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[D3] Stork, C.; Chen, Y.; Š́ıcho, M.; Kirchmair, J. Hit Dexter 2.0: machine-
learning models for the prediction of frequent hitters, Journal of Chemical
Information and Modeling 2019, 59, 1030–1043.
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1. Zusammenfassung

“High-throughput screening” (HTS) ist eine Schlüsseltechnologie um große Men-
gen an Molekülen auf Aktivität gegenüber ausgewählten Biomakromolekülen
und in zunehmendem Maße auch in Zellen zu testen. Weisen die Substanzen
biologische Aktivität auf, können sie vielversprechende Kandidaten für die Ent-
wicklung von Medikamenten, Agrochemikalien und Kosmetika sein. Eine große
Herausforderung in HTS sind problematisch hohe Raten an falsch positiven
Ergebnissen, die auf Assayinterferenz zurückgeführt werden können. Vor allem
führen die falsch positiven Testergebnisse oft zu zwecklosen Folgeexperimenten,
die signifikante Teile der Forschungskapazitäten blockieren.

Substanzen, die mit den Assays interferieren, werden “bad actors”, “badly be-
having compounds”, “nuisance compounds” oder ungenau auch “pan-assay in-
terference compounds” (PAINS) genannt. Dabei können die Gründe für die
Assayinterferenz vielfältig sein: die Bildung von kolloidalen Aggregaten, che-
mische Reaktivität (z.B. Moleküle die kovalente Bindungen mit Proteine einge-
hen), Membranspaltungen, Substanzen die Metallkomplexe bilden, etc.

Viele, aber nicht alle, der “bad actors” fallen während biochemischer und biolo-
gischer Assays durch überdurchschnittliche Trefferquoten auf und werden daher
auch “frequent hitters” genannt. Zum Beispiel weisen viele reaktive Substanzen
in verschiedensten Assays falsch positive Testergebnisse auf, da sie unspezi-
fisch viele verschiedene Proteine binden können. Allerdings sind nicht alle “fre-
quent hitters” auch “bad actors”, denn einige Substanzen können auch in spezi-
fischer Art und Weise an verschiedene Proteine binden, da sie dafür geeignete
Grundgerüste (“privileged Scaffolds”) besitzen. Diese Substanzen sind im Bezug
auf “polypharmacology” und “drug repurposing” von besonders großer Bedeu-
tung.

Neueste Studien haben gezeigt, dass computergestützte Methoden das Potenzial
haben “bad actors” zu identifizieren, sich jedoch noch in ihrem Anfangssta-
dium befinden. Ziel dieser Doktorarbeit ist es darum, auf maschinellem Lernen
basierende Modelle zur Vorhersage von “frequent hitters” zu entwickeln.

Im ersten Teil dieser Doktorarbeit, wurde das Potenzial von Modellen für
maschinelles Lernen zur Vorhersage von “frequent hitters”, die auf einem öffent-
lich zugänglichen Bioaktivitätsdatensatz beruhen, geprüft. Dazu wurde ein

1



2 1. Zusammenfassung

Datensatz mit ca. 311 000 Substanzen, für die Aktivitätsdaten von mindestens
50 verschiedener Proteine vorhanden sind, aus der PubChem Bioassay database
extrahiert. Die Substanzen wurden abhängig von ihren Trefferquoten (Quo-
tient aus Anzahl aktiver Messungen und Anzahl aller Messungen) mit dem
“Durchschnitt plus Standardabweichung” Ansatz in drei Gruppen eingeteilt:
nicht promiskuitive Substanzen (kleine Trefferquoten), promiskuitive Substanzen
(überdurchschnittlich hohe Trefferquoten) und hoch promiskuitive Substanzen
(unüblich hohe Trefferquoten). Auf diesem Datensatz wurden “extra tree” Klas-
sifikatoren trainiert um (a) nicht promiskuitive von promiskuitiven Substanzen
zu unterscheiden und (b) nicht promiskuitive von hoch promiskuitiven Sub-
stanzen zu unterscheiden. Die Modelle erreichten “Matthews correlation co-
efficients” (MCCs) von bis zu 0.67 und “area under the receiver operating
characteristic curve” (AUC) Werte von bis zu 0.96. Die besten Modelle wurden
unter dem Namen Hit Dexter im kostenlosen und frei zugänglichen Webserver
“New E-Resource for Drug Discovery” (NERDD) veröffentlicht.

Im zweiten Teil dieser Doktorarbeit liegt der Fokus auf der Verbesserung der
Modelle zur “frequent hitter” Vorhersage. Hierzu wurde der Trainingsdatensatz
durch die Unterscheidung von “primary screen assays” (PSA) und “confirmatory
dose-response assays” (CDRA) Daten verbessert. Zudem wurden Substanzen die
auf strukturell ähnlichen Proteinen aktiv sind, und die dadurch fälschlicherweise
als “frequent hitters” klassifiziert wurden, identifiziert und eliminiert. Diese neue
Generation an “extra tree” Modellen, auch Hit Dexter 2.0 genannt, wurde auf
verschiedenen qualitativ hochwertigen Datensätzen validiert. Zu diesen Test-
datensätzen gehören ein Datensatz von zugelassenen Medikamenten, ein Daten-
satz mit ausschließlich inaktiv getesteten Substanzen (aus biochemisch und bio-
logischen Assays), ein Datensatz mit Naturstoffen und ein Datensatz mit Sub-
stanzen, die für HTS Ansätze zusammengestellt wurden. Die besten Modelle
erreichten auf dem zuvor unberücksichtigten Testdatensatz MCCs von bis zu
0.64 und AUC Werte von bis zu 0.96.

Im dritten Teil dieser Doktorarbeit wurde die Unterscheidung von Substanzen
mit hohen Trefferquoten bezüglich biochemischen (Ziel-basierten) und biolo-
gischen (Zell-basierten) Assays vorgenommen und es wurden unterschiedliche
Modelle für diese Assaytypen entwickelt. Dazu wurden Datensätze manuell
aus der PubChem Bioassay database erstellt, die auf verschieden Assaytypen
basieren: (i) Ziel-basierten Assaydaten, (ii) Zell-basierten Assaydaten, die aus-
gelegt sind spezifische Interaktionen in Zellen zu messen und (iii) Zell-basierten
Assaydaten, die jegliche Art von Interaktion messen. Da für diese Datensätze
mehr Datenpunkte zur Verfügung standen als bei der Entwicklung der ersten
Hit Dexter Modelle, wurde die Anzahl an Proteinen, gegenüber denen die Sub-
stanzen mindestens getestet werden mussten, von 50 auf 100 erhöht. Dadurch
basieren die neuen Modelle auf robusteren Daten. Die Vorhersagekraft ver-
schiedener Algorithmen des maschinellen Lernens wurde auf diesen Datensätzen
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untersucht. Dabei wurden “k-nearest neighbors” (KNN), “multilayer percep-
tron” (MLP) Klassifikatoren, “random forest” (RF) Klassifikatoren und “extra
tree” (ET) Klassifikatoren verwendet. Die besten Modelle basieren auf MLP
Klassifikatoren und wurden als Hit Dexter 3 veröffentlicht. Sie erreichen MCCs
von bis zu 0.65.

Die Hit Dexter Modelle sind im öffentlichen und kostenlosen Webserver NERDD
verfügbar gemacht worden. Zudem sind im Hit Dexter Webserver weitere regel-
basierte Modelle und Modelle, die auf dem Ähnlichkeitsprinzip beruhen, zur
Identifizierung von “bad actors” implementiert worden, um Substanzen aus
HTS Experimenten mit verschiedenen Ansätzen priorisieren zu können.

Neben Hit Dexter sind sieben weitere Programme zur Beschleunigung des Wirk-
stoffdesigns in NERDD verfügbar. Unter anderem handelt es sich um Modelle
zur Vorhersage von Ähnlichkeiten zu Naturstoffen (NP-Scout) beziehungsweise
zur Vorhersage des Hautsensibilisierungspotentials (Skin Doctor CP) von Sub-
stanzen. Außerdem stehen fünf Programme zur Verfügung, die Vorhersagen
über metabolisches Verhalten von Substanzen machen können: FAME3 ist ein
Modell, basierend auf maschinellem Lernen, zur Vorhersage von wahrschein-
lichen metabolisch-labilen Atompositionen im Phase 1 und Phase 2 Metabolis-
mus. GLORY und GLORYx können wahrscheinliche metabolische Produkte
von kleinen Molekülen vorhersagen. Zuletzt wurden in NERDD CYPstrate und
CYPlebrity, zur Vorhersage von Substraten beziehungsweise Hemmstoffe von
Cytochrom P450 Enzymen, verfügbar gemacht.

NERDD ist ein sicherer Webserver mit HTTPS Verschlüsselung. Außerdem
können Rechnungen gestartet und zu einem späteren Zeitpunkt abgerufen wer-
den, da die Ergebnisse temporär gespeichert werden. Trotzdem können jegliche
Daten manuell vom Nutzer gelöscht werden, um auch die Arbeit mit ver-
traulichen Daten zu ermöglichen. NERDD kann auch mit größeren Rechnungen
zum Beispiel mit Tausenden von Substanzen genutzt werden, da der Web-
server an einen Hochleistungsrechencluster angeschlossen ist. Die Ergebnisse
können im standard Dateiformat “csv” heruntergeladen werden, um sie weiter
zu prozessieren oder zu evaluieren. Inzwischen ist NERDD zu einer etablierten
Plattform für Wissenschaftler mit hoher Nachfrage geworden.
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2. Abstract

High-throughput screening (HTS) approaches are key technologies for the iden-
tification of bioactive small molecules to be developed into drugs, agrochemicals
and cosmetics. HTS allows the testing of large numbers of compounds for activ-
ity on biomacromolecules of interest and, to an increasing extent, also in cells.
A major challenge in HTS are problematic rates of false assay readouts linked to
assay interference. In particular false-positive assay outcomes regularly trigger
futile follow-up experiments that can block significant resources in research.

Compounds that can cause assay interference are commonly referred to as “bad
actors”, “badly behaving compounds”, “nuisance compounds”, or, less accu-
rately, “pan-assay interference compounds” (PAINS). The reasons underlying
assay interference are manifold: formation of colloidal aggregates, chemical re-
activity (e.g. covalent binders), membrane disruptors, metal complex-forming
compounds, etc.

Many bad actors, but not all, show higher-than-expected hit rates in biochem-
ical and biological assays and are therefore referred to as “frequent hitters”.
For example, many reactive compounds are frequent hitters as they may bind
to multiple proteins and hence trigger (false) positive signals in different as-
says. Importantly, not all frequent hitters are bad actors; some of them are
compounds that can bind, in a specific manner, to multiple proteins. These
compounds are often based on “privileged scaffolds” that are compatible with
multiple (protein) binding sites and may be particularly valuable in the context
of “polypharmacology” and “drug repurposing”.

Recent studies have shown that computational methods have the potential to
identify bad actors but they are still in their infancy. The aim of this PhD
study is to develop powerful machine learning approaches for the prediction of
frequent hitters.

In the first part of this study, we explored the possibility to train machine learn-
ing models on large, publicly available bioactivity databases. More specifically,
we compiled a set of approximately 311 000 compounds with measured activities
on at least 50 proteins from the PubChem Bioassay database. The compounds
were grouped into three classes depending on their hit rates with the averages
plus standard deviation approach: non-promiscuous (low hit rates), promiscu-

5



6 2. Abstract

ous (higher-than-expected hit rates) and highly promiscuous (uncommonly high
hit rates) compounds. Based on these data sets we trained extra tree classi-
fiers distinguishing (a) non-promiscuous from promiscuous compounds and (b)
non-promiscuous from highly promiscuous compounds. These models obtained
Matthews correlation coefficients (MCCs) and area under the receiver operating
characteristic curve (AUC) values of up to 0.67 and 0.96, respectively. The
set of best performing models, called Hit Dexter, have been made available to
the public via a free web service New E-Resource for Drug Discovery (NERDD).

The second part of this study focused on the enhancement of frequent hitter pre-
diction by extending the training data and taking differences between primary
screen assays (PSA) and confirmatory dose-response assays (CDRA) explicitly
into account. In addition, compounds that show activity on structurally sim-
ilar protein targets were identified and eliminated in order to not be wrongly
considered and classified as frequent hitters. Moreover, the new generation of
extra tree models, distributed as Hit Dexter 2.0, were subjected to thorough
validation with several high-quality data sets, including a data set of approved
drugs, compounds that have consistently been measured as inactive across many
different proteins, natural products and screening compounds. On holdout data
these models reached MCCs and AUC values of up to 0.64 and 0.96, respectively.

The third part of this study focused on the differentiation of compound hit rates
observed with biochemical (target-based) assays and biological (cell-based) assay
and to build dedicated models for both assay types. A manually curated data
set was compiled from the PubChem Bioassay database and dedicated models
were developed for (i) target-based assays, (ii) cell-based assays measuring spe-
cific compound-target interactions, and (iii) an extended set of cell-based assays
including also assays measuring nonspecific compound-target interactions. In
order to obtain more robust models, the minimum number of available test
data for the promiscuity label calculation of a compound was increased from 50
to 100 as more data became available. Multiple machine learning algorithms,
including k-nearest neighbors (KNN) classifiers, multilayer perceptron (MLP)
classifiers as well as random forest (RF) classifiers and extra tree (ET) classifiers
were evaluated, and the best performing models (distributed as Hit Dexter 3)
are based on MLP classifiers, reaching MCCs of up to 0.65.

The Hit Dexter models are available to the public via a free web service called
NERDD. In addition to the machine learning models, the Hit Dexter web
service offers a number of similarity-based and rule-based approaches for the
identification of bad actors, making it a one-stop-shop for hit (de-)prioritization.

Besides Hit Dexter, NERDD features seven further modules which can be used
to aid and accelerate drug discovery. These include models for the prediction
of natural product likeness (NP-Scout) and skin sensitization potential of com-
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pounds (Skin Doctor CP). Five programs are available for the prediction of
the metabolic behavior of compounds: FAME3 is a machine learning model
for the prediction of sites of metabolism in Phase 1 and Phase 2 metabolism.
GLORY and GLORYx predict the likely metabolites of small molecules. The
latest additions, CYPstrate and CYPlebrity, predict substrates and inhibitors
of cytochrome P450 enzymes, respectively.

NERDD is a secure web server which comes along with HTTPS encryption.
Calculations can be started within NERDD and can be retrieved at a later point
in time as the results are temporarily saved on the server. However, manual
deletion of the results is possible, which promotes the use of the web service
also with confidential data. NERDD is easily scalable and thousands of com-
pounds can be calculated due to its connection to high performance clusters.
All results can be downloaded in standard csv file format for further processing
and evaluation. NERDD has become an established platform for researchers
and is in high demand.
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3. Introduction

The development of a new drug can take longer than a decade and cost more
than a billion dollar.[1] There is hence an urgent need to make drug discovery
and development more efficient, and a main strategy to meet this need is the de-
velopment and application of computational methods, e.g. for the identification
of bioactive compounds and their optimization with regard to their bioactivity,
toxicity as well as absorption, distribution, metabolism and excretion (ADME)
profiles.[2–4]

3.1 High-throughput assays for lead compound identifica-
tion

One of the most effective approaches to finding novel, bioactive compounds is
high-throughput screening (HTS). HTS allows the screening of tens of thousands
of compounds a day.[5–7] HTS technologies can be largely classified into cell-
and target-based assays. While target-based assays are measuring the specific
interaction of a compound with a purified protein, cell-based assays are deter-
mining the interactions of a compound in fully functional cells. For cell-based
assays there is a higher degree of uncertainty about the target protein(s) of
a compound of interest. However, this type of assays can provide particularly
valuable insights and can be much more relevant to in vivo biology, pharma-
cology and toxicology than the target-based approaches.

Assays are commonly classified into primary screen assays (PSA) and confirma-
tory dose-response assays (CDRA). PSA are typically rapid approaches for the
initial screening for active compounds. Any hits resulting from these screens
are typically subjected to screening with CDRA. CDRA usually measure full
concentration-dependent dose-response curves and are more precise regarding
the activity of compounds than PSA. For a comprehensive overview of methods
for assay screening setups (assay technologies) the reader is referred to Ref. [8].

A major challenge in HTS campaigns is to understand which of the initial hits
are most promising to follow up on, and which ones are false positive outcomes
as a result of nonspecific binding or interference of the compounds with the
assay technology. The elimination of undesired compounds is done during the
so-called risk assessment process of a screening campaign and is based on exper-

9



10 3. Frequent hitters, nuisance compounds and dark chemical matter

imental guidelines, strategies and recommendations.[9] The challenge resides in
identifying false positive compounds that are observed only under specific condi-
tions in some assays.[8] For example, autofluorescent compounds can trigger false
positive outcomes in bioluminescence assays, whereas thiol-reactive compounds
often trigger false positive readouts when the target involves thiol-containing
amino acids. These false positive assay readouts entail an important waste of
resources, since a lot of time and resources are invested into follow-up assays
for compounds falsely identified as active. Although scientific journals are now
making strong efforts to tackle this problem, e.g. by requiring a detailed exam-
ination of compounds containing problematic substructures, the problem still
remains.[10]

For the purpose of supporting the process of hit (de-)prioritization (freely avail-
able) in silico methods have been developed that can provide guidance to re-
searchers in drug discovery.[D1] Nevertheless, the expertise of medicinal chemists
in experimental screening is needed for the design of assay campaigns as their
experience and knowledge can detect potential pitfalls and avoid the report of
false positive assay outcomes.[11]

3.2 Concepts and prediction of frequent hitters, nuisance
compounds and dark chemical matter

Bad actors and multi-target compounds in HTS are often referred to as promis-
cuous compounds. However, this term is not well defined and is used in different
ways. Therefore, in this work the single term “promiscuity” is not used, but
the different categories of promiscuity are defined. A graphical overview of the
different categories of compounds in biological and biochemical assay is shown
in Figure 3.1. Note that the definitions of most of these terms are, to some
extent, fuzzy and, in part, overlapping.

Frequent hitters are compounds that show higher-than-expected hit rates in as-
say panels due to interference with the screening technologies or, in a minority
of cases, due to true promiscuity (i.e. the ability of compounds to bind to mul-
tiple targets) and were introduced by Roche et al.[12] Compounds causing assay
interference are commonly referred to as “badly behaving compounds”, “bad ac-
tors” or “nuisance compounds”, and can be divided into three major categories:
colloidal aggregators,[13] pan-assay interference compounds (PAINS)[14] and reac-
tive compounds.[15] For further details of these categories see Section 3.2.2–3.2.4.
The most prominent example of compounds showing the complexities and the
connections of the promiscuity categories is curcumin and its derivatives.[16] Cur-
cumin is a frequent hitter that has been repeatedly reported as active against
many targets. However, it is known to be a membrane disruptor. This example
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shows how important a closer look to the assay results is as curcumin might
be a true active compound in some cases, whereas it might also be a false pos-
itive hit due to unwanted interactions with proteins. The different categories
of compounds in HTS and how computational approaches can assist to detect
them is described in the next Sections.

The converse of frequent hitters are so-called dark chemical matter (DCM).
These are compounds that are extensively tested (at least 100 times) in target-
based as well as cell-based assays and have never shown activity. These com-
pounds were used for validating the predictions of the models of Ref. [D3] and
Ref. [D5] and are a valuable source of potential, selective ligands, as discussed
in Section 3.2.5.

Figure 3.1: Promiscuous compounds can be divided into different groups which
merge into each other and cannot be strictly separated from each other.
Reprinted (adapted) with permission from Ref. [D3]. Copyright 2019 Amer-
ican Chemical Society.

The aim of the majority of the approaches discussed in the following sections is
the identification of problematic compounds. Therefore, an overlap of the differ-
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ent methods often exists. For example, for substructure-based approaches, which
rely on SMARTS patterns and other collections of substructures. These algo-
rithms match the known problematic substructures and the query compounds.
The used substructure patterns are often similar to each other and computa-
tional algorithms exist to show the overlap of such substructure collections.[17, 18]

This might be reasoned by the fact that the aim of these filters is often a similar
one: detect problematic compounds.

3.2.1 Frequent hitters

For the identification of frequent hitters, first bioactivity data have to be analysed
to find compounds with higher-than-expected hit rates.. Three main definitions
for frequent hitters are published and used: i) an absolute measurement in
which for each compound, the number of positive assay outcomes is counted. If
a compound shows bioactivity (i.e. a positive outcome) in more assays than the
defined cutoff, the compound is labeled as frequent hitter. For example, Pearce
et al. set the cutoff to seven active assay outcomes and compounds above the
cutoff were labeled as frequent hitters. Compounds were labeled as inactive if
they were tested in at least 15 assays and never showed any activity.[19] ii) a
relative measurement that is based on the fraction of active assay outcomes with
respect to the total number of assay outcomes calculated for each compound
in a certain data set. In this study such a measurement, called active-to-tested
ratio (ATR), was used and is calculated according to Equation (3.1), where
A reflects the number of active measurements and T the number of times a
compound was tested overall.[D3, D5, D2]

ATR =
A

T
(3.1)

Finally, iii) a binomial distribution that reflects the assay outcome of a compound
as a statistical value that is normally distributed. Based on the normal distribu-
tion a probability can be predicted with statistical significance and biases are well
catched out.[20] Typically, 11 – 13% of compounds show a higher-than-expected
hit rate in standard HTS libraries and data sets.[D3] GlaxoSmithKline reported
a data set containing around 13% “noisy” compounds (frequent hitters),[21] and
AstraZeneca report a data set containing 6% frequent hitters.[20] Only a few of
the compounds (around 2%) used in Hit Dexter 2.0 show a hit rate that is much
higher (above hit rates of 5-10%) than the expected one. This is in line with a
study of Pearce in which 0.1% of the active compounds show a high number of
hits.[19] The study of AstraZeneca reported an overall hit rate average of 1.53%
which is comparable with the values of Hit Dexter 2.0 of 0.8% - 1.5%.
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The first models for the prediction of frequent hitters were developed by Roche
et al. and reached Matthews correlation coefficients (MCCs) of up to 0.81.
Problematic in this study is that the data and the models are not publically
available.[12] The binomial function approach is an inhouse tool of AstraZeneca
to evaluate newly reported bioactivity data in their inhouse library. Neither
the tool nor the data are published, but the algorithm is fully described[20] and
could be reimplemented for public usage.

A comprehensive study of the correlation of substructures and frequent hit-
ters was performed by Charkravorty et al., who analyzed established rule-based
approaches and their reported substructures. The substructures were classified
into different frequent hitter classes depending on their hit rates. They analysed
the GlaxoSmithKline HTS collection and showed which chemical substructures
are suitable for frequent hitter prediction based on a relative frequent hitter
measurement similar to the ATR (Equation (3.1)). The substructures that
match most of the frequent hitting compounds were implemented in a new
substructure filter set.[21]

Badapple is a tool for the identification of frequent hitters based on their
molecular scaffolds. The model is derived from a hierarchical scaffold clustering
(HierS[22]) analysis that scores each scaffold with a promiscuity score based on
bioactivity data of a large data set (430k compounds measured in more than
800 assays).[23]

PrePeP is an algorithm based on decision trees using discriminative subgraph
mining which can be used with any data set encoding a classification task. The
algorithm balances the data, extracts subgraphs and trains decision trees to
discriminate between two activity classes in any given data set. PrePep was
validated for frequent hitter as well as PAINS prediction and is able to predict
frequent hitters with an accuracy of 85% on a balanced test data set.[24, 25]

Hit Dexter is the result of these PhD studies, which are divided into three
parts: Hit Dexter,[D2] Hit Dexter 2.0[D3] and Hit Dexter 3.[D5] The Hit Dexter
models are based on a large data set extracted from PubChem and a machine
learning algorithm trained on this data. PubChem is one of the largest publicly
available data sources for bioactivity data containing around 300 million bioac-
tivity data points (for further details on PubChem see Section 3.4). After a
comprehensive data preprocessing procedure (for details see Method Sections of
Section 5.1 - 5.3), three promiscuity classes of compounds were defined based on
the aforementioned ATR (Eq.(3.1)), following the standard deviation plus mean
approach: i) non-promiscuous compounds, ii) promiscuous compounds and iii)
highly promiscuous compounds. Non-promiscuous molecules show an ATR of
less than the average of the ATR, promiscuous compounds a higher ATR than
the mean plus one standard deviation of the ATR and highly promiscuous com-
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pounds a ATR higher than the mean plus three times the standard deviation
of the ATR.

The Hit Dexter models were developed based on all PubChem data that were
available after applying a number of prefiltering steps (for detail see Method
section in Section 5.1). Hit Dexter 2.0 was refined for PSA and CDRA, and
a recently developed tool, Hit Dexter 3, distinguishes cell-based and target-
based assays. From the respective data sets (molecules encoded with Morgan2
fingerprints; for further details on the descriptors see Section 3.5.2) extra tree
(ET) classifier and multilayer perceptron (MLP) classifier showing a performance
of MCC up to 0.65 were derived. For the complete results see Sections 5.1 - 5.3.

3.2.2 Colloidal aggregators

Aggregators are compounds that generate colloidal aggregates under specific
conditions.[26] These aggregates can be prone to false positive assay readouts
(e.g. due to denaturation), which is an unwanted effect during assay screening.[27]

Chemically, aggregators often contain planar ring systems with large aliphatic
groups that undergo large van der Waal interactions with each other and there-
fore are easy to aggregate. Often at high concentrations and specific conditions
(pH-value of the buffer; presence of macromolecules; temperature; etc.) micelles
are formed. These micelles can interact (in a concentration-dependent and re-
versible fashion) with protein targets making aggregation difficult to detect. In
Ref. [28] it was shown that compounds that show positive assay results due
to aggregation on G-protein-coupled receptors can be found in the literature.
Luckily, the addition of detergents often suppresses aggregation, which is the
reason why most of the biochemical assays are run under detergent-containing
conditions in their default setup.[8] Moreover, a study showed that around 93%
of the false positive assay outcomes can be avoided by adding detergents.[29]

The experimental detection of aggregation can be achieved by dynamic light
scattering if the conditions are chosen carefully.[30]

Many in silico tools exist for the prediction of aggregators. One of the first
attempts to predict aggregators with machine learning, more precisely by sup-
port vector machine, was reported in 2009 by Rao et al., based on a data set
containing 1319 aggregators and 128 325 non-aggregators. Their model reached
sensitivities of up to 78% during five-fold cross validation.[31] The most popular
approach for potential colloidal aggregation detection is Aggregator Advisor.
This is a similarity-based approach which also takes calculated logP values into
account. The model is based on over 12600 known aggregators.[13]

Recently, two further approaches for predicting aggregators were published:
ChemAgg[32] and small, colloidally aggregating molecules (SCAM) detective.[33]



15

The machine learning models of ChemAgg are freely available on a web server
and based in part on the data set of the Aggregator Advisor (compounds
labeled as aggregators). Non-aggregators were collected from drug/drug candi-
dates comprising around 24 000 compounds. Accuracy values and area under
the receiver operating characteristic curve (AUC) values of up to 95% and 99%,
respectively, were obtained on the training data set. SCAM detective is also
a freely available web server and based on random forest (RF) classifiers to
predict the likelihood of compounds being aggregators in two different assay
setups (one with β-lactamase as target and the other with the cysteine protease
cruzain as target). Therefore six assays (three with detergent and three with-
out) were used as training data (four with β-lactamase and two with cysteine
protease cruzain as target). The models can predict aggregators for these two
assay setups with a 53% and 46% better accuracy than former prediction tools
(e.g. Aggregator Advisor).[33]

3.2.3 Pan-assay interference compounds (PAINS)

The most prominent example of badly behaving compounds in HTS are the
PAINS.[14] PAINS are compounds containing at least one of 480 substructures
that encode problematic compounds in AlphaScreen assays measuring protein
protein interactions. Compounds containing such a substructure should be
treated with extra caution as they are likely to trigger false positive assay read-
outs. Originally, the substructures were encoded using the SYBYL notation [34]

and members of the scientific community translated them to the more com-
monly used SMARTS[35] patterns. Well-known examples of compounds encoded
by the PAINS patterns are edox cyclers (e.g. Toxoflavins), covalent binders
(e.g. isothiazolones or ene-rhodanine), membrane disruperts (e.g. curcumin),
metal complexers (e.g. hydroxyphenyl hydrozones) and unstable compounds
(e.g. phenol-sulphonamides).[36] Independent of the original PAINS study, it
was shown that PAINS encode compounds that often have stability problems,
are aggregators or cytotoxic.[37] However, it was also shown with X-ray struc-
tures that a lot of PAINS substructures show actual interactions with proteins
(not false positive interactions).[38] A machine learning approach already exists
to predict Compounds Interfering with an Assay Technology (CIAT) which con-
ceptually are the same as PAINS. These machine learning models are based
on a data set containing assays from the AlphaScreen, Fluorescence Resonance
Energy Transfer (FRET) and time-resolved FRET assay reading technologies
and can rank CIAT with AUC values of up to 0.81.[39]

One of the major problems of the PAINS approach is its narrow applicability
domain (AD) as the substructures are built only on readouts from AlphaScreen
assays. Nevertheless, compounds that were encoded by the PAINS patterns
show also interactions with targets in other assays and have a higher degree of
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promiscuity than other compounds.[40] Further, it was confirmed that the PAINS
patterns work well for AlphaScreen but are not suitable for FRET assays.[41] Of-
ten the PAINS patterns are not only used for vetting outcomes of AlphaScreen
assays but also for those of other assay technologies (for example, cell-based
assays). However, their application to other assay setups is not recommended
as these assay types are outside the AD.[42] For a data set containing nuisance
compounds of cell-based assay screenings see Ref. [43]. Another problem of the
PAINS patterns is that they are derived from a proprietary data set that is not
accessible to the scientific community.

The concept of PAINS is controversial in the scientific community.[44–46] One
problem, for example, are the so-called phantom PAINS which are compounds
that match at least one PAINS pattern but show no or low activity hit rates in
biochemical assays. In the mentioned study a data set with over 70 000 random
PAINS compounds from PubChem was analysed.[47] The findings corroborate
the narrow AD of the PAINS concept. Further, these findings may lead to
the conclusion that the awareness of the scientific community regarding PAINS
has already increased and that these compounds may be validated in a more
sophisticated way resulting in inactive reports. The blind use of the PAINS
(and any other) filters is not an adequate way of hit validation.[48] Nevertheless,
the use of filters as decision support for (de-)prioritizing hits might be a good
idea. Jasial et al. have shown that the combination of the PAINS patterns
with machine learning algorithms can enhance the performance of the PAINS
substructure filters.[49]

3.2.4 Reactive compounds

Reactive compounds are likely to produce false outcomes in biological assays due
to interactions and/or reactions with the protein target and/or with components
of the assay screening technology. Among the mostost prominent examples of
reactive groups are Michael acceptors or α-halocarbonyl compounds.[15] In gen-
eral, most electrophiles[50] are problematic, but there are also other groups that
should be treated with caution (e.g. epoxides).[51] It was shown by density-
functional theory calculations that reactive frequent hitter compounds often
have an electrophilic character.[52]

For the experimental identification of reactive compounds several approaches
exist. One of the most prominent approaches is ALARM nuclear magnetic res-
onance (NMR) in which the unwanted reactivity of compounds can be observed
by NMR spectrometry. Other NMR methods exist for identifying specific thiol
reactivity[53] and an overview of the existing methods is given in Ref. [54].
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The computational prediction of reactive groups is mainly based on substructures
encoding reactive groups that are unwanted in HTS campaigns. For example,
Hann et al. published 55 substructures that are undesired for lead optimization
due to their reactivity and are used as hard filters (i.e. compounds containing
one of the substructures are not further considered).[55] First attempts are made
to build machine learning models to enhance the prediction of reactive groups
in biochemical assays.[56]

3.2.5 Dark chemical matter

The opposite of frequent hitters is so-called DCM. DCM represents compounds
which have been tested in at least 100 biochemical and biological assays and
have not shown activity in any of the assays.[57] The idea behind the concept
of DCM was to build a data set for HTS in which compounds that result in a
positive outcome are likely to be specific, selective and true positive results.[58]

The DCM concept is explored in several studies such as the one from Ballante
et al. who built a DCM data set for docking in a virtual screening approach
against several targets. Positive results from the docking approach can then be
screened experimentally.[59] In the present study, the DCM data set was used
to validate the models.[D3]

3.2.6 True promiscuous compounds (multi-target compounds)

True promiscuous compounds are multi-target compounds interacting with a
number of distinct biomacromolecules in a specific manner. These compounds
are also called master key compounds[60] and privileged structures, which cor-
respond to scaffolds that are likely to interact with multiple targets.[61, 62] True
promiscuous compounds are normally frequent hitters, which implies that fre-
quent hitters can trigger specific positive readouts in assay screenings (and not
necessarily only false positive readouts).[63] An overview of data sets for detect-
ing true promiscuous compounds is given in Ref. [64].

Polypharmacology uses exactly this multi-target approach for drug discovery
as compounds can be much more effective when they interact with more than
a single target. However, compounds that interact with multiple targets often
show side-effects (off-target effects). Before the start of clinical trials a lot of
these toxicity and ADME properties are checked, for example in toxicity assay
panels supported by in silico methods.[2] High drug safety standards are ensured
during this step in drug development.[65, 66] These studies can be supported by
target prediction to identify potentially true promiscuous compounds that have
the potential to act with off-targets.[67]
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3.2.7 Assay technology-specific nuisance compounds

Most nuisance compounds are frequent hitters and show up in several different
assay screening setups. Compounds that trigger false positive assay results only
under specific experimental conditions in some assay detection technologies and
assay setups are problematic, as they cannot be detected as frequent hitters.
For example, a compound that shows autofluorescence or absorbance will only
give false positive results in light-dependent assay reading technologies (e.g. in
bioluminescence assays). On a standard 70 000 sample large screening library
of NIH was shown that 5% of compounds show false activity in fluorescence
assays.[68]

Bioluminescence assays (often using luciferase) are one of the best examples of
the efforts that are being made for the prediction of badly behaving compounds
specific to an assay detection technology. In luciferase assays compounds that
show autofluorescence or inhibit the luciferase enzyme are likely to give false
positive results in such assays.[69] The use of orthogonal assays is one way to
detect false positive assay outcomes. However, performing complementary assay
setups showing activity through another mode of action is time consuming and
expensive. Computational approaches like Luciferase Advisor,[70] ChemFluc[71]

and InterPerd[72] are cheaper and can identify compounds eliciting false positive
assay readouts in luciferase assays with balanced accuracies of up to 89,7%,
86% and accuracies of around 80%, respectively.

In principle fluorescence compounds, compounds with light absorbance proper-
ties and compounds with quenching activities are only problematic in specific
assay detection technologies.[73] For example, in luciferase assays compounds
with specific properties (i.e. autofluorescence) often show false positive assay
readouts and for glutathione S-transferase–glutathione interaction assays other
compounds are problematic.[74] But also specific targets containing particular
amino acids (especially cysteine) can be problematic during assay screening.
The oxidation of cysteine protease can occur and lead to false positive assay
readouts. This effect can be measured using a liquid chromatography – mass
spectrometry/tandem mass spectrometry approach.[75] Another cause of false
positive assay readouts can be triggered by the use of dimethyl sulfoxide as
an assay component.[76] Some of these false positive outcomes can be detected
with already available computational approaches for hit prioritization in specific
cell-based assays, such as the reporter gene assay.[77]

3.2.8 Applicability domain of existing computational models

One challenge of the discussed approaches is the definition of their applicability
domain as not all approaches might be suitable for all purposes.[78] The blind
use of filters such as the PAINS filter, which have a clearly defined applicabil-
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ity domain,[14] results in controversial discussions about the usefulness of such
filters.[48] Beside the applicability domain the advantage of substructure filters
(like the PAINS filters) is their good interpretability of the predefined sub-
structures, which are easy to understand for a medicinal chemist. Without an
applicability domain quantitative structure–activity relationship models, which
are often used as “black boxes”, are more difficult to interpret and will not
be applied as a user will have problems understanding when to use a certain
model and for what.[79]

3.2.9 Computational approaches for hit (de-)priorisation

In an editorial for Future Medicinal Chemistry (Ref. [D1]) we discussed the most
important computational methods for biochemical assay hit (de-)priorisation.
We structured the work into four parts: rule-based approaches, similarity-based
approaches, statistical approaches and machine learning approaches.
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Modern high-throughput screening technologies allow for the testing of tens of thousands of compounds per
day. However, a substantial proportion of the initial hits can be artifacts related to aggregate formation [1],
chemical reactivity, photoreactivity, redox activity, metal chelation, interference with assay spectroscopy, membrane
disruption, decomposition in buffers and other mechanisms [2–4].

The seminal works by the Shoichet group on aggregators [1] and by Baell and Holloway on pan-assay interference
compounds (PAINS) [2] have greatly increased the scientific community’s awareness of the pollution of medicinal
chemistry and chemical biology literature with ‘bad actors’ and ‘frequent hitters’. Less present in discussions but
not of lower significance are impurities and decomposition products as sources of assay interference [5,6].

Recently, the editors-in-chief of nine ACS journals have teamed up to define best practice guidelines for how to
identify assay artifacts and reject such hits [4]. Recommendations include the measurement and publication of full
concentration response curves as well as the use of reporter-free methods such as surface plasmon resonance.

At this point, it is important to note that frequent hitters are not necessarily bad actors and vice versa. Frequent
hitters are compounds which have a higher-than-expected activity rate recorded in historical screening data. Bad
actors, on the other hand, are compounds that trigger false assay readouts under specific conditions and therefore
often, but by far not always, show a high frequency of false readouts. In addition to some bad actors, frequent
hitters also include true promiscuous compounds (sometimes related to privileged scaffolds) that may in fact be of
interest in the context of polypharmacology and drug repurposing.

Computational methods can make a significant contribution to the identification of potential bad actors and/or
frequent hitters. These computational techniques include rule-based and similarity-based methods, statistical
approaches and machine learning. Here, we will briefly discuss the most relevant approaches that are publicly
accessible.

Rule-based approaches
Rule-based approaches aim to encode existing empirical knowledge from in vitro data in rule sets. Most widely
applied is a publicly available set of rules defined by 480 patterns that encode substructures present in classes
of compounds (PAINS) that have been linked to assay interference under specific conditions. Importantly, the
term PAINS is not a synonym of nuisance compounds, bad actors or frequent hitters, although it is often
used as such. For the appropriate application of PAINS (and any other) patterns, it is of utmost importance to
consider their definitions, scope and limitations. The PAINS patterns have been derived from 100 k compounds
screened generally at high concentrations against six protein–protein interactions with a single screening technology
(i.e., AlphaScreen assay). The use of high concentrations may have emphasized assay interference. All compounds
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had previously passed a garbage filter and were screened under detergent-containing conditions, meaning that the
PAINS patterns do not account for many of the generally undesirable functional groups (e.g., electron-deficient and
reactive epoxides) or for aggregate formation (with exceptions). Importantly, the definition of PAINS is class-based,
meaning the presence of PAINS patterns in individual compounds does not necessarily imply pan-assay interference.
Moreover, the individual PAINS patterns are derived from differing numbers of experimental observations [2]. On
a more technical note, users should be aware that different implementations of PAINS patterns and matching
algorithms exist, which may lead to different results. Baell, Holloway and Nissink have pointed out these facts and
limitations [2,3]. However, this set of rules is all too often used, without the necessary diligence, as a hard filter to
reject compounds. Such use will almost certainly result in a loss of true hits (∼5% of US FDA-approved drugs
raise a PAINS alert [3]). Equally bad, false hits may be selected for follow-up studies because they do not trigger a
PAINS alert.

Several further rule sets are in existence and have been incorporated into databases such as ChEMBL [7]. Most of
them originate from major pharmaceutical companies and were developed with the aim to deprioritize compounds
with undesired chemical features from in vitro screening. As in the case of the PAINS patterns, these rule sets may be
useful as guidance but not necessarily as hard filters. One valid criticism about most of these sets of rules is that they
have been derived from proprietary data, meaning that they cannot be directly verified or reproduced [8]. Scientists
from GSK have recently reported a critical analysis of the usefulness of published filters based on two million
unique compounds that have been tested in several hundred in-house screening assays [5]. They also introduced
rules for some new classes of nuisance compounds. One of their main conclusions is that a variety of filter strategies
need to be employed in order to properly account for the different types of nuisance.

Similarity-based approaches
Aggregator Advisor [9] compares the molecular structure of compounds of interest to over 12,600 known aggregators.
Compounds exceeding a defined similarity or log P threshold are recommended for testing of aggregate formation.
Due to the intrinsic nature of this approach, the absence of a structurally related molecule in the reference set does
not imply a compound’s benignity in the context of screening. Aggregator Advisor is available as a free web service,
and the dataset of known aggregators is available for free download [10].

Statistical approaches
All methods discussed so far focus on the prediction of one or several different types of assay artifacts. A different
approach is followed by Badapple [11], which uses a statistical model to identify compounds that are likely frequent
hitters based on their scaffolds. The regression model was derived from a set of over 430 k compounds measured
in 822 different assays. For compounds of interest, Badapple performs a hierarchical scaffold analysis to compute a
promiscuity score which corresponds to the likelihood that a compound containing a certain scaffold is promiscuous.
A further example of a statistical model for the prediction of frequent hitters is an in-house tool from AstraZeneca
derived from their corporate database [12]. This tool is not publicly available but has recently been compared by
Baell and Nissink [3] with Badapple and the PAINS patterns. Based on the results obtained for 16 of the most highly
populated PAINS substructures (i.e., filter family A as defined in [2]), the authors concluded that the individual
approaches consistently recognize a substantial number of problematic substructures. Badapple is available as a free
web service [13] and as a plug-in of the Bioassay Research Database [14].

Machine learning approaches
The most recent approach for the prediction of frequent hitters is Hit Dexter [15], which was developed in our lab
in Hamburg. The idea behind Hit Dexter is the development of a robust machine learning model able to identify
frequent hitters independent of the underlying interference mechanism (or chemical pattern conferring true ligand
promiscuity). Although Hit Dexter and Badapple are trained on similar datasets, the methodologies are clearly
different. Firstly, Hit Dexter is based on two extremely randomized trees classifiers rather than a statistical model,
and secondly, Hit Dexter was designed to account for subtle differences in compound structure rather than focusing
only on scaffolds. Using Morgan2 fingerprints to encode molecular structures, the classifiers reached Matthews
correlation coefficients and area under the receiver operating characteristic curve values of up to 0.67 and 0.96,
respectively, on a large, independent test set. Hit Dexter is also available as a free web service [16].
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Conclusion
The research of assay-interfering compounds is still in an early stage. There is much left to be done in order to
establish a community-wide standard for vetting measured bioactivity data. The recent developments and ongoing
discussions clearly point in the right direction [3–5,8]. In particular, researchers in academic drug discovery are
increasing efforts to implement hit validation procedures established in the industry. These procedures are based
on the principle that screening hits are only considered valuable, if a strong structure–activity relationship can be
established.

Today, several in silico methods are at our disposal and can provide guidance to medicinal chemists on potential
nuisance compounds. Clearly, there is room for improvement of these methods. Our biggest concern, however, is
that the limitations of these methods, with respect to applicability and accuracy are all too often not considered
appropriately. Predictions of all methods and models discussed herein may be used carefully for flagging or (de-
)prioritizing compounds but should not be applied blindly as hard filters to reject compounds. Used wisely, these
computational models can help in the design of screening libraries and in making better-informed decisions during
hit triage and follow-up.
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3.3 Relevance of frequent hitters and nuisance compounds
within the community and controversial discussion in
the literature

The relevance of frequent hitters, PAINS, reactive compounds, aggregators and
true promiscuous compounds is not only shown by the huge amount of citations
of the original study for the PAINS substructure patterns, but also by the con-
troversial discussion in the scientific literature. A suggestion of the editors of
the ACS journals to use PAINS filters as a quality criterion during the review
process[10] was published with controversial reactions.[80] The problem was stated
within the reaction, that there are also other problematic compounds that are
not detected by the PAINS filters and that PAINS can show real interactions
with targets (as evidenced by X-ray structures). Another observation is that
other scientific fields like biology are also becoming aware of the problem of
false positive assay outcomes.[81] At some point the discussion reached the point
where “PAINS shaming” (discussions in blog entries that show PAINS stru-
cuters that were actually not acting as PAINS) was practised and the concept
of PAINS had to be defended.[82] Nevertheless, this topic should not be treated
in a binary way, as PAINS can be useful in some cases but only when applied
in a conscious manner.

Industry and larger academia institutions as well as large screening facilities
use many different substructure filters and machine learning models for different
tasks. For example, the filtering of screening libraries is performed by Glaxo
Wellcome using a “hard filter” for filtering undesired groups,[55] Pfizer devel-
oped the “LINT” rules for finding undesired groups[83] and the NIH Molecular
Libraries Small Molecule Repository removes compounds containing one of 116
patterns.[84] The University of Dundee uses 105 patterns for removing assay
interference compounds,[85] similar to the ones used by Bristol-Myers Squibb
(180 patterns),[19] whereas the 480 PAINS patterns,[14] which are often used in
academic research, and the frequent hitter pattern detection by Chakravorty
et al.[21] developed and used by GlaxoSmithKline have been discussed in Sec-
tion 3.2.3. A different issue is addressed by the ChEMBL ToxAlter rules, which
are more specialized for toxic compounds.[86]

Further tools used for hit evaluation in industry (discussed above; Section 3.2.1)
are the tool developed and used by AstraZeneca,[20] which uses the binomial
function to evaluate the likelihood of a compound to be an outlier, and the
machine learning algorithm of Roche[12] (which was at least used in their com-
pany for some time).

It can be concluded that this is a hot topic in academia and in industry which
has caused some controversial discussion over the last decade. In the end all
developed tools can only be as good as the way they are used.



3.4. Data sets for computational approaches 25

3.4 Data sets for the development of computational ap-
proaches for frequent hitter prediction

In this work several data sets are used for model development as well as for
model validation. The most relevant ones are discussed in this Section.

PubChem is the largest freely available data source of biochemical activity
data.[87–89] It consists of several connected databases sharing bioactivity data
of substances. The most important PubChem database for compiling data sets
for the work presented in this PhD thesis is the PubChem Bioassay database.

The ChEMBL[90] database is a comprehensive resource on bioactivity data for
small molecules. Contrary to PubChem it contains mainly active compound-
target bioactivity records.[91] In this work, the ChEMBL database was mainly
used in this study for the comparison of chemical spaces (see Section refsec:HD2
for details). The chemical space that is displayed by the ChEMBL database
is large and drug-like. This database contains 2% of compounds with multi-
target activity against structurally distinct targets, which makes it suitable for
searching for promising polypharmacological drugs.[92]

Drugbank contains approximately 2000 food and drug association approved
and 206 withdrawn drugs, as well as information about drugs and drug-like
molecules.[93] For example, Drugbank contains information about the metabolism
and toxicity and ADME properties of drugs. In this work Drugbank was mainly
used as an external data set for model evaluation.

Natural products are interesting for drug discovery as they were evolutionar-
ily designed to be active against some targets. Since many groups of natural
products are known to be frequent hitters they were used in this study for
model evaluation.[94] For that purpose, a well-curated, large dataset of natural
products, published by Chen et al.,[95] was used.

Different data sets are suitable for different tasks and applications. Most data
sets are biased depending on the purpose for which the database was developed
for. The overall chemical space is inconceivably large and our chemical libraries
are normally biased into the direction of drug-like space.[96] Another challenge
for data analysis on the existing and biased databases is that, depending on
the data set and data selection criteria, different results can be drawn.[97]. A
good overview of multi-target compound data sets is given in Ref. [98] It can
be observed that, in general, bioactive compounds (i.e. compounds that were
tested active) show less multi-target activity than drugs. This effect might
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be caused by the fact that drugs are more often tested than other compound
classes.[99] Nevertheless, a higher number of performed experiments does not
directly translate in a higher true promiscuity rate, as this rate remained stable
over the last 40 years.[100]

3.5 Machine learning approaches

Computational algorithms that can detect patterns in unseen data after learn-
ing from past data are called artificial intelligence (AI). AI is a large field
that includes machine learning. Machine learning is a statistical approach of
generating information from data in a linear and/or nonlinear manner. One
big area of machine learning is deep learning which includes neural networks
with multiple hidden layers aiming to simulate the human brain. In this work
several machine learning algorithms, nonlinear statistical models for generating
knowledge from data were used.

A lot of machine learning algorithms exist in several different architectures. In
principle machine learning algorithms can be divided into two main approaches:
unsupervised learning and supervised learning. Unsupervised learning uses un-
labeled data, meaning that the outcome of the data is not predefined (i.e. there
is no right or wrong answer to the problem). These algorithms structure the
data and try to find patterns in it with the aim of, for example, dividing the
data points into two (or multiple) classes. In supervised learning, however, the
outcomes of the training data are already defined. For example, it is known if
a compound results in a positive or negative outcome for a specific task or not.
In this case the machine learning algorithm learns from training data (with
known class labels) and can make predictions for unseen (and unlabeled) data.

The labeled data used for supervised learning can have mainly two different
structures. On the one hand, the data can have different labels (classifications).
Binary classifications, which were used during this Ph.D. study, are the easiest
classification problems and have simple “yes” and “no” (1 and 0, true and false)
labels. On the other hand, the data can take any float number as a label (for
example any float between 0 and 1), in which case the models have to solve
a regression task. Regression tasks are more difficult than binary classification
models as a continuous value has to be predicted. As these high requirements
could not be reached by the data sets binary classification models were mainly
used in this work.

Both classification and regression models can be further divided into linear and
nonlinear machine learning algorithms. Linear models are suitable for linear
data.
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In this work unsupervised learning algorithms were applied for data analysis,
and all models for frequent hitter prediction were based on supervised machine
learning algorithms.

3.5.1 Algorithms

The most relevant machine learning algorithms in the context of this work are
RF classifier, ET classifier and MLP classifier. The implementation of the ma-
chine learning algorithms applied here belong to scikit-learn, a python library
with a large collection of tools and models.[101, 102]

RF classifier and ET classifier algorithms are both based on the decision tree
algorithm. The aim of a decision tree is the classification of instances by their
descriptors, separating the data based on the value of one descriptor at each
node (i.e. decision) of the tree. This decision tree is similar to a flow diagram
which always has two possibilities for a decision and no loops. After several
decisions based on the different values of the descriptors a final classification is
done. The below discussed algorithms use a collection of trees which are called
forests, to make the final prediction.

The RF classifier is a classification model that takes several randomized decision
trees into account to make a prediction. Thereby each tree has a randomized
setup regarding the descriptor values, regarding the ordering of the decisions
and regarding the samples used for training in a tree. In the end a majority
vote of all trees in the forest results in a prediction value between zero and one,
whereas the cutoff for binary classification is normally set to 0.5. Hence, all
samples with a prediction of 0.5 or larger are classified as one (or active), all
samples with a prediction below 0.5 are predicted as zero (or inactive).[103] In
ET classifier the randomization is increased by also using a random threshold
for the descriptor values at each decision node of the tree.[104]

MLP classifiers are based on multiple layers of perceptrons that interact with
each other. The design of the network and its components are inspired by the
human brain. A perceptron takes any number of input values, adds a bias
to them by applying a nonlinear function on the linear combination of all the
values, and returns the resulting value of these operations. In a simple MLP
classifier, multiple perceptrons in a layer are optimized to minimize the error of
the predictions. Using multiple layers of perceptrons with different numbers of
perceptrons per layer, deep neural networks that can perform extremely com-
plex classification tasks, can be built.[105–108]
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3.5.2 Molecular descriptors

Molecular descriptors are an essential part of training of machine learning mod-
els, since they should describe all important characteristics (in most cases they
do cover all characteristics) of a molecule in a computer readable format from
which the models can learn. The selected descriptors used to train the models
will therefore have a strong impact on the performance of the models themselves.

Starting from these molecular representations such as SMILES and SMARTS,
molecular descriptors can be calculated. One of the most prominent chemin-
formatic toolkits for deriving the above-mentioned descriptors is RDKit.[109, 110]

With RDKit molecules can be processed with a well written application pro-
gramming interface (API) within a python program or script. Biopython[111] is
a python package that can be used for database searches, for example, within
the NCBI protein database. Another tool for molecule processing which can be
used with a graphical user interface and also via the command line is molecular
operating environment (MOE).[112] This tool can also be used for descriptor
calculation or for performing more challenging tasks like simulations involving
macromolecules (e.g. proteins).

The most important descriptors in the context of this work are derived from
MOE and RDKit. Physicochemical descriptors like the molecular weight, logP
values or the number of carbon atoms within a molecule were calculated with
MOE and bit vector descriptors were calculated with RDKit. Physicochemical
descriptors can have a wide range of values (often with orders of magnitude
differing between each other) and therefore have to be standardized (to have
a normal distribution) before machine learning algorithms are used on these
descriptors. In this work a better performance was obtained with the bit vector
descriptors that contain a vector of a given length where each value can be one
or zero. For example, the 166 bits of a MACCS key encode different structural
properties which can be the question if there are more than three oxygens within
the molecule or if a sulfur bond is present. If one of these conditions is met,
the bit encoding this feature is set to one, otherwise it remains at zero.[113] The
descriptors that worked best in this work were Morgan or extended connectivity
fingerprint-like fingerprints.[114, 115] These circular fingerprints encode different
sized substructures or fragments (depending on the selected radius) that reflect
relevant regions of molecules. For example, a Morgen fingerprint with a ra-
dius of two is called a Morgan2 fingerprint and encodes substructures with a
diameter of four atoms. Normally these bit vectors are large and need a lot
of memory when used in a program. The solution to this problem is hashing,
during which the bits are “folded” into a fixed length (e.g. into 1024 bits).
However, sometimes different bits are hashed to the same position, causing bit
collision, which means that two features are hashed in the same bit and are
not distinguishable anymore.
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3.5.3 Performances metrics

Classification and regression models can be evaluated with different types of
performance metrics. Depending on the classification task (i.e. binary classifi-
cation or multi-class classification) and the ratio of the different classes some
metrics are better suited than others. Regression models are usually evaluated
with regard to the distance of the predicted values to the true value. In binary
classification models (for multi-class classifications different metrics are neces-
sary and are outside the scope of this work) the prediction can only take two
values (i.e. true or false; 1 or 0; active or inactive) and thus distance mea-
surements are not well suited for their evaluation. In the following the most
important binary classification performance metrics are discussed.

As in binary classification models the answer can only be true or false, only four
types of outcomes can result from a binary classification model: false negatives
(FN), false positives (FP), true negatives (TN) and true positives (TP). FN
are instances (in our case normally compounds) that were predicted as active
but are inactive compounds, whereas FP were predicted as inactive but are
actually active compounds. TN and TP are the correctly predicted instances as
inactive and active, respectively. A matrix which displays all the four categories
is called a confusion matrix. The measurements, described next, are normally
calculated from these (or a subset of these) four categories.

For the selection of the most suitable performance metric for a problem, one
of the important parameters to consider is whether the underlying data are
balanced or imbalanced (i.e. containing different numbers of instances in each
class). Some metrics are not suited for imbalanced data, since prediction errors
in the minority class are disregarded. Further, it is important which classes are
the most important ones in the prediction. For example, in some tasks (like
toxicity prediction) false positives could be regarded as a minor problem, while
false negatives need to be avoided. Depending on these factors often different
measurements are used.

In this work mainly the MCC (Eq.(3.2)) was used to evaluate model per-
formance.[116] MCC is a balanced performance metric (i.e. suitable for imbal-
anced data sets) that takes all the four aforementioned classes (FN, FP, TN
and TP) into account. It ranges from -1 to 1 whereas 1 means perfect pre-
diction, 0 random prediction and -1 consistent classification of the opposite class.

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(3.2)
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Accuracy (Eq.(3.3)) is the fraction of correctly predicted classes among all
predicted instances. This metric is only suitable for balanced data sets, since a
model predicting all instances with the class label of the majority class would
still get a high accuracy (e.g. accuracy of 0.90 if 90% of the data belongs to
the majority class). However, such a model would classify all instances in the
minority class wrongly.

Accuracy =
TP + TN

TP + TN + FN + FP
(3.3)

Sensitivity or Recall (Eq.(3.4)) is the fraction of active compounds correctly
identified (among all active predictions). Whereas specificity (Eq.(3.5)) is the
fraction of inactive compounds correctly identified (among all inactive predic-
tions).

Sensitivity =
TP

TP + FN
(3.4)

Specificity =
TN

TN + FP
(3.5)

The receiver operating characteristic is a performance measurement that shows
the ability of a classification model to rank the compounds according to their
classes. The AUC values range from 0 to 1 where 1 is a perfect classification
and 0 a consistent classification of the opposite class. A random classification
is denoted with a AUC value of 0.5. The ROC curve has more information: for
example a steep early slope shows that under the instances ranked with high
probabilities there are only few false positive samples.

3.6 Web servers as a tool for easy accessibility

The models developed within the scope of this PhD thesis are available via the
free public web service called New E-Resource for Drug Discovery (NERDD).
NERDD is based on django[117] and also uses the javascript molecule editor
toolbox[118] for graphical input of molecule structures. Results are visualised by
similarity maps.[119] One challenge of setting up the web server was to enable
complex calculations on an high performance cluster since otherwise parts of
the calculations (e.g. AD calculation) are too time consuming.
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Some compounds trigger positive signals in biological assays more often than oth-
ers. These compounds are therefore called “frequent hitters”. A lot of frequent
hitter compounds, but by far not all, may trigger false positive activity outcomes
by interacting, in an undesired manner, with the assay screening technology or
protein target. Publication of such compounds as bioactive substances often
triggers follow-up studies without the possibility of success, blocking valuable
resources in research. Experimental detection of bad actors is time-consuming
and computer-based models for the prediction of bad actors are still in their in-
fancy. Hence, the development of in silico methods for quick and easy prediction
of frequent hitters based on the latest developed machine learning algorithms
are needed.

The main objective of this PhD study is the development of machine learning
models for the prediction of frequent hitters in biochemical and biological as-
says. The models are derived from a large data set extracted from the PubChem
Bioassay database. Therefore three generations of machine learning models were
developed called Hit Dexter, Hit Dexter 2.0 and Hit Dexter 3. Whereas the first
part of this Ph.D. study, including the first generation of Hit Dexter models,
was mainly focused on the data preparation, which includes taking only sta-
tistically relevant data into account and the preparation of a well-curated data
set as well as a proof of concept for the machine learning models on such data
sets, Hit Dexter 2.0 includes and distinguishes two different assay domains (i.e.
primary screen assays (PSA) and confirmatory dose-response assays (CDRA))
and is much more focused on the evaluation of the developed machine learning
models. The validation was performed on several data sets including drugs and
compounds consistently measured as inactive across a broad protein space, as
well as several others. Finally, Hit Dexter 3 progresses further and distinguishes
target- and cell-based assay screenings. As the different assay screening types
differ in the way compounds interact with the protein target, for example in
target-based assays with a purified protein and in cell-based with protein targets
within a cell, it is important to not mix them up.

Another important aim of this PhD thesis is the development of New E-Resource
for Drug Discovery (NERDD). NERDD is a web server, which makes in silico
tools easily accessible to the scientific community and also includes the Hit Dex-
ter models. NERDD was developed as an easily extensible and maintainable
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web server. Besides the Hit Dexter models, six other tools, namely CYPstrate,
CYPlebrity, FAME3, GLORY, GLORYx, NP-Scout and Skin Doctor CP, are
accessible via NERDD.



5. Results (cumulative part of this dissertation)

In this section the results of this cumulative dissertation are presented in the
form of the publications that are derived from this work, along with a short
summary of each publication.
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5.1 Machine learning models for the prediction of frequent
hitters based on target-based assay data sets

Frequent hitters (compounds with higher-than-expected hit rates in biological
assays) need to be treated with extra caution during high-throughput screen-
ing (HTS) campaigns as they are likely bad actors. In an attempt to develop
machine learning models for the prediction of frequent hitters in target-based
assays a key requirement is a large data set for model building. Therefore a
computational approach for the automated extraction and compilation of as-
say data from the PubChem Bioassay database was developed. Based on the
compounds hit rates (i.e. fraction of times a compound was tested active and
times a compound was tested), compounds are assigned to three groups: non-
promiscuous compounds (hit rates below the average), promiscuous compounds
(hit rates above the average plus one standard deviation) and highly promis-
cuous compounds (hit rates above the average plus three standard deviations).
For the sake of robustness, only compounds tested against at least 50 different
protein targets were considered in this work. Based on these large data sets,
machine learning models were derived for discriminating non-promiscuous from
promiscuous compounds, as well as non-promiscuous compounds from highly
promiscuous compounds reaching Matthews correlation coefficients (MCCs) and
area under the receiver operating characteristic curve (AUC) values of up to
0.67 and 0.96, respectively. The best performing classification models (based on
extra tree classifiers and Morgan2 fingerprints) are distributed as “Hit Dexter”
and available via a free web server, called New E-Resource for Drug Discovery
(NERDD; for detail see below).
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Introduction

Biochemical assays are of considerable importance for early
drug discovery, and modern high-throughput screening tech-

nologies allow the testing of over one hundred thousand com-
pounds within one day.[1, 2] However, high rates of false-positive

readouts caused by various types of assay interference remain

a major issue. A substantial number of false hits continue to
appear as valid active compounds in the peer-reviewed litera-

ture.[3] As a consequence, efforts to characterize badly behav-
ing compounds[4, 5] (frequent hitters, pan-assay interference

compounds, aggregators and others) and develop good prac-
tice guidelines on how to identify assay artifacts and reject
such hits[6, 7] have recently been gaining traction.

False-positive results can be related to the chemical reactivi-
ty of a compound.[8] In particular, electrophiles can bind cova-
lently (and non-discriminately) to various proteins, thereby
changing the function of the bio-macromolecule that is mea-

sured by the assay.[9] A wide range of in silico approaches for
the identification of reactive compounds are available. Reactive

compounds can be identified using models based on sets of
rules, quantum chemical methods, and other linear and nonlin-

ear modeling techniques.[10]

Besides chemical reactivity, false-positive readouts in bio-

chemical assays may be related to a variety of other effects

and processes, such as redox cycling, interference with assay
spectroscopy, membrane disruption, decomposition in buffers

and metal complexation.[3] Baell et al.[11] have devised a set of
480 substructures from high-throughput screening data that

encode the molecular substructures of pan-assay interference
compounds (PAINS). These substructures can be encoded as
SMARTS patterns to use as a filter for flagging compounds that

are likely PAINS. However, their applicability domain is narrow
and they also match (potentially) benign moieties.[11, 12] A
recent study showed that the patterns match a substantial
number of compounds that do not show any assay activity

(i.e. , “Dark Chemical Matter”).[13, 14] They should therefore be
used as indicators rather than hard filters.

Colloidal aggregators are a further and possibly the most
abundant type of compounds that may cause false-positive
signals in biochemical assays.[15] These compounds are related

to the formation of micelles at specific concentrations and
generally not covered by the SMARTS patterns discussed

above. An in silico approach for flagging likely colloidal aggre-
gators based on molecular similarity with over 12 600 known

aggregators (taking calculated logP values into account) is

available.[16]

Most of the available computational approaches are limited

to the identification of a specific type of badly behaving com-
pounds.[6] An exception is Badapple,[17] which assigns a promis-

cuity score to compounds based on their molecular scaffolds.
Badapple is derived from more than 430 000 compounds mea-

False-positive assay readouts caused by badly behaving com-
pounds—frequent hitters, pan-assay interference compounds

(PAINS), aggregators, and others—continue to pose a major
challenge to experimental screening. There are only a few in si-
lico methods that allow the prediction of such problematic
compounds. We report the development of Hit Dexter, two ex-
tremely randomized trees classifiers for the prediction of com-
pounds likely to trigger positive assay readouts either by true

promiscuity or by assay interference. The models were trained
on a well-prepared dataset extracted from the PubChem Bioas-

say database, consisting of approximately 311 000 compounds

tested for activity on at least 50 proteins. Hit Dexter reached

MCC and AUC values of up to 0.67 and 0.96 on an independ-
ent test set, respectively. The models are expected to be of
high value, in particular to medicinal chemists and biochemists
who can use Hit Dexter to identify compounds for which extra
caution should be exercised with positive assay readouts. Hit
Dexter is available as a free web service at http://hitdexter.zbh.

uni-hamburg.de.
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sured in 822 different assays. While this model can in principle
provide valuable indications of compound promiscuity, the re-

duction of molecular structures to scaffolds limits its capacity
to account for subtle differences in compound structure.

In this work we explored machine learning approaches to
develop classifiers for the prediction of frequent hitters (also

referred to as promiscuous molecules) based on a large, cura-
ted dataset extracted from the PubChem Bioassay data-

base.[18, 19] The best performing models resulting from this work

are available as a web service at http://hitdexter.zbh.uni-ham-
burg.de.

Results and Discussion

Compilation of datasets for model development

Bioactivity data on 468 260 small molecules measured in 2266
confirmatory dose–response assays were retrieved from the
PubChem Bioassay database. The dataset was subjected to a

multi-step data preparation process (Figure 1) resulting in

427 657 unique compounds with activity data on a total of 653
unique proteins.

From this dataset, two subsets were extracted for model de-
velopment, consisting of 391 552 and 311 491 compounds that

have been tested for activity on at least 20 and 50 different
proteins, respectively (Figure 2). These two cutoff values were

found to produce datasets covering a broad range of biologi-
cal activities and a large chemical space. The latter was ana-
lyzed by principal component analysis (PCA) as reported in

Figure 3. We refer to these datasets as the PC20 and the PC50
datasets, where PC is used as an abbreviation for “protein

count”.
The diversity of the PC20 and PC50 datasets was tested with

a clustering approach. For each of the two datasets, 20 subsets
were compiled, each consisting of 50 000 randomly selected

compounds. These subsets were clustered with the Butina (un-
supervised non-hierarchical) clustering algorithm[20] based on

Figure 1. Overview of the data preparation pipeline. The numbers of ligands
that survived each filtering step are reported in boxes, and the number of
removed compounds are shown on the right. After the treatment of multi-
component compounds (salts), molecules with a molecular weight below
250 or above 900 Da and molecules consisting of elements other than those
commonly observed in drug-like molecules were removed. A duplicate filter
was applied to the remaining compounds, followed by quality checks to dis-
card, e.g. , contradicting bioassay data. See Experimental Section for detail.

Figure 2. Number of compounds in the curated dataset that have bioactivity
data reported for at least the given number of proteins (PC). The numbers
of compounds relevant for the PC20 and PC50 dataset are indicated by red
circles.

Figure 3. The scatter plot of the second against the first component based
on 45 molecular descriptors (Table S1) shows that the PC50 training set
covers the total (i.e. , processed PubChem Bioassay) dataset well.
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Morgan2 fingerprints[21, 22] and a Tanimoto similarity threshold
of 0.75. Among all subsets of both datasets, the largest clusters

contained only 32 (PC20) and 15 (PC50) molecules, respective-
ly. The lowest number of clusters for all subsets was 44 649

(PC20) and 44 514 (PC50), respectively. Based on these results
we deemed the datasets sufficiently diverse for modeling.

The hit rates of the individual compounds in biochemical
assays were quantified with the active-to-tested ratio (ATR),

which is calculated as in Equation (1):

ATR ¼ A
T

ð1Þ

where A is the number of proteins for which a compound was
measured as active and T is the total number of proteins on
which a compound has been tested. The ATR is low for most

compounds in the dataset, but a significant number of fre-
quent hitters are also present (Figure 4).

Compounds were assigned one of three different promiscui-

ty labels according to the ATR thresholds reported in Table 1: a
“non-promiscuous” (NP) label for any compounds with an

ATR<ATRmean, a “promiscuous” (P) label for any compounds

with ATR>ATRmean + 1s, and a “highly promiscuous” (HP) label
for any compounds with ATR>ATRmean + 3s. Note that, accord-

ing to this definition, highly promiscuous compounds are a
subset of promiscuous compounds.

Prior to any modeling experiments, the datasets were each
split into a training set and an independent test set using a

9:1 ratio (Table 1). This resulted in a training set with up to
246 331 instances for each of the promiscuity classes. The test

sets consisted of up to 27 450 instances for each promiscuity

class.

Analysis of the physicochemical properties of non-promiscu-
ous and promiscuous molecules

The ability of a compound to trigger a positive signal in bio-

chemical assays can be related to its physicochemical proper-

ties or to the presence of specific chemical patterns. We com-
puted characteristic physicochemical properties to probe

whether a link to compound promiscuity can be established.
As shown in Figure 5, the molecular weight distribution of

NP, P and HP compounds is similar. However, P (and also HP)
compounds tend to be more lipophilic than NP compounds

(Table 2). Their calculated logP is on average one log unit

higher than that of NP compounds. This is consistent with the
general observation that nonspecific compound binding is cor-

related with hydrophobicity. In addition, a higher proportion of

Figure 4. ATR distributions among compounds of the PC20 and PC50 data-
sets.

Table 1. Composition of the datasets used for model training and validation.

Assigned promiscuity class Dataset Number of compounds in Threshold definition[a] Threshold value
PC20 PC50 PC20[b] PC50[b]

Non-promiscuous (NP) Total :
Training set:
Test set 1:[c]

Test set 2:[d]

Test set 3:[e]

273 781
246 331
27 450
16 872
6569

226 710
203 992
22 718
14 611
5863

ATR<ATRmean 0.017 0.015

Promiscuous (P) Total :
Training set:
Test set 1:[c]

Test set 2:[d]

Test set 3:[e]

35 438
31 915
3523
2303
1090

29 112
26 201
2911
2060
965

ATR>ATRmean + 1s 0.049 0.043

Highly promiscuous (HP): a subset of compounds labeled P Total :
Training set:
Test set 1:[c]

Test set 2:[d]

Test set 3:[e]

7371
6653
718
496
283

5527
4970
557
409
203

ATR>ATRmean + 3s 0.112 0.100

[a] Compounds with ATRs between ATRmean and the given standard deviation were not assigned a promiscuity label and were effectively removed from
the datasets. [b] ATR threshold values calculated for the individual datasets according to the ATR threshold definition. [c] Independent test set obtained by
random split of the curated dataset prior to model development. [d] Subset of the independent test set consisting only of molecules showing a Morgan2
fingerprint-based maximum Tanimoto coefficient of 0.8 to any compounds in the training data. [e] Subset of the independent test set consisting only of
molecules showing a Morgan2 fingerprint-based maximum Tanimoto coefficient of 0.7 to any compounds in the training data.
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aromatic atoms as well as a lower proportion of rotatable
bonds were found among P (and also HP) compounds. Both of
these properties are related to planarity and flexibility, which

themselves are known to be associated with a compound’s
ability to form colloidal aggregates. Whether these differences

in physicochemical properties are sufficient to yield accurate
classifiers will be explored in the subsequent sections.

Model development

Two different types of binary classification models were devel-
oped: one to discriminate promiscuous from non-promiscuous

compounds (P-NP) and one to discriminate highly promiscuous
from non-promiscuous compounds (HP-NP). In combination

with the two datasets, PC20 and PC50, this gave rise to a total

of four different models.

Identification of the most suitable machine learning algorithm
and descriptor sets

In initial experiments we explored the performance of random
forest classifiers[23] (RFCs) and extremely randomized tree classi-

fiers[24] (ETCs) trained on 1) all 206 2D physicochemical proper-
ty descriptors implemented in MOE,[25] 2) MACCS key finger-

prints (166 bits), and 3) Morgan2 fingerprints (1024 bits), both
implemented in RDKit.[26]

All models were trained with scikit-learn[27] and evaluated by
10-fold cross-validation. Default values were used for the hy-

Table 2. Physicochemical properties and their correlations with the ATR for the PC50 dataset.

Property NP[a,d] P[b,d] HP[c,d] Correlation with ATR

Ratio of aromatic atoms to heavy atom 0.44:0.16 0.52:0.18 0.50:0.18 0.13
Ratio of rotatable bonds among all bonds 0.14:0.04 0.12:0.04 0.11:0.05 @0.13
logP 2.62:1.33 3.46:1.47 3.46:1.60 0.20
Molecular weight 371.19:7.92 364.45:77.49 366.74:78.19 @0.01

[a] Non-promiscuous compounds. [b] Promiscuous compounds. [c] Highly promiscuous compounds. [d] Data are the average: standard deviation.

Figure 5. Density plots of the logP, molecular weight, ratio of aromatic atoms to heavy atoms and ratio of rotatable bonds among all bonds for the PC50 da-
taset. HP compounds in red; P compounds in blue; NP compounds in black.
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perparameters, except for the number of estimators, which
was increased to 50, and the class weights, which were set to

“balanced”.
The Matthews correlation coefficient (MCC) was used as the

primary measure of model performance. The MCC is a bal-
anced measure of prediction quality which not only takes true

positives (TP) and false positives (FP) into account, but also
true negatives (TN) and false negatives (FN). It is calculated ac-

cording to Equation (2).

MCC ¼ TP 1 TN@ FP 1 FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ 1 ðTPþ FNÞ 1 ðTNþ FPÞ 1 ðTNþ FNÞp ð2Þ

The area under the receiver operating characteristic curve

(AUC) served as an additional measure of how well the model
was able to rank the compounds for promiscuity according to

the probabilities given by the machine learning algorithms.

Models derived from the combination of the extremely

randomized tree algorithm with Morgan2 fingerprints consis-
tently obtained the best performance for all combinations of

promiscuity thresholds and datasets. The models’ MCC and

AUC values ranged up to 0.61 and 0.94, respectively (Table 3).
The random forest classifier in combination with Morgan2 fin-

gerprints obtained comparable results (MCC of up to 0.56 and
AUC of up to 0.94). Models based on molecular fingerprints

clearly outperformed those based on physicochemical property
descriptors. This result was expected because assay interfer-

ence is often linked to specific molecular substructures, and
Morgan2 fingerprints are the most suitable (among those

tested) to capture these substructures. Differences in per-

formance with respect to promiscuity thresholds and datasets
were small. As a result of these experiments, the combination

of the ETC with Morgan2 fingerprints was identified as the
most suitable starting point for further optimization of the

models.

Optimization of model hyperparameters

The number of estimators and the maximum fraction of fea-
tures considered per split were optimized using a grid search

with 10-fold cross-validation (Table 4). Model performance was
evaluated based on the average MCC obtained over all folds.

For all combinations of datasets and promiscuity thresholds,

minor performance improvements corresponding to increasing
numbers of estimators were observed (Tables S2–5). For exam-
ple, the MCC values of models with 100 estimators were up to

0.04 higher than those of models with only 10 estimators. Mar-
ginal, if any, improvements in performance beyond 100 estima-

tors did not justify the additional computational cost. The
effect of the maximum fraction of features considered per split

(max_features) on model performance was small (up to around

0.01 in MCC and AUC). The best models were achieved with
max_features set to 0.2 for all combinations of datasets and

promiscuity thresholds.
Overall, the best-performing classifier that emerged from the

grid search was able to distinguish HP from NP compounds
with an MCC and AUC of 0.62 and 0.95 for the PC20 dataset,

and 0.61 and 0.95 for the PC50 dataset, respectively (n_estima-

tors = 100, max_features = 0.2, for both datasets ; Figure 6). The

Table 3. Performance of models derived from different combinations of machine learning algorithms and descriptor sets during 10-fold cross-validation.[a]

MOE physicochemical property descriptors MACCS fingerprints Morgan2 fingerprints
Algorithm: ETC RFC ETC RFC ETC RFC
Metric: MCC AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC AUC

P-NP
with
PC20

0.47:0.3 V 10@4 0.89 0.47:0.4 V 10@4 0.89 0.53:0.3 V 10@4 0.87 0.52:0.3 V 10@4 0.89 0.58:0.9 V 10@4 0.91 0.55:0.5 V 10@4 0.91

HP-NP
with
PC20

0.44:4.1 V 10@4 0.93 0.43:3.5 V 10@4 0.92 0.56:1.6 V 10@4 0.92 0.53:1.1 V 10@4 0.93 0.61:1.5 V 10@4 0.94 0.56:1.9 V 10@4 0.94

P-NP
with
PC50

0.46:1.2 V 10@4 0.89 0.46:1.1 V 10@4 0.89 0.52:1.0 V 10@4 0.87 0.51:1.1 V 10@4 0.89 0.57:0.8 V 10@4 0.91 0.54:1.2 V 10@4 0.91

HP-NP
with
PC50

0.41:4.0 V 10@4 0.92 0.40:1.7 V 10@4 0.92 0.56:1.9 V 10@4 0.92 0.52:1.5 V 10@4 0.92 0.61:2.4 V 10@4 0.94 0.55:2.3 V 10@4 0.94

[a] ETC, extra tree classifier ; RFC, random forest classifier ; P-NP, discrimination of promiscuous from non-promiscuous compounds; HP-NP, discrimination of
highly promiscuous from non-promiscuous compounds. MCC (with standard deviations) and AUC values averaged over all folds of the cross-validation.

Table 4. Hyperparameters optimized by grid search.

Parameter Tested values[a]

Number of estimators
(n_estimators)[b]

10,[c] 50, 100, 150, 200, 250, 300, 400, 500, 600

Maximum fraction of
features considered
per split
(max_features)[b]

“sqrt”,[c] 0.2, 0.4, 0.6, 0.8, None[d]

[a] Bold values were used for final model development. [b] Parameter
name in the scikit-learn implementation. [c] Default value. [d] All features
are used.
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P-NP classifiers performed slightly worse than the HP-NP classi-

fiers, obtaining MCC and AUC values of 0.60 and 0.91 for the

PC20 dataset and 0.58 and 0.91 for the PC50 dataset, respec-
tively (Figure 6). The observed differences in model per-

formance were expected, as the ATR margin between the HP
and NP classes (3s) is broader than the margin between the P

and NP classes (1s). Because the performance of models de-
rived from the PC20 and PC50 dataset was comparable, further

discussion will focus on models derived from the latter.

Model evaluation on independent test sets

The final models were trained with the above-mentioned, opti-

mized hyperparameters (n_estimators 100; max_features 0.2)

on the complete PC50 training set balanced with the synthetic
minority over-sampling technique (SMOTE) algorithm.[28] Per-

formance data on the models derived from the PC20 dataset
are provided in Figure S1.

The HP-NP model was able to predict compound promiscui-
ty for the independent test set 1 with MCC and AUC values of

0.67 and 0.96, respectively (Figure 7). Consistent with the
trends observed in the cross-validation, slightly lower values

were obtained with the P-NP model (MCC 0.61; AUC 0.92). The

MCC and AUC values for the independent test sets were slight-
ly better (up to 0.06 MCC and 0.01 AUC) than those for cross-

validation on the training set. The increase in performance is
likely a result of the over-sampling approach and the fact that

more data were available and used for training than during
the cross-validation approach.

To explore the robustness of the models, two subsets of the

independent test set were generated consisting only of mole-
cules showing a Morgan2 fingerprint-based maximum Tanimo-

to coefficient of 0.8 (test set 2) and 0.7 (test set 3) to any com-
pounds in the training data (Table 1). As expected, the MCC

and AUC values obtained for the test sets 2 and 3 were lower
than for test set 1 (Figure 7). The HP-NP classifier obtained an

MCC and AUC of 0.63 and 0.96, respectively, for test set 2.
Both values were approximately 0.05 lower for the P-NP classi-

fier on the same dataset. For test set 3, MCC and AUC values

of 0.54 and 0.95, respectively, were obtained for the HP-NP
classifier. The respective values for the P-NP classifier were

again around 0.05 lower than those of the HP-NP classifier.
In addition, the HP-NP and P-NP classifiers were also tested

on the Dark Chemical Matter (DCM) dataset,[13] which consists
exclusively of compounds that have been tested in a minimum

of 100 different assays and have not shown any activity. Prior

to testing, any compounds present in the PC50 training set
(341 compounds in total) and any compounds outside the ap-

plicability domain of the models (13 672 compounds that did
not pass the filters applied for molecular weight and element

types; see the Experimental Section for details) were removed
from the DCM dataset. This resulted in a test set of 125 339

compounds, of which 99.9 % and 98.4 % were correctly classi-

fied as not promiscuous by the HP-NP and the P-NP models,
respectively (Figure 8).

Hit Dexter web service

A web service called “Hit Dexter” is accessible free of charge
via http://hitdexter.zbh.uni-hamburg.de. The web service offers
an easy and quick way to make predictions for individual mol-

ecules and sets of molecules with the best-performing classifier
(i.e. , the ETC derived from the SMOTE-balanced PC50 dataset,

Morgan2 fingerprints, n_estimators = 100, max_features = 0.2).
Users upload molecular structures as SMILES or a list of SMILES

and initiate the calculations. After a few seconds the user is

presented a tabular overview of results, including the molecule
name and the calculated probabilities of a compound to be a

frequent hitter (Figure 9). The results and a log file can be
downloaded for further use. There is an option to also retrieve

the five nearest neighbors of query molecules present in the
training set, which will give users a better estimate of how reli-

Figure 6. Mean ROC curves obtained during 10-fold CV for the best-perform-
ing, optimized models (i.e. , the ETC derived with Morgan2 fingerprints, n_es-
timators = 100, max_features = 0.2).

Figure 7. ROC curves obtained with the final models for the three test sets
extracted from the PC50 dataset prior to model development.
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able the predictions are for their particular compounds of in-

terest.

Conclusions

Assay interference continues to present a significant challenge

in early drug discovery. Current computational approaches at-

tempting to identify frequent hitters, including reactive com-
pounds, PAINS and aggregators, are clearly limited in their ap-

plicability. In this work we report on the development of Hit
Dexter, a machine learning approach for the identification of

compounds likely to trigger positive assay signals. The classifi-
cation models included in Hit Dexter reached MCC and AUC

values of up to 0.67 and 0.96 on an independent test set, re-

spectively. A free, public web service includes functionality to
retrieve the five nearest neighbors present in the training data

for each query molecule, in order to support users in estimat-
ing the reliability of the predictions for their particular com-

pounds of interest. Importantly, besides reactive compounds,
PAINS and aggregators, Hit Dexter also identifies compounds

with particular pharmacophores that allow them to bind to
multiple proteins.

We believe that Hit Dexter will help scientists to flag com-

pounds that have an increased likelihood of triggering positive
signals in biochemical assays. Compounds flagged by Hit

Dexter should not be regarded as being of lower value for
drug discovery but rather as having more uncertainty regard-

ing their activity. In fact, frequent hitters may even be desira-
ble, for example, in the context of polypharmacology and drug

repurposing,[29] provided they are true promiscuous binders.

The purpose of Hit Dexter is to raise awareness and moti-
vate further investigations of the flagged compounds in or-

thogonal assays. In particular, we also hope that these models
will contribute to the effort to decrease the amount of false

hits in the scientific literature.

Experimental Section

Activity data for chemical substances (substance type = “chemical”)
measured with 2266 confirmatory dose–response assays (screening
stage = “confirmatory, dose–response”) for single protein targets
(target = “single” and target type = “Protein Targets”) were down-
loaded from the PubChem Bioassay database.[18, 19, 30] The SMILES
notations for all 468 260 compounds in this dataset were retrieved
via the PubChem Identifier Exchange Service.[31] Compounds con-
sisting of multiple components (salts) were split and the compo-
nents sorted by decreasing number of heavy atoms (“size”). If the
second-largest component was significantly smaller than the larg-
est one (i.e. , number of heavy atoms less than 70 % of the largest
component), the largest component was defined as the active
component and all others were discarded. If this was not the case,
the compounds were removed from the dataset (as no clear as-

Figure 9. Screenshot of the Hit Dexter result page.

Figure 8. Likelihood of promiscuity predicted for over 125 000 compounds
of a preprocessed subset of the DCM dataset. The figure shows that the HP-
NP and P-NP models correctly classify the vast majority of compounds as
not promiscuous. They obtained an overall accuracy of 99.9 % and 98.4 %, re-
spectively.
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signment of the main components could be made) unless the two
largest components were identical, in which case one of these was
preserved and all others discarded (salt filter in Figure 1). Com-
pounds with the same unique SMILES were treated as one com-
pound (duplicate filter in Figure 1).

Compounds with a molecular weight below 250 or above 900 Da
(molecular weight filter in Figure 1), as well as compounds consist-
ing of any element other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br and
I (element filter in Figure 1) were removed from the dataset. The
InChIs were retrieved for all remaining compounds via the Pub-
Chem Identifier Exchange Service.[31] The 240 compounds for
which the InChI could neither be retrieved via the PubChem Identi-
fier Exchange Service nor the PubChem PUG REST interface[32] were
also discarded.

All downloaded bioactivity records in the PubChem Bioassay data-
base have one of the following four activity values (activity out-
comes): “Includes Probe”, “Active”, “Inactive” or “Unspecified/Incon-
clusive”. Any assays not having at least one “Active” and one “Inac-
tive” record were removed from the dataset. Any compounds (i.e. ,
all instances having the same InChI after application of the salt
filter) with contradicting activity values for one and the same assay
were discarded (quality check in Figure 1). Following this step, any
compounds reported by at least one assay as active on a particular
protein were labeled active on that protein. This procedure result-
ed in a total of 405 399 compounds with assigned bioactivities.

All PubChem Bioassays are linked to a “gene identifier” (GI), a
unique identifier for genes in the NCBI Protein database.[33] This
identifier was retrieved for the individual assays via the PubChem
PUG REST[32] interface to link assays to proteins. A total of 712
unique GIs were retrieved. Using these GIs, the protein sequences
were retrieved in FASTA file format from the NCBI Protein database.
The protein sequences were checked for sequence identity with
cd-hit[34] (structure equality = 100 %), resulting in 653 unique pro-
teins.

All calculations are performed on Linux workstations running
openSUSE 42.2 and equipped with Intel i5 processors (3.2 GHz) and
16GB of main memory.
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44 5. Results (cumulative part of this dissertation)

5.2 Refined machine learning models for the prediction of
frequent hitters in primary screening assays and con-
firmatory dose-response assays

The frequent hitters observed with primary screen assays (PSAs) may differ
from those observed with confirmatory dose-response assays (CDRAs). The
differentiation of these two assay domains is therefore important towards the
understanding of frequent hitters in target-based assays. Two large data sets
were compiled from the PubChem Bioassay database, based on the automated
extraction pipeline that was established as part of our previous work. A further
improvement during data preparations in this work was the consideration of pro-
tein evolutionary relationships by clustering proteins according to their protein
sequence. All compounds considered in this work have been tested on at least 50
distinct protein clusters. Dedicated models for the PSA data set and the CDRA
data set were built to distinguish non-promiscuous and promiscuous, as well as
non-promiscuous and highly promiscuous compounds. On holdout data, these
models reached MCCs and AUC values of up to 0.64 and 0.96, respectively.
The best performing models (extra tree classifiers using Morgan2 fingerprints)
based on the PSA data set and CDRA data sets are distributed as the Hit
Dexter 2.0 models. In addition, several other established rule-based approaches
(e.g. the well known pan-assay interference compounds (PAINS) approach) and
similarity-based approaches (e.g. AggregatorAdvisor) were implemented within
the web server which makes it to a one-stop-shop for hit (de-)priorisation. Dur-
ing model evaluation several use cases for Hit Dexter 2.0, based on data sets
derived from approved drugs, natural products, potential PAINS (compounds
that were detected by the PAINS rules), consistently inactive tested compounds
(also known as DCM), as well as several screening libraries, were explored.
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ABSTRACT: Assay interference caused by small molecules
continues to pose a significant challenge for early drug
discovery. A number of rule-based and similarity-based
approaches have been derived that allow the flagging of
potentially “badly behaving compounds”, “bad actors”, or
“nuisance compounds”. These compounds are typically
aggregators, reactive compounds, and/or pan-assay interfer-
ence compounds (PAINS), and many of them are frequent
hitters. Hit Dexter is a recently introduced machine learning
approach that predicts frequent hitters independent of the
underlying physicochemical mechanisms (including also the
binding of compounds based on “privileged scaffolds” to
multiple binding sites). Here we report on the development of a second generation of machine learning models which now
covers both primary screening assays and confirmatory dose−response assays. Protein sequence clustering was newly introduced
to minimize the overrepresentation of structurally and functionally related proteins. The models correctly classified compounds
of large independent test sets as (highly) promiscuous or nonpromiscuous with Matthews correlation coefficient (MCC) values
of up to 0.64 and area under the receiver operating characteristic curve (AUC) values of up to 0.96. The models were also
utilized to characterize sets of compounds with specific biological and physicochemical properties, such as dark chemical matter,
aggregators, compounds from a high-throughput screening library, drug-like compounds, approved drugs, potential PAINS, and
natural products. Among the most interesting outcomes is that the new Hit Dexter models predict the presence of large
fractions of (highly) promiscuous compounds among approved drugs. Importantly, predictions of the individual Hit Dexter
models are generally in good agreement and consistent with those of Badapple, an established statistical model for the
prediction of frequent hitters. The new Hit Dexter 2.0 web service, available at http://hitdexter2.zbh.uni-hamburg.de, not only
provides user-friendly access to all machine learning models presented in this work but also to similarity-based methods for the
prediction of aggregators and dark chemical matter as well as a comprehensive collection of available rule sets for flagging
frequent hitters and compounds including undesired substructures.

■ INTRODUCTION

Biochemical assays are a core component of early drug
discovery.1−3 Some small molecules however can pose
significant challenges to biochemical assays as they may trigger
false outcomes. Whereas false negative results may lead to a
loss of valuable bioactive compounds, false positive outcomes
can, if they remain undetected, tie up and consume significant
resources and time without prospect of success. In the worst
case, these “badly behaving compounds”, “bad actors”, or
“nuisance compounds” get reported as bioactive compounds
and pollute the medicinal chemistry and chemical biology
literature. Once published, invalid assay outcomes may

propagate and trigger follow-up studies based on false grounds,
which hampers the global drug discovery effort.
Nuisance compounds (Figure 1) include compounds that

can form colloidal aggregates,4,5 compounds with reactive
groups,6 and pan assay interference compounds (PAINS).7

Note that the PAINS substructures by design do not cover
aggregators because they were derived from the outcomes of
high-throughput screening campaigns run in the presence of a
detergent and casein in order to minimize phenomena related
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to aggregate formation. They also do not cover many types of
reactive compounds because compounds with reactive func-
tional groups had been removed from the screening library
prior to assaying.7

The different types of badly behaving compounds discussed
so far involve no definite assertions about the frequency by
which they cause assay interference. Rather than interfering
with all different kinds of assays, they trigger false outcomes
only under specific (and by far not all) conditions. However, a
tendency of badly behaving compounds to have higher hit rates
is apparent.
Compounds for which a higher than expected hit rate is

recorded in historical assay data are referred to as “frequent
hitters”.8 Many of these compounds are aggregators, reactive
compounds, or PAINS, but importantly, a significant
proportion of frequent hitters are true promiscuous com-
pounds. True promiscuity is often related to “privileged
scaffolds”9 or “master key compounds”,10 which have the
ability to bind to multiple binding sites. True promiscuous
compounds are not necessarily nuisance compounds. In fact,
they can be valuable in the context of drug repurposing and
polypharmacology.11,12

Computational methods for predicting nuisance compounds
and frequent hitters are still in an early stage of development.13

The most established approaches for identifying problematic
compounds are rule-based methods, which flag compounds
containing substructures that have been linked to assay
interference. In recent years, the 480 patterns encoding
substructures derived from PAINS have become not only
one of the best known but also one of the most misused rule
sets in medicinal chemistry. All too often, the limitations of the
PAINS concept, most of which have been pointed out clearly
by its inventors, are not paid the necessary attention.14,15

Further approaches for the prediction of nuisance compounds
and frequent hitters include similarity-based, statistical and
machine learning approaches, an overview of which is provided
in ref 13.

An important statistical approach for the prediction of
frequent hitters is Badapple,16 which performs a hierarchical
scaffold analysis to derive a promiscuity score (“pScore”). The
pScore corresponds to the likelihood of a compound based on
a specific scaffold being promiscuous. Badapple was derived
from a large public data set of more than 430 000 compounds
measured in a total of more than 800 different assays.
We recently reported two machine learning models for the

prediction of frequent hitters which are accessible via a free
web service called “Hit Dexter”.17 Hit Dexter was developed
with the idea of creating a reliable model for the prediction of
frequent hitters independent of the underlying physicochem-
ical mechanisms (including also the binding of compounds
based on “privileged scaffolds” to multiple binding sites). Such
a model could advice scientists for which compounds to
exercise extra caution with positive assay readouts. The initial
Hit Dexter models were trained on more than 235 000
compounds measured in at least 50 different confirmatory
dose−response assays (CDRAs). They reached a high level of
accuracy on independent test data, with Matthews correlation
coefficients18 (MCCs) of up to 0.67 and area under the
receiver operating characteristic curve (AUC) values of up to
0.96.
Here we report on the development of a second generation

of machine learning models for the prediction of frequent
hitters, which are accessible via the new Hit Dexter 2.0 web
service.19 The models are a result of several major refinements
and extensions of the data collection, data processing and
modeling procedures. For example, a clustering approach was
introduced in order to avoid an overrepresentation of
structurally and functionally related proteins such as protein
kinases. Hit Dexter 2.0 also includes models trained on data
measured with primary screening assays (PSAs). In contrast to
CDRAs, PSAs are primarily high-throughput screening assays
measuring single-dose inhibition. The inclusion of these
models in Hit Dexter 2.0 will allow a better representation
of assays employed for primary screening.
In addition to method and model refinement, we also report

on comprehensive tests of Hit Dexter 2.0 with various types of
compounds, including dark chemical matter (DCM),20

approved drugs, and natural products. Last but not least, we
present a direct comparison of Hit Dexter 2.0 with Badapple
and introduce the new Hit Dexter 2.0 web service.

■ RESULTS AND DISCUSSION

Data Set Compilation and Analysis. Two large data sets
were compiled from PubChem Bioassay,21,22 one consisting of
803 898 compounds measured in 931 PSAs and the other one
consisting of 468 258 compounds measured in 2273 CDRAs.
During data preprocessing, filtering in particular, 20 921 and
18 003 compounds were removed from the PSA and CDRA
data sets, respectively (Table 1).
Following this procedure, the proteins covered by the PSA

and CDRA data sets were clustered based on sequence
similarity: The 429 proteins covered by the PSA data set were
assigned to 388 unique protein clusters, and the 712 proteins
covered by the CDRA data set were assigned to 537 unique
protein clusters (see Methods for details).
The definition of whether a compound is (highly)

promiscuous or not is based on the active-to-tested ratio
(ATR), which is calculated according to eq 1:

Figure 1. Schematic overview of key concepts and terms used in the
context of assay interference and small-molecule drug discovery. Note
that by design PAINS exclude aggregators and many types of reactive
compounds. However, overlaps between the different types of
compounds other than those depicted in this scheme certainly exist.
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A
T

ATR =
(1)

where A is the number of protein clusters for which a
compound was measured as active on at least one protein of
that cluster, and T is the total number of protein clusters a
compound was measured on.
The ideal data set to derive ATRs from would consist of a

large number of compounds measured on a large number of
protein clusters. Obviously, with the available data a
compromise needs to be found between the number of
instances available for training and testing the models (i.e., size
of the data set in terms of the number of compounds) and the
minimum number of protein clusters for which activity data are
recorded for the individual compounds.
Figure 2 shows the relationship between data set size and the

minimum number of protein clusters for which assay results

have been recorded. For example, the processed data set
includes more than 362 000 compounds which have been
measured with PSAs representing at least 50 different protein
clusters. Likewise, over 326 000 compounds are represented by
the respective data collected from CDRAs. One of the most
obvious differences between the PSA and CDRA data sets is
that for the vast majority of compounds of the PSA data set

measured data are available for 150 and more protein clusters,
whereas for the CDRA data set a steep decline in the number
of compounds for which measured data are available for 70 and
more protein clusters is observed.
We explored the use of data sets containing all compounds

for which bioactivity data has been recorded for at least 20, 50,
and (only for PSAs) 100 protein clusters (data not shown). In
agreement with previous results,17 we found the data sets
containing all compounds for which bioactivity data has been
recorded for at least 50 protein clusters to be highly diverse
and most suitable for modeling. We refer to these data sets as
the PSA50 and CDRA50 data sets.
Next, all compounds were assigned a promiscuity label based

on their ATR: “NP” for nonpromiscuous compounds, “P” for
promiscuous compounds and “HP” for highly promiscuous
compounds. Note that, according to the definitions of
promiscuity summarized in Table 2, highly promiscuous
compounds are a subset of promiscuous compounds.
Suitable cutoffs for the assignment of promiscuity labels

were calculated for the PSA50 and CDRA50 data sets
according to the definitions derived as part of our previous
work (recited in Table 2, column “threshold definition”).17

According to these definitions, any compounds with an ATR
greater than 0.024 for PSAs and 0.043 for CDRAs were labeled
promiscuous, accounting for 11% and 13% of all compounds,
respectively. These proportions of promiscuous compounds
are in good agreement e.g. with the findings of a recent study
from GlaxoSmithKline, which reported a fraction of 13% of all
compounds as “noisy”,23 and higher than the averaged
incidence of frequent hitters reported for the AstraZeneca
screening library (which is 6%).24 The mean ATRs for the PSA
and CDRA data sets were 0.008 and 0.015, respectively (see
Table 2 for more detail). These mean ATRs correspond well to
the findings of other studies, such as that on the AstraZeneca
compound collection, which reported an overall hit rate of
1.53%.24

CDRAs tend to have higher hit rates than PSAs. This is
observed in the ATR distributions reported in Figure 3 and
also reflected in the higher mean ATR for CDRAs (Table 2).
The differences in hit rates can be explained by the fact that
CDRAs are often used to measure compounds which have
previously been reported as active by a PSA and are hence
more likely to also show activity in CDRAs than a random set
of screening compounds.

Comparison of the Chemical Space of the PSA and
CDRA Data Sets. The chemical space of the individual data
sets used for modeling was determined and compared using (i)
principal component analysis (PCA) on 44 physically mean-
ingful 2D descriptors computed with MOE25 (listed in Table
S1 of ref 17) and (ii) pairwise similarity analysis based on the
Tanimoto coefficient calculated from Morgan2 finger-
prints.26,27

In a first experiment, we analyzed whether the reduction of
the PSA and CDRA data sets to subsets of compounds
annotated with measured data for at least 50 protein clusters
leads to a substantial loss of coverage. As shown by the PCA
scatter plots and histograms reported in Figure 4, the chemical
space of compounds covered by the PSA50 and CDRA50 data
sets isto a large extentcomparable with that of the PSA0
and CDRA0 data sets, respectively. Only about 11% of all
compounds of the PSA0 data set and about 9% of all
compounds of the CDRA0 data set have a maximum
Tanimoto coefficient of less than 0.5 measured against any

Table 1. Number of Compounds Removed During Filtering
and Quality Checks

reason for removal
PSA data set

[cpds]
CDRA data set

[cpds]

invalid SMILES notation 1 3
salt filter with ambiguous outcomea 770 231
molecular weight outside the range of 200
to 900 Da

11231 10815

elements other than H, B, C, N, O, F, Si, P,
S, Cl, Se, Br, and I

116 175

duplicate moleculesb 8460 5171
rejected during quality checksc 343 1608
sum 20921 18003
aMulticomponent compounds for which the main component could
not be unequivocally defined (see Methods and ref 17 for detail).
bIdentified based on canonicalized SMILES. Associated data were
merged as outlined in ref 17. This led to the effective reduction of the
number of compounds as reported in the table. cCompounds with
conflicting data (e.g., activity data). See Methods and ref 17 for detail.

Figure 2. Data set size (number of compounds) as a function of the
minimum number of protein clusters for which measured data are
available. The rectangles mark the PSA20/CDRA20, PSA50/
CDRA50, and PSA100/CDRA100 data sets.
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compounds present in the PSA50 and CDRA50 data sets,
respectively. In other words, this means that by constraining
the data used for model development to compounds for which
measured data has been recorded for at least 50 protein
clusters does not lead to a substantial reduction of chemical
space coverage as compared to the complete (processed)
PubChem Bioassay data sets.
Following the same protocol, we also compared the chemical

space covered by the PSA50 and CDRA50 data sets. As shown
in Figure 5A and D, no substantial differences in coverage
between the two data sets are apparent from the PCA and
pairwise similarity analysis. Last but not least we compared the
PSA50 and CDRA50 data sets to the complete ChEMBL
database.28,29 The ChEMBL database was prepared following
the identical data preprocessing protocol (without considering
any biological data) and consists of about 1.5 million
compounds. From this comparison it can be seen that
chemical space of the ChEMBL database is wider than that
of the PSA50 and CDRA50 data sets (Figure 5B and C). This
is an expected result, since the ChEMBL database contains
substantially more compounds from a large number of diverse
sources. Nevertheless, the plots in Figure 5E and F show that
approximately 50% of all ChEMBL compounds are well
represented by the PSA50 and CDRA50 data sets.
Model Development. Prior to model development, the

PSA50 and CDRA50 data sets were randomly split into a
training and a test set with a ratio of 9:1. In contrast to our
previous work,17 an additional data preprocessing step was
implemented which checks for the presence of any compounds

with distinct canonicalized SMILES but identical Morgan2
fingerprints (as in the case of stereoisomers, for example)
because this can lead to inconsistent predictions. In order to
address these issues, any instances with identical Morgan2
fingerprints were merged if their promiscuity labels were
identical. If their labels differed, all instances with identical
Morgan2 fingerprints were removed from the training data.
Table 3 lists the number of compounds removed from the
training and test sets as part of this process.
For assays of both screening stages (i.e., PSAs and CDRAs),

two binary classifiers were developed: one to distinguish
promiscuous from nonpromiscuous compounds (P-NP classi-
fier) and another one to distinguish highly promiscuous from
nonpromiscuous compounds (HP-NP classifier). An overview
of the size of the training and test set is reported in Table 2.
As a first step in the model building process, the most

suitable machine learning algorithm and descriptor set were
identified. In addition to the extra tree classifiers (ETC) and
random forest classifiers (RFC) explored in our previous
work,17 we also tested several meta classifiers such as the
AdaBoost Classifier30,31 and Bagging Classifier,32,33 both in
combination with the ETC and RFC. With respect to
descriptors, we explored all 206 2D descriptors available in
MOE, Morgan2 fingerprints (1024 bit), and MACCS keys
(166 bits).
The various combinations of machine learning algorithms

and descriptors were tested with 10-fold cross-validation (see
Methods for more detail). The performance of the individual
classifiers was compared based on the MCC, which quantifies

Table 2. Composition of the Data Sets Used for Model Training and Validation

number of unique compounds in threshold value

assigned promiscuity class data set PSA50 CDRA50 threshold definitiona PSA50b CDRA50b

nonpromiscuous (NP) total: 247110 234811 ATR < ATRmean 0.008 0.015
training set: 222272 211264
test setc: 24881 23574

promiscuous (P) total: 29042 33982 ATR > ATRmean + 1σd 0.024 0.043
training set: 26117 30478
test setc: 2930 3507

highly promiscuous (HP)a subset of compounds labeled P total: 6625 6246 ATR > ATRmean + 3σd 0.054 0.100
training set: 5956 5609
test setc: 670 637

aDerived as part of our previous work.17 Compounds with ATRs between ATRmean and ATRmean + 1σ were not assigned a promiscuity label and
removed from all data sets. bATR threshold values calculated for the individual data sets according to the ATR threshold definition. cIndependent
test set obtained by random split of the curated data set prior to model development. dStandard deviation.

Figure 3. ATR distributions calculated for the (A) PSA50 and (B) CDRA50 data sets. The vertical lines mark the cutoffs applied for the assignment
of promiscuity labels. Any compounds below the green line were labeled “NP”, any above the yellow line “P”, and any above the red line “HP”.
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Figure 4. Comparison of the chemical space of the (A, B) PSA0 and PSA50 data sets and (C, D) CDRA0 and CDRA50 data sets. The PCA scatter
plots in parts A and C are based on the first against the second component and derived from 44 physicochemically meaningful 2D descriptors
calculated with MOE (see Table S1 in ref 17). PCA was performed on the full data set. For the sake of clarity, only a randomly selected 1% of all
data points are shown. The axis labels report the percentage of the total variance explained by the respective principal component (PC). The
histogram in part B shows the proportion of compounds of the PSA0 data set represented by the PSA50 data set at a given minimum similarity
(Tanimoto coefficient calculated from Morgan2 fingerprints). Likewise, the histogram in part D shows the proportion of compounds of the
CDRA0 data set represented by the CDRA50 data set.

Figure 5. Comparison of the chemical space of the PSA50, CDRA50, and ChEMBL data sets in the (A, B, C) MOE 2D descriptor space and (D, E,
F) Morgan2 fingerprint space. The PCAs were performed on the full data sets. For the sake of clarity, only a randomly selected 1% of all data points
are shown. The axis labels report the percentage of the total variance explained by the respective principal component. The histograms in part D
show the proportion of PSA50 compounds represented by the CDRA50 data set at a given minimum similarity (Tanimoto coefficient calculated
from Morgan2 fingerprints) in orange and vice versa in blue. Likewise, the histograms in parts E and F show the proportion of compounds of the
ChEMBL database represented by the (E) PSA50 and (F) CDRA50 data sets.
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the correlation between the predictions and their true value by
taking into account the true positive, false positive, true
negative, and true positive predictions. MCC values range from
−1 to +1, where a value of +1 indicates perfect prediction, a
value of 0 a performance equal to random prediction, and a
value of −1 total disagreement of the prediction. In addition,
we generated receiver operating characteristic (ROC) curves
and calculated the area under the ROC curves (AUCs). By
considering these three components, a solid understanding of
the goodness of the models can be obtained: Whereas the
MCC quantifies the capability of a model to correctly classify a
compound of interest, ROC curves and (to some extent also)
AUC values quantify a model’s ability to identify (highly)
promiscuous compounds by assigning them high probabilities
as compared to nonpromiscuous compounds (i.e., ranking
(highly) promiscuous compounds early in a list).
For all data sets the best performance during 10-fold cross-

validation was obtained by ETCs in combination with
Morgan2 fingerprints (MCC values between 0.56 and 0.58).
These observations are consistent with the observations made
during our previous work.17

Following these experiments, the hyperparameters (Table 4)
for the ETCs (in combination with Morgan2 fingerprints)

were optimized, again with 10-fold cross-validation and with
MCC as performance measure. Optimization of the hyper-
parameters did not yield substantial improvements of the
models. The most suitable settings for the number of
estimators and the maximum fraction of features considered
per split were 100 and 0.2, respectively. Classifiers using these
hyperparameters obtained MCC values between 0.57 and 0.60
and AUC values between 0.91 and 0.96 during 10-fold cross-
validation (Figure 6). The final models (with optimized
parameters) were built on the complete training sets balanced
with the synthetic minority oversampling technique
(SMOTE).34

Model Evaluation on Independent Test Data. The
final models (ETC; Morgan2 fingerprints; SMOTE for

balancing the training data; n_estimators = 100; max_features
= 0.2), referred to as Hit Dexter 2.0 models, were tested on an
independent test set (Table 2) derived by random split of the
preprocessed PSA50/CDRA50 data sets prior to model
building. The MCC values obtained by the four classifiers
(i.e., HP-NP and P-NP classifiers, trained on PSA or CDRA
data) for the independent test set was between 0.60 and 0.64
(Figure 7A), whereas their AUC values ranged from 0.91 to
0.96. Both HP-NP classifiers performed on average slightly
better than the P-NP classifiers. This is expected because the
margin between the cutoffs utilized to assign compounds to
either of the two promiscuity classes is larger for the HP-NP
classifier.
The robustness of the Hit Dexter 2.0 models was further

probed by iteratively removing compounds from the test set
that are similar to any of the compounds in the training data.
More specifically, the maximum allowed similarity between the
compounds of the test set and any compounds in the training
set (measured as Tanimoto coefficient calculated from
Morgan2 fingerprints) was reduced by 0.02 during each
iteration (Figure 8). For example, for the subset of test
compounds with a maximum Tanimoto coefficient of 0.8,
MCC values of 0.55 to 0.58 were obtained, whereas AUC
values were between 0.90 and 0.95 (Figure 7B). For the subset
of test compounds with a maximum Tanimoto coefficient of
0.7, MCC values were between 0.44 and 0.50, and AUC values
between 0.87 and 0.92 (Figure 7C). Decent performance was
observed for subsets of test compounds with a maximum
Tanimoto coefficient as low as 0.6 (MCC values between 0.34
and 0.42; AUC values between 0.82 and 0.88). Overall, the
MCC values obtained for the initial Hit Dexter models17 are
slightly higher than those obtained for Hit Dexter 2.0. This
may be a result of the protein clustering procedure, as
compounds active on several related proteins (which therefore
may contain characteristic structural patterns that can be more
easily recognized by machine learning algorithm) may no
longer be part of the P (and HP) data set.

Application of Hit Dexter 2.0 to Different Data Sets.
In order to obtain a better understanding of the scope and
limitations of Hit Dexter 2.0, we analyzed its predictions for a
number of data sets with distinct characteristics:

• The dark chemical matter (DCM) data set:20 a library of
compounds which have been tested in at least one
hundred different biochemical assays and have never
shown activity. This data set originates from Novartis
and PubChem assay data collected for more than
139 000 compounds (all size indications in this list
referring to the unprocessed data sets).

• The aggregators data set:36 a set of more than 12 600
compounds known to form colloidal aggregates. This
library serves as data resource for Aggregator Advisor.37

• The Enamine HTS Collection:38 Enamine is a leading
provider of screening compounds and screening blocks.
The Enamine HTS collection was selected as a
representative library widely used in high-throughput
screening. It contains 1.9 million compounds.

• The ChEMBL database:29 a curated chemical database
of 1.7 million (mainly) drug-like compounds, richly
annotated with measured bioactivity data.

• The approved drugs subset of DrugBank:39 a set of 2158
drugs approved in at least one jurisdiction, at some point
in time.

Table 3. Number of Compounds Filtered Due to Duplicate
Morgan2 Fingerprints

data set

no. of compounds merged
due to identical fingerprints
and promiscuity labels

no. of compounds with identical
fingerprints removed due to

contradicting promiscuity labels

PSA50
training
set

2522 303

PSA50 test
set

41 8

CDRA50
training
set

1664 281

CDRA50
test set

26 4

Table 4. Hyperparameters Optimized by Grid Searcha

parameter option

number of estimators (estimators)b 10c, 50, 100, 150, 200, 250,
300, 400, 500, 600

maximum fraction of features considered
per split (max_features)b

sqrtc, 0.2, 0.4, 0.6, 0.8, noned

aBold numbers indicate settings used for the production of the final
models. bParameter name in the scikit-learn35 implementation.
cDefault value. dAll features are used.
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• A “potential PAINS” data set: a subset of over 51 600
compounds of the Enamine HTS Collection that match
PAINS patterns (see Methods for details).

• A natural products data set: a comprehensive set of more
than 208 000 known natural products compiled from 18
different sources as part of our previous work.40

The chemical structures included in these data sets were
prepared following the identical procedure employed for
preprocessing the Hit Dexter 2.0 training data. Any
compounds present in the training data were removed from
the individual data sets. The size of the filtered data sets is
listed in Table 5.
In the previous section we showed that Hit Dexter 2.0

performs well on compounds represented by at least one
instance in the training data with a minimum fingerprint-based
Tanimoto coefficient of 0.6 (Figure 8). Considering this
threshold, a large proportion of synthetic compounds is

Figure 6. ROC curves obtained during 10-fold cross-validation for the selected models (i.e., ETC in combination with Morgan2 fingerprints;
n_estimators = 100; max_features = 0.2). (A) HP-NP classifier for PSAs, (B) P-NP classifier for PSAs, (C) HP-NP classifier for CDRAs, and (D)
P-NP classifier for CDRAs.

Figure 7. ROC curves obtained for the four classifiers on the independent test set (A) and subsets thereof, consisting of compounds with a
maximum Tanimoto coefficient of (B) 0.8 or (C) 0.7 measured against any compound of the training set. MCC and AUC values are also reported.

Figure 8. Classification performance (measured as MCC values) as a
function of the maximum molecular similarity (Tanimoto coefficient
calculated from Morgan2 fingerprints) between any pair of training
and test compounds.
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covered well by the training data (Figure S1). Taking the
PSA50 training set of the P-NP classifier as an example, almost
all DCM compounds, more than 80% of all aggregators, and
approximately 60% of all approved drugs are represented by at
least one instance in the training data with a Tanimoto
coefficient of 0.6 or higher. The percentage of compounds
from ChEMBL and the Enamine HTS collection covered at
this level of (minimum) similarity is about 40%. In contrast to
synthetic compounds, only for approximately 15% of all natural
products the maximum pairwise similarity (measured as
Tanimoto coefficient based on Morgan2 fingerprints) with all
instances of the training data is 0.6 or higher (Figure 9).

Considering the limited prediction accuracy of the classifiers
below a Tanimoto coefficient of 0.6 (Figure 8), the distance to
the nearest neighbor(s) in the training data should be closely
monitored. Therefore, in the following sections, in addition to
the percentages of compounds referring to the complete,
processed data sets, we report in brackets the percentages of
compounds referring to the respective subsets consisting
exclusively of compounds with a minimum Tanimoto
coefficient of 0.6. In other words, the percentages reported
in brackets are likely more accurate but they are based on less-
representative subsets. Predictions on the data sets listed above
are reported in Figures 10 and 11. From the graphs obtained
for the DCM data set (Figure 10A), it can be seen that any of
the four models (i.e., HP-NP and P-NP classifiers, each for
PSAs and CDRAs) classify at least 96% [96%] of all

compounds of the DCM data set as nonpromiscuous (both
HP-NP classifiers obtained 99% [99%] correct classifications).
This is an encouraging result since any of these compounds
have been tested in a large number of assays and have never
shown activity, for which reason they are unlikely frequent
hitters (note that all reported numbers are based on a decision
threshold of 0.5, which is the default value). In contrast to the
observations made for the DCM data set, a substantial number
of compounds of the aggregators data set (approximately 15%
[18%]) are predicted as promiscuous and approximately 4%
[5%] as highly promiscuous (with classifiers derived from
assays of either screening stage (Figure 10B). This again is a
plausible result because aggregators are known to cause false
positive assay readouts under, importantly, specific assay
conditions. It is hence expected that not all known aggregators
will be flagged by Hit Dexter 2.0. The distribution of class
probabilities among compounds from the Enamine HTS
Collection is similar to that of the DCM data set (Figure 10C).
This suggests that the Enamine HTS Collection is a well-
curated screening library. For the ChEMBL database, the
distributions of class probabilities are located somewhere in
between those of the DCM data set and the aggregators data
set (Figure 10D), meaning that there is a relevant fraction of
compounds predicted as promiscuous (approximately 8%
[17%]) or highly promiscuous (approximately 2% [6%]).
The results obtained for the approved drugs data set may seem
surprising: Hit Dexter 2.0 predicts approximately 13% [26%]
of approved drugs as promiscuous and 6% [12%] as highly
promiscuous (Figure 10E), which is generally even higher than
the rates predicted for aggregators. Several approved drugs are
known to form colloidal aggregates under specific assay
conditions. However, a substantial part of the predicted
frequent hitter behavior is likely linked to true promiscuity.
Given the challenges involved in designing selective small
molecules, this is not only plausible but also forms the basis for
drug repurposing and polypharmacology. Note that the
percentages of compounds predicted as (highly) promiscuous
differ substantially between the (processed) approved drugs
data set and the respective subset of compounds well-
represented by the training data. These differences are
plausible because of substantial differences in the composition
of the two data sets: the processed approved drugs data set
consists of around 1000 compounds, and the subset consists of
only approximately three hundred compounds.
Interestingly, the distributions of class probabilities for

approved drugs are even slightly steeper than those calculated
for potential PAINS (Figure 10F). This supports the case that

Table 5. Agreement of Predictions of the PSA and CDRA Classifiers

data set

no. of cpds
in the HP-
NP data

set

no. of compounds
(%) predicted as HP
by the PSA HP-NP

classifier

no. of compounds (%)
predicted as HP by the

CDRA HP-NP
classifier

agreement
of

predictions
[%]

no. of
compounds
in the P-NP
data set

no. of compounds
(%) predicted P by
the PSA P-NP

classifier

no. of compounds
(%) predicted P by
the CDRA P-NP

classifier

agreement
of

predictions
[%]

DCM 11116 79 (0.7) 69 (0.6) 26.5 10 944 306 (2.8) 361 (3.3) 19.1

aggregators 5786 225 (3.9) 272 (4.7) 34.0 4183 514 (12.3) 596 (14.3) 37.6

Enamine HTS
collection

1856964 5883 (0.3) 7961 (0.4) 33.2 1853518 31068 (1.7) 46190 (2.5) 38.1

ChEMBL 1194343 27643 (2.3) 26447 (2.2) 37.0 1166478 88527 (7.6) 95031 (8.2) 46.0

approved drugs 972 48 (4.9) 58 (6.0) 39.5 813 93 (11.4) 102 (12.6) 36.4

potential PAINS 49498 1670 (3.4) 2246 (4.5) 45.9 49044 4867 (9.9) 6925 (14.1) 50.2

natural products 167873 8010 (4.8) 7919 (4.7) 36.4 167557 24046 (14.4) 22641 (13.5) 57.0

BADAPPLE_NP 110624 1575 (1.4) 1873 (1.7) 32.0 108620 7239 (6.7) 9853 (9.1) 42.4

BADAPPLE_P 346 82 (23.7) 87 (25.1) 55.1 330 170 (51.5) 203 (61.5) 69.6

BADAPPLE_HP 104 53 (51.0) 52 (50.0) 75.0 98 66 (67.4) 70 (71.4) 88.9

Figure 9. Example of the distribution of maximum pairwise
similarities (Tanimoto coefficient calculated from Morgan2 finger-
prints) between the training set (in this case, the PSA50 training set of
the P-NP classifier) and the natural products data set.
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compounds matching PAINS patterns are not necessarily
frequent hitters.
Last but not least we utilized Hit Dexter 2.0 to predict the

promiscuity of 208 000 natural products. Natural products can

be challenging to screen in vitro, and it is known that several
classes of natural products are prone to interfere with
biochemical assays for different reasons.41 This is reflected
by the predictions of Hit Dexter 2.0. The class probability

Figure 10. Distribution of class probabilities predicted with classifiers derived from PSA and CDRA data for (A) dark chemical matter, (B) known
aggregators, (C) screening compounds from the Enamine HTS Collection, (D) the ChEMBL database, (E) approved drugs from DrugBank, and
(F) subset of compounds of the Enamine HTS collection that match at least one PAINS pattern.

Figure 11. Distribution of class probabilities obtained with classifiers trained on PSA and CDRA data for (A) all natural products, (B) flavonoids,
(C) chalcones, and (D) basic alkaloids.
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distribution curves (in particular of those of the P-NP
classifiers) show a steeper increase than for any other
investigated data set (Figure 11A). Particularly noticeable is
the high percentage of (highly) promiscuous compounds
among flavonoids (the natural product classes were assigned
with an automated approach presented previously),40 with
approximately 65% [73%] of all flavonoids predicted as
promiscuous and 20% [31%] as highly promiscuous (Figure
10B). Among the investigated flavonoid subclasses (anthocya-
nidins, chalcones, flavandioles, flavanoles, flavanones, flavano-
noles, flavones, flavonoles, and isoflavones), chalcones showed
the highest rates of highly promiscuous (∼42% [50%]) and
promiscuous (∼85% [86%]) compounds (Figure 11C; note
that anthocyanidins are not represented in sufficient numbers
in the data set that would allow to draw definite conclusions on
their hit rates in assays). In contrast to the observations with
flavonoids, Hit Dexter 2.0 reports less than 2% [9%] of all basic
alkaloids (see ref 40 for the exact definition) as highly
promiscuous and less than 6% [21%] as promiscuous (Figure
10D; note that the subset of compounds covered by the
training data according to the above-mentioned criterion is just
10%).
Flavonoids have been reported in the literature to exhibit

bioactivity on a large number of different proteins.41 For
example, according to a recent analysis,41 by the year 2016
more than 680 distinct activities had been reported for
quercetin, which is one of the most widely distributed
flavonoids in nature but also a known aggregator and
PAINS. For this particular flavonoid, PubChem Bioassay
currently lists conclusive testing results of more than 1000
distinct assays, with quercetin reported as active in close to one
out of two of these assay outcomes.
Whereas the health-promoting benefits of quercetin and

other flavonoids are undisputed, it is reasonable to assume that
many of the recorded activities are likely a result of assay
interference. It is important to reemphasize at this occasion
that the potential of a compound to interfere with assays does
not per se lower its value as a bioactive compound, but it may
make the rational optimization of its activity a difficult or, in
some cases, even impossible task.
Exploration of the Badapple Data Sets with Hit

Dexter 2.0. In contrast to Hit Dexter 2.0, which is trained on
complete molecular structures, the Badapple model is derived
from molecular scaffolds, each of which was assigned a
promiscuity score. In order to explore to what extent
predictions of Hit Dexter 2.0 based on molecular scaffolds
are in agreement with Badapple (and the underlying data sets),
we compiled sets of 142 468 nonpromiscuous scaffolds

(“BADAPPLE_NP”), 610 promiscuous scaffolds (“BADAP-
PLE_P″), and 231 highly promiscuous scaffolds (“BADAP-
PLE_HP”) from the Badapple data sets (published in ref 16).
As shown in Figure 12, Hit Dexter 2.0 is able to recognize

compound promiscuity based on molecular scaffolds even
though it was trained on complete molecular structures. Hit
Dexter 2.0 correctly predicted the vast majority (91−99%
[90−99%]) of nonpromiscuous scaffolds (Figure 12A). Both
P-NP classifiers detected about 57% [72%] of all promiscuous
scaffolds as such (Figure 12B), and both HP-NP classifiers
predicted around 50% [79%] of the highly promiscuous
scaffolds as such (Figure 12C). This can be considered a good
agreement for two reasons: First, Hit Dexter 2.0 and Badapple
use distinct thresholds for labeling compounds, and second,
the BADAPPLE_HP and BADAPPLE_P data sets are small in
size and contain only around 300 and 100 scaffolds (after
preprocessing and removal of duplicates), respectively.

Comparison of the PSA and CDRA Models. As shown
in the previous section, the overall behavior and performance
of the PSA and CDRA models are comparable. In particular,
the numbers of compounds assigned by the different models to
one of the three promiscuity classes are similar. One interesting
aspect to investigate is the agreement between predictions of
the PSA and CDRA classifiers. Table 5 provides an overview of
this for each of the above-mentioned data sets. Taking the
Approved Drugs subset of DrugBank as an example, the PSA
and CDRA models predicted 48 compounds (∼5%) and 58
compounds (∼6%) of this data set as highly promiscuous. The
agreement between both predictions (defined as the fraction of
compounds predicted as highly promiscuous by both classifiers
as compared to those predicted as highly promiscuous by
either classifier) was approximately 40%. Given the fact that
only a small number of compounds was predicted as highly
promiscuous, this can be considered a good agreement. For the
BADAPPLE_HP data set, which consists entirely of highly
promiscuous scaffolds, the agreement between the predictions
made by the PSA HP-NP and CDRA HP-NP classifiers was
75%. Nevertheless, both classifiers have different sensitivity and
for this reason the use of both predictors in parallel is
recommended.

Hit Dexter 2.0 Web Service. The previously introduced
Hit Dexter web service17 was extended substantially. In
addition to all models described in this work, we also
implemented capabilities to predict aggregators and DCM
based on molecular similarity, and to flag nuisance and
undesired compounds based on several established collections
of SMARTS patterns:

Figure 12. Hit Dexter 2.0 predictions of scaffold promiscuity for the (A) BADAPPLE_NP, (B) BADAPPLE_P, and (C) BADAPPLE_HP data
sets.
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• The “hard filters” rule set developed at Glaxo Well-
come,42 consisting of 55 patterns of undesired functional
groups.

• A rule set developed at the University of Dundee,43

consisting of 105 patterns of unwanted functional groups
and substructures that likely cause interference with
HTS assays.

• The “HTS deck filters” rule set developed at Bristol-
Meyers Squibb,44 consisting of 180 patterns of unwanted
functional groups derived from intuition and experience.

• The SureChEMBL rule set of ToxAlert,45 consisting of
166 patterns of toxicophores.

• The “excluded functionality filters” rule set of the NIH
Molecular Libraries Small Molecule Repository,46

consisting of 116 patterns for removing unwanted
functional groups.

• The “Lint” rule set developed at Pfizer,47 consisting 57
patterns of problematic functional groups during drug
optimization.

• The PAINS set of substructures linked to assay
interference,7 consisting of 480 patterns. Note that the
original PAINS patterns were encoded by Sybyl line
notation7 whereas the Hit Dexter 2.0 web service utilizes
SMARTS patterns in combination with the substructure
search implemented in RDKit.48 This may lead to
differing results in some cases.

• A set of 28 substructures derived from undesirable
compounds. This is a subset of rules recently introduced
by investigators from GlaxoSmithKline. The 28 sub-
structures are listed in Table S2 of ref 23 (value
“remove” in column “GSK Recommendation”).

Search queries can either be sketched with the JSME
Molecule Editor,49 pasted as individual SMILES, or uploaded
as a list of SMILES. Predictions are presented as a heat map
(Figure 13) and include the results from all the machine
learning models and similarity-based and rule-based ap-
proaches. Importantly, also the distance to the nearest
neighbor in the training data is reported, which gives an
indication of the reliability of predictions. A column with
comments summarizes the conclusions that may be drawn
from the predictions. We believe that these comments will be
helpful in particular to occasional users of Hit Dexter 2.0.
The processing of a single compound takes few seconds.

Predictions for 1000 compounds take approximately 4 h. The
authors plan to increase the capacity of the web service should
the need arise.

■ CONCLUSIONS

In this work we report on the second generation of machine
learning models for the prediction of frequent hitters
independent of the underlying physicochemical mechanisms,
including the binding of compounds based on “privileged
scaffolds” or of “master key compounds” to multiple binding
sites. These models are, among others, accessible via the Hit
Dexter 2.0 web service.19

In addition to a number of refinements of the data
preparation and modeling strategy, substantial improvements
presented in this work include the implementation of a protein
clustering method in order to avoid an overrepresentation of
structurally and functionally related proteins in the training
data, and the utilization of PSA data, in addition to CDRA
data, for machine learning. During comprehensive tests on
independent data, models based on either PSA or CDRA data
were shown to predict frequent hitters with high accuracy and
robustness. While predictions from both model types were
generally in good agreement, the parallel use of both types of
classifiers can support the interpretation of results and is
recommended.
Hit Dexter 2.0 was used for profiling compounds with

specific biological and physicochemical properties, such as dark
chemical matter, aggregators, compounds from a high-
throughput screening library, drug-like compounds, approved
drugs, potential PAINS, and natural products. The predictions
obtained with Hit Dexter 2.0 confirm common observations
and knowledge but also led to some less anticipated
observations, such as the high fraction of frequent hitters
predicted among approved drugs. A further encouraging
observation made was the good agreement between
predictions of Hit Dexter 2.0 and the Badapple data sets of
molecular scaffolds and their observed promiscuity.
Since its initial launch in late 2017, the Hit Dexter web

service has evolved from a small web presence with
rudimentary features into a one-stop shop for the interrogation
of compounds regarding their likelihood to exhibit frequent
hitter behavior and/or interfere with biochemical assays and
their general desirability in the context of drug discovery. More
specifically, the new Hit Dexter 2.0 web service provides user-
friendly access to machine learning approaches for the
prediction of compound promiscuity, similarity-based methods
for the prediction of aggregators and dark chemical matter, and
a comprehensive collection of established and new rule sets for
flagging frequent hitters and compounds with undesired
substructures.

Figure 13. Example of a heat map generated with the Hit Dexter 2.0 web service for three query compounds.
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We believe that Hit Dexter 2.0 will enable investigators to
make better-informed decisions during hit triage and follow-
up. However, the models should not be used as the sole basis
for the acceptance or rejection of hits.

■ METHODS
Data Sets. Activity data measured for chemical substances

(substance type = “chemical”) on single protein targets (target =
“single” and target type = “Protein Targets”) in 932 primary
screening assays (screening stage = “primary screening”) and
2266 confirmatory dose−response assays (screening stage =
“confirmatory, dose−response”) were separately downloaded
from the PubChem Bioassay database21,22,50 via the PUG
REST interface.51 The download of BioAssay record AID
1224865 failed permanently and was therefore not considered
in this work. The SMILES notations for all 803 898
compounds of the primary screening assays (PSAs) and all
468 260 compounds of the confirmatory dose−response assays
(CDRAs) were retrieved via the PubChem Identifier Exchange
Service.52 Salt components, compounds with unsupported
elements, and conflicting bioactivity data were identified and
removed following the procedure described in ref 17. Also
compounds with a molecular weight below 200 Da and above
900 Da were removed. In addition, all molecular structures
were neutralized and tautomers merged using the “canonalize”
method implemented in the “tautomer” class of MolVS.53

Subsequently, duplicate compounds were removed based on
identical SMILES. In order to ensure the consistency of
predictions, compounds with identical Morgan2 fingerprints
and differing promiscuity labels (e.g., stereoisomers) were
removed from the training sets. This concerned a total of 1945
compounds for the PSA and 2825 compounds for the CDRA
training sets. For any compounds with identical Morgan2
fingerprints only one instance was kept in the training sets.
For each PubChem Bioassay record the unique identifier for

genes of the NCBI Protein database54 (“gene identifier”, GI)
was obtained via the PubChem PUG REST interface. In total,
429 and 712 unique GIs were retrieved for the PSA and CDRA
records, respectively. Subsequently, using these GIs, the
protein sequences of all proteins of interest were downloaded
in FASTA file format from the NCBI Protein database.
Clustering of all protein sequences with cd-hit55 (sequence
identity = 60%; tolerance = 3) resulted in 388 and 537 protein
clusters for the PSA and CDRA records, respectively.
For model development, each data set was split randomly

into an external test set (10%) and a training set (90%) with
the “train_test_split” method of the “model_selection” module
of scikit-learn (version: 0.19.1).35 Only the training set was
used for model selection. Initial experiments for selecting the
most suitable machine learning algorithm and descriptor sets
were performed with default parameters for ETCs and RFCs,
except for the number of estimators, which was set to 50, the
class weight, which was set to “balanced”, and bootstrapping,
which was disabled. Default parameters were used for all meta
classifiers (with ETCs and RFCs parametrized as described
above). Stratified splitting was performed as part of cross-
validation.
All data sets used to explore and determine the performance

of Hit Dexter 2.0 were prepared and filtered according to
identical protocol as outlined for the training data.
The Badapple data sets were compiled from the original

source16 by merging scaffolds with identical SMILES and
removing any instances with contradicting promiscuity labels.

Scaffolds assigned a pScore above 300 were included in the
BADAPPLE_HP data set, scaffolds assigned a pScore between
100 and 299 were included in the BADAPPLE_P data set, and
scaffolds assigned a pScore between 0 and 99 were included in
the BADAPPLE_NP data set.

Hardware and Software. All calculations are performed
on Linux workstations running openSUSE 42.2 and equipped
with Intel i5 processors (3.2 GHz) and 16 GB of main
memory.
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Martin Šícho: 0000-0002-8771-1731
Johannes Kirchmair: 0000-0003-2667-5877
Funding
C.S. and J.K. are supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation)project
number KI 2085/1-1. J.K. is also supported by the Bergen
Research Foundation (BFS)grant no. BFS2017TMT01.
Y.C. is supported by the China Scholarship Council
(201606010345). M.S. is supported by the Ministry of
Education of the Czech Republicproject numbers NPU I-
LO1220 and LM2015063.

Notes
The authors declare no competing financial interest.
The Hit Dexter 2.0 web service is available at the following
address: http://hitdexter2.zbh.uni-hamburg.de.

■ ACKNOWLEDGMENTS
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60 5. Results (cumulative part of this dissertation)

5.3 Machine learning models for the prediction of frequent
hitters based on target-based and cell-based assay data
sets

Further important refinements of the previously developed machine learning
models were performed in the third part of this Ph.D. study. These include the
differentiation of target-based and cell-based assay screenings. In target-based
assays a compound interacts with a purified protein which involves different
action modes than in cell-based assays where a compound is interacting with a
complete cell. Regarding the aim of dedicated models for target-based and cell-
based assays, we manually extracted three large data sets from the PubChem
Bioassay database, including a target-based assay data set, a cell-based assay
data set (excluding assays measuring nonspecific interactions like cytotoxicity)
and an extended cell-based assay data set (which also includes assay measuring
nonspecific interactions). As more data are available for these three data sets it
was possible to consider only compounds that were tested against at least 100
distinct proteins, which makes the calculated hit rates (i.e. fraction of times a
compound was tested active and times a compound was tested) more robust
and meaningful. Several machine learning models were generated, including k-
nearest neighbors (KNN), random forest (RF), extra tree (ET) and multilayer
perceptron (MLP) classifiers. Dedicated models, called Hit Dexter 3 models
and which are available in NERDD, were built for the three data sets for the
differentiation of non-promiscuous and promiscuous, as well as non-promiscuous
and highly promiscuous compounds. The best performing classification models
(i.e. neural network classifiers trained on Morgan2 fingerprints) reached MCCs
of up to 0.65. In addition, it was shown that the separation of target-based
and cell-based assay screenings is necessary as models based on the target-based
assay data set cannot predict frequent hitters derived from the cell-based assay
data set and vice versa.
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a b s t r a c t 

Compounds interfering with high-throughput screening (HTS) assay technologies (also known as “badly behav- 
ing compounds ”, “bad actors ”, “nuisance compounds ” or “PAINS ”) pose a major challenge to early-stage drug 
discovery. Many of these problematic compounds are “frequent hitters ”, and we have recently published a set of 
machine learning models ( “Hit Dexter 2.0 ”) for flagging such compounds. 

Here we present a new generation of machine learning models which are derived from a large, manually 
curated and annotated data set. For the first time, these models cover, in addition to target-based assays, also 
cell-based assays. Our experiments show that cell-based assays behave indeed differently from target-based as- 
says, with respect to hit rates and frequent hitters, and that dedicated models are required to produce meaningful 
predictions. In addition to these extensions and refinements, we explored a variety of additional setups for mod- 
eling, including the combination of four machine learning classifiers (i.e. k-nearest neighbors (KNN), extra trees, 
random forest and multilayer perceptron) with four sets of descriptors (Morgan2 fingerprints, Morgan3 finger- 
prints, MACCS keys and 2D physicochemical property descriptors). 

Testing on holdout data as well as data sets of “dark chemical matter ” (i.e. compounds that have been exten- 
sively tested in biological assays but have never shown activity) and known bad actors show that the multilayer 
perceptron classifiers in combination with Morgan2 fingerprints outperform other setups in most cases. The best 
multilayer perceptron classifiers obtained Matthews correlation coefficients of up to 0.648 on holdout data. These 
models are available via a free web service. 

Introduction 

High-throughput screening (HTS) assay technologies are a corner- 
stone of modern drug discovery. They allow the biological testing of 
large numbers of compounds on targets of interest within a short pe- 
riod of time [1] . A major challenge faced in high-throughput screening 
is false-positive hits resulting from different types of assay interference 
[2] . 

Compounds causing assay interference are referred to as “badly be- 
having compounds ”, “bad actors ” or “nuisance compounds ”. Many of 
them, but by far not all, are “frequent hitters ” (i.e. compounds which 
show higher-than-expected hit rates in biological assays). This is because 
not all types of assay interference are frequent events. In fact, many 
types of assay interference are triggered only by specific conditions. 

Importantly, not all frequent hitters are nuisance compounds. Quite 
on the contrary: frequent hitter behavior can be a result of true promis- 
cuity mediated by “privileged scaffolds ” [3] . Privileged scaffolds en- 
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able compounds to bind, in a specific manner, to a number of distinct 
proteins. Such compounds can be particularly useful in the context of 
polypharmacology and drug repurposing. 

An established experimental strategy to discriminate genuine hits 
from false-positive results is the use of orthogonal and counterscreen 
assays [4] , but even with such an advanced experimental setup some 
cases of assay interference may not be captured because the underlying 
mechanisms are manifold. 

Given the complexities involved in the conduction and analysis of 
experimental screens, computational tools to aid the discrimination of 
genuine hits from false ones are in high demand. Today, a variety of in 
silico approaches for cherry-picking the most promising hits for follow- 
up studies are at our disposal [5–10] . We will discuss these briefly in 
the context of the individual types of assay interference. 

The most prominent cause of interference in biological assays (bio- 
chemical assays in particular) is related to the formation of aggre- 
gates by small molecules that engage in nonspecific interactions with 
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biomacromolecules [5] . Several computational approaches have been 
reported for the assessment of small molecules with regard to their risk 
of forming colloidal aggregates. These tools include Aggregator Advi- 
sor [11] , ChemAgg [12] and SCAM detective [13] . Aggregator Advi- 
sor flags potential aggregators based on their molecular similarity to a 
set of 12,000 known aggregators, taking logP into account. ChemAgg 
and SCAM Detective are machine learning models for the classifica- 
tion of small molecules into aggregators and non-aggregators. Whereas 
ChemAgg is based on a XGBoost model, SCAM detective utilizes a set of 
random forest models. 

A second important cause of assay interference is the chemical re- 
activity of compounds, in particular that related to electrophilicity 
[14] . Chemically reactive compounds may bind covalently to biomacro- 
molecules or interact with the assay screening technology in an un- 
desired way. Computational approaches for identifying reactive com- 
pounds are mostly based on sets of rules which describe substructures 
that have been linked to chemical reactivity [15] . 

Further types of assay interference are covered under the umbrella 
of the well-known pan-assay interference compounds (PAINS) concept 
[16] . PAINS are compounds based on molecular scaffolds that have been 
associated with various types of assay interference. PAINS include re- 
dox cycling compounds (e.g. toxoflavins), covalent binders (e.g. isothia- 
zolones or ene-rhodanines), membrane disruptors (e.g. curcumin), metal 
complex-forming compounds (e.g. hydroxyphenyl hydrazones) and un- 
stable compounds (e.g. phenol-sulfonamides) [17] . The molecular frag- 
ments linked to PAINS have been compiled in a collection of several 
hundred structural patterns, and this collection has been implemented in 
various in silico platforms and software libraries to offer means for flag- 
ging potentially problematic compounds [18] . An alternative approach 
to flagging potential PAINS was recently presented by Koptelov et al. 
[19] . They use discriminative subgraph mining to identify character- 
istic patterns in PAINS and non-PAINS, and utilize these patterns, in 
combination with numerical descriptors, to derive decision tree models 
for PAINS prediction. 

A number of focused machine learning models have been devised 
for the identification of compounds that likely cause specific types of 
assay interference. For example, Luciferase Advisor [20] and ChemFluc 
[21] are models for the prediction of compounds (luciferase inhibitors) 
that may interfere with luciferase-based assays. InterPred [22] includes 
a set of QSAR models for the prediction of luciferase inhibitors and aut- 
ofluorescence compounds in cell-based and target-based assays. 

Several computational tools are in existence that predict frequent 
hitters independent of the underlying mechanisms (genuine promiscu- 
ity; various types of assay interference). For example, researchers at As- 
traZeneca have derived a statistical model for the prediction of frequent 
hitters based on their in-house historical bioactivity data [23] . Another 
statistical model for the prediction of frequent hitters is BADAPPLE [24] . 
In contrast to the AstraZeneca model, the BADAPPLE model is derived 
from molecular scaffolds rather than complete molecular structures. 

More recently, machine learning has been moved into the focus also 
in the field of frequent hitter and assay interference prediction. For 
example, Hit Dexter 2.0 [25] , developed by some of us, predicts fre- 
quent hitters utilizing a set of extra tree models that are trained on large 
sets of data extracted from the PubChem Bioassay database [26] . More 
recently, Feldmann et al. [27] reported a machine learning approach 
for the prediction of true promiscuous compounds (multi-target com- 
pounds) in which they removed likely aggregators and other types of 
assay interference compounds from the training sets in an effort to work 
with cleaner sets of promiscuous and non-promiscuous compounds. 

Whereas a sizable number of in silico models for the prediction of 
frequent hitters and badly behaving compounds are at our disposal to- 
day, most of them have clear limitations with respect to the coverage of 
mechanisms of interference and assay technologies. In particular, the ex- 
isting approaches are focused on, or limited to, biochemical (i.e. target- 
based) assays and do not adequately represent cell-based assays, which 
can behave very differently with respect to assay interference. 

Table 1 

Definitions of values for the manually assigned label “target type ”. 

Label value Description 

target-based Assays generating readouts from purified proteins or peptides 
cell-based Assays generating readouts from cells 
other Any other assays such as tissue-based and organism-based assays 

In continuation of the further development of Hit Dexter, we present 
here a refined set of machine learning models for frequent hitter predic- 
tion that cover biochemical assays and, for the first time, also cell-based 
assays. More specifically, we have developed three types of models: (i) 
models for target-based assays, (ii) models for cell-based assays designed 
to measure a specific protein-compound interaction, and (iii) models for 
an extended selection of cell-based assays, covering also cell-based as- 
says designed to measure nonspecific interactions such as toxicity. 

Each of the models is derived from a new, large, high-quality data set 
that we extracted from the PubChem Bioassay database and annotated 
manually. In addition to the extra tree (ET) classifiers employed previ- 
ously, we are now exploring also k-nearest neighbors (KNN) classifiers 
as baseline models, as well as random forest (RF) and multilayer percep- 
tron (MLP) classifiers. The best models presented in this work are avail- 
able via a free web service at https://nerdd.univie.ac.at/hitdexter3/ and 
information on the assay data sets is provided as Supporting Informa- 
tion. 

Materials and methods 

Data set compilation 

PubChem Bioassay data selection and annotation 

The PubChem Bioassay Database [28–30] was queried for all assays 
with measured bioactivity data reported for at least 10,000 compounds 
(i.e., compounds with unique PubChem Compound IDs, CIDs). The data 
for the selected assays were downloaded and the labels “target type ”
and “bioactivity type ” were assigned manually to each of these assays 
according to the definitions provided in Tables 1 and 2 . 

Following manual assay labeling, three different data sets were com- 
piled: 

• target-based assay data set: includes all data from assays with “target 
type ” = “target-based ” (which implies “bioactivity type ” = “specific 
bioactivity ”) 

• cell-based assay data set: includes all data from assays with “target 
type ” = “cell-based ” AND “bioactivity type ” = “specific bioactivity ”

• extended assay data set: includes, in addition to the data included 
in the cell-based assay data set, all data from assays with “target 
type ” = “cell-based ”

The individual assays of the target-based assay data set were checked 
for the availability of Protein Gene Identifier (GI) information, which is 
utilized to retrieve protein sequence information from the NCBI Protein 
database [31] (the protein sequence information will be required, in a 
later step, for protein clustering and to ensure a diverse protein set). 
Sixty-six assays of the target-based assay data set had no GI or multiple 
GI annotations and were hence removed. In addition, seven assays of the 
target-based assay data set, four assays of the cell-based assay data set, 
and seven assays of the extended cell-based assay data set were removed 
because of disproportionally high hit rates (i.e. hit rates in excess of the 
average hit rate plus three standard deviations ( 𝜎), calculated over all 
assays of the respective data set). For the target-based assay data set, 
the six assays with the highest hit rates are all measuring CYP P450 
enzyme activity. In the case of the cell-based assay data set, this concerns 
four assays, with hit rates of 59%, 55%, 17% and 15% (note that for 
approximately three quarters of the assays included in the cell-based 
assay data set their hit rates are below 1%). For the extended cell-based 
assay data set the seven assays with hit rates above 16% were removed. 
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Table 2 

Definitions of values for the manually assigned label “bioactivity type". 

Label value Description 

specific bioactivity Assays designed to measure a specific biological property such as the activity of an enzyme. Cytotoxicity assays are not included in 
this category. Counterscreen assays are included if they measure a specific biological effect. An example of a counterscreen 
assigned this label value is a luciferase counterscreen that is commonly employed to identify compounds which can cause 
interference in luciferase-based (bioluminescence) assays 

nonspecific bioactivity Assays that measure cell growth, cell viability, cytotoxicity, cell growth inhibition, or other nonspecific assay readouts 
other Assays that measure physicochemical processes (not bioactivities), DNA or RNA binding, etc. 

Table 3 

Data set sizes and compounds removed during chemical structure processing. 

Target-based 
assay data set 

Cell-based assay 
data set 

Extended cell-based 
assay data set 

No. compounds in the data set prior to chemical structure processing 1,545,406 1,421,472 1,858,887 
No. compounds removed due to invalid SMILES 1 3 9 
No. compounds removed due to lack of a single, valid activity outcome 1 45,184 23,259 53,984 
No. compounds removed due to presence of elements uncommon to drug-like compounds 331 381 3151 
No. compounds removed by the molecular weight filter 10,847 11,120 22,106 
No. compounds in the final data set 1,489,043 1,386,709 1,779,637 

1 Compounds that were removed because of the lack of a valid activity outcome that can be derived from the raw data (i.e. compounds without a single annotated 
“Active ” or “Inactive ” assay outcome) 

As the last filtering criterion, any assays without at least one com- 
pound measured as active and one compound measured as inactive were 
removed from the data set. For a complete overview of all assays re- 
moved during data preparation see Table SI_1. 

Chemical structure processing 

The SMILES notations of the 1,545,406 compounds covered by the 
target-based assay data set, the 1,421,472 compounds covered by the 
cell-based assay data set, and the 1,858,887 compounds covered by 
the extended cell-based assay data set were retrieved from the Pub- 
Chem Bioassay database via the PubChem PUG REST interface [32] . The 
ChEMBL Structure Pipeline [33] (also known as “ChEMBL Compound 
Curation Pipeline ”), was utilized to (i) neutralize charged molecules, 
(ii) remove salt and solvent components, and (iii) neutralize charged 
molecules once more (to cover cases where a charged component was 
removed during step ii). The technical description of this chemical struc- 
ture preparation procedure is reported in Ref. [33] . 

Any compounds with molecular weight below 180 or above 900 Da 
were removed from the data set, as well as any compounds composed 
of any elements other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br and 
I. Molecules represented by more than one tautomer were merged to a 
single representation using the “canonalize ” method implemented in the 
“TautomerEnumerator ” class of RDKit [34] (version 2020.09.1). During 
this procedure the compounds were represented as RDKit molecules and 
were in a last step converted to canonical SMILES. Further duplicate 
compounds were removed based on identical SMILES. For an overview 

of the removed compounds see Table 3 . For all additional data sets used 
within this study, including the ChEMBL 23 database [35] , the dark 
chemical matter (DCM) data set compiled by Wassermann et al. [36] , 
the data set of Dahlin et al. [37] (containing compounds that are known 
to cause interference in biological assays), and the data set of Borrel 
et al. [22] (containing compounds that were experimentally confirmed 
to cause false positive readouts in bioluminescence assays due to lu- 
ciferase inhibition and/or autofluorescence), the same chemical struc- 
ture standardization process was performed. Since the data set of Borrel 
et al. contains only CAS numbers as compound identifiers, the SMILES 
notations were fetched via the Chemical Identifier Resolver [38] . 

Extraction of activity data from the selected assays 

For each of the selected assays, any compounds consistently (i.e. one 
or several times) labeled as “Active ” were defined as active, and any 
compounds consistently labeled as “Inactive ” were defined as inactive. 

Any compounds with contradicting assay outcomes (e.g. “Active ” and 
“Inactive ”, or “Active ” and “Inconclusive ”) were removed. A compound 
is treated as active on a cluster of proteins (see “Protein clustering ”) if 
it is active on at least one protein of that cluster. 

In order to ensure the consistency of predictions, compounds with 
identical Morgan2 fingerprints [ 39 , 40 ] (1024 bits) but differing promis- 
cuity labels (e.g., symmetric molecules) were removed from the respec- 
tive training set. For any compounds with identical Morgan2 finger- 
prints only one instance was kept in the respective training set. 

Definition of the active-to-tested ratio (ATR) 

The hit rate of a compound in biological assays is described as the 
active-to-tested ratio (ATR; Eq. (1) ): 

𝐴𝑇 𝑅 = 

𝐴 

𝑇 
, (1) 

where A is the number of assays a compound was tested active and T is 
the total number of assays a compound was tested in. For compounds, 
the terms hit rate and ATR are used interchangeably in this work. 

Protein clustering 

Based on the GIs assigned to the individual proteins, the FASTA se- 
quences of the respective proteins were retrieved from the NCBI using 
the “Entrez ” package of Biopython [41] (version 1.78). Protein cluster- 
ing was performed using cd-hit [42] with the same parameters described 
in Ref. [25] (sequence identity = 60%; tolerance = 3). This resulted in 
273 protein clusters using 296 unique proteins for the target-based as- 
say data set. 

Model development and hyperparameter optimization 

Prior to model development, a random, stratified split of the data 
into a training set (90%) and a testing set (10%) was performed with 
the “train_test_split ” method of the “model_selection ” module of scikit- 
learn [43] (version 0.23.2). All models were trained and optimized on 
the training set. The final models were tested on the test set. 

Morgan fingerprints and MACCS keys were calculated with RD- 
Kit, whereas 206 2D physicochemical property descriptors (meaning 
the complete set of available 2D descriptors) were calculated with the 
Molecular Operating Environment [44] (MOE; version 2020.09). 

Default parameters were employed for generating machine learning 
models for the selection of a suitable set of descriptors, with the follow- 
ing exceptions: For the KNN classifier, the number of nearest neighbors 
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to be taken into account for prediction (n_neighbors) was set to 1; for 
the RF and the ET classifiers, the class weight (class_weight) was set 
to “balanced ”; for the MLP classifier (implemented in scikit-learn), the 
number of iterations was set to 1000 as some of the calculations did not 
converge within the default, 200 iterations. 

The generation of the individual models was repeated for ten times, 
with different random states (i.e. 42 to 51), in order to compute the me- 
dian and the variance of the performance metrics (details provided in the 
Results section). The final models were generated with random state = 42 
and the application of the synthetic minority oversampling technique 
(SMOTE version 0.7.0) [45] . 

Performance measurements and variance estimation 

The MCC ( Eq. (2) ) was used as the primary measure of model perfor- 
mance. The MCC is a balanced metric that takes the true positive (TN), 
false positive (FP), true negative (TN) and false negative (FN) instances 
into account: 

MCC = 

TP ⋅ TN − FP ⋅ FN √
( TP + FP ) ⋅ ( TP + FN ) ⋅ ( TN + FP ) ⋅ ( TN + FN ) 

(2) 

The MCC returns values between -1 (total disagreement between pre- 
diction and observation) and + 1 (perfect agreement). 

The area under the (receiver operating characteristic) curve (AUC) 
was used as an indicator of the ranking performance of the models. 

The tests for statistical significance were performed with the 
“ttest_rel ” function of the “scipy.stats ” module. The variance in the per- 
formance of the models (on the test data) was estimated by testing the 
models on ten randomly compiled subsets (80%) of the original test set. 

Results 

Analysis, annotation and refinement of PubChem Bioassay data 

In order to develop a better understanding of the relevance of the 
data available from the PubChem Bioassay database for modeling the 
frequent hitter behavior of small molecules, we conducted a compre- 
hensive analysis of the chemical and biological data. 

With more than 297 Million measured bioactivities, the PubChem 

Bioassay database is the world’s largest, public collection of bioassay 
data [30] . It is also one of only a few data resources offering access 
to a large amount of high-throughput screening data. The number of 
measured bioactivities recorded per assay varies greatly across the indi- 
vidual assay data sets, from a single compound to 646,275 compounds 
( Table 4 ). 

We decided to base our work on the 1180 (i.e. 474 + 706) assay data 
sets containing measurements for at least 10,000 compounds because 
these data sets offer a good trade-off between data quality and coverage. 
The vast majority of these data sets have been generated by the most 
reputable HTS facilities (including the Scripps Research Institute, the 
Sanford-Burnham Medical Research Institute, The Broad Institute of MIT 

and Harvard, and the NIH/National Center for Advancing Translational 
Sciences (NCATS)), for which reason a high standard in HTS can be 
expected. 

Table 4 

Size of the PubChem Bioassay data sets. 1 

Number of assays in the PubChem 

Bioassay database Number of measured compounds 

587,477 1 
633,294 2 to 99 
5082 100 to 999 
1403 1000 to 9999 
474 10,000 to 99,999 
706 100,000 to 646,275 (maximum) 

1 Numbers referring to the raw, unprocessed PubChem Bioassay database. 

In preparation of model development, we manually annotated the 
1180 assay data sets according to the “assay type ” (i.e. target-based, 
cell-based, other; see Table 1 for exact definitions) and “bioactivity type ”
(i.e. specific bioactivity, nonspecific bioactivity, other; see Table 2 for 
exact definitions). Models for the prediction of frequent hitters in bio- 
chemical (i.e. target-based) assays will be built on all (359) assay data 
sets labeled as “target-based ” (which implies the “bioactivity type ” value 
“specific bioactivity ”) and annotated with exactly one Protein Gene 
Identifier (GI; the GI will be utilized later to obtain protein sequence 
information to quantify the relatedness of proteins; the requirement for 
assays to be assigned exactly one GI ensures that the assay is designed to 
measure one particular protein of interest). Similarly, models for cell- 
based assays designed to measure a specific activity will be built on 
all (369) assay data sets labeled as “cell-based ” AND “specific bioactiv- 
ity ”. Models will also be derived from an extended set of cell-based as- 
says that includes data from an additional 250 cell-based assays labeled 
“nonspecific bioactivity ”. These additional, cell-based assays measure 
non-specific properties such as cell viability or cytotoxicity. A list of the 
Assay Identifiers (AIDs) for the three assay data sets is provided in Table 
SI_2. 

We also set steps to address two important biases in the assay data 
set collection. The first bias results from assays with unusually high hit 
rates. In target-based assays, high hit rates are often related to the mea- 
surement of highly promiscuous proteins such as CYP enzymes. In cell- 
based assays, high hit rates can be related, for example, to cytotoxicity 
or high assay sensitivity. Compounds which have been measured, for 
whatever reason, in several of these assays may, in consequence, be 
identified as frequent hitters, regardless of whether their activities are 
focused on a number of closely related proteins or observed across a 
range of distinct proteins. 

The average hit rate of the 359 target-based assays is 0.009. How- 
ever, a small number of assays has much higher hit rates, up to 0.252 
( Fig. 1 ). Similarly, the average hit rate for the 369 cell-based assays is 
0.014, with a small number of assays having much higher hit rates, up 
to 0.588. For the extended set of 619 cell-based assays, the average hit 
rate is 0.023, with the maximum at 0.588. For the reasons discussed 
above we decided to remove any assays with hit rates exceeding the av- 
erage hit rate plus three 𝜎. This concerned seven, four and seven assays 
of the target-based, cell-based and extended cell-based assay data set, 
respectively. 

The second bias is introduced by groups of assays measuring re- 
lated proteins. Related proteins have a high likelihood of binding the 
same small molecules, meaning that, for example, assay data sets with 
a strong representation of protein kinase targets will likely show high 
hit rates for protein kinase inhibitors. Models for frequent hitter pre- 
diction that are trained on such data would likely flag any kinase in- 
hibitor as a frequent hitter, which is not the intended behavior of these 
models. 

In order to address the bias introduced by the overrepresentation 
of groups of related proteins, we clustered the target-based assay data 
set according to the amino acid sequences of the target proteins (note 
that the clustering was not performed for the cell-based assays data sets 
because cell-based assays may report activities for a number of differ- 
ent proteins). More specifically, all data sets related to proteins with an 
amino acid sequence identity exceeding 60% were merged into a clus- 
ter (see Materials and Methods for details). This clustering procedure 
resulted in 296 protein clusters (starting from 352 proteins covered by 
the target-based assay data set). 

After addressing the two important biases, in the final processing 
step the molecular structures contained in the data sets were processed 
and checked for correctness. Any problematic instances were removed, 
as outlined in Table 3 and described in the Materials and Methods sec- 
tion in full detail. This resulted in a target-based, a cell-based and an 
extended cell-based assay data set consisting of 1,489,043, 1,386,709 
and 1,779,637 unique compounds with at least one confirmed target 
protein, respectively. 
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Fig. 1. Histograms (200 bins each) showing the hit rates of the assays included in the (A) target-based, (B) cell-based, and (C) extended cell-based assay data sets. 
The red line marks the mean hit rate + 3 𝜎. Note that the scales of the x-axes differ for the three diagrams. 

Table 5 

Composition of the training and test sets. 

Data set Promiscuity class Class definitions 
No. compounds in 
the training set 

No. compounds in 
the test set 

target-based assay data 
set 

HPROM 

1 ATR > 0.053 4614 550 
PROM ATR > 0.022 20274 2303 
NPROM ATR < 0.007 219061 24483 

cell-based assay data set HPROM 

1 ATR > 0.058 5578 616 
PROM ATR > 0.025 24913 2825 
NPROM ATR < 0.008 226382 25427 

extended cell-based 
assay data set 

HPROM 

1 ATR > 0.070 5135 538 
PROM ATR > 0.030 24673 2776 
NPROM ATR < 0.010 235241 26398 

1 The compounds labeled as HPROM are a subset of the compounds labeled as PROM. 

Fig. 2. Data set size (number of compounds) as a function of the minimum 

number of protein clusters (in the case of target-based assays) or proteins (in 
the case of cell-based assays) for which measured data are available. 

Analysis of compound hit rates and assignment of promiscuity class labels 

The ATR ( Eq. (1) ) can be used to assign categorical promiscuity 
values to compounds, such as “non-promiscuous ”, “promiscuous ” or 
“highly promiscuous ”. The significance and robustness of the ATR de- 
pends on the quality and quantity of the underlying data: the higher the 
value of T (i.e. the total number of assays a compound was tested in), the 
more robust the ATR. The main advantage of the ATR over alternative 
metrics is its interpretability as it reflects the hit rate of a compound. 

In this work, we set the minimum threshold of T for a compound to be 
included in the data sets used for model development to 100, which rep- 
resents a good balance between ATR quality and coverage ( Fig. 2 ). This 
filtering procedure resulted in a set of 332,653 compounds measured 
in target-based assays, 345,743 compounds measured in cell-based as- 
says designed to measure a specific bioactivity, and 360,094 compounds 
measured in an extended set of cell-based assays. 

Based on the ATR thresholds reported in Table 5 , all compounds were 
assigned a promiscuity label: highly promiscuous (HPROM), promiscu- 

ous (PROM) or non-promiscuous (NPROM). According to these defini- 
tions, roughly 2% of the compounds are labeled HPROM across the three 
assay data sets. Likewise, the percentages of compounds labeled PROM 

were around 9% across the three assay data sets (note that all HPROM 

compounds are also part of the PROM subset). The percentages of com- 
pounds labeled NPROM are approximately 90% across the three assay 
data sets ( Table 5 and Fig. 3 ). 

To obtain a training set and a test set (separately for all three data 
sets), a stratified random split was performed to obtain 90% training 
data and 10% test (hold out) data. Following a fingerprint-based data 
merging procedure (i.e. merging of instances having identical finger- 
prints and identical class labels, and removal of any instances hav- 
ing identical fingerprints but conflicting class labels; see Materials and 
Methods for details) the target-based, cell-based and extended cell-based 
training sets contain 243,949, 256,873 and 265,049 compounds, respec- 
tively ( Table 5 ). 

As shown in Table 5 , the average ATR across the extended set of 
cell-based assays is higher than for the cell-based and the target-based 
assay sets, suggesting that non-specific interactions are likely to play an 
important role in the assays exclusive to the extended set of cell-based 
assays (i.e. cell-based assays not designed to measure specific biological 
processes but to capture properties such as cell-viability and cytotoxic- 
ity). 

Analysis of the chemical space covered by the training sets 

The chemical space covered by the training set is a decisive factor 
for the applicability domain of a model. In order to obtain an under- 
standing of the relevance of our three training sets to early drug dis- 
covery we run a pairwise comparison of the molecular structures in- 
cluded in these training sets and all molecular structures included in 
the ChEMBL database. Fig. 4 shows the distributions of the pairwise, 
maximum Tanimoto coefficients based on Morgan2 fingerprints (with 
a length of 1024 bits) for the three data sets vs. the ChEMBL database. 
The distributions are similar for the three data sets, with approximately 
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Fig. 3. ATR distribution among compounds of the (A) target-based assay data set, (B) cell-based assay data set, and (C) extended cell-based assay data set. 

Fig. 4. Cumulative coverage of the compounds included in the ChEMBL database by the compounds included in the (A) target-based assay data set (B) cell-based 
assay data set, and (C) extended cell-based assay data set. 

Fig. 5. PCA of the ChEMBL database and the (A) target-based assay set, (B) cell-based assay set, and (C) extended cell-based assay set. The PCA is derived from the 
44 2D molecular property descriptors (see Table S1 in Ref. [46] ) implemented in MOE. For the sake of clarity, only 1% of the data points (randomly selected) are 
visualized. The numbers in parentheses report the variance explained by the respective principal component (PC). 

50% of the compounds in the ChEMBL database represented by at least 
one compound in the respective training set with a Tanimoto coefficient 
of 0.5 or higher. 

The Principal Component Analysis (PCA) scatter plots presented in 
Fig. 5 show that the areas in chemical space that are most densely pop- 
ulated with the compounds from the ChEMBL23 database are also well 
represented by the assay data sets used for model training. However, 
there are a significant number of compounds included in the ChEMBL 
database that are chemically distinct from those represented by the 
training sets. These are in particular compounds with PC1 values greater 
than 10, which account for 2.5% of the total number of compounds 
of the ChEMBL database. Visual inspection of these compounds reveals 
that they are unusually large, with molecular weight between 575 and 
900 Da. 

The target-based and the cell-based assay data sets (training data 
only) have an overlap of 180,278 compounds (representing 75% of the 
target-based and 72% of the cell-based assay data set, respectively). 
Only 13,045 (7%) of these compounds have contradicting promiscuity 
labels (with HPROM treated as a subset of PROM). At first sight the level 
of agreement between readouts from target-based and cell-based assays 

seems surprisingly high. However, a closer look reveals that the agree- 
ment stems primarily from compounds consistently labeled as NPROM. 
Among the 20,481 compounds present in both data sets and labeled as 
PROM in at least one of them, only 6616 (32%) have identical class 
labels. This indicates that target-based and cell-based assays perform 

indeed differently and that they should be represented by dedicated 
models. 

Development of machine learning models for compound promiscuity 

prediction 

Two types of classifiers were generated for the target-based, cell- 
based and extended cell-based assay data sets: classifiers discriminating 
HPROM from NPROM compounds, and classifiers discriminating PROM 

from NPROM compounds. 

Identification of the best setup for model generation 

In order to identify the best setup for model generation we tested all 
possible combinations of four machine learning algorithms (i.e. KNN, 
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Fig. 6. Performance (quantified as MCC) of machine learning models trained on 
different types of descriptors. The variance of the ten experiments (each using a 
distinct random seed between 42 to 51; see Materials and Methods for details) 
is indicated by error bars. 

ET, RF, MLP) and four sets of descriptors (i.e. Morgan2 and Morgan3 fin- 
gerprints, each of 1024 bits in length, MACCS keys, and the complete set 
of 206 2D physicochemical property descriptors implemented in MOE, 
referred to as “MOE_2D ”) within a 10-fold cross-validation framework. 
For each setup ten of these cross-validation experiments were performed 
using distinct random seeds. This allowed, for each setup, the calcula- 
tion of a standard deviation that is independent of the cross-validation. 

As shown in Fig. 6 , the task of discriminating HPROM from NPROM 

compounds (MCCs of up to 0.679) is simpler than that of discriminat- 
ing PROM from NPROM compounds across the three assay data sets 
(the MCC of the best HPROM-NPROM classifier, 0.679, is significantly 
higher than that of the best PROM-NPROM classifier, 0.599; p-value 
2.48 × 10 − 12 ). This is expected because of the larger ATR margin be- 
tween the HPROM and the NPROM class (margin of 3 𝜎) than between 
the PROM and the NPROM class (margin of 1 𝜎). No substantial differ- 
ences in model performance were observed with respect to the type of 
assay modeled: the best setups yielded comparable MCCs for the target- 
based assay set (MCCs 0.679 and 0.592 for HPROM-NPROM and PROM- 
NPROM classification, respectively), cell-based assay set (MCCs 0.602 
and 0.577, respectively), and extended cell-based assay set (MCCs 0.631 
and 0.599, respectively). 

The differences in model performance that can be attributed to the 
model algorithms are rather small, on average 0.104 in MCC. The max- 
imum difference in MCC observed for any model trained on identical 
input (i.e. same data set and same descriptor set) was 0.224. Overall, 
the MLP classifiers performed best in HPROM-NPROM classification (the 
MCC of the best MLP classifier, 0.679, is significantly higher than that 
of the second-best model, a KNN model that obtained an MCC of 0.630; 

p-value of 8.81 × 10 − 11 ), and the ET classifiers performed best in PROM- 
NPROM classification (the MCC of the best ET classifier, 0.599, is signif- 
icantly higher than that of the second-based model, a KNN model that 
obtained an MCC of 0.585; p-value of 7.79 × 10 − 11 ). Interestingly, in 
this cross-validation scenario the simple one-nearest neighbor approach 
performed almost as well as the more complex machine learning algo- 
rithms (MCCs of up to 0.587; p-value of 7.79 × 10 − 11 against the best 
MLP classifier). 

In contrast to what we observed for the machine learning algo- 
rithms, the differences in model performance that can be attributed to 
the molecular descriptors were, in part, substantial. On average, the best 
performance was obtained by models trained on Morgan2 fingerprints 
(MCC averaged over all models trained on Morgan2 fingerprints: 0.679). 
They were closely followed by the models based on Morgan3 finger- 
prints (MCC averaged over all models trained on Morgan3 fingerprints: 
0.659; the difference in the average MCC of models trained on Morgan2 
and Morgan3 fingerprints is significant, with a p-value of 1.10 × 10 − 79 ). 
The MOE_2D physicochemical property descriptors and the MACCS keys 
yielded models that are clearly inferior, with MCCs not exceeding 0.453 
and 0.572, respectively. 

The highest MCC during model optimization (0.679) was obtained 
by the HPROM-NPROM MLP classifier in combination with Morgan2 
fingerprints (the MCC of the second-best classifier, which is the respec- 
tive model trained on Morgan3 fingerprints, was 0.659; the difference 
in the MCCs is significant, with a p-value of 3.98 × 10 − 5 ). 

Hyperparameter optimization 

Focusing now on Morgan2 fingerprints, in the next phase of model 
development we optimized the hyperparameters of the individual algo- 
rithms (i.e. KNN, ET, RF and MLP). More specifically, we conducted a 
grid search within a 10-fold cross-validation framework to identify the 
hyperparameters yielding the best performing models for a particular 
combination of machine learning algorithm and descriptors in terms of 
MCC (averaged over the respective HPROM-NPROM and PROM-NPROM 

classifiers for the three assay data sets). An overview of the explored hy- 
perparameters and value ranges, as well as the selected hyperparameter 
values, is provided in Table 6 . 

The impact of individual hyperparameter settings on model per- 
formance is generally small (Table SI_3). The largest improvement in 
MCC observed during hyperparameter optimization was 0.037 (for the 
PROM-NPROM MLP classifier trained on the cell-based assay data set; 
the optimized classifier performed significantly better than the classifier 
using default hyperparameters; p-value of 1.01 × 10 − 10 ). The AUC val- 
ues improved consistently with the MCCs (Table SI_3), except for KNN, 
for which the MCCs increased with fewer numbers of neighbors while 
the AUC values decreased. In the case of the RF and ET classifiers, gains 
in performance beyond 200 estimators were marginal and do not justify 
the additional demands in computational power and memory. The same 
is true for the MLP classifier, for which we identified 250 as the most 
suitable number of perceptrons for our purposes. 

The best of all models (an HPROM-NPROM MLP classifier for target- 
based assays; single hidden layer with 250 perceptrons; activation func- 
tion relu) yielded an MCC of 0.686 (the optimized classifier performed 
significantly better than the classifier using default hyperparameters; 
p-value of 3.79 × 10 − 3 ). The models chosen from hyperparameter opti- 
mization are listed in Table 7 . 

Model performance as a function of the size of the training set 

In order to determine the impact of the size of the training set 
on model performance we trained and tested the optimized HPROM- 
NPROM and PROM-NPROM MLP classifiers on fractions of 0.01 to 1.00 
of the full training sets (within a 10-fold cross-validation framework). 
From Fig. 7 it is observed that models built on just 20% of the data 
already achieve good performance (MCCs between 0.434 and 0.524). 
Larger data sets may add significant value but primarily if they cover 
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Table 6 

Overview of hyperparameters optimized during grid search within a 10-fold cross-validation framework. 1 

Classifier Parameter Values 

KNN n_neighbors (number of neighbors considered) 1, 3 , 5, 10 
RF, 
ET 

n_estimators (number of trees) 50, 100, 200 , 300, 400, 500 
max_features (features taken into account for best split search) ’sqrt’, ’none’, ’0.2 ′ , ’0.4 ′ , ’0.6 ′ , ’0.8 ′ 

MLP hidden_layer_sizes (number of perceptrons per layer) 2 50, 100, 250 , 500 
hidden_layer_sizes (number hidden layer) 2 1 , 2, 3, 4, 5 
activation (activation function) ’relu’ , ’tanh’, ’logistic’ 

1 The hyperparameter values indicated in bold are those we identified as most suitable for model building. These 
values were used for the generation of the final models. 

2 hidden_layer_sizes accepts two values: one for the number of perceptrons per layer and one for the number of 
hidden layers. 

Table 7 

Cross-validation and test set performance of the best models of different types. 

Data Classification 

Machine 
learning 
algorithm Cross-validation performance 1 Test set performance 

MCC 2 AUC 2 Balanced accuracy Sensitivity Specificity MCC AUC Balanced accuracy Sensitivity Specificity 

target-based assay data 
set 

HPROM-NPROM KNN 0.624 0.843 0.733 0.469 0.998 0.376 0.909 0.871 0.818 0.924 
ET 0.630 0.964 0.734 0.469 0.998 0.508 0.966 0.677 0.357 0.997 
RF 0.588 0.964 0.695 0.392 0.999 0.484 0.965 0.677 0.358 0.996 
MLP 0.686 0.946 0.796 0.595 0.997 0.648 0.949 0.798 0.601 0.995 

PROM-NPROM KNN 0.587 0.844 0.745 0.506 0.984 0.412 0.864 0.816 0.822 0.809 
ET 0.597 0.928 0.746 0.504 0.986 0.518 0.910 0.721 0.464 0.977 
RF 0.578 0.929 0.718 0.445 0.991 0.518 0.908 0.731 0.489 0.973 
MLP 0.599 0.907 0.777 0.578 0.975 0.580 0.899 0.768 0.562 0.974 

cell-based assay data set HPROM-NPROM KNN 0.571 0.827 0.704 0.41 0.998 0.338 0.899 0.857 0.812 0.902 
ET 0.572 0.950 0.697 0.395 0.998 0.531 0.940 0.692 0.387 0.997 
RF 0.514 0.947 0.651 0.303 0.999 0.520 0.932 0.692 0.387 0.996 
MLP 0.611 0.929 0.754 0.512 0.996 0.576 0.915 0.767 0.541 0.992 

PROM-NPROM KNN 0.566 0.845 0.74 0.501 0.979 0.413 0.860 0.809 0.834 0.783 
ET 0.593 0.925 0.747 0.511 0.983 0.551 0.911 0.743 0.513 0.973 
RF 0.572 0.925 0.717 0.445 0.989 0.543 0.910 0.747 0.525 0.968 
MLP 0.579 0.910 0.77 0.571 0.969 0.561 0.901 0.764 0.562 0.965 

extended cell-based 
assay data set 

HPROM-NPROM KNN 0.600 0.842 0.721 0.443 0.998 0.340 0.895 0.858 0.798 0.919 
ET 0.599 0.956 0.708 0.417 0.999 0.527 0.944 0.683 0.368 0.998 
RF 0.537 0.956 0.662 0.325 0.999 0.519 0.943 0.686 0.374 0.997 
MLP 0.639 0.939 0.764 0.532 0.997 0.567 0.921 0.753 0.511 0.994 

PROM-NPROM KNN 0.586 0.854 0.749 0.516 0.981 0.429 0.871 0.819 0.835 0.804 
ET 0.618 0.935 0.757 0.529 0.985 0.565 0.923 0.742 0.506 0.978 
RF 0.590 0.934 0.725 0.459 0.990 0.554 0.920 0.748 0.523 0.973 
MLP 0.607 0.921 0.783 0.593 0.972 0.587 0.910 0.781 0.596 0.967 

1 The optimized hyperparameters are reported in Table 6 . 
2 The variance is reported in Table SI_3. 

Fig. 7. Performance (quantified as MCC) of the 
hyperparameter-optimized MLP classifiers trained on the 
target-based, cell-based and extended cell-based assay data 
set as a function of training set size. (A) HPROM-NPROM clas- 
sifiers, (B) PROM-NPROM classifiers. For each data point the 
variance was calculated from ten calculations (with different 
random seeds; see Materials and Methods for details). Because 
the variance values were within the range of 1.4 × 10 − 6 to 
5.9 × 10 − 4 they are not visualized in these graphs. 

distinct areas in the chemical space and hence contribute to the exten- 
sion of the applicability domain of the model. 

Evaluation of the final machine learning models 

A total of 24 final models of different types (i.e. models trained 
on the full training set, balanced with SMOTE; see Materials and 

Methods for details) were tested on the holdout data (i.e. 10% of 
the data that was set aside prior to model building). The 24 mod- 
els result from the combination of three different training sets (i.e. 
target-based, cell-based and extended cell-based assay data set), four 
machine learning algorithms (KNN, ET, RF, MLP), and two differ- 
ent types of classification (i.e. HPROM-NPROM and PROM-NPROM). 
All of these models are built on Morgan2 fingerprints and utilize the 

8 



C. Stork, N. Mathai and J. Kirchmair Artificial Intelligence in the Life Sciences 1 (2021) 100007 

Fig. 8. Performance (quantified as MCC) of (A) the HPROM- 
NPROM MLP classifiers and (B) the PROM-NPROM MLP classi- 
fiers as a function of the distance of the predicted class proba- 
bility to the decision threshold (the decision threshold applied 
to all models in this study is 0.5). For each data point the vari- 
ance was estimated by running the models on ten randomly 
selected subsets of the test data (see Materials and Methods for 
details). Because the variance values were within the range of 
9.6 × 10 − 6 to 4.5 × 10 − 3 they are not visualized in these graphs. 

hyperparameters sets optimized during the previous cross-validation 
experiments. 

Model performance on the test set 

The average MCC obtained by the 24 models on the respective test 
sets was 0.507, which is 0.087 lower than in the cross-validation sce- 
nario ( Table 7 ). Overall, the decrease in performance (on the test set 
compared to cross-validation) was more pronounced for the HPROM- 
NPROM classifiers (average decline in MCC 0.103) than the PROM- 
NPROM classifiers (average decline 0.070). The steeper drop in perfor- 
mance observed for the HPROM-NPROM classifiers is likely related to 
the fact that the number of compounds representing the active class is 
much lower for the HPROM-NPROM training set (approximately 5000 
compounds) than for the PROM-NPROM training set (approximately 
23,000 compounds). The best MCC among all HPROM-NPROM clas- 
sifiers was obtained by the MLP classifier trained on the target-based 
assay data set (MCC 0.648). The best-performing PROM-NPROM classi- 
fier was the MLP classifier trained on the extended cell-based assay data 
set (MCC 0.587). 

Importantly, a substantial decrease in performance was observed for 
the HPROM-NPROM KNN classifiers for all three assay data sets (for 
example, the KNN classifier of the target-based assay data set; three 
nearest neighbors; cross-validation MCC 0.624; test set MCC 0.376) and 
also the PROM-NPROM KNN classifiers for all three assay data sets (for 
example, the KNN classifier of the target-based assay data set; three 
nearest neighbors; cross-validation MCC 0.587; test set MCC 0.421). This 
decline in the performance may be related to model overfitting. 

In contrast to the observations made for the KNN, the MCC values 
obtained by the RF and ET classifiers remained stable. The maximum 

decline in MCC observed for these models was 0.122. The MLP classifiers 
showed the most robust performance across the three data sets and the 
two types of classifications (i.e. HPROM-NPROM and PROM-NPROM), 
with a maximum decline in MCC of 0.072. For this reason these six MLP 
classifiers were selected to form the Hit Dexter 3 set of machine learning 
models and they were investigated further regarding their applicability 
domains. 

Prediction success as a function of the distance of the predicted class 

probability from the decision threshold 

Commonly, a directly proportional relationship is observed between 
the reliability of class assignments and the distances between the pre- 
dicted class probabilities and the decision threshold. This holds true also 
for the Hit Dexter 3 models. Fig. 8 shows that class assignments based 
on predicted probabilities close to 0 or close to 1.0 (this corresponds to 
a distance to the decision threshold of approximately 0.5 as we apply 
a decision threshold of 0.5 in all cases) are particularly reliable (MCC 

values of up to 0.648) for the Hit Dexter 3 models. The MLP classifiers 
differentiating PROM and NPROM compounds for the three data sets re- 
port predicted class probabilities greater than 0.95 or smaller than 0.05 
for on average 97% of the compounds in the test set. 

Prediction success as a function of the distance of the test compounds to the 

training set 

It is expected that test compounds that are structurally dissimilar 
from those represented by the training data pose greater challenges to 
the model than those that are structurally related. Fig. 9 shows that the 
Hit Dexter 3 models perform well for compounds represented by at least 
one molecule in the training set that is structurally related (i.e. having at 
least one compound in the training set for which the pairwise Tanimoto 
coefficient based on Morgan2 fingerprints is at least 0.7). Predictions for 
compounds that are more dissimilar to those represented in the train- 
ing data are less reliable and should be considered with the necessary 
caution. 

Prediction success as a function of the applied decision threshold 

In the current context, the decision threshold applied to a classifier 
decides on when a compound is classified as a frequent hitter or as a 
non-promiscuous compound. The default value for the decision thresh- 
old is 0.5. There are some use cases where a different decision threshold 
may be preferred. For example, in cases where the detection of frequent 
hitters is a priority (i.e. prioritization of sensitivity over specificity), a 
lower decision threshold may result in better predictions. Fig. 10 vi- 
sualizes the effects of changes in the decision threshold on the MCC, 
balanced accuracy, sensitivity and specificity. The fact that the curves 
remain fairly stable until the decision threshold approaches extreme val- 
ues (i.e. values close to 0.0 or 1.0) indicates that the classifiers produce 
clear predictions for most compounds. In cases where sensitivity is of 
primary importance, users are advised to consider any compounds with 
predicted probabilities greater than 0.0 as potential frequent hitters. 

Predicting frequent hitters in cell-based assays with models trained on data 

from target-based assays and vice versa 

Compounds may behave differently in target-based and cell-based 
assays, in particular also with regard to their assay interference and fre- 
quent hitter behavior. In order to obtain a better understanding of the 
relevance and value of dedicated models for the prediction of frequent 
hitters in target-based and cell-based assays, we compared the perfor- 
mance of the MLP classifiers on test data of the same assay domain to 
their performance on test data of the other assay domain (i.e. classifiers 
trained on target-based assay data were tested on cell-based assay test 
set and vice versa). 

As shown in Fig. 11 , the PROM-NPROM MLP classifiers trained and 
tested on data from the same assay domain clearly outperformed those 
trained on the other domain. The graphs also indicate that the difference 
in performance is not the result of differences in the chemical space cov- 
ered by the individual data sets: even for test compounds that are struc- 
turally closely related to those represented by the training set, models 
trained on target-based assay data do not perform well on cell-based 
assay data and vice versa. 

For the cell-based assay test data, the MCC of the PROM-NPROM 

MLP classifier trained on target-based assay data was just 0.189 (vs. 
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Fig. 9. Performance (quantified as MCC) of (A) the HPROM- 
NPROM MLP classifiers and (B) the PROM-NPROM MLP classi- 
fiers as a function of the structural similarity (measured as Tan- 
imoto similarity on Morgan2 fingerprints) between the com- 
pounds in the test and the training sets. For each data point 
the variance was estimated by running the models on ten ran- 
domly selected subsets of the test data (see Materials and Meth- 
ods for details). Because the variance values were within the 
range of 1.9 × 10 − 6 to 2.9 × 10 − 3 they are not visualized in 
these graphs. 

Fig. 10. Performance of the Hit Dexter 3 models as a function of the selected 
decision threshold. 

0.561 for the classifier trained on the cell-based assay data; any com- 
pounds present in the training and in the test set are disregarded in the 
calculation of these MCC values). Likewise, for the target-based assay 
test data the MCC for the PROM-NPROM MLP classifier trained on cell- 
based assay data was just 0.235 (vs. 0.580 for the classifier trained on 
the target-based assay data). These results show that target-based and 
cell-based assays clearly behave differently and that dedicated models 
are required to adequately predict their behavior. 

Model performance on dark chemical matter 

We tested the Hit Dexter 3 models also on the dark chemical mat- 
ter (DCM) data set compiled by Wassermann et al. The DCM data set 
consists of 135,489 compounds which have been tested in at least 100 
target-based and cell-based assays without a single positive assay out- 

Fig. 11. Performance (quantified as MCC) of MLP classifiers as a function of 
the pairwise similarity between the test compound and its nearest neighbor in 
the training set (measured as Tanimoto coefficient derived from Morgan2 fin- 
gerprints). (A) HPROM-NPROM MLP classifier trained on the target-based assay 
data set, (B) PROM-NPROM MLP classifier trained on the target-based assay data 
set, (C) HPROM-NPROM MLP classifier trained on the cell-based assay data set, 
(D) PROM-NPROM classifier trained on the cell-based assay data set. For each 
data point the variance was estimated by running the models on ten randomly 
selected subsets of the test data (see Materials and Methods for details). Because 
the variance values were within the range of 9.2 × 10 − 6 to 6.2 × 10 − 3 they are 
not visualized in these graphs. 

come. These compounds are not necessarily without activity on any pro- 
tein but they are unlikely frequent hitters. 

In the test of the Hit Dexter 3 models on the DCM data set, any 
test compounds also present in the training set of the respective mod- 
els were disregarded (leaving 24,111 to 37,711 DCM compounds for 
testing, depending on the individual training set). The target-based, 
cell-based and extended cell-based HPROM-NPROM MLP models cor- 
rectly assigned 99.0%, 98.6% and 98.7% of the DCM compounds to the 
NPROM class. In comparison, the percentage of correct assignments of 
the PROM-NPROM models were 95.4%, 93.7% and 93.6%, respectively. 
This result corroborates the validity (in particular the specificity) of the 
models. 

Model performance on known bad actors 

To test the capacity of the six Hit Dexter 3 models to identify bad ac- 
tors in biological assays, we ran the models on two recently published 
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Fig. 12. ROC curves obtained with the Hit Dexter 3 PROM-NPROM classifiers trained on (A) target-based assay data, (B) cell-based assay data, and (C) extended 
cell-based assay data, and tested on the data set of Borrel et al. The compounds of the test set were annotated as frequent hitters according to Definition 1 (blue 
curves), Definition 2 (orange curves) and Definition 3 (green curves). 

data sets containing experimentally confirmed bad actors (cave: bad ac- 
tors are not necessarily frequent hitters; Hit Dexter 3 is designed to iden- 
tify frequent hitters). As in all previous experiments, we disregarded all 
compounds present in these test sets that are also part of the training 
data of the individual models. 

The first data set is from the work of Dahlin et al. [37] . This data set 
consists of 1139 compounds that are known to cause false readouts in 
various types of biological assays. For the 891 to 1002 test compounds 
not represented in the training set of the individual models, the target- 
based, cell-based and extended cell-based HPROM-NPROM MLP classi- 
fiers assigned 24.1%, 25.5% and 23.0% of all compounds to the HPROM 

class. The models distinguishing PROM and NPROM compounds flagged 
40.3%, 39.3% and 40.3% as promiscuous, respectively. Because bad ac- 
tors are not necessarily frequent hitters (and vice versa), the percentages 
of compounds reported by our models as PROM or HPROM are within 
the expected range. 

The second data set is from the work of Borrel et al. [22] . This data 
set contains 8947 compounds, 891 of which have been observed to cause 
false positive readouts in bioluminescence assays due to luciferase inhi- 

bition (in one out of one assay) or autofluorescence (in one or several 
out of 24 assays), and 8056 compounds that are confirmed to behave 
benign in these assays. We explored three ways of translating the mea- 
surements recorded with these interference assays into “frequent hitter 
data" ”: Compounds were labeled as frequent hitter if they produced 

Definition 1. a false-positive signal in at least one assay (luciferase as- 
say or assay to test for autofluorescence). 

Definition 2. a false-positive signal in the luciferase assay AND at least 
one of the (24) assay setups to test for autofluorescence. 

Definition 3. a false-positive signal in the luciferase assay AND at least 
nine of the (24) assay setups to test for autofluorescence. 

All other compounds were labeled as non-promiscuous. 
As shown in Fig. 12 , the Hit Dexter 3 models reached AUC values 

of up to 0.82 (PROM-NPROM MLP classifier trained on the target-based 
assay data set, in combination with Definition 3 ), which confirms the 
ability of the models to rank bad actors early in a rank-ordered list of 
compounds. The MCC and balanced accuracy indicate moderate perfor- 

Table 8 

Performance of the Hit Dexter 2.0 and Hit Dexter 3 machine learning models on the DCM data sets and the known bad actors data set of Dhalin et al. 

Hit Dexter version training set test set classification 

number of 
compounds 
in test set 1 

number of 
compounds 

fraction of 
compounds 

correctly classified as DCM or bad actors 4 

Hit Dexter 2.0 PSA data 2 DCM HPROM-NPROM 20,894 20,806 0.996 
Hit Dexter 2.0 CDRA data 3 DCM HPROM-NPROM 42,567 42,341 0.995 
Hit Dexter 3 target-based assay data DCM HPROM-NPROM 37,711 37,317 0.990 
Hit Dexter 3 cell-based assay data DCM HPROM-NPROM 30,967 30,529 0.986 
Hit Dexter 3 extended cell-based assay data DCM HPROM-NPROM 24,327 24,015 0.987 
Hit Dexter 2.0 PSA data 2 DCM PROM-NPROM 20,872 20,472 0.981 
Hit Dexter 2.0 CDRA data 3 DCM PROM-NPROM 41,587 40,080 0.964 
Hit Dexter 3 target-based assay data DCM PROM-NPROM 37,421 35,695 0.954 
Hit Dexter 3 cell-based assay data DCM PROM-NPROM 30,875 28,942 0.937 
Hit Dexter 3 extended cell-based assay data DCM PROM-NPROM 24,111 22,572 0.936 
Hit Dexter 2.0 PSA data 2 Known Bad Actors [37] HPROM-NPROM 974 140 0.144 
Hit Dexter 2.0 CDRA data 3 Known Bad Actors [37] HPROM-NPROM 963 140 0.145 
Hit Dexter 3 target-based assay data Known Bad Actors [37] HPROM-NPROM 1002 241 0.241 
Hit Dexter 3 cell-based assay data Known Bad Actors [37] HPROM-NPROM 987 252 0.255 
Hit Dexter 3 extended cell-based assay data Known Bad Actors [37] HPROM-NPROM 965 222 0.230 
Hit Dexter 2.0 PSA data 2 Known Bad Actors [37] PROM-NPROM 910 304 0.334 
Hit Dexter 2.0 CDRA data 3 Known Bad Actors [37] PROM-NPROM 896 330 0.368 
Hit Dexter 3 target-based assay data Known Bad Actors [37] PROM-NPROM 941 379 0.403 
Hit Dexter 3 cell-based assay data Known Bad Actors [37] PROM-NPROM 906 356 0.393 
Hit Dexter 3 extended cell-based assay data Known Bad Actors [37] PROM-NPROM 891 359 0.403 

1 Any compounds present in the training set were removed from the test set. 
2 Primary screening assay data. 
3 Confirmatory dose-response assay data. 
4 Note that Hit Dexter models are not designed to identify all different kinds of bad actors but rather to identify frequent hitters (of which a significant portion are 

in fact bad actors). 
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mance but, again, Hit Dexter 3 is designed to predict frequent hitters, 
and it can be expected that a substantial proportion of the compounds 
observed to cause false-positive readouts in these interference assays 
will behave benign in other assay types and setups. 

Model performance compared to Hit Dexter 2.0 

The set of machine learning models developed in this work to form 

Hit Dexter 3 differ from the Hit Dexter 2.0 models in several ways. For 
Hit Dexter 3, 

• dedicated models for target-based and cell-based assays were devel- 
oped whereas the previous set of models only cover target-based 
assays. 

• four different machine learning algorithms (KNN, ET, RF and MLP) 
instead of just ET were explored. This led to the finding that MLP 
classifiers perform best. 

• the minimum number of data points required to calculate the ATR 

has been increased from 50 to 100. This results in more robust ATRs 
(based on which the class labels, i.e. HPROM, PROM and NPROM, 
are assigned). 

Given the fact that the training and test sets utilized for the devel- 
opment and validation of the Hit Dexter 3 and Hit Dexter 2.0 models 
differ, a 1:1 comparison of model performance is difficult. For models 
of the same type (e.g. HPROM-NPROM classifier), differences in MCCs 
on the test data were in the range of -0.035 to + 0.015 (cell-based mod- 
els not included as they are not available in Hit Dexter 2.0). Also on the 
DCM data sets (the DCM data sets used for testing differ in their com- 
position because of the removal of any compounds that are also present 
in the training set of the respective model), the models behave simi- 
larly, with the Hit Dexter 3 PROM-NPROM classifier (for target-based 
assays) assigning 5% to the PROM class and the respective Hit Dexter 
2.0 models assigning 2% to 4% of the DCM compounds to the PROM 

class ( Table 8 ). On the set of known bad actors [37] , the percentage of 
compounds predicted as frequent hitters is 40% for Hit Dexter 3 (PROM- 
NPROM classifier trained on target-based assay data) and 33% to 37% 

for Hit Dexter 2.0 (PROM-NPROM classifiers; Table 8 ). 
Overall, these results indicate that the performance of the Hit Dexter 

3 and Hit Dexter 2.0 machine learning models is comparable. The Hit 
Dexter 3 models perform a bit better on the set of known bad actors. 
Finally, the addition of dedicated models for predicting a compound’s 
behavior in cell-based assays is an important advantage of Hit Dexter 3 
over Hit Dexter 2.0. 

Conclusions 

In this work we present the development, refinement and validation 
of new models for the prediction of frequent hitters in biological assays. 
The models are trained on a manually curated assay data set that we 
extracted from the PubChem Bioassay database and, for the first time, 
these models cover cell-based assays in addition to target-based assays. 
Further additions include the exploration of four sets of descriptors with 
additional machine learning algorithms such as KNN and MLP, and the 
use of more robust ATRs (calculated now on a minimum of 100 distinct 
assays compared to 50 previously). 

The MLP classifiers turned out to obtain the best classification per- 
formance and robustness in most cases, with MCCs of up to 0.648 in dis- 
criminating HPROM from NPROM compounds, and MCCs of up to 0.580 
in discriminating PROM from NPROM compounds. Use cases that re- 
quire models with high sensitivity or high specificity can be approached 
by adjusting the decision threshold applied in classification. 

Tests of the MLP classifiers on DCM compounds and sets of known 
bad actors corroborate good performance of the models: the models cor- 
rectly identified 94 to 99% of all compounds of the DCM data set as 
non-promiscuous and flagged up to 40% of the known bad actors as 
frequent hitters (because bad actors are not necessarily frequent hitters 
this number is in line with the expectations for a good model). 

We found that it is indeed important to use dedicated models for 
predicting the behavior of compounds in target-based and cell-based 
assays as assays from the different domains can behave very differently. 
At the same time it is clear that for the further development of this and 
similar computational methods it will be important to consider assay 
types and conditions, which poses fundamental challenges related to 
the scarcity and heterogeneity of the available data. 

The best models presented in this work are available via a refined, 
free web service at https://nerdd.univie.ac.at/hitdexter3/. This web 
service offers many additional features, encrypted communication via 
HTTPS and the possibility for users to immediately and permanently 
delete their data from the web server. 

We hope that the new Hit Dexter models, in particular the new mod- 
els for cell-based assays, will be of high value to the scientific commu- 
nity to tackle the challenge of hit prioritization and the identification of 
problematic compounds in biological screens. 
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5.4 New e-resource for early drug discovery (NERDD) for
the availability of early drug discovery tools

In order to make the developed machine learning models available to the public,
a web server was developed, called NERDD. The advantage of a web server
is that for users no software installation is required. Hence, the aim of this
part of this Ph.D. study was to develop an easily extensible and maintainable
web server to support early drug discovery. Eight in silico tools are currently
available via NERDD. Besides the Hit Dexter models, which were developed
as part of this Ph.D. study, NP-Scout for the prediction of natural product
likeness and Skin Doctor CP for the prediction of skin sensitization potential
of molecules are accessible. Metabolism-related tools, including CYPstrate for
the prediction of cytochrome P450 substrates and CYPlebrity for the predic-
tion of Cytochrome P450 inhibitors are also available. FAME3, GLORY and
GLORYx, which are tools for the prediction of sites-of-metabolism and the
likely metabolites of small compounds, can also be accessed via NERDD, at
https://nerdd.univie.ac.at.
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Abstract

Summary: The New E-Resource for Drug Discovery (NERDD) is a quickly expanding web portal focused on the provi-
sion of peer-reviewed in silico tools for drug discovery. NERDD currently hosts tools for predicting the sites of me-
tabolism (FAME) and metabolites (GLORY) of small organic molecules, for flagging compounds that are likely to
interfere with biological assays (Hit Dexter), and for identifying natural products and natural product derivatives in
large compound collections (NP-Scout). Several additional models and components are currently in development.

Availability and implementation: The NERDD web server is available at https://nerdd.zbh.uni-hamburg.de. Most
tools are also available as software packages for local installation.

Contact: kirchmair@zbh.uni-hamburg.de

1 Introduction

Modern computational approaches make a substantial contribution
to the development of safe and efficacious drugs. Our laboratories
specialize in the development of new in silico approaches for drug
discovery, including methods for the prediction of bioactivity, drug
metabolism, natural product-likeness and interference of small mol-
ecules with biological assays. In an effort to make our software and
models available to the scientific community we have developed the
New E-Resource for Drug Discovery (NERDD), available at https://
nerdd.zbh.uni-hamburg.de.

2 The NERDD web server

NERDD is built on the Django web framework (https://www.djan
goproject.com) deployed with the Apache HTTP server (https://
www.apache.org). The web service is designed to be maintainable
and scalable. NERDD meets modern security standards and sup-
ports encrypted communication via HTTPS. The web service is
linked to an in-house high-performance computing facility that can
handle large numbers of concurrent requests.

When visiting NERDD, users are presented a homepage that lists
all the available tools. The individual start pages of the tools offer
different options to provide molecular structures as input (including

bulk data upload). Users can also change some settings concerning
the calculation, visualization and reporting of results. Following the
submission of a calculation, users are presented a status page with
an estimate of the remaining calculation time. The waiting time for
individual queries will usually not be longer than a few seconds.
During peak load and when calculations for large sets take more
time, users may prefer to return to the website at a later point in
time to collect their results. The results page provides a tabular or
table-like overview of all results. Tools generating more complex
reports offer options to show, hide and expand specific types of in-
formation. All tools offer options to export all the results in stand-
ard file formats. The results are stored for a specified period of time
for users to retrieve their data. An option for the immediate deletion
of the user’s data is also provided. NERDD currently features four
tools, which are briefly discussed in the following sections.

2.1 FAME 3 for site of metabolism prediction
FAME 3 is the third generation of machine learning models for the
prediction of sites of metabolism (SoMs), the atom positions in a
molecule at which metabolic reactions are initiated (�Sı́cho et al.,
2019). Several advances distinguish this model from its predecessors
and other existing models. First, the extremely randomized trees
classifiers are trained on a large, expert-curated dataset covering
phase 1 and 2 metabolism (Pedretti et al., 2018). Second, the
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models, based on specifically designed atom descriptors, generalize
well, making them applicable not only to synthetic compounds but
also to natural products. Third, a newly introduced, atom-based dis-
tance measure (‘FAMEscore’) allows the estimation of the reliability
of predictions individually for each atom in a molecule.

On holdout data, a global model for phase 1 and phase 2 metab-
olism reached competitive performance, with a Matthews correl-
ation coefficient (MCC) of 0.50 and an area under the receiver
operating characteristic curve (AUC) of 0.90. Focused models per-
formed even better; a model for phase 2 metabolism achieved an
MCC of 0.71 and AUC of 0.97.

2.2 GLORY for metabolite structure prediction
GLORY (de Bruyn Kops et al., 2019) uses the results obtained from
FAME to apply 73 reaction rules and generate the molecular struc-
tures of likely metabolites formed by CYPs. GLORY features two
operation modes: MaxEfficiency and MaxCoverage. While
MaxEfficiency gives the most relevant metabolites, MaxCoverage
does a better job of covering all possible metabolites and is recom-
mended. One important feature that sets GLORY apart from many
of the existing metabolite structure predictors is its capability to
rank the predicted metabolites according to their likelihood. The
model ranked at least one known metabolite within the top three
positions for 76% of the molecules of an independent test set.

2.3 Hit Dexter 2.0 for assay interference prediction
Hit Dexter 2.0 (Stork et al., 2019) is designed as a one-stop shop for
identifying small molecules that are likely to interfere with biologic-
al assays or show promiscuous behaviour. ‘Badly behaving com-
pounds’, ‘bad actors’ or ‘nuisance compounds’ are abundantly
present in screening libraries as well as the chemical biology and me-
dicinal chemistry literature (Baell and Holloway, 2010), and have
been setting researchers on the wrong track all too often. The inter-
ference of nuisance compounds with biochemical assays is based on
various physical and chemical processes.

In Hit Dexter 2.0, we implemented several available in silico
approaches (Stork and Kirchmair, 2018), including the well-known
set of 480 substructures observed in pan-assay interference (PAINS;
Baell and Holloway, 2010) and a large variety of published rule sets
encoding substructures regarded as undesirable in the context of
drug discovery. Hit Dexter 2.0 also provides results of Aggregator
Advisor (Irwin et al., 2015), a similarity-based approach for com-
paring compounds of interest with known aggregators.

The core of Hit Dexter 2.0 is a set of extremely randomized trees
classifiers for identifying frequent hitters (i.e. small molecules for
which a higher than expected hit rate is observed in biological
assays). The Hit Dexter 2.0 machine learning models are trained on
large sets of experimental data (up to approximately 250 000 com-
pounds). Separate classifiers are available for primary screening
assays and confirmatory dose-response assays. On holdout data, the
classifiers obtained MCC values of up to 0.64 and AUC values of up
to 0.96 in discriminating (highly) promiscuous from non-
promiscuous compounds. Hit Dexter 2.0 should not be used as a
hard filter to eliminate compounds but as a tool for hit
prioritization.

2.4 NP-Scout for the identification of natural products
NP-Scout (Chen et al., 2019) is a machine learning approach that
allows the identification of natural products and natural product-
like molecules in large compound collections. Natural products are
the most prolific resource of inspiration for the development of
modern small-molecule drugs. However, only an estimated 10% of

known natural products are readily obtainable from commercial
and other sources, and despite their value they are often concealed
in mixed compound collections and not labelled as natural products
(Chen et al., 2017). In response to this situation we developed NP-
Scout. The classifier is trained on approximately 265 000 natural
products and synthetic molecules and obtained an MCC of 0.960
and AUC of 0.997 on holdout data. NP-Scout utilizes similarity
maps (Riniker and Landrum, 2013) to visualize areas in a molecule
that are characteristic of natural products or synthetic compounds.

3 Conclusions

NERDD is a quickly expanding web portal offering a variety of
tools for drug discovery efforts. One of the most important features
is the flexible linkage to an in-house high-performance computing
facility, which enables the handling of large numbers of concurrent
requests. All tools currently offered with NERDD are free for non-
commercial and academic research. With the exception of FAME 3,
all the tools are also free for commercial research. FAME 3 may be
used by for-profit institutions for testing purposes; a fee applies for
commercial use. Upon request to the authors, these tools are also
available as software packages for local installation.
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6. Conclusions and future directions

A major challenge in high-throughput screening (HTS) is the identification of
compounds that are likely to trigger false positive assay readouts. The depri-
oritization of these badly behaving compounds is of utmost importance as the
publication or the usage within a company of such compounds would lead to
expensive and time consuming follow-up studies which would waste a significant
amount of resources. The existing computational models for the identification
of bad actors and nuisance compounds are primarily using similarity-based or
rule-based approaches. Less often are machine learning models that use re-
cently developed algorithms for more accurate predictions of badly behaving
compounds. These algorithms are more complex than, for example, rule-based
approaches (which often only match substructures) and hence need to be made
easily accessible and well explained. Further limitations of the existing ap-
proaches are the often narrow applicability domain of the models and a clear
constraint to target-based assay technologies.

During this Ph.D. study three generations of machine learning models for the
prediction of frequent hitters in biochemical and biological assays were devel-
oped (Hit Dexter, Hit Dexter 2.0 and Hit Dexter 3). Frequent hitters are
compounds that show higher-than-expected hit rates and are therefore likely to
trigger false positive assay readouts and are also known as bad actors, nuisance
compounds and badly behaving compounds. The high hit rates are often a
result of undesirable, nonspecific interactions of the compound with the target
protein or the assay ingredients. In order to make the Hit Dexter models freely
and easily accessible a web server was developed called New E-Resource for
Drug Discovery (NERDD), which has become an established platform for sev-
eral bioinformatic tools developed in our research group. Additionally, it was
co-authored to several peer-reviewed publications, which can be found in detail
in Refs. [A1–A11].

The first generation of machine learning models for the prediction of frequent
hitters in biochemical and biological assays are based on a large data set which
was extracted from PubChem Bioassay database and only contains target-based
assay data. Compounds within this large data set (around 311 000 compounds),
were divided into three classes according to their hit rate, using the average plus
standard deviation approach: non-promiscuous compounds (hit rates not larger
that the average), promiscuous compounds (hit rates above the averages plus

79



80 6. Conclusions and future directions

one standard deviation) and highly promiscuous compounds (hit rates above
the average plus three standard deviations). Two models were built: one for
the differentiation of non-promiscuous and promiscuous compounds and another
for the differentiation of non-promiscuous and highly promiscuous compounds.
In order to decrease the statistical fluctuation of compounds that were tested
less often, only compounds that were tested against at least 50 distinct protein
targets were used for machine learning model building. Machine learning mod-
els based on extra tree classifiers and Morgan2 fingerprints, called Hit Dexter,
reached Matthews correlation coefficient (MCCs) and area under the receiver
operating characteristic curve (AUC) values of up to 0.67 and 0.96, respectively,
and were made publicly available as part of the web server framework NERDD
(for details see below).

The second generation of machine learning models for frequent hitter prediction
in biochemical and biological assay screening was extended to primary screen
assay (PSA) data. Initial PSA experiments often have lower accuracy and dif-
ferent compounds will be detected as frequent hitters compared to follow-up
confirmatory dose-response assay (CDRA) screenings due to the different as-
say screening setups. Large data sets were extracted from PubChem Bioassay
database for PSA data and CDRA data and dedicated models for both assay
setups were built. Another important refinement of the newly developed models
is the exclusion of compounds that show activity on structural related proteins
such as kinases. Therefore the available protein target primary structures were
clustered and compounds were only labeled as frequent hitters if they showed
activity on multiple protein target clusters. The best-performing models (again
based on extra tree classifiers and Morgan2 fingerprints) reached MCCs and
AUC values of up to 0.64 and 0.96, respectively. Further, the performance of
the developed machine learning models were evaluated on different data sets,
including collections of approved drugs, known aggregation forming compounds,
potential PAINS (compounds that were detected by the well-known PAINS fil-
ter set), natural products, consistently inactive compounds from target-based
and cell-based assay screening (also known as dark chemical matter) and sev-
eral screening libraries. Models for the differentiation of non-promiscuous and
promiscuous compounds as well as for the differentiation of non-promiscuous
and highly promiscuous compounds for both PSAs and CDRAs were made avail-
able within NERDD as Hit Dexter 2.0 models substituting the first generation
of Hit Dexter models. In addition to the frequent hitter predictions, the Hit
Dexter web server was extended with several establish rule-based approaches
(like the PAINS filter set) and similarity-based approaches (like AggregatorAd-
visor) to develop the Hit Dexter web server into a one-stop-shop for HTS hit
(de-)prioritization.
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To further extend the applicability domain (AD) of the Hit Dexter models, a dif-
ferentiation of frequent hitters into cell-based and target-based assay screenings,
respectively, was achieved in the third generation of machine learning models.
Three data sets were compiled from the PubChem Bioassay database, which
were divided into a target-based assay data set, a cell-based assays data set
(excluding assays measuring nonspecific interactions like cytotoxicity) and an
extended cell-based assay data set (including all types of cell-based assays). An
increased number of available data were used to have a more significant hit rate
for each compound. The minimum number of proteins (and protein clusters)
a compound had to be tested against was increased to 100, which adds to the
robustness of the models. Dedicated models were built for each of the data sets
and multiple machine learning algorithms, including k-nearest neighbors (KNN),
random forest (RF), extra tree (ET) and multilayer perceptron (MLP) classi-
fiers were investigated. The best performing models (based on MLP classifiers
combined with Morgan2 fingerprints) reached MCCs of up to 0.69, 0.61 and
0.64 for the target-based, cell-based and extended cell-based assay data sets for
the differentiation of non-promiscuous and highly promiscuous compounds, re-
spectivly. These models were released as part of the Hit Dexter 3 models, which
also include models for the differentiation of non-promiscuous and promiscuous
compounds, and are available at the web server NERDD. It was shown that
models trained on the target-based assay data set do not perform well on test
sets based on cell-based assay data and vice versa which underlines the need
of dedicated models for target-based and cell-based assay screenings.

In order to make the Hit Dexter models publically available, a web server was
developed called NERDD. NERDD is developed in a modular way which makes
it easy to implement newly developed tools within the web server framework.
The server uses HTTPS encryption, which makes it secure and all uploaded
data can be deleted by the user immediately after downloading the results which
allows the users also to work with confidential data. NERDD is continuously
growing and has become an established platform in the scientific community.
The web server accommodates, besides Hit Dexter, seven additional tools which
are of high value to (early) drug discovery, including NP-Scout for the predic-
tion of natural product-likeness and Skin Doctor CP for the prediction of skin
sensitization potential. Addinally, five tools for metabolism predictions are
available, including FAME3 for the sites of metabolism prediction of Phase 1
and Phase 2 metabolism. Based on FAME3, GLORYx can predict the likely
metabolic structures which are formed during Phase 1 and Phase 2 metabolism
whereas GLORY can predict the metabolic structures during Cytochrome P450
metabolism. Further, CYPstrate and CYPlebrity are machine learning tools for
the prediction of Cytochrome P450 substrates and inhibitors, respectively.

During this Ph.D. study the understanding of frequent hitters in biochemical
and biological assays increased and the prediction of frequent hitter compounds
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by machine learning models was achieved. However, many ideas and follow-up
studies could be implemented and performed to further increase our understand-
ing of frequent hitters in biochemical and biological assay screenings.

One use case of the Hit Dexter models is, for example, the support of researchers
that perform biological and biochemical assay screenings. A follow-up study,
which would need the support of an experimental cooperation partner could in-
vestigate the following scenario: Supposing a researcher wants to find privileged
scaffolds to start a multi-target drug discovery campaign. Hit Dexter could
already support the building of the screening library as such a library should
contain frequent hitter compounds. A diverse subset of the Hit Dexter selected
compounds could be the starting point for such a multi-target drug campaign.
However, an experimental workflow using Hit Dexter needs to be validated
and established to make researchers familiar with the advantages of machine
learning models during drug development. The screening outcome could serve
as an external and experimental validation of the Hit Dexter models and an
optimization of the models could be performed.

A major limitation of the Hit Dexter models is that the machine learning models
cannot distinguish between frequent hitters that act as “bad actors” or “nui-
sance compounds”, and frequent hitters that are valuable hits because of their
true promiscuous behaviors due to privileged scaffolds. Such an extension of
the Hit Dexter model would achieve a large impact on modern HTS campaigns
as the identification of bad actors is still a major problem during assay screen-
ings. Approaches exist that predict true promiscuous compounds based on data
sets that were filtered with the most important and relevant existing models
that can detect bad actors. However, models for bad actor detection are often
incomplete and have a small applicability domain which may lead to a high
estimated number of unreported cases of bad actors in the training data.

In the present work only ligand-based machine learning approaches were in-
vestigated and developed. One possibility for an improvement of the models
could be the inclusion of structure-based approaches. The current version of the
Hit Dexter models uses the protein target sequence only for clustering struc-
turally similar proteins to avoid that compounds are classified as frequent hitters
whereas they are active on one target family (e.g. kinases). In an extended
model the protein structure could be used to extend the descriptors of the
compounds to take also, for example, the binding mode of a compound with a
protein target into account. One could imagine that especially the prediction
of true promiscuous compounds could be boosted as privileged scaffolds might
have similar binding modes on multiple proteins. But also the reaction pat-
terns of bad actors could be revealed (for example covalent binding) taking the
binding mode into account.
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The analysis of the chemical structures of frequent hitters is another important
step toward a better understanding of frequent hitter behavior. The present
study revealed that the separation of non-promiscuous and (highly) promiscu-
ous compounds is possible with machine learning models based on Morgan2
fingerprints. However, the analysis of the chemical structure of frequent hitter
compounds has not yet been performed. In a next step, the used Morgan2
descriptors could be analysed in more detail within a backpropagation process.
For example, it could be analysed, which chemical groups and chemical core
fragments are enriched in frequent hitter compounds. A deeper understanding
of the chemical structure of frequent hitters would make interpretations by ex-
perimentalists easier and would further increase the awareness of the challenges
caused by frequent hitters.

Another important step regarding the identification of compounds triggering
false positive assay results in biochemical and biological assays would be the
development of models for specific assay reading technology setups. Each assay
setup has different reaction mechanisms and assay reading technologies which
makes some compound classes problematic only for particular setups. For ex-
ample, autofluorescence compounds are mainly problematic in assay screening
setups in which the detection method is based on electromagnetic radiation
as the detector could accidentally measure the radiation of the autofluores-
cence compound instead of the radiation that is emitted during a positive assay
outcome event. Few models for predicting compounds likely to trigger false pos-
itive assay outcomes for specific assay types already exist, mainly for luciferase
(bioluminescence) assays. However, the amount of publicly available data for
specific assay reading technologies is low and a reproducible assay ontologie is
still in their infancy. These facts makes it difficult to easily and quickly develop
machine learning models in the public domain.

The combination of several specific assay reading technology data sets containing
bad actors for each of the available assay setups could present an opportunity
to maximize the use of the limited amount of available data. A possible solu-
tion comes with multi-class neural networks, which could be used on multiple
combined, small data sets to build a larger data set with different endpoints.
The neural network could learn from each of the different data sets to cross link
information of the different data sets to make predictions of bad actors and/or
frequent hitters more accurate for specific assay setups. Structural analysis of
the cross linked information would lead to an even deeper understanding of
nuisance compounds.

The same multi-class approach could work for the Hit Dexter models. A multi-
classification model can make use of the information of the target-based data set
to learn for the cell-based assay and vice versa. Here a much more performance
orientated way of programming would be necessary as the large data sets com-
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bined with large neural networks need an increased amount of computational
resources and the use of GPUs could be essential.

An important part of this Ph.D. study was the development of the web server
NERDD which was implemented in a modular way which makes it easy to add
newly developed tools within the web server framework, which will be done for
newly developed tools. However, there is room for improvement in the imple-
mentation of some components of NERDD. For example, a performance-oriented
implementation could speed up the calculation time thereby reducing the time
a user needs to wait for the results. At the moment all calculations are sent to
a high performance cluster and for each calculation large models and data sets
have to be loaded which produces a large overhead. Simple workers running
directly on the server itself having the models already loaded could be used to
speed up calculations, especially calculation with only a single molecule. A well-
tested environment is needed here to avoid memory leaks and server crashes
which are producing downtimes of the server. Following this, an automated
down time recognition and an automated bug report could be extremely useful
to detect and solve server problems immediately. Several tests should be im-
plemented that check if all tools are running and working as expected to avoid
manual testing after a server crash or after new tools are migrated. Another
problem that exists since the move from Hamburg to Vienna is the absence of an
internal test server where new features can be implemented without interfering
with the productive online web server. While setting such an environment up,
the possibilities of automated building, testing and deploying pipelines which
come along with git repository hosting services could be used for an automated
updating of the productive server as this is done manually at the moment. This
also includes the manual duplication of updated models, data sets and other
larger files. For the tracking of larger files programs like data version control
(DVC) should be established inside the web server framework. Taking together
the web server is stably running, but a lot of space for improvement exits within
the web server framework.
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8. Appendix

A Gefahrstoffe nach GHS

In this work no hazardous compounds according to the GHS (Globally Harmo-
nized System Of Classification and Labeling of Chemicals) were used.
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Supporting Information 
 

 

Figure S1. ROC curves obtained for the three independent test sets, which are independent 
test sets created from the PC20 data set. 
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Table S1. Molecular descriptors for principal component analysis (calculated with MOE). 

Code Class Description 

a_acc 2D Number of H-bond acceptor atoms 

a_acid 2D Number of acidic atoms 

a_aro 2D Number of aromatic atoms 

a_base 2D Number of basic atoms 

a_don 2D Number of H-bond donor atoms 

a_heavy 2D Number of heavy atoms 

a_hyd 2D Number of hydrophobic atoms 

a_nB 2D Number of boron atoms 

a_nBr 2D Number of bromine atoms 

a_nC 2D Number of carbon atoms 

a_nCl 2D Number of chlorine atoms 

a_nF 2D Number of fluorine atoms 

a_nH 2D Number of hydrogen atoms 

a_nI 2D Number of iodine atoms 

a_nN 2D Number of nitrogen atoms 

a_nO 2D Number of oxygen atoms 

a_nP 2D Number of phosphorus atoms 

a_nS 2D Number of sulfur atoms 

b_ar 2D Number of aromatic bonds 

b_count 2D Number of bonds 

b_double 2D Number of double bonds 

b_rotN 2D Number of rotatable bonds 

b_rotR 2D Fraction of rotatable bonds 

b_single 2D Number of single bonds 

b_triple 2D Number of triple bonds 

chiral 2D Number of chiral centers 

FCharge 2D Sum of formal charges 
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logP(o/w) 2D Log octanol/water partition coefficient 

logS 2D Log Solubility in Water 

mr 2D Molar refractivity 

PC+ 2D Total positive partial charge 

PC- 2D Total negative partial charge 

rings 2D Number of rings 

TPSA 2D Topological Polar Surface Area (A**2) 

vdw_area 2D Van der Waals surface area (A**2) 

vdw_vol 2D Van der Waals volume (A**3) 

vsa_acc 2D VDW acceptor surface area (A**2) 

vsa_acid 2D VDW acidic surface area (A**2) 

vsa_base 2D VDW basic surface area (A**2) 

vsa_don 2D VDW donor surface area (A**2) 

vsa_hyd 2D VDW hydrophobe surface area (A**2) 

vsa_other 2D VDW other surface area (A**2) 

vsa_pol 2D VDW polar surface area (A**2) 

Weight 2D Molecular weight (CRC) 
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Table S2. Grid Search Results for P-NP Classifiers Trained on the PC20 Dataset. 

max_features 
\ number of 
estimators 

Metric 10 50 100 150 200 250 300 400 500 600 

sqrt MCC 0.55 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 

sqrt AUC 0.88 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

0.2 MCC 0.57 0.59 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

0.2 AUC 0.88 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

0.4 MCC 0.56 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 

0.4 AUC 0.88 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

0.6 MCC 0.56 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 

0.6 AUC 0.88 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

0.8 MCC 0.54 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 

0.8 AUC 0.87 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

None (1.0) MCC 0.45 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 

None (1.0) AUC 0.77 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 
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Table S3. Grid Search Results for HP-NP Classifiers Trained on the PC20 Dataset. 

max_features 
\ number of 
estimators 

Metric 10 50 100 150 200 250 300 400 500 600 

sqrt MCC 0.56 0.59 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

sqrt AUC 0.89 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

0.2 MCC 0.58 0.61 0.62 0.62 0.61 0.62 0.62 0.62 0.62 0.62 

0.2 AUC 0.90 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 

0.4 MCC 0.58 0.60 0.60 0.60 0.60 0.60 0.60 0.61 0.61 0.60 

0.4 AUC 0.89 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

0.6 MCC 0.57 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 

0.6 AUC 0.88 0.93 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 

0.8 MCC 0.54 0.56 0.56 0.55 0.56 0.56 0.56 0.56 0.56 0.56 

0.8 AUC 0.87 0.91 0.92 0.93 0.93 0.93 0.93 0.93 0.94 0.94 

None (1.0) MCC 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 

None (1.0) AUC 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 
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Table S4. Grid Search Results for P-NP Classifiers Trained on the PC50 Dataset. 

max_features 
\ number of 
estimators 

Metric 10 50 100 150 200 250 300 400 500 600 

sqrt MCC 0.53 0.57 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 

sqrt AUC 0.88 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

0.2 MCC 0.55 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 

0.2 AUC 0.88 0.91 0.91 0.91 0.91 0.91 0.91 0.92 0.92 0.92 

0.4 MCC 0.54 0.57 0.57 0.57 0.58 0.58 0.57 0.58 0.58 0.58 

0.4 AUC 0.87 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

0.6 MCC 0.53 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.57 

0.6 AUC 0.87 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.91 

0.8 MCC 0.52 0.54 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55 

0.8 AUC 0.86 0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

None (1.0) MCC 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 

None (1.0) AUC 0.76 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 
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Table S5. Grid Search Results for HP-NP Classifiers Trained on the PC50 Dataset. 

max_features 
\ number of 
estimators 

Metric 10 50 100 150 200 250 300 400 500 600 

sqrt MCC 0.54 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 

sqrt AUC 0.90 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

0.2 MCC 0.57 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 

0.2 AUC 0.90 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

0.4 MCC 0.56 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

0.4 AUC 0.89 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

0.6 MCC 0.56 0.58 0.58 0.59 0.59 0.58 0.58 0.58 0.58 0.59 

0.6 AUC 0.88 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 

0.8 MCC 0.53 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 

0.8 AUC 0.87 0.91 0.92 0.93 0.93 0.93 0.93 0.93 0.94 0.94 

None (1.0) MCC 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 

None (1.0) AUC 0.76 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 
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Figure S1. Proportion of (A) dark chemical matter compounds, (B) known aggregators, (C) 
screening compounds from the Enamine HTS Collection, (D) compounds of the ChEMBL 
database, (E) approved drugs from DrugBank and (F) compounds of the Enamine HTS collection 
that match at least one PAINS pattern, represented by the PSA50 training set of the P-NP 
classifier at a given minimum similarity (Tanimoto coefficient calculated from Morgan2 
fingerprints). 



110 8. Appendix

D Supporting information for [D5]

Supporting Information for the following publication:

Stork, C.; Mathai N. and Kirchmair, J. Computational prediction of frequent
hitters in target-based and cell-based assays, Artificial Intelligence in the Life
Sciences 2021, 1, 100007.



Supporting Information 
 

 

Computational prediction of  

frequent hitters in  

target-based and cell-based assays 
Conrad Stork,1 Neann Mathai2 and Johannes Kirchmair1,2,3* 

1 Universität Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, 

Department of Informatics, Center for Bioinformatics, 20146 Hamburg, Germany. 

2 Department of Chemistry and Computational Biology Unit (CBU), University of Bergen, N-

5020 Bergen, Norway. 

3 Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of 

Life Sciences, University of Vienna, 1090 Vienna, Austria. 

* Corresponding author email: johannes.kirchmair@univie.ac.at 

 



Table SI_1: Number of Assay Data Sets Removed During Data Preprocessing. 

Assay 
annotation 

Number of assays 

annotated removed because 
they have not 
exactly one GI 

annotated 

removed due 
to unusually 

high hit rates2 

after removing all 
assays with 

unusually high 
hit rates and 

assays without a 
single GI 

target-based 425 661 7 352 

cell-based 369 - 4 365 

extended 

cell-based 

619 - 7 612 

1 These assays were not considered during the calculation of the average assay hit rate and σ. 
2 Assays with a hit rate greater than the average plus 3σ for the respective assay data set were removed. 
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