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UNIVERSITÄT HAMBURG

Abstract
Faculty of Business, Economics and Social Sciences

Department of Socioeconomics
Chair of Ecological Economics

Doktor rerum politicarum

Essays in Empirical Energy Economics

by Philip C. Schnaars

This thesis investigates three relevant issues that are associated with transitioning a fossil-
fuel based energy system towards a renewable structure. To this end, extensive data on the
German electricity system and the interactions with its neighboring countries is gathered.
The first paper deals with the substitution effect of unilateral renewable electricity and re-
sulting long-term abatement under the overarching reformed emission trading scheme EU
ETS. While onshore and offshore wind replace more emissions in the short term than solar
power, the market stability reserve allows for a fraction of these short term replacements
to result in long-term abatement, depending on the year of abatement effort. The second
paper is related to this first topic and deals with the trading of renewable electricity, one
step in time before the described actual emission reductions occur and its response to an
increase in the weather forecast risk. The results imply that changes in forecast risk do not
change market outcomes, suggesting that renewable firms do not incorporate such infor-
mation into their decisions. Another consequence of expanding renewable capacity, often
spatially distant from load centers, is more frequent grid congestion in zonal electricity mar-
kets. With reliable forecasts and high sensitivity on the grid, plant operators can engage in
arbitrage between the day-ahead and the redispatch market if prices are sufficiently differ-
ent between the two markets. A detailed analysis in the third paper reveals that a cluster of
power plants in Germany engages in such arbitrage behavior, thus increasing the level and
costs of congestion. This dissertation underlines the importance of designing a coherent
and holistic policy environment to increase market efficiency and thereby reduce the costs
of decarbonization.
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Zusammenfassung
Faculty of Business, Economics and Social Sciences

Department of Socioeconomics
Chair of Ecological Economics

Doktor rerum politicarum

Essays in Empirical Energy Economics

by Philip C. Schnaars

Diese Thesis untersucht drei zentrale Aspekte der Umstellung eines fossilen Energiesys-
tems zu einem System, das auf Erneuerbaren Energien beruht. Umfassende Daten über den
deutschen Strommarkt und dessen Nachbarmärkten bilden die Basis dieser Analyse. Das
erste Papier prüft den Substitutionseffekt von einseitiger Erneuerbare Energie und die da-
raus resultierende langfristige Emissionsvermeidung unter dem umfassenden reformierten
Emissionshandelssystem EU ETS. Die kurzfristige Emissionsverschiebung von Strom aus
Onshore- und Offshore-Windanlagen ist größer als die von Solarenergie. Die Marktstabil-
itätsreserve ermöglicht es, dass, abhängig vom Vermeidungsjahr, ein Teil dieser kurzfristi-
gen Emissionsreduktion auch langfristig vermieden werden. Das zweite Papier bezieht sich
auf die erste Fragestellung und untersucht das Handelsverhalten von Erzeugern Erneuer-
barer Energien unter dem Eindruck von Risiken in der Wettervorhersage, bevor die beschrie-
benen Emissionsveränderungen passieren. Die erzielten Ergebnisse belegen keinen sys-
tematischen Zusammenhang zwischen der angebotenen Menge an Erneuerbarer Energie
und dem Vorhersagerisiko. Dies deutet darauf hin, dass die Firmen diese Informationen
bei Ihrer Angebotsentscheidung nicht berücksichtigen. Eine weitere Konsequenz des Aus-
baus von Erneuerbarer Erzeugungskapazität, häufig örtlich entfernt von den Konsumenten,
ist eine Zunahme von Netzengpässen in zonalen Elektrizitätsmärkten. Mit belastbaren
Vorhersagen und einer hohen Netzsensitivität können Kraftwerksbetreiber zwischen dem
Day-Ahead und dem Redispatchmarkt arbitrieren, sofern eine Preisdifferenz zwischen den
beiden Märkten besteht. Eine detaillierte Analyse im dritten Papier deutet darauf hin,
dass ein Cluster von Kraftwerken solch Arbitrage vollzieht und damit das Niveau und die
Kosten von Netzengpässen erhöht. Diese Dissertation unterstreicht die Bedeutung eines
kohärenten und gesamtheitlichen Regulierungsrahmens, um die Markteffizienz zu erhöhen
und die Kosten der Dekarbonisierung zu senken.
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2 Chapter 1. Introduction

Mitigating the impacts of global climate change and local pollution on the environ-
ment, economies and societies worldwide requires an international transition from a fossil-
fuel based energy system towards energy provision that is primarily based on renewable
sources. While the share of renewable sources in the electricity sector has become more
significant in recent years, other sectors like transport and heating are lagging behind in
reducing emissions. In these sectors, options for decarbonization tend to be more expen-
sive than in the electricity sector (IRENA, 2020). The coupling and integration of these
sectors via technologies like renewable hydrogen or heat pumps provides a viable option
for decarbonization. This development will increase the worldwide consumption of elec-
tricity, with estimates ranging up to 300 percent compared to today’s level (IRENA, 2021).
The additional electricity demand from (indirect) electrification of transport (Emonts et al.,
2019; Sterchele et al., 2020), heating (Bloess et al., 2018) and industry (Napp et al., 2014) has
to be covered primarily by carbon-neutral technologies like nuclear power plants and in-
termittent renewable technologies such as wind turbines and solar panels in order to meet
international climate targets. This vast expansion in the size of electricity markets highlights
the need for extensive research about this development.

This dissertation is about the transition away from a fossil-fuel based electricity system
towards an electricity market with a significant share of intermittent renewable capacity.
This transition involves, among others, three major aspects. First, the development of over-
all system-wide emissions depends on a set of complementing and overlapping policies.
The research presented in chapter 2 takes interactions of the German renewable subsidy
scheme and the European Union Emission Trading Scheme (EU ETS) as an example of over-
lapping policies and estimates the overall marginal long-term emission abatement of subsi-
dized renewable electricity in Germany. Second, the price risk increases with renewable in-
termittency, which in turn impacts the trading of electricity. Chapter 3 develops predictions
for the bidding behavior of subsidized renewable firms under the presence of individual and
aggregate risk in the relevant weather forecasts, which arises from the inherent renewable
intermittency. These predictions are tested empirically. Third, inefficient market outcomes
due to grid congestion and hence costly redispatch measures are more frequently observed.
This is a result of the prevalent zonal market design and an increasing spatial mismatch
between supply and demand from spatial clustering of renewable generation capacity. The
study in chapter 4 derives the preconditions and incentives for German conventional firms
to engage in arbitrage between the day-ahead and the redispatch market, thereby increasing
the level of congestion and social cost. This is assessed empirically, where the mentioned
weather forecasts provide an essential part of the analysis. Every chapter uses extensive
real-world data from Germany, a declared front-runner in climate protection, to test causal
hypotheses.

Policy makers have a variety of instruments available to foster the transition towards
renewable-based electricity supply. These broadly fall into the categories of market-based
instruments, such as a cap-and-trade scheme for emissions (Schmalensee and Stavins, 2017;
Narassimhan et al., 2018), financial incentives, for example a tax on CO2 (Haites, 2018) or
subsidies for renewable electricity (Hitaj and Löschel, 2019), direct investment like funding
of research on less emission-intensive technologies (Acemoglu et al., 2016) and quotas and
standards, such as emission standards on cars (Official Journal of the European Union, 2019;
Reynaert, 2021), improving energy efficiency of appliances (Jarke-Neuert and Perino, 2020)
or the ban of certain technologies (Perino and Pioch, 2017). Explicitly pricing carbon emis-
sions is considered to be the first-best policy in achieving an efficient market outcome by
internalizing external effects (Stiglitz et al., 2017).

In the case of the European Union, as one of the most climate-ambitious jurisdictions
worldwide, the different legislative entities rarely implement and target a certain sector with
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only one policy instrument, but often apply a mix of multiple policies. Reasons include dif-
ferences in preferences for climate protection among member states (Marchiori et al., 2017),
national renewable targets set at the supranational level in addition to the union-wide EU
ETS to grant long-term stability to businesses by explicitly favoring certain technologies
(Delbeke et al., 2015), stakeholders’ perception that complementary efforts are required to
increase the effectiveness of a single intervention, such as subsidies for investment and in-
novation or measures targeting distributional aspects (Baranzini et al., 2017), the need to
regulate sectors for which a carbon price was not implemented while interactions between
the different sectors exist (Drummond and Ekins, 2017) and directly addressing non-carbon
related issues such as local air pollution (Bollen and Brink, 2014; Zwickl et al., 2021). Such a
policy mix can be more cost-effective in reaching certain climate goals by overcoming path-
dependencies, policy failure and political resistance (Lehmann and Gawel, 2013; Dimanchev
and Knittel, 2020). It can also drive up abatement costs by for example not directly targeting
environmental externalities or distorting the calibration of preexisting instruments, hence
for instance reducing the allowance price under a cap-and-trade scheme (Böhringer et al.,
2008; Marcantonini and Ellerman, 2015; Gugler et al., 2021). This ambiguity arising from
the complexity of policy-interactions highlights the need for extensive research on comple-
menting policies.

In its recently proposed climate policy package “Fit for 55”, the European Commission
takes an integrated and holistic perspective by aligning different policy instruments, such
as reducing the emission cap in the EU ETS while increasing targets for energy efficiency
and renewable energy as well as dealing with related distributional issues (European Com-
mission, 2021).

Combining different policy measures increases the likelihood of overlapping policies,
where multiple policy instruments targeted at the same source of pollutants are imple-
mented at different governmental levels (Coria et al., 2021; Perino et al., 2020). Chapter 2 of
this dissertation focuses on the interaction of the EU ETS, implementing a price on carbon
in the European power sector, and a reduction in short-term demand for those allowances
from additional German renewable electricity, largely induced by national subsidies, with
respect to long-term abatement of emissions.

This first paper has the title “The real substitution of effect of renewable electricity: An em-
pirical analysis for Germany” and uses comprehensive data on electricity generation of power
plants located in Germany in order to infer the reduction in emissions from those plants
induced by a marginal increase in generation from onshore and offshore wind parks as well
as solar panels. Emissions of a power plant are non-linearly related to its generation, which
is negatively, and again non-linearly, connected to renewable infeed via the merit-order ef-
fect (Ketterer, 2014). Using an estimation method that allows for these nonlinearities, the
research reveals that, mainly as a result from a heterogeneous intradaily generation pattern,
wind electricity tends to reduce short-term domestic emissions on a larger scale than solar
electricity sources, supporting previous results (Abrell et al., 2019; Gugler et al., 2021). Neg-
ative leakage effects via additional exports are found to be substantial, causing emission
reductions in Germany’s neighboring countries.

As opposed to a textbook cap-and-trade system where a full waterbed effect prevails
in response to additional unilateral efforts, these estimated aggregate short-term emission
reductions can result in long-term emission abatement via the allowance cancellation mech-
anism of the Market Stability Reserve. Depending on the year of abatement and aggregate
emission allowance market outcomes, a fraction of unilateral mitigation efforts will lead to
permanent emission savings. The research described in chapter 2 of the dissertation pro-
vides an empirical application to the phenomena outlined by, for example, Perino et al.
(2020) and Bruninx et al. (2019) and highlights the need for appropriate calibration of com-
plementing policy instruments.
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The aforementioned dispatch decisions of conventional generators and thus their emis-
sions are to a large extent determined on various stages of a central wholesale electricity
market, where an increase in renewable supply tends to decrease the market price (merit-
order effect). Other consequences of renewable capacity expansion include higher price
volatility from the intermittent nature of major renewable capacity leading to a more fre-
quent occurrence of negative electricity prices (Nicolosi, 2010), a decreasing market value of
renewable capacity by suppressing the average market price (López Prol et al., 2020; Bernath
et al., 2021), altering investment incentives for conventional capacity by changing the ex-
pected revenue stream from selling electricity (Gugler et al., 2020) and higher risk in the
expected final demand for conventional generation due to non-perfect forecastability of re-
newable production (Kulakov and Ziel, 2021). It is this risk that is inherent to renewable
forecasts that is the subject of chapter 3.

The relevance of this risk for market outcomes depends on the prevalent subsidy scheme.
In many electricity markets, renewable generation is supported by the policy-maker in order
to reap associated climate and environmental benefits (see chapter 2 and discussion above).
The subsidies are designed to allow plant operators the recovery of their levelized cost of
electricity, mainly investment and operating cost, which tend to be higher than for (existing)
conventional capacity. The exact choice of the subsidy scheme determines the effectiveness
in reaching a desired renewable capacity, total support costs and overall market efficiency
(Winkler et al., 2016). While capacity-based subsidy schemes allow for complete market
integration of renewables in the sense of full competition based on marginal costs, price-
based schemes are more prevalent, for example in Germany, Japan or Netherlands and have
some distorting effects on market competition.

In the European Union, a wide-spread transition from feed-in tariffs to premium-based
schemes has been observed, to a large part due to concerns about conflicts with state aid
regulation (Banet, 2020), with the aim to reduce total public costs for renewable support and
to enhance market- and systemintegration by exposing the producers to signals of scarcity.
Most relevant to chapter 3 of this thesis are the supply decisions of renewable generators
on the previously described market stages, which depend on the employed subsidy scheme
(Dressler, 2016; Winkler et al., 2016). A subsidy scheme that makes firms’ profits indepen-
dent of the market price, such as a feed-in tariff, tends to hinder market integration, in
particular when implemented together with a priority dispatch rule, which is in place for
example in Germany (Fabra et al., 2014). In the case of Germany, subsidy schemes are al-
tered towards a sliding premium, paying a premium depending on average market prices,
to incentivize firms to base their output on market conditions, while sticking to the priority
dispatch rule.

The second paper, titled “Renewable risk and its impacts on market prices: The case of Ger-
many”, joins adjusted subsidy schemes and increasing importance of renewable forecast risk
by empirically analyzing the market behavior of renewable firms in Germany in response
to an increase in their individual forecast and hence output risk.

I argue that firms should, depending on their individual and aggregate renewable output
risk, respond by reducing their day-ahead commitment in order to hedge against undesired
intraday market outcomes. The empirical analysis, including a detailed measure for the
renewable forecast risk, suggests that firms do not respond to changes in their day-ahead
output risk. This result is based on analyzing multiple aggregate market outcomes.

The work builds on research predicting firm behavior with a significant share of renew-
able generation capacity (Acemoglu et al., 2017; Kakhbod et al., 2021), strengthening previ-
ous results about the relevance of forecast risk on prices (Kulakov and Ziel, 2021; Kiesel and
Paraschiv, 2017). It extends the existing knowledge about price formation in current elec-
tricity markets by showing that firms do not consider their individual and aggregate output
risk as relevant information when placing their bids at the German day-market. This result
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should guide the design of future subsidy schemes to achieve the pronounced goals of full
market integration.

Other than firms operating renewable capacity, a company marketing conventional ca-
pacity is more likely to base its bidding behavior on expectations about subsequent market
outcomes. Reasons include the dispatchability of the technology, full market competition
without subsidies and more market experience. At the day-ahead market stage, firms might,
in order to increase profits, consider expectations about outcomes at later market stages,
namely the a) intraday market, mainly used for balancing forecast errors before actual de-
livery as discussed above, b) the redispatch stage, where grid operators adjust power plant
output before actual delivery to avoid damage to the electricity grid as a result from local
bottlenecks (Wang et al., 2003) and c) the imbalance market, designed to maintain a grid-safe
frequency by counterbalancing deviations from the last market equilibrium before delivery1

(Mazzi and Pinson, 2017).
While arbitrage-related behavior between the intraday and the imbalance market (Just

and Weber, 2015) as well as interactions between the redispatch stage and the imbalance
market have been observed (Chaves-Ávila et al., 2014), chapter 4 investigates power plants
behavior at the interplay between the day-ahead market and the redispatch stage, which
arises from a discrepancy between the dispatch decisions and the grid infrastructure.

At the day-ahead market stage, the equilibrium price and hence quantity supplied and
demanded are determined solely on the respective relative willingness to sell or buy. The
location of supply or demand within this zonal market is not considered for market clear-
ing. A geographical mismatch between supply and demand, often as a result from a local
increase in renewable capacity (Hubert and Spiridonova, 2021), can lead to bottlenecks in
the electricity grid. In that case, the responsible grid operators procure capacity from power
plants on either side of the bottleneck, allowing them to spatially shift generation and hence
resolve the congestion2. This need to redispatch power plants indicates an inefficient market
outcome and increases social costs. In the case of Germany, the additional expenses of the
grid operators are levied onto consumers via increased grid fees.

This geographical component of the redispatch process introduces additional hetero-
geneity among power plants, as the initial equilibrium resulting from earlier market stages
does not incorporate this information. During the redispatch stage, the zonal market be-
comes fragmented with at least two smaller markets for every bottleneck, where market par-
ticipation depends on the power plant’s location relative to the bottleneck. In each of these
submarkets, profit opportunities can deviate from the zonal market, depending on relative
prices. By exploiting these profit opportunities, generators will increase their day-ahead
sales in order to increase the magnitude of their individual redispatch mandate, thereby al-
tering the market outcome and increasing the level of congestion and welfare loss. Such
arbitrage can occur in a market-based redispatch system, where prices are determined via a
market process (Hirth and Schlecht, 2020) or in cost-based redispatch, where remuneration
is determined bilaterally between the grid operator and the respective power plant.

The third paper “Arbitrage in cost-based redispatch: Evidence from Germany” assesses the
presence of described arbitrage behavior in cost-based redispatch as it is conducted in Ger-
many. Extensive data suggests that arbitrage is not a widespread phenonomenon, but a
cluster of power plants sharing a similar location engages in arbitrage between the day-
ahead and the redispatch market. This arbitrage, albeit it appears to be relatively small,
reduces market efficiency.

1These deviations can, for example, arise from renewable forecast errors that remain after the intraday market,
sudden changes in electricity demand or the failure of a power plant.

2This description is limited to adjusting generation, as this is the prevailing approach in practice. It is possible
to also include the demand side in this process.
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This result contributes to the discussion about the most efficient solution to grid conges-
tion. In zonal electricity markets, congestion can frequently arise. With the aim of designing
the redispatch process more efficiently by including additional sources of flexibility and in-
creasing competition, the European Union pushes towards market-based procurement of
the required redispatch capacity (EU, 2019).

The results in chapter 4 underline fears of arbitrage behavior in such a system by show-
ing that many prerequisites, like reliable congestion forecasts and high sensitivity on the
relevant bottleneck, are met by significantly many firms under the current regulation. While
splitting the zonal market into many small pricing zones via the introduction of nodal pric-
ing provides a long-term efficient solution to grid congestion and eliminates arbitrage in the
short run, the associated transition costs are significant and likely played a role in the de-
cision to stick with zonal pricing in the European Union (Antonopoulos et al., 2020), while
solutions to easing associated distributional concerns based on free allocation of transmis-
sion rights are being proposed (e.g. Kunz et al., 2016)).

The three papers in this dissertation contribute to the understanding of modern elec-
tricity systems with sizable shares of intermittent renewable capacity and the behavior of
economic agents in the relevant markets. The results can inform policy makers by evalu-
ating the consequences of already implemented policies on aggregate market outcomes in
chapters 2 and 3. Chapter 4 draws its motivation from a discussed policy-reform and pro-
vides relevant arguments to this consultation. The studies show that policy makers must
pay attention to designing an appropriate regulatory environment for the desired energy
transition, may it be by allowing for unilateral emission reductions under a multilateral
cap-and-trade scheme via supplementary policies like permanent cancellations of emission
allowance auction volume or by minimizing welfare losses via congestion-resolving mech-
anisms that limit the ability for market participants to arbitrage.

The research in this thesis alone does not address all issues that arise during the de-
velopment towards a more sustainable energy system. Further research is needed on the
increasing temporal divergence between supply and demand that is touched upon in chap-
ter 2. This discrepancy requires regulatory instruments that allow for a short-term price
signal that represents the marginal costs for electricity both for households, where rates are
currently predominantly fixed for up to multiple years, and above described storage- and
sector-coupling technologies that balance supply and demand over time, thereby reducing
abatement costs. Chapter 3 mentions price-distorting effects of subsidy schemes, which are
likely required for reaching significant sector-coupling capacities (van Nuffel et al., 2018),
which will in turn alter short-term behavior of incumbents and investment incentives for
potential new entrants. It is necessary to accompany this development with thorough and
holistic research with the aim of reaching full market-integration of these technologies. Mar-
ket designs are currently being developed and tested, allow for market-based redispatch in
a zonal setting whilst limiting arbitrage by estimating the true flexibility potential of market
participants, for example in Germany (Klempp et al., 2020; Brunekreeft et al., 2020), thus
addressing some concerns expressed in chapter 4.

This thesis uses a mix of classical econometrics and modern machine learning methods
to answer questions and assess hypotheses. It therefore provides examples of how these
relatively new methods can be successfully integrated into applied economic research.

Unlike convention in many empirical economic papers and journals, this dissertation
does not use asterisks to denote statistical significance of estimated coefficients. These aster-
isks indicate the size of the estimated p-value, associated with a test of the null hypothesis of
a parameter, generally testing the absence of an effect. If the p-value of the null hypothesis
is below a cutoff set ex ante, commonly five percent, the null hypothesis is rejected and the
estimated coefficient is considered to be statistically significant.
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There are a few problems with this approach. First, the cutoff is arbitrary3. A certain
hypothesis associated with a p-value just under the cutoff is not entirely different from a
hypothesis where the estimated p-values lies just above the threshold. Considering the first
estimate as statistically significant and the second estimate as statistically insignificant sug-
gests a substantial difference between the two hypotheses. A small change in the model
specification or the sample size alone can change the conclusion (e.g. Wasserstein and Lazar
(2016)). Together with publication bias, where journals tend to favor papers with results
considered as statistically significant (Ioannidis, 2005; Andrews and Kasy, 2019), this can
create an incentive for researchers to tune their model assumptions in order to allow for
statistically significant results (Rosenthal, 1979). As a result, pre-analysis plans are gaining
traction in economics where all steps of the data analysis are described before the actual
analysis (Olken, 2015).

Second, following from the first point, not rejecting the null hypothesis does not neces-
sarily imply the absence of an effect or the truth of the alternative hypothesis.

Third, there are many potentially relevant hypotheses about the size of the estimated
parameter that can be tested. Using asterisks focuses on the common null hypothesis of no
statistical effect. Fourth, labeling a statistically significant result with asterisks can lead read-
ers to believe in the economic significance of the estimated model parameter, irrespective of
the magnitude.

Albeit many problems with such a hard cutoff for statistical significance exist and some
argue for abandoning statistical significance altogether (McShane et al., 2019), in many re-
search settings a binary decision about the presence of an effect is desired. For example, all
research presented in this dissertation relies on drawing conclusions about the size of the
estimated parameters. Furthermore, many econometric tests about the nature of the data
at hand guide the modeling decision based on the rejection of a null hypothesis (see also
Krueger and Heck (2019)).

Proposed solutions include drawing inference based on estimation graphics allowing for
the display of complete statistical information (Ho et al., 2019), adjusting the threshold and
significance level from five percent to a lower value in order to decrease the number of false
positives (Benjamin et al., 2018) and using the Bayes factor for testing the relative plausibil-
ity of the considered hypotheses (Lavine and Schervish, 1999), which directly addresses the
problem second point mentioned above. The American Economic Association does not ac-
cept papers with asterisks in its leading outlet American Economic Review and just requires
reporting of the associated standard errors. By not using these stars, the researcher does not
present the estimates with some kind of subjective judgment.

Parameter estimates in this paper are presented together with an associated confidence
interval. The confidence interval is a function of the parameter size, the associated stan-
dard error and a cutoff, which is here increased to one percent to admit the relatively large
sample sizes. It contains the true effect size in the population if many different studies
were conducted on many different samples. This approach directly addresses the size of the
estimated effect and the underlying uncertainty arising from the estimation, hence display-
ing more information than a single p-value. At the same time, it allows the researcher to
draw dichotomous conclusions about the presence of an effect. This approach provides no
panacea to all the issues mentioned above, but provides many improvements while remain-
ing related to convention.

3The seminal work on statistical tests by Fisher (1925) considers the still prevailing five percent as “convenient”.





2 The real substitution effect of renew-
able electricity: An empirical analy-
sis for Germany

Author: Philip Schnaars

Abstract: Renewable electricity is the backbone for a net-zero carbon society. This paper
estimates the national and international emissions effect of German renewable electricity in
the years 2017 to 2019 using a Random Forest algorithm, finding negative but heterogeneous
effects on emissions demand. A fraction of the estimated emission reductions translate into
allowance cancellations in the EU ETS and thereby reduce overall long-term emissions.
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2.1 Introduction

The electricity sector in the European Union is one of the main contributors to the union’s
greenhouse gas emissions. Currently, there are two policy levels targeted at decarbonizing
the electricity sector. First, the supranational EU ETS, which covers power plants and indus-
trial sites, requires regulated entities to surrender an allowance for every ton of CO2 they
emit into the atmosphere. Second, as preferences for tackling climate change appear to be
heterogeneous across the European Union (Marchiori et al., 2017; Ćetković and Buzogány,
2019), some member states have implemented their own, additional policies, such as setting
energy efficiency targets or subsidizing the generation of renewable electricity with the goal
of achieving a climate-neutral electricity sector.

Germany has implemented a subsidy scheme for renewable electricity in 2000, with mul-
tiple modifications over the years. This has contributed to renewables providing just over
50 percent of German electricity demand in the year 2020 (Fraunhofer, 2021), up from six
percent in the year 2000 (BMWi, 2021). At the same time, about 17 percent of European emis-
sions in the electricity sector were emitted from power plants located in Germany (DEHSt,
2020), making it a particularly interesting case to study.

The two policy layers overlap and there are interaction effects. Before the EU ETS was
reformed in 2018 by implementing the Market Stability Reserve (MSR), unilateral policies
such as renewable subsidies only shifted cumulative emissions in time and space but did
not reduce them, because the supply of allowances was fixed. The MSR alters this picture
by permanently deleting allowances depending on the amount of unused allowances in
circulation (Perino, 2018). Unilateral policies can now reduce total emissions - but at least in
principle, they can also increase them (Perino et al., 2020; Gerlagh et al., 2021).

In light of these issues, this paper answers the question of how effective renewable elec-
tricity in Germany is in abating greenhouse gas emissions in the EU. To that end, I construct
a rich dataset of hourly plant-level emissions and cross-border trade. I estimate the amount
of offset emissions in response to higher renewable production using a novel estimation
technique based on Machine Learning algorithms. Together with a detailed analysis on
emission leakage via cross-border flows, this gives deep insights into the mechanics of the
German electricity system, including the climate impact of grid congestion. I merge these
results with recent insights about the behavior of the MSR to estimate the long-term abate-
ment effect of German renewable electricity.

Onshore and offshore wind are more effective in reducing emissions than electricity from
solar panels. Redispatch measures have only a slight impact on this magnitude. Negative
leakage effects (Baylis et al., 2014) within the EU are substantial, reinforcing the reduction
in emissions demand. This result is in line with internal carbon leakage for demand side
policies4 from Perino et al. (2020). The estimates range up to 91 percent for solar, meaning
a domestic emission reduction is almost mirrored by Germany’s neighboring countries. A
fraction of these emission cuts translate to long-term abatement under the EU ETS as a result
of additional allowance cancellations. This portion approaches one with increasing duration
of MSR storage for electricity produced before 2018, but decreases for later abatement.

It is well established in previous literature that the emission impacts of renewable elec-
tricity differs between conventional technologies5. Generally, wind is more effective than
solar in reducing emissions. I extend the literature by studying onshore and offshore wind

4Perino et al. (2020) consider renewable subsidies to be a demand side policy, as it decreases the demand for
carbon-intensive electricity.

5Prominent studies include Ireland (Di Cosmo and Malaguzzi Valeri, 2017; Dorsey-Palmateer, 2019), Texas
(Kaffine et al., 2013; Novan, 2015; Cullen, 2013) as well as Spain, Germany (Abrell et al., 2019) and the UK
(Gugler et al., 2021).
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separately. These two technologies are heterogeneous in terms of intermittency and gen-
eration peak within the day. Both technologies tend to reduce emissions by less than the
system-average in all considered settings. The technical efficiency of power plants is found
to be negatively affected by renewable supply as a result of increased cycling (Kaffine et al.,
2013). I construct a detailed plant-specific emission series that adjusts the often used average
emission rate when the turbine is running at part load.

Abrell et al. (2019) compare relatively isolated Spain and highly interconnected Germany
to highlight the relevance of inter-zonal electricity trade on domestic emission reductions. A
high capacity for trade allows for sizable leakage. I use detailed data on international elec-
tricity trade that allows for specific calculation of reduced emissions in neighboring coun-
tries and thereby leakage effects.

A complementary carbon price under the EU ETS and its effectiveness in reducing emis-
sions is empirically investigated for the EU ETS by Gugler et al. (2021) and for Texas by
Cullen and Mansur (2017). Aside from endogeneity issues, the aspect of overlapping policy
and its impact on long-term emission abatement is overlooked6 in this strand of literature. I
offer a new angle by analyzing the interplay between these two policy levels.

2.2 The dataset

In order to analyze the issues mentioned above, I construct a dataset that consists of 38
lignite, 56 coal and 41 gas generation units, each with a capacity of at least 100 MW. This
data is made available from ENTSO-E (2020). Observations are recorded on an hourly basis
for the years 2017, 2018 and 2019. Graf and Marcantonini (2017) motivate using panel data to
be able to control for unit outages and maintenance. I merge data on scheduled maintenance
and technical outages from the same data source. Furthermore, ENTSO-E (2020) provides
information of duration and total amount of redispatch work done at the plant level.

Control variables include hourly load and renewable infeed in Germany and the neigh-
boring countries. These and data on commercial flows on the interconnectors with the
neighboring countries are also provided by ENTSO-E (2020). Prices for European Emission
Allowances (eua) and coal and gas prices are obtained from Quandl (2020). The input prices
for coal and gas plants are captured as a ratio in gas_coal. Changes in the ratio of the fuel
input prices shift the relative marginal costs and subsequently the ordering of power plants
on the supply curve. This can have a larger effect on emissions than renewable generation
(Fell et al., 2021).

In order to calculate the emissions from output in each given hour for each generation
unit, I use fuel emission factors for each generation type from the federal environmental
agency (Umweltbundesamt, 2020). The technical efficiency factor is observed for some units.
For the remaining units, the technical efficiency is estimated based on those observed effi-
ciency factors, using the year of construction. These factors are then adjusted with a part-
load penalty factor, estimated by Valentino et al. (2012) to account for increasing marginal
emissions with decreasing turbine utilization. This procedure results in computed emis-
sions that closely match the verified annual amounts under the EU ETS. See tables A.4, A.5
and A.6 in the appendix for a detailed comparison and appendix A.2 for a description of the
procedure and table 2.1 for the summary statistics of the dataset.

6One notable exception is Novan (2017) who studies the correlation between pollutants regulated by a cap and
trade system and the emissions of pollutants that are not capped. In this paper, I focus on greenhouse gases
and do not consider local pollutants.



12 Chapter 2. The real substitution effect of renewable electricity

Variable name Variable description Mean Min Max SD Count

emissionslig Emissions from Lignite units tCO2 488572.70 0.00 1298326 310509 826064
emissionscoal Emissions from Coal units tCO2 128546.90 0.00 777254 185826.80 1119432
emissionsgas Emissions from Gas units tCO2 36353.73 0.00 338945.60 61030.65 1027667
rdlig Redispatch work on Lignite units MWh 124.97 0.00 6370.00 390.03 867813
rdcoal Redispatch work on Coal units MWh 7.29 0.00 4281.00 72.62 1123037
rdgas Redispatch work on Gas units MWh 4.08 0.00 1843.00 43.24 1040587
onshore Onshore wind generation MWh 10451.22 159.22 40389.41 8256.96 26152
offshore Offshore wind generation MWh 2310.43 0.03 6825.23 1551.30 26152
solar Solar generation MWh 4530.02 0.00 30028.46 6942.15 26152
eua Price for EUA in EUR/tCO2 15.52 4.32 29.78 8.33 26152
gas_coal Gas to coal price ratio 0.23 0.17 0.76 0.04 26152
load Load in Germany MWh 56576.77 25248.87 79062.73 10063.19 26152
loadAT Load in Austria MWh 7232.65 4176.40 10802.90 1397.32 26152
loadCH Load in Switzerland MWh 6709.29 3722.44 10911.51 927.31 26152
loadCZ Load in Czech Republic MWh 7576.18 4471.29 11142.18 1281.65 26137
loadDK Load in Denmark MWh 3790.21 1692.95 8088.42 736.18 26152
loadFR Load in France MWh 53882.38 30630.00 94492 11878.40 26103
loadNL Load in Netherlands MWh 12623.15 6635.46 18983.50 2276.86 26152
loadPL Load in Poland MWh 19350.03 11399.64 26297.15 3155.95 26151
loadSE Load in Sweden MWh 15699.65 0.00 26618 3430.25 26150
flowATDE Net imports from Austria MWh -2914.65 -9478.19 4792.71 1911.53 26152
flowCZDE Net imports from Czech Republic MWh 102.68 -2516.10 3155.00 878.13 26152
flowPLDE Net imports from Poland MWh -83.57 -1469.60 1688.00 368.09 26152
flowSEDE Net imports from Sweden MWh 133.29 -614.80 1000.00 309.61 26122
flowDKDE Net imports from Denmark MWh 22.58 -2300.00 2135.00 1261.63 26152
flowNLDE Net imports from Netherlands MWh -1068.04 -5934.80 5933.10 1197.15 26128
flowFRDE Net imports from France MWh -927.12 -9304.85 6325.00 2256.36 26152
flowCHDE Net imports from Switzerland MWh -459.27 -3160.53 4118.71 1270.39 26128
renewablesAT Renewable generation Austria MWh 4342.69 1549.97 8065.40 1168.09 26152
renewablesCZ Renewable generation Czech Republic MWh 674.32 233.03 2616.65 394.60 26137
renewablesPL Renewable generation Poland MWh 1947.16 190.11 5765.05 1222.04 26152
renewablesSE Renewable generation Sweden MWh 2019.43 86.00 7315.00 1224.41 26151
renewablesDK Renewable generation Denmark MWh 2242.24 139.94 14606.27 1254.87 26149
renewablesNL Renewable generation Netherlands MWh 1259.92 0.00 5485.79 1001.06 24296
renewablesFR Renewable generation France MWh 9384.53 2800.00 22219.00 3093.24 26138
renewablesCH Renewable generation Switzerland MWh 209.96 21.38 1103.22 126.65 26129

Note: The first column indicates the names of the variables that are used
throughout this study. A detailed description is given in the second column.

SD refers to the standard deviation.

TABLE 2.1: Summary statistics

Before testing for unit roots in a panel context, it is necessary to check for cross-sectional
dependence in the data (Hurlin and Mignon, 2007). The dependence between units violates
the iid-assumption of the error term, which can invalidate inference. Cross-sectional depen-
dence means that the correlation between unit i at time t and unit j at time t is nonzero. The
test is conducted by summing the correlation coefficients of the different units into one test
statistic. As expected, the generation of one power plant depends on the production of other
plants, i.e. the cross-sections depend on each other.

I therefore use a Fisher-type second generation panel unit root test that takes the cross-
sectional dependence into account. This test is based on work done by Pesaran (2007) and
the corresponding Im-Pesaran-Shin unit root tests. It can be expected that the different panel
units (in this case the power plants) can not be described by the same model, i.e. that the
autoregressive parameters are the same. For example, coal power plants have different out-
put dynamics than plants running on fossil gas. This test accordingly calculates separate
Augmented Dickey-Fuller based statistics for every panel unit and combines them into one
statistic. This approach also allows for the panel being unbalanced. The null hypothesis is
that the series are non-stationary. This test is only applied to the variable emissions, since this
is the only variable varying over panel units. All the explanatory variables can be consid-
ered as time series and I therefore apply the usual time series unit root and stationarity tests.
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All series except for eua, gas and coal are not integrated of order one. I decide to include the
price for eua, gas and coal in levels despite their unit root behavior, since the prices are only
available on a daily basis and therefore do not vary on an hourly basis. Differencing these
series would lose valuable information. Full results of these tests can be seen in table A.7.

The sample only includes a subset of installed generation capacity. Table 2.2 compares
the installed capacity covered by the sample and the figures provided by Bundesnetzagentur
(2019b).

Technology Sample capacity Installed capacity Percent covered

Lignite 19.9 21.1 94.3
Coal 20.3 24.0 86.0
Gas 12.9 15.6 83.0

Note: This table compares the generation capacity covered in this sample to
the overall installed capacity that is connected to the public electricity grid, as

reported by Bundesnetzagentur (2019b).

TABLE 2.2: Comparison of sample and installed capacity

It becomes clear that the sample covers the lion’s share of the power plants, making it
possible to draw out-of-sample conclusions. It is possible that units outside the sample react
differently to an increase in renewable production. First, there can be spatial heterogeneity,
making generalization impossible. However, the in-sample generation units are spatially
heterogeneous as well, especially those burning fossil gas. Second, smaller units might not
participate in the electricity market as frequently or at all. If they do take part, the price
signal is the same, independent of the size, so they should react in a similar manner (Graf
and Marcantonini, 2017). If the in-sample results are adjusted to represent the elasticity of
the whole power system, the bias should be small.

2.3 Domestic emissions

I first estimate the amount of emissions from lignite, coal and gas units that is offset when
generation from renewable sources in Germany is marginally increased. Figure 2.1 shows
how unit-level emissions, a nonlinear function of output, are determined. A generation unit
adjusts its emissions based on marginal costs (gas_coal, eua), demand (load) and the amount
of renewables (onshore, offshore, solar) fed into the grid in each respective hour. In addition,
renewables can cause the electricity grid to be congested. To resolve this and to prevent
grid failure, the grid operators requests generators to increase or decrease their production,
depending on their location (redispatch).
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Emissions Load

EUA Gas / Coal

Renewables

Redispatch

a

b

c

1
Note: A node represents a variable while directed arrows represent an ex-
planatory path from one variable to another that can be estimated by statisti-
cal methods. The letters a, b and c are path labels. Emissions are determined
by the demand for electricity (load), the marginal costs (gas_coal, eua) and the
infeed of renewables (onshore, offshore, solar). Generation and therefore emis-

sions can be regulated by the grid operator via redispatch.

FIGURE 2.1: Determinants of generation unit emissions

Figure 2.1 represents a Directed Acyclic Graph (DAG). Such a graph consists of nodes
which indicate model variables and paths, represented by arrows, that show the relation-
ships between the variables. In the absence of paths, or series of paths, that start and end in
the same variable (acyclic), causal effects can be identified (Pearl, 2013).

Renewables therefore have a direct path as well as an indirect path on emissions. A
statistical model of emissions on renewables will therefore return the total effect of renew-
ables, the sum of the direct and indirect effect (Pearl, 2017). The existing literature described
above has exclusively estimated the total effect. The indirect effect is given by the product
of the path coefficients b and c from figure 2.1. The direct effect of renewables on emissions,
irrespective of redispatch, is given by a. Table 2.3 shows the total effect given by

γ = a + b · c (2.1)

where redispatch is not included as a covariate. The direct effect a can be estimated
directly by including rd as an explanatory variable in the model (VanderWeele, 2015). The
potentially mediating effects of redispatch are then given by

b · c = γ− a (2.2)

The total effect can therefore be decomposed using sequential identification in order to
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quantify both the direct and indirect effect. As shown by VanderWeele (2013), this decom-
position holds for nonlinear relationships as well. It is likely that, for example, emissions
relate nonlinearly to renewable generation, as previous research has demonstrated (Gugler
et al., 2021).

2.3.1 Total effect of renewables on emissions

I first estimate the total effect, i.e. not isolating the effect of renewable-induced redispatch
measures on emissions. As mentioned previously, the relationship between renewables and
emissions is likely to be nonlinear. This poses a challenge when specifying a parametric
model. Other papers in this strand of literature have dealt with the specification issue in var-
ious ways. Among others Cullen (2013), Di Cosmo and Malaguzzi Valeri (2017) and Abrell
et al. (2019), Novan (2017) use lagged conventional generation variables, polynomials as
well as interaction terms among the explanatory variables in order to account for dynamic
constraints and expectations of conventional electricity producers. Fell et al. (2021) and Gu-
gler et al. (2021) use a Heckman selection model and distinguish between the extensive and
the intensive marginal impacts of renewables on emissions (i.e. shutting down completely
versus reducing output). The goal is to increase the predictive power of the model.

To learn a good predictive model from the data, I use the nonparametric Random Forest
algorithm (Breiman, 2001). This procedure was found to have strong predictive power in
various applications. The algorithm estimates the regression function using a pool of co-
variates X t (Athey et al., 2019). A Random Forest consists of multiple Regression Trees. A
Regression Tree works along the following lines. First, the sample is randomly split into
subsamples. Within these subsamples, the regression function is estimated as the average
outcome. The splits are made sequentially and based on a single explanatory variable from
X t at a time. The goal is to minimize the average squared error in the subsamples, i.e. to
group more similar observations together.

When a new set of observations is considered, one can work his way down the tree
based on the particular values of the covariates, until a terminal leaf is reached. The average
outcome in that leaf is the predicted value of the dependent variable, given the values of the
predictors. The more similar the observations in the particular leaf, the higher the prediction
accuracy. As Regression Trees have a tendency to overfit7 the data, Random Forests average
multiple Regression Trees that are fitted using a bootstrapped sample and only consider a
random subset of covariates for splitting at each node.

In this particular analysis, each Random Forest consists of 1000 Regression Trees in or-
der to smooth the estimated function across the covariate distribution. I fit a Random Forest
for each generation unit i in the sample in order to allow for a heterogeneous response to
the explanatory variables. To estimate the causal effect of a 1 MWh renewable increase, I
apply the do-operator from Pearl (2013). I construct a “treated” sample XT that is identical
to the observed sample XC except for the value of the respective renewable infeed, which
is increased by 1 MWh in every hour observed. Apart from the three renewable sources on-
shore, offshore and solar, explanatory variables include eua, gas_coal, load as well as a variable
capturing maintenance and outages. In addition, dummy variables for the hour of the day
and month of the year are included to model seasonality.

The causal effect τ̂i of a marginal increase in renewable generation is then defined as the
difference between the predicted emissions ŷC

it using the observed sample and the predicted
emissions with a higher renewable infeed ŷT

it. The subscript t indicates time and subscript

7If a model perfectly replicates the sample data, it not necessarily generalizes well to the population data. Pre-
dictions based on this model can fail by generating unnecessary variance (Hastie et al., 2009). Overfitting can
be assessed via the out-of-sample prediction accuracy. If the out-of-sample predictive power is high, the model
generalizes well. This typically increases with the number of trees in the forest.
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i the power plant. This procedure is sometimes called Single Tree algorithm8 (Athey and
Imbens, 2015) or S-learner (Kuenzel, 2019). I split the data into two parts of equal size, where
one part is used for building the model and treatment effects are computed on the second
subset, also termed honest estimation (Wager and Athey, 2018). This procedure ensures that
the structure of the forest is exogenous to the data.

ŷC
it = fi(XC

t ) (2.3)

ŷT
it = fi(XT

t ) (2.4)

τ̂i = ŷ1
i − ŷ0

i (2.5)

As the predictive model fi does not capture the statistical noise inherent in the data,
using this to solely predict the outcome under treatment ŷT

it (eq. 2.4) could bias the results, as
the estimated treatment effect τ̂i could then contain an error. To avoid this, I also predict the
“untreated” outcome y0 (eq. 2.3), i.e. the emissions as predicted by the observed covariates.
The predictive error will then cancel out in equation (2.5). For the estimated treatment effect
to be consistent, the overlap assumption needs to be satisfied. This assumption requires that
the distribution of the samples XC

t and XT
t overlap. Figure A.2 shows the distributions of

the three renewable series in both treatment and control sample. There is only a very small
fraction of XT

t that is not originally observed inXC
t , the distributions of the variables are

visually indistinguishable. The impact on the results is assumed to be negligible.
Table 2.3 shows the treatment effect per technology in response to a 1 MWh increase of

renewable infeed. This is obtained by summing up the statistically significant τ̂i over all
generation units of the same technology. Confidence intervals for the plant-level estimates
are constructed using the percentile interval method9 (Efron and Tibshirani, 1998). This
is a nonparametric approach that does not assume an underlying normal distribution, as
the constructed bootstrapped distribution of the marginal effect is used. As a result, the
computed confidence interval need not be symmetric. I use 95 percent confidence intervals
to assess the statistical significance of the estimates, presented in appendix A.3.

Technology Onshore Offshore Solar

Lignite -77.75 -151.34 -13.85
Coal -131.90 -305.44 -26.44
Gas -25.57 -72.35 -8.46

Note: Figures represent kg CO2 reduction in emissions from all plants of a
respective fuel type in response to an additional unit of respective renewable

electricity.

TABLE 2.3: Emission response to renewables in the sample

Generally, wind offsets more emissions than solar, confirming the existing literature. I
find that offshore wind is superior to onshore wind in reducing emissions from all three
considered conventional technologies. Output from offshore wind parks exhibits relatively

8They use a single tree where I use an ensemble of trees, i.e. a forest.
9For each bootstrapped sample, the parameter of interest is computed. These estimates are then ordered to form
a distribution. The desired percentiles represent the bounds of the interval.
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low intermittency, Due to their relative position in the merit order, coal units decreases emis-
sions more than those burning lignite. As solar has a clear, recurring infeed-pattern, peaking
around midday, one would expect gas plants to reduce their emissions more severely than
coal units, as gas plants tend to be at the margin during this time of day. Gas plants are less
carbon-intensive than coal-fired plants, which explains part of this result.

Solar shows a relatively strong emission reduction effect for coal plants. This can be ex-
plained by the recent increase in the price for emissions allowances that started in 2018, mid-
way through the sample, from about 10 Euro to around 25 Euro per ton of CO2. This surge,
in combination with lower gas prices, induced a change in the merit order, also known as
fuel-switching (Agora, 2020). The marginal costs of coal plants can be above those for gas
plants, as carbon costs increase more for coal plants. With primarily coal plants covering
peak demand, solar will principally offset emissions from those.

Overall, the emission reductions are below the average emissions of 1,137 kg/MWh for
lignite, 835 kg/MWh for coal and 399 kg/MWh for gas (Umweltbundesamt, 2020). This
qualitative result is found in all empirical settings. For a comparison to the literature, refer
to table A.8.

2.3.2 The importance of redispatch

Grid congestion, often induced by renewable infeed, happens frequently in the German
grid, especially at the transmission level. To resolve these issues and maintain grid stabil-
ity, conventional power plants are required to either increase or decrease their production,
depending on their location. If that is not sufficient, the infeed of renewable electricity, es-
pecially onshore and offshore wind, is curtailed. In 2018, conventional generators were paid
472 Mio. Euro to redispatch 15,529 GWh. Renewable producers spilled 5,403 GWh, which
equals 2.4 percent of total production and received compensation of 634 Mio. Euro (Bun-
desnetzagentur, 2019a).

Overall, during 50 percent of the sample hours there was at least one redispatch measure
ordered. These figures show that this is a very relevant issue, potentially mediating how
much emissions renewables can offset. Due to technical and spatial pecularities, lignite
plants were almost exclusively required to reduce their generation, while gas nearly only
increased electricity infeed. The picture for coal plants is less clear-cut, where increases and
decreases are nearly balanced on the yearly aggregate (Bundesnetzagentur, 2019a).

Redispatch is also well present among the sample units. 34 lignite units, 27 coal units
and 20 gas units were mandated to change production at least once over the sample period.
For these units, I will estimate how much the renewable offsetting is affected by this by
effect decomposition. Redispatch can either increase the offsetting effect if the unit is asked
to reduce output or vice versa. The path coefficient a is again estimated via Random Forest,
where the hyperparameters and sample split ratio are as above.

Technology Onshore Offshore Solar

Lignite -63.10 -151.98 -13.55
Coal -116.77 -292.17 -23.64
Gas -24.94 -71.08 -6.16

Note: Figures represent kg CO2 reduction in emissions from all plants of a
respective fuel type in response to an additional unit of respective renewable

electricity, adjusted for redispatch.

TABLE 2.4: Emission response to renewables adjusted for redispatch
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Table 2.4 shows the estimated direct effect of renewables on emissions, indicated by a
in figure 2.1. There are only slight differences between the total and the direct effect of re-
newables on emissions. This suggests that redispatch does not have a large impact on the
emission savings. However, as grid congestion also frequently requires renewable curtail-
ment, the potential for emission reductions is limited by bottlenecks in the grid.

2.4 International spillover effects

Renewable electricity, due to the short-run marginal cost being close to zero, has been shown
to suppress the wholesale electricity price (Ketterer, 2014). This makes exporting electricity
to neighboring countries more profitable or decreases the imports from neighboring coun-
tries. Lower net imports to Germany will decrease the amount of conventional production
in the respective neighboring country. German renewable electricity can offset emissions in
other countries as well.

I measure the net trade flows from all of Germany’s neighbors, apart from Belgium10.
Generally, the electricity flow is determined by the price ratio, which of course is endoge-
nous. Exogenous explanatory variables are demand in Germany and the respective country
as well as electricity production from renewable sources. Furthermore, the marginal costs of
conventional sources are driven by the price for emission allowances and fuel. This is again
depicted in a DAG (figure 2.2), where the index i ranges over the set of countries. The non-
indexed variables load and renewables refer to Germany. The price for emission allowances
and the gas to coal price ratio is assumed to be homogeneous across Europe.

10There did not exist a transmission grid level interconnection between the German and the Belgium grid over
the sample period.
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Net imports i Load

Load i

EUA Gas / Coal

Renewables

Renewables i

1
Note: A node represents a variable while directed arrows represent an ex-
planatory path from one variable to another that can be estimated by statisti-
cal methods. Compared to the DAG in figure 4.3 potentially mediating effect
of redispatch is not displayed for ease of presentation. Electricity flow is de-
termined by the price ratio between two countries. The exogenous drivers of
this are the renewable amount and demand for electricity, both in Germany

and the respective trading country, indexed by i.

FIGURE 2.2: Causal determinants of net imports

As the relationship can be very heterogeneous across countries, due to e.g. interconnec-
tor capacity, and is potentially nonlinear among the explanatory variables, I again exploit the
flexibility of the Random Forest algorithm. Estimation of the treatment effect is analogous
to before, using the do-operator. I fit a predictive model for the net flow for every coun-
try. As flows are measured in MWh, I multiply this with the respective average emission
factor. I use marginal emission factors obtained from the European Environment Agency
for 2016 and the Swiss Bundesamt für Umwelt for 2014 (European Environment Agency,
2018; Bundesamt für Umwelt, 2014). By estimating country-specific export effects and emis-
sion factors I can precisely calculate the offset emissions in neighboring countries. Table 2.5
shows the results.
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Electricity (MWh) Emissions (kg CO2)
Onshore Offshore Solar kgCO2/MWh Onshore Offshore Solar

AT -0.163 -0.162 -0.102 85.1 -13.87 -13.79 -8.68[-0.203 , -0.124] [-0.200 , -0.124] [-0.161 , -0.066]

CZ -0.082 -0.057 -0.026 512.7 -42.04 -29.22 -13.33[-0.102 , -0.065] [-0.090 , -0.031] [-0.038 , -0.013]

PL -0.013 -0.024 -0.014 773.3 -10.05 -18.56 -10.83[-0.019 , -0.006] [-0.034 , -0.015] [-0.019 , -0.010]

DK -0.107 -0.104 -0.066 166.1 -17.77 -17.27 -10.96[-0.125 , -0.089] [-0.140 , -0.072] [-0.080 , -0.053]

NL -0.034 0.030 0.012 505.2 -17.18 0 0[-0.055 , -0.015] [-0.024 , 0.084] [0.000 , 0.026]

FR -0.081 -0.203 -0.010 58.5 -4.74 -11.88 0[-0.110 , -0.052] [-0.267 , -0.146] [-0.038 , 0.018]

CH -0.048 -0.079 -0.021 29.8 -1.43 -2.35 -0.63[-0.072 , -0.027] [-0.106 , -0.055] [-0.038 , -0.005]

Note: 95 percent confidence intervals using the percentile-method derived
from 1000 bootstrap replications in brackets. Emission factors are taken from
European Environment Agency (2018) and the Swiss Bundesamt für Umwelt

(2014).

TABLE 2.5: International emission reductions

The estimates suggest that on average 46 percent of renewable electricity is exported.
The extent depends the renewable technology and on installed cross-border transmission
capacity, which is highly heterogeneous across countries. These transmission lines are reg-
ularly congested as a result of loop and transit flows, limiting available trading capacity
(BMWi, 2020).

2.5 Abated emissions

Up to this point in the analysis, I have estimated the short-term offsetting effect of renewable
electricity. However, since the electricity sector in Europe is regulated under the EU ETS, a
short-term emission reduction does not necessarily translate into a long-term emission sav-
ing. Perino et al. (2020) demonstrate that this long-term climate benefit depends on carbon
leakage within the EU ETS and the waterbed effect.

The rate of internal carbon leakage is defined11 as Li = −∆e−i/∆ei and can be calcu-
lated as using information from tables 2.3 and 2.512. With ∆e−it the change in emissions in
all neighboring countries and ∆eit unilateral emission reductions in Germany, the internal
leakage rate is estimated to be -51 percent. For every ton of CO2 offset in Germany due to on-
shore wind, 510 kg of CO2 are abated in its neighboring countries. Offshore wind triggers an
additional 18 percent emission reduction abroad, while a marginal increase in solar electric-
ity has an international impact 91 percent of the domestic reduction. This partly explains the
relatively low domestic emission reductions. Compared to Abrell et al. (2019), who report

11Note that the definition in Perino et al. (2020) features information about the timing of the impact of the policy.
As I only consider past emission reductions, I abstract from long-term internal carbon leakage.

12I assume for simplification that there is no leakage between sectors in the EU ETS (see Jarke and Perino (2017)).
Recalling the relatively low price-elasticity of electricity demand (Knaut and Paulus, 2016) and available
sector-coupling capacity like electric cars with a share of 0.7 percent in the German market 2018 (Kraftfahrt-
bundesamt, 2020), this assumption should not change the results in a significant manner.



2.5. Abated emissions 21

an aggregate of -78 percent13, this is a relatively low value14. Two factors are at play ex-
plaining this difference. First, I use more specific emission factors, avoiding overestimation
of abroad emission reductions. Second, recent shifts in allowance prices are responsible for
a fuel-switching effect towards coal plants being the marginal technology more frequently,
implying that domestic emission reductions increase compared to international emission
reductions.

For a long-term climate benefit, additional renewable electricity has to translate into
lower allowance supply. Under the EU ETS, a power plant has to surrender one emission
allowance for every ton of CO2 that it emits into the atmosphere. The overall amount of
emissions is capped and this cap is decreasing over time. Reducing emissions unilaterally
does not directly change the total amount of allowances in circulation and allows other par-
ticipants to emit more. This is called the waterbed effect.

The MSR came into effect on January 2019, lowering this waterbed effect. The MSR ad-
justs the short and long-run supply of allowances based on the number of allowances firms
transfer to future years (Perino, 2018). An immediate reduction in demand for allowances as
a result of renewable production will increase the number of allowances that are banked for
future use and hence the amount of allowances placed in the MSR. This leads to cancellation
of allowances.

This reform is retroactive due to banking from earlier phases. Emission reduction efforts
prior to this reform will contribute to the amount of allowances stored in the MSR (Perino,
2018). This includes 2017, the first year of the sample. An additional ton of CO2 abated will
result in less-than-one marginal reduction in long-term emissions. The magnitude of this
long-term reduction depends on for how many years the MSR will remain active after the
year of abatement.

In the following I estimate the overall marginal emission abatement effect of increasing
the German renewable supply, where the emission reduction effect is the sum of the domes-
tic effect from section 2.3 and the international spillovers from section 2.4.

The duration of storage depends on market outcomes, more specifically past and future
emissions, which are determined by the expectations about future abatement costs. The
higher abatement costs in the future relative to today’s costs, the longer will the MSR take
in allowances (Bruninx et al., 2019). Estimates in the relevant literature for the year the MSR
stops storing additional allowances range from 2022 (Perino and Pioch, 2017), over 2039
(Gerlagh et al., 2021) to the more extreme case 2052 (Bruninx et al., 2019). I chose 2018 as the
representative year of abatement in my sample. The discussion shows that there is a wide
range of estimates and uncertainty about market outcomes is high.

The interaction of the renewable induced reduction in emissions demand with the MSR
can lead to unintended effects, i.e. increase the total number of allowances and hence emis-
sions, if the demand reduction is anticipated and sufficiently far into the future (Bruninx
et al., 2019; Rosendahl, 2019; Gerlagh et al., 2021; Perino et al., 2020). This assessment con-
siders the effect of policies announced before the introduction of the MSR, allowing me to
ignore these effects. When transferring the findings to the impact of future changes in re-
newable support schemes, both anticipation effects and a reduction in the remaining active
period of the MSR needs to be taken into account. Figure 2.3 shows the long-term abatement
effects of one additional MWh of renewable electricity in Germany, estimated in sections 2.3

13This is calculated based on their table 5 as follows. The domestic emission reductions per renewable technol-
ogy wind and solar are compared to the international emission reductions under two different assumptions.
The average of those four figures yields -78 percent. This highlights the importance of using country-specific
emission factors.

14Note that a comparison is possible here as the dataset in the study of Abrell et al. (2019) is also restricted to
generation from power plants larger 100 MW.
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and 2.4. Hatched areas represent international emission abatement, while blank bars refer
to domestic reductions.

Note: Blank bars indicate long-term domestic emission reductions, hatched
parts report estimated emission reductions in neighboring countries in re-
sponse to one additional renewable MWh. The colors indicate how long the
MSR is expected to take in allowances from the year 2018, the middle sample

year.

FIGURE 2.3: Long-term abatement effects of renewable electricity

The MSR weakens itself over time. Unilateral emission reductions closer to the date
when the MSR stops reducing allowance supply are less effective in reducing long-term
emissions. This is due to the fact that there is less time for the MSR to take in allowances
after the reduction effort has taken place.

Overall, the effectiveness of German renewables to decrease long-term cumulative emis-
sions depends on uncertain market outcomes. The longer the unilaterally unused allowances
are not used by other EU ETS participants, the more of the effort results in long-term abate-
ment.

2.6 Conclusion

I estimate the short-term greenhouse gas emission replacement effect of renewable elec-
tricity in Germany using a rich dataset on fossil power plants. Both onshore and offshore
wind reduce pollutants more than electricity from solar panels, confirming previous find-
ings. This can be explained by timing of infeed and different export opportunities. These
additional exports lead to substantial negative leakage effects, reducing emissions in neigh-
boring countries. These emission reductions are comparatively lower when the respective
country exhibits a lower emission intensity than Germany.

These short-term emission reductions lead to long-term abatement under the EU ETS
via reduced demand for emission allowances. The MSR subsequently deletes a fraction of
these additional unused allowances. This fraction is increasing the longer the number of
unused allowances is above the upper MSR threshold. The calculated fraction is specific to
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the sample period. Future effective marginal abatement will be lower, being zero once the
MSR stops taking in allowances. If announcement effects Rosendahl (2019) are considered,
anticipated renewable capacity expansion could even lead to increased emissions.

This discussion shows that policy makers have to be aware of interactions between dif-
ferent policies if they want to design effective instruments for the long-term abatement of
emissions. This research highlights, using Germany as an example, what parameters are
most important in determining the long-term effectiveness.
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A Appendix to chapter 2

A.1 Sample plants

Name ID Capacity Heat Inactive since

Frimmersdorf P BNA0313 289 0 01.10.2017
Frimmersdorf Q BNA0314 291 0 01.10.2017
HKW Klingenberg 1-3 BNA0081 164 1 -
KW Boxberg Block N BNA0122 500 1 -
KW Boxberg Block P BNA0123 500 1 -
KW Boxberg Block Q BNA0124 840 1 -
KW Boxberg Block R BNA1404 630 0 -
KW Jänschwalde Block A BNA0785 500 1 -
KW Jänschwalde Block B BNA0786 500 1 -
KW Jänschwalde Block C BNA0787 500 1 -
KW Jänschwalde Block D BNA0788 500 1 -
KW Jänschwalde Block E BNA0789 500 1 01.10.2019
KW Jänschwalde Block F BNA0790 498 1 01.10.2018
KW Lippendorf Block R BNA0115 891 1 -
KW Lippendorf Block S BNA0116 891 1 -
KW Schwarze Pumpe Block A BNA0914 755 0 -
KW Schwarze Pumpe Block B BNA0915 755 0 -
Neurath A BNA0696 294 0 -
Neurath B BNA0697 294 0 -
Neurath C BNA0698 294 0 -
Neurath D BNA0699 604 0 -
Neurath E BNA0700 606 0 -
Neurath F BNA1401a 1060 0 -
Neurath G BNA1401b 1060 0 -
Niederaußem C BNA0712 296 0 -
Niederaußem D BNA0705 301 0 -
Niederaußem E BNA0713 302 0 01.10.2018
Niederaußem F BNA0706 300 0 01.10.2018
Niederaußem G BNA0708 629 0 -
Niederaußem H BNA0707 639 0 -
Niederaußem K (BoA 1) BNA0709 924 0 -
Schkopau A BNA0878 450 0 -
Schkopau B BNA0879 450 0 -
Weisweiler E BNA1025 322 0 -
Weisweiler F BNA1026 322 0 -
Weisweiler G BNA1027 663 0 -
Weisweiler H BNA1028 656 0 -

Note: The dummy indicator for Heat is equal to one if the plant is delivering
heat to their local grid and zero otherwise.

TABLE A.1: Lignite plants in sample
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Name ID Capacity Heat Inactive since
DEFARGE____1_____ BNA0147 350 0 -
DEWHV______1_____ BNA1674 726 0 -
DEZOLLI____1_____ BNA1093 472 1 -
ELVERLINGSEN_4 BNA1037 325 0 22.02.2018
Ensdorf 1 BNA0253 106 0 26.01.2017
Ensdorf 3 BNA0252 283 1 21.12.2017
Gersteinwerk K2 BNA1046a 614 0 31.03.2019
GK-WEST_1 BNA0990 320 0 04.02.2017
GK-WEST_2 BNA0989 320 0 19.02.2017
HERNE_3 BNA0449 280 1 10.05.2017
HERNE_4 BNA0450 460 1 -
Heyden BNA0793 875 0 -
HKW Altbach/Deizisau Block 1 BNA0020 433 1 05.07.2017
HKW Altbach/Deizisau Block 2 BNA0019 336 1 -
HKW Heilbronn Block 7 BNA0434 778 1 -
HKW Moorburg Block A BNA1673 800 0 -
HKW Moorburg Block B BNA1558 800 0 -
HKW Reuter Block C BNA0082 124 1 -
HKW Reuter West Block D BNA0086 282 1 -
HKW Reuter West Block E BNA0087 282 1 -
HKW Tiefstack Block 2 BNA0402 189 1 -
HKW Wedel Block 1 BNA0404 134 1 -
HKW Wedel Block 2 BNA0403 116 1 -
HKW West Block 1 BNA1076a 138.5 1 -
HKW West Block 2 BNA1076b 138.5 1 -
Ibbenbüren B BNA0493 791 1 -
Kiel BNA0526 323 1 31.3.2019
Kraftwerk Rostock BNA0849 514 1 -
Kraftwerk Voerde Block A BNA0991 695 0 31.03.2017
Kraftwerk Voerde Block B BNA0992 695 0 31.03.2017
KW Hafen Block 6 BNA0146 300 1
KW Hastedt Block 15 BNA0144 119 1
KW Lünen Block 1 BNA1508 746 0 -
LUENEN_6 BNA0618 149 1 -
LUENEN_7 BNA0619 324 1 -
Nord 2 T20 BNA0969b 333 1 -
RDK 7 BNA0518a 505 1 -
RDK 8 BNA0518b 842 1 -
Scholven B Scholven BNA0332 345 0 -
Scholven C Scholven BNA0331 345 0 -
Staudinger 5 BNA0377 510 1 -
VOELKLINGEN_HKV BNA0999 211 1 -
VOELKLINGEN_MKV BNA0998 179 1 -
WALSUM_10 BNA0216b 725 0 -
WALSUM_9 BNA0216a 370 1 -
Westfalen E BNA0413c 780 0 -
Wilhelmshaven BNA1061 757 0 -

Note: The dummy indicator for Heat is equal to one if the plant is delivering
heat to their local grid and zero otherwise.

TABLE A.2: Coal plants in sample
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Name ID Capacity Heat Inactive since

Lausward Block F BNA1817 595 1 -
Block GT 11 BNA0614b 206 1 -
Block GT 12 BNA0614b 206 1 -
Block GT1 BNA0615 178 1 -
Block GT2 BNA0615 167 1 -
Emsland B BNA0604 475 1 -
Emsland C BNA0605 475 1 -
Emsland D BNA0606 870 1 -
Franken I Block 1 BNA0744 383 0 -
Franken I Block 2 + GT BNA0745 440 0 -
Gersteinwerk F BNA1044 410 0 -
Gersteinwerk G BNA1040 402 0 -
Gersteinwerk K1 BNA1046b 112 0 -
GKB Mittelsbueren GuD BNA1820 450 0 -
GTHKW Nossener Bruecke BNA0207 260 1 -
GuD Dormagen BNA0199 586 1 -
GuD-Anlage-HKW-Merkenich BNA0546 110 1 -
HERDECKE_H6 BNA0442 424 1 -
HKW Lichterfelde Block 1 BNA0075 144 1 -
HKW Lichterfelde Block 3 BNA0076 144 1 -
HKW Nord GuD Nord BNA0588 167 1 -
HKW Tiefstack GuD BNA0400 127 1 -
Huntorf GT BNA0239 321 0 -
KMW_KW2 BNA0627 335 1 -
KMW_KW3 BNA0626 450 1 -
Knapsack 1 BNA0548a 784 0 -
Knapsack 2 BNA0548b 426 0 -
KW Hamm-Uentrop Block 10 BNA0410 425 0 -
KW Hamm-Uentrop Block 20 BNA0411 425 0 -
KW Mittelsbueren Block 4 BNA0142 176 0 -
NIEHL-3 BNA1818 453 1 -
NIEHL-II-DT BNA0545 147 1 -
NIEHL-II-GT BNA0545 266 1 -
RDK 4 BNA0514 353 0 06.04.2017
Sued GuD1 GT2 BNA0683c 108 1 -
Sued GuD1 GT3 BNA0683b 108 1 -
Sued GuD2 DT60 BNA0684c 128 1 -
Sued GuD2 GT61 BNA0684a 136 1 -
Sued GuD2 GT62 BNA0684b 136 1 -
Weisweiler VGT - BI. G BNA1023 200 0 -
Weisweiler VGT - BI. H BNA1024 200 0 -

Note: The dummy indicator for Heat is equal to one if the plant is delivering
heat to their local grid and zero otherwise.

TABLE A.3: Gas plants in sample

A.2 Calculation of emissions

In order to correctly calculate the hourly emissions of a power generation unit based on the
electricity output, it is necessary to know the unit-specific technical efficiency. This informa-
tion is generally not publicly available. Taking a similar approach as Hintermann (2016), I
estimate the technical efficiency for each plant, using individual efficiencies that were avail-
able. The following equations show the estimated relationship between the technical effi-
ciency η and the year of construction t for each technology.

Lignite:

η = 31.431 + 0.2112 · (t− 1960) (A.1)
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Coal:

η = 33.591 + 0.224 · (t− 1960) (A.2)

Gas:

η = 39.553 + 0.3277 · (t− 1960) (A.3)

The estimated ”rate of technical progress” per year is virtually the same for lignite (equa-
tion A.1) and coal (equation A.2) and slightly higher for gas plants. The fitted values of these
three equations are similar to those technical efficiencies that I actually observe.

Valentino et al. (2012) calculates part-load penalties for gas15 and coal plants to adjust the
marginal emission rate. Figure A.1 shows these depending on the percentage of capacity in
use (usagerate)16. I adjust the data accordingly. When coal plants are only starting up, the
emissions from producing one MWh of electricity are about twice as high as when the plant
is running at full capacity.

Note: This figure shows the additional emissions that arise as a result of a
turbine running at part load.

FIGURE A.1: Part load penalties

Due to the regression approach above, the estimated emissions will not match exactly
the verified emissions on the plant level. The constructed emissions will be above the re-
ported emissions for some plants and below for others. The verified emissions, as part of
the EU ETS, are published by DEHSt (2020) on an annual level. Tables A.4, A.5 and A.6 show
15As there are both OCGT and CCGT plants in the sample, I use average emission factors and part-load penalties

for these two technologies. CCGT plants have a higher technical efficiency.
16The values are adjusted during times when maintenance is undertaken. This data is taken from ENTSO-E

(2020).
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these values as well as the constructed emissions in the sample. The tables only show the
results for those power plants where the generation units in the sample make up the overall
power plant as defined in the EU ETS. There can be a difference if a power plant consists
of one block with a capacity larger than 100 MW and one block with a capacity below 100
MW. Since the same calculation is applied to all units in the sample, it seems reasonable to
assume that the constructed emissions for the units not in these tables also closely match the
actual emissions.

Note: The distribution of the observed infeed of onshore wind, offshore wind
and solar (dark gray) is compared to the treated values where every observa-

tion is increased by one unit (light gray) using a boxplot.

FIGURE A.2: Distributions of treated variables
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Variable ADF DFGLS Lags

onhsore -14.586 -14.405 19
offshore -23.841 -21.412 2
solar -7.703 -6.008 28
eua -0.970 -2.413 1
coal -0.012 -0.704 1
gas -3.731 -3.776 1
load -11.286 -4.408 19
flowATDE -14.298 -13.612 26
flowCZDE -14.37 -10.096 26
flowPLDE -12.873 -7.783 26
flowSEDE -16.221 -14.305 29
flowDKDE -18.926 -18.368 28
flowNLDE -14.525 -15.118 27
flowFRDE -11.665 -9.738 27
flowCHDE -10.173 -11.098 26
loadAT -16.215 -13.149 30
loadCH -9.295 -9.449 37
loadCZ -11.526 -8.466 38
loadDK -15.188 -8.617 38
loadFR -7.020 -5.442 38
loadNL -11.022 . 58
loadPL -20.723 -11.196 30
loadSE -6.996 -6.586 27
renewablesAT -11.143 -7.430 19
renewablesCZ -11.532 -8.101 28
renewablesPL -20.81 -18.369 3
renewablesSE -15.505 -12.484 16
renewablesDK -16.816 -14.228 17
renewablesNL -28.288 -28.083 3
renewablesFR -8.289 -6.298 20
renewablesCH -4.632 -4.985 20

Fisher-type test Lags
Emissions lignite 2518.848 5
Emissions coal 3029.753 5
Emissions gas 2785.947 5

Note: This table reports results of the Augmented Dickey-Fuller (ADF) and
Dickey-Fuller Generalized Least Squares (DFGLS) test. The optimal lag for
the tests were chosen via the BIC. The Dickey-Fuller tests include a drift term.

Critical values at the 1% (5%) level are -3.96 (-3.41) for the ADF and -3.48
(-2.386) for the DFGLS test.

TABLE A.7: Stationarity tests
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Technology Total Lignite Coal Gas

This study

Onshore 236 78 132 26
Offshore 529 152 305 72
Solar 49 14 26 9

Average emissions per MWh lignite: 1,137
Average emissions per MWh coal: 835
Average emissions per MWh gas: 399

Kaffine et al. (2013): Texas

Wind 523 – – –

Cullen (2013): Texas

Wind Static 562 – 184 378
Wind Dynamic 430 – 6 423

Average emission intensity: 667

Novan (2015): Texas

Wind 628 – – –

Di Cosmo and Malaguzzi Valeri (2017): Ireland

Wind 1st quartile 500 – 178 125
Wind 2nd quartile 472 – 162 160
Wind 3rd quartile 474 – 160 168
Wind 4th quartile 440 – 154 177

Average emission intensity: 480

O’Mahoney et al. (2017): Ireland

Wind 208 – 322 – – –
Average emission intensity: 480

Abrell et al. (2019): Germany & Spain

Germany Wind 176 51 105 20
Germany Solar 234 50 152 32
Spain Wind 250 – 153 98
Spain Solar 169 – 74 95

Note: The figures are given as a reduction of CO2 equivalent in kg per MWh.
The difference between Wind Static and Wind Dynamic in Cullen (2013) is the
inclusion of lagged components of the model. Average emissions for Germany

are taken from Umweltbundesamt (2020).

TABLE A.8: Total amount of offset emissions
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A.3 Unit-level estimates

Generation unit onshore offshore solar

KW Jänschwalde Block E -1.605 0.212 -0.134
[-2.838 , -0.434] [-2.867 , 3.605] [-1.094 , 0.879]

Neurath F -2.719 -5.267 -1.404
[-5.964 , 0.172] [-13.295 , 2.247] [-4.160 , 1.243]

KW Boxberg Block R -2.615 -3.339 -0.644
[-4.453 , -0.898] [7.923 , 0.692] [-1.995 , 0.597]

KW Jänschwalde Block C -2.842 -5.569 -0.880
[-4.134 , -1.554] [-8.944 , -2.222] [-2.434 , 0.471]

KW Jänschwalde Block D -1.965 -0.656 1.032
[-4.157 , -0-204] [-3.884 , 2.423] [-0.095 , 2.269]

KW Jänschwalde Block F -1.825 -7.487 0.187
[-3.638 , -0.249] [-12.561 , -2.521] [-1.427 , 1.625]

Neurath G -3.099 -14.160 0.413
[-5.776 , -0.608] [-21.246 , -7.600] [-2.686 , 3.101]

Frimmersdorf P -0.498 7.419 -1.271
[-2.360 , 1.359] [-0.345 , 17.918] [-3.222 , 0.380]

KW Jänschwalde Block B -3.025 -1.396 -0.042
[-4.086 , -2.083] [-4.276 , 1.422] [-1.000 , 0.919]

Niederaußem G -3.025 -3.088 2.592
[-5.995 , -0.253] [-10.471 , 4.213] [-1.806 , 8.129]

Neurath E -4.499 -10.891 -0.283
[-6.719 , -2.336] [-16.593 , -5.403] [-3.149 , 2.506]

Niederaußem H -3.479 -9.594 -1.233
[-6.036 , -0.968] [-17.912 , -1.112] [-3.396 , 0.802]

Niederaußem E -1.500 -1.638 -1.843
[-3.068 , 0.191] [-4.728 , 1.531] [-3.311 , -0.335]

KW Jänschwalde Block A -3.906 -1.853 0.616
[-5.124 , -2.695] [-4.709 , 1.064] [-0.482 , 1.719]

KW Lippendorf Block S -6.891 -14.010 -3.475
[-9.504 , -4.190] [-19.933 , -8.445] [-5.753 , -1.353]

HKW Klingenberg 1-3 -0.046 -0.347 -0.021
[-0.155 , 0.076] [-0.680 , 0.012] [-0.157 , 0.118]

Weisweiler E -1.342 -5.365 -0.395
[-2.112 , -0.509] [-7.766 , -3.118] [-1.655 , 0.867]

Note: The coefficients give the estimated average reduction in kg CO2 to a one
MWh increase in the respective renewable technology. 95 percent confidence

intervals in brackets.

TABLE A.9: Individual treatment effect of lignite units I
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Generation unit onshore offshore solar

Frimmersdorf Q -1.650 -10.677 0.417
[-3.740 , 0.375] [-18.926 , -4.023] [-0.719 , 1.678]

Neurath A -0.956 0.852 -0.206
[-1.849 , -0.032] [-3.714 , 6.100] [-1.325 , 0.920]

Neurath C -0.441 -6.011 -2.369
[-3.033 , 4.198] [-9.967 , -2.311] [-4.074 , -0.581]

Neurath D -3.442 -13.986 -1.903
[-5.448 , -1.151] [-19.846 , -7.745] [-4.392 , 0.335]

Niederaußem C -1.496 -1.837 -0.238
[-2.347 , -0.642] [-3.777 , 0.170] [-1.235 , 0.773]

Niederaußem K (BoA 1) -5.958 -8.486 -1.897
[-9.064 , -2.991] [-17.517 , -0.992] [-4.396 , 0.387]

KW Schwarze Pumpe Block A -2.444 -2.446 0.173
[-4.131 , -0.774] [-7.135 , 2.796] [-1.534 , 1.682]

Neurath B -0.100 -8.583 -0.976
[-1.571 , 1.496] [-11.787 , -5.322] [-3.275 , 1.166]

KW Schwarze Pumpe Block B -4.488 -5.453 -2.129
[-6.637 , -2.388] [-9.758 , -1.127] [-4.038 , -0.381]

KW Boxberg Block Q -3.143 -0.970 -0.211
[-5.397 , -0.712] [-8.102 , 5.760] [-2.595 , 1.808]

Weisweiler H -2.950 -7.456 0.678
[-6.799 , 0.062] [-12.418 , -2.844] [-1.205 , 2.717]

Niederaußem D -1.380 -2.662 -0.560
[-2.352 , -0.361] [-6.518 , 2.491] [-2.366 , 1.014]

Weisweiler G -4.420 -7.422 0.552
[-7.877 , -2.000] [-12.791 , -1.892] [-1.653 , 2.851]

KW Boxberg Block N -0.945 -3.371 1.622
[-3.130 , 1.031] [-7.015 , 0.193] [-0.064 , 3.868]

KW Boxberg Block P -0.718 10.646 0.083
[-1.857 , 0.410] [-1.575 , 20.858] [-0.941 , 1.173]

Schkopau B -1.691 -4.859 0.385
[-2.927 , -0.507] [-7.613 , -2.105] [-0.853 , 1.602]

Schkopau A -2.948 -5.500 -1.452
[-4.222 , -1.678] [-8.735 , -2.352] [-3.535 , 0.393]

KW Lippendorf Block R -3.664 -5.836 -1.367
[-6.035 , -1.202] [-10.332 , -0.930] [-3.309 , 0.680]

Weisweiler F -0.730 -0.297 -1.164
[-1.499 , 0.096] [-2.569 , 2.374] [-2.868 , 0.026]

Niederaußem F -1.604 1.222 -4.037
[-3.015 , -0.164] [-6.690 , 9.244] [-8.931 , -0.201]

Note: The coefficients give the estimated average reduction in kg CO2 to a one
MWh increase in the respective renewable technology. 95 percent confidence

intervals in brackets.

TABLE A.10: Individual treatment effect of lignite units II
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Generation unit onshore offshore solar

HKW Reuter West Block D -0.120 -0.682 0.118
[-0.578 , 0.293] [-1.790 , 0.356] [-0.425 , 0.623]

HKW Reuter West Block E -0.278 -0.782 -0.618
[-0.715 , 0.151] [-1.780 , 0.195] [-1.201 , -0.105]

GK-WEST_2 -2.123 -0.645 0.707
[-4.417 , -0.039] [-5.239 , 4.476] [-0.871 , 2.402]

Scholven B -0.669 -1.361 -1.047
[-1.407 , 0.028] [-2.846 , 0.233] [-2.422 , 0.074]

HKW Wedel Block 2 -0.513 -0.984 -0.138
[-0.813 , -0.178] [-1.661 , -0.302] [-0.722 , 0.536]

BERGKAMEN_A -6.871 -22.735 0.488
[-9.199 , -4.581] [-31.585 , -15.388] [-2.468 , 3.512]

WALSUM_10 -3.697 -15.105 0.983
[-5.571 , -1.771] [-19.722 , -10.179] [-1.868 , 3.733]

Scholven C -0.521 -1.048 -0.306
[-1.265 , 0.190] [-3.058 , 0.915] [-1.639 , 0.918]

VOELKLINGEN_MKV -1.122 -2.921 -0.357
[-1.917 , -0.482] [-3.978 , -2.004] [-0.828 , 0.130]

VOELKLINGEN_HKV -1.082 -3.247 -0.093
[-1.502 , -0.652] [-4.310 , -2.324] [-0.744 , 0.561]

Wilhelmshaven -5.508 -18.007 -3.312
[-7.960 , -3.295] [-23.478 , -12.500] [-5.145 , -1.438]

LUENEN_7 -3.575 -5.257 -0.430
[-5.680 , -1.693] [-9.613 , -0.908] [-1.938 , 1.070]

HKW Moorburg Block B -9.133 -10.818 -1.286
[-11.482 , -6.887] [-15.989 , -5.859] [-3.736 , 1.180]

HKW West Block 1 -0.278 1.101 -0.004
[-0.536 , -0.039] [-0.278 , 1.888] [-0.524 , 0.518]

Kiel -1.643 -6.832 -1.916
[-2.617 , -0.674] [-9.780 , -4.457] [-3.185 , -0.553]

LUENEN_6 -0.383 -3.878 0.593
[-1.196 , 0.296] [-5.657 , -2.036] [-0.200 , 1.326]

Westfalen E -6.283 -15.617 -2.268
[-8.461 , -4.199] [-20.160 , -11.005] [-4.459 , -0.440]

Ibbenbüren B -6.685 -26.119 -3.944
[-9.248 , -3.986] [-33.751 , -19.715] [-7.053 , -1.006]

HKW West Block 2 -0.192 -0.065 -0.250
[-0.397 , -0.007] [-0.652 , 0.596] [-0.887 , 0.284]

Heyden -9.052 -21.435 -3.026
[-11.851 , -6.547] [-27.845 , -15.238] [-5.269 , -0.772]

Nord 2 T20 -0.249 -1.694 -1.252
[-0.688 , 0.202] [-2.755 , -0.501] [-2.068 , -0.436]

Note: The coefficients give the estimated average reduction in kg CO2 to a one
MWh increase in the respective renewable technology. 95 percent confidence

intervals in brackets.

TABLE A.11: Individual treatment effect of coal units I
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Generation unit onshore offshore solar

Staudinger 5 -2.916 -6.486 -1.378
[-4.331 , -1.311] [-9.605 , -3.362] [-2.706 , 0.084]

WALSUM_9 -2.036 -7.773 -0.852
[-2.860 , -1.215] [-9.897 , -5.639] [-2.154 , 0.461]

BEXBACH_A_GESAMT 0.491 -1.982 -0.491
[-0.937 , 1.892] [-6.590 , 3.008] [-1.850 , 0.887]

DEZOLLI_1_ -4.364 -10.012 -2.037
[-5.957 , -2.867] [-13.428 , -6.775] [-4.154 , 0.255]

HERNE_4 -1.170 -4.873 -1.266
[-2.069 , -0.330] [-7.367 , -2.459] [-2.165 , -0.332]

HKW Wedel Block 1 -0.766 -1.477 -0.155
[-1.153 , -0.381] [-2.244 , -0.691] [-0.919 , 0.564]

Kraftwerk Voerde Block B -11.074 -4.910 -2.032
[-18.937 , -4.181] [-20.812 , 10.006] [-9.325 , 6.119]

RDK 7 -2.908 -7.942 -0.300
[-4.536 , -1.323] [-11.201 , -4.448] [-1.859 , 1.300]

HERNE_3 -2.407 0.529 0.908
[-4.732 , -0.427] [-5.585 , 7.612] [-0.108 , 1.870]

KW Hafen Block 6 -1.186 -2.063 -1.349
[-1.878 , -0.519] [-3.668 , -0.369] [-2.074 , -0.627]

Ensdorf 1 -0.111 -1.988 0.004
[-0.283 , 0.053] [-3.776 , -0.720] [-0.104 , 0.114]

DEFARGE___1___ -3.718 -15.030 -0.749
[-5.228 , -2.157] [-18.524 , -11.773] [-2.746 , 1.361]

Ensdorf 3 -0.600 -2.794 0.750
[-1.132 , -0.098] [-3.758 , -1.779] [-0.075 , 1.703]

HKW Altbach/Deizisau Block 2 0.072 -9.900 0.307
[-2.902 , 3.470] [-17.056 , -2.629] [-1.076 , 1.473]

HKW Tiefstack Block 2 -0.161 -1.072 -0.753
[-0.439 , 0.143] [-1.780 , -0.269] [-1.279 , -0.255]

GK-West_1 -1.039 0.449 0.287
[-2.635 , 0.366] [-5.112 , 5.908] [-1.066 , 1.875]

Kraftwerk Voerde Block A -9.937 -19.953 -9.949
[-17.024 , -3.312] [-42.707 , 2.573] [-29.728 , 2.864]

HKW Reuter Block C -0.102 -0.779 0.005
[-0.276 , 0.079] [-1.441 , -0.112] [-0.238 , 0.248]

Kraftwerk Rostock -4.608 -11.842 -1.378
[-6.172 , -3.108] [-15.488 , -8.006] [-2.942 , 0.347]

KW Lünen Block 1 -5.295 -5.776 -1.081
[-7.015 , -3.468] [-9.838 , -1.562] [-3.007 , 0.885]

HKW Moorburg Block A -8.381 -19.504 -2.855
[-10.908 , -5.991] [-25.920 , -13.500] [-5.148 , -0.436]

RDK 8 -2.843 -14.536 -3.884
[-5.070 , -0.450] [-19.946 , -9.108] [-6.363 , -1.474]

HKW Heilbronn Block 7 -9.035 -18.281 -0.477
[-11.611 , -6.386] [-24.842 , -11.798] [-4.446 , 3.984]

ELVERLINGSEN_E4 -0.898 -8.666 -0.006
[-1.789 , -0.101] [-12.956 , -4.855] [-0.782 , 0.846]

Note: The coefficients give the estimated average reduction in kg CO2 to a one
MWh increase in the respective renewable technology. 95 percent confidence

intervals in brackets.

TABLE A.12: Individual treatment effect of coal units II
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Generation unit onshore offshore solar

KMW_KW2 -0.152 -1.599 -0.122
[-0.417 , 0.054] [-3.019 , -0.585] [-0.326 , 0.088]

Sued GuD DT60 -0.096 -0.321 -0.090
[-0.180 , -0.008] [-0.526 , -0.124] [0.298 , 0.140]

Weisweiler VGT - Bl. G -0.233 -0.313 -0.066
[-0.598 , 0.132] [-0.922 , 0.191] [-0.405 , 0.299]

GKB Mittelsbueren GuD -1.109 -1.040 -0.191
[-2.029 , -0.298] [-2.581 , 0.496] [-1.290 , 0.897]

Gersteinwerk F -0.070 0.166 -0.047
[-0.438 , 0.248] [-0.521 , 0.724] [-0.359 , 0.262]

HKW Nord GuD Nord -0.613 -0.737 0.097
[-0.877 , -0.347] [-1.123 , -0.341] [-0.198 , 0.421]

Weisweiler VGT - Bl. H -0.120 -0.163 0.104
[-0.432 , 0.217] [-0.661 , 0.344] [0.235 , 0.475]

Block GT2 0.052 0.007 -0.228
[-0.138 , 0.231] [-0.718 , 0.635] [-0.453 , -0.016]

HKW Lichterfelde Block 1 0.076 -0.288 -0.086
[-0.027 , 0.195] [-0.535 , -0.043] [-0.190 , 0.009]

Sued GuD2 GT62 -0.150 -0.514 -0.330
[-0.291 , -0.021] [-0.894 , -0.158] [-0.605 , -0.076]

GuD Dormagen -2.322 -4.553 -0.846
[-2.974 , -1.697] [-6.135 , -3.000] [-1.565 , -0.141]

GuD-Anlage-HKW-Merkenich -0.033 -0.646 0.038
[-0.189 , 0.144] [-0.965 , -0.336] [-0.093 , 0.174]

RDK 4 0.038 -0.216 -0.680
[-1.155 , 1.227] [-2.824 , 2.260] [-2.356 , 0.559]

Knapsack 2 -2.432 -4.825 -0.416
[-3.201 , -1.588] [-6.908 , -2.769] [-1.091 , 0.223]

Emsland B -1.415 -3.901 0.094
[-2.094 , -0.758] [-5.206 , -2.529] [-0.758 , 0.971]

Emsland C -1.389 -3.282 -0.999
[-2.074 , -0.778] [-4.850 , -1.847] [-1.730 , -0.182]

Emsland D -2.499 -8.419 -2.499
[-3.934 , -1.176] [-11.562 , -5.483] [-4.105 , -1.259]

GTHKW Nossener Bruecke -0.127 -0.686 -0.168
[-0.252 , 0.009] [-1.020 , -0.336] [-0.335 , -0.008]

Gersteinwerk K1 -0.010 -3.600 0.090
[-0.262 , 0.255] [-5.840 , -1.741] [-0.099 , 0.313]

Block GT1 0.002 -0.084 -0.003
[-0.122 , 0.125] [-0.352 , 0.181] [-0.151 , 0.125]

KMW_KW3 -2.194 -3.150 -0.900
[-2.843 , -1.580] [-4.697 , -1.670] [-1.847 , 0.008]

KW Hamm-Uentrop Block 2 -1.977 -4.791 -0.855
[-2.694 , -1.317] [-6.873 , -3.027] [-1.639 , -0.015]

Note: The coefficients give the estimated average reduction in kg CO2 to a one
MWh increase in the respective renewable technology. 95 percent confidence

intervals in brackets.

TABLE A.13: Individual treatment effect of gas units I
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Generation unit onshore offshore solar

Sued GuD1 GT2 -0.250 -1.019 0.384
[-0.423 , -0.055] [-1.463 , -0.578] [-0.028 , 0.807]

Sued GuD1 GT3 -0.119 -1.440 -0.257
[-0.272 , 0.029] [-1.975 , -0.936] [-0.670 , 0.221]

NIEHL-3 -0.371 -2.446 -0.038
[-0.948 , 0.199] [-4.084 , -1.015] [-0.738 , 0.633]

NIEHL-II-GT -1.401 -1.683 -0.017
[-1.943 , -0.892] [-2.932 , -0.411] [-0.626 , 0.612]

Franken I Block 2 + GT -0.090 -2.801 -0.924
[-0.583 , 0.365] [-4.214 , -1.491] [-1.740 , -0.085]

Sued GuD2 GT61 -0.206 -0.255 -0.229
[-0.346 , -0.073] [-0.605 , 0.090] [-0.461 , 0.002]

Gersteinwerk G 0.092 -0.566 0.362
[-0.533 , 0.700] [-1.292 , 0.228] [-0.233 , 1.052]

Knapsack 1 -1.863 -5.055 -1.096
[-3.104 , -0.651] [-7.591 , -2.128] [-2.510 , 0.294]

Block F -1.359 -2.238 -0.951
[-2.091 , -0.657] [-3.660 , -0.791] [-1.902 , 0.013]

Block GT 12 -0.190 -0.695 -0.256
[-0.386 , 0.007] [-1.128 , -0.270] [-0.446 , -0.088]

HKW Tiefstack GuD -0.279 -1.140 -0.282
[-0.492 , -0.063] [-1.585 , -0.675] [-0.615 , 0.086]

Huntorf GT 0.035 -0.326 0.136
[-0.189 , 0.245] [-0.755 , 0.119] [-0.381 , 0.648]

KW Hamm-Uentrop Block 10 -1.345 -3.948 -0.270
[-1.977 , -0.670] [-5.230 , -2.660] [-0.993 , 0.422]

Franken I Block 1 -0.474 -2.056 -0.650
[-0.887 , -0.074] [-3.229 , -1.002] [-1.101 , -0.212]

HERDECKE_H6 -1.428 -6.521 -0.708
[-2.176 , -0.744] [-8.799 , -4.412] [-1.429 , -0.052]

Block GT 11 -0.111 -0.107 -0.041
[-0.273 , 0.053] [-0.508 , 0.262] [-0.329 , 0.324]

NIEHL-II-DT -0.772 -0.216 -0.222
[-1.079 , -0.442] [-0.860 , 0.429] [-0.662 , 0.147]

HKW Klingenberg 1-3 -0.046 -0.347 -0.021
[-0.155 , 0.076] [-0.680 , 0.012] [-0.157 , 0.118]

Note: The coefficients give the estimated average reduction in kg CO2 to a one
MWh increase in the respective renewable technology. 95 percent confidence

intervals in brackets.

TABLE A.14: Individual treatment effect of gas units II





3 Renewable risk and its impacts on
market prices: The case of Germany

Author: Philip Schnaars

Abstract: This paper develops a framework for renewable producers to withhold capacity
from the day-ahead market in response to higher renewable output risk. The developed
hypotheses are tested on a rich dataset from the German electricity market, with a novel
measure of renewable forecast risk. The data does not support the presence of renewable
withholding in Germany, based on the observed risk premium and day-ahead supply bids.
This suggests that firms do not have access to this information or do not regard this as
relevant.
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3.1 Introduction

Do renewable firms react to risk in weather predictions? Aspects of the transition towards
sustainable energy systems include, among others, the price impact of renewable produc-
tion, firm behavior with now diversified portfolios and the balancing of forecast errors. The
question raised in this paper relates to all of these issues but is distinct.

Firms’ response to uncertain weather forecasts is relevant, as the share of intermittent
renewable capacities exposed to market prices is set to increase in electricity markets around
the world. The market price will be increasingly driven by renewable supply and their
supply decision has a significant impact on the market outcome17. This will likely increase
price volatility, as storage capacities are lagging behind in development.

If renewable firms face output and price risk, they should withhold capacity from the
day-ahead market to avoid being short and having to cover their obligations at high prices
at the next market stage, the intraday market. This additional market stage has been intro-
duced to allow firms to hedge risks from forecasts. Withholding will increase the day-ahead
price by lowering low-cost supply.

The incentives for firms in markets with a significant share of renewable capacity have
been theoretically examined in multiple settings. Kakhbod et al. (2021) study a one-stage
market with imperfect competition among strictly renewable firms that have private infor-
mation. They show that firms have an incentive to strategically withhold renewable electric-
ity from the market in response to higher expected supply from the other firm. Fabra and
Llobet (2020) consider a similar oligopolistic market setting, where firms exercise market
power by withholding capacity if their utilization rate is high. This phenomenon disappears
in a competitive environment. These two papers predict that renewable firms strategically
impact the price in a one-stage market.

Acemoglu et al. (2017) extend this framework to allow for firms with diverse18 genera-
tion portfolios, engaging in a two-stage market with unknown renewable generation in the
first stage. Diversified firms reduce the merit-order effect of renewables via strategic sub-
stitution to lower renewable generation, keeping the total supply unchanged. The forecast
risk of renewable production is not explicitly modeled.

Bessembinder and Lemmon (2002) show in their seminal paper that the day-ahead price
contains a risk premium that increases with the variability of demand, as retailers hedge
themselves against being short in the intraday market by increasing their day-ahead or-
der volume. Longstaff and Wang (2004) provide empirical evidence of this effect in the
Pennsylvania-New Jersey-Maryland market19, while Pietz (2009) does not find an empirical
relationship between price skewness and the price premium in Germany.

These papers study settings where the price risk arises from volatility of demand. The
underlying principle is very similar when considering a market with a significant share
of renewable capacity. Renewable firms hedge against weather-induced price risk on the
intraday market by reducing their day-ahead exposure. The residual demand curve shifts
to the right, hence increasing the day-ahead price. Obermüller (2017) identifies a variety of
weather conditions and concludes that some are associated with a higher price premium in
the German day-ahead price. These particular weather conditions are tied to higher forecast
errors and therefore implicitly measure intraday price risk.

17This paper focuses on large scale renewable generation. Koolen et al. (2021) highlight the difference between
large scale renewable generation and small-scale (prosumer) sites with respect to the risk premium.

18A diverse generation portfolio consists both of renewable and conventional capacity.
19This market serves all or parts of 13 states (Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan,

New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia and West Virginia) and the District of
Columbia (PJM, 2020).
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This paper extends the existing research by deriving a general motivation for the pres-
ence of renewable withholding and consequent risk premia that is applicable to various
electricity markets. It sheds light on price formation in power markets with a significant
share of renewable capacity by explicitly considering the inherent risk of weather forecasts,
which impacts renewable output risk and in turn aggregate price risk. This framework is
then applied to the German market with unique data on renewable forecast risk and de-
tailed information on day-ahead bidding behavior. This data is used to assess the effects of
renewable output risk on the price premium and renewable withholding.

I find that renewable firms in Germany do not consider renewable output risk as impor-
tant information. A higher aggregate output risk does not increase the difference between
the day-ahead and the intraday price. The main driver of this price difference are the re-
alized forecast errors of wind and solar, which confirms previous findings (Kulakov and
Ziel, 2021; Kiesel and Paraschiv, 2017; Woo et al., 2016). Further, I do not find any evidence
of firms withholding renewable capacity from the day-ahead market in response to riskier
forecasts. This implies that firms can balance their forecast errors at reasonable prices.

3.2 Theoretical Framework

The electricity market consists of two stages and renewable firms can decide at which stage
to sell their output. At the day-ahead market, firms have to form expectations about the
price at the subsequent market stage and about the amount of electricity they can generate
at the time of delivery in order to maximize profits. These predictions carry a certain risk,
which varies with weather conditions.

This risk resolves at the intraday stage. Forecast errors have to be balanced at this stage
at the equilibrium price20. The intraday price will decrease compared to the day-ahead
price if there is additional renewable supply and vice versa. This sell pressure can either be
caused by a forecast error or by renewable plant operators withholding from the day-ahead
market. It is this day-ahead withholding that might introduce a risk premium into the day-
ahead price. In the following, I discuss the conditions under which day-ahead withholding
is in the interest of a firm in a competitive market.

I assume that a risk-averse firm operates a single renewable site, has no market power21

and knows its distribution of potential output and hence its expected value as well as that
of all other market participants. Therefore, it has knowledge about the level of confidence
with which their forecasted amount will be available. The higher the output risk, the higher
the probability of a significant individual forecast error. The firm also has information on
the variance of the other firms’ potential output. This knowledge does not entail any infor-
mation about the direction of the possible forecast errors of itself and the other firms, i.e. the
distributions around the predicted output are assumed to be symmetric.

Every forecast exhibits some level of risk. In the case of weather predictions, this varies
with the forecast horizon and, more importantly, overall weather conditions. For this reason,
weather forecasts often comprise of multiple individual forecasts that differ by assumptions

20It is possible for market participants to rely on balancing services provided by the grid operator to balance
their forecast errors. However, it is generally cheaper to balance deviations actively by trading on the intraday
market (see Pape, 2018).

21The following discussion is also valid for an oligopolistic market. The single firm can then be understood
as a fringe supplier without market power, similar to the design in Ito and Reguant (2016). The price risk is
introduced by the output risk of at least one of the firms with market power. The German wholesale electric-
ity market is characterized by five companies owning diverse portfolios. These portfolios made up over 70
percent of generated electricity in 2018 (Bundesnetzagentur, 2020b). The cartel office concluded in their latest
report that these companies bid their marginal costs and do not withhold capacity in a significant manner
(Bundeskartellamt, 2011). These companies compete with each other.
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over the weather events that will develop over the forecast horizon. These “ensemble” meth-
ods implicitly measure the degree of forecast risk via the variance of the individual forecasts,
which should plausibly be available to the firms. The output risk of a single firm translates
into price risk when the output risk of sufficiently many firms is positively correlated. In
the following discussion, I consider four distinct, stylized cases and discuss how renewable
firms behave in each of them.

Case A: High Output Risk, High Price Risk
The firm will have to balance its forecast error on the intraday market, where the expected price has a
high variance. To avoid this price risk, renewable electricity will be withheld from the day-ahead mar-
ket, introducing a risk premium in the day-ahead price, because the high positive correlation between
the individual output risks induces firms to behave similarly.

Case B: High Output Risk, Low Price Risk
The expectation of the intraday price shows low variance. The probability that the individual forecast
will be wrong is high. A firm withholds output from the day-ahead market, but this does not cause a
risk premium. This single firm is too small to impact the day-ahead market price.

Case C: Low Output Risk, High Price Risk
The market participant faces a wide range of possible intraday prices. As a result, renewable pro-
duction will be withheld from the day-ahead market, which contains a risk premium from other firms
withholding capacity.

Case D: Low Output Risk, Low Price Risk
The firm is indifferent between selling at the day-ahead or at the intraday market. No price effect is
expected.

To summarize, the day-ahead market price contains a risk premium when sufficiently
many firms face individual output risk, which then aggregates into price risk (cases A and
C). The risk premium is defined as the difference between the day-ahead and the intraday
price, which arises from renewable withholding at the day-ahead stage and therefore before
the realization of forecast errors during intraday trading. My econometric specification al-
lows to disentangle these two effects, by separately observing both the forecast risk and the
realized forecast errors.

In cases A, B and C, a (small) set of firms either experience output or price risk or a com-
bination of both. They respond by reducing the quantity offered at the day-ahead market.
When renewable firms reduce their offer, the shape of the supply curve changes, keeping
everything else in the market constant.

This theoretical framework can be directly applied to the German electricity market,
where firms operate price-exposed renewable capacity in a two-stage market. This capacity
forms clusters depending on prevailing local weather conditions, introducing heterogeneity
in the price impact of renewables.

As the market price for electricity tends not to be sufficiently high for renewable pro-
ducers to recover their fixed cost, the German government pays out subsidies in one of two
schemes. Under the first scheme, the feed-in-tariff, producers sell their electricity to the grid
operator at a fixed price. The grid operator is then responsible for marketing that electric-
ity at the exchange. Renewable firms subsidized under the second scheme sell their output
directly at the exchange and receive a premium on top of the market price. If this sum is
fixed, both schemes are identical from the perspective of firm’s profits (see Dressler, 2016),
inducing maximum renewable output. Ito and Reguant (2016) report that renewable firms
stopped withholding electricity after remuneration was changed to a fixed price.
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In this particular case, the market premium is paid on top of the monthly average ex-
change price, enabling firms to exploit differences between this benchmark and hourly
prices. As a result22, the importance of the market premium model has been steadily in-
creasing since its creation in 2012, making up over 95 percent for both onshore and offshore
wind electricity and about 25 percent of the total solar electricity produced in 2018 (Fraun-
hofer, 2019). These firms should base their output decisions on the expected market price23

and therefore behave as outlined above.
In a setting with market power and limited entry to arbitrage, strategic firms can gen-

erate a systematic price premium by splitting the quantity asymmetrically between the two
market stages and thereby withholding quantity (Ito and Reguant, 2016) or restraining from
arbitraging existing price differences away completely24 (Borenstein et al., 2008). I disregard
the possibility of market power. Official investigations of the bidding behavior of electric-
ity companies did not reveal evidence in favor of firms not bidding their marginal costs
(Bundeskartellamt, 2011).

As the spatial correlation of wind speed tends to be high, one can also think about the
renewable generation structure as consisting of two clusters of different sizes. One is lo-
cated in the north of Germany where wind speeds tend to be higher and installed capacities
are high. The other group of producers is located in the south with only small installed ca-
pacities at their disposal. The cluster in the north has an impact on the market price with
its output decision and firms’ individual output risk translates into price risk. The smaller
cluster located in the south also faces individual output risk, but the aggregate price risk
depends on the risk the bigger cluster in the north faces25.

Case A refers to the case where both clusters face high output risk. Case B considers a
situation where only the small cluster is exposed to high output risk. Case C expresses the
situation where the northern cluster faces price risk while the southern cluster does not. In
case D, both clusters can rely on confident predictions.

The following section introduces the data that is used to investigate the presumed be-
havior discussed above in the German electricity market.

3.3 The dataset

I use hourly data from the 1st of January 2015 until the 16th of May 2018. Information on
the settlement prices of the day-ahead auction and the intraday transactions as well as ex-
pected and realized demand and renewable production was provided by the German power
exchange operator EEX (EEX, 2020). Prices for fuels and European Emission Allowances
(EUA) are taken from EEX and Quandl (Quandl, 2020). Furthermore, detailed data on day-
ahead supply and demand bids were obtained by EPEX Spot (EPEX Spot, 2020).

22The market premium model is mandatory for most newly-installed capacity installed after 2017 (BMWi, 2016).
Firms actively opting for the market premium model highlights its additional profit opportunities compared
to the feed-in tariff.

23The switch from a feed-in tariff towards a premium model comes with extra costs to the firms, as they are re-
quired to forecast available production. As a result, most renewable firms delegate marketing towards a third
party company. These often act on behalf of multiple renewable firms (BMWi, 2018), reaching a significant
size. As a result, these aggregators are more likely to engage in sophisticated operations such as measuring
the inherent forecast risk than a single firm.

24Arbitrage behavior in a strict sense does not entail any profit risk (Dybvig and Ross, 1989). Due to the intertem-
poral nature of the price difference between the day-ahead and the intraday market, no complete certainty can
be achieved. Throughout this paper, I use the term “arbitrage” loosely to include risky trades as well.

25When considering the risk of solar predictions, the relative cluster size are reversed to form a high capacity
cluster towards the south-eastern part of Germany.
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3.3.1 Measuring renewable output risk

Short-term weather and hence renewable production forecasts have been getting better
(Gürtler and Paulsen, 2018), but a relevant portion of risk remains. This risk inherent in
day-ahead weather predictions is not publicly available. Electricity companies either buy
forecasts from a third party or run their own prediction models, both for their own genera-
tion as well as on the production of competitors. It is reasonable to assume that these models
also provide a range of possible values, carrying the inherent risk.

To obtain a high-quality measure, I use data from the short-term ensemble prediction
model COSMO-DE-EPS that was operated by the German Weather Service. This model
uses information from the day before the electricity is being delivered to make predictions
on the subsequent day. The weather information should therefore be very close to the data
that electricity traders use. For each hour, the model predicts 20 different values. Each of
those is called an ensemble member. Every ensemble member has slightly different input
values, i.e. assumed weather relationships. If these ensemble members predict dissimilar
values, the risk of the prediction is relatively high and vice versa. Figure 3.1 illustrates the
cases of a prediction with a relatively low and a relatively high risk. This risk is calculated
as the standard deviation among the 20 ensemble members.

(A) Low risk (B) High risk

Note: Wind speed projections over 20 different ensemble member for the re-
gion for an exemplary, relatively windy region in Schleswig-Holstein (postal
code-region 23). Figure (A) shows hour 4 - 5 on 30.08.2016. Figure (B) shows

hour 23 - 0 on 18.01.2018.

FIGURE 3.1: Risk over time

Originally, the weather data is provided on a grid of 2.5 × 2.5 kilometers. Averages are
formed along the first two digits of the postal code. This results in 95 regions, displayed in
figure 3.2. The capacity-weighted26 average represents the aggregate price risk. The figure
identifies regions with a potentially higher price impact due to the relatively large installed
capacity, indicated by darker colors.

26Installed capacities are taken from Marktstammdatenregister (Bundesnetzagentur, 2020a).



3.3. The dataset 47

(A) Wind (B) Solar

Note: Capacity shares of the of wind are displayed in figure (A) and of solar
in figure (B). Darker colors indicate a higher share.

FIGURE 3.2: Installed capacities over regions

I will use three different risk definitions in the subsequent analysis. First, the capacity-
weighted average of the standard deviation over the regions for both technologies (windstd,
radiationstd). Second, to relate more closely to the elaborations in section 3.2, I identify high
price impact regions based on the cumulative distribution function of capacity27. The re-
sulting continuous variables measure the risk of renewable output separately in high price
impact and low price impact regions (windstd_high, windstd_low, radiationstd_high, radiation-
std_low).

The third measure combines information about the price impact and the level of risk in a
binary manner. Output risk in each of four regions from the second measure is considered to
be high if it exceeds the respective 90th percentile28 (windstd_high_high, windstd_low_high, ra-
diationstd_high_high, radiationstd_low_high). This quantity describes the laid out theory clos-
est.

3.3.2 Descriptive Statistics

In the presence of renewable withholding, the day-ahead price should rise over the corre-
sponding intraday price. This difference can be considered a risk premium and measured
using both observed prices29, as in equation 3.1, which will serve as the dependent variable
in the subsequent regression analysis.

27Regions with an installed capacity over the 90th percentile are considered to have a high price impact. Quali-
tative results remain unchanged when this cutoff is altered.

28Qualitative results are not affected by choosing a different cutoff.
29The intraday market, unlike the day-ahead market, is characterized by continuous trading that settles pay-as-

bid. I use the average of all transaction prices weighted by trading volume.
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Premium = DA_price− ID_price (3.1)

The identification of the effects of renewable risk on the price difference requires control-
ling for all other determining factors, such as the realized forecast errors of renewables and
demand, as these factors tend to drive the realized intraday price away from its expectation
at the day-ahead market stage. The renewable forecast errors will not have a mean of zero
in the presence of withholding.

Under the null hypothesis of no renewable withholding, the companies expect the shocks
to renewable availability to be random with a mean of zero. This implies that the expected
intraday price equals the observed intraday price and, controlling for all relevant factors,
also the day-ahead price. Among others, Haugom and Ullrich (2012) term this the rational
expectation hypothesis and use the realized intraday price to measure the risk premium.
The observed risk premium varies in size and magnitude over the course of the day (see
figure 3.3). At night, where demand for electricity tends to be relatively low, the day-ahead
price is consistently below the intraday price. As demand rises, the premium becomes pos-
itive. Bunn and Chen (2013) observe a similar pattern in the British electricity market and
explain this by a switch in risk aversion from the supply to the demand side, as predicted
by Benth et al. (2008). The identical phenomenon is responsible for risk premia turning neg-
ative around midday, where the residual demand for conventional production is decreasing
as electricity generation from solar peaks30. The presence of risk premia highlights the the
absence of significant arbitrage behavior in the German market.

Note: Diamonds represent the mean premium for the respective hour of the
day, bars the associated standard error.

FIGURE 3.3: Day-ahead premium over hours of the day

30This is often called “duck curve” (CAISO, 2016).
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Table 3.1 introduces the variables and their description. On average, the forecast errors
for wind and solar are positive. This implies that the realized value is above the predicted
amount. The opposite is true for demand. These figures are reported by the grid operators
based on their own production forecasts and statistically different from zero. This could be
an indication for renewable withholding if the grid operators use information provided by
the firms to form their predictions.

One might be surprised by the fact that radiation can take negative values. The weather
model uses the convention to denote radiation directed towards the surface with a posi-
tive sign and radiation away from the surface with a negative sign. This ensures that the
intertemporal sum will always be zero. Net radiation will be negative at night, as diffuse
radiation vanishes.

Variable Description mean min max sd count

premium Price premium EUR/MWh -0.181 -106 73 6.899 29185
windstd Wind forecast risk 0.770 0 4 0.350 29185
radiationstd Radiation forecast risk 20.276 0 200 31.371 29185
windstd_high Wind forecast risk in high price impact cluster 0.821 0 4 0.397 29168
windstd_low Wind forecast risk in low price impact cluster 0.698 0 3 0.304 29168
radiationstd_high Radiation forecast risk in high price impact cluster 19.281 0 194 30.412 29174
radiationstd_low Radiation forecast risk in low price impact cluster 21.130 0 214 32.749 29174
windstd_high_high =1 if wind risk high in high price impact cluster 0.101 0 1 0.301 29185
windstd_low_high =1 if wind risk high in low price impact cluster 0.101 0 1 0.301 29185
radiationstd_high_high =1 if radiation risk high in high price impact cluster 0.100 0 1 0.300 29185
radiationstd_low_high =1 if radiation risk high in low price impact cluster 0.100 0 1 0.300 29185
FE_wind Forecast error wind GWh 0.101 -13 22 1.491 29185
FE_solar Forecast error solar GWh 0.031 -11 7 0.728 29185
FE_load Forecast error demand GWh -0.675 -18 13 2.128 29185
windmean Predicted wind speed m/s 5.105 0 15 2.067 29185
radiationmean Predicted solar radiation kJ/m2 0.118 -0 1 0.182 29185
expload Forecasted demand GWh 55.030 29 76 9.635 29185
eua Price EUA EUR/tCO2 6.729 4 15 2.068 29185
gas Price Gas EUR/MWh 17.475 10 59 3.570 29185
coal Price Coal USD/kt 69.075 43 97 16.392 29185
outcap Fossil capacity unavailable GW 0.633 0 5 0.649 29185

Note: The column “variable” indicates the variable names that are used
throughout their paper together with their description. The standard devi-

ation is indicated by “sd”.

TABLE 3.1: Summary statistics

3.4 Results

3.4.1 Risk premium

The factors that explain the risk premium are depicted in the Directed Acyclic Graph (DAG)
shown in figure 3.4. The main sources of variation in this premium are the forecast errors of
renewables (RFE) and demand (DFE). Important drivers of the premium are also demand
for electricity (D) and renewables supplied (Ren). They control for the price level, i.e. the
relevant section on the supply curve. The supply and demand curves in the day-ahead and
intraday market are often considered to be different. Knaut and Paschmann (2019) confirm a
difference between the hourly and the 15 minute day-ahead auction, which arises primarily
due to participation constraints from the shorter supply period. I compare the hourly day-
ahead and the hourly intraday price and find no statistically significant difference in the
slope of the supply curve (see appendix B.3).

If renewable risk (Risk) affects prices as suggested above via the amount of renewables
bid into the market, it should only affect the premium indirectly. The main driver of renew-
able generation is the weather, denoted by W. Additional control variables that, for example,



50 Chapter 3. Renewable risk and its impacts on market prices: The case of Germany

exogenously affect the bidding of conventional power producers, such as fuel prices, are in-
cluded in the vector X.

Premium

Ren

Risk

X

RFE

DDFE

W

a

b

c

1
Note: Ren: Renewables, Risk: Renewable risk, W: Weather, RFE: Realized Re-
newable Forecast Errors, D: Demand, DFE: Realized Demand Forecast Errors,

X: control variables. Path a is of main interest to this study.

FIGURE 3.4: DAG of price premium

Relationships between variables in a DAG can be taken as a causal relationship if there
is no path, represented by arrows, that originates in one variable and ends in that same
variable. The graph is then called acyclic. We can identify causal effects of any variable A
on another variable Y if it is a direct cause of Y or of any variable that then causes Y (Pearl,
2009).

In the language of graph theory, the amount of renewables Ren represents a collider. This
is defined as a node which receives edges from two other nodes (Pearl, 2009). Controlling
for a collider variable in a regression will make the formerly independent variables, here
W and Risk, dependent on each other. In addition, it will be impossible to examine an
effect of forecast risk on the premium, if the model conditions on Ren. If the amount of
renewables bid into the market is fixed, the effect of firms withholding renewable capacity
cannot be determined. I will therefore disregard this variable in the subsequent regressions
and condition on the risk Risk and the weather W. A higher forecast risk influences the size
of realized forecast errors (RFE) and thereby indirectly the observed price difference. I block
path c by controlling for these forecast errors in the regression model. This also achieves
blocking the indirect influence of the level of expected weather conditions on the premium
(path b). This setup allows me to identify the causal effect of renewable uncertainty on the
premium, denoted by path a.
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I estimate the following models to assess the effect of renewable forecast risk on the
price difference, where X t captures fuel prices, outage capacity, lagged dependent terms
and hourly fixed effects:

premiumt = α0 + α1windstdt + α2radiationstdt + α3windmeant + α4radiationmeant +

α5FE_windt + α6FE_solart + α7exploadt + α8FE_loadt + δ1X t + εt (3.2)

premiumt = β0 + β1windstd_hight + β2windstd_lowt + β3radiationstd_hight (3.3)
+β4radiationstd_lowt + β5windmeant + β6radiationmeant +

β7FE_windt + β8FE_solart + β9exploadt + β10FE_loadt + δ2X t + ηt

premiumt = γ0 + γ1windstd_high_hight + γ2windstd_low_hight + (3.4)
γ3radiationstd_high_hight + γ4radiationstd_low_hight +

γ5windmeant + γ6radiationmeant + γ7FE_windt + γ8FE_solart +

γ9exploadt + γ10FE_loadt + δ3X t + ut

To confirm the presence of renewable withholding in response to higher renewable risk,
the estimates of the coefficients α1, α2; β1, β2, β3, β4 and γ1, γ2, γ3, γ4 or a subset thereof
should be positive. All variables are stationary except for eua and coal, based on unit root
tests displayed in table B.1. Henceforth, these two variables will be treated in their first
differences in order to achieve the same level of integration among the variables.

All variables are serially correlated over time (see table B.2). An explanatory variable
xt that is correlated over time will be correlated with the regression error term ut if it has
an influence on the serially correlated dependent variable yt. Including lagged terms of the
dependent variable will alleviate this problem if the error term becomes white noise. In this
application, it is sufficient to include two lagged terms of the dependent variable as covari-
ates to render the residuals white noise, i.e. to specify a dynamically complete model based
on the first-order Cumby-Huizinga test.
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(3.2) (3.3) (3.4)

windstd -0.21
[-0.43 , 0.01]

radiationstd 0.00
[-0.00 , 0.00]

windstd_high 0.05
[-0.28 , 0.37]

windstd_low -0.42
[-0.83 , -0.01]

radiationstd_high 0.00
[-0.00 , 0.01]

radiationstd_low -0.00
[-0.01 , 0.00]

windstd_high_high -0.01
[-0.24 , 0.22]

windstd_low_high -0.16
[-0.37 , 0.05]

radiationstd_high_high -0.01
[-0.30 , 0.28]

radiationstd_low_high 0.01
[-0.27 , 0.28]

windmean -0.02 -0.02 -0.02
[-0.06 , 0.03] [-0.07 , 0.02] [-0.06 , 0.03]

radiationmean -0.14 -0.19 -0.12
[-0.91 , 0.63] [-0.96 , 0.58] [-0.82 , 0.58]

FE_wind -0.42 -0.42 -0.42
[-0.49 , -0.35] [-0.49 , -0.35] [-0.49 , -0.35]

FE_solar -0.62 -0.61 -0.60
[-0.72 , -0.51] [-0.72 , -0.51] [-0.70 , -0.50]

FE_load 0.07 0.07 0.07
[0.04 , 0.10] [0.04 , 0.10] [0.04 , 0.10]

expload -0.00 0.00 0.00
[-0.01 , 0.01] [-0.01 , 0.01] [-0.01 , 0.01]

eua -0.09 -0.04 -0.10
[-2.77 , 2.58] [-2.77 , 2.68] [-2.76 , 2.55]

coal -0.15 -0.21 -0.11
[-0.69 , 0.39] [-0.77 , 0.36] [-0.64 , 0.42]

gas -0.03 -0.03 -0.03
[-0.04 , -0.01] [-0.04 , -0.01] [-0.04 , -0.01]

outcap -0.15 -0.16 -0.15
[-0.25 , -0.06] [-0.25 , -0.07] [-0.24 , -0.06]

l premium 0.87 0.87 0.87
[0.82 , 0.93] [0.81 , 0.93] [0.82 , 0.93]

l2 premium -0.07 -0.07 -0.07
[-0.12 , -0.02] [-0.12 , -0.02] [-0.12 , -0.03]

Constant 1.03 1.10 0.83
[0.44 , 1.63] [0.50 , 1.70] [0.23 , 1.42]

Observations 26,997 26,414 28,029

Cumby-Huizinga AR(1) 0.018 0.012 0.007

Note: The dependent variable is premium. 99 percent confidence intervals in
brackets. The underlying standard errors are robust to heteroskedasticity and
autocorrelation up to 14 lags. Column titles refer to the equation that is esti-
mated. The coefficients of hourly fixed effects are not displayed. The variables
eua and coal in first differences. The test-statistic of the Cumby-Huizinga test

for first order autocorrelation is reported.

TABLE 3.2: Effects of risk on the price premium

The regression estimates do not support the presence of an effect of renewable forecast
risk on the price premium at the 99 percent significance level, irrespective of the specification
of risk.

The main drivers of the price difference are the forecast errors of both demand and the
renewable technologies. The estimated coefficients and their levels of statistical significance
are robust over the specifications. Forecast errors for solar have a stronger price effect than
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wind forecast errors. This was also found by Obermüller (2017). This could be due to the
forecast errors happening primarily at different times during the day. Solar forecast errors
tend to happen at times of higher demand where the marginal power plant is different than
at night. In the case of a negative forecast error the additional electricity will be provided by
a power plant on a different part of the supply curve, where it might have a different slope.
Unexpected changes in demand and supply explain a significant part of the price difference
in electricity markets around the world (Longstaff and Wang, 2004; Furió and Meneu, 2010;
Lucia and Torró, 2011).

Furthermore, the level of the price, as indicated by expload, does not matter for the pre-
mium. This suggests that the supply curves are sufficiently comparable between the two
market stages to allow for similar prices across the observed range of demand. The esti-
mated confidence intervals of windspeed and radiation further support this claim. It is possi-
ble that the price premium does not respond to changes in renewable risk, because market
participants adjust their bidding behavior accordingly.

3.4.2 Withholding in the day-ahead bids

To further assess the presence of withholding in response to higher renewable output risk,
I analyze the bids in the day-ahead auction. This data does not allow me to disentangle the
bids by technology, as the bids are aggregated to form price-quantity pairs. This makes it
impossible to directly assess the offered renewable quantity. I derive a data-driven solution
utilizing information about the shape of the supply curve.

If renewable producers, ceteris paribus, reduce the amount they offer in the day-ahead
market, the shape of the supply curve should change. I assume that operators bid their
marginal costs, at least in the relevant range of the data. In particular, renewables should
offer their electricity at a price close to zero. Given a certain level of demand, the point on
the supply curve where the market clears should shift towards the more convex part when
bid renewable volumes decrease, i.e. the second derivative of the supply function should
increase. The left panel in figure 3.5 shows the observed bids on the 7th of April 2018 at
12 am. This hour was randomly chosen for illustration. Less supply from renewables will,
ceteris paribus, shift the market clearing point to a higher point on the supply curve, where
both the first and second derivative are higher.

(A) Supply and demand (B) Supply with fitted spline

Note: The left figure (A) shows observed supply and demand bids for deliv-
ery on 07.04.2018 12am. The right figure (B) displays the supply bids and the

fitted spline function.

FIGURE 3.5: Day-ahead bids and fitted spline
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The bid data is restricted to the minimum and maximum day-ahead clearing price ob-
served over the sample period31. The bids outside this range are not relevant for the question
at hand.

I fit a cubic spline to each hourly set of price-quantity supply bids, using cross-validation
to avoid overfitting32. The right panel of figure 3.5 shows the result of the above procedure.
The smoothing spline interpolation captures the information in the underlying data well
without modeling the noise and provides a continuous and twice-differentiable function.
For each of the fitted splines, the first and second derivatives33 are determined. I use the
curvature at the intersection with the demand curve as the dependent variable.

The identification strategy remains similar to the analysis of the price premium. At the
day-ahead market, the forecast errors are not yet realized, therefore will not have a direct
impact on the offered quantity. Path d will shed light on the null hypothesis.

Curvature

Ren

Risk

X

D

W

d

1
Note: Ren: Renewables, Risk: Renewable risk, W: Weather D: Demand,

X: control variables. Path d is of main interest in this analysis.

FIGURE 3.6: DAG of curvature

The following equations will be estimated by OLS to identify the effect of renewable
risk on the shape of the supply curve and the offered renewable amount, where κ1, κ2 ;
ζ1, ζ2, ζ3, ζ4 ; θ1, θ2, θ3, θ4 are the coefficients of interest, respectively.

31Over the sample period, the hourly day-ahead market cleared at prices between -130 EUR/MWh and 163
EUR/MWh. Bids outside of this range stem mostly from must-run conditions or at prohibitive prices.

32For a more detailed description of this procedure, refer to appendix B.2.
33The calculated values are multiplied by 106 to enhance readability of coefficients.
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curvaturet = κ0 + κ1windstdt + κ2radiationstdt + κ3windmeant + κ4radiationmeant +

κ5exploadt + δ4X t + vt (3.5)

curvaturet = ζ0 + ζ1windstd_hight + ζ2windstd_lowt + ζ3radiationstd_hight + (3.6)
ζ4radiationstd_lowt + ζ5windmeant + ζ6radiationmeant +

ζ9exploadt + δ5X t + ψt

curvaturet = θ0 + θ1windstd_high_hight + θ2windstd_low_hight + (3.7)
θ3radiationstd_high_hight + θ4radiationstd_low_hight +

θ5windmeant + θ6radiationmeant + θ7exploadt +

θ8FE_loadt + δ6X t+ 3t
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(3.5) (3.6) (3.7)

windstd -0.31
[-0.67 , 0.06]

radiationstd -0.00
[-0.01 , 0.01]

windstd_high -0.48
[-0.98 , 0.02]

windstd_low 0.17
[-0.45 , 0.80]

radiationstd_high -0.00
[-0.02 , 0.01]

radiationstd_low 0.00
[-0.01 , 0.02]

windstd_high_high -0.25
[-0.61 , 0.10]

windstd_low_high -0.05
[-0.38 , 0.28]

radiationstd_high_high -0.21
[-0.79 , 0.37]

radiationstd_low_high 0.23
[-0.36 , 0.82]

windmean -0.39 -0.39 -0.39
[-0.46 , -0.32] [-0.46 , -0.32] [-0.46 , -0.33]

radiationmean -0.01 -0.01 -0.01
[-0.01 , -0.00] [-0.01 , -0.00] [-0.01 , -0.00]

expload 0.00 0.00 0.00
[0.00 , 0.00] [0.00 , 0.00] [0.00 , 0.00]

eua 0.88 0.76 1.05
[-1.76 , 3.52] [-1.96 , 3.48] [-1.58 , 3.68]

coal -0.08 -0.02 -0.12
[-0.59 , 0.42] [-0.54 , 0.49] [-0.62 , 0.39]

gas -0.06 -0.06 -0.06
[-0.09 , -0.02] [-0.09 , -0.02] [-0.09 , -0.02]

outcap 0.00 0.00 0.00
[-0.00 , 0.00] [-0.00 , 0.00] [-0.00 , 0.00]

l curvature 0.26 0.26 0.26
[0.23 , 0.29] [0.23 , 0.29] [0.23 , 0.29]

l2 curvature 0.12 0.12 0.12
[0.09 , 0.14] [0.09 , 0.14] [0.09 , 0.14]

Constant -3.61 -3.58 -3.69
[-4.62 , -2.60] [-4.61 , -2.55] [-4.69 , -2.69]

Observations 25,709 25,144 26,712

Cumby-Huizinga AR(1) 0.285 0.207 0.311

Note: The dependent variable is curvature. 99 percent confidence intervals in
brackets. The underlying standard errors are robust to heteroskedasticity and
autocorrelation up to 14 lags. Column titles refer to the equation that is esti-
mated. The coefficients of hourly fixed effects are not displayed. The variables
eua and coal in first differences. The test statistic of the Cumby-Huizinga test

for first order autocorrelation is reported.

TABLE 3.3: Effects of risk on shape of the supply curve

The estimates presented in table 3.3 strengthen the previous results. Based on this anal-
ysis, renewable risk does not seem affect the amount of renewable electricity offered at the
day-ahead market. As expected, higher wind speed and solar radiation decreases the cur-
vature, i.e. moves the market-clearing point to the left of the curve. This is the merit-order
effect. Increasing demand, as indicated by the coefficient of expload, moves the intersection
of supply and demand curve to the right.

Overall, the empirical analysis does not reveal an effect of renewable risk on either the
day-ahead price premium or the offered renewable quantity.
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3.5 Discussion & Conclusion

This paper estimates the impacts of day-ahead risk in generation from renewable sources
on the risk premium in the day-ahead price. Using a detailed model-based measure for
this risk, the analysis shows that renewable output risk does not increase the risk premium,
irrespective of the potential price impact of this risk. To review whether this implies that
there is no strategic withholding in the market, detailed auction data is used. The evidence
from this data does not deliver support to this hypothesis. Renewable risk does not have an
effect on the shape of the supply curve. The data does not support a withholding effect.

A large share of renewable capacity is operated by firms that also own dispatchable
capacity. It is possible that companies with diverse generation portfolios strategically sub-
stitute renewable quantity by conventional power, as suggested by Acemoglu et al. (2017).
The total quantity offered will not change in response to renewable risk. However, this
substitution within firms’ portfolios should lead to a price effect, as the marginal costs of
conventional power are generally larger than those of renewables. This either implies that
these firms do not offer their available renewable capacity at marginal costs or there is no
strategic substitution.

When firms do not consider fundamental information such as their output risk, their
behavior and subsequently the market outcome can be informationally inefficient. It is pos-
sible that firms are rationally inattentive to the information about their output risk, suggest-
ing that the costs of acquiring and using the data do not outweigh the potential benefits of
an improved allocation (Gabaix, 2019). While it can be profitable to incorporate data about
risk into the decisions (Maciejowska et al., 2019; Pinson et al., 2007), this information does
not seem to be used on a large scale (Bessa et al., 2017).

If the firms have knowledge about their output risk, the results suggest that they can
be relatively assured that they can balance their forecast errors at reasonable prices in the
intraday market.
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B Appendix to chapter 3

B.1 Tables

Variable Augmented Dickey-Fuller Phillips-Perron

premium -20.858 -46.908
windstd -9.458 -17.872
radiationstd -2.868 -16.367
windmean -12.070 -15.433
radiationmean -0.938 -15.641
FE_wind -14.816 -32.793
FE_solar -19.809 -28.373
FE_load -17.042 -26.518
expload -17.622 -17.334
eua 2.875 1.682
gas -6.756 -5.016
coal -0.326 -0.313
outcap -19.663 -36.035
curvature -11.804 -146.118

Note: This table reports test statistics for two unit root tests. The lag length
was chosen with Schwerts criterion (Schwert, 2002), resulting in 49 lags. The 1
percent critical value is −3.430 for both tests. All variables are stationary, ex-
cept for coal and eua. The ADF test statistic does not correct for heteroskedas-
ticity, while the PP accounts for the presence of changing variance. Therefore

I consider radiationmean as stationary.

TABLE B.1: Stationarity tests

Variable First-order autocorrelation Variable First-order autocorrelation

premium 0.859 FE_wind 0.985
windstd 0.969 FE_solar 0.961
radiationstd 0.960 FE_load 0.924
windstd_high 0.966 windmean 0.919
windstd_low 0.976 radiationmean 0.953
radiationstd_high 0.957 expload 0.965
radiationstd_low 0.959 eua 1.000
windstd_high_high 0.853 gas 0.998
windstd_low_high 0.874 coal 1.000
radiationstd_high_high 0.808 outcap 0.915
radiationstd_low_high 0.809 curvature 0.354

Note: This table reports first-order autocorrelation coefficients of all variables
used in the analysis.

TABLE B.2: Autocorrelation

B.2 Fitting the cubic spline

This section explains the details of the procedure of fitting a cubic splice to the aggregated
supply bids. An appropriate procedure to obtain a continuous function from discrete and
potentially noisy data is a smoothing spline (Craven and Wahba, 1978). In this case, a cu-
bic spline interpolation is fitted to every observed set of auction bids. The number of cubic
functions fitted to the data is determined by equally placed knots, i.e. “anchor points” in
the data between which a function will be fitted. The number of knots is determined by a
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smoothing parameter, which is chosen using generalized cross-validation to avoid overfit-
ting34. Cross-validation refers to randomly splitting the data into k folds. One fold is left
validating the model, the test data, while the model is fitted using k− 1 folds, the training
data. In this case, the most common approach with k = 5 is chosen. When the model fits
perfectly to the training data, it will usually not perform well on the previously unseen test
data. The model accuracy has to be decreased on the training data in order to perform better
on the test data. This process is repeated for each of the k folds.

The criterion to be minimized on the test sample is

gcv =
1
n ||y− Xb̂||2

( 1
n Tr(I− X A−1XT))2

(B.1)

where Xb̂ are the predictions from the model fitted using the training data, I is the identity
matrix and A = X ′X, the square of the matrix with the explanatory variables. In this case,
X only contains one variable.

B.3 Elasticity of supply curves

This section estimates the elasticity of the supply curves, both in the day-ahead and in the
intraday market, by a regression of the price on demand. The variables are transformed
via natural logarithms to be able to interpret the estimated coefficient as an elasticity35. To
be precise, the following equation is estimated, where j indicates each of the two relevant
market stages.

ln(pricet,j) = φ0,j + φ1,jln(demandt,j) + Φt,j (B.2)

The trading volume on the respective market is below the aggregated demand proxied
by the grid load, mainly as a result of bilateral over-the-counter trading. As the trading
volume might be endogenous to the price, I use the demand as the explanatory variable.
This reflects a constant relationship between demand and day-ahead trading volume. The
coefficient of interest is φ1,j, which will give the elasticity of price to changes in demand.
An estimate of 1 implies a linear supply curve. The supply curve can be considered convex
if the estimated elasticity is larger than 1. Table B.3 shows the estimated elasticity for the
two market stages. I use the expected residual demand, i.e. the forecasted demand (expload)
minus expected renewable infeed (see table 3.1).

Day-ahead Intraday Z-statistic DA hour - ID hour

Demand 1.229 1.119

1.706[1.186 , 1.272] [1.150 , 1.230]
Constant -10.023 -9.599

[-10.499 , -10.028] [-10.034 , -9.162]

Note: 99 percent confidence intervals robust to heteroskedasticity in brackets.

TABLE B.3: Estimated elasticity of supply curves

34Not using a cross-validation approach in this context commonly leads to a prediction accuracy of 100 percent.
The model therefore also captures the noise in the data.

35This looses 452 out of 29,185 observations as a result of negative prices.
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The supply curve in the hourly day-ahead market seems to be convex, as expected. In
addition, the weighted average prices in the hourly intraday market are considered. The
estimated elasticity is different from one. The supply curve appears to be slightly convex.

The following test was suggested by Clogg et al. (1995) and can be used for compar-
ing estimated coefficients across different regression models. The slopes of the day-ahead
and the intraday supply curve do not seem to be different from each other at any common
significance level36.

Z =
φ̂1,1 − φ̂1,2√

SE2
φ1,1

+ SE2
φ1,2

(B.3)

36This qualitative result does not change when additionally controlling for the fossil fuel input prices in equation
(B.2).
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Abstract: The European Union’s push towards market-based procurement of redispatch
services has sparked fears of so called Inc-Dec-Gaming, i.e. the incentive to engage in ar-
bitrage between the national wholesale market and the local redispatch market. The latter
would increase both likelihood and severity of grid congestions. Such incentives might be
present in the German approach of mandatory participation with reimbursement of costs if
the marginal cost estimates used are not accurate. This paper develops a method to iden-
tify such behavior in cost-based redispatch. We test for the presence of Inc-Dec-Gaming at
the plant level using a random forest prediction model and time series regressions using a
sample of German power plants. We do find evidence of arbitrage among a small cluster of
German power plants. This suggests that cost-based redispatch might not be as short run
cost-effective as suggested.
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4.1 Introduction

In the Clean Energy Package, the European Union (EU) set new guidelines on how mem-
ber states should procure redispatch capacities (EU, 2019). As part of the new EU rules,
the German regulator is bound to change the procurement of redispatch volumes from a
cost-based to a market-based system. This implies that grid operators will auction off the
necessary volumes based on forecasted grid constraints. The German government is aware
that a change to market-based redispatch can result in higher congestion levels and hence is
evaluating hybrid design options37 (Bundesregierung, 2020). Currently, the German trans-
mission grid operators obligate power plants to adjust their generation schedule in order
to avoid overload on certain grid elements. These power plants are remunerated based on
reported marginal costs of production and opportunity costs, aiming at plants being indif-
ferent between being redispatched and independent generation.

At the day-ahead market stage, plant operators sell electricity based on market funda-
mentals such as expected demand and renewable supply. Under some local conditions, grid
congestion requires redispatch, opening up an additional stage of the electricity market. If
being forced to adjust output due to a redispatch mandate is financially attractive, incentives
for increasing the volume of the redispatch mandate arise. Deliberate attempts to affect the
extent of redispatch by adjustments in electricity sold in the day-ahead market is called ar-
bitrage in what follows.38 In the case of upward redispatch, such arbitrage would involve
decreasing scheduled output in the day-ahead market in order to increase the magnitude of
the redispatch mandate. This increases frequency and magnitude of congestion, grid costs
and deadweight loss. For downwards redispatch firms would increase their activity in the
day-ahead market in order to be curtailed more heavily in the redispatch stage. Besides
the failure of the reimbursement scheme to make firms indifferent about the extent of redis-
patch, there are two crucial conditions for arbitrage activities to take place. First, firms need
to be able to reliably forecast congestion and hence occurrence and direction of redispatch.
Second, they need to be able to affect the redispatch quantity via their activity in the day-
ahead market. The latter implies a high sensitivity on the relevant bottleneck, i.e. the extent
to which, at the margin, a change in the firm’s output translates into pressure placed on the
bottleneck. We use both conditions to inform our empirical strategy.

Such arbitrage behavior is sometimes called the “Inc-Dec-Game” (Hirth and Schlecht,
2020) and is commonly only expected in market-based redispatch systems, as prices tend to
be transparently different to encourage participation in the redispatch market and anticipa-
tion of the congestion is therefore less important. We argue that such arbitrage behavior can
also occur in a cost-based setup, once a price difference between the two stages exists. In
this system, the redispatch price is subjective and depends on individual cost estimates39.
Once this estimate deviates from the true cost, arbitrage will be profitable for the firms.

Arbitrage can occur between any two stages of the electricity market. It has been ob-
served between the day-ahead and redispatch stage in California, leading to an increase in
the level and costs of congestion (Alaywan et al., 2004; Brunekreeft et al., 2005) and Eastern
United States (Hogan, 1999). These experiences have contributed to the widespread shift

37At the same time, the cost-based system is refined to reach more cost-effective solutions. For example, storage
and renewable sites become part of redispatch as of October 1 2021, if they are cheaper by factor 10 (BMWi,
2019).

38In this paper, we use the term “arbitrage” rather loosely to include intertemporal transactions, which will
always exhibit at least some residual risk.

39It is found that the introduction of virtual bidding, i.e. market participation of purely financial traders, leads to
a decrease in price differences. This can lead to a decrease in generators’ market power and higher consumer
surplus, for example in Mid-Western US (Mercadal, 2018) or California (Jha and Wolak, 2015). In this paper, we
do not consider the presence of such financial bidders as the costs are individual and the redispatch transaction
is bilateral between the power plant and the grid operator.
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towards nodal pricing in the US, where the wholesale market price reflects eventual local
grid constraints via the introduction of many smaller bidding zones (Neuhoff et al., 2011).
After observing intrazonal arbitrage behavior on the border between England and Scotland,
the regulating entity required certain market participants to bid their marginal costs in the
day-ahead market (Ofgem, 2012), thereby limiting the extent of arbitrage possible. Limited
interzonal capacity can also induce arbitrage, for example between Denmark and Germany.
The introduction of a countertrading mechanism led market participants to adjust bidding
behavior between the two market stages to exploit price differences (Energinet, 2019). The
extent of this was found to depend on the predictability of congestion. Just and Weber (2015)
identify arbitrage effects between the intraday and the balancing market in Germany. Such
behavior requires reliably predicting the direction of the system imbalance and the respec-
tive price. Bunn and Kermer (2021) show that such arbitrage activity tends to decrease with
lower forecast quality in the Austrian market. This also holds for the Italian market (Lisi and
Edoli, 2018). Arbitrage can even be profitable in expected value if the anticipated probability
for a necessary redispatch event is below the common threshold of 50 percent (e.g Just and
Weber, 2015)).

We develop a method that allows us to test for arbitrage behavior in cost-based redis-
patch. If firms can reliably predict congestion and have a high market share in the resulting
redispatch market, arbitrage can be profitable. This prediction of congestion and subse-
quently individual redispatch mandates is the first step of our empirical strategy. We use
hourly plant-level data with highly detailed regional weather forecasts and a Random For-
est algorithm to estimate the expected day-ahead hourly probability of redispatch for each
power plant in the sample. We find that reliability of forecasts based on the available data
varies significantly between power plants. To the best of our knowledge, this paper provides
the first application with this level of regional detail for Germany. To assess in a second step
whether firms respond to expected redispatch by adjusting their day-ahead bidding behav-
ior, we employ time series regression analysis. We do not find evidence for large-scale ar-
bitrage behavior in German redispatch, albeit many plants met necessary prerequisites for
this behavior. Our data supports arbitrage for small-scale arbitrage by a cluster of power
plants located in the North-East .

The costs of grid congestion are manifold40. It increases expenses to maintain grid stabil-
ity both within Germany and in its neighboring countries. These external costs are passed
on to electricity consumers via a per unit increase on the grid fees that induces a deadweight
loss. In addition, loop flows levy costs on neighboring countries, leading to inefficient dis-
patch in that area. For example, to reduce these losses, the combined German-Austrian price
zone was split up, imposing a limit on the flow of electricity between these two countries
(IEA, 2020), thereby internalizing a fraction of external grid costs into firms considerations.
The European Commission considers placing the most important grid constraints in the
German grid onto firms decisions by splitting Germany into two price zones and imposing
restrictive cross-zonal transmission capacity. Expectations about the welfare benefits range
from small (Fraunholz et al., 2021; Trepper et al., 2015) to considerable when assuming an
optimal configuration and allowing for generation capacity relocation (Ambrosius et al.,
2020). The extreme form of zonal splitting is the introduction of nodal pricing.

Another suggested remedy is to introduce a market-based redispatch system, while
keeping a zonal electricity price. This would provide incentives for long-term generation
investment, as local redispatch prices tend to be higher than under a cost-based system,
raising congestion costs and lowering welfare in the short run. However, as a result from
new capacity investments, congestion levels fall in the long run, rendering market-based

40Grid congestion can lead to higher emissions, especially when renewable electricity has to be curtailed to
maintain grid stability. We do not consider those welfare impacts in this paper.
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redispatch more efficient than cost-based redispatch (Vries and Hakvoort, 2002; Grimm et
al., 2018). Market power can lead to inflated prices and inefficiently high congestion levels.
Empirical evidence of such practice in California was found by Joskow and Kohn (2002)
and Davis and Hausman (2016). It is possible that market power in latent submarkets can
also arise in cost-based redispatch when only one or a few plants have high sensitivity on
the congested grid element, increasing costs for grid stability. We abstain from such con-
siderations in our analysis while we cannot rule out such market power based on our data.
Our results suggests that cost-based redispatch in Germany might not be the most short run
cost-effective option.

4.2 Model

Consider a power plant i that participates in mandated, cost-based redispatch. For a particu-
lar contracting period, which typically lasts for one hour, the profit-maximizing output with-
out redispatch and any arbitrage considerations between day-ahead and redispatch market
is referred to as x̄i ∈ [0, xmax

i ], where xmax
i is the plant’s capacity. The profit-maximizing

output is assumed to depend on market-wide fundamentals F and firm’s production costs
Ci(xi), i.e. not on the plant’s subjective assessment of the likelihood of grid congestion µi.
We use x̄i as a reference point for our analysis of arbitrage activities.

If the grid is congested and the plant does not engage in arbitrage, it is mandated to
adjust output by ri = r̄i such that realized output at the time of delivery becomes xi = x̄i + r̄i.
Note that r̄i can be either positive or negative depending on the plant’s location relative
to the bottleneck in the grid. The likelihood of grid congestion and hence redispatch is
assumed to be independent of plant i’s output choice, i.e. we focus on arbitrage motives
for “Inc-Dec-Gaming” and abstract from local market power that would allow the firm to
strategically manipulate the likelihood of grid congestion.

If the plant engages in arbitrage activities between the day-ahead and the redispatch
market, it increases output sold in the day-ahead market by ai - which might be negative.
As a result, the quantity reduction in case redispatch is mandated changes to ri = r̄i −
αiai where αi ∈ [0, 1] is the degree to which a plant is able to deliberately and unilaterally
affect the quantity sold in the redispatch market, given that redispatch occurs. This mainly
depends on the impact of the plant’s output variation on the congested part of the grid.
Note that ri and ai will have opposite signs. Increasing output sold in the day-ahead market
will increase the mandated reduction in planned output if αi > 0. The responsiveness of
actual output to increases in day-ahead output is hence 1− αi. If the plant is the only plant
active in the redispatch market (or if it is a virtual plant covering all participating plants)
on that side of the bottleneck, then αi = 1. On the other hand, if the plant is small relative
to the total remaining and effective redispatch capacity on its side of the bottleneck, then
αi = 0. Output with arbitrage at the point of delivery is therefore xi = x̄i + r̄i + (1− αi)ai if
redispatch occurs and xi = x̄i + ai if not.

This allows us specifying output sold in the day-ahead market

x̂i = xi − ri = x̄i(F) + ai(µi). (4.1)

We cannot observe x̄i and ai directly. However, given a reliable measure of the plant’s
subjective assessment of the likelihood of grid congestion µi can be constructed, that is (suffi-
ciently) independent of market fundamentals influencing x̄i, arbitrage activities can be iden-
tified if they exist as only they are affected by changes in µi.

Market fundamentals in a zonal electricity market should be captured by the day-ahead
price. It aggregates all available information on drivers of overall scarcity such as expected
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renewable output and load. If, after controlling for the day-ahead price, there is still a sig-
nificant impact of the estimated likelihood of receiving a redispatch mandate on plant-level
day-ahead output, then this effect is mediated by arbitrage activities.

x̂i = f (p, µi) (4.2)

While aggregate output and market price are endogenous, this concern is much less
relevant for output of an individual plant. At the plant level, the price determines output
and not the other way around. Nevertheless, we test whether our findings are robust to
controlling directly for market fundamentals.

To determine how a plant’s arbitrage activity is affected by its ability to impact the size
of its redispatch mandate (αi) and the subjective probability of redispatch occurring in a
particular contracting period (µi), we model its profit-maximizing response to a signal si
about the likelihood of grid congestion.

Expected profits are

E (πi|si) = µi(si) [p · (x̄i + r̄i + (1− αi)ai)− Ci (x̄i + r̄i + (1− αi)ai) + fi · (r̄i − αiai)]

+(1− µi(si)) [p · (x̄i + ai)− Ci (x̄i + ai)] (4.3)

where fi is the per-unit rate in the redispatch market. Note that typically it holds that
sign( f ) = sign(r) as increasing output requires additional resources while reducing output
tends to conserve them. In Germany, redispatch is reimbursed based on an estimate of input
and opportunity costs. They are reported on a daily basis either ex ante or in some cases
such as opportunity costs from forgone profits ex post as they require information on day-
ahead settlement prices. The grid operator can request verification of the reported figures.
Opportunity costs include foregone flexibility on the intraday markets estimated using a
simple pricing equation for options based on day-ahead prices and standard deviation in
the previous 30-day-period. All variable components of the reimbursement are calculated
using plant and time specific, but ex ante known or highly predictable per unit rates that
are a functions of the day-ahead price for electricity and input prices. The attractiveness of
redispatch is therefore to a large extent independent of current market conditions.

While the aim of the reimbursement is to make plant operators indifferent about the
occurrence and extent of redispatch events, if the cost approximations are systematically
over- (or under-)estimating the true costs of redispatch, then firms have an incentive to
engage in arbitrage between the day-ahead and the redispatch market. The latter is the case
if marginal costs of plant operators are increasing in the relevant range. As at any given
point in time, the per-unit rate of reimbursement is constant and given that fixed costs are
reimbursed as well, profits depend on the size of the redispatch mandate.

The first-order condition of (4.3) for interior solutions (i.e. for ai ∈ [−x̄i, xmax
i − x̄i]) yields

µi(si)αi
[

fi + p− C′i (x̄i + r̄i + (1− αi)ai)
]
− (1− µi(si))

[
p− C′i (x̄i + ai)

]
= 0 (4.4)

For αi = 0 or µi = 0 it holds that ai = 0 as by definition, p− C′i (x̄i) = 0. Hence, if the
plant is not able to manipulate the redispatched quantity or does not expect redispatch to
occur, then there will be no arbitrage activity, irrespective of how fi is specified. If, however,
αi = µi = 1, then (4.3) becomes linear in ai and the profit-maximizing outcome is either
ai = −x̄i or ai = xmax

i − x̄i depending on the sign of fi + p− C′i (x̄i + r̄i).
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We therefore derive the following testable hypothesis:

Hypothesis 1 Plant operators engage in arbitrage between the day-ahead and the redispatch market
if the predicted likelihood of redispatch

1. affects day-ahead output (x̂i)

2. but not actual output (xi)

of plants with a large market share in the respective redispatch market and a high accuracy in predict-
ing redispatch events (i.e. sensitivity in table 4.3)

We can therefore identify plants engaging in arbitrage between day-ahead and redis-
patch markets and for those that don’t we distinguish between two reasons: a) insufficient
predictability of redispatch events and b) insufficient profitability of arbitrage given that
redispatch can be predicted.

4.3 The dataset

For the empirical analysis, a comprehensive dataset from various sources is constructed.
It contains information on plant-level redispatch volumes (Netztransparenz, 2020), genera-
tion output, installed capacity, load forecast (ENTSO-E, 2020) and plant location. In order to
gain insight into the predictability of congestion, day-ahead regionalized solar radiation and
wind forecasts based on the ensemble model COSMO-DE-EPS from the German Weather
Service are included (Theis et al., 2017). The latter variables are unique to our study and
provide a significant level of detail. We use data from the day-ahead 3am UTC progno-
sis. For each hour of the following day, there exist 20 different predictions, i.e. ensembles,
which are averaged. Drawing on the 2.5km × 2.5km grid resolution of the original dataset
we compute regional forecasts for regions that share the first two digits41 of their postcode.
Figure 4.1 presents the regions defined by this procedure. For each of these regions, wind
speed and radiation42 forecasts represent the day-ahead information set for predicting grid
congestion.

41Talks with industry representatives revealed that grid operators often use the first three digits of the postal
code to combine forecasts. This would have been possible as well with our data, but given the relatively high
correlation between these subregions, we do not loose much information relevant to this application.

42We use the sum of direct and diffuse radiation, often termed “global” radiation.
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Note: Displayed regions combine all 2.5 km × 2.5 km grid cells that share
the first two digits of the postcode. This results in 95 areas. For each of these

regions, a day-ahead forecast for wind and radiation is available.

FIGURE 4.1: Map of regions with detailed day-ahead weather predictions

Overall, the dataset consists of hourly observations for 23 power plants for the period
from January 2015 to May 2018 in Germany. This is the subset of plants that is regularly
affected by redispatch measures and therefore of interest to this study. Table 4.1 reports the
sample power plants. For an overview about all available plants and the selection process,
consult table C.1.

The power plants Boxberg, Jänschwalde, Moorburg, Rostock, Schkopau, Schwarze Pumpe
and Lippendorf are located in the north-eastern part of Germany, which is north-east of the
main congested grid lines (see figure 4.2). These plants are regularly redispatched down-
wards as a group targeted towards the same bottleneck. The data does not allow us to pre-
cisely assign redispatch volumes to every single plant for every relevant hour in the sample.
We therefore consider those plants as a virtual power plant43 VirtualNorthEast, aggregating
generation, capacity and redispatch volume. This allows us to use potentially important
information, as members of this virtual power plant are frequently redispatched.

43Note that we use the term “virtual” not in the prevalent sense where the included power plants are actually
managed jointly by the same company. We rather consider those plants as one due to data restrictions, taking a
similar perspective as the grid operator. For arbitrage it is not necessary that these plants are actually managed
jointly, if they behave in a similar way.
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Plant Hours up Hours down Capacity Fuel type Postcode ID

Emsland 577 82 1820 Gas 49808 1
Ensdorf 295 8 389 Coal 66806 2
Farge 56 1022 350 Coal 28777 3
Hamm Uentrop 642 169 850 Gas 59071 4
Heizkraftwerk Heilbronn 3733 21 778 Coal 74076 5
Herne 559 105 740 Coal 44653 6
Heyden 493 799 875 Coal 44653 7
Kiel 3 1075 323 Coal 24149 8
Knapsack 24 1037 1210 Gas 50354 9
Kraftwerk Mainz Wiesbaden 425 13 785 Gas 55120 10
Luenen 72 78 1196 Coal 44532 11
Neurath 11 1542 4212 Lignite 41517 12
Niederaußem 23 1112 3391 Lignite 50129 13
Rheinhafen-Dampfkraftwerk Karlsruhe 3321 97 1700 Coal & Gas 76189 14
Scholven 307 98 690 Coal 45896 15
Staudinger 5 2156 233 510 Coal 63538 16
VirtualNorthEast 0 12,652 11620 Lignite & Coal – 17
Walsum 597 278 1095 Coal 47179 18
Weiher 716 0 724 Coal 66287 19
Weisweiler 0 165 2363 Lignite & Gas 52249 20
Westfalen 23 221 780 Coal 52249 21
Wilhelmshaven (Uniper) 3 958 757 Coal 26386 22
Zolling 5 2163 810 472 Coal 85406 23

Note: Hours up and hours down count the hours a power plant was redis-
patched in the respective direction over the sample period. Capacity gives the
installed generation capacity in MW. The primary fuel type is also reported.
Multiple fuel types are possible for plants that consists of multiple blocks. The
location is indicated by the postcode. The plant ID refers to the number within

the sample.

TABLE 4.1: Plant location and redispatch details

Figure 4.2 shows the location of the power plants in the sample in panel (A). The plants
forming the virtual power plant VirtualNorthEast are marked in red. In addition, it also
shows where the frequently congested lines in the German transmission grid are located
in panel (B) (Bundesnetzagentur, 2018). This gives an idea of the potential local markets
that might originate from a change in the regulation. The electricity commonly flows from
north to south, as wind generation is clustered in the north and demand in the south. We
have plants on either side of this in our sample, i.e. plants that are regularly redispatched
downwards and plants that are regulary redispatched upwards. Table 4.1 strengthens this
assertion. Every plant in the sample is either predominantly mandated to increase or de-
crease the respective output. Plant operators can be relatively sure of their mandate if they
know that one of the relevant grid elements is congested. One further aspect of the table
is worth mentioning. Some plants are redispatched relatively often while others are only
required to do so in a few hours over the sample period, reflecting different sensitivities on
congested grid elements.
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(A) Location of sample power plants

(B) Frequently congested transmission lines

Note: The red power plants in panel A are the members of the virtual power
plant VirtualNorthEast. Darker colors represent more frequent congestion in

panel B. It displays the situation in 2017.

FIGURE 4.2: Power plant location and congested grid elements
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(B) Identification with market fundamentals

Note: A node indicates a variable while an arrow denotes a causal relation-
ship. The path coefficients c1 and c2 indicate arbitrage behavior assessed in
section 4.4.2 while a and b refer to the influence on day-ahead redispatch pre-

dictability in section 4.4.1.

FIGURE 4.3: Relationships between variables

Recall from equation (4.1) that we recover the unobserved scheduled output by the sum
of realized output and realized redispatch.

Figure 4.3 shows two Directed Acyclic Graphs denoting the relationships between the
main variables in the study. Recall that our identification strategy relies on the assump-
tion that the market price is exogenous to individual power plant’s scheduled output (fig-
ure 4.3A) and we check for robustness using the market fundamentals that determine the
scheduled output directly (figure 4.3B). Scheduled power plant output, the variable to be
explained, is determined by the market price or the market fundamentals displayed in ital-
ics and individual cost components, such as the relevant fuel price or the price for emission
allowances, which determine the relative position of the plant on the merit order curve. If
capacity is unavailable for production, the output will be affected as well.

Note that our empirical analysis consists of two different steps. The perceived day-ahead
redispatch probability depends on local weather forecasts and load conditions in the rele-
vant grid area, denoted by a and b. In the first step of our analysis, we determine these rela-
tionships, which will remain unaffected by our set of control variables. In the second step,
we assess the presence and magnitude of the direct path c1 and c2. This direct influence on
scheduled output is driven by the expectation of redispatch rather than its realization and
therefore captures arbitrage activities by the plant. All variables are plausibly exogenous,
conditional on controlling for the other variables.
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4.4 Empirical Analysis

The empirical analysis consists of two main steps. First is the assessment of how well firms
can predict their redispatch mandate and the calculation of an underlying probability. In the
second step, for those power plants where the available day-ahead information is sufficient
for a good prediction sensitivity, the presence of arbitrage behavior is investigated.

4.4.1 Predicting the probability

How do plant operators perceive their probability of being mandated to redispatch? We
do not directly observe this private information. However, we can learn the relationship
between determinants, derived from figure 4.3 and displayed in table 4.2 and the outcome
from the data. To predict the probability of being redispatched given day-ahead informa-
tion, we use a Random Forest Classifier with customized resampling to deal with imbal-
anced data (Chen et al., 2004). The Random Forest algorithm averages many44 individual
decision trees that are fit on a bootstrapped subset of the data with varying feature avail-
ability45 to introduce randomness and therefore avoid overfitting (Probst et al., 2019). This
procedure has been shown to give good approximations of the Data Generating Process
(DGP) in a variety of settings (Athey et al., 2019).

Feature Description

Day-ahead wind speed prediction Separate feature for every region displayed in figure 4.1, in m/s
Day-ahead radiation prediction Separate feature for every region displayed in figure 4.1, in J/m2

Load Zonal-wide electricity demand in MWh
Time indicators Dummy variables for hour of the day, day of the week, year

Note: This table displays the features available to the Random Forest algo-
rithm. There are 95 subregions and hence 95 different features containing

wind speed and radiation respectively.

TABLE 4.2: Features used in Random Forest algorithm

We deem it suitable in our application for multiple reasons. First, it allows for a nonlinear
approximation of the DGP which is especially valuable in this context, where interactions
between the local weather conditions are likely and correlation among the variables is high.
Second, the bootstrapping procedure allows for the calculation of out-of-sample predictions.
This closely mimics the task that plant operators face, where they build their model only on
known information and use this to make predictions. The bootstrapping procedure implies
that about 2

3 of the data are used for fitting a tree, while the remaining observations are left
for model evaluation. Third, due to random feature selection, the performance of a Ran-
dom Forest is unaffected by many potentially irrelevant predictors, making it superior to
parametric approaches46. Fourth, the probability determining the prediction is easily acces-
sible. Fifth, the algorithm incorporates multiclass outcomes without requiring additional
user choices.

44In this application, every Random Forest consists of 2000 trees.
45At every split, only the square root of all features, determined randomly, is considered by the algorithm.
46When applying OLS without regularization, including the 95 regional windspeed variables, their squares

and interactions would require 9119 degrees of freedom, which exceeds the available observations in some
instances. The Lasso procedure would be a viable alternative, but also suffers from a high demand for degrees
of freedom.
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We employ the out-of-sample prediction probability for the classes of positive, negative
and no redispatch (probp, probn, prob0) to construct binary variables for expected negative
redispatch (expNeg) and positive redispatch (expPos), using a cutoff of 70 percent. In other
words, we assume that plant operators consider one of the three cases to take effect, once
its probability exceeds 70 percent. We thereby assume that plant operators need a relatively
high certainty in their expectation of redispatch to conduct arbitrage.

expPos =

{
1 if probp > 0.7
0 if probp ≤ 0.7

(4.5)

expNeg =

{
1 if probn > 0.7
0 if probn ≤ 0.7

(4.6)

Table 4.3 reports the results of the prediction algorithm. Sensitivity refers to the true
positive rate, while specificity indicates the true negative rate. It becomes clear that, based
on the available information, downward redispatch is generally easier to predict than re-
dispatch to increase generation. This is intuitive, as the pool of power plants available for
redispatch is significantly smaller north of the main grid divide47. If plant operators use a
similar prediction method, they can rely on positive redispatch predictions, as the algorithm
almost never predicts a false positive.

The results of the prediction algorithm are of heterogeneous nature and suggest that the
accurate prediction of redispatch requires a significant amount of information. For example,
redispatch depends on very detailed modeling of the flow of electricity on the different grid
levels. This was also found by Abdel-Khalek et al. (2019) in the context of European cross-
border transmission capacities and by Staudt et al. (2018) when predicting redispatch on
German power plants.

In this application, due to data availability, we use relatively coarse information on the
load flows. We implicitly assume that the relationship between aggregate load and individ-
ual load flows, conditional on the local weather circumstances and time indicators, remains
the same over the sample period. We model changes in the grid structure by including time
indicators. Using information about the redispatch mandates of other plants could improve
the performance of the model, as it gives insight about local load flows. We disregard this
information, as it is not available to firms at the time of their day-ahead production decision.
Using a model with autoregressive features was found to improve prediction performance
(Staudt et al., 2018), but this information is not available at the day-ahead stage as well.

The grid structure in Northern Germany appears to be less branched than in the south-
western demand centers (Bundesnetzagentur, 2017). This supports the point of severe grid
complexity limiting the prediction accuracy, as redispatch in the North can generally be
more reliably predicted in our sample. Assuming perfect predictability on the side of the
firms would imply that each firm runs its own load flow model with very detailed infor-
mation that leads to the same conclusions as the model employed by the grid operators in
terms of redispatch.

The redispatch market share48 αi is displayed in table 4.3 and calculated as the share of
power plants redispatch volume of total volume in a certain direction, given the power plant
was redispatched and was expecting this mandate (i.e. either expPos or expNeg takes the
value one). The calculation relies on the assumption that in principle only two redispatch
markets exist, namely one for upwards redispatch and one for downwards redispatch. Mo-
tivation for this assumption comes from the fact that electricity flows are not independent

47The majority of disregarded plants is located in Southern Germany. Furthermore, the remaining sample has
more plants with predominantly upwards redispatch.

48Note that redispatch capacities are not procured in a market process, we therefore use this term rather loosely.
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and one redispatch measure in a certain direction will alter the required redispatch from an-
other plant in the same direction, even if these two mandates are targeted towards different
bottlenecks. Our calculations provide a lower bound to this market share, as power plants
might have more detailed information on effective flow dependence. The degree to which
this underestimates the true αi might differ between different sections of the grid.

The virtual power plant VirtualNorthEast (17) exhibits the largest market share and a
relatively strong prediction accuracy, meeting two prerequisites for arbitrage.

Plantid
Predicted
redispatch
upwards

Predicted
redispatch

downwards

Observed
Redispatch
upwards

Observed
redispatch

downwards

Sensitivity
upwards

Specificity
upwards

Sensitivity
downwards

Specificity
downwards

αi
positive

αi
negative

1 0 0 577 82 0 100 0 100 – –
2 0 3 295 8 0 100 38 100 – 0.4
3 0 0 56 1022 0 100 0 100 – –
4 1 11 642 169 0 100 7 100 50.1 13.7
5 4 3 3733 21 0 100 10 100 22.3 12.6
6 0 65 559 105 0 100 62 100 – 3.7
7 29 11 493 799 6 100 1 100 40.3 6.3
8 1 0 3 1075 0 100 0 100 2.7 –
9 4 0 24 1037 17 100 0 100 4.9 –
10 0 0 425 13 0 100 0 100 – –
11 1 50 72 78 1 100 64 100 9.5 2.9
12 0 0 11 1542 0 100 0 100 – –
13 4 0 23 1112 17 100 0 100 11.9 –
14 0 5 3321 97 0 100 5 100 – 39.1
15 0 11 307 98 0 100 10 100 – 1.7
16 2 14 2156 233 0 100 6 100 12.4 31.8
17 0 8789 0 12652 – 100 68 99 – 80.4
18 1 92 597 278 0 100 33 100 6.7 6.2
19 125 0 716 0 17 100 – 100 26.9 –
20 0 47 0 165 – 100 28 100 – 8.7
21 1 0 23 221 4 100 0 100 16.1 –
22 0 0 3 958 0 100 0 100 – –
23 271 73 2163 810 12 100 9 100 20.8 27.9

Note: This table counts the predicted redispatch instances in both directions in
columns 2 and 3, the observed instances in columns 4 and 5 and the implied
sensitivity and specificity in percent. Sensitivity refers to the true positive
rate, while specificity represents the true negative rate of the predictions. The
plantid is defined in table 4.1. A dash (–) indicates division by zero. The αi
represent the average market share in the market for positive and negative
redispatch respectively, conditional on being redispatched and expecting this

mandate.

TABLE 4.3: Results of probability prediction

4.4.2 Arbitraging between day-ahead and redispatch

The prediction model shows that for some plants redispatch measures do not seem to be
well predictable. This limits their ability to engage in intertemporal arbitrage, assuming this
behavior is profitable. The profitability of adjusting day-ahead supply will be investigated
in this subsection. To this end, we run regressions of output on the probability dummy
variables and other explanatory variables, as depicted in figure 4.3.

Power plants are routinely shut down. The potential reasons are manifold, of which
some are observable and some are not. The observable explanations include periods of
maintenance and technical outages. Ramping constraints, which are not directly measured
and can only be indirectly approximated, lead to marginally unprofitable generation and to
hours where production would have been marginally profitable where no actual generation
is observed. These aspects explain periods with no variation in the dependent variable,
implying issues with the empirical analysis.
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Correct inference based on an econometric model relies, among others, on the assump-
tion of no serial correlation in the error term. This assumption is frequently violated and
requires adjusting either the specified model, the computed standard errors or a combina-
tion thereof. Recurrent periods of zero output introduce significant autocorrelation in the
error term, especially if the data is measured on a ratio scale, i.e. it has a meaningful lower
bound. An empirical model never perfectly fits the data and so for those periods the error
term will exhibit strong serial correlation that can hardly be modeled.

Henceforth we restrict the analysis to those observations with positive realized output.
Power plants with positive arbitrage ai will show a positive scheduled generation value in
the data. Those firms could be mandated to stop the generation of electricity completely,
i.e. realized output will be zero. Our constructed scheduled output x̂i will be perfectly
serially correlated during those periods. We loose on average 0.35 percent of the data by
not considering redispatch interventions corresponding to zero realized output and hence
do not expect a significant loss of information from this sample restriction49.

Variable Description Mean Min Max SD

output Thermal plant output MWh 1341.901 0.010 10732.18 2023.822
expPos =1 if probability of positive redispatch > 70% 0.042 0 1 0.199
expNeg =1 if probability of negative redispatch > 70% 0.014 0 1 0.117
redispatch Redispatch GWh -0.025 -6.092 1.590 0.240
genWind Wind generation GWh 9.315 0.135 42.612 7.591
genSolar Solar generation GWh 3.915 0 28.665 6.043
load Electricity demand GWh 56.969 31.455 79.063 9.945
outcap Capacity unavailable for production MWh 30.278 0 1060 122.833
eua Price for EUA EUR/tCO2 6.623 3.870 15.070 1.939
coal Price for coal EUR/MWh 68.665 43.400 96.650 16.426
gas Price for gas EUR/MWh 17.483 10.280 59.493 3.527
price Day-ahead electricity price EUR/MWh 34.494 -130.090 163.520 14.655

Note: The variables output, redispatch and the two dummy variables expPos
and expNeg take on different values for every power plant. The remaining
variables are the same of each panel unit. SD refers to the standard deviation.

TABLE 4.4: Summary statistics

The serial correlation of both the dependent and independent variables has another im-
plication for the empirical analysis. A serially correlated explanatory variable X will be
correlated with the error term U from the regression of Y on X, if it has an influence on Y
and the current value of Y also depends on its previous value. Including a lagged term of
Y in the model is sufficient to alleviate this problem. The explanatory variables will now
be correlated with the lagged term, which does not introduce a bias in the coefficient of X,
the explanatory variable50. This strategy requires an error term that is white noise to es-
timate consistent effects. In other words, the model has to be dynamically complete. To
reduce the serial correlation that has to be modeled, all variables are transformed to their
first differences (see table C.2).

Equation (4.8) is estimated by OLS, where all variables are in their first differences. The
number of lagged terms ni, required to make the error term white noise, is plant-specific. To
deal with remaining concerns about endogeneity between the plant-level scheduled output
and the aggregate day-ahead price, we estimate equation (4.9), where direct measures of

49Including those observations does not significantly change the estimated coefficients in the following analysis.
However, the serial correlation increases the complexity of the regression models.

50Of course, the efficiency of the estimator is negatively affected.
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market fundamentals are used as control variables. Estimates of the coefficients of interest
β1,i, β2,i are presented in panel A and for γ1,i, γ2,i in panel B of table 4.5.

We use the day-ahead scheduled output as the dependent variable in our regression
analysis.

schedoutputit = β0,i + β1,iexpPosi,t + β2,iexpNegi,t + β3,i pricet + β4,ieuat + (4.7)

β5,icoalt + β6,igast + β7,ioutcapi,t +
ni

∑
j=1

β7+j,ischedoutputi,t−j + ui,t

schedoutputit = γ0,i + γ1,iexpPosi,t + γ2,iexpNegi,t + (4.8)
γ3,igenWindt + γ4,igenSolart + γ5,iloadt + γ6,ioutcapi,t +

γ7,igast + γ8,ieuat + γ9,icoalt +
ni

∑
j=1

γ9+j,ischedoutputi,t−j + vi,t

In table 4.5 we report estimated parameters of those plants which we consider to have
sufficient prediction performance. We base this on sensitivity and choose a value of 20 as
the cutoff51. The results for all power plants are displayed in the appendix, while qualitative
results are not altered by the remaining power plants.

2 6 11 17 18 19 20

A: Market price

expPos – – -9.37 – -2.85 6.45 –
– – [-42.19 , 23.45] – [-78.06 , 72.36] [-31.82 , 44.72] –

expNeg 3.33 -9.67 -0.88 47.50 -3.41 – -56.52
[-20.61 , 27.27] [-40.10 , 20.76] [-56.16 , 54.40] [11.39 , 83.61] [-34.08 , 27.27] – [-138.86 , 25.83]

B: Market fundamentals

expPos – – -4.43 – -4.10 -1.73 –
– – [-132.69 , 123.82] – [-15.97 , 7.76] [-36.64 , 33.18] –

expNeg 6.78 -1.26 1.10 58.34 -0.24 – -56.59
[-22.15 , 35.71] [-35.90 , 33.38] [-44.11 , 46.31] [22.79 , 93.90] [-27.17 , 26.69] – [-139.13 , 25.94]

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It is
therefore omitted from the regression. Panel A reports selected estimates for
equation (4.8) and panel B for equation (4.9). The full results for all power
plants are presented in tables D.4, D.5, D.6, D.7 for equation (4.8) and in tables
D.8, D.9, D.10, D.11 for equation (4.9). All variables are first-difference trans-

formed before estimation.

TABLE 4.5: Effects of expected redispatch on scheduled output

In panel A, only the coefficient of expNeg for VirtualNorthEast (plantid 17) is statisti-
cally significant. A different set of control variables in panel B strengthens this finding. We
therefore only consider VirtualNorthEast to have a statistically significant effect in this case.
The presented regression results show that the first part of hypothesis 1, which is that the
predicted likelihood of redispatch affects day-ahead output is met for the aggregated power
plant VirtualNorthEast.

51Note that we also include power plant 19 in our selection, as it shows a statistically signifant effect in the initial
regression.
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4.4.3 Influence on realized output

The second part of hypothesis 1 states that realized output of power plants should not
change in response to a reliable prediction of redispatch. Any change in scheduled output
due to arbitrage activities will, if successful, (to a large extent) be offset by the redispatch
mandate. To test this empirically, we estimate the following two equations and report the
results for the same subset of plants in table 4.6.

outputit = δ0,i + δ1,iexpPosi,t + δ2,iexpNegi,t + δ3,i pricet + δ4,ieuat + (4.9)

δ5,icoalt + δ6,igast + δ7,ioutcapi,t +
ni

∑
j=1

δ7+j,ioutputi,t−j + εi,t

outputit = η0,i + η1,iexpPosi,t + η2,iexpNegi,t + (4.10)
η3,igenWindt + η4,igenSolart + η5,iloadt + η6,ioutcapi,t +

η7,igast + η8,ieuat + η9,icoalt +
ni

∑
j=1

η9+j,ioutputit−j+ 3i,t

The coefficients δ1,i, δ2,i and η1,i, η2,i measure the impact of arbitrage opportunities on
realized output xi, mediated by its impact on redispatch ri. If αi approaches one, arbitrage
activities will have an increasing impact on plants’ observed redispatch, as plant operators
scheduled output has an increasing impact on their individual redispatch magnitude (recall
ri = r̄i − αiai). In that case we do not expect a change in xi in response to arbitrage activities,
that is, statistically insignificant estimates of δ1,i, δ2,i, η1,i and η2,i strengthen our identification
strategy.

Estimates in table 4.6 show that the realized output does not react to changes in redis-
patch expectations in both specifications. This result is in line with our hypothesis. This
indicates that arbitrage might occur for this specific set of power plants despite the cost-
based approach that aims at making plant operators indifferent between market stages.

2 6 11 17 18 19 20

A: Market price

expPos – – -9.40 – -2.78 4.60 –
– – [-42.30 , 23.49] – [-76.61 , 71.04] [-14.81 , 24.00] –

expNeg 2.95 -14.41 -1.79 -14.17 0.84 – -52.20
[-25.40 , 31.31] [-39.58 , 10.75] [-57.17 , 53.58] [-40.05 , 11.71] [-28.25 , 29.94] – [-131.72 , 27.31]

B: Market fundamentals

expPos – – -4.48 – -4.05 -4.90 –
– – [-132.60 , 123.64] – [-15.48 , 7.39] [-24.26 , 14.47] –

expNeg 6.35 -8.99 0.17 -1.45 2.93 – -52.30
[-26.93 , 39.63] [-36.45 , 18.46] [-45.19 , 45.52] [-26.25 , 23.35] [-23.42 , 29.28] – [-132.46 , 27.87]

Note: Column titles refer to plantid from table 4.1. 99 percent confidence
intervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It is
therefore omitted from the regression. Panel A reports selected estimates for
equation (4.10) and panel B for equation (4.11). The full results for all power
plants are presented in tables D.12, D.13, D.14, D.15 for equation (4.10) and
in tables D.16, D.17, D.18, D.19 for equation (4.11). All variables are first-

difference transformed before estimation.

TABLE 4.6: Effects of expected redispatch on realized output
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4.4.4 Robustness of estimated effects

The presented estimates support the presence of arbitrage behavior of our constructed power
plant VirtualNorthEast. In the following, we check the robustness of our findings to different
regression model specifications and the inclusion of additional control variables. In doing
so, we restrict our attention to the same subset of power plants.

Correlation of regional information with r̄i

It is possible that the results are driven by a correlation between observed redispatch (ri
under H1 of arbitrage and r̄i under H0 of no arbitrage) and regional information captured by
the two dummy variables expNeg and expPos that is not otherwise captured in the model.

If there is positive correlation between r̄i and expNeg, the coefficient should have a posi-
tive sign when having scheduled output as the dependent variable. The correlation between
redispatch magnitude and expNeg is statistically different from zero for VirtualNorthEast
(table C.3). In a regression analysis, this correlation does not distort the estimate from its true
value if all variables are included in the regression specification, thereby controlling for all
possible differences between observations with predicted redispatch and those observations
where this was not the case.

However, if the model specification estimated does not fully match the true data gen-
erating process, then, as one of the redispatch prediction dummies switches on, scheduled
output could change simply due to unmodeled correlation between regional variables and
baseline output (x̄i), all else equal. If the true model is nonlinear but we specify a linear
model, the estimated coefficients will not be equal to the true parameter.

We include second and third degree polynomials of genWind, genSolar and load in the
regression to check for the presence of this effect. In addition, we include dummy variables
for hour of the day and month within the year.

schedoutputit = ζ0,i + ζ1,iexpPosit + ζ2,iexpNegit + (4.11)
ζ3,igenWindt + ζ4,igenSolart + ζ5,iloadt + ζ6,ioutcapit +

ζ7,igast + ζ8,ieuat + ζ9,icoalt + ζ10,igenWind2t +

ζ11,iload2t + ζ12,igenSolar2t + ζ13,igenWind3t +

ζ14,iload3t + ζ15,igenSolar3t +
ni

∑
j=1

ζ15+j,ischedoutputit−j + θD′ + ιit

outputit = ψ0,i + ψ1,iexpPosit + ψ2,iexpNegit + (4.12)
ψ3,igenWindt + ψ4,igenSolart + ψ5,iloadt + ψ6,ioutcapit +

ψ7,igast + ψ8,ieuat + ψ9,icoalt + ψ10,igenWind2t +

ψ11,iload2t + ψ12,igenSolar2t + ψ13,igenWind3t +

ψ14,iload3t + ψ15,igenSolar3t +
ni

∑
j=1

ψ15+j,ioutputit−j + ΨD′ + ωit

where D′ represents dummy variables indicating hour of the day and month of the year.
Estimates for the parameters of interest (ζ1,i and ζ2,i) in equation (4.12) are presented in
panel A of table 4.7. The estimated arbitrage effects are relatively robust to changes in the
model specification. Additionally including the variables with regional day-ahead weather
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information, initially used to predict the likelihood of grid congestion, does not change the
qualitative results as well. Panel B of table 4.7 reports estimates of ψ1,i and ψ2,i. The notable
result is that the relationship between realized output and expected downward redispatch
from table 4.6 is again statistically insignificant, strengthening our hypothesis. This robust-
ness check provides further support to arbitrage at VirtualNorthEast.

2 6 11 17 18 19 20

A: Scheduled output

expNeg 5.48 3.61 -0.21 53.44 0.28 – -56.25
[-25.60 , 36.56] [-30.14 , 37.36] [-45.76 , 45.33] [17.96 , 88.91] [-26.20 , 26.77] [-138.48 , 25.98]

B: Realized output

expNeg 4.97 -4.16 -0.34 -5.71 3.42 – -51.96
[-30.29 , 40.23] [-29.19 , 20.88] [-45.81 , 45.13] [-30.46 , 19.04] [-22.49 , 29.33] [-131.94 , 28.03]

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It is
therefore omitted from the regression. Panel A reports selected estimates for
equation (4.12) and panel B for equation (4.13) The full results for the depicted
power plants are presented in table D.20 for equation (4.12) and in table D.21
for equation (4.13). All variables are first-difference transformed before esti-

mation.

TABLE 4.7: Effects of expected redispatch on scheduled and realized output
including polynomials

Including physical cross-border flows

If the coefficients of the dummy variables expPos and expNeg pick up some variation that
explains redispatch, but is not included in the regression specification via the wholesale day-
ahead price or the market fundamentals, the estimates will be biased. One such candidate
is the realized local load, which is not observed.

Cross-border physical flows can potentially work as proxy variables. The physical flow
varies with the commercial exchange between two respective price zones, but also as a re-
sult of prevailing local load conditions on either side of the interconnector. For example,
internal grid congestion in Germany leads to increased physical flows over the interconnec-
tor between Germany and Poland, unrelated to commercial exchanges (Puka and Szulecki,
2014). It seems safe to assume a relevant correlation between physical interconnector flows
and local load conditions. We observe these flows on an hourly basis on the interconnec-
tors of Germany with Austria, Czech Republic, Poland, Denmark, Netherlands, France and
Switzerland and estimate the following equations for our subset of relevant power plants.
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schedoutputit = θ0,i + θ1,iexpPosi,t + θ2,iexpNegi,t + (4.13)
θ3,i price + θ4,ieuat + θ5,icoalt + θ6,igast + θ7,ioutcapi,t + θ8,i f lowATDEt +

θ9,i f lowCZDEt + θ10,i f lowPLDEt + θ11,i f lowDKDEt +

θ12,i f lowNLDEt + θ13,i f lowFRDEt + θ14,i f lowCHDEt +
ni

∑
j=1

β14+j,ischedoutputi,t−j + ξit

schedoutputit = κ0,i + κ1,iexpPosi,t + κ2,iexpNegi,t + (4.14)
κ3,igenWindt + κ4,igenSolart + κ5,iloadt + κ6,ioutcapi,t +

κ7,igast + κ8,ieuat + κ9,icoalt + κ10,i f lowATDEt +

κ11,i f lowCZDEt + κ12,i f lowPLDEt + κ13,i f lowDKDEt +

κ14,i f lowNLDEt + κ15,i f lowFRDEt + κ16,i f lowCHDEt +
ni

∑
j=1

κ16+j,ischedoutputi,t−j + φit

The estimates of interest remain virtually unchanged when including these proxy vari-
ables in the regression specification. These results provide further support to our finding of
arbitrage behavior in VirtualNorthEast.

2 6 11 17 18 19 20

A: Market price

expPos – – – – 4.66 5.90 –
– – – – [-68.47 , 77.78] [-32.25 , 44.05] –

expNeg 2.27 -9.42 0.80 47.35 -0.66 – -59.13
[-21.51 , 26.05] [-41.27 , 22.43] [-52.77 , 54.37] [11.29 , 83.40] [-30.05 , 28.74] – [-142.07 , 23.81]

B: Market fundamentals

expPos – – – – 1.76 4.45 –
– – – – [-13.88 , 17.40] [-31.80 , 40.69] –

expNeg 6.64 -7.16 -2.59 59.74 0.47 – -60.39
[-26.78 , 40.07] [-37.85 , 23.53] [-49.06 , 43.88] [24.33 , 95.15] [-24.65 , 25.59] – [-144.58 , 23.79]

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It is
therefore omitted from the regression. Panel A reports selected estimates for
equation (4.14) and panel B for equation (4.15). The full results for all power
plants are presented in table D.22 for equation (4.14) and in table D.23 for
equation (4.15). All variables are first-difference transformed before estima-

tion.

TABLE 4.8: Effects of expected redispatch on scheduled and realized output
including local load proxy variables

Overestimating scheduled output

The redispatch data source Netztransparenz (2020) periodically reports multiple redispatch
mandates issued by the same grid operator for a certain power plant at a given hour. The
bulk of these events occur at VirtualNorthEast and affects a relevant share of observations
for this power plant (table 4.9).
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2 6 11 17 18 19 20

Overlapping observations 29 27 0 3338 13 16 92
Percent of redispatch observations 9.6 4.1 0 26.4 1.5 2.3 55.8

Note: Column titles refer to plantid from table 4.1. The table reports the num-
ber observations per power plant where multiple redispatch mandates are ob-

served and its share of total redispatch instances.

TABLE 4.9: Overlapping observations per power plant

The data does not allow us to distinguish whether one mandate replaces the other as the
grid operator receives new information and adjusts its redispatch accordingly or whether
the actual redispatch conducted at this power plant is the sum of the two data entries. This
could be the case when the grid operator adjusts its redispatch taking into account the pre-
viously issued mandate. In the analysis above, we use the sum of all reported redispatch
volumes, assuming the latter procedure. However, if mandates don’t supplement but re-
place each other, our recovered scheduled output is systematically double counting as the
redispatch volume is above the true value. This could bias our regression results.

As a robustness check, we exclude all redispatch observations with multiple data en-
tries. We again estimate equations (4.8) and (4.9) and report the results in table 4.10. We
observe that the qualitative finding of arbitrage in VirtualNorthEast holds up to this ro-
bustness check, with the estimated coefficient similar in magnitude. This indicates that the
previous findings are not driven by an ambiguity in the data generation process.

2 6 11 17 18 19 20

A: Market price

expPos – – -1.09 – -2.83 6.42 –
– – [-29.33 - 27.15] – [-77.57 - 71.90] [-31.88 - 44.71] –

expNeg 3.35 -9.57 -0.47 51.50 -3.40 – -121.95
[-20.75 - 27.45] [-39.93 - 20.80] [-55.42 - 54.49] [13.28 - 89.73] [-34.09 - 27.28] – [-299.68 - 55.78]

B: Market fundamentals

expPos – – -0.47 – -4.09 -1.76 –
– – [-59.86 - 58.93] – [-15.77 - 7.59] [-36.68 - 33.16] –

expNeg 6.79 -5.43 0.61 61.94 -0.25 – -120.10
[-22.28 - 35.86] [-36.17 - 25.31] [-44.75 - 45.96] [24.48 - 99.39] [-27.18 - 26.68] – [-299.19 - 58.98]

Note: Column titles refer to plantid from table 4.1. 99 percent confidence
intervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Panel A reports selected estimates
for equation (4.8) and panel B for equation (4.9), disregarding overlapping
redispatch observations. The full results for all power plants are presented in
table D.4 for equation (4.8) and in table D.8 for equation (4.9). All variables

are first-difference transformed before estimation.

TABLE 4.10: Effects of expected redispatch on scheduled output disregarding
overlapping observations

4.4.5 Discussion

Above, we identify arbitrage behavior for a cluster of power located in close proximity. Ta-
ble 4.11 reveals that most of the power plants of this virtual power plant are operated by
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LEAG. The LEAG plants are rarely redispatched on their own, suggesting that grid opera-
tors perceive this as closely-tied group of power plants. A common ownership structure in
addition facilitates coordinating arbitrage behavior, thus supporting our findings.

Power plant Owner Operator Share individual measure Fuel

Jänschwalde LEAG LEAG 4 % Lignite
Schkopau Uniper & Saale Energie* Uniper 4 % Lignite
Moorburg Vattenfall Vattenfall 17 % Coal
Boxberg LEAG LEAG 1 % Lignite
Rostock EnBW & Rheinenergie EnBW & Rheinenergie 11 % Coal
Schwarze Pumpe LEAG LEAG 0.4 % Lignite
Lippendorf LEAG & EnBW LEAG 6 % Lignite

Note: The column “share individual measure” reports the share of redispatch
instances that were executed by that plant individually instead of jointly by
a group of plants, based on hourly data. *Note that Saale Energie and LEAG

share the same parent company, Czech Republic based EPH.

TABLE 4.11: Members of VirtualNorthEast

The median redispatch volume observed at VirtualNorthEast, given that it was success-
fully predicted, was -2664 MWh. We estimate arbitrage effects around 50 MWh.

Additional arbitrage, while profitable, might be limited by technical constraints in cy-
cling the power plant, which are particularly pronounced for lignite power plants that dom-
inate VirtualNorthEast group (van den Bergh and Delarue, 2015). Note that most lignite
plants within VirtualNorthEast belong to the LEAG cluster while the more flexible hard
coal plants have a different ownership.

These constraints could limit the production increase that is possible between periods
without predicted redispatch and arbitrage and those instances where the plant engages
in arbitrage. The fact that, at least from the perspective of the grid operator, the plants in
VirtualNorthEast form a cluster may suggest that the short-term flexibility of a single power
plant does not suffice to resolve the bottleneck, which supports the argument that output
inertia limits the extent of arbitrage activities in VirtualNorthEast. The individual arbitrage
potential could also be curbed by regulation preventing the day-ahead scheduled output to
exceed the nameplate capacity.

4.5 Conclusion

In this paper, we develop a method of identifying arbitrage behavior in cost-based redis-
patch and empirically test it among German power plants. To that end, we theoretically
derive the necessary conditions for such behavior at the plant level. Reliable forecasts of a
redispatch mandate and a high grid sensitivity on the bottleneck are crucial. The latter is the
ability to affect the magnitude of the individual redispatch mandate with the chosen level
of day-ahead scheduled output.

We find that for most plants in our sample, redispatch cannot be predicted with sufficient
reliability given detailed data about local wind and radiation forecasts, while a few power
plants exist where a redispatch mandate can frequently be predicted. To overcome data lim-
itations, we compute the sensitivity for redispatch in one aggregate for upwards redispatch
and one for downwards redispatch. As before, notable heterogeneity among power plants
prevails.

For those power plants where the preconditions for arbitrage, reliable forecasts and high
bottleneck sensitivity, are met, we do find evidence for arbitrage behavior for a cluster of
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power plants located in close proximity and operated by the same company. The size of this
estimated arbitrage is small compared to the median redispatch volume conducted at this
cluster. The technical characteristics of the power plants involved and additional regulatory
constraints might have prevented economically meaningful arbitrage levels in this case.
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C Appendix to chapter 4

C.1 Tables

Plant Redispatch
observations Plant Redispatch

observations

Boxberg 10590 Muenchen Sued GT 62 8
Emsland 659 Neurath 1559
Ensdorf 303 Niederaußem 1139
Farge 1080 Reservekraftwerk Irsching 3 402
Gersteinwerk 119 Reservekraftwerk Irsching 4 135
Hamm Uentrop 811 Reservekraftwerk Irsching 5 423
Heizkraftwerk Altbach/Deizisau 3167 Reservekraftwerk Staudinger 4 798
Heizkraftwerk Heilbronn 3834 Rheinhafen-Dampfkraftwerk Karlsruhe 3487
Herne 675 Rostock 2897
Heyden 1293 Schkopau 6069
Huntorf 0 Scholven 405
Ibbenbüren 168 Schwarze Pumpe 9634
Jänschwalde 11604 Staudinger 5 2389
Niehl 29 Voerde 191
Kiel 1088 Völklingen HKW 0
Knapsack 1068 Völklingen MKW 0
Kraftwerk Mainz Wiesbaden 488 Walsum 883
Lausward 0 Weiher 719
Lippendorf 8747 Weisweiler 165

Westfalen 244
Luenen 150 Wilhelmshaven (Uniper) 961
Moorburg 2670 Wolfsburg West 1 3
Muenchen Sued GT 2 5 Wolfsburg West 2 3
Muenchen Sued GT 3 12 Zolling 5 3030

Note: The table reports all plants for which detailed information on location
and output is available. The subset considered in this paper is highlighted
in bold. Plants in bold and italics are aggregated to form VirtualNorthEast.
Reserve power plants were not considered. The threshold was set at 200 ob-
servations, with Altbach/Deizisau, Luenen and Weisweiler being the notable
exceptions. Altbach/Deizisau was transitioned to the grid reserve over the

sample period, meaning it does not actively participate in the market.

TABLE C.1: Selection process of plants
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Variable Level First difference

output 0.998 0.353
redispatch 0.960 0.003
expPos 0.645 -0.409
expNeg 0.921 -0.274
genWind 0.994 0.774
genSolar 0.952 0.873
load 0.943 0.760
outcap 0.954 -0.036
gas 0.998 -0.000
coal 1.000 -0.000
eua 1.000 -0.000

Note: First-order autocorrelation coefficients before and after taking first dif-
ferences. For the variables output, redispatch, outcap, expPos and expNeg

averages over all plants are displayed.

TABLE C.2: Autocorrelation coefficients

Correlation with expNeg Correlation with expPos
Plantid genWind genSolar load genWind genSolar load

1 -0.018 0.005 -0.020 – – –
2 0.045 0.030 0.019 – – –
3 – – – 0.046 -0.006 -0.059
4 0.003 -0.004 0.005 – – –
5 -0.021 0.013 0.048 0.248 -0.025 -0.067
6 0.025 -0.008 0.025 0.078 -0.003 -0.013
7 -0.041 -0.024 0.067 – – –
8 0.072 0.003 0.099 0.040 0.070 -0.055
9 – – – – – –
10 -0.010 0.027 0.008 – – –
11 -0.035 -0.020 0.063 -0.007 -0.008 -0.003
12 -0.008 0.001 0.012 0.012 0.010 0.008
13 – – – 0.047 -0.005 0.005
14 -0.010 -0.005 0.025 0.017 0.011 0.008
15 0.071 -0.016 0.012 – – –
16 -0.019 0.033 0.004 0.116 -0.022 -0.006
17 0.498 0.017 0.251 – – –
18 -0.036 -0.035 0.032 0.066 0.004 0.029
19 – – – 0.425 -0.050 0.028
20 -0.014 -0.017 0.041 – – –
21 – – – -0.004 0.031 -0.029
22 – – – – – –
23 -0.071 0.196 0.059 0.459 -0.066 0.025

Note: Correlation of the two dummy variables expNeg and expPos with the
aggregate variables are displayed. A dash (–) indicates no sufficient variation

to compute a meaningful figure.

TABLE C.3: Plantwise correlation among a subset of variables
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D Results for all power plants in the sample

D.1 Scheduled output as dependent variable

(1) (2) (3) (4) (5) (6)

expPos – – – 43.53 55.56 –
– – – [-33.56 , 120.61] [-44.13 , 155.24] –

expNeg – 3.33 – 3.73 -30.91 -9.67
– [-20.61 , 27.27] – [-36.46 , 43.92] [-135.60 , 73.79] [-40.10 , 20.76]

price 5.63 0.94 1.34 2.93 4.32 1.37
[4.33 , 6.94] [0.80 , 1.08] [1.14 , 1.55] [2.13 , 3.72] [3.83 , 4.82] [1.19 , 1.55]

eua 38.73 -2.94 -0.11 -90.38 -29.04 -6.60
[-86.74 , 164.20] [-13.40 , 7.51] [-34.71 , 34.49] [-401.38 , 220.62] [-134.46 , 76.37] [-20.26 , 7.05]

coal -2.63 -0.52 -3.18 4.03 2.63 -1.14
[-23.87 , 18.62] [-2.89 , 1.85] [-12.44 , 6.09] [-66.83 , 74.89] [-37.19 , 42.45] [-4.42 , 2.15]

gas -7.93 -2.45 0.87 2.84 -5.94 -1.40
[-81.94 , 66.08] [-9.08 , 4.17] [-5.36 , 7.10] [-113.48 , 119.16] [-15.79 , 3.92] [-6.47 , 3.68]

outcap -0.07 -0.05 -0.07 -0.27 -0.04 -0.03
[-0.22 , 0.09] [-0.19 , 0.08] [-0.21 , 0.08] [-0.76 , 0.22] [-0.13 , 0.04] [-0.08 , 0.03]

Constant -10.73 -0.19 -5.58 -20.91 -3.62 -0.52
[-15.40 , -6.07] [-0.62 , 0.25] [-6.59 , -4.56] [-26.44 , -15.38] [-5.79 , -1.45] [-1.15 , 0.12]

Observations 5,172 19,455 14,495 3,988 14,677 19,661

CH AR(1) 1.640 1.650 1.032 2.408 0.041 0.704
Lags 40 30 1 5 1 30

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.8). All variables are first-difference transformed before esti-
mation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.4: Full regression results of scheduled output on price I
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(7) (8) (9) (10) (11) (12)

expPos -55.62 -8.29 – – -9.37 –
[-162.56 , 51.32] [-57.55 , 40.98] – – [-42.19 , 23.45] –

expNeg 12.41 – – – -0.88 –
[-82.45 , 107.26] – – – [-56.16 , 54.40] –

price 4.42 2.01 4.71 1.61 2.85 3.31
[3.84 , 5.00] [1.84 , 2.17] [3.76 , 5.66] [1.32 , 1.90] [2.58 , 3.12] [2.82 , 3.80]

eua -27.61 4.45 92.41 -23.89 11.05 -52.20
[-86.62 , 31.40] [-8.08 , 16.98] [-183.26 , 368.09] [-68.63 , 20.85] [-16.58 , 38.68] [-119.69 , 15.28]

coal 0.16 1.54 10.22 4.46 -2.94 -1.23
[-15.36 , 15.68] [-1.86 , 4.94] [-63.04 , 83.47] [-5.53 , 14.45] [-9.01 , 3.13] [-16.77 , 14.30]

gas 0.98 0.77 -22.65 6.21 -1.40 -3.22
[-6.72 , 8.67] [-1.96 , 3.51] [-206.76 , 161.47] [-11.72 , 24.15] [-6.34 , 3.55] [-18.21 , 11.77]

outcap 0.02 -0.02 -0.10 0.08 -0.02 -0.02
[-0.07 , 0.12] [-0.09 , 0.05] [-0.30 , 0.11] [-0.14 , 0.29] [-0.08 , 0.04] [-0.10 , 0.05]

Constant -3.95 -0.45 -2.09 -4.77 -0.16 -0.14
[-6.08 , -1.82] [-1.08 , 0.18] [-6.42 , 2.24] [-6.15 , -3.39] [-1.12 , 0.79] [-1.87 , 1.59]

Observations 14,287 19,517 7,020 11,222 27,057 28,965

CH AR(1) 1.393 2.335 1.146 2.622 0.997 0.716
Lags 10 1 1 1 1 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.8). All variables are first-difference transformed before esti-
mation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.5: Full regression results of scheduled output on price II
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(13) (14) (15) (16) (17) (18)

expPos -0.22 – – 1.85 – -2.85
[-120.09 , 119.65] – – [-31.31 , 35.00] – [-78.06 , 72.36]

expNeg – -39.67 -32.29 -31.28 47.50 -3.41
– [-117.00 , 37.66] [-87.98 , 23.39] [-135.01 , 72.46] [11.39 , 83.61] [-34.08 , 27.27]

price 3.72 3.25 1.74 1.98 14.40 3.38
[3.25 , 4.20] [2.85 , 3.65] [1.54 , 1.95] [1.73 , 2.24] [12.60 , 16.20] [3.07 , 3.69]

eua -21.86 -2.92 4.89 16.33 -72.54 -5.77
[-65.88 , 22.15] [-70.89 , 65.05] [-11.01 , 20.80] [-8.88 , 41.54] [-368.24 , 223.16] [-39.31 , 27.76]

coal -0.71 -15.30 -0.73 -5.47 -6.72 0.92
[-11.66 , 10.24] [-33.81 , 3.20] [-4.59 , 3.13] [-14.64 , 3.71] [-82.48 , 69.04] [-10.82 , 12.67]

gas -2.31 0.82 0.75 0.20 37.81 0.04
[-10.10 , 5.49] [-6.50 , 8.15] [-3.01 , 4.52] [-3.54 , 3.94] [-10.59 , 86.20] [-4.25 , 4.32]

outcap -0.01 -0.00 -0.05 -0.10 0.02 0.01
[-0.06 , 0.04] [-0.05 , 0.05] [-0.11 , 0.01] [-0.28 , 0.08] [-0.10 , 0.13] [-0.03 , 0.05]

Constant -0.10 -1.88 -0.10 -2.00 -0.32 -0.19
[-1.66 , 1.46] [-3.55 , -0.21] [-0.60 , 0.40] [-2.99 , -1.00] [-5.98 , 5.34] [-1.20 , 0.83]

Observations 28,979 18,935 28,506 16,551 29,005 25,647

CH AR(1) 0.747 0.050 2.371 0.967 0.024 0.030
Lags 2 1 3 30 1 1

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.8). All variables are first-difference transformed before esti-
mation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.6: Full regression results of scheduled output on price III
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(19) (20) (21) (22) (23)

expPos 6.45 – – – -2.51
[-31.82 , 44.72] – – – [-31.28 , 26.25]

expNeg – -56.52 – – -21.33
– [-138.86 , 25.83] – – [-57.68 , 15.03]

price 4.08 1.83 2.84 3.59 2.91
[3.45 , 4.70] [1.52 , 2.14] [2.49 , 3.19] [3.17 , 4.02] [2.58 , 3.24]

eua -126.89 9.58 -15.97 -9.27 -20.58
[-264.55 , 10.77] [-33.07 , 52.22] [-57.16 , 25.22] [-76.76 , 58.23] [-71.26 , 30.11]

coal -13.53 -2.09 -1.86 -7.98 1.09
[-42.65 , 15.58] [-9.94 , 5.75] [-13.23 , 9.52] [-22.74 , 6.78] [-10.35 , 12.53]

gas -16.07 -1.96 -1.13 -7.83 4.97
[-47.07 , 14.92] [-13.82 , 9.89] [-4.77 , 2.51] [-34.05 , 18.39] [-8.75 , 18.69]

outcap -0.07 0.02 -0.12 -0.01 -0.03
[-0.19 , 0.06] [-0.06 , 0.11] [-0.39 , 0.15] [-0.10 , 0.08] [-0.15 , 0.09]

Constant -3.45 -0.06 -1.62 -2.75 -4.65
[-5.51 , -1.39] [-1.18 , 1.05] [-3.15 , -0.10] [-4.32 , -1.17] [-6.05 , -3.26]

Observations 7,110 28,979 18,608 14,691 17,222

CH AR(1) 1.124 0.528 1.408 1.288 0.737
Lags 1 2 10 3 1

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.8). All variables are first-difference transformed before esti-
mation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.7: Full regression results of scheduled output on price IV
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(1) (2) (3) (4) (5) (6)

expPos – – – -19.75 28.20 –
– – – [-103.95 , 64.45] [-28.88 , 85.28] –

expNeg – 6.78 – 2.53 -12.32 -1.26
– [-22.15 , 35.71] – [-59.52 , 64.57] [-72.42 , 47.78] [-35.90 , 33.38]

genWind -30.69 -2.63 -5.46 -6.87 -16.53 -6.59
[-35.39 , -26.00] [-3.19 , -2.08] [-6.94 , -3.99] [-16.07 , 2.32] [-19.68 , -13.38] [-7.38 , -5.79]

genSolar -21.71 -2.59 -3.19 -9.51 -9.63 -4.55
[-23.32 , -20.11] [-2.90 , -2.29] [-3.65 , -2.74] [-12.81 , -6.21] [-10.77 , -8.48] [-4.93 , -4.17]

load 33.04 3.16 4.54 19.62 15.11 7.36
[31.28 , 34.81] [2.91 , 3.41] [4.09 , 4.99] [16.49 , 22.75] [14.08 , 16.13] [7.03 , 7.69]

eua 78.33 -4.12 -1.12 -71.48 -34.38 -4.63
[-46.32 , 202.98] [-13.82 , 5.59] [-35.78 , 33.55] [-395.95 , 252.98] [-137.83 , 69.08] [-17.50 , 8.24]

coal -0.57 -0.24 -3.12 7.58 2.63 -0.78
[-17.48 , 16.34] [-2.48 , 2.01] [-12.59 , 6.35] [-70.56 , 85.72] [-36.43 , 41.69] [-4.00 , 2.43]

gas 8.69 -2.97 0.96 2.63 -6.16 -0.93
[-24.64 , 42.03] [-9.36 , 3.42] [-5.60 , 7.52] [-130.34 , 135.61] [-14.68 , 2.36] [-4.51 , 2.66]

outcap -0.05 -0.07 -0.07 – -0.07 -0.01
[-0.13 , 0.03] [-0.21 , 0.07] [-0.22 , 0.08] – [-0.17 , 0.03] [-0.06 , 0.03]

Constant -3.09 -0.18 -4.81 -19.53 -2.70 -0.28
[-6.38 , 0.19] [-0.60 , 0.24] [-5.79 , -3.84] [-26.93 , -12.13] [-4.75 , -0.66] [-0.88 , 0.32]

Observations 11,830 19,455 14,495 2,712 14,472 21,728

CH AR(1) 0.681 1.223 0.477 2.044 1.326 2.668
Lags 1 30 1 10 2 6

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.9). All variables are first-difference transformed before esti-
mation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.8: Full regression results of scheduled output on fundamentals I
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(7) (8) (9) (10) (11) (12)

expPos -31.48 -17.27 – – -4.43 –
[-102.78 , 39.82] [-117.93 , 83.40] – – [-132.69 , 123.82] –

expNeg 12.93 – – – 1.10 –
[-59.57 , 85.43] – – – [-44.11 , 46.31] –

genWind -21.52 -5.88 -23.60 -3.41 -8.59 -11.12
[-24.51 , -18.54] [-6.79 , -4.98] [-29.84 , -17.37] [-5.37 , -1.45] [-9.87 , -7.31] [-13.65 , -8.59]

genSolar -13.35 -3.70 -7.34 -2.40 -5.22 -6.79
[-14.42 , -12.28] [-4.23 , -3.16] [-9.33 , -5.36] [-2.95 , -1.86] [-5.74 , -4.71] [-7.75 , -5.82]

load 19.18 4.09 17.64 5.66 8.26 7.39
[18.18 , 20.19] [3.73 , 4.45] [15.74 , 19.54] [5.00 , 6.32] [7.78 , 8.74] [6.58 , 8.21]

eua -33.60 2.98 85.83 -26.46 11.11 -52.47
[-86.81 , 19.62] [-8.83 , 14.79] [-187.96 , 359.61] [-71.78 , 18.86] [-15.46 , 37.67] [-119.22 , 14.29]

coal -2.18 0.84 8.08 4.08 -3.51 -1.41
[-15.99 , 11.63] [-3.09 , 4.77] [-65.25 , 81.41] [-6.38 , 14.55] [-9.44 , 2.41] [-16.83 , 14.01]

gas -0.50 -0.69 -21.61 4.25 -2.14 -3.33
[-5.65 , 4.65] [-3.08 , 1.71] [-203.95 , 160.73] [-13.83 , 22.34] [-7.82 , 3.55] [-17.39 , 10.73]

outcap -0.00 0.01 -0.10 – -0.02 -0.03
[-0.07 , 0.06] [-0.24 , 0.26] [-0.30 , 0.09] – [-0.08 , 0.03] [-0.10 , 0.04]

Constant -1.72 -0.76 -0.81 -4.50 -0.18 -0.13
[-3.57 , 0.13] [-1.38 , -0.13] [-4.96 , 3.34] [-5.77 , -3.23] [-1.10 , 0.74] [-1.84 , 1.59]

Observations 16,007 15,047 7,020 10,987 27,057 28,965

CH AR(1) 2.592 1.153 0.792 0.312 0.012 0.186
Lags 2 40 1 2 1 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.9). All variables are first-difference transformed before esti-
mation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.9: Full regression results of scheduled output on fundamentals II
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(13) (14) (15) (16) (17) (18)

expPos 8.83 – – -1.83 – -4.10
[-60.07 , 77.74] – – [-75.97 , 72.32] – [-15.97 , 7.76]

expNeg – -35.90 -23.11 -0.11 58.34 -0.24
– [-99.55 , 27.75] [-74.46 , 28.23] [-64.18 , 63.96] [22.79 , 93.90] [-27.17 , 26.69]

genWind -11.89 -12.99 -2.25 -10.21 -57.70 -10.09
[-14.26 , -9.53] [-15.44 , -10.55] [-2.90 , -1.60] [-11.51 , -8.90] [-66.07 , -49.33] [-11.37 , -8.81]

genSolar -8.28 -6.56 -3.75 -7.23 -34.58 -7.48
[-9.20 , -7.36] [-7.41 , -5.72] [-4.03 , -3.46] [-7.75 , -6.71] [-38.17 , -30.99] [-8.01 , -6.96]

load 7.66 10.72 6.12 8.86 30.04 10.17
[6.94 , 8.37] [9.91 , 11.52] [5.79 , 6.45] [8.44 , 9.28] [27.29 , 32.80] [9.58 , 10.75]

eua -22.78 -5.64 4.45 17.41 -75.46 -7.42
[-66.56 , 21.00] [-72.07 , 60.79] [-10.71 , 19.61] [-4.81 , 39.63] [-370.56 , 219.64] [-40.88 , 26.05]

coal -0.93 -15.65 -0.49 -5.55 -7.41 1.08
[-11.71 , 9.84] [-34.07 , 2.78] [-4.11 , 3.13] [-13.47 , 2.36] [-82.83 , 68.01] [-10.72 , 12.87]

gas -2.62 0.99 0.50 0.74 34.42 0.01
[-10.44 , 5.20] [-5.61 , 7.59] [-2.52 , 3.52] [-1.63 , 3.11] [-9.54 , 78.39] [-5.02 , 5.04]

outcap -0.01 -0.01 -0.06 -0.12 0.01 -0.01
[-0.07 , 0.04] [-0.06 , 0.03] [-0.12 , -0.01] [-0.20 , -0.03] [-0.10 , 0.13] [-0.05 , 0.03]

Constant -0.09 -1.65 -0.07 -0.94 -0.30 -0.14
[-1.63 - 1.46] [-3.27 - -0.03] [-0.55 - 0.41] [-1.82 - -0.05] [-5.88 - 5.29] [-1.11 - 0.82]

Observations 28,979 18,751 28,547 21,881 29,005 25,647

CH AR(1) 0.107 0.158 0.299 1.288 0.040 0.765
Lags 2 2 2 1 1 1

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.9). All variables are first-difference transformed before esti-
mation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.10: Full regression results of scheduled output on fundamentals III
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(19) (20) (21) (22) (23)

expPos -1.73 – 59.48 – -0.48
[-36.64 , 33.18] – [-105.65 , 224.61] – [-28.50 , 27.54]

expNeg – -56.59 – – -18.20
– [-139.13 , 25.94] – – [-55.03 , 18.64]

genWind -13.68 -6.60 -11.05 -15.58 -9.76
[-17.10 , -10.26] [-8.32 , -4.88] [-13.47 , -8.63] [-18.36 , -12.81] [-11.68 , -7.83]

genSolar -8.98 -3.90 -5.95 -8.61 -6.62
[-10.11 , -7.86] [-4.57 , -3.24] [-6.76 , -5.14] [-9.44 , -7.78] [-7.41 , -5.84]

load 14.53 3.88 8.76 11.92 10.34
[13.53 , 15.53] [3.37 , 4.38] [8.00 , 9.52] [11.12 , 12.71] [9.67 , 11.01]

eua -129.38 9.14 -11.38 -7.89 -9.87
[-272.41 , 13.65] [-33.29 , 51.57] [-51.24 , 28.48] [-70.65 , 54.87] [-59.31 , 39.56]

coal -14.28 -2.26 -1.67 -8.41 -0.28
[-44.31 , 15.76] [-10.06 , 5.54] [-12.76 , 9.41] [-23.16 , 6.33] [-11.37 , 10.81]

gas -13.34 -2.13 -1.75 -7.47 4.67
[-44.09 , 17.42] [-13.96 , 9.70] [-5.85 , 2.35] [-30.21 , 15.27] [-8.00 , 17.35]

outcap -0.07 0.02 -0.16 -0.02 0.02
[-0.23 , 0.09] [-0.06 , 0.10] [-0.37 , 0.05] [-0.09 , 0.05] [-0.21 , 0.25]

Constant -2.76 -0.06 -1.28 -1.89 -4.19
[-4.62 , -0.89] [-1.16 , 1.05] [-2.77 , 0.21] [-3.37 , -0.40] [-5.51 , -2.87]

Observations 6,985 28,979 18,987 14,842 16,371

CH AR(1) 0.860 0.157 2.804 1.181 2.207
Lags 2 2 6 2 3

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.9). All variables are first-difference transformed before esti-
mation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.11: Full regression results of scheduled output on fundamentals IV
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Realized output as dependent variable

(1) (2) (3) (4) (5) (6)

expPos – – – 44.43 64.91 –
– – – [-9.67 , 98.53] [-25.97 , 155.80] –

expNeg – 2.95 6.87 -43.10 -14.41
– [-25.40 , 31.31] [-31.51 , 45.25] [-187.25 , 101.04] [-39.58 , 10.75]

price 5.89 0.93 1.28 2.99 3.58 1.35
[4.63 , 7.16] [0.79 , 1.06] [1.10 , 1.47] [2.23 , 3.74] [3.17 , 3.99] [1.17 , 1.52]

eua 17.08 0.28 -1.67 -35.36 -3.47 -7.31
[-70.54 , 104.70] [-9.27 , 9.83] [-27.99 , 24.65] [-250.65 , 179.93] [-56.99 , 50.05] [-20.33 , 5.70]

coal -0.56 -0.67 -1.86 3.31 -1.46 -1.30
[-19.71 , 18.59] [-2.89 , 1.54] [-9.23 , 5.51] [-32.75 , 39.36] [-18.50 , 15.57] [-4.35 , 1.75]

gas -5.98 -2.95 -0.01 1.58 -1.85 -1.30
[-53.52 , 41.56] [-9.27 , 3.37] [-3.53 , 3.50] [-65.02 , 68.19] [-6.36 , 2.67] [-6.34 , 3.74]

outcap -0.00 -0.05 -0.06 -0.19 -0.01 -0.03
[-0.14 , 0.13] [-0.18 , 0.08] [-0.20 , 0.08] [-0.61 , 0.23] [-0.09 , 0.07] [-0.08 , 0.03]

Constant -11.35 -0.20 -6.03 -14.54 -3.41 -0.52
[-15.55 , -7.16] [-0.62 , 0.23] [-6.99 , -5.08] [-18.78 , -10.29] [-5.22 , -1.60] [-1.14 , 0.11]

Observations 6,163 19,455 14,495 4,769 14,472 19,661

CH AR(1) 2.205 1.7 1.465 0.187 2.478 0.619
Lags 30 30 1 2 2 30

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.10). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.12: Full regression results of realized output on price I
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(7) (8) (9) (10) (11) (12)

expPos 20.87 -9.37 – – -9.40 –
[-27.54 , 69.28] [-63.78 , 45.04] – – [-42.30 , 23.49] –

expNeg 16.89 – – – -1.79 –
[-69.74 , 103.52] – – – [-57.17 , 53.58] –

price 3.85 1.06 4.13 1.54 2.84 3.11
[3.33 , 4.36] [0.92 , 1.21] [3.41 , 4.84] [1.26 , 1.82] [2.57 , 3.11] [2.65 , 3.57]

eua -6.17 7.35 39.86 -2.45 12.57 -37.93
[-59.48 , 47.14] [-4.29 , 18.98] [-41.19 , 120.91] [-28.19 , 23.30] [-14.53 , 39.68] [-89.79 , 13.93]

coal -1.49 0.12 -7.78 1.05 -3.63 1.38
[-15.90 , 12.91] [-3.53 , 3.77] [-24.94 , 9.37] [-6.57 , 8.67] [-9.51 , 2.26] [-9.33 , 12.09]

gas 0.16 -0.28 -5.61 0.87 -1.45 -4.71
[-6.74 , 7.06] [-2.52 , 1.95] [-36.08 , 24.86] [-9.55 , 11.30] [-6.35 , 3.45] [-21.87 , 12.45]

outcap 0.02 0.01 -0.05 – -0.02 -0.02
[-0.08 , 0.12] [-0.24 , 0.26] [-0.24 , 0.13] – [-0.08 , 0.04] [-0.09 , 0.06]

Constant -3.99 -0.71 -3.68 -5.35 -0.16 -0.14
[-5.90 , -2.07] [-1.29 , -0.14] [-7.08 , -0.28] [-6.67 , -4.02] [-1.12 , 0.79] [-1.78 , 1.49]

Observations 14,287 16,030 7,020 10,987 27,057 28,965

CH AR(1) 1.108 1.323 1.191 0.709 0.941 0.808
Lags 10 30 1 2 1 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.10). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.13: Full regression results of realized output on price II
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(13) (14) (15) (16) (17) (18)

expPos 0.12 – – 4.71 – -2.78
[-117.01 , 117.26] – – [-25.44 , 34.86] – [-76.61 , 71.04]

expNeg – -37.58 -5.08 -36.35 -14.17 0.84
– [-116.32 , 41.17] [-24.47 , 14.31] [-122.11 , 49.41] [-40.05 , 11.71] [-28.25 , 29.94]

price 3.63 2.79 1.34 1.83 12.08 3.32
[3.17 , 4.10] [2.45 , 3.13] [1.19 , 1.49] [1.59 , 2.07] [10.31 , 13.85] [3.01 , 3.62]

eua -12.75 4.55 2.46 16.17 -65.94 0.11
[-52.65 , 27.14] [-42.03 , 51.14] [-9.13 , 14.05] [-6.89 , 39.22] [-213.26 , 81.38] [-28.71 , 28.93]

coal -1.14 -3.03 -1.31 -6.04 -3.29 2.79
[-10.31 , 8.03] [-17.56 , 11.50] [-4.19 , 1.58] [-15.74 , 3.65] [-26.20 , 19.61] [-6.23 , 11.80]

gas -0.97 2.47 0.49 -0.63 27.88 -0.37
[-7.70 , 5.76] [-1.72 , 6.67] [-3.17 , 4.14] [-4.09 , 2.83] [-38.35 , 94.11] [-5.01 , 4.26]

outcap -0.01 0.01 -0.04 -0.09 0.05 0.02
[-0.06 , 0.05] [-0.04 , 0.06] [-0.10 , 0.03] [-0.26 , 0.09] [-0.03 , 0.14] [-0.02 , 0.06]

Constant -0.10 -2.11 -0.10 -1.92 -0.41 -0.18
[-1.63 , 1.42] [-3.56 , -0.66] [-0.54 , 0.33] [-2.87 , -0.97] [-5.02 , 4.20] [-1.18 , 0.81]

Observations 28,979 18,751 28,219 16,551 29,005 25,647

CH AR(1) 0.666 0.906 1.858 0.639 0.122 0.004
Lags 2 2 10 30 1 1

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.10). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.14: Full regression results of realized output on price III
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(19) (20) (21) (22) (23)

expPos 4.60 – – – -0.77
[-14.81 , 24.00] – – – [-20.36 , 18.82]

expNeg – -52.20 – – -17.29
– [-131.72 , 27.31] – – [-40.12 , 5.54]

price 3.58 1.81 2.80 3.33 2.52
[3.01 , 4.15] [1.51 , 2.12] [2.46 , 3.15] [2.94 , 3.71] [2.24 , 2.81]

eua -15.54 4.46 -17.23 -3.73 -0.72
[-64.22 , 33.14] [-35.50 , 44.42] [-57.52 , 23.07] [-55.69 , 48.24] [-32.04 , 30.60]

coal -4.21 -0.43 -1.32 -6.55 -0.06
[-13.95 , 5.52] [-6.52 , 5.67] [-11.88 , 9.25] [-18.18 , 5.09] [-7.48 , 7.36]

gas -9.35 -1.64 -0.99 -1.13 5.00
[-27.26 , 8.56] [-13.37 , 10.09] [-4.43 , 2.46] [-6.50 , 4.24] [-7.67 , 17.68]

outcap -0.04 0.03 -0.12 -0.01 -0.03
[-0.19 , 0.11] [-0.06 , 0.11] [-0.39 , 0.16] [-0.10 , 0.08] [-0.15 , 0.10]

Constant -2.87 -0.06 -1.63 -2.76 -5.09
[-4.72 , -1.03] [-1.17 , 1.04] [-3.15 , -0.12] [-4.26 , -1.27] [-6.31 , -3.87]

Observations 6,985 28,979 18,608 14,691 17,222

CH AR(1) 0.911 0.509 1.360 1.830 0.737
Lags 2 2 10 3 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.10). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.15: Full regression results of realized output on price IV
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(1) (2) (3) (4) (5) (6)

expPos – – – -6.50 42.77 –
– – – [-36.91 , 23.90] [-26.97 , 112.50] –

expNeg – 6.35 – 2.20 -25.21 -8.99
– [-26.93 , 39.63] – [-44.02 , 48.41] [-124.01 , 73.58] [-36.45 , 18.46]

genWind -29.53 -2.59 -5.50 -1.75 -12.53 -6.37
[-34.11 , -24.95] [-3.14 , -2.05] [-6.84 , -4.15] [-14.60 , 11.09] [-15.03 , -10.02] [-7.13 , -5.60]

genSolar -21.70 -2.58 -3.40 0.79 -8.11 -4.43
[-23.29 , -20.10] [-2.88 , -2.28] [-3.81 , -2.99] [-2.89 , 4.47] [-9.09 , -7.13] [-4.80 , -4.06]

load 32.82 3.12 4.20 5.49 13.08 7.25
[31.07 , 34.58] [2.87 , 3.37] [3.78 , 4.62] [1.39 , 9.59] [12.20 , 13.97] [6.92 , 7.57]

eua 60.79 -0.79 -2.80 119.54 -1.56 -3.87
[-47.23 , 168.82] [-9.68 , 8.09] [-28.79 , 23.19] [-127.06 , 366.13] [-54.20 , 51.07] [-15.95 , 8.21]

coal 2.49 -0.39 -1.81 -5.47 -2.86 -0.93
[-11.37 , 16.35] [-2.47 , 1.68] [-9.42 , 5.79] [-43.28 , 32.35] [-19.10 , 13.37] [-3.89 , 2.03]

gas 3.83 -3.45 0.25 -32.80 -1.89 -1.28
[-51.70 , 59.36] [-9.54 , 2.64] [-3.20 , 3.71] [-178.43 , 112.83] [-5.22 , 1.45] [-4.42 , 1.87]

outcap -0.04 -0.06 -0.06 – -0.03 -0.01
[-0.12 , 0.04] [-0.20 , 0.07] [-0.21 , 0.08] – [-0.10 , 0.05] [-0.05 , 0.03]

Constant -3.02 -0.19 -5.31 -14.54 -2.61 -0.27
[-6.26 , 0.21] [-0.61 , 0.22] [-6.22 , -4.40] [-23.21 , -5.86] [-4.33 , -0.90] [-0.86 , 0.31]

Observations 11,830 19,455 14,495 761 14,472 21,728

CH AR(1) 0.310 1.236 1.626 0.169 1.010 2.092
Lags 1 30 1 30 2 6

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.11). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.16: Full regression results of realized output on fundamentals I
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(7) (8) (9) (10) (11) (12)

expPos 21.47 -14.55 – – -4.48 –
[-20.91 , 63.84] [-60.91 , 31.82] – – [-132.60 , 123.64] –

expNeg 14.30 – – – 0.17 –
[-58.06 , 86.66] – – – [-45.19 , 45.52] –

genWind -20.12 -5.78 -24.38 -3.01 -8.56 -10.87
[-22.78 , -17.47] [-6.61 , -4.96] [-29.73 , -19.03] [-4.90 , -1.11] [-9.84 , -7.28] [-13.31 , -8.43]

genSolar -11.74 -3.54 -7.39 -2.45 -5.22 -6.37
[-12.71 , -10.77] [-4.04 , -3.04] [-8.96 , -5.81] [-2.98 , -1.92] [-5.73 , -4.70] [-7.31 , -5.42]

load 17.35 3.69 15.05 5.59 8.24 6.92
[16.41 , 18.28] [3.36 , 4.01] [13.50 , 16.60] [4.94 , 6.25] [7.76 , 8.72] [6.15 , 7.68]

eua -13.77 5.83 34.78 -3.43 12.63 -38.26
[-59.55 , 32.01] [-5.47 , 17.12] [-42.76 , 112.32] [-29.59 , 22.73] [-13.50 , 38.77] [-89.36 , 12.85]

coal -3.58 -0.00 -9.23 0.61 -4.20 1.19
[-16.35 , 9.18] [-3.73 , 3.73] [-27.14 , 8.68] [-7.14 , 8.37] [-9.96 , 1.56] [-9.41 , 11.80]

gas -1.19 -0.13 -4.49 -0.33 -2.19 -4.80
[-5.98 , 3.59] [-2.38 , 2.12] [-34.94 , 25.97] [-11.08 , 10.41] [-7.83 , 3.45] [-20.84 , 11.24]

outcap -0.00 0.01 -0.07 – -0.02 -0.02
[-0.06 , 0.06] [-0.25 , 0.27] [-0.25 , 0.12] – [-0.08 , 0.03] [-0.09 , 0.05]

Constant -1.80 -0.58 -2.46 -4.56 -0.18 -0.13
[-3.48 , -0.12] [-1.15 , -0.01] [-5.70 , 0.78] [-5.80 , -3.31] [-1.10 , 0.74] [-1.76 , 1.50]

Observations 16,007 15,047 7,020 10,987 27,057 28,965

CH AR(1) 0.073 1.616 0.142 1.628 0.012 0.212
Lags 2 40 1 2 1 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.11). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.17: Full regression results of realized output on fundamentals II
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(13) (14) (15) (16) (17) (18)

expPos 8.93 – – -1.79 – -4.05
[-58.83 , 76.68] – – [-71.49 , 67.90] – [-15.48 , 7.39]

expNeg – -35.91 1.40 -10.11 -1.45 2.93
– [-101.85 , 30.03] [-19.08 , 21.87] [-59.72 , 39.51] [-26.25 , 23.35] [-23.42 , 29.28]

genWind -11.60 -9.69 -1.88 -9.03 -67.87 -9.81
[-13.92 , -9.29] [-11.74 , -7.64] [-2.41 , -1.35] [-10.27 , -7.79] [-76.16 , -59.58] [-11.07 , -8.56]

genSolar -8.08 -5.57 -3.37 -6.88 -36.54 -7.35
[-8.99 , -7.18] [-6.31 , -4.82] [-3.60 , -3.14] [-7.38 , -6.37] [-40.33 , -32.75] [-7.87 , -6.83]

load 7.52 9.23 5.49 8.32 20.93 10.07
[6.81 , 8.22] [8.54 , 9.92] [5.23 , 5.74] [7.91 , 8.74] [18.29 , 23.56] [9.49 , 10.65]

eua -13.70 4.98 2.35 21.72 -69.49 -1.98
[-53.40 , 25.99] [-40.70 , 50.66] [-7.59 , 12.28] [0.94 , 42.51] [-216.76 , 77.78] [-31.09 , 27.13]

coal -1.34 -3.59 -0.99 -5.94 -3.39 2.88
[-10.38 , 7.69] [-18.03 , 10.84] [-3.36 , 1.39] [-13.76 , 1.88] [-25.49 , 18.72] [-6.33 , 12.10]

gas -1.29 2.57 0.20 0.07 23.62 -0.32
[-8.02 , 5.44] [-1.32 , 6.45] [-2.27 , 2.66] [-2.04 , 2.18] [-32.32 , 79.55] [-5.84 , 5.20]

outcap -0.01 0.00 -0.05 -0.11 0.05 -0.00
[-0.06 , 0.04] [-0.05 , 0.05] [-0.11 , 0.00] [-0.19 , -0.02] [-0.03 , 0.14] [-0.04 , 0.04]

Constant -0.09 -1.75 -0.06 -0.91 -0.39 -0.14
[-1.60 , 1.42] [-3.15 , -0.35] [-0.48 , 0.36] [-1.76 , -0.05] [-4.89 , 4.12] [-1.08 , 0.81]

Observations 28,979 18,751 28,547 21,881 29,005 25,647

CH AR(1) 0.06 0.104 0.272 0.008 0.207 1.018
Lags 2 2 2 1 1 1

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.11). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.18: Full regression results of realized output on fundamentals III
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(19) (20) (21) (22) (23)

expPos -4.90 – 62.37 – -0.40
[-24.26 , 14.47] – [-141.79 , 266.52] – [-19.71 , 18.91]

expNeg – -52.30 – – -20.34
– [-132.46 , 27.87] – – [-41.51 , 0.83]

genWind -11.85 -6.61 -11.00 -16.67 -7.22
[-14.71 , -9.00] [-8.32 , -4.91] [-13.41 , -8.59] [-19.14 , -14.21] [-8.80 , -5.64]

genSolar -8.02 -3.89 -5.91 -8.38 -6.76
[-9.07 , -6.96] [-4.55 , -3.23] [-6.72 , -5.11] [-9.16 , -7.60] [-7.41 , -6.11]

load 13.18 3.84 8.69 11.00 8.85
[12.29 , 14.07] [3.34 , 4.34] [7.94 , 9.45] [10.25 , 11.75] [8.26 , 9.45]

eua -15.09 4.03 -12.88 -2.77 7.21
[-57.55 , 27.38] [-35.69 , 43.74] [-51.87 , 26.11] [-50.96 , 45.42] [-21.24 , 35.66]

coal -5.69 -0.60 -1.16 -7.16 -0.64
[-15.14 , 3.77] [-6.65 , 5.44] [-11.47 , 9.14] [-19.58 , 5.26] [-7.10 , 5.82]

gas -4.44 -1.81 -1.61 -0.86 4.68
[-20.49 , 11.61] [-13.52 , 9.90] [-5.52 , 2.29] [-5.53 , 3.80] [-6.64 , 16.00]

outcap -0.05 0.02 -0.16 -0.02 -0.02
[-0.21 , 0.10] [-0.06 , 0.11] [-0.37 , 0.06] [-0.09 , 0.05] [-0.26 , 0.23]

Constant -2.59 -0.06 -1.29 -1.95 -4.39
[-4.26 , -0.92] [-1.16 , 1.04] [-2.77 , 0.20] [-3.36 , -0.55] [-5.52 , -3.27]

Observations 6,985 28,979 18,987 14,842 16,371

CH AR(1) 1.325 0.180 2.568 0.206 0.234
Lags 2 2 6 2 3

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.11). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.19: Full regression results of realized output on fundamentals IV
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D.2 Robustness

Specification including polynomials of weather

(2) (6) (11) (17) (18) (19) (20)

expPos – – -6.35 – -4.54 -0.18 –
– – [-86.76 , 74.06] – [-15.37 , 6.29] [-34.80 , 34.45] –

expNeg 5.48 3.61 -0.21 53.44 0.28 – -56.25
[-25.60 , 36.56] [-30.14 , 37.36] [-45.76 , 45.33] [17.96 , 88.91] [-26.20 , 26.77] – [-138.48 , 25.98]

genWind -2.56 -7.24 -2.72 21.53 -2.78 -16.65 6.29
[-4.57 , -0.55] [-10.02 , -4.46] [-6.99 , 1.55] [-3.52 , 46.57] [-6.84 , 1.27] [-26.16 , -7.14] [1.34 , 11.25]

genWind2 -0.01 0.02 -0.31 -4.17 -0.46 0.09 -0.70
[-0.14 , 0.13] [-0.16 , 0.19] [-0.62 , 0.00] [-6.01 , -2.34] [-0.73 , -0.19] [-0.82 , 1.00] [-1.11 , -0.30]

genWind3 0.00 0.00 0.00 0.05 0.01 0.00 0.01
[-0.00 , 0.00] [-0.00 , 0.00] [-0.00 , 0.01] [0.02 , 0.09] [0.00 , 0.01] [-0.02 , 0.02] [0.00 , 0.02]

genSolar -3.38 -4.25 -7.57 -23.69 -9.08 -5.76 -3.45
[-4.18 , -2.57] [-5.31 , -3.19] [-9.14 , -6.00] [-33.93 , -13.46] [-10.61 , -7.54] [-8.80 , -2.72] [-5.25 , -1.66]

genSolar2 0.08 0.01 0.33 -0.40 0.25 -0.08 0.04
[0.00 , 0.17] [-0.11 , 0.12] [0.17 , 0.50] [-1.46 , 0.66] [0.08 , 0.41] [-0.42 , 0.26] [-0.16 , 0.24]

genSolar3 -0.00 -0.00 -0.01 -0.00 -0.01 -0.00 -0.00
[-0.00 , 0.00] [-0.00 , 0.00] [-0.01 , -0.00] [-0.04 , 0.03] [-0.01 , -0.00] [-0.01 , 0.01] [-0.01 , 0.00]

load -29.78 -41.75 19.89 283.43 4.50 14.63 30.10
[-37.71 , -21.86] [-52.97 , -30.52] [-0.34 , 40.11] [175.50 , 391.35] [-15.17 , 24.18] [-34.90 , 64.16] [7.21 , 52.98]

load2 0.59 0.94 -0.18 -4.08 0.25 0.22 -0.41
[0.44 , 0.73] [0.74 , 1.14] [-0.54 , 0.19] [-6.04 , -2.12] [-0.10 , 0.60] [-0.64 , 1.08] [-0.82 , -0.00]

load3 -0.00 -0.01 0.00 0.02 -0.00 -0.00 0.00
[-0.00 , -0.00] [-0.01 , -0.00] [-0.00 , 0.00] [0.01 , 0.03] [-0.00 , -0.00] [-0.01 , 0.00] [-0.00 , 0.00]

eua -4.39 -4.67 7.67 -69.74 -6.84 -129.43 9.98
[-14.01 , 5.22] [-17.58 , 8.24] [-18.37 , 33.72] [-365.60 , 226.12] [-40.24 , 26.55] [-273.72 , 14.86] [-32.42 , 52.38]

coal -0.38 -0.93 -3.11 -4.71 1.09 -13.75 -1.95
[-2.59 , 1.83] [-4.16 , 2.29] [-9.08 , 2.86] [-80.75 , 71.32] [-10.65 , 12.84] [-44.43 , 16.93] [-9.79 , 5.89]

gas -2.82 -1.00 -0.88 33.61 -0.09 -12.39 -2.20
[-9.23 , 3.59] [-4.46 , 2.46] [-6.72 , 4.96] [-10.82 , 78.03] [-5.04 , 4.86] [-42.96 , 18.18] [-13.98 , 9.59]

outcap -0.06 -0.01 -0.03 0.02 -0.01 -0.07 0.02
[-0.20 , 0.07] [-0.06 , 0.03] [-0.09 , 0.03] [-0.10 , 0.14] [-0.05 , 0.03] [-0.24 , 0.11] [-0.06 , 0.10]

Constant -0.18 -0.27 -0.39 -0.35 -0.15 -2.79 -0.06
[-0.60 , 0.24] [-0.87 , 0.33] [-1.34 , 0.55] [-5.91 , 5.21] [-1.11 , 0.80] [-4.64 , -0.95] [-1.17 , 1.05]

Observations 19,455 21,728 24,949 29,005 25,647 6,985 28,979

CH AR(1) 0.871 1.652 0.903 0.011 0.713 1.266 0.235
Lags 30 6 30 1 1 2 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.12). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.20: Full regression results of scheduled output on fundamentals in-
cluding polynomials
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(2) (6) (11) (17) (18) (19) (20)

expPos – – -5.84 – -4.47 -3.73 –
– – [-133.11 , 121.43] – [-14.92 , 5.97] [-22.59 , 15.14] –

expNeg 4.97 -4.16 -0.34 -5.71 3.42 – -51.96
[-30.29 , 40.23] [-29.19 , 20.88] [-45.81 , 45.13] [-30.46 , 19.04] [-22.49 , 29.33] – [-131.94 , 28.03]

genWind -2.46 -7.10 -3.11 -2.69 -2.47 -19.36 6.18
[-4.46 , -0.47] [-9.81 , -4.39] [-7.26 , 1.04] [-23.55 , 18.17] [-6.45 , 1.51] [-27.05 , -11.68] [1.25 , 11.10]

genWind2 -0.01 0.03 -0.30 -3.58 -0.46 0.51 -0.70
[-0.15 , 0.12] [-0.14 , 0.19] [-0.60 , 0.01] [-5.08 , -2.09] [-0.73 , -0.20] [-0.15 , 1.16] [-1.10 , -0.30]

genWind3 0.00 0.00 0.00 0.05 0.01 -0.01 0.01
[-0.00 , 0.00] [-0.00 , 0.00] [-0.00 , 0.01] [0.02 , 0.08] [0.00 , 0.01] [-0.02 , 0.01] [0.00 , 0.02]

genSolar -3.37 -4.14 -8.02 -33.23 -9.08 -5.29 -3.50
[-4.18 , -2.57] [-5.17 , -3.10] [-9.52 , -6.52] [-42.08 , -24.38] [-10.60 , -7.56] [-8.16 , -2.43] [-5.28 , -1.71]

genSolar2 0.09 0.01 0.33 0.31 0.26 -0.04 0.04
[0.00 , 0.17] [-0.10 , 0.12] [0.17 , 0.49] [-0.59 , 1.21] [0.10 , 0.43] [-0.36 , 0.29] [-0.16 , 0.24]

genSolar3 -0.00 -0.00 -0.01 -0.02 -0.01 -0.01 -0.00
[-0.00 , 0.00] [-0.00 , 0.00] [-0.01 , -0.00] [-0.05 , 0.00] [-0.01 , -0.00] [-0.02 , 0.01] [-0.01 , 0.00]

load -28.92 -38.92 30.05 319.14 6.50 16.29 29.99
[-36.76 , -21.08] [-49.96 , -27.88] [10.69 , 49.42] [225.34 , 412.95] [-12.94 , 25.94] [-29.14 , 61.71] [7.16 , 52.82]

load2 0.57 0.89 -0.33 -4.94 0.21 0.17 -0.41
[0.43 , 0.71] [0.69 , 1.09] [-0.68 , 0.02] [-6.63 , -3.25] [-0.14 , 0.56] [-0.62 , 0.96] [-0.81 , -0.00]

load3 -0.00 -0.01 0.00 0.03 -0.00 -0.00 0.00
[-0.00 , -0.00] [-0.01 , -0.00] [-0.00 , 0.00] [0.02 , 0.04] [-0.00 , -0.00] [-0.01 , 0.00] [-0.00 , 0.00]

eua -1.06 -3.90 12.37 -64.02 -1.41 -15.26 4.86
[-9.85 , 7.73] [-16.06 , 8.26] [-13.75 , 38.49] [-210.73 , 82.68] [-30.45 , 27.63] [-57.91 , 27.39] [-34.80 , 44.53]

coal -0.54 -1.09 -4.07 -0.57 2.91 -5.20 -0.29
[-2.60 , 1.52] [-4.06 , 1.89] [-9.83 , 1.68] [-22.98 , 21.83] [-6.26 , 12.08] [-15.04 , 4.63] [-6.36 , 5.77]

gas -3.30 -1.35 -2.59 22.76 -0.41 -3.23 -1.88
[-9.44 , 2.83] [-4.40 , 1.71] [-8.65 , 3.46] [-31.29 , 76.80] [-5.82 , 5.00] [-20.21 , 13.74] [-13.53 , 9.78]

outcap -0.06 -0.01 -0.03 0.06 -0.00 -0.05 0.02
[-0.20 , 0.08] [-0.05 , 0.03] [-0.09 , 0.03] [-0.02 , 0.14] [-0.04 , 0.04] [-0.22 , 0.13] [-0.06 , 0.11]

Constant -0.19 -0.27 -0.20 -0.44 -0.15 -2.65 -0.06
[-0.60 , 0.22] [-0.85 , 0.32] [-1.12 , 0.72] [-4.92 , 4.05] [-1.09 , 0.79] [-4.30 , -1.00] [-1.16 , 1.04]

Observations 19,455 21,728 26,976 29,005 25,647 6,985 28,979

CH AR(1) 0.654 1.560 1.683 0.151 0.948 1.716 0.216
Lags 30 20 20 1 1 1 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.13). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.21: Full regression results of realized output on fundamentals in-
cluding polynomials
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Specification including local load proxy variables

(2) (6) (11) (17) (18) (19) (20)

expPos – – – – 4.66 5.90 –
– – – – [-68.47 , 77.78] [-32.25 , 44.05] –

expNeg 2.27 -9.42 0.80 47.35 -0.66 – -59.13
[-21.51 , 26.05] [-41.27 , 22.43] [-52.77 , 54.37] [11.29 , 83.40] [-30.05 , 28.74] – [-142.07 , 23.81]

price 0.57 0.92 1.73 13.32 2.24 2.41 2.00
[0.43 , 0.70] [0.74 , 1.10] [1.45 , 2.01] [10.87 , 15.77] [1.93 , 2.55] [1.77 , 3.06] [1.57 , 2.44]

eua -2.26 -6.23 9.00 -71.85 -7.26 -126.51 8.35
[-12.71 , 8.19] [-19.82 , 7.37] [-17.77 , 35.77] [-371.41 , 227.70] [-41.03 , 26.52] [-263.79 , 10.78] [-34.63 , 51.33]

coal -0.41 -0.69 -1.67 -3.48 2.01 -12.70 -1.82
[-2.74 , 1.92] [-3.92 , 2.55] [-7.63 , 4.29] [-79.77 , 72.81] [-9.83 , 13.85] [-41.35 , 15.96] [-9.68 , 6.04]

gas -1.86 -1.17 -2.68 38.54 -0.28 -15.45 -2.11
[-8.56 , 4.84] [-6.38 , 4.04] [-9.03 , 3.67] [-9.76 , 86.84] [-4.95 , 4.39] [-46.17 , 15.27] [-14.00 , 9.78]

outcap -0.06 -0.03 -0.03 0.01 0.01 -0.06 0.02
[-0.19 , 0.08] [-0.08 , 0.03] [-0.10 , 0.03] [-0.10 , 0.13] [-0.03 , 0.05] [-0.20 , 0.07] [-0.06 , 0.11]

flowATDE -0.01 -0.02 -0.02 -0.08 -0.04 -0.05 -0.00
[-0.01 , -0.01] [-0.02 , -0.01] [-0.03 , -0.02] [-0.11 , -0.04] [-0.04 , -0.03] [-0.06 , -0.04] [-0.01 , 0.00]

flowCZDE 0.01 0.03 0.04 0.04 0.06 0.08 0.00
[0.01 , 0.02] [0.02 , 0.03] [0.03 , 0.04] [0.00 , 0.08] [0.05 , 0.07] [0.06 , 0.09] [-0.01 , 0.01]

flowPLDE -0.00 -0.01 -0.00 0.27 -0.00 -0.02 0.02
[-0.01 , 0.00] [-0.01 , -0.00] [-0.01 , 0.01] [0.22 , 0.33] [-0.01 , 0.01] [-0.04 , -0.00] [0.01 , 0.03]

flowDKDE -0.00 -0.00 -0.02 -0.06 -0.01 -0.01 -0.01
[-0.00 , 0.00] [-0.00 , -0.00] [-0.02 , -0.02] [-0.08 , -0.04] [-0.02 , -0.01] [-0.02 , -0.00] [-0.01 , -0.00]

flowNLDE -0.00 -0.01 -0.00 0.02 -0.01 -0.02 0.02
[-0.01 , -0.00] [-0.01 , -0.00] [-0.01 , 0.00] [0.00 , 0.04] [-0.01 , -0.00] [-0.03 , -0.01] [0.01 , 0.02]

flowFRDE 0.00 0.01 0.01 -0.03 0.01 0.02 -0.01
[0.00 , 0.01] [0.01 , 0.01] [0.01 , 0.01] [-0.04 , -0.01] [0.00 , 0.01] [0.01 , 0.03] [-0.01 , -0.01]

flowCHDE -0.00 0.00 0.01 0.06 0.01 0.01 0.01
[-0.00 , 0.00] [0.00 , 0.01] [0.01 , 0.01] [0.04 , 0.09] [0.01 , 0.02] [0.00 , 0.02] [0.01 , 0.02]

Constant -0.19 -0.53 -0.29 -0.42 -0.14 -3.52 -0.06
[-0.62 , 0.24] [-1.16 , 0.10] [-1.25 , 0.68] [-6.11 , 5.27] [-1.13 , 0.86] [-5.51 , -1.52] [-1.18 , 1.06]

Observations 19,106 19,587 25,219 28,470 25,539 7,084 28,452

CH AR(1) 2.472 1.039 2.546 0.058 0.302 0.004 0.982
Lags 30 30 20 1 1 1 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.14). All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.22: Full regression results of scheduled output on price including
proxy variables for local load
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(2) (6) (11) (17) (18) (19) (20)

expPos – – – – 1.76 4.45 –
– – – – [-13.88 , 17.40] [-31.80 , 40.69] –

expNeg 6.64 -7.16 -2.59 59.74 0.47 – -60.39
[-26.78 , 40.07] [-37.85 , 23.53] [-49.06 , 43.88] [24.33 , 95.15] [-24.65 , 25.59] – [-144.58 , 23.79]

genWind -3.11 -8.12 -10.68 -81.66 -13.83 -17.37 -10.69
[-3.72 , -2.51] [-8.99 , -7.24] [-12.10 , -9.27] [-91.03 , -72.28] [-15.27 , -12.40] [-21.02 , -13.71] [-12.64 , -8.74]

genSolar -2.91 -5.28 -7.51 -64.36 -11.45 -13.35 -9.27
[-3.35 , -2.46] [-5.92 , -4.65] [-8.44 , -6.58] [-70.36 , -58.36] [-12.39 , -10.50] [-15.17 , -11.52] [-10.60 , -7.95]

load 3.07 5.81 8.93 46.55 11.76 15.46 7.44
[2.75 , 3.39] [5.35 , 6.27] [8.23 , 9.62] [42.24 , 50.86] [11.02 , 12.51] [14.14 , 16.79] [6.52 , 8.35]

eua -2.94 -6.49 9.06 -68.91 -7.99 -128.68 8.68
[-12.85 , 6.97] [-19.40 , 6.43] [-16.84 , 34.96] [-366.40 , 228.58] [-41.11 , 25.13] [-272.31 , 14.94] [-33.88 , 51.25]

coal -0.07 -0.79 -2.08 -1.78 1.93 -13.37 -1.78
[-2.34 , 2.21] [-3.98 , 2.41] [-7.87 , 3.71] [-78.09 , 74.52] [-9.75 , 13.61] [-44.53 , 17.79] [-9.60 , 6.04]

gas -2.36 -1.05 -3.23 35.57 -0.28 -11.27 -2.30
[-8.86 , 4.15] [-5.81 , 3.72] [-9.97 , 3.51] [-11.69 , 82.82] [-5.31 , 4.76] [-42.07 , 19.53] [-14.21 , 9.61]

outcap -0.07 -0.03 -0.04 0.01 -0.01 -0.08 0.02
[-0.21 , 0.08] [-0.08 , 0.02] [-0.11 , 0.03] [-0.11 , 0.13] [-0.04 , 0.03] [-0.23 , 0.06] [-0.07 , 0.10]

flowATDE -0.00 -0.00 0.01 0.11 0.00 0.00 0.02
[-0.01 , -0.00] [-0.01 , 0.00] [0.00 , 0.01] [0.08 , 0.15] [-0.00 , 0.01] [-0.01 , 0.01] [0.02 , 0.03]

flowCZDE 0.01 0.02 0.01 -0.01 0.03 0.03 -0.01
[0.00 , 0.01] [0.01 , 0.02] [0.01 , 0.02] [-0.05 , 0.03] [0.03 , 0.04] [0.02 , 0.05] [-0.02 , -0.00]

flowPLDE 0.00 -0.00 0.00 0.30 0.01 -0.01 0.02
[-0.00 , 0.01] [-0.01 , 0.00] [-0.00 , 0.01] [0.25 , 0.36] [-0.00 , 0.01] [-0.03 , 0.01] [0.01 , 0.03]

flowDKDE 0.00 0.01 -0.01 0.03 0.00 0.01 0.01
[0.00 , 0.01] [0.01 , 0.01] [-0.01 , -0.00] [0.01 , 0.06] [-0.00 , 0.01] [0.00 , 0.02] [0.00 , 0.01]

flowNLDE -0.00 0.00 0.01 0.10 0.01 0.01 0.03
[-0.00 , 0.00] [-0.00 , 0.00] [0.01 , 0.01] [0.08 , 0.12] [0.01 , 0.01] [-0.00 , 0.01] [0.02 , 0.03]

flowFRDE 0.00 0.01 0.01 0.01 0.01 0.01 -0.01
[0.00 , 0.01] [0.01 , 0.01] [0.01 , 0.01] [-0.00 , 0.03] [0.00 , 0.01] [0.00 , 0.02] [-0.01 , -0.00]

flowCHDE 0.00 0.01 0.02 0.06 0.02 0.02 0.01
[-0.00 , 0.00] [0.00 , 0.01] [0.01 , 0.02] [0.04 , 0.09] [0.02 , 0.02] [0.01 , 0.03] [0.01 , 0.02]

Constant -0.19 -0.48 -0.25 -0.38 -0.12 -3.54 -0.05
[-0.61 , 0.23] [-1.08 , 0.13] [-1.19 , 0.69] [-5.95 , 5.19] [-1.07 , 0.83] [-5.40 , -1.69] [-1.16 , 1.06]

Observations 19,106 19,587 25,219 28,470 25,539 7,084 28,452

CH AR(1) 1.494 1.002 2.497 0.000 0.257 1.885 0.851
Lags 30 30 20 1 1 1 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.15) . All variables are first-difference transformed before es-
timation. Cumby-Huizinga test does not reject the null hypothesis of no first-
order serial correlation in the error term. The number of lags required to make

the model dynamically complete is reported in “Lags”.

TABLE D.23: Full regression results of scheduled output on fundamentals in-
cluding proxy variables for local load
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Specification disregaring overlapping redispatch observations

(2) (6) (11) (17) (18) (19) (20)

expPos – – -1.09 – -2.83 6.42 –
– – [-29.33 , 27.15] – [-77.57 , 71.90] [-31.88 , 44.71] –

expNeg 3.35 -9.57 -0.47 51.50 -3.40 – -121.95
[-20.75 , 27.45] [-39.93 , 20.80] [-55.42 , 54.49] [13.28 , 89.73] [-34.09 , 27.28] – [-299.68 , 55.78]

price 0.94 1.36 2.49 13.79 3.36 4.07 1.82
[0.80 , 1.08] [1.18 , 1.54] [2.24 , 2.74] [11.87 , 15.71] [3.05 , 3.67] [3.44 , 4.69] [1.51 , 2.13]

eua -2.91 -6.65 10.21 21.21 -3.82 -126.92 9.63
[-13.40 , 7.57] [-20.33 , 7.03] [-16.63 , 37.06] [-267.39 , 309.81] [-36.66 , 29.01] [-264.57 , 10.74] [-32.22 , 51.49]

coal -0.54 -1.43 -2.62 -4.06 -1.61 -13.54 -0.85
[-2.95 , 1.88] [-4.64 , 1.77] [-8.61 , 3.37] [-72.89 , 64.78] [-11.59 , 8.37] [-42.65 , 15.56] [-7.84 , 6.14]

gas -2.44 -1.34 -1.95 38.00 -0.55 -16.10 -2.35
[-9.07 , 4.20] [-6.43 , 3.76] [-7.58 , 3.69] [-28.63 , 104.62] [-4.69 , 3.60] [-47.12 , 14.92] [-14.40 , 9.69]

outcap -0.05 -0.03 -0.03 0.03 0.01 -0.07 0.03
[-0.19 , 0.08] [-0.08 , 0.03] [-0.09 , 0.04] [-0.09 , 0.14] [-0.03 , 0.05] [-0.19 , 0.06] [-0.06 , 0.11]

Constant -0.17 -0.50 -0.29 -10.10 -0.15 -3.36 -0.13
[-0.60 , 0.27] [-1.13 , 0.13] [-1.26 , 0.68] [-15.73 , -4.47] [-1.16 , 0.86] [-5.42 , -1.30] [-1.24 , 0.99]

Observations 19,429 19,634 25,596 25,675 25,634 7,094 28,887

CH AR(1) 1.489 0.973 1.832 0.082 0.010 1.106 0.453
Lags 30 30 20 1 1 1 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.8), disregarding observations with overlapping redispatch
mandates. All variables are first-difference transformed before estimation.
Cumby-Huizinga test does not reject the null hypothesis of no first-order se-
rial correlation in the error term. The number of lags required to make the

model dynamically complete is reported in “Lags”.

TABLE D.24: Full regression results of scheduled output on price disregarding
overlapping observations
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(2) (6) (11) (17) (18) (19) (20)

expPos – – -0.47 – -4.09 -1.76 –
– – [-59.86 , 58.93] – [-15.77 , 7.59] [-36.68 , 33.16] –

expNeg 6.79 -5.43 0.61 61.94 -0.25 – -120.10
[-22.28 , 35.86] [-36.17 , 25.31] [-44.75 , 45.96] [24.48 , 99.39] [-27.18 , 26.68] – [-299.19 , 58.98]

genWind -2.63 -6.33 -8.46 -51.98 -10.06 -13.62 -6.59
[-3.18 , -2.08] [-7.14 , -5.52] [-9.78 , -7.13] [-60.78 , -43.17] [-11.33 , -8.78] [-17.04 , -10.20] [-8.31 , -4.87]

genSolar -2.60 -3.62 -4.51 -33.45 -7.48 -8.96 -3.90
[-2.90 , -2.30] [-4.08 , -3.16] [-5.08 , -3.95] [-37.11 , -29.79] [-8.00 , -6.95] [-10.09 , -7.84] [-4.56 , -3.23]

load 3.17 5.34 7.52 29.82 10.13 14.52 3.88
[2.92 , 3.42] [4.97 , 5.71] [7.02 , 8.02] [26.92 , 32.73] [9.55 , 10.71] [13.52 , 15.53] [3.37 , 4.38]

eua -4.11 -6.43 10.09 21.32 -5.12 -129.41 9.19
[-13.84 , 5.61] [-19.74 , 6.87] [-16.03 , 36.21] [-265.60 , 308.24] [-37.91 , 27.66] [-272.43 , 13.61] [-32.45 , 50.83]

coal -0.21 -1.70 -3.19 -3.74 -1.49 -14.28 -1.03
[-2.50 , 2.08] [-4.83 , 1.44] [-9.08 , 2.69] [-71.92 , 64.44] [-11.46 , 8.48] [-44.31 , 15.74] [-7.98 , 5.92]

gas -2.96 -1.22 -2.63 33.22 -0.58 -13.36 -2.52
[-9.36 , 3.44] [-5.94 , 3.49] [-9.33 , 4.08] [-26.80 , 93.24] [-5.46 , 4.29] [-44.13 , 17.41] [-14.54 , 9.49]

outcap -0.07 -0.03 -0.04 0.02 -0.00 -0.07 0.02
[-0.21 , 0.07] [-0.08 , 0.02] [-0.10 , 0.03] [-0.10 , 0.14] [-0.04 , 0.03] [-0.23 , 0.09] [-0.06 , 0.10]

Constant -0.16 -0.46 -0.24 -10.01 -0.10 -2.67 -0.12
[-0.58 , 0.26] [-1.07 , 0.15] [-1.18 , 0.70] [-15.57 , -4.45] [-1.06 , 0.86] [-4.54 , -0.81] [-1.23 , 0.99]

Observations 19,429 19,634 25,596 25,675 25,634 6,969 28,887

CH AR(1) 0.989 1.175 1.546 0.394 0.907 0.919 0.150
Lags 30 30 20 1 1 2 2

Note: Column titles refer to plantid from table 4.1. 99 percent confidence in-
tervals in brackets are robust to HC3 heteroskedasticity. A dash (–) indicates
that there is no sufficient variation in that variable to identify an effect. It
is therefore omitted from the regression. Reported parameters are estimates
from equation (4.9), disregarding observations with overlapping redispatch
mandates. All variables are first-difference transformed before estimation.
Cumby-Huizinga test does not reject the null hypothesis of no first-order se-
rial correlation in the error term. The number of lags required to make the

model dynamically complete is reported in “Lags”.

TABLE D.25: Full regression results of scheduled output on fundamentals dis-
regarding overlapping observations
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