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Abstract

The present thesis consists of two parts. The overarching theme is the notion of a Rieman-
nian cone.

The first part is concerned with linear stability of a certain type of Ricci solitons. Ricci
solitons are generalizations of Einstein metrics. We show that if (B, gB, Z) is a Riemannian
cone and (F, gF ) is an Einstein manifold with Einstein constant µ, then the product manifold
(M, g) := (B × F, gB ⊕ gF ) is a gradient Ricci soliton with Ricci potential w := µ

2 |Z|
2.

There is a connection between linear stability of M and that of F . We show that if (F, gF )
is linearly unstable, then the product Ricci soliton is linearly unstable, too.

In the second part, which is the main matter of this thesis, we turn our attention to
Ricci-flat asymptotically conical manifolds. The main goal of this part is to show that Ricci-
flatness is a strong enough assumption prove decay rates for various tensor fields, and in
particular that Ricci-flatness may be used to find suitable asymptotic coordinates in which
the decay rate is optimized.

After a short study of the geometry of Riemannian cone metrics gcone, we show that
many geometrically interesting Laplace-type operators admit a structure that allows for
a decomposition similar to the standard formula expressing the Laplacian in spherical co-
ordinates. The role of the spherical Laplacian is played by the so-called tangential operator.
After an explicit calculation, we determine the spectrum and eigenfields of the tangential
operators of the Laplace–Beltrami operator ∆gcone

B , the Hodge Laplacian ∆gcone
H on 1-forms

and the Einstein operator ∆gcone
E on symmetric 2-tensor fields.

After this, we turn our attention to decaying harmonic symmetric 2-tensor fields, and
show that an explicit formula may be derived for the decay rate, involving only the spectra
of the tangential operators we have just dealt with.

Next, we consider asymptotically conical manifolds. These are Riemannian manifolds
(M, g) for which we can find a diffeomorphism φ, called the asymptotic chart, which maps
M \ K to an infinite frustum of a Riemannian cone with metric gcone and such that the
covariant derivatives difference of the cone metric and the pushforward metric φ∗g decays
with a prescribed rate τ in terms of the radial coordinate (the radial coordinate describes
the position along the “axis” of the cone). The two main components of this definition are
the asymptotic chart φ and the decay rate τ . The rest of the thesis is dedicated to showing
that we can find a suitable asymptotic chart in which the decay rate is optimized (and is
the same as in the kernel of the Einstein operator on a cone).

For this, we first consider decaying ∆gac
E -harmonic 2-tensor fields and determine that

they admit the same decay rate as their ∆gcone
E -harmonic analogues. The proof is similar to

the conical case but, crucially, an iterative procedure needs to be introduced.
Next, as usual for partial differential equations with geometric origins, we introduce a

gauging borrowing ideas from the study of the Ricci-flow. This gauging−2 Ricg +LV (g,gac)g =
0 leads to a quasilinear partial differential equation. The iterative procedure from before
may be used to determine the decay rate of the difference tensor between gauged metrics
and the reference metric.

Not all metrics are gauged but it can be shown using an argument which is based on the
implicit function theorem, that in a small enough neighbourhood U of the asymptotically
conical metric g, metrics can be pulled back to a metric for which the term with the Lie
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derivative disappears. Consequently, for these metrics the gaugedness condition is equivalent
to the condition of Ricci flatness.

We can construct a family of metrics (gR)R interpolating between the asymptotically
conical metric g and the pullback of the cone metric such that gR coincides with the pullback
metric of gcone outside an ever increasing compact set. This family converges to gac, so in
particular, for large enough R, the family lies in the neighbourhood U , therefore it may be
uniquely pulled back to a metric with vanishing Lie derivative term via a map ψ. Using this
ψ and the original asymptotical coordinates φ we can construct a new asymptotic chart in
which g has the optimalized decay rate.
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Zusammenfassung

Diese Dissertation besteht aus zwei Teilen, die mit durch das Konzept des Riemannschen
Kegels verbunden sind.

Im ersten Teil geht es um die lineare Stabilität einiger Ricci-Solitonen, eine Klas-
se von Riemannmetriken, die Klasse von Einsteinmetriken verallgemeinert. Insbesondere
wird gezeigt, dass wenn (M, gM , Z) ein riemannscher Kegel ist und (F, gF ) eine Einstein-
mannigfaltigkeit mit Einsteinkonstante µ, dann ist die Produktmannigfaltigkeit (M, g) :=
(B×F, gB⊕gF ) ein Riccisoliton des Gradiententyps mit Riccipotential w := µ

2 |Z|
2. Es gibt

einen gewissen Zusammenhang zwischen der linearen Stabilität von M und F . Wir zeigen,
dass wenn (F, gF ) linear instabil ist, so ist das Produkt-Riccisoliton auch linear instabil.

Im zweiten Teil, dem Hauptteil der Dissertation, betrachten wir Ricciflache asympto-
tisch konische Mannigfaltigkeiten. Der Zweck dieses Teils ist es zu zeigen, dass die Annahme
der Ricciflachheit stark genug ist um die Abfallraten bestimmter Tensorfelder zu berech-
nen und inbesondere dass diese Annahme stark genug sei für die Konstruktion passender
asymptotischer Koordinaten, bezüglich der die Abfallrate verbessert ist.

Nach einem Kapitel über die Geometrie der riemannschen Kegelmetriken gcone zeigen
wir, dass die Struktur vieler geometrisch interessanter laplaceartiger Operatoren eine Dar-
stellung zulässt, die die Standardformel für “den Laplaceoperator in Polarkoordinaten” äh-
neln. Die Rolle des sphärischen Laplaceoperators wird in diesem allgemeineren Fall durch
den sogenannten Tangentialoperator übernommen. Wir führen explizite Rechnungen vor,
die das Spektrum und die Eigentensorfelder des Laplace–Beltrami-Operators ∆gcone

B , des
Hodge–Laplace-Operators ∆gcone

H auf 1-Formen und des Einsteinoperators ∆gcone
E auf sym-

metrischen 2-Tensorfelder bestimmen.
Nach dieser Rechnung werden wir uns an das Abfallverhalten ∆gcone

E -harmonische sym-
metrische 2-Tensorfelder. Wir zeigen, dass sich eine explizite Formel für die Abfallrate her-
leiten lässt, die nur vom Spektrum der früher betrachteten Tangentialoperatoren abhängt.

Nach dieser Vorarbeit geht es weiter mit asymptotisch konischen Mannigfaltigkeiten.
Eine riemannsche Mannigfaltigkeit (M, g) heißt asymptotisch konisch, wenn es einen Dif-
feomorphismus φ (die asymptotische Karte) gibt, die die Mannigfaltigkeit außerhalb eines
Kompaktums nach einem Kegel gcone ohne seine Spitze abbildet und wenn die Differenz
der Pushforwardmetrik φ∗g und der Kegelmetrik gcone mit einer Abfallrate τ bezüglich der
Radialkoordinate abfällt (und die Ableitungen fallen entsprechend ab). Hier steht die Radi-
alkoordinate für die Position auf der “Kegelachse”. Die für uns wichtigste Komponente im
vorherigen Satz sind die asymptotische Karte φ und die Abfallrate τ . Das Ziel im Rest die-
ser Dissertation ist zu zeigen, dass sich die Abfallrate durch die Wahl einer passenden Karte
verbessern lässt (und dass diese Abfallrate mit der Abfallrate für ∆gcone

E übereinstimmt).
Als erster Schritt betrachten wir ∆g

E-harmonische 2-Tensorfelder und zeigen, dass sie
die gleiche Abfallrate haben, wie im ∆gcone

E -harmonischen Fall. Der Beweis geht analog, aber
ein iteratives Verfahren muss eingeführt werden.

Wie üblich im Kontext von partielle Differentialgleichungen geometrischen Ursprungs,
führen wir eine Eichung ein. Hierfür entlehnen wir ein Konzept aus der Studie des Ric-
ciflusses. Die Eichung −2 Ricg +LV (g,gac)g = 0 führt zu einer quasilinearen partiellen Dif-
ferentialgleichung. Das frühere iterative Verfahren kann hier wieder eingesetzt werden um
die Abfallrate der Differenz zwischen einer geeichten Metrik und der Referenzmetrik zu
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bestimmen.
Es kann mit einem Implizitfuntionssatzargument gezeigt werden, dass jede Metrik in

einer genügend kleiner Umgebung der Referenzmetrik gac durch einen Diffeomorphismus
zurückgezogen werden kann, sodass der Term mit der Lieableitung verschwindet. Für diese
zurückgezogene Metrik ist also die Eichung gleich der Bedingung der Ricciflachheit.

Es lässt sich eine Familie von Metriken (gR)R konstruieren, die zwischen der exakten
Kegelmetrik und der asymptotisch konischen Metrik gac interpoliert, sodass gR mit gac
innerhalb eines mit R größer werdenden Kompaktums übereinstimmt und sodass gR mit
dem exakten Kegelmetrik außerhalb eines mit R immer größer werdenden Komapktums
übereinstimmt. Ferner konvergiert diese Familie nach gac, also für genügend großes R liegen
die Metriken gR in der Umgebung U . Nehmen wir ein solches R1. Dann kann die Metrik
gR1 durch einen Diffeomorphismus ψ zurückgezogen werden, sodass der Lieableitungsterm
verschwindet. Man kann mithilfe von ψ und der ursprünglichen asymptotischen Karte φ eine
neue asymptotische Karte konstruieren bezüglich dessen die verbesserte Abfallrate erreicht
werden kann.
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Chapter 1

Introduction and overview

This thesis aims to make a contribution to the field of global analysis. This subfield of
mathematics, also known as analysis on manifolds, may be loosely defined that applies
methods from (partial) differential equations to solve differential geometric problems on
manifolds or bundles of manifolds. Several applications exist in physics.

The overarching theme of this thesis is the notion of a Riemannian cone.

1.1 A type of Ricci-solitons coming from cones

The first topic is so-called gradient Ricci solitons. These are Riemannian manifolds (M, g)
satisfying

Ricg +1
2Lgradg wg = λg

for some λ ∈ R and some function w ∈ C∞(M). (This name comes from the fact that these
metrics evolve by a homothetic rescaling and a pullback under the Ricci flow [CK04]). Note
that Einstein metrics are gradient Ricci solitons where w = const.

We call a gradient Ricci soliton (linearly) stable if the Laplace-type operator ∆g,w
E :=

∆g +∇ggradg w − 2
◦
Rg on symmetric 2-tensor fields has positive spectrum, otherwise call the

gradient Ricci-soliton (linearly) unstable [Krö15b].
I have calculated that if (B, gB) is a Riemannian cone with Euler vector field Z and

(F, gF ) is an Einstein manifold with Einstein constant µ, then the Riemannian productB×F
is a Ricci-soliton with Ricci potential f := µ

2 |Z|
2 (cf. Lemma 4.2). This generalizes the so-

called Gaussian Ricci-soliton, cf. e.g. [Zha18]. Moreover, I have shown that if the Einstein
manifold (F, gF ) is linearly unstable, then M × F is also linearly unstable (Theorem 4.10).

1.2 Optimizing the decay rate of Ricci-flat asymptotically
conical manifolds

The second part of the thesis is dedicated to the study of Ricci-flat asymptotically conical
manifolds, and in particular how certain tensor fields decay on such manifolds.
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1.2. OPTIMIZING THE DECAY RATE OF RICCI-FLAT ASYMPTOTICALLY CONICAL MANIFOLDS

The Einstein operator Consider a Ricci-flat metric g. The follow so-called Einstein
operator will be of central importance to us.

∆E : Γ∞
(
S2T ∗M

)
→ Γ∞

(
S2T ∗M

)
, h 7→ ∆gh− 2

◦
Rgh, (1.1)

where ∆g is the analysts’ raw g-Laplacian and
◦
Rg is a linear operator depending on the

curvature of g (see Chapter 2 for precise definitions).

Riemannian cones Before we can define what asymptotically conical manifolds are,
we first need to describe their asymptotics: cones. A Riemannian cone with compact link
(L, gL) is the Riemannian manifold

Cone(L) := (R+ × L, gcone := dr ⊗ dr + r2gL), (1.2)

where r is the canonical coordinate on R+. The vector field Z := r∂r is called the Euler
vector field. (A more detailed exposition of Riemannian cones can be found in Chapter 6.1.)
One easy example of a cone is the Euclidean space without the origin, which has a round
sphere as its link. In general, the cone with link L is Ricci-flat if and only if the link is
Einstein with Einstein constant dimL − 1. In this thesis, we are interested in Ricci-flat
cones only.

The Einstein operator on cones The geometry of a cone and the geometry of its
link are closely related. One prominent example of this interplay is the fact that that the
Einstein operator of a cone can be written in the following form

∆E = −∇2
∂r,∂r −

dimL

r
∇∂r + 1

r2�E

where �E is the so-called tangential operator. (This formula is reminiscent of the formula for
the Laplace–Beltrami operator of Rn+1 in spherical coordinates and, in fact, other operators
also have a similar expression, cf. Section 6.4.)

I have determined the spectrum and the eigenvectors of the operator�E (Theorem 6.55).
The spectrum consists entirely of eigenvalues and they are given by explicit functions of
the spectra of certain geometrical Laplace type operators on the link L.

The eigenvectors of the tangential operator �E are, with the appropriate scaling, covari-
antly constant in the r direction (cf. Corollary 6.24). Moreover, any symmetric 2-tensor field
h can be expressed as an infinite linear combination of eigenvectors of �E with r-dependent
coefficients. Consequently, the equation ∆Eh = 0 reduces to a system of ordinary differen-
tial equations (Lemma 9.5). This equation can be explicitly solved (Lemma 9.5), and the
growth rates (the so-called exceptional values) can be determined (again Lemma 9.5) be
m±(ξ) where ξ is an eigenvalue of �E and m± are explicitly given functions (cf. Defini-
tion 9.4)

Based on the description of the spectrum of �E , I have determined the decay rate of
elements in the kernel that are decaying in the first place (Proposition 9.14). The kernel
of the Einstein operator on an exact cone is an important model calculation that can be
mimicked with other operators as well.
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CHAPTER 1. INTRODUCTION AND OVERVIEW

Asymptotically conical manifolds Cones have a singularity at their apices and their
are not complete as Riemannian manifolds. One way to remedy this fact is to consider com-
plete Riemannian manifolds that have the cone as asymptotic behaviour. In the literature,
there are several concepts for describing the asymptotic behaviour of a Riemannian metric,
cf. e.g. [PT01]. These are not all equivalent to each other. The notion that is used in this
dissertation is based on the concept of an asymptotic chart.

We say (cf. Definition 7.1) that a complete Riemannian manifold (M, gac) is asymptot-
ically conical with rate τ ∈ R if there is a compact set K ⊂ M , a number R > 0 and a
diffeomorphism (the so-called asymptotic chart) φ : M \ K → (R,∞) × L such that the
covariant derivatives of the metrics satisfy

|∇gcone,k(φ∗gac − gcone)|gcone = O
(
r−τ−k

)
(1.3)

for any natural number k ∈ N (with ∇0 := id , of course). Here, gcone is a cone metric on
R+×L (cf. Equation (1.2)), ∇gcone denotes the Levi-Civita connection of gcone, | · | denotes
the pointwise norm induced by gcone and r denotes the standard coordinate on R+.

Let us introduce the core Core(R) which is, morally speaking, the compact set where
r ≤ R. (For a precise definition, see Definition 7.4.)

The two most important ingredients are the decay rate τ and the asymptotic chart φ.
In fact, as Deruelle and Kröncke have shown in [DK20] that, for an important class of
asymptotically conical manifolds, good stability properties can be proved under the Ricci
flow if one assumes a good enough decay rate. Motivated by this, one of the goals of this
thesis is to show that an a priori given decay rate of a Ricci-flat asymptotically conical
manifold can be optimized by choosing a different asymptotic chart, cf. also the classical
result in [BKN89]).

Before attacking this problem, we consider elements in the kernel of the Einstein op-
erator of gac under the assumption that gac is Ricci-flat. Based on Equation (1.3), the
equation ∆gac

E h = 0 may be reformulated as ∆gcone
E h = F (h) where F (h) depends linearly

on h and has appropriate decay (cf. Equation (9.5) on page 113). This leads to a system of
ordinary differential equations that can be solved explicitly (Lemma 9.20). Based on this,
the the decay rate of elements in ker ∆gac

E can be determined by an iterative procedure
(Theorem 9.24).

A family of metrics Using an interpolating function, we construct a family of metrics
(gR)R≥R1 which agree with gac on Core(R) and agree with φ∗gcone outside Core(2R). Be-
cause of this, the metric is Ricci-flat outside Core(2R) \Core(R). This family converges to
gac in a weighted Sobolev sense (Proposition 8.30).

Gauging We are interested in Ricci-flat asymptotically conical manifolds. The condition
of Ricci-flatness can be expressed as a second-order quasilinear partial equation in terms
of the metric. As a partial differential equation of geometric origin, it is diffeomorphism
invariant. This leads to the need for the choice of a gauge if we want to solve the corres-
ponding partial differential equation. We borrow the DeTurck vector field from the study
of the Ricci flow (Section 8.1). We call a Riemannian metric g gauged with respect to gac
if it comes from the set

Fg0 :=
{
g ∈ Met (M)

∣∣∣− 2 Ricg +LV (g,g0)g = 0
}
. (1.4)

3



1.2. OPTIMIZING THE DECAY RATE OF RICCI-FLAT ASYMPTOTICALLY CONICAL MANIFOLDS

(Note that these metrics are the fixed points of the corresponding Ricci–DeTurck flow.)
The condition of gaugedness of g0+h can be expressed in the form ∆gcone

E h = F (h) where
F (h) depends nonlinearly on h and has appropriate decay (Lemma 10.5). Using an iterative
argument similar to the one used in the study of the kernel of the Einstein operator of gac,
one sees that there is a neighbourhood of gac in the Lp(S2T ∗M)∩L∞(S2T ∗M)-topology in
which all gauged metrics have the same decay rate we observed for elements in the kernel
of the Einstein operator (Theorem 10.6).

Optimalized decay rate with a different asymptotic chart A study of the properties
of the DeTurck vector field yields that there is a neighbourhood of g0 (in a weighted Sobolev
sense) in which any metric neighbourhood can be uniquely pulled back to a metric for which
the DeTurck vector field vanishes (Proposition 8.23). In particular, the family (gR), will
eventually run in this neighbourhood. This way, we obtain a diffeomorphism ψ, with the
help of which we can construct a new asymptotic chart where the decay rate agrees with
the decay rate in the kernel of the Einstein operator (Theorem 10.8).

4



Chapter 2

Some differential operators on
Riemannian manifolds

The goal of this chapter is twofold. First, we introduce some general notation; secondly,
we collect the most important differential operators that are used in this thesis and state
some of their most important properties. This is especially crucial since there are several
competing signs conventions used in the literature. We will stick to the what is sometimes
called the analyst’s sign convention.

While the smooth structure is enough to define many differential operators on differential
forms, this thesis is mainly interested in symmetric tensor fields. Here, the smooth structure
is not powerful enough to induce natural operators but a Riemannian metric is. The proofs
for these statements, where not indicated otherwise, can be found in [Bes87] or [Lee18].

In the following,M is assumed to be a smooth manifold and we fix a Riemannian metric
g ∈ Met (M). Note that g induces pointwise inner products on tensor fields (which we will
denote by 〈·, ·〉g) and in particular we have the following global L2-scalar product

(S1, S2)g :=
∫
M
〈S1, S2〉g volg,

where S1 and S2 are compactly supported smooth tensor fields of the same type, and volg
is the volume form induced by the metric g. Given a differential operator D, we define its
formal adjoint D∗ with respect to g via the condition (S1, DS1)g = (D∗S1, S1)g for any
compactly supported smooth tensor fields S1 and S2 of the appropriate type.

Sometimes, a weighted volume form will be used for the norms. If ρ : M → R+ is a
smooth function, then we introduce

(
T, T ′

)
g,ρ :=

∫
M

〈
T, T ′

〉
g ρ volg .

The set of smooth sections of a bundle E →M is denoted by Γ∞ (E); the set of smooth
sections of the same bundle with compact support is denoted by Γ∞c (E). The trivial bundle
with fibre V over the manifold M is denoted by VM , or, if the base manifold is clear from
context, by V . In particular, smooth functions on the smooth manifold M can be identified
with Γ∞ (RM ). We will denote the bundle of symmetric p tensors by SpT ∗M , and use the

5



2.1. ZEROTH-ORDER OPERATORS

following symmetric tensor product

� : (T ∗M)⊗p ⊗ (T ∗M)⊗q → Sp+qT ∗M,h⊗ k 7→ h� h,

where

(h� k)(X1, . . . , Xp+q) :=
∑

π∈Sp+q

h(Xπ(1), . . . , Xπ(p))k(Xπ(p+1), . . . , Xπ(p+q)),

where Sp+q denotes the permutation group of (p+ q) symbols In particular, for p = q = 1
and α, β ∈ T ∗M , we obtain (α� β)(X,Y ) = α(X)β(Y ) + α(Y )β(X) for any X,Y ∈ TM .

2.1 Zeroth-order operators
We define the Riemannian curvature tensor with the sign convention

Rg(X,Y )Z := ∇g,2X,Y Z −∇
g,2
X,Y Z.

The curvature tensor induces an action of symmetric 2-tensor fields via the formula

◦
Rg : S2T ∗M → S2T ∗M,h 7→

◦
Rgh with (

◦
Rgh)(X,Y ) :=

dimM∑
i=1

h(Rg(ei, X)Y, ei),

where {ei |i = 1, . . . ,dimM} is a g-orthonormal frame. We call

Ricg :=
◦
Rgg

the Ricci tensor of g, and
scalg := Trg Ricg

the scalar curvature of g.

2.2 First-order operators
The divergence operator Consider now the cotangent bundle T ∗M . Since the Levi-
Civita connection of g maps functions to 1-forms, ∇g : Γ∞c (RM ) → Γ∞c (T ∗M), we may
define an operator δg, called the divergence (or codifferential) of the metric g as the formal
adjoint of the Levi-Civita connection on functions:

δg := (∇g)∗ : Γ∞c (T ∗M)→ Γ∞c (RM ) .

One can show that at a point p ∈M , we have

(δgω)(p) = −
(dimM∑

i=1
(∇geiω)(ei)

)
(p),

where {ei |i = 1, . . . ,dimM} is a g-orthonormal frame around p and gij is the matrix rep-
resenting the induced metric g−1 on T ∗M .
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In fact, the divergence operator may be defined on higher-rank tensor fields, too. For
instance, we define the divergence if h ∈ Γ∞c

(
S2T ∗M

)
is a symmetric 2-tensor field, then

we define

(δgh)(X) := −
dimM∑
i=1

(∇geih)(ei, X),

where {ei |i = 1, . . . ,dimM} is a g-orthonormal frame and X ∈ TM .

Lemma 2.1. Let f ∈ Γ∞ (RM ), ω ∈ Γ∞ (T ∗M) and h ∈ Γ∞
(
S2T ∗M

)
. Then δg(fω) =

fδgω − ω(gradg f) and δg(fh) = fδgh− h(gradg f, ·).

The codivergence operator The formal adjoint of the divergence operator on symmet-
ric 2-tensor fields is called the covidergence operator, and it is given by

(δg,?ω)(X,Y ) := 1
2 ((∇gXω)(Y ) + (∇gY ω)(X)) ,

where ω ∈ Γ∞ (T ∗M) and X,Y ∈ TM .
The following elementary lemma is useful for calculations.

Lemma 2.2. For any ω ∈ Γ∞ (T ∗M), one has Trg δg,?ω = −ω.

2.3 Second-order operators

In general, we will call the operator ∆g := (∇g)∗∇g the raw Laplacian. The name is
motivated by the fact that many geometrically interesting Laplace-type operators have a
zeroth-order contribution (usually depending on the curvature of g) to the raw Laplacian.

The Laplace–Beltrami operator The Laplace–Beltrami operator ∆g
B is the Laplacian

type operator defined on smooth functions via ∆g
B := (∇g)∗∇g. One can easily show that at

a point p ∈M , one has (∆g
Bf)(p) := −

(∑dimM
i,j=1 gij∇g,2ei,ejf

)
(p) where {ei |i = 1, . . . ,dimM}

is a g-orthonormal frame around p and gij is the matrix representing the induced metric
g−1 on T ∗M . More succinctly, we may write this as

∆g
B = −g−1 ◦ ∇g,2.

Note that this is the opposite sign convention to the usual differential geometric Laplacian.

The Hodge Laplacian Since symmetric 1-tensor fields coincide with differential 1-forms,
it makes sense to consider the Hodge Laplacian ∆g

H on symmetric 1-tensor fields. The Hodge
Laplacian is related to the raw Laplacian by the following well-known formula.

Lemma 2.3 (Weitzenböck). ∆g
H = (∇g)∗(∇g) + Ricg where Ricg denotes the Weitzenböck

curvature operator [Pet12].

The well-known formula ∆H = d ◦ δ+ δ ◦ d, where δ : Γ∞
(
∧kT ∗M

)
→ Γ∞

(
∧k−1T ∗M

)
is the g-codifferential, has the following analogue for symmetric tensor fields.
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Lemma 2.4. δgLδgL,?ω = 1
2∆HgLω + dδgLω − RicgL ω

Proof. Let ω ∈ T ∗M and X ∈ TM . Let p ∈ M and let {ei |i = 1, . . . ,dimM} be a g-
orthonormal normal frame around p (i.e. gp(ei(p), ej(p) = δij and (∇gei)(p) = 0). We will
perform the calculations at p.

One checks by straightforward calculations that

(δgδg,?ω)(X) = 1
2(∆gω)(X)− 1

2

dimM∑
i=1

(∇g,2ei,Xω)(ei).

On the other hand

(dδgω)(X) = −
dimM∑
i=1

(∇gX∇
g
eiω)(ei)− (∇geiω)(∇gXei) = −

dimM∑
i=1

(∇g,2X,eiω)(ei).

Now (
δgδg,?ω − 1

2dδ
gω

)
(X) = 1

2(∆gω)(X)− 1
2

dimM∑
i=1

(∇g,2ei,Xω −∇
g,2
X,ei

ω)(ei)

= 1
2(∆gω)(X)− 1

2

dimM∑
i=1

(R(ei, X)ω)(ei)

= 1
2(∆gω)(X)− 1

2 Ricg(ω)(X)

= 1
2(∆g

Hω)(X)− Ricg(ω)(X).

The Lichnerowicz Laplacian and the Einstein operator The geometrically natural
Laplace operator for symmetric 2-tensor fields is the so-called Lichnerowicz Laplacian

∆g
L : Γ∞

(
S2T ∗M

)
→ C∞(S2T ∗M), h 7→ (∇g)∗(∇g)h− 2

◦
Rgh+ Ricg ◦h+ h ◦ Ricg .

If the metric g is Einstein, then we define the Einstein operator as

∆g
E : Γ∞

(
S2T ∗M

)
→ C∞(S2T ∗M), h 7→ (∇g)∗(∇g)h− 2

◦
Rgh.

Note that for an Einstein metric with Einstein constant µ, we have Ricg = µ idTM and thus
∆g
L = ∆g

E + 2µ idS2T ∗M .
The Laplace–Beltrami operator (on (symmetric) 0-tensor fields, i.e. functions), the

Hodge Laplacian on (symmetric) 1-tensor fields and the Lichnerowicz Laplacian on sym-
metric 2-tensor fields are intimately connected.

Proposition 2.5 ([Krö15a, Lemma 4.2]). ∆g
L(fg) = (∆g

Bf)g, Trg ∆g
Lh = ∆B(Trg h) for

any f ∈ Γ∞ (RM ) and any h ∈ Γ∞
(
S2T ∗M

)
. Moreover, if Ricg is parallel (e.g. if g is

Einstein), then ∆g
L ◦ δg,? = δg,? ◦∆g

H , δg ◦∆g
L = ∆g

H ◦ δg, ∆g
L ◦∇g,2 = ∇g,2 ◦∆g

B. Moreover,
d ◦∆g

B = ∆g
H ◦ d on functions.
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2.4 The difference of second covariant derivatives
The goal of this section is to characterise the difference of two second covariant derivatives
using the difference of the first covariant derivatives.

Lemma 2.6. Let (M,∇M ) be a manifold with connection and let E → M be a vector
bundle over M . Moreover, let ∇, ∇̄ be two connections on E and set T := ∇̄ − ∇ ∈
Γ∞ (T ∗M ⊗ EndE). Then, for any h ∈ Γ∞ (E), one has

∇̄2h−∇2h = T ? (∇h) + (∇T ) ? h+ T ? T ? h,

where ? denotes various linear combinations of tensorial contractions (with coefficients ∇-
covariantly constant).

Proof. For vector fields X,Y ∈ Γ∞ (TM), we have

∇̄2
X,Y h = ∇̄X(∇̄Y h)− ∇̄∇MX Y h

= ∇̄X(∇Y h+ T (Y, h))∇∇MX Y h− T (∇MX Y, h)

= ∇X(∇Y h) + T (X,∇Y h) +∇X(T (Y, h)) + T (X,T (Y, h))−∇∇MX Y h− T (∇MX Y, h)

= ∇X(∇Y h) + T (X,∇Y h) + (∇XT )(Y, h) + T (∇MX Y, h) + T (Y,∇Xh)
+ T (X,T (Y, h))−∇∇MX Y h− T (∇MX Y, h)

= ∇2
X,Y h+ T (Y,∇Xh) + T (X,∇Y h) + (∇XT )(Y, h) + T (X,T (Y, h))

= (∇2h+ T ? (∇h) + (∇T ) ? h+ T ? T ? h)(X,Y ).

Rearranging yields the claim.

Remark 2.7. Note that the tensor T is locally given by the difference of the Christoffel
symbols Tiαβ = Γ∇̄iα

β − Γ∇iαβ. Accordingly, we may write the statement of Lemma 2.6
also as

∇̄2h−∇2h = (Γ∇̄ − Γ∇) ? h+∇(Γ∇̄ − Γ∇) ? h+ (Γ∇̄ − Γ∇) ? (Γ∇̄ − Γ∇).

2.5 A few words about dual metrics
In our calculations, we will face the situation often, when the difference of two dual met-
rics appears in a formula. The next elementary lemma explains how this is related to the
difference of the original metrics.

Lemma 2.8. Let g, g0 be inner products on a vector space V . Then

]g − ]g0 = −]g0 ◦ ([g − [g0) ◦ ]g,

where we used self-explanatory notation for the musical isomorphisms induced by the met-
rics. In local coordinates, this equality reads gkl − (g0)kl = −(g0)ka(gab − (g0)ab)gbl.

Another useful formula is how the covariant derivative of a dual metric relates to the
covariant derivative of the original metric.

9



2.5. A FEW WORDS ABOUT DUAL METRICS

Lemma 2.9. Let g ∈ Met (M) be a metric on the smooth manifold M and let ∇ be a
connection on M (not necessarily the Levi-Civita connection of g!). Then

∇(g−1) = −(∇g) ◦ (]g ⊗ ]g).

In local coordinates, ∇agij = −gik(∇agkp)gpj. In particular, the dual metric g−1 is parallel
with respect to the connection induced by Levi-Civita connection ∇g of the metric g.

Proof. Let λ, µ ∈ Γ∞ (T ∗M) and X ∈ Γ∞ (TM). Then

µ(∇X(λ]g)) = Xa∇a(λbgbc)µcdxc

= Xa((∇aλb)gbc + λb(∇agbc))µcdxc

= µ((∇Xλ)]g) + (∇X(g−1))(λ, µ),

thus
µ(∇X(λ]g)− (∇Xλ)]g) = (∇X(g−1))(λ, µ),

and evidently, this holds also with the roles of λ and µ exchanged. Therefore,

(∇X(g−1))(λ, µ) = X((g−1)(λ, µ))− (g−1)(∇Xλ, µ)− (g−1)(λ,∇Xµ)
= X(g(λ]g , µ]g))− g((∇Xλ)]g , µ]g)− g(λ]g , (∇Xµ)]g)
= (∇Xg)(λ]g , µ]g) + g(∇X(λ]g), µ]g) + g(λ]g ,∇X(µ]g))
− g((∇Xλ)]g , µ)− g(λ]g , (∇Xµ)]g)

= (∇Xg)(λ]g , µ]g)
+ g(∇X(λ]g)− (∇Xλ)]g , µ]g)
+ g(λ]g ,∇X(µ]g)− (∇Xµ)]g)

= (∇Xg)(λ]g , µ]g)
+ µ((∇X(λ]g)− (∇Xλ)]g)
+ λ(∇X(µ]g)− (∇Xµ)]g)

= (∇Xg)(λ]g , µ]g) + 2(∇X(g−1))(λ, µ).

Rearranging gives the claim.
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Chapter 3

The Einstein operator on warped
products

Here we calculate quantities related to the Einstein operator on warped products. These
are of independent interest as well but in this thesis we will apply them only in the product
case.

3.1 Setup, notations

We will use the notations and terminology of Chapters 2 and 4 of [Che11].
Let (B, gB) and (F, gF ) be pseudo-Riemannian manifolds and let f : B → R+ be a

smooth function. Let (M, g) := B ×f F be the warped product of B and F with the
warping factor f , i.e. g = π∗gB + (f ◦ π)η∗gF where π : M → B and η : M → F denote the
projections. These projections will be suppressed later. Introduce the vector field F ∈ X(M)
by F := gradg ln f for the sake of brevity.

We will denote the horizontal lifts of vectors on B and horizontal components of vectors
inM by a superscript H . Similarly, the vertical lifts of vectors on F and vertical components
of vectors on M will be denoted by a superscript V .

Note that B×{f} as a submanifold of M is totally geodesic for any f ∈ F and {b}×F
is totally umbilical inM for all b ∈ B. Moreover it is easy to see by [Che11, Proposition 4.1]
that the mean curvature vector of F inM is H = − gradg ln f = −F . In the direct product
case, f = 1 and consequently F = 0.

In the following, we will be interested in symmetric 2-tensors on M . For tensor fields
that are horizontal or vertical lifts of tensor fields on B or F , a subscript will be used. In
particular: αB ∈ C∞(B), αF ∈ C∞(F ), hB ∈ S2B, hF ∈ S2F and hB�hF ∈ Ω1(B)�Ω1(F )
will be used where � denotes the symmetric tensor product. We will use the adjectives basic
and fibrous. As for vectors, X,Y, Z, Z ′ ∈ X(B) and U, V,W,W ′ ∈ X(F ).

In some calculations it is useful to have a g-orthonormal frame in M . Let {ei |i ∈ IB}
be a g-orthonormal basis for B and let {ea |a ∈ IF } be a g-orthonormal basis for F .
Then {ei |i ∈ I := IB ∪ IF } is a g-orthonormal basis for M . Also note that in this case
{fea |a ∈ IF } is a gF -orthonormal frame in F . Recall that the induced scalar product of
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tensors can be calculated as〈
T, T ′

〉
g =

∑
i1,...,ik∈I

T (ei1 , . . . , eik)T ′(ei1 , . . . , eik)

for any k-tensors T, T ′. We set |T |2g := 〈T, T 〉g for any k-tensor T .
We collect a few things that we will use routinely.

Lemma 3.1. 1. 〈TB, T ′B〉g = 〈TB, T ′B〉gB for all k-tensor fields TB, T ′B on B

2. 〈TF , T ′F 〉g = f2k 〈TF , T ′F 〉gF for all k-tensor fields TF , T ′F on F .

3. |gB|2gB = dimB, |gF |2gF = dimF and |g|2g = dimM .

4. |d ln f |2g = |F |2g.

5. For the volume forms volg = f2 dimF volgB ∧ volgF .

6. Let α ∈ C∞(M) and let T and T ′ be k-tensor fields on M . Then〈
∇gT, dα⊗ T ′

〉
g =

〈
∇ggradg αT, T

〉
g
.

Proof. The first four claims follow by straightforward calculations. The fifth claim can be
proved in local coordinates.

As for the sixth claim, first note that g(
∑
i∈I dα(ei)ei, ej) = dα(ej) = g(gradg α, ej) for

all j ∈ I, therefore
∑
i∈I dα(ei)ei = gradg α. As a consequence〈

∇gT, dα⊗ T ′
〉
g =

∑
i,j1,...,jk∈I

(∇geiT )(ej1 , . . . , ejk)dα(ei)T (ej1 , . . . , ejk)

=
∑

j1,...,jk∈I
(∇g∑

i∈I dα(ei)ei
T )(ej1 , . . . , ejk)T (ej1 , . . . , ejk)

=
∑

j1,...,jk∈I
(∇ggradg αT )(ej1 , . . . , ejk)T (ej1 , . . . , ejk)

=
〈
∇ggradg αT, T

〉
g
.

We introduce partial traces of 2-tensors as

PTrgB h :=
∑
i∈IB

(h(ei, ei)) and PTrgF h :=
∑
i∈IF

(h(ei, ei)).

3.2 The curvature part pointwise:
◦
Rh and

〈 ◦
Rh, h

〉
g

The zeroth order part of the Einstein operator is related to the curvature tensor. The
curvature tensor acts on the set of symmetric 2-forms by the formula

◦
Rh(X,Y ) := Trg h(R(·, X)Y, ·) =

∑
i∈I

h(R(ei, X)Y, ei),

where {ei |i ∈ I} is a g-orthonormal frame in TM . This action is clearly C∞(M)-linear.
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Lemma 3.2. For h ∈ S2M and Y, Z ∈ X(B), V,W ∈ X(F ), we have
◦
Rh(Y,Z) =

∑
i∈IB

h((BR(ei, Y )Z)H , ei)−
1
f

PTrFg h ·Hessg f(Y,Z),

◦
Rh(Y, V ) = h(∇gY F, V ),
◦
Rh(V,W ) =

∑
a∈IF

h((FR(ea, V )W )V , ea)

− |F |2gB PTrFg h · g(V,W ) + |F |2gBh(V,W )− PTrBgB h(∇g· F, ·)g(V,W )

Proof. Let {ei |i ∈ IB} be a g-orthonormal basis forB and let {ea |a ∈ IF } be a g-orthonormal
basis for F . Then {ei |i ∈ I := IB ∪ IF } is a g-orthonormal basis for M .

◦
Rh(Y, Z) =

∑
i∈IB

h(R(ei, Y )Z, ei) +
∑
a∈IF

h(R(ea, Y )Z, ea)

=
∑
i∈IB

h((BR(ei, Y )Z)H , ei)−
∑
a∈IF

h( 1
f

Hessg f(Y,Z)ea, ea)

=
∑
i∈IB

h((BR(ei, Y )Z)H , ei)−
1
f

Hessg f(Y, Z) PTrFg h

◦
Rh(Y, V ) =

∑
i∈IB

h(R(ei, Y )V, ei) +
∑
a∈IF

h(R(ea, Y )V, ea)

= 0 +
∑
a∈IF

h(g(ea, V )∇gY F, ea)

= h(∇gY F,
∑
a∈IF

g(ea, V )ea)

= h(∇gY F, V )
◦
Rh(V,W ) =

∑
i∈IB

h(R(ei, V )W, ei) +
∑
a∈IF

h(R(ea, V )W, ea)

= −
∑
i∈IB

g(V,W )h(∇geiF, ei) +
∑
a∈IF

h((FR(V,W )ea)V , ea)

+ ‖F‖2g

∑
a∈IF

h(g(ea,W )V − g(V,W )ea, ea)


= −g(V,W )

∑
i∈IB

h(∇geiF, ei) +
∑
a∈IF

h((FR(V,W )ea)V , ea)

+ ‖F‖2g
[
h(V,W )− PTrFg h · g(V,W )

]

Corollary 3.3. Taking into account that f ∈ C∞(B) and therefore F ∈ X(B), the only
nonzero combinations are the following. For hB ∈ S2B

◦
RhB(Y,Z) =

◦
BRhB(Y, Z)
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◦
RhB(V,W ) = −PTrBg (hB(∇g· F, ·)) · g(V,W ),

for hF ∈ S2F

◦
RhF (Y,Z) = −f−3 PTrFgF h ·HessgB f(Y,Z)
◦
RhF (V,W ) =

◦
FRhF (V,W ) + |F |2gB (h(V,W )− PTrFg h · g(V,W )),

and for hB � hF ∈ Ω1(B)� Ω1(F )

◦
R(hB � hF )(Y, V ) = hB(∇gBY F )hF (V )
◦
R(hB � hF )(V,W ) = −g(V,W )

∑
i∈IB

hB(ei)hF ((∇geiF )V ).

Corollary 3.4. For the pointwise inner product of symmetric 2-tensor fields, we have
〈 ◦
RhB, hB

〉
g

=
〈 ◦
BRhB, hB

〉
gB

,

〈 ◦
RhF , hF

〉
g

= f2
〈 ◦
FRhF , hF

〉
gF

,

〈 ◦
R(hB � hF ), hB � hF

〉
g

= f−2 〈hB, hB(∇gB· F )〉gB .

3.3 The covariant derivative: ∇gh

The main part of the Einstein–Laplace operator involves the covariant derivative of the
symmetric 2-form h ∈ S2M . In this subsection, we develop formulae to deal with this
easily.

Lemma 3.5. With our notations,

(∇gY hB)(Z,Z ′) = (∇gBY hB)(Z,Z ′)
(∇gUhB)(Z, V ) = f2gF (U, V )hB(Z,F )
(∇gY hF )(V,W ) = −2Y (ln f)hF (V,W )
(∇gUhF )(Z, V ) = −Z(ln f)hF (U, V )
(∇gUhF )(V,W ) = (∇gFU hF )(V,W )

(∇gU (hB � hF ))(Z,Z ′) = −(hB(Z ′)Z(ln f) + hB(Z)Z ′(ln f))hF (U)
(∇gY (hB � hF ))(Z, V ) = (∇gBY hB)(Z)hF (V )− Y (ln f)hB(Z)hF (V )
(∇gU (hB � hF ))(Z, V ) = hB(Z)(∇gFU hF )(V )
(∇gU (hB � hF ))(V,W ) = f2hB(F )(gF ((U, V )hF (W ) + gF (U,W )hF (V )),

and the other combinations are zero.
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Proof. We use [Che11, Proposition 4.1]. For the horizontal covariant derivatives of hB, we
have

(∇gY hB)(Z,Z ′) = Y (hB(Z,Z ′))− hB(∇gY Z,Z
′)− hB(Z,∇gY Z

′)
= Y (hB(Z,Z ′))− hB(∇gBY Z,Z ′)− hB(Z,∇gBY Z ′)
= (∇gBY hB)(Z,Z ′),

(∇gY hB)(Z, V ) = Y (hB(Z, V ))− hB(∇gY Z, V )− hB(Z,∇gY V )
= 0− 0− Y (ln f)hB(Z, V )
= 0,

(∇gY hB)(V,W ) = Y (hB(V,W ))− hB(∇gY V,W )− hB(V,∇gYW )
= 0− 0− 0
= 0,

and similarly for ∇gY hF

(∇gY hF )(Z,Z ′) = Y (hF (Z,Z ′))− hF (∇gY Z,Z
′)− hF (Z,∇gY Z

′)
= 0− 0− 0
= 0,

(∇gY hF )(Z, V ) = Y (hF (Z, V ))− hF (∇gY Z, V )− hF (Z,∇gY V )
= 0− 0− Y (ln f)hF (Z, V )
= 0,

(∇gY hF )(V,W ) = Y (hF (V,W ))− hF (∇gY V,W )− hF (V,∇gYW )
= Y (hF (V,W ))− Y (ln f)hF (V,W )− Y (ln f)hF (V,W )
= −2Y (ln f)hF (V,W ).

For the horizontal covariant derivative of a “mixed” tensor hB � hF , we have

(∇gY (hB � hF ))(Z,Z ′) = Y ((hB � hF )(Z,Z ′))− (hB � hF )(∇gY Z,Z
′)− (hB � hF )(Z,∇gY Z

′)
= 0− hF (∇gY Z)hB(Z ′)− hF (∇gY Z

′)hB(Z)
= 0,

(∇gY (hB � hF ))(Z, V ) = Y ((hB � hF )(Z, V ))− (hB � hF )(∇gY Z, V )− (hB � hF )(Z,∇gY V )
= Y (hB(Z)hF (V ))− hB(∇gY Z)hF (V )− hB(Z)hF (∇gY V )
= Y (hB(Z))hF (V ) + hB(Z)Y (hF (V ))− hB(∇gBY Z)hF (V )
− hB(Z)hF (Y (ln f)V )

= (∇gBY hB)(Z)hF (V ) + hB(Z)(∇gY hF )(V )
= (∇gBY hB)(Z)hF (V )− Y (ln f)hB(Z)hF (V ),

(∇gY (hB � hF ))(V,W ) = Y ((hB � hF )(V,W ))− (hB � hF )(∇gY V,W )− (hB � hF )(V,∇gYW )
= 0− Y (ln f)(hB � hF )(V,W )− Y (ln f)(hB � hF )(V,W )
= 0.

For the vertical covariant derivatives of hB, we have

(∇gUhB)(Z,Z ′) = U(hB(Z,Z ′))− hB(∇gUZ,Z
′)− hB(Z,∇gUZ

′)

17



3.3. THE COVARIANT DERIVATIVE

= 0− Z(ln f)hB(U,Z ′) + Z ′(ln f)hB(Z,U)
= 0,

(∇gUhB)(Z, V ) = U(hB(Z, V ))− hB(∇gUZ, V )− hB(Z,∇gUV )
= 0− 0 + g(U, V )hB(Z,F )
= f2gF (U, V )hB(Z,F ),

(∇gUhB)(V,W ) = U(hB(V,W ))− hB(∇gUV,W )− hB(V,∇gUW )
= 0− 0− 0
= 0,

and similarly for hF :

(∇gUhF )(Z,Z ′) = U(hF (Z,Z ′))− hF (∇gUZ,Z
′)− hF (Z,∇gUZ

′)
= 0− 0− 0
= 0,

(∇gUhF )(Z, V ) = U(hF (Z, V ))− hF (∇gUZ, V )− hF (Z,∇gUV )
= 0− Z(ln f)hF (U, V )− 0
= −Z(ln f)hF (U, V ),

(∇gUhF )(V,W ) = U(hF (V,W ))− hF (∇gUV,W )− hF (V,∇gUW )
= U(hF (V,W ))− hF (∇gFU V,W )− hF (V,∇gFU W )
= (∇gFU hF )(V,W ).

Lastly, for the vertical covariant derivatives of a “mixed” tensor hB � hF , we have

(∇gU (hB � hF ))(Z,Z ′) = U((hB � hF )(Z,Z ′))− (hB � hF )(∇gUZ,Z
′)− (hB � hF )(Z,∇gUZ

′)
= 0− hB(Z ′)hF (U)Z(ln f)− hB(Z)hF (U)Z ′(ln f)
= −(hB(Z ′)Z(ln f) + hB(Z)Z ′(ln f))hF (U),

(∇gU (hB � hF ))(Z, V ) = U((hB � hF )(Z, V ))− (hB � hF )(∇gUZ, V )− (hB � hF )(Z,∇gUV )
= U(hB(Z)hF (V ))− hB(∇gUZ)hF (V )− hB(Z)hF (∇gUV )
= U(hB(Z))hF (V ) + hB(Z)U(hF (V ))− Z(ln f)hB(U)hF (V )
− hB(Z)hF (∇gFU V )

= hB(Z)(∇gFU hZ)(V ),
(∇gU (hB � hF ))(V,W ) = U((hB � hF )(V,W ))− (hB � hF )(∇gUV,W )− (hB � hF )(V,∇gUW )

= 0− hB(∇gUV )hF (W )− hB(∇gUW )hF (V )
= g(U, V )hB(F )hF (W ) + g(U,W )hB(F )hF (V )
= hB(F )(g(U, V )hF (W ) + g(U,W )hF (V ))
= f2hB(F )(gF (U, V )hF (W ) + gF (U,W )hF (V )).

Corollary 3.6. In the product case where f = 1, we have the following formulae.

(∇gY hB)(Z,Z ′) = (∇gBY hB)(Z,Z ′)
(∇gUhF )(V,W ) = (∇gFU hF )(V,W )

18



CHAPTER 3. THE EINSTEIN OPERATOR ON WARPED PRODUCTS

(∇gY (hB � hF ))(Z, V ) = (∇gBY hB)(Z)hF (V )
(∇gU (hB � hF ))(Z, V ) = hB(Z)(∇gFU hF )(V )

The rest is zero. Note that the last two lines can be uniformly written as a Leibniz type
formula:

(∇gK(hB � hF ))(Z, V ) = (((π∗∇gB )KhB)� hF )(Z, V ) + (hB � ((η∗∇gF )KhZ))(Z, V ),

where K ∈ X(B × F ) is any vector field.

3.4 Pointwise norm of the covariant derivative: 〈∇gh,∇gh〉g
Next we study the pointwise norm of the exterior derivative of the symmetric 2-form h ∈
S2(B ×f F ).

First we calculate the norm of pure 2-tensors.

Lemma 3.7.

|∇ghB|2g = |∇gBhB|2gB + dimF |hB(·, F )|2gB
|∇ghF |2g = f−6|∇gF hF |2gF + 5f−4|F |2gB |hF |

2
gF

|∇g(hB � hF )|2g = f−2|∇gBhB|2gB |hF |
2
gF

+ f−2|hB|2gB |∇
gF hF |2gF

+ f−2|hF |2gF
(
3|hB|2gB |F |

2
gB

+ 2hB(F )2(dimF + 2)− 2 〈∇gBF hB, hB〉gB
)

Proof. We can use the formulae from Lemma 3.5.
For a basic 2-tensor hB we have

|∇ghB|2g =
∑

i,j,k∈IB

(∇geihB)(ej , ek)2 +
∑
i∈IB
a,b∈IF

(∇geahB)(ei, eb)2

=
∑

i,j,k∈IB

(∇gBei hB)(ej , ek)2 +
∑
i∈IB
a,b∈IF

(
f2gF (ea, eb)hB(ei, F )

)2

= |∇gBhB|2gB + dimF |hB(·, F )|2gB .

For a fibrous 2-tensor hF , we have

|∇ghF |2g =
∑
i∈IB
a,b∈IF

(∇geihF )(ea, eb)2 +
∑
i∈IB
a,b∈IF

(∇geahF )(ei, eb)2

+
∑

a,b,c∈IF

(∇geahF )(eb, ec)2

=
∑
i∈IB
a,b∈IF

(−2ei(ln f)hF (ea, eb))2 +
∑
i∈IB
a,b∈IF

(−ei(ln f)hF (ea, eb))2

+
∑

a,b,c∈IF

(∇geahF )(eb, ec)2
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= 5|F |2g|hF |2g + f−6 ∑
a,b,c∈IF

(∇gfeahF )(feb, fec)2

= f−6|∇gF hF |2gF + 5f−4|F |2gB |hF |
2
gF
.

Finally, for a mixed 2-tensor hB � hF , we proceed in several steps.

A :=
∑
i,j∈IB
a∈IF

∇gea(hB � hF )(ei, ej)2

=
∑
i,j∈IB
a∈IF

(−(hB(ej)ei(ln f) + hB(ei)ej(ln f))hF (ea))2

= |hF |2g
∑
i,j∈IB

(hB(ej)ei(ln f) + hB(ei)ej(ln f))2

= |hF |2g
∑
i,j∈IB

(
(hB(ej)ei(ln f))2 + 2hB(ej)ei(ln f)hB(ei)ej(ln f) + (hB(ei)ej(ln f))2

)
= |hF |2g(|hB|2g|F |2g + 2(hB(F ))2 + |hB|2g|F |2g)
= f−2|hF |2gF (|hB|2gB |F |

2
gB

+ 2(hB(F ))2 + |hB|2gB |F |
2
gB

)
= 2f−2(|hB|2gB |F |

2
gB

+ (hB(F ))2)|hF |2gF
B :=

∑
i,j∈IB
a∈IF

(∇gei(hB � hF ))(ej , ea)2

=
∑
i,j∈IB
a∈IF

(∇gBei hB(ej)hF (ea)− ei(ln f)hB(ej)hF (ea))2

=
∑
i,j∈IB
a∈IF

(∇gBei hB(ej)hF (ea))2

− 2
∑
i,j∈IB
a∈IF

∇gBei hB(ej)hF (ea)ei(ln f)hB(ej)hF (ea)

∑
i,j∈IB
a∈IF

(ei(ln f)hB(ej)hF (ea))2

= |∇gBhB|2g|hF |2g − 2 〈∇gBF hB, hB〉g |hF |
2
g + |F |2g|hB|2g|hF |2g

= |∇gBhB|2g|hF |2g − 2 〈∇gBF hB, hB〉g |hF |
2
g + |F |2g|hB|2g|hF |2g

= f−2|∇gBhB|2gB |hF |
2
gF

+ f−2
(
−2 〈∇gBF hB, hB〉gB + |F |2gB |hB|

2
gB

)
|hF |2gF

C :=
∑
i∈IB
a,b∈IF

((∇gea(hB � hF ))(ei, eb)2

=
∑
i∈IB
a,b∈IF

(hB(ei)(∇gFea hF )(eb))2

= |hB|2g|∇gF hF |2g
= f−2|hB|2gB |∇

gF hF |2gF
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D :=
∑

a,b,c∈IF

((∇gea(hB � hF ))(eb, ec)2

=
∑

a,b,c∈IF

f4hB(F )2 (gF (ea, eb)hF (ec) + gF (ea, ec)hF (eb))2

= (hB(F ))2f4 ·
(
f−6 dimF |hF |2gF + f−6 dimF |hF |2gF + 2f−6|hF |2gF

)
= 2f−2hB(F )2(dimF + 1)|hF |2gF

Therefore

|∇g(hB � hF )|2g = A+B + C +D

= 2f−2(|hB|2gB |F |
2
gB

+ (hB(F ))2)|hF |2gF
+ f−2|∇gBhB|2gB |hF |

2
gF

+ f−2
(
−2 〈∇gBF hB, hB〉gB + |F |2gB |hB|

2
gB

)
|hF |2gF

+ f−2|hB|2gB |∇
gF hF |2gF

+ 2f−2hB(F )2(dimF + 1)|hF |2gF
= f−2|∇gBhB|2gB |hF |

2
gF

+ f−2|hB|2gB |∇
gF hF |2gF

+ f−2|hF |2gF
(
2|hB|2gB |F |

2
gB

+ 2hB(F )2 + 2hB(F )2(dimF + 1)

− 2 〈∇gBF hB, hB〉gB + |F |2gB |hB|
2
gB

)
= f−2|∇gBhB|2gB |hF |

2
gF

+ f−2|hB|2gB |∇
gF hF |2gF

+ f−2|hF |2gF
(
3|hB|2gB |F |

2
gB

+ 2hB(F )2(dimF + 2)− 2 〈∇gBF hB, hB〉gB
)
.

Corollary 3.8. If f = 1, we have as a special case the following.

|∇ghB|2g = |∇gBhB|2gB
|∇ghF |2g = |∇gF hF |2gF

|∇g(hB � hF )|2g = |∇gBhB|2gB |hF |
2
gF

+ |hB|2gB |∇
gF hF |2gF

“Pure” tensors are not all there is but we know from [AM11, Lemma 3.1] that in the
product case C∞(F ) · S2B ⊕ Ω1(B)� Ω1(F )⊕ C∞(F ) · S2F is dense in H2,2(B × F ).

Lemma 3.9. For α ∈ C∞(M) and h ∈ S2M we have

|∇g(αh)|2g = α2|∇gh|2g + 2α
〈
∇ggradg αh, h

〉
g

+ |dα|2g|h|2g.

Proof. Let α ∈ C∞(M) be a smooth function. Then

|∇g(αh)|2g = |α∇gh+ dα⊗ h|2g
= α2|∇gh|2g + 2α 〈∇gh, dα⊗ h〉g + |dα⊗ h|2g.
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Let us tackle this expression term by term. For the second term, we know from Lemma 3.1
that

〈∇gh, dα⊗ h〉g =
〈
∇ggradg αh, h

〉
g
.

Finally, for the third term, we calculate

|dα⊗ h|2g =
∑

i,j,k∈I
(dα(ei)h(ej , ek))2 = |dα|2g|h|2g.

Corollary 3.10. For αF ∈ C∞(F ) and hB ∈ S2B, we have

|∇g(αFhB)|2g = α2
F |∇gBhB|2gB + f2|dα|2gF |hB|

2
gB

+ α2
F dimF |hB(·, F )|2gB

For αB ∈ C∞(B) and hF ∈ S2F , we have

|∇g(αBhF )|2g = α2
B|∇ghF |2g + 2αB

〈
∇ggradg αBhF , hF

〉
g

+ |dαB|2g|hF |2g.

Corollary 3.11. In the product case, we have

|∇g(αFhB)|2g = α2
F |∇gBhB|2gB + |dαF |2gF |hB|

2
gB
,

|∇g(αBhF )|2g = α2
B|∇gF hF |2gF + |dαB|2gB |hF |

2
gF
.
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Chapter 4

Riemannian cones and Ricci
solitons

4.1 A little motivation for the definition of Ricci solitons

The motivation of studying Ricci solitons comes from the Ricci flow. We call a family of
metrics (gt)t∈[0,T ) for some T > 0 a Ricci flow if ∂tgt = −2 Ricgt . The corresponding initial
metric is g0.

For a Ricci-flat metric g0, the constant family (g0)t∈[0,∞) is a Ricci flow since ∂tg0 = 0
and −2 Ricg0 = 0. With other words, Ricci-flat metrics are fixed points of the Ricci flow.

More generally, if g0 is an Einstein metric with Ricg = λg, then it is easy to see that

gt = (1− 2λt)g0 for t ∈ [0, T ),

where T := 1
2λ if λ > 0 and T := ∞ otherwise, is a Ricci flow with initial metric g0. With

other words, Einstein metrics are fixed points of the Ricci flow up to homothetic rescaling.
Ricci-solitons offer an further generalization.

Definition 4.1. We call a Riemmanian manifold (M, g) a Ricci-solition if there is a vector
field X ∈ Γ∞ (TM) and a real number µ ∈ R such that Ricg +1

2LXg = µg. If X = gradg w
with some function w ∈ Γ∞ (RM ), then we call (M, g) a gradient Ricci soliton and the
function w a Ricci potential of (M, g).

It is easy to check that the defining equation for a gradient Ricci soliton may be rewritten
as

Ricg + Hessg w = µg.

Evidently, Einstein manifolds are a special case of a gradient Ricci soliton where the
Ricci potential is constant. Einstein manifolds are also called trivial Ricci solitons.

The name “Ricci soliton” itself comes from the fact that Ricci flows starting at Ricci
solitons are fixed points up to homothetic rescaling and pullback [CK04, Lemma 2.4].
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4.2 A product Ricci soliton from a Riemannian cone and an
Einstein manifold

There is a way to construct a Ricci soliton from a Riemannian cone and an Einstein mani-
fold. Riemannian cones will be treated more thoroughly in Section 6.1, here we just anticip-
ate a few of their most important features needed for the present construction. A Rieman-
nian manifold (B, gB) is called a Riemannian cone if there is a vector field X ∈ Γ∞ (TM)
such that ∇gX = idTM . In this case, X = gradg 1

2 |X|
2
g.

Lemma 4.2. If (B, gB, X) is a Ricci-flat conical manifold and (F, gF ) is an Einstein man-
ifold with Einstein constant µ, then the Riemannian product (M, g) := (B × F, gB + gF ) is
a gradient Ricci soliton with Ricci potential w = µ

2 |X|
2.

Proof. The Ricci tensor of a product manifold is the direct sum of the Ricci tensors, there-
fore

Ricg =
(

RicgB 0
0 RicgF

)
=
(

0 0
0 µgF

)
.

An easy calculation convinces us that the gradient of w is given by gradg w = µX̂, where
X̂ := X

|X|g . We easily convince ourselves that the Hessian of w is given by

Hessg w =
(
µgB 0

0 0

)
.

Therefore the equation Ricg + Hessg w = λg reads(
0 0
0 µgF

)
+
(
µgB 0

0 0

)
=
(
λgB 0

0 λgF

)
,

which is obviously satisfied for λ = µ.

Remark 4.3. Lemma 4.2 generalizes the so-called Gaussian Ricci soliton (Rn, gflat, 1
2 |x|

2)
where | · | denotes the Euclidean distance from the origin. In fact, if F is a one-point set
and B is a Riemannian cone with link Sn−1, then B × F = Rn \ {0} (cf. Example 6.6).

4.3 Linear stability of Ricci solitons

Definition 4.4 (cf. e.g. [Krö15b, Definition 3.7]). Let (M, g) be a gradient Ricci soliton
(M, g) with Ricci potential w. Define

V :=
{
h ∈ Γ∞

(
S2T ∗M

) ∣∣∣∣δgh+ h(gradg w, ·) = 0 and
∫
M
〈Ricg, h〉g e

−w volg = 0
}
.

Definition 4.5 (cf. e.g. [Krö15b, Definition 3.7]). We call a gradient Ricci soliton (M, g)
with Ricci potential w linearly stable if the spectrum operator

∆g,w
E := ∆g

E +∇ggradg w : V → Γ∞
(
S2T ∗M

)
lies entirely in [0,∞). A gradient Ricci soliton which is not linearly stable is called linearly
unstable.
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Remark 4.6. The operator ∆g,w
E is related to the Einstein operator in the same way the

so-called ∆g+∇ggradg w is called weighted or Bakry–Émery Laplace operator [BÉ85] is related
to the raw Laplacian.

Evidently, for Einstein manifolds (where w = const), linear stability is decided by the
spectrum of the Einstein operator.

The first-order term that we introduced in the operator ∆M,w
E interacts nicely with the

weighted L2-norm with weight e−w.

Lemma 4.7. The operator ∆M,w
E is formally self adjoint with respect to the inner product

(·, ·)g,exp(−w). Moreover, for any symmetric 2-tensor field h, we have

(
∆M,w
E h, h

)
g,exp(−w)

=
∫
M

(
|∇gh|2g − 2

〈 ◦
Rh, h

〉
g

)
e−w volg .

Proof. Recall that the second-order part of the Einstein operator is given by (∇g)∗∇g,
where the star denotes the adjoint operator with respect to the pointwise inner product
〈·, ·〉g induced by the metric g. Therefore by Lemma 3.1, we have for h ∈ Γ∞c

(
S2T ∗M

)
, up

to surface terms, that

〈(∇g)∗∇gh, h〉g e
−w =

〈
(∇g)∗∇gh, e−wh

〉
g

=
〈
∇gh,∇g(e−wh)

〉
g

=
〈
∇gh, d(e−w)⊗ h+ e−w∇gh

〉
g

=
〈
∇gh,−e−wdw ⊗ h+ e−w∇gh

〉
g

= −〈∇gh, dw ⊗ h〉g e
−w + 〈∇gh,∇gh〉g e

−w

= −
〈
∇ggradg wh, h

〉
g
e−w + |∇gh|2ge−w.

Now (
∆M,w
E h, h

)
g,exp(−w)

=
∫
M

〈
(∇g)∗∇gh+∇ggradg wh− 2

◦
Rh, h

〉
g
e−w volg

=
∫
M

(
|∇gh|2g − 2

〈 ◦
Rh, h

〉
g

)
e−w volg,

as desired.

4.4 Instability of product Ricci solitons with unstable fibre
The goal of this subsection is to prove that the Ricci solitonM = B×F is linearly unstable
if F is linearly unstable as an Einstein manifold. We will proceed as before: we will construct
a (sequence of) destabilising perturbation(s) if F is linearly unstable.

We start with a preparatory lemma.

Lemma 4.8. For n ≥ 2 and µ > 0, we have

inf
f∈C∞c ((0,∞))

∫∞
0 f ′(r)2rn−1e−

µ
2 r

2
dr∫∞

0 f(r)2rn−1e−
µ
2 r

2
dr

= 0.
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Figure 4.1: The “smooth” step function fm used in the proof of Lemma 4.8.

Proof. The main idea is to notice that for the constant 1 function, the nominator is∫ ∞
0

rn−1e−
µ
2 r

2
dr = 1

2

( 2
µ

)n/2
Γn2 <∞,

in particular it is finite and therefore the value of the quotient is zero. Based on this insight,
we construct a sequence of compactly supported smooth functions such that the quotient
converges to zero. Since the quotient is manifestly nonnegative, this shows that the infimum
must be zero.

Let φ ∈ C∞c ((0,∞)) be a nonnegative “smooth step function”, i.e. a function for which1

φ(x) ∈ [0, 1], for which φ(x) = 1 whenever x > 1 and for which there is a positive δ < 1
such that φ(x) = 0 whenever x < δ. Consider the function fm ∈ C∞c ((0,∞)) be the function
given by

fm(r) :=


φ(mr) if r ≤ 1

m ,

1 if 1
m < r ≤ m,

φ(m2 + 1−mr) if m < r.

The function fm is depicted in Figure 4.1. The support of fm is the interval [ δm ,m+ 1
m−

δ
m ].

The support of f ′m is the compact set [ δm ,
1
m ] ∪ [m,m+ 1

m −
δ
m ]. Therefore there is a finite

positive constant C such that f ′2 ≤ C. Now it is a matter of calculation to obtain the result.
For the denominator, note that χ( 1

m
,m) ≤ f2

m ≤ 1. Consequently,

∫ m

1
m

rn−1e−
µ
2 r

2
dr ≤

∫ ∞
0

fm(r)2rn−1e−
µ
2 r

2
dr ≤ 1

2

( 2
µ

)n/2
Γn2 ,

and by the squeeze theorem, we obtain that limm→∞
∫∞

0 fm(r)2rn−1e−
µ
2 r

2
dr = 1

2

(
2
µ

)n/2
Γn

2 .

1This assumption makes the proof easier but it is not needed since f2, being a compactly supported
continuous function, is bounded, and the quotient in question is invariant under rescaling f .
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Figure 4.2: The auxiliary function rn−1e−
µ
2 r

2 used in the proof of Lemma 4.8.

By elementary calculus, the function rn−1e−
µ
2 r

2 is increasing if r ∈ (0,
√

n−1
µ ) and de-

creasing if r ∈ (
√

n−1
µ ,∞), cf. Figure 4.2. Ifm is big enough (concretelym > max

{√
n−1
µ ,

√
µ
n−1

}
),

then we have the following inequalities:∫ ∞
0

f ′m(r)2rk−1e−
µ
2 r

2
dr =

∫ 1
m

0
f ′m(r)2rn−1e−

µ
2 r

2
dr +

∫ m+ 1
m

m
f ′m(r)2rn−1e−

µ
2 r

2
dr

≤ C
∫ 1

m

0
rn−1e−

µ
2 r

2
dr + C

∫ m+ 1
m

m
rn−1e−

µ
2 r

2
dr

≤ C
( 1
m

)n−2 ∫ 1
m

0
re−

µ
2 r

2
dr + Cmn−1e−

µ
2m

2
∫ m+ 1

m

m
dr

= C

( 1
m

)n−2 1− e−
µ
2

1
m2

µ
+ Cmn−2e−

µ
2m

2

→ 0

as m→∞.
Therefore limm→∞

∫∞
0 f ′m(r)2rn−1e−

µ
2 r

2
dr∫∞

0 fm(r)2rn−1e−
µ
2 r

2
dr

= 0, as advertised.

Lemma 4.9. Let (M, g) = (B, gB, X) × (F, gF ) be the product gradient Ricci soliton with
Ricci potential w := µ

2 |X|
2
g. Let h := fBhF where fB ∈ C∞c (B) and hF ∈ TT (F, gF ), i.e.

TrgF hF = 0 and δgF hF = 0. Then h ∈ V .

Proof. From the proof of Lemma 4.2, we already know that ∇gw = µg(X, ·) and Hessg w :=
∇g,2w = µgB. This implies that Ricg = µg −Hessg w = µgF . Consequently,

〈Ricg, h〉g = 〈µgF , h〉g = TrgF hF = 0
δgh+ h(gradg w, ·) = fBδ

gF hF − hF (gradg fB, ·) + µfBhF (X, ·) = 0,

where we used that gradg fB and gradg w are both vector fields in TB. This shows the
claim.
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4.4. INSTABILITY OF PRODUCT RICCI SOLITONS WITH UNSTABLE FIBRE

Theorem 4.10. Let F be an Einstein manifold with constant µ > 0, let B be a cone. If F
is linearly unstable, then the Ricci soliton M = B × F is also linearly unstable.

Proof. Let us consider the test perturbation h := fhF where f ∈ C∞c (B) and hF ∈ S2F is
a compactly supported TT-tensor on F . Lemma 4.9 implies that h ∈ V .

It is easy to check that (h, h)M,e−w = (hF , hF )gF
∫
B f

2e−w volgB . Moreover, we have
pointwise that |∇gh|2g = |df |2gB |hF |

2
gF

+ f2|∇gF hF |2gF (the third term is missing since f
depends only on theB factor and hF is a tensor field on the F factor). We also have pointwise〈 ◦
Rgh, h

〉
g

= f2
〈 ◦
RgF hF , hF

〉
gF

so using Fubini’s theorem we obtain the following relation

for the global Rayleigh quotients:(
∆M
E h, h

)
M,e−w

(h, h)M,e−w
=
∫
B |df |2gBe

−w volgB∫
B f

2e−w volgB
+ (∆F

EhF , hF )gF
(hF , hF )gF

.

From this we read off that h is a destabilizing perturbation if

(∆F
EhF , hF )gF

(hF , hF )gF
< −

∫
B |df |2gBe

−w volgB∫
B f

2e−w volgB
.

This means that we can find a destabilizing perturbation of the form h = fhF if the infimum
of the left-hand side is smaller than the supremum of the right-hand side, i.e. if

inf
hF∈TT (gF )

(∆F
EhF , hF )gF

(hF , hF )gF
< sup

f∈C∞c (B)

(
−
∫
B |df |2gBe

−w volgB∫
B f

2e−w volgB

)
.

The smallest value of the left-hand side of this equation is the smallest eigenvalue λ1 of
the Einstein operator on F . If we assume that f depends only on the radial coordinate in
B = Cone(S, gS), then the right-hand side becomes

−
∫
B |df |2gBe

−w volgB∫
B f

2e−w volgB
= −VolgS (S)

∫∞
0 f ′(r)2rn−1e−

µ
2 r

2
dr

VolgS (S)
∫∞

0 f(r)2rn−1e−
µ
2 r

2
dr
,

the supremum of which is 0 by Lemma 4.8. This means that we can find a destabilizing
perturbation of the form h = fhF if

λ1 < 0.

This concludes the proof.
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Part II

Optimizing the decay rate of
Ricci-flat asymptotically conical

manifolds
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Chapter 5

Goals and strategy

In this part, unless otherwise noted, M denotes an n+ 1 dimensional smooth manifold.
Asympotically conical manifolds are among the most manageable noncompact mani-

folds. They are asymptotic to a cone, the geometry of which is largely determined by its
link.

As proven for the important special case of asymptotically locally Euclidean (ALE)
manifolds by Deruelle and Kröncke [DK20], if we have a Ricci-flat asymptotically locally
Euclidean manifold with some decay rate, then in fact its decay rate may be improved
based on the assumption of Ricci flatness. The goal of this part of the thesis is to establish
the analogue of this theorem to the more general class of asymptotically conical metrics,
and on the way prove some other decay results.

If we have a Ricci-flat asymptotically conical manifold of some decay rate, then we
can find a different asymptotic chart where the decay rate is optimalized. This decay rate
depends only on the spectrums of the Laplace–Beltrami operator on functions, Hodge Lapla-
cian on 1-forms and Lichnerowicz Laplacian on symmetric 2-tensor fields corresponding to
the asymptotic cone.

Our strategy is the following.

• First, we discuss cones and asymptotically conical manifolds and recall Banach spaces
that are especially suitable to work with on asymptotically conical manifolds.

• We compute the spectrum of the so-called tangential operators to the Laplace–
Beltrami operator, and the Hodge and Lichnerowicz Laplacians on a Ricci-flat cone.
This data will be used later to determine decay rates.

• We fix an asymptotically conical manifold gac, introduce a gac-gauging Fgac with the
condition

−2 Ricg +LV (g,gac)gac = 0,

and show that there is a neighbour or metrics of gac in the Lp ∩ L∞-sense in which
the difference of gauged metrics to gac decays to order k with rate −µ − k for any
k ∈ N where this µ depends on the spectrum of the tangential operators mentioned
in the theorem.
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In fact, if an initial decay for h is known, then the gauging condition may even fail
on a compact subset.

• Based on a careful study of the DeTurck map, we show that there is a neighbourhood
of gac in the weighted Sobolev topology in which all metrics can be uniquely pulled
back to a metric that has vanishing DeTurck vector field with respect to gac, i.e.
V (φ∗g, gac) = 0 for some diffeomorphism ψ.

• We construct a family (gR)R of metrics that coincide with gac on an ever increasing
compact set KR and coincide with φ∗gcone outside a bigger ever increasing subset
K ′R. We show that this family converges to gac in the W k,p

δ (S2T ∗M) topology. By
construction, all the metrics in this family are Ricci-flat outside the compact set
K ′R \KR.

• The family of metrics constructed in the previous step will eventually enter the
weighted Sobolev neighbourhood, thus it will be able to be pulled back to a met-
ric under a map ψ such that V (ψ∗gR1 , gac) = 0. Now the theorem follows by changing
the asymptotic chart to φ ◦ ψ.
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Chapter 6

Riemannian cones

6.1 Definition and elementary properties

(Material similar to parts of Section 6.1 has appeared in my master’s thesis [Sza16].) Fol-
lowing [ACM13], we define a Riemannian cone (a conical manifold in their terminology) as
follows.
Definition 6.1. A Riemannian cone is a triple (M, g, Z) where (M, g) is a pseudo-Riemannian
manifold and Z ∈ X(M) is nowhere zero, complete vector field with ∇gZ = idTM , where
∇g denotes the Levi-Civita connection of g. The vector field Z is called the Euler field.

Definition 6.2. The link of the Riemannian cone (M, g, Z) is the set L := {p ∈ P |r(p) = 1}
with the induced metric. The frustum of the Riemannian cone (M, g, Z) at radius R is the
set Frustum(M,g)(R) := {p ∈M |r(p) > R}.
Remark 6.3. We will use the notation gcone for a cone metric and gL for the metric on
the link. In some calculations, to ease notation, we introduce gcone =: ḡ and gL =: g. Unless
otherwise indicated, n := dimL and consequently dimM = n+ 1.

The following function will play an important role in the study of conical manifolds.
Definition 6.4. The length of the Euler vector field is called the radial coordinate, and it
is denoted by

r : M → R+, p 7→
√
gp(Zp, Zp).

Figure 6.1: Riemannian cone with Euler field. Note that the tip is not part of the picture.
The link is depicted schematically as a double torus.
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6.1. DEFINITION AND ELEMENTARY PROPERTIES

Proposition 6.5. Let (M, g, Z) be a conical pseudo-Riemannian manifold. Then

1. the vector field Z is the gradient of the function 1
2r

2,

2. the vector field Z is a homothety, more precisely LZg = 2g,

3. the orthogonal complement D of Z is an integrable distribution, the leaves of which
are connected components of the level sets of r,

4. the leaf space of D has a natural not-necessarily-Hausdorff smooth structure such that
the projection map is smooth,

5. the flow FlZ maps leaves of D to leaves of D.

Proof. 1. For X ∈ X(M), one has

d(g(Z,Z))(X) = X(g(Z,Z)) = ∇gX(g(Z,Z))
= (∇gXg)(Z,Z) + 2g(∇gXZ,Z) = 2g(X,Z)

since ∇gg = 0 for the Levi-Civita connection ∇g.

2. Recall that X,Y ∈ X(M), we have LZ(g(X,Y )) = (LZg)(X,Y ) + g(LZX,Y ) +
g(X,LZY ), hence

(LZg)(X,Y ) = LZ(g(X,Y ))− g(LZX,Y )− g(X,LZY )
= Z(g(X,Y ))− g([Z,X], Y )− g(X, [Z, Y ])
= g(∇gZX,Y ) + g(X,∇gZY )− g(∇gZX −∇

g
XZ, Y )− g(X,∇gZY −∇

g
Y Z)

= g(∇gXZ, Y ) + g(X,∇gY Z)
= g(X,Y ) + g(X,Y ) = 2g(X,Y ),

where we used the metricity and the torsion freeness of the Levi-Civita connection
∇g.

3. Let us denote the distribution in question by D ⊂ TM , i.e. Dp := (Zp)⊥ for all
p ∈ M0. Since Z is nowhere zero on M0, D is a codimension-one distribution, which
is obviously transverse to the one-dimensional foliation Z generated by1 Z.
We will show now that D is involutive. Let X,Y ∈ D. Then by torsion freeness of the
Levi-Civita connection, we have

g([X,Y ], Z) = g(∇gXY −∇
g
YX,Z) = g(∇gXY,Z)− g(∇gYX,Z)

= g(X,Z)− g(Y,Z) = 0,

thus [X,Y ] ∈ D. Integrability of D now follows from Frobenius’ theorem.
The fact that the leaves of D are connected components of level sets of r follows from
the facts that Z is the gradient of 1

2r
2 and that the level sets of 1

2r
2 and r are the

same since r ≥ 0.
1The foliation Z consists of maximal integral curves of Z.
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CHAPTER 6. RIEMANNIAN CONES

4. We show that a leaf of D and a leaf of Z intersect each other in at most one point.
For this, consider a maximal integral curve γ : I → M0 of Z where I ⊂ R is an open
interval around 0 ∈ R. Introduce the temporary notation ρ := 1

2r
2. Then the function

ρ ◦ γ is smooth and its derivative at s ∈ I is

(ρ ◦ γ)′s = dργ(s)γ
′
s = dργ(s)Zγ(s) = g(Zγ(s), Zγ(s)) = 2(ρ ◦ γ)(s).

This ordinary differential equation has the solution (ρ ◦ γ)(s) = (ρ ◦ γ)(0)e2s. Con-
sequently, we have (r◦γ)(s) = (r◦γ)(0)es, which is a monotonously increasing function
since ρ > 0 on M0. Thus it cannot happen that γ intersects a level set of r twice.
To summarize, we see that D and Z are transverse foliations the leaves of which
intersect at most in a single point. The claim now follows from the discussion in
[Mat84, Section VII.7] but cf. also [Sza16, Section 6.1].

5. We have already seen in the previous point that if r(p) = r(q), then r(FlZt p) = r(FlZt q)
whenever both sides make sense. Let Lα := {p ∈M |r(p) = α}. Then our result can
be formulated as FlZt (Lα) ⊂ Lαet whenever the left-hand side makes sense. Since the
flow is a continuous map, it maps connected subsets (like leaves) to connected subsets
(subsets of leaves).

Example 6.6 (Punctured flat space). The easiest example of a Riemannian cone is (Rn \
{0} , gstd, r∂r) where r :=

√
(x1)2 + · · ·+ (xn)2 is the radial coordinate.

Example 6.7. Given a Riemannian manifold (L, gL), we can define a Riemannian cone,
which we call the Riemannian cone over (L, gL), as follows:

Cone(L, gL) := (R>0 × L, g := dr2 + r2gL),

where r denotes the coordinate on R>0. One can easily see that (C±(M, gM ), Z := r∂r) is a
Riemannian cone. The vector field Z is complete, its flow is FlZt (r, p) = (ret, p). Note that
Cone(L, gL) is conformal to product metric (R, dt⊗ dt)× (L, gL) via the diffeomorhism

φ : R× L→ Cone(L, gL), (t, x) := (et, x),

where t is the standard coordinate on R. In fact, one calculates easily that φ∗(dr ⊗ dr +
r2gL) = e2t(dt⊗ dt+ gL).

Remark 6.8. If (L, gL) = (BR(0), gstd|BR(0)) is the ball in R2 of radius R endowed with
the induced metric of the flat metric of R2, then Cone(L, gL) may be embedded isometrically
into R × R2 = R3. Restricting this to the subset where r < R for some R ∈ R, we recover
the classical definition of a right-angled cone (κω̂νóς) without its apex. [Euc08, Book X,
Definition 18].

In fact, it turns out that all Riemannian cones are of the form given in Example 6.7.

Proposition 6.9. If (M, g, Z) is a Riemannian cone and (L, gL) is its link, then

φ : Cone(L, gL)→ (M, g), (t, x) 7→ FlZt x

is a Riemannian isometry which maps r∂r to Z.

35



6.1. DEFINITION AND ELEMENTARY PROPERTIES

Proof. This follows by an easy calculation based on Proposition 6.5.

Many local calculations based on local frames can be made considerably simpler by
using a frame that is “well suited” to the conical geometry.

Corollary 6.10. Let (M, g, Z) be a Riemannian cone with link (L, gL) and let p = φ(r, x) ∈
M . If {ei |i = 1, . . . ,dimL} is a gL-orthonormal frame around x ∈ L, then {Ei |i = 0, . . . ,dimL}
where E0 := ∂r and Ej := 1

rdφej for j > 0, is a g-orthonormal frame around p.

Proof. This follows from the facts that g(∂r, V ) = 0 for any V ∈ TL and that

g(Ei, Ej) = gL

(1
r
dφei,

1
r
dφej

)
= r2gL

(1
r
ei,

1
r
ej

)
= δij

since Ei ∈ TL for i > 0.

Definition 6.11. A standard (or adapted) frame on TM is a frame constructed like in
Corollary 6.10.

From now on, we will suppress the isomorphism φ from the notation.

Remark 6.12. Proposition 6.9 shows that the leaf space of D is isomorphic to R+. Moreover,
each leaf is isomorphic to the link.

Remark 6.13. Proposition 6.9 shows that Riemannian cones are a special type of warped
product: Cone(L, gL) = (R+, dr ⊗ dr) ×r (L, gL). Therefore, all the terminology of warped
products gets inherited to cones.

Note that for Riemannian manifolds (L1, g1) and (L2, g2) with L1 ∩ L2 = ∅, we have
Cone((L1, g1) ∪ (L2, g2)) ' Cone(L1, g1) ∪Cone(L2, g2), thus we may restrict our attention
to cones with connected link.

Definition 6.14. A regular Riemannian cone is a Riemannian cone the link of which is
compact and connected.

Proposition 6.15 (Metric completion of a cone, [BM16, Theorem 1.5]). A Riemannian
cone (M, g, Z) can be completed as a metric space by adjoining an ideal point ? with r(?) = 0.

Definition 6.16. The apex (or tip) of the Riemannian cone is the unique point in M \M .

Corollary 6.17. The distance function from the apex coincides with the function r on M .

Proof. It is a general fact for Riemannian warped products that the the projection π : B×f
F → B to the base (in case of a cone: B = (0,∞)) does not increase the length of tangent
vectors, since

g(X,X) = g(dπX + (X −XdπX), dπX + (X −XdπX))
= |dπX|2g + 2g(dπX,X − dπX) + |X − dπX|2g
= |X|2gB + f2 ◦ π · |X − dπX|2gF
≥ |X|2gB ,
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CHAPTER 6. RIEMANNIAN CONES

hence we have for any curve γ : I → M that L(γ) ≥ L(π ◦ γ) (lengths), and in par-
ticular distg(p, p′) ≥ distgB (π(p), π(p′)). This means that distg({r1} × L, {r2} × L) ≥
distdr⊗dr(r1, r2). On the other hand, equality can be achieved via the curve γ : [r1, r2] →
M, t 7→ (t, x) for any fixed x ∈ L. The claim now follows from a density argument.

From now on, we will be interested solely in regular Riemannian cones, and therefore
we will leave the adjective “regular” to ease terminology. Their appeal stems from the
hope2 that they may offer a good balance between noncompactness and tracability. More
concretely, it is reasonable to make the working hypothesis that the geometry of the link
determines a good portion of the geometry of the cone. Moreover, regular cones can be
thought of as being only “mildly” noncompact (in the sense that they are noncompact only
“in one direction”).

Remark 6.18. The question arises whether the Euler vector field is unique on a Rieman-
nian cone. It is easy to see that the set of Euler vector fields forms an affine space over the
vector space of parallel vector fields. If dimM ≥ 2, then Gallot’s dichotomy [Gal79] states
that if (M, g, Z) is a Riemannian cone with compact (or, more generally, complete) link
(L, gL), then either (L, gL) is the round sphere or the restricted holonomy group of g splits.
We have as a consequence, since parallel vector fields split the restricted holonomy, that the
Euler vector field is unique, except on the punctured flat space (Example 6.6) where it is
unique up to an additive constant.

6.2 The stretching map

Definition 6.19. The stretching map of the Riemannian cone (M̄, ḡ) with stretching factor
α > 0 is the diffeomorphism Φα := FlZlnα where Z ∈ X(M̄) is the Euler vector field.

Remark 6.20. Note that in the model, the stretching map with stretching factor α corres-
ponds to the map (r, x) 7→ (αr, x).

The stretching map will be useful in the investigation of “behaviour at infinity”, and
therefore it is a good idea to collect some of its useful properties in the next lemma, the
proof of which is straightforward calculation.

Lemma 6.21. 1. The stretching map is a group homomorphism (R+, ·)→ Diff(M) and
its generating vector field is d

dα

∣∣∣
α=1

Φα(p) = Zp for any p ∈ M̄ .

2. The stretching map is a homothety, more precisely (Φα)∗ḡ = α2ḡ.

3. The stretching map scales the volume form as (Φα)∗ volḡ = αn+1 volḡ.

4. The Levi-Civita connections (and all induced connections) of ḡ and (Φα)∗ḡ coincide.

5. The stretching map intertwines between Laplace operators: L(Φα)∗ḡ ◦ (Φα)∗ = (Φα)∗ ◦
Lḡ, where L ∈ {∆B,∆H ,∆L}. In particular, the kernel of Lḡ gets mapped to the
kernel of L(Φα)∗ḡ under pullback under Φα.

2This hope is going to be realized later.
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Lemma 6.22 (Non collapsing balls). On an exact cone M̄ , we have infp∈M̄ Bp(R) > 0 for
all R > 0.

Proof. Let us work in the model, and let us fix a point p0 := (r0, x0) and a radius R > 0.
Let R0 < min {r0, R}. From the triangle inequality, we have the inclusion

(r0 −R0/3, r0 +R0/3)×BM
x0 (R0/3) ⊆ BM̄

p (R).

To see this, let p := (r, x) be an element of the set on the left-hand side, and let p̂ := (r0, x)
be the point that is on the same Z integral curve as p and on the same level set of r as p0.
Then by the triangle inequality

d(p, p0) ≤ d(p, p̂) + d(p̂, p0) ≤ R0/3 +R0/3 < R,

so p ∈ BM̄
p0 (R). Thus

Volḡ
(
BM̄
p (R)

)
≥ Volḡ

(
(r0 −R0/3, r0 +R0/3)×BM

x0 (R0/3)
)

=
∫

(r0−R0/3,r0+R0/3)×BMx0 (R0/3)
volḡ

=
∫ r0+R0/3

r0−R/3

∫
BMx0 (R0/3)

rn volg dr

=
∫ r0+R0/3

r0−R/3
rndr ·

∫
BMx0 (R0/3)

volg

= 1
n+ 1((r0 +R0/3︸ ︷︷ ︸

≥r0

)n+1 − (r0 −R0/3︸ ︷︷ ︸
≤ 2

3 r0

)n+1) Volg
(
BM
x0 (R0/3)

)

≥ 1
n+ 1(1− (2/3)n+1)rn+1

0 inf
x∈M

Volg
(
BM
x (R0/3)

)
︸ ︷︷ ︸

>0

=: c(R) > 0,
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uniformly in p ∈M for all R > 0. ? In the last step we have used that the volume of R0/3-
balls in a compact manifold do not collapse, which is due to e.g. [Heb96, Theorem 3.18(2)]
since Sobolev embeddings hold on compact manifolds.

Let us call the set U1 :=
{
p ∈ M̄

∣∣∣1 < |Z|ḡ(p) < 2
}
standard ring, and let us set Uα :=

Φα(U1). Note that the set Uα corresponds to the product set (α, 2α)×M in the model from
Proposition 6.9.

6.3 The curvature of a Riemannian cone
Due to Proposition 6.9, Riemannian cones are warped products. This means we can special-
ize several results. The base is (0,∞), the fibre is (L, gL), and we suppress the projections
from the notation.

Lemma 6.23. Let (M, gcone) be a Riemannian cone with link (L, gL). Let X,Y, Z be vector
fields on M . Then the following hold.

1. The Levi-Civita connection of gcone can be calculated as follows

∇gcone
X Y = X(dr(Y ))∂r + 1

r
dr(X)Y + 1

r
dr(Y )X +∇gLX Y − rgL(X,Y )∂r

2. ∇gconer = dr, ∇gcone,2r = rgL and ∆Br = −dimM−1
r .

3. The Riemannian curvature can be calculated as follows.

Rgcone(X,Y )Z = RgL(X,Y )Z + gL(X,Z)Y − gL(Y,Z)X.

In particular, Rgcone(X,Y )Z is always vertical, and it is always zero if at least one of
the three vector fields playing a role here is horizontal.

4. The Ricci curvature can be calculated as follows.

Ricgcone = RicgL +(2− dimM)gL.

In particular Ricgcone = 0 if and only if (L, gL) is Einstein with Einstein constant
dimM − 2.

Proof. 1. This is a direct consequence of [Che11, Proposition 4.1] and the flatness of
dr ⊗ dr. Note that the notation 〈·, ·〉 is used for the warped product metric in this
book.

2. This follows by direct calculation from the last claim. For the Laplace–Beltrami op-
erator, we can use an adapted frame, cf. Definition 6.11.

3. This is a direct consequence of the flatness of dr⊗dr, the previous claims and [Che11,
Proposition 4.2].

4. This is either a short calculation in an adapted frame based on previous claims or a
special case of [Che11, Corollary 4.1].
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6.3. THE CURVATURE OF A RIEMANNIAN CONE

Multiplying tensor fields with an appropriate radial factor makes them radially covari-
antly constant. Using this fact can simplify calculations substantially.

Corollary 6.24. If ωL, ηL ∈ Γ∞ (T ∗L) and hL ∈ Γ∞
(
S2T ∗L

)
, then

∇gcone
∂r

(rωL) = ∇gcone
∂r

(dr) = 0

and

∇gcone
∂r

(dr ⊗ dr) = ∇gcone
∂r

(rωL � dr) = ∇gcone
∂r

(rωL � rηL) = ∇gcone
∂r

(r2hL) = 0.

Proof. This follows from direct calculation based on Lemma 6.23.

The pointwise norm of the Riemannian curvature decays quadratically (with derivatives)
on a Riemannian cone.

Lemma 6.25. On the exact cone (M, gcone), we have for the pointwise norm |∇gcone,kRgcone |gcone =
O
(
r−2−k

)
.

Proof. As usual, we calculate in an adapted frame {Ei |i = 0, . . . ,dimM − 1}.

k = 0: We obtain by direct calculation that |Rgcone |gcone = O
(
r−2).

k = 1: For X,Y, Z,W ∈ TM , we can use the formula for the Riemannian curvature tensor
from Lemma 6.23 to obtain

(∇gcone
W Rgcone)(X,Y )Z = ∇gcone

W (Rgcone(X,Y )Z)
−Rgcone(∇gcone

W X,Y )Z −Rgcone(X,∇gcone
W Y )Z −Rgcone(X,Y )∇gcone

W Z

= ∇gcone
W (RgL(X,Y )Z + g(X,Z)Y − g(Y,Z)X)
−RgL(∇gcone

W X,Y )Z − g(∇gcone
W X,Z)Y + g(Y, Z)∇gcone

W X

−RgL(X,∇gcone
W Y )Z − g(X,Z)∇gcone

W Y + g(∇gcone
W Y, Z)X

−RgL(X,Y )∇gcone
W Z − g(X,∇gcone

W Z)Y + g(Y,∇gcone
W Z)X

= ∇gcone
W (RgL(X,Y )Z)
−RgL(∇gcone

W X,Y )Z −RgL(X,∇gcone
W Y )Z −RgL(X,Y )∇gcone

W Z

= ∇gLW (RgL(X,Y )Z) + 1
r
dr(Z)(RgL(X,Y )Z) +RgL(∇gcone

W X,Y )Z

+RgL(X,∇gcone
W Y )Z +RgL(X,Y )∇gcone

W Z

−RgL(∇gcone
W X,Y )Z −RgL(X,∇gcone

W Y )Z −RgL(X,Y )∇gcone
W Z

= ∇gLW (RgL(X,Y )Z) + 1
r
dr(Z)(RgL(X,Y )Z)

= (∇gLRgL + 1
r
dr ⊗RgL)(W,X, Y, Z).

Now a direct calculation reveals that |∇gconeRgcone |gcone = O
(
r−3).

k > 1: Since ∇gcone(1
rdr) = − 1

r2dr ⊗ dr + 1
r rg and ∇gconeh = ∇gLh for any r-independent

vertical tensor field h, the Leibniz rules implies that ∇gcone,kRgcone will be a linear
combination of tensor products of 1

rdr and vertical fields independent of r. The g-
norm of each of these is O

(
r−1), and so the (k+2)-contravariant tensor ∇gcone,kRgcone

has pointwise |∇gcone,kRgcone |gcone = O
(
r−k−2

)
, as advertised.
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6.4 The tangential operator
Definition 6.26. A family of vector bundles on the manifold M parametrized by the man-
ifold A is a vector bundle π : E → A×M .

The reason for this definition becomes clear if we introduce the notation Ea := π−1({a}×
M) for any a ∈ A. After identifying {a} ×M with M using the canonical projection, the
bundle Ea becomes an ordinary vector bundle over M (with the restriction of π as the
bundle projection). We identify sections via the map M → {a} ×M,x 7→ (a, x).

Note that the set {a} ×M is a closed set in A ×M , and therefore we can extend any
section from {a}×M to an open neighbourhood using coordinates patches and a partition
of unity. (In fancy sheaf theoretic language: the sheaf of sections of a vector bundle is fine
and consequently soft.)

Definition 6.27. A differential operator D : Γ (E)→ Γ (E) is restrictable to Ea if for any
section ha ∈ Γ (Ea), the expression D(h̃a)|{a}×M is independent of the extension h̃a of ha.
In this case, we define Da : Γ (Ea)→ Γ (Ea) via Da(ha) := D(h̃a)|{a}×M .

Restrictable operators form a C∞(M)-module.

Example 6.28. Consider3 the Riemannian cone (M̄, ḡ) with link (M, g). As we have seen
before in Proposition 6.9, M̄ = I ×M as manifolds with I = (0,∞). This way, any tensor
bundle E over M̄ can be considered as a family of vector bundles on M parametrized by I.

Given a g-orthogonal frame e1, . . . , en of TM , the raw Laplacian on E can be written as
follows, with ∇̄ denoting the connection induced by the Levi-Civita connection of the metric
ḡ.

∆̄B = −∇̄2
∂r,∂r −

1
r2

∑
i>0
∇̄2
ei,ei

= −∇̄∂r∇̄∂r + ∇̄∇̄∂r∂r −
1
r2

∑
i>0

(
∇̄ei∇̄ei − ∇̄∇̄eiei

)
= −∇̄∂r∇̄∂r −

1
r2

∑
i>0

(
∇̄ei∇̄ei − ∇̄∇eiei−rg(ei,ei)∂r

)
= −∇̄∂r∇̄∂r −

n

r
∇̄∂r −

1
r2

∑
i>0

(
∇̄ei∇̄ei − ∇̄∇eiei

)
.

(This formula is a slight generalization of the well-known ‘Laplacian in spherical coordin-
ates’ formula.)

The operator D := − 1
r2
∑
i>0

(
∇̄ei∇̄ei − ∇̄∇eiei

)
is restrictable.

Example 6.29. In this thesis, the operators of interest differ from the raw Laplacian by a
zeroth-order term. Such terms, being pointwise, are always restrictable.

Counterexample 6.30. The operator −∇̄∂r∇̄∂r is a non-restrictable second-order oper-
ator.

3Here we see the convention mentioned earlier: (M, g) = Cone(()L, gL) and (M̄, ḡ) = Cone(M, g). The
presence/absence of the bar in the notation makes it unambiguous which convention is being used.
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As we have discussed in Proposition 6.5, the flow of the Euler vector field establishes
a diffeomorphism between {r1} ×M and {r2} ×M for any r1, r2 ∈ I. Recall the notation
Φα := FlZlnα for the stretching map. This map maps {r} ×M to {αr} ×M . The stretching
map allows us to define an even better class of operators on subbundles of the tensor bundle,
for example for E := S2T ∗(I ×M).

Definition 6.31. A restrictable operator D : Γ (E) → Γ (E) on a finite-rank subbundle E
of the tensor bundle of I ×M is conical or Euler if the following diagram commutes for
any r1, r2 ∈ I.

Γ (Er1) Γ (Er1)

Γ (Er2) Γ (Er2)

Dr1

(Φr1/r2)∗

Dr2

(Φr1/r2)∗

An easy calculation convinces us of the next statement.

Lemma 6.32. A restrictable operator D : Γ (E) → Γ (E) is conical if and only if the
following diagram commutes for all r ∈ I.

Γ (Er) Γ (Er)

Γ (E1) Γ (E1)

Dr

(Φr)∗

D1

(Φr)∗

Euler operators are in a one to one correspondence with operators on any of the bundles
Er.

Example 6.33. Consider the operator D from Example 6.28 acting on functions. We claim
that r2D is an Euler operator .

Indeed, note first that whenever φ is a diffeomorphism, α is a 1-form and X is a vector
field, we have

φ∗(α(X)) = (φ∗α)(dφ−1X).

Now we calculate for f ∈ C∞({r} ×M), using that Φr|TM = idTM and naturality of the
pullback,

(Φr)∗(Drf) = (Φr)∗
(
− 1
r2

∑
i>0

(
∇̄ei∇̄ei(f) + ∇̄∇eiei(f)

))

= − 1
r2

∑
i>0

(Φr)∗
(
∇̄ei∇̄ei(f)− ∇̄∇eiei(f)

)
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= − 1
r2

∑
i>0

(Φr)∗ (ei(ei(f))− df(∇eiei))

= − 1
r2

∑
i>0

(Φr)∗ (d(ei(f))(ei)− df(∇eiei))

= − 1
r2

∑
i>0

(
(Φr)∗d(ei(f))(dΦ−1

r ei)− (Φr)∗(df)(dΦ−1
r ∇eiei)

)

= − 1
r2

∑
i>0

d[(Φr)∗(ei(f))](dΦ−1
r ei)− d((Φr)∗f︸ ︷︷ ︸

=:fr

)(dΦ−1
r ∇eiei)


= − 1

r2

∑
i>0

(
d[(Φr)∗(df(ei))](dΦ−1

r ei)− d(fr)(dΦ−1
r ∇eiei)

)
= − 1

r2

∑
i>0

(
d[((Φr)∗df)(dΦ−1

r ei))](dΦ−1
r ei)− d(fr)(dΦ−1

r ∇eiei)
)

= − 1
r2

∑
i>0

(
d[d(fr)(dΦ−1

r ei))](dΦ−1
r ei)− d(fr)(dΦ−1

r ∇eiei)
)

= − 1
r2

∑
i>0

(
(dΦ−1

r ei)((dΦ−1
r ei)(fr))− (dΦ−1

r ∇eiei)(fr)
)

= − 1
r2

∑
i>0

((ei(ei(fr))− (∇eiei)(fr))

= 1
r2D1(fr)

= 1
r2D1((Φr)∗(f)),

thus (Φr)∗ ◦ (r2Dr) = 12D1 ◦ (Φr)∗, as claimed.

Example 6.34. Similarly, the operator r2D (cf. Example 6.28) acting on symmetric 2-
tensor fields is an Euler operator.

Example 6.35. Consider the potential term in the Hodge Laplacian on M̄ . Since (M̄, ḡ)
is Ricci-flat, the potential term is zero, we are done.

Example 6.36. Consider now the potential term in the Lichnerowicz Laplacian on M̄ , i.e.

−2
◦
R̄. We claim that r2

◦
R̄ is an Euler operator. This is a zeroth-order operator, so it suffices

to check the Euler condition on a single frame of Er at any point x ∈M . Such a frame can
be chosen to consist of forms of the form dr ⊗ dr, dr � rh1 and r2h2 where h1 ∈ Γ (T ∗M)
and h2 ∈ Γ

(
S2(T ∗M)

)
. Note that d(Φr)(1,x)(X0∂r +XM ) = rX0∂r +XM , and therefore

(Φr)∗(dr ⊗ dr) = r2dr ⊗ dr,
(Φr)∗(dr � rh1) = rdr � r(h1 ◦ Φr)

(Φr)∗(r2h2) = r2h2 ◦ Φr,

or more concisely
(Φr)∗h = r2h ◦ Φr (6.1)
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for any of the tensors above.
We calculate, using that (Φr)∗h ∈ Γ (E1) and therefore Ei = ei for i > 0,

◦
R̄1((Φr)∗(dr ⊗ dr)) = r2

n∑
i=0

(dr ⊗ dr)(R̄(Ei, ·)·︸ ︷︷ ︸
∈TM

, Ei)

= 0
◦
R̄1((Φr)∗(dr � h1)) =

n∑
i=0

r2(dr � (h1 ◦ Φr))(R̄(Ei, ·)·︸ ︷︷ ︸
∈TM

, Ei)

= r2dr(∂r)(h1 ◦ Φr)(R̄(∂r, ·)·︸ ︷︷ ︸
=0

) +
n∑
i=1

dr(ei)︸ ︷︷ ︸
=0

(h1 ◦ Φr)(R̄(ei, ·)·)

= 0
◦
R̄1((Φr)∗(r2h2)(X,Y ) =

n∑
i=0

r2(h2 ◦ Φr)(R̄(Ei, X)Y,Ei)

= r2(h2 ◦ Φr)(R̄(∂r, X)Y, ∂r) + r2
n∑
i=1

(h2 ◦ Φr)(R̄(ei, X)Y, ei)

= r2
n∑
i=1

(h2 ◦ Φr)(R(ei, X)Y + g(ei, Y )X − g(X,Y )ei, ei)

= r2(
◦
R(h2 ◦ Φr) + (h2 ◦ Φr)− g(X,Y ) Trg h ◦ Φr)(X,Y )

On the other hand, similarly

(Φr)∗(
◦
R̄r(dr ⊗ dr)) = (Φr)∗0 = 0

(Φr)∗(
◦
R̄r(dr � rh1)) = (Φr)∗0 = 0

(Φr)∗(
◦
R̄r(r2h2))(X,Y ) = r2 1

r2

∑
i>0

h2(R̄(ei, d(Φr)X)(d(Φr)Y ), ei)

=
∑
i>0

h2(R̄(ei, d(Φr)X)(d(Φr)Y ), ei)

= (
◦
R(h2 ◦ Φr) + (h2 ◦ Φr)− g(X,Y ) Trg h ◦ Φr)(X,Y ).

Thus we have shown that r2(Φr)∗ ◦
◦
R̄r =

◦
R̄1 ◦ (Φr)∗. This means that r2

◦
R̄ is an Euler type

operator.

We have observed the same scaling in Examples 6.34 and 6.36. This motivates the
following definition.

Definition 6.37. Let (M̄, ḡ) be a Ricci-flat Riemannian cone. The tangential operator to
the operator ∆̄L is the Euler operator

�E := �L := −
∑
i>0

(
∇̄Ei∇̄Ei − ∇̄∇EiEi

)
− 2r2

◦
R̄.
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The tangential cone to the Hodge Laplacian on 1-forms is

�H := −
∑
i>0

(
∇̄Ei∇̄Ei − ∇̄∇EiEi

)
,

(where we note that the Hodge Laplacian coincides with the raw Laplacian by Ricci-flatness).
The tangential cone to the Laplace–Beltrami operator is

�B := −
∑
i>0

(
∇̄Ei∇̄Ei − ∇̄∇EiEi

)
.

With the tangential operators, we can write

∆̄L = −∇̄∂r∇̄∂r −
n

r
∇̄∂r + 1

r2�L (6.2)

= 1
r2 (−∇̄Z∇̄Z − (n− 1)∇̄Z + �L). (6.3)

Of course, the decomposition of the operator ∆L into an Euler operator and a rest is not
canonical: we have the freedom of an Euler type operator.

The next lemma collects some important properties of the tangential operator.

Lemma 6.38. 1. For any r ∈ I, we have the following Leibniz type rule for (�L)r:

(�L)r(fh) = r2(∆B)r(f)h− 2∇̄gradg fh+ f(�L)rh (6.4)

whenever f ∈ C∞(M) and h ∈ Γ (Er).

2. For any r ∈ I, the restriction (�L)r is an elliptic operator.

3. For any r ∈ I, the restriction (�L)r is formally self-adjoint with respect to the L2

metric
∫
{r}×M 〈·, ·〉ḡ volg.

4. For r = 1, the eigenfields wi of (�L)1 can be chosen to satisfy the normalization
condition ∫

{1}×M
〈wi, wj〉ḡ|{1}×M volg = δij .

5. For any r ∈ I, the symmetric 2-tensor fields (Φ1/r)∗wi are eigenfields of (�L)r satis-
fying the normalization condition∫

{r}×M

〈
(Φ1/r)∗wi, (Φ1/r)∗wj

〉
ḡ

volg|{r}×M = rnδij . (6.5)

Proof. 1. Let f ∈ C∞({r} ×M) and h ∈ Γ (Er). Then

(�L)r(f2h) = −
∑
i>0

(
∇̄ei∇̄ei(fh)− ∇̄∇eiei(fh)− 2r2

◦
R̄fh

)

= −
∑
i>0

(
∇̄ei(ei(f)h+ f∇̄eih)
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−∇∇eiei(f)h+ f∇̄∇eieih− 2r2f
◦
R̄h

)

= −
∑
i>0

(
ei((ei(f))h+ ei(f)∇̄eih+ ei(f)∇̄eih+ f∇̄ei∇̄eih)

−∇∇eiei(f)h+ f∇̄∇eieih− 2r2f
◦
R̄h

)
= r2(∆B)r(f)h− 2∇̄gradg fh+ f(�L)rh

2. It is clear that (�L)r is a second-order operator. To determine its principal symbol,
let x ∈ M , λ ∈ TxM and h ∈ (Er)X . Then we can find a function f ∈ C∞(M) with
f(x) = 0 and dfx = λ. Moreover, we can find a section σ ∈ Γ (Er) with σ(x) = h.
Now by the definition of the principal symbol and the Leibniz rule, we calculate

σx((�L)r)(λ)(h) = ((�L)r(f2σ))(x)

=
(
r2(∆B)r(f2)σ − 2∇̄gradg(f2)σ + f2(�L)rσ

)
(x)

=
(
r2(∆B)r(f2)σ − 4f∇̄gradg fσ + f2(�L)rσ

)
(x)

=
(
r2(2f(∆B)r(f)− 2 〈df, df〉ḡ)σ

)
(x)

= −2 〈λ, λ〉ḡ h

= − 2
r2 〈λ, λ〉g h

thus whenever λ 6= 0, the symbol σ(D)(λ) is invertible. (Note that Er is a bundle
over M , so λ ∈ TM .)

3. Consider two smooth symmetric 2-tensor fields h, k ∈ Γ (Er). It is easy to show that
δḡEi = δgei = 0 and ∇EiEi = 0 for i > 0. By the standard technique, we see that

for X ∈ TM , (∇̄X)∗ = −∇̄X − δḡX. Moreover, since
◦
R̄ is a pointwise operation, its

adjoint is also pointwise, and we know that it is formally self-adjoint in ∆̄L.
Based on these, we calculate

((�L)r)∗ =
(
−
∑
i>0

(
∇̄Ei∇̄Ei − ∇̄∇EiEi

)
− 2r2

◦
R̄

)∗

= −
∑
i>0

(
(∇̄Ei∇̄Ei)∗ − (∇̄∇EiEi)

∗
)
− 2r2(

◦
R̄)∗

= −
∑
i>0

(
(∇̄Ei)∗(∇̄Ei)∗ − (∇̄∇EiEi)

∗
)
− 2r2(

◦
R̄)∗

= −
∑
i>0

(
(−∇̄Ei − δḡEi)(−∇̄Ei − δḡEi)− 0

)
− 2r2(

◦
R̄)∗

= −
∑
i>0

(
(−∇̄Ei)(−∇̄Ei)− 0

)
− 2r2

◦
R̄
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= −
∑
i>0

(
∇̄Ei∇̄Ei + ∇̄∇EiEi

)
− 2r2

◦
R̄

= (�L)r.

In the last step, we have used that ∇EiEi = 0 so we can add ∇̄∇EiEi freely.

4. By the second claim, (�L)r is an elliptic operator, so elliptic regularity implies that
its eigenfields are smooth. Then we can show using the standard technique and the
second claim, that eigenfields corresponding to different eigenvalues are orthogonal.
Lastly, we can perform a Gram–Schmidt orthogonalization process in each of the
eigenspaces since they are finite dimensional.

5. This part follows from the fact that �L is an Euler operator and the integral trans-
formation formula.

6.5 The spectra of the tangent operators of certain Laplacian
operators

Next, we determine the spectra of some tangential operators. Similar calculations have been
done in [Krö20, Section 2].

6.5.1 The general strategy

The general strategy of finding the spectrum of the tangential operator is as follows.

1. Obtain an L2-orthogonal decomposition of the tensor fields of the appropriate on the
link type using tensor fields of lower rank on the link. Show that the corresponding
Laplacian on the link acts diagonally with respect to this decomposition.

2. Find orthonormal bases for the direct summands from the first step.

3. Obtain a formula relating a general tensor field on the cone to the decomposition in
the second step.

4. Calculate the tangential operator on a general tensor field using the formula from the
third step. (This is the most calculation intensive step.)

5. Represent the tangential operator with matrices on certain finite-dimensional sub-
spaces and solve the eigenvalue problem explicitly (in terms of the spectra of Laplacian
operators).

The higher the rank of the tensor field, the more complicated these steps are.

6.5.2 The Laplace–Beltrami operator on functions

Proposition 6.39. Let (M, g) := Cone(L, gL) be a Ricci-flat cone. Then the spectrum of
the tangential operator to the Laplace–Beltrami operator on (M, g) is σ(�B) = σ(∆gL

B ).
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Proof. The proof of this proposition is trivial, but we follow the steps outlined for the
general case methodically to illustrate them in this easy case.

1. This step is not necessary for the Laplace–Beltrami operator.

2. Let {vi |i ∈ N} be an orthonormal basis of L2(RL, gL) consisting of eigenvectors of
∆gL
B . (This is possible by the fact that ∆gL

B is an elliptic operator acting on a compact
manifold.)

3. Given any smooth function f ∈ C∞(M), we obtain the expansion

f(r, x) =
∑
i∈N

ai(r)vi(x),

where (r, x) ∈M and ai ∈ C∞(R+).

4. Let v ∈ C∞(L) with ∆gL
B v = λv. Now �B(v) = ∆gL

B v = λv.

5. We see that the subspace C∞(R+)vi is invariant under �B. This means that we may
represent �B on this subspace as the 1-by-1 matrix(

λi
)
,

the eigenvalue of which is λi.

6.5.3 The Hodge Laplacian on 1-forms

Decomposition of 1-forms on the link
Definition 6.40. The vector space D(L, gL) := D(L) := {h ∈ Γ∞ (T ∗L) |δgLα = 0} is
called the vector space of divergence-free 1-forms on the manifold L with respect to the
metric gL.

If it is clear from context, we suppress the metric from the notation.
Lemma 6.41. Let (L, gL) be a compact Riemannian manifold. Then

1. We have the L2-orthogonal decomposition Γ∞ (T ∗L) = d(C∞(L))⊕D(L, gL).

2. The Hodge Laplacian ∆gL
H acts diagonally with respect to this decomposition.

Proof. 1. This follows from the Hodge decomposition theorem, by noting thatD(L, gL) =
δgLΩ1(L)⊕ ker ∆gL

H .

2. For f ∈ C∞(L), we have by Proposition 2.5

∆gL
H (df) = dδgLdf + δgLddf = dδgLdf = d∆gL

B f,

thus ∆gL
H (dC∞(L)) ⊂ dC∞(L). On the other hand, if ω ∈ D(L, gL), we have for any

f ∈ C∞(L) that

(δgL∆gL
H ω, f)gL = (∆gL

H ω, df)gL = (dδgLω + δgLdω, df)gL
= (δgLdω, df)gL = (dω, ddf)gL = 0,

thus δgL∆gL
H ω ⊥ C∞(L), a dense subset in L2(L, gL). This means δgL∆gL

H ω = 0 and
thus ∆gL

H (D(L, gL)) ⊂ D(L, gL).

48



CHAPTER 6. RIEMANNIAN CONES

Formula for a general 1-form Note that any 1-form ω ∈ Γ∞ (T ∗M) may be written as

w(r,x) = ω0(r, r)dr + r(ω1)(r,x), (6.6)

where (r, x) ∈ M , and ω0(r, x) ∈ R and (ω1)(r,x) ∈ T ∗xL. Moreover, if ω is smooth, so are
ω0(r, ·) and ω1(r, ·) for any fixed r.

Orthonormal bases for the direct summands Our next goal is to find an orthonormal
basis of L2(L, gL) consisting of eigenvectors of the Hodge Laplacian ∆gL

H . By Lemma 6.41,
we may reduce this task to finding L2-orthonormal bases of L2(d(C∞(L))) and L2(D(L, gL)).

Lemma 6.42. • Let {vi ∈ C∞(L) |i ∈ N} be an L2-orthonormal basis of the Laplace–
Beltrami operator ∆gL

B (these are automatically smooth by elliptic regularity), and let
λi ∈ R be the corresponding eigenvalues., i.e. ∆gL

B vi = λivi. Then
{
dvi√
λi

∣∣∣i ∈ N+
}
is an

orthonormal basis for L2(d(C∞(L))) consisting of eigenvectors of the Hodge Laplacian.

• There is an orthonormal basis for L2(D(L, gL)) consisting of eigenvectors of the Hodge
Laplacian.

Proof. • The fact that dvi√
λi

is an eigenvector of ∆gL
H of eigenvalue λi follows from Pro-

position 2.5. Pairwise orthogonality can be shown by an easy calculation. (Note that
we needed to exclude the index i = 0 from this new basis since compactness of L
implies that v0 = const and thus dv0 = 0.)

• Let ω̃ ∈ ΩL(1). According to Lemma 6.41, we may write ω̃ = df̃+ η̃j where f̃ ∈ C∞(L)
and η̃ ∈ D(L, gL). One checks that the L2-orthogonality of the decomposition in
Lemma 6.41 implies that for ω̃ = df̃ + η̃, where f̃ ∈ C∞(L) and η̃ ∈ D(L, gL), we have
∆gL
H ω̃ = µω̃ if and only if ∆gL

H df̃ = µdf̃ and ∆gL
H η̃ = µη̃. (Note that this relation does

not mean that either df̃ or η̃ are eigenvectors of the Hodge Laplacian ∆gL
H since it is

not excluded that they are zero.)
Let now {ω̃j |j ∈ N} be an orthonormal basis of L2(T ∗L, gL) consisting of eigenvalues
of ∆gL

H and let µj ∈ R be the corresponding eigenvalue, i.e. ∆gL
H ω̃j = µjω̃j . According

to Lemma 6.41, we may write ω̃j = df̃j + η̃j where f̃j ∈ C∞(L) and η̃j ∈ D(L, gL).
Since {ω̃j |j ∈ N} be an orthonormal basis of L2(T ∗L, gL), {η̃j |j ∈ N} be an ortho-
gonal generating set of L2(D(L, gL), gL). Since the Hodge Laplacian ∆gL

H is elliptic, its
eigenspace Eµ corresponding to a given eigenvalue µ is finite dimensional. Therefore,
we may chose a linearly independent system of Eµ. Performing Gram–Schmidt or-
thogonalization yields an orthonormal basis of Eµ. The set of the vectors in D(L, gL)
obtained as described above yields an orthonormal basis for L2(D(L, gL)), which we
denote by {ωj |j ∈ N}.

Lemma 6.42 and the decomposition in Equation (6.6) means that any one-form on the
cone may be written as

ω =
∑
i∈N

(aividr + birdvi) +
∑
j∈N

cjrωj , (6.7)

where ai, bi, cj ∈ C∞(R+) and b0 = 0.

49



6.5. THE SPECTRA OF THE TANGENT OPERATORS OF CERTAIN LAPLACIAN OPERATORS

Calculations and the spectrum The next task is to determine the spectrum of the
tangent operator to the Hodge Laplacian.

Proposition 6.43. Let (M, g) := Cone(L, gL) be a Ricci-flat cone. Then the spectrum of
the tangential operator to the Hodge Laplacian on (M, g) is determined by

σ(�H) =

λ+ 1±

√(
n− 1

2

)2
+ λ

∣∣∣∣∣∣λ ∈ σ(∆gL
B )


∪
{
µ− n+ 2

∣∣∣µ ∈ σ(∆gL
H |D(L,gL))

}
.

The corresponding eigenvectors are

• λvdr−m±(λ)rdv with eigenvalue λ+1±
√(

n−1
2

)2
+ λ of the multiplicity4 equal to the

multiplicity of λ with respect to the Laplace–Beltrami operator ∆gL
B , where v ∈ C∞(L)

with ∆gL
B v = λv for some λ ∈ R,

• rω with eigenvalue µ− n+ 2 where ω ∈ D(L, gL) with ∆gL
H ω = µω for some µ ∈ R of

the same multiplicity as µ with respect to ∆gL
H .

Remark 6.44. It may happen that the eigenvalues corresponding to different values of
λ coincide. In this case, we adopt the convention that we count the eigenvalues and the
multiplicities separately. This is the convention we will adopt also in Theorem 6.55.

Since the calculation is not long, we calculate the multiplicities also in the classical
sense. Note that we may rewrite the expression for the eigenvalue as

λ+ 1±

√(
n− 1

2

)2
+ λ =

√(n− 1
2

)2
+ λ± 1

2

2

+ 3
4 −

(
n− 1

2

)2
,

thus the eigenvalues corresponding to λ, λ′ ∈ σ(∆gL
B ) coincide if and only if√(n− 1

2

)2
+ λ± 1

2

2

=

√(n− 1
2

)2
+ λ′ ± 1

2

2

,

where the signs are a priori independent of each other. Note that since σ(∆gL
B ) ≤ 0 and

n ≥ 1, there are nonnegative numbers under the square. Thus coincidence may happen if
and only if √(

n− 1
2

)2
+ λ± 1

2 =

√(
n− 1

2

)2
+ λ′ ± 1

2 ,

still with independent signs. If the signs are the same, we get λ = λ′, thus no nontrivial
coincidence occurs. If the signs are different, then√(

n− 1
2

)2
+ λ∓ 1

2 =

√(
n− 1

2

)2
+ λ′ ± 1

2 ,

4Cf. Remark 6.44.
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(now, of course, with the signs either both the top choice or both the bottom choice) i.e.√(
n− 1

2

)2
+ λ =

√(
n− 1

2

)2
+ λ′ ± 1.

Proof. Note that for any function f ∈ C∞(R+) (depending only on r), we have �H(fω) =
f�Hω, thus we may ignore the coefficient functions for the calculations. Moreover, the as-
sumption on Ricci-flatness means that the Hodge Laplacian and the raw Laplacian coincide.
As usual, to ease notation for the calculations, we will denote objects related to g by an
bar, and objects related to gL without any marking, i.e. ∇̄ := ∇g, ∇ := ∇gL , ∆B := ∆gL

B .

• Let ω ∈ ΩL(1) and let let {ei |i ∈ I} be a gL-orthonormal frame of TxL at some point
x ∈ L. Now we have at x that

�H(rω) = −
n∑
i=1

(∇̄ei ◦ ∇̄ei − ∇̄∇eiei)(rω)

= −
n∑
i=1
∇̄ei(r∇eiω − ω(ei)dt)− ∇̄∇eiei)(rω)

= −
n∑
i=1

(r∇ei ◦ ∇eiω − (∇eiω)(ei)dr − ei(ω(ei))dr

− ω(ei)rgL(ei, ·)− r∇∇eieiω + ω(∇eiei)dr)

= −
n∑
i=1

(r∇2
ei,eiω − 2(∇eiω)(ei)dr − rω(gL(ei, ·), ei)

= r∆gLω − 2(δgLω)dr − rω
= r∆gL

H ω − (n− 1)rω − 2(δgLω)dr − rω
= r∆gL

H ω − (n− 2)rω − 2(δgLω)dr, (6.8)

where we used that the assumption of Ricci-flatness of the cone means that RicgL =
n− 1 and thus ∆gL

H ω = ∆gLω + (n− 1)ω.

• In particular, if v ∈ C∞(L) with ∆gL
B v = λv and ω := dv, then ∆gL

H ω = λdv by
Proposition 2.5 and δgLω = δgLdv = ∆gL

B v = λv, thus Equation (6.8) implies

�H(rdv) = rλω − (n+ 2)rω = (λ− n+ 2)rdv − 2λvdr. (6.9)

• On the other hand, if ω ∈ D(L, gL), then Equation (6.8) implies

�H(rω) = rµω − (n− 2)rω − 0 = (µ− n+ 2)rω. (6.10)

Equation (6.10) implies already that σ(∆gL
H |D(L,gL)) ⊂ σ(�H).

• Let v ∈ C∞(L) with ∆gL
B v = λv and let {ei |i ∈ I} be a gL-orthonormal frame of TxL

at some point x ∈ L. Now we have at x that

�H(vdr) = −
n∑
i=1

(∇̄ei ◦ ∇̄ei − ∇̄∇eiei)(vdr)
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= −
n∑
i=1
∇̄ei((dv(ei)dr + vrgL(ei, ·))− ∇̄∇eiei(vdr)

= −
n∑
i=1

[ei(ei(v))dr + dv(ei)rgL(ei, ·) + dv(ei)rgL(ei, ·)− vr∇̄ei(gL(ei, ·))]

− dv(∇eiei)− vrgL(∇eiei, ·)]
(?)= −[−(∆gL

B v)dr + rdv + rdv − n

r
vrdr +

∑
i∈I

vrgL(∇eiei, ·)−
∑
i∈I

vrgL(∇eiei, ·)]

= −[(−∆gL
B v − nv)dr + 2rdv]

= (λ+ n)vdr − 2rdv, (6.11)

where, at step (?), we used that ∇ei(gL(ei, ·)) = −n
r dr + gL(∇eiei, ·).

• Equations (6.11) and (6.9) imply that for v ∈ C∞(L) with ∆gL
B v = λv we have

�H(avdr + brdv) = a((λ+ n)vdr − 2rdv) + b((λ− n+ 2)rdv − 2λvdr)
= ((λ+ n)a− 2λb)vdr + (−2a+ (λ− n+ 2)b)rdv.

This formula shows that the space C∞(R+)vdr + C∞(R+)vdr is invariant under the
tangential operator �H . In fact, the tangential operator may be represented on this
subspace by the matrix (

λ+ n −2λ
−2 λ− n+ 2

)
.

The eigenvalues of this matrix may be computed explicitly:

λ+ 1±

√(
n− 1

2

)2
+ λ,

with corresponding eigenvectors λvdr −m±(λ)rdv.

This finishes the proof.

Lemma 6.45. Let (N, gN ) be a Riemannian manifold and let [gN : TN → T ∗N,X 7→
gN (X, ·) := X[gN be the musical isomorphism induced by the metric gN . Then [gN ◦∆gN

TM =
∆gN
T ∗M ◦ [gN .

Proof. For any vector field X ∈ Γ∞ (TN) and any tangent vector Y ∈ TN , one has
∇gNY (X[

gN
) = (∇gNY X)[gN since gN is parallel. Consequently, with a gN -orthonormal frame

{ei |i = 1, . . . ,dimN} at a point p ∈ N , we have at p that

∆gN
T ∗M (X[gN ) = −

dimN∑
i=1
∇gN ,2ei,ei (X

[gN ) = −
dimN∑
i=1
∇gNei ◦ ∇

gN
ei (X[gN )−∇gN∇gNei ei

(X[gN )

=
(
−

dimN∑
i=1
∇gNei ◦ ∇

gN
ei X −∇

gN
∇gNei ei

X

)[gN
= (∇gNTMX)[gN .

Corollary 6.46. In the setting of Proposition 6.43, the spectrum of the tangential operator
to the raw Laplacian on TM is σ(�TM

raw ) = σ(�H).
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6.5.4 The Einstein operator

Decomposition of symmetric 2-tensor fields on the link Recall that the operator

δgL : Γ∞
(
S2T ∗L

)
→ Γ∞ (T ∗L) , h 7→ −

∑
i∈I

(∇gLei h)(ei, ·)

(where {ei |i ∈ I} is a gL-orthonormal frame) has formal adjoint

δgL,? : Γ∞ (T ∗L)→ Γ∞
(
S2T ∗L

)
, ω 7→ −1

2Lω]gL gL,

where ]gL : T ∗L → TL denotes the musical isomorphism induced by the metric gL. Note
that (δgL,?ω)(X,Y ) = 1

2(∇gLX ω)(Y ) + 1
2(∇gLY ω)(X) for any 1-form ω ∈ Γ∞ (T ∗L) and any

tangent vectors X,Y ∈ TL.

Definition 6.47. The denote the set of transverse and traceless tensors by TT (L, gL) :={
h ∈ Γ∞

(
S2T ∗L

) ∣∣δgLh = 0 and TrgL h = 0
}
.

Lemma 6.48. Let (L, gL) be a compact Riemannian manifold different from the round
sphere. Then we have the L2-orthogonal decomposition

Γ∞
(
S2T ∗L

)
= (C∞(L))gL ⊕

{
n∇gL,2v + (∆gL

B v)gL
∣∣∣v ∈ C∞(L)

}
⊕ δgL,?(Ω1(L))⊕ TT (L, gL).

Proof. This is the discussion after Lemma 2.2 in [Krö17].

The Einstein operator ∆gL
E is elliptic, whence its spectrum consists of eigenvalues with

finite multiplicity and we obtain an orthonormal eigenbasis
{
r2tk

∣∣k ∈ N
}
on TT (L, gL) as

before.

Formula for a general symmetric 2-tensor field on the cone Note that any sym-
metic 2-tensor field h ∈ Γ∞

(
S2T ∗M

)
on the cone can be written at a point (r, x) ∈ M

as
h(r, x) = h0(r, x)dr ⊗ dr + rh1(r, x)� dr + r2h2(r, x),

where h0(r, x) ∈ R, h1(r, x) ∈ T ∗xL and h2(r, x) ∈ S2T ∗xL. Based on the decomposition and
the orthonormal bases before, we may write

h =
∑
i∈N

Pividr ⊗ dr +
∑
i∈N+

Qidr � rdvi +
∑
j∈N

Ajdr � rωj +
∑
i∈N

Sivir
2gL

+
∑
i∈N+

Ri(nr2∇gL,2v + (∆gL
B v)r2gL) +

∑
j∈N

Bjrδ
gL,?(rωj) +

∑
k∈N

Fkr
2tk,

where

• {vi |i ∈ N} is an orthonormal eigenbase for ∆gL
B with ∆gL

B vi = λivi,

• {ωj |j ∈ N} is an orthonormal eigenbase for ∆gL
H |D(L,gL) with ∆gL

H ωj = µj ,

• {tk |k ∈ N} is an orthonormal eigenbase for ∆gL
E |TT (L,gL) with ∆gL

E tk = νk,
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and Pi, Qi, Ri, Si, Aj , Bj , Fk ∈ C∞(R+). It will turn out to be advantageous to regroup the
expression as follows

h =
∑
i∈N

(Pividr ⊗ dr +Qidr � rdvi +Ri(nr2∇gL,2v + (∆gL
B v)r2gL) + Sivir

2gL)

+
∑
j∈N

(Ajdr � rωj +Bjrδ
gL,?(rωj))

+
∑
k∈N

Fkr
2tk, (6.12)

(with Q0 = R0 = 0) since, as we will see, the lines in this regrouping represent invariant
subspaces.

Calculations We can calculate the tangential operator’s value at the different types of
tensors separately. We start with vertical (purely link-related) tensor fields.

Lemma 6.49. For t ∈ Γ∞
(
S2T ∗L

)
, we have �E(r2t) = r2∆gL

E t−2dr�r(δgLt)−2(TrgL t)dr⊗
dr + 2(TrgL t)r2gL

Proof. In the following, t ∈ Γ∞
(
S2T ∗L

)
, moreover, X,Y ∈ TM and U, V,W ∈ TL.

• We have r2
◦
R̄t =

◦
Rt+ t− (TrgL t)gL since

(
◦
R̄t)(∂r, ∂r) =

n∑
i=0

t(R̄(Ei, ∂)∂,Ei) = 0,

(
◦
R̄t)(∂r, V ) =

n∑
i=0

t(R̄(Ei, ∂r)V,Ei) = 0,

(
◦
R̄t)(V,W ) =

n∑
i=0

t(R̄(Ei, V )W,Ei) = t(R̄(∂r, V )W,∂r) + 1
r2

n∑
i=1

t(R̄(ei, V )W, ei)

= 1
r2

t∑
i=1

(R(ei, V )W + gL(ei,W )V − gL(V,W )ei, ei)

= 1
r2 ((

◦
Rt))(V,W ) + t(V,W )− (TrgL tgL(V,W )).

• We have ∇̄V (r2t) = r2∇V t− dr � rt(V, ·) since

∇̄V (r2t)(∂r, ∂r) = V (r2t(∂r, ∂r))− 2r2t(∇V ∂̄r, ∂r) = 0,
∇̄V (r2t)(∂r,W ) = V (r2t(∂r,W ))− r2t(∇̄V ∂r,W )− r2t(∂r, ∇̄VW )

= −rt(V,W ),
∇̄V (r2t)(W,U) = V (r2t(W,U))− r2t(∇̄VW,U)− r2t(W, ∇̄V U)

= V (r2t(W,U))− r2t(∇VW,U)− r2t(W,∇V U)
= r2(∇V t)(W,U).
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• Based on this, we calculate for the second, iterated derivative

∇̄V (∇̄W (r2t)) = ∇̄V (r2∇W t− dr � rt(W, ·))
= r2∇V (∇W t)− dr � r(∇W t)(V, ·)− rgL(V, ·)� rt(W, ·)− dr � r∇̄V (t(W, ·))
(?)= r2∇V (∇W t)− dr � r(∇W t)(V, ·)− rgL(V, ·)� rt(W, ·)
− dr � rt(∇VW, ·) + t(V,W )dr � dr

= r2∇V (∇W t)− dr � r(∇W t)(V, ·)− dr � r(∇V t)(W, ·)
− dr � rt(∇VW, ·) + 2t(V,W )dr � dr − rgL(V, ·)� rt(W, ·),

where, in the marked step, we used that

∇̄V (t(W, ·))(X) = V (t(W,X))− t(W, ∇̄VX)
= (∇V t)(W,X) + t(∇VW,X) + t(W,∇VX)

− t(W,∇VX − rt(V,X)∂r + 1
r
dr(X)V )

= ((∇V t)(W, ·) + t(∇VW, ·)−
1
r
t(W,V )dr)(X).

• Now we may calculate the value of the tangential operator to the raw Laplacian on
r2t as follows.

�raw(r2t) = −
n∑
i=1

(∇̄ei ◦ ∇̄ei − ∇̄∇eiei)(r
2t)

= −
n∑
i=1

r2∇ei(∇eit)− dr � r(∇eit)(ei, ·)− dr � r(∇eit)(ei, ·)

− dr � rt(∇eiei, ·) + 2t(ei, ei)dr � dr − rgL(ei, ·)� rt(ei, ·)
− r2∇∇eieiV t+ dr � rt(∇eiei, ·)

= −
n∑
i=1

r2∇2
ei,eit− 2dr � r(∇eit)(ei, ·) + 2t(ei, ei)dr � dr

− rgL(ei, ·)� rt(ei, ·)
= r2∆gLt− 2dr � r(δgLt)− 2(TrgL t)dr � dr − 2r2t

• Since �E = �raw − 2r2
◦
R̄, the claim follows.

In Equation (6.12), the corresponding part looks like

Sivir
2gL +Ri(nr2∇2vi + (∆gL

B v))r2gL) + rδgLAjrωj + r2Fktk.

Based on Lemma 6.49, we obtain for these tensor fields the following.

Corollary 6.50. We have the following.

• If v ∈ C∞(L) with ∆gL
B v = λv for some λ ∈ R, then �E(vr2gL) = −2nvdr ⊗ dr +

2dt� rdv + (λ+ 2)vr2gL.
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• If v ∈ C∞(L) with ∆gL
B v = λv for some λ ∈ R, then �E(nr2∇gL,2v + (∆gL

B v)r2gL) =
2(n− λ)(n− 1)dr � rdv + (λ− 2n+ 2)r2(n∇gL,2v + (∆gL

B v)gL).

• If ω ∈ D(L, gL) with ∆gL
H ω = µω for some µ ∈ R, then �E(rδgLrω) = (−µ + 2n +

2)dr � rω + (µ− 2n+ 2)r2δgLω.

• If t ∈ TT (L, gL) with ∆gL
E t = νt for some ν ∈ R, then �E(r2t) = νr2t.

Proof. • We calculate

�E(vr2gL) = r2∆gL
E (vgL)− 2dr � rδgL(vgL)− 2(TrgL(vgL))dr � dr + 2(TrgL(vgL))gL

(?)= r2(∆gLv − 2(n− 1)v)gL + 2dr � rdv − 2nvdr � dr + 2nvgL
= −2nvdr � dr + 2dr � rdv + (λ+ 2)vr2gL

where, in the marked step, we used that

δgLvgL = −
n∑
i=1
∇ei(vgL)(ei, ·) =

n∑
i=1
−dv(ei)gL(ei, ·) + v(∇eigL)(ei, ·) = −dv.

• We calculate

�E(r2(n∇2v + (∆gL
B v)gL)) = r2∆gL

E (n∇2v + (∆gL
B v)gL)

− 2dr � rδgL(n∇2v + (∆gL
B v)gL)

− 2 TrgL(n∇2v + (∆gL
B v)gL)(dr ⊗ dr − r2gL)

(?)= r2(n∇2(∆gL
B v − 2(n− 1)v)

+ ((∆gL
B )2v − 2(n− 1)∆gL

B v)r2gL

+ 2(n− λ)(n− 1)dr � rdv
= 2(n− λ)(n− 1)dr � rdv

+ (λ− 2n+ 2)r2(n∇2v − (∆gL
B v)gL),

where, in the marked step, we used that

δgL(n∇2v + (∆gL
B v)gL) = −

n∑
i=1
∇ei(n∇2v + (∆gL

B v)gL)(ei, ·)

= −
n∑
i=1

n∇3
ei,ei,·v +∇ei(∆gL

B v)gL(ei, ·)

= n∆gL(dv)− d(∆gL
B v)

= n∆gL
H (dv)− n(n− 1)dv − λdv

= −(n− λ)(n− 1)dv.

• We calculate

�E(r2δgL,?ω) = r2∆gL
E δ

gL,?ω − 2dr � r(δgLδgL,?ω)− 2(TrgL δgL,?ω)dr � dr
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(?)= r2δgL,?(∆gL
H ω − 2(n− 1)ω)− 2dr � r(1

2∆gL
H ω + dδgLω − RicgL ω)

+ 2(δgLω)dr � dr − 2(δgLω)r2gL

= (−µ+ 2n− 2)dr � rω + (µ− 2n+ 2)r2δgL,?ω,

where, in the marked step, we used Lemma 2.4 and Lemma 2.2.

• We calculate

�E(r2t) = r2∆gL
E t− 2dr � r(δgLt)− 2(TrgL t)dr � dr + 2(TrgL t)r2gL

= r2∆gL
E t = νr2t.

Next, we turn our attention to mixed tensor fields, i.e. tensor fields of the form dr� rω
where ω ∈ Ω1(L).

Lemma 6.51. If ω ∈ Ω1(L), then �E(dr � rω) = −2(δgLω)dr ⊗ dr + dr � r∆gL
H ω + 4dr �

rω + 4r2δgL,?ω.

Proof. In the following, v ∈ C∞(R+), moreover X,Y ∈ TM and U, V,W,Z ∈ TL, and ei,
Ei are elements of an orthonormal frame, as usual.

•
◦
R̄(dr � rω) = 0 since

◦
R̄(dr � rω)(∂r, ∂r) =

n∑
i=0

(dr � rω)(R̄(Ei, ∂r)∂r), Ei) = 0

◦
R̄(dr � rω)(∂r, V ) =

n∑
i=0

(dr � rω)(R̄(Ei, ∂r)V ), Ei) = 0

◦
R̄(dr � rω)(V,W ) =

n∑
i=0

(dr � rω)(R̄(Ei, V )W ), Ei)

= (dr � rω)(r̄(∂r, V )W,∂r) + 1
r2

n∑
i=1

(dr � rω)(R̄(ei, V )W, ei) = 0,

where we used that R̄(∂r, ·) = 0 and in general R̄(X,Y ) ∈ TL.

• We calculate

∇̄V (dr � rω) = rgL(V, ·)� rω + dr � ∇̄V (rω)
= rgL(V, ·)� rω + dr � r∇V ω − dr � ω(V )dr
= dr � r∇V ω + rgL(V, ·)� rω − 2ω(V )dr ⊗ dr.

• For the iterated second derivative, we obtain

∇̄W (∇̄V (dr � rω)) = −2(∇̄Wω)(V )dr ⊗ dr − 2ω(∇̄WV )− ω(V )dr � rgL(W, ·)
− 2(∇̄V ω)(W )dr ⊗ dr + dr � r∇W∇V ω + rgL(W, ·)� r∇V ω
+ r∇̄W (gL(V, ·))� rω + rgL(V, ·)� r∇̄Wω
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= −41
2 [(∇Wω)(V ) + (∇V ω)(W )]dr ⊗ dr − 2ω(∇WV )dr ⊗ dr

− 2ω(V )dr � rgL(W, ·) + dr � r∇W∇V ω + rgL(W, ·)� r∇V ω
+ rgL(∇WV, ·)� rω − gL(V,W )dr � rω
+ rgL(V, ·)dr ⊗ dr + ω(V )dr � rgL(W, ·)

= −4(δgL,?ω)(W,V )dr ⊗ dr + dr � r∇W∇V ω
− 2ω(∇WV )dr ⊗ dr − 2ω(V )dr � rgL(W, ·)
+ rgL(W, ·)� r∇V ω + rgL(∇WV, ·)� rω
− gL(V,W )dr � rω + rgL(V, ·)� r∇Wω − ω(W )rgL(V, ·)� dr,

where we used that ∇̄V (t(W, ·)) = (∇V t)(W, ·) + t(∇VW, ·) − 1
r t(W,V )dr for t ∈

Γ∞
(
S2T ∗L

)
.

• Now for the tangential operator to the raw Laplacian, we calculate

�raw(dr � rω) = −
n∑
i=1

(∇̄ei ◦ ∇̄ei − ∇̄∇eiei)(dr � rω)

= −
n∑
i=1
−4(δgL,?ω)(ei, ei)dr ⊗ dr + dr � r∇ei∇eiω

− 2ω(∇eiei)dr ⊗ dr − 2ω(ei)dr � rgL(ei, ·)
+ rgL(ei, ·)� r∇eiω + rgL(∇eiei, ·)� rω
− gL(ei, ei)dr � rω + rgL(ei, ·)� r∇eiω − ω(ei)rgL(ei, ·)� dr
− dr � r∇∇eieiω − rgL(∇eiei, ·)� rω + 2ω(∇eiei)dr ⊗ dr

= −4δgLωdr ⊗ dr + dr � r∆gLω + 2dr � rω
− 4r2δgL,?ω + ndr � rω + dr � rω

= −4(δgLω)dr ⊗ dr + dr � r∆gL
H ω + 4dr � rω − 4r2δgL,?ω.

• Since �E = �raw − 2r2
◦
R̄, we the claim follows.

Based on this lemma, we can calculate the tangential operator on the following tensors.

Corollary 6.52. We have the following.

• If v ∈ C∞(L) with ∆gL
B v = λv for some λ ∈ R, then �E(dr � rdv) = −4λvdr ⊗ dr +

(λ+ 4)dr � rdv − 4
n(nr2∇gL,2v + r2(∆gL

B v)gL) + 4
nλvr

2gL.

• If ω ∈ D(L, gL) with ∆gL
H ω = µω for some µ ∈ R, then �E(dr � rω) = (µ + 4)dr �

rω − 4r2δgL,?ω.

Proof. We calculate the two claims separately.

• We calculate

�E(dr � rdv) = −4(δgLdv)dr ⊗ dr + dr � r∆gL
H dv + 4dr � rdv − 4r2δgL,?dv

= −4∆gL
B vdr ⊗ dr + λdr � rdv + 4dr � rdv − 4r2∇gL,2v
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= −4λvdr ⊗ dr + (λ+ 4)dr � rdv
− 4

n(nr2∇gL,2v + r2(∆gL
B v)gL) + 4

nλvr
2gL,

where we used that for any X,Y ∈ TM , we have

(δgL,?dv)(X,Y ) = 1
2∇

gL
X (dv)(Y ) + 1

2∇
gL
Y (dv)(X)

= 1
2∇

gL,2
X,Y v + 1

2∇
gL,2
Y,X v = ∇gL,2X,Y v.

• For the second claim, we calculate

�E(dr � rω) = −4(δgLω)dr ⊗ dr + dr � r∆gL
H ω + 4dr ⊗ rω − 4r2δgL,?ω

= (µ+ 4)dr � rω − 4r2δgL,?ω.

Now only tensor fields of the form vdr ⊗ dr, where v ∈ C∞(R+), are left.

Lemma 6.53. For v ∈ C∞(R+), we have �E(vdr⊗dr) = (∆gL
B v+2n)dr⊗dr−2dr�rdv−

2vr2gL.

Proof. In the following, v ∈ C∞(R+), moreover X,Y ∈ TM and U, V,W,Z ∈ TL, and ei,
Ei are elements of an orthonormal frame, as usual.

•
◦
R̄vdr ⊗ dr(X,Y ) = v

∑
i∈I dr ⊗ dr(R̄(Ei, X)Y,Ei) = 0 since R̄(Ei, X, Y ) ∈ TL.

• Since ∇̄dr = rgL, we calculate ∇̄W (vdr ⊗ dr) = dv(W )dr ⊗ dr + v(∇̄Wdr) � dr =
dv(W )dr ⊗ dr + vrgL(W, ·)� rgL(W, ·).

• For the iterated second derivative, we calculate

∇̄V (∇̄W (vdr ⊗ dr)) = ∇̄V (dv(W )dr ⊗ dr + vdr � rgL(W, ·))
= V (dv(W ))dr ⊗ dr + dv(W )dr � rgL(V, ·) + dv(V )dr � rgL(W, ·)

+ vrgL(V, ·)� rgL(W, ·) + vdr � rt(∇VW, ·)− 2t(V,W )vdr ⊗ dr,

where we used that ∇̄V (t(W, ·)) = (∇V t)(W, ·) + t(∇VW, ·) − 1
r t(W,V )dr for t ∈

Γ∞
(
S2T ∗L

)
.

• Consequently, we obtain

�raw(vr ⊗ dr) = −
n∑
i=1

(∇̄ei ◦ ∇̄ei − ∇̄∇eiei)(vdr ⊗ dr)

= −
n∑
i=1

ei(dv(ei))dr ⊗ dr + dv(ei)dr � rgL(ei, ·)

+ dv(ei)dr � rgL(ei, ·) + vrgL(ei, ·)� rgL(ei, ·)
+ vdr � rt(∇eiei, ·)− 2t(ei, ei)vdr ⊗ dr
− dv(∇eiei)dr ⊗ dr − vrgL(∇eiei, ·)� rgL(∇eiei, ·)

= (∆gL
B v)dr ⊗ dr − 2dr � rdv − 2vr2gL + 2nvdr ⊗ dr

= (∆gL
B v + 2n)dr ⊗ dr − 2dr � rdv − 2vr2gL.
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• Since �E = �raw − 2r2
◦
R̄, the claim follows.

In the decomposition Equation (6.12), the only term of this form if Pividr ⊗ dr.

Corollary 6.54. If v ∈ C∞(L) with ∆gL
B v = λv for some λ ∈ R, then �E(vdr ⊗ dr) =

(λ+ 2n)dr ⊗ dr − 2dr � rdv − 2vr2gL.

Proof. �E(vdr⊗ dr) = (∆gL
B v+ 2n)dr⊗ dr− 2dr� rdv− 2vr2gL = (λ+ 2n)dr⊗ dr− 2dr�

rdv − 2vr2gL.

Representing the tangential operator as matrices We can conclude that the fol-
lowing subspaces are invariant under �E .

• C∞(R+)vdr⊗dr+C∞(R+)dr�rdv+C∞(R+)(nr2∇gL,2v+(∆gL
B v)r2gL)+C∞(R+)vr2gL

for v ∈ C∞(L) with ∆gL
B v = λv for some λ ∈ R.

In fact, if we take an element (cf. Equation (6.12))

h = (Pvdr ⊗ dr +Qdr � rdv +R(nr2∇gL,2v + (∆gL
B v)r2gL) + Svr2gL,

then

�Eh = ((λ+ 2n)P − 4λQ− 2nS)vdr ⊗ dr
+ (−2P (λ+ 4)Q+ 2(n− 1)(n− λ)R+ 2S))dr � rdv
+ (− 4

nQ+ (λ− 2n+ 2)R)vr2gL

+ (−2P + 4λ
n Q+ (λ+ 2)S)(nr2∇gL,2v + (∆gL

B v)r2gL).

If λ > 0, then v 6= const, and the eigenvalue problem of the tangential operator �E

may be written as the eigenvalue problem for a 4-by-4 matrix:
λ+ 2n −4λ 0 −2n
−2 λ+ 4 2(n− 1)(n− λ) 2
0 − 4

n λ− 2n+ 2 0
−2 4λ

n 0 λ+ 2

 ,
the eigenvalues of which may be computed explicitly (preferably with a computer
algebra system). These turn out to be λ (with multiplicity 2), and 4m±(λ)+λ+2n+2
with multiplicity 1.
If, however, λ = 0, then v = const (by virtue of L being compact and without
boundary), thus dv = 0 and ∇gL,2v = 0, and the only surviving terms are Pvdr ⊗
dr + Svr2gL. Consequently, the previous matrix “collapses” to a 2-by-2 matrix(

2n −2n
−2 2

)
,

the eigenvalues5 of which are 2(n+ 1) and 0, both of multiplicity 1.
5Note that 2(n+ 1) = 4m+(λ) +λ+ 2n+ 2 for λ = 0 but the corresponding “negative” branch is missing

from the eigenvalues, when compared to the λ > 0 case.
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• C∞(R+)rω � dr + C∞(R+)r2δgL,?ω for some nonzero ω ∈ D(L, gL) with ∆gL
H ω = µω

for some µ ∈ R.
In fact, for A,B ∈ C∞(R+), we have

�E(Arω�dr+Br2δgL,?ω) = ((µ+4)A+(−µ+2n−1)M)rω�dr+(−4A+(µ−2n+2)B)r2δgL,?ω.

This can be written as a matrix(
µ+ 4 −µ+ 2n− 2
−4 µ− 2n+ 2

)
,

the eigenvalues of which are 2m±(µ+ 2− n) + µ+ 2 (each with multiplicity 1).

• C∞(R+)r2t for some nonzero t ∈ TT (L, gL) with ∆gL
E t = νt for some ν ∈ R.

In fact, if F ∈ C∞(R+), then �E(Fr2t) = νFr2t.

The spectrum Now it is time to reap the rewards of our work.

Theorem 6.55. Let (M, g) = Cone(L, gL) be a Ricci-flat cone. Then the spectrum of the
tangential operator to the Einstein operator is the following.

σ(�E) = σ(∆gL
B )

∪ {4m±(λ) + λ+ 2n+ 2 |λ ∈ σ(∆gL
B ), λ > 0}

∪
{

2m±(µ+ 2− n) + µ+ 2
∣∣∣µ ∈ σ(∆gL

H |D(L,gL))
}

∪ σ(∆gL
E |TT (L,gL))

∪ {2n+ 2} .

The corresponding eigenvectors are

• vdr ⊗ dr + vr2gL for λ ∈ σ(∆gL
B ) with ∆Bv = λv,

• (n− 1)λvdr ⊗ dr + n(n− 1)dr � rdv − 2(nr2∇gL,2v + (∆gL
B v)gL)− λ(n− 1)vr2gL for

λ ∈ σ(∆gL
B ) where ∆Bv = λv, with λ > 0,

• −n(n−λ)λvdr⊗dr+n(n−λ)mn±(λ)dr�vdr+(λ−nm±(λ))(nr2∇gL,2v+(∆gL
B v)gL)+

(n− λ)λvr2gL for 4m±(λ) + λ+ 2n+ 2 with ∆Bv = λv, λ ∈ σ(∆gL
B ) with λ > 0,

• −ndr ⊗ dr + r2gL for 2n+ 2,

• (−µ
2 + n− 1)dr� rω+ (mmp(µ+ 2− n)− 1)r2δgL,?ω for 2m±(µ+ 2− n) + µ+ 2 and

∆gL
H ω = µω with ω ∈ D(L, gL),

• r2t for ν ∈ σ(∆gL
E |TT (L,gL)) with ∆gL

E t = νt.

and the multiplicities are inherited from the corresponding eigenvalues of the Laplacians –
except when λ > 0, when the eigenvectors of the first two type have the same eigenvalue
(namely λ itself) and thus the multiplicity of λ with respect to the tangential operator �E

is twice the multiplicity of λ with respect to the Laplace–Beltrami operator ∆gL
B .
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Proof. This follows directly from the discussion above. Note that 0 ∈ σ(∆gL
B ), so it is not

necessary to include 0 explicitly. Note also that 2n+2 = 4m+(λ)+λ+2n+2 for λ = 0.

Remark 6.56. It may happen that the eigenvalues of the tangential operator coming from
different eigenvalues of the given Laplacians coincide. In this case, we adopt the convention
that the eigenvalues and their multiplicities are counted as in the theorem, cf. Remark 6.44

Remark 6.57. Note that the spectrum of the tangential operator �E consists of eigenvalues
and that these eigenvalues converge to infinity. The latter statement can be proved by an
easy calculation based on the growth analysis of the function f : R→ R, x 7→ x±A

√
x+ a2

(with A, a > 0) and by noting that the spectra of the different Laplacians on the link are
bounded from below.

Remark 6.58. Note that for v ∈ C∞(L) with ∆gL
B v = λv for some λ ∈ R, we have

�E(vgcone) = λvgcone.
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Chapter 7

Asymptotically conical (AC)
manifolds

7.1 Definition and elementary properties

Definition 7.1. A complete Riemannian manifold (M, gac) is called an asymptotically
conical Riemannian manifold1 (short: AC manifold) if there are

• a compact set K ⊂M ,

• a Riemannian cone Cone(L, gL) with L connected,

• a positive number R > 0,

• a positive number τ > 0, and

• a diffeomorphism φ : M \K → Cone(L, gL) \ ((0, Ri]× Li)

such that
|∇gcone,k(φ∗gac − gcone)|gcone = O

(
r−τ−k

)
for all k ∈ N (7.1)

We call the set K the core or nuculus, the set M \ K the end, the number τ decay
rate, the map φi the asymptotic chart and the map φ−1 the asymptotic parametrization. We
denote the fact above by g ∈ AC (gcone, τ, φ) with K and R left implicit.

An asymptotically conical manifold is depicted schematically in Figure 7.1.

Remark 7.2. There are several competing definitions for the term “asymptotically conical
metric” in the literature, cf. e.g. [PT01]. The basic idea of our definition can be traced back
at least to Cantor [Can79], where he considers the special case (L, gL) = (Sn, ground) and
calls the corresponding asymptotically conical manifolds asymptotically simple.

Remark 7.3. Some authors allow for multiple ends in the definition of an asymptot-
ically conical manifold. However, asymptotically conical manifolds with Ricci curvature
bounded from below have necessarily one end by the Cheeger–Gromoll splitting theorem

1We will use the notation gac and g0 for an asymptotically conical manifold.
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Figure 7.1: Asymptotically conical manifold

[CG71, EH84]. Since the main objects of interest in this thesis are Ricci-flat asymptotically
conical manifolds, our restriction to a single end (and in particular a connected link) in the
definition does not restrict the generality.

The core of an asymptotically conical manifold is not uniquely specified. In fact, there
is a systematic way to generate a family of suitable cores.

Definition 7.4. A radius function on the asymptotically conical manifold g ∈ AC (gcone, τ, φ)
is any smooth function ρ : M → R such that ρ|M\K = r ◦ φ. Given a radius function
ρ : M → R, we define the family of manifolds

Core(R) := {p ∈M |ρ(p) ≤ R} ∪K.

The core is closed and bounded (since ρ is comparable to the distance function to a fixed
point), thus the Hopf–Rinow theorem implies that Core(R) is compact. Thus, Core(R) is a
suitable core for g and Core(R1) ⊂ Core(R2) for R1 ≤ R2.

The pointwise norm induced by the asymptotically conical metric is comparable to the
pointwise norm induced by the cone metric.

Lemma 7.5 ([Pac13, Remark 6.3]). Let g ∈ AC (gcone, φ, τ) and let S be any tensor field.
Then |S|φ∗g = |S|gcone(1 +O (r−τ )).

7.2 Examples of Ricci-flat asymptotically conical manifolds

If a manifold M has the property that M ⊂ K is diffeomorphic to (R,∞) × L for some
compact set K, then it is not complicated to construct a metric that satisfies the asymp-
toticity condition Equation (7.1). In fact, take any open precompact set U ⊂M containing
K and consider the open covering U := {U,M \K}. If fU , fM\K is a partition of unity
subordinate to U and gU is any Riemannian metric on U , then the metric

g := fUgU + fM\Kφ
∗gcone
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(where gcone is any cone metric on (R,∞) × L) satisfies the asymptoticity condition since
g − φ∗gcone = 0 on M \ U . (In fact, we will put this construction to use in Section 8.4.)

The situation is much more delicate if we want a Ricci-flat complete metric which
satisfies the asymptoticity condition.

Example 7.6. The easiest example for an asymptotically conical manifold is M := Rm
with the standard flat metric gflat. The link in this case is Sm−1 with the standard round
metric ground. Let us fix any R > 0 and set K := {x ∈ Rm ||x| < R} ⊂M . The asymptotic
chart is given, in essence, via spherical coordinates: φ : M \K → (R,∞)×L, x 7→ (|x|, x|x|).
Now (φ−1)∗gflat = gcone, thus any positive decay rate may be chosen.

This example is an example of what we could reasonably call an asymptotically Euc-
lidean metric.

Example 7.7 (Eguchi–Hanson metrics). Consider the cotangent bundle M := T ∗S2 of the
2-sphere S2. We have the following chain of diffeomorphisms

(T ∗S2) \ z(S2) ' (TS2) \ z(S2) ' R+ × US2 ' R+ × SO(3) ' R+ × (S3/Z2),

where z denotes the zero section2, US2 denotes the unit tangent bundle (with respect to
an arbitrary metric) and where we used that US2 is an SO(3)-torsor and that we have
the isomorphism SO(3) ' S3/Z2. Note that the manifold (S3/Z2) × R+ is diffeomorphic
to Cone(S3/Z2, ground) where ground denotes the metric induced by the round metric on the
quotient. Note furthermore that the set K̃ := z(S2) is compact in M since the zero section
z is a diffeomorphism (in fact, M \ K̃ is a dense open subset of M), hence we can write
the compositions of the above diffeomorphisms as

φ̃ : M \ K̃ → Cone(S2/Z2, ground).

Fixing a positive real number R > 0, we may thus obtain a diffeomorphism

φ : M \K → Cone(S2/Z2, ground) \ (0, R]× (S2/Z2)

by restricting φ̃, where K := φ−1((0, R]× (S2/Z2)).
In [EH78], Eguchi and Hanson constructed a metric on R+ × S3 which descends to a

metric on R+×(S3/Z2) and extends to a smooth Ricci-flat metric gEH on T ∗S2. The Eguchi–
Hanson metric is asymptotically conical. The Eguchi–Hanson metric is hyper-Kähler, in the
sense that M admits three complex structures I,J and K, satisfying the relation IJ = K,
with respect to which gEH is Kähler.

The Eguchi–Hanson metric belongs to a larger family of metrics.

Definition 7.8. An asymptotically conical manifold is called an asymptotically localy Eu-
clidean (ALE) manifold if the asymptotic cone is of the form Cone(SdimM−1/Γ) where
Γ ⊂ SO(dimM − 1) is a finite subgroup of O(n) acting freely on SO(dimM − 1).

2In this topic, the idea to work on a bundle which has nice asymptotics outside the zero section is quite
popular, cf. also Example 7.12.
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The terminology comes from physics. Hyperkähler ALE spaces of dimension 4 have been
classified by Kronheimer [Kro89] into classes Ak, Bk, Ck, Dk, E6, E7, E8. The Eguchi–
Hanson metric is A1. Known examples of ALE metrics are either hykerkähler or arise as a
finite quotient. For further examples for ALE metrics, cf. references in [HRS, 20].

Asymptotically locally Euclidean manifolds form a strict subset of asymptotically conical
manifolds.

Example 7.9 (Stenzel metrics). In [Ste93], Stenzel constructed a family of compelete Ricci-
flat asymptotically conical manifolds on T ∗Sn+1, asymptotic to Cone(SO(n + 2)/SO(n)).
The special case n := 2 recovers the Eguchi–Hanson metric.

Example 7.10 (Ricci-flat asymptotically conical Calabi–Yau manifolds). Based on work by
[CT94], Conlon and Hein gave a construction for Ricci-flat asymptotically conical Calabi–
Yau manifolds [CH13, CH15].

Example 7.11. In [vC11], van Coevering constructed examples of Ricci-flat asymptotically
conical Kähler manifolds using so-called crepant resolutions.

Example 7.12 (G2-manifolds). In [BS89], Bryant and Salamon constructed asymptot-
ically conical manifolds with holonomy group contained in G2. The underlying manifolds
are the spinor bundle of S3, the bundle of anti-self-dual 2-forms of S4 and the bundle of
anti-self-dual 2-forms of CP2. Their asymptotic cones are Cone(S3 × S3), Cone(CP3) and
Cone(SU(3)/T 2), respectively (cf. also [KL ]). As all G2-manifolds, the Bryant–Salomon
manifolds are 7 dimensional and Ricci-flat [Bon66]. A systematic construction of asymp-
totically conical G2-manifolds has been presented in [FHN ].

7.3 Functional analysis on asymptotically conical manifolds
The usual functional spaces of Sobolev and Hölder type are not well suited for asymptotic-
ally conical manifolds. However, there is a nice theory of weighted analogues of these spaces
that are designed especially to deal with functional analytic issues arising on asymptotic-
ally conical manifolds. As far it could be determined, the idea of weighted function spaces
originates from [Can75] who defined these spaces on Rn, motivated by work in [NW73].
An exceptionally clearly written exposé about weighted function spaces can be found in
[Pac13], here we recall only the essentials (but cf. also [McO79, CBC81, LM85, Bar86]).

Given an asymptotically conical manifold (M, g) ∈ AC (gcone, φ, τ) and a radius function
ρ ∈ C∞(M), we define the following Banach spaces of sections of a vector bundle E → M
endowed with a bundle metric and a metric connection ∇.

Definition 7.13 (cf. [Pac13, Section 5] and [DK20, page 5]). The weighted Sobolev space
with order k ∈ N, degree p ≥ 1, and rate δ ∈ R is

W k,p
δ (E) := Banach space completion of the space

{
s ∈ Γ∞ (E)

∣∣∣∣‖s‖Wk,p
δ

(E)

}
with respect to the norm

‖s‖
Wk,p
δ

(E) :=

 k∑
j=0

∫
M
|ρ−δ−j∇js|pρ− dimM volg

1/p

.
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We also introduce Hk
δ (E) := W k,2

δ (E). This is a Hilbert space. The weighted space of Ck
sections of rate δ ∈ R is defined similarly as

Ckδ (E) := Banach space completion of the space
{
s ∈ Γ∞ (E)

∣∣∣‖s‖Ck
δ

(E)

}
with respect to the norm

‖s‖Ck
δ

(E) :=
k∑
j=0

sup |ρ−δ−j∇js|.

The weighted Hölder space with order k ∈ N, rate δ ∈ R and Hölder exponent α ∈ (0, 1) is
defined as

Ck,αδ (E) :=
{
s ∈ Ckδ (E)

∣∣∣∣‖s‖Ck,α
δ

(E) <∞
}
,

where

‖s‖
Ck,α
δ

(E) := ‖s‖Ck
δ

(E)

+ sup
x,y∈M

0<distg(x,y)<inj(M,g)

min
{
ρ−δ+k+α(x), ρ−δ+k+α(y)

} ∣∣∣τyx∇ks(x)−∇ks(y)
∣∣∣

|distg(x, y)|α ,

where τyx denotes the parallel transport along the (unique) shortest geodesic from x to y.

Evidently, if s ∈ Ckδ (E), then s = O
(
ρδ
)
.

Remark 7.14. The notation for weighted spaces is not standardized in the literature. We
follow in this thesis the convention of [Pac13] and [Bar86].

Since different radius functions may differ only in the core, we have the following.

Lemma 7.15. Different choices of the radius function lead to equivalent norms on the
weighted Sobolev spaces.

Weighted Sobolev and Hölder spaces are convenient to work with because analogues of
several theorems for classical Sobolev and Hölder hold.

Theorem 7.16 (Weighted Sobolev embeddings). Let E → M be a vector bundle with
metric and a metric connection.

• If k ≥ l ≥ 0 and k − n
p ≥ l −

n
q and one of the following conditions hold

(a) p ≤ q and β ≤ δ
(b) p < q and β < δ,

then there is a continuous embedding W p,k
β (E) ≤W q,l

δ (E).

• If β1 ≤ β2 and k1 +α1 ≥ k2 +α2, then there are continuous embeddings Ck1+1
β (E) ≤

Ck1,α1
β1

(E) ≤ Ck2,α2
β2

(E) ≤ Ck2
β2

(E) and Ck1
β1

(E) ≤ Ck2
β2

(E).
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• If β < δ and k−n
p ≥ l+α, then there are continuous embeddingsW p,k

β (E) ≤ C l,αβ (E) ≤
W q,l
δ (E).

Proof. Cf. [Mar02, Theorem 4.17].

The following version of the Sobolev inequality holds on asymptotically conical mani-
folds.

Theorem 7.17 (Sobolev inequality). Let (M, g) be an asymptotically conical manifold of
dimension m and decay rate −τ < 0. Then there is a constant C ∈ R such that

‖f‖Ln/(n−1)(RM ,g)
≤ C‖df‖L1(T ∗M,g)

holds for all compactly supported smooth functions f ∈ C∞c (M).

Proof. Cf. [vC10, Theorem 2.6] or [Hei11, Theorem 1.2].

Proposition 7.18 (Weighted Hölder inequality, cf. e.g. [Pac13, Lemma 6.7]). Let (M, g) ∈
AC (gcone, φ, δ) be an asymptotically conical manifold, and let (Ek, (·, ·)k)→M be Hermitian
bundles, k = 1, 2. Let β1, β2 ∈ R and q1, q2 ∈ (0,∞]. Then Lq1

β1
(E1) ⊗ Lq2

β2
(E2) ⊂ Lqβ(E)

where E := E1 ⊗ E2, β := β1 + β2 and 1
q := 1

q1
+ 1

q2
. If ? : E1 ⊗ E2 → F is a uniformly

bounded bundle map, then there is a constant C = C(?) such that (with the usual infix
notation)

‖u1 ? u2‖Lq
β

(F ) ≤ C‖u1‖Lq1
β1

(E1)‖u2‖Lq2
β2

(E2).

Proof. It suffices to show the claim for decomposable tensors. Let u1 ∈ Lq1
β1

(E1) and u2 ∈
Lq2
β2

(E2). Then

‖u1 ⊗ u2‖Lq
β

(E) =
(∫

M
|ρ−βu1 ⊗ u2|qρ− dimM volg

)1/q

=
(∫

M

(
ρ−βρ− dimM/q

)q
|u1|q|u2|q volg

)1/q

=
(∫

M

∣∣∣ρ−β1ρ− dimM/q1u1
∣∣∣q ∣∣∣ρ−β2ρ−dimM/q2u2

∣∣∣q volg
)1/q

=
∥∥∥ρ−β1ρ− dimM/q1 |u1| · ρ−β2ρ−dimM/q2 |u2|

∥∥∥
Lq(E)

(?)
≤
∥∥∥ρ−β1ρ− dimM/q1u1

∥∥∥
Lq1 (E1)

·
∥∥∥ρ−β2ρ− dimM/q2u2

∥∥∥
Lq2 (E2)

=
(∫

M
|ρ−β1u1|q1ρ− dimM volg

)1/q1

·
(∫

M
|ρ−β2u2|q2ρ− dimM volg

)1/q2

= ‖u1‖Lq1
β1

(E1)‖u2‖Lq2
β2

(E2),

where we used the ordinary Hölder inequality in the marked step. The last claim follows
similarly.

As an example of how calculations in weighted Sobolev spaces are done, consider the
following lemma.
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Lemma 7.19. Let (M, gac) ∈ AC (gcone, φ, τ) be an asymptotically conical manifold with
asympotic link (L, gL) and let ρ ∈ C∞(M) be a radius function. Then if α < β then ρα ∈
Lpβ(RM ).

Proof. Let K ⊂M be a compact set outside which ρ = r ◦ φ (this is a suitable choice for a
core). Without loss of generality, we may choose K := Core(R) for some R > 0. Then we
calculate

‖ρα‖p
Lp
β

(RM ) =
∫
M

(ρ−β|ρα|)pρ− dimM volgac =
∫
M

(ρ(−β+α)p−dimM volgac

=
∫
K
ρ(−β+α)p−dimM volgac +

∫
M\K

ρ(−β+α)p−dimM volgac

≤ C1 + C2

∫
M\K

ρ(−β+α)p−dimM volφ∗gcone

≤ C1 + C2

∫
M\K

r(−β+α)p−dimM volgcone

≤ C1 + C2

∫ ∞
R

∫
L
r(−β+α)p−dimMrdimM−1 volgL dr

≤ C1 + C2 VolgL(L)
∫ ∞
R

r(−β+α)p−1dr <∞.

7.4 Some formulas involving higher covariant derivatives

In this section we develop a few formulas that relate higher covariant derivatives with
respect to different connections, with a special emphasis on Levi-Civita connections and
decay rates.

Covariant derivatives of the difference tensor We prove a few general lemmata
about tensor fields related to different Riemannian metrics. Let g and g′ be two Riemannian
metrics on a manifoldM , and set h := g′−g. Let the corresponding Levi-Civita connections
be ∇ and ∇′. Then due to torsion freeness of both ∇ and ∇′, it is known that T := ∇′−∇
is a (2,1)-tensor field which is symmetric, i.e. T (X,Y ) = T (Y,X) for all X,Y ∈ TM . This
tensor field can be determined by a Koszul style formula.

Lemma 7.20. In the setting above, we have 2g′(T (X,Y ), Z) = −(∇Zh)(X,Y )+(∇Xh)(Y,Z)+
(∇Y h)(Z,X) for any X,Y, Z ∈ TM . Moreover, for the pointwise norms, we have |T |g′ ≤
3
2 |∇h|g′.

Proof. By g′ compatibility of ∇′, we obtain for X,Y, Z ∈ TM

0 = (∇′Zg′)(X,Y ) = Z(g′(X,Y ))− g′(∇′ZX,Y )− g′(X,∇′ZY )
= Z(g(X,Y )) + Z(h(X,Y ))
− g(∇ZX,Y )− g(T (Z,X), Y )− h(∇ZX,Y )− h(T (Z,X), Y )
− g(X,∇ZY )− g(X,T (Z, Y ))− h(X,∇ZY )− h(X,T (Z, Y ))

= (∇Zg)(X,Y ) + (∇Zh)(X,Y ), Y ))− g(T (Z,X), Y )− h(T (Z,X), Y )− g(X,T (Z, Y )).
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Thus, by permutation of the arguments, we obtain

0 = (∇Zh)(X,Y )− g′(T (Z,X), Y )− g′(X,T (Z, Y )), (7.2)
0 = (∇Xh)(Y,Z)− g′(T (X,Y ), Z)− g′(Y, T (X,Z)), (7.3)
0 = (∇Y h)(Z,X)− g′(T (Y,Z), X)− g′(Z, T (Y,X)). (7.4)

Therefore, the linear combination −(7.2) + (7.3) + (7.4) yields

0 = −(∇Zh)(X,Y ) + g′(T (X,Z), Y ) + g′(T (Y,Z), X)
+ (∇Xh)(Y, Z)− g′(T (Y,X), Z)− g′(T (Z,X), Y )
+ (∇Y h)(Z,X)− g′(T (Z, Y ), X)− g′(T (X,Y ), Z)

= −(∇Zh)(X,Y ) + (∇Xh)(Y,Z) + (∇Y h)(Z,X)− 2g′(T (X,Y ), Z).

Rearranging gives the first part of the claim.
For the second claim, we are going to use the fact that for any metric B : V ⊗ V → R

and any vectors v1, . . . , vk ∈ V , we have

B(v1 + · · ·+ vk, v1 + · · ·+ vk) ≤ k · (B(v1, v1) + · · ·+B(vk, vk)),

which follows from the Cauchy–Schwarz inequality and the inequality between geometric
and arithmetic means.

For a g′-orthonormal frame (ei)i∈I , we have

|T |2g′ =
∑

i,j,k∈I
g′(T (ei, ej), ek)2

=
∑

i,j,k∈I

1
4
(
−(∇ekh)(ei, ej) + (∇eih)(ej , ek) + (∇ejh)(ei, ek)

)2

(?)
≤

∑
i,j,k∈I

1
4
(
(∇ekh)(ei, ej)2 + (∇eih)(ej , ek)2 + (∇ejh)(ei, ek)2

)
= 9

4 |∇h|
2
g′ ,

where we used the estimate given earlier to establish the inequality in the step marked
by (?).

As we will see, for the curvature, it is useful to know what the covariant derivative ∇T
looks like. We can give a similar, Koszul style characterization via the metric g′.

Lemma 7.21. In the setting above, for X,Y, Z,W ∈ TM , we have

2g′((∇WT )(X,Y ), Z) = −(∇2
W,Zh)(X,Y )+(∇2

W,Xh)(Y,Z)+(∇2
W,Y h)(X,Z)−2(∇Wh)(T (X,Y ), Z).

Moreover, |∇T |2g′ ≤ 3|∇2h|2g′ + 9|∇h|4g′.

Proof. The strategy is to derive the statement of Lemma 7.20 with respect to W .

∇W (2g′(T (X,Y ), Z)) = ∇W (−(∇Zh)(X,Y ) + (∇Xh)(Y,Z) + (∇Y h)(Z,X)).
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By the product rule we obtain

2(∇W g′)(T (X,Y ), Z) + 2g′((∇WT )(X,Y ), Z)
+ 2g′(T (∇WX), Y ), Z) + 2g′(T (X,∇WY ), Z) + 2g′(T (X,Y ),∇WZ)

= (−∇W (∇Zh))(X,Y )− (∇Zh)(∇WX,Y )− (∇Zh)(X,∇WY )
+ (∇W (∇Xh))(Y, Z) + (∇Xh)(∇WY, Z) + (∇Xh)(Y,∇WZ)
+ (∇W (∇Y h))(X,Z) + (∇Y h)(∇WX,Z)− (∇Y h)(X,∇WZ).

Separating the term we want to express on the left-hand side, we get

2g′((∇WT )(X,Y ), Z) = (−∇W (∇Zh))(X,Y )− (∇Zh)(∇WX,Y )− (∇Zh)(X,∇Y )
+ (∇W (∇Xh))(Y,Z) + (∇Xh)(∇WY,Z) + (∇Y h)(Y,∇WZ)
+ (∇W (∇Y h))(X,Z) + (∇Y h)(∇WX,Z) + (∇Y h)(X,∇WZ)
− 2(∇W g′)(T (X,Y ), Z)− 2g′(T (∇WX,Y ), Z)
− 2g′(T (X,∇WY ), Z)− 2g′(T (X,Y ),∇WZ).

Using Lemma 7.20 for g′(T (·, ·), ·), we obtain

= −(∇W (∇Zh))(X,Y )− (∇Zh)(∇WX,Y )− (∇Zh)(X,∇WY )
+ (∇W (∇Xh))(Y,Z) + (∇Xh)(∇WY,Z) + (∇Xh)(Y,∇WZ)
+ (∇W (∇Y h))(X,Z) + (∇Y h)(∇WZ) + (∇Y h)(X,∇WZ)
− 2(∇W g′)(T (X,Y ), Z)
+ (∇Zh)(∇WX,Y )− (∇∇WXh)(Y, Z)− (∇Y h)(∇WX,Z)
+ (∇Zh)(X,∇WY )− (∇Xh)(∇WY,Z) + (∇∇WY h)(X,Z)
+ (∇∇WZh)(X,Y )− (∇Xh)(Y,∇WZ)− (∇Y h)(X,∇WZ)

= −(∇2
W,Zh)(X,Y ) + (∇2

W,Xh)(Y,Z)
+ (∇2

W,Y h)(X,Z)− 2(∇W g′)(T (X,Y ), Z)
= −(∇2

W,Zh)(X,Y ) + (∇2
W,Xh)(Y,Z)

+ (∇2
W,Y h)(X,Z)− 2(∇Wh)(T (X,Y ), Z),

as claimed.
For the claim about the norms, choose a g′-orthogonal frame (ei)i∈I to calculate

|∇T |2g′ =
∑

i,j,k,l∈I
g′((∇eiT )(ej , ek), el)2

= 1
4

∑
i,j,k,l∈I

(−(∇2
el,ek

h)(ei, ej) + (∇2
el,el

h)(ej , ek) + (∇2
el,ej

h)(ei, ek)

− 2(∇ekh)(T (ei, ej), ek))2

≤ 4
4

∑
i,j,k,l∈I

(−(∇2
el,ek

h)(ei, ej)2(∇2
el,el

h)(ej , ek)2 + (∇2
el,ej

h)(ei, ek)2

+ 4(∇ekh)(T (ei, ej), ek)2)
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= 3|∇2h|2g + 4|∇h ? T |2g
≤ 3|∇2h|2g′ + 4|∇h|2g′ |T |2g′
≤ 3|∇2h|2g′ + 9|∇h|4g′

where we used the inequality from the proof of the last lemma, the fact that the induced
norm on tensors is submultiplicative with respect to compositions, and Lemma 7.20.

In principle, we could continue this pattern to derive a Koszul style formula for even
higher order partial derivatives in terms covariant derivatives of the difference tensor h of
ever increasing order. However, for our purposes, this cumbersome road would give too much
information—we need only the decay information after all. This is why we introduce the
following simplifying notation. Let T ? S denote any R-linear combination of contractions
of the tensor fields T and S. The meaning of ? can change from line to line but it remains
an associative operation. Moreover, let PT denote any R-linear combination of the tensor
T with permuted arguments.

With this notation, we can rewrite the statement of Lemma 7.21 as

∇T = P∇2h− (∇h) ? T = P∇2h+ (∇h) ? (P∇h) = P (∇2h+ (∇h) ? (∇h)).

From this, we can easily read off how the norm behaves:

|∇T |g = |P (∇2h+ (∇h) ? (∇h))|g
= C1|∇2h|g + C2|(∇h) ? (∇h)|g
= C1|∇2h|g + C3|∇h|2g
= O

(
r−τ−2

)
+O

(
r2·(−τ−1)

)
= O

(
r−τ−2

)
.

With this simplified notation, we can state and prove the following statement.

Lemma 7.22. Let g′, g be Riemannian metrics on a smooth manifold, and let h := g′ − g,
and T := ∇g′ −∇g. Then

∇g,kT = P

∇g,k+1h+
k+1∑
p=0

(∇g,ph) ? (∇g,k+1−ph)

 ,
where k ∈ N. In particular, if |∇g,kh|g = O

(
r−τ−k

)
, then |∇g,kT |g = O

(
r−τ−k−1

)
.

Proof. We have seen the statement for k = 0 and k = 1 before in Lemmata 7.20 and 7.21.
For k > 1, we can show the statement using induction and the Leibniz rule.

Covariant derivatives of the curvature tensors Armed with these results, we can
now express the curvature R′ of g′ in terms of the curvature R of g and various covariant
derivatives of the tensors h and T .
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Lemma 7.23. In terms of the data above, R′(X,Y )Z = R(X,Y )Z + (∇XT )(Y,Z) −
(∇Y T )(X,V ) + T (X,T (Y, Z)) − T (Y, T (X,Z)) for X,Y, Z ∈ TM . For covariant deriv-
atives with respect to g, we have ∇kR′ = ∇kR +

∑k+1
l=0 (∇lT ) ? (∇k+1−lT ) where ? denotes

a contraction. In particular |R′|g = O
(
r−2) and |∇k(R′ −R)|g = O

(
r−τ−2−k

)
.

Proof. We will treat the cases separately, based on the value of k.

k = 0: Let X,Y, Z ∈ TM . The second covariant derivative with respect to the metric g′
can be calculated as

(∇′)2
X,Y Z = ∇′X(∇′Y Z)−∇′∇′XY Z

= (∇X + T (X, ·)) ◦ (∇Y + T (Y, ·))(Z)−∇∇XY+T (X,Y )(Z)
− T (∇XY + T (X,Y ), Z)

= ∇2
X,Y Z + (∇XT )(Y, Z) + T (∇XY,Z) + T (Y,∇XZ)

+ T (X,∇Y Z) + T (X,T (Y,Z))−∇T (X,Y )Z − T (∇XY, Z)
+ T (T (X,Y ), Z)

The curvature tensor is the antisymmetrization of the second covariant derivative,
therefore the fact that T is symmetric yields

R′(X,Y )Z = ∇′X,Y Z −∇′Y,XZ
= R(X,Y )Z + (∇XT )(Y,Z)− (∇Y T )(X,Z) (7.5)

+ T (X,T (Y,Z))− T (Y, T (X,Z))
= (R+ P∇T − T ? T )(X,Y, Z). (7.6)

Based on this equation, the triangle inequality implies that the pointwise norm satis-
fies

|R′|g′ ≤ |R|g′ + 2|∇T |g′ + 2|T ◦ (T ⊗ idTM )|g′
≤ |R|g + 2|∇T |g + 2|T |2g′

= O
(
r−2

)
+O

(
r−τ−2

)
+O

(
r2·(−τ−1)

)
= O

(
r−2

)
.

Similarly, we obtain that |R′ − R|g′ = O
(
r−τ−2). By Lemma 7.5, we have the same

decay rate in the g-norm, too.

k > 0: The starting point of the argument is Equation (7.5). Taking the kth covariant
derivative implies, using the Leibniz rule, the statement. The decay rate follows from
a similar argument as in the case k = 0.

Higher covariant derivatives of tensor fields Next we relate higher-order covariant
derivative of any tensor field to each other.

We start with a naturality statement.
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Lemma 7.24. Let M and N be smooth manifolds and let φ : M → N be a diffeomorphism.
Moreover, let g ∈ Met (N) and let S ∈ Γ∞ ((T ∗N)⊗r) be a tensor field. Then for any k ∈ N,
we have |∇φ∗g,k(φ∗S)|φ∗g = φ∗

(
|∇g,kS|g

)
.

Proof. One checks that |φ∗S|φ∗g = φ∗ (|S|g) for any tensor field T , which is incidentally the
claim for k = 0. Next, elementary calculations show that ∇φ∗g(φ∗S) = φ∗(∇gS). The claim
now follows by induction:

|∇φ∗g,k+1(φ∗S)|φ∗g = |∇φ∗g,k(∇φ∗g(φ∗S))|φ∗g
= |∇φ∗g,k(φ∗(∇gS))|φ∗g
= φ∗

(
|∇g,k(∇gS)|g

)
= φ∗

(
|∇g,k+1S|g

)
Lemma 7.25. Let M be a smooth manifold and let ∇, ∇̄ be two connections on M and set
T := ∇̄ − ∇. Moreover, let S ∈ Γ∞ ((T ∗M)⊗s) be a tensor field. Then for any k ∈ N, we
have

∇̄kS =
k∑

p,q,r=0
p+q+r=k

(∇pS) ?∇q(T ? · · · ? T︸ ︷︷ ︸
r times

),

where ? denotes a multilinear operator which factors through the tensor product via a ∇-
covariantly constant map.

Proof. We can work using induction. The case k = 0 is trivial. Note that ∇(A ? B) =
(∇A) ? B +A ? (∇B) because of ∇-covariant constancy of ?. Thus we have by the Leibniz
rule

∇̄k+1S = ∇̄(∇̄kS) = ∇̄

 k∑
p,q,r=0
p+q+r=k

(∇pS) ?∇q(T ? · · · ? T︸ ︷︷ ︸
r times

)



= (∇+ T )

 k∑
p,q,r=0
p+q+r=k

(∇pS) ?∇q(T ? · · · ? T︸ ︷︷ ︸
r times

)


=

k∑
p,q,r=0
p+q+r=k

(∇p+1S) ?∇q(T ? · · · ? T︸ ︷︷ ︸
r times

) + (∇pS) ?∇q+1(T ? · · · ? T︸ ︷︷ ︸
r times

)

+ T ? (∇pS) ?∇q(T ? · · · ? T︸ ︷︷ ︸
r times

)


=

k∑
p,q,r=0
p+q+r=k

(∇p+1S) ?∇q(T ? · · · ? T︸ ︷︷ ︸
r times

) + (∇pS) ?∇q+1(T ? · · · ? T︸ ︷︷ ︸
r times

)

+ (∇pS) ?∇q(T ? · · · ? T︸ ︷︷ ︸
r+1 times

)
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=
k+1∑

p,q,r=0
p+q+r=k+1

(∇pS) ?∇q(T ? · · · ? T︸ ︷︷ ︸
r times

).

In the context of asymptotically conical metrics, we have the following corollary.

Corollary 7.26. LetM be a smooth manifold, let g ∈ Met (M) be an asymptotically conical
metric and let ḡ ∈ Met (M) be another Riemannian metric with h := ḡ − g satisfying
|∇g,kh|g = O

(
ρ−τ−k

)
. Moreover, let S be a tensor field with |∇g,kS|g = O

(
ρ−α−k

)
. Then

|∇ḡ,kh|ḡ = O
(
ρ−α−k

)
as well.

Proof. We proceed in three steps.

• From Lemma 7.22, we know that

∇k,aT = ∇g,a+1h+
a+1∑
p=0

(∇g,ph) ? (∇g,a+1−ph)

= O
(
ρ−τ−a−1

)
+
a+1∑
p=0

O
(
ρ−τ−p

)
O
(
ρ−τ−a−1+p

)
= O

(
ρ−τ−a−1

)
,

thus we obtain from the Leibniz rule that

∇g,q(T ? · · · ? T︸ ︷︷ ︸
k times

) =
q∑

a1,...,ak=
a1+···+ak=q

(∇g,a1T ) ? · · · ? (∇g,akT )

=
q∑

a1,...,ak=
a1+···+ak=q

O
(
ρ−τ−a1−1

)
. . . O

(
ρ−τ−ak−1

)

= O
(
ρ−kτ−q−k

)
= O

(
ρ−q(ρ−τ−1)k

)
.

(This means each derivative introduces a factor ρ−1 and each “power” of T introduces
a factor ρ−τ−1.)

• By Lemma 7.25, we obtain now

∇ḡ,kS =
k∑

p,q,r=0
p+q+r=k

(∇g,pS) ?∇g,q(T ? · · · ? T︸ ︷︷ ︸
r times

)

=
k∑

p,q,r=0
p+q+r=k

(∇g,pS) ? O
(
ρ−rτ−q−r

)
.

• Since the pointwise metrics induced by ḡ and g are equivalent by Lemma 7.5, we
obtain

|∇ḡ,kS|ḡ ≤ C1|∇ḡ,kS|g(1 +O
(
ρ−τ

)
)
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≤ C1|
k∑

p,q,r=0
p+q+r=k

(∇g,pS) ? O
(
ρ−rτ−q−r

)
|g(1 +O

(
ρ−τ

)
)

≤ C2

k∑
p,q,r=0
p+q+r=k

|(∇g,pS)|gO
(
ρ−rτ−q−r

)
(1 +O

(
ρ−τ

)
)

≤ C2

k∑
p,q,r=0
p+q+r=k

O
(
ρ−α−p

)
O
(
ρ−rτ−q−r

)
(1 +O

(
ρ−τ

)
)

= O
(
ρ−α−k

)
(1 +O

(
ρ−τ

)
) = O

(
ρ−α−k

)
.

7.5 Pointwise injectivity radius on asymptotically conical man-
ifolds

The goal of this section is to show that on an asympototically conical manifold, far enough
from the core, the injectivity radius grows at least linearly.

7.5.1 Pullback to a reference set

First, we show that the pointwise norm of the difference gac − gcone at a homothetically
rescaled point can be calculated via a rescaled version of the pullback.

Lemma 7.27. Fix t ∈ R and let φt := FlZt . Then we have for the pointwise norms that

1. |e−2tφ∗t gac − gcone|gcone = |gac − gcone|gcone ◦ φt,

2. |∇gcone(e−2tφ∗t gac − gcone)|gcone = |∇gcone(gac − gcone)|gcone ◦ φt,

3. |∇gcone,2(e−2tφ∗t gac − gcone)|gcone = |∇gcone,2(gac − gcone)|gcone ◦ φt.

Proof. This is an easy calculation using that φ∗t gcone = e2tgcone, the properties of the point-
wise norm under pushforwards and rescalings and naturality of the Levi-Civita connection.

1.

e2t|e−2tφ∗t gac − gcone|gcone = |φ∗t gac − e2tgcone|gcone

= |φ∗t (gac − gcone)|gcone

= |gac − gcone|(φt)∗gcone ◦ φt
= e2t|gac − gcone|gcone ◦ φt

2.

|∇gcone(e−2tφ∗t gac − gcone)|gcone = e−2t|∇gcone(φ∗t gac)|gcone

= e−2t|∇φ∗t gcone(φ∗t gac)|e−2tφ∗t gcone
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= |(φ∗t∇gcone)(φ∗t gac)|φ∗t gcone

= |∇gconegac|gcone ◦ φt
= |∇gcone(gac − gcone)|gcone ◦ φt

3. This is basically the same as in the last item.

Using this lemma, we can express the C2-norm on a homothetically rescaled compact
subset.

Lemma 7.28. Let K ⊂ M be a compact subset and t ∈ R such that φt(K) ⊂ M \
Core(Rasy). Then ‖gac− gcone‖C2(S2T ∗M |φt(K),gcone) = ‖e−2tφ∗t gac− gcone‖C2(S2T ∗M |K ,gcone) ≤

ρK
−τe−τt

(
C0 + C1

ρKet
+ C2

ρ2
Ke

2t

)
, where ρK := min {ρ(p) |p ∈ K}. In particular if t > 0

and K ⊂ M \ Core(Rasy), we have ‖gac − gcone‖C2(S2T ∗M |φt(K),gcone) ≤ Ce−τt with C :=

ρ−τK

(
C0 + C1

ρK
+ C2

ρ2
K

)
.

Proof.

‖e−2tφ∗t gac − gcone‖2C2(S2T ∗M |K ,gcone) = sup


|e−2tφ∗t gac − gcone|2gcone(p)
+|∇gcone(e−2tφ∗t gac − gcone)|2gcone(p)
+|∇gcone,2(e−2tφ∗t gac − gcone)|2gcone(p)

∣∣∣∣∣∣∣p ∈ K


= sup


|gac − gcone|2gcone(φt(p))
+|∇gcone(gac − gcone)|2gcone(φt(p))
+|∇gcone,2(gac − gcone)|2gcone(φt(p))

∣∣∣∣∣∣∣p ∈ K


= sup


|gac − gcone|2gcone(q)
+|∇gcone(gac − gcone)|2gcone(q)
+|∇gcone,2(gac − gcone)|2gcone(q)

∣∣∣∣∣∣∣q ∈ φt(K)


Using that φt(K) ⊂M \ Core(Rasy), we obtain the estimate

≤ sup


C0ρ(φt(q))−τ
+C1ρ(φt(q))−τ−1

+C2ρ(φt(q))−τ−2

∣∣∣∣∣∣∣q ∈ K


Using that ρ ◦ φt = etρ, we obtain

= sup


C0ρ(q)−τe−τt
+C1ρ(q)−τ−1e(−τ−1)t

+C2ρ(q)−τ−2e(−τ−2)t

∣∣∣∣∣∣∣q ∈ K


≤ C0ρ
−τ
K e−τt + C1ρ

−τ−1
K e(−τ−1)t + C2ρ

−τ−2
K e(−τ−2)t

= ρ−τK

(
C0 + C1

ρKet
+ C2
ρ2
Ke

2t

)
e−τt.

In case t > 0, the parentheses can be estimated by its value at t = 0.
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7.5.2 Lower semicontinuity of the injectivity radius function

We state a few useful calculation rules for the injectivity radius.

Lemma 7.29. Let p ∈ M , g ∈ Met (M), α > 0, φ : M → M a diffeomorphism and let
U ⊂M be a neighbourhood of p in M . Then

1. injα2g(p) = α injg(p),

2. and injφ∗g(p) = injg(φ(p)),

3. injg|U (p) ≤ injg(p).

Proof. 1. Since the Koszul formula implies that the Levi-Civita connections for g and
α2g are equal, the corresponding exponential maps coincide. This means in particular
that the largest subset U of TpM which gets mapped diffeomorphically ontoM is also
independent of α (as long as α > 0 holds). However, the injectivity radius, i.e. the
supremum of the radii of balls lying entirely in U does depend on the scaling.
Since for the pointwise norm of Xp ∈ TpM , we have |X|α2g =

√
α2g(X,X) = α|X|g,

we have Bα2g
r (0) = Bg

r/α(0) in TpM . Consequently

injp(α2g) = sup
{
r > 0

∣∣∣Bα2g
r (0p) ⊂ U

}
= sup

{
r > 0

∣∣∣Bg
r/α(0p) ⊂ U

}
= sup {αR > 0 |Bg

R(0p) ⊂ U} = α sup {R > 0 |Bg
R(0p) ⊂ U} = α injp(g).

2. Since φ : M →M is a diffeomorphism, the differential dφp : TpM → Tφ(p)M is a linear
isomorphism, therefore we obtain the following relation for balls in the tangent space

Bφ∗g
r (0p) =

{
X ∈ TpM

∣∣∣(φ∗)p(X,X) < r2
}

=
{
dφ−1

φ(p)Y ∈ TpM
∣∣∣(φ∗g)p(dφ−1

φ(p)Y, dφ
−1
φ(p)Y ) < r2

}
=
{
dφ−1

φ(p)Y ∈ TpM
∣∣∣gφ(p)(Y, Y ) < r2

}
= dφ−1

φ(p)

{
Y ∈ TpM

∣∣∣gφ(p)(Y, Y ) < r2
}

= dφ−1
φ(p)B

b
r(0φ(p)).

Now using the fact that the exponential map of a pullback metric is the pullback of
the exponential map of the original metric, we obtain

injp(φ∗g) = sup
{
r > 0

∣∣∣ expφ∗gp : Bφ∗g
r (0p)→M is a diffeomorphism onto its image

}
= sup

{
r > 0

∣∣∣(φ∗ expg)p : Bφ∗g
r (0p)→M is a diffeo. onto its image

}
= sup

{
r > 0

∣∣∣(φ∗ expg)p : dφ−1
φ(p)B

g
r (0φ(p))→M is a diffeo. onto its image

}
= sup

{
r > 0

∣∣∣ expgp : Bg
r (0φ(p))→M is a diffeo. onto its image

}
= injφ(p) g

as claimed.
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3. If Bg
injp(g)(p) ⊂ U , then injg|U (p) ≤ injg(p). Otherwise injg|U (p) ≤ injg(p) since at least

one g-geodesic must leave U before reaching the injectivity radius of g at p.

It is a fundamental result of Riemannian geometry that, for a fixed metric, the pointwise
injectivity radius function injg : M → R is continuous. Paul Ewing Ehrlich showed that, on
compact manifolds, we can say more. Recall that a function f : X → R from a topological
space X is lower semicontinuous if it is continuous with respect to the left order topology
on R, i.e. if for any point x ∈ X and any ε > 0, there is an open neighbourhood U = U(x, ε)
of x such that f |Ux > f(x)− ε. All continuous functions are lower semicontinuous and it is
an easy exercise to show that the pointwise minimum of lower semicontinuous functions is
again lower semicontinuous.

Proposition 7.30 ([Ehr74, Chapter 6, Theorem 1]). Let M be a compact manifold. Then
the map

inj : C2(Met (M))×M → R

is lower semicontinuous.

The situation is more delicate in case of noncompact manifolds but one can localize the
previous result.

Corollary 7.31 ([Ehr74, Chapter 6, Remark after Theorem 1]). Let (M, g0) be a complete
noncompact Riemannian manifold with injg0(p0) <∞ at some p0 ∈M . Moreover, let K :=
Bg0

injg0 (p0)(p0). Then the function inj : C2(Met (M) |K)×K → R is lower semicontinuous at
(g0, p0).

Remark 7.32. If (M, g0) is a complete connected Riemannian manifold with inj g0 = ∞,
then the exponential map shows that M is diffeomorphic to RdimM = Cone(SdimM−1).
This means in turn that all asymptotically conical metrics living on M are necessarily
asymptotically Euclidean. These metrics, having been thoroughly investigated elsewhere, are
not our main concern here.

Next, we prove a general lemma about lower semicontinuous functions and “restrictions”
to compact subsets.

Lemma 7.33. Let (M, g) be a Riemannian manifold and let (E, 〈·, ·〉,∇) be a vector bundle
on M with inner product and compatible connection. Furthermore, let K ⊂ M be a com-
pact submanifold. Let F : Ck(E) × M → R be a lower semicontinuous function. Then
f : Ck(E|K)×K → R, (σ, p) 7→ F (σ, p) is lower semicontinuous.

Proof. Let ι : K → M denote the embedding. This map induces the restriction map
ι∗ : Ck(E)→ Ck(E|K), which is continuous by the following calculation

‖ι∗σ‖Ck(E|K) = sup
{

k∑
a=0
|∇aσ|p

∣∣∣∣∣p ∈ K
}
≤ sup

{
k∑
a=0
|∇aσ|p

∣∣∣∣∣p ∈M
}

= ‖σ‖Ck(E).

Since f = F ◦ (ι∗, ι) all the maps on the left-hand side are lower semicontinuous, f itself is
lower semicontinuous.

79



7.5. POINTWISE INJECTIVITY RADIUS ON ASYMPTOTICALLY CONICAL MANIFOLDS

Figure 7.2: Injectivity radius in the proof of Proposition 7.34

We have arrived at the main statement of this section.

Proposition 7.34. The injectivity radius of an asymptotically conical metric grows even-
tually at least linearly. More precisely, if gac is an asymptotically conical metric with
injgac(p) 6= ∞ for some any p ∈ M , then there are constants R,C > 0 such that the
pointwise injectivity radius satisfies

injgac |M\Core(R) ≥ Cρ.

The constants R and C depend on gac via Rasy and the asymptotic constants for gac.

Proof. Let gcone be the cone metric to which the metric gac is asymptotic on Cone(Rasy).
Fix a reference radius r0 > Rasy. Now by continuity of injgcone : M → R, we get a finite
positive constant

a := min
{

min
{

injgcone(p)
∣∣∣ρ(p) = r0

}
, Rasy − r0

}
> 0.

Consider the restriction f of function min {inj, a} to C2(Met (M) |K) ×K → R where
K := {p ∈M |r0 − a ≤ ρ(p) ≤ r0 + a}. Note that K ⊂M \ Core(Rasy) by construction.

Let ε > 0. By lower semicontinuity of the injectivity radius map, for all p ∈ {q ∈M |ρ(q) = r0},
there is a δ(ε, p) > 0 such that whenever ‖g − gcone‖C2 < δ and d(p, q) < δ, we have
injg(q) > injgcone(p). In particular, we may cover the reference slice as {p |ρ(p) = r0} =
∪p∈{p |ρ(p)=r0}Bp(δ(ε, p)). Since the reference slice is compact, there is a finite subcover. Let
δmin and δmax denote the smallest and the biggest δ from this finite subcover, respectively.

Choosing ε := a/2, we obtain for any metric g with ‖g − gcone‖C2(gcone) < δmin that

injq(g) > injp(gcone) ≥ a− ε = a/2.

Let p ∈M with ρ(p) ≥
(

2C
δmin

)1/τ
r0 =: R where C denotes the constant from Lemma 7.28

for K := {p ∈M |ρ(p) = r0}. Moreover, let t ∈ R be such that p0 := FlZ−t p ∈ K. Since we
have ρ(p) = r0e

t, thus for the metric g := e2tgac, we obtain that

‖e2tgac − gcone‖C2,K = ‖gac − gcone‖C2,FlZt (K) ≤ Ce
−τt
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= C

(
ρ(p)
r0

)−τ
= δmin

2 < δmin,

therefore by the calculation rules for the injectivity radius derived in Lemma 7.29, we obtain
r0
ρ(p) injg(p) = e−t injg(p) = inje−2tgac(p) ≥ inje−2tgcone(p) = inj(FlZ−t)∗gcone

(p)

= injgcone(FlZ−t p) = injgcone(p0) ≥ a/2.

Therefore
injg(p) ≥

a

2r0
ρ(p)

for ρ(p) > R, as claimed.
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Chapter 8

The DeTurck map and gauged
metrics

8.1 The DeTurck map

The Ricci flow has some inconvenient analytic properties which can be remedied by adding
an extra term to the evolution equation. This term – called DeTurck’s term – is the Lie
derivative of the metric with respect to a certain vector field. This vector field depends on
the current metric and an arbitrary reference metric, and can be thought of as a first-order
nonlinear differential operator

V : Met (M)×Met (M)→ X(M), (g1, g2) 7→
(
δg1g2 −

1
2dTrg1 g2

)]g2
.

In this thesis, we will call this operator the DeTurck map. In the evolution equation of the
Ricci–DeTurck flow, the second argument if a fixed reference metric and the first argument
is the actually evolving family of metrics. Nonetheless, it is worth investigating properties
of the full DeTurck map.

Since the DeTurck map is defined manifestly invariantly, it is now wonder it behaves
decently in the presence of diffeomorphisms.

Lemma 8.1. The DeTurck map is equivariant under diffeomorphisms. More precisely, for
any diffeomorphism φ : M → N and any two metrics g1, g2 ∈ Met (N), we have

VM (φ∗g1, φ
∗g2) = dφ−1VN (g1, g2),

where VN and VM denote the DeTurck maps on N and M , respectively.

Proof. Let {ei |i ∈ I} be a g1-orthonormal frame of TN . Note that Ei := dφei define a
φ∗g1-orthonormal frame of TM . Consequently,

Trφ∗g1 φ
∗g2 =

∑
i∈I

(φ∗g2)(ei, ei)

=
∑
i∈I

g2(dφei, dφei) ◦ φ
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=
∑
i∈I

g2(Ei, Ei) ◦ φ

= Trg1 g2 ◦ φ
= φ∗(Trg1 g2),

and therefore d(Trφ∗g1 φ
∗g2) = d(φ∗(Trg1 g2)) = φ∗(dTrg1 g2). Moreover, for any vector field

X ∈ X(M), we have

(δφ∗g1(φ∗g2))(X) = −
∑
i∈I

(
∇φ∗g1
ei (φ∗g2)

)
(ei, X)

= −
∑
i∈I

((φ∗∇g1)ei(φ∗g2)) (ei, X)

= −
∑
i∈I

((φ∗∇g1)ei(φ∗g2)) (ei, X)

= −
∑
i∈I

(φ∗(∇g1)dφeig2) (ei, X)

= −
∑
i∈I

(
∇g1
dφei

g2
)

(dφei, dφX) ◦ φ

= −
∑
i∈I

(
∇g1
Ei
g2
)

(Ei, dφX) ◦ φ

= δg1g2(dφX) ◦ φ
= φ∗(δg1g2)(X).

The claim now follows from the fact that for any λ ∈ T ∗N , any metric g ∈ Met (N) and
any diffeomorphism φ : M → N , we have (φ∗λ)]φ∗g = dφ−1λ]g .

For calculations, it is useful to have a local expression of the DeTurck vector field.

Lemma 8.2. In local coordinates, the DeTurck vector field reads

V (g1, g2)| = (g1)ij(Γ(g1)ijk − Γ(g2)ijk)∂k.

Proof. Since both sides of the statement are tensorial, it suffices to check the statement in
a single chart around each point. Let us take g1-normal coordinates around a point p ∈M
and calculate at p

(g1)ij(Γ(g1)ijk − Γ(g2)ijk)∂k = δij(0− Γ(g2)ijk)∂k
= −

∑
i∈I

Γ(g2)iik∂k

= −
∑
i∈I

1
2(∂i(g2)ia − ∂a(g2)ii + ∂i(g2)ia)(g2)ak∂k

=
∑
i∈I

(
−∂i(g2)ia(g2)ak∂k −

1
2∂a Trg1 g2(g2)ak∂k

)

=
(
δg1g2 −

1
2dTrg1 g2

)]g2
,

showing the claim.
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In order to do analysis, we will need to consider maps induced by the DeTurck map on
weighted Sobolev spaces.

Proposition 8.3. Let gb be an asymptotically conical metric on M . Moreover, let p > 1
and let k ∈ N with pk > dimM + 1 and δ ∈ R. Then there exists a neighbourhood U of gb
in W k,p

δ (S2T ∗M, gb) such that the map

W : U →W k−1,p
δ−1 (TM, gb), g 7→W (g) := V (g, gb)

is well defined.

Proof. The proof is based on the weighted Hölder inequality 7.18 and the structure of the
DeTurck map.

The linearization of the DeTurck map

Lemma 8.4. The linearization of the DeTurck map at (g1, g2) ∈ Met (M) ×Met (M) is
locally given by

DV(g1,g2)(h1, h2) = −(g1)ia(h1)ap(g1)pj(Γ(g1)ijk − Γ(g2)ijk))∂k
+ 1

2(g2)ij((∇g1
∂i
h1)jl − (∇g1

∂l
h1)ij + (∇g1

∂j
h1)il)(g1)kl∂k

− 1
2(g2)ij((∇g2

∂i
h2)jl − (∇g2

∂l
h2)ij + (∇g2

∂j
h2)il)(g2)(g_2)V (g2)kl∂k.

Proof. We may find the linearization componentwise.

• First consider, for fixed g1 ∈ Met (M), the map Z : Met (M)→ X(M), g 7→ V (g1, g).
Its Gateaux derivative at g ∈ Met (M) is given by

DZg(h) = d

dλ

∣∣∣∣
λ=0

(
(g1)ij(Γ(g)ijk − Γ(g + λh)ijk)∂k

)
= −(g1)ij d

dλ

∣∣∣∣
λ=0

(
Γ(g + λh)ijk

)
∂k.

The Gateaux derivative of the Christoffel symbols can be calculated using the co-
ordinate version of the Koszul formula.
d

dλ

∣∣∣∣
λ=0

Γ(g + λh)ijk = d

dλ

∣∣∣∣
λ=0

1
2(g + λh)kl(∂i(g + λh)jl − ∂l(g + λh)ij + ∂j(g + λh)il)

= d

dλ

∣∣∣∣
λ=0

(
1
2(g + λh)kl

)
(∂i(g + λh)jl − ∂l(g + λh)ij + ∂j(g + λh)il)|λ=0

+ 1
2(g + λh)kl|λ=0

d

dλ

∣∣∣∣
λ=0

(∂i(g + λh)jl − ∂l(g + λh)ij + ∂j(g + λh)il)

= −1
2g
kahapg

pl(∂igjl − ∂lgij + ∂jgil) + 1
2g
kl(∂ihjl − ∂lhij + ∂jhil),

where we used the fact that d
dλ

∣∣∣
λ=0

(g + λh)kl = −gkahapgpl, which can be derived
from the identity (g + λh)ka(g + λh)ap = δkp . Consequently, we have

DZg(h) = −(g1)ij
(
d

dλ

∣∣∣∣
λ=0

Γ(g + λh)ijk
)
∂k
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= 1
2(g1)ij

(
hkl(∂igjl − ∂lgij + ∂jgil)− gkl(∂ihjl − ∂lhij + ∂jhil)

)
where we used the metric g to raise indices of h. This form is not manifestly invariant;
however, we can rewrite the partial derivatives using the Levi-Civita connection of g
to obtain

DZg(h) = 1
2(g1)ij

(
hkl(∂igjl − ∂lgij + ∂jgil)− gkl(∂ihjl − ∂lhij + ∂jhil)

)
∂k

= 1
2(g1)ij(+hkl(+∇igjl + Γ(g)ijpgpl + Γ(g)ilpgjp

−∇lgij − Γ(g)lipgpj − Γ(g)ljpgip
+∇jgil + Γ(g)jipgpl + Γ(g)jlpgip)

− gkl(+∇ihjl + Γ(g)ijphpl + Γ(g)ilphjp
−∇lhij − Γ(g)liphpj − Γ(g)ljphip
+∇jhil + Γ(g)jiphpl + Γ(g)jlphip))∂k

= −1
2(g1)ij((∇g∂ih)jl − (∇g∂lh)ij + (∇g∂jh)il)gkl∂k,

where we used that expressions like hklgpl are symmetric under exchanging g and h.

• Now consider, with some fixed g2, the map W : Met (M) → X(M), g 7→ V (g, g2). Its
Gateaux derivative at the metric g ∈ Met (M) is given by

DWg(h) = d

dλ

∣∣∣∣
λ=0

((g + λh)ij(Γ(g + λh)ijk − Γ(g2)ijk))∂k

= d

dλ

∣∣∣∣
λ=0

((g + λh)ij)(Γ(g + λh)ijk − Γ(g2)ijk))|λ=0∂k

+ ((g + λh)ij)|λ=0
d

dλ

∣∣∣∣
λ=0

(Γ(g + λh)ijk − Γ(g2)ijk))∂k

= −giahapgpj(Γ(g)ijk − Γ(g2)ijk))∂k + gij
d

dλ

∣∣∣∣
λ=0

(
Γ(g + λh)ijk

)
∂k.

The second term is quite like the expression−DZg(h) = −(g1)ij d
dλ

∣∣∣
λ=0

(
Γ(g + λh)ijk

)
∂k,

except for g appearing instead of g1. This means that we can spare the calculation
and simply substitute g for g1 in the expression for −DZg(h) to obtain

DWg(h) = −giahapgpj(Γ(g)ijk − Γ(g2)ijk))∂k
+ 1

2g
ij((∇g∂ih)jl − (∇g∂lh)ij + (∇g∂jh)il)gkl∂k.

This formula is not manifestly invariant but we will not bother to rewrite it in a
manifestly invariant way, cf. Remark 8.8.

• For the Gateaux derivative of the full DeTurck map at (g1, g2) ∈ Met (M)×Met (M),
we obtain the formula in the claim by DV(g1,g2)(h1, h2) = DZg1(h2) +DWg2(h1).

Corollary 8.5. The symbols of the operators in Lemma 8.4 are

σ(DZg)(λ⊗ h) = (−ι
λ#g1 h+ 1

2(Trg1 h)λ)#g ,
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σ(DWg)(λ⊗ h) = (+ιλ#gh− 1
2(Trg h)λ)#g ,

σ(DV(g1,g2))(λ⊗ (h1, h2)) = (+ιλ#gh1 − 1
2(Trg h1)λ− ι

λ#g1 h2 + 1
2(Trg1 h2)λ)#g .

In particular, if dimM > 1, neither the DeTurck map nor any of the maps obtained from
it by fixing one of its arguments is elliptic.

Proof. The claim about the symbols follows from the fact that covariant derivatives have
the identity as symbols. To show that the operator DZg is not elliptic, consider a nonzero
λ ∈ T ∗M . Now, there exists a nonzero T ∈ S2(T ∗M) with ι

λ#g1 T = 0. (We can take e.g.
T := µ⊗ µ where g1(λ, µ) = 0.) Then h := Trg1 T

|λ|2g1
λ⊗ λ+ T 6= 0 but σ(DZg)(λ⊗ h) = 0.

Showing that W is not elliptic goes along the same lines.
The above discussion shows that we can find, for each nonzero λ, a nonzero hV in the

kernel of the symbol of V and a nonzero hW in the kernel of the symbol ofW . Then (h1, h2)
is a suitable tensor to refute ellipticity.

Remark 8.6. For the sake of completeness, we show that all three operators in Corollary 8.5
are, as a matter of fact, elliptic if dimM = 1. Indeed, note that σ(DWg)(λ⊗ h) = 0 if and
only if ιλ#gh − 1

2(Trg h)λ = 0. Let us choose a local coordinate x, and let g = ḡdx ⊗ dx,
h = h̄dx⊗ dx, λ = λ̄dx for some functions ḡ, h̄ and λ̄. Then (dx)]g = 1

ḡ∂x and Trg h = h̄
ḡ ,

consequently

ιλ#gh−
1
2(Trg h)λ = 1

2
h̄

ḡ
λ̄dx = 1

2
h̄

ḡ
λ.

If λ 6= 0, then the map h 7→ 1
2
h̄
ḡλ is an isomorphism, showing that W is elliptic.

Similarly, one can show that if dimM = 1, the operators W and V are elliptic.

Corollary 8.7. If g1 = g2 = g, we have the following formulae for the linearizations of the
operators from Lemma 8.4

DZg(h) = δgh+ 1
2 gradg Trg h

DWg(h) = −δgh− 1
2 gradg Trg h

DV(g,g)(h1, h2) = δg(h2 − h1) + 1
2 gradg Trg(h2 − h1)

for any h, h1, h2 ∈ S2(T ∗M).

Remark 8.8. Note that, for g = g1 = g2, we obtain DWg = −DVg. This means in
particular that in this special case we may show that DWg is an isomorphism by showing
that DZg is an isomorphism, and vice versa.

There is a nice relation between the Hodge Laplacian and the DeTurck map.

Lemma 8.9. If g1 = g2 = g, then we have for any vector field X ∈ X(M) any any metric
g ∈ Met (M)

DZg(LXg) = ∆gX + Ricg = −DWg(LXg).
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Proof. Since DZg is obtained via the musical isomorphism, it is practical to calculate
(DZg(LXg))[g first. Let {ei |i ∈ I} be a g-normal frame of TM around p ∈ M and let
V ∈ X(M) be an arbitrary vector field. Then we have

δg(LXg)p(Vp) = −
∑
i∈I
∇gei(LXg)(ei, V )

=
∑
i∈I
−ei((LXg)(ei, V )) + (LXg)(∇geiei, V ) + (LXg)(ei,∇geiV )

=
∑
i∈I
−ei(g(∇geiX,V ) + g(ei,∇gV ei)) + (LXg)(∇geiei, V ) + (LXg)(ei,∇geiV )

=
∑
i∈I
−ei(g(∇geiX,V ) + g(ei,∇gV ei)) + (LXg)(∇geiei, V ) + (LXg)(ei,∇geiV )

=
∑
i∈I
−g(∇gei∇

g
eiX,V )− g(∇geiX,∇

g
eiV )− g(∇geiei,∇

g
V ei)− g(ei,∇gei∇

g
V ei)

+ g(∇g∇geiei
X,V ) + g(∇geiei,∇

g
VX) + g(∇geiX,∇

g
eiV ) + g(ei,∇g∇geiV

X)

=
∑
i∈I

g(−∇g,2ei,eiX,V )− g(ei,∇g,2ei,V ei)

= g(∆gX,V )−
∑
i∈I

g(ei,∇g,2ei,V ei)

where we used the well-known formula (LXg)(Y,Z) = g(∇gYX,Z)+g(Y,∇gZX) forX,Y, Z ∈
X(M). Moreover, we have at the point p

1
2d(Trg LXg)(V ) = 1

2d

(∑
i∈I

(LXg)(ei, ei)
)

(V )

= 1
2d

(∑
i∈I

g(∇geiX, ei) + g(ei,∇geiX)
)

(V )

= d
(
g(ei,∇geiX)

)
(V )

=
∑
i∈I

g(∇gXei,∇
g
eiX) + g(ei,∇gV∇

g
eiX, ei)

=
∑
i∈I

g(ei,∇g,2V,eiX),

where we used that {ei |i ∈ I} is a normal frame at p. Note that the order of the second
covariant derivatives in the two results are different, which hints at a curvature term. In
fact, we obtain by adding the previous two results that

(DZg(LXg))[g(V ) = δg(LXg)p(Vp) + 1
2d(Trg LXg)(V )

= g(∆gX,V )−
∑
i∈I

g(ei,∇g,2ei,VX) +
∑
i∈I

g(ei,∇g,2V,eiX)

= g(∆gX,V )−
∑
i∈I

g(ei, Rg(V, ei)X)

= g(∆gX,V ) +
∑
i∈I

g(Rg(ei, V )X, ei)
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= g(∆gX,V ) + (
◦
Rgg)(V,X)

= g(∆gX,V ) + Ricg(V,X).

The claim follows by applying the musical isomorphism [g.

8.2 Gauging

With help of the DeTurck vector field, we introduce a gauging condition.

Definition 8.10. We call metrics in the set

Fg0 :=
{
g ∈ Met (M)

∣∣∣− 2 Ricg +LV (g,g0)g = 0
}

metrics gauged with respect to the reference metric g0 ∈ Met (M). Furthermore, for a com-
pact set K ⊂M , we introduce the notation

FM\Kg0 :=
{
g ∈ Met (M)

∣∣∣− 2 Ricg +LV (g,g0)g0 = 0 on M \K
}
.

Evidently, Fg0 = FMg0 .
The gaugedness condition is equivalent to a a second-order quasilinear partial differential

equation. A tedious calculation leads to the following result.

Lemma 8.11 ([Shi89, Lemma 2.1]). The condition g ∈ Fg0 is equivalent to

0 = gab∇g0,2
ab gij

+ gabgpq
(1

2∇
g0
i gpa∇

g0
j gqb +∇g0

a gjp∇g0
q gib

)
− gabgpq

(
∇g0
a gjp∇

g0
b giq −∇

g0
j gpa∇

g0
b giq −∇

g0
i gpa∇

g0
b gjq

)
− gklgip(g0)pqRg0

jklq − g
klgjp(g0)pqRg0

iklq.

It is useful to know the coarse structure of the equation in Lemma 8.11 in terms of the
difference tensor h := g − g0.

Corollary 8.12 (cf. [DK20, Equation (5)]). Fix a metric g0 ∈ Met (M) and suppose h ∈
Γ∞

(
S2T ∗M

)
such that g0 + h ∈ Met (M). Then the condition g0 + h ∈ Fg0 is equivalent to

a second-order quasilinear partial differential equation

0 = (g0 + h)ab∇g0,2
ab gij

+ (g0 + h)ab(g0 + h)pq
(1

2∇
g0
i hpa∇

g0
j hqb +∇g0

a hjp∇g0
q hib

)
− (g0 + h)ab(g0 + h)pq

(
∇g0
a hjp∇

g0
b hiq −∇

g0
j hpa∇

g0
b hiq −∇

g0
i hpa∇

g0
b hjq

)
− (g0 + h)ip(g0)pq Ricg0

jq +(g0 + h)ip(g0)pq(g0)kahabgbl(Rg0)jklq
− (g0 + h)jp(g0)pq Ricg0

iq +(g0 + h)jp(g0)pq(g0)kahabgbl(Rg0)iklq
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which can be written structurally as

0 = (g0 + h)−1 ◦ ∇g0,2h+ (∇g0h) ? (∇g0h)− h ? Rg0 − (g0 + h) ? Ricg0 ,

where ? denotes various linear combinations of tensorial contractions the coefficients of
which are covariantly constant or of the same growth rate as g0.

Proof. Note that g := g0 + h establishes the connection between the setups of Corol-
lary 8.12 and Lemma 8.11. Rewriting the first-order and second-order terms in the equation
of Lemma 8.11 is straightforward. Since

gkl(Rg0)jklq = (g0)kl(Rg0)jklq + (gkl − (g0)kl)(Rg0)jklq
= Ricg0

jq −(g0)kahabgbl(Rg0)jklq

and ∇g0g = ∇g0h, we may rewrite zeroth-order term of the equation in Lemma 8.11 as

− (g0 + h)kl(g0 + h)ip(g0)pqRg0
jklq + (i↔ j)

= −(g0 + h)ip(g0)pq(g0 + h)klRg0
jklq + (i↔ j)

= −(g0 + h)ip(g0)pq
[
Ricg0

jq −(g0)kahabgbl(Rg0)jklq
]

+ (i↔ j)

= −(g0 + h)ip(g0)pq Ricg0
jq +(g0 + h)ip(g0)pq(g0)kahabgbl(Rg0)jklq + (i↔ j),

which yields the claim. Here, the notation (i ↔ j) means repeating the expression in the
current line with the indices i and j exchanged.

Under certain circumstances the two terms in the gaugedness equation vanish individu-
ally. One example is the next lemma from [DK20] which we reproduce from completeness’
sake.

Lemma 8.13 ([DK20, Proposition 2.6]). Let (Mn, g,X) be a steady Ricci soliton, i.e.
Ricg = LXg for some vector field X ∈ Γ∞ (TM) on M . Then lim+∞ |X|g = 0 implies
X = 0. In particular, any gauged metric g ∈ Fg0 that is asymptotically conical with
lim+∞ V (g, g0) = 0 is Ricci-flat.

Proof. By the contracted Bianchi identity, one has:
1
2∇

gRg = δgRicg = δgLXg

= 1
2∇

g(Trg LXg) + ∆gX + Ricg(X)

= 1
2∇

gRg + ∆gX + Ricg(X).

Therefore, ∆gX + Ricg(X) = 0. In particular,

∆g
B(|X|2g) +X(|X|2g) = 2|∇gX|2g0 + 2 〈∇gXX,X〉g − 2 Ricg(X,X) = 2|∇gX|2g,

which establishes that the nonnegative function |X|2g is a subsolution of the operator

∆X := ∆g
B +∇gX : C∞(M)→ C∞(M), u 7→ ∆g

Bu+X(u).

The use of the maximum principle then implies the result in case lim+∞ |X|g = 0.
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Corollary 8.14. If (M, gac) is a Ricci-flat asymptotically conical manifold, and X ∈
Γ∞ (TM) is a Killing field that vanishes at infinity, then X = 0.

Proof. Ricci-flatness implies that the Killing equation is equivalent to the steady soliton
equation.

8.3 Setting the DeTurck vector field to zero by pullback

8.3.1 The exponential of a vector field

In this section, we assume M is a manifold and g is a complete metric on M . We will use
the formalism of connector maps, cf. e.g. [Pat99].

The map object of interest in this subsection is the exponential of a vector field.

Definition 8.15. The exponential of the vector field X : M → TM with respect to a con-
nection ∇ is the map E∇X : M → M,p 7→ exp∇p (Xp). We will use the notation EgX := E∇gX ,
and, if the connection or metric is clear from the context, simply EX .

It is important that this map is not the flow of the vector field X in general.
The map X 7→ EX is injective if X is pointwise smaller than the pointwise injectivity

radius.

Lemma 8.16. The exponential map does not map points farther away than the length
of the vector field at the given point. More precisely, if dg denotes the distance induced
by the metric g, then dg(EgX(p), p) ≤ |Xp|g for all p ∈ M . Moreover, if p0 ∈ M , then
dg(EgX(p), p0) ≤ |Xp|g+dg(p, p0) for all p ∈M . In particular, if g is an asymptotically conical
metric and |X|g = O (ρ), then there exists a constant C <∞ such that dg(EgX(·), p0) ≤ Cρ.

Proof. The curve [0, 1]→M, t 7→ expp(tXp) is a geodesic connecting p and EgX(p) of length
|Xp|g. If |Xp|g < injp(g), then this is the distance, otherwise the distance may be smaller.

The second claim follows from the triangle inequality. The last claim follows from the
fact that ρ and the distance from a given point are comparable.

Recall [Pat99, Definition 1.1] that the geodesic flow on (M, g) is the family of diffeo-
morphisms

Gt : TM → TM, v 7→ (γgv )′(t),

where t ≥ 0 and γv denotes the unique geodesic with initial condition γv(0) = πTM (v) and
(γv)′(0) = v. Jacobi fields are closely related to the differential of the geodesic flow, as the
following lemma from [Pat99, Chapters 1.3.–1.5.] shows. For v ∈ TM and ξ ∈ Tv(TM),
let Jγvξ denote the unique Jacobi vector field along the geodesic γv with initial condition
J
g,γv
ξ (0) = TvπTM (ξ) and (Jg,γvξ )′(0) = Kv(ξ) where K is the connector map of the Levi-

Civita connection of g. We will use the simplified notation Jg,vξ := J
g,γv
ξ .

Lemma 8.17 ([Pat99, Lemma 1.40]). For t > 0 and v ∈ TM , ξ ∈ Tv(TM), we have
Tv(Gt)(ξ) = (Jγvξ )′(t).

Based on this, we can calculate the derivative of the exponential of a vector field.
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Corollary 8.18. Let X : M → TM be a vector field and p ∈M .

1. Then for any v ∈ TpM , we have Tp(EtX)v = J
γXp
(v,∇gvX)(t).

2. If the curvature tensor Rg, the vector field X and the endomorphism field ∇gX are
bounded, then the derivative of EX is bounded.

Proof. 1. Let θ := Xp ∈ TpM and ξ := (TpX)(v) ∈ TθTM . Let γ : (−ε, ε) → M be
a curve with γ(0) = p and γ′(0) = v. Then z := X ◦ γ : (−ε, ε) → TM is a curve
with z(0) = Xp and z′(0) = (TpX)(v). By construction, α := πTM ◦ z = γ and
Z = X|γ as a vector field along γ, therefore Kg

θ (ξ) = (∇gα′Z)(0) = ∇gvX. Moreover,
TθπTM (ξ) = TXpπTM (TpXv) = Tp(πTM ◦X)v = v since X is a section of πTM . Thus
Tθ(Gt)(ξ) = (Jθ

v,∇gvX
(t), Jθ

v,∇gvX
′(t)).

Since EX = πTM ◦G1 ◦X, we obtain

Tp(EX)v = TG1(p)πTM ◦ TXpG1 ◦ TpX(v) = TG1(p)πTM (Jθv,∇gvX(1), Jθv,∇gvX
′(1))

= Jθv,∇gvX(1),

as claimed.
The general case follows similarly.

2. Following [Cha20], let γ := γXp and J := J
γXp
v,∇gvX

and define the function

f : [0,∞)→ R, t 7→ |J(t)|2 + |J ′(t)|2.

From the Jacobi equation, we obtain

f ′ = 2g(J, J ′) + 2g(J ′, J ′′)
= 2g(J, J ′) + 2g(J ′, R(J, γ′)γ′))
≤ 2|J ||J ′|+ 2C|J ||J ′||γ′|2

≤ (C|γ′|2 + 1)(|J |2 + |J ′|2) = (C|Xp|2 + 1)f,

where we used the Peter–Paul inequality in the last inequality. Here C is the bound
on |R|. From Grönwall’s lemma, we obtain

f(t) ≤ f(0)e(C|Xp|2+1)t,

and this implies in particular

|Tp(EX)v|2 = |J(1)|2 ≤ f(1) ≤ f(0)eC|Xp|2+1

= (|J(0)|2 + |J ′(0)|2)eC|Xp|2+1

= (|v|2 + |∇gvX|2)eC|Xp|2+1

= eC|Xp|
2+1(1 + |∇gX|2)︸ ︷︷ ︸

≤∞

|v|2,

thus showing the claim.
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It is well known that on a smooth manifold, the smooth structure alone is not sufficient
for the definition of the exponential map. However, the following “infinitesimal pullback”
along the exponential of a vector field turns out to be a famous operation that can be
defined solely in terms of the smooth structure.

Lemma 8.19. Let S be a once continuously differentiable tensor field and let X be a once
continuously differentiable vector field. Then d

dt

∣∣∣
t=0

(EtX∗S) = LXS

Proof. We demonstrate the proof for 2-tensor fields; other ranks can be treated analogously.
Let p ∈M and let V,W be two vector fields around p. Then by Corollary 8.18, we have

d

dt

∣∣∣∣
t=0

(EtX∗S)p(V,W ) = lim
t→0

1
t

(
SEtX(p)(Tp(EtX)V, Tp(EtX)W )− Sp(V,W )

)
= lim

t→0

1
t

(
SγXp (t)(J

Xp
V,∇VX(t), JXpW,∇WX(t))− Sp(V,W )

)
= f ′(0)

where we define f : R→ R, t 7→ SγX(t)(J
Xp
V,∇VX(t), JXpW,∇WX(t)), seen as a section of γ∗XRM .

We calculate with the product rule

f ′(0) = d

dt

∣∣∣∣
t=0

f = ∇γ
∗
XRM
∂t

f
∣∣∣
t=0

= (∇γ
∗
X(T ∗M⊗T ∗M)
∂t

SγX(t))(J
Xp
V,∇VX(t), JXpW,∇WX(t))

+ SγX(t)(∇
γ∗XTM
∂t

J
Xp
V,∇VX(t), JXpW,∇WX(t))

+SγX(t)(J
Xp
V,∇VX(t),∇γ

∗
XTM

∂t
J
Xp
W,∇WX(t))

∣∣∣
t=0

= (∇XpS)p(V,W ) + Sp(∇VX,W ) + Sp(V,∇WX)
= Xp(S(V,W ))− S(∇XV −∇VX,W )− S(V,∇XW −∇WX)
= Xp(S(V,W ))− S([X,V ],W )− S(V, [X,V ])
= (LXS)p(V,W )

Fix a metric gb and consider the map Φ(h,X) := V (EX∗h, gb) where V is the DeTurck
map. Since the exponenetial of the zero vector field is E0 = idM , we have that Φ(gb, 0) =
V (gb, gb) = 0. At this point, we calculate the derivative of Φ.

Lemma 8.20. (D(gb,0)Φ)(h,X) = −∆gbX −Ricgb(X)− (δgbh+ 1
2dTrg h)]gb . In particular,

(D(gb,0)Φ)(0, X) = −∆gbX − Ricgb(X).

Proof. This is a consequence of Lemma 8.4.

(D(gb,0)Φ)(0, X) = d

dt

∣∣∣∣
t=0

V (φ∗tXgb, gb) = DWgb

d

dt

∣∣∣∣
t=0

(φ∗tXgb) = DWgb(LXgb)

= −∆gbX − Ricgb(X),

(D(gb,0)Φ)(h, 0) = d

dt

∣∣∣∣
t=0

V (φ∗0(gb + th), gb) = DWgb

d

dt

∣∣∣∣
t=0

(gb + th) = DWgbh

= (δgbh+ 1
2dTrg h)]gb .
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Remark 8.21. The fact that we used the first argument of the DeTurck map in the defin-
ition of the map Φ is inconsequential for our purposes. Indeed, if we redefined the map
Φ by swapping the arguments in the DeTurck map, we would get the same result as in
Lemma 8.20 up to an overall sign. This is due to Corollary 8.7.

8.3.2 Mapping properties of the raw Laplacian on vector fields

Lemma 8.22. Let p > 1, k > dimM
p + 1 and β + 1 ∈ (2 − dimM, 0) be nonexceptional,

i.e. β 6∈ m±(σ(�H)) where �H denotes the tangential operator of the Hodge Laplacian on
1-forms. Then the raw Laplacian induces a bounded map

∆gac : W k+1,p
β+1 (TM, gac)→W k−1,p

β−1 (TM, gac),

which is an isomorphism of Banach spaces.

Proof. Since β is not exceptional, the raw Laplacian induces a continuous Fredholm map
(cf. [Pac13, Section 9])

∆gac : W k+1,p
β+1 (TM, gac)→W k−1,p

β−1 (TM, gac).

Let us now consider the kernel of this operator. By elliptic regularity on weighted Sobolev
spaces, the kernel of ∆gac consists of smooth vector fields. As in [Pac13], the kernel is
independent of k and p. By the Sobolev embedding, a vector field W k+1,p

β+1 (TM, gac) ⊂
C1,α
β+1 (TM, gac) thus vector fields in the domain of ∆gac decay as O

(
ρβ+1

)
(this is genuine

decay since β + 1 < 0).
Let now X ∈ ker ∆gac and set u := |X|2gac . This is a smooth function on M with

u = O
(
ρ2(β+1)

)
and we have

∆gac
B u = 2 〈∆gacX,X〉gac

− 2|∇gacX|2gac ≤ 0,

thus u is a subsolution of ∆gac
B . The weak maximum principle on the compact manifold-

with-boundary Core(R) implies therefore that for R big enough, one has

max
Core(R)

u = max
∂ Core(R)

u ≤ CR2(β+1).

Letting R→∞ shows that u = 0, thus X = 0 and ker ∆gac = 0.
Since ∆gac is formally self-adjoint, the same holds for the adjoint operator, too. By the

way weights change under taking the adjoint [Pac13, Section 9], we see that coker ∆gac = 0
if β + 1 > 2− dimM .

8.3.3 Killing the DeTurck vector field by a pullback

Given a metric g0, introduce the notation

Gg := {g ∈ Met (M) |V (g, g0) = 0} .

Some authors call this condition the Bianchi gauge.
In a neighbourhood of gac, all metrics can be pulled back to a metric in Ggac .
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Proposition 8.23. Let gac be a Ricci-flat asymptotically conical manifold onM . Moreover,
let p ∈ (1,∞) and let k > dimM

p + 1 and let δ ∈ (1 − dimM,−1) be nonexceptional
for the raw Laplacian of gac on vector fields. Then there is a neighbourhood U of gac in
W k,p
δ (S2T ∗M, gac) such that

a) U ∩ Ggac is a manifold, and

b) for any metric g ∈ U , there is a unique vector field X ∈ W k+1,p
δ+1 (TM, gac) such that

(EX)∗g ∈ Ggac, i.e. such that V ((EX)∗g, gac) = 0.
Proof. The proof rests on the Banach space implicit function theorem.

Note that our assumptions on k imply by the weighted Sobolev embedding theorem
that W k+1,p

δ+1 (TM, gac) ⊂ C1,α
δ+1 (TM, gac) for any α ∈ (0, 1).

1. Consider the map W : W k,p
δ (S2T ∗M, gac) � W k−1,p

δ−1 (TM, gac), g 7→ V (g, gac) defined
on an open neighbourhood U0 of gb. (Such a neighbourhood exists because of the
closure of weighted Sobolev spaces under tensor products, up to weights and our
assumptions on k.) Evidently, W (gac) = 0. We claim that the differential of this map
at gac is surjective and its kernel is a complemented subspace.
For surjectivity, it suffices to consider tensor fields of the form LXgac with X ∈
W k+1,p
δ+1 (TM, gac) since by Lemma 8.20, one has DWgb(LXgb) = −∆gbX − Ricgb X =
−∆gbX. By our assumptions and Lemma 8.22, we have that

−∆gac : W k+1,p
δ+1 (TM)→W k−1,p

δ−1 (TM)

is an isomorphism, so in particular it is surjective. Note that this also means that
the operator DWgac restricted to tensor fields of the form LXgb for some X ∈
W k+1,p
δ+1 (TM, gac) has trivial kernel, i.e. kerDWgb ∩ LWk+1,p

δ+1 (TM,gac)gac = {0}

Next we claim that the kernel of DWgb is a complemented subspace, in fact,

W k,p
δ (S2T ∗M) = kerDWgb ⊕ LWk+1,p

δ+1 (TM,gac)gac. (?)

The only thing left to show is that we can write any tensor field h ∈W k,p
δ (S2T ∗M, gac)

as h = h0 + LXhgac for some h0 ∈ kerDWgac and Xh ∈ W k+1,p
δ+1 (TM, gac). Let Xh be

the unique solution of the equation DWgac(h) = ∆gbXh. Then h0 := h − LXgac is a
good choice.

2. Now consider the map Φ(h,X) := V ((EX)∗h, gac) defined in a neighbourhood of
(gac, 0). In Lemma 8.20, we have already established that

(D(gac,0)Φ)(0, ·) = −∆gac − Ricgac : W k+1,p
δ+1 (TM, gac)→W k−1,p

δ−1 (TM, gac)

is an isomorphism.
Note that if X ∈ W k+1,p

δ+1 (TM, gac) ⊂ C1,α
δ+1 (TM, gac) is a Killing field, then Corol-

lary 8.14 implies that X = 0. Consequently, LX1gac = LX2gac can happen only if
X1 = X2, and therefore the decomposition (?) can be rewritten as

kerDWgb ⊕W
k+1,p
δ+1 (TM, gac) 'W k,p

δ (S2T ∗M), (h0, X) 7→ h0 + LXgb. (??)

Now the implicit function theorem implies the claim.
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Remark 8.24. The proof of Proposition 8.23 follows the train of through of [DK20, Propos-
ition 2.12]. Independently, there is an analogous result for weighted Hölder spaces [DO20,
Proposition B.2]. An alternative proof for our result can be given from this proposition and
a weighted Sobolev embedding.

Remark 8.25. Note that for δ ≤ −dimM
p , one has the continuous embeddingW k,p

δ (S2T ∗M, gac) ⊂
W 0,p
− dimM/p(S

2T ∗M, gac) = Lp(S2T ∗M, gac).

8.4 Eventually exactly conical metrics
Suppose M is a manifold with a single end, i.e. there exists a compact set K ⊂ M and a
diffeomorphism φ : M \K → Cone(L) \ ((0, Rend) × L) for some Rend > 0. (Note that, as
manifolds, Cone(L) ' (0,∞)× L.)

Definition 8.26. A metric geec ∈ Met (M) is eventually exactly conical if there is a
threshold radius Rcoinc > 0 such that φ∗gcone = geec on M \ Core(Rcoinc).

Next, we show that we can approximate asymptotically conical metrics with eventually
exactly conical metrics arbitrarily closely in appropriate weighted Sobolev spaces. For this,
we will need a bump function with controlled derivatives.

8.4.1 Interpolating function

We will need the following version of the chain rule. On M := Rn, this lemma is known as
Faà di Bruno’s formula [FdB55], cf. also [Fra78].

Lemma 8.27. Let M be a smooth manifold with connection ∇. Let f : M → R and g : R→
R be smooth functions and let T be a smooth tensor field on M . Then

∇((g ◦ f)T ) = (g′ ◦ f)df ⊗ T + (g ◦ f)∇T.

Consequently, we have

∇k(g ◦ f) =
k∑
p=1

(g(p) ◦ f)

linear combinations of terms of the form
p many factors of f with

k many derivatives ∇ acting on them


where g(p) denotes the pth derivative of g.

Proof. The first claim is easily verified in local coordinates.
For the second claim, we apply the first claim iteratively, starting with T = 1, and collect

terms based on the order of derivative on g. This procedure works because the derivative
of a real valued function can be identified with a real valued function.

Lemma 8.28. Given an asymptotically conical manifold (M, g) and a radius function
ρ : M → R, there is a number R0 ∈ R and a smooth family (fR)R≥R0 such that fR|Core(R) =
0, fR|M\Core(2R) = 1 and for all natural numbers k ≤ k0, there is a constant Ck <∞ with
|∇gcone,kfR| ≤ Ck

Rk
.
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Proof. Let F : R→ R be a smooth function such that F |(−∞,1] = 0 and F |[2,∞) = 1. (Such a
function can be obtained e.g. by appropriately rescaling and shifting the indefinite integral a
bump function, e.g. the bump function of Arias de Reyna [AdR82].) Since the derivative F ′
is compactly supported, there are constants C̃k <∞ for all k ∈ Z+ such that |F (k)(x)| ≤ C̃k
for all x ∈ R.

Let Rprelim ∈ R be arbitrary and let

R0 := sup {ρ(p) |p ∈ Core(Rprelim)} = max {ρ(p) |p ∈ Core(Rprelim)} .

(We need this step because we have no control over the behaviour of ρ in the core. However,
this choice of R0 makes sure that K ⊂ ρ−1([−∞, R]), hence Core(R) = ρ−1([−∞, R])∪K =
ρ−1([−∞, R]) for any R ≥ R0.) Define the family (fR)R≥R0 of functions via fR : M →
R, p 7→ F

(
ρ(p)
R

)
. By construction, we have fR|Core(R) = 0, fR|M\Core(2R) = 1.

The claim about the derivative follows by applying Lemma 8.27 and noting that∇g,kρ =
O
(
ρ−k+1

)
.

8.4.2 Interpolating family of metrics

Let gac be an asymptotically conical metric with decay rate τ and let gcone denote its
asymptotic cone. Consider the following family of metrics:

gR := fRφ
∗gcone + (1− fR)gac

for R > R0. Evidently, this metric is Ricci-flat except on the set Core(2R) \ Core(R).
Before we prove the main statement of this section, let us prove the following technical

lemma.

Lemma 8.29. Let R2 > R1 > max {Rend,Rasy}, let α ∈ R and let g := φ∗gcone. Then∫
Core(R2)\Core(R1) ρ

α−dimM volg = C(α, glink)(Rα2 −Rα1 ).

Proof. Note that Core(R2) \Core(R1) = φ−1((R1, R2]×L) for the asymptotic chart φ and
the link L. Now∫

Core(R2)\Core(R1)
ρα−dimM volg =

∫
φ−1((R1,R2]×L)

ρα−dimM volg

=
∫

(R1,R2]×L
(φ−1)∗(ρα−dimM volg)

=
∫

(R1,R2]×L
rα−dimM volφ−1∗g

=
∫

(R1,R2]×L
rα−dimM volgcone

=
∫ R2

R1
rα−dimM

(∫
{r}×L

rdimM volglink

)
dr

= Volglink(link)
∫ R2

R1
rαdr

= Volglink(link) R
α
2 −Rα1
α

= C(α, glink)(Rα2 −Rα1 )
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The main statement of this section is that we can approximate any asymptotically
conical metric with a family of eventually exactly conical metrics in appropriate weighted
Sobolev spaces.

Proposition 8.30. Let δ > −τ be a real number, and let k, p ∈ N+. We have limR→∞ gR =
gac in W k,p

δ (S2T ∗M). In particular, for all ε > 0 there is an R ∈ R+ such that ‖gac −
gR‖Wk,p

δ
(S2T ∗M) < ε.

Proof. Without loss of generality, we may assume that R0 > max {Rend, Rasy}.
We wish to estimate the following number

‖gac − gR‖p
Wk,p
δ

(S2T ∗M)
=

k∑
l=0

∫
M

∣∣∣∣∫ ρ−δ+l∇l(gR − gac)
∣∣∣∣p ρ− dimM volg .

Based on the calculations

gR − gac = fφ∗gcone + (1− f)gac − gac = f(φ∗gcone − gac),

it is clear that it is advantageous to evaluate the integral using the partition

M = Core(2R) ∪ (Core(2R) \ Core(R)) ∪ (M \ Core(2R)).

I1 :=
k∑
l=0

∫
Core(R)

∣∣∣ρ−δ+l∇l(gR − gac)
∣∣∣p ρ− dimM volg =

k∑
l=0

∫
M

0 volg = 0

Now the generalized Leibniz rule

∇g,l(gR − gac) =
l∑

a=0

(
l
a

)(
∇g,l−af

)
⊗∇g,a(φ∗gcone − gac)

implies that

I2 :=
k∑
l=0

∫
Core(2R)\Core(R)

∣∣∣ρ−δ+l∇l(gR − gac)
∣∣∣p ρ− dimM volg

=
k∑
l=0

∫
Core(2R)\Core(R)

ρ(−δ+l)p
∣∣∣∣∣
l∑

a=0

(
l
a

)(
∇g,l−af

)
⊗∇g,a(φ∗gcone − gac)

∣∣∣∣∣
p

ρ− dimM volg

≤ C
k∑
l=0

∫
Core(2R)\Core(R)

ρ(−δ+l)p
l∑

a=0

∣∣∣∇g,l−af ∣∣∣︸ ︷︷ ︸
≤C′Ra−l

p
|∇g,a(φ∗gcone − gac)|︸ ︷︷ ︸

≤C′′ρ−τ−a

p

 ρ− dimM volg

≤ C ′′′
k∑
l=0

∫
Core(2R)\Core(R)

ρ(−δ+l)p
l∑

a=0

(
R(a−l)pρ−(τ+a)p

)
ρ− dimM volg

≤ C ′′′′
k∑
l=0

∫
Core(2R)\Core(R)

ρ(−δ+l)p
l∑

a=0

(
R−lp

(
R

ρ

)ap
ρ−τp

)
ρ− dimM volg
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≤ C ′′′′
k∑
l=0

∫
Core(2R)\Core(R)

ρ(−δ−τ)p
(
R

ρ

)−lp l∑
a=0

(
R

ρ

)ap
︸ ︷︷ ︸
≤C′′′′′ since R≤ρ≤2R

ρ− dimM volg

≤ C ′′′′′′
∫

Core(2R)\Core(R)
ρ−(δ+τ)pρ− dimM volg

= C2(δ, τ, p, glink) 1
R(δ+τ)p

The fact that (gR − gac)|M\Core(2R) = −(gac − gcone) implies that

I3 :=
k∑
l=0

∫
M\Core(2R)

∣∣∣ρ−δ+l∇l(gR − gac)
∣∣∣p ρ− dimM volg

≤ C
k∑
l=0

∫
M\Core(2R)

ρ(−δ+l)pρ(−τ−l)pρ− dimM volg

≤ C ′
∫
M\Core(2R)

ρ(−δ−τ)p−dimM volg

= C3(δ, τ, p, glink) 1
R(δ+τ)p

where we used in step (?) that ρ = φ∗r on M \ Core(2R).
Now we have

‖gac − gR‖p
Wk,p
δ

(S2T ∗M)
= I1 + I2 + I3 = C(δ, τ, p, glink) 1

R(δ+τ)p

The claims follow as this expression converges to 0 if R tends to infinity.

Proposition 8.31. For large enough R1 > R0, there exists a diffeomorphism ψ : M → M
such that

• V (ψ∗gR1 , gac) = 0

• Ricψ∗gR1 = 0 on M \K for some compact set K ⊂M .

In particular, the metric g0 := ψ∗gR1 lies in FM\Kgac .

Proof. In particular, for large enough R, the metric gR will lie in the neighbourhood U from
Proposition 8.23. Let R1 be a suitably large value. This means, there is a diffeomorphism
ψ := EX with some X ∈W k+1,p

δ+1 (TM, gac) such that g0 := ψ∗gR1 satisfies V (g0, gac) = 0.
On the other hand, RicgR1 |Core(R) = 0 and RicgR1 |M\Core(2R) = 0 by construction.

Since the Ricci tensor of a metric behaves naturally under pullbacks, this means that
Ricg0 |M\K = 0 where K := ψ−1(Core(2R)).

Thus −2 Ricg0 +LV (g0,gac)gac = 0 fails to hold on the whole of M , but it does hold on
M \K. Comparing this to Definition 8.10 shows the claim.
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Chapter 9

Decay of tensor fields and the
Einstein operator

9.1 A useful expansion

Let E := S2T ∗M . In Theorem 6.55, we have obtained an orthonormal eigenbasis wi of
L2(E1). By Lemma 6.38 these eigenfields extend to eigenfields on Er as (Φ1/r)∗wi. Let
W ∈ Γ (E) be the unique section of E such that W |{r}×M = (Φ1/r)∗wi. This suggests we
use these orthonormal bases to expand any section h ∈ Γ (E):

h|{r}×M =
∑
i∈N

ui(r)r2Wi, (9.1)

where ui(r) ∈ R. Keeping Volgcone({r} ×M) = rn Volglink(M) in mind, the coefficients ui(r)
can be obtained as

ui(r) = 1
rn

∫
{r}×M

〈
h, r2Wi

〉
gcone

volgcone . (9.2)

This decomposition is useful because it “takes the burden” of the dependence along the
link directions off our shoulders, and we have to deal with r-dependent functions only. The
motivation of the factor r2 is the scaling from Examples 6.34 and 6.36 but, as it turns out,
r2Wi scales just right to be covariantly constant in the radial direction:

Lemma 9.1. The section r2Wi is covariantly constant in the radial direction, i.e. ∇̄Z(r2Wi) =
∇̄∂r(r2Wi) = 0.

Proof. For ω ∈ Ω1(link) and h2 ∈ S2(T ∗link), explicit calculation reveals that

∇̄∂r(r2(Φ1/r)∗(dr ⊗ dr)) = ∇̄∂r(dr ⊗ dr) = 0,
∇̄∂r(r2(Φ1/r)∗(dr � ω)) = ∇̄∂r(dr � rω) = 0,
∇̄∂r(r2(Φ1/r)∗(h2)) = ∇̄∂r(r2h2) = 0.

As Wi is an R-linear combination of these fields, we obtain the statement.

Moreover, the built-in scaling ensures that the decay rates are easy to read off the
coefficient functions ui, as the next lemma shows.
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Lemma 9.2. Let h =
∑
i∈N uir

2Wi ∈ Γ
(
S2T ∗M̄

)
, and define Sk(ξ) :=

∑k
`=0 ξ

2` be a
smooth section.

1. If h = O (r−µ), then ui = O (r−µ) for all i ∈ N.

2. Conversely, if there is a single threshold R ∈ I and a sequence Ci > 0 and such that
ui|[R,∞) ≤ Cir−µ for all i ∈ I and

∑
i∈N Sk(ξi)C2

i <∞ for some 2k > (n+ 1)/2; then
h = O (r−µ).

Remark 9.3. Note that the second condition is stronger than the condition that ui =
O (r−µ). The latter condition postulates the existence of sequences (Ri)i∈N and (Ci)i∈N
such that ui|[Ri,∞) ≤ Cir

−µ, the former one, however, demands a single number R such
that ui|[R,∞) ≤ Cir

−µ for all i ∈ N. An easy counterexample can be constructed using
ui(r) = r−µ + Ψ(x− i) where Ψ is a bump function.

Proof. 1. By assumption |h| ≤ Cr−µ pointwise outside some compact set K. Without
loss of generality, we may take K to be of the form [R,∞)×M . Now by the Cauchy–
Schwarz inequality, we obtain for any r ≥ R that

|ui(r)| =
∣∣∣∣∣ 1
rn

∫
{r}×M

〈
h, r2Wi

〉
gcone

volgcone

∣∣∣∣∣
≤ 1
rn
|h|L2({r}×M,gcone)|r2Wi|L2({r}×M,gcone)

= 1
rn
|h|L2({r}×M,gcone)

≤ 1
rn
|h|L∞({r}×M,gcone) Volgcone({r} ×M)

= 1
rn
|h|L∞({r}×M,gcone)r

n Volgcone({1} ×M)

= 1
rn
|h|L∞({r}×M,gcone)r

n Volglink(M)

≤ C Volglink(M) r−µ.

2. The proof of the other direction requires more subtle means. By the Sobolev embed-
ding on Er over the compact manifold {r} ×M with 2k > n/2, and by repeated
application of elliptic regularity for the tangential operator �, we have

sup
{r}×M

|h|ḡ = ‖hr‖C0(Er) ≤ C0‖hr‖H2k(Er)

≤ C0C2k(‖hr‖L2(Er) + ‖�hr‖H2k−2(Er))
≤ C0C2k(‖hr‖L2(Er) + C2k−2(‖�hr‖L2(Er) + ‖�2hr‖H2k−4(Er)))
≤ . . .
≤ C0C2k(‖hr‖L2(Er) + C2k−2(‖�hr‖L2(Er) + C2k−4(‖�2hr‖L2(Er)

+ · · ·+ C2k+1‖�khr‖L2(Er)) . . . ))

≤ C0Cmax

k∑
l=0
‖�lhr‖L2(Er)
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and, by the fact
∑k
l=0 ai ≤

√
k + 1

√∑k
l=0 a

2
i , which follows from the inequality

between the arithmetic and the quadratic means, we have

≤ C0Cmax
√
k + 1

√√√√ k∑
l=0
‖�lhr‖2L2(Er)

Now, let us investigate the sum under the square root further

‖�lhr‖2L2(Er) = ‖�l
∑
i∈N

ui(r)wi‖2L2(Er)

= ‖
∑
i∈N

ui(r)ξliwi‖2L2(Er)

=
∑
i,j∈N

∫
{r}×M

〈
ui(r)ξliwi, uj(r)ξljwj

〉
ḡ

volg

=
∑
i,j∈N

ui(r)ξliuj(r)ξlj
∫
{r}×M

〈wi, wj〉ḡ volg

=
∑
i,j∈N

ui(r)ξliuj(r)ξljδij

=
∑
i∈N

ui(r)2ξ2l
i

=
∑
i∈N

ξ2l
i ui(r)2,

therefore, we obtain

k∑
l=0
‖�lhr‖2L2(Er) =

k∑
l=0

∑
i∈N

ξ2l
i ui(r)2

=
∑
i∈N

k∑
l=0

ξ2l
i ui(r)2

=
∑
i∈N

S(ξi)ui(r)2

≤
∑
i∈N

S(ξi)C2
i r
−2µ

= Kr−2µ,

where K <∞ by assumption. The claim now follows.

9.2 Exceptional values and the kernel of the Einstein oper-
ator on a cone

Two particular functions of eigenvalues of the tangential operator �L will appear frequently
in what follows so it makes sense to introduce an abbreviation for it.
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Figure 9.1: The real part of exceptional values corresponding to eigenvalues. Note that the
positive-mode branch m+ is negative if and only if ξ < 0, cf. Defintion 9.4.

Definition 9.4. The positive/negative mode exceptional value (cf. Figure 9.1) correspond-
ing to the eigenvalue ξ of the tangential operator �L is

m±(ξ) := −n− 1
2 ±

√(
n− 1

2

)2
+ ξ. (9.3)

At this stage of exposition, m±(ξ) is merely a useful abbreviation. Its true significance
is revealed in connection with Fredholmness properties of the Lichnerowicz Laplacian on
weighted Sobolev spaces.

Note that the negative mode exceptional value is always negative but the positive mode
exceptional value is negative if and only if ξ > 0. For the graph of the functionsm±, consider
Figure 9.1.

With the help of the exceptional values, the kernel of the Lichnerowicz Laplacian on an
exact cone can be described in fairly explicit terms.

Lemma 9.5. Let h :=
∑
i∈N uir

2Wi.

1. h ∈ ker ∆L if and only if

− ∂r∂rui −
n

r
∂rui + ξi

r2ui = 0 for all i ∈ N. (9.4)
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2. A fundamental system of solutions of the differential equation (9.4) is
{
r 7→ rm±(ξi)

}
.

This fundamental system has Wrońskian determinant W (r) = − 2
rn

√(
n−1

2

)2
+ ξ. In-

troduce ξres := −
(
n−1

2

)2
, the only zero locus of the Wrońsian, (which may or may

not be in the spectrum of �E).

3. The elements in the kernel of ∆̄L are of the form

h =
∑
i∈N

ξi 6=ξres

(
c+
i r

m+(ξi) + c−i r
m−(ξi)

)
r2Wi +

∑
i∈N

ξi=ξres

(
c+
i r
−n−1

2 ln r + c−i r
−n−1

2
)
r2Wi

=
∑
i∈N

ξi<ξres

ĉ+
i r
−n−1

2 sin

ln r ·

√√√√∣∣∣∣∣
(
n− 1

2

)2
+ ξ

∣∣∣∣∣


+ĉ−i r
−n−1

2 cos

ln r ·

√√√√∣∣∣∣∣
(
n− 1

2

)2
+ ξ

∣∣∣∣∣
 r2Wi

+
∑
i∈N

ξi=ξres

(
c+
i r
−n−1

2 ln r + c−i r
−n−1

2
)
r2Wi

+
∑
i∈N

ξi>ξres

(
c+
i r

m+(ξi) + c−i r
m−(ξi)

)
r2Wi

for real constants c±i , ĉ
±
i ∈ R.

Remark 9.6. Note that the the summands for ξ < ξres can be written in the same form as
summands where ξ > ξres.

Proof. 1. Note that if h satisfies ∆̄Lh = 0, then h must be smooth by elliptic regularity
and therefore the assignment r 7→ ui(r) can be chosen smoothly for each i ∈ N. This
means all the derivatives of ui are justified.
By Equation (6.2), Lemma 6.38, Lemma 9.1 and the Leibniz rule,

∆̄Lh = −∇̄∂r∇̄∂rh−
n

r
∇̄∂rh+ 1

r2�Lh

− ∇̄∂r∇̄∂r

∑
i∈N

uir
2Wi

− n

r
∇̄∂r

∑
i∈N

uir
2Wi

+ 1
r2�L

∑
i∈N

uir
2Wi


=
∑
i∈N

(
−∂r∂rui −

n

r
∂rui + ξi

r2ui

)
r2Wi.

Now for h to be in the kernel of ∆̄L, and integration on sets of the form {r}×M with
the help of the normalization (6.5) reveals that, the expression in Equation (9.4) is
zero if and only if

−∂r∂rui −
n

r
∂rui + ξi

r2ui = 0 for all i ∈ N.
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2. Equation (9.4) is a Cauchy–Euler differential equation, and it can be solved with the
ansatz ui(r) = ra for some a ∈ R. The corresponding index equation is

−a(a− 1)− na+ ξi = 0,

the solutions of which are a = m±(ξi). It is easy to check that the corresponding
Wrońskian determinant is

W (r) = det
(

rm+(ξi) rm−(ξi)

∂r(rm+(ξi)) ∂r(rm−(ξi))

)
= −2r−n

√(
n− 1

2

)2
+ ξ.

3. As an easy consequence of the earlier steps, the form of ui claim follows immediately
if ξ 6= −

(
n−1

2

)2
, i.e. if the Wrońskian is not zero. If the Wrońskian is in fact zero

(i.e. we have a resonance), the solution is easily checked to be u(r) = c1r
−n−1

2 +
c2r
−n−1

2 ln r.

Based on the different behaviour of the component function ui, it is reasonable to
introduce the following concepts.

Definition 9.7. We call an eigenvalue ξ ∈ σ(�E)

• subresonant if ξ < ξres,

• resonant if ξ = ξres,

• superresonant if ξ > ξres,

Since the eigenvalues of the tangential operator �E tend to infinity by Remark 6.57,
there are only finitely many subresonant and resonant eigenvalues.

9.3 Decay rates in the kernel of the Einstein operator on a
cone

The goal of this section is to describe the decay rate of decaying tensor fields in the kernel
of the Einstein operator on a Ricci-flat cone. (Note that in this case, the Einstein operator
and the Lichnerowicz Laplacian coincide.)

Definition 9.8. The tensor field T on the noncompact Riemannian manifold (M, g) de-
cays at infinity if for every positive ε > 0 there is a compact set Kε ⊂ M such that
sup {|T |g(p) |p ∈M \Kε} ≤ ε.

Evidently, we may choose the family of compact subsets to be increasing without loss
of generality.

Moreover, on an AC manifold, we may choose Kε := Core(r(ε)) for some increas-
ing function r : (0,∞) → (0,∞). Indeed, if K ′ε is a family of compact sets satisfying
sup {|T |g(p) |p ∈M \Kε} ≤ ε, then we may choose r(ε) := max {ρ(p) |p ∈ K ′ε}. The fact
that r is increasing follows from the fact that the family K ′ may be chosen to be increasing.
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Lemma 9.9. Let T be a smooth tensor field on the Riemannian cone (M̄, ḡ) decaying at
infinity. Moreover, let Uα := (α, 2α)×M . Then limα→∞ α

−n−1‖T‖2L2(Uα,ḡ) = 0.

Proof. Let us introduce the temporary notation fp(α) := ‖T‖Lp(Uα,ḡ).

f2(α)2 = ‖T‖2L2(Uα,ḡ) =
∫
Uα
|T |2ḡ volḡ

≤ sup
Uα

|T |2ḡ
∫
Uα

volḡ

= f∞(α)2
∫
Uα

volḡ = f∞(α)2
∫
U1

Φ∗α(volḡ)

= f∞(α)2
∫
U1
αn+1 volḡ = f∞(α)2αn+1 Volḡ(U1)

= C(n,U1)αn+1f∞(α)2,

where C(n,U1) := Volḡ(U1). Thus α−(n+1)/2f2(α) ≤ Cf∞(α).
By definition of decay at infinity, we find for every ε > 0 a compact set Kε ⊂ M such

that |T |ḡ(p) ≤ ε whenever p ∈ M̄ \Kε. In particular, if we denote αε := max {r(p) |p ∈ Kε}
(which is finite by continuity of r and compactness of Kε), we have |T |Uαε |ḡ ≤ ε. From this
it follows that limα→∞ f∞(α) = 0.

Therefore we have that 0 ≤ α−n−1f2(α)2 ≤ C(n,U1)f∞(α)2 → 0, and the claim follows
by the squeeze theorem.

We have established before in Lemma 9.5 that any symmetric 2-tensor field in the
kernel of the Einstein operator is of the form h =

∑
i∈N(c+

i r
m+(ξi) + c−i r

m−(ξi))wi. With the
assumption of decay at infinity, we can say more.

Corollary 9.10. For a symmetric 2-tensor field h ∈ ker ∆ḡ
E that decays at infinity, we have

c+
i = 0 in the expansion from Lemma 9.5 whenever ξi ≥ 0. Moreover, there are only finitely
many indices i such that ξi < 0.

Proof. Note that m+(ξi) ≥ 0 if and only if ξi ≥ 0. Moreover, note that any positive
eigenvalue is necessarily superresonant. Suppose to reach contradiction that for some i0 ∈ N,
we have m+(ξi0) ≥ 0 and c+

i0
6= 0. From the fact

∫
{r}×M 〈wi, wj〉ḡ volḡ |{r}×M = rnδij , we

have

‖h‖2L2(Uα,ḡ) =
∫
Uα
|h|2ḡ volḡ

=
∫
Uα

∣∣∣∣∣∣
∑
i∈N

(ui(r)wi

∣∣∣∣∣∣
2

ḡ

volḡ

=
∫ 2α

α

∑
i,j∈N

ui(r)uj(r)
∫
{r}×M

〈wi, wj〉ḡ volg rndr

=
∫ 2α

α

∑
i∈N

ui(r)2rndr

≥
∫ 2α

α
ui0(r)2rndr
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≥
∫ 2α

α
(c+
i0
rm+(ξi0 ) + c−i0r

m−(ξi0 ))2rndr

≥ (c+
i0

)2 22m+(ξi0 )+n+1 − 1
2m+(ξi0) + n+ 1α

2m+(ξi0 )+n+1

+ 2c+
i0
c−i0

2m+(ξi0 )+m−(ξi0 )+n+1 − 1
m+(ξi0) +m−(ξi0) + n+ 1α

2

+ (c−i0)2 22m−(ξi0 )+n+1 − 1
2m−(ξi0) + n+ 1α

2m−(ξi0 )+n+1

r�1
≥ 1

2(c+
i0

)2 22m+(ξi0 )+n+1 − 1
2m+(ξi0) + n+ 1α

2m+(ξi0 )+n+1,

where in the last step we used that 2m+(ξi0) + n+ 1 is the largest of the exponents. Thus
α−n−1‖h‖2L2(Uα,ḡ) ≥

1
2(c+

i0
)2 22m+(ξi0 )−1

2m+(ξi0 ) α2m+(ξi0 ) → ∞, which contradicts the statement of
the basic decay lemma. Thus c+

i0
= 0 is necessary.

The last claim follows from the fact that the spectra of the Laplacians on the compact
manifold M are discrete and the eigenvalues converge to infinity.

Next, we determine what the decay rate in the kernel is. For this, we need to use some
machinery since the different eigenvectors w are orthonormal only in the L2 sense and not
pointwise.

Lemma 9.11. Let f : (0,∞) → R, r 7→ c1r
−a1 + c2r

−a2 where c1, c2 ∈ R and a1, a2 ∈ R+

with a1 6= a2. Then the absolute value of f is eventually decreasing, i.e. there is a constant
R = R(c1, c2, a1, a2) such that f |[R,∞) is strictly monotonously decreasing.

Proof. We have to consider three cases.

c1 · c2 > 0. In this case, we have that

|f(r)| = |c1r
−a1 + c2r

−a2 | = |c1|r−a1 + |c2|r−a2 ,

and this is manifestly monotonously decreasing on (0,∞).

c1 · c2 = 0. In this case, we have for some i ∈ {1, 2} that

|f(r)| = |cir−ai | = |ci|r−ai ,

(with possibly ci = 0) and this is manifestly monotonously decreasing on (0,∞).

c1 · c2 < 0. In this case, it is technically easier to study the function f2. It has a minimum
at r0 where r0 :=

∣∣∣ c2
c1

∣∣∣ 1
a2−a1 is the only zero locus of f . Moreover, the second derivative

test function f2 has a local maximum at R :=
∣∣∣ c2a2
c1a1

∣∣∣ 1
a2−a1 is the unique zero locus

of f ′. Further, limr→∞ f
2(r) = 0, thus the function f2 (and consequently |f |, too) is

monotonously decreasing on the interval [R,∞)
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Let us use the following notation ιr : {r} ×M ↪→ M̄ and consider the vector bundle
Er := (ιr)∗(S2M̄) with the pullback connection ∇r := (ιr)∗∇ḡ. Note that for the induced
volume form on {r} × M , we have (ιr)∗ volḡ = rn volg but it will be advantageous to
consider the rescaled volume form volg instead (with this convection, we can make use of
the normalization condition Equation (6.5)). For any section h of S2M̄ , use the notation
hr := (ιr)∗h for the induced section on Er.

Definition 9.12. The generic decay function is the function (cf. Figure 9.2)

m : R→ R, ξ 7→


−
(
n−1

2

)
if ξ is subresonant or resonant,

m+(ξ) if ξ is nonpositive and superresonant,
m−(ξ) if ξ is positive.

Definition 9.13. We call a Riemannian cone special (or resonance-dominated) if the spec-
trum of the tangential operator �E includes a resonant eigenvalue but it does not include
any negative superresonant eigenvalues. A Riemannian cone is generic if it is not special.
By extension, we call the cone metric and the metric on the link special or generic if the
corresponding Riemannian cone is special or generic, respectively.

Proposition 9.14. If gcone is a Ricci-flat generic cone metric, and h ∈ ker ∆gcone
E is a

tensor field in the kernel of the Einstein operator which decays at infinity, then h = O (r−µ)
where

µ := −min {m(ξ) |ξ ∈ σ(�E)} .

If gcone is a Ricci-flat special cone metric, and h ∈ ker ∆gcone
E is a tensor field in the kernel

of the Einstein operator which decays at infinity, then h = O
(
r−

n−1
2 ln r

)
= O

(
r−

n−1
2 +ε

)
for any ε > 0.

Proof. Note that h is in the kernel of an elliptic operator, therefore it is smooth by elliptic
regularity. Also note that µ is defined as a minimum, and this minimum in fact exists since
the eigenvalues of the tangential operator � approach infinity by Remark 6.57.

Suppose gcone is a generic Ricci-flat cone metric.
By continuity of �l

Lhr for any l ∈ N and compactness of L, we have

∞ > ‖�lhr‖2L2(Er)

= ‖�l
∑
i∈N

ui(r)wi‖2L2(Er)

= ‖
∑
i∈N

ui(r)ξliwi‖2L2(Er)

=
∑
i,j∈N

∫
{r}×M

〈
ui(r)ξliwi, uj(r)ξljwj

〉
ḡ

volg

=
∑
i,j∈N

ui(r)ξliuj(r)ξlj
∫
{r}×M

〈wi, wj〉ḡ volg

=
∑
i,j∈N

ui(r)ξliuj(r)ξljδij
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Figure 9.2: The decay rate in the exact case. The decay rate is chosen to be the highest
value on the function graphs with solid line for the discrete values ξ ∈ σ(�L), represented
by dots.
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=
∑
i∈N

ui(r)2ξ2l
i

=
∑
i∈N

ξ2l
i ui(r)2,

therefore, we obtain

k∑
l=0
‖�lhr‖2L2(Er) =

k∑
l=0

∑
i∈N

ξ2l
i ui(r)2

=
∑
i∈N

k∑
l=0

ξ2l
i ui(r)2

=
∑
i∈N

Sk(ξi)ui(r)2 <∞.

We need to show that there are constants C,R ∈ R such that the left-hand side of the
equation in the claim is less than Cr−µ whenever r ≥ R.

Let us rearrange the eigenvalues ξi in an increasing order, and let i0 denote the largest
index such that ξi < 0.

r2µ∑
i∈N

F (ξi)ui(r)2 =
∑
i≤i0

F (ξi)r2µui(r)2 +
∑
i>i0

F (ξi)r2µui(r)2

The first sum is finite by Lemma 9.10 and each of its summands is eventually decreasing
by Lemma 9.11. Let R ∈ R be a number such that all summands are decreasing on [R,∞).
In the second sum, ui(r) = c−i r

m−(ξi) hence each summand is a decreasing function in r.
All in all, we have for r ≥ R that

r2µ∑
i∈N

F (ξi)ui(r)2 =
∑
i≤i0

F (ξi)r2µui(r)2 +
∑
i>i0

F (ξi)r2µui(r)2

≤
∑
i≤i0

F (ξi)R2µui(R)2 +
∑
i>i0

F (ξi)R2µui(R)2

=
k∑
l=0
‖�lhR‖2L2(ER) =: C <∞

The claim now follows from Lemma 9.2. Note that the potential presence of a resonant
eigenvalue causes no trouble if there is at least one negative superresonant eigenvalue which
then dominates the logarithmic factor.

The case for a special Ricci-flat cone metric can be shown similarly.

9.4 Functions fit for iteration

Definition 9.15. A strictly monotonously increasing continuous function F : (0,∞) →
(0,∞) is called a function fit for iteration if for all x, y ∈ (0,∞), the inequality F (x) −
F (y) ≥ x− y holds.

Example 9.16. Fix a real number τ > 0. Then the following functions
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• F : (0,∞)→ (0,∞), x 7→ x+ τ ,

• F : (0,∞)→ (0,∞), x 7→ min {2x, x+ τ}

are fit for iteration.

The most important property of functions fit for iteration is that we can construct a
convergent sequence by

Lemma 9.17. Let F : (0,∞)→ (0,∞) be a function fit for iteration. Moreover, let µ, a0 > 0
and define a sequence (an)n∈N recursively via

an+1 :=
{

min {F (an), µ} if F (an) 6= µ,

µ+ 1
2(an − µ) if F (an) = µ

for any n ≥ 1. Then limn→∞ an = µ.

Proof. If a0 ≥ µ, then an = µ for all n ≥ 1 so, in particular, limn→∞ an = µ. In the
following, we will treat the case where 0 < a0 < µ. Note that the condition on F entails in
particular that F is a strictly monotonously increasing function.

1. The sequence (an)n∈N is strictly monotonously increasing as the following argument
shows.

• If F (an) = µ, then an+1 = µ+ 1
2(an − F (an)) > an.

• If, however, F (an) 6= µ, then an+1 = min {F (an), µ} > an.

Moreover, the sequence is bounded above by µ. This means that a is convergent and
its limit is its supremum.

2. Next we show that the sequence (bn := Fn(a0))n∈N grows without bound. Indeed, for
any n ≥ 1, we have the following telescopic sum

bn − b0 = (bn − bn−1) + (bn−1 − bn−2) + · · ·+ (b2 − b1) + (b1 − b0)
= (F (bn−1)− F (bn−2)) + (F (bn−2)− F (bn−3)) + · · ·+ (F (b1)− F (b0)) + (F (b0)− b0)
≥ (bn−1 − bn−2) + (bn−2 − bn−3) + · · ·+ (b1 − b0) + (F (b0)− b0)
= bn−1 − b0 + (F (b0)− b0︸ ︷︷ ︸

=:δ>0

),

where we used the growth property of F . In particular, we obtain bn = F (an−1) ≥
F (an−2) + δ ≥ · · · ≥ F (a0) + nδ.

3. Now we show that sup an = µ. It is clear that µ + 1
2(an − µ) ≤ µ if F (an) = 0 so

it suffices to treat the other case, i.e. when an = min {bn, µ}. We show that for any
ε > 0 the number µ− ε is not an upper bound for the sequence b. Indeed let δ be as
in the last step and let n > µ−ε/2−a0

δ . From the last step we obtain that

µ− ε < µ− ε

2 ≤ a0 + nδ ≤ bn.

Thus µ− ε is not an upper bound.
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Remark 9.18. As already noted, any function fit for iteration is strictly monotonously
increasing but merely demanding that the function F is strictly monotonously increasing
is not enough to draw the conclusion, as the next counterexample shows. Let F : (0,∞) →
(0,∞), x 7→ µ

4 + x
2 , and suppose a0 ∈ (0, µ2 ). Then, with the notations of the proof, we have

bn = µ
4

(∑n
k=0

1
2k
)

+ 1
2na0. Consequently, F (an) 6= µ for any n, and therefore lim an =

lim bn = µ
2 < µ.

9.5 Decay rates in the kernel of the Einstein operator on an
AC manifold

The goal of this section is to prove that the decay statement of Proposition 9.14 holds for
asymptotically conical manifolds, too. The intuitive reason why this is to be expected is
that the difference between the exact conical and the asymptotically conical geometries
“decays faster than solutions in the kernel”. The proof is based on a bootstrap argument.

Recall that we can write any symmetric 2-tensor field h on the exact cone, and con-
sequently on the end of an asymptotically conical manifold, as h =

∑
i∈N uir

2Wi where
ui : I → R is some function. In the next lemma, we describe the decaying elements in the
kernel of ∆g0

L in terms of independent ordinary differential equations for these component
functions ui.

Lemma 9.19. Let M be a manifold with a single end and let g0 ∈ AC (gcone, τ, φ) be a
Ricci-flat asymptotically conical metric on M . Suppose h ∈ ker ∆g0

L with |h|gcone = O (r−α),
|∇gconeh|gcone = O

(
r−α−1) and |(∇gcone)2h|gcone = O

(
r−α−2) for some α < 0. Then for all

i ∈ N, the function ui : I → R satisfies the ordinary differential equation

− u′′i −
n

r
u′i −

ξi
r2ui = fir

−α−τ−2, (9.5)

where fi : I → R is a smooth function. Moreover, there is a universal constant R ∈ I and a
sequence of numbers Ci ∈ R+ such that ui|[R,∞) ≤ Ci.

Proof. Based on , for any h ∈ ker ∆g0
L , we have

0 = ∆g0
L h = ∆gcone

L h+ (∆g0
L −∆gcone

L )h
= ∆gcone

L h

+ (g0 − gcone) ? (∇gcone)2h+∇gcone(gcone − g0) ?∇gconeh

+ (∇gcone)2(gcone − g0) ?
◦
Rh+ (Rg0 −Rgcone) ? h

= ∆gcone
L h

+O
(
r−τ

)
O
(
r−α−2

)
+O

(
r−τ−1

)
O
(
rα−1

)
+O

(
r−τ−2

)
O
(
r−α

)
+O (r)O

(
r−α

)
= ∆gcone

L h+O
(
r−α−τ−2

)
.

This means that for any ∆g0
L -harmonic h satisfying the decay properties in the statement

of the lemma satisfies
∆gcone
L h = O

(
r−α−τ−2

)
.
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Without loss of generality we can introduce a symmetric 2-tensor field f with

∆gcone
L h = fr−α−τ−2. (?)

Note that ∆g0
L is an elliptic operator, therefore h must be smooth, consequently ∆gcone

L h is
also smooth, which in turn means that f must be smooth. Moreover, f is bounded outside
some compact set K, which we can take without loss of generality to be [R,∞) × L for
some R ∈ I such that the compact set in the definition of the asymptotic metric is in the
complement of [R,∞)× L.

Let us introduce the function fi : I → R, r 7→
∫
{r}×L

〈
f, r2Wi

〉
gcone

volglink . This function
is smooth by construction, and it is also bounded since the Cauchy–Schwarz inequality
implies that

|fi(r)| ≤ ‖f‖L2({r}×L,volglink ) · ‖r2Wi‖L2({r}×L),volglink )︸ ︷︷ ︸
=1

≤ ‖f‖L∞({r}×L,volglink ) ·Volglink({r} × L) <∞.

Note also that
∫
{r}×L

〈
h, r2Wi

〉
gcone

volglink = −u′′i (r) − n
r u
′
i(r) −

ξi
r2ui(r). This way,

applying the operator
∫
{r}×L

〈
·, r2Wi

〉
gcone

volglink to Equation (?), we obtain

−u′′i −
n

r
u′i −

1
r2 ξiui = fir

−α−τ−2.

Luckily, Equation (9.5) can be solved explicitly.

Lemma 9.20. Fix an r0 ∈ I bigger than the asymptotic threshold and also bigger than 1.
If ξ is nonresonant, then solutions of Equation (9.5) are of the form

u(r) = 1

2
√

(n−1
2 )2+ξ

(
rm+(ξ)

(∫ r

r0
f(s)s−m+(ξ)−α−τ−1ds+ C+

)

−rm−(ξ)
(∫ r

r0
f(s)s−m−(ξ)−α−τ−1ds+ C−

))
, (9.6)

where C± ∈ R are free constants. If ξ is resonant, i.e. if ξ = −
(
n−1

2

)2
, then solutions of

Equation (9.5) are of the form

u(r) = r−
n−1

2 ln r ·
(∫ r

r0
f(s)sn/2−3/2−α−τds+ C+

)
− r−

n−1
2

(∫ r

r0
f(s)sn/2−3/2−α−τ ln s ds+ C−

)
where C± ∈ R are free constants.

Proof. Equation (9.5) can be solved using the method of variation of parameters.
Suppose ξ is nonresonant, i.e. ξ 6= −

(
n−1

2

)2
. The homogeneous equation is an Euler–

Cauchy equation and it can be solved using the ansatz u(r) = ra. As we have seen in the
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exact cone case in Lemma 9.5, a fundamental system of solutions is given by u±(r) = rm±(ξ).
The corresponding Wrońskian is

W (r) = det
(
u+ u−
u′+ u′−

)
= −2r−n

√(
n− 1

2

)2
+ ξ,

which is nonzero by assumption. Let us introduce A± : I → R via

A±(r) := ∓
∫ r

r0

1
W (s)u∓(s)f(s)s−α−τ−2ds

= ± 1

2
√

(n−1
2 )2+ξ

∫ r

r0
f(s)s−n−1+m∓(ξ)−α−τ−1ds

= ± 1

2
√

(n−1
2 )2+ξ

∫ r

r0
f(s)s−m±(ξ)−α−τ−1ds.

Here we used the identity −n−1+m∓(ξ) = −m±(ξ). The general solution of Equation (9.5)
can be written as

u(r) = (A+(r) + C̃+)u+(r) + (A−(r) + C̃−)u−(r)

= rm+(ξ)

 1

2
√

(n−1
2 )2+ξ

∫ r

r0
f(s)s−m+(ξ)−α−τ−1ds+ C̃+


− rm−(ξ)

 1

2
√

(n−1
2 )2+ξ

∫ r

r0
f(s)s−m−(ξ)−α−τ−1ds+ C̃−


= 1

2
√

(n−1
2 )2+ξ

(
rm+(ξ)

(∫ r

r0
f(s)s−m+(ξ)−α−τ−1ds+ C+

)

−rm−(ξ)
(∫ r

r0
f(s)s−m−(ξ)−α−τ−1ds+ C−

))
,

where C̃± ∈ R and C± := 2C̃±
√(

n−1
2

)2
+ ξ.

Suppose now that ξ is resonant, i.e. ξ = −
(
n−1

2

)2
. Then the functions

u+(r) := r−
n−1

2 log r and u−(r) := r−
n−1

2

form a fundamental system for the homogeneous differential equation, and the correspond-
ing Wrońskian is

W (r) = det
(
u+ u−
u′+ u′−

)
= −r−n,

which is nonzero. As before, let us introduce A± : I → R via

A±(r) := ∓
∫ r

r0

1
W (s)u∓(s)f(s)s−α−τ−2ds
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= ±
∫ r

r0
f(s)u∓(s)sn−α−τ−2ds.

The general solution of Equation (9.5) can be written as

u(r) = (A+(r) + C̃+)u+(r) + (A−(r) + C̃−)u(r)−

= r−
n−1

2 ln r ·
(∫ r

r0
f(s)sn/2−3/2−α−τds+ C+

)
− r−

n−1
2

(∫ r

r0
f(s)sn/2−3/2−α−τ ln s ds+ C−

)
where C± ∈ R are free constants.

The next subgoal is to establish a decay estimate for solutions (9.6) of Equation (9.5).
We start this investigation with a series of computationally intensive lemmata, the results
of which are summarized in Proposition 9.23 of page 120.

Lemma 9.21. Let ξ ≥ 0. The function A+ : I → R, r 7→
∫ r
r0
s−m+(ξ)−α−τ−1f(s)ds converges

to a finite value as r →∞. If the solution u of Equation9.5 tends to zero at infinity, then

ui =


O
(
rm−(ξ)

)
if − α− τ < m−(ξ)

O
(
rm−(ξ) ln r

)
if − α− τ = m−(ξ)

O (r−α−τ ) if m−(ξ) < −α− τ.
.

Proof. For the first claim, note that, since the standard topology of R is metrizable, it
suffices to show that the function A+ converges sequentially. Since R is complete, it suffices
to show Cauchy convergence. Let (rn)n∈N be any sequence in I converging to infinity. Define
the sequence An :=

∫ rn
r0
s−m+(ξ)−α−τ−1f(s)ds. For n,m ∈ N, we have

|An −Am| = 1

2
√

(n−1
2 )2+ξ

∣∣∣∣∫ rm

rn
s−m+(ξ)−α−τ−1f(s)ds

∣∣∣∣
≤ C1

∣∣∣∣∫ rm

rn
s−m+(ξ)−α−τ−1f(s)ds

∣∣∣∣
= C2

∣∣∣r−m+(ξ)−α−τ
m − r−m+(ξ)−α−τ

n

∣∣∣ .
Now we show that (An)n∈N is a Cauchy sequence. Let ε > 0. Then, by convergence to

infinity, there is a number Nε ∈ N such that rp ≥
(

2C2
ε

) 1
m+(ξ)+α+τ whenever p ≥ Nε. But

then r−m+(ξ)−α−τ
p ≤ ε

2C2
, thus whenever n,m ≥ Nε, we have

|An −Am| ≤ C2
∣∣∣r−m+(ξ)−α−τ
m − r−m+(ξ)−α−τ

n

∣∣∣
≤ C2(r−m+(ξ)−α−τ

m + r−m+(ξ)−α−τ
n )

≤ C2

(
ε

2C2
+ ε

2C2

)
= ε,

showing Cauchy convergence, and thereby the first claim.
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Consequently, A+(r) +C+ = −
∫∞
r s−m+(ξ)−α−τ−1f(s)ds+K+ for some constant K+ ∈

R, and, if K+ 6= 0, then there exists a threshold R > 0 such that A+(r) + C+ > 1
2K+ for

all r > R, thus u→ 0 is impossible. Thus K+ = 0 and correspondingly, by boundedness of
the function f , we obtain1

|u(r)| =

∣∣∣∣∣∣ 1

2
√

(n−1
2 )2+ξ

(
rm+(ξ)

(∫ r

r0
f(s)s−m+(ξ)−α−τ−1ds+ C+

)

−rm−(ξ)
(∫ r

r0
f(s)s−m−(ξ)−α−τ−1ds+ C−

))∣∣∣∣
=

∣∣∣∣∣∣− 1

2
√

(n−1
2 )2+ξ

(
rm+(ξ)

(∫ ∞
r

f(s)s−m+(ξ)−α−τ−1ds

)

+rm−(ξ)
(∫ r

r0
f(s)s−m−(ξ)−α−τ−1ds+ C−

))∣∣∣∣
≤ C1

(
rm+(ξ)

∫ ∞
r

s−m+(ξ)−α−τ−1ds+ rm−(ξ)
∫ r

r0
s−m−(ξ)−α−τ−1ds

)
≤ C2

(
rm+(ξ)r−m+(ξ)−α−τ + rm−(ξ)

∫ r

r0
s−m−(ξ)−α−τ−1ds

)
≤ C2

(
r−α−τ + rm−(ξ)

∫ r

r0
s−m−(ξ)−α−τ−1ds

)
For the remaining integral, now we need to consider the following cases.
Case 1: m−(ξ) = −α − τ . In this case, the integral evaluates to ln(r/r0), thus |u(r)| =

O (r−α−τ ) +O
(
rm−(ξ) ln r

)
= O (r−α−τ ln r).

Case 2: m−(ξ) 6= −α− τ . In this case, the integral evaluates to

C3(r−m−(ξ)−α−τ − (r0)−m−(ξ)−α−τ ),

and thus |u(r)| = O (r−α−τ ) +O
(
rm−(ξ)

)
.

The second claim follows.

Lemma 9.22. Let ξ < 0 be superresonant. Then

ui =


O
(
rm+(ξ)

)
if − α− τ < m−(ξ)

O
(
rm+(ξ) ln r

)
if − α− τ = m−(ξ)

O (r−α−τ ) if m−(ξ) < −α− τ.
.

Let ξ = −
(
n−1

2

)2
< 0 be resonant. Then

ui =


O
(
r−

n−1
2 ln r

)
if − α− τ < −n−1

2

O
(
r−

n−1
2 (ln r)2

)
if − α− τ = −n−1

2

O (r−α−τ ln r) if − n−1
2 < −α− τ.

.

1Note that ξ ≥ 0 is alway superresonant.
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Let ξ < 0 be subresonant. Then

ui =


O
(
r−

n−1
2
)

if − α− τ < −n−1
2

O
(
r−

n−1
2 ln r

)
if − α− τ = −n−1

2

O (r−α−τ ) if − n−1
2 < −α− τ.

.

Proof. • First, let us assume that ξres < ξ < 0 is nonresonant. From now on, we use
m± := m±(ξ) in this proof in order to ease notation. Note that in this case, there is
a strict inequality m−(ξ) < m+(ξ). From Lemma 9.20, we have that

u(r) = 1

2
√

(n−1
2 )2+ξ

(
rm+(ξ)

(∫ r

r0
f(s)s−m+(ξ)−α−τ−1ds+ C+

)

−rm−(ξ)
(∫ r

r0
f(s)s−m−(ξ)−α−τ−1ds+ C−

))
,

thus, from boundedness of f and standard estimates, we obtain the estimate

|u(r)| = C1

(
rm+

(∫ r

r0
s−m+−α−τ−1ds+ |C+|

)
+ rm−

(∫ r

r0
s−m−−α−τ−1ds+ |C−|

))
.

(9.7)

Based on the relative position of −α − τ with respect to m±, we have five case to
consider.

Case 1 m− < m+ < −α− τ ,
Case 2 m− < m+ = −α− τ ,
Case 3 m− < −α− τ < m+,
Case 4 m− = −α− τ < m+,
Case 5 −α− τ < m− < m+.

Cases 1,3 and 5 may be dealt with at once (note that here m− 6= −α− τ 6= m+):

|u(r)| = C1

(
rm+

(∫ r

r0
s−m+−α−τ−1ds+ |C+|

)
+ rm−

(∫ r

r0
s−m−−α−τ−1ds+ |C−|

))
= C2

(
rm+(r−m+−α−τ + C3) + rm−(r−m−−α−τ + C4)

)
= O (rm+) +O

(
r−α−τ

)
+O (rm−)

= O (rm+) +O
(
r−α−τ

)
.

In case 2, we have a logarithmic integral

|u(r)| = C1

(
rm+

(∫ r

r0
s−m+−α−τ−1ds+ |C+|

)
+ rm−

(∫ r

r0
s−m−−α−τ−1ds+ |C−|

))
= C2

(
rm+(ln(r/r0) + C3) + rm−(r−m−−α−τ + C4)

)
= O (rm+ ln r) +O (rm+) +O

(
r−α−τ

)
+O (rm−)

= O (rm+ ln r) .
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Similarly, in case 4, we also have a logarithmic integral

|u(r)| = C1

(
rm+

(∫ r

r0
s−m+−α−τ−1ds+ |C+|

)
+ rm−

(∫ r

r0
s−m−−α−τ−1ds+ |C−|

))
= C2

(
rm+(r−m+−α−τ + C3) + rm−(ln(r/r0) + C4

)
= O (rm+) +O

(
r−α−τ

)
+O (rm− ln r) +O (rm−)

= O (rm+) +O
(
r−α−τ

)
.

• Let us assume now that ξ = ξres is resonant. From Lemma 9.20, we have that

u(r) = r−
n−1

2 ln r ·
(∫ r

r0
f(s)sn/2−3/2−α−τds+ C+

)
− r−

n−1
2

(∫ r

r0
f(s)sn/2−3/2−α−τ ln s ds+ C−

)
thus, from boundedness of f and standard estimates, we obtain the estimate (valid
for r > max {R, 1})

|u(r)| ≤ C1r
−n−1

2

(
ln r ·

(∫ r

r0
s(n−1)/2−α−τ−1ds+ |C+|

)
+
∫ r

r0
f(s)s(n−1)/2−α−τ−1 ln s ds+ |C−|

)
. (9.8)

Note that for any real number a ∈ R, we have the indefinite integral∫
ra−1 ln r dr =

{
C2r

a ln r + C3r
a if a 6= 0,

C4 ln r + C5(ln r)2 if a = 0

for some real numbers C2, C3, C4, C5 ∈ R. Based on the relative position of −α − τ
with respect to −n−1

2 , we have two case to consider.
If −α− τ = −n−1

2 , then we obtain

|u(r)| ≤ C1
(
r−

n−1
2 (ln(r/r0) + |C+|) + C4 ln r + C5(ln r)2 + |C−|

)
= O

(
r−

n−1
2 (ln r)2

)
.

If −α− τ 6= −n−1
2 , then we obtain

|u(r)| ≤ C1r
−n−1

2
(
ln r ·

(
C6r

n−1
2 −α−τ + C7

)
+ C1r

n−1
2 −α−τ ln r + C2 + |C−|

)
= O

(
r−

n−1
2 ln r

)
+O

(
r−α−τ ln r

)
+O

(
r−

n−1
2 ln r

)
+O

(
r−

n−1
2
)

= O
(
rmax{−n−1

2 ,−α−τ} ln r
)
.

Hence the claim.

• Let ξ < −
(
n−1

2

)2
be subresonant. Then a calculation similar to the superresonant

case shows the claim.
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The decay properties of the component function can be summarized as follows. Recall
the generic decay function m from Definition 9.12.

Proposition 9.23. Let α > 0 and u = O (r−α) is a decaying solution of Equation (9.5)
with eigenvalue ξ. If ξ is nonresonant, then

u =

O
(
r−min{−α−τ,m(ξ)}

)
if − α− τ 6= m(ξ)

O
(
rm(ξ) ln r

)
if − α− τ = m(ξ)

.

On the other hand, if ξ = −
(
n−1

2

)2
is resonant, then

u =

O
(
r−min{−α−τ,m(ξ)} ln r

)
if − α− τ 6= m(ξ)

O
(
rm(ξ)(ln r)2

)
if − α− τ = m(ξ)

.

As a consequence, we obtain the decay rate of decaying elements in the kernel of the
Einstein operator of asymptotically conical metrics.

Theorem 9.24. Let gac be an asymptotically conical metric with decay rate τ which is
not resonance-dominated. Let α > 0 be a real number and suppose h ∈ ker ∆gac

L with
h = O (r−α). Then h = O (r−µ) where µ := −min {m(ξ) |ξ ∈ σ(∆gac

L )} where m is the
generic decay rate function from Definition 9.12.

Proof. We may develop h as h(r, x) =
∑
i∈N ui(r)r2Wi(x). Here, each ui = O (r−α) by the

decay assumption. Moreover, by Proposition 9.23, we have that, in fact ui = O (r−αnew)
where αnew may be chosen as

αnew =
{

min {F (α), µ} if F (α) 6= µ

µ+ 1
2(α− µ) if F (α) = µ,

where F : (0,∞)→ (0,∞), x 7→ x+ τ since in the case where F (α) = µ, we have r−µ ln r =
O
(
rµ+ 1

2 (α−µ)
)
. Note that F is a function fit for iteration. Since the decay rate of h is

determined by the biggest of the decay rates of the ui, the above iteration corresponds
exactly to the situation described in Lemma 9.17. This finishes the proof.
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Chapter 10

Iterative improvement of the decay
rate

10.1 First-order decay of the difference tensor for gauged
metrics

Our goal in this section is to establish that if we have a gauged metric g ∈ Fg0 with
g − g0 = O (ρ−α), then ∇g0h = O

(
ρ−α−1)

Note that the condition g = g0 + h ∈ Fg0 for Ricci-flat g0 can be expressed [Shi89,
Lemma 2.1] or [DK20, Equation (5)] as a quasi-linear partial differential equation

gab∇g0,2
ab hij + habg

ka(g0)lbgip(g0)pq(Rg0)jklq + habg
ka(g0)lbgjp(g0)pq(Rg0)iklq

= −gabgpq
(1

2∇
g0
i hpa∇

g0
j hqb +∇g0

a hjp∇g0
q hib

)
+ gabgpq

(
∇g0
a hjp∇

g0
b hiq −∇

g0
j hpa∇

g0
b hiq −∇

g0
i hpa∇

g0
b hjq

)
,

Lemma 10.1. The operator Q : Γ∞
(
S2T ∗M

)
� Γ∞

(
S2T ∗M

)
defined locally as

(Qh)ij := (g0 + h)ab∇g0,2
ab hij + hab(g0 + h)ka(g0)lb(g0 + h)ip(g0)pq(Rg0)jklq

+ hab(g0 + h)ka(g0)lb(g0 + h)jp(g0)pq(Rg0)iklq

induces a second-order quasilinear, uniformly elliptic differential operator

Q : W 2,p
−α(S2T ∗M, g0) �W 0,p

−α−2(S2T ∗M, g0)

defined on an open neighbourhood U of 0. Its symbol is σ(DhQ) = (g0 + h)−1 ⊗ idS2T ∗M at
any h ∈ U .

Proof. It is clear that the operator Q is of second order and that it is quasilinear. Moreover,
an easy calculation reveals that the linearization of Q at a tensor field h such that g0 + h
is a metric is

DhQ = (g0 + h)−1 ◦ ∇g0,2 + lower-order terms,

and an equally easy calculation verifies that the symbol is indeed the map in the claim.
As for the domain of definition and the mapping properties, we work in more steps.
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1. First note that |g0|g0 =
√

dimM and thus if ‖h‖L∞(S2T ∗M,g0) ≤ 1
2
√

dimM , we have
from the reverse triangle inequality that

|g0 + h|g0 = |g0 − (−h)|g0 ≥ ||g0|g0 − | − h|g0 |

>
√

dimM − 1
2
√

dimM = 1
2
√

dimM.

Thus g0 + h is invertible and 1
|g0+h|g0

< 2√
dimM

=: C1(dimM). Moreover, g0 + h is a
metric.
Let us introduce U :=

{
h
∣∣∣‖h‖L∞(S2T ∗M) <

1
2
√

dimM
}
.

Now by the submultiplicative property of the induced tensor metrics with respect to
the tensorial multiplication and the fact that the pointwise g0-norm of tensors T ∗M⊗
TM is comparable to the pointwise g0-operator norm on End (TM) ' T ∗M ⊗ TM ,
we have

|g−1 ◦ ∇g0,2h|g0 = |g−1 ⊗∇g0,2h|g0 ≤ C2|g−1|g0 |∇g0,2g|g0 < C1C2|∇g0,2g|g0 .

This estimate, together with the mapping properties of the g0-covariant derivative
on weighted Sobolev spaces imply that that the map U → W 0,p

−α−2(S2T ∗M), h 7→
|g−1 ◦ ∇g0,2h|g0 is well-defined.

2. To establish the mapping properties of the the curvature terms in the operator Q,
one uses the weighted Hölder inequality.

The proof of [DK20, Lemma 2.9], originally stated for asymptotically locally Euclidean
manifold, carries over to asymptotically conical manifolds. For convenience of the reader,
we reproduce the proof here.

Lemma 10.2 (Weighted interpolation inequality, [DK20, Lemma 2.9]). Let (M, gac) be an
asymptotically conical manifold, let τ ∈ R, and let (E,∇) be a metric bundle. If h ∈ Γ (E)
with ∇h ∈W 1,p

τ+1(T ∗M ⊗E), then we have |∇h|2 ∈ Lpτ (RM ) and the interpolation inequality

‖|∇h|2gac‖Lpτ (RM ) ≤ C
(
‖∇2h‖Lpτ (T ∗M⊗T ∗M⊗E) + ‖∇h‖Lpτ+1(T ∗M⊗E)

)
‖h‖L∞(E)

holds where C = C(E, p, τ) is independent of the section h.

Proof. By the density of compactly supported smooth sections in weighted Lebesgue spaces,
we may assume that h is compactly supported and smooth. We can avoid differentiability
issues at h = 0 if we introduce the quantity |h|δ :=

√
|h|2gac + δ for some fixed δ > 0.

Evidently, |h| < |h|δ.
Now we compute for any α ∈ R∫

M
|∇h|2pρα volgac ≤

∫
M
〈∇h,∇h〉gac

|∇h|2p−2
δ ρα volgac

Integration by parts and the Leibniz rule imply

= −
∫
M
〈h,∆gach〉gac

|∇h|2p−2
δ ρα volgac
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+
∫
M
〈h,∇h〉gac

(∇|∇h|2p−2
δ )ρα volgac

+
∫
M
〈h,∇h〉gac

|∇h|2p−2
δ ∇ρ · ρα−1 volgac

The Cauchy–Schwarz inequality, the inequality |∆gach|gac ≤ |∇2h|gac , the well-known iden-
tity ∇(|∇h|2gac) = 2

〈
∇2h,∇h

〉
gac

and the existence of a constant C1 such that |∇ρ|gac ≤ C1
imply

≤
∫
M
|h|gac |∇2h|gac |∇h|

2p−2
δ ρα volgac

+
∫
M
|h|gac |∇h|2gac |∇

2h|gac |∇h|
2p−4
δ ρα volgac

+ C1

∫
M
|h|gac |∇h|gac |∇h|

2p−2
δ ρα−1 volgac .

After letting δ → 0, the first two terms coincide and we obtain the inequality∫
M
|∇h|2pgacρ

α volgac ≤ 2
∫
M
|h|gac |∇2h|gac |∇h|2p−2

gac ρα volgac

+
∫
M
|h|gac |∇h|2p−1

gac ρα−1 volgac . (?)

By the Young inequality1, we obtain, for any ε > 0, the following inequalities:

|h|gac |∇2h|gac · |∇h|2p−2
gac ≤ ε|∇h|2pgac + C2(ε, p)|h|pgac |∇

2h|pgac ,

|h|gac |∇h|gacρ
−1 · |∇h|2p−2

gac ≤ ε|∇h|2pgac + C2(ε, p)|h|pgac |∇h|
p
gacρ

−p,

where C2(ε, p) := −1
p(εp)−1/p? . Therefore, from Equation (?), we have∫

M
|∇h|2pgacρ

α volgac ≤ (1 + C1)ε
∫
M
|∇h|2pgacρ

α volgac

+ C2(ε, p)
∫
M
|h|pgac |∇

2h|pgacρ
α volgac

+ C1 · C2(ε, p)
∫
M
|h|pgac |∇h|

p
gacρ

α−p volgac . (??)

Note that the term on the left-hand side of Equation (??) and the first term on the right-
hand side of the same equation are constant multiples of each other. Choosing ε := ε0 <

1
1+C1

, we obtain by subtracting the first term on the right-hand side and dividing by the
constant coefficient2 1− (1 + C1)ε0, we obtain∫

M
|∇h|2pgacρ

α volgac ≤ C3

∫
M
|h|pgac |∇

2h|pgacρ
α volgac +C4

∫
M
|h|pgac |∇h|

p
gacρ

α−p volgac ,

1The Young inequality is ab ≤ 1
p
ap + 1

p? b
p?

where a, b ≥ 0, p > 1 and p? := p
p−1 is the Hölder dual of p.

We obtain the desired inequalities with the choices b := (εp?)1/p?

|∇h|2p−2
gac and a := (εp?)−1/p?

|h|gacT with
T := |∇2h|gac in the first case and T := |∇h|gacρ

−1 in the second case.
2Note that this constant is positive due to our choice of ε0, thus the direction of the relation sign remains

invariant under the division.
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where C3(p) := C2(ε0,p)
1−(1+C1)ε0 and C4(p) := C1·C2(ε0,p)

1−(1+C1)ε0 . Taking the pth root, we obtain a
constant C5(p) which depends on the maximum of C3 and C4 and the constant between
the p-mean and the 1-mean for which(∫

M
|∇h|2pgacρ

α volgac

)1/p
≤ C5

(∫
M
|h|pgac |∇

2h|pgacρ
α
)1/p

+ C5

(∫
M
|h|pgac |∇h|

p
gacρ

α−p volgac

)1/p

≤ C5 · ‖h‖L∞(E)

[(∫
M
|∇2h|pgacρ

α
)1/p

+ C5

(∫
M
|∇h|pgacρ

α−p volgac

)1/p
]
.

Specializing to α := −τp− n yields the desired inequality (with C := C5).

Lemma 10.3. There exists a real number ε > 0 such that if h ∈ C0
−β
(
S2T ∗M, g0

)
with

‖h‖L∞(S2T ∗M,g0) < ε solves the equation g0 + h ∈ Fg0, then h ∈ C1
−β
(
S2T ∗M, g0

)
. The

same conclusion holds if the gaugedness condition is replaced with g0 +h ∈ FM\Kg0 for some
compact set K ⊂M .

Proof. We proceed in several steps following [DK20, Theorem 2.7].

1. To show that h = O
(
ρ−β

)
and ∇g0h ∈ O

(
ρ−β−1

)
(with respect to the pointwise g0-

norm), it suffices to show that h ∈ C1
−β
(
S2T ∗M, g0

)
. By the definitions of the norms,

it is clear that ‖h‖C1
−β(S2T ∗M,g0) ≤ ‖h‖C1,α

β
(S2T ∗M,g0), hence C1,α

β

(
S2T ∗M, g0

)
⊂

C1,α
−β
(
S2T ∗M, g0

)
for any α ∈ (0, 1). Note that, for p ∈ (n,∞) and β ∈ (0, 1), the

weighted Sobolev embedding (cf. e.g. [Mar02, Theorem 4.23]) implies

‖h‖
C1,α
−β (S2T ∗M,g0) ≤ C1‖h‖W 2,p

−β (S2T ∗M,g0).

2. This means our job has been reduced to finding an upper bound for theW 2,p
−β (S2T ∗M, g0)-

form using the equation g0 + h ∈ Fg0 (and by restricting the L∞(S2T ∗M, g0)-norm
of h). By Lemma 8.11, the gaugedness relation g0 + h ∈ Fg0 can be written as a
quasi-linear partial differential equation

Q(h) = (∇g0h) ? (∇g0h).

Note that the g0-norm of the right-hand side of this equation may be estimated as

|(∇g0h) ? (∇g0)h|g0 ≤ C2|∇g0h|2g0 , (10.1)

where C2 = C2(g0, ?). Since Q is a uniformly elliptic operator, it is natural to start
with an elliptic estimate for weighted Sobolev spaces. Suppose ‖h‖L∞(S2T ∗M,g0) < ε1
where ε1 > 0 is chosen so small such that uniform ellipticity of Q is guaranteed by
Lemma 10.1.

‖h‖
W 2,p
−β (S2T ∗M,g0) ≤ C3

(
‖Q(h)‖Lp−β−2(S2T ∗M,g0) + ‖h‖Lp−β(S2T ∗M,g0)

)
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≤ C4
(
‖|∇g0h|2g0‖Lp−β−2(S2T ∗M,g0) + ‖h‖Lp−β(S2T ∗M,g0)

)
≤ C5‖h‖L∞(S2T ∗M,g0)

·
(
‖∇g0,2h‖Lp−β−2(S2T ∗M,g0) + ‖∇g0h‖Lp−β−1(S2T ∗M,g0)

)
+ C4‖h‖Lp−β(S2T ∗M,g0)

≤ C5‖∇g0,2h‖
W 2,p
−β (S2T ∗M,g0) · ‖h‖L∞(S2T ∗M,g0)

+ C4‖h‖Lp−β(S2T ∗M,g0)

Here we used elliptic regularity, the estimate from Equation (10.1), the weighted
interpolation inequality Lemma 10.2 and the definition of the weighted Sobolev norm.
Note that the far left-hand side of this chain of inequalities appears as a factor in the
first term of the right-hand side of the last formula, thus

(1− C5‖h‖L∞(S2T ∗M,g0))‖h‖W 2,p
−β (S2T ∗M,g0) ≤ C4‖h‖Lp−β(S2T ∗M,g0) (10.2)

Now we see a second place where it is necessary to bound the L∞(S2T ∗M, g0)-norm
of h for the argument: if ‖h‖L∞(S2T ∗M,g0) ≤ ε2 < 1

C5
, then the coefficient on the

left-hand side of the previous equation is positive, thus we obtain the estimate

‖h‖
W 2,p
−β (S2T ∗M,g0) ≤ C6‖h‖Lp−β(S2T ∗M,g0),

where C6 := C4
1−C5ε2

.

3. Next, we relate the Lp−β(S2T ∗M, g0)-norm of h to the assumed decay rate of h. First
of all, note that ‖h‖Lp−β(S2T ∗M,g0) = ‖ρ · h‖Lp−β+1(S2T ∗M,g0) since

‖h‖p
Lp−β(S2T ∗M,g0) =

∫
M

(ρβ|h|g0)pρ− dimM volg0

=
∫
M

(ρβ−1|ρ · h|g0)pρ− dimM volg0 = ‖ρ · h‖p
Lp−β+1(S2T ∗M,g0).

Now the weighted Hölder inequality Proposition 7.18 implies that

‖h‖Lp−β(S2T ∗M,g0) = ‖ρ · h‖Lp−β+1(S2T ∗M,g0) ≤ C7‖ρ‖Lp1−η(RM ,g0)‖h‖L∞−β+η(S2T ∗M,g0),

where η > 0 is a positive number. The ρ-factor is finite by Lemma 7.19. The the
h-factor may be estimated, due to the fact that h ∈ C0

−β
(
S2T ∗M, g0

)
, as follows

‖h‖L∞−β+η(S2T ∗M,g0) = essup
M

(ρβ−η|h|g0) = sup
M

(ρβ−η|h|g0)

= max
{

sup
Core(R)

(ρβ−η|h|g0), sup
M\Core(R)

(ρβ−η|h|g0)
}

≤ max
{
C8, sup(C9ρ

β−ηρ−β)
}
<∞,

where C8 is an upper bound in the core and C9 and R are asymptoticity constants
for h (i.e. |h|g0 |M\Core(R) ≤ C9ρ

−β).
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4. Thus we have, for h with ‖h‖L∞(S2T ∗M,g0) < max {ε1, ε2}, that

‖h‖
C1,α
−β (S2T ∗M,g0) ≤ C1‖h‖W 2,p

−β (S2T ∗M,g0) ≤ C1C6‖h‖Lp−β(S2T ∗M,g0) <∞,

where we used all the previous steps in order for each inequality. This shows the claim.

5. Note that the gaugedness condition has been used only in step 2. If the gaugedness
condition holds only on M \K, then we may split up the integrals to K and M \K,
and work analogously.

Proposition 10.4. There exists a real number ε > 0 such that if h ∈ C0
−β
(
S2T ∗M, g0

)
with ‖h‖L∞(S2T ∗M,g0) < ε solves the equation g0 + h ∈ Fg0, then ∇

gcone,kh = O
(
ρ−β−k

)
for

all k ∈ N.

Proof. The statement for k = 0 is true by assumption. Lemma 10.3 proves the statement
for k = 1. For k > 1, we can argue using elliptic estimates [Mar02, Theorem 4.21] and the
fact that ∆gcone

L is a uniformly elliptic conical operator of order 2 and rate 2.

This proposition means that once we have established a zeroth-order decay, and the
higher derivatives come for free as long as the gaugedness condition is satisfied outside of a
compact set. In the next section, we will establish an iterative procedure that improves on
the decay rate.

10.2 Iteration

Next, we state and prove a technical lemma.

Lemma 10.5. Let M be a smooth manifold, and let g0 ∈ AC (gcone, τ, φ) with Ricg0 = 0.
Moreover, suppose h ∈ Γ∞

(
S2T ∗M

)
is a symmetric 2-tensor field such that |h|gcone =

O (ρ−α), |∇gconeh|gcone = O
(
ρ−α−1) and |∇gcone,2h|gcone = O

(
ρ−α−2) for some α > 0

and such that g := g0 + h ∈ FM\Kg0 for some compact subset K ⊂ M . Then ∆gcone
L h =

O
(
ρ−F (α)−2

)
where F : R+ → R+ is a function fit for iteration.

Proof. The proof involves a lot of gory calculation, so it may be a good idea to summarize
the strategy. We start by expressing g−1 ◦ ∇g0,2h in two different ways. The first way uses
the decay property of h and the fact that g0 is asymptotically conical to gcone to compare
the inverse metric g−1 to the cone metric gcone and the second covariant derivative ∇g0,2 to
∇gcone,2. This leads us to a formula to the raw Laplacian ∆gconeh. The second way uses the
assumption that g ∈ Fg0 and Corollary 8.12. After adding the curvature terms, we obtain
a formula for ∆gcone

L h. Some tedious calculation is needed to show that the curvature terms
of gcone and g interact in such a way that their combination decays faster than any of them.

In the rest of this calculation, we will assume that K = ∅. (The behaviour inside K is
anyway inconsequential for the decay properties since h is continuous.)

First, we substitute both the metric g and the Levi-Civita connection ∇g0,2 for the
metric gcone and the corresponding Levi-Civita connection (at a price of certain correction
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terms appearing, of course). For the difference of second derivatives we use Lemma 2.6 with
T := ∇g −∇gcone .

g−1 ◦ ∇g0,2h = ((gcone)−1 + g−1 − (gcone)−1) ◦ (∇gcone,2 +∇g0,2 −∇gcone,2)h
= (gcone)−1 ◦ ∇gcone,2h+ (gcone)−1 ◦ (∇g0,2 −∇gcone,2)h

+ (g−1 − (gcone)−1) ◦ ∇gcone,2h+ (g−1 − (gcone)−1) ◦ (∇g0,2 −∇gcone,2)h
= −∆gconeh+ (gcone)−1 ◦ (T ?∇gconeh+ (∇gconeT ) ? h+ T ? T ? h)

+ (g−1 − (gcone)−1) ◦ ∇gcone,2h

+ (g−1 − (gcone)−1) ◦ (T ?∇gconeh+ (∇gconeT ) ? h+ T ? T ? h)
= −∆gconeh+ g−1 ◦ (T ?∇gconeh+ (∇gconeT ) ? h+ T ? T ? h)

+ (g−1 − (gcone)−1) ◦ ∇gcone,2h

= −∆gconeh

+ g−1 ◦ (T ?∇gconeh+ (∇gconeT ) ? h)
+ g−1 ◦ (T ? T ? h)
+ (g−1 − (gcone)−1) ◦ ∇gcone,2h

Since g−1 = O (1), g−1− (gcone)−1 = g−1− (g0)−1 + (g0)−1− (gcone)−1 = O (ρ−τ ) +O (ρ−α),
T = O

(
ρ−τ−1) and ∇gconeT = O

(
ρ−τ−2), we obtain

g−1 ◦ ∇g0,2h = −∆gconeh

+O (1) ◦ (O
(
ρ−τ−1

)
? O

(
ρ−α−1

)
+O

(
ρ−τ−2

)
? O

(
ρ−α

)
)

+O (1) ◦ (O
(
ρ−τ−1

)
? O

(
ρ−τ−1

)
? O

(
ρ−α

)
)

+ (O
(
ρ−α

)
+O

(
ρ−τ

)
) ? O

(
ρ−α−2

)
= −∆gconeh

+O
(
ρ−τ−α−2

)
+O

(
ρ−τ−α−2

)
+O

(
ρ−2τ−α−2

)
+O

(
ρ−2α−2

)
+O

(
ρ−τ−α−2

)
= −∆gconeh

+O
(
ρ−α−2

)
(O
(
ρ−τ

)
+O

(
ρ−2τ

)
+O

(
ρ−α

)
+O

(
ρ−τ

)
)

= −∆gconeh+O
(
ρ−α−2

)
(O
(
ρ−τ

)
+O

(
ρ−α

)
)

Note that Corollary 8.12 applies and its statement may be expressed structurally as

0 = g−1 ◦ ∇g0,2h+ (∇g0h) ? (∇g0h)− h ? Rg0 − g ? Ricg0

which leads us to the equality

∆gcone
L h = ∆gconeh− 2

◦
Rgconeh+ Ricgcone ◦(gcone)−1 ◦ h+ h ◦ (gcone)−1 ◦ Ricgcone
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= −g−1 ◦ ∇g0,2h− 2
◦

Rgconeh+ Ricgcone ◦(gcone)−1 ◦ h+ h ◦ (gcone)−1 ◦ Ricgcone

+O
(
ρ−α−τ−2

)
+O

(
ρ−2α−2

)
= −(∇g0h) ? (∇g0h) + h ? Rg0 + g ? Ricg0

− 2
◦

Rgconeh+ Ricgcone ◦(gcone)−1 ◦ h+ h ◦ (gcone)−1 ◦ Ricgcone

+O
(
ρ−α−τ−2

)
+O

(
ρ−2α−2

)
= h ? Rg0 + g ? Ricg0 −2

◦
Rgconeh+ Ricgcone ◦(gcone)−1 ◦ h+ h ◦ (gcone)−1 ◦ Ricgcone

+O
(
ρ−α−τ−2

)
+O

(
ρ−2α−2

)
= h ? Rg0 − 2

◦
Rgconeh+O

(
ρ−α−τ−2

)
+O

(
ρ−2α−2

)
,

where we used that Ricg0 = O (0). Let us introduce the notation (i ↔ j) to repeat the
contents from the last equality sign with indices i and j exchanged. Now we can examine
the remaining term more carefully in local coordinates

(h ? Rgg − 2
◦

Rgconeh)ij = −gkl(g0)pq(gip(Rg0)jklq + gjp(Rg0)iklq)
− 2(Rgcone)ikljhab(gcone)ak(gcone)bl

= −gkl(g0)pqgip(Rg0)jklq − (Rgcone)ikljhab(gcone)ak(gcone)bl + (i↔ j)

Since g = g0 + h and we have and (g0)pq(g0)ip(Rg0)jklq = (Rg0)jkli, we may continue with

= −gkl(Rg0)jkli − gkl(g0)pq(Rg0)jklqhip
− (gcone)ak(gcone)bl(Rgcone)ijklhab + (i↔ j)

Now since

−gkl(Rg0)jklt = −(g0)kl(Rg0)jklt + ((g0)kl − gkl)(Rg0)jklt
= −(Ricg0)jt + (g0)kahabgbl(Rg0)jklt
= −(Ricg0)jt + (g0)kagbl(Rg0)jklthab,

we may rewrite the expression of interest as

(h ? Rgg − 2
◦

Rgconeh)ij = −gkl(Rg0)jkli − gkl(Rg0)jklq(g0)pqhip
− (gcone)ak(gcone)bl(Rgcone)ikljhab + (i↔ j)

= −Ricg0
ji +(g0)kagbl(Rg0)jklihab

+ (−Ricg0
jq +(g0)kagbl(Rg0)jklqhab)(g0)pqhip

− (gcone)ak(gcone)bl(Rgcone)ikljhab + (i↔ j)
= −Ricg0

ji +(g0)kagbl(Rg0)jklihab
− Ricg0

jq(g0)pqhip + (g0)kagbl(Rg0)jklqhab(g0)pqhip
− (gcone)ak(gcone)bl(Rgcone)ikljhab + (i↔ j)
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= −Ricg0
ji

+ [(g0)kagbl(Rg0)jkli − (gcone)ak(gcone)bl(Rgcone)iklj ]hab
+ [−Ricg0

jq(g0)pq + (g0)kagbl(Rg0)jklqhab(g0)pq]hip
+ (i↔ j)

= [(g0)kagbl(Rg0)jkli − (gcone)ak(gcone)bl(Rgcone)iklj ]hab
+ (i↔ j)

+O
(
ρ−2α−2

)
Let us concentrate on the coefficient of hab. Changing the metrics to gcone and using the
decay rate of the difference of curvature tensors (Lemma 7.23) yields

(g0)kagbl(Rg0)jkli − (gcone)ak(gcone)bl(Rgcone)iklj
= (gcone)ka(gcone)bl(Rg0)jkli

+ (gcone)ka(gbl − (gcone)bl)(Rg0)jkli
+ ((g0)ka − (gcone)ka)(gcone)bl(Rg0)jkli
+ ((g0)ka − (gcone)ka)(gbl − (gcone)bl)(Rg0)jkli
− (gcone)ak(gcone)bl(Rgcone)iklj

= (gcone)ka(gcone)bl((Rg0)jkli −Rgcone)iklj
+O (1) ? (O

(
ρ−α

)
+O

(
ρ−τ

)
) ? O

(
ρ−2

)
+O

(
ρ−τ

)
? O (1) ? O

(
ρ−2

)
+O

(
ρ−τ

)
? (O

(
ρ−α

)
+O

(
ρ−τ

)
) ? O

(
ρ−2

)
= (gcone)ka(gcone)bl((Rg0)jkli −Rgcone)iklj

+O
(
ρ−α−2

)
+O

(
ρ−τ−2

)
= O (1) ? O (1) ? O

(
ρ−τ−2

)
+O

(
ρ−α−2

)
+O

(
ρ−τ−2

)
= O

(
ρ−α−2

)
+O

(
ρ−τ−2

)
.

Thus the curvature term is

(h ? Rg0 − 2
◦

Rgconeh)ij =
(
O
(
ρ−α−2

)
+O

(
ρ−τ−2

))ab
ij
hab +O

(
ρ−2α−2

)
=
(
O
(
ρ−α−2

)
+O

(
ρ−τ−2

))
O
(
ρ−α

)
+O

(
ρ−2α−2

)
= O

(
ρ−α−2

) (
O
(
ρ−α

)
+O

(
ρ−τ

))
.

Finally, we obtain

∆gcone
L h = h ? Rg0 − 2

◦
Rgconeh+O

(
ρ−α−τ−2

)
+O

(
ρ−2α−2

)
= O

(
ρ−F (α)−2

)
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where

F : R+ → R+, x 7→
{

2x if x ≤ τ
x+ τ if x > τ

is a function fit for iteration.

Theorem 10.6. Let g0 ∈ AC (gcone, φ, τ) be a Ricci-flat asymptotically conical manifold
of decay rate τ > 0 and asymptotic chart φ which is asymptotic to Cone(L, gL). Suppose
further that g0 is not resonance-dominated (cf. Definition 9.13). Then there exists a p > 1
and an Lp∩L∞ neighbourhood of g0 such that for any gauged metric g in this neighbourhood,
we have

|∇g0,k(g − g0)|g0 = O
(
ρ−µ−k

)
for any k ∈ N, (10.3)

where µ is determined as in Proposition 9.14.

Proof (sketch). One can establish similarly to the first step of the proof in [DK20, The-
orem 2.7] that h = O (ρ−α) for some α > 0 if the Lp(S2T ∗M, g0)-norm and the L∞(S2T ∗M, g0)-
norm of h are small enough. By Lemma 10.5, we have that

∆gcone
L h = O

(
ρ−F (α)−2

)
,

where F is a function fit for iteration. Working as in Theorem 9.24, we establish that
h = O (ρ−αnew), where

αnew =
{

min {F (α)− 2, µ} if F (α) 6= µ,

µ+ 1
2(α− µ) if F (α) = µ.

where µ := −min {m(ξ) |ξ ∈ σ(�gcone
E )} (recall Definition 9.12). (Again, this case distinction

is necessary because of the logarithmic factor appearing in Proposition 9.23. Instead of
µ+ 1

2(α− µ) any number would be admissible between α and µ.)
Now Lemma 9.17 delivers the decay rate for the zeroth derivative. Lemma 10.3 extends

it to the first derivative. The higher-order decay rates follow from an inductive argument
based on elliptic regularity of weighted Hölder spaces.

Remark 10.7. The resonance-dominated case should be treated similarly but the existence
of a logarithmic factor in both when F (α) = µ and when F (α) 6= 0 means that we cannot
expect an optimal decay rate, only an infimum.

10.3 Decay improvement for asymptotically conical mani-
folds

Finally we are in position to show that we can find an appropriate asymptotic chart in
which the optimalized decay rate is assumed.
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Theorem 10.8. Let (M, gac) ∈ AC (gcone, τ, φ) be an asymptotically conical manifold with
asymptotic cone (Cone(L, gL), gcone) and τ > 0. Assume that gac is not resonance-dominated3.
Then there is an asymptotic chart φ̃ such that gac ∈ AC

(
gcone, µ, φ̃

)
, where

µ = −min {m(ξ) |ξ ∈ σ(�E)}

where m is the generic decay function from Definition 9.12. Note that the spectrum of �E

has been computed in Theorem 6.55.

Proof. Let gac ∈ AC (gcone, τ, φ). Then we have |∇gcone,k((φ−1)∗gac−gcone)|gcone = O
(
r−τ−k

)
for all k ∈ N.

Recall the family of eventually exactly conical metrics (gR)R≥R0 constructed in Pro-
position 8.30. Metrics in this family are Ricci-flat outside of the compact set Core(2R1).
Moreover, since gR → gac in the W k,p

δ (S2T ∗M) topology, we can find some R1 ≥ R0 such
that gR1 ∈ U where U is a W k,p

δ (S2T ∗M)-neighbourhood on which every metric may be
uniquely pulled back to a metric satisfying the Bianchi gauge with respect to gac (cf. Pro-
position 8.23). This in turn means that the metric gR1 may be uniquely pulled back to a
gauged metric, i.e. there is a diffeomorphism ψ : M → M such that ψ∗(gR1) =: gb ∈ Ggac ,
i.e. V (gb, gac) = 0.

Since gb is gauged with respect to gac outside ψ−1(Core(2R1)), Theorem 10.6 implies
that the difference gb − gac decays optimally to all orders:

|∇gac,k(gb − gac)|gac = O
(
ρ−µ−k

)
for all k ∈ N where µ is the optimalized decay rate.

Now consider the diffeomorphism φ ◦ ψ : ψ−1(M \ K) → (R,∞) × L. Since on M \
ψ−1(Core(2R1)), we have gac = ψ∗φ∗gcone by construction, we obtain

|∇cone,k((φ ◦ ψ)∗gac − gcone)|gac = |∇cone,k((φ ◦ ψ)∗(gac − ψ∗φ∗gcone))|gac

= |∇cone,k((φ ◦ ψ)∗(gac − gac))|gac .

The claim now follows from Corollary 7.26 and Lemma 8.16.

Remark 10.9. In the resonance-dominated case, because of the presence of the logarithmic
factor in both branches in Proposition 9.23, one cannot expect a definite best decay rate.
It is reasonable to expect that the optimal decay is O (ρ−µ ln ρ). To accommodate this case,
one would have to relax the Definition 7.1 to obtain a definite decay rate. Alternatively, one
could expect a decay statement of the form O

(
ρ−µ+ε) for every ε > 0 since ln r = O (ρε) for

any ε > 0.

3Cf. Definition 9.13
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