . At time t, theRaman
coupling is suddenly switched off and the systemevolves for a dark time tdark.Within this time interval the
reestablished symmetries of theHamiltonian H HI0 +ˆ ˆ (see equations (3), (4))prohibit any change to S and S2. To
measure the Sxor Sy componentsweneed to rotate the desired spin component to the z axis by applying a−σyor

,x 2
s p -pulse respectively bymeans of spatially homogeneous two-photon-resonant optical Ramanfieldswith the

appropriate phase shift,f, from the inhomogeneous one (for Szno 2

p -pulse is used and the sequence continues

directlywith thenext step). This sequence stops theprecessiondynamics of the desired spin component in the
Schrödinger picture as it ismapped to the stationary z axis. In the following, all the spin- are removed from the
trap by applying a high-intensity resonant laser pulse at time tex [16]. The surviving atoms are loaded into the

magneto-optical trap (at t= tmeas) and counted to provide ameasurement for the spinpolarization Si
N N2

2
= -

along the selected axis iä { x, y, z }.
As a proof-of-principle of the above-mentioned imaging procedure we simulate single experimental

measurements, wherewe take into account a random error in the phaseΔf.We employ a generalized version of
the recent single-shot implementation offered byMulti-LayerMulti-ConfigurationHartreemethod for atomic
Mixtures (ML-MCTDHX) [36] (see [52–55] and appendix B for details) and evaluate PS

(1) andC(2)
S from the

simulated experimental data. Note thatΔfmight be induced by variations in the optical path of the−σy orσx,

2

p -pulse Raman beams. To incorporate this source of error we simulate experimentalmeasurements for each of

the x, y and z components of the spin vector and incorporate a random rotation by df along the z axis that
follows aGaussian distribution of widthΔf.

Figures 7(a) and (b) offer a comparison of ourMCTDHFdatawith the simulated experimental estimates
based on 600 single-shot realizations containing an errorΔf=π/12.We observe that despite the latter error
the single-shot results follow closely theMCTDHFdata and reproduce both the spin polarization PS

(1), as well as,
the correlation dynamicsC(2)

S . The uncertainty of the simulated single-shot results is of the order∼0.05.

Figure 7. (a), (c), (e)Comparison ofP(1)S as calculated byMCTDHF (solid lines) and the average of 600 single-shotmeasurements (data
points with error bars)within each of the dynamical regimes. For the single-shot simulations the errorΔf=π/12 has been
incorporated. (b), (d), (f) Similar to (a), (c), (e) but forC(2)

S . All quantities are given in harmonic units, error bars correspond to an
uncertainty of one standard deviation.
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Agreement between theMCTDHFdata and the single-shot estimates is observed also for the ferromagnetically
ordered (see figures 7(c) and (d)) and the strong-g demagnetization regime (seefigures 7(e) and (f)). Therefore,
we conclude that the error in the phasef is not prohibitive for accuratemeasurements of PS

1( ) andC(2)
S as long as

it is kept sufficiently smaller than
2

p .

7. Summary and outlook

Wehave explored the spin-flip dynamics of fewultracold fermions subject to spatially inhomogeneous external
driving of the spins. In particular, we showed that in this case the polarization of the confined Fermi gas cannot
be stabilized for any interaction strength. A result that lies in contrast to the picture of ferromagnetism provided
by the celebrated Stonermodel.Most importantly, a stable correlation-induced ferromagnetic spin-order
emerges in spite of the strongly fluctuating polarization formoderate interactions.We have characterized the
emerging spin-order by comparing ab initio simulationswith an effective spin-chainmodel in the few-body
case. The influence of correlations and the emergence of entangledNOON-like states during the dynamical
evolution of the systemhas been explicitly demonstrated. In theweak and strong interaction limit the behaviour
of the system is characterized by a significant depletion of the spin–spin correlator which can be related to the
corresponding avoided crossings appearing in the eigenspectrum.Our setup is experimentally accessible in 40K
few-atom experiments by employing a Raman coupling scheme of the two energetically lowest hyperfine states.
The observablesPS

(1) andCS
(1) can bemeasured by employing Ramsay spectroscopy and fluorescence imaging.

It is known that the properties of itinerantmagnetism vary depending on the confining potential [56].
Studying the stability of ferromagnetism in the case of a double well potential or an optical lattice can yield
further insights into themagnetic properties exhibited in 1D systems.Notice, also, that the spin-chainmodel
presented here is easily extendable to higher dimensional settings. The investigation onwhether a similar order
occurs in higher dimensional settings also provides an intriguing perspective for future study. Another
interesting prospect is to examine the demagnetization dynamics of few-fermionswhen exposed to Rashba and
Dresselhaus spin–orbit coupling [57, 58]. Thismight establish a link to relevant condensedmatter systems
where such demagnetizationmechanisms are well-studied [59–61]. Such dynamics have recently been
examined in the case of thermal Fermi gases in the collisionless regime [62–64].
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AppendixA. The computationalmethod:ML-MCTDHF and the spinor variant of
MCTDHF

Our approach to solve theMB Schrödinger equation H ti 0t ¶ - Y ñ =( ˆ )∣ ( ) relies on theML-MCTDHX [36].
In particular we employ a reduction of theML-MCTDHXmethod for spin-1/2 fermions being referred in the
following as the spinor-variant ofMCTDHF.MCTDHFhas been applied extensively for the treatment of
fermionswith orwithout spin-degrees of freedom, in a large class of condensedmatter, atomic andmolecular
physics scenarios (see e.g. [65–70]) and recently also applied in thefield of ultracold atoms [35–39, 71]. The key
idea ofMCTDHF lies in the usage of a time-dependent (t-d) and variationally optimizedMBbasis set, which
allows for the optimal truncation of the totalHilbert space. The ansatz for theMBwavefunction is taken as a
linear combination of t-d Slater determinants n t ñ

∣ ( ) , with t-dweight coefficients A tn
 ( )

t A t n t . A1
n

nåY ñ = ñ



∣ ( ) ( )∣ ( ) ( )

Each t-d Slater determinant is expanded in terms ofM t-d variationally optimized single-particle functions
(SPFs) t l M, 1, 2, ,lf ñ = ¼∣ ( ) with occupation numbers n n n, , M1= ¼

 ( ). The SPFs are subsequently
expanded in a primitive basis k s, ñ{∣ }, being the tensor product of a discrete variable representation (DVR) basis
for the spatial degrees of freedom kñ{∣ }of dimensionMp and the two-dimensional spin basis ,ñ ñ{∣ ∣ }

t C t k . A2j
k

M

k
j

1 ,

p

å åf añ = ñ ñ
a

a
= =  

∣ ( ) ( )∣ ∣ ( )
{ }
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Cj
k α(t) refer to the corresponding t-d expansion coefficients. Note here that each t-d SPF is a general spinor

wavefunction of the form t x x x x xd 0j j jòf c y c yñ = + ñ



∣ ( ) [ ( ) ˆ ( ) ( ) ˆ ( )]∣† †

and hence the employedmethod is
termed as the spinor-variant ofMCTDHF. The time-evolution of theN-bodywavefunction under the effect of
theHamiltonian Ĥ reduces to the determination of theA-vector coefficients and the SPFs, which in turn follow
the variationally obtainedMCTDHF equations ofmotion [34–36]. In the limiting case ofM=N, themethod
reduces to the TDHFmethod, while for the case ofM=2Mp, it is equivalent to a full configuration interaction
approach (commonly referred to as ‘exact diagonalization’ in the literature)within the basis k s, ñ{∣ }.

For our implementationwe have used a harmonic oscillatorDVR,which results after a unitary
transformation of the commonly employed basis of harmonic oscillator eigenfunctions, as a primitive basis for
the spatial part of the SPFs. To study the dynamics, we propagate thewavefunction by utilizing the appropriate
Hamiltonianwithin theMCTDHF equations ofmotion. To verify the accuracy of the numerical integration, we
impose the following overlap criteria 1 10 8áY Yñ - < -∣ ∣ ∣ for the total wavefunction and 10i j ij

9j j dá ñ - < -∣ ∣ ∣
for the SPFs. To infer about convergence, we increase the number of SPFs andDVRbasis states such that the
observables of interest (PS

(1),Cs
(2)) do not changewithin a given relative accuracy which is in our case 10−4.More

specifically, we have usedMp=60,M=26 andMp=80,M=20 for theN=3 and theN=5 case
respectively. Note that a full configuration interaction treatment of the above-mentioned systems in the
employed primitive bases would require 280 840 number-states forN=3 and 820 384 032 ones forN=5.

Appendix B. Single-shot procedure in spin-1/2 Fermi gases

The single-shot simulation procedure relies on a sampling of theMBprobability distribution, being available
within theML-MCTDHX framework. In a spinor Fermi gas the single-shot procedure is altered significantly
when compared to the single component case [52–54]. Here the role of entanglement between particles in
different spin states plays an important role. For example consider the procedure that the spin- atoms are
imaged before the spin- atoms. Then, the total number of spin- atomsN↑

imag that will be imaged is not a priori
knowndue to the breaking of the Sz symmetry. However, after imaging all of the spin- atoms the number of
spin- atoms is exactly known N N Nimag imag= -  since the total number of atomsN is definite.

To capture the entanglement between the different spin states theMBwavefunction obtained byML-
MCTDHX should be expressed such that the entanglement between the spin states is evident. The spin-1/2
Fermi gas under consideration is a bipartite system [72, 73] since the spatial degree of freedom for each particle
in the spin-or spin- state resides in the Fock space ,   respectively. The latter results in a total Fock space

S 1 2  = Ä=  . Then, theMBwavefunction can be expressed in the Schmidt decomposition form
(herewithwe omit the temporal dependence for simplicity)

. B1
k

K

k k k
1

å lYñ = Y ñ Y ñ
=

 ∣ ∣ ∣ ( )

The coefficientλk is referred to as the natural occupation of the species function k
8. Note that, k Y ñ Îa a∣ and as

such the number ofα-spin particles varies for different Schmidtmodes, k. A state of the bipartite system (see
equation (B1)) cannot be expressed as a direct product of two states from the two subsystemFock spaces a if at
least two coefficients kl are nonzero. In the latter case the system is referred to as entangled [74]. The Schmidt
decomposition of theMBwavefunction is obtained as follows. The reduced densitymatrix for one of the spin
states, let it beα, is evaluated i.e. Trr = YñáYa

a¢[∣ ∣], whereα′ refers to the spin state orthogonal toα and
subsequently diagonalized resulting in its Schmidt representation k

M
k k k1r l= å Y ñáYa a a

= ∣ ∣. Then, the corresp-
onding species wavefunction of the spin stateα′ can be calculated by k k

1

k
Y ñ = áY Yña

l
a¢∣ ∣ .

The single-shot process in spinor gases represents a generalization of the single-shot process for amixture
with a definite number of atoms in each species [55]. This generalization is based on the treatment of the vacuum
state 0 ña∣ . Before each step of the single-shot process the existence of particles in the imaged spin state is checked.

To perform the latter a randomnumber in the interval Prandä [0, 1] is comparedwith kl ˜, where k̃ is the Schmidt
mode forwhich 0

k
Y ñ = ña a∣ ∣˜ holds. If P krand l< ˜ the imaging of the spin stateα ends and theMBwavefunction

is projected to 0
k

Yñ = ñ Ä Y ña a¢∣ ˜ ∣ ∣ ˜ . Then the simulation of the imaging of theα′ spin state is initiated. TheMB

wavefunction in this case is the species wavefunction
k

Y ña¢∣ ˜ and as such the single-shot procedure reduces to the
well-established single species case (see [52–54] and also the discussion below). For P krand l> ˜ a particle in the
spin stateα is imaged. First, a randomposition is drawn according to the constraint

8
The upper bound for summation reads K min dim , dim =  ( ( ) ( )) and it is therefore infinite in the general case even after considering

that the   and  are restricted by the condition N N N, <  . However, spinorMCTDHF truncates the dimension of each Fock space to
dim N

N M

N M N0 = åa
= -a a a

( ) !
! ( ) ! . For realistic applications even the latter value is too high andmost of the kl ʼs have a numerical-zero value.

To cure this problemwe truncate the Schmidt decomposition further by setting K Kmin eff= ( ) obeying 10k K
12effl <>

- .
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x x x l1
1 1 1 1r y y¢ = áY ¢ ¢ Yñ >a a a( ) ∣ ˆ ( ) ˆ ( )∣( ) †

where l1 refers to a randomnumberwithin the interval [0,max{ρ(1)α (x)}].

Thenwe project theN-bodywavefunction to the (N− 1)-body one by employing the operator x1
1

y ¢aˆ ( ), where
x x1 1

^ ^ y y= Y Ya a
¢ ¢⟨ ∣ ( ) ( )∣ ⟩†

is a normalization factor. The latter process directly affects the Schmidt coefficients
λkʼs (entanglement weights) and thus despite the fact that the spin-α′ atoms have not been imaged yet, both

x x x1r y y= áY Yñ  ( ) ∣ ˆ ( ) ˆ ( )∣( ) †
and x x x1r y y= áY Yñ  ( ) ∣ ˆ ( ) ˆ ( )∣( ) †

change. This can be easily understood by

employing again the Schmidt decomposition. Indeed after thisfirstmeasurement the (N− 1)-particleMB
wavefunction reads

, B2
k

k k k
1 1 1å lY ñ = Y ñ Y ña a- - - ¢∣ ˜ ˜ ∣ ˜ ∣ ( )( ) ( ) ( )

where xk N k

1 1
1

k
ŷY = Y

~a
a

a- ¢∣ ⟩ ( )∣ ⟩( )
refer to the species wavefunction after the imaging and

N x xk k k1 1y y= áY ¢ ¢ Y ña
a a

a∣ ˆ ( ) ˆ ( )∣†
denotes the corresponding normalization factor. Finally, the Schmidt coeffi-

cients read N Nk k k m m m
1 2l l l= å

-˜ ( )
. The above-mentioned procedure is repeatedNimag

α times until the

condition 0 1N imag
á Y ñ =a - a∣∣ ∣ ∣∣( ) is reached or if a randomnumber satisfying P

k
N

rand
imag

l< - a(̃ ) is selected. The
resulting distribution of positions (x1¢,..., x

N imag¢
a

) is convolutedwith a point spread function leading to a single-
shot xa( ˜) for the spatial configuration of spin-α particles, where x̃ refers to the spatial coordinates within the
image. It is worthmentioning at this point that, in the special case for which the probability of N Nimag =a is

zero, it can be easily shown that upon annihilating the last spin-α particle (provided that P
k

N
rand

1imag

l> - +a(̃ ) is
chosen) the N N imag- a( )-particleMBwavefunction becomes

x

x

0 . B3N

k k

k
N

N k

m k k
N

N k

k

1

1 2

imag

imag

imag

imag

imag

å
å

l

l
Y ñ = ñ Ä

á ¢ F ñ

á ¢ F ñ
Y ña

a

a

a-

¹

- +

¹
- +

¢a

a

a

a

a

∣ ˜ ∣
˜ ∣

˜ ∣ ∣ ∣
∣ ( )( )

˜

( )

˜
( )

After this last step the entanglement between the spin states has been destroyed and the single component
wavefunction of the spin a¢ atoms N imag

Y ñ- a∣ ( ) corresponds to the second termon the right hand side of
equation (B3).

In this way, it becomes evident that after the imaging of spinα particles the resultingwavefunction
N imag

Y ñ = Y ña- ¢a∣ ∣( ) (see equation (B3)) is a non-entangled (N−Nα
imag)-particleMBwavefunction and its

corresponding single-shot procedure is the same as in the single species case [52]. The latter is well-established
(for details see [52, 53]) and here it is only briefly outlined below.Wefirst calculate x1ra¢ ( )( ) from theMB

wavefunction N imag
Y ñ = Y ña- ¢a∣ ∣( ) . Then, a randomposition x1

¢¢ is drawn obeying ρ(1)α′ ( x1
¢¢ )>l2 where l2 is a

randomnumber in the interval x0, max 1ra¢[ [ ( )]( ) . Next, one particle located at position x1
¢¢ is annihilated and

ρ(1) ′α′ (x) is calculated from x xN N1 1
1

1 2
1

imag imag
r yY ñ =   Y ña a

- -
¢

-
¢

-a a∣ [ ( )] ˆ ( )∣( ) ( ) ( ) . To proceed, a new randomposition

x2
¢¢ is drawn from ρ(1) ′α′ (x; tim). Following this procedure for N N imag- a steps we obtain the distribution of

positions (x1
¢¢, ..., x

N N imag-
¢¢

a
)which is then convolutedwith a point spread function resulting in a single-shot

image x x ¢a a¢( ˜ ∣ ( ˜)).

AppendixC. Spin-chain approach

The spin-chainHamiltonian builds upon the spin dependent eigenstates, nc ña∣ , of the non-interacting

Hamiltonian H HS0 +ˆ ˆ , where n,a denote the spin and spatialmodes. To simplify the notation below, we

perform a rotation in spin-space by employing the unitary operatorU e Si y4= pˆ ˆ such that the x axis (seemain text)
ismapped to the z axis and thus the spin-modes correspond to ,a Î  { }. The nth spatialmode is considered
as singly occupied if either nc ñ∣ or nc ñ∣ is occupied, doubly occupied if both are occupied and unoccupied if
neither is occupied. Then the spatial configurations are defined by n n n, , N1= ¼

 ( )where ni refers to the
occupied spatialmodes. There are 2N−2D (D denotes the number of double occupations) distinct states that
correspond to the same spatial configuration, n


, corresponding to the different available spin-configurations

, , N1a a a= ¼
 ( ). Consequently, a basis state of theN-body system, n c c; ... 0n nN N1 1

añ = ña a
 ∣ ˆ ˆ ∣† † , is completely

defined by its spin and spatial configurations a and n

respectively.

Toderive the effectiveHamiltonianof the spin-chainmodel, H
effˆ , weneglect all terms that couple states of

different spatial configurations. Thenon-interactingHamiltonian H HS0 +ˆ ˆ is diagonal on thebasis states n , añ
 ∣ and

thus its exact form is incorporated in the effective spin-chainHamiltonian, H
effˆ .However, the same is not true for

the interaction term HI
ˆ . According to the above-mentioned approximation, the general formof the effective
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interaction term, HI
effˆ , contains all the terms in HI

ˆ that preserve the spatial configurationof the state they act on.

There are only two terms in HI
ˆ that possess the latter property and are linearly independent, namely the HI

shiftˆ and

HI
excˆ terms. H g u c c c cI m n

m
mm
nn

n m m n
shift

, 0
max= å =    ˆ ˆ ˆ ˆ ˆ† † accounts for the energy shift of the single-particlemodes due to

interaction,where u x x x x xdmp
nq

n m p q*ò c c c c=    [ ( ) ( )] ( ) ( ) denote the corresponding interaction integrals.
H g u c c c cI m

m
n m nm

mn
m n m n

exc
0

max= å å= ¹    ˆ ˆ ˆ ˆ ˆ† † allows for the exchangeof the single-particlemodes after a collision event.

Therefore, the effectiveHamiltonian reads H H H HS I
eff

0
eff

= + +ˆ ˆ ˆ ˆ , where H H HI I I
eff shift exc

= +ˆ ˆ ˆ .

To cast H
effˆ in the spin-chain formwe define the spin operators for each spatialmode c c c cn n n n n

0s = +   ˆ ˆ ˆ ˆ ˆ† † ,

c c c cn
z

n n n ns = -   ˆ ˆ ˆ ˆ ˆ† † , c cn n ns =+
 ˆ ˆ ˆ† and c cn n ns =-

 ˆ ˆ ˆ† . The effectiveMBHamiltonian H
effˆ conserves the spatial

modes for each spatial configuration n n n, , N1= ¼
 ( ) as it commutes with the projection operators

P c c c c... ... 0 0 ... . C1n n n n n
, ,N

N N N N

1

1 1 1 1å å= ñá
a a

a a a a
=   =  

ˆ ˆ ˆ ∣ ∣ˆ ˆ ( )
{ } { }

† †

Employing this projection operator, we can derive the spin-chainHamiltonian, H P H Pn n n
eff=  ˆ ˆ ˆ ˆ , for each

configuration n

with no double occupations (i.e. n n i j, ,i j¹ " ), corresponding to theN-spinXXZ spin-chain

H g h g g J J J . C2n n
i

N

n n
z

i

N

j i

N

n n n n n n n n n n
z

n
z

n
z

1 1

1

1
i i i j i j i j i j i j i j

*å å åe s s s s s s s= + - + +
= =

-

= +

^ + - ^ - + ˆ ( ) ( ) ˆ [( ˆ ˆ ˆ ˆ ) ˆ ˆ ] ( )

The spin–spin interactions are given by the overlap integrals J unm nm
mn=^ and J u unm

z
mm
nn

nn
mm1

4
= +( ). The

interaction-dependent energy shift gne ( ) and the localmagnetic field h gni
( ) read

g
E E

g J

h g
E E

g
u u

2
,

2 4
. C3

n
i

N
n n

i

N

j i

N

n n
z

n
n n

j j i

N
n n
n n

n n
n n

1 1

1

1

1,

i i

i j

i
i i j j

i i
i i
j j

å å å

å

e =
+

+

=
-

+
-

=

 

=

-

= +

 

= ¹

 ( )

( ) ( )

The configurations withD double occupations have to be treated separately because the creation operator of
a double occupancy c cn n ˆ ˆ† † possesses a non-trivial commutation relationwith the n

0ŝ one,

c c c c, 2m n n nm n n
0s d=   [ ˆ ˆ ˆ ] ˆ ˆ† † † † . In this case, it turns out that the projectedHamiltonian, Hn

ˆ , is expressed in terms of a

(N− 2D)-spinXXZHamiltonian, Hm
D2ˆ ( )
, with m


being a N D2-( )-particle configuration composed of the

singly occupied states of n

. The Hn

ˆ and Hm
D2ˆ ( )
are related via the creation operator of all the double occupations

c ck j
D

k k0
1

j j
 º  =

-
 

ˆ ˆ ˆ† † † , where k

is the vector of doubly occupiedmodes in n


, as H Hn k m

D
k

2 =   ˆ ˆ ˆ ˆ† ( )
. Hm

D2ˆ ( )
has

exactly the same form as equation (C2) but the energy shift, gm
D2e  ( )( ) , and localmagnetic field, h gm

D2
i

( )( ) , possess
additional contributions when compared to the ones in equation (C3). Namely,

g g g J J J

h g h g g
u u

2 2 4 ,

2
. C4

m
D

m
i

D

k
i

D

k k
z

i

D

j i

D

k k
z

i

D

j

N D

k m
z

m
D

m
j

D
k k
m m

m m
k k

2

1

0

1 1

1

1 1 1

2

2

1

i i i i j i j

i i

j j

i i
i i
j j

å å å å å å

å

e e e= + + + +

= +
-

= = =

-

= + = =

-

=

 
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

( ) ( ) ( )

( )

( )

Theweight of each spatial configuration to theMBwavefunction tY ñ∣ ( ) is constant in time as the

w t P tn n= áY Y ñ ( )∣ ˆ ∣ ( ) are conserved. Therefore, the time evolution of theMBwavefunctionwithin the spin-
chain approximation reads

t w e 0 , C5
n

n
iH t

n
nåY ñ = Y ñ-


 ∣ ( ) ∣ ( ) ( )ˆ

where P0 0n w n
1

n
Y ñ = Y ñ 

∣ ( ) ˆ ∣ ( ) is the normalized initial wavefunction for eachXXZ spin-chain.

The generalization of the presentedmethod compared to the one developed in [28] is the inclusion of the
interaction-dependent localmagnetic potential (see equations (C2) and (C4)), which vanishes for a linear
gradient as the one considered in [28] in the present case such a term is important for obtaining the correct
behaviour of the polarizationmagnitude PS

1( ) in the ferromagnetically ordered regime.Within our

implementationwe numerically diagonalize the one-bodyHamiltonian, H HS0 +ˆ ˆ , by employing the basis
consisting of the 80 energetically lowest eigenstates of the harmonic oscillator and truncate the summation over
n

of equation (C5) by taking into account only the contributions of the spatialmode configurations with

w 10n
12> -∣ ∣ . This truncation results in 1520 and 38304 configurations forN=3 andN=5 fermions

respectively.
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Abstract
We explore the stability of the phase separation phenomenon in few-fermion spin-1/2 systems
confined in a double-well potential. It is shown that within the SU(2) symmetric case, where the
total spin is conserved, the phase separation cannot be fully stabilized. An interaction regime
characterized by metastable phase separation emerges for intermediate interactions which is
inherently related with ferromagnetic spin–spin correlations emerging within each of the wells.
The breaking of the SU(2) symmetry crucially affects the stability properties of the system as the
phase separated state can be stabilized even for weak magnetic potential gradients. Our results
imply an intricate relation between the phenomena of phase separation and ferromagnetism that
lies beyond the view of the Stoner instability.

1. Introduction

Understanding the properties of itinerant magnetism has been a long-standing problem in condensed
matter physics [1, 2]. Its importance stretches beyond this field of study since it impacts the behaviour of a
large class of quantum systems encountered e.g. in atomic physics [3, 4]. The emergence of ferromagnetism
in systems of spatially delocalized short-range repulsively interacting spinor fermions has been historically
qualitatively understood in the framework of the Stoner instability [5]. Within this framework
ferromagnetism is related to the phase separation of the different spin components and the formation of
ferromagnetic domains [6–8]. Ultracold atoms provide a fertile platform to investigate such quantum
many-body (MB) phenomena due to their exceptional tunability [3]. Indeed, several experiments utilizing
ensembles of ultracold fermions have attempted to implement and study the Stoner instability [9–13] but
their results have been somewhat inconclusive [14, 15].

The phase separation of Fermi systems has been studied in the case of strong attractive interactions
[16–18] where the phenomenon of spin-segregation for weak attraction or repulsion has been identified
[19–21]. However, only recently experiments attempted to address the relation between ferromagnetism
and phase separation in the case of a repulsively interacting Fermi-gas [11, 13]. For instance, it has been
demonstrated [11] that an artificially prepared phase separated state becomes metastable for strong
repulsions which in turn implies the presence of a ferromagnetic instability. Accordingly, by employing
pump-probe spectroscopy the emergence of short-range two-body anti-correlations in the repulsive
Fermi-gas supporting some sort of ferromagnetic order has been revealed [13], while the possibility of
macroscopic phase separation has been ruled out. These experimental evidences indicate that the relation
between phase separation and magnetism might be more intricate and involved than it appears within the
framework of the Stoner instability manifested within the Hartree–Fock theory. Nevertheless, competing
processes such as the Feshbach molecule formation [22, 23] and its possible enhancement by coherent
processes [14] have hindered the experimental progress in this direction. As a consequence a complete
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understanding on how and via which mechanism phase separation and ferromagnetism are related remains
still elusive.

Here we propose that one-dimensional (1D) few-body systems offer an ideal platform to provide insight
into these fundamental questions. Besides the suppression of the above-mentioned competing processes
which render the magnetic properties of 1D spin-1/2 fermions experimentally addressable [24, 25], the
corresponding theoretical understanding of these properties is also advanced. Indeed, the availability of
numerically-exact methods [26–28] and the development of powerful spin-chain models [29–36] allows for
the accurate modeling of the magnetic properties emerging in 1D systems in the cases of strong [29–34]
and weak [35, 36] interactions. Regarding the occurrence of phase separation previous studies revealed the
role of the breaking of the SU(2) symmetry, associated with the conservation of the total spin of the system.
Moreover, manifestations of the interplay between the magnetic properties and the phase separation have
also been reported [35–40]. Below, we provide some characteristic examples. It has been demonstrated [37,
38] that contrary to mean-field treatments phase separation does not occur during the interaction-quench
dynamics of an SU(2) symmetric system. However, the ground state of a system with weakly broken SU(2)
symmetry is known [39, 40] to be phase separated in the case of infinite repulsion. In contrast, it has been
shown that a parabolically confined initially spin-polarized Fermi-gas in the case of weak interactions
prefers a state of largely miscible spin components even when perturbed by a spin dependent potential
which weakly breaks the SU(2) symmetry [35]. In particular, for sufficiently weak spin-dependent potentials
a ferromagnetic order despite the miscible character of the Fermi-gas has been established [36]. However, a
systematic study that clarifies the relation between the phase separation and the magnetic properties of 1D
fermions unifying, also, the above results is currently absent. Furthermore, the comparison of the
underlying mechanisms provided by such a unification with the expectations of the Stoner instability might
provide invaluable insights into the study of magnetic phenomena emerging in more complex systems.

Here we attempt to bridge this apparent gap in the literature by studying the stability of the phase
separated state during the correlated dynamics of fermionic ensembles confined in a double-well (DW). The
employed DW confinement allows for the experimental implementation of the phase separated initial state
[11, 41]. This initial state is allowed to evolve for different values of the interaction strength and the degree
of the dynamical phase separation between the spin components is monitored. To capture the correlated
out-of-equilibrium dynamics of this spinor fermion system we resort to the multilayer multiconfiguration
time-dependent Hartree method for atomic mixtures (ML-MCTDHX) [28]. Focussing on an SU(2)
invariant system and following the above-mentioned procedure we find that for weak interactions the phase
separation is unstable. While for increasing repulsion an interaction regime where the phase separated state
becomes metastable is unveiled. To identify the emergence of this metastable state and its relation with the
magnetic properties of the system we invoke an effective tight-binding model. The metastability of the
phase separated state is shown to be inherently connected with the appearance of a quasi-degenerate
manifold of eigenstates characterized by intra-well ferromagnetic correlations of both wells but a varying
total spin. The occurrence of this manifold is attributed to the ferromagnetic Hund exchange interactions
[42–44] appearing within each well of the DW setup. Moreover, the low-frequency tunneling dynamics that
leads to the decay of the metastable initial state provides a manifestation of the antiferromagnetic Anderson
kinetic exchange interactions [45]. These interactions act between the wells and result in the lifting of the
degeneracy among states exhibiting intra-well ferromagnetic correlations.

For larger interactions, the interband coupling introduced by cradle-like processes [46–48] is shown to
result in a fastly decaying dynamics of the phase separation, thus limiting the interaction regime where this
metastability of the initial state is exhibited. The breaking of the SU(2) symmetry is found to substantially
affect the dynamics of the system. Indeed, the initial phase separated state of the system can be stabilized by
applying a linear magnetic potential gradient to the system. This stabilization is much more prevalent in the
case of intermediate interactions due to the occurrence of quasi-degenerate eigenstates with different total
spin. Our results demonstrate the relation of the phase separation to the stability of the intra-well
ferromagnetic order. Indeed, the interplay of the Anderson and Hund exchange interactions is found to
dictate the behaviour of the system in terms of these two above phenomena implying that their relation is
more intricate than what is qualitatively expected in view of the Stoner instability.

This paper is structured as follows. In section 2 we introduce our setup and discuss its inherent spin
symmetries. Section 3 presents the MB dynamics of our system and showcases the important features of the
related eigenspectrum. An effective tight-binding model of our system is introduced in section 4 which is
subsequently utilized to expose the magnetic properties of the system during the dynamics. In section 4 we
study the dynamics in the case of a broken SU(2) symmetry. Finally, in section 6 we conclude and provide
future perspectives. In appendices A and B we generalize our results for more particles and different barrier
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heights respectively. Appendix C provides the derivation of the Anderson effective kinetic exchange
interaction for our DW setup and appendix D describes the employed numerical approach, namely the
ML-MCTDHX method.

2. Description of the system and relevant observables

2.1. Hamiltonian and symmetries
We consider an interacting system consisting of N spin-1/2 fermions of mass m being confined in an 1D
DW trap. The latter is composed by a harmonic oscillator with frequency ω and a Gaussian barrier. Such a
system is described by the MB Hamiltonian Ĥ = Ĥ0 + ĤI, where Ĥ0 and ĤI correspond to its
non-interacting and interacting parts respectively. The Hamiltonian, Ĥ, expressed in harmonic oscillator
units (� = m = ω = 1), reads

Ĥ =
∑

α

∫
dx ψ̂†

α(x)

(
−1

2

d2

dx2
+

1

2
x2 + V0 e− x2

2w2

)
ψ̂α(x)

︸ ︷︷ ︸
≡Ĥ0

+ g

∫
dx ψ̂†

↓(x)ψ̂†
↑(x)ψ̂↑(x)ψ̂↓(x)

︸ ︷︷ ︸
≡ĤI

, (1)

where ψ̂α(x) denotes the fermionic field operator with spin-α ∈ {↑, ↓}. V0 and w refer to the height and
width of the Gaussian barrier respectively. In the ultracold regime, g describes the effective 1D s-wave
contact interaction strength between anti-aligned spins. This effective interaction strength, g, is known to be
related with the transverse confinement length and the 3D s-wave scattering length [49]. The above imply
that the interaction strength is experimentally tunable with the aid of confinement-induced and
Fano–Feshbach resonances [22]. The Hamiltonian of equation (1) is invariant under rotations in spin-space
as it commutes with the total Ŝz, Ŝ± = Ŝx ± iŜy spin operators. The corresponding individual spin
operators, Ŝk, are defined as

Ŝk =
1

2

∫
dx
∑

α,β

ψ̂†
α(x)σk

α,βψ̂β(x), (2)

with σk, k ∈ {x, y, z}, referring to the corresponding Pauli matrix. The system additionally possesses an

SU(2) symmetry since Ĥ (equation (1)) commutes with the total spin operator, Ŝ
2
= Ŝ+Ŝ− + Ŝz(Ŝz − 1). As

we shall demonstrate later on, this symmetry has a deep impact on the eigenspectrum of the system.
The behaviour of the single-particle Hamiltonian Ĥ0 for varying V0 and w is well-known [50, 51] and

depicted in figure 1(a). For V0 = 0 the harmonic oscillator potential is retrieved and the single-particle
spectrum consists of equidistant states. As V0 is increased, gradually all the eigenenergies, starting with the
energetically two lowest ones, form quasi-degenerate pairs of different parity states (herewith called bands).
Employing linear combinations of the two eigenstates forming the band, b, it is possible to construct the
so-called Wannier states, φb

s (x), which are localized either in the left, s = L or the right well, s = R [52]. The
single-particle dynamics of a system initialized in such a Wannier state is rather simple as the particle
tunnels from each well to the other during the evolution with a frequency given by the energy difference,
2tb, between the two quasi-degenerate states which form the corresponding band.

2.2. Initial state characterization
The purpose of this work is to examine whether a phase separated state can be stabilized in the presence of
interactions and reveal its relation to the (ferro)magnetic properties of the system. A promising candidate
for such an investigation is the initial state

|Ψ(0)〉 =

N↑−1∏

b=0

∫
dx φb

L(x)ψ̂†
↑(x)

︸ ︷︷ ︸
≡âb†

L↑

N↓−1∏

b=0

∫
dx φb

R(x)ψ̂†
↓(x)

︸ ︷︷ ︸
≡âb†

R↓

|0〉, (3)

where N↑ = N
2 spin-↑ and N↓ = N

2 spin-↓ fermions are localized in the left and right wells respectively (see
figure 1(b) for N = 4). Recall that φb

s (x) denotes the Wannier state corresponding to the s ∈ {L, R} well and
band b. Herein, we intend to address the dynamics of a system initialized in the state described by
equation (3), especially focussing on the stability properties of the phase separation. Evidently, in the
non-interacting case each one of the constituting particles will perform its individual tunneling oscillation
with a frequency 2tb and, consequently, the phase separation imprinted in the initial state will be

3
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Figure 1. (a) Single-particle eigenspectrum of a DW with w = 0.5 for a varying barrier height V0. b refers to the band index and
εb, tb to the energy and tunneling rate of the b band respectively. Schematic illustration (b) of the initial state |Ψ(0)〉 and (c) the
possible states accessed by single-particle tunneling for N↑ = N↓ = 2.

periodically lost and recovered during the time-evolution. However, in the case of g �= 0 the individual
tunneling channels of each of the particles couple due to the interparticle interaction. The interaction
between the spin components is particularly important since the system accesses via tunneling, states
possessing a substantial density overlap for anti-aligned spins yielding an interaction energy
EI ∼ g

∑
s∈L,R

∫
dx|φb

s (x)|2|φb′
s (x)|2, see for instance figure 1(c). Employing a mean-field argumentation one

arrives at the conclusion that the tunneling among the wells slows down and eventually terminates as the
repulsion increases. This is due to the large interaction energy of a spin-↑ and a spin-↓ atom occupying the
same well when compared to the interaction energy contained in |Ψ(0)〉 where the spin components are
phase separated. However, the interparticle interaction possibly induces two- (or more) body correlations
crucially affecting the dynamics of the system. As we shall demonstrate later on this is indeed the case and
the dynamics for g �= 0 is more involved than what is expected by the above-mentioned mean-field
argumentation.

2.3. Magnetization imbalance and MB eigenstate categorization in terms of bands
To monitor the degree of phase separation between the spin components during the dynamics of the system
we employ the experimentally accessible measure [11, 41]

M =
1

2
(M↑ − M↓), with Mα =

1

Nα

(∫ 0

−∞
dx ρ(1)

α (x; t) −
∫ ∞

0
dx ρ(1)

α (x; t)

)
. (4)

Here ρ(1)
α (x; t) = 〈Ψ(t)|ψ̂†

α(x)ψ̂α(x)|Ψ(t)〉 is the spin-dependent, α ∈ {↑, ↓}, one-body density. Notice that
both the Hamiltonian, equation (1), and the initial state, equation (3), are invariant under the
transformation x → −x, | ↑〉 → | ↓〉 and | ↓〉 → | ↑〉, implying that M↑ + M↓ = 0 is conserved during the
dynamics. The quantity M takes its extreme values M = 1 and M = −1 when the particles within each of
the wells are fully-polarized, a situation equivalent to a perfect phase separation. The sign of M in this case
depends on whether the spin-↑ particles reside in the left (M = 1), as is the case for |Ψ(0)〉, or right
(M = −1) well. In the case that M = 0 the spin-↑ and spin-↓ particles are distributed over both wells
showing that the spin components are miscible. Since M �= 0 corresponds to states magnetized along the x
spatial-axis (see also equation (3)), M will be herewith referred to as magnetization imbalance.

Furthermore, let us note that for large barrier heights and weak or intermediate interactions, we expect
that the band-gaps between the non-interacting bands constitute the largest energy scale of the system, see
figure 1(a). As a consequence, the energetic characterization of the MB eigenstates in terms of
non-interacting bands will be of great importance in the following. We assign each eigenstate of the
non-interacting N-body system, |Ψg=0〉 to an energetic class by employing the vector 
nB = (n0

B, n1
B, . . . ).

This vector contains the occupation numbers of each of the non-interacting bands,
nb

B = 〈Ψg=0|n̂b
L↑ + n̂b

R↑ + n̂b
L↓ + n̂b

R↓|Ψg=0〉 (0 � nb
B � 4), with n̂b

sα being the number operator that counts

the number of spin-α particles residing in the Wannier state φb
s (x). Accordingly, each eigenstate of the

interacting system, g �= 0, will be assigned to an energy class, 
nB, if it constitutes a superposition of
non-interacting eigenstates of this particular class. For instance the initial state, |Ψ(0)〉, belongs to the

nB = (2, 2, 0, . . . ) class for N = 4, see also figure 1(b). Indeed, the initial state for N = 4 contains two
fermions in the 0th band (n0

B = 2) and two additional ones residing in the 1st excited band (n1
B = 2).

4
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3. Many-body eigenspectrum and correlated dynamics

In this section we examine the eigenspectrum of the full MB Hamiltonian Ĥ (see equation (1)) in the case
of N = 4 fermions. Then we analyze the correlated dynamics of such a system initialized in the state |Ψ(0)〉
(equation (3)) and subsequently left to evolve within Ĥ. This investigation permits us to identify the
emergent phase separation behaviour between the spin components for varying interaction strength. To
track the correlated dynamics of this system we employ ML-MCTDHX [28] and, in particular, its reduction
for spin-1/2 fermions (for more details see appendix C). ML-MCTDHX is an ab initio variational method
that takes all correlations into account enabling us to reveal their influence into the static properties and in
particular the dynamics of MB systems. We generalize our results to the N > 4 case in appendix A.

3.1. Many-body eigenspectrum
The eigenspectrum of Ĥ (equation (1)), for N↑ = N↓ = 2 fermions and varying g, is presented in
figure 2(a), in the case of a relatively deep (V0 = 8, w = 0.5) DW potential. The overlap of the MB
interacting eigenstates, |Ψi〉 with the initial state, |Ψ(0)〉 is indicated by the different colors in figure 2(a).
Based on the eigenspectrum we can identify four different interaction regimes, indicated by A, B, C and B′

in figure 2(a), where the overlap of the initial state, |Ψ(0)〉 with the MB eigenstates |Ψi〉 of Ĥ exhibits a
qualitatively different behaviour. In addition, by expanding each eigenstate |Ψi〉 in the number states of the
Wannier basis, φb

s (x; t), (not shown here for brevity) we are able to infer its energetic class, 
nB (see
section 2.3) which is important for identifying the interband processes contributing to the eigenspectrum
and dynamics.

For weak interactions, g < 0.5 within the interaction regime A we observe that multiple eigenstates (the
ones with E > 13.42 are hardly visible in figure 2(a)) contribute to the initial state. We remark that these
states belong to the energy class 
nB = (2, 2, 0, . . . ) according to the energy categorization given in
section 2.3. The energies of the eigenstates with E > 13.42 increases for increasing g, while their overlap
with the initial state decreases, see figure 2(a) for 0 < g < 0.5. For g ≈ 0.5 only three of the aforementioned
eigenstates with E < 13.43 possess a significant overlap with |Ψ(0)〉 see also the inset of figure 2(a).
Additionally, narrow avoided crossings (see the dashed box in figure 2(a) for g ≈ 0.2) emerge but overall the
MB eigenspectrum is only slightly modified. These narrow avoided crossings result from the coupling of
states belonging to the energy classes 
nB = (3, 0, 1, 0, . . . ) and 
nB = (2, 2, 0, . . . ) by a weak two-particle
interband transfer process.

Entering the interaction regime B, 0.5 < g < 2.5, we observe that the three eigenstates of Ĥ possessing
the dominant overlap with |Ψ(0)〉, are quasi-degenerate. In terms of increasing energetic order we refer to
these eigenstates as |α〉, |β〉 and |γ〉, see also the inset of figure 2(a). The existence of the quasi-degenerate
predominantly occupied eigenstates within the B and also B′ (4.5 � g < 5) interaction regimes implies that
the time-scales of the dynamical evolution, which are associated with the energy differences of these
quasi-degenerate states, are rather large. Therefore, these interaction regimes are very promising for
studying the dynamical stability of the phase separation exhibited by the initial state |Ψ(0)〉. Note that the
physical reasoning behind the emergence of this quasi-degenerate eigenstate manifold will be the main
focus of section 4. At g ≈ 3.5 the three aforementioned quasi-degenerate eigenstates show a wide avoided
crossing (see the dashed circle in figure 2(a)) with the eigenstates of the 
nB = (3, 1, 0, . . . ) energy class
within the interaction regime C, 2.5 < g < 4. As we shall explicate later on, this interband avoided crossing
is the fermionic analogue of the so-called cradle mode that has been identified in the interaction quench
dynamics of spinless lattice trapped bosonic ensembles [46–48]. For larger repulsions, g > 4.5, the
quasi-degeneracy of the predominantly occupied eigenstates reappears giving rise to the B′ interaction
regime. The eigenspectrum for these interactions (g > 4.5) possesses a similar structure to the one observed
within the interaction regime B. Note that the Tonks–Girardeau limit of our system is approached for g > 5
(not shown here for brevity). The Tonks–Girardeau regime for a spin-1/2 Fermi system is approached in
the limit of large repulsions, g → ∞. In this case the system behaves similarly to an ensemble of hard-core
(impenetrable) particles and its eigenstates can be expressed in terms of the ones of a spinless Fermi gas [29,
53, 54]. Specifically, for the strongly repulsive limit and for the DW confinement considered herein [34] the
eigenspectrum features an avoided crossing between the aforementioned quasi-degenerate states and the
ones belonging to the energetically lowest class 
nB = (4, 0, . . . ). The eigenspectrum in this case can be
theoretically described by using standard spin-chain techniques [34]. We remark that the state |γ〉 possesses
an interaction independent eigenenergy, associated with its fully antisymmetric character under particle
exchange.
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Figure 2. (a) Eigenspectrum of N↑ = N↓ = 2 fermions confined in a DW for varying interaction, g. The overlap of the depicted
eigenstates with the initial state |〈Ψi|Ψ(0)〉|2 is indicated by the color of the datapoints and satisfies the criterion
|〈Ψi|Ψ(0)〉|2 > 10−3. The dashed circle and boxes indicate the locations of the wide and narrow avoided crossings respectively.
The inset provides a magnification of the eigenspectrum for 0 < g < 3. (b) Dynamics of the magnetization imbalance, M, for
varying g. In all cases w = 0.5, V0 = 8 and N↑ = N↓ = 2.

3.2. Correlated dynamics
To inspect the stability of the phase separation encoded in |Ψ(0)〉 for different interaction strengths we let
the system initialized in the state |Ψ(0)〉 of equation (3) to evolve in time and subsequently we track the
magnetization imbalance, M (equation (4)), during the out-of-equilibrium dynamics. To provide a further
interpretation of the participating dynamical modes we relate our findings regarding the phase separation to
the eigenspectrum of Ĥ (equation (1)), see also figure 2(a). For weak interactions, i.e. 0 < g < 0.5, the
phase separated, |Ψ(0)〉, state is shown to be unstable especially when the non-interacting limit is
approached. Indeed, as already identified in the eigenspectrum (see figure 2(a) for the interaction regime A)
multiple eigenstates contribute to the MB dynamics whose occupation results in a fast decay of the phase
separation. This is indeed justified by inspecting the corresponding time-evolution of M showing fast
oscillations of small amplitude (figure 2(b)). The dynamics is better captured by the evolution of the spin-α
one-body density, ρ(1)

α (x; t), see figures 3(a1) and (a2). Here, the dominant process is single particle
tunneling. More precisely, the particles occupying the first excited band tunnel between the wells with much
higher frequency than the particles occupying the lowest band. This can be identified by comparing the rate
of tunneling of the two humped density structure (b = 1 band) appearing in figure 3(a1) with the tunneling
of the density residing near the center of the well (b = 0 band) within the time-interval 0 < t < 100.
Additionally, an interaction induced dephasing, due to the involvement of the multitude of eigenstates
identified in figure 2(a), is evident as |Ψ(0)〉 does not completely revive during the time evolution.

Further monitoring the dynamical evolution of the system we observe that the phase separated state,
|Ψ(0)〉 (equation (3)), is a long-lived metastable state within the interaction regime B. Indeed, for
0.5 < g < 2.5 we can infer the decay of the phase separation, imprinted in the magnetization imbalance, M
and its subsequent revival (figure 2(b)). This process is relatively fast for weak interactions within the
interaction regime B. For instance, the phase separated state |Ψ(0)〉 decays to a miscible state with M = 0 at
t ≈ 500 for g = 1. Qualitatively similar dynamics occurs but it is shown to be significantly slower for
1 < g < 4, e.g. at g = 2, M = 0 is reached for t ≈ 2000, while the life-time of |Ψ(0)〉 exceeds t = 4000 for
g ≈ 2.5 (figure 2(b)). The metastability of |Ψ(0)〉 is accordingly well-justified since its life-times are much
larger than the inverse of the characteristic tunneling rate of the ground, π/(2t0) ≈ 42, and the first excited
band, π/(2t1) ≈ 190. To shed light into the dynamical evolution of |Ψ(0)〉 we also inspect the one-body
densities of the spin components, ρ(1)

α (x; t) (figures 3(b1) and (b2)) at g = 1. Indeed, at t ≈ 500 ρ(1)
↑ (x; t)

and ρ(1)
↓ (x; t) are delocalized over both wells and they are almost perfectly overlapping which is in

accordance to the value M = 0 (see figure 2(b)). Note here that the absence of any signature of phase
separation within each of the wells justifies the use of M as a measure of phase separation. Subsequently, the
density of each component accumulates in the opposite well, than it was residing initially, but a small
density portion remains in the initially populated well. Finally, at t ≈ 2700 an almost perfect revival of
|Ψ(0)〉 occurs. For larger evolution times, the above-mentioned dynamics is repeated in a periodic manner.
Regarding the underlying tunneling mechanisms, the evolution of ρ(1)

α (x; t) is indicative of a low-frequency
two-body correlated tunneling dynamics for both spin components, as the entire density of two
spin-aligned fermions seems to tunnel among the wells without being deformed. In addition, a
contribution stemming from a single-particle tunneling process is also visible in figures 3(b1) and (b2),
notice for instance the dynamics of the faint two-humped structure for t ≈ 600, t ≈ 1200 and t = 1800. In
the following section it will be shown that the occurrence of the interaction regime B can be explained by
examining the spin-order exhibited in the system.

6

130



New J. Phys. 22 (2020) 063058 G M Koutentakis et al

Figure 3. (ai)–(ci) Time-evolution of the one-body densities ρ(1)
α (x; t) for (i = 1) the spin-↑ and (i = 2) the spin-↓ component

for three different interaction strengths (see legends). (d) The total one-body density fluctuations, δρ(1)(x; t) for g = 3.57, where
the cradle mode is clearly imprinted (see the dashed ellipse). In all cases w = 0.5, V0 = 8 and N↑ = N↓ = 2.

For strong interactions, g > 2.5, the eigenstates belonging to the energy class 
nB = (3, 1, 0, . . . ) cross
with the predominantly occupied eigenstates of the class 
nB = (2, 2, 0, . . . ) as shown in figure 2(a) at
g ≈ 3.5. The states of the two energy classes exhibit two avoided crossings (indicated in figure 2(a) by the
dashed circle) due to the interband interaction-induced coupling which is a manifestation of the cradle
mode [46–48]. This resonant behaviour is directly imprinted on M, which shows a strong dependence of
the lifetime of |Ψ(0)〉 on the value of g, see figure 2(b) at g ≈ 2.8 and g ≈ 3.5. The spin-dependent
one-body densities also show a tunneling behaviour similar to the weakly interacting case, compare
figures 3(c1) and (a1). The cradle mode is manifested as a dipole-like oscillation within each well. To
explicitly demonstrate its existence we invoke the total one-body density fluctuations [46–48] defined as

δρ(1)(x; t) =
∑

α∈{↑,↓}

[
ρ(1)

α (x; t) − 1

T

∫ T

0
dt′ ρ(1)

α (x; t′)

]
. (5)

Indeed, δρ(1)(x; t) reveals dipole-like oscillations within both wells (see for instance figure 3(d) around
t ≈ 400 i.e. the encircled region) and a beating dynamics for the intensity of the cradle mode. This beating
can be understood by inspecting the eigenspectrum of the system (figure 2(a)), where two almost perfectly
overlapping cradle resonances can be identified at g ≈ 3.5, yielding two cradle frequencies of comparable
magnitude. Notice that the cradle mode exhibited in our system is slightly different from its bosonic
counterpart [46–48] as it does not involve overbarrier transport between the different wells but rather a
direct interband population transfer within a particular well. The absence of overbarrier transport can be
identified in figure 3(d) as the density fluctuations in the spatial region of the barrier, x ≈ 0 are vanishing.

4. Interpretation of the magnetic properties and the effective tight-binding model

Having appreciated the magnetic properties of the system within the fully-correlated ML-MCTDHX
approach, we next proceed by constructing a reduced effective model. This model as we shall discuss below
facilitates the qualitative interpretation of the correlated MB dynamics. In particular, the qualitative
understanding of the underlying magnetic properties of the system via the effective model enables the
identification of the decay mechanisms of the phase separation in a straightforward and intuitive way,
allowing also, for comparisons with previous studies.

4.1. The effective tight-binding model
As already mentioned in section 2, the band-gaps constitute the largest energy-scale of the system for both
weak and intermediate interactions. It is therefore, well-justified to assume that a corresponding
tight-binding model might sufficiently capture the observed dynamics. Within such a tight-binding model
the Wannier states, φb

s (x), with s ∈ {L, R}, constitute the basis states of the MB Hamiltonian. The
non-interacting Hamiltonian reads

Ĥ0 = −
∞∑

b=0

∑

α∈{↑,↓}
tb
(

âb†
Rαâb

Lα + âb†
Lαâb

Rα

)
+

∞∑

b=0

∑

α∈{↑,↓}
εb
(

n̂b
Lα + n̂b

Rα

)
,

where εb is the average energy of the non-interacting eigenstates forming the band, b. Also, âb†
sα (âb

sα) is the
operator that creates (annihilates) a spin-α particle in the Wannier state φb

s (x) and n̂b
sα ≡ âb†

sαâb
sα. The exact
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form of the interaction term, ĤI, involves all matrix elements between the different Wannier states and it is,
thus, quite complicated in appearance. Within the lowest-band approximation the Fermi–Hubbard model
circumvents this issue by considering only on-site interactions and neglecting all density-induced tunneling
effects [55]. It constitutes a valid approximation for large V0, where the underlying Wannier basis-states are
well-localized to the corresponding wells. Additionally, g should define a sufficiently smaller energy scale
than the band gap, ensuring that no significant interaction-induced interband tunneling, such as the cradle
mode, occurs. Fermi–Hubbard models have been very successful in describing various effects emerging in a
variety of settings where DW or lattice potentials are involved [56, 57].

Therefore, it is tempting to approximate the exact interaction term, ĤI, by the following effective one

Ĥdir
I = g

⎡
⎣

∞∑

b=0

Ub
(

n̂b
L↑n̂b

L↓ + n̂b
R↑n̂b

R↓
)

+
∑

b �=b′∈[0,∞)

Jbb′
(

n̂b
L↑n̂b′

L↓ + n̂b
R↑n̂b′

R↓

)
⎤
⎦ , (6)

where Jbb′
=
∫

dx |φb
L(x)|2|φb′

L (x)|2 =
∫

dx |φb
R(x)|2|φb′

R (x)|2 and Ub = Jbb refer to the inter and intraband
on-site interactions respectively. However, as it can be easily verified the last term of equation (6) breaks the

SU(2) symmetry of Ĥ (equation (1)), since it does not commute with Ŝ
2
. In order to avoid this artificial

symmetry breaking one needs, also, to include into the effective Hamiltonian the term

Ĥexc
I = −g

∑

b �=b′∈[0,∞)

Jbb′
(

âb†
L↑âb′†

L↓ âb′
L↑âb

L↓ + âb†
R↑âb′†

R↓ âb′
R↑âb

R↓ + âb†
L↑âb′†

L↓ âb′
L↑âb

L↓ + âb†
R↑âb′†

R↓ âb′
R↑âb

R↓

)
. (7)

The term Ĥexc
I , which is present in the exact ĤI of equation (1), incorporates the effect where two fermions

in different bands but on the same well can exchange their spin due to their mutual interaction. Models that
extend the Hubbard model in a similar manner to the above-mentioned have been employed in the context
of the metal-insulator transition appearing in d-electron systems, for a review see [58].

Including all of the above-mentioned terms into an effective tight-binding Hamiltonian results in the
following multi-band tJU model

Ĥeff = −
∞∑

b=0

∑

α∈{↑↓}
tb
(

âb†
Rαâb

Lα + âb†
Lαâb

Rα

)
+ g

∞∑

b=0

Ub
(
n̂b

L↑n̂b
L↓ + n̂b

R↑n̂b
R↓
)

− g
∑

b �=b′∈[0,∞)

Jbb′
[

Ŝb
L · Ŝb′

L + Ŝb
R · Ŝb′

R − 1

4

(
n̂b

Ln̂b′
L + n̂b

Rn̂b′
R

)]
+

∞∑

b=0

∑

α∈{↑↓}
εb
(
n̂b

Lα + n̂b
Rα

)
, (8)

where Ŝb
s = Ŝb

x;si + Ŝb
y;sj + Ŝb

z;sk with Ŝb
k;s = 1

2

∑
α,βσk

αβ âb†
sαâb

sβ , k ∈ {x, y, z}, s ∈ {L, R} and i, j, k refer to the

unit vectors in spin-space and n̂b
s = n̂b

s↑ + n̂b
s↓. tJ models, where the on-site interaction term vanishes as

double site occupations are adiabatically eliminated, have been originally employed to describe magnetic
phenomena in condensed matter physics [59–61] and later for the interpretation of some aspects of
superconductivity [62–64]. Physically, the effective Hamiltonian of equation (8) describes a collection of
Hubbard-dimers for each band, b, that are coupled by ferromagnetic (in the repulsive case g > 0) on-site
exchange interaction (second line of equation (8)) and are off-setted by the corresponding band energy
(third line of equation (8)). On-site interband exchange interactions, such as those encoded in equation (8),
are known as Hund interactions in condensed matter physics [42–44]. The tight-binding approximation is
only valid for tb/Eb � 1 or equivalently large V0. An additional limitation of the tJU model (equation (8))
is that gUb/Eb � 1 allowing for the interaction-driven interband processes to be safely neglected. Within
this model states of different energy classes, 
nB do not couple and as a consequence all the elements of 
nB

are conserved. As we have previously established within the full MB system (that does not possess this
symmetry) such interband effects do not alter the eigenspectrum significantly within the interaction
regimes A and B.

Below we argue why this model leads to a metastable, phase separated, state |Ψ(0)〉, in the case of
intermediate repulsions, qualitatively explaining the magnetic order exhibited within the interaction
regime B.

4.2. Magnetic properties of the effective model
Let us first discuss the relevant properties of the N-body eigenspectrum of the tJU model. We operate in the
tb/(gUb) � 1 limit, where we can neglect the tunneling term ∝ tb. Indeed, for the system examined in

section 3 the criterion gUb

tb � 1 is well-satisfied3 within the interaction regime B, 0.5 < g < 3. In view of the

3 For V0 = 8 and w = 0.5 the relevant scales for N = 4 are gU1

t1 ≈ 11.38g and gU0

t0 ≈ 71.44g.
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decoupling of different energy classes 
nB within the effective tJU model we will focus on the particular
energetic class that the initial state, |Ψ(0)〉, belongs to, namely, 
n′

B. This class is defined as n′b
B = 2 for

b < N/2 and n′b
B = 0 otherwise4.

Focussing on the simplest case of tb = 0, for all involved b, the effective Hamiltonian can be expanded in
two intra-well Hamiltonian terms Ĥeff = ĤR + ĤL that are decoupled among them. By projecting these
Hamiltonian terms into the energy class 
n′

B the former reads

P̂BĤsP̂B = g

N
2 −1∑

b=0

Ubn̂b
s↑n̂b

s↓ − g

N
2 −1∑

b=0

∑

b′ �=b

Jbb′
[

Ŝb
s · Ŝb′

s − 1

4
n̂b

s n̂b′
s

]
+

N
2 −1∑

b=0

εbn̂b
s , (9)

where P̂B is the projection operator into 
n′
B. Equation (9) corresponds to a ferromagnetic Heisenberg

model, incorporating additional energy shifts depending on the particle occupation ∝ n̂b
s , s ∈ {L, R}. For

g > 0 the sum of these energy shifts contained within ĤL and ĤR is minimized in the case that no double
occupations of a particular site occur, i.e. 〈Ψ|n̂b

s↑n̂b
s↓|Ψ〉 = 0 for all b and s. The spin configuration for tb = 0

can be characterized by the quantum numbers S, SL, SR, where Ŝ2
s =
∑

b,b′ Ŝb
s · Ŝb′

s , refers to the total spin
within the s ∈ {L, R} well. It is well-known that ferromagnetic Heisenberg models exhibit ferromagnetic
ground states [65] and as a consequence the ground states of equation (9) correspond to the largest possible
values of SL and SR. Notice, also, that |Ψ(0)〉 is characterized by maximum SL and SR, since the spin-state
within each well is fully spin-polarized. As a consequence, we can conclude that |Ψ(0)〉 belongs to a

degenerate manifold of dimension N/2 at an energy E = EB = 2
∑N/2−1

b=0 εb. This manifold consists of the
states |Φ(tb = 0); S〉 with quantum numbers SL = SR = N

4 but varying total spin S ∈ {0, 1, . . . , N
2 } (see also

below). In addition, the eigenstates |Φ(tb = 0); S〉 get energetically well-separated from the other states with

nB = 
n′

B as the gap between them scales linearly with g, see equation (9).
The inclusion of the tunneling term for tb �= 0 induces couplings between the above-mentioned

degenerate states resulting in the lifting of their degeneracy. Indeed, by treating the tunneling term in
equation (8) within second order perturbation theory (see appendix C), we can show that in the tb � gUb

limit the effective Hamiltonian projected on the manifold of degenerate states spanned by |Φ(tb = 0); S〉
reads

P̂DĤeffP̂D = EB +

N
2 −1∑

b=0

4(tb)2

gŨb

(
Ŝb

L · Ŝb
R − 1

4

)
, (10)

where P̂D is the projection operator P̂D =
∑ N

2
S=0 |Φ(tb = 0); S〉〈Φ(tb = 0); S| and the interaction parameter

Ũb refers to Ũb =
∑ N

2 −1
b=0 Jb0b. Equation (10) provides great insight into the structures imprinted in the

intra-well ferromagnetically correlated states within the tJU model in the case of non-vanishing tunneling.
Indeed, the inclusion of tunneling for tb �= 0 results to an apparent antiferromagnetic Heisenberg exchange
interaction for g > 0, known as the Anderson kinetic exchange interaction [45]. Note that the total spin
Ŝ = ŜL + ŜR commutes with P̂DĤeffP̂D implying that the eigenstates of the tJU model |Φ; S〉 reduce within

the zeroth order approximation to the ones for tb = 0, i.e. |Φ; S〉 = |Φ(tb = 0); S〉 + O( tb

gUb ). Regarding

their eigenenergies, the tJU eigenstates, |Φ; S〉 are expected to be energetically ordered in terms of increasing
S due to the antiferromagnetic character of the Anderson exchange interaction and be quasi-degenerate

possessing energy shifts among them of the order of Ωb
d ∼ (tb)2

gUb � tb.

The above properties of the tJU eigenspectrum imply that the initial state |Ψ(0)〉 being a superposition
of the eigenstates |Φ; S〉 dephases during the time-evolution with a slow timescale ∼ minb(π/Ωb

d). In
particular |Ψ(0)〉 can be expanded in terms of these eigenstates by utilizing the Clebsch–Gordan coefficients

leading to 〈Φ; S|Ψ(0)〉 ≈ 〈Φ(tb = 0); S|Ψ(0)〉 =

√
(2S+1)( N

2 !)2

( N
2 −S)!( N

2 +S+1)!
. Moreover, the maximum values of

SL = N
4 and SR = N

4 which characterize the eigenstates |Φ; S〉 ≈ |Φ(tb = 0); S〉 imply intra-well
ferromagnetic correlations for particles occupying the same well5 and stem from the ferromagnetic Hund
exchange interactions contributing to the multi-band tJU model of equation (8). Therefore, the emergence
of the interaction regime B can be attributed to the dominant contribution of the intra-well ferromagnetic
correlations when compared to the above-mentioned effective antiferromagnetism stemming from tb, see
equation (10). We remark here that the nature of this effective antiferromagnetism has been identified and
studied by employing spin-chain models tailored to operate in the vicinity of the Tonks–Girardeau limit,

4 Since we operate in the manifold of states with Sz = 0 we are obviously restricted to even particle numbers.
5 Note that within this particular configuration in terms of 
nB and 
nD, the total spin within the s well solely depends on the
corresponding spin–spin correlator, P̂Ŝ2

s P̂ = N
2

1
2

(
1
2 + 1

)
+ 2

∑
b>b′ Ŝb

s · Ŝb′
s .
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Figure 4. (a) Comparison between the eigenstates of the MB Hamiltonian, Ĥ (depicted by dots) with the eigenstates |Φ; S〉 of
the tJU model, Ĥeff (colored lines) for varying g. (b) The overlap of the MB eigenstates |α〉, |β〉, |γ〉 with the eigenstates of the tJU
model with tb = 0 for b ∈ {0, . . . , N

2 − 1}. The inset provides a magnification of (b) within the interaction regime B,
0.5 < g < 2. (c) Time-evolution of the overlap between the MB wavefunction, |Ψ(t)〉, and the states |Ψ; N↑L, N↓R〉 (see text) for
g = 1. (d) Time-evolution of CFF quantifying the intra-well ferromagnetic spin–spin correlations for varying interaction strength
g. In all cases V0 = 8, w = 0.5 and N↑ = N↓ = 2.

g → ∞ [29–34]. Note also that this notion of antiferromagnetism does not conflict with our notion of
ferromagnetism as the first is an effective magnetic phenomenon induced by the tunneling, tb, while the
second is a result of the exchange interaction term in equation (7).

4.3. Comparison with ML-MCTDHX
Before analyzing further the magnetic properties of the system and their connection to the emergent
tunneling dynamics let us first establish that the magnetic properties exhibited in the framework of the tJU
model carry forward to the fully correlated case. To this end we shall compare the eigenspectra obtained
within the tJU model with the ML-MCTDHX method.

The relevant eigenenergies within the tJU model (equation (8)) appear in figure 4(a) as colored lines
referring to the case N = 4. Here the three eigenstates |Φ; S〉, with S = 0, 1, 2 possess three distinct
eigenenergies at g ≈ 0. The energy difference between the S = 0 and S = 1 states is given by t0 and the one
between the S = 1 and S = 2 corresponds to t1. This decrease of the single-particle energy of |Φ; S = 1〉 and
|Φ; S = 0〉 stems from the occurrence of one and two doublons respectively in the g ≈ 0 case. The
formation of these doublons implies the double occupation of the single-particle state [φb

L(x) + φb
R(x)]/

√
2,

with b = 0, 1. For increasing g the energy of the S = 1 and S = 0 eigenstates is larger due to the involvement
of these doublons which contribute a substantial amount of interaction energy. Most importantly, for
0.5 < g < 2.5 (interaction regime B) the energies of the eigenstates |Φ; S〉 converge towards the eigenenergy
of |Φ; S = 2〉, possessing ES=2(g) = EB ≈ 13.424, and this leads to the formation of the quasi-degenerate
manifold, identified also in figure 2(a). It can also be checked that the energy differences between the states
|Φ; S〉 are consistent with equation (10) possessing a characteristic energy scale of Ω1

d ≈ 0.033/g.
Figure 4(a) further reveals that the eigenstates of the tJU model follow closely the behaviour of the
eigenstates of the MB system, represented as dots in figure 4(a), within both the interaction regimes A and
B. There are a few discrepancies associated with the avoided crossings emerging in the interaction regimes A
and C which, as also mentioned in section 3, stem from the couplings between states with different 
nB. Such
couplings are indeed neglected within the tJU model. Nevertheless, the agreement within the interaction
regime B is almost perfect and it can be further shown that the key ingredients of the magnetic order within
the tJU model are also exhibited within the fully correlated case. Indeed, the overlaps between the MB
eigenstates |α〉, |β〉, |γ〉 and the initial state, |Ψ(0)〉 agree well with those found within the effective tJU
description (see figure 4(a)), namely, |〈α|Ψ(0)〉|2 ≈ |〈Φ; S = 0|Ψ(0)〉|2 = 1

3 , |〈β|Ψ(0)〉|2 ≈
|〈Φ; S = 1|Ψ(0)〉|2 = 1

2 and |〈γ|Ψ(0)〉|2 ≈ |〈Φ; S = 2|Ψ(0)〉|2 = 1
6 . Furthermore, in figure 4(b) we
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Figure 5. Schematic illustration of the correlated tunneling processes involving the intra-well ferromagnetically correlated states
|Ψ; N↑L, N↑R〉 for N↑ = N↓ = 2.

demonstrate the large overlap of the MB eigenstates |α〉, |β〉 and |γ〉 with the eigenstates, |Φ(tb = 0); S〉, of
the tJU model for tb � gUb within the interaction regime B. Indeed, this overlap is in excess of 95% (see
also the inset of figure 4(b)), a result which is also consistent with the values obtained within the tJU model
for the overlaps |〈Φ; S|Φ(tb = 0); S〉|2 (not shown for brevity). The above mentioned findings explicitly
showcase that the magnetic order exhibited in the interaction regime B within the tJU model carries
forward to the MB case. However, for stronger interactions and as the interaction regime C is approached,
e.g. see figure 4(b) at g ≈ 2.5, the overlap of the MB eigenstates and the |Φ(tb = 0); S〉 states decreases. This
feature is beyond the tJU model description and occurs due to the interband coupling caused by the
presence of the cradle mode.

4.4. Relation of the magnetic properties to the tunneling dynamics
Having identified the magnetic order of the interaction regime B within the full MB approach by comparing
to an effective model, we subsequently showcase the relation of these magnetic properties to the tunneling
dynamics of the system, see also figures 3(b1) and (b2). To unravel this interplay we define the states with
SL = SR = N

2 and a definite spin projection Sz;s =
∑

bSb
z;s within each of the wells, namely

|Ψ; N↑L, N↑R〉 = (Ŝ−;LŜ+;R)
N
2 −N↑L |Ψ(0)〉. (11)

Here Ŝ±;s =
∑

bŜb
x;s ± iŜb

y;s refer to the spin increasing and lowering operators within the s ∈ {L, R} well.

Note that it can be verified that the states |Ψ; N↑L, N↑R〉 are related to the states |Φ(tb = 0); S〉 by a unitary
transformation. But in contrast to |Φ(tb = 0); S〉 the states |Ψ; N↑L, N↑R〉 have a definite number of spin-↑
and spin-↓ particles within each well. The expansion of |Ψ; N↑L, N↑R〉 in the basis |Φ(tb = 0); S〉 can be
easily obtained by employing the Clebsch–Gordan coefficients [66].

The introduction of this new basis relates the phenomenon of quasidegeneracy of the states
|Φ(tb = 0); S〉 exhibited both within the tJU model (|Φ; S〉 ≈ |Φ(tb = 0); S〉) and the full MB case
(|α〉 ≈ |Φ(tb = 0); S = 0〉, |β〉 ≈ |Φ(tb = 0); S = 1〉 and |γ〉 ≈ |Φ(tb = 0); S = 2〉), see figure 4(b), with the
emergent tunneling processes. Owing to the unitary transformation between the states |Ψ; N↑L, N↑R〉 and
the approximate eigenstates |Φ(tb = 0); S〉, the accumulation of relative phases between the eigenstates
during the dynamics (due to their different eigenenergies, see figure 4(a) and equation (10)), corresponds to
a population transfer between the |Ψ; N↑L, N↑R〉 states and hence to an apparent tunneling dynamics within
the spin components. For the particular case of N = 4 particles this mechanism is illustrated in figure 5.
Notice that due to the strongly-correlated nature of the involved states (see also figure 5) such a mechanism
is absent within the Hartree–Fock mean-field theory since |Ψ; N↑L = 1, N↓R = 1〉 cannot be written as a
single Slater determinant.

To explicitly demonstrate the occurrence of this tunneling mechanism we present in figure 4(c) the
overlap of the time-dependent wavefunction, |Ψ(t)〉, with the states |Ψ; N↑L, N↑R〉 for g = 1 (interaction
regime B). For 0 < t < 500 we observe a population transfer process from the initial state |Ψ(0)〉 = |Ψ; 2, 0〉
to the states |Ψ; 1, 1〉 and |Ψ; 0, 2〉. Recall that these two processes have, also, been identified in the time
evolution of ρ(1)

σ (x; t) (see figures 3(b1) and section 3]. Most importantly, the intricate relation of the
tunneling dynamics to the magnetic properties of the system is now evident via employing the unitary
transformation connecting the states |Ψ; N↑L, N↑R〉 to the eigenstates |Φ(tb = 0); S〉. For later times t ≈ 2600
an almost perfect revival of the state |Ψ; 2, 0〉 is exhibited owing to the commensurability of the frequencies
of these particle transfer processes. Indeed, the two-body tunneling process |Ψ; 2, 0〉 ↔ |Ψ; 0, 2〉 is found to
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possess a roughly three times smaller frequency than the single-particle tunneling mode
|Ψ; 2, 0〉 ↔ |Ψ; 1, 1〉 (see figure 4(c)).

4.5. Spin–spin correlations
Having described in detail the interconnection of the magnetic properties of the system and its tunneling
dynamics we are able to shed light onto the relation of ferromagnetism and phase separation. The
ferromagnetic order of a Fermi gas is characterized by the spin polarization and the spin–spin correlations
of the system. The total spin polarization and the total spin of the system, the latter being related to the
spin–spin correlator [36], are constant during the dynamics due to the symmetries of the Hamiltonian
(equation (1)). As a consequence no global ferromagnetic order can appear during the dynamics due to the
conservation laws stemming from the above symmetries. However, as the tJU model reveals the intra-well
magnetic properties are important for the adequate description of the system. In this spirit, the quantity M
besides being a measure of the phase separation also quantifies the spin polarization within each well
(equation (4)). An adequate quantity that captures the intra-well magnetic correlations is also hinted by the
effective tJU model. This refers to the total spin within each of the wells, 〈Ψ(t)|Ŝ2

s |Ψ(t)〉, with s ∈ {L, R}. In
particular, we can employ a more refined quantity by involving some of the magnetic properties of the
system identified within the tJU model. As we have previously discussed, the subset of states |Φ(tb = 0); S〉
are characterized by ferromagnetic spin–spin correlations within each well since SL = SR = 1. Specifically,
|Φ(tb = 0); S〉 are the only states within the configuration 
nB = (2, 2, 0, . . . ) that exhibit this property (see
also section 4.2). It is thus instructive to evaluate the overlap of the MB wavefunction, |Ψ(t)〉 with the states
|Φ(tb = 0); S〉, i.e. CFF =

∑2
S=0 |〈Φ(tb = 0); S|Ψ(t)〉|2. CFF is an adequate quantity for studying the

spin–spin correlation properties of the system, as it constitutes a lower bound for the values of the
intra-well spin–spin correlator 〈Ψ(t)|Ŝ2

L|Ψ(t)〉 � 2CFF and 〈Ψ(t)|Ŝ2
R|Ψ(t)〉 � 2CFF. Accordingly, large values

of CFF indicate that both wells are simultaneously characterized by intra-well ferromagnetic spin–spin
correlations.

The time evolution of CFF is presented in figure 4(d) for varying interaction strength g. For weak
interactions, within the interaction regime A, CFF exhibits rapid fluctuations between zero and unity
manifesting the periodic decay and revival of the intra-well ferromagnetic spin–spin correlations of the
initial state, |Ψ(0)〉. Recall that the phase separation, and hence the intra-well spin polarization, is unstable
in this interaction regime exhibiting decay and revival oscillations, see also figures 2(b), 3(a1) and (a2).
However, in the interaction regime B, we observe that the spin–spin correlations within each well are
ferromagnetic since CFF = 1. Indeed, the value of CFF is almost constant and possesses a large value being of
the order of CFF ≈ 0.98, see figure 4(d). The weak fluctuations of CFF around this average value, further,
showcase the stability of the intra-well ferromagnetic order. Note also that the intra-well spin polarization
quantified by M is characterized as metastable within the interaction regime B. Entering the interaction
regime C (2.5 < g < 4.5) we observe that CFF exhibits multi-frequency oscillations. These oscillations can
be explained in terms of the observed resonance of the cradle mode which introduces an interband
coupling6, see also figures 2(a) and 3(d). For even stronger interactions, i.e. within the interaction regime
B′, the intra-well ferromagnetic order is reestablished and it is characterized by large and almost constant
values of CFF during the dynamics.

The above results manifest the close relation between the intra-well ferromagnetic order identified in a
DW trap and the ferromagnetic order emerging in a harmonic trap with weakly broken SU(2) symmetry, as
it has been demonstrated in reference [36]. This order appears for intermediate interactions where the
ferromagnetic Hund exchange interaction, stemming from spin-exchange interaction processes, see e.g.
equation (7), dominates and leads to largely stable ferromagnetic spin–spin correlations but a fluctuating
polarization. The different imposed potential alters the manifestation of this ferromagnetic order during the
dynamics. In the case of the DW the ferromagnetic order is exhibited locally within each of the wells and as
discussed above implies a metastable phase separated state for the system. In contrast, in the case of a
harmonic trap the emergent ferromagnetic order affects the global values of the spin polarization and total
spin implying miscibility of the contributing spin components [36]. This difference stems from the Hund
exchange interaction between two fermions which is only sizable if the involved single particle states (i.e. the
orbitals) possess a significant density overlap, see also equation (7). To understand this analogy further in
the following section we study the dynamics of the DW by employing an additional potential that breaks
the SU(2) symmetry of the system.

6 Recall that the cradle mode involves states of the 
nB = (3, 1, 0, . . . ) energetic class. Due to the presence of three particles in the first
band this number-state class cannot support states with SL = SR = 1 and its influence is detrimental to the ferromagnetic order.
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5. SU(2) violating case

Up to this point, we have identified the metastability of the phase separated state in a DW due to the
presence of the SU(2) invariance of the system. Also we have characterized the emerging metastability of the
phase separated state appearing for intermediate interactions and connected it to the magnetic properties of
the system. Next we aim to show that the phase separated state is stable within region B even in the case that
the SU(2) symmetry is weakly broken. Also, in analogy to reference [36] the intra-well ferromagnetic
correlations are shown to persist within this region. Moreover, the implications regarding the magnetic
order exhibited in a DW are briefly discussed.

To study the case of a system with broken SU(2) symmetry we employ a linear gradient of the magnetic
field which shifts the energies of the spin-↑ and spin-↓ fermions in a spatially-dependent manner. The
corresponding term which is incorporated in the MB Hamiltonian of equation (1), reads

Ĥg = B0

∫
dx xψ̂†

α(x)σz
αα′ψ̂α′(x). (12)

The value of B0 determines the energy offset between the two wells for the different spin components. A
positive value of B0 means that it is energetically preferable for the spin-↑ atoms to occupy the right-well
and the spin-↓ atoms the left-well. Accordingly, when B0 < 0 it is favorable for the spin-↑ and spin-↓ atoms
to occupy the left and the right-well respectively.

Figure 6 illustrates the time-evolution of the magnetization imbalance M and CFF which quantifies the
degree of intra-well ferromagnetic correlations, for varying B0 at three different values of g corresponding to
the interaction regimes A, B and C. We observe that in the weakly-interacting case (belonging to the
interaction regime A in figures 6(a) and (b)) and for B0 < 0 both M and CFF are stable throughout the
time-evolution indicating that the system remains close to its initial state. For B0 > 0 a multitude of
resonances appear at different intervals of B0 involving prominent tunneling as captured by M (figure 6(a)).
Also, CFF reveals that the state of the system is driven away from the SL = SR = 1 manifold (figure 6(b))
since CFF < 1. These resonances correspond to possible tunneling pathways where the spin-↑ particles
occupying initially the left-well of the DW resonantly tunnel to the right-well (or to the opposite direction
for the spin-↓ atoms) leading to the decay of the intra-well ferromagnetic order.

For g = 2 (interaction regime B) it can be deduced that besides the very narrow region around the
SU(2) symmetric case, i.e. at B0 = 0, the phase separated initial state is stable for |B0| < 0.04 as M(t) ≈ 1
throughout the evolution (see figure 6(c)). Notice also that within these values of |B0| the ferromagnetic
intra-well order is stable as indicated by CFF(t) ≈ 1 (figure 6(d)). The stable phase separated state appears
due to the quasi-degeneracy of the states |α〉, |β〉, |γ〉 in the SU(2) preserving case for the interaction
regime B. As stated in the previous sections these states, owing to their intra-well ferromagnetic
correlations, lie in an energy region of the MB spectrum where no other eigenstates appear and are
quasi-degenerate characterized by a different value of the total spin S (see also figure 4(a)). Recall that these
states possess CFF ≈ 1 indicating their intra-well ferromagnetic character. Moreover, their energetic
ordering in terms of increasing S manifests the presence of the weak antiferromagnetic Anderson exchange
interaction, (see section 4.2 and equation (10)). By breaking the SU(2) symmetry with the additional
spin-dependent potential described by equation (12) the states |α〉, |β〉 and |γ〉 couple with one another
resulting in the formation of eigenstates with definite number of spin-↑ and spin-↓ atoms in each of the
wells (results not shown here for brevity). Therefore, for decreasing B0 < 0 the initial state, |Ψ(0)〉, becomes
the lowest-in-energy state with SL = SR = 1, while it corresponds to the highest-in-energy eigenstate of the
same manifold of states for B0 > 0. In both cases the phase separation of this state is stable as imprinted
also in the time evolution of M(t) for |B0| < 0.04 (see figure 6(c)). In the vicinity of B0 ≈ 0, M(t) is
depleted during the time-evolution while CFF(t) ≈ 1 throughout the dynamics. The appearance of this
region is explained by the fact that the couplings between the states |α〉, |β〉 and |γ〉 associated with Ĥg are
smaller than their energy differences due to the Anderson kinetic exchange interaction (being of the order

of tb

gUb ). The latter implies a large but finite life-time of the phase separation of the initial state, in agreement

with the SU(2) preserving case B = 0. In addition, further resonances appear when |B0| > 0.04 for g = 2
(see figure 6(c)). More specifically, the resonances at B0 > 0.04 correspond to tunneling resonances in a
similar fashion to the case of the interaction regime A (figure 6(a)). The positive shift of these resonances
when compared to the corresponding ones appearing for g = 0.5 is attributed to the increased interaction
energy of the states accessed by tunneling. For B0 < −0.04 another set of resonances occurs in figure 6(c)
that correspond to interband processes similar to the aforementioned cradle mode. These resonances
emerge due to the coupling of different bands induced by the interactions.

Within the interaction regime C the stability properties of the phase separation are similar to the
corresponding ones of the interaction regime A, compare in particular figures 6(e) and (f) to figures 6(a)
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Figure 6. Time-evolution of (a), (c), (e) the magnetization imbalance, M, and (b), (d), (f) the spin–spin correlation measure
CFF (see text) for varying strength of the linear gradient of the magnetic potential B0. The corresponding interaction strengths are
(a), (b) g = 0.5, (c), (d) g = 2 and (e), (f) g = 3.5. In all cases w = 0.5, V0 = 8 and N↑ = N↓ = 2.

and (b) respectively. For large B0 < 0 the initial state is stable (see figures 6(e) and (f)), however, for B0 ≈ 0
the phase separation and intra-well ferromagnetic order as imprinted in M(t) and CFF(t) respectively
fluctuate during the dynamics. This fluctuating behaviour can be explained by the inter-band coupling that
occurs within this interaction regime suppressing the intra-well ferromagnetic order of the initially phase
separated state (see also figures 4(c) and (d)). Turning to large B0 > 0 the phase separation is stable (see in
particular figure 6(e)) since M(t) ≈ 1. However, for B0 ≈ 0.04 a resonance associated with the narrow
avoided crossings identified in figure 2(a) for g ≈ 3 is observed.

The above discussed stability properties of the phase separated state, especially within the interaction
regime B, provide direct insight into the magnetic properties of the SU(2) violating system. First, the fact

that the phase separated state, |Ψ(0)〉, which is not an eigenstate of Ŝ
2
, becomes an eigenstate of the system,

Ĥ = Ĥ0 + ĤI + Ĥg, even for a relatively small breaking of the SU(2) symmetry shows that, as also identified
previously, for a DW there is no global ferromagnetic order imprinted in S2. This is in contrast to the case
of the harmonic confinement as it has been demonstrated in reference [36]. Instead, for a DW trap the
instability of the S2 becomes more pronounced for intermediate interactions. This property can be
understood by inspecting the effective tJU model (equation (8)). For fermions confined in a DW,
ferromagnetic Hund interactions occur only between particles that reside in the same well and as a
consequence only the intra-well ferromagnetic correlations are robust within each well. An observation that
is also supported by the apparent stability of the phase separated state except for the cases within the
interaction regimes B and C where inter-band couplings are involved, see figures 6(b)–(d) and (f). Most
importantly, for intermediate interactions supporting the intra-well ferromagnetic order (see figure 6(c))
the phase separated state is stabilized even for a very weak breaking of the SU(2) symmetry. This feature of
the DW system can be understood by the fact that the extremely weak Anderson kinetic exchange
interaction is the only magnetic mechanism that can possibly prohibit the coupling of states with different S
for a system with broken SU(2) symmetry. On the contrary, the intra-well ferromagnetic order is stable
independently of whether the SU(2) symmetry is preserved or it is weakly broken as the intra-well
ferromagnetic correlations are protected by the much stronger Hund exchange interaction. The above imply
that within the interaction regime B dominated by ferromagnetic intra-well correlations an instability
occurs which is triggered by the breaking of the SU(2) symmetry. This instability leads to the formation of
two polarized ferromagnetic domains of the spin components as the system phase separates almost perfectly
among the two wells.

6. Conclusions

We have explored the stability of the phase separated state of interacting spin-1/2 fermions confined in DW
potentials. Most importantly, we have revealed an interaction regime characterized by a metastable phase
separation for moderate interactions. By invoking an effective tight-binding model, we unveil that the
metastability of the phase separation is related to the formation of a quasi-degenerate manifold of states
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described by ferromagnetic intra-well spin–spin correlations but varying total spin. The formation of this
quasi-degenerate manifold of states can be intuitively understood by the inclusion of an effective
ferromagnetic Hund interaction, stemming from the spin exchange interaction between two interacting
particles residing at the same well. This exchange interaction cannot be neglected due to the large spatial
overlap of the particles occupying different bands but the same well of the DW. The breaking of the SU(2)
symmetry is found to substantially alter the behaviour of the system in this interaction regime where the
ferromagnetic correlations dominate. Indeed, the phase separated state becomes stable even when we break
the SU(2) symmetry by employing a very weak linear gradient of the magnetic potential.

The description of the magnetic properties of 1D fermions in terms of the ferromagnetic Hund
interaction provides a unifying viewpoint on the relation between phase separation and ferromagnetism.
Most importantly, it provides a theoretical framework via which the stability of ferromagnetic correlations
in the absence of SU(2) symmetry (see also [36]) can be understood. In particular, the ferromagnetic
correlations are found to be stable only within the spatial regions where the Hund interaction is strong, i.e.
within each of the wells of a DW and not between them. In this picture the ferromagnetic correlations of
the system are not directly related with the phase separation in contrast to the conventional Stoner
instability viewpoint. Instead, the effective antiferromagnetism induced by the Anderson kinetic exchange
interaction is responsible for the absence of phase separation in SU(2) symmetric systems. Indeed, when
this effective antiferromagnetism is weak the system is found to be unstable towards phase separation. More
precisely, in the case of a DW potential these two phenomena are indeed related. In the interaction regime
where the ferromagnetic Hund interaction dominates the Anderson kinetic exchange interaction leading to
stable intra-well ferromagnetic correlations, even a weak breaking of the SU(2) symmetry enforces the
system to phase separate.

Our work sets several avenues of further study that can be pursued. First, notice the absence of any
obvious limitation of the underlying mechanisms that would make them incapable of describing higher
dimensional settings. The examination of higher dimensional settings is therefore a promising next step for
understanding the ferromagnetic properties emerging in DW systems. Also, the tunability of the phase
separation by weakly breaking the SU(2) symmetry gives rise to the prospect of controlling the formation of
ferromagnetic domains in the case of DW or lattice systems. Certainly, the generalization of our results for
mass-imbalanced settings might provide an alternative promising way of breaking the SU(2) symmetry
compared to spin-dependent potentials [40, 67–71]. Finally, the inclusion of various inherent effects that
break the SU(2) symmetry of a Fermi system such as spin–orbit coupling or weak spin-dependent
interactions might allow cold atoms to form realistic models that better emulate the ferromagnetic
properties encountered in real materials.
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Appendix A. Six fermion dynamics

The discussion in section 4.2 reveals that within the effective model description an overall similar dynamical
behaviour of the system is expected independently of the particle number (see also footnote 4) To verify this
expectation within the fully correlated approach we investigate the dynamical behaviour of a system
consisting of N = 6 fermions and identify the underlying phenomenology associated with the different
interaction regimes A, B and C in the corresponding spin-α one-body densities, ρ(1)

α (x; t), illustrated in
figure A1.

In particular, for weak interactions (g = 0.05) the one-body density of both spin-↑ and spin-↓ fermions
exhibits a tunneling dynamics among the wells, see figures A1(a1) and (a2). In this case, each of the particles
occupying the three energetically lowest bands performs an individual tunneling oscillation with a
frequency close to the one associated with the band it occupies, tb, see for instance the fast tunneling of the
three-humped structure emerging in ρ(1)

α (x; t) in comparison to the overall slower tunneling dynamics. This
observed dynamics is in line to the one emerging within the interaction regime A for N = 4 particles
(compare figure 3(a) with figure A1(a)). For increasing interactions, g = 1.75, no tunneling oscillations are
observed and the phase separation appears to be almost completely stable within the time scales we have
studied, see figures A1(b1) and (b2). This behaviour of the one-body density is characteristic for the
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Figure A1. (ai)–(ci) Time-evolution of the one-body densities ρ(1)
α (x; t) for (i = 1) the spin-↑ and (i = 2) the spin-↓ component

for three different interaction strengths (see legend). (d) The total one-body density fluctuations, δρ(1)(x; t) for g = 3.5, where
the cradle mode is clearly imprinted. In all cases w = 0.5, V0 = 10 and N↑ = N↓ = 3.

interactions belonging to the regime B, where as identified in the N = 4 particle case the tunneling
dynamics slows down dramatically (see also figure 3(b)) as a consequence of the formation of the
quasi-degenerate manifold of eigenstates with ferromagnetic intra-well correlations. Finally, the cradle
mode being the characteristic feature of the interaction regime C (see also figures 3(c) and (d)) can also be
observed for N = 6. Inspecting the dynamics of the one-body density for g = 3.5 (figure A1(c)), we observe
a collective tunneling mode of the density among the wells, as well as, deformations of the one-body density
within each of the occupied sites possessing a much larger frequency than the tunneling mode. By
employing the temporal fluctuations of the total one-body density, δρ(1)(x; t) (see figure A1 (d)) these
deformations can be related to the emergence of the cradle mode, verifying the existence of the interaction
regime C in the N = 6 case.

Appendix B. Shallow double-well case

As we have discussed in the main text (see sections 4.5 and 5) the relation of the phase separation
phenomenon and the ferromagnetism depends on the shape of the external potential imposed on the
atoms. Indeed, it is found that despite the fact that the same microscopic mechanisms are at play for a
parabolically or a DW trapped spin-1/2 Fermi system, the manifestation of the above-mentioned
phenomena differs significantly. The purpose of this section is to study the dependence of the stability
properties of the phase separated state, |Ψ(0)〉, equation (3) on the barrier height of the DW potential. To
achieve this we study the case of a shallower DW with V0 = 5 and w = 0.5 and compare with the case of
V0 = 8.

The eigenspectrum for a shallow DW is presented in figure B1(a). The qualitative structures emerging in
the eigenspectrum for V0 = 5 are similar to the case of V0 = 8 (compare figure B1(a) with figure 2(a)).
However, there are also prominent quantitative differences which, as we shall explain below, lead to a
different dynamical behaviour. Within the regime A, 0 < g < 1, the role of eigenstates with high energy (see
figure B1(a) for E > 12.2 and g < 1) is very pronounced as they accumulate a population larger than in
their deep DW counterpart, see also figure 2(a). In the dynamics of the shallow DW this translates to a
much faster loss of M (see e.g. figure B1(b) for g < 1) when compared to the case of the deep DW
(figure 2(b)) which is accompanied with the loss of intra-well ferromagnetic correlations imprinted in CFF,
see figure B1(c). Of course, this difference is simply caused by the larger tunneling rates, tb involved in the
V0 = 5 case (figure 1(a)). The differences between the two setups become more interesting in the
intermediate interaction regime, B, for 1 < g < 2.5. In the shallow DW case three eigenstates dominate
similarly to V0 = 8, but their spacing is quantitatively larger in the shallower DW (compare figure B1(a)
with figure 2(a) for g ≈ 2). This is not surprising since the spacing of these eigenstates (see also section 4.2)

is proportional to tb

gUb which decreases with increasing V0. In addition, and in direct contrast to the V0 = 8

case higher-lying eigenstates (see figure B1(a) for 1 < g < 2.5 and E > 12.3) and most importantly
lower-lying ones (see figure B1(a) for 1 < g < 2.5 and E > 11.8) are involved in the dynamics within this
regime. Accordingly the dynamics of M and CFF shows that in the shallow DW case the initial state cannot
be characterized as metastable for any interaction in the regime B. Indeed, the magnetization imbalance
M(t) (figure B1(b)) is greatly suppressed for t > 100 possessing values M(t) < 0.6 for all interactions in
1 < g < 2.5. Regarding the spin–spin correlations it can be seen that CFF(t) is almost stable during the
dynamics except for a very fast decay at initial times t < 4 (see figure B1(c)). During the time-evolution it
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Figure B1. (a) Eigenspectrum of Ĥ (equation (1)) referring to the eigenstates satisfying the overlap criterion
|〈Ψi|Ψ(0)〉|2 > 10−3 with varying interaction, g. Time-evolution of the (b) magnetization imbalance, M and (c) of CFF

quantifying the degree of intra-well ferromagnetic correlations for varying g. In all cases w = 0.5, V0 = 5 and N↑ = N↓ = 2.

acquires values of the order of CFF ≈ 0.8, for all interactions within the regime B showcasing predominantly
ferromagnetic intra-well correlations. The above implies that while the mechanisms at play in the shallow
DW case are similar to the ones emerging in the case of a deeper DW, the apparent phenomenology is
altered due to the pronounced involvement of lower-lying states. These lower-lying states are able to alter
the dynamics within the regime B because, as it can be seen by inspecting the eigenspectrum for g ≈ 3 the
cradle resonances are much wider in the case of a shallower DW thus affecting a broader interaction regime
than for V0 = 8.

In the case of V0 = 5 the regime C appears in the interaction range 2 < g < 4.5. The phenomenology
taking place within C is completely analogous to the case of V0 = 8. Indeed, the tunneling is prevalent
within this regime as imprinted in the fluctuating behaviour of the magnetization imbalance M(t) (see
figure B1(b)). In addition, the intra-well spin–spin correlations imprinted in CFF(t) can be also seen to
fluctuate similarly to the case of V0 = 8 (compare figure B1(c) with figure 4(d)). For even stronger
interactions the regime B′ is accessed where the fluctuations of M slow down dramatically when compared
to the regions A and C (see figure B1(b)), while CFF(t) is almost constant during the dynamics possessing
values CFF(t) ≈ 0.9. In addition, by inspecting the eigenspectrum (figure B1(a)) it can be deduced that in
this regime a quasi-degenerate manifold of the predominantly occupied eigenstates begins to form similarly
to the regime B′ encountered for V0 = 8.

In conclusion, the nature of the microscopic mechanisms that govern the stability properties of phase
separation are not altered as the depth of the DW changes. However, because of their direct competition, in
particular between the exchange interaction and the combined effects of the tunneling and the cradle mode,
the observed dynamics differs significantly as the barrier height, V0 decreases. Indeed, the mechanisms
competing with the exchange interaction become more prevalent for a shallower DW as it is also clearly
imprinted in the corresponding eigenspectrum. This renders the intra-well ferromagnetic order unable to
completely dominate the dynamics for every interaction strength, resulting in the absence of stable
ferromagnetic intra-well correlations and its direct imprint on the dynamics i.e. the metastability of the
phase separation.

Appendix C. Anderson kinetic exchange interaction

The purpose of this section is to provide the explicit derivation of the effective antiferromagnetic
interaction acting upon the different wells of our DW setup. This antiferromagnetic interaction is similar to
the Anderson kinetic exchange interaction which couples the different sites of a lattice within the Hubbard
model [45]. Although such an effective magnetic term can be derived within the resolvent formalism by
invoking less assumptions, here we opt to employ the standard Reyleigh–Schrödinger second order
perturbation theory due to its mathematical (and physical) clarity.

The terms appearing in the Hamiltonian of the tJU model (equation (8)) can be separated into two
Hamiltonian terms7 that solely act within each of the wells, Ĥs, with s ∈ {↑, ↓}, and a Hamiltonian part
corresponding to the coupling between them, ĤLR. By performing this separation the effective Hamiltonian

7 In order to make the notation less cumbersome we drop the index eff, however all of the Hamiltonian terms mentioned in this section
are to be considered within the effective tJU model.
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reads Ĥeff = ĤR + ĤL + ĤLR. The intra-well Hamiltonian terms,

Ĥs = +g
∞∑

b=0

Ubn̂b
s↑n̂b

s↓ − g
∑

b �=b′∈[0,∞)

Jbb′
[

Ŝb
s · Ŝb′

s − 1

4
n̂b

s n̂b′
s

]
+

∞∑

b=0

εbn̂b
s , (C1)

correspond to ferromagnetic Heisenberg models with additional occupation dependent terms ∝ n̂b
s . The

intra-well coupling

ĤLR = −
∞∑

b=0

∑

α∈{↑↓}
tb
(

âb†
Rαâb

Lα + âb†
Lαâb

Rα

)
(C2)

describes the tunneling among the wells. Our intention is to perturbatively treat ĤLR and show that it acts
as an effective antiferromagnetic interaction between the particles occupying the same band but different
wells.

According to the discussion in sections 2.2 and 4.2 we are particularly interested in the configuration
with no doublons and a single occupation of each Wannier state up to the b = N

2 − 1 band. The projection
of Ĥs to this particular configuration results in the Heisenberg model

P̂BĤsP̂B =
EB

2
− g

∑

b �=b′∈[0, N
2 −1]

Jbb′
[

Ŝb
s · Ŝb′

s − 1

4

]
, (C3)

which possesses the degenerate ground states
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|0〉, (C4)

where Ŝb
+;s ≡ âb†

s↑ âb
s↓, NL = NR = N

2 and we have parametrized these states by the number of spin-↑ atoms

contained in each well. Then the ground state manifold of the system P̂B(ĤL + ĤR)P̂B possesses an energy

E(0) = EB = 2
∑N

2 −1
b=0 εb and it is spanned by the states |Ψ; N↑L, N↑R〉 = |N

4 , N↑L − N
4 〉L ⊗ |N

4 , N↑R − N
4 〉R,

with N↑L + N↑R = N
2 (see also equation (11)).

Note here that the action of ĤLR on the basis of the ground state manifold |Ψ; N↑L, N↑R〉 is rather simple
due to its product state character. Indeed ĤLR|Ψ; N↑L, N↑R〉 can be expressed via the action of the creation
and annihilation operators on the single-well ferromagnetic states |Ns

2 , N↑s − Ns
2 〉s. Indeed the annihilation

operator creates a vacancy to the single-well ferromagnetic states
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∣∣∣∣
Ns − 1

2
, N↑s − 1 − Ns − 1

2

〉b0

s

]
. (C5)

Nevertheless the resulting states are ferromagnetic since they possess maximal Ss and read

∣∣∣∣
Ns − 1

2
, N↑s − Ns − 1

2

〉b0

s

≡
√

(Ns − N↑s − 1)!

(Ns − 1)!N↑s!

( ∞∑

b=0

Ŝb
+;s

)N↑s
⎛
⎝

b0−1∏

b=0

âb
s↓

Ns−1∏

b=b0+1

âb
s↓

⎞
⎠

†

|0〉. (C6)

Furthermore, the creation operator, âb0†
sα , maps the ferromagnetic states to the corresponding

|Ns−1
2 , N↑s − Ns−1

2 〉b0
s state with an additional doublon at the b0th band. More specifically,

âb0†
sα

∣∣∣∣
Ns

2
, N↑s − Ns

2

〉

s

= (−1)Ns+b0 âb0†
s↑ âb0†

s↓

[
δα↑

√
Ns − N↑s

Ns

∣∣∣∣
Ns − 1

2
, N↑s − Ns − 1

2

〉b0

s

− δα↓

√
N↑s

Ns

∣∣∣∣
Ns − 1

2
, N↑s − 1 − Ns − 1

2

〉b0

s

]
. (C7)

Importantly, the intra-well ferromagnetic states with vacancy, |Ns−1
2 , N↑s − Ns−1

2 〉b0
s , are eigenstates of the

Hamiltonian of the corresponding well, Ĥs as they satisfy the following eigenvalue equation

Ĥs

∣∣∣∣
Ns − 1

2
, N↑s − Ns − 1

2

〉b0

s

=

(
EB

2
− εb

) ∣∣∣∣
Ns − 1

2
, N↑s − Ns − 1

2

〉b0

s

. (C8)
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Figure C1. Schematic illustration of the coupling scheme introduced by the action of ĤLR on the eigenstates of ĤL + ĤR for the
configurations with zero and one double occupations. The colored arrows indicate the distinct transitions introduced by each of
the terms appearing in ĤLR. For clarity only the transitions involving the b = N

2 − 1 band are depicted.

By employing the commutation relations of the creation operator of a doublon âb†
s↑ âb†

s↓ , namely

[n̂b
s , âb′†

s′↑ âb′†
s′↓ ] = 2δbb′δss′ â

b′†
s′↑ âb′†

s′↓ , [n̂b
s↑n̂b

s↓, âb′†
s′↑ âb′†

s′↓ ] = δbb′δss′ â
b′†
s′↑ âb′†

s′↓ and [Ŝb
s , âb′†

s′↑ âb′†
s′↓ ] = 0, it can be shown that

the states containing an additional doublon satisfy the following eigenvalue equation

Ĥsâ
b0†
s↑ âb0†

s↓

∣∣∣∣
Ns − 1

2
, N↑s − Ns − 1

2

〉b0

s

=

(
EB

2
+ εb0 + gŨb0

)
âb0†

s↑ âb0†
s↓

∣∣∣∣
Ns − 1

2
, N↑s − Ns − 1

2

〉b0

s

, (C9)

where Ũb0 =
∑ N

2 −1
b=0 Jb0b (recall that Ub0 = Jb0b0 ), and as a consequence also constitute eigenstates of Ĥs.

By using equations (C5) and (C7) we can show that each term appearing in ĤRL couples each state
|Ψ; N↑L, N↑R〉 to a single state containing one doublon. This coupling scheme is schematically depicted in
figure C1. Here the state |Φb0

s ; N↑L, N↑R〉 refers to the 
nB state possessing a double occupancy at the b0th
band of the s-well and N↑L and N↑R spin-↑ atoms in the left and right well respectively. For s = R this state

possessing a doublon reads |Φb0
R ; N↑L, N↑R〉 = |N/2

2 , N↑L − N/2−1
2 〉b0

L ⊗ âb0†
R↑ âb0†

R↓ |N/2−1
2 , N↑R − 1 − N/2−1

2 〉b0
R

and for s = L, |Φb0
L ; N↑L, N↑R〉 = âb0†

L↑ âb0†
L↓ |N/2

2 , N↑L − 1 − N/2−1
2 〉b0

L ⊗ |N/2−1
2 , N↑R − N/2−1

2 〉b0
R . Moreover, it

can be shown that |Φb0
s ; N↑L, N↑R〉 are eigenstates of ĤL + ĤR and are degenerate. Indeed, the following

eigenvalue equation holds
(
ĤL + ĤR

)
|Φb0

s ; N↑L, N↑R〉 =
(
EB + gŨb0

)
|Φb0

s ; N↑L, N↑R〉. (C10)

Therefore, by employing the basis states |Ψ; N↑L, N↑R〉 and |Φb0
s ; N↑L, N↑R〉 the couplings between states

possessing no and one double occupation induced by ĤRL are intuitive. Indeed, the tunneling terms âb0†
Rσ âb0

Lσ

(âb0†
Lσ âb0

Rσ) create a double occupancy on the right (left) well of the b0th band and shift N↑L − N↑R by two in

the case that σ =↑. For instance, the tunneling term âb0†
R↑ âb0

L↑ (blue arrows in figure C1) transfers the spin-↑
particle of the state |Ψ; N↑L, N↑R〉 from the left to the right well of the b0th band resulting in the formation
of a double occupancy on the right well of this band and modifying the occupation of spin-↑ particles to
N↑L − 1 for the left and N↑R + 1 for the right well.

The approach followed to obtain the dominant perturbative correction to the eigenstates of ĤL + ĤR,
|Ψ; N↑L, N↑R〉, in the presence of the coupling term ĤRL is explicated below. First, we define the Hilbert
space spanned by the degenerate eigenstates |Ψ; N↑L, N↑R〉 as H0. Obviously since the states within H0 are
not directly coupled by ĤLR the first order perturbative correction to their energy vanishes. In order to
obtain the first non-trivial correction to the energy of those degenerate states we have to treat the coupling
term ĤLR within second order perturbation theory. Let us define the perturbative eigenstates up to second
order in perturbation theory as |Si〉 ≈ |S(0)

i 〉 + |S(1)
i 〉 + |S(2)

i 〉 with |S(0)
i 〉 ∈ H0. Accordingly, the

corresponding perturbative eigenenergies read, Ei ≈ E(0) + E(2)
i , with E(0) = EB. Then, the second order

correction to the eigenergy of |Si〉, E(2)
i is given by

〈S(0)
i |
∑

k/∈H0

ĤLR|Ψk〉〈Ψk|ĤLR

E(0) − E(0)
k

|S(0)
j 〉 = δijE

(2)
i , (C11)

where |Ψk〉 and E(0)
k correspond to the eigenstates and eigenenergies of ĤL + ĤR within the complementary

space of H0. Equation (C11) implies that in order to obtain E(2)
i the operator in the bracket should be
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diagonalized within H0. The eigenvectors resulting from this diagonalization correspond to the zeroth order
correction of the eigenstate, |S(0)

i 〉. Having found the zeroth order correction to the eigenstate the first order
correction to it can be derived by employing

|S(1)
i 〉 =

∑

k/∈H0

〈Ψk|ĤLR|S(0)
i 〉

E(0) − E(0)
k

|Ψk〉 (C12)

and finally the second order correction can be similarly obtained by

|S(2)
i 〉 =

∑

m/∈H0

〈Ψm|
∑

k/∈H0

ĤLR|Ψk〉〈Ψk|ĤLR

(E(0) − E(0)
m )(E(0) − E(0)

k )
|S(0)

i 〉|Ψm〉. (C13)

The fact that the states |Φb
s ; N↑L, N↑R〉 which are coupled to the H0 manifold (see figure C1 and

equation (C10)) are degenerate greatly simplifies equation (C11). Indeed the latter can be expressed as

〈S(0)
i |

∞∑

b=0

∑

α,α′∈{↑↓}

2(tb)2

gŨb

(
âb†

Lαâb
Rαâb†

Rα′ â
b
Lα′ + âb†

Rαâb
Lαâb†

Lα′ â
b
Rα′

)
|S(0)

j 〉 = δijE
(2)
i (C14)

and by introducing the spin-operators Ŝb
s an effective antiferromagnetic Heisenberg exchange interaction

term is obtained

〈S(0)
i |

∞∑

b=0

4(tb)2

gŨb

(
Ŝb

L · Ŝb
R − 1

4

)
|S(0)

j 〉 = δijE
(2)
i . (C15)

Obviously, this Heisenberg exchange interaction term possesses the S2 [SU(2)] symmetry and as a
consequence the zeroth order correction |S(0)〉 can be identified with the states of definite S,
|Φ(tb = 0); S〉 ∈ H0. Then the first order |S(1)〉 and the second order |S(2)〉 corrections to the wavefunction
correspond to the occupation of states possessing one and two double occupations respectively. In the limit

tb

gUb � 1 the occupation of these states becomes highly suppressed and as a consequence these corrections

can be neglected. Indeed, as figure 4(b) reveals such corrections even beyond the effective tJU model
contribute to a correction less than 2% to the fully correlated many-body eigenstates within the interaction
regime B. Within the above mentioned approximation the ĤRL coupling term can then be substituted with
the one of the effective Anderson exchange interaction

ĤRL ≈ ĤAnd
RL =

∞∑

b=0

4(tb)2

gŨb

(
Ŝb

L · Ŝb
R − 1

4

)
, (C16)

which corresponds exactly to the form of the effective antiferromagnetic interaction appearing in
equation (10) of the main text.

Appendix D. The computational method: ML-MCTDHF

To solve the MB Schrödinger equation
(
i�∂t − Ĥ

)
|Ψ(t)〉 = 0 we rely on the multilayer multiconfiguration

time-dependent Hartree method for atomic mixtures [28] (ML-MCTDHX). More specifically, a reduction
of the ML-MCTDHX method for spin-1/2 fermions is employed which is referred to as the spinor-variant
of the multiconfiguration time-dependent Hartree method for Fermions (MCTDHF). MCTDHF has been
applied extensively for the treatment of fermions with or without spin-degrees of freedom, in a large class of
condensed matter, atomic and molecular physics scenarios (see e.g. [72–77]) and recently also applied in
the field of ultracold atoms [28, 36–38, 67, 78, 79]. MCTDHF is a variational method the key idea of which
is to employ a time-dependent (TD) and variationally optimized MB basis set, which allows for the optimal
truncation of the MB Hilbert space. The ansatz of the MCTDHF method can be summarized as follows.
First, the MB wavefunction, |Ψ(t)〉 is expanded on a TD number-state basis

|Ψ(t)〉 =
∑


n

A
n(t)|
n(t)〉, (D1)

where A
n(t) are the corresponding TD expansion coefficients. The TD number states |
n(t)〉 each possessing
different occupation numbers 
n = (n1, . . . , nD) read

|
n(t)〉 =

[
D∏

i=1

âni (t)

]†

|0〉. (D2)
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As equation (D2) reveals the time-dependence of this MB basis stems from the utilization of D different TD
creation operators, â†

j (t), j = 1, . . . , D. These operators create a fermion in the TD and variationally
optimized single particle function (SPF)

|φj(t)〉 = â†
j (t)|0〉 =

∫
dx
[
φj↑(x; t)ψ̂†

↑(x) + φj↓(x; t)ψ̂†
↓(x)
]
|0〉, (D3)

where the variational parameters φjα(x; t) refer to the spatial distribution of the spin-α part of the jth SPF

and ψ̂α(x) is the spin-α fermionic field operator. The operators âj(t) satisfy the standard fermionic

anti-commutation relations {âi(t), â†
j (t)} = δi,j and thus the MCTDHF ansatz takes explicitly into account

the particle symmetry of the system. Note here that we have used the term spinor-variant when referring to
our implementation of MCTDHF as each SPF, |φj(t)〉, in our case is a general spinor wavefunction (see
equation (D3)). By employing the above mentioned ansatz equations (D1)–(D3) the time-evolution of the
N-body wavefunction, |Ψ(t)〉 under the effect of the Hamiltonian Ĥ reduces to the determination of the
coefficients A
n(t) and the components of the SPFs, φj↑(x; t), φj↓(x; t). The latter in turn follow the
variationally obtained MCTDHF equations of motion [28]. In the limiting case of D = N, the method
reduces to the time-dependent Hartree–Fock approach neglecting all two-body and higher-order
correlations. In the opposite limiting case of D = 2Mp, where Mp is the dimension of the basis for the SPF
coefficients, MCTDHF is equivalent to a full configuration interaction approach (commonly referred to as
‘exact diagonalization’ in the literature). The major advantage of the MCTDHF method when compared to
methods employing a stationary single-particle basis is that the employed time-dependent basis is able to
adapt to the correlation patterns emerging in the system during the dynamics and thus a smaller set of basis
states is required for numerical convergence.

For our implementation we discretize the spatial coordinate by employing a harmonic oscillator discrete
variable representation (DVR), which results after a unitary transformation of the commonly employed
basis of harmonic oscillator eigenfunctions. To study the dynamics, we propagate the wavefunction by
utilizing the appropriate Hamiltonian within the MCTDHF equations of motion. To verify the accuracy of
the numerical integration, we impose the following overlap criteria |〈Ψ|Ψ〉 − 1| < 10−8 for the total
wavefunction and

∣∣〈φi|φj〉 − δij

∣∣ < 10−9 for the SPFs. To testify convergence, we increase the number of
SPFs and DVR basis states such that the observables of interest (M, CFF) do not change within a given level
of accuracy which is in our case 10−4. More specifically, we have used Mp = 80, D = 16 and Mp = 80,
D = 18 for the N = 4 and the N = 6 case respectively. Note that a full configuration interaction treatment
of the above-mentioned systems in the employed primitive bases would require 2.63 × 107 number states
for N = 4 and 2.12 × 1010 ones for N = 6.
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[7] Salasnich L and Penna V 2017 New J. Phys. 19 043018
[8] Penna V and Salasnich L 2019 J. Phys. B: At. Mol. Opt. Phys. 52 035301
[9] Jo G-B, Lee Y-R, Choi J-H, Christensen C A, Kim T H, Thywissen J H, Pritchard D E and Ketterle W 2009 Science 325 1521

[10] Sanner C, Su E J, Huang W, Keshet A, Gillen J and Ketterle W 2012 Phys. Rev. Lett. 108 240404
[11] Valtolina G, Scazza F, Amico A, Burchianti A, Recati A, Enss T, Inguscio M, Zaccanti M and Roati G 2017 Nat. Phys. 13 709
[12] Scazza F et al 2017 Phys. Rev. Lett. 118 083602
[13] Amico A, Scazza F, Valtolina G, Tavares P E S, Ketterle W, Inguscio M, Roati G and Zaccanti M 2018 Phys. Rev. Lett. 121 253602
[14] Pekker D, Babadi M, Sensarma R, Zinner N, Pollet L, Zwierlein M W and Demler E 2011 Phys. Rev. Lett. 106 050402
[15] Li W and Cui X 2017 Phys. Rev. A 96 053609
[16] Shin Y, Zwierlein M W, Schunck C H, Schirotzek A and Ketterle W 2006 Phys. Rev. Lett. 97 030401
[17] Partridge G B, Li W, Kamar R I, Liao Y-a. and Hulet R G 2006 Science 311 503
[18] Shin Y-I, Schunck C H, Schirotzek A and Ketterle W 2008 Nature 451 689
[19] Du X, Luo L, Clancy B and Thomas J E 2008 Phys. Rev. Lett. 101 150401
[20] Du X, Zhang Y, Petricka J and Thomas J E 2009 Phys. Rev. Lett. 103 010401
[21] Pegahan S, Kangara J, Arakelyan I and Thomas J E 2019 Phys. Rev. A 99 063620

21

145



New J. Phys. 22 (2020) 063058 G M Koutentakis et al

[22] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[23] Kangara J, Cheng C, Pegahan S, Arakelyan I and Thomas J E 2018 Phys. Rev. Lett. 120 083203
[24] Serwane F, Zürn G, Lompe T, Ottenstein T B, Wenz A N and Jochim S 2011 Science 332 336
[25] Murmann S, Deuretzbacher F, Zürn G, Bjerlin J, Reimann S M, Santos L, Lompe T and Jochim S 2015 Phys. Rev. Lett. 115 215301
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SPECTROSCOPIC PROPERTIES OF BOSE AND FERMI POLARONS

4.2 Spectroscopic properties of Bose and Fermi Polarons

4.2.1 Repulsive Fermi polarons and their induced interactions in bi-
nary mixtures of ultracold atoms
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Abstract
Weexplore repulsive Fermi polarons in one-dimensional harmonically trapped few-bodymixtures of
ultracold atoms using as a case example a 6Li-40Kmixture. A characterization of these quasiparticle-
like states, whose appearance is signaled in the impurity’s radiofrequency spectrum, is achieved by
extracting their lifetime and residua. Increasing the number of 40K impurities leads to the occurrence
of both single andmultiple polarons that are entangledwith their environment. An interaction-
dependent broadening of the spectral lines is observed suggesting the presence of induced interactions.
We propose the relative distance between the impurities as an adequatemeasure to detect induced
interactions independently of the specifics of the atomicmixture, a result that we showcase by
considering also a 6Li-173Yb system. This distance is further shown to be indicative of the generation of
entanglement independently of the size of the bath (6Li) and the atomic species of the impurity. The
generation of entanglement and the importance of induced interactions are revealedwith an emphasis
on the regime of intermediate interaction strengths.

1. Introduction

The properties and interactions of impurities immersed in a complexmany-body (MB) environment represents
a famous example of Landau’s quasiparticle theory [1]. The concept of a polaron, where an impurity immersed
in a bath couples to the excitations of the latter forming an effective free particle, plays a central role in our
understanding of quantummatter. Applications range from semiconductors [2], highTc superconductors [3],
and liquidHeliummixtures [4, 5] to polymers and proteins [6, 7]. Population imbalanced ultracold Fermi gases
[8]with their tunable interactions, offer an ideal platform for studying the impurity problem aswell as the
effective interactions between Fermi polarons.

Most of the experimental and theoretical studies on this topic have initially been focusing on attractive Fermi
polarons [9–14]. Only very recently quasiparticle formation in fermionic systems associatedwith strong
repulsive interactions have been experimentally realizedfirst in the context of narrow [15] and subsequently for
universal broad Feshbach resonances (FR) [16, 17]. They have triggered a new era of theoretical investigations
regarding the properties of repulsive Fermi polarons [18–25]. Thesemetastable states–that can decay into
molecules in two- and three-dimensions (3D)–are of fundamental importance since their existence and
longevity offers the possibility of stabilizing repulsive Fermi gases. As a result exotic quantumphases and
itinerant ferromagnetism [26–33] could be explored.While forfinite impuritymass Fermi polarons constitute
well-defined quasiparticles in these higher dimensional systems [34–36], the quasiparticle picture is shown to be
ill-defined in the thermodynamic limit of one-dimensional (1D) settings [37–39]. However, important aspects
of the physics in this limit have been identified in few-body experiments evading such difficulties [40, 41].
Besides the fundamental question of the existence of coherent quasiparticles in such lower dimensional settings
[41–53], far less insight is nowadays experimentally available regarding the notion of induced interactions
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between polarons [54–65]. In this direction, 1D systems represent the cornucopia for studying effective
interactions between quasiparticle-like states, since their role is expected to be enhanced in such settings [39].

In this work, we simulate the experimental process of reverse radiofrequency (rf) spectroscopy
[15, 16, 66, 67] using as a case example amixture consisting of 40K Fermi impurities coupled to a few-body 6Li
Fermi sea and demonstrate the accumulation of polaronic properties.We predict and characterize the excitation
spectrumof these states and derive their lifetimes and residua.Most importantly here, we identify all the
dominantmicroscopicmechanisms that lead to polaron formation. By increasing the number of 40K impurities
immersed in a 6Li bath, we verify the existence of single as well asmulti-polaron states both forweak and strong
interspecies repulsion. In linewith recent studies [16, 68] the presence of induced interactions between the
polarons is indicated by a positive resonance shift further accompanied by a spectral broadening.However, the
non-sizeable nature of this shift, being of the order of 2%, suggests that in order to infer about the presence of
induced interactions an alternativemeasure is needed. Inspecting the relative distance between the resulting
quasiparticles, a quantity that can be probed experimentally via in situ spin-resolved single-shotmeasurements
[69], we observe its decrease which concordantly dictates the presence of induced interactions [70]. The latter are
found to be attractive despite the repulsive nature of the fundamental interactions in the system. This fact
persists upon enlarging the fermionic sea [57] and considering different atomic species.Wefind that the
decrease of the relative distance is inherently connected to the generation of entanglement. The von-Neumann
entropy [71] reveals equally the entanglement and is sensitive to the number of impurities.

This work is structured as follows. Section 2 presents our setup andMB treatment. In section 3we discuss the
excitation spectrumof the fermionicmixture and identify polaronic states.We also extract their residues and
lifetimes. In section 4we quantify the degree of entanglement between the impurity atom(s) and the bath. The
induced interactions between the two impurity atoms are analyzed and related to the generation of
entanglement.We summarize ourfindings and provide an outlook in section 5. Appendix A contains a
discussion of our numerical implementation regarding the process of rf spectroscopy. The applicability of the
employedmodel in the context of effective range corrections is shown in appendix B. Appendix C showcases the
behavior of the energy of the polaron versus the particle number of the bath. Finally, in appendixDwe provide
further details of our numerical findings presented in themain text.

2. Theoretical framework

2.1.Model system
Our system consists ofNL=5 spinless 6Li fermions eachwithmassmL, which serve as a bath for the spin-1/2
NK=1,2 40K impurities ofmassmK. Each species is trapped in a 1Dharmonic potential with frequency
ωK=0.6ωL in linewith previous

6Li-40K experiments [68, 72–74]. TheMBHamiltonian of the system reads

å= + + +ˆ ˆ ˆ ˆ ˆ ( )H H H H H , 1L
a

a I S
0 0

where 
ò w= Y - + Y( )ˆ ˆ ( ) ˆ ( )†

H x x m x xdL L m x L L L
0

2

d

d

1

2
2 2

L

2 2

2 , is theHamiltonian describing the trappedmotion of

themajority 6Li atomswith trap frequencyωL. The corresponding non-interactingHamiltonian of theminority
40K atoms is 

ò w= Y - + Y( )ˆ ˆ ˆ ( )†
H x m x xda a m x K K a

0

2

d

d

1

2
2 2

K

2 2

2 , where =  { }a , denotes the spin component. In

both of the above-mentioned cases Ŷ ( )xi is the fermionic field-operator for either themajority (i=L) or the
impurity (i=K ) atoms. The contact interspecies interaction termof effective strength g>0 between a spin-
impurity particle and the bath is given by ò= Y Y Y Y ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )† †

H g x x x x xdI L L
5 . The non-resonant interaction

of the spin- state with the 6Li bath can be neglectedwhen compared to ĤI .Moreover, the effective interaction
strength g [75] can be experimentally tuned either bymeans of FR [76] or confinement induced resonances [75].
It is important to stress at this point that a bound state of a Feshbachmolecule occurs for all scattering lengths in
one-dimension.However it can be demonstrated [77, 78] that its effect is negligible for repulsive interactions
sufficiently away from the infinite interaction limit such as the ones considered herein (see also appendix A).We
also note that in the considered few-body case it can be shown that the effective range corrections to the
interaction term ĤI stemming from the presence of narrow FR are negligible, see appendix B. Finally,

 = -W Dˆ ˆ ˆH S SS x z2 2
R
0

, where WR
0 denotes the Rabi frequency, andΔ the detuning of the rf field in the absence of

the 6Li bath.Here, ò= å Yˆ ˆS xd ab a (x) s Ŷ ( )xab b is the total spin operatorwhile s denotes the Pauli vector.We

assume, wW R L
0 such that W D+R

0
i
(D+i

denotes the location of the resonance to the ith state identified in
the rf spectra) thus allowing for a spectroscopic study of the polaronic structures, see also appendix A.

5
Note that the effective interaction strength is given in terms of the scattering length a0 as p= +( ( )) ( )g a m m m m2 L K L K

2
0 .

2

New J. Phys. 21 (2019) 043032 S IMistakidis et al

150



2.2. TheMBapproach
To theoretically address the impurity problem,we use a variationalmethod, namely theMulti-LayerMulti-
Configuration Time-DependentHartreemethod for atomicmixtures (ML-MCTDHX), that takes into account
all particle correlations [79, 80]. Such a non-perturbative inclusion of correlations allows us to calculate the
impurity spectrum and thus identify the emergent polaron states.

TheMBwavefunction, Y ñ∣ ( )t MB is constructed as a linear combination of a set ofM time-dependent
wavefunctions for each of the species being referred to as species wavefunctions, Y ñs∣ ( )ti . Hereσä { L, K },
i=1,K,M and

åY ñ = Y ñ Y ñ
=

∣ ( ) ( )∣ ( ) ∣ ( ) ( )t A t t t , 2
i j

M

ij i jMB
, 1

L K

whereAij(t)denote the time-dependent expansion coefficients. Equation (2) is equivalent to a truncated Schmidt
decomposition of rankM [71, 81, 82]. Indeed, the spectral decomposition of the expansion coefficientsAij reads

l= å =
-( ) ( ) ( ) ( )A t U t t U tij k

M
ik k kj1

1 where l ( )tk refer to the Schmidtweights. As a consequence theMB

wavefunction can bewritten as a truncared Schmidt decomposition i.e. lY ñ = å Y ñ Y ñ=∣ ( ) ( ) ∣ ˜ ( ) ∣ ˜ ( )t t t tk
M

k k kMB 1
L K

.
Subsequently each of the species wavefunctions is expanded on the time-dependent number-state basis,
ñs

∣ ( )n t , with time-dependent weights s ( )B ti n;

åY ñ = ñs s s


∣ ( ) ( )∣ ( ) ( )t B t n t . 3i
n

i n;

Each time-dependent number state corresponds to a Slater determinant of themσ time-dependent
variationally-optimized single-particle functions (SPFs) f ñs∣ ( )tl , l=1, 2,K,m σwith occupation numbers
= ¼ s

 ( )n n n, , m1 . Each of the SPFs is subsequently expanded in a primitive basis. For the 6 Li atoms the primitive
basis ñ{∣ }k consists of a discrete variable representation (DVR) of dimension. For 40 K the primitive basis

ñ{∣ }k s, , refers to the tensor product of a the aforementionedDVRbasis for the spatial degrees of freedom and
the two-dimensional spin basis ñ ñ{∣ ∣ }, ,



å åf añ = ñ ñ
a

a
= =  

∣ ( ) ( )∣ ∣ ( )
{ }

t C t k . 4j
k

jk
K

1 ,

K

a ( )C tjk
K refer to the corresponding time-dependent expansion coefficients. Note here that each time-dependent

SPF for the K40 is a general spinor wavefunction of the form òf c cñ = Y + Y ñ



∣ ( ) [ ( ) ˆ ( ) ( ) ˆ ( )]∣† †

t x x x x xd 0j j j
K

(see also [33]). The time-evolution of theN-bodywavefunction under the effect of theHamiltonian Ĥ reduces
to the determination of theA-vector coefficients and the expansion coefficients of each of the species
wavefunctions and SPFs. Those, in turn, follow the variationally obtainedML-MCTDHX equations ofmotion
[80]. It is important tomention here that in order obtain the eigenstates involving one and two polarons of the
interactingMB systemwe use themethod of improved relaxation [80]withinML-MCTDHX.We remark that
the system in its stationary state reduces to a binarymixture of bath and spin- atoms. In this way the general
ansatz of equation (2) becomes that of equation (8) (see also the discussion in section 4). For a detailed discussion
on this ansatz we refer the reader to [80–82].

In the limiting case ofM=1 andmσ=N σ themethod reduces to the two-species coupled time-dependent

Hartree–Fockmethod, while for the case of =
⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥M

m

N

m

N
min ,

L

L

K

K
, =mL and =m 2K , it is

equivalent to a full configuration interaction approach (commonly referred to as ‘exact diagonalization’ in the
literature)within the employed primitive basis. Another important reduction of themethod is the so-called
speciesmean-field (SMF) approximation [80, 81]. In this context the entanglement between the species is
ignoredwhile the correlations within each of the species are taken into account.More specifically, the system’s
wavefunction is described by only one species wavefunction, i.e. Y ñ = Y ñ =∣ ( ) ∣ ( )t t 0i

L
i
K for ¹i 1. Subsequently

each species wavefunction is expressed in terms of the time-dependent number state basis of equation (3)
consisting of different time-dependent variationally optimized SPFs. As a result the total wavefunction of the
system takes the tensor product form

Y ñ = Y ñ Ä Y ñ∣ ( ) ∣ ( ) ∣ ( ) ( )t t t . 5SMF 1
L

1
K

3. Reverse rf spectroscopy

3.1. Excitation spectrum
In order to probe the excitation spectrumof the 40K impurities we simulate reverse rf spectroscopy
[15, 16, 66, 67]. This process follows the protocol explicated below. The initial state of the system consists of the

3
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6Li atoms in theirNL-body non-interacting ground state  ò fY ñ = Y ñ
=
-∣ ( ) ( ) ˆ ( )∣†

x x x0 d 0L i

N
i
L

L0

1L . f ( )xi
L refers

to the ith energetically excited eigenstate of ĤL
0
. ForNK=1 the 40K impurity is prepared in the non-interacting

spin- state, and it is either in its ground state or in itsfirst excited state (see also the discussion below). Namely

ò fY ñ = Y Y ñ∣ ( ) ( ) ˆ ( )∣ ( )†
x x x0 d 0j j

K
L , where Î { }j 0, 1 while f ( )xj

K refer to the eigenstates of Ĥ
0
.We then drive

the impurity atom to the resonantly interacting spin- state, by applying a rectangular rf pulse (see also
appendix A)with bare Rabi frequency pW = ´ -4 10R

0 2 (harmonic oscillator units ÿ=mL=ωL=1 are
adopted here). Our simulated spectroscopic signal presented infigures 1(a), (b) is the fraction of impurity atoms

transferred after a pulse D = á ñ( )f t,
N

NK
, with á ñN being the number of spinflipped impurities,measured for

varying rf detuningΔ=νrf−ν0 and pulse time t. ν0 denotes the frequency of the non-interacting transition
between the spin- and spin- states and νrf is the applied frequency (see also appendix A).

Starting from Y ñ∣ ( )00 and forfixed strong interspecies repulsions (g=5)we observe a resonance for
D = + ñ∣ 2.430 0.002

1
(seefigure 1(a)), possessing a Rabi frequencyΩR=0.1072±0.0021. These values stem

fromfitting W D = W + D - D+˜ ( ) ( ) ( )R R
2 2

i
to the simulated rf spectra. This resonance corresponds to the

lowest energetically interacting state of a spin- impurity with the 6Li bath (figure 2(a)) verifying the existence of
a repulsive polaron in our 1D setup. Further resonances corresponding to higher excited states can be identified
as e.g. forΔ+≈3.6 possessing amuch lower Rabi frequency. To identify the transition that leads to the
occurrence of the above-mentioned quasiparticle peak, i.e. Y ñ « ñ∣ ( ) ∣0 10 schematically illustrated infigure 2(a),
wefirst compute the energy, Ei(g), ( = ñ∣i 1 ) for this configuration. The resulting energy difference,
D = -( ) [ ( ) ( )]E g E E n5 0i i i , with E(0) being the energy of the initial state and n the order of the transition, is
the one thatmatches the location of the observed resonance. The corresponding polaronic energy branch shows
amonotonic increase for increasing interspecies repulsion (see the light blue line infigure 2(d)), a behavior that
is consistent with the experimental [16] and the theoretical predictions [18–21] in higher dimensional settings.

As a next stepwe consider a single impurity being initialized in itsfirst excited state Y ñ∣ ( )01 . This is of
importance for the case ofNK=2 impurities for whichmore transitions are possible. In sharp contrast to
the Y ñ∣ ( )00 case, two dominant polaron peaks appear in the rf spectrumof figure 1(b) centered at
D = + ñ∣ 2.152 0.001

2
(ΩR=0.0899±0.0012) andD = + ñ∣ 2.688 0.002

3
(ΩR=0.05072±0.022)

respectively. These two quasiparticle peaks occur at lower and higher values ofΔ respectively, when compared
to theD+ ñ∣1 resonance. Thewidth of the resonance centered atD+ ñ∣3 is significantly sharper compared to the

lower-lying one as it possesses lowerΩR. The corresponding transitions in this case namely Y ñ « ñ∣ ( ) ∣0 21 , and

Figure 1. Spectroscopic signal, f (Δ, t), of a single impurity initialized (a) in the ground state, and (b) in thefirst excited state of the
harmonic oscillator for strong interspecies repulsive interactions, g=5, verifying the existence of well-defined quasiparticle peaks
that appear in the rf spectrum. (c) Same as (a) but for two impurities. (d) Same as (c) but forweak coupling (g=1.5). The insets in (c),
(d) present the probability of finding two spinflipped impurities.Markers in light blue indicate the center of each resonance D+i .

Figure 2. Schematic representation of the identified spectral transitions for (a), (b)NK=1 and (c)NK=2 40K impurities immersed
in theNL=5 6Li Fermi sea. (d)Polaron energy branches,ΔEi(g) for the different = ñ ¼ ñ∣ ∣i 1 , , 4 identified transitions (see text).
(e)Residua,Zfi, of the repulsive polarons calculated for varying g and for each of the aforementioned transitions.
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Y ñ « ñ∣ ( ) ∣0 31 are shown infigure 2(b). The relevant energy branches,D ñ( )∣E g2 ,D ñ( )∣E g3 , for increasing g are
depicted infigure 2(d). It is evident that for g 1.5 all the aforementioned resonances except the transition
Y ñ « ñ∣ ( ) ∣0 31 , are overlapping sinceD Dñ ñ( ) ( )∣ ∣E g E g1 2 . However,D ñ( )∣E g3 possesses a non-zero value even
for g≈0 as the involved states are already distinct (figure 2(b)).

To probe the existence of effective interactions between polaronswe next consider the case of two 40K
impurities immersed in the 6Li sea. Figure 1(c) shows the rf spectrum forNK=2, and g=5.Here, three
narrowly spaced resonances can be observed, see the broad structure centered aroundΔ=2.4 infigure 1(c).
This broadening togetherwith an overall small upshift with respect to the above single impurity cases, has been
argued to be indicative of the presence of induced interactions between the polarons [16, 68] that wewill explore
below. The resonances are located atD = » D+ ññ ∣ ˜∣ ˜ E2.195 22

(ΩR=0.0836±0.0004),D = » D+ ññ ∣ ˜∣ ˜ E2.441 11

(ΩR=0.0745±0.001), andD = » D+ ññ ∣ ˜∣ ˜ E2.722 33
(ΩR=0.0577±0.0005) respectively. The relevant

transitions are Y ñ « ñ∣ ˜ ( ) ∣˜0 20 , and Y ñ « ñ∣ ˜ ( ) ∣˜0 30 for the outer resonances, in direct analogywith the ones found
in the single impurity case offigure 2(b).More importantly herein, the central resonance accounts not only for a
transition Y ñ « ñ∣ ˜ ( ) ∣ ˜0 10 but it also involves several second-order processes namely Y ñ « « ñ∣ ˜ ( ) ∣˜0 ... 40 and thus
corresponds to amulti-polaron state (figure 2(c)).We showcase this, by calculating the probability offinding
two particles with spin- (see the inset infigure 1(c)). It is the appearance of this ñ∣4̃ state that leads to higher-
order transitions via the virtual occupation of ñ∣4̃ (figure 2(c)). The observed upshift of all spectral lines is
attributed to the occurrence of this state. Strikingly enough, the energy of this two-polaron state,D ñ∣ ˜E 4 , almost
coincides with the single polaron one,D ñ∣E 1 , i.e. it exhibits a deviation of 1.9%which is of the same order as the
observed upshift (figure 2(d)). Note that such a two-polaron resonance is also present for weaker interactions
located atΔ+≈1.175, see figure 1(d) and its inset for g=1.56. Thus, increasing the number of impurities does
not significantly affect the energy of the polaron or themulti-polaron state formed, in accordancewith the
absence of a significant shift of the corresponding energy in current experimental settings [16]. The origin of the
above-mentioned positive shift can be further attributed to the difference between the effective and baremass of
the impurities [9, 16], as well as to the presence of induced interactions between the polarons [56, 58, 63].
Therefore the position of the resonancemight not be an adequate experimental probe for the presence of
induced interactions. Indeed, the observed energy shift between the energy of the single and two impurites is
rather small, being of the order of 1.9%, and therefore given the current experimental resolution itmight even
not be easily experimentally detectable. Instead aswe shall demonstrate below the spatial separation of the
impurities is the relevant quantity and can be probed by current state-of-the-art experimentalmethods.

3.2. Residue and lifetime of the polaron
To further characterize the polaronswe employ their residue,Zfi, which is ameasure of the overlap between the
dressed polaronic state and the initial non-interacting one after a single spin flip [25, 39]. It is important to note
here that in one-dimension the quasiparticle residue acquires afinite value for any finiteNL. Indeed, the
Anderson orthogonality catastrophe occurs only in the thermodynamic limit  ¥NL [39, 83] rendering the
quasiparticle picture ill defined.We have used two independent ways for determiningZfi. Initially, with the aid of

Fermi’s golden rule,  d w wG = W å -p
 ( ) ( )Zi f R f fi f2

0 2 , where º á ñ∣ ∣ ˆ ∣ ∣Z f S ifi x
2, we can deduce that the residue

is related to our simulated rf procedure via = W W º( )Z Zfi R R fi
0 2 rf [15, 16]. For the three polaron peaks

identified infigure 1(c) the above gives: = Y ñ ñ∣ ˜ ( ) ∣ ˜Z 0.5107 0.0136
0 2

rf
0

, = Y ñ ñ∣ ˜ ( ) ∣ ˜Z 0.7277 0.0285
0 1

rf
0

, and

= Y ñ ñ∣ ˜ ( ) ∣ ˜Z 0.1629 0.0141
0 3

rf
0

. Additionally, one can calculate the quasiparticle weight by invoking its

definition. The correspondingZifʼs are presented infigure 1(e) upon varying g. For increasing g Zif decreases
being dramatically steeper for themulti-polaron state, ñ ñ∣ ˜ ∣ ˜Z 1 4 , when compared to the single polaron case

Y ñ ñ∣ ˜ ( ) ∣ ˜Z 0 10
. This result supports the observation that polarons consist of well-defined quasiparticles in the single

impurity limit [17]. Importantly here, very good agreement in evaluatingZfi is observed between the two
approaches as can be seen by comparing e.g. at g=5 =Y ñ ñ∣ ˜ ( ) ∣ ˜Z 0.16270 30

shown infigure 2(e) to Y ñ ñ∣ ˜ ( ) ∣ ˜Z
0 3

rf
0

.

The coherence properties of the above-identified polarons can be directly inferred bymeasuring their
lifetime. Due to the 1D confinement and due to the fact that in theHamiltonian of equation (1) incoherent two-
and three-body recombination processes are ignored [20, 21, 25, 39, 84], only coherent oscillations are expected
and indeed observed. Figures 3(a) and (b) summarize ourfindings forNK=2 both forweak and strong
coupling. To obtain these lifetimes a two-pulse rf scheme is adopted,mimicking the experimental procedure
[15], which is briefly outlined here (see appendix A for details). For a specific resonance aπ-pulse is applied
transferring the atoms from their initial spin- to their polaronic spin- state. Then the particles are left to evolve
in the absence of an rffield, W = 0R

0 , for a variable (dark) time, τD. After this dark time a secondπ-pulse is used
driving the impurities from the interacting (spin- state) to their non-interacting (spin-) state. The signature of

6
For g=1.5 the corresponding separation of the spectral lines is suppressed resulting to a broadened central peak and a single and sharper

side peakwhen compared to the g=5 case.

5
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this process is the fraction of atoms transferred to the spin- state during the second pulse divided by the
transferred atoms during the first pulse. Namely

 t
t

=
- +p p

p

W W

W

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )( ) ( )
f f

f
. 6D

D
2

R R

R

Note that the presence of excitations as well as higher-order transitions, signify the non-adiabatic nature of this
procedure. Thus a phase difference between the distinct polaronic states contributing to theMBwavefunction is
accumulated during the dark time leading in turn to the observed oscillations (figure 3). Evidently, for single
particle transitions a dominant oscillation frequency can be deduced (figure 3(a)), whereasmultiple ones occur
in the corresponding two-polaron case (figure 3(b)) due to the virtual occupation of the ñ∣4̃ state.

4. Entanglement and induced interactions

Tounravel the entangled nature of both the single and the two-polaron states we next invoke the von-Neumann
entropy [71]. It is important to stress here that the polaronic states refer to stationary states of the binarymixture
consisting of bath and spin- atoms. For this binary system (s = L, ) the von-Neumann entropy reads

r r= - s
s s[ ( )]S Tr logi , with r = - YñáYs

s¢[∣ ∣]Tr being the species densitymatrix. Infigure 4(a) Si is shown for
all of the above transitions, namely = ñ ¼ ñ∣ ∣˜i 1 , , 4 , as a function of the coupling strength. In all cases amonotonic
increase of Si is observedwhen entering deeper into the repulsive regime. Strikingly enough, the entropy is found
to be significant not only for the two-polaron state but also for the single polaron ones suggesting that these
quasiparticles are in general entangled.However notice the deviation between the single ( ñ∣S 1 ) and the two-
polaron state ( ñ∣ ˜S 4 )which is of the order of 20% for large repulsions.

Figure 3. Simulated spectroscopic signal  t( )D as a function of the dark time τD (see text) showcasing the coherent oscillations of (a)
the single and (b) themulti-polaron states having (a) strong (g=5), and (b) strong andweak interspecies repulsions. In all cases
NL=5,NK=2.

Figure 4. (a)Von-Neumann entropy, Si, upon varying the interspecies repulsion for all the identified, = ñ ¼ ñ∣ ∣˜i 1 , , 4 , transitions of
figure 2(c). (b)Relative distance, á ñr12 , between the polarons in themulti-polaron state (see text) dictating the presence of induced
interactions both in the SMF and theMB case (see legend and text). The inset illustrates á ñr12 within theMB case for larger repulsions.
(c)Relative distance calculated for the distinctmodes of entanglement, l á ñrk k12 (with =k 1, 2, 3), in themulti-polaron case for
increasing interspecies repulsion g. (d)Cumulative von-Neumann entropy upon consecutively adding species functions i.e.M=
1,K, 15 until theMB result is reached. In (c), (d) both theMB and the SMF results are illustrated (see legend), while thefindings
correspond to the case of a 6Li-40Kmixture consisting ofNL=5 andNK=2 particles.
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Turning our attention to the two-polaron state, we aim to reveal the presence of induced interactions. As
discussed above one cannot necessarily infer about the latter by solely considering the energies. Thereforewe
employ the relative distance between the two 40K impurities that constitute themulti-polaron state for variable g.
The relative distance reads

ò
á ñ =

- áY Y Y Y Y Yñ

áY - Yñ
   

 

∣ ∣ ∣ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )∣
∣ ˆ ( ˆ )∣ ( )

† †
r

x x x x x x x x

N N

d d

1
, 712

1 2 1 2 1 2 2 1

where Yˆ ( )x1 denotes the fermionic field operator that annihilates a fermion at position x1. N̂ is the number
operator thatmeasures the number of fermions residing in the spin- state. Such a quantity can be directly
probed experimentally by performing in situ spin-resolved single-shotmeasurements on the -state of 40K [69].
Each image offers an estimate of the relative distance between the polarons provided that the position
uncertainty is relatively low [69]. Then á ñr12 is obtained by averaging over several such images. Evidently (see
figure 4(b)) stronger repulsions result in a significant decrease of á ñr12 that drops to almost half of its initial value
for g 5. In this way, á ñr12 clearly captures themanifestation of attractive induced interactions present in the
system saturating for even larger g (see the inset infigure 4(b)). As shown infigure 4(b) this behavior of á ñr12 holds
equally for larger particle numbers of the bath, i.e.NL=8, and different atomic species, e.g. a 6Li-173Ybmixture
possessingωYb=0.125ωL [85, 86]. This indicates that á ñr12 captures the presence of induced interactions
independently of the specifics of the atomicmixture. It becomes also apparent that heavier impurities lead to
even stronger attraction emerging fromdrastically smaller interactions.Most importantly, by calculating á ñr12 in
the non-entangled SMF approximation (see also equation (5)), it can be clearly deduced that its shape, being
much smoother in theMB approach (figure 4(b)), bears information regarding the generation of entanglement
(see also our discussion below). Recall that in this latter SMF case thewavefunction ansatz assumes the form
Yñ = Y ñ Ä Y ñ∣ ∣ ˜ ∣ ˜L

SMF , which is themost general ansatz that excludes entanglement but includes intraspecies
correlations.

Therefore, á ñr12 is indicative of the generation of entanglement, as dictated by the growth rate of Si for varying
g, inMB systems. Indeed, the relation between the generation of entanglement and the á ñr12 can be understood as
follows. In order to connect the relative distancewith the generation of entanglement wemustfirst recall that the
systemunder consideration is a bipartite composite systemwhoseMBwavefunction, Yñ∣ MB, can be expressed in
terms of the truncated Schmidt decomposition of rankM as

å lYñ = Y ñ Y ñ
=

∣ ∣ ˜ ∣ ˜ ( ). 8
k

M

k k
L

kMB
1

Here Y ñ∣ ˜
k
L
and Y ñ∣ ˜

k denote the species wavefunction of the bath and the impurity respectively. Theweightsλk in

decreasing order are referred to as the natural occupations of the kth species function, and l Y ñ Y ñ∣ ˜ ∣ ˜
k k

L
k denotes

the kthmode of entanglement. Then the expectation value á ñr12 in terms of the Schmidt coefficientsλk reads
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It becomes apparent by the above expression that the interplay of two different quantities has to be taken into
account in order to extract the dominant contribution that leads to the final shape of á ñr12 when including all the
relevant correlations. Namely the Schmidt weights,λk, and the two-body correlator á ñr k12 of the kthmode of
entanglement. Infigure 4(c) l á ñrk k12 is illustrated for each of thefirst three individual species functions k=1, 2,
3, and for the case of a 6Li-40Kmixture consisting ofNL=5,NK=2 fermions. Also in the samefigurewe have
included the corresponding fullMB result depicted with the dashed dotted black line, as well as the relevant
outcome in the non-entangled SMF case (see the dashed black line infigure 4(c)). Notice the abrupt decrease of
á ñr12 in the SMF casewhen compared to themuch smoother decay observed in the presence of entanglement. It is
exactly this comparison of theMBoutcome to the SMFonewhich reveals that the relative distance itself via its
shape bears information regarding the generation of entanglement in the system. Additionally, as can be clearly
deduced from this figure the dominant contribution to the final shape of á ñr12 stems from l á ñr1 12 1 (see solid blue
line infigure 4(c))which corresponds to thefirstmode of entanglement. It is important to note here, that the
formof this dominantmode, l á ñr1 12 1, in theMB case is greatly alteredwhen compared to the non-entangled,
á ñr12 SMF, case. Therefore it becomes apparent that besides this dominant contribution also higher ordermodes of
entanglement weighted byλ2,λ3,K are significant in retrieving theMBoutcome indicating the strongly
entangled nature of the system.

Turning to the von-Neumann entropy recall that the latter can bewritten in terms of the Schmidt
coefficients as follows: l l= -å =S logM k

M
k k1 . The corresponding ºñ∣ ˜S SM4 upon consecutively adding higher
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order contributions is shown infigure 4(d). Indeed inspecting figure 4(d) it becomes evident that in order to
retrieve the fullMB result the higher-lying Schmidt coefficients, namely k>1, are the ones that predominantly
contribute to thefinal shape of SM. This result is in sharp contrast to the behavior of the relative distance which is
mainly determined by thefirstmode of entanglement characterized by the leading order Schmidt coefficient,
namely theλ1. Notice also that in the samefigurewe have included the corresponding SMF result (see the dashed
black line infigure 4(d)) just to showcase that in this case the von-Neumann entropy is zero due to the absence of
entanglement.

It becomes evident by the above discussion that both the von-Neumann entropy and the relative distance
dictate the generation of entanglement in theMB systembut by taking into account different contributions.
Additionally, since both quantities are given in terms of the Schmidt coefficients being subject to the constraint

l l- = å =1 i
M

i1 1 , whenD = á ñ - á ñ( )r g r r12 12 MB 12 SMF isfinite then alsoD = -( )S g S SM MB SMF isfinite.
Moreover, SM (g) is used to showcase that polarons are indeed entangledwith their environment. However, since
SM cannot bemeasured experimentally, one can infer about the generation of entanglement in theMB system
via the shape of á ñr12 which can be probed via in situ spin-resolved single-shotmeasurements that are nowdays
available [69]. It is alsoworth commenting at this point that the above results can be generalized to any type of
mixture not necessarily a fermionic one.

5. Conclusions

Wehave investigated the existence and emergent properties of single andmultiple repulsive polarons in 1D
harmonically confined fermionicmixtures both forweak and strong interspecies interactions. In particular, we
have simulated the corresponding experimental process of rf spectroscopy using different fermionicmixtures
consisting of a single or two impurities coupled to a few-body Fermi sea. Analysing the obtained rf excitation
spectrum it is indeed shown that these impurities accumulate polaronic properties.Most importantly, we
identify all dominantmicroscopicmechanisms that lead to the polaron formation.We verify that by increasing
the number of impurities immersed in a bathwith fixed particle number both single andmulti-polaron states
occur independently of the interaction strength. The corresponding polaronic states are characterized by
extracting their residua and lifetimes.Wefind that the residue exhibits a decreasing tendency for increasing
interspecies interaction strengths. This decrease is found to bemuchmore prominent for amulti-polaron than a
single polaron state. On the other hand the spectroscopic signal shows an oscillatory behavior with variable dark
time indicating the longevity of the polarons.

Turning to the induced interactions between the polaronswe show that their presence isfirst dictated by a
positive resonance shift in the rf spectrum accompanied by a consequent spectral broadening. This latter finding
is in accordancewith the recent experimental observations in three-dimensional setups. However, the above-
mentioned shift possesses a small amplitude, being of the order of 2%. This implies that in order to infer about
the presence of induced interactions an alternativemeasure is needed.Our alternativemeasure for probing the
presence of induced interactions is the relative distance between the polarons. It can be experimentally probed
via in situ spin-resolved single-shotmeasurements. Attractive induced interactions are indeed captured by this
quantity and shown to persist upon enlarging the fermionic sea or considering different fermionic species. The
shape of the relative distance for increasing interspecies interactions is found to be also indicative of the presence
of entanglement in theMB system. To quantify the degree of entanglement between the impurity and the bath
we resort to the von-Neumann entropywhich acquires finite values and in particular increases for larger
interactions. The degree of entanglement is found to be crucial for the case of a single and for two impurities,
being larger in the latter case.

Our investigation of strongly correlated 1D repulsive fermi polarons andmulti-polaron states opens up the
possibility of further studies of quantum impurities in lower dimensional settings. In particular a
straightforward extension of our results would be to consider bosonic or fermionic impurities of the same or
higher concentration in a bosonic bath and study the consequent formation of quasiparticles. An imperative
prospect would be to examine the existence and properties of such quasiparticle states in the 1D to the 3D
crossover, an investigation that calls for further experimental studies. Another interesting direction is to unravel
the few toMB crossover regarding the size of the bath in order to reveal its impact on the emergent polaronic
properties. Certainly the study of dressed impurities in the strongly interacting regimewhere the polaron picture
is expected to break down is an intriguing prespective.
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AppendixA.Details of the reverse rf spectroscopy

The purpose of this section is to elaborate on themodel that allows for the simulation of rf spectroscopy [15, 16].
The latter has been employed in themain text for the identification of the polaronic resonances and the
subsequent characterization of their coherence properties.

In our case few K40 atoms are immersed in an environment consisting of 6 Li atoms close to an interspecies
magnetic FR [76]. Such resonances occur atmagnetic fields of the order of 100G [72, 73, 87], where the ground
state of 40 K atoms, = ñ∣ S F;2

1 2
9

2
, experiences a sizeable quadratic Zeeman shift [88]. This Zeeman shift allows

us to address selectively the distinctmF transitions provided that the employed intensity of the rf pulse results in a
Rabi frequencyΩRmuch smaller than the Zeeman splitting of the involved hyperfine levels. In this workwe
consider two such hyperfine levels of K40 denoted as ñ∣ , ñ∣ that can be identified and resonantly coupled for a rf
photon frequency ν0, corresponding to the Zeeman splitting between the two levels, in the absence of a 6 Li bath.
In such a case, it suffices to treat the K40 atoms as two-level systems. As the atoms are confinedwithin a
harmonic potential each of the hyperfine levels is further divided into states of different atomicmotion. The
average spacing between these sublevels corresponds to the harmonic trap frequency,ωK being of the order of
kHz in typical few-atom experiments [40, 77, 89]. In the vicinity of a FR the energy of these sublevels strongly
depends on the interspecies interaction strength g between the K40 atoms in the resonantly-interacting
hyperfine state and the 6 Li environment. Accordingly the energy of eachmotional state shifts byΔ+(g), from
the corresponding non-interacting one. In few-atom experiments this shift is of the order of the trapping
frequency (∼kHz).

Figure A1(a) schematically demonstrates the rf spectral lines in the case of =N 2K , including resonant
interactions between the ñ∣ particles and the 6 Li environment. Threewell-separated energy levelmanifolds
occur corresponding to the different configurations ofN↑ andN↓, with + = N N NK , separated by the
Zeeman splitting ν0. Each of thesemanifolds exhibits a substructure of different energy levels of atomicmotion.
For the configuration =N 0 and =N 2 this substructure is interaction-independent in sharp contrast to the

=N 1, =N 1and =N 2, =N 0 configurations as the ñ∣ atoms do not interact with neither the ñ∣ K40 or
the 6 Li atoms. Reverse rf spectroscopy can be employed to identify these interaction energy shifts provided that
the Rabi frequency satisfiesΩR<Δ+∼kHz. This allows us to invoke the rotatingwave approximation asΩR

∼kHz n ~ 10 MHz0 . Employing this approximation theHamiltonian for the internal state of the K40 atoms,

in the interaction picture of the  transition, reads  = - +D Wˆ ˆ ˆH S SS z x2 2
R
0

. The latter is exactly the form

employed in themain text. WR
0 andΔ refer to the Rabi frequency and detuningwith respect to the resonance of

Figure A1. (a) Schematic representation of the involved rf levels for =N 2K K40 atoms coupled to a 6 Li bath near an interspecies FR
atB∼100G. (b) Intensity I of the employed rf pulse and (c) expected time-evolution of the excited fraction f for the detection of
polaronic resonances. (d), (e) same as (b), (c), respectively, but for the protocol that probes the coherence properties of the polaronic
branch.
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the  transition at g=0.We remark that the ñ∣ and ñ∣ states in the Schrödinger and interaction pictures are
equivalent, so our conclusions are invariant under this frame transformation.

One-dimensional (1D) ensembles offer a clean realization of few-body rf spectroscopy as the existing bound
state of a Feshbachmolecule possesses a binding energy of the order of òb=−2ÿω⊥ [90] at the confinement-
induced resonance, i.e.  ¥g D1 . Since current state-of-the-art few-body 1D experiments have been
consistently described by pure 1Dmodels [77, 78] the effect of the bound state for repulsive interactions
sufficiently below the  ¥g D1 regime is negligible. Indeed in order to ensure the validity of the 1Ddescription
w w^  N L must hold, whereN denotes the total particle number. In theworst case scenario considered in the
main text, namely that ofNL=8, andNK=2, and in particular whenω⊥=NωL then òb≈−20ÿωL.
However, the detuning parameter,Δ, used herein ismaximally 4ÿωL. Therefore it lies far below the above
threshold of ∣ ∣b . The same line of argumentation holds for the corresponding binding energy at themagnetic FR
where òb=−0.606ÿω⊥ [90]. Additionally, few-body systems involve low-densities thus drastically reducing
the incoherent processes such as two- and three-body recombination and resulting in increased coherence
times. The above allows us to assume a coherent evolution during the simulated experimental sequence.

To identify the resonances corresponding to polaronic states we employ the rf pulse shape depicted infigure
A1(b). The system is initialized in the non-interacting ground state where the K40 atoms are spin-polarized in
their ñ∣ state and a rectangular pulse of frequency ν, and detuningΔ is employed. This pulse is further
characterized by an exposure time t and aRabi-frequency WR

0 . Different realizations utilize different detuningsΔ
but the same t and WR

0 . In the duration of the pulse the systemundergoes Rabi-oscillations (see figure A1(c))
whenever the detuningΔ is close to a resonanceΔ≈Δ+. The employed spectroscopic signal is the fraction of

atoms transferred to the ñ∣ hyperfine state, namely D = á ñ( )f t,
N

NK
.We remark that different pulse shapes have

been simulated e.g. Gaussian-shaped pulses, which do not alter the presented results. To infer about the
coherence properties of the polaronic states we employ a Ramsey like process, see figure A1(d). Initially, we
prepare the system in the same non-interacting ground state as in the previously examined protocol and apply a
rectangularπ-pulse on a polaronic resonance. This sequence transfers the atoms from the ground state to the
polaronic state in an efficientmanner. Thenwe let the system evolve in the absence of rf fields, W = 0R

0 , for a
dark time, τD. Finally, we apply a secondπ-pulse identical to thefirst one to transfer the atoms from the
polaronic to the initial ground state. The spectroscopic signal is the fraction of atoms that have been excited to
the polaronic branch by the first pulse and subsequently deexcited by the second one divided by the total number

of excited atoms,  t = p p t
p

W - W +
W

( ) ( ) ( )
( )D

f f

f

2R R D

R
, see alsofigure A1(e).

Appendix B. Effective range corrections

Belowwe briefly discuss the applicability of theHamiltonian employed in the current work (see equation (1) in
themain text). Notice that thismodelHamiltonian assumes that contact interactions dominate the dynamics,
ignoring effective range corrections. It is well-known that a 6Li-40Kmixture features narrow FR [73]with the
broader ones being at 114G [72] and 155G [15]magnetic field respectively. Among these two resonances the
former has been suggested as themost promising and at the same time experimentally feasible that can be used to
reach the universal regime being s-wave dominated and satisfying the condition *k R 1F [72]. Here,


= wkF

mN2 L is the Fermimomentumwherem,N is themass and particle number of the relevant component

while *R is the range parameter. In contrast, the latter FRwhich is also the narrower of the two, suffers from
effective range corrections that in turn alter the physics of polarons [15] resulting in enhanced lifetimes of these

Table B1. Effective range parameter, *k RF ,
calculated for a 6Li-40Kmixture showcasing the
validity of the single-channel 1DmodelHamiltonian
used in themain text. The experimental axial
trapping frequency isωP≡ωL=2π×75Hz [69],
and the range parameter at resonance reads
R*=1.43×10−7 [15]. Note also that
mL=6×9.96×10−27 andmK=40/6mL.

Effective range

Number of particles *( )k RF Li6 *( )k RF K40

N=1 0.0426 0.0852

N=2 0.0603 0.1206

N=5 0.0953 0.1906

N=8 0.1205 0.241
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repulsive states. In order to showcase that themodelHamiltonian used herein accurately describes the dynamics
of repulsive fermi polarons belowwe provide estimates of the effective range parameter *k RF for the narrower
FR at 155G, and for all the cases investigated in themain text. Our results are summarized in table B1. In
particular, in order to calculate the effective range correction *k RF for the different cases studied in this work, we
use as a range parameter * = ´ ´ -R 2700 5.29 10 m11 [15], and as a characteristic axial trapping
frequency w w pº = ´ 2 75 HzL [69]. Note also thatmL=6×1.66×10−27kg andmK=40/6mL. As it

can be clearly seen in all cases of interest here (see the boldface values in table B1), *k RF is sufficiently smaller
than unity. The latter verifies the applicability of themodel used and thus the universal behavior, bymeans of a
negligible *R , of the physics addressed herein. Finally, we remark that for the second fermionicmixture
considered in this work, namely the 6Li-173Yb one, it is predicted that such amixture features broad FRs and thus
themodelHamiltonian used again accurately describes the polaron dynamics [85].

AppendixC. Polaron energy versus the particle number of the bath

Let us investigate the behavior of the polaron energywhile approaching theMB limit by increasing the number
of the bath particlesNL. It is known [40] that the polaron energy scales proportionally to the square root of the
bath particle number, i.e.D = - µñ ñ Y ñ( ) ( ) ( )∣ ∣ ∣ ( )E g E g E g NL1 1 00

. Here, ñ( )∣E g1 Y ñ[ ]∣ ( )E 00 denotes the ground
state energy of the interacting (non-interacting) (NL+1)-body system. In order to obtain a non-divergent
polaron energyD ñ( )∣E g1 for  ¥NL we rescale it with the corresponding Fermi energyEF=NLÿωL. Note that
in the presence of a harmonic trap EF refers to the energy of the energetically lowest unoccupied single-particle
eigenstate [40]. Therefore, the rescaled polaron energy is proportional toD µñ∣E E N1F L1 .Moreover, in
order to obtain a dimensionless interaction parameter that scales similarly to the polaron energy with respect to
NLwe define the so-called Lieb-Liniger parameter


g = pmg

kF
2 , where =k m E2F L F is the Fermimomentum.

The interaction interval used in themain text is 0<g<5which corresponds to g< < p0 3

2
.

To provide some representative examples of the convergence ofD ñ∣E EF1 for increasingNL andfixed γwe

choose the values g p= p p, ,
4 2

, see figure C1(a). As it can be seen, for N 5L the polaron energy exhibits a

saturated behavior. The latter observation essentially indicates that the particle number of the bathNL=5
captures adequately the behavior of the Fermi polaron at theMB level. On the other hand, for smaller particle
numbers i.e. N 4L we observe thatD ñ∣E EF1 depends strongly onNL. This effect can be attributed to the
behavior of the one-body density of the bathwhich exhibits a localmaximum (minimum) in the vicinity of
x=0 for an odd (even) particle numberNL. Since the impurity is localized around x=0 the scaled interaction
energy is larger for an odd compared to an even particle number of the bath. To provide a concrete example in
figures C1 (b), (c)we demonstrate the ground state one-body densities of each species at the non-interacting
limit for the systemsNL=3,NK=1 andNL=4,NL=1 respectively.We observe that in the case ofNL=3,
NK=1 the densities of the 6 Li and K40 possess a larger spatial overlap compared to the case ofNL=4,NK=1.
As a consequence the corresponding interaction energy between the species is larger forNL=3 than theNL=4
system. In turn, this explains the larger rescaled energy of the polaron in the case of an odd than an even particle
number of the bath.

FigureC1. (a)Energy of the polaron for increasing particle number of the bathNL at various values of the Lieb-Liniger parameter γ
(see legend). One-body density of the ground state of each species (see legend) at the non-interacting limit, g=0, for the case of (b)
NL=3,NK=1 and (c)NL=4,NK=1.
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AppendixD. Remarks on theMBnumericalmethod:ML-MCTDHX

To address theMBdynamics during rf spectroscopywe rely on theMulti-LayerMulti-Configuration Time-
DependentHartreemethod for AtomicMixtures [80] (ML-MCTDHX). Themain distinctive features of the
employedmethod are outlined below. First, withinML-MCTDHX the totalMBwavefunction is expandedwith
respect to a time-dependent and variationally optimizedMBbasis. This allows us to achieve convergence by
employing a drastically reduced number of time-dependent basis states compared tomethods relying on a time-
independent basis. Second, the symmetry of the atomic species being either bosonic or fermionic is explicitly
employed by considering the expansion of theMBwavefunction in terms of the number-states spanned by the
underlying time-dependent basis. Finally, themulti-layer ansatz for the total wavefunction is based on a coarse-
graining cascade, where strongly correlated degrees of freedom are grouped together and treated as subsystems
mutually coupling to each other. The latter enables us to tailor the employedMBwavefunction ansatz according
to the specific intra- and interspecies correlation patterns emanating in different setups. The latter rendersML-
MCTDHXa versatile tool for simulating the dynamics ofmultispecies systems. In particular this work employs a
reduction of theML-MCTDHXmethod formixtures of two fermionic species one of which possesses an
additional spin-1/2 degree of freedom.

For our implementationwe have used a harmonic oscillatorDVR, resulting after a unitary transformation of
the commonly employed basis of harmonic oscillator eigenfunctions, as a primitive basis for the spatial part of
the SPFs. To study the dynamics of the spinor systemwe propagate thewavefunction of equation (2) by utilizing
the appropriateHamiltonianwithin theML-MCTDHX equations ofmotion.

To infer about convergence we demand that all the observables of interest ( f,  ) do not changewithin a
given relative accuracy (see also below). In order to achieve the above criterionwe increase theDVRbasis states,

, as well as the number of species wavefunctions,M, and SPFsmσ (withσ=A,B denoting each of the
species).More specifically, for the two differentmixtures presented in themain text namely the 6Li-40K and the
6Li-173Ybmixture the number of grid points used are = 80 and = 150 respectively. Additionally, for the
cases investigated in themain text i.e.NL=5 andNK=1,NL=5 andNK=2,NL=8 andNK=2, and
NL=5 andNYb=2, the corresponding configurations satisfying the aforementioned convergence criterion
areC=(6; 10; 6),C=(15; 12; 8), = ( )C 14; 14; 8 andC=(15; 10; 10) respectively. The orbital configuration
C follows the notation = ( )C M m m; ;A B . It is important to note here that e.g. for the case ofNL=5 and
NK=1, withC=(6; 10; 6) the truncatedHilbert space for the corresponding rf simulation involves 2864
coefficients, while for an exact diagonalization treatment it would require the inclusion of 1.9232×109

coefficients rendering the latter simulation infeasible. The same result also holds for all the cases explored in the
main text. E.g. forNL=5 andNK=2withC=(15; 12; 8) the inclusion of 14.125 coefficients is neededwithin
theML-MCTDHXapproach, while the number of coefficients that should be taken into account using exact
diagonalization is 7.5966×1010. Finally, for the 6Li-173Ybmixture withNL=5,NYb=2 andC=(15; 10; 10)
the corresponding coefficients withinML-MCTDHXare 7680while the inclusion of 6.6111×1012 coefficients
is needed for a full configuration interaction treatment.

Finally, let us also briefly showcase the numerical convergence of our results with respect to an increasing
number of species functionsM.We employ e.g. the time-evolution of the spectroscopic signal, D( )f t, C, at a
certain rf-detuningΔ for the system consisting ofNL=5 andNK=2 fermions. To infer about convergencewe
calculate the deviation of D ¢( )f t, C between the ¢ = ( )C 15; 12; 8 and other numerical configurations

= ( )C M; 12; 8 , namely

d D = D - D¢ ¢( ) ( ) ( ) ( )f t f t f t, , , . D1C C C C,

FigureD1 presents d D ¢( )f t, C C, for the case ofNL=5 andNK=2 at g=5when considering a pulse
characterized by a detuningΔ=2.2 andΔ=2.5 respectively. Recall that these values ofΔ lie in the vicinity of
thefirst two energetically lowest lying resonances of the rf spectrumdiscussed in themain text, see also
figure 1(c). Evidently, a systematic convergence of d D ¢( )f t, C C, is achieved for bothΔ=2.2 andΔ=2.5. For
instance, comparing d D ¢( )f t, C C, atΔ=2.2 between the ¢C =(15; 12; 8) andC=(14; 12; 8) (C=(10; 12; 8))
approximationswe can infer that the corresponding relative difference lies below 0.01% (0.1%) throughout the
evolution, seefigureD1(a). Also, as illustrated infigureD1(b) forΔ=2.5 the corresponding d D ¢( )f t, C C,

between the configurations ¢ = ( )C 15; 12; 8 andC=(14; 12; 8) (C=(10; 12; 8)) shows a deviationwhich
reaches amaximumvalue of the order of 0.15% (0.4%) at large pulse times. Finally, we note that a similar
analysis has been performed for all other rf-detuningsΔ and interspecies interaction strengths shown in the
main text and found to be converged (results not shown here for brevity).
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We monitor the correlated quench induced dynamical dressing of a spinor impurity repulsively
interacting with a Bose-Einstein condensate. Inspecting the temporal evolution of the structure factor, three
distinct dynamical regions arise upon increasing the interspecies interaction. These regions are found to be
related to the segregated nature of the impurity and to the Ohmic character of the bath. It is shown that the
impurity dynamics can be described by an effective potential that deforms from a harmonic to a double-well
one when crossing the miscibility-immiscibility threshold. In particular, for miscible components the
polaron formation is imprinted on the spectral response of the system. We further illustrate that for
increasing interaction an orthogonality catastrophe occurs and the polaron picture breaks down. Then a
dissipative motion of the impurity takes place leading to a transfer of energy to its environment. This
process signals the presence of entanglement in the many-body system.

DOI: 10.1103/PhysRevLett.122.183001

Introduction.—A valuable asset of ultracold atoms is the
opportunity to track the real time dynamics of quantum
many-body (MB) systems such as multicomponent quan-
tum gases composed of different atomic species [1] or
different hyperfine states of the same species [2,3]. In
particular, the realization of highly population imbalanced
atomic gases with tunable interactions [4–15] has already
led to fundamentally new insights regarding Fermi [16–29]
and very recently Bose polarons [30–40]. In this latter
context the observation of coherent attractive and repulsive
quasiparticles [41], even in the strongly interacting regime
[42], refueled the scientific interest towards understanding
their underlying dynamics.
Most of the theoretical studies regarding Bose polarons

have been focused on a mean-field [43–46] description
and on the Fröhlich model [47–52]. Only very recently
theories going beyond the Fröhlich paradigm [53–59]
and including higher-order correlations [60,61] have been
developed, thereby allowing for the investigation of Bose
polarons also in the intermediate and strong interaction
regime. However, current experiments realized both in one
[32–34] and three dimensions [41,42] probed the non-
equilibrium dynamics of Bose polarons and necessitated
the presence of higher-order correlations for an adequate
description of the observed dynamics. Thus, the interplay
of higher-order correlations during the out-of-equilibrium
dynamics of bosonic impurities immersed in a Bose-
Einstein condensate (BEC) is a key ingredient for advanc-
ing our understanding of the dynamics of such MB
systems. On the theoretical side efforts concerning the
nonequilibrium dynamics of Bose polarons [62–67] are

quite recent and remarkably only a few of them include
quantum fluctuations [67–69].
In this Letter, motivated by current experiments

[32,41,42,70,71] we explore the interaction quench dynam-
ics of a spinor impurity coupled to a BEC. Focusing on
repulsively interacting multicomponent bosonic systems
in a one-dimensional (1D) harmonic trap, we showcase
the dynamical dressing of the impurity when all particle
correlations are taken into account. Three distinct dynami-
cal regions with respect to the interspecies interaction
strength are identified and captured by the structure factor,
which is the spin polarization (contrast) of the impurity
[72]. These regions are shown to be related to the miscible
and immiscible character of the system and are indicative of
the Ohmic character of the bath [66,73]. Their extent can be
manipulated by adjusting the intraspecies repulsion of the
BEC alias bath or by changing its particle number, thereby
addressing the few to many-body crossover. This tunability
is of significant importance since it leads to a longevity of
the polaron and thus facilitates the control of quasiparticles.
One of our key results consists of the interpretation of the
Bose polaron dynamics in terms of an effective potential.
The latter is found to be an adequate approximation in the
weakly interacting case assuming the Thomas-Fermi
approximation for the bath and generalizes the results of
Ref. [74]. We demonstrate that deep in the immiscible
phase, where entanglement is strong, the Bose polaron
ceases to exist due to the orthogonality catastrophe [75,76].
In this strong interaction regime a dissipative motion of the
impurity is observed accompanied by the population of
several lower-lying excited states of the effective potential.
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The latter involves now the single-particle density of the
MB bath and provides only a very approximate picture of
the impurity dynamics since entanglement is significant.
This mechanism of dissipation in turn leads to a transfer of
energy from the impurity to its environment also leading to
a substantial entanglement in the system.
Model.—We consider a system consisting of a single

impurity of mass mI having an additional spin-1=2 degree
of freedom. The impurity is in the superposition jΨSi ¼
αj↑i þ βj↓i, with α, β denoting the different weights used
that account for a partial or complete dressing of the single
impurity. The impurity is immersed in a 1D harmonically
confined BEC of NB ¼ 100 repulsively interacting atoms
of mass mB and trap frequency ωB ¼ ωI ¼ 1.0. The MB
Hamiltonian of the system reads

Ĥ ¼ Ĥ0
B þ

X

a

Ĥ0
a þ ĤBB þ ĤBI: ð1Þ

Here, Ĥ0
B¼

R
dxΨ̂†

BðxÞ½−ðℏ2=2mBÞðd2=dx2Þþ1
2
mBω

2
Bx

2�Ψ̂BðxÞ
is the Hamiltonian describing the motion of the BEC
that serves as a bath for the impurity atom. Ĥ0

a ¼R
dxΨ̂†

aðxÞ½−ðℏ2=2mIÞðd2=dx2Þ þ 1
2
mIω

2
I x

2ÞΨ̂aðxÞ (a ¼
f↑;↓g) is the corresponding Hamiltonian for the impurity
atom. In both cases Ψ̂iðxÞ is the bosonic field-operator of
either themajority (i ¼ B) or the impurity (i ¼ a) atoms.We
focus on the case of equal masses mB ¼ mI ¼ m [41].
ĤBB ¼ gBB

R
dxΨ̂†

BðxÞΨ̂†
BðxÞΨ̂BðxÞΨ̂BðxÞ accounts for the

contact intraspecies interaction of strength gBB > 0 in the
BEC component. ĤBI ¼ gBI

R
dxΨ̂†

BðxÞΨ̂†
↑ðxÞΨ̂↑ðxÞΨ̂BðxÞ

denotes the interaction between the bath and the part of the
impurity being in the spin-↑ state, characterized by an
effective strength gBI > 0, while having a noninteracting
spin-↓ component. Similar setups have been used in the
context of fermionic impurities mostly focusing on the
attractive side of interactions [77–81]. The multicomponent
system is initially prepared in its ground-state configuration
for fixed gBB and gBI ¼ 0. We note that our results remain
valid also for the case ofweak interspecies interactions. Such
an initial state preparation is experimentally realizable by
means of radiofrequency spectroscopy [41,42,55,71,82] and
Ramsey interferometry [71].
To derive the nonequilibrium dynamics of the spinor

impurity, we use a nonperturbative method, namely, the
multilayer multiconfiguration time-dependent Hartree
method for atomic mixtures (ML-MCTDHX). Our method
rests on expanding the MB wave function with respect to a
variationally optimized time-dependent basis that spans the
optimal subspace of the Hilbert space at each time instant.
Its multilayer ansatz for the total wave function allows us to
account for all intra- and interspecies correlations. In our
case the latter are found to be more important than the
former [83,84].

Our starting point is the ground state, jΨ0
BIi, obeying the

eigenvalue equation ðĤ − ĤBIÞjΨ0
BIi ¼ E0jΨ0

BIi, with E0

denoting the corresponding eigenenergy. We then abruptly
switch on at t ¼ 0 the interspecies repulsion gBI , and let the
system evolve dynamically. The MB wave function follow-
ing the quench reads

jΨðtÞi ¼ αe−iĤt=ℏjΨ0
BIij↑i þ βe−iE0t=ℏjΨ0

BIij↓i: ð2Þ
Results and discussion.—To investigate the nonequili-

brium dynamics of the spinor impurity we first consider
the case where the impurity is in an equal super-
position, namely, α ¼ β ¼ ð1= ffiffiffi

2
p Þ, and determine the

time evolution of the total spin polarization jhŜðtÞij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hŜxðtÞi2 þ hŜyðtÞi2

q
. Here, hŜzðtÞi ¼ hŜzðt ¼ 0Þi ¼ 0

since ½Ŝz; Ĥ� ¼ 0, while Ŝi ¼
R
dx

P
abΨ̂

†
aðxÞσiabΨ̂bðxÞ is

the spin operator in the ith direction (i ¼ x, y, z) and σiab are
the Pauli matrices. This quantity is directly related to the so-
called Ramsey response [71], namely, the structure factor
that is the time-dependent overlap between the interacting
and the noninteracting states jhΨ0

BIjeiE0t=ℏe−iĤt=ℏjΨ0
BIij2 ¼

jhŜðtÞij2 ¼ jSðtÞj2 [72]. SðtÞ ¼ jSðtÞjeiϕ, with atanϕ ¼
hŜxi=hŜyi, and the Hamiltonian, Ĥ, after the quench, when
the impurity is dressed, is given by Eq. (1).
Figures 1(a)–1(c) illustrate the evolution of the structure

factor jSðtÞj (contrast) upon increasing the interspecies
repulsion gBI for different gBB interactions and also for
smaller system sizes. In all cases, three distinct dynamical
regions can be inferred, namely, RI , RII , and RIII, which,

(a) (b)

(c)

(e) (f) (g)

(d)

FIG. 1. Evolution of the contrast, jSðtÞj, upon increasing gBI for
(a) gBB ¼ 0.2 and (b) gBB ¼ 0.5 with NB ¼ 100 and NI ¼ 1.
(c) same as (b) but for NB ¼ 10. (d) Excitation spectrum, AðωfÞ,
indicating the emergent polaronic peaks for distinct gBI (see
legend) and gBB ¼ 0.5. (e),(f),(g) illustrate jSðtÞj of (a),(b),(c) for
different gBI (see legend).
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e.g., for gBB ¼ 0.5 correspond to 0 ≤ gRI
BI < 0.5, 0.5 ≤

gRII
BI < 1.65, and 1.65 ≤ gRIII

BI < 5.0, respectively. For
short times a descent of jSðtÞj is observed [71,104]; see
Figs. 1(e)–1(g), being sharper for larger gBI. This descent
occurs independently of the value of the intraspecies
repulsion gBB, compare Figs. 1(e) and 1(f). For larger
evolution times jSðtÞj performs oscillations that become
more pronounced upon increasing gBI within RI and exhibit
a decaying amplitude in RII . In contrast, entering RIII jSðtÞj
exhibits an exponential decay indicating the orthogonality
catastrophe. The degree of damping of jSðtÞjwithin RI , RII ,
and RIII is indicative of a sub-Ohmic, Ohmic, and super-
Ohmic behavior of the bath, respectively (see also below).
Comparing the temporal evolution of jSðtÞj for gBB ¼ 0.2
[Fig. 1(a)] to the one for gBB ¼ 0.5 [Fig. 1(b)] we observe
that the extent of the above-mentioned dynamical regions
(RI, RII , RIII) can be manipulated by adjusting gBB. In
particular, for larger gBB an enhanced region of finite
contrast that enters deeper into the regime of repulsive
interspecies interactions can be achieved. This behavior is
supported upon decreasing the number of bath particles to
NB ¼ 10 [Fig. 1(c)]. In the latter few-body scenario
coherent oscillations of jSðtÞj are observed [see Fig. 1(c)
for 0.8 < gBI < 1.8] leading to a smoothly decreasing
contrast as gBI increases [105]. The aforementioned
dynamics takes equally place when the initial superposition
state of the spinor impurity involves different weights for
each spinor component. This fact can be understood by
analytically calculating jhŜðtÞijα;β when considering differ-
ent weights α and β. Indeed, it holds jhŜðtÞijα;β ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2β2jSðtÞj2 þ ðjαj2 − jβj2Þ2

p
, where jSðtÞj stems from

the case α ¼ β ¼ 1=
ffiffiffi
2

p
.

As expected, the energy spectrum of the impurity is
changed upon applying an interaction quench [81].
To quantify this we determine the Fourier transform of
SðtÞ. At low impurity densities and weak interspecies
interactions SðtÞ is known to be proportional to the so-
called spectral function of quasiparticles AðωfÞ ¼
ð1=πÞRefR∞

0 dteiωftSðtÞg [71,72,81,106]. Figure 1(d) illus-
trates AðωÞ for different interspecies repulsions ranging
from small (gRI

BI ¼ 0.25) to intermediate (gRII
BI ¼ 0.5) and

large (gRII
BI ¼ 1.0) interactions, respectively. The observed

peak at small gBI located at ω ¼ 4.435 corresponds to the
long-time evolution of a well-defined repulsive Bose
polaron. In RII two dominant peaks are imprinted in
AðωfÞ centered at ω1 ¼ 8.482 and ω2 ¼ 8.859, respec-
tively. These two peaks correspond to a well-defined
quasiparticle dressed, for higher frequencies, by higher-
order excitations of the BEC. Figures 2(a) and 2(c) depict
the evolution of the impurity’s one-body density,

ρð1Þ↑ ðxÞ ¼ hΨðtÞjΨ̂†
↑ðxÞΨ̂↑ðxÞjΨðtÞi, for small and inter-

mediate values of gBI. The observed out-of-equilibrium
dynamics of the spinor impurity in both regions RI and RII

can be well approximated by the dynamics in an effective
potential. The latter is obtained by considering the bosonic
bath as a static potential superimposed to the external
harmonic trapping of the impurity, namely,

Veff ¼
1

2
mBω

2
Bx

2 þ gBIρ
ð1Þ
B ðxÞ; ð3Þ

where ρð1ÞB ðxÞ is the single-particle density of the BEC at
t ¼ 0. It is important to stress that Veff does not take into
account the renormalization of the quasiparticle’s zero-
point energy occurring due to its dressing by the bath [68].
This deficit, however, shifts the eigenspectrum of the
impurity in a homogeneous manner and, consequently,
does not affect its dynamics. For small gBI and fixed gBB the

Thomas-Fermi approximation, i.e., ρð1ÞB ðxÞ ¼ ð1=gBBÞðμB−
1
2
mBω

2
Bx

2
BÞwith μB being the chemical potential of the bath,

is valid and Veff ¼ 1
2
mBω̃

2
Bx

2 þ c. Then Veff is a para-
bola shifted by c≡ ðgBI=gBBÞμB possessing a modified
trapping frequency [74], ω̃2

B ≡ ½1 − ðgBI=gBBÞ�ω2
B < ω2

B
[see Fig. 2(b)]. In this case the impurity undergoes a
breathing motion [Fig. 2(a)]. Note that the notion of Veff
can be extended to higher dimensions. However, relying
solely on this approximation we can assess only the
frequencies of the emergent dynamical modes i.e., the
breathing mode, see also Ref. [84]. Contrary to this an
increase of gBI such that gBI > gBB changes this effective
potential picture. In this case the system enters the
immiscible regime and the initial state involves higher-
order excitations in the effective potential due to the
stronger interaction of the impurity with the bosonic bath

FIG. 2. Selected time instants during evolution of the impurity’s
one-body density for (a) gBI ¼ 0.25, (c) gBI ¼ 0.5, and
(e) gBI ¼ 1.0 illustrating its dynamical dressing. Effective po-
tential and example densities of the corresponding impurity
eigenstates for the aforementioned (b) small, (d) intermediate,
and (f) large gBI values. Notice that the eigenenergies of Veff are
slightly shifted with respect to the polaronic energies obtained
within the MB approach [see also Fig. 1(d) and the discussion in
the main text]. In all cases dashed gray lines correspond to the
energy levels of the effective potential.
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[Fig. 2(c)]. For these intermediate gBI interactions the
impurity density develops a two-hump structure being
pushed towards the boundaries of the bath and favoring
a phase-separated state with the BEC that resides around
the trap center (see the discussion below). It is for these
intermediate values, indicating a miscible to an immiscible
phase transition, that VeffðxÞ begins to deform into a
double-well potential [Fig. 2(d)]. The impurity state cor-
responds then to the ground or the first excited state of this
effective potential. Further increase of gBI leads to the
appearance of three dominant peaks in the impurity’s
excitation spectrum. These peaks are centered at
ω3 ¼ 16.15, ω4 ¼ 17.15, and ω5 ¼ 17.97, respectively
[Fig. 1(d)], and correspond to even higher excited states
of the quasiparticle. The relevant dynamical evolution of
the impurity [Fig. 2(e)] showcases the deformation of its
one-body density, with these higher excited states occupy-
ing the third up to sixth excited state of Veff [Fig. 2(f)].
Entering deeper into the immiscible phase [Fig. 1(b)]
results in a fast decay of the contrast at short timescales.
Consequently, there is no clear polaronic signature in the
relevant excitation spectrum, but rather a multitude of states
are occupied in this effective double-well picture. This
behavior is caused by the dissipative motion of the impurity
leading to a partial transfer of its energy to the bath as we
shall argue below.
To deepen our understanding of the dynamics of the

spinor impurity we next examine the degree of miscibility
between the spin components captured by the overlap
integral

Λ↑↓ðtÞ ¼ ½R dxρð1Þ↑ ðx; tÞρð1Þ↓ ðx; tÞ�2
R
dxðρð1Þ↑ ðx; tÞÞ2 R dxðρð1Þ↓ ðx; tÞÞ2

: ð4Þ

Here, e.g., the one-body density of the spin-↓ is

ρð1Þ↓ ðx; tÞ ¼ hΨðtÞjΨ†
↓ðtÞΨ↓ðtÞjΨðtÞi. Λ↑↓ðtÞ takes values

within the interval [0, 1] with zero (unity) denoting the
phase immiscible (miscible) spin components. Evidently,
the three distinct dynamical regions captured by jSðtÞj leave
their fingerprints in Λ↑↓ðtÞ [Fig. 3(a)]. Note here that

ρð1Þ↓ ðx; tÞ ¼ ρð1Þ↑ ðx; 0Þ and, therefore, Λ↑↓ðtÞ is directly
related to the contrast [see Fig. 1(b)]. Indeed, within RI
the spin components are maximally miscible, while within
RII they oscillate between miscibility and immiscibility.
Finally, when the orthogonality catastrophe takes place in
RIII they become immiscible. This spin segregation, in
RIII , is manifested in the spatiotemporal evolution of

ρð1Þ↑ ðx; tÞ [Fig. 3(b)] [107]. Evidently, ρð1Þ↑ ðx; tÞ breaks into
two density fragments that perform damped oscillations
symmetrically placed around the edges of the Thomas
Fermi radius of the bath. These damped oscillations
essentially indicate that the spin-↑ impurity is initially in
a highly excited state of VeffðxÞ [see Fig. 3(e) for t1] while

for later times, e.g., t2, it populates a superposition of lower

excited states. We remark here that ρð1Þ↑ ðx; tÞ depicted in
Fig. 3(e) is obtained from the correlated MB calculation
while the interpretation in terms of Veff provides an
approximate picture of the impurity dynamics for these
strong interactions. The latter behavior implies a transfer
of energy from the impurity to the BEC environment
[Fig. 3(c)] that is beyond the single-particle dynamics
provided via Veff . This energy transfer possesses contri-
butions of different magnitude from each term of the
above-mentioned superposition leading to different excita-
tions of the BEC and hence it constitutes a manifestation of
the entanglement present in the MB system. Since the
kinetic energy of the impurity increases during evolution
also an increase of its noninteracting energy hPaĤ

0
ai is

observed. Contrary to this excess of energy, a decrease of
the interaction energy hĤBIi occurs since the impurity is

expelled to the edges of the BEC, where ρð1ÞB ðxÞ ≪ ρð1ÞB ð0Þ.
Indeed, hĤ0

B þ ĤBBi increases in the course of the dynam-
ics capturing the transfer of energy from the impurity to the
bath. This dissipation mechanism becomes pronounced
within RIII . Figure 3(d) shows hĤ0

B þ ĤBBi during evolu-
tion for different gBI . It becomes evident that within RI the
impurity does not dissipate energy to the bath since the

(a)

(c)

(d)

(e) (f)

(b)

FIG. 3. (a) Evolution of the overlap Λ↑↓ðtÞ between the spin-↑
and spin-↓ states of the impurity atom. (b) One-body density
evolution of the spin-↑ atom. Horizontal solid lines indicate the
position of the Thomas Fermi radius of the bath. (c) Expectation
value of the energy (see legend). In both (b),(c) gBI ¼ 1.7.
(d) Expectation value of the energy of the bath for different
gBI (see legend). (e) Density profiles at the time instants marked
by the vertical solid lines in (b). (f) Time average of the von-
Neumann entropy, S̄VNBI , for increasing gBI . In all casesNB ¼ 100,
NI ¼ 1, and gBB ¼ 0.5.
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energy of the latter remains almost constant. However,
within the region RII the impurity starts to dissipate energy
to the bath and this dissipation rate becomes maximal
within RIII . This observation further supports the sub-
Ohmic, Ohmic, and super-Ohmic behavior of the bath in
the different regions. Moreover, to directly expose the
presence of entanglement with respect to gBI we invoke the
von-Neumann entropy, SVNBI ðtÞ ¼ −

P
iλiðtÞ log λiðtÞ [108].

Note that λi’s are the eigenvalues of the NB-body density

matrix ρðNBÞ
B ¼ −TrI½jΨðtÞihΨðtÞj�. Indeed, the time aver-

age S̄VNBI [Fig. 3(f)] shows that the dressed impurity is
entangled with the BEC within the regions RI and RII . By
inspecting S̄VNBI we observe that its slope becomes maximal
in RII and therefore the same holds for the generation of
entanglement, see also Ref. [84]. Most importantly the
system becomes strongly entangled within RIII , where the
polaron ceases to exist, showcasing a plateau of S̄VNBI ðtÞ ≈
1.2 for fixed gBB ¼ 0.5 and for all gBI ≳ 1.65.
Conclusions.—The correlated quench-induced dynamics

of a trapped spinor impurity repulsively interacting with a
BEC has been investigated. Inspecting the evolution of the
spin polarization reveals three distinct dynamical regions
with respect to the interspecies interaction strength. These
regions are inherently related to the segregated nature of the
multicomponent system and can be tuned by changing the
intraspecies repulsion of the BEC or its particle number
thereby addressing the few to many-body crossover. Within
these three regions the birth, dynamical deformation, and
death (orthogonality catastrophe) of the Bose polaron are
unraveled. To interpret the impurity dynamics, an effective
potential is derived being an adequate approximation for
weak interspecies repulsions. For strong repulsions the
system is strongly entangled and the impurity’s motion
becomes dissipative, transferring a part of its energy to the
bath while being pushed to the edges of the BEC. Our
results pave the way for manipulating the quasiparticle
dynamics. An intriguing perspective for future endeavors is
to consider more than one impurity where induced inter-
actions can play an important role.
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1

Supplemental Material: Quench Dynamics and Orthogonality Catastrophe of Bose
Polarons

BREATHING DYNAMICS OF THE IMPURITY
WITHIN THE EFFECTIVE POTENTIAL

APPROACH

To demonstrate the applicability of our effective po-
tential approach given in Eq. (3) in the main text we
investigate the breathing dynamics of the single impu-
rity immersed in the bosonic bath. In order to capture
the breathing dynamics [S2–S5] in all three dynamical
regions (RI , RII and RIII) we consider a quench of the
harmonic trapping frequency ωI . Such a process aims at
dynamically exciting the corresponding breathing mode
of the impurity [S1].

In particular, we initialize the multi-component system
in its ground state for gBB = 0.5 and a chosen gBI with
harmonic oscillator frequencies ωB = 1 and ωI = 0.95.
To trigger the dynamics we suddenly change at t = 0 the
value of ωI from 0.95 to 1.0, thus inducing a collective
breathing mode. Measuring the center-off-mass motion
[S2–S4] of the impurity we obtain its breathing frequency
ωbrI for a specific gBI . Figure S1 shows ωbrI for varying
gBI . As it can be seen, ωbrI decreases within region RI
reaches a critical point around gBI ≈ 0.5 and thereafter
it increases within region RII and finally saturates close
to ωbrI ≈ 3 for gBI > 2. We remark here that operating in
the mean-field approximation, a similar behavior of ωbrI
within the miscible phase (RI region in our case) but for
a larger number of impurity particles has been reported
in [S6].

Let us first compare the result of ωbrI obtained via the
many-body (MB) simulations with the effective model
described in the main text. By employing also the
Thomas-Fermi approximation the breathing frequency of
the impurity reads ωbr = 2ω̃B [see the red dotted line in

Fig. S1] where ω̃2
B =

(
1− gBI

gBB

)
ω2
B . Recall that this

effective picture is valid only for weak (miscible) inter-
actions namely when gBB � gBI . We indeed observe
that for these interactions the effective potential predicts
the correct breathing frequency except for the region
gBI ≈ gBB = 0.5.

To extend our analysis to the immiscible regime of
interactions where the impurity probes spatial regions
beyond the Thomas-Fermi radius, we next consider
the general form of the effective potential Veff (x) =

1/2mω2
Bx

2 + gBIρ
(1)
B (x) introduced in Eq. (3) of the

main text. Note that this Veff (x) does not incorporate

the Thomas-Fermi approximation. Also, ρ
(1)
B (x) is the

numerically exact ground state density of the bath for
gBI = 0 and gBB = 0.5. To test the accuracy of our
effective potential we examine the breathing dynamics of
a single particle trapped in Veff (x). As before we pre-
pare the impurity in the ground state of Veff (x) with
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FIG. S1. (Color online) Breathing frequency, ωbr
I , of the Bose

polaron as a function of the interspecies interaction strength
in (a) one-dimension and (b) two-dimensions. The breathing
motion is induced by quenching the trapping frequency of the
impurity from 0.95 to 1.0. In all cases NB = 100, NI = 1
and gBB = 0.5. Dotted red line line refers to ωbr = 2ω̃B and
dashed yellow line denotes the breathing frequency obtained
within the effective potential picture (see text).

ωI = 0.95 and a specific gBI and induce the breathing
dynamics by quenching the frequency to 1.0. The result-
ing breathing frequency calculated via the center-of-mass
motion is also presented in Fig. S1 (see the yellow dashed
line) on top of the MB calculation (solid blue line). Evi-
dently the single-particle picture obtained within our ef-
fective potential provides an adequate approximation of
the full MB result especially for 0 < gBI < 1. Deviations
between the effective model and the MB calculations are
of the order of 8% for gBI ≈ 2.5, while they become sig-
nificant for even larger gBI . For these strong interactions
the entanglement becomes strong rendering the efffective
potential an insufficient approach for describing the im-
purity dynamics.

The notion of the effective potential approximation can
be easily extended to higher dimensions. Of course, re-
lying exclusively on this approximation it is only possi-
ble to access the frequencies of the quench-induced dy-
namical modes, i.e. the breathing mode. To showcase
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whether our predictions of the breathing frequency in
one-dimension remain robust in higher dimensions we
calculate next the breathing frequency in two-dimensions
within the effective potential approximation. To induce
the breathing dynamics we follow exactly the same pro-
cedure as in one-dimension (see the discussion above).
Assuming an isotropic two-dimensional (2D) external
harmonic trap, the effective potential reads Veff (r) =
1
2mBω

2
Br

2 + gBIρ
(1)
B (r), where r =

√
x2 + y2 and ρ

(1)
B (r)

is the single-particle density of the BEC at t = 0. Figure
S1 (b) illustrates ωbrI for the 2D trapped system upon

varying gBI . Additionally, ρ
(1)
B (r) is obtained by solving

the 2D Gross-Pitaevskii equation. For self consistency
reasons ωbrI is measured only in regions RI and RII since
already for values of gBI that belong to RII the effec-
tive potential approximation is expected to fail. It is
found that ωIbr exhibits a similar behavior to its one-
dimensional counterpart. In particular, ωbrI decreases
within region RI , reaches a minimum located around
gBI ≈ 0.6 and then it increases deeper in the region RII
[see yellow dashed line in Fig. S1 (b)]. Moreover, refer-
ring to weak gBI the Thomas-Fermi approximation reads

ρ
(1)
B (r) = 1

gBB

(
µB − 1

2mBω
2
Br

2
B

)
. Here, µB denotes the

chemical potential of the bath. Therefore combining the
effective potential picture with the Thomas-Fermi ap-
proximation we deduce that Veff (r) = 1

2mBω̃
2
Br

2 + c̃,

being a parabola shifted by c̃ ≡ g2DBI
gBB

µB and exhibiting a

modified trapping frequency ω̃2
B ≡

(
1− gBI

gBB

)
ω2
B < ω2

B .

Utilizing this approximation the breathing frequency of
the impurity is ωbr = 2ω̃B [see the red dotted line in
Fig. S1 (b)]. As it can be seen, for gBI < 0.25 the
Thomas-Fermi approximation and the effective potential
predict the same ωIbr, while for gBI > 0.25 strong devia-
tions appear. Recall that close to gBI = 0.5 the miscibil-
ity/immiscibilty threshold is reached and the impurity
probes also the spatial region at the edge of the BEC
density. In this region the Thomas-Fermi profile, used

herein, is not an adequate approximation for ρ
(1)
B (r), a

result that explains the observed deviations.

EFFECTIVE MASS

Having at hand the breathing frequency of the impu-
rity atom we next calculate its effective mass meff . It
has been recently shown [S12] that in the presence of an
external harmonic trap the single-particle Hamiltonian
that governs the impurity dynamics reads

Ĥeff
I = εeff +

p̂2

2meff
I

+
1

2
meff
I (ωeffI )2x̂2. (S1)

In this expression, εeff refers to the self-energy of the

polaron. Also, ωeffI denotes the effective trapping of the
polaron due to the combined effect of its interaction with
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FIG. S2. (Color online) Effective mass of the polaron for
increasing postquench interspecies interaction strength gBI .
The inset shows the effective trapping frequency of the po-
laron [see also Eq. (S1)] for varying gBI . In all cases
NB = 100, NI = 1, gBB = 0.5 and the frequency of the
external harmonic confinement is ω = 1. The system is ini-
tialized in its ground state with gBI = 0 and the dynamics
is triggered via an interspecies interaction quench to a final
value gBI .

the bath and the presence of the external harmonic con-
finement, while meff

I is the effective mass of the polaron.
It is also important to note that this effective Hamilto-
nian description is valid only within the miscible regime
of interactions since it inherently involves the assumption
that the impurity is effectively trapped by the bosonic
bath. For more details regarding the construction of this
model we refer the interested reader to [S12]. To calcu-
late the effective mass of the polaron within the miscible
regime of interactions, referring in our case to gBI < 0.5,
we perform the following analysis. We first measure the
variance (size), 〈x2(t)〉, of the impurity atom for a spe-
cific interspecies interaction quench amplitude relying on
our numerical calculations performed in the main text.
Independently, by solving Eq. (S1) we can show that

〈x2(t)〉 = 〈Ψ(t)|x̂2|Ψ(t)〉 =
〈Ψ(0)|p̂2|Ψ(0)〉
(meff

I ωeffI )2

× sin2(ωeffI t) + 〈Ψ(t)|x̂2|Ψ(t)〉 cos2(ωeffI t).

(S2)

Assuming an initially non-interacting impurity, i.e.
gBI = 0, we obtain 〈Ψ(0)|p̂2|Ψ(0)〉 = ~

2mIωI and

〈Ψ(0)|x̂2|Ψ(0)〉 = ~
2mIωI

. A similar analytical relation

to Eq. (S2) can also be obtained for 〈p̂2(t)〉. Here the

unknown parameters that need to be determined are ωeffI

and meff
I . To estimate these two parameters we perform

a fitting of the analytical form of 〈x2(t)〉 given by Eq.
(S2) and 〈p2(t)〉 to the numerically obtained 〈x2(t)〉 and

〈p2(t)〉. Figure S2 presents meff
I and ωeffI , as a result of

the above-mentioned fitting, for increasing gBI which al-
ways lies within the miscible regime of interactions where
the polaron is also well defined. Recall that for stronger
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interspecies interactions a dissipative motion of the impu-
rity into the bosonic bath takes place signalling the onset
of the orthogonality catastrophe of the bose polaron. As
it can be seen in Fig. S2, meff

I becomes smaller than the
bare mass of the impurity for increasing interspecies in-
teraction strengths. A trend that is also followed by ωeffI

as it can be deduced by inspecting the inset depicted in
Fig. S2. This behavior of meff

I being in line with the
findings of Ref. [S12] is attributed to the presence of
the external harmonic confinement and the interspecies
correlations between the bath and the impurity.

THE MANY-BODY COMPUTATIONAL
APPROACH: ML-MCTDHX

To simulate the MB quantum dynamics of the compos-
ite system discussed in the main text we utilize the Multi-
Layer Multi-Configuration Time-Dependent Hartree
method for Atomic Mixtures [S7] (ML-MCTDHX). ML-
MCTDHX [S7, S8] is a ab-initio variational method for
solving the time-dependent MB Schrödinger equation of
atomic mixtures consisting either of bosonic [S10–S12]
or fermionic [S14–S16] species. Within this approach the
total MB wavefunction is expanded in terms of a time-
dependent and variationally optimized basis, enabling us
to capture the important correlation effects by using a
computationally feasible basis size. In this way the sys-
tem relevant subspace of the Hilbert space is spanned
in an efficient manner at each time instant using a re-
duced number of basis states when compared to expan-
sions relying on a time-independent basis. Most impor-
tantly, its multi-layer structure allows for tailoring the
MB wavefunction ansatz to account for both intra- and
interspecies correlations when simulating the dynamics
of composite systems. Due to the above ML-MCTDHX
constitutes a versatile tool for simulating the dynamics
of multispecies systems.

Here, we employ ML-MCTDHX in order to study the
quench-induced correlated dynamics of a particle imbal-
anced bosonic mixture. The mixture consists of a major-
ity species being referred to as bath (B) in the following
and a minority species which we shall call impurity (I)
below. Most importantly, the minority atoms possess an
additional spin-1/2 degree of freedom. To account for
inter- and intraspecies correlations, the MB wavefunc-
tion (|Ψ(t)〉) is firstly expressed as a linear combination
of D time-dependent species wavefunctions (|Ψσ

i (t)〉) for
each of the σ = B, I species

|Ψ(t)〉 =

D∑

i,j=1

Aij(t)|ΨB
i (t)〉|ΨI

j(t)〉. (S3)

Here Aij(t) refer to the corresponding time-dependent
expansion coefficients. We remark that Eq. (S3) is
connected to the truncated Schmidt decomposition of

rank D [S9–S11] via a unitary transformation, with
the eigenvalues of Aij(t) being the well-known Schmidt

weights,
√
λi(t). Following this unitary transforma-

tion, U , we obtain Aij = U−1ik
√
λkUkj . Then the MB

wavefunction is expressed in terms of different inter-
species modes of entanglement taking the form |Ψ(t)〉 =∑D
k=1

√
λk(t)|Ψ̃B

k (t)〉|Ψ̃I
k(t)〉 with

√
λk(t)|Ψ̃B

k (t)〉|Ψ̃I
k(t)〉

being referred to as the k-th mode of entanglement.
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FIG. S3. (Color online) (a) Different energy contributions (see
legend) of the ground state of the multicomponent system for
varying interspecies interaction strength gBI . (b) Outcome of
the Virial theorem [see also Eq. (S6)] for increasing gBI , ob-
tained via the energy contributions shown in (a). We observe
that EV T = 0 for every gBI verifying the Virial theorem for
the ground states of our system setups. Evolution of the spin
polarization deviations ∆ |S(t)|C,C′ between the C = (8; 3; 8)

and other orbital configurations C′ = (D; dA; dB) (see legend)
for (c) gBI = 0.3, (d) gBI = 1 and (e) gBI = 5. In all cases
NB = 100, NI = 1 and gBB = 0.5.

Next each species wavefunction is expanded on the
time-dependent number-state basis, |~n(t)〉σ, as

|Ψσ
i (t)〉 =

∑

~n

Bσi;~n(t)|~n(t)〉σ, (S4)

where Bσi;~n(t) refer to the time-dependent coefficients.
Each |~n(t)〉σ corresponds to a permanent of the dσ time-
dependent variationally optimized single-particle func-
tions (SPFs) denoted by |φσl (t)〉, l = 1, 2, . . . , dσ with
occupation numbers ~n = (n1, . . . , ndσ ). The SPFs are
subsequently expanded within a time-independent prim-
itive basis. For the majority species this primitive ba-
sis {|k〉} consists of an M dimensional discrete variable
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representation (DVR). Regarding the impurity the prim-
itive basis {|k, s〉} corresponds to the tensor product of
the DVR basis for the spatial degrees of freedom and the
two-dimensional spin-1/2 basis {|↑〉 , |↓〉}. In this way

|φIj(t)〉 =
M∑

k=1

∑

α={↑,↓}
CI
jkα(t) |k〉 |α〉 , (S5)

where CI
jkα(t) are time-dependent expansion coefficients.

We remark that each SPF for the impurity atoms is
a spinor wavefunction |φIj(t)〉 =

∫
dx [χ↑j (x)Ψ̂†↑(x) +

χ↓j (x)Ψ̂†↓(x)]|0〉 (for more details see also [S14]). To ob-
tain the time-evolution of the (NB+NI)-body wavefunc-
tion |Ψ(t)〉 under the influence of the Hamiltonian Ĥ [see
Eq. (1) in the main text] we determine the equations of
motion [S7] for the coefficients A~n(t), Bσi;~n(t) and CI

jkα(t)
by employing e.g. the Dirac-Frenkel [S17, S18] varia-
tional principle for the generalized ansatz [see Eqs. (S3),
(S4)]. The latter refer to a set of D2 ordinary (linear) dif-
ferential equations of motion for the A~n(t) coefficients,

coupled to a set of D( (NB+dB−1)!
NB !(dB−1)! + (NI+d

I−1)!
NI !(dI−1)! ) non-

linear integrodifferential equations for the species func-
tions, and dB + dI nonlinear integrodifferential equa-
tions for the SPFs. Finally, let us mention that ML-
MCTDHX is able to operate within different approxima-
tion orders, for instance it reduces to the set of coupled
mean-field (MF) Gross-Pitaevskii equations [S19, S20]
when D = dB = dI = 1. Moreover it is capable of op-
erating within the species mean-field (SMF) approxima-
tion [S7, S8, S10–S12] in which the entanglement between
the species is neglected but intraspecies correlations are
taken into account. In particular, in this latter case the
Nσ-body state of each species is described by only one
species function (|ΨB

i (t)〉 = |ΨI
i(t)〉 = 0 for i 6= 1) build-

ing upon distinct single-particle functions
∣∣φBj (t)

〉
and∣∣φIk(t)

〉
with j = 1, 2, . . . , dB and k = 1, 2, . . . , dI respec-

tively. Accordingly the total wavefunction of the system
becomes |Ψ(t)〉 = |ΨB

1 (t)〉 ⊗ |ΨI
1(t)〉.

Within our implementation a sine discrete variable rep-
resentation (sine-DVR) has been used as the primitive
basis for the spatial part of the SPFs includingM = 450
grid points. The sine-DVR intrinsically introduces hard-
wall boundaries at both edges of the numerical grid being
in our case x± = ±40. We have ensured that the location
of these boundary conditions does not affect our results
since we do not observe appreciable densities to occur
beyond x± = ±25. Another way to confirm the absence
of edge effects in the simulations that were carried out
and presented in the main text, is to estimate the time
at which excitations travel towards the boundaries as de-
tected by the local speed of sound of the bath. Indeed,
all possible emergent system correlations will definitely
travel with a speed smaller than the local speed of sound.
The relevant time window for travelling a distance from
the trap center to the spatial point xb > 0 is T =

∫ xb
0

dx
c(x) ,

where the local speed of sound reads c(x) =

√
gBBρ

(1)
B (x)

m .
This time increases dramatically when xb lies beyond the
Thomas-Fermi radius, which is in our case RTF ≈ 4.2.
For instance, when xb = 6 we obtain T ≈ 106 while for
xb ≡ x+ = +40 we find T ≈ 2 × 1016. Therefore we
can again deduce that within the considered simulation
time T = 100, in the main text, edge effects do not play
any role. To obtain the eigenstates of the MB system we
rely on the so-called improved relaxation method [S7, S8]
within ML-MCTDHX. To track the dynamics of the com-
posite bosonic system we propagate in time the wavefunc-
tion [Eq. (S3)] by employing the appropriate Hamiltonian
within the ML-MCTDHX equations of motion.

To conclude upon the reliability of our results, we in-
crease the number of species functions D, SPFs dB and
dI , and grid points M, thus observing a systematic con-
vergence of all the observables of interest, e.g. S(t) and
ΛBI(t). The Hilbert space truncation, i.e. the order of
the used approximation, is designated by the considered
orbital configuration space C = (D; dB ; dI). Conver-
gence here means that for an increasing orbital configura-
tion C the observables become almost insensitive within
a given relative accuracy. We remark that all MB calcula-
tions presented in the main text refer to the configuration
C = (8; 3; 8).

In order to test from first principles the convergence of
our results regarding the ground state of our system when
varying gBI we resort to the quantum Virial theorem.
Referring to the ground state of our system, |Ψ(0)〉, the
Virial theorem reads

EV T ≡ 2(〈Ψ(0)|T̂B |Ψ(0)〉+ 〈Ψ(0)|T̂I |Ψ(0)〉)
−2(〈Ψ(0)|V̂B |Ψ(0)〉+ 〈Ψ(0)|V̂I |Ψ(0)〉)

+(〈Ψ(0)|ĤBB |Ψ(0)〉+ 〈Ψ(0)|ĤBI |Ψ(0)〉) = 0.

(S6)

Here, the kinetic energy operators of the bath and the im-

purity are denoted by T̂B = −
∫
dxΨ̂†B(x) ~2

2mB
d2

dx2 Ψ̂B(x)

and T̂I = −
∫
dxΨ̂†I(x) ~2

2mI
d2

dx2 Ψ̂I(x) respectively. Also,
the corresponding potential energy operator for the bath
is V̂B =

∫
dxΨ̂†B(x) 1

2mBω
2
Bx

2Ψ̂B(x) and for the impu-

rity reads V̂I =
∫
dxΨ̂†I(x) 1

2mIω
2
Ix

2Ψ̂I(x). Furthermore,
the operator of the intraspecies interaction energy of
the bath is ĤBB = gBB

∫
dx Ψ̂†B(x)Ψ̂†B(x)Ψ̂B(x)Ψ̂B(x),

while the operator of the interspecies interaction energy
is ĤBI = gBI

∫
dx Ψ̂†B(x)Ψ̂†↑(x)Ψ̂↑(x)Ψ̂B(x). In all cases,

Ψ̂i(x) refers to the bosonic field operator of either the
bath (i = B) or the impurity (i =↑, ↓) atoms. The dif-
ferent energy contributions, given by Eq. (S6), are il-
lustrated in Fig. S3 (a) for increasing gBI . Calculating
the quantum Virial theorem by taking into account all
the aforementioned contributions [see Eq. (S6)] confirms
that it is indeed fulfilled, since EV T ∼ 10−6, for all the
ground states of the system independently of gBI [see
Fig. S3 (b)]. The latter assures the convergence of all
the ground state configurations considered herein.
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As a next step, we also briefly discuss the convergence
of our results in terms of a different number of species
and single-particle functions. For this investigation we
monitor during the nonequilibrium dynamics e.g. the
spin polarization, |S(t)|C , and we calculate its absolute
deviation between the C = (8; 3; 8) and other numerical
configurations C ′ =

(
D; dA; dB

)

∆ |S(t)|C,C′ =
| |S(t)|C − |S(t)|C′ |

|S(t)|C
. (S7)

Figure S3 presents ∆ |S(t)|C,C′ for the multicompo-
nent system under consideration with NB = 100 and
NI = 1 following an interspecies interaction quench from
gBI = 0 to different finite values of gBI . Closely in-
specting Fig. S3, it becomes apparent that a systematic
convergence of ∆ |S(t)|C,C′ is achieved for all interspecies
interactions used in the main text. For instance, compar-
ing ∆ |S(t)|C,C′ at gBI = 0.3 between the C = (8; 3; 8)
and C ′ = (6; 3; 6) [C ′ = (8; 2; 8)] approximations we de-
duce that the corresponding relative difference lies below
0.08% [0.04%] throughout the evolution, see Fig. S3 (a).
However, for increasing gBI the relative errors become
larger, see Figs. S3 (b), (c). E.g. for gBI = 5 which
is the strongest interaction considered in the main text
∆ |S(t)|C,C′ between the configurations C = (8; 3; 8) and
C ′ = (6; 3; 6) [C ′ = (8; 2; 8)] exhibits a deviation which
reaches a maximum value of the order of 7% [5%] at
large propagation times. Finally, we remark that a simi-
lar analysis has been performed for all other interspecies
interaction strengths discussed within the main text and
found to be adequately converged (results not shown here
for brevity).

FRAGMENTATION

The spectral representation of the reduced σ species
one-body density matrix [S21] reads

ρ(1)σ (x, x′; t) = Nσ

dσ∑

α=1

nσα(t)ϕσα(x, t)ϕ∗σα (x′, t), (S8)

where ϕσα(x, t) are the so-called natural orbitals of the
σ = B, I species and dσ corresponds to the considered
number of orbitals for the σ species. The correspond-
ing population eigenvalues nσα(t) ∈ [0, 1] (natural pop-
ulations) characterize the degree of intraspecies correla-
tions or fragmentation of the system [S10, S11, S22, S23].
Here we consider the natural orbitals to be normalized
to unity i.e.

∫
dx |ϕσα(x)|2 = 1. Indeed, for only one

macroscopically occupied orbital the system is said to be
condensed, otherwise it is termed fragmented. It can be
shown that for nσ1 (t) = 1, nσi6=1(t) = 0 the first natural

orbital
√
Nσϕ

σ
1 (xσ; t) reduces to the MF wavefunction

ϕσ(xσ; t). Therefore, 1 − nσ1 (t) offers a measure of the
degree of the σ species fragmentation [S22, S23].

Finally let us remark that by employing the Schmidt
decomposition of Eq. (S3) and the fact that NI = 1 the
one-body density matrix of the impurity reads

ρ
(1)
I (x, x′; t) =

D∑

k=1

λk(t)Ψ̃I
k(x, t)Ψ̃I∗

k (x′, t), (S9)

where Ψ̃I
k(x, t) = 〈x|Ψ̃I

k〉. Thus comparing Eq. (S8) with
Eq. (S9) we can easily deduce that nIk(t) = λk(t) for
every k.

MANIFESTATION OF ENTANGLEMENT IN
THE DEGREE OF MISCIBILITY

Let us now elaborate on the relation between the de-
gree of miscibility and the entanglement occurring among
the bath and the spinor impurity. As already discussed in
the main text in order to expose the degree of phase sep-
aration, namely the degree of miscibility or immiscibility,
between the bath and the spinor impurity we invoke the
overlap integral function [S24, S25] which reads

ΛBI(t) =

[∫
dx ρ

(1)
B (x; t)ρ

(1)
I (x; t)

]2

∫
dx
(
ρ
(1)
B (x; t)

)2
×
∫
dx
(
ρ
(1)
I (x; t)

)2 .(S10)

In this expression, ρ
(1)
σ (x; t) denotes the one-body den-

sity of the σ = B, I species. This function is normal-
ized to unity taking values between Λ = 0 and Λ = 1
that signify complete or zero spatial overlap respectively
on the single-particle level. Moreover according to our
MB wavefunction expansion [see Eq. (S3)], the one-body

density of the σ species, ρ
(1)
σ (x; t), can be expressed with

respect to different entanglement modes [S10, S11] as

ρ(1)σ (x; t) =
D∑

k=1

λk(t) ρ
(1),σ
k (x; t). (S11)

Here ρ
(1),σ
k (x; t) = 〈Ψ̃σ

k |Ψ̂†σ(x)Ψ̂σ(x)|Ψ̃σ
k〉 is the one-body

density of the k-th species function. Ψ̂†σ(x) [Ψ̂σ(x)] de-
notes the bosonic field operator that creates (annihilates)
a σ species boson at position x. Moreover, λk(t) refer
to the corresponding Schmidt coefficients of the trun-
cated Schmidt decomposition [see also Eq. (S3)]. We
remark that the λk’s in decreasing order are known as
natural species populations of the k-th species wavefunc-
tion |Ψσ

k(t)〉 of the σ-species. In turn, they represent a
measure of the entanglement or interspecies correlations
between the bath and the impurity. In particular, the
system is said to be entangled [S10, S11, S13] when at
least two different λk’s are nonzero. Recall that in this
latter case the total MB state [Eq. (S3)] cannot be ex-
pressed as a direct product of two species states.
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To proceed we define the general overlap integral be-
tween the one-body densities of different species wave-
functions corresponding to distinct modes of entangle-
ment (i 6= j) and species (σ 6= σ′) as

Kσσ′
ij (t) =

∫
dx ρ

(1),σ
i (x; t)ρ

(1),σ′

j (x; t). (S12)

Note that within the MF as well as the SMF approx-

imations ρ
(1),σ
i (x; t) = 0 for i > 1 holds by definition,

since entanglement is ignored. In these non-entangled
limits only Kσσ′

11 acquires a non-zero value and hence
it is relevant. Turning to a full MB description where
several species wavefunctions are considered, and there-
fore entanglement is present, Kσσ′

ij 6= 0 as long as there
is a finite spatial overlap between the different species
wavefunctions of the same (σ = σ′) or distinct (σ 6= σ′)
species. Inserting now Eq. (S11) into Eq. (S10) and us-
ing Eq. (S12) we can re-express the overlap integral in
terms of the Schmidt coefficients λi’s and Kσσ′

ij . Indeed
we obtain

ΛBI(t) =
[
∑D
i=1 λ

2
iK

BI
ii +

∑
i 6=j λiλjK

BI
ij ]2

[
∑D
i=1 λ

2
iK

BB
ii + 2

∑
i<j λiλjK

BI
ij ][

∑D
i=1 λ

2
iK

II
ii + 2

∑
i<j λiλjK

IB
ij ]

. (S13)

Of course in this most general case where a full MB
description is considered and entanglement is strong,
namely more than one species wavefunctions are signifi-
cantly occupied, the relation of ΛBI(t) with the Schmidt
coefficients λi where i = 1, 2, . . . , D is complicated. To
get a better insight of the aforementioned relation let
us consider the following limiting cases. Within the MF
and SMF approximations where entanglement between
the bath and the impurity is absent (see also our discus-

sion above) it can be easily shown that ΛBI(t) becomes

ΛBI(t) = Λ0(t) ≡ [KBI
11 ]2

KBB
11 KII

11

, (S14)

as there is only a single (and hence dominant) mode
in the corresponding Schmidt decomposition. Moreover
when considering the weakly entangled case where λ1 ≈ 1
and λj � 1 with j = 2, 3, . . . , D the overlap integral can
be written with respect to the higher-order Schmidt co-
efficients as

ΛBI(t) = Λ0(t)


1 + 2

∑

j>1

λj(t)

λ1(t)

(
KBI

1j

KBB
11

+
KBI
j1

KBB
11

−
KII

1j

KII
11

−
KBB

1j

KBB
11

)
+O

(
(
λj
λ1

)2
)
. (S15)

We remark here that this weakly entangled case is ac-
tually realistic in a MB treatment only within the mis-
cible phase since immiscible species are strongly entan-
gled. It becomes evident that in this weakly entangled
case the major contribution of ΛBI(t) stems from the
dominant mode described by λ1 and being encrypted in
Λ0(t). However, there are small additional contributions
to ΛBI(t) being of the order of λj/λ1. These latter con-
tributions originate from the overlap between the one-

body densities of the first [ρ
(1),σ
1 (x; t)] with the higher-

order [ρ
(1),σ
j (x; t), j > 1] modes of entanglement. It is

important to stress that the species wavefunction of the

first mode, Ψσ
1 (t), and therefore its density ρ

(1),σ
1 (x; t) is

greatly altered in the full MB case when compared to
the MF and SMF cases where entanglement is neglected.
Concluding, ΛBI(t) captures the manifestation of entan-
glement even in such a weakly entangled scenario, while
more traditional measures such as the Von-Neumann en-

tropy SV NBI = −∑i λi(t) log λi(t) are not sensitive to
this change. Indeed SV NBI depends on the number and
the weights (λi’s) of the entanglement modes. Therefore
ΛBI(t) greatly supplements SV NBI regarding the identifi-
cation of entanglement induced effects.

GENERATION OF ENTANGLEMENT AND
FRAGMENTATION VERSUS THE DEGREE OF

MISCIBILITY

To complete the physical picture we next focus on
the dynamics between the impurity and the bath. For
this purpose we employ the overlap integral ΛB↑(t)
[Fig. S4(a)] between the single-particle densities of the
bath and the spin-↑. As dictated by ΛB↑(t) within RI
the impurity is partially miscible with the BEC while it
is well separated within RIII . The link between |S(t)|
and ΛB↑(t) is of significant importance not only due to
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FIG. S4. (Color online) (a) Temporal evolution of the over-
lap, ΛB↑(t), between the bath and the spin-↑ of the impurity
atom (b) Evolution of the von-Neumann entropy, SV N

BI (t) for
increasing gBI . Deviation from unity of the first natural or-
bital of the (c) bath and (d) the impurity for varying gBI . In
all cases NB = 100, NI = 1 and gBB = 0.5.

the experimental relevance of both quantities but most
importantly because ΛB↑(t) can be expressed in terms
of the Schmidt coefficients, λi, see also Eqs. (S13) and
(S15). For instance in the weakly entangled case where
λ1 ≈ 1 and λj � 1

ΛB↑(t)
Λ0(t)

− 1 ∝
∑

j>1

λj(t)

λ1(t)
, (S16)

with Λ0(t) being the overlap integral accounting only
for the contribution of the first Schmidt coefficient λ1.
Therefore ΛB↑(t) can be used as a measure to probe
the generation of entanglement in the MB system. How-
ever to directly visualize the degree of entanglement dur-
ing the dynamics we employ the von-Neumann entropy,
SV NBI (t) = −∑i λi(t) log λi(t) [S9]. The temporal evolu-
tion of SV NBI (t) [Fig. S4(b)] shows that the dressed im-
purity is entangled with the BEC within the regions RI
and RII . Most importantly the system becomes strongly
entangled within RIII , where the polaron ceases to ex-
ist, showcasing a plateau of SV NBI (t > 15) ≈ 1.2 for
fixed gBB = 0.5 and for all gBI & 1.65. This result is
in turn related to the fragmented nature of the system
[Figs. S4(c), S4(d)]. The latter is captured by the devi-
ation from unity of the first natural orbital 1 − nσ1 (t)
of the σ-species. Since we consider a single impurity
nI1(t) = λ1(t) follows SV NBI (t). However, the bath frag-
mentation is almost zero in RI and RII and it is weak
in RIII . Therefore it is the entanglement between the
impurity and the bath that plays the crucial role in the
quasiparticle formation, e.g. see that the growth rate of
SV NBI becomes maximal in RII , and not the fragmenta-
tion of the bath.
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Abstract
We study the ground state properties and non-equilibriumdynamics of two spinor bosonic impurities
immersed in a one-dimensional bosonic gas upon applying an interspecies interaction quench. For
the ground state of two non-interacting impurities we reveal signatures of attractive induced
interactions in both cases of attractive or repulsive interspecies interactions, while aweak impurity–
impurity repulsion forces the impurities to stay apart. Turning to the quench dynamics we inspect the
time-evolution of the contrast unveiling the existence, dynamical deformation and the orthogonality
catastrophe of Bose polarons.Wefind that for an increasing postquench repulsion the impurities
reside in a superposition of two distinct two-body configurations while at strong repulsions their
corresponding two-body correlation patterns show a spatially delocalized behavior evincing the
involvement of higher excited states. For attractive interspecies couplings, the impurities exhibit a
tendency to localize at the origin and remarkably for strong attractions they experience amutual
attraction on the two-body level that is imprinted as a density humpon the bosonic bath.

1. Introduction

Mobile impurities immersed in a quantummany-body (MB) environment become dressed by the excitations of
the latter. This gives rise to the concept of quasiparticles, e.g. the polarons [1, 2], whichwere originally
introduced by Landau [3–5]. This dressingmechanism can stronglymodify the elementary properties of the
impurity atoms and lead to concepts such as effectivemass and energy [6, 7], induced interactions [8, 9] and
attractively bound bipolaron states [1, 2, 10, 11]. Polaron states have been recently realized in ultracold atom
experiments [12–14], which exhibit an unprecedented degree of controllability and, in particular, allow to adjust
the interaction between the impurities and themediumwith the aid of Feshbach resonances [15, 16]. The
spectrumof the quasiparticle excitations can be characterized in terms of radiofrequency andRamsey
spectroscopy [12, 17–19] and the trajectories of the impurities can bemonitored viain situmeasurements
[20, 21]. Experimentally Bose [20–24] and Fermi [12, 13, 17] polarons have been observed and these
experiments confirmed the importance of higher-order correlations for the description of the polaronic
properties. The experiments in turn have spurred additional several theoretical investigations which have aimed
at describing different polaronic aspects [25, 26] by operating e.g.within the Fröhlichmodel [27–31], effective
Hamiltonian approximations [8, 32–34], variational approaches [7, 9, 22, 35–37], renormalization group
methods [25, 38, 39] and the path integral formalism [40, 41].

The focus of themajority of the above-mentioned theoretical studies have been the stationary properties of
the emergent quasiparticle states for single impurities in homogeneous systems.However, the non-equilibrium
dynamics of impurities is far less explored and is expected to be dominated by correlation effects which build up
in the course of the evolution [34–36, 39, 42–45]. Existing examples include the observation of self-trapping
phenomena [46, 47], formation of dark-bright solitons [6, 42], impurity transport in optical lattices [48–51],
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orthogonality catastrophe events [35, 52], injection of amoving impurity into a gas of Tonks–Girardeau bosons
[53–60] and the relaxation dynamics of impurities [45, 61, 62]. Besides these investigations, which have enabled
a basic description of the quasiparticle states in different interaction regimes, a number of important questions
remain open and a full theoretical understanding of the dynamics specifically of Bose polarons is still far from
complete.

A systemof particular interest consists of two impurity atoms immersed in a Bose–Einstein condensate
(BEC), where the underlying interactions between the impurities come into play. In such a system impurity–
impurity correlations [10, 63, 64] can be induced by the BEC, even in the case where no direct interaction
between the impurities is present. However, the competition between direct and induced interactions can also
be expected to lead to interesting effects. It is therefore natural to investigate the dynamical response of the
impurities with varying interspecies interactions (attractive or repulsive) and to identify inwhich regimes
robustly propagating Bose polaron states exist [25, 39, 43]. In addition it is interesting to study the existence of
bound states between the impurities [1, 10], the effect of strong correlation between the impurities on the
orthogonality catastrophe [35, 52], phase separation between the two atomic species [65–67] and energy
exchange processes [68, 69]. Comparing the effects in systemswith single andmultiple impurities is an
interesting task, as well as their theoretical interpretation in terms of the spin polarization (alias the contrast)
which has not yet been analyzed in the case of two impurities and involvesmore energy channels compared to
the case of a single impurity. For these reasons, we study in this work an interspecies interaction quench for two
bosonic impurities overlappingwith a harmonically trapped BEC. To address the correlated quantumdynamics
of the bosonicmulticomponent systemwe use themulti-layermulti-configuration time-dependentHartree
method for atomicmixtures (ML-MCTDHX) [70–72], which is a non-perturbative variationalmethod that
enables us to comprehensively capture interparticle correlations.

In this workwe start by studying the ground state of two non-interacting impurities in a bosonic gas and
show that for an increasing attraction or repulsion they feature attractive induced interactions, a result that
persists also for small bath sizes and heavy impurities [8]. However, twoweakly repulsively interacting
impurities can experience a net repulsion for repulsive interspecies interactions.

When quenching themulticomponent system,wemonitor the time-evolution of the contrast and its
spectrum [19, 25] for varying postquench interactions.We show that the polaron excitation spectrumdepends
strongly on the postquench interspecies interaction strength and the number of impurities while it is almost
insensitive to the direct impurity–impurity interaction for theweak couplings considered herein. Additionally, a
breathingmotion of the impurities can be excited [73, 74] for weak postquench interspecies repulsions, while for
stronger ones a splitting of their single-particle density occurs. In this latter case a strong attenuation of the
impuritiesmotion results in the accumulation of their density at the edges of the bosonic gas and theymainly
reside in a superposition of two distinct two-body configurations: the impurities either bunch on the same or on
separate sides of the BEC,while the bath exhibits an overall breathingmotion. For attractive interspecies
couplings, the impurities exhibit a breathingmotion characterized by a beating pattern. The latter stems from
the values of the impuritie’s center-of-mass and relative coordinate breathingmodes, whose frequency
difference originates from the presence of attractive induced interactions. Additionally, the impurities possess a
tendency to localize at the trap center, a behavior that becomesmore pronounced for stronger attractions [75].
Strikingly, for strong attractive interspecies interactions we show that during the dynamics the impurities
experience amutual attraction on the two-body level and the density of the bosonic bath develops a small
amplitude hump at the trap center.Wefind that a similar dynamical response also takes place for twoweakly
repulsively interacting impurities but the involved time-scales are different. To interpret the observed dynamics
of the impurities we invoke an effective potential picture that applies for weak couplings [35, 36, 73, 75].

Ourwork is structured as follows. Section 2 presents our setup and introduces the correlationmeasures that
are used tomonitor the dynamics. In section 3we address the ground state properties of the impurities for a wide
range of interspecies interaction strengths. The emergent non-equilibriumdynamics triggered by an
interspecies interaction quench is analyzed in detail in section 4. In particular, we present the time-evolution of
the contrast and the system’s spectrum (sections 4.1–4.3) and study the full dynamics of the single-particle and
two-body reduced densitymatrices for repulsive (section 4.4) and attractive (section 4.5) postquench
interactions.We summarize and discuss future perspectives in section 5. Finally, appendix details our numerical
simulationmethod and demonstrates the convergence properties.

2. Theoretical framework

2.1.Hamiltonian and quench protocol
Weconsider a highly particle number imbalanced Bose–Bosemixture composed ofNI=2 bosonic impurities
(I) possessing an additional pseudospin-1/2 degree of freedom [76], which are immersed in a bosonic gas of

2
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NB=100 structureless bosons (B).Moreover, themixture is assumed to bemass-balanced, namely
mB=mI≡m and each species is confined in the same one-dimensional external harmonic oscillator potential
of frequencyωB=ωI=ω. Such a system can be experimentally realized by considering e.g.a 87RbBECwhere
themajority species resides in the hyperfine state ∣ = = ñF m2, 1F and the pseudospin degree of freedomof the
impurities refers for instance to the internal states ∣ ∣ñ º = = ñF m1, 1F and ∣ ∣ñ º = = - ñF m1, 1F

[77, 78]. Alternatively, it can be realized to a good approximation by amixture of isotopes of 87Rb for the bosonic
gas and two hyperfine states of 85Rb for the impurities. The underlyingMBHamiltonian of this system reads

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )å å= + + + + +
=  = 

H H H H H H H . 1B
a

a
a

aa BB BI
0

,

0

,

int int int int

The non-interactingHamiltonian of the bosonic gas is ( )ˆ ˆ ( ) ˆ ( )†
ò w= Y - + YH x x m x xdB B m x B

0

2

d

d

1

2
2 2

2 2

2 , while for

the impurities it reads ( )ˆ ˆ ( ) ˆ ( )†
ò w= Y - + YH x x m x xda a m x a

0

2

d

d

1

2
2 2

2 2

2 with { }=  a , being the indices of the

spin components. Here ˆ ( )Ys x refers to the bosonicfield-operator of either the bosonic gas (σ=B) or the
impurity ( { }s = =  a , ) atoms. Furthermore, we operate in the ultracold regimewhere s-wave scattering is
the dominant interaction process. Therefore both the intra- and the intercomponent interactions can be
adequatelymodeled by contact ones. The contact intraspecies interaction of the BEC component ismodeled by
ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )† †

ò= Y Y Y YH g x x x x xdBB BB B B B B
int

andbetween the impurities via ˆ
¢Haa

int
= ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )† †

ò Y Y Y Y¢ ¢ ¢g x x x x xdaa a a a a

where either = ¢ =  a a , or = a , ¢ = a .Note also thatwe assume = = º  g g g gII .Most importantly,we
consider that only thepseudospin- componentof the impurities interactswith the bosonic gaswhile thepseudospin-

 is non-interacting.The resulting intercomponent interaction is ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )† †
ò= Y Y Y Y H g x x x x xdBI BI B B

int
,where

º g gBI B and =g 0B .
In all of the above-mentioned cases, the effective one-dimensional coupling strength [79] is given by

( ∣ ( )∣ )z= -ss m ss¢ ¢ ^
-ss¢

^

g a a1 1 2 2a

a

s2 1
s2

2 , where s s¢ =  B, , , and m = m

2
is the reducedmass. The

transversal length scale is mw=^ ^a withω⊥ being the transversal confinement frequency and ss¢a s denotes
the three-dimensional s-wave scattering lengthwithin (σ=σ′) or between (s s¹ ¢) the components. In a
corresponding experiment, gσσ′ can be tuned either via ss¢a s with the aid of Feshbach resonances [15, 16] or by
adjustingω⊥using confinement-induced resonances [79]. In the following, theMBHamiltonian of equation (1)
is rescaledwith respect to ÿω. As a consequence, length, time, and interaction strengths are given in units of

w


m
,ω−1 and w

m

3

respectively.

To study the quench dynamics, the above-describedmulticomponent system is initially prepared in its
ground state configuration for fixed gBB=0.5 and gBI=0 and either gII=0 or gII=0.2. In this way, the case of
two non-interacting and that of weakly interacting impurities are investigated. This initial (ground) state
emulates a systemprepared in the ∣ ∣ ∣- ñ = ñ Ä ñ1, 1 1 2 configuration for the spin degree of freedom i.e. where
the impurity-BEC interaction is zero. Note that the spinor part of thewavefunction is expressed in the basis of
the total spin i.e.∣ ñS S, z [80]. Accordingly, the spatial part ∣Y ñBI

0 of the ground state of the systemobeys the

following eigenvalue equation ( ˆ ˆ )∣ ∣ ∣ ∣- Y ñ - ñ = Y ñ - ñH H E1, 1 1, 1BI BI BI
0

0
0 , withE0 being the corresponding

eigenenergy and ˆ ∣ ∣Y ñ - ñ =H 1, 1 0BI BI
0 . To trigger the dynamics we carry out an interspecies interaction quench

from gBI=0 to afinite positive or negative value of gBI at t=0 andmonitor the subsequent time-evolution. In a
corresponding experiment, this quench protocol can be implemented by using a radiofrequencyπ/2 pulse with
an exposure timemuch smaller thanω−1 [19]. The pulse acts upon the spin degree of freedomof the impurity,

whichmaps the pseudospin- impurities to the superposition state ∣ ∣ ∣y ñ º ñ+ ñ
S i 2

i i with i=1, 2 [18]. The

correspondingMBwavefunction of the system, ∣ ( ) [∣ (∣ ∣ )]ˆ y yY ñ = Y ñ ñ Ä ñ- t e Ht
BI S S

i 0
1 2 , is then given by

∣ ( ) [∣ ∣ ] ( ∣ ∣ ∣ ∣ ) ( )ˆ ˆY ñ = Y ñ ñ + Y ñ - ñ + Y ñ ñ- - -  t
1

2
e 1, 0

1

2
e 1, 1 e 1, 1 . 2Ht

BI
iE t

BI
Ht

BI
i 0 0 i 00

The setup and processes addressed in ourwork can be experimentally realized utilizing radiofrequency
spectroscopy [9, 18, 22, 23, 43] andRamsey interferometry [18].

2.2.MBwavefunction ansatz
To calculate the stationary properties and to track theMBnon-equilibriumquantumdynamics of the
multicomponent bosonic systemdiscussed abovewe employ theML-MCTDHXmethod [70–72]. This is an
ab initio variationalmethod for solving the time-dependentMB Schrödinger equation of atomicmixtures and it
is based on the expansion of the totalMBwavefunctionwith respect to a time-dependent and variationally
optimized basis tailored to capture both the intra- and the interspecies correlations of amulticomponent system
[35, 65, 81, 82].

3
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To include the interspecies correlations, theMBwavefunction (∣ ( )Y ñt ) isfirst expanded in terms ofD
distinct species functions, ∣ ( )Y ñs ti , for each componentσ=B, I, and then expressed according to a truncated
Schmidt decomposition [83] of rankD, namely

∣ ( ) ( ) ∣ ( ) ∣ ( ) ( )å lY ñ = Y ñ Y ñ
=

t t t t . 3
k

D

k k
B

k
I

1

Here the time-dependent expansion coefficientsλk(t) are the Schmidt weights andwill be referred to in the
following as the natural populations of the kth species function. Evidently, the system is entangled [84] or
interspecies correlatedwhen at least two differentλk(t) possess a non-zero value. If this is not the case, i.e. for
λ1(t)=1,λk>1(t)=0, thewavefunction is a direct product of two states.

Therefore, in order to account for intraspecies correlations, each of the above-mentioned species functions
is expressed as a linear superposition of time-dependent number-states, ∣ ( )

ñsn t , with time-dependent
coefficients ( )sA ti n; as

∣ ( ) ( )∣ ( ) ( )


åY ñ = ñs s st A t n t . 4i
n

i n;

Each number state ∣ ( )
ñsn t is a permanent building upon dσ time-dependent variationally optimized single-

particle functions (SPFs) ∣ ( )f ñs tl , l=1, 2,K, dσwith occupation numbers ( )
= ¼ sn n n, , d1 . Consecutively,

the SPFs are expanded on a time-independent primitive basis. The latter refers to andimensional discrete
variable representation (DVR) for themajority species and it is denoted by {∣ }ñk . For the impurities this
corresponds to the tensor product {∣ }ñk s, of theDVRbasis for the spatial degrees of freedom and the two-
dimensional pseudospin-1/2 basis {∣ ∣ }ñ ñ, . Accordingly, each SPF of the impurities is a spinor wavefunction
of the form

∣ ( ) ( ( )∣ ∣ ( )∣ ∣ ) ( )åf ñ = ñ ñ + ñ ñ
=

 



t B t k B t k , 5j
I

k
jk
I

jk
I

1

with ( )B tjk
I [ ( )]B tjk

I being the time-dependent expansion coefficients of the pseudospin- [ ] (see also [35, 82]
for amore detailed discussion).

The time-evolution of the (NB+NI)-bodywavefunction ∣ ( )Y ñt governed by theHamiltonian of
equation (1) is obtained via solving the so-calledML-MCTDHX equations ofmotion [70]. The latter are
determined by utilizing e.g.theDirac–Frenkel [85, 86] variational principle for the generalized ansatz
introduced in equations (3)–(5). This procedure results in a set ofD2 linear differential equations ofmotion for

theλk(t) coefficients which are coupled to ( )( )!
!( )!

( )!
!( )!++ -

-
+ -

-
D N d

N d

N d

N d

1

1

1

1
B

B

B
B

I
I

I
I nonlinear integrodifferential

equations for the species functions and dB+d I nonlinear integrodifferential equations for the SPFs.
Amain aspect of the ansatz outlined above is the expansion of the system’sMBwavefunctionwith respect to

a time-dependent and variationally optimized basis. The latter allows to efficiently take into account the intra-
and intercomponent correlations of the systemusing a computationally feasible basis size. In the present case the
Bose gas consists of a large number of weakly interacting particles and therefore its intracomponent correlations
are suppressed. As a consequence they can be adequately captured by employing a small number of orbitals,
dB<4. Additionally, the number of impurities,NI<3, is small giving rise to a small number of
integrodifferential equations allowing us to employmany orbitals, dI, and thus account for strong impurity–
impurity and impurity-BEC correlations. Therefore, the number of the resulting equations ofmotion that need
to be solved is numerically tractable. Since ourmethod is variational, its validity is determined upon examining
its convergence. For details on the precision of our simulations see appendix.

2.3. Correlationmeasures
To study the quench-induced dynamics of each species at the single-particle level we calculate the one-body
reduced densitymatrix for each species [87, 88]

( ) ( )∣ ˆ ( ) ˆ ( )∣ ( ) ( )( ) †
r ¢ = áY Y Y ¢ Y ñs s sx x t t x x t, ; . 61

Here, ˆ ( )Ys x is theσ-species bosonicfield operator acting at position x and satisfying the standard bosonic
commutation relations [89]. For simplicity, wewill use in the following the one-body densities for each species
i.e. ( ) ( )( ) ( )r rº ¢ =s sx t x x x t; , ;1 1 , which is a quantity that is experimentally accessible via averaging over a

sample of single-shot images [65, 90, 91].We remark that the eigenfunctions and eigenvalues of ( )( )r ¢s x x t, ;1 are
termed natural orbitals ( )js x t;i and natural populations ( )sn ti [65, 70] respectively. In this sense, each bosonic
subsystem is called intraspecies correlated ifmore than a single natural population possess a non-zero
contribution. Otherwise, i.e.for ( ) =sn t 11 and ( ) =s

>n t 0i 1 , the corresponding subsystem is said to be fully
coherent and theMBwavefunction (equations (3), (5)) reduces to amean-field product ansatz [92, 93].

To unveil the role of impurity–impurity correlations following the interspecies interaction quenchwe
calculate the time-evolution of the corresponding diagonal of the two-body reduced densitymatrix
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( ) ( )∣ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )∣ ( ) ( )( ) † †
r = áY Y Y Y Y Y ñ¢ ¢ ¢x x t t x x x x t, ; , 7aa a a a a

2
1 2 1 2 2 1

where ¢ =  a a, , . The two-body reduced densitymatrix refers to the probability offinding simultaneously one
pseudospin-a boson at x1 and a pseudospin-a′ boson at x2 [65, 66].Moreover, it provides insights into the
spatially resolved dynamics of the two impurities with respect to one another. Indeed, the impurities are dressed
by the excitations of the bosonic gas forming quasiparticles which in turn canmove independently or interact,
and possibly form a bound state [8, 10, 42, 94].

To capture the emerging effective interactions between the two bosonic impurities wemonitor their relative
distance [9, 42] given by

( ) ∣ ∣ ( )
( )∣ ˆ ( ˆ )∣ ( ) ( )

( )ò r
á ñ =

-

áY - Y ñ
r t

x x x x x x t

t N N t

d d , ;

1
. 8aa

aa

a a

1 2 1 2
2

1 2

Here, N̂a with =  a , is the number operator thatmeasures the number of bosons in the spin-a state.
Experimentally, ( )á ñr taa can be probed via in situ spin-resolved single-shotmeasurements on the spin-a state
[91].More precisely, each image gives an estimate of ( )á ñr taa between the bosonic impurities if their position
uncertainty is assured to be adequately small [91]. Subsequently, ( )á ñr taa is obtained by averaging over several
such images.

3. Induced interactions in the ground state of two bosonic impurities

Before investigating the non-equilibriumdynamics of the two bosonic impurities immersed in a BEC it is
instructive tofirst analyze the ground state of two impurities interactingwith the bosonicmedium for varying
interspecies interactions gB ranging fromattractive to repulsive. Note that such a configuration corresponds in

our case to two impurities residing in the pseudospin- state since only this state is interactingwith the bath (see
also equation (1)). The aimof this study is to reveal the presence of induced impurity–impurity interactions
mediated by the bath. As discussed in section 2.1, themass-balancedmulticomponent bosonic system consists
of two impuritiesNI=2 immersed in aMBbath ofNB=100 atomswith gBB=0.5 and it is externally confined
in a harmonic oscillator potential of frequencyω=1. Later on, also themass-imbalanced and the few-body
(NB=10) scenariawill be investigated. Belowwe consider either twonon-interacting (gII=0) or twoweakly
interacting impurities (gII=0.2). To obtain the interacting ground state of the system as described by the
Hamiltonian of equation (1)we employ either imaginary time propagation or improved relaxation [70, 71]
withinML-MCTDHX.

The relative distance (equation (8)) between the two impurities as well as their two-body reduced density
matrix (equation (7)) for different values of gB are shown infigure 1. Focusing on the case of two non-
interacting impurities, gII=0, we see that for larger attractions the relative distance between the impurities
decreases (seefigure 1(a)) and converges towards a constant value i.e.á ñ »r 0.1 for < -g 2B . The decrease in

á ñr for- < <g2 0B implies that the impurities effectively experience an attractionwith respect to one
another. This attraction is amanifestation of the attractive induced interactionsmediated by the bosonic gas
since gII=0 [8]. The impurities reside together in the vicinity of the trap center since (( )r - < < x1 1,2

1

)- < <x1 12 is predominantly populated (see figure 1(b2)). Additionally, for < -g 2B , where á ñr become
approximately constant, the impurities come very closewith respect to one another. Here, the corresponding

( )( )r x x,2
1 2 shrinks along its anti-diagonal and its diagonal becomes elongated (see figure 1(b1)), which is

indicative of a bound state having formed between the impurities known as a bipolaron state [8, 10, 94].
Turning toweak interspecies repulsions < <g0 0.5B wefind that á ñr slightly increases (see figure 1(a))

while the two impurities reside close to the trap center (see figure 1(b3)). It is important tomention that this
increase in á ñr does not directly imply that the impurities experience aweak repulsionmediated by the bosonic

bath. Indeed, by neglecting all correlations between the impurities, i.e.by substituting ( )( )r x x,2
1 2 =

( ) ( )( ) ( )r r x x 21
1

1
2 into á ñr wefind the same tendency of á ñr with even slightly larger values (see also the

discussion below). Since in the limit of the non-correlated case there are no induced interactions, the fact that
á ñr is smaller when correlations are taken into accountmeans that the impurities still feel an effective attractive
force. Note that for the other interaction regimes presented herein such an unexpected behavior of á ñr does not

occur as it can also be deduced by the corresponding two-body spatial configurations building upon ( )( )r x x,2
1 2

(see below). Furthermore, it can be seen that at = =g g 0.5B BB , where themiscibility/immiscibility transition

between the impurity and the BEC takes place [65, 67], the behavior of á ñr is suddenly altered. Indeed for

 g 0.5B , á ñr shows a decreasing tendencywhich indicates the presence of attractive induced interactions

between the impurities. In particular, for < g0.5 1.1B , á ñr reduces and the impurities tend to bunch
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together at the same location. This can be confirmed by the fact that ( )( )r x x,2
1 2 shows a populated elongated

diagonal as depicted infigure 1(b4) for =g 0.5B .Moreover for stronger repulsions >g 1.1B , á ñr remains
almost constant. Especially so for >g 1.5B , where the two impurities residing either on the left or the right edge
of the Thomas–Fermi profile of the BEC. The latter can be evidenced infigure 1(b5) by the two strongly
populated spots appearing at x1≈x2≈±RTFwithRTF denoting the Thomas–Fermi radius.

In view of the results of [35] it is tempting to interpret our above findings in terms of an effective potential,
Veff (x; gBI). A valid candidate for such a potential can be constructed as

( ) ( ) ( )( )w r= + =V x g m x g x g;
1

2
; 0 , 9BI I BI B BIeff

2 2 1

where ( )( )r =x g; 0B BI
1 refers to the equilibriumdensity of the BEC for gBI=0. Equation (9) implies that

( )( )r =x g; 0B BI
1 acts on the impurities just as an additional repulsive (gBI>0) or attractive (gBI<0) potential on

top of the externally imposed parabolic trap. It is noteworthy that the simplification of the impurity problem
provided by equation (9)neglects several phenomena thatmight be important for the description of the ground
state of the impurity system. First, the renormalization of the impurity’smass, m mI I

eff by the couplingwith
its environment is neglected and,most importantly, the possible emergence of induced interactions is not
contained in equation (9), due to the absence of two-body terms. The latter are extremely important for the
description of ( )( )r x x,2

1 2 . Indeed, withinVeff (x; gBI)no deformations can appear in the antidiagonal of the two-
body density of the impurities which dictates their relative distance. This result is in contrast to the one obtained
within the fullMBHamiltonian (equation (1)) shown infigures 1(b1)–(b5).

To provide an estimate of the quantitative error obtained by the approximation of equation (9)we include in
figure 1(a), also the results for á ñr within the effective potential picture. It is evident that when usingVeff (x; gBI),
á ñr is always larger than the corresponding fullMB result for ¹g 0BI . This effect is particularly pronounced for
gBI>0.5where á ñr within equation (9) exhibits an increasing tendency instead of a decreasing onewith gBI.
Such an effect can be attributed to the vanishing off-diagonal elements of ( )( )r x x,2

1 2 which cannot be captured

withinVeff (x; gBI), as in the latter case ( ) ( ) ( )( ) ( ) ( )r r r=  x x x x, 22
1 2

1
1

1
2 . Indeed, the large impurity–impurity

interactionswithin this regime render the effective potential incapable of describing the ground state of the bath

Figure 1. (a)Relative distance, á ñr , between the two bosonic impurities residing in the pseudospin- state for varying bath
pseudospin- interaction strength. The cases of two non-interacting (gII=0), weakly interacting (gII=0.2) impurities as well as few-
andmany bath particles are shown (see legend) for amass-balanced systemmI=mB. á ñr from the effective potential picture of
equation (9) for two non-interacting bosonic impurities is also illustrated (see legend)with respect to gB . Inset illustrates á ñr of two
non-interacting impurities in the case of amass-balanced (mI=mB) and amass-imbalanced (mI≈1.53mB) systemwith respect to

gB . The corresponding two-body reducedmatrix of the ground state of the two pseudospin- (b1)–(b5)non-interacting and (c1)–(c5)
interacting (gII=0.2) impurities for different interspecies interactions (see legends). In (b1)–(b5) and (c1)–(c5) themixture consists of
NB=100 bosons andNI=2 bosonic impurities. Also, in (b4), (b5), (c4) and (c5) the dashedmagenta lines indicate the location of the
Thomas–Fermi radius of the bosonic gas. In all cases gBB=0.5 and the system is trapped in a harmonic oscillator potential with
ω=1.
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impurity systemwithin this interaction regime. Similarly, for gBI<−2, á ñr using the effective potential is
significantly larger than the correspondingMB result, which can be attributed to the prominent role of induced
interactions in the formation of the bipolaron state [10].

Considering a smaller bath consisting ofNB=10 atoms does not significantly alter the ground state
properties of the two non-interacting bosonic impurities. Here, á ñr (figure 1(a)) exhibits a similar behavior as
forNB=100 atoms, with themost notable difference occurring in the region of »g gB BB where a smoother

decrease occurs when compared to theNB=100 case. The value forwhich the distance becomes constant is also
shifted to larger values whenNB=10. These differences can be qualitatively understoodwithin a corresponding
effective potential picture whichwewill discuss in section 4.4.1, see equation (15) and the remark4.

A similar to the above-described overall phenomenology of the two non-interacting bosonic impurities for a
varying gB is also observed for the case of heavier impurities as can be seen in the inset offigure 1(a). Herewe

consider a 87Rb bosonic gas and two 133Cs impurities prepared e.g.in the hyperfine states ∣ = = ñF m1, 0F and
∣ = = ñF m3, 2F respectively and being both confined in the same external harmonic oscillator [95, 96].
Compared to themass-balanced scenario the behavior of á ñr around »g gB BB becomes somewhat smoother

and themaximumvalue is also slightly shifted to larger interaction strengths. Another conclusion that can be
drawn, is that heavier impurities prefer to remain closer to each other compared to the lighter ones, since á ñr
has smaller values in the former than in the latter case. As a consequence we can infer that heavy impurities
experience stronger attractive induced interactions than light ones. These differences can also be explained in
terms of the effective potential picturewhichwill be introduced in section 4.4.1, see also remark5 .

When aweak intraspecies repulsion among the impurities is introduced, gII=0.2, see figure 1(a), the
ground state properties remain the same for attractive gB but change fundamentally in the repulsive regime.

Indeed á ñr decreases for an increasing interspecies attraction, signifying an induced attraction between the
impurities despite their repulsivemutual interaction, until it becomes constant for < -g 2B .More specifically,

for- < <g2 0B the impurities are likely to remain close to the trap center (see figure 1(c2))where

( )( )r - < < - < < x x1 1, 1 12
1 2 is predominantly populated. Furthermore, for < -g 2B the impurities

bunch together at a fixed distance (figure 1(a)) and the two-body reduced densitymatrix becomes elongated
along its diagonal (see figure 1(c1)), suggesting the formation of a bound state similar to the gII=0 case.
However, for >g 0B , á ñr exhibits an overall increasing tendency, which indicates that the two impurities are

locatedmainly symmetrically around the trap center. This latter behavior can be directly deduced by the
relatively wide distribution of the anti-diagonal of their two-body reduced densitymatrix (see figures 1(c3) and
(c4) for < <g0 1B ).Moreover, and in sharp contrast to the gII=0 case, for >g 1B the impurities acquire a

largefixed distance and in particular can be found to reside one at the left and the other at the right edge of the
BEC. This configuration of the impurities can be seen from the fact that solely off-diagonal elements of

( )( )r x x,2
1 2 exist infigure 1(c5) for =g 3B . Finally, it is worthmentioning that for twoweakly repulsive

impurities the induced effective attraction can never overcome their direct s-wave interaction for >g 0B .
To further support the existence of attractive induced interactions between the two impurities we study the

ground state energy of the system for varying gB . In particular, we calculate the expected position of the

polaronic resonances [9]namely ( ) [ ( ) ( )]D = - =+   g E N g E N g N, , 0N
B I B I B I

I , where ( )E N g,I B is the energy

of the system forNI impurities at interaction gB (figure 2(a)). As it can be seen, for both,NI=1 andNI=2, the

resonance position ( )D+ gN
B

I increases for a larger gB and it takes negative and positive values for attractive and

repulsive interactions, respectively.Moreover, in theNI=2 scenario ( )D+ gN
B

I is found to be negatively shifted

when compared to the correspondingNI=1 case for ¹g 0II . This behavior indicates the presence of attractive
induced interactions for both attractive and repulsive Bose polarons [8, 10, 63]. Focusing on gII=0.2 and

<g 0B a small decrease of ( )D+ gN
B

I occurs when compared to the gII=0 case showing that attractive induced
interactions becomemore pronouncedwhen direct s-wave impurity–impurity repulsions are involved.
However, for repulsive polarons i.e. >g 0B the presence of s-wave impurity–impurity interactions counteracts

the effect of attractive induced interactions and accordingly ( )D+ gN
B

I is almost the same forNI=2, gII=0.2
andNI=1, see the inset offigure 2(a).

The underlyingmechanism behind the above-mentioned impurity–impurity induced interactions can be
qualitatively understood as follows. For attractive gB the presence of impurities gives rise to a small density

enhancement of the BEC in the vicinity of their spatial position. This effect is captured by the deformation of the

4
Note that for > =g g 0.5B BB the effective potential of equation (15) possesses a double-well structure as shown infigure 6(e). Thewidth

of its central barrier is determined byRTFwhich substantially decreases for smallerNB. This decreasing tendency leads to amuchmore
prominent overlap of the impurity wavefunction among thewells which in our case implies a smoother behavior of á ñr .
5
Within the effective potential picture of equation (15) themiscibility/immiscibility transition is imprinted as a change in the shape of

¯ ( )V xI
eff fromparabolic (figure 6(a)) to a double-well (figure 6(e)) potential. This transition occurs at =g gB

m

m BB
I

B
and therefore formI>mB

is shifted to larger values of gB↑ than formI = mB, a behavior that explains the shift of á ñr for heavy impurities.
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BECdensity quantified by ( ) ( ) ( )( ) ( ) ( )dr r r= - x g x g x; ; ; 0B B B B B
1 1 1 and shown infigure 2(b)with respect to gB .

Indeed ( )( )dr < >x g; 0 0B B
1 (figure 2(b)) in the vicinity of ( )( )r <x g; 0I B

1 (figure 2(c)). This density
enhancement of the BEC forces the impurities to approach each other leading to the emergence of attractive
impurity–impurity induced interactions. Similarly for <g 0B the impurities tend to reside in regions of lower

bath density causing a density depletion of the BEC characterized by ( )( )dr > <x g; 0 0B B
1 (figure 2(b)). The

above-described density depletion of the bath gives rise to the attractive induced interactions analogously to
<g 0B . It is alsoworth commenting that for >g 0.5B ( )( )r >x g; 0.5B B

1 splits into two branches lying at the

Thomas–Fermi edges±RTF of the BEC (see alsofigure 1 (b5)). At these values of gB ( )D+ gN
B

I tends to saturate
indicating the impurity-BECphase separation transition.

4.Quench induced dynamics

Next, we study the interspecies interaction quenched dynamics for themass-balancedmulticomponent system
which is initially prepared in its ground state and characterized by gBB=0.5 and =g 0B . In this case the
Thomas–Fermi radius of the BEC isRTF≈4.2 and the impurities are in a superposition of their spin
components described by equation (2).Wemainly analyze the case of two non-interacting (gII=0) impurities
and briefly discuss the scenario of twoweakly interacting impurity atoms in order to expose the effect of their
mutual interaction in the dynamics.

To induce the non-equilibriumdynamics we perform at t=0 a sudden change from =g 0B to either
attractive (section 4.5) or repulsive (section 4.4)finite values of gB . To examine the emergent dynamics wefirst
discuss the time-evolution of the spin polarization (alias contrast) and its spectrum. Consequently we discuss the
dynamical response of the impurities in terms of their single-particle densities and the corresponding two-body
reduced densitymatrix. An effective potential picture for the impurities is constructed in order to provide an
intuitive understanding of the quench dynamics.

4.1. Interpretation of the contrast of two impurities
To examine the quench-induced dynamics of the two spinor bosonic impurities wefirst determine the time-

evolution of the total spin polarization (contrast) ∣ ˆ ( ) ∣ ˆ ( ) ˆ ( )á ñ = á ñ + á ñt S t S tS x y
2 2 which enables us to infer the

dressing of the impurities during the dynamics [18]. Note that ˆ ( ) ˆ ( )á ñ = á = ñ =S t S t 0 0z z since [ ˆ ˆ ] =S H, 0z

and the spin operator in the kth direction (k=x, y, z) is given by ˆ ( ) ˆ ( ) ˆ ( )†
ò s= å Y YS N x x x1 dk I ab a ab

k
b , with sab

k

denoting the Paulimatrices. The contrast for a single impurity has been extensively studied [25, 39, 43, 97] and it
is related to the so-called Ramsey response [18] and therefore the structure factor. The time-dependent overlap
between the interacting and the non-interacting states is given by

∣ ˆ ( ) ∣ ∣ ˜ ∣ ∣ ˜ ∣ ∣ ( )∣ ( )˜ ˜̂á ñ = áY Y ñ º- t S tS e e , 10BI
E t Ht

BI
2 0 i i 0 2

1
20

where ∣Ỹ ñBI
0

is the spatial part of theMBground statewavefunction of a single impurity with energy Ẽ0 when

gBI=0. ˜̂ ˆ ˆ ˆ=H PHP with P̂ being the projector operator to the spin- configuration, and Ĥ denotes the
postquenchHamiltonian (equation (1)). Note also that the contrast is chosen here to take values in the interval
[0, 1]. From equation (10) zero contrast implies that the overlap between the interacting and the non-interacting
states vanishes signifying an orthogonality catastrophe phenomenon [52, 97]. On the other hand, if

Figure 2. (a)Position of the polaronic resonances, ( )D+ gN
B

I , with varying gB forNI=1 andNI=2 bosonic non-interacting and
weakly interacting impurities (see legend). Inset: ( )< D <+ g2 12.5N

B
I for >g 0B . (b)Deformation of the BEC ground state density

measured via ( ) ( ) ( )( ) ( ) ( )dr r r= - x g x g x; ; ; 0B B B B B
1 1 1 with respect to gB forNI=2 and gII=0. (c)Ground state one-body density

of two non-interacting impurities as a function of gB . In all cases the bath consists ofNB=100 bosonswith gBB=0.5.
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∣ ˆ ( ) ∣á ñ =tS 12 then the non-interacting and the interacting states coincide and no quasiparticle is formed.
Therefore only in the case that ∣ ˆ ( ) ∣< á ñ <tS0 12 we can infer the dressing of the impurity and the formation of
a quasiparticle.

When increasing the number of impurity atoms toNI>1, ∣ ˆ ( ) ∣á ñtS 2 ismore complex since additional spin

states contribute to theMBwavefunction (see equation (2)). To understand the interpretation of ∣ ˆ ( ) ∣á ñtS 2

during the dynamics we therefore first discuss it for the case of two impurities. The contrast of two pseudospin-
1/2 bosonic impurities reads

∣ ˆ ( ) ∣ ∣ (∣ ∣ ) (∣ ∣ )∣ ( )á ñ = ñ - ñ + ñ ñt A AS
1

4
1, 0 ; 1, 1 1, 0 ; 1, 1 , 112 2*

where the spatial overlap between two different spin configurations namely ∣ ñS S, z and ∣ ¢ ¢ñS S, z is defined as [80]

(∣ ∣ ) [ ∣ ∣] ∣ ∣ [∣ ∣ ]
( ) ( ) ( )

ˆ ˆ

   
ò

ñ ¢ ¢ñ º á áY ñá ¢ ¢ Y ñ ¢ ¢ñ

= Y Y

-

¢ ¢

 A S S S S S S S S S S S S

x x x x t x x t

, ; , , e , , e ,

d d , ; , ; , 12

z z z BI
Ht

z z
Ht

BI z

N N
S S

B I
S S

B I

0 i i 0

, ,
B I

z z
*

with ( ) ⟨ ∣ ⟨ ∣ ( )⟩
∣∣ ⟨ ∣ ( )⟩ ∣∣Y =

  Y
Y

 

x x t, ;S S
B I x x S S t

S S,
, ,

, 0z

B I
z

z
2 referring to the spatial wavefunction corresponding to the spin

configuration ∣ ñS S, z and ∣Y ñBI
0 being the spatial part of the initial MB state for two impurities. Also,

( )= ¼

x x x, ,

B B
N
B

1 B
and ( )= ¼


x x x, ,

I I
N
I

1 B
refer to the coordinates of each bath and impurity particle,

respectively. In particular in our case we consider two pseudospin-1/2 bosons where ∣ ∣ ∣ñ º ñ Ä ñ1, 1 1 2,

∣ ∣ ∣- ñ º ñ Ä ñ1, 1 1 2, ∣ ∣ ∣ ∣ ∣ñ º ñ Ä ñ + ñ Ä ñ
1, 0

2
1 2 1 2 .The relevant overlaps read (∣ ∣ )ñ - ñA 1, 0 ; 1, 1 =

( ) ( )/ ò Y Y-   *    
 x d x d x x x t x xe d , ; , ; 0E t N N B N I B I

BI
B Ii

1,0
0B B I0 and (∣ ∣ )ñ ñA 1, 0 ; 1, 1 = ò Y

  *d x d xN B N I
1,0

B I

( ) ( )Y
   
x x t x x t, ; , ;

B I B I
1,1 . Recall that a quasiparticle is a free particle that is dressed by the excitations of a

bosonic bath via their mutual interactions. As a consequence, ( ) 
Y x x,BI

B I0 refers to the wavefunction where
no polaron quasiparticle exists since it is the ground state wavefunction of the systemwith =g 0B .

Moreover, ( ) 
Y x x;B I

1,0 and ( ) 
Y x x;B I

1,1 denote the wavefunctions where a single and two impurities
respectively interact with the bosonic gas and therefore describe the formation of a single and two polarons,
respectively. Accordingly, (∣ ∣ )ñ - ñA 1, 0 ; 1, 1 provides the overlap between the state of a single and no
impurities interacting with the bath, while (∣ ∣ )ñ ñA 1, 0 ; 1, 1 is the overlap between a single and two
impurities interacting with the bath.

As a result, ∣ ˆ ( ) ∣á ñ =tS 12 means that (∣ ∣ ) (∣ ∣ )ñ - ñ = ñ ñ = jA A1, 0 ; 1, 1 1, 0 , 1, 1 ei wherej is a phase factor.
The fact that ∣ (∣ ∣ )∣ñ - ñ =A 1, 0 ; 1, 1 1 implies that the spatial state of a single impurity interactingwith the bath
is the same as the non-interacting one, except for a possible phase factor, and therefore a quasiparticle is not
formed.Moreover since also ∣ (∣ ∣ )∣ñ ñ =A 1, 0 , 1, 1 1 it holds that the state of a single pseudospin- interacting
impurity coincides with the state of two pseudospin- impurities interactingwith the bath and as a consequence
with a bare particle due to ∣ (∣ ∣ )∣ñ - ñ =A 1, 0 ; 1, 1 1. Thus, ∣ ˆ ( ) ∣á ñ =tS 12 implies that there is no quasiparticle

formation.On the contrary for ∣ ˆ ( ) ∣á ñ =tS 02 either (∣ ∣ ) (∣ ∣ )ñ - ñ = ñ ñ =A A1, 0 ; 1, 1 1, 0 , 1, 1 0 or
(∣ ∣ ) (∣ ∣ )ñ - ñ = - ñ ñA A1, 0 ; 1, 1 1, 0 , 1, 1* should be satisfied. In the former case we can deduce the occurrence

of an orthogonality catastrophe phenomenon as in the single impurity case while the latter scenario is given by
the destructive interference of the (∣ ∣ )ñ - ñA 1, 0 ; 1, 1 and (∣ ∣ )ñ ñA 1, 0 , 1, 1 termsHowever, for

∣ ˆ ( ) ∣< á ñ <tS0 12 the corresponding overlaps acquire finite values and a quasiparticle can be formed.
Notice also that in the special case of =g 0 and =g 0 (but g↑↑ arbitrary) it can be shown that

(∣ ⟩ ∣ ⟩) ⟨ ˜ ∣ ∣ ˜ ⟩ ( )˜/ /- = Y Y º A S t1, 0 ; 1, 1 e eBI
P HP t E t

BI
0 i i 0

1
0 0 0
^ ^^ , where P0̂ refers to the projection operator to the

spin state ∣ ⟩1, 0 . The latter is exactly the contrast or the structure factor of a single impurity (equation (10)).
Indeed ∣ ∣ ˜ ∣yY ñ = Y ñ Ä ñBI BI I

0 0 0 for =g 0 holds where ∣y ñI
0 is the single-particle ground state of the impurity

while ∣Ỹ ñBI
0

and ∣Y ñBI
0 refer to the spatial part of theMB ground state wavefunction of a single (energy Ẽ0) and two

impurities (energyE0), respectively. Additionally Ĥ is the postquenchHamiltonian given by equation (1).
Consequently, the contrast in this special case acquires the simplified form

∣ ˆ ( ) ∣ ∣ ( ) (∣ ∣ )∣ ( )á ñ = + ñ ñt S t AS
1

4
1, 0 ; 1, 1 . 132

1
2*

Evidently, here ∣ ˆ ( ) ∣á ñtS depends explicitly on the structure factor S1(t) of a single impurity allowing for a direct
interpretation of the dynamical dressing of the two impurities with respect to the single impurity case discussed
in [35]. In the following, = = º  g g g gII and as a consequence =g 0, =g 0 is encountered for gII=0
while the general case of equation (12) applies for the case of gII=0.2 analyzed below.
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4.2. Evolution of the contrast
The dynamics of the two particle contrast ∣ ˆ ( ) ∣á ñtS is presented infigures 3(a)–(c) for both attractive and
repulsive postquench interspecies interactions gB . In particular, ∣ ˆ ( ) ∣á ñtS is shown for either two non-
interacting (figure 3(a)) or interacting (figure 3(b)) impurities andNB=100 aswell as for a few-body bosonic
gas withNB=10 and gII=0 (figure 3(c)). In all cases, six different dynamical regionswith respect to gB can be

identifiedmarked asRI,RII,RIII,RIV, ¢RII and ¢RIII . Focusing on the systemwithNB=100 and gII=0 these
regions correspond to- < g0.2 0.2

B
RI , < g0.2 0.4

B
RII , < g0.4 1

B
RIII , < g1 5

B
RIV ,

- < -
¢ g0.5 0.2

B
RII and- < -

¢ g1 0.5
B
RIII respectively (figure 3(a)). Specifically, within the veryweakly

interacting regionRI the contrast is essentially unperturbed remaining unity in the course of the time-evolution
and therefore there is no quasiparticle formation. For postquench interactions lyingwithinRII or ¢RII the

contrast performs small and constant amplitude oscillations, weakly deviating from ∣ ˆ ( ) ∣á = ñ =tS 0 1
(figure 3(f)). This behavior indicates the generation of two long-lived coherent quasiparticles (see also
section 4.3). Entering the intermediate repulsive interaction regionRIII, ∣ ˆ ( ) ∣á ñtS exhibits large amplitude

( ∣ ˆ ( ) ∣< á ñ <tS0 1)multifrequency temporal oscillations (figure 3(f)). The latter signifies the dynamical
formation of twoBose polaronswhich are coupledwith higher-order excitations of the bosonic bathwhen
compared to regionsRII and ¢RII aswe shall expose in section 4.4.1. For intermediate attractive interactions

(region ¢RIII) ∣ ˆ ( ) ∣á ñtS undergoes large amplitude oscillations taking values in the interval ∣ ˆ ( ) ∣< á ñ <tS0 1

(figure 3(f)). This response of ∣ ˆ ( ) ∣á ñtS again signals quasiparticle formation.However, in addition to this

dynamical dressing the destructive (∣ ˆ ( ) ∣á ñ =tS 0) and the constructive (∣ ˆ ( ) ∣á ñ »tS 1) interference between the
states of a single and twoBose polarons can be seen (see also equation (11) and its interpretation in section 4.1).

For strong repulsive interactions lyingwithinRIV the contrast shows a fastly decaying amplitude at short
evolution times (0<t<2) and subsequently fluctuates around zero (figure 3(f)). This latter behavior of
∣ ˆ ( ) ∣á ñ tS 0 is amanifestation of an orthogonality catastrophe phenomenon of the spontaneously generated
short-lived (0<t<2)Bose polarons. It is a consequence of the spatial phase separation between the impurity
and the bosonic bath (see alsofigure 5(h) and the discussion in section 4.4.1), where the impurity prefers to
reside at the edges of the BECbackground, see alsofigure 2(c). Note that this behavior is also supported by the
effective potential of the impurities, see equation (9).Most importantly this process results in an energy transfer

Figure 3.Time-evolution of the contrast, ∣ ˆ ( ) ∣á ñtS , of two (a)non-interacting (gII=0) and (b)weakly repulsive (gII=0.2) impurities
immersed in a bath ofNB=100 atoms for different interspecies interaction strengths gB . (c)The same as (a) butwhen considering a
few-body bath ofNB=10 bosons. (d) ∣ ˆ ( ) ∣á ñtS forNI=3 non-interacting impurities inside a few-body bath consisting ofNB=10
atoms. (e1), (e2) ∣ ˆ ( ) ∣á ñtS of two non-interacting impurities in a bath ofNB=10 bosons for different gB (see legends). (f)Dynamics of

∣ ˆ ( ) ∣á ñtS for specific postquench interaction strengths (see legend)whenNI=2, gII=0 andNB=100. In all cases the
multicomponent system is harmonically trapped and it is initialized in its ground state with gBB=0.5 andω=1.
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from the impurity to the BEC,which prohibits the revival of the dynamical state of the impurity to its initial one,
implying ∣ ˆ ( ) ∣ á ñtS 1. Such amechanismhas been also identified to occur for the case of a single impurity,
see [35].

The emergence of the different dynamical regions in the evolution of the contrast holds equally when the size
of the bath decreases toNB=10 (figure 3(c)). For such a few-body scenario regionRII, where coherently long-
lived quasiparticles are formed, becomes slightly wider, i.e. < g0.2 0.6

B
RII , compared to theNB=100 case.

Themost notable difference between the few and themany particle bath takes place in the intermediate
interaction regionRIII. The latter, occurs now at < g0.6 1.8

B
RIII , with ∣ ˆ ( ) ∣á ñtS performing large amplitude

multifrequency oscillations implying in turn the formation of highly excited polaronic states. Note that the
amplitude of the oscillations of ∣ ˆ ( ) ∣á ñtS here is larger than in theNB=100 case (figure 3(a)). Additionally, we
observe that ∣ ˆ ( ) ∣á ñtS decreases smoothly as gB increases, which is in sharp contrast to theNB=100 case. Recall
that such a smooth behavior occurring in the few-body scenario has already been identified in our discussion of
the ground state properties and in particular when inspecting the relative distance between the impurities. Also,
the oscillations of ∣ ˆ ( ) ∣á ñtS ( ∣ ˆ ( ) ∣< á ñ <tS0 1) for intermediate attractive interactions (region ¢RIII) being a
consequence of the destructive (∣ ˆ ( ) ∣á ñ =tS 0) and constructive (∣ ˆ ( ) ∣á ñ »tS 1) interference between the states of
a single and twoBose polarons aremuchmore prevalent and regular forNB=10 as compared to theNB=100
case. Concluding, we can infer that the overall phenomenology of the dynamical formation of quasiparticles as
imprinted in the contrast is similar forNB=10 andNB=100.

To test the effect of the number of impurities on the interaction intervals of quasiparticle formationwe also
consider the case ofNI=3 non-interacting, gII=0, bosons immersed in a few-body bath ofNB=10 atoms.
The dynamics of the corresponding contrast for this system following a quench from =g 0B to afinite either

attractive or repulsive gB is illustrated infigure 3(d). As it can be seen, ∣ ˆ ( ) ∣á ñtS shows a similar behavior to the
case of two impurities (figure 3(c)) but the regions offinite contrast become narrower. Particularly, the
intermediate repulsive interaction region here occurs for < g0.5 1.5

B
RIII instead of < g0.6 1.8

B
RIII for

NI=2. Additionally, ∣ ˆ ( ) ∣á ñtS acquires lower values within the regionsRIII and ¢RIII formore impurities.
Moreover, forNI=3within ¢RIII we observe a pronounced dephasing of the contrast which is absent for the
NI=2 case, see figures 3(e1), (e2). As a consequence, we can deduce that the basic characteristics of the regions
of dynamical polaron formation do not significantly change for a larger number of impurities in the regime
NI=NB.

Finally, we discuss ∣ ˆ ( ) ∣á ñtS for weakly interacting impurities. Comparing the temporal evolution of ∣ ˆ ( ) ∣á ñtS
for gII=0.2 (figure 3(b)) to the one for gII=0 (figure 3(a))we observe that the extent of the above-described
dynamical regions (RI,RII,RIII,RIV, ¢RII and ¢RIII) can be tuned viagII. For instance, regionRII occurs at

< g0.2 0.4
B
RII for gII=0.2 instead of < g0.2 0.5

B
RII when gII=0, while regionRIII takes place at

< g0.4 1.3
B
RIII if gII=0.2 andwithin < g0.5 1

B
RIII in the non-interacting scenario. Also regionRIVwhere

the orthogonality catastrophe takes place is shifted to slightly larger interactions for gII=0.2 compared to the
gII=0 case. Interestingly we observe that the contrast withinRIII and ¢RIII exhibits a decaying tendency for long
evolution times t>50 in the presence of weak impurity–impurity interactions, a behaviorwhich is absent when
gII=0.

4.3. Spectrumof the contrast
To quantify the excitation spectrumof the impurity we calculate the spectrumof the contrast, namely

( ) ∣ ˆ ( ) ∣ ( )
ˆ ( )
ˆ ( )òw

p
= á ñw

¥ - á ñ

á ñA t tS
1

d e e . 14f
t

0

i i tan
f

Sx t

Sy t
1

Recall that at low impurity densities andweak interspecies interactions it has been shown that ∣ ˆ ( ) ∣á ñtS is
proportional to the so-called spectral function of quasiparticles [18, 97, 98]. Figure 4 presentsA(ωf) in the case of
a single and two either non-interacting (gII=0) orweakly interacting (gII=0.2) impurities whenNB=100 for
different interspecies couplings of either sign. Evidently, for weak gB belonging either to regionRIIwith

=g 0.25B (figure 4(a)) or ¢RII with = -g 0.25B (figure 4(d))we observe a single peak inA(ωf) located at
ωf≈4.27 andωf≈−4.39 respectively. This single peak occurs independently of the number of impurities and
their intraspecies interactions. Therefore, this peak at small = g 0.25B corresponds to the long-time evolution
of awell-defined repulsive or attractive Bose polaron respectively.Within regionRIII e.g. at =g 0.5B two
dominant peaks occur inA(ωf) (figure 4(b)) at frequenciesωf≈8.42 andωf≈8.79 for both theNI=1 and
NI=2 cases. Accordingly, these two peaks suggest the formation of a quasiparticle dressed, for higher
frequencies, by higher-order excitations of the BECbackground.

Entering the strongly interspecies repulsive regionRIV amultitude of frequencies are imprinted in the
impurity’s excitation spectrum e.g. at =g 1.5B , seefigure 4(c). The number of the emerging frequencies is
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larger for the two compared to the single impurity but does not significantly depend on gII forNI=2. For
instance, whenNI=1mainly three predominant peaks centered atωf≈23.75,ωf≈25.13, andωf≈26.26
appear inA(ωf)whilst forNI=2 and gII=0 five dominantly contributing frequencies located atωf≈22.31,
ωf≈23.81,ωf≈25.2,ωf≈26.39 andωf≈27.52 occur. These frequency peaks correspond to even higher
excited states of the quasiparticle than the oneswithin the regionRIII.We note that for values of gB deeper inRIV

a variety of low amplitude but large valued frequency peaks occur inA(ωf). This fact indicates that the impurities
tend to populate amultitude of states indicating themanifestation of the polaron orthogonality catastrophe as
discussed in [35, 75] (results not shown here).

Turning to intermediate attractive interactions lyingwithin ¢RIII such as = -g 0.5B a single frequency peak

can be seen inA(ωf)whose frequency is shifted towardsmore negative values forNI=2 compared toNI=1
and also for increasing gII (figure 4(e)). Specifically, whenNI=1 the aforementioned peak occurs atωf≈−8.79
while forNI=2 and gII=0 [gII=0.2] it lies atωf≈−8.92 [ωf≈−8.86]. This peak indicates the generation of
an attractive Bose polaron. A further increase of the attraction, e.g. = -g 1B , leads to the appearance of three

quasiparticle peaks inA(ωf)whenNI=2 and either gII=0 or gII=0.2, centered atωf≈−18.1,ωf≈−18.35
andωf≈−18.98, but only one forNI=1withωf≈−17.91, as shown infigure 4(f). This change ofA(ωf) for
increasingNIwithin the regions ¢RII and ¢RIII demonstrates the prominent role of induced interactions for
attractive interspecies ones.More specifically forNI=2,A(ωf) possesses additional quasiparticle peaks as
compared to theNI=1 case. Indeed, according to equation (11)we can predict at least two peaks at positions
w = D = -+

= 17.96f
N 1I and w = D - D = -+

=
+

=2 18.98f
N N2 1I I explaining two of the above identified peaks.

The third dominant peak atωf=18.35 appearing in the spectrum is attributed to the occupation of an excited
state with Sz=1 (see also equation (2)) according to equation (11). Recall that the ∣ ñ1, 1 spin state in the time-
evolvedwavefunction (equation (2)) corresponds to the two polaron casewhile ∣ ñ1, 0 contains only one polaron
and the ∣ - ñ1, 1 describes impurities that do not interact with the bath and thus no polarons. The
aforementioned population of the additional polaronic states forNI=2 is a clear evidence of impurity–
impurity induced interactions.

The overall behavior of the excitation spectrum ( )w A g;f B forNI=2 and gII=0 is shown infigure 4(g)
with varying gB . Evidently, the position of the dominant quasiparticle peak in terms ofωf increases almost

linearly for larger gB . This behavior essentially reflects the linear increase of the energy of the initial state ∣ ( )Y ñ0

(equation (2)) directly after the quench.Moreover, comparing the position of the dominant quasiparticle peak
withD+

=N 1I reveals that for >g 0.5B , while the latter saturates, the former increases and additional peaks appear

in the spectrum ( )w A g;f B . These peaks correspond to excited states of the system and already for >g 1B the

ground states corresponding toD+
NI cease to be populated during the dynamics. In a similar fashion, such

additional quasiparticle peaks occur also for attractive interactions, see figure 4(g) for < -g 0.5B . In this case

the additional quasiparticle peaks stem from the induced interactions resulting in the presence of a peak at
w = D - D ¹ D+

=
+

=
+

=2f
N N N2 1 1I I I and other oneswhich correspond to the occupation of higher-lying excited

Figure 4.Excitation spectrum,A(ωf), of a single, two non-interacting, and two interacting bosonic impurities (see legend) for different
interspecies interaction strengths gBI. Note that for better visibilityA(ωf) forNI=2 is scaled by a factor of twowhen compared to the
NI=1 case. The dashed line in figure 4(f) indicates the position of the two polaron resonance i.e. D - D = -+

=
+

=2 18.98N N2 1I I . (g)A
(ωf) of two non-interacting impurities with varying gBI. The dashed lines indicate the expected position of the polaronic resonances

( )D+ gN
B

I (see legend). The harmonically trapped bosonicmixture is initialized in its ground state and consists ofNB=100 atomswith
gBB=0.5 and eitherNI=1 orNI=2 impurities.
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polaronic states with Sz=1(equation (2)). Note that such an almost linear behavior of the polaronic spectrum is
reminiscent of the corresponding three-dimensional scenario but away from the Feshbach resonance regime.
The latter corresponds in one-dimension to an interspecies Tonks–Girardeau interaction regimewhich is not
addressed in the present work.We remark that in one-dimension there is nomolecular bound state occurring
for repulsive interactions.

Summarizing, we can infer that the quasiparticle excitation spectrumdepends strongly on the value of the
postquench interspecies interaction strength and also on the number of impurities outside theweakly attractive
and repulsive coupling regimes [98]. However, this behavior is also slightly alteredwhen going from twonon-
interacting to twoweakly interacting impurities. For a relevant discussion on the lifetime of the above-described
spectral features we refer the interested reader to [99]. It is also important tomention that in theweakly
interacting impurity-BEC regimewhere the contrast is finite in the course of the evolution the spectral function
A(ωf) corresponds to the injection spectrum in the framework of the reverse rf spectroscopy [2, 26].

4.4.Quench to repulsive interactions
Belowwe further analyze the dynamical response of themulticomponent system, and especially of the
impurities, following an interspecies interaction quench from =g 0B to >g 0B within the above identified
dynamical regions of the contrast. In particular, we explore the dynamics of the systemon both the single- and
the two-body level and further develop an effective potential picture to provide amore concrete interpretation of
the emergent phenomena.Wemainly focus on the nonequilibriumdynamics of twonon-interacting impurities
(gII=0) and subsequently discuss whether possible alterationsmight occur for weakly interacting (gII=0.2)
impurities. Also, in the following, only the temporal-evolution of the pseudospin-part of the impurities is
discussed since the pseudospin- component does not interact with the bosonicmedium.

4.4.1. Density evolution and effective potential
To visualize the spatially resolved dynamics of the systemon the single-particle level wefirst inspect the time-
evolution of theσ-species single-particle density ( )( )rs x t;1 (equation (6)) illustrated infigure 5. Forweak
postquench interspecies repulsions lyingwithin the regionRII e.g. =g 0.25B , such that <g gB BB, the

impurities (see figure 5(b)) exhibit a breathingmotion of frequency w » 1.44I
br inside the bosonicmedium

[73, 74].Moreover, at initial evolution times (t<60) the amplitude of the breathing is almost constant whilst
later on (t>60) it shows a slightly decaying tendency, see for instance the smaller height of the density peak at
t=70 compared to t=20 infigure 5(b). This decaying amplitude can be attributed to the build up of impurity–
impurity correlations in the course of the evolution [42] due to the presence of induced interactions discussed
later on, see alsofigure 7(a). The breathingmotion of the impurities is directly captured by the periodic
contraction and expansion in the shape of the instantaneous density profiles of ( )( )r x t;1 depicted infigure 6(b).
On the other hand, the bosonic gas remains essentially unperturbed (figure 5(a)) throughout the dynamics,
showing only tiny distortions from its original Thomas–Fermi cloud due to its interactionwith the impurity.

An intuitive understanding of the observed dynamics of the impurities is providedwith the aid of an effective
potential picture. Indeed, the impurity-BEC interactions can be taken into account, to a very good
approximation, by employing amodified external potential for the impurities. The latter corresponds to the

Figure 5.Time-evolution of the single-particle density, ( )( )rs x t;1 , of (a), (d), (g) the bosonic bath (σ=B) and (b), (e), (h) the
pseudospin-part (s = ) of the two non-interacting impurities for different postquench interspecies repulsions gB (see legend).
Evolution of ( )( )r x t;1 for twoweakly interacting, gII=0.2, impurities following a quench to (c) =g 0.25B , (f) =g 0.5B and (i)

=g 1.5B . The Bose–Bosemixture consists ofNB=100 atoms andNI=2 impurities with gBB=0.5 and it is trapped in a harmonic
oscillator potential.
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time-averaged effective potential created by the harmonic oscillator and the density of the bosonic gas
[35, 51, 73, 75]namely

¯ ( ) ( ) ( )( )òw r= +V x m x
g

T
t x t

1

2
d ; . 15I

BI
T

B
eff 2 2

0

1

The averaging process aims to eliminate the emergent veryweak distortions on the instantaneous density of the
BEC ( )( )r x t;B

1 , and it is performed herein overT=100. These distortions being a consequence of themotion of

the impurities within the BEC are imprinted as a slow and veryweak amplitude breathingmotion of ( )( )r x t;B
1

with w » 1.82B
br , hardly visible infigure 5(a). They are canceled out in our case forT>20.Note that w < 2B

br is
attributed to the repulsive character of the BECbackgroundwhich negatively shifts its breathing frequency from
the corresponding non-interacting value [100]. At =g 0.25B this ¯ ( )V xI

eff takes the formof amodified harmonic
oscillator potential illustrated infigure 6(a) together with the densities of itsfirst few single-particle eigenstates.
Furthermore, assuming the Thomas–Fermi approximation for ( )( )r x t,B

1 the effective trapping frequency of the

impurities corresponds to w w= - 1
g

geff
B

BB

. Therefore their expected effective breathing frequency would be

w w= »2 1.41I
br
eff,

eff which is indeed in a very good agreementwith the numerically obtained w I
br. The

discrepancy between the prediction of the effective potential and theMB approach is attributed to the
approximate character of the effective potential which does not account for possible correlation induced shifts to
the breathing frequency.Moreover, in the present case the impurities which undergo a breathingmotionwithin
¯ ( )V xI

eff reside predominantly in its energetically lowest-lying state E1, seefigure 6(a). It is also important to
mention that this effective potential approximation is adequate only forweak interspecies interactionswhere the
impurity-BEC entanglement is small [35, 75]. Note also that the inclusion of the Thomas–Fermi approximation
in the effective potential of equation (15) can not adequately describe the impurities dynamics when they reach
the edges of the bosonic cloud, see [36] formore details. However in this case ( )( )r x t;1 lies within ( )( )r x t;B

1

throughout the evolution indicating themiscible character of the dynamics for <g gB BB [35, 65]. Furthermore,
for theseweak postquench interspecies repulsions a similar to the above-described dynamics takes place also for
twoweakly (gII=0.2) repulsively interacting impurities as shown infigure 5(c). The impurities undergo a
breathingmotionwithin the bosonicmedium in the course of the time-evolution exhibiting a slightly larger
oscillation frequency than for the gII=0 case butwith the same amplitude (hardly visible by comparing
figures 5(b) and (c)).

For larger postquench interaction strengths =g 0.5B (regionRIII), i.e. close to the intraspecies interaction of
the bosonic bath gBB, the impurities show amore complex dynamics compared to theweak interspecies
repulsive case (figure 5(e)). Also, the BECmediumperforms a larger amplitude breathingmotion (figure 5(d))

Figure 6.Time-averaged effective potential, ¯ ( )V xI
eff , overT=100 (equation (15)) of the impurities for (a)weak =g 0.25B , (c)

intermediate =g 0.5B and (e) strong =g 1.5B interspecies repulsions. The densities of the single-particle eigenstates and

eigenenergies Ei, i=1, 2, ...of ¯ ( )V xI
eff are also shown. Profiles of the single-particle density of the two non-interacting impurities at

distinct time-instants of the evolution following an interspecies interaction quench to (b) =g 0.25B , (d) =g 0.5B and (f) =g 1.5B

obtainedwithin theMB approach.
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compared to the =g 0.25B scenario but againwith a frequency w » 1.82B
br . Focusing on the impuritiesmotion,

we observe that at short evolution times (0<t<5) after the quench ( )( )r x t;1 expands and then splits into two

counterpropagating density branches with finitemomenta that travel towards the edges of the bosonic cloud, see
figure 5(e) and the profiles shown in figure 6(d). The appearance of these counterpropagating density branches is
a consequence of the interaction quenchwhich imports energy into the system. Reaching the edges of ( )( )r x t;B

1

the density humps of ( )( )r x t;1 are reflected back towards the trap center (x=0)where they collide around
t≈15 forming a single density peak (figure 6(d)). The aforementioned impuritymotion repeats itself in a
periodicmanner for all evolution times (figure 5(e)). Here, the underlying time-averaged effective potential
(equation (15)) corresponds to a highly deformed harmonic oscillator possessing an almost square-well like
profile as illustrated infigure 6(c).Moreover, a direct comparison of the densities of the lower-lying single-
particle eigenstates of ¯ ( )V xI

eff (figure 6(c))with the density profile snapshots of ( )( )r x t;1 of theMBdynamics

(figure 6(d)) reveals that the impurities predominantly reside in a superposition of the two lower-lying excited
states (E1 andE2) of ¯ ( )V xI

eff . Additionally in the case of twoweakly repulsively interacting impurities, shown in
figure 5(f), the impurities’motion remains qualitatively the same.However, due to the inclusion of intraspecies
repulsion the impurities possess a slightly larger overall oscillation frequency and the collisional patterns at the
trap center appear to bemodified as compared to the gII=0 case.

Turning to strong postquench repulsions, i.e. =g g1.5B BB which belongs toRIV, the dynamical
response of the impurities is greatly altered and the bosonic gas exhibits an enhanced breathing dynamics as
compared to theweak and intermediate interspecies repulsions discussed above. Initially ( )( )r = x t; 01 consists

of a density hump located at the trap center which, following the interaction quench, breaks into two density
fragments, as illustrated infigure 5(h), each of them exhibiting amultihump structure (see alsofigure 6(f)). Note
that the density hump at the trap center remains the dominant contribution of ( )( )r x t;1 until it eventually fades

out for t>5, see figure 5(h). Thismultihump structure building upon ( )( )r x t;1 is clearly captured in the

instantaneous density profiles depicted infigure 6(f). Remarkably, the emergent impurity density fragments that
are symmetrically placed around the trap center (x=0)perform a damped oscillatorymotion in time around
the edges of the Thomas–Fermi radius of the bosonic gas, see in particular figures 5(g), (h).

The emergent dynamics of the impurities can also be interpreted to lowest order approximation (i.e.
excluding correlation effects) by invoking the corresponding effective potential which for these strong
interspecies repulsions has the formof the double-well potential shown infigure 6(e). Comparing the shape of
the densities of the eigenstates of ¯ ( )V xI

eff (figure 6(e))with the density profiles ( )( )r x t;1 (figure 6(f)) obtained
within theMBdynamics simulations it becomes evident that the impurities reside in a superposition of higher-
lying states of the effective potential. Furthermore the double-well structure of ¯ ( )V xI

eff suggests that each of the
observed density fragments of the impurities is essentially trapped in each of the corresponding two sites of
¯ ( )V xI

eff . Of course, as alreadymentioned above, for these strong interactions ¯ ( )V xI
eff provides only a crude

description of the impurity dynamics since it does not account for both intra- and interspecies correlations that
occur during theMBdynamics. However ¯ ( )V xI

eff enables the following intuitive picture for the impurity

dynamics. Namely, the damped oscillations of ( )( )r x t;1 designate that the pseudospin- impurities at initial

times are in a superposition state of amultitude of highly excited states (see e.g. figure 6(f) at t=8)while for later
times they reside in a superposition of lower excited states (see e.g. figure 6(f) at t=15).We should also remark
that a similar overall dynamical behavior on the single-particle level has been reported in the case of a single
spinor impurity and has been also related to an enhanced energy transfer from the impurity to the bosonic bath
[35, 68, 69, 75]. Such an energy transfer process takes place also in the present case (results not shownhere).
Another important feature of the observed dynamical response of the impurities is the fact that they are not
significantly affected by the presence of weak intraspecies interactions. This can be seen by inspecting figure 5(i)
which shows the time-evolution of ( )( )r x t;1 for gII=0.2.Here, themost noticeable difference when compared

to the gII=0 scenario is that the splitting of ( )( )r x t;1 into two branches occurs at shorter time scales (compare

figures 5(h), (i)) due to the additional intraspecies repulsion.

4.4.2. Dynamics of the two-body reduced densitymatrix
To investigate the development of impurity–impurity correlations during the quench dynamics we next resort
to the time-evolution of the pseudospin- impurity intraspecies two-body reducedmatrix ( )( )r x x t, ;2

1 2

(equation (7)). Recall that ( )( )r x x t, ;2
1 2 provides the probability offinding at time t a pseudospin-boson at

location x1 and a second one at x2 [65, 66].Most importantly, it allows us tomonitor the two-body spatially
resolved dynamics of the impurities and infer whether theymove independently or correlate with each other
[8, 10, 42].

Figure 7 shows ( )( )r x x t, ;2
1 2 at specific time-instants of the evolution of two non-interacting (figures 7

(a1)–(b6) and (d1)–(d6)) aswell as weakly interacting (figures 7(c1)–(c6)) impurities for different postquench
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interspecies repulsions. To reveal the role of induced impurity–impurity correlations via the bathwemainly
focus on two initially non-interacting impurities where ( ) ( ) ( )( ) ( ) ( )r r r= = = =  x x t x t x t, ; 0 , 0 , 0 22

1 2
1

1
1

2

since gII=0 and initially =g 0B . As already discussed in section 4.4.1 for weak interspecies postquench
repulsions, namely =g 0.25B (regionRII), the impurities perform a breathingmotion on the single-particle
level (figure 5(b)) exhibiting a decaying amplitude for large evolution times. Accordingly, inspecting

( )( )r x x t, ;2
1 2 (figures 7(a1)–(a6))we observe that the impurities are likely to reside together close to the trap

center since ( )( )r - < < - < < x x t2 2, 2 2;2
1 2 ismainly populated throughout the evolution. In particular, at

initial times ( )( )r - < < - < < x x t2 2, 2 2;2
1 2 shows aGaussian-like distributionwhich contracts (figure 7

(a2)) and expands (figures 7(a3), (a4)) during the dynamics as a consequence of the aforementioned breathing
motion.Deeper in the evolution ( )( )r x t;1 decays and ( )( )r x x t, ;2

1 2 is deformed along its diagonal (figures 7(a4),
(a6)) or its anti-diagonal (figure 7(a5)) indicating that the impurities tend to be slightly apart or at the same
location respectively. This is indicative of the admittedly weak induced interactions as the breathingmode along
the anti-diagonal of ( )( )r x x t, ;2

1 2 (relative coordinate breathingmode) does not possess exactly the same

frequency as the breathing along the diagonal (center-of-mass breathingmode).
For larger interspecies repulsions e.g. for =g 0.5B (regionRIII) the two-body dynamics of the impurities is

significantly altered, see figures 7(b1)–(b6). At the initial stages of the dynamics the impurities reside together in
the vicinity of the trap center as ( )( )r - < < - < < x x t3 3, 3 3;2

1 2 is predominantly populated.However for

later times two different correlation patterns appear in ( )( )r x x t, ;2
1 2 in a periodicmanner. Recall that for these

interactions ( )( )r x t;1 splits into two counterpropagating density branches traveling towards the edges of the

bosonic bath and then are reflected back to the trap center where they collide (figure 5(e)). Consequently, when
the two density fragments appear in ( )( )r x t;1 the impurities reside in two different two-body configurations

(figures 7(b2), (b4) and (b6)). Namely the bosonic impurities either lie together at a certain density branch (see the
diagonal elements of ( ))( )r x x t, ;2

1 2 or they remain spatially separatedwith one of them residing in the left and

the other in the right density branch (see the anti-diagonal elements of ( )( )r x x t, ;2
1 2 ).Moreover, during their

collision at x=0 the impurities are very close to each other as it is evident by the enhanced two-body probability
in the neighborhood of x1=x2=0 (figures 7(b3), (b5)). The dynamics of twoweakly repulsive (gII=0.2)
impurities shows similar two-body correlation patterns to the non-interacting ones, as it can be seen by
comparing figures 7 (b1)–(b6) to (c1)–(c6). This behavior complements the similarities already found at the

Figure 7.Two-body reduced densitymatrix, ( )( )r x x t, ;2
1 2 , between the two pseudospin-non-interacting (gII=0) bosonic

impurities at different time instants of theMB evolution (see legend) following an interspecies interaction quench to (a1)–(a6)
=g 0.25B , (b1)–(b6) =g 0.5B and (d1)–(d6) =g 1.5B . (c1)–(c6)The same as in (b1)–(b6) but for twoweakly interacting gII=0.2

impurities. The harmonically trapped bosonicmixture is composed byNB=100 atomswith gBB=0.5 andNI=2 impurities and it
is initialized in its corresponding ground state configuration.
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single-particle level (see section 4.4.1). Themajor difference on the two-body level between the gII=0.2 and
gII=0 scenario is that in the former case ( )( )r x x t, ;2

1 2 ismore elongated along its anti-diagonal when the

impurities collide at x=0 (figures 7(c1), (c3)). Therefore weakly interacting impurities tend to be further apart
compared to the gII=0 case, a result that reflects their direct repulsion.Other differences observed at the same
time-instant in ( )( )r x x t, ;2

1 2 between the interacting and the non-interacting cases are due to the repulsive s-

wave interaction that directly competes with the attractive induced interactions emanating in the system. For
instance, shortly after a collision point e.g. at t=55, shown infigures 7(b5) and (c5), we observe that due to the
repulsive s-wave interactions the attractive contribution between the impurities, see the diagonal of

( )( )r - < < - < < x x t2 2, 2 2;2
1 2 infigure 7(b5) disappears (figure 7(c5)).

Turning to very strong repulsions, e.g. for =g 1.5B lying in regionRIV, the correlation patterns of the two
non-interacting impurities (figures 7(d1)–(d6)) show completely different characteristics compared to the

 g gB BB regime.Note here that in the dynamics of ( )( )r x t;1 the initially formed density humpbreaks into two

density fragments (figure 5(h)) possessing amultihump shape (see alsofigure 6(f)). Subsequently, the fragments
lying symmetrically with respect to x=0 perform a damped oscillatorymotion in time residing around the
edges of the Thomas–Fermi radius of the bosonic gas. The corresponding two-body reduced densitymatrix
shows a pronounced probability peak around x1=x2=0 (figure 7(d1)) indicating that at the initial stages of the
dynamics the impurities aremainly placed together in this location. As time evolves, the impurities
predominantlymove as a pair towards the edge of the Thomas–Fermi background, see in particular the diagonal
of ( )( )r x x t, ;2

1 2 infigures 7(d2), (d3), and simultaneously they start to exhibit a delocalized behavior as can be

deduced by the small values of the off-diagonal elements of ( )( )r ¹ x x x t, ;2
1 2 1 . Entering deeper in the evolution

the aforementioned delocalization of the impurities becomesmore enhanced since ( )( )r x x t, ;2
1 2 disperses as

illustrated infigures 7(d4)–(d6). This dispersive behavior of ( )( )r x x t, ;2
1 2 is inherently related to themultihump

structure of ( )( )r x t;1 and suggests from a two-body perspective the involvement of several excited states during

the impurity dynamics. It is alsoworthmentioning that at specific time instants the diagonal of ( )( )r x x t, ;2
1 2 is

predominantly populated (figures 7(d2), (d3), (d5))which is indicative of the presence of induced interactions.

4.4.3. Two-body dynamics within the effective potential picture
To further expose the necessity of taking into account the intra- and the interspecies correlations of the system in
order to accurately describe theMBdynamics of the impurities we next solve the time-dependent Schrödinger
equation that governs the system’s dynamics relying on the previously introduced effective potential picture
(equation (15)) via exact diagonalization6. Thus ourmain aimhere is to test the validity of ¯ ( )V xI

eff at least to
qualitatively capture the basic features of the emergent non-equilibriumdynamics of the two impurities.We
emphasize again that V̄I

eff does not include any interspecies correlation effects that arise in the course of the
temporal-evolution of the impurities.Within this approximation the effectiveHamiltonian that captures the
quench-induced dynamics of the impurities reads

⎛
⎝⎜

⎞
⎠⎟ˆ ( ) ¯ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )† † †

ò ò= Y - + Y + Y Y Y Y      


H x x
m x

V x g x x x x xd
2

d

d
d , 16I

eff
2 2

2
eff

where ˆ ( )Y x is the bosonic field-operator of the pseudospin- impurity and g denotes the intraspecies
interactions between the two pseudospin- impurity atoms. Recall that the intercomponent contact interaction
of strength gB and the intraspecies interaction between the bath atoms are inherently embedded into V̄I

eff

(equation (15)). In particular, within V̄I
eff we account for the correlated Thomas–Fermi profile of the BEC since

( )( )r x t;B
1 is determined from theMB approach. Below, we exemplarily study the dynamics of twonon-

interacting impurities and therefore we set =g 0 in equation (16).Moreover, in order to trigger the non-
equilibriumdynamics we consider an interspecies interaction quench from =g 0B (t=0) to a finite repulsive

value of gB . Such a sudden change is essentially taken into account via a deformation of V̄I
eff (equation (15)).

The corresponding instantaneous two-body reduced densitymatrix of the impurities withinHeff is depicted
infigure 8 for distinct values of gB . Focusing onweak postquench interactions, e.g. =g 0.25B , we observe that
at the initial times the two-body dynamics of the impurities is adequately describedwithinHeff (compare
figures 7(a1)–(a3) tofigures 8(a1)–(a3)). Indeed, in this time-interval only someminor deviations between the
heights of the peaks of ( )( )r x x t, ;2

1 2 obtainedwithin theMB and theHeff approach are observed. However, for

longer timesHeff (figures 8(a4)–(a6)) fails to capture the correct shape of ( )( )r x x t, ;2
1 2 andmore precisely its

deformations occurring along its diagonal or anti-diagonal (see figures 8(a4)–(a6))which stem from the build up
of higher-order correlations during the dynamics.

6
Notice that the exact diagonalization simulations are performedwithin the two-body number state basis constructed by the single-particle

states of a sineDVR consisting of 600 grid points, see also appendix.
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Increasing the repulsion such that =g 0.5B , deviations between the effective potential approximation and

the correlated approach becomemore severe. For instance, at the initial times the sharp two-body probability
peak of ( )( )r x x t, ;2

1 2 in the vicinity of x1=x2=0 arising in theMBdynamics (figure 7(b1)) becomes smoother

withinHeff (figure 8(b1)) although the overall shape of ( )( )r x x t, ;2
1 2 remains qualitatively similar.Moreover, the

observed elongations along the diagonal of ( )( )r x x t, ;2
1 2 exhibited due to the presence of correlations are not

captured in the effective picture, e.g. comparefigures 7(b3), (b5)withfigures 8(b3), (b5). Remarkably, the two-
body superposition identified in ( )( )r x x t, ;2

1 2 of two different two-body configurations occurring at specific

time-instants is also predicted at least qualitatively viaHeff, seefigures 8 (b2), (b4) and (b6).We remark that the
differences in the patterns of ( )( )r x x t, ;2

1 2 betweenHeff and the correlated approach are evenmore pronounced

when gII=0.2 (results not shown).
Strikingly for strongly repulsive interactions, =g 1.5B ,Heff completely fails to capture the two-body

dynamics of the impurities. This fact can be directly inferred by comparing ( )( )r x x t, ;2
1 2 within the two

approaches, see figures 7(c1)–(c6) andfigures 8(c1)–(c6). Even at the initial stages of the dynamics the effective
potential cannot adequately reproduce the correct shape of ( )( )r x x t, ;2

1 2 , comparefigure 8(c1)withfigure 7(d1).
Note, for instance, the absence of the central two-body probability peak in the region−2<x1, x2<2within
Heff which demonstrates the correlated character of the dynamics.More precisely, ( )( )r x x t, ;2

1 2 obtained

viaHeff shows predominantly the development of two different two-body configurations. Thefirst pattern
suggests that the impurities either reside together at the same edge of the BECbackground or each one is located
at a distinct edge of the Thomas–Fermi profile, see e.g.figures 8(c1), (c5). However, at different time-instants

( )( )r x x t, ;2
1 2 indicates that the impurities lie in the vicinity of the trap center as illustrated e.g. infigures 8(c2),

(c4) and (c6), an event that never occurs for t>5 in theMBdynamics (see figure 5(h)). It is alsoworth
mentioning that the observed dispersive character of ( )( )r x x t, ;2

1 2 in theMBdynamics (see e.g.figures 7
(d4)–(d6)) is a pure correlation effect and a consequence of the participation of amultitude of excited states in the
impurity dynamics which is never capturedwithinHeff.

4.5.Quench to attractive interactions
Nextwe discuss the dynamical behavior of both the BECmedium and the bosonic impurities on both the one-
and the two-body level after an interspecies interaction quench from =g 0B to the attractive regime of <g 0B .

To explain basic characteristics of the dynamics of the impurities an effective potential picture is also employed.
As in the previous sectionwefirst examine the emergent time-evolution of two non-interacting impurities
(gII=0) and then compare our findings to that of twoweakly interacting (gII=0.2) ones.

Figure 8. Snapshots of the two-body reduced densitymatrix, ( )( )r x x t, ;2
1 2 , of the twopseudospin-non-interacting (gII=0) bosonic

impurities within the effective potential picture when considering an interspecies interaction quench to (a1)–(a6) =g 0.25B , (b1)–
(b6) =g 0.5B and (c1)–(c6) =g 1.5B . The harmonically trapped bosonicmixture consists ofNB=100 atomswith gBB=0.5 and
NI=2 impurities and it is prepared in its corresponding ground state configuration.
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4.5.1. Single-particle dynamics and effective potential
To investigate the spatially resolved dynamics of themulticomponent system after an interaction quench from

=g 0B to <g 0B , wefirst analyze the spatio-temporal evolution of theσ-species single-particle density

( )( )rs x t;1 . The dynamical response of ( )( )rs x t;1 triggered by the quench is presented infigure 9 for postquench
interspecies attractions = -g 0.5B (figures 9(a)–(c)) and = -g 1B (figures 9(d)–(f)).

Inspecting the dynamics of twonon-interacting impurities at = -g 0.5B (region ¢RIII), shown in

figures 9(a), (b), we deduce that ( )( )r x t;1 undergoes a breathingmotion inside ( )( )r x t;B
1 characterized by a

predominant frequency w » 2.76br
I and a secondary one w¢ » 2.88I

br thus producing a beating pattern. These
two distinct frequencies stem from the center-of-mass and relative coordinate breathingmodes of the
impurities, whose existence originates from the presence of attractive induced interactions in the system.We
remark that the breathing frequency of the center-of-mass can be estimated in terms of the corresponding
effective potential of the impurities, see also equation (17). In particular for = -g 0.5B , w = »2 2.06 2.87I

br

(see also the comment in7 )which is in very good agreement with w¢Ibr. The relevant contraction of ( )( )r x t;1 can

be inferred by its increasing amplitude that takes place from the very early stages of the non-equilibrium
dynamics (figure 10(b)). The beating pattern can be readily identified e.g. by comparing themaximumheight of

( )( )r x t;1 during its contraction at initial and later stages of the dynamics, see e.g. ( )( )r x t;1 at t=10 and t=40
infigure 9(b).Moreover, as a consequence of themotion of the impurity and the relatively weak interspecies
attraction, i.e. = -g 0.5B , the Thomas–Fermi cloud of the bosonic gas becomes slightly distorted. In particular,

a low amplitude density hump is imprinted on ( )( )r x t;B
1 exactly at the position of ( )( )r x t;1 as shown by the

white colored region in figure 9(a) in the vicinity of x=0 [75]. An almost similar effect to the above-mentioned
breathing dynamics is present also for the case of twoweakly interacting impurities (figure 9(c)). Here, the

Figure 9.Evolution of ( )( )rs x t;1 of (a), (d) the bosonic gas (σ=B), (b), (e) the pseudospin-part (s = ) of the two non-interacting
impurities, and that of (c), (f) twoweakly interacting (gII=0.2) impurities for varying attractive postquench interspecies interaction
strengths gB . In particular, in (a)–(c) = -g 0.5B and in (d)–(f) = -g 1B . In all cases, the harmonically trapped bosonicmixture
consists ofNB=100 bosons andNI=2 impurities with gBB=0.5 and it is prepared in its corresponding ground state for =g 0B .

Figure 10.Time-averaged effective potential, ¯ ( )V xI
eff , overT=100 (equation (15)) of the impurities for interspecies attractions

= -g 0.5B . The corresponding densities of the single-particle eigenstates and eigenenergies Ei, i=1, 2, ...of ¯ ( )V xI
eff are also

depicted. Instantaneous single-particle density profiles of the two non-interacting impurities for an interspecies interaction quench to
= -g 0.5B within theMB approach.

7
Notice here that the time-resolved formof the effective potential ( ) ( ) ∣ ∣ ( )( )r= -V x t V x g x t, ;I BI B

eff 1 corresponds to a deformed
attractive harmonic oscillator potential exhibiting a faint additional dip around x≈0 resulting from the appearance of the density humpof

( )( )r x t;B
1 [75]. However in the averaged formof the effective potential this density dip contributes just as a shift of the frequency of the

resulting parabolic potential. As an example at = -g 0.5B the effective trapping frequency w » 2.06eff within ¯ ( )V xI
eff while w = 2eff

within ( )=V x t, 0I
eff .
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secondary frequencymanifests itself at later evolution times resulting in turn in a slower beating of ( )( )r x t;1

compared to the gII=0 scenario (hardly visible infigure 9(c)). This delayed occurrence is attributed to the
presence of intraspecies repulsionwhich competes with the attractive induced interactions.

For a larger negatively valued interspecies coupling, e.g. for gBI=−1within region ¢RIII , ( )( )r x t;1 becomes

more spatially localized and again performs a decaying amplitude breathingmotion, the so-called beating
identified above, butwith a largermajor frequency, w » 3.2I

br , compared to the = -g 0.5B case (figure 9(e)).
Notice that the observed beatingmotion of the impurities persists while beingmore dramatic for this stronger
attraction (comparefigures 9(b) and (e)). This enhanced attenuation of the breathing amplitude together with
the strong localization of the impurities is a direct effect of the dominant presence of interspecies attractions
between the impurity and the bath, see also [75]. Also, due to the stronger gB and the increased spatial

localization of ( )( )r x t;1 , the density humpbuilding upon ( )( )r x t;B
1 at the instantaneous position of the

impurities ismuchmore pronounced than that found for = -g 0.5B (figure 9(d)). Note that the density hump

appearing in ( )( )r x t;B
1 is essentially an imprint of the impurities presence andmotionwithin the bosonic

medium. Indeed, ( )( )r x t;1 exhibits a sech-like form tending to bemore localized for a larger interspecies

attractions gB , see e.g. ( )( )r x t;1 at afixed time-instant for = -g 0.5B and = -g 1B infigures 9(b) and (e)

respectively, a behavior that also holds for the consequent density hump in ( )( )r x t;B
1 (figures 9(a), (d)).We

should remark that for large negative gB the systembecomes strongly correlated and the BEC is highly excited.
The latter ismanifested by the development of an overall weak amplitude breathingmotion of the bosonic gas,
see figure 9(d). Furthermore, the inclusion of weak intraspecies repulsions between the impurities does not
significantly alter their dynamics (figure 9(f)). Indeed, a faint increase of their expansionmagnitude takes place
and the corresponding amplitude of the beating decays faster (compare figures 9(d) and (f)).

The above-mentioned dynamics can also be qualitatively explained in terms of a corresponding effective
potential approximation [35, 73, 75]. Yet again, the effective potential experienced by the impurities consists of
the external harmonic oscillatorV(x) and the single-particle density of the BECbackground. Importantly, since

( )( )r x t;B
1 is greatly distorted from its original Thomas–Fermi profile due to themotion of the impurities, we

invoke a time-averaged effective potential. Consequently, the effective potential of the impurity reads

¯ ( ) ( ) ∣ ∣ ( ) ( )( )ò r= -V x V x
g

T
t x td ; , 17I

BI
T

B
eff

0

1

whereT=100 denotes the corresponding total propagation time.We remark that for the considered negative
values of gB the shape of ¯ ( )V xI

eff does not significantly change after averaging overT=60. A schematic

illustration of ¯ ( )V xI
eff and the densities of its first few single-particle eigenstates at = -g 1B is presented in

figure 10(a), see also remark (see footnote 7). The observed localization tendency of ( )( )r x t;1 around the

aforementioned potentialminimum is essentially determined by the strongly attractive behavior of ¯ ( )V xI
eff .

Remarkably, the distinct dynamical features of the impurities for an increasing interspecies attraction can be
partly understoodwith the aid of ¯ ( )V xI

eff . Indeed, for increasing ∣ ∣gBI the effective frequency of ¯ ( )V xI
eff is larger

and ¯ ( )V xI
eff becomesmore attractive. The former property of ¯ ( )V xI

eff accounts for the increasing breathing
frequency of the impurity wavepacket for larger ∣ ∣gBI . Additionally, the increasing attractiveness of ¯ ( )V xI

eff is

responsible for the reducedwidth of ( )( )r x t;1 for a larger ∣ ∣gBI and thus its increasing localization tendency.

4.5.2. Two-body correlation dynamics and comparison to the effective potential approximation
Having described the time-evolution of the impurities on the single-particle level, we next analyze the dynamical
response of the pseudospin- component by invoking the corresponding two-body reduced densitymatrix

( )( )r x x t, ;2
1 2 (see also equation (7)).

The time-evolution of ( )( )r x x t, ;2
1 2 is depicted infigures 11(a1)–(a5) for two non-interacting (gII=0)

impurities following an interspecies interaction quench from =g 0B to = -g 0.5B (region ¢RIII). Before the

quench the impurities lie together in the vicinity of the trap center since ( )( )r = = = x x t0, 0; 02
1 2 shows a high

probability peak (figure 11(a1)). However as time evolves the two bosons start to occupy a relatively smaller
spatial region as can be deduced by the shrinking of the central two-body probability peak across the diagonal at
t=10 in figure 11(a2). Then theymove either opposite to each other (see the elongated anti-diagonal in
figures 11(a3), (a5)) or tend to bunch together at the same location (see the pronounced diagonal of

( )( )r = = x x x t, ; 602
1 2 1 infigure 11(a4)). This latter behavior of the impurities is the two-body analog of their

wavepacket periodic expansion and contraction (relative coordinate breathingmotion) discussed previously on
the single-particle level (figure 9(b)).

The dynamics of twoweakly repulsively interacting (gII=0.2) impurities (figures 11 (b1)–(b5)) shows
similar characteristics to the above-described non-interacting scenario. Indeed, initially (figure 11(b1)) and at
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short times (figure 11(b2)) the impurities reside close to the trap center while later on they repel (see e.g.figure 11
(b3)) or attract (figure 11(b4)) each other as a result of their breathing dynamics (see alsofigure 9(c)). Themajor
difference between theweakly interacting and the non-interacting impurities is that their distance which is given
by the anti-diagonal distribution of their two-body reduced densitymatrix is slightly different, see figures 11
(e1)–(e5). For instance at t=40 the non-interacting impurities are further apart from each other as compared to
the case of interacting impurities, while this situation is reversed at t=90. The aforementioned difference owes
its existence to the distinct relative coordinate breathing frequencies. This can be directly inferred from the fact
that ( )( )r x x t, ;2

1 2 possesses a larger spatial distributionwhen gII=0.2 and it is attributed to their underlying

mutual repulsion. For instance, even initially ( )( )r = x x t, ; 02
1 2 for gII=0.2 (figure 11(b1)) is slightly deformed

towards its anti-diagonal compared to the gII=0 case (figure 11(a1)). This behavior persists also during the
evolution independently of the expansion or the contraction of the impurity cloud, as can be seen by comparing
figures 11(b4) to (a4) andfigures 11(b5) to (a5).

To reveal the importance of both intra- and interspecies correlations for the impurity dynamics we then
utilize the effective potential, ¯ ( )V xI

eff , introduced in equation (17) and solve numerically the time-dependent
Schrödinger equation of the impurities via exact diagonalization.We remark oncemore that V̄I

eff neglects the
interspecies correlations of themulticomponent systembut includes the density profile of the BECdetermined
by theMB approach. In particular, we construct the effectiveHamiltonianHeff of equation (16) but using the

Figure 11. Snapshots of ( )( )r x x t, ;2
1 2 (see legend), within theMB approach, of the two pseudospin-non-interacting (gII=0)

impurities upon considering an interaction quench from =g 0B to (a1)–(a5) = -g 0.5B and (d1)–(d5) = -g 1B . (b1)–(b5)The
same as in (a1)–(a5) but for twoweakly interacting (gII=0.2) impurities in the correlatedMB approach. (c1)–(c5)The same as in (b1)–
(b5) butwithin the effective potential approximation. (e1)–(e5) Instantaneous profiles of the antidiagonal of the two-reduced density

( )( )r -  x x t, ;2 of two non-interacting (figures 11(a1)–(a5)) and twoweakly interacting (figures 11(b1)–(b5)) impurities (see legend).
The harmonically trapped Bose–Bosemixture is initially prepared in its corresponding ground state and consists ofNB=100 atoms
with gBB=0.5 andNI=2 impurities.
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¯ ( )V xI
eff of equation (17). For brevity we focus on the case of =g 0.2 and analyze the dynamics after an

interspecies interaction quench from =g 0B (t=0) to = -g 0.5B . As explained in section 4.4.3within the

effective potential picture this quench scenario accounts for the deformation of V̄I
eff . Snapshots of ( )( )r x x t, ;2

1 2

when gII=0.2 and = -g 0.5B obtainedwithinHeff are illustrated infigures 11(c1)–(c5). As it can be seen by

comparing ( )( )r x x t, ;2
1 2 for theMB approach (figures 11(b1)–(b5)) andH

eff (figures 11(c1)–(c5)) significant
deviations occur between the twomethods. Indeed, during the time-evolution the correlation patterns visible in

( )( )r x x t, ;2
1 2 calculated viaHeff exhibit similar overall characteristics to the ones taking place in the correlated

approach but at completely different time-scales. In fact, ( )( )r x x t, ;2
1 2 shows elongated shapes along its diagonal

(figure 11(c3)) or anti-diagonal (figure 11(c4)) implying that the impurities tend to be relatively close or apart
fromone another respectively. The latter is again amanifestation of the breathingmotion of the impurities at the
two-body level. HoweverHeff fails in general to adequately capture the correct spatial shape of ( )( )r x x t, ;2

1 2 ,

since e.g. it predicts a repulsion of the impurities (figure 11(c4))when in the presence of correlations they attract
each other (figure 11(b4)) and vice versa (compare figures 11(c3) and (b3)). This difference is caused by the failure
of the effective potential to account for induced interactions emanatingwithin theMB setting.

Finally, turning to strong postquench attractions within ¢RIII , e.g. for = -g 1B presented infigures 11

(d1)–(d5), we observe that the two-body dynamics of the impurities is drastically alteredwith respect to the
weakly attractive case = -g 0.5B described above. Initially, at t=0, the two bosons bunch together in the

vicinity of the trap center since ( )( )r - < < - < < = x x t1 1, 1 1; 02
1 2 is predominantly populated (figure 11

(d1)). Subsequently the two-body distribution of ( )( )r x x t, ;2
1 2 spatially shrinks exhibiting a highly intense

peaked structure around−0.2<x1, x2<0.2 as shown infigures 11(d2), (d3). For longer evolution times
( )( )r x x t, ;2

1 2 deforms possessing an elongated shape across its diagonal (seefigures 11(d4), (d5))which indicates
that the impurities experience amutual attraction. This latter behavior suggests the appearance of attractive
induced interactions between the impuritiesmediated by the bosonic gas.

5. Summary and conclusions

Wehave investigated the ground state properties and the interspecies interaction quench quantumdynamics of
two spinor bosonic impurities immersed in a harmonically trapped bosonic gas from zero tofinite repulsive and
attractive couplings. For twonon-interacting impurities, we have shown that for an increasing attraction or
repulsion their overall distance decreases indicating the presence of attractive induced interactions.Moreover, at
strong attractions or repulsions the impurities acquire a fixed distance and bunch together either at the trap
center or at the edge of the Thomas–Fermi profile of the bosonic gas respectively. For twoweakly repulsive
impurities we find that their ground state properties remain qualitatively the same for attractive couplings, but
for repulsive interactions theymove apart being located symmetrically with respect to the trap center. A similar
to the above-described overall phenomenology takes place for smaller system sizes and heavier impurities.

Regarding the quench dynamics of themulticomponent systemwe have analyzed the time-evolution of the
contrast and its spectrum.Wehave revealed the emergence of six different dynamical response regions for
varying postquench interaction strengthwhich signify the existence, dynamical deformation and the
orthogonality catastrophe of Bose polarons.We have also shown that the extent of these regions can be tuned via
the intraspecies repulsion between the impurities, the impurity concentration and the size of the bath.
Moreover, we have found that the polaron excitation spectrumdepends strongly on the postquench interspecies
interaction strength and the number of impurities but it is almost insensitive on the impurity–impurity
interaction for theweak couplings.

Focusing onweak postquench interspecies repulsions the non-interacting impurities perform a breathing
motionmanifested as a periodic expansion and contraction of their density on both the one- and two-body level.
For an increasing repulsion the impurities single-particle density splits into two counterpropagating density
branches that travel to the edges of the BECmediumwhere they are reflected back towards the trap center and
subsequently collide, repeating thismotion in a periodicmanner. Here the impuritiesmainly reside in a
superposition of two distinct two-body configurations, namely they either reside together or each one lies at a
specific density branch, while during their collision they tend to remain very close to each other. In the strong
repulsive regimewe have observed that the density of the impurities shortly after the quench breaks into two
fragments which are symmetric with respect to the origin andwhich exhibit amultihump structure and perform
a damped oscillatorymotion close to the Thomas–Fermi radius of the bosonic gas. Thismultihump structure
leads to a spatially delocalized behavior of the corresponding two-body correlation patterns and suggests the
involvement of higher excited states. In all cases the bosonic gas exhibits a breathingmotionwhose amplitude
becomesmore pronounced for an increasing repulsion.

22

New J. Phys. 22 (2020) 043007 S IMistakidis et al

201



Turning to attractive interspecies couplings, the impurities show a beating breathingmotion and experience
a spatial localization tendency at the trap center on both the one- and two-body level, a behavior that becomes
more pronounced for larger attractions. Strikingly, for strong attractive interactions we unveil that gradually the
impurities experience amutual attraction on the two-body level. This effect demonstrates the pronounced
presence of induced interactions for attractive interspecies ones. As a result of the impuritiesmotion the density
of the bosonic bath deforms, developing a low amplitude density hump located at the origin. The occurrence of
this hump is a direct consequence of the presence of induced interactions.

In all cases investigated in the present work, an intuitive understanding of the dynamics of the impurities is
provided via an effective potential picturewhich is shown to be an adequate approximation forweak couplings
where correlations are negligible. However, for increasing interaction strengths this effectivemodel largely fails
to adequately describe the dynamics on both the one- and two-body level due to the presence of both induced
attraction and higher-order correlations. Finally, in all of the above-mentioned cases we showcase that a similar
dynamical response takes place for twoweakly repulsive impurities but the corresponding time-scales are
slightly altered due to the competition between theirmutual repulsion and the developed attractive induced
interactions.

There is amultitude of fruitful possible extensions of the present effort that can be addressed in future works.
A intriguing aspect would be to examinewhether thermalization of the impurities dynamics takes place for
strong repulsions in the framework of the eigenstate thermalization hypothesis [101]. An imperative prospect is
to study the robustness of the emergent quasiparticle picture in the current setting in the presence of
temperature effects [102, 103].Moreover, the study of induced interactions of two bosonic impurities immersed
in a Fermi seawould be an interesting prospect especially in order to expose their dependence on the different
statistics of themedium. Additionally, the generalization of the present results to higher-dimensional settings
would be highly desirable. Another interesting directionwould be to investigate the collisional dynamics of
subsonically or supersonicallymoving impurities in a lattice trapped bosonic gas.Here, one could unravel the
properties of the emergent quasiparticles, such as their lifetime, residue, effectivemass and induced interactions
with respect to the interspecies interaction strength.
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Appendix. Remarks on theMB simulations

To solve the underlying time-dependentMBSchrödinger equation of the consideredmulticomponent system
we invoke theML-MCTDHX [70, 71]. As discussed in section 2.2 it constitutes a variational approach for
calculating the stationary andmost importantly the non-equilibriumquantumdynamics of bosonic and
fermionicmulticomponentmixtures [35, 36, 65] including spin degrees of freedom [9, 35, 82]. A key advantage
of themethod is that it assumes the expansion of the totalMBwavefunction in terms of a time-dependent and
variationally optimized basis. Such a treatment enables us to capture both the intra- and intercomponent
correlation effects by employing a computationally feasible basis size. The latter flexibility allows to span the
relevant subspace of theHilbert space efficiently for each time-instant which is in contrast to numericalmethods
relying on a time-independent basis.

The usedHilbert space truncation can be deduced from the employed orbital configuration space, denoted
byC=(D; dB; d I)withD=DB=DI and d

B, d I being the number of species and SPFs of each species
respectively (equations (3)–(5)). Additionally, within our implementation a sine discrete variable representation
(sine-DVR) is utilized as the primitive basis for the spatial part of the SPFswith = 600 grid points. The latter
intrinsically introduces hard-wall boundary conditions at both edges of the numerical grid imposed herein at
x±=±50.We have ensured that the position of the hard-walls does not affect the presented results by assuring
that no appreciable density occurs beyond x±=±20. The eigenstates of the compositeMB system are obtained
bymeans of the so-called improved relaxationmethod [70, 71] implemented inML-MCTDHX. In order to
simulate the non-equilibriumdynamics we propagate in time thewavefunction (equation (3))utilizing the
appropriateHamiltonianwithin theML-MCTDHXequations ofmotion.

To infer the convergence of ourMB simulationswe ensure that all observables of interest, e.g. ∣ ˆ ( ) ∣á ñtS ,

( )( )r x t;1 , become to a certain degree insensitive upon varying the employed orbital configuration space chosen
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herein to beC=(D; dB; d I)=(12; 3; 10). Below,we exemplarily showcase the convergence behavior of the
contrast during evolution for a system composed ofNB=100 bosonswith gBB=0.5 andNI=2 non-
interacting (gII=0) impurities.More precisely, we investigate its absolute deviation between theC=(10; 3; 10)
and other orbital configurationsC′=(D; dB; d I)during the non-equilibriumdynamics, namely

∣ ( )∣ ∣∣ ˆ ( ) ∣ ∣ ˆ ( ) ∣ ∣
∣ ˆ ( ) ∣ ( )D =

á ñ - á ñ

á ñ
¢

¢S t
t t

t

S S

S
. A.1C C

C C

C
,

The time-evolution of ∣ ( )∣D ¢S t C C, is illustrated infigure 12 after an interspecies interaction quench from
=g 0B to intermediate repulsions e.g. =g 1B (figure 12(a)) and strong ones such as =g 4B (figure 12(b)). As it

can be readily seen by inspecting ∣ ( )∣D ¢S t C C, , a systematic convergence of ∣ ˆ ( ) ∣á ñtS can be achieved in both cases.
At intermediate postquench repulsions, e.g. =g 1B , ∣ ( )∣D ¢S t C C, e.g. between theC=(12; 3; 10) andC′=(10;
3; 8) [C′=(8; 3; 8)] orbital configurations acquires amaximumvalue of the order of 3% [7%] at large
propagation times as shown infigure 12(a). As expected, an increasing gB yields a larger relative error
(figure 12(b)) but still remaining at an adequately small degree. Indeed, turning to strong repulsions such as

=g 4B we observe that the deviation ∣ ( )∣D ¢S t C C, withC=(12; 3; 10) andC′=(12; 3; 8) [C′=(10; 3; 8)] lies
below 5% [9%] throughout the evolution, seefigure 12(b). Finally, we shouldmention that a similar analysis has
been performed for all other interspecies interaction strengths and observables discussed in themain text and
found to be adequately converged (results not shownhere for brevity).
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We propose and investigate a pump-probe spectroscopy scheme to unveil the time-resolved dynamics of
fermionic or bosonic impurities immersed in a harmonically trapped Bose-Einstein condensate. In this scheme
a pump pulse initially transfers the impurities from a noninteracting to a resonantly interacting spin state and,
after a finite time in which the system evolves freely, the probe pulse reverses this transition. This directly
allows us to monitor the nonequilibrium dynamics of the impurities as the dynamical formation of coherent
attractive or repulsive Bose polarons and signatures of their induced interactions are imprinted in the probe
spectra. We show that for interspecies repulsions exceeding the intraspecies ones a temporal orthogonality
catastrophe occurs, followed by enhanced energy redistribution processes, independently of the impurity’s flavor.
This phenomenon takes place over the characteristic trap timescales. For much longer timescales a steady state
is reached characterized by substantial losses of coherence of the impurities. This steady state is related to
eigenstate thermalization and it is demonstrated to be independent of the system’s characteristics.

DOI: 10.1103/PhysRevResearch.2.033380

I. INTRODUCTION

Time-resolved spectroscopy is an established technique
for the characterization of the dynamical response of a wide
range of physical systems [1]. The general idea underlying a
pump-probe spectroscopy (PPS) scheme is that a pump pulse
prepares a nonstationary state of the system under consid-
eration, which is then interrogated by a time-delayed probe
pulse. This allows for simultaneous spectral and temporal
resolution of the induced dynamical processes, exposing the
energy redistribution of the selectively triggered excitations
[2,3], in sharp contrast to time-independent spectroscopic
techniques like injection spectroscopy [4–7]. Applications of
the PPS protocol range from two- and three-level atomic
systems [8–14] to the ultrafast dynamics of photoexcited
quantum materials [15–22]. Such a time-domain analysis has
been proven to be a powerful tool for resolving the ultrafast
molecular dynamics allowing, for instance, for a coherent
control of bound excited-state dimers over long timescales
[23,24]. PPS has also been utilized for studying the pair-
correlation dynamics of ultracold Bose gases [25], offering
a potential connection between ultrafast and ultracold physics
[24,26].

Operating in the ultracold regime, in this work we propose
a PPS scheme as a toolkit for investigating in a time-resolved
manner the impurity problem and the related formation of

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and interactions between quasiparticles [27–64]. Understand-
ing the physics of quasiparticles is important beyond cold
atom settings in semiconducting [65] and superconducting
devices [66]. Additionally, interactions among quasiparticles
in liquid helium mixtures [67,68] and cuprates [69,70] are
considered to be responsible for conventional and high-Tc

superconductivity [71–77]. Here we consider a Bose-Einstein
condensate (BEC) with one or two impurities of either bosonic
or fermionic nature immersed into it and track the emergent
Bose polaron formation [42–61] with a PPS radiofrequency
protocol analogous to the one used in the experiment of
Ref. [78]. This allows us to probe and control the coherence
properties of the quasiparticles. Our results pave the way for
transferring the knowledge regarding the ultrafast dynamics
of condensed matter systems [79–82] to the ultracold atomic
realm.

In our investigation, an intense pump pulse transfers the
initially free bosonic or fermionic impurities to an attractively
or repulsively interacting state with the environment. After a
variable dark time, during which the system evolves freely,
a probe pulse of weaker intensity is applied, which deexcites
the impurities. As the formation of well-defined attractive and
repulsive Bose polarons in this many-body (MB) system is
captured in the probe spectrum, this process allows us to mon-
itor the dynamics. In systems where the interaction strength
between the impurity and the background is not larger than
the interaction strength within the background gas, polaronic
excitations can have long lifetimes. However, beyond that
limit substantial losses of coherence occur with a temporal
orthogonality catastrophe (TOC) [59–61,83] being imprinted
in the probe spectrum. The TOC emerges due to the relaxation
of the quasiparticles into energetically lower-lying, phase-
separated states. This process is independent of the number of
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the impurities or their statistics. Remarkably, for timescales
longer than the characteristic confinement one, the probe
spectrum unveils evidence toward eigenstate thermalization
[84–87], where the impurities reside in an incoherent state
characterized by a large effective temperature. This relaxation
dynamics [88,89] is found to be independent of the size of
the bath, the number and nature of the impurities, and their
interaction strengths and mass.

Our work is structured as follows. Section II introduces
the setup under consideration and briefly comments on the
employed variational approach to tackle the nonequilibrium
dynamics of Bose polarons. In Sec. III we discuss the uti-
lized PPS scheme and demonstrate the resulting Bose po-
laron spectrum for short and long evolution times with a
particular focus on the impurity-impurity–induced interac-
tions, coherence properties, and thermalization processes. In
Sec. IV we elaborate on the emergent energy redistribution
processes, while in order to gain further insights into the
spectroscopically observed relaxation dynamics we invoke
in Sec. V the eigenstate thermalization hypothesis (ETH).
We summarize our results and provide an outlook including
future perspectives in Sec. VI. Appendix A presents in detail
the used radiofrequency spectroscopy scheme and Appendix
B explicates briefly the predictions of a Ramsey protocol
for strong impurity-medium interactions. The dimensional
reduction of our MB Hamiltonian from three to one dimension
(3D to 1D) is showcased in Appendix C. Finally, Appendix
D deals with the variational method employed herein so as
to simulate the PPS protocol and Appendix E delineates the
convergence of the presented results.

II. MODEL SETUP

Our model is a highly particle imbalanced mixture. It con-
sists of NI = 1, 2 bosonic or fermionic impurities (I) having a
spin-1/2 degree of freedom [90] being immersed in a bosonic
bath of NB = 100 structureless bosons (B). The mixture is
assumed to be mass balanced, mB = mI ≡ m (unless stated
otherwise), while both species are harmonically confined in
the same one-dimensional potential. Details of the dimen-
sional reduction of our system are discussed in Appendix C.
The MB Hamiltonian reads

Ĥ = Ĥ0
B + ĤBB + ∑

a=↑,↓

(
Ĥ0

a + Ĥaa
) + Ĥ↑↓ + ĤBI + Ĥβ

S . (1)

Here Ĥ0
B = ∫

dx�̂†
B(x)(− h̄2

2mB

d2

dx2 + 1
2 mBω2x2)�̂B(x), and

Ĥ0
a = ∫

dx�̂†
a (x)(− h̄2

2mI

d2

dx2 + 1
2 mIω

2x2)�̂a(x) denote the
noninteracting Hamiltonian of the BEC and the impurities,
respectively, while a ∈ {↑,↓}. Additionally, �̂B(x) [�̂a(x)] is
the field operator of the BEC (spin-a impurities). We further
consider that the dominant interaction is an s-wave one
since we operate in the ultracold regime. As such both intra-
(gBB, gII ) and interspecies (gBI ) interactions are adequately
described by a contact potential [91], see also Appendix C.
Furthermore, ĤBB = (gBB/2)

∫
dx�̂†

B(x)�̂†
B(x)�̂B(x)�̂B(x)

and Ĥaa′ = gII
∫

dx�̂†
a (x)�̂†

a′ (x)�̂a′ (x)�̂a(x), with a, a′ ∈
{↑,↓}, correspond to the contact intraspecies interaction
terms of the bosonic bath and the impurities, respectively.
Note that only the spin-↑ component of the impurities

interacts with the BEC while the spin-↓ one is
noninteracting. The relevant interspecies interaction term
reads ĤBI = gBI

∫
dx�̂†

B(x)�̂†
↑(x)�̂↑(x)�̂B(x). Finally,

Ĥβ
S = h̄�

β

R0
2 Ŝx − h̄�β

2 Ŝz, with �
β

R0 and �β = νβ − ν0

referring to the bare Rabi frequency and the detuning
of the radiofrequency pulse when the bosonic bath
is absent, see Appendix A for further details. Here
β ∈ {pump, probe, dark}. Moreover, the total spin operators
are given by Ŝi = ∫

dx
∑

ab �̂a(x)σ i
ab�̂b(x), with σ i

ab denoting
the Pauli matrix i ∈ {x, y, z}.

It is worth mentioning at this point that the one-
dimensional description adopted holds under the condi-

tions kBT
h̄ω

� h̄2

m [ρ (1)
B (x = 0)]2 ≈ 34/3

16 ( α2
⊥N2

B
aBBα

)2/3 and NBaBBα⊥
α2 �

1 [92,93]. In these expressions, aBB is the three-dimensional
s-wave scattering length between the particles of the medium,
and α = √

h̄/(mω) and α⊥ = √
h̄/(mω⊥) correspond to the

axial and transversal length scales. ρ
(1)
B (x = 0) is the ini-

tial one-body density of the environment at x = 0, kB is
the Boltzmann constant, and T refers to the temperature of
the bosonic bath. To provide a concrete example, assuming
ω ≈ 2π × 100 Hz and considering a 87Rb gas with gBB =
0.5

√
(h̄3ω)/(m) ≈ 3.55 × 10−38 Jm our 1D setting can be

realized for transverse frequencies ω⊥ ≈ 2π × 5.1 kHz. Ac-
cordingly, the 1D treatment is valid since NBaBBα⊥/α2 ≈
0.07 � 1 and temperature effects are negligible for kBT �
316h̄ω ≈ 1.5 μK.

To access the time-resolved spectral response of bosonic
and fermionic impurities immersed in the BEC bath the
multilayer multiconfiguration time-dependent Hartree method
for atomic mixtures is utilized [94–96]. The latter is a nonper-
turbative approach that uses a variationally optimized time-
dependent basis which spans the optimal subspace of the
Hilbert space at each time instant and allows for tackling
all interatomic correlations [59]. In particular, the MB wave
function is expressed as a truncated Schmidt decomposition
using D species functions for each component [Eq. (D1) in
Appendix D]. Next, each of these species functions is ex-
panded in a basis of dB and dI single-particle functions for the
BEC background and the impurities, respectively [Eq. (D2)].
These single-particle functions utilize a time-independent
primitive basis that is a tensor product of basis states regard-
ing the spatial and the spin degrees of freedom [Eq. (D3)].
Then, by following a variational principle, we arrive at a set
of coupled nonlinear integrodifferential equations of motion
[94–96]. A detailed description of our MB variational ap-
proach and the ingredients of our numerical simulations are
provided in Appendices D and E, respectively.

III. PUMP-PROBE SPECTROSCOPY SCHEME

We prepare the multicomponent system in its ground state
with fixed gBB and gII = 0. The impurities are in their spin-
↓ state and thus 〈ĤBI〉 = 0. To trigger the dynamics, an
intense, �

pump
R0 = 10ω 
 ω, rectangular pump pulse drives

the noninteracting spin-↓ impurities to their interacting with
the bath spin-↑ state for −te < t < 0 (where te denotes the
exposure time) [Fig. 1(a)]. The condition �

pump
R0 
 ω ensures

that the duration of the pump pulse is much smaller than the
time interval in which the polarons form. Accordingly, the
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FIG. 1. (a) Schematic illustration of the PPS pulse sequences used. (b) Spectral response of the pump pulse 〈N̂↑(t = 0)〉/NI versus its

detuning �pump for gBB = 0.5
√

h̄3ω/m, NB = 100, NI = 1 and varying gBI . Vertical dashed lines indicate the resonant detunings �+. [(c)–(k)]
Time-resolved probe spectra at different gBI , bosonic (B) or fermionic (F) impurity numbers NI = 1, 2 with gII = 0, and for various short dark
times, td (see legend). In all cases insets illustrate the spatiotemporal evolution of the impurity’s one-body density and dashed lines mark the
instants for which the probe spectrum is provided.

polaron formation can only occur after the termination of the
pump pulse and therefore it can be captured by the subsequent
probe pulse. To ensure the resonance condition of the pump
pulse, namely �pump = �+, and to optimize te = π/�

pump
R ,

the fraction of impurity atoms that have been successfully
transferred to the spin-↑ state, 〈N↑(t = 0)〉/NI , is monitored
for variable �pump. The resulting pump spectrum features a
coherent atomic resonance [34,36,39,57,78] at �pump = �+.
The latter, for NI = 1 and gBI = ±0.5, 1.5

√
h̄3ω/m, is clearly

visible in Fig. 1(b). Notice also that secondary peaks pos-
sessing an intensity of the order of 12% with respect to the
dominant ones also emerge due to the rectangular shape of
the pump pulse (see also Appendix A).

After the initial pump sequence the remaining population
of the spin-↓ state is annihilated by employing an optical
blast that projects the impurities to the |↑〉 state (as described
in Appendix A) and subsequently the spin-↑ atoms are left
to evolve for fixed gBI and �dark

R0 = 0 but variable dark time
td . The polaronic states can form within 0 � t � td while at
t = td a probe pulse is applied. This pulse is characterized by
�

probe
R0 = ω � �

pump
R0 so as to enhance the spectral resolution

of the signal obtained by the fraction of impurity atoms
transferred to the spin-↓ state, 〈N↓(td )〉/NI for variable �probe.
For the same reason the duration of the probe pulse is fixed to
t ′
e = π/�

probe
R , where �

probe
R is the resonant Rabi frequency of

the probe pulse at �probe = �+, td = 0, and NI = 1.
Concluding within the PPS scheme, polaronic states can

be identified in the probe spectrum as well-defined peaks with
amplitude 〈N̂↓(td )〉/NI < 1. For our purposes (accounting for
the finite fidelity resulting after the probe pulse) we employ
the criterion 〈N̂↓(td )〉/NI < 0.96 in order to identify the pola-
ronic resonances. Interestingly, a peak with 〈N̂↓(td )〉/NI ≈ 1
does not correspond to a polaron as it implies that the accessed
MB state is equivalent to a noninteracting state. Accordingly,
the peaks exactly at td = 0 and 〈N̂↓(td )〉/NI ≈ 1, that will
appear later, do not indicate the formation of polarons. No-

tice that polaronic peaks with 〈N̂↓(td )〉/NI < 1 can occur for
strong impurity-BEC interactions gBI > gBB, even for td = 0,
demonstrating fast energy transfer to the polaronic states for
td < (�probe

R0 )−1.

A. Short-time dynamics of Bose polarons

The short-time (t ∼ ω−1) dynamics of few, NI = 1, 2,
fermionic or bosonic impurities with gII = 0 immersed in
a BEC bath of NB = 100 atoms is captured by the probe
spectra for distinct attractive [Figs. 1(c)–1(e)] and repulsive
[Figs. 1(f)–1(k)] interspecies interactions gBI . Focusing on the
attractive side, a well-defined polaron at td = 0 with central
peak location at �+ = −8.7ω [Fig. 1(c)], �+,B = −8.9ω

[Fig. 1(d)], and �+,F = −8.6ω [Fig. 1(e)] is identified in the
cases of NI = 1 and NI = 2 bosonic and fermionic impurities
respectively. These polarons show a nonsizeable shift for all
the different evolution times td as long as NI = 1. However,
a clear shift can be inferred for NI = 2 [Fig. 1(d)]. This
shift, being of about 10%, is a consequence of the energy
redistribution between the bosonic impurities and the BEC
as demonstrated in Ref. [57] and it is further related to
the fact that for gBI < 0 attractive induced interactions are
significantly enhanced [57]. Additionally, due to the pro-
nounced induced interactions a collisional broadening [97]
of the spectral line is clearly observed for td = 1, 11ω−1.
Indeed, since the two-body state of the impurities evolves
rapidly during the probe sequence the spectral resolution of
the measurement decreases, giving rise to a wide background
in the PPS spectrum for −10 < �probe/ω < 2. The imprint
of induced interactions in the spatiotemporal evolution of the
one-body density is the dephasing of the breathing oscillations
[hardly visible in the inset of Fig. 1(d)] within the time interval
10 < ωtd < 15, which is absent for the single impurity [see
the inset in Fig. 1(c)]. In contrast to the above dynamics,
the time-resolved evolution of fermionic impurities closely
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resembles the single impurity one with the two fermions
undergoing at short times a coherent breathing motion, as is
evident in the inset of Fig. 1(e). This latter result can be easily
understood by the fact that attractive induced-interactions
between fermionic impurities are known to be suppressed,
providing in turn a nonsizeable shift of the respective atomic
peak resonance captured by the probe spectra [36,39].

Switching to repulsive interactions, the dynamical evolu-
tion of the system changes dramatically. Independently of fla-
vor and concentration the motion of the impurities, as detected
by the one-body density evolution for gBI = 0.5

√
h̄3ω/m, is

apparently qualitatively similar [insets in Figs. 1(f)–1(h)].
From the very early stages of the nonequilibrium dynamics
the density filamentizes with recurrences of an almost central
density peak occurring at the collision points, i.e., around
td ≈ 16ω−1 and td ≈ 19ω−1 for the bosonic and fermionic
impurities, respectively [Fig. 1(g) and Fig. 1(h)]. However,
in all three cases a clean quasiparticle peak is monitored in
the respective probe spectra indicating the existence of well-
defined polarons for t ∼ ω−1. The dominant peak location
appears to be shifted for td �= 0 when compared to �+, while
an overall broadening of the spectrum is also inferred. The
observed shift depends strongly on the impurity’s nature and
it is measured to be of about 10% for bosonic but dropping
down to almost 5% for fermionic impurities [Figs. 1(g) and
1(h)]. Interestingly, the difference in the spectrum between
the NI = 1 and the NI = 2 bosonic case [compare Figs. 1(f)
and 1(g)] is negligible, suggesting that attractive induced
interactions cannot be directly unveiled by the observed shift.
A result that complements earlier predictions indicating that
attractive induced interactions are suppressed in the repul-
sive regime [60,98]. Indeed, for gBI > 0 the density of the
BEC is less distorted compared to gBI < 0 [60,61]. Accord-
ingly, the impurities are less attracted to these distortions
and consequently to each other. In turn, by inspecting the
oscillatory tail of the probe spectra for gBI > 0 interference
phenomena associated with the filamentation process can be
identified. Indeed, already from the single impurity [Fig. 1(f)]
the amplitude, A(�probe), of the secondary peak appearing
in the spectra, e.g., at td = 8ω−1, A(�probe ≈ 4.6ω) = 0.352
is comparable with the dominant one A(�probe ≈ 7.5ω) =
0.755. Notice that the intensity ratio of the secondary to
the dominant peak is larger that 12% and thus cannot be
attributed to the rectangular shape of the probe pulse. The
latter, directly reflects the coherence between the filaments
formed in the one-body density (see Discussion). However,
as the number of impurities increases significant losses of
coherence take place. Indeed, the secondary peak at td =
8ω−1 [td = 9ω−1] has A(�probe ≈ 4.6ω) = 0.266 [A(�probe ≈
3.6ω) = 0.245] for NI = 2 bosonic (fermionic) impurities
while is drastically reduced at later td [Figs. 1(g) and 1(h)].
These losses of coherence are an indirect manifestation of
the presence of weak attractive induced interactions which we
cannot probe via the shift of the spectral peaks.

Our PPS data demonstrate that well-defined quasiparticles
cease to exist for gBI � 1.5

√
h̄3ω/m signaling their TOC

[Figs. 1(i)–1(k)] [57]. Evidently, at td = 0 a predominant peak
centered at �+ = 26.7ω can be discerned in the single impu-
rity probe spectrum [Fig. 1(i)], giving its place to a double
humped structure with averaged location at �+,B = 26.8ω for

FIG. 2. [(a) and (b)] One-body coherence g(1)
↑ (x, x′; td ) at dif-

ferent times td (see legend). [(c) and (d)] Time-averaged one-body
coherence ḡ(1)

↑ (x, x′) at distinct gBI . (e) Temporal evolution of the

variance �ḡ(1)
↑ for different settings (see legend).

the two bosonic impurities [Fig. 1(j)] and to a slightly shifted
but significantly broadened peak at �+,F = 25.6ω for the
fermionic ones [Fig. 1(k)]. The latter broadening is attributed
to the fermion statistics. Indeed, fermionic impurities occupy
higher momenta and as such couple stronger to the BEC
excitations. However, at td = 2ω deformation of the central
peak is present and a highly oscillatory tail is seen in all
cases. To appreciate the aforementioned degree of coherence
already indicated by the probe spectra we next invoke the
spatial first-order coherence function,

g(1)
σ (x, x′; t ) = ρ (1)

σ (x, x′; t )√
ρ

(1)
σ (x; t )ρ (1)

σ (x′; t )
. (2)

Here ρ (1)
σ (x, x′; t ) = 〈�(t )|�̂†

σ (x)�̂σ (x′)|�(t )〉 is the σ -
species (σ = B,↑,↓) one-body reduced density matrix,
|�(t )〉 is the MB wave function, and ρ (1)

σ (x; t ) is the one-body
density, see also Appendix D. Importantly, |g(1)

σ (x, x′; t )| ∈
[0, 1] indicates the spatially resolved deviation of a MB
wave function from a corresponding product state. Specif-
ically, if |g(1)

σ (x, x′; t )| = 1, then the system is termed
fully coherent;, otherwise, coherence losses occur, signify-
ing the buildup of correlations [60,99]. Indeed, the instan-
taneous |g(1)

↑ (x, x′; td = 2ω)| for gBI = 1.5
√

h̄3ω/m clearly
dictates that the quasiparticle remains adequately coherent
since, e.g., |g(1)

↑ (x = −5
√

h̄/mω, x′ = 5
√

h̄/mω; td = 2ω)| ≈
0.96 [Fig. 2(a)]. Finally, notice that for td > 6ω any quasi-
particle notion is lost as detected by the probe spectra.
This outcome, being consistent with recent works [39,57],
is also supported by the diffusive behavior of the corre-
sponding one-body density evolution [insets in Figs. 1(i)–
1(k)]. In contrast, a peak corresponding to free parti-
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FIG. 3. [(a)–(i)] Probe spectra for different gBI , NI , and impurity
flavors at various dark times td deep in the evolution (see legend).
The remaining system parameters are the same as in Fig. 1.

cles �probe = 0 emanates in the PPS spectrum, referring
to a phase separation between the impurity and the BEC. It
is also worth mentioning that by employing a corresponding
Ramsey scheme (see the discussion in Appendix B) it is not
possible to conclude the emergence of the TOC within the
same time interval since the structure factor is still finite and
drops close to zero for substantially longer evolution times.

B. Long-time Bose polaron dynamics

Next let us study the evolution of the system at longer
times, 100 < ωtd < 300. Note that for a typical axial con-
finement ω ≈ 2π × 100 Hz, the interval 100 < td < 300 cor-
responds to 0.16 < td < 0.48 s. As time evolves one expects
that significant losses of coherence signaling the buildup of
correlations will take place in the MB evolution of the system
[Fig. 2(b)]. A powerful asset of exposing the latter is the
temporal average

ḡ(1)
↑ (x, x′) = lim

T →∞
1

T

∫ T

0
dtg(1)

↑ (x, x′; t ), (3)

which depends solely on the eigenstate properties of the
interacting system [100]. This allows us to infer the relax-
ation tendency of the impurities in the framework of the
ETH [84,86], see also the discussion in Sec. V. Evidently,
ḡ(1)

↑ (x, x′) reveals that for gBI = 0.5
√

h̄3ω/m the impurity is

largely coherent [Fig. 2(c)] while at gBI = 1.5
√

h̄3ω/m any
coherence property is lost [Fig. 2(d)]. This outcome is further
supported by the time-resolved probe spectra illustrated for
longer times in Figs. 3(a)–3(i). A strong suppression of the
interaction shift with respect to �+ is found to persist at long
times, which, together with the weakly fluctuating amplitude
A(�probe ≈ �+) observed in the course of time, verifies the
longevity of coherent single and two polarons irrespectively
of their flavor and for both attractive and moderate repulsive
gBI = ±0.5

√
h̄3ω/m [Figs. 3(a)–3(f)]. Alterations come into

play for gBI > gBB, where, as per our discussion above, losses
of coherence, as captured by g(1)

↑ (x, x′; td ), become significant
and the polaron picture breaks down. Here a two-humped
distribution appears in our probe spectra independently of

the number of the impurities and their nature. The most
pronounced feature of Figs. 3(g)–3(i) is the peak located at
�probe = 0. The latter findings suggest that a relaxed state is
reached characterized by incoherent impurities being unpre-
dicted so far.

Indeed, by fitting ḡ(1)
↑ (x, x′) to the corresponding prediction

of the NI -particle Gibbs ensemble we obtain large effective
temperatures. These refer to kBTeff = 8.45h̄ω for NI = 1 and
kBTeff = 8.58h̄ω (kBTeff = 5.89h̄ω) in the case of two bosons
(fermions) showcasing their tendency to approach an incoher-
ent thermalized state, see also our detailed discussion in Secs.
V and IV. Notice that the initial state of fermions involves
higher momenta than bosons, while the critical velocity of
the BEC is the same [101–103]. Therefore, fermions couple
stronger to the BEC excitations losing a larger portion of their
energy, implying a smaller Teff . Further evidences supporting
the observed thermalization [88,89] are provided by the tem-
poral evolution of the variance,

�ḡ(1)
↑ = 1

T S

∫
S

dxdx′
∫

dt
[
g(1)

I (x, x′; t ) − ḡ(1)
I (x, x′)

]2
, (4)

with S denoting the relevant spatial region in which the
impurities reside and �ḡ(1)

↑ ∈ (0, 1). Remarkably a tendency

toward thermalization is seen [Fig. 2(e)], with �ḡ(1)
↑ saturating

at long times irrespectively of the size of the BEC cloud and
whether one or two, noninteracting or interacting, impurities
are present and what their nature is.

IV. IMPURITY-MEDIUM INTERACTION ENERGY

To further support the thermalization tendency of the
multicomponent system for strong impurity-BEC interactions
at longer times of the nonequilibrium dynamics, we next
inspect the behavior of the interspecies interaction energy.
The latter quantity is defined as 〈ĤBI (t )〉 ≡ 〈�(t )|ĤBI |�(t )〉,
where the operator of the interspecies interactions is ĤBI =
gBI

∫
dx �̂

†
B(x)�̂†

↑(x)�̂↑(x)�̂B(x). Also, �̂σ (x) and �̂†
σ (x) de-

note the σ -species field operator that annihilates and creates,
respectively, a σ -species particle at position x.

The time evolution of 〈ĤBI (t )〉 /NI is illustrated in Fig. 4
upon considering a pumping that drives the atoms to the
spin-↑ state with gBI = 1.5

√
h̄3ω/m. Specifically, we consider

different settings consisting of NI = 1, NI = 2 spin-polarized
bosons or fermions as well as a few-body system contain-
ing NB = 10 bosons and NI = 2 noninteracting impurities.
In all cases we observe that 〈ĤBI (t )〉 /NI decreases up to
t = 100ω−1 while for later times, and in particular for t >

200ω−1, it shows a saturation trend to a certain value de-
pending on both NI and NB. Recall that this saturation effect
allowed for the derivation of Eq. (11) within the ETH scheme.
Notice also that the saturation value of 〈ĤBI (t )〉 /NI is smaller
for the few-body system (NB = 10, NI = 2) while for the
NB = 100 setups 〈ĤBI (t )〉 /NI acquires its smaller value for
two fermionic impurities and takes almost the same value for
NI = 1 and NI = 2 noninteracting bosonic impurities. Finally,
let us note that the overall decreasing behavior of 〈ĤBI (t )〉 /NI

suggests a transfer of energy from the impurities to the
bosonic gas as it has been also demonstrated in Refs. [59,61].
This energy transfer process, identified by the decreasing rate
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FIG. 4. Evolution of the impurity-BEC interaction energy per
impurity particle applying a pump pulse to drive the impurities to the
spin-↑ state with gBI = 1.5

√
h̄3ω/m for a single (NI = 1) and two

(NI = 2) bosonic or fermionic impurities and also for a few-body
bath consisting of NB = 10 particles (see legend). In all cases gBB =
0.5

√
h̄3ω/m and gII = 0.

of 〈ĤBI (t )〉 /NI , seems to be enhanced for NB = 10 while for
the NB = 100 case it is more pronounced for the fermionic im-
purities. We remark that a saturation trend at long timescales
being in turn suggestive of the thermalization tendency of
the system occurs also for other observables. These include,
for instance, the dynamical structure factor (Appendix B) as
well as entropic measures [104,105] such as the von-Neumann
entropy [61,99,106] quantifying the degree of entanglement
(results not shown for brevity).

V. CHARACTERIZATION OF THE
RELAXATION DYNAMICS

We next explicate our method for characterizing the re-
laxation dynamics occurring in our setup during the hold
time td . To achieve this, we employ the ETH [84,86]. Within
this framework it is assumed that after a quench, the finite
subsystems of a larger extended system relax to a steady
state reminiscent of thermal equilibrium. Here, by fitting the
time-averaged one-body density of the impurities to a thermal
equilibrium one, we show that this thermalization process
explains the relaxed state of the impurities emanating for long
times after the orthogonality catastrophe of the polarons.

The relaxation of an isolated (closed) system is understood
in terms of the principle of local equivalence [107]. Within
this framework as the thermodynamical limit is approached,
i.e., the system size tends to infinity, the reduced density
matrices of the involved few-particle subsystems at long times
can be calculated in terms of the density matrix of a (gener-
alized) Gibbs ensemble at thermal equilibrium. Indeed, if the
only conserved quantity of the Hamiltonian is the total energy,
then it can be shown that these reduced density matrices can
be calculated in terms of the equilibrium density matrix within
the Gibbs ensemble

ρ̂Gibbs = 1

Z
e− Ĥ

kBTeff . (5)

In Eq. (5) Z is the partition function stemming from the
normalization of the density matrix, i.e., Tr[ρ̂Gibbs] = 1. Ĥ
refers to the MB Hamiltonian and Teff , kB correspond to the ef-
fective temperature and the Boltzmann constant, respectively.
Of course, our setup exhibits also other conserved quantities
than the total energy. Below we resort to the approximation
of no further symmetries as it is the only case that explicit
results showing the relaxation dynamics of the system are
available within ETH [107]. As we shall show later on,
the aforementioned choice leads to an excellent agreement
between our numerical findings and the relevant estimates
provided by applying Eq. (5). Within this approximation the
effective temperature, Teff , is fixed by the conserved value of
the energy per particle in the thermodynamic limit (TL),

lim
BEC→TL

Tr
[|�(0)〉〈�(0)|Ĥ]

NB
= lim

BEC→TL

Tr
[
ρ̂GibbsĤ

]
NB

. (6)

Here BEC → TL is defined as the limit where NB → ∞,
gBB → 0, NBgBB = const, and gBI/gBB = const. Notice, how-
ever, that Eqs. (5) and (6), are impractical for calculations
since the eigenvalues and eigenstates of the full interacting
Hamiltonian, Ĥ , are required for the evaluation of the Gibbs
ensemble of the (NB + NI ) MB ensemble which are difficult
if not impossible to obtain. For this reason, we simplify
the above-mentioned set of equations so as to obtain ex-
plicit results which can be subsequently compared with those
obtained by the time evolution of the (NB + NI ) MB sys-
tem within the multilayer multiconfiguration time-dependent
Hartree (ML-MCTDHX) approach.

Since we intend to employ the thermodynamic limit where
the MF Gross-Pitaevskii treatment of the BEC is exact in the
weak interaction limit [92], it is reasonable to assume that
the corresponding density operator of the Gibbs ensemble
acquires the product form ρ̂Gibbs = ρ̂

(NB )
B;Gibbs ⊗ ρ̂

(NI )
↑;Gibbs. Recall

that during the dark time all of the impurities are in their
spin-↑ state. In this case, the form of ρ̂↑;Gibbs is similar to
Eq. (5), namely

ρ̂
(NI )
↑;Gibbs = 1

Z↑
e− Ĥeff↑

kBTeff , (7)

where H eff
I is an effective Hamiltonian that acts only on the

impurity. Equation (7) greatly simplifies the description of our
system, since the density matrix of the impurity depends only
on the eigenvectors and eigenvalues of an NI -body effective
Hamiltonian. To proceed further we specify the form of Ĥ eff

↑ .
Within a zeroth-order approximation we assume that the BEC
acts solely as a potential barrier for the impurities, and as
consequence their effective Hamiltonian reads

Ĥ eff
↑ (t ) = −

NI∑
i=1

h̄2

2mI

d2

dx2
i

+ 1

2
mIω

2x2
i + gBIρ

(1)
B (xi; t ). (8)

Notice that this approximation for the effective potential is
a simplification of the impurity problem. First, it neglects,
among others, the renormalization of the impurity’s mass,
mI → meff

I , due to the presence of the BEC [59]. Second,
the presence of induced interactions between the impurities
cannot be captured [60].

The time dependence of the Hamiltonian of Eq. (8)
implies a nonstationary state for the impurities. However,
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it is well known that following an interaction quench
the density of the BEC is only slightly perturbed by
the motion of the impurities [59–61]. The latter jus-
tifies the substitution of the effective Hamiltonian by
its time-averaged value ˆ̄H eff

↑ = limT →∞ 1
T

∫
dtĤ eff

↑ (t ), since

ρ
(1)
B (xi; t ) ≈ limT →∞ 1

T

∫ T
0 dtρ (1)

B (xi; t ) for the density of the
bath. By incorporating the above-mentioned approximations
we obtain explicit forms for the one-body density of the
impurity within the Gibbs ensemble, namely

ρ
(1)
I;Gibbs(x, x′; Teff ) =

∞∑
i=1

ni(Teff )φi(x)φ∗
i (x′). (9)

Here ni(Teff ) is the distribution function of the NI particles and
φi refers to the eigenstates of ˆ̄H eff

↑ . Due to the small number
of impurities considered herein (NI = 1, 2) both the fermionic
and the bosonic impurities do not follow the appropriate,
for NI → ∞, Fermi-Dirac or Bose-Einstein distributions. In-
stead, it can be shown that the relevant distribution in the
case of a single particle or two bosons is the Boltzmann
distribution,

ni(Teff ) = Z (1)−1 exp

(
− εi

kBTeff

)
, (10)

with εi being the eigenvalues of ˆ̄H eff
↑ and Z (1) =∑∞

i=1 exp(− εi
kBTeff

). For two fermions the corresponding dis-
tribution reads

ni(Teff ) =
[

Z (2) − e
−εi

kBTeff (Z (1) − e
−εi

kBTeff )

Z (1) − e
−εi

kBTeff

e
εi

kBTeff + 1

]−1

,

(11)
where Z (2) = ∑∞

i=1 e− εi
kBTeff [Z (1) − e− εi

kBTeff ]. Note also that
the one-body density of the impurity, Eq. (9), depends only
on a single parameter, namely the effective temperature, Teff .

As shown earlier, the one-body density matrix
of the impurities, ρ

(1)
↑ (x, x′; t ), saturates to its time-

averaged value, i.e., ρ
(1)
↑ (x, x′; t → ∞) ≈ ρ̄

(1)
I (x, x′) =

limT →∞ 1
T

∫ T
0 dtρ (1)

↑ (x, x′; t ), for long hold times, as it
is evident in the relaxation dynamics of �ḡ(1) [see also
Fig. 2(e)]. In order to facilitate the comparison of our results
to the ETH prediction [Eq. (9)] we fit the averaged one-body
density matrix, ρ̄

(1)
↑ (x, x′), obtained within ML-MCTDHX

to the corresponding Gibbs ensemble, ρ
(1)
↑;Gibbs(x, x′; Teff ),

and extract the value of Teff . Our results for the best-fitted
parameters are shown in Fig. 5. We remark that the fitting is
performed on the level of ρ̄

(1)
↑ (x, x′), while only the diagonal

ρ̄
(1)
↑ (x) ≡ ρ̄

(1)
↑ (x, x) is presented in Fig. 5 in order to enhance

the visibility of the obtained results. By comparing the
time-averaged one-body density and the fitted Gibbs ensemble
prediction a very good agreement is observed for both one
[Fig. 5(a)] and two impurities of either bosonic [Fig. 5(b)]
or fermionic [Fig. 5(c)] nature. This result holds equally
also in the case of mass-imbalanced mixtures composed,
for instance, of heavy bosonic impurities, mI = 133/78mB

[see, e.g., Fig. 5(d)]. The above findings indicate that despite
the employed approximations the ETH scheme is able to
capture the main features exhibited by the relaxed state of the
impurities within our correlated MB system.
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FIG. 5. The time-averaged one-body density, ρ̄
(1)
↑ (x), within the

MB approach (light blue lines) compared to the best fit of the ETH
model, ρ (1)

↑;Gibbs(x; teff ) (dark red lines). Our results refer to (a) NI = 1,
(b) NI = 2 bosonic, and (c) NI = 2 fermionic mass-balanced, mI =
mB impurities. (d) Corresponds to the case of NI = 2 heavy, mI =
(133/78)mB, bosonic impurities.

Regarding the effective temperature we find rather large
values of Teff for one and two bosonic impurities that is of
the order of Teff ≈ 8h̄ω/kB. While for two fermions and two
heavier bosonic impurities the temperature is slightly smaller,
possessing values of the order of Teff ≈ 6h̄ω/kB. These large
values of the effective temperature are indicative of the in-
coherent character of the impurities after the probe pulse
[see also Fig. 2(d)]. To advance further the correspondence
between the ETH model and the correlated MB results we
estimate the effective temperature of the relaxed state by
expressing Eq. (6) only in terms of the impurity’s degrees
of freedom. Notice that the energy of the impurity is not
conserved during the MB evolution of our system due to the
presence of energy exchange processes between the impurity
and the bath. However, as evidenced in Fig. 4, the energy
of the impurities saturates for large times (see also Sec. IV).
Indeed, by taking advantage of this observation we can cast
Eq. (6) in the form

Ē↑ = lim
T →∞

1

T

∫ T

0
dt 〈�(t )|Ĥ − Ĥ0

B − ĤBB|�(t )〉

= Tr
[
ρ̂

(NI )
↑;Gibbs

ˆ̄H eff
↑

]
, (12)

where Ē↑ is the time-averaged impurity energy. In the case
of a single impurity, Eq. (12) gives an estimation for the
effective temperature of Teff = 8.56h̄ω/kB which is in good
agreement with the effective temperature obtained by fitting
Teff = 8.45h̄ω/kB. Note also here that the effective Hamil-
tonian of Eq. (8) is known to overestimate the zero-point
energy of the impurity since it neglects its dressing by the
excitations of the BEC [59]. This in turn explains the higher
Teff obtained via Eq. (12). In contrast, in the case of two
impurities the related estimates for Teff are much higher than
the ones obtained by the fitting of ρ̄

(1)
↑ (x, x′). Specifically,

Eq. (12) yields Teff = 10.28h̄ω/kB and Teff = 6.89h̄ω/kB for
the two bosonic and the two fermionic impurities, respec-
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tively. The observed discrepancy is attributed to the presence
of induced interactions between the impurities that are more
prevalent in the case of bosonic impurities than fermionic ones
[60]. However, their effect is neglected within the effective
Hamiltonian of Eq. (8).

VI. CONCLUSIONS

We have developed a PPS scheme to study the time-
resolved dynamics of fermionic and bosonic impurities im-
mersed in a harmonically confined BEC. Coherence proper-
ties and induced interactions are encoded in the probe spectra
for both attractive and repulsive interactions. Moreover, long-
lived attractive and repulsive polarons exist up to gBI ≈ gBB.
For gBI > gBB, with the dynamics being dominated by energy
redistribution processes, a rather rapid temporal orthogonality
catastrophe occurs. To explicitly showcase that energy redis-
tribution processes take place we have discussed the behavior
of the corresponding interspecies interaction energy which
decreases for short evolution times and thus captures the
energy transfer from the impurities to the environment. Fur-
thermore, it shows a saturation tendency for large evolution
times, a behavior that is indicative of a relaxation process
of the impurities. Indeed, at longer times (td > 100ω−1),
where any coherence information is lost, a thermalized state
is reached. To further characterize the aforementioned relax-
ation dynamics we have resorted to an effective ETH model
which has enabled us to identify that for strong interspecies
couplings and long evolution times the impurities acquire an
effective temperature. This effective temperature is found to
be smaller for the fermionic impurities than the bosonic ones.
Importantly, we have found that the thermalization process is
independent of the size of the bath and the impurity concen-
tration, the interacting nature of the impurities as well as their
flavor and mass.

It would be intriguing to utilize PPS at finite temperature
[108,109] and also in higher dimensions to explore the time-
resolved formation of quasiparticles. As further perspectives,
PPS could be exploited to unravel recondensation dynamics
[110,111] in excited bands of optical lattices and the dynamics
of vibrational states of ultra-long-range Rydberg molecules
[112,113] to infer their lifetime.
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APPENDIX A: DETAILS OF THE REVERSE
RADIOFREQUENCY SPECTROSCOPY

Let us elaborate on the model that allows for the simulation
of the MB dynamics under the influence of radiofrequency
fields [5,36]. This model has been employed in the main
text for the characterization of the coherence properties of
polaronic quasiparticles in the context of PPS.

In our case few atomic impurities are immersed in a
BEC environment close to an interspecies magnetic Feshbach
resonance [114]. The case of bosonic impurities possessing
equal mass to the BEC atoms can be realized by employing
different hyperfine states of a particular isotope, e.g., 85Rb
or 87Rb. For fermionic impurities the equal-mass scenario
occurs approximately, e.g., for 173Yb impurities immersed in
a 174Yb BEC with mass ratio of mB/mI ≈ 1.006. Different
masses for the impurities and the BEC atoms can be realized
by invoking different atomic species, e.g., considering 87Rb
and 133Cs [115]. Typically broad Feshbach resonances occur
at magnetic fields of the order of 800G [114], referring to a
regime where the atoms experience a sizable Zeeman shift.
This sizable Zeeman shift allows us to address selectively
the distinct mF transitions provided that the intensity of the
radiofrequency pulse results in a Rabi frequency �R much
smaller than the Zeeman splitting of the involved hyperfine
levels. The latter is typically of the order of a few tenths of
MHz. This large splitting of the different mF levels implies
that magnetic phenomena such as spin-exchange interactions
can be safely neglected for these values of the magnetic field,
see also Appendix C.

In this work we consider two hyperfine levels of the
impurity atoms, denoted as |↑〉 and |↓〉. These states can be
identified and resonantly coupled for a frequency ν0, cor-
responding to the Zeeman splitting between the two levels,
when a BEC environment is absent. Due to the harmonic
confinement of the atoms each of the hyperfine levels is
further divided into states of different atomic motion. The
average spacing between these sublevels is of the order of
the harmonic trap frequency, h̄ω lying within the range of a
few tenths of h × Hz to a few h × kHz in typical ultracold
atom experiments [78,117]. In the vicinity of a Feshbach
resonance the energy of these sublevels strongly depends on
the interspecies interaction strength, gBI , between the impurity
atoms in the resonantly interacting hyperfine state and their
BEC environment. Accordingly, the energy of each motional
state shifts by �+(gBI ) from the corresponding noninteracting
one. As is also made obvious within the main text [see
Fig. 1(b)] this shift is of the order of ω to ∼10ω. There-
fore, due to the separation of the different involved energy
scales it suffices to treat the impurities as two-level atoms.
Furthermore, even for �

β

R0 � �+ ∼ kHz where the regime
of strong intense pulses is accessed, �

β

R0 � ν0 ∼ 10 MHz,
allowing us to invoke the rotating wave approximation. Notice
here that β ∈ {pump, probe, dark}. Within this approximation
and in the interaction picture of the |↑〉 ↔ |↓〉 transition,
the Hamiltonian for the internal state of the impurities reads

ĤS = − h̄�β

2 Ŝz + h̄�
β

R0
2 Ŝx, which is exactly the form employed

in Eq. (1) of the main text. �
β

R0 and �β = νβ − ν
β

0 refer
respectively to the (bare) Rabi frequency and the detuning
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FIG. 6. (a) Schematic illustration of the employed PPS pulse
sequences. The involved spin configuration at each state of the
dynamics is also provided. (b) Expected time evolution of the pop-
ulation of spin-↑ atoms during the PPS sequence. The inset depicts
the evolution of 〈N̂↑(t )〉/NI during the application of the optical burst
pulse (blue line) and the approximation of employing the projection
operator P̂ at t = 0 (dark red line).

with respect to the resonance of the |↑〉 ↔ |↓〉 transition
at gBI = 0. We remark that the |↑〉 and |↓〉 states in the
Schrödinger and interaction pictures are equivalent, so our
conclusions are invariant under this frame transformation
[118].

To populate the polaronic states we employ a pump pulse
of rectangular shape as depicted in Fig. 6(a). The system
is initialized in the noninteracting ground state where the
impurity atoms are spin polarized in their |↓〉 state. The
pump pulse is characterized by frequency νpump, and a de-
tuning �pump is employed. This pulse is further characterized
by an exposure time te and a bare Rabi-frequency �

pump
R0 .

Different realizations utilize different detunings �pump and
exposure times te but the same �

pump
R0 . In the duration of

the pulse the system undergoes Rabi oscillations which for
strong-enough pulses �

pump
R0 
 ω are well characterized by a

Rabi frequency �R(�pump) =
√

(�pump
R+ )2 + (�pump − �+)2,

where �
pump
R+ and �+ are the corresponding resonance values.

By fitting the spectroscopic signal, which is the fraction of
atoms transferred to the |↑〉 hyperfine state, to the theoretical
line shape for rectangular pulses reading

〈N̂↑(t )〉
NI

=
[

�
pump
R+

�
pump
R (�pump)

]2

sin2

[
�

pump
R (�pump)te

2

]
, (A1)

these resonance values of �
pump
R+ and �+ can be obtained.

Note here that the line shape [Eq. (A1)] exhibits an infinite
sequence of peaks at the locations, �

pump
n , n = 0,±1, . . . ,

given by the solutions of

�
pump
R (�pump)te

2
= tan

[
�

pump
R (�pump)te

2

]
(A2)

for �pump. Solving numerically Eq. (A2) we can identify
the location of the three first peaks at positions �

pump
0 =

�+ and �
pump
±1 ≈ �+ ± �

pump
R+

√
( 8.9868
�

pump
R+ te

)2 − 1. Their corre-

sponding amplitudes read A0 = sin2( 1
2�

pump
R+ te) and A±1 ≈

0.01179(�pump
R+ te)2. In order to achieve a high spectroscopic

signal, 〈N̂↑(td )〉 /NI , we set the exposure time to te = π/�
pump
R+

(to the obtained fitting accuracy) ensuring that A0 ≈ 1. This
choice implies that the peaks at �

pump
±1 are clearly imprinted

in the obtained spectrum possessing an amplitude A±1 ≈
0.116438. Indeed, these side peaks can be clearly identified
in Fig. 1(b).

To infer about the coherence properties of the polaronic
states we employ PPS, see Fig. 6(a). Initially, we prepare the
system in the same noninteracting ground state as in the previ-
ously examined protocol and apply a rectangular π pulse, with
�

pump
R0 = 10ω and te = π/�

pump
R+ on a polaronic resonance

where we have identified the resonant �
pump
R+ and �

pump
+ as

explained above. This sequence transfers the atoms from the
ground state to the polaronic state in a very efficient manner,
see Fig. 6(b). Then the impurity atoms are projected to the
spin-↑ state by employing an optical burst transition on the
lowest hyperfine state | ↓〉 to an available P electronic level at
t = 0 which essentially ejects all the spin-↓ atoms from the
trap. This procedure has been simulated by the application of
the operator ĤP = −ih̄�

∫
dx �̂

†
↓(x)�̂↓(x) over a short time

interval tb. We can numerically verify that for large � > 100ω

and small tb � ω−1 (corresponding to the experimentally
relevant values) the action of ĤP to the state after the pump
pulse is equivalent to the projection of the impurity to the
spin-↑ configuration. For this reason and for computational
simplicity we employ the state |�(t = 0+)〉 = P̂|�(t=0− )〉

||P̂|�(t=0− )〉|| as
an initial state for the subsequent time evolution t > 0. Note
that this sequence for �

pump
R � ω is approximately equivalent

to an interaction quench, as the pump-pulse has almost no
spectral selectivity due to the pronounced power broadening
of the radiofrequency transition, as �

pump
R ∼ �

pump
+ and the

fact that the out-of-equilibrium dynamics is effectively frozen
due to the small timescale te = π/�

pump
R � ω−1. Indeed,

these properties of the pump-pulse have been verified numer-
ically for the selected parameters �

pump
R0 and �pump as the MB

state after this pulse is found to possess a fidelity in excess of
90% to the initial one.

After the pump sequence is completed we let the system
evolve in the absence of radiofrequency fields, �dark

R0 = 0, for
a dark time, td . Finally, we apply a second probe π pulse with
a smaller �

probe
R0 = 1ω to the first one and varying �

probe
+ to

transfer the atoms from the polaronic to the initial ground
state. The employed spectroscopic signal is the fraction of
atoms that have been deexcited by the probe pulse (recall that
within our scheme all of the particles are at td in the spin-↑
state) divided by the total number of impurities, 〈N↓(td )〉

NI
. Note

that a smaller �
probe
R0 , when compared to �

pump
R0 , is employed

in order to reduce the power broadening during the probe
sequence and subsequently increase the resolution in terms
of detuning. However, this value cannot be arbitrarily lowered
since for decreasing probe intensities the frequency resolution
is increased at the expense of lower temporal resolution.
For such low intensities the motional state of the spin-↑
impurities is significantly altered during the application of the
probe pulse. As a heuristic argument the relation δνδt ≈ 1
that connects the temporal (δt) and spectral (δν) resolution
is commonly employed [119]. The value of �

probe
R0 = 1ω is

selected within this work as it consists an adequate trade-off
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between the spectral and the temporal resolution. Finally, due
to the rectangular shape of the probe pulse the exhibited line
shape of 〈N̂I (td )〉

NI
is given by Eq. (A1) as long as the impurity is

coherent, i.e., |g(1)(x, x′; td )| ≈ 1. Accordingly, in our analysis
we attribute all fringes appearing in the spectra to the line
shape of a single resonance if the ratio of the amplitude of
two neighboring peaks satisfies An+1

An
< 0.12.

APPENDIX B: COMPARISON WITH
RAMSEY SPECTROSCOPY

Next we demonstrate the advantage of utilizing the
PPS scheme in comparison to Ramsey spectroscopy. In
particular, we explicitly showcase the differences between
the predictions of the PPS and the Ramsey schemes for
intriguing phenomena exhibited by our system including
the TOC and the thermalization process. To achieve this
comparison we have simulated the Ramsey response of our
system following the scheme described in Refs. [59,60]. The
main facet of this Ramsey protocol is that by applying an
intense radiofrequency pulse to the initially noninteracting
with the bath spin-↓ impurities we transfer them into a
superposition state |↑〉+|↓〉√

2
, where the state |↑〉 interacts

with the bosonic medium. Thus, the time-evolved MB wave
function, e.g., of a single impurity is given by |�(t )〉 =
(1/

√
2)e−iĤRt/h̄ |�0

BI〉 |↑〉 + (1/
√

2)e−iE0t/h̄ |�0
BI〉 |↓〉. Here

ĤR = Ĥ0
B + ĤBB + Ĥ0

↑ + Ĥ0
↓ + ĤBI as introduced in

Sec. II, |�0
BI〉 is the spatial part of the initial MB wave

function (see also Appendix D), and E0 refers to the
corresponding eigenenergy. In this protocol the structure
factor, |S(t )| = | 〈�0

BI |eiE0t/h̄e−iĤRt/h̄|�0
BI〉 |, of the system is

monitored by inspecting the magnitude of the impuritys’ spin
| 〈Ŝ(t )〉 |.

According to our discussion in Sec. III it becomes apparent
that time-dependent phenomena such as the TOC and the
consecutive thermalization of the impurities can be clearly
tracked in an experimentally relevant fashion via employing
the temporarily resolved PPS scheme. Indeed, Figs. 1(i)–1(k)
in the main text reveal that TOC takes place already for td =
2ω−1, with the presence of quasifree impurities at �probe ≈ 0
being also readily imprinted in the probe spectrum. On the
contrary, the only information that Ramsey spectroscopy con-
veys is the value of the structure factor, |S(t )|. Importantly, it
does not deliver any further insights about the physical origin
of its decreasing tendency and thus the underlying physical
processes, see in particular Figs. 7(a) and 7(b). Indeed, for
t < 10ω−1 |S(t )| oscillates having a minimum value of 0.4
when gBI = 1.5

√
h̄3ω/m and thus does not provide any clear

signature for the emergence of the TOC identified using PPS.
Along the same lines for gBI = 1.5

√
h̄3ω/m > gBB, namely

after the TOC manifests itself, a thermalization tendency is
clearly imprinted in the probe spectrum [see Figs. 3(g)–3(i)]
with a predominant peak appearing at �probe ≈ 0. In other
words, the dynamics after the decay of the strongly (gBI >

gBB) repulsive Bose polarons leads to a quasistationary state
of the MB system with respect to the energy redistribution
among the different dynamical modes, providing this way
strong evidences toward a thermalized state. This mechanism
cannot be even suggested by invoking the contrast com-
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FIG. 7. (a) Time evolution of the structure factor of one im-
purity at different impurity-BEC interaction strengths (see legend).
(b) Dynamics of the structure factor depicted in (a) of one impurity
for gBI = 1.5

√
h̄3ω/m over a longer timescale. The bosonic bath

contains NB = 100 bosons. The system is initialized in its ground
state with gBI = 0.

puted within the above-discussed Ramsey scheme. Indeed, the
Ramsey scheme only indicates the tendency toward thermal-
ization due to the decreasing behavior of the structure factor
which, however, fluctuates within the depicted time interval.

APPENDIX C: DIMENSIONAL REDUCTION OF THE
MANY-BODY HAMILTONIAN FROM THREE TO

ONE DIMENSIONS

We consider an ensemble of confined ultracold atoms in
three different hyperfine states, denoted as B, ↑, and ↓. State
B is occupied by bosonic bath particles and the ↑ and ↓
states constitute a pseudo-spin-1/2 subsystem. We assume
that state B belongs to a different manifold of hyperfine
states with respect to the total angular-momentum quantum
number, F , than the other two pseudospin states. The system
is optically trapped and therefore all of the above hyperfine
states experience the same confinement.

The ab initio Hamiltonian of this multicomponent system
reads Ĥ = Ĥ0 + ĤSD + ĤI. The spin-independent part Ĥ0 is
given by

Ĥ0 =
∫

d3r
∑

σ∈{B,↑,↓}
ψ̂†

σ (r)

[
− h̄2

2m
∇2 + V0(r)

]
ψ̂σ (r), (C1)

where m is the mass of the chemical element and V0(r) refers
to the confining potential.

By imposing a homogeneous magnetic field, along the z-
direction, the energy of the magnetic sublevels characterized
by different mF shift due to the Zeeman effect. Accordingly,
the state-dependent part of the Hamiltonian is expressed as

ĤSD = EBN̂B + E↑ + E↓
2

N̂I

+ E↑ − E↓
2

∑
α,β∈{↑,↓}

∫
d3r ψ̂†

α (r)σ z
αβψ̂β (r). (C2)
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where σ z
αβ corresponds to the spin-z Pauli matrix and Eσ

is the energy of the atomic state of species σ ∈ {B,↑,↓}.
The typical energy difference between hyperfine levels pos-
sessing different F is of the order of several h × GHz. In
particular, for 87Rb the hyperfine splitting between the two
lowest hyperfine manifolds F = 1 and F = 2 is EF=2 −
EF=1 ≈ h × 6.83 GHz [116]. Additionally, the amplitude of
the Zeeman energy shifts is also of the order of h× MHz/G.
For instance, in 87Rb this amplitude is of the order of ∼0.7 h×
MHz/G [116]. Furthermore, in the same species quadratic
Zeeman shifts that lead to a nonequidistant distribution of
magnetic sublevels possessing an amplitude of several h ×
MHz can be observed already for magnetic fields of the order
of ∼10 G [116]. Typical ultracold atom experiments involve
interaction energies ranging from hundreds of h × Hz to a
few h × kHz generating this way interaction energy shifts
and spin-exchange processes characterized by energies of the
same order of magnitude. Therefore, except for the case where
the magnetic field applied is of the order of few Gauss, the
spin-exchanging collisions are strongly suppressed [120].

Operating in the ultracold limit dominated by s-wave scat-
tering [92] the interaction Hamiltonian can be expressed as
[121]

ĤI =
∑
σ,σ ′

4π h̄2aσσ ′

m

∫
d3r ψ̂†

σ (r)ψ̂†
σ ′ (r)ψ̂σ ′ (r)ψ̂σ (r). (C3)

The scattering lengths aσσ ′ , with σ ′ ∈ {B,↑,↓}, can be tuned
via a Fano-Feshbach resonance between two distinct hyper-
fine levels [114].

In order to effectively reduce the dimensionality of the
above system from 3D to 1D a strong confinement along the
two perpendicular spatial directions is usually employed [93].
Then the confining potential reads

V0(r) = 1
2 mω2x2 + 1

2 mω2
⊥(y2 + z2), (C4)

where ω⊥ 
 ω holds for the transverse and longitudinal
trapping frequencies. Note that the potential of Eq. (C4) can
be realized either by a single optical dipole trap [120] or
by applying a deep two-dimensional optical lattice potential
[42,122]. To access the 1D regime, the frequency of the trans-
verse confinement ω⊥ has to be selected such that the excited
states of the harmonic trap along the transverse directions
(y, z) are not populated. The condition for a 1D BEC is
well known [93] and reads NBaBBα⊥/α2 � 1, where α⊥ =√

h̄/mω⊥ and α = √
h̄/mω. In the few atom case, referring to

the impurity species, a sufficient condition for accessing the
1D limit is ω⊥ 
 Nω [123]. Indeed, under this assumption it
is known that even in the strong interaction limit the system
behaves as a Tonks-Girardeau gas of hard-core bosons sharing
some characteristics with a gas of free fermions of the same
particle number [124,125]. Properties of such fermionized 1D
bosons have been probed experimentally in Refs. [126,127].

Accordingly, the corresponding 3D field operators can be
expressed in terms of 1D ones as follows:

ψ̂†
σ (r) =

√
mω⊥
π h̄

e− mω⊥
2h̄ (y2+z2 )ψ̂†

σ (x). (C5)

By employing Eq. (C5) we can then evaluate straightfor-
wardly the reduced 1D effective Hamiltonian for Ĥ0 + ĤSD

which takes the form

Ĥ0 + ĤSD = E↑ − E↓
h̄

Ŝz +
∑

σ∈{B,↑,↓}

∫
dx ψ̂†

σ (x)

×
(

− h̄2

2m

d2

dx2
+ 1

2
mω2x2

)
ψ̂σ (x). (C6)

Here all terms contributing to the total energy shift for con-
stant NI and NB are dropped while the Ŝz operator reads

Ŝz = h̄

2

∫
dx [ψ̂†

↑(x)ψ̂↑(x) − ψ̂
†
↓(x)ψ̂↓(x)]. (C7)

The dimensional reduction of ĤI is, however, more com-
plicated. In particular, the phenomenon of the confinement
induced resonance [91,128] occurs when α⊥ = √

h̄/(mω⊥)
is comparable to aσσ ′ . This implies that the actual 1D cou-

pling constant deviates from gMF
σσ ′ = 2h̄2aσσ ′

ma2
⊥

[93], which is
obtained by evaluating the integrals appearing in Eq. (C3)
along the transverse (y, z) directions. Detailed theoretical
and experimental investigations [91,128] reveal that the 1D
coupling strength gσσ ′ possesses a simple analytical form, i.e.,
gσσ ′ = gMF

σσ ′ (1 − |ζ (1/2)|aσσ ′√
2a⊥

)−1, and the effective 1D interac-
tion Hamiltonian simplifies to

ĤI =
∑
σ,σ ′

gσσ ′

∫
dx ψ̂†

σ (x)ψ̂†
σ ′ (x)ψ̂σ ′ (x)ψ̂σ (x). (C8)

Note here that due to the double counting for intraspecies
interaction terms in Eq. (C8), the parameter gBB appearing in
the latter is two times larger than the corresponding one that
is involved in Eq. (1).

According to the above discussion, for the experimental
implementation of the setup described in the main text the
interaction parameters, gBB, gBI , and gII , used herein are
related to the corresponding 3D scattering lengths as follows:

aσσ ′ = α⊥
2g̃σσ ′√

2|ζ (1/2)|g̃σσ ′ + 8η
. (C9)

Here g̃σσ ′ = gσσ ′/
√

h̄3ω/m refers to the dimensionless inter-
action strength and η = α/α⊥ = √

ω⊥/ω is the aspect ratio.
Furthermore, BECs involving particle numbers of the order
of NB ∼ 100 are already accsessible by current state-of-the-
art experimental settings, e.g., in optical lattice experiments
[42,122]. Finally, it is worth commenting that three-body
recombination processes are highly suppressed for alkali
ultracold atomic vapors, as the one considered herein. For
instance, for a 87Rb BEC and in the presence of three-body
recombination a lifetime of 14.8 s has been reported [129].
Note also that the rate of three-body recombination scales
with the cube of the density and, as a consequence, this effect
is negligible for the mesoscopic system under consideration
which involves low densities.

APPENDIX D: THE MANY-BODY VARIATIONAL
METHODOLOGY: ML-MCTDHX

To track the stationary properties and, most importantly,
the MB quantum dynamics of the multicomponent system
addressed in the main text, we resort to the ML-MCTDHX
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[94–96]. It constitutes an ab initio variational method for solv-
ing the time-dependent MB Schrödinger equation of atomic
mixtures possessing either bosonic [57,99,130] or fermionic
[39,106,118,131] spinor components. A major advantage of
this approach is the expansion of the total MB wave function
with respect to a time-dependent and variationally optimized
basis (see below). This allows us to capture all the relevant
inter- and intraspecies correlations of a multicomponent sys-
tem in an efficient manner at each time instant by utilizing a
reduced number of basis states when compared to expansions
relying on a time-independent basis.

The system considered in the main text consists of a
bosonic bath (B) with NB = 100 atoms and either one (NI =
1) or two (NI = 2) impurity (I) atoms. Most importantly, the
impurities being either bosons or fermions possess an internal
pseudospin-1/2 degree of freedom [59,90]. To account for
interspecies correlations, the MB wave function |�(t )〉 is
expressed according to a truncated Schmidt decomposition
[99,130,132] in terms of D different species functions, i.e.,
|�σ

k (t )〉, for each component σ = B, I . We remark that the
time-dependent species functions |�σ

k (t )〉 form an orthonor-
mal Nσ -body wave function set within a subspace of the
σ -species Hilbert space Hσ [94]. Then the MB wave function
|�(t )〉 ansatz reads

|�(t )〉 =
D∑

k=1

√
λk (t )

∣∣�B
k (t )

〉∣∣�I
k (t )

〉
, (D1)

where the time-dependent Schmidt weights λk (t ) are also
known as the natural species populations of the kth species
function and provide information about the degree of entan-
glement between the individual subsystems. For instance, if
two different λk (t ) are nonzero, then |�(t )〉 is a linear super-
position of two states and therefore the system is entangled
[132,133] or interspecies correlated. On the other hand, in the
case of λ1(t ) = 1, λk>1(t ) = 0, the wave function is a direct
product of two states and the system is nonentangled.

Next, in order to include intraspecies correlations into our
MB wave function ansatz, each species function |�σ

k (t )〉 is
further expanded on a time-dependent number-state basis set
|�n(t )〉σ . Namely

∣∣�σ
k (t )

〉 =
∑

�n
Aσ

k;�n(t )|�n(t )〉σ , (D2)

where Aσ
k;�n(t ) denote the underlying time-dependent expan-

sion coefficients. Moreover, each number state |�n(t )〉σ cor-
responds to a permanent for bosons or a determinant for
fermions building on dσ time-dependent variationally op-
timized single-particle functions (SPFs), i.e., |φσ

l (t )〉, with
l = 1, 2, . . . , dσ , being characterized by occupation numbers
�n = (n1, . . . , ndσ ). Additionally, the SPFs are expanded with
respect to a time-independent primitive basis. For the majority
species, this primitive basis corresponds to an M dimensional
discrete variable representation denoted in the following by
{|q〉}. However, for the impurities the primitive basis refers
to the tensor product {|q, s〉} of the discrete variable repre-
sentation basis regarding the spatial degrees of freedom and
the two-dimensional pseudospin-1/2 basis {|↑〉 , |↓〉}. Con-
sequently, each SPF of the impurities acquires the following
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FIG. 8. Evolution of the one-body coherence absolute deviation
�GC,C′ (t ) between the C = (10; 3; 8) and other orbital configura-
tions C′ = (D; dB; dI ) (see legend) for (a) gBI = 0.5

√
h̄3ω/m and

(b) gBI = 1.5
√

h̄3ω/m. In all cases NB = 100, NI = 2 with gBB =
0.5

√
h̄3ω/m and gII = 0 while initially gBI = 0.

spinor wave function form:

∣∣φI
j (t )

〉 =
M∑
q=1

(
BI

jq↑(t ) |q〉 |↑〉 + BI
jq↓(t ) |q〉 |↓〉 )

. (D3)

Here BI
jq↑(t ) [BI

jq↓(t )] are the time-dependent expansion co-
efficients of the pseudospin-↑ and ↓ respectively, see also
Refs. [59,118].

Having exemplified the MB wave-function ansatz and in
order to address the time evolution of the (NB + NI )-body
wave function |�(t )〉 obeying the Hamiltonian of Eq. (1)
provided in the main text we then numerically solve the
so-called ML-MCTDHX equations of motion [94]. These
equations are determined by following the Dirac-Frenkel
[134,135] variational principle for the generalized ansatz of
Eqs. (D1), (D2), and (D3). In this way, we obtain a set
of D2 linear differential equations of motion for the λk (t )
coefficients coupled to D( (NB+dB−1)!

NB!(dB−1)! + (NI+dI −1)!
NI !(dI −1)! ) nonlinear

integrodifferential equations for the species functions and
dB + dI nonlinear integrodifferential equations for the SPFs.

APPENDIX E: CONVERGENCE OF THE
MANY-BODY SIMULATIONS

The Hilbert space truncation within the ML-MCTDHX
method is determined by the considered orbital configuration
space, i.e., C = (D; dB; dI ). In this notation, D = DB = DI

and dB and dI denote the number of species functions and
SPFs respectively for each species [Eqs. (D1) and (D2)].
Moreover, within our numerical calculations we employ a
primitive basis based on a sine discrete variable represen-
tation for the spatial part of the SPFs with M = 600 grid
points. This sine discrete variable representation intrinsically
introduces hard-wall boundary conditions at both edges of
the numerical grid which in our case are located at x± =
±50

√
h̄/mω. We assured that the location of the hard-wall

boundaries does not impact our findings since no significant
density portion occurs beyond x± = ±20

√
h̄/mω. The eigen-

states of the multicomponent system are obtained by utilizing
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the so-called improved relaxation method [94–96] within
ML-MCTDHX. To address the corresponding nonequilibrium
dynamics, we numerically solve the ML-MCTDHX equa-
tions of motion using the MB wave function [Eq. (D1)]
under the influence of the Hamiltonian (1) of the main
text.

To testify the convergence of the MB results we ensured
that all observables of interest are to a certain level of ac-
curacy insensitive for a varying orbital configuration space,
C = (D; dB; dI ). Note that for the MB simulations discussed
in the main text we relied on the orbital configuration C =
(10; 3; 8). To infer the convergence of our results we exem-
plarily showcase below the behavior of the spatially integrated
one-body coherence function, g(1)(x, x′; t ), for different num-
ber of species and SPFs in the course of time. In particular we
calculate its normalized absolute deviation between the C =
(10; 3; 8) and other orbital configurations C′ = (D; dB; dI ),
namely

�GC,C′ (t ) =
∫

dxdx′∣∣g(1)
C (x, x′; t ) − g(1)

C′ (x, x′; t )
∣∣∫

dxdx′g(1)
C (x, x′; t )

. (E1)

The dynamics of �GC,C′ (t ) is illustrated in Fig. 8 for the mul-
ticomponent bosonic system consisting of NB = 100 atoms
and NI = 2 noninteracting impurities upon considering the
pump spectroscopic sequence introduced in Sec. A from
gBI = 0 either to gBI = 0.5

√
h̄3ω/m [Fig. 8(a)] or toward

gBI = 1.5
√

h̄3ω/m [Fig. 8(b)]. Evidently, a systematic conver-
gence of �GC,C′ (t ) is achieved in both cases. Indeed, closely
inspecting �GC,C′ (t ) for gBI = 0.5

√
h̄3ω/m we observe that

the deviation between the C = (10; 3; 8) and C′ = (10; 4; 6)
[C′ = (10; 3; 10)] orbital configurations remains below 3.8%
(1.2%) in the entire time evolution [Fig. 8(a)]. On the other
hand, for increasing gBI , �GC,C′ (t ) takes larger values as
shown in Fig. 8(b). For instance, at gBI = 1.5

√
h̄3ω/m the rel-

ative error �GC,C′ (t ) with C = (10; 3; 8) and C′ = (10; 4; 6)
[C′ = (10; 3; 10)] becomes at most of the order of 5.2% [3%]
at long evolution times t > 150ω−1. It is also worth mention-
ing at this point that for all other observables and interspecies
interaction strengths discussed in the main text a similar
degree of convergence takes place (results not shown here for
brevity).
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Chapter 5

Conclusions and Outlook

In this cumulative dissertation we have investigated the dynamics of spinor ultracold
atoms that are either isolated or interact with a more extensive Fermi or Bose gas.
In particular, by exploiting the spin-degrees of freedom, inherent in these setups, we
have analyzed the magnetic properties of one dimensional few-body spinor Fermi gases
[K1,K2] and the dynamical formation of Fermi [98,116,144,145] and Bose [91,182,183]
polarons when the spinor atoms are immersed in a fermionic or bosonic environment
respectively [K3–K6]. In all of these cases we have demonstrated that the spin of
these systems allows us to access information regarding the nature and development of
correlations during their dynamics, which is difficult to obtain both experimentally, as
well as, theoretically in the spinless case. In this final section we summarize our key
findings regarding the physics of the above mentioned systems and provide intriguing
perspectives for future studies.

Regarding the study of the dynamics, emanating in confined spin-1/2 fermions,
we have unraveled the stability properties of states, regarded within the framework of
the Stoner instability [104] as ferromagnetic, when correlations are fully taken into ac-
count [K1,K2]. Those states appear within the Stoner model for repulsive interactions
exceeding a threshold value of the interaction strength. Particularly, they refer to con-
figurations exhibiting phase separated spin-components or a non-zero spin-polarization
of the ensemble. The spin-symmetries of the system play a crucial role in [K1, K2].
Indeed, in the absence of additional fields, the total-spin and its projections commute
with the total Hamiltonian of the spinor Fermi gas and therefore, the total Hilbert space
can be decomposed in different manifolds, according to these conserved quantities. It
is evident that breaking these symmetries crucially alters the stability properties of the
initial state. The systematic study of such systems with broken symmetries unveils
the magnetic mechanisms that either protect the initial state or drive the system to a
different spin-manifold. The role of the external confinement within our investigations
is twofold. First, it allows for experimentally feasible setups and detection schemes.
Second, it enables the creation of reduced effective models, as the many-body state of
the spinor fermions can be expanded on the different participating energetic channels
of the system.
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CONCLUSIONS AND OUTLOOK

In order to study the stability of the fully polarized state we have employed a
parabolically confined few-fermion spin-1/2 Fermi gas, whose spin-components are Rabi
coupled by an inhomogeneous field [K1]. This inhomogeneous field breaks both the
total-spin and the spin-z symmetry. During the dynamics we have observed that the
magnitude of the spin vector fluctuates for all interaction strengths, showing that the
corresponding polarized state is dynamically unstable. In contrast, there is an interac-
tion regime where the spin-spin correlations are stable throughout the dynamics. These
results point towards the presence of ferromagnetic spin-spin interactions stabilizing the
spin-spin correlations [139–141], while the magnetization remains unstable. An effec-
tive XXZ model, being a generalized version of the one introduced in [135] is shown
to be able to reproduce to a large extent the magnetization dynamics in the weak and
intermediate interaction regimes, indicating that the magnetic processes in the system
deviate from the framework of the Stoner model.

However, the origin of these magnetic mechanisms became clear only when we
have considered the fate of the system initialized in a state with phase separated spin-
components [K2]. More specifically, we have initialized the system in a phase separated
state consisting of all spin-↑ particles occupying one well and all of the spin-↓ parti-
cles occupying the other well [97]. This implies that the spin-spin correlations within
each individual well are ferromagnetic. The coupling among the wells is the only pro-
cess that can disrupt the magnetic order of the particles. In particular, it is found
that the inter-well interactions, stemming from the particle tunelling, are of antifer-
romagnetic character, in accordance also to the Anderson antiferromagnetic exchange
interaction [142]. The interplay between the ferromagnetic intra-well interactions and
the antiferromagnetic intersite ones can be characterized within an effective spin-chain
model that stems from the weak-coupling expansion of the interaction Hamiltonian
corresponding to a Fermi gas, see Eq. (2.47).

The model we have put forward, constitutes a tJU model, incorporating effects
stemming from tunnelling among the wells of the double-well (t), ferromagnetic ex-
change interactions (J) within each well and on-site interactions (U), stemming from
the double occupation of a particular single-particle level by two anti-oriented spins.
The explanation of the itinerant ferromagnetic processes, emanating in 1D systems by
this model extends the well-established Stoner model of ferromagnetism [104]. As al-
ready discussed, the concept of Stoner instability relies on the competition of kinetic
and interaction energies. Our approach considers a more fundamental interplay, on
the level of competing spin-spin interactions. Particularly, the spin-spin interaction at-
tributed to the kinetic energy, being expressed in terms of the tunnelling of fermions in
the double-well structure is antiferromagnetic and corresponds exactly to the Anderson
exchange interaction [142]. Simultaneously, the system also incorporates ferromagnetic
interactions due to the density-density repulsion of anti-oriented spins, residing in dis-
tinct single-particle states. The latter interaction mechanism is also well-known and
refers to the so-called Hund interaction [139–141]. This simultaneous presence of both
ferromagnetic and antiferromagnetic interactions is a particularly important feature,
since it promotes the development of states possessing non-trivial spin-spin correla-
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tions. All in all, the above demonstrate that itinerant ferromagnetism is a particularly
involved phenomenon even within the simplest context of an 1D system. Nevertheless,
such systems provide the insight that, when correlations are explicitly and fully taken
into account, the itinerant ferromagnetism seems to occur due to inter-band interactions
rather than the energetics within a single-band.

There are mainly two paths for the extension of the above mentioned findings in
future endeavors. The first refers to the systematic generalization of the above men-
tioned findings in higher dimensions. One key element, inherent in multidimensional
setups, that 1D ensembles lack, is the concept of degeneracy of single-particle lev-
els [247]. This degeneracy is usually associated with the symmetry properties of multi-
dimensional potentials. A typical example is the invariance of central potentials under
rotations that induces degeneracies in the single-particle spectrum, connected with the
conservation of the third projection of the particles angular momentum. Importantly,
there is also the case of accidental degeneracies that are not connected to any apparent
symmetries of the system. Therefore, a fruitful extension of our work is the study
of the impact of single-particle degeneracies of either kind to the magnetic proper-
ties of fermions. Such studies might allow for a direct comparison of our findings to
multidimensional ensembles consisting of a macroscopic number of particles, as in the
experiments [94, 96–98, 100, 101]. Indeed, in the latter case a large density of states is
involved at the Fermi level, implying a high degree of degeneracy. It is worth investi-
gating whether this macroscopic degeneracy dominates the magnetic properties of such
systems and how the weak-coupling expansion of Eq. (2.47) needs to be modified, in
order to theoretically track such systems in the level of approximation which we have
proposed in this thesis.

The second extension refers to the study of multi-well systems and networks thereof.
In particular, the studies [K1,K2] have revealed that the spin-spin interactions among
unpaired fermions in different bands are inherently ferromagnetic, while the corre-
sponding interactions among different sites are of antiferromagnetic character. The
study of multi-well setups also allows for examining the range of the magnetic order,
resulting from the above mentioned spin-spin interactions. An important prospect for
such investigations is to study the robustness of ferromagnetic intrawell order for dif-
ferent number of vacancies (holes) in the excited band. The presence of holes can affect
the interplay of the Hund [139–141] and the Anderson [142] exchange interaction thus
possibly leading to modifications of the magnetic properties and dynamics. A crucial
question here is whether the magnetic order that is anticipated in view of [K2] is per-
turbed only locally, in the vicinity of the hole, or globally, within the whole system [62].
This investigation is also relevant in view of the spin-charge separation, which was re-
cently experimentally identified in 1D single-band systems [61]. More specifically, the
multi-band tJU Hamiltonian, despite being derived in 1D, represents a two-dimensional
ladder model. It is therefore, interesting to understand whether spin-charge separation
is exhibited within the 1D systems, involving multiple bands, or whether their effective
description in terms of a ladder model prevails, resulting to effective interactions of the
charge and spin degrees-of-freedom. Furthermore, exploiting the magnetic properties
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of multi-band systems to control the behaviour of Fermi gases, or even design novel
quantum materials, is an intriguing prospective for further study. For example, this
interplay between the different magnetic orderings implies that systems with valence
band holes, coexisting with unpaired conduction band fermions, possess particularly
interesting magnetic properties. It is therefore intriguing to examine whether effects
attributed to the weak-coupling tJU model emerge in such systems and whether there
are possible connections with exciton physics [107,154].

Finally, it is worthwhile to explore the impact of the higher band excitations possi-
bly appearing in contemporary experiments and whether recently reported discrepan-
cies with theoretical models can be explained due to their presence. In particular, re-
cently there are several experimental and theoretical advances in the study of spin-order
emerging in fermionic Mott insulators [57–60, 62]. These systems consist of spin-1/2
fermions, occupying the lowest band of an optical lattice with an almost one-particle-
per-site filling. In this case, the spatial degrees-of-freedom of these systems are almost
fixed, due to a large on-site interaction that exceeds the kinetic energy expressed in
terms of the tunnelling rate [57]. In such a configuration the spin-degrees-of-freedom
are able to order according to the Anderson kinetic exchange interaction, leading to a
largely antiferromagnetic state. The presence of holes in doped fermionic Mott insu-
lators [59, 60, 62] gives rise to novel structures, the so-called magnetic polarons [174],
which are connected to effects such as high-temperature superconductivity [174, 392].
Here the presence of impurity fermions in some excited band of the lattice might have
a significant effect on the magnetic ordering of the lowest-band fermions. More specifi-
cally, such excitations would be much more mobile than their lowest band counterparts
and due to their ferromagnetic Hund interactions (predicted within the low-coupling
expansion [K1,K2]) they might scramble the magnetic order of the lowest band states,
smearing out effects that stem from the Anderson interaction. Such effects might be
particularly important in state-of-the-art experiments since the latter involve inho-
mogeneous parabolic trapping, on top of the optical lattice potential and relatively
high-temperatures [62] that favour higher band excitations.

In addition to the above, the analysis of spinor setups enables the development of
powerful techniques in order to characterize a wide variety of ultracold atomic systems.
In this thesis we have provided an example of this utility of spinor systems by exploring
the properties and dynamics of Fermi [98,116,144,145] and Bose [91,182,183] polarons,
based on spectroscopic techniques, such as injection, Ramsey and pump-probe spec-
troscopy [143]. In particular, the specific attributes of polarons enable the realization
of powerful experimentally relevant protocols for their characterization. An important
aspect is that, owing to their quasiparticle character, polaronic states possess a large
similarity, in terms of wavefunction overlap, with the eigenstates of a non-interacting
system. This allows the implementation of setups, where the spin of the impurities
acts as an switch of their interaction with their host, by properly selecting the hyper-
fine states involved in the experiment. In this case the polaronic features of impurities
interacting with their environment can be probed by employing a transition between
the involved spin states via an radiofrequency field [143,219]. Our studies provide sev-
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eral key insights into the dynamics and stability of polaronic states revealing the effect
of well-known non-linear phenomena, such as phase separation [202–206] and pattern
formation [200,207–210,386,388], as we will summarize below.

In the case of a fermionic environment in 1D [K3], we reveal that the impurities
interacting with their host, form Fermi polarons characterized by a finite quasi-particle
residue, Z, and a large lifetime. This fact is quite counter-intuitive, given that the
Anderson orthogonality catastrophe [190–192] dictates that the polaron does not exist
within the thermodynamic limit of 1D ensembles. Nevertheless, as it has also been
demonstrated experimentally [185], several aspects regarding the 1D extensive Fermi
sea can be extracted from few-body systems. We advance this claim by demonstrat-
ing spectroscopically the existence of 1D Fermi polarons. In particular, to probe the
quasi-particle residue we employ injection or reverse radiofrequency spectroscopy [143],
while the lifetime is extracted via a Ramsey sequence [145]. In the case of two impu-
rities we unravel several interfering pathways by which different Fermi polaron states
can be excited. Importantly, for strong interactions multiple peaks appear in the in-
jection spectrum. Among these peaks only one involves a state where both impurities
are simulataneously interacting with their environment, realizing two polarons. The
remainder of the peaks correspond to distinct single polaron resonances, where either
the bath or the impurity are motionally excited. By examining the location of the two-
polaron resonance for varying interaction strength we unveil that it is hardly shifted
from the corresponding resonance of a single Fermi polaron, found in the case of one
impurity. The absence of such a shift is in agreement to recent experiments [98]. Never-
theless, significant impurity-impurity induced interactions, mediated via the fermionic
environment, are present in the two-polaron state. We demonstrate that in order to
probe them an alternative measure is required. An example of such a quantity is the
relative distance between two impurities, which constitutes an experimentally relevant
quantity [306]. We observe that the relative distance of the two polarons decreases as
the bath-impurity interactions increase, demonstrating that Fermi polarons experience
a significant effective attraction.

We next turn our attention to the case of Bose polarons [K4–K6]. In the literature
Bose polarons are expected to be quite robust [179, 180]. Here, we demonstrate that
non-linear effects under certain conditions can lead to their dynamical decay, realizing
a phenomenon that we dub “temporal orthogonality catastrophe” [K4]. To characterize
this and related effects we employ quench-like specroscopic protocols where the transi-
tion of the spin of the impurity is induced by a strong pulse (within the diabatic regime
of spin-transfer, see Sec. 2.5.1B). This is approximately equivalent to an abrupt increase
of the interaction strength, which notably is also possible in ultracold atoms [393–396].
Our main tool for characterizing the dynamics of Bose polarons relies on Ramsey spec-
troscopy [145], allowing for tracking the dynamical structure factor of the composite
bath-impurity system. In addition, several elusive features of the 1D Bose polaron
dynamics can be understood by employing the pump-probe technique [K6], especially
regarding the stability properties of the polaron. Below we provide a short summary
of the features of Bose polaron dynamics as they were unveiled in Ref. [K4–K6].
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Focussing on the repulsive Bose polaron, three regimes of impurity dynamics are
observed [K4]. The first, refers to the impurity-medium weak interaction regime where
the polaron is largely stable and, as the structure factor reveals, possesses a large overlap
with the corresponding non-interacting configuration. The second regime corresponds
to large fluctuations of the dynamical structure factor, indicating a stable Bose polaron,
but possessing a significantly altered state from the non-interacting one. Finally, for
strong repulsions the temporal orthogonality catastrophe emerges. Here, after a brief
oscillatory behaviour, the structure factor decays to a value proximal to zero.

In this characterization, the effective potential created by the inhomogeneous bath
density which affects the impurity, provides an intuitive picture (see also Ref. [211,
212]). The shape of this effective potential is altered from a harmonic trap, for small
interactions, to a square-well like form and, finally for large interactions, it attains a
double-well structure. The change of the effective potential with increasing interaction
strength explains the increase of the amplitude of the structure factor oscillations. In
particular, the interacting portion of the impurity density avoids the trap center, where
it was initially placed, due to the large density-density interaction that experiences
in this region. In addition, by considering the effective potential in conjunction to
well-known nonlinear mechanisms occurring in BEC systems [200,207–210,386,388], a
simple-mechanism explaining the emergence of temporal orthogonality catastrophe is
captured. More specifically, the double-well form of the effective potential, for repulsive
interactions exceeding the bath intraspecies ones, forces the impurity to accelerate
towards the periphery of the bosonic environment. If the velocity of the impurity
exceeds a critical value, the BEC is excited, in agreement to the Landau criterion for
superfluidity [201]. These excitations lead to an energy transfer from the impurity to its
environment, leading to an attenuating motion. Finally, the impurity localizes in the
periphery of its host, realizing this way a phase separated state [202–206]. The above
clearly indicate the importance of non-linear effects in the dynamics of Bose polarons.

Turning our attention to attractive bath-impurity interactions we observe a similar
response as in the weakly-repulsive impurity case, associated with the oscillatory be-
haviour of the Ramsey contrast, due to the presence of the attractive Bose polaron [K5].
However, in this case, depending also on the magnitude of the attractive interaction,
the bosonic environment is prominently deformed. In particular, due to the attrac-
tive nature of the impurity-bath interactions, the impurities effectively experience a
stronger effective confinement potential, leading to their increased localization at the
trap center. Subsequently, the bath atoms are attracted to this density increase of
impurity particles, leading also to the development of a density peak of the BEC in
the vicinity of the impurities. These result to prominent fluctuations of the Ramsey
contrast, indicating the strong suppression of the dynamical structure factor during the
dynamics, as a result of the strong excitation of the bosonic environment.

The question of impurity-impurity interactions was also addressed within our Bose
polaron studies [K5]. Similarly, to the Fermi polaron case [K3] the difference in the
Bose polaron energy between a two-polaron state and a single polaron one, hardly re-
veals the presence of induced polaron-polaron interactions, except for the case of strong
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impurity-bath attractions. As we demonstrate, the relative distance of the impurities is
a valuable quantity to characterize the polaron-polaron interactions. More specifically,
it reveals that, within their equilibrium state, two impurities that are interacting with
a bosonic environment tend to lie closer together than a model of uncoupled polarons
would predict, demonstrating the presence of an effective attraction. However, these
mediated interactions are found to be quite weak, as, even a small s-wave repulsion,
largely counteracts their imprint on the relative distance. Unsurprisingly, the relative
distance indicates that these effective interactions become more pronounced for larger
attractions [365], where also a substantial deviation between the single and two polaron
energies is observed. The fact that effective interactions are much more prominent for
attractive impurity-medium strengths can be attributed to the dramatic modification
of the density of the bosonic host. In particular, strongly interacting attractive Bose
polarons realize a bipolaron [162, 164, 166, 365], where two-polarons bind to form a
composite structure, due to their strong effective attraction. Pump-probe spectroscopy
allows for further probes of the induced impurity-impurity interactions [K6]. In partic-
ular, features attributed to induced interaction have been identified in the pump-probe
spectrum for attractive, moderate and strong repulsive bath-impurity interactions and
for two bosonic, or fermionic impurities. In conclusion, impurity-impurity interactions
of confined Bose polarons are quite weak, but they are expected to be observable by
employing appropriate detection schemes.

Our analysis in [K4–K6] explicated the importance of the effective potential in the
dynamics of Bose polarons and the related emergence of the orthogonality catastro-
phe phenomenon. When pondering on the generalization of the results presented in
this thesis, there are several avenues of further study that become evident. The first
such direction regards the manipulation of the effective potential. As we have demon-
strated, see Sec. 2.4.4, the effective potential is an inescapable consequence for trapped
systems that alters their behaviour from homogeneous ones. Therefore, the first path
for extension of our work, presented within this thesis, relies on the utilization of this
effective potential. As we have seen, for mass-balanced particles the effective poten-
tial changes from a parabolic to a double-well form when the interspecies interactions
exceed the intraspecies ones, precluding, therefore, access to the strongly correlated
regime, by favoring phase separation [K4]. The form of the effective potential can be
manipulated by tuning the mass, or modifying the imposed harmonic confinement of
the impurity atoms. Such manipulations might lead to the realization of strongly cou-
pled and stable, towards temporal orthogonality catastrophe, impurity-bath states and
allow for the separate study of the effects stemming from the imposed confinement and
the mobility of impurity atoms. Notice, that novel experimental techniques, see also
Sec. 2.1.2, allow for the hyperfine state-selective modification of the atomic potential,
allowing for the independent manipulation of confining frequencies, even in the case
of homonuclear mixtures. In addition, the case of a Bose gas, experiencing a box-like
confinement [29–32], is particularly interesting. Notice that such setups have been pro-
posed recently as a solution for isolating trap effects from impurity mobility ones. In
this case there is also an effective potential emanating in the system stemming from the
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inhomogeneous density of the bath, close to the walls of the box. Understanding the
importance of such an effective potential might prove crucial for future experiments.

The extension to multidimensional setups is also highly desirable, especially re-
garding the phenomenon of orthogonality catastrophe. More specifically, the tempo-
ral orthogonality catastrophe is connected with the effective potential, possessing a
double-well form for strong bath-impurity repulsions and forcing the impurity parti-
cles, initially placed at the trap center, to accelerate towards the periphery of the bath
cloud [K4,K6]. This acceleration consequently causes the impurities to reach a velocity
larger than the critical one of the BEC, resulting in the excitation of their Bose environ-
ment and, consequently, in the manifestation of orthogonality catastrophe. However,
due to the nature of the ultracold collisions at different spatial dimensions, we expect
that this phenomenon might be significantly altered in higher dimensions. In partic-
ular, two elastically colliding atoms in 1D, can only back-scatter by exchanging their
momentum. Accordingly we expect that, generally, when an 1D quantum-gas expands
within a different quantum gas, then there will be a ballistically expanding portion,
referring to the particles that have not experienced collisions and a diffusively expand-
ing portion, stemming from the particles that have scattered with their host. In the
case that there is a sizable potential that favors the ballistically expanding gas, as is
the case of a double-well effective potential [K4], we expect that the diffusive portion
will be negligible. However, this is not the case in multiple dimensions. More specif-
ically, for d > 2 dimensions the elastic collision of two particles changes the direction
of their momenta [247]. Therefore, for the expansion dynamics of impurities embed-
ded within a Bose gas we expect a Brownian-type dynamics [397], with a pronounced
diffusive character. In this case, the acceleration of the impurities in the Mexican-hat
shaped effective potential might be counteracted by their diffusive dynamics, leading
to a reduced amount of induced excitations of the bosonic host and the absence of the
temporal orthogonality catastrophe.

A third-extension of our work regards the effect of temperature in the impurity dy-
namics [398–400]. In particular, the small impurity number involved in the experiment
might render the impurities vulnerable to thermal fluctuations of the more extensive
BEC, they are embedded in. Notice also, that the tendency of impurities to escape
the spatial extent of the BEC and to accumulate in its periphery, for strong inter-
species interactions, might promote the influence of such thermal effects, since the
thermal fraction of a Bose gas tends to be larger in the region directly outside of the
Thomas-Fermi radius [22,23]. Understanding the interplay of thermal fluctuations and
temporal orthogonality catastrophe might, indeed, be important for the experimentally
identification of this mechanism.
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[228] J. Söding, D. Guéry-Odelin, P. Desbiolles, G. Ferrari, and J. Dalibard, “Giant
Spin Relaxation of an Ultracold Cesium Gas”, Phys. Rev. Lett. 80, 1869 (1998).

[229] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, “Bose-Einstein
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P. Schmelcher, and H.-C. Nägerl, “Confinement-Induced Resonances in Low-
Dimensional Quantum Systems”, Phys. Rev. Lett. 104, 153203 (2010).

[251] C.-H. Wu, J. W. Park, P. Ahmadi, S. Will, and M. W. Zwierlein, “Ultracold
Fermionic Feshbach Molecules of 23Na40K”, Phys. Rev. Lett. 109, 085301 (2012).

[252] E. Tiesinga, C. J. Williams, F. H. Mies, and P. S. Julienne, “Interacting atoms
under strong quantum confinement”, Phys. Rev. A 61, 063416 (2000).

[253] T. Bergeman, M. G. Moore, and M. Olshanii, “Atom-Atom Scattering under
Cylindrical Harmonic Confinement: Numerical and Analytic Studies of the Con-
finement Induced Resonance”, Phys. Rev. Lett. 91, 163201 (2003).

[254] J. I. Kim, J. Schmiedmayer, and P. Schmelcher, “Quantum scattering in quasi-
one-dimensional cylindrical confinement”, Phys. Rev. A 72, 042711 (2005).
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[276] V. Fock, “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörper-
problems”, Z. Physik 61, 126 (1930).

[277] N. N. Bogolyubov, The dynamical theory in statistical physics, (Hindustan,
Delhi, 1965).

[278] M. Born and H. S. Green, “A general kinetic theory of liquids. IV. Quantum
mechanics of fluids”, Proc. R. Soc. London A 191, 168 (1947).

[279] J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes I.
General Theory”, J. Chem. Phys. 14, 180 (1946).
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