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1. Introduction 
 

1.1 Historic development of immune checkpoint therapies  
Currently, cancer treatment comprises a variety of different approaches, of which surgery, 

radiotherapy, and chemotherapy are dominating the field of cancer treatment. However, these 

cancer treatments are not specific for the cancer cells and thus they are accompanied by a 

high degree of side effects. Cancer immunotherapy has revolutionized anticancer therapeutics 

by restoring the preexisting anti-cancer immune response. Indeed, a great number of 

immunotherapy drugs have been successfully used in the clinic, effectively inhibiting tumor 

growth, maintaining immune homeostasis, and prolonging patient survival with minimal 

adverse effects (Kennedy and Salama, 2020). Given the emerging importance of 

immunotherapy, in 2018 James Allison and Tasuku Honjo were awarded with the Nobel Prize 

in Medicine or Physiology for their extraordinary contributions to the field of immunotherapy. 

 

The spectrum of cancer immunotherapies is broad. Generally, immunotherapies are aiming for 

a reactivation of the immune system against malignant cells. The immunotherapy strategies 

include cancer vaccines, lymphokines, cell-mediated therapies like chimeric antigen receptor 

(CAR) T-cell therapy, and immune checkpoint blockade: For example, dendritic cell therapy 

has achieved a high efficacy in pancreatic cancer, by using short peptides or tumor lysates in 

combination with adjuvants (e.g., GM-CSF) to induce dendritic cells to present antigens 

(Palucka and Banchereau, 2013, Lutz et al., 2011). In addition, CAR engineered T-cells, which 

are immune cells isolated from cancer patients and modified to gain a new ability for specific 

proteins to effectively destroy tumor cells, have generated impressive efficacy against B-cell 

malignancies (Sermer and Brentjens, 2019). 

 

Immunotherapies were developed based on the concept that malignant cell eventually gain 

immune escape mechanisms to evade anti-tumor immune reaction (Chen and Mellman, 2017). 

The immune system plays a critical role in immunosurveillance by detecting the tumor's 

aberrant antigen and initiating innate and adaptive immune responses to eradicate tumor cells: 

For instance, tumor cells release cytokines that act as ligands which activate negative 

regulatory pathways to consequently suppress immune responses (Chen and Mellman, 2017). 

Also, malignant cells become resistant to an immune induced apoptosis by tyrosine kinase 

mutations or IFNγ-receptor alterations (Dunn et al., 2002). Hence, cancer 

cells may survive during the recognition and elimination process. Consequently, the 

resistance to antitumor immune response allows tumor cells to exponentially grow and spread 

(Schreiber et al., 2011). Multiple mechanisms have been proposed to explain how the evasion 

of cancer cells occurs, including low immunogenicity and inhabitation of cytokine production 
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(Dunn et al., 2002) . Activation of key molecules that restrain immune response (also known 

as immune checkpoints) is considered to be one of the most indispensable components of 

tumor escape, which can inhibit T-lymphocyte activation and enhance the immune tolerance 

of tumor cells (Bagchi et al., 2021). Immune checkpoint inhibitory therapies benefit from the 

establishment of predictive biomarkers to assist oncologists finding constructive therapies for 

their patients, to select patients who would benefit from such therapy regiment, and to limit 

side effects (Gibney et al. 2016). Among these immune checkpoint molecules, programmed 

cell death protein 1 (PD-1), programmed cell death-ligand 1 (PD-L1) and cytotoxic T-

lymphocyte-associated antigen 4 (CTLA-4) has been identified as a driver of tumor’s immune 

evasion strategies and thus provide a promising target for inhibitory antibodies directed against 

these immune checkpoints (Bagchi et al., 2021) .  

 

A new era of immunotherapy is targeting the immune checkpoint receptors to inhibit immune 

evasion mechanisms which hamper the anti-cancer immune reaction. Over the past few 

decades, tremendous progress has been made in immune checkpoint therapy (Couzin-

Frankel, 2013). Anti-CTLA4, anti-PD-1, and anti-PD-L1 immune checkpoint inhibitors have 

shown remarkable clinical responses in a large fraction of patients across several different 

tumor entities, such as a high response rate to anti-PD-1 therapy in malignant melanoma 

(Kluger et al. 2017, Hodi et al., 2010) or to anti-PD-L1 therapy in advanced solid tumor types 

(Patnaik et al. 2020). Since the US Food and Drug Administration (FDA) approval of ipilimumab 

in 2011, which is directed against the CTLA-4 checkpoint, multiple immune checkpoint 

inhibitors have been approved for cancer therapy (Hargadon et al., 2018). To date, numerous 

clinical trials have been conducted to assess the efficacy and practicability of immune 

checkpoint inhibitors as monotherapy or combinatorial strategies. It has been shown that 

immune checkpoint therapy has become one of the most emerging fields in immune oncology. 

 

1.2 Immune checkpoint inhibitors in colorectal cancer  
Prior to the development of immune checkpoint therapy, solid tumor immunotherapy was 

mostly ineffective (Robert, 2020). Traditional immunotherapies like vaccines showed limited 

benefits and severe adverse effects (Rosenberg et al., 2004). However, immune checkpoint 

therapy has formed a new landscape in the field of cancer immunotherapy. In addition, a phase 

2 clinical trial demonstrated that pembrolizumab therapy (PD-1 blockade) can result in durable 

antitumor immune responses in colorectal cancer patients with microsatellite instability and/or 

mismatch-repair deficiency (MSI/dMMR) (Le et al., 2015). Currently, immune checkpoint 

inhibitors including pembrolizumab, nivolumab (anti-PD-1), and ipilimumab (anti-CTLA-4) have 

been approved by the FDA for MSI-high/dMMR cancers regardless of the primary tumor 

locations. Of note, colorectal cancer is well known for its high tumor mutational burden and 
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thus a high degree of immunogenic neoantigens in the tumor microenvironment, that drives a 

strong infiltration by tumor-specific cytotoxic T-lymphocytes (TILs) (Yarchoan et al., 2017). 

Thus, these characteristics indicate that MSI/dMMR colorectal cancers are characterized by 

a preexisting anti-cancer immune response.  

 

However, MSI/dMMR represents just a small part of colorectal cancers (14%) (Cohen et al., 

2020). Thus, the majority of colorectal cancer, that exhibits unsatisfying responses to 

monotherapy, is microsatellite stable and mismatch-repair proficient (MSS/pMMR), displays a 

low level of tumor mutational burden, a lack of tumor-infiltrating lymphocytes (TILs), and an 

immunosuppressive status of the tumor microenvironment (Cohen et al., 2020).  Given that 

immune checkpoint monotherapy showed limited efficacy in MSS/pMMR colorectal cancers, 

the combination treatment, such as the combination of PD-1 and CTLA-4 inhibitors, might elicit 

synergistic anti-tumor effects and provide novel insights for MSS/pMMR colorectal cancers. 

Phase 2 and 3 trials are currently being conducted to further investigate the potency of 

combined immune checkpoint therapies in colorectal cancer (Overman et al., 2018). In a 

recent phase 2 study (NCT02060188), response and a prolonged progression-free as well as 

overall survival were observed in an MSS/pMMR colorectal cancer treated with anti-PD-1 

combined with anti-CTLA-4 therapy (Overman et al., 2018). Identifying alternative 

combinations with other modulating agents might improve the response to immune checkpoint 

inhibitors in colorectal cancers. Taken together, MSS/pMMR colorectal cancer is an arduous 

challenge for immune checkpoint therapy, requiring a thorough understanding of the tumor 

microenvironment and the relationship between immune cells and tumor cells. 

 

1.3 Limitations of immune checkpoint therapy 
Despite the success of immune checkpoint therapy in some advanced and therapy refractory 

human cancers, only a small fraction of patients (ranging from 10% to 30%) achieves benefits 

in most cancers such as non-small cell lung cancer, urothelial bladder cancer, and melanoma 

(Ribas and Wolchok, 2018).  For example, head and neck cancer patients treated with 

pembrolizumab (anti-PD-1) or nivolumab (anti-PD-1) showed a 13.3% or 16% immune 

response (Johnson et al., 2020, Mehra et al., 2018). The melanoma patients treated with 

Ipilimumab (anti-CTLA-4) exhibited a 16.8% of immune response (Larkin et al., 2015). Of note, 

colorectal cancer patients with MSS/pMMR PD-1 immune checkpoint therapy failed to achieve 

immune response to PD-1 blockade (Le et al., 2015). In contrast some other entities such as 

Hodking’s lymphoma higher overall response rates – up to 87% – were observed (Meti et al., 

2018). The mechanisms of low-responsiveness have been thoroughly investigated and many 

factors have been found to be associated with it, such as PD-L1 expression, tumor mutational 

burden, Tumor-infiltrated lymphocytes (Duffy and Crown, 2019). Currently, dual blockade of 
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immune checkpoints seems to be a promising approach to improve immune response 

(Hellmann et al., 2018). 

 

In addition to the generally low immune response rate of immune checkpoint therapy, it is also 

frequently linked to distinct toxicities that are well known as immune-related adverse events 

(irAEs) (Larkin et al., 2015). With the increasing use of immune checkpoint inhibitors, the 

incidence and severity of irAEs also seem to be rising, as some reports indicate a 10-30% 

frequency of severe irAEs (Spain et al., 2016). Any organ can be affected by irAEs, but irAEs 

vary between patients and immune checkpoint inhibitors and typically affect the 

gastrointestinal tract, skin, lung, endocrine, and central nervous system (Postow et al., 2018). 

Even though the occurrence of irAEs suggests a favorable prognosis for some patients 

receiving immune checkpoint therapy, serious irAEs can also potentially lead to treatment 

termination and fatal outcomes. Additionally, life-threatening irAEs can appear in the early 

stage of treatment, typically three month after treatment (Chan et al. 2020), particularly for 

patients treated with combinatorial therapies: In a meta-analysis, patients receiving a PD-1 

combined with a CTLA-4 blockade experienced irAEs onset of fatal outcomes within the first 

14.5 days of treatment (Wang et al., 2018). Furthermore, severe toxicities usually require early 

drug intervention, such as corticosteroids, to prevent irreparable consequences, which may 

also affect the efficacy of the immune checkpoint therapy (Arbour et al., 2018). Arbour et al. 

illustrated, that baseline corticosteroid at the onset of immune check points therapy was 

correlated with poor outcomes in patients with non-small-cell lung cancer (Arbour et al., 2018). 

Therefore, it is urgent to explore biomarkers predicting the efficacy of immune checkpoint 

therapy and the occurrence of irAEs to achieve substantial therapeutic benefits. 

1.4 Predictive biomarkers for response to immune checkpoint therapy  
Predictive markers are biologic surrogates reflecting the likelihood of response to treatment 

before the initiation of therapy. A series of predictive biomarkers based on the tumor 

microenvironment (TME) and tumor biology have proven to predict the clinical outcome of 

patients treated with immune checkpoint inhibitors (Gibney et al., 2016).  

 

The role of PD-L1 expression on tumor cells and immune cells has been extensively 

investigated, owing largely to the crucial role of PD-L1 in suppressing immunogenicity. A wide 

range of prospective studies has shown that elevated PD-L1 expression in the TME is 

correlated with clinical efficacy (Buder-Bakhaya and Hassel, 2018, Diggs and Hsueh, 2017). 

There is some evidence that patients who received a durvalumab therapy (PD-L1 blockade) 

with above 25% PD-L1 expression on tumor cells had preferentially objective responses 

(Antonia et al., 2018). Subsequent trials have demonstrated that a PD-L1 positive TME is a 
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prerequisite for anti-tumor responses, which is linked to an improved progression-free survival 

and overall survival irrespective of therapy types which can be productively used to stratify 

patients for a PD-L1/PD-1 therapy (Borghaei et al., 2015, Garon et al., 2015). As yet, the FDA 

has approved a variety of commercial anti- PD-L1 agents and diagnostic assays to quantify 

PD-L1 expression (Ma et al., 2016). However, as the research progressed, the limitations of 

detecting PD-L1 in IHC were emphasized: Various agents and testing platforms with different 

thresholds of PD-L1 positivity (ranging from 1% to 50%) as well as scoring methods cause 

difficulties in the assessment of PD-L1 expression (Arora et al., 2019). Several studies 

suggested that PD-L1 alone might not be an adequate biomarker to predict the responsiveness 

to therapy (Hodi et al., 2018). Accordingly, an average of 10% of PD-L1 negative patients 

responded to immune checkpoint inhibitors and achieved tumor regression to a certain extent 

(Patel and Kurzrock, 2015). Furthermore, due to the heterogeneous expression of PD-L1, the 

representative biopsy specimen may not truthfully reflect the PD-L1 expression throughout the 

entire tumor parenchyma. Hence, PD-L1 expression is a powerful biomarker for predicting 

response to immune checkpoint inhibitors, but it needs further studies to extend the sole 

analysis of PD-L1 by other biomarkers to improve the predictive performance.  

 

Microsatellite instability refers to functional defects of mismatch repair which are capable of 

rectifying frameshift mutation associated with DNA replication and results in the accumulation 

of short tandem repetitive DNA sequences (termed microsatellites) in the genome (Lin et al., 

2020). Patients with the occurrence of MSI/dMMR, which increases the number of mutations 

and neoantigens, have greater probabilities to attract lymphocytes: Thus, it is intuitive that MSI/ 

dMMR can serve as an adequate predictor for response to immune checkpoint therapy. 

According to Le et al., 40% of colorectal cancer patients with MSI/dMMR had a significant 

objective response to pembrolizumab, compared to 0% of colorectal cancer patients with 

MSS/pMMR (Le et al., 2015). Several studies have also demonstrated that patients with 

MSI/dMMR benefitted from a nivolumab therapy, as well as a combined immune checkpoint 

therapy with nivolumab and ipilimumab (Overman et al., 2017, Overman et al., 2018). 

Identifying MSI/dMMR as a predictive biomarker was a breakthrough for colorectal cancer 

patients: However, MSI/dMMR is only a small fraction of patients (14% of colorectal cancer, 

10% of breast cancers, ≤2% of non-small cell lung cancers, and esophageal cancers), meaning 

that MSI/dMMR cannot be universally applied to most cases (Baretti and Le, 2018). Thus, a 

more broadly applicable marker to predict patient prognosis is urgently needed. 

 
Given that MSI represents a well-established marker for response to immune checkpoint 

therapy, it is intuitive that the mutational burden – displaying the total number of coding 

mutations per megabase of the tumor DNA – has become also a predictive biomarker for 

response to immune checkpoint therapy and patients’ outcome (Boyiadzis et al., 2018). The 
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mutational burden represents the connection between the field of genetics and the likelihood 

of the successful response to immune checkpoint inhibitors in the field of immune oncology. 

The mutational burden leads to tumor specific epitopes (termed neoantigens) which are 

recognized as foreign peptides by tumor infiltrating CD4+ and CD8+ T-cells (Riaz et al., 2016). 

It is intuitive that tumors with a higher mutational burden are more likely to express and present 

neoantigens, consequently inducing a stronger immune response (Lauss et al., 2017, 

Samstein et al., 2019). However, there is evidence that TMB might not be an adequate 

biomarker. A comprehensive study revealed that lung cancer patients with high TMB achieved 

nonsignificant prolonged overall survival from ipilimumab and nivolumab therapies (Hellmann 

et al., 2018). Moreover, Zhou et al., found that colorectal cancer patients with a low mutational 

burden showed a higher overall survival (Zhou et al., 2021). Although the tumor mutational 

burden provides important complementary information for the immune response to immune 

checkpoint therapy, the role of mutational burden as a predictive biomarker remains elusive. 

 

Another predictive biomarker represents the density of TILs, which is associated with improved 

immunotherapeutic response regardless of immune checkpoint inhibitor therapy (Duffy and 

Crown, 2019). Based on the distribution pattern of leucocyte infiltration, immune phenotypes 

can be characterized: The immune tumor microenvironment can be characterized as an 

inflamed and non-inflamed immune phenotype (Chen and Mellman, 2017). In the addition, the 

non-inflamed phenotype can be differentiated in an immune-excluded and immune-deserted 

phenotype (Chen and Mellman, 2017). The immune-inflamed phenotype refers to the high 

infiltration of lymphocytes across all components in the tumor microenvironment, in which 

active immune responses are seen (Mandelkow et al., 2019). The immune-excluded 

phenotype is classified by immune cells that are predominantly located at the invasive margin 

and cannot penetrate the tumor parenchyma so that the center of the tumor apprears rather 

non-inflamed (Chen and Mellman, 2017). Furthermore, the immune-desert phenotype is 

characterized by the absence of lymphocytes in both, the center of tumor and at the invasive 

margin (Havel et al., 2019). To quantify the status of tumor infiltrating lymphocytes, an 

immunoscore has been proposed based on the density of T-cells located at the invasive marin 

and the center of the tumor, which was associated with longer disease-free survival and was 

considered to be an independent prognostic factor (Galon et al., 2006). Another study revealed 

that an immunoscore was superior to MSI as a predictive biomarker for predicting patients' 

disease-specific recurrence and survival in colorectal cancer, indicating that fundamental 

characteristics of TILs may be fundamental for the understanding of the tumor 

microenvironment and could be a guidance for clinicians using immune checkpoint therapy 

(Mlecnik et al., 2016). 
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1.5 Immune cell accumulation and predictive value  
Although the overall density of immune cells has been studied widely, local accumulations, 

which play a key role in the immune escape mechanism, remains unclear (Jansen et al., 2019). 

Evidence suggests that the presence of locally enriched immune cells serves as a novel 

prognostic biomarker that can facilitate TIL recruitment, rather than the assessment of the 

overall density (Di Caro et al., 2014). Numerous studies have evaluated the role of tertiary 

lymphoid structures, ectopic lymphoid tissues with high densities of TILs, macrophages, and 

dendritic cells distributed across different tumor types, and have consistently found an 

association between high numbers of tertiary lymphoid structures and favorable survival 

(Sautes-Fridman et al., 2016). In addition, Patel et al., showed that the microenvironmental 

niche consisting of PD-L1+ Hodgkin Reed-Sternberg cells and macrophages were enriched 

along with CTLA-4+ PD-1- T-cells (Carey et al., 2017). Moreover, Jansen et al., have revealed 

that stem-like (TCF+CD8+) T-cells are closer to the aggregations of antigen-presenting cells 

(APCs) and that the development of immune niches was associated with T-cell- and vascular 

infiltration (Jansen et al., 2019). These facts suggest that the immune niche was an important 

driving factor for the anti-cancer immunity (Jansen et al., 2019). With the evidence presented 

above, it is possible that the characteristics and features of local accumulated immune cells in 

the TME are the key to understand the morphological mechanism of tumor escape. All these 

findings raise a profound question of how immune checkpoints perform within immune niches. 

 
1.6 CD112R 
 
1.6.1 Structure, function, and expressing cell types 
CD112R (PVRIG) is a transmembrane protein consisting of an extracellular immunoglobulin V 

domain, a transmembrane domain, and an intracellular domain (Zhu et al., 2016). CD112R 

was originally named "poliovirus receptor-associated immunoglobulin structural domain 

containing" (PVRIG) to indicate the structure of the protein: After identifying the protein as a 

novel inhibitory immune-checkpoint receptor, PVRIG was named CD112-receptor (CD112R) 

to emphasize the relationship between PVRIG and CD112 (Zhu et al., 2016). Interestingly, the 

intracellular structural domain of CD112R has two tyrosine residues, one of which is an 

immunoreceptor tyrosine-based inhibitory motif (ITIM) that can be phosphorylated for 

activation signal transduction (Billadeau and Leibson, 2002). Zhu and colleagues revealed that 

CD112R inhibits T-cell receptor (TCR) -mediated activation of nuclear factor of activated T-

cells (NFAT) and attenuate or terminate immune responses (Zhu et al., 2016). These results 

have been successively confirmed by another study in which CD112R-deficient mice had 

enhanced immune responses and tumor regression in vivo due to the inhibitory effect of 

interaction between CD112R and Nectin-2 on cytokine production of T-cells (Murter et al., 

2019). Moreover, CD112R is associated with NK cell suppression. Xu et al., discovered that 
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PVR-like (e.g., TIGIT and CD112R) ligand can lead to NK cell internalization and an increasing 

NK cell cytokine production by blocking TIGIT and/or CD112R (Xu et al., 2017). 

 
 
1.6.2 Ligands and interaction network  
Nectin or nectin-like molecules expressed on APC or tumor cells competitively or 

synergistically bind to receptors like CD112R, which belongs to the immunoglobulin 

superfamily receptors, including T-cell immunoglobulin and ITIM domain (TIGIT), 

CD226/DNAM-1, and CD96/TACTILE. Nectin proteins contain four molecules including nectin-

1 (PVRL1/CD111), nectin-2 (PVRL2/CD112), nectin-3 (PVRL3/CD113), and nectin-4 (PVRL4). 

Nectin-like proteins contain five molecules (necl-1-5), of which necl-5 (PVR/CD155) plays a 

key role in the network of interactions.  

 

Poliovirus receptor (PVR) has been reported as a potential target for antitumor treatment (He 

et al., 2000, Bowers et al., 2017). Although PVR is not fully understood, many studies have 

shown that it is a stress-induced transmembrane ligand and a direct marker of malignancy 

progression, shown by an activation of the Shh pathway (abnormally activated in malignant 

tumors) and the ATM/ATR pathway (generally found in precancerous lesions) due to 

upregulation of PVR (Solecki et al., 2002, Soriani et al., 2009). Mechanically, PVR can bind to 

TIGIT, CD226, and CD96. The binding of PVR to different receptors can prompt reverse 

immune responses, including interactions with CD226 enhancing T-cell cytotoxicity and 

cytokine production as well as interactions with TIGIT conversely leading to suppression of 

immune responses: But the function of the interaction between PVR and CD96 remains 

unknown (Gorvel and Olive, 2020). However, PVR binds TIGIT with highest affinity, and binds 

TIGIT also through homodimerization of CD226, which leads to the overall inactivation of T-

cells (Chauvin and Zarour, 2020). Thus, inhibition of TIGIT would be an intuitive strategy to 

reactivate T-cells via the PVR network. A number of Phase 1 and Phase 2 clinical trials with 

TIGIT alone or in combination are currently in progress (Sanchez-Correa et al., 2019, 

Rodriguez-Abreu et al., 2020, Ambrosi et al., 2019) and an anti-TIGIT antibody (Tiragolumab) 

in lung cancer patients has shown prolonged progression-free survival (Harjunpaa and 

Guillerey, 2020, Rodriguez-Abreu et al., 2020). Notably, TIGIT also binds to nectin-2 

(PVRL2/CD112), but with less affinity compared  to the PVR-TIGIT axis (Harjunpaa and 

Guillerey, 2020). Given the redundant function of PVR in regulating immune responses, nectin-

2 (PVRL2/CD112) may also be a promissing target for immunotherapy. 

 

Nectins are adhesion molecules involved in the growth and development processes of various 

tissues as well as viral infections and cancers (Takai et al., 2008). Nectin-2 (PVRL2/CD112) is 

expressed by tumor cells and a few myeloid cells (e.g., APC) (Takai et al., 2008). In addition, 
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PVRL2 can also bind to CD226 and TIGIT, initiating stimulation or suppression of the immune 

response. However, the affinity of CD112R-PVRL2 was significantly higher than the one of 

TIGIT-PVRL2 and CD226-PVRL2. A recent study showed that the inhibitory effect of PVRL2 

is transmitted through CD112R rather than TIGIT (Whelan et al., 2019). Moreover, several 

studies showed that the blockade of CD112R can effectively improve the cytotoxicity of CD8+ 

T-cells (Gorvel and Olive, 2020, Murter et al., 2019). Of note, the CD112R-PVRL2 axis has 

become an emerging inhibitory pathway that offers new opportunities for immunotherapy to 

synergize with PD-1/PD-L1 blockade therapies. Nevertheless, only a limited number of trials 

and studies are investigating the CD112R-PVRL2 pathway, and many questions still need to 

be answered to unveil the mechanism of this pathway. 

 
Figure 1: Interaction network between the immune checkpoint receptors (blue) and their 
ligands (green). The size of the arrows indicates the affinity of the interaction. 
 

1.6.3 CD112R expression in human and mouse 
CD112R is expressed on CD4+ and CD8+ T-cells, NKT-cells, and natural killer (NK) cells 

(Whelan et al., 2019, Zhu et al., 2016, Xu et al., 2017). Zhu et al. found a detectable expression 

of CD112R in most T-cells and NK cells analyzing the mRNA expression level. Another study 

showed that CD112R transcripts were enriched in NK and NKT-cell, but not detectable in B-

cells in mouse models (Murter et al., 2019). Whelan et al. confirmed that CD8, CD4, and NK 

cells express CD112R (Whelan et al., 2019). Thereby the highest CD112R expression on CD8+ 

and CD4+ T-cells was detected in ovarian, kidney, lung, endometrial, and breast cancers, while 

the highest CD112R expression on NK+ cells were detected in prostate cancer (Whelan et al., 

2019). Moreover, CD112R was co-expressed with other immune checkpoints (e.g., TIGIT and 

PD-1), suggesting an exhausted status of such T-cells (Whelan et al., 2019). Blockade of 
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CD112R and/or TIGIT can effectively enhance the immune response triggered by NK cells (Xu 

et al., 2017).  

 

1.6.4 Prognostic relevance of CD112R in neoplasms  
The prognostic relevance of CD112R might be pivotal for a deeper insight in this immune 

checkpoint. However, the current reports of CD112R are so sparse that there is very limited 

knowledge of the prognostic role of CD112R: Qiao et al., and Tang et al., reported that elevated 

CD112R gene expression was significantly associated with longer overall and relapse-free 

survival in hepatocellular carcinoma  (Qiao et al., 2019, Tang et al., 2019).  

 
1.6.5 Clinical trials   
As yet, there are phase 1 (NCT03667716) and 2 clinical trials (NCT04570839) using anti-

CD112R therapy ongoing. These studies are assessing the clinical efficacy of COM701, a 

novel humanized CD112R inhibitor, as a monotherapy compared to a combination therapy 

with nivolumab for patients with advanced solid malignancies. Preliminary results reported that 

69% of patients in the COM701 monotherapy cohort and 75% of patients in the combination 

therapy cohort – combined with an anti-PD-1 treatment – achieved clinical disease control 

(Sullivan et al., 2020b). This study demonstrated that COM701 was well-tolerated as both a 

stand-alone treatment and in combination with nivolumab in patients with a wide range of late-

stage neoplasms. Notably, even in refractory tumor types (primary peritonitis and MSS/pMMR 

colorectal cancer), COM701 showed immunotherapeutic responses as monotherapy or in 

combination with nivolumab (Sullivan et al., 2020a). Moreover, adverse effects were tolerable: 

mainly fatigue, nausea, and anxiety appeared after treatment (Sullivan et al., 2020b). This 

study further evaluated the safety, tolerability, and preliminary antitumor activity of COM701 

alone for patients with advanced neoplasms (Lentz et al., 2021). The results of the study 

exhibited the favorable tolerability and safety profile of COM701 (Lentz et al., 2021). 

 

1.7 Multiplex-Fluorescence-Immunohistochemistry 
Immunohistochemistry (IHC) is a qualitative and quantitative application using the principle of 

specific antibody binding to distinct molecules in formalin fixed and paraffin embedded tissues 

to visualize the target proteins via a detection system for the specific antibody binding. Since 

the 1970s, the conventional bright field immunohistochemistry (bfIHC) has been applied to 

pathological diagnostics, which is an essential tool for tumor classification and prognosis 

assessment in routine clinical pathology. However, the detection of only a single marker might 

be insufficient in some situations (e.g., biopsies with only a limited amount of tissue). To 

address this issue, in multiplex fluorescence immunohistochemistry (mfIHC) the detection 
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system of the primary antibodies allows the characterization of up to 40 biomarkers 

simultaneously or sequentially (Goltsev et al., 2018).   

 

There are several mfIHC staining techniques using sequential antibody staining or sequential 

fluorochrome biding. The mfIHC with the strongest fluorescence signal is the tyramide signal 

amplification (TSA) method, which is a class of enzymatic assays that use horseradish 

peroxidase (HRP) for high-density in situ labeling of target proteins or nucleic acids (Stack et 

al., 2014). Like conventional immunohistochemistry development, the TSA technique also 

uses HRP-labeled secondary antibodies. HRP catalyzes the addition of a fluorescein 

substrate to the system to generate an activated fluorescent substrate, which can covalently 

bind to the tyrosine on the antigen, resulting in stable binding of fluorescein on the tissue 

sample. Afterwards, the bound antibody is washed away, and the next primary antibody 

staining step using another fluorescein substrate can be performed. In contrast to this 

sequential antibody staining approach, the co-detection by indexing (CODEX) framework 

stains all primary antibody’s at the same time which are detected by fluorochromes via 

specific DNA-barcodes hybridization sequentially along with multiple cycles of fluorochrome 

binding and imaging (Goltsev et al., 2018).   
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2. Material and Methods 
 
2.1 Colorectal cancer large sections 
In this study, two different colorectal cancer cohorts were used. The first cohort consisted of 

20 large sections from colorectal cancer patients, whose tumor resection specimens were 

examined at the Institute of Pathology of the University Medical Center Hamburg-Eppendorf, 

were used in this study. All 20 cases were inspected by an experienced pathologists to ensure 

tissue integrity and diagnostic correctness. The median overall follow-up time of each patient 

was 15 months (range 1–36 months). The patient’s median tumor diameter was 46 mm (range 

22-130 mm). All tissues were fixed in formalin and individually embedded in paraffin blocks. 

The Hematoxylin and Eosin staining (H&E) was performed to first display the structures of the 

tissues before multiplex fluorescence immunohistochemistry was applied. The construction of 

large sections for research purposes have been approved by local laws (HmbKHG, §12,1) and 

by the local ethics committee (Ethics commission Hamburg, WF-049/09). All work was 

performed in compliance with the Helsinki Declaration. (For patient characteristics of large 

section see Table 1) 

 

 
 
Table 1: Patient characteristics are shown for the large section cohort.   
 
2.2 Colorectal cancer tissue microarrays 
Tissue microarrays (TMAs) are a classical pathological technique that arranges a large number 

of tissue cores accurately in the same paraffin-embedded block and allows to stain up to 600 

patients at the same time within on experiment (Kononen et al., 1998, Sauter et al., 2003). The 

corresponding tissue samples were collected from the archives of the Institute of Pathology of 

Patients characteristics Study cohort on TMA (n=20) Overall death among 
categories

Follow-up - no. (%)      20 (100.0%)   6 (30.0%)
Mean/median - months 20.1/15.0 -
Tumor diameter (mean/median) - mm 52.8/46.0 -

pT stage - no. (%)
pT1 0 (0% ) 0 (0%)  
pT2 3 (15%) 0 (0%)  
pT3 14 (70%) 5 (36%)
pT4 3 (15%) 3 (33%)

pN stage - no. (%)
pN- 11 (55%) 2 (18%)
pN+ 9 (45%) 4 (44%)

Vascular invasion - no. (%)
Negative 10 (50%) 1 (10%)

Positive 10 (50%) 5 (50%)

No. of patients (%)
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the University Medical Center, Hamburg-Eppendorf by an experienced pathologists to ensure 

the correctness of the diagnosis and the potential availability in the TMA. The TMAs were 

constructed from 4% buffered formalin fixed, paraffin embedded archived tissue samples. 

Briefly, a 0.6 mm core was taken from each patient's tumor-containing tissue block.  The tissue 

punches were evenly distributed across the TMA blocks.  

 

The second cohort of this study consisted of one TMA, which was manufactured from resection 

specimens of 522 colorectal cancer patients at the Institute of Pathology of the University 

Hospital of Basel. Raw survival data were obtained from the responsible physicians for all 522 

patients. The median overall follow-up time was 58 months (range 1–152 months). The use of 

archived diagnostic left-over tissues for manufacturing of TMAs and their analysis for research 

purposes has been approved by local laws (HmbKHG, §12,1) and by the local ethics 

committee (Ethics commission Hamburg, WF-049/09). All work was performed in compliance 

with the Helsinki Declaration. (For patient characteristics of TMA see Table 2) 
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Table 2: Patient characteristics are shown for the TMA cohort.   
 

Patients characteristics Study cohort on TMA (n=522) Overall death among 
categories

Follow-up - no. (%) 522 (100.0%)    334 (60.5%)
Mean/median - months 64.5/58.0 -
Age (median) - years 71.0 -
Tumor diameter (mean/median) - mm       51.7/50.0 -
pT stage - no. (%)

pT1   17 (3.3%)     4 (23.5%)
pT2   67 (12.8%)   26 (38.8%)
pT3 355 (71.0%) 236 (66.5%)
pT4   69 (13.2%)   61 (88.4%)
Missing data   14 (2.7%) -

pN stage - no. (%)
pN- 255 (48.9%) 125 (49.0%)
pN+ 246 (47.1%) 198 (80.5%)
Missing data    21 (4.0%) -

Grade - no. (%)
1   11 (2.1%)      2 (18.2%)
2 462 (88.5%)  300 (64.9%)
3   34 (6.5%)    24 (70.6%)
Missing data   15 (2.9%) -

Histotype - no. (%)
Adenocarcinoma 472 (90.4%) 302 (64.0%)
Medullary      4 (0.8%)     3 (75.0%)
Mucinous   35 (6.7%)   23 (65.7%)
Signet ring cell     2 (0.4%)     2 (100.0%)
Missing data     9 (1.7%) -

Tumor localization - no. (%)
Anal   12 (2.3%)     6 (50.0%)
Appendix     1 (0.2%)     1 (100.0%)
Ascendens   59 (11.3%)   38 (64.4%)
Cecum   76 (14.6%)   55 (72.4%)
Descendens   28 (5.4%)   17 (60.7%)
Rectosigmoid   31 (5.9%)   21 (67.7%)
Rectum 179 (34.3%) 119 (66.5%)
Sigmoid   87 (16.7%)   47 (54.0%)
Transversum   48 (9.2%)   29 (60.4%)
Missing data     1 (0.2%) -

Vascular invasion - no. (%)
Negative 364 (69.7%) 209 (57.4%)
Positive 144 (27.6%) 118 (81.9%)
Missing data   14 (2.7%) -

Invasive margin - no. (%)
Infiltrating 360 (69.0%) 251 (69.7%)
Pushing 146 (28.0%)   75 (39.0%)
Missing data   16 (3.1%) -

Peritumoral lymphocytes - no. (%)
Absent 385 (73.8%) 255 (66.2%)
Present 123 (23.6%)   72 (58.5%)
Missing data   14 (2.7%) -

No. of patients (%)
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2.3 Representativity of immune oncology study in TMA format 
To further explore the representativity of the TMA method for CD8+ cytotoxic T-cell 

assessment, the large sections were used to model a virtual TMA: 50 virtual TMA cores were 

randomly allocated within the center of the tumor and the CD8+ density of every virtual TMA 

core was calculated (Figure 2). The data underlined that the TMA format – with 0.6 mm in 

diameter tissue cores – was an appropriate method for quantifying the CD8+ density in the 

tumor center which was also in line with earlier findings (Blessin et al., 2020). However, large 

sections might be superior for the analysis of T-cell niches compared to the analysis of 0.6mm 

TMA cores. Although the TMA method is a very robust and highly standardized tool for the 

analysis of tumor markers and abundant immune cells, the TMA format may not be adequate 

for rare immune cell subtypes. 

 
 
Figure 2:  The representative multiplex fluorescence immunohistochemistry image of a large 
section is displayed. The virtual TMA grid (50 cores) is applied to mimic the TMA segmentation, 
one core represents one punch (top). The CD8+ density of each punch and overall density of 
the large section is calculated (bottom). 
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2.4 Cell culture, transfection of CD112R over-expressing HeLa reference cell line, and 
reference cell line TMA construction 
 

2.4.1 Cell culture, transfection of CD112R over-expressing HeLa reference cell line  
Human cervix epithelial carcinoma cells (HeLa) were maintained in DMEM (Dulbecco’s 

Modified Eagles Medium, Gibco), complemented with 10% fetal bovine serum (FBS) and 1% 

penicillin-streptomycin (P/S). The HeLa cells were cultured in multi-layer cell culture flasks at 

37°C and 5% CO2. The construct encoding for CD112R (PVRIG) under control of the CMV 

promoter was acquired from Sino Biological Inc. (Beijing, China). The vector was transformed 

in competent Escherichia coli cells (One ShotTM Top10, ThermoFisher Scientific, Germany). 

The amplified plasmid was extracted by using the plasmid purification kit (Macherey-Nagel) 

according to the manufacturers’ instructions. After the DNA product was diluted with distilled, 

sterile water, the final concentration was measured with a NanoDrop-1000 spectrophotometer 

(PeqLab). The construct was finally used for transfection. In brief, 3x106 Hela cells were 

seeded on sterile petri dishes cultured in 20 mL of DMEM supplemented with 10% FBS and 

1% P/S and incubated at 37°C to achieve around 50 - 60% of confluence. After 24 h the cells 

were washed with PBS (1x) and 8 mL fresh medium was added followed by transfection with 

the CD112R plasmid DNA using JetPEI DNA Transfection reagent (Polyplus- transfection S.A., 

BIOPARC, Illkirch France) according to the manufacturers’ instructions.  

 
2.4.2 Reference cell line TMA construction 
After 24h the cells were harvested with 4 mL AccutaseTM and centrifuged at 1000 x g for 5 min 

at room temperature. The cells were embedded in agarose followed by a formalin fixation and 

lastly implanted in a paraffin block. As a negative control HeLa cells without transfection were 

added. Both cell lines were represented in duplicate and added to the reference TMA. 

Additionally, seven tonsil tissues (including follicular and interfollicular) from healthy donors 

were also be integrated to the reference TMA according to the previously mentioned steps.  

      
Figure 3: The representative reference TMA image (A) and reference TMA layout (B) are 
displayed.  
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2.5 Multiplex fluorescence immunohistochemistry 
Freshly cut 4-µm consecutive tissue sections were used for multiplex fluorescence 

immunohistochemistry analyses. The specificity of the anti-CD112R antibody clone DIA-R12 

(Dianova, Hamburg, Germany) was validated by Western blot, Enzyme-linked immunosorbent 

assay (ELISA), and pre-absorption of the primary antibody with CD112R protein. In addition, 

the staining pattern of this particular anti-CD112R antibody was extensively evaluated in 

normal lymphatic tissue and cancer earlier (Blessin et al., 2021b). For fluorescence multiplex 

IHC, the OPAL dye kit (Cat. # NEL811001KT, AKOYA Biosciences, Menlo Park, California, 

United States) was used. Details on the used antibodies, antibody retrieval procedures and 

OPAL dyes are given in Table 1. The experimental procedure was performed according to the 

manufacturer’s instructions (AKOYA). Slides were initially boiled in an autoclave (30 minutes 

at 100-120°C in pH9 buffer) for antigen retrieval. One cycle of antibody staining included 

peroxidase blocking, application of the primary antibody, detection with a secondary HRP-

conjugated antibody, fluorescence dye detection, and removal of the bound antibodies by 

microwave treatment (5 minutes at 100°C and 5 minutes at a mean temperature of 93°C). This 

cycle was repeated three times for the remaining antibodies. Slides were subsequently 

counterstained with diamidinoino-2-phenylindole (DAPI) and mounted in antifade solution. 

Antibody  
target Identifier AR  

(pH value) Dilution Staining 
position  

Opal 
dye 

Ki67 MSVA, Clone: MSVA-267R 
Cat#: 2843-267R 9.0 1:50 1 520 

CD112R Dianova; Clone: R12 
Cat#: DIA-R12 7.8 1:500 2 570 

PD-1 Abcam; Clone: EPR4877(2) 
Cat#ab137132 7.8 1:150 3 690 

CD8 DAKO; Clone: C8/144B 
Cat#IR623 9.0 RTU 4 780 

(MSVA: MS Validated Antibodies GmbH, AR = antigen retrieval; Cat# 

= Catalogue number; RTU = Ready to use) 
    

Table 3: List of used antibodies, antigen retrieval (AR), dilutions, and Opal dyes for multiplex 
fluorescence immunohistochemistry. 
 

2.6 Deep learning-based digital image analysis approach.  
A representative example of the image analysis workflow has been described earlier (Blessin 

et al., 2021b, Blessin et al., 2021a). In brief, digital images of mfIHC stained slides were 

acquired with a Leica Aperio VERSA 8 automated epifluorescence microscope and a Zeiss 

Axio Scan.Z1 slide scanner. Image analysis was performed using a U-net deep learning 

algorithm for cell detection, cell segmentation and intensity measurement of the used 

fluorophores (range 0-255, i.e., a continuous numerical value indicating the fluorescence signal 

strength), which we have trained and validated using python version 3.8 (Foundation, 2021) 
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and the Visiopharm software package (Hoersholm, Denmark). Annotated cells from more than 

100 different tumor entities were used to train the cell detection U-Net. The intensity of each 

fluorochrome was recorded as raw intensity for every individual cell. Only staining intensities 

exceeding a predefined threshold were considered “positive”. The threshold was individually 

selected in a multi-step procedure for each marker (CD8, Ki67, CD112R, PD-1) according to 

the following procedure: The fluorescence intensity of each marker was measured in 50 to 200 

cells with expected lack of expression and the value of the cell with highest “false positive” 

measurement was used as provisional cut-off value for positive expression. This value was 

reconsidered by way of plotting the intensity values of the measured markers in scatter plots 

with logarithmic scale using R (R-Core-Team, 2021) to perform an additional gating step (i.e., 

identification of homogenous cell populations that share a particular function), which is well 

known from flow cytometry (Bashashati and Brinkman, 2009). The measured threshold from 

these two validation steps was reviewed by a trained pathologist across multiple tissue types 

in a test-TMA before the cut-off has been used.  

 

2.6.1 Large section analysis 
In order to compare CD112R and PD-1 expression levels between different large sections, the 

raw CD112R intensity was normalized to a CD112R over-expressing HeLa reference cell line 

and the raw PD-1 intensity was normalized to follicular T-helper cells (Blessin et al., 2019) in 

the germinal centers of healthy human reference tonsils. Accordingly, two spots of the 

reference cell line and seven spots of the reference tonsils measuring 2mm in diameter were 

placed on each slide and the mean raw intensity of the reference cells was set to 100% for 

each immune checkpoint receptor individually. The relative expression was then calculated as 

the percentage of mean raw intensity of the test cells in relation to the 100% mean raw intensity 

measured in the reference cells.  

1. The center of tumor and invasive margin were defined for 20 large sections. Two 

experienced pathologists were trained to annotate the invasive margin and the center of tumor 

according to the following principles. A boundary line was first drawn between the stroma and 

the tumor, and the invasive margin was then defined according to the boundary line extending 

50μm to the tumor and 300μm to the stroma, the center of tumor was defined as a tumor 

parenchyma away from the borderline. 

2. T-cell niche was detected by the custom algorithm. Dense accumulations of CD8+ cytotoxic 

T-cells were identified as CD8+-T-cell niches by statistical analysis and histopathological 

review (Figure S1). The number of cells close to the index cell were quantified and normalized 

by the area around the index cell using custom R scripts (R-Core-Team, 2021) to calculate the 

local density of cells close to the index cell. A 20µm radius (around the center of the index cell) 

appeared to be most accrued for CD8+ T-cell niche identification (Figure 2). Given the fact that 



21  

the local density of other T-lymphocyte subsets was found elevated along with the local CD8+ 

T-cell density in niches across several tumor types in an earlier study, points out that CD8+ – 

together with several other T-cell subsets – orchestrate general T-cell niches (Blessin et al., 

2021b).  

3. The relative intensity of the immune checkpoint receptors CD112R and PD-1 was calculated 

by dividing the raw intensity values by the corresponding reference cells (i.e., a CD112R over-

expressing HeLa reference cell line for CD112R and the follicular T-helper cells in healthy 

normal reference tonsils). 
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Figure 4: Automated T-cell niche detection by the combination of local density measurements 
and a deep learning-based cell detection. The highest accuracy of T-cell niche detection was 
achieved by calculating the local density of index cells at a 20µm radius. For this purpose, 20 
annotations of niche and non-niche were made by a pathologist. 
 

2.6.2 TMA analysis 
For TMA analysis, spots were manually segmented using the Visiopharm software package 

(Hoersholm, Denmark). Five parameters were measured for every TMA core or tissue 

compartment:  

1. The density of each measured immune cell phenotype per square millimeter was calculated 

by dividing the number of the immune cells by the measured area of each tissue spot. The 

tissue area was measured by a DeepLab3+ deep learning algorithm, which we have trained on 

150 TMA spots using python version 3.8 (Foundation, 2021) and the Visiopharm software 

package (Hoersholm, Denmark).  

2. The percentage of each immune cell subtype was calculated by dividing the number of 

positive cells of this specific subset (e.g., CD8+Ki67+) by the total number of cells belonging to 

the same distinct phenotype (e.g., CD8+) (Blessin et al., 2021c).   

3. The relative intensity of the immune checkpoint receptors CD112R and PD-1 was calculated 

by dividing the raw intensity values by the corresponding reference cells (Blessin et al., 2019)).  

4. The fraction of immune cells located in a T-cell niche which was identified as described 

below.   

 

2.7 Statistical analysis.  
JMP Pro 14 software package (SAS Institute Inc., NC, USA) and R version 3.6.1 (The R 

foundation) (Tippmann, 2015, R-Core-Team, 2021) were used in this study. The clinico-

histopathological parameters of the patients were reported as counts and percentages for 

categorical data. To study the relationship between immune cell densities and 

clinicopathological parameters, contingency table analysis and likelihood ratio Chi-square test 

were used. The prognostic value of immune checkpoint expression and other CD8+ cytotoxic 

T-cell parameters, Kaplan-Meier Estimates (R “survival” (Therneau and Grambsch, 2000) 

package) were used for overall survival as the study endpoint. The log-rank test was applied 

to assess differences between groups in Kaplan-Meier Estimates. Continues parameters were 

allocated to groups for survival analysis according to the average. Time-dependent areas 

under receiver operating characteristic curves were used to estimate the predictive 

performance of immune environment scores (R “riskRegression” (Blanche et al., 2013) 

package). All p-values were two-sided, and p-values <0.05 were considered as significant. 

The “Rtsne” package was used to perform the t-distributed stochastic neighbor embedding (t-
SNE) algorithm. The per cell data retrieved from our cell detection deep learning algorithm 

were normalized by log-transformation (Kobak and Berens, 2019) and used as input for the t-
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SNE algorithm. The perplexity, theta, and iteration parameters were selected by systematic 

visual inspection to illustrate patterns of CD112R and PD1 expression on proliferating and non-

proliferating CD8+ cytotoxic T-cells. Unsupervised cluster analysis using custom R scripts 

based on “gplots, hclust” was applied on the per cell as well as the mean per patient densities/ 

intensities of the stained markers (Samusik et al., 2016). For unsupervised cluster analysis, 

the densities and intensities were normalized using the Min-max algorithm (Cao et al., 2016). 

The colors in the heat map represent the normalized measurements of a given cluster.  
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3. Results   
 
3.1 Expression profile of CD112R and PD-1 on CD8+ T-cells 
A total of 20 (100%) colorectal cancer large sections and 503 (96%) of 522 colorectal cancer 

patients in one tissue microarray (TMA) format were interpretable in this study. The remaining 

19 tumor samples were excluded due to missing tissue, a non-representative small number of 

cells (<200 cells), or blurry tissue. A total of 257’767 (2.5%) CD8+ T-cells of 10’471’289 cells 

were analyzed (TMA: 18584 (1.7%) CD8+ T-cells of 1’124’462, Large sections: 239233 (2.6%) 

CD8+ T-cells of 9’346’827). Both immune checkpoints were detected on CD8+ T-cells (Figure 

5). Regardless of the localization, CD112R was expressed by a majority (57%) of CD8+ 

cytotoxic T-cells, while PD-1 expression was only found on a smaller subset (29%) of CD8+ T-

cells (Figure 4-5). Although co-expression of both immune checkpoint receptors was seen on 

19% of all CD8+ T-lymphocytes, a high expression of both immune checkpoints was detected 

in less than 1% of CD8+ T-cells. Despite the fact that joint occurrence of high CD112R and 

high PD-1 expression did also not exceed 1% in different tissue compartments (e.g., niche, 

non-niche, invasive margin, center of the tumor), the fraction of CD8+ T-cells expressing 

immune checkpoints was higher in niche (75%) compared to non-niche (65%) tissue 

compartments.   

 

 
Figure 5: Representative CD8+ cytotoxic T-cell with high CD112R expression (top), high PD-
1 expression (middle), and typical low expression of both immune checkpoints are displayed. 
(184x magnification) 
 

 

3.2 T-cell niche detection  
3.2.1 T-cell-niche detection in large section 
Before quantifying T-cell niche, the overall CD8+ T-cell density of each large section in the 

center of tumor and at the invasive margin was evaluated. The CD8+ T-cell density at the 
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invasive margin was significantly higher than in the center of tumor (p=0.0024). The mean 

CD8+ T-cell density at the invasive margin was 489±335 cell/mm2 (rang from 131 to 1595 

cell/mm2). The mean CD8+ T-cell density in the center of tumor was 180±260 cell/mm2 (rang 

from 181 to 1093 cell/mm2). The heatmap, based on a deep learning cell detection, was used 

to visualize the data and anticipate T-cell niche location compared with the T-cell-detection 

algorithm (Figure 6). 

 

 
Figure 6: The raw mfIHC image and density heatmaps (CD8+ T-cell density (red), CD112R 
relative intensity on CD8+ T-cells (blue), and PD-1 relative intensity on CD8+ T-cells (blue)) are 
shown. 
 
To further quantify the T-cell niche, we performed the T-cell niche detection algorithm on 20 

large sections. The heatmap visualization based on the T-cell niche detection algorithm was 

shown in the following plot (Figure 7). In 20 large sections, the fraction of CD8+ T-cells 

expressing immune checkpoints in niche was higher than non-niche compartments. 29892 
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(41.6%) CD112R+CD8+ T-cells and 24832 (34.6%) PD-1+CD8+ T-cells were located in T-cell-

nests.  

 

 
Figure 7: The raw multiplex fluorescence IHC image (left) and the heatmap visualization of 
automated T-cell niche detection (right) are shown. 
 
 
3.2.1 T-cell niche detection in TMA 

T-cell niche detection was also applied on a TMA. To clarify the expression levels of CD112R 

and PD-1 on CD8+ T-cells in T-cell niches, a t-SNE algorithm was performed in the TMA 

study cohort (Figure 8). The immune checkpoints (CD112R and PD-1) were detected on both 

niche and non-niche compartments. 4911 (26.5%) of 18584 of the CD8+ T-cells were 

orchestrated in T-cell niches. The fraction of CD8+ T-cells expressing immune checkpoints in 

niche was higher than non-niche compartments. 3335 (67.9.%) CD112R+CD8+ T-cells were 

detected in niche. 1592 (32.4%) PD-1+CD8+ T-cells were detected in niche. 7267 (53.1%) 

CD112R+CD8+ T-cells were detected in non-niche. 3792(27.7%) PD-1+CD8+ T-cells were 

detected in non-niche.  
 
 
 
 



27  

 
 
Figure 8: The expression level of CD112R, PD-1, and Ki67 on the CD8+ T-cells located in T-
cell niches and other tissue compartments (non-niche) are shown according to the t-distributed 
stochastic neighbor embedding (t-SNE) algorithm. Each point represents a single CD8+ T-cell 
sample, and the axes (t-SNE1 and t-SNE2) have arbitrary units. The more similar the samples 
are, the closer together they appear on the t-SNE plot. 
 
     
3.3 Upregulation of CD112R and PD-1 on CD8+ T-cells in T-cell niche  
 

3.3.1 Quantifying CD112R and PD-1 expression on CD8+ T-cells in compartments  
To study the localization depending expression profile of CD112R and PD-1 on CD8+ cytotoxic 

T-cells, an automated algorithm for T-cell niche detection was applied. Across 20 colorectal 

cancer large sections, local enrichments of the CD8+ T-cell density were found and identified 

as T-cell niches. Representative inflamed and non-inflamed cases (including center of tumor 

and invasive margin) were accordingly displayed, showing the raw IHC image, T-cell location, 
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CD8 density, CD112R relative intensity on CD8+ T-cells, and PD-1 relative intensity on CD8+ 

T-cells (Figure 9, Figure 10). 

 

 
 
Figure 9:  Density heatmaps showing the automated T-cell niche detection (pink), CD8+ T-cell 
density (red), and CD112R and PD-1 relative intensity (blue) for 3 cases with an inflamed 
immune phenotype. 
 

 
 
Figure 10:  Density heatmaps showing the automated T-cell niche detection (pink), CD8+ T-
cell density (red), and CD112R and PD-1 relative intensity (blue) for 3 cases with for 3 cases 
with a non-inflamed phenotype (bottom). 
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3.3.2 Unsupervised cluster analysis of large section  
Unsupervised cluster analysis of large section included CD8+ T-cells density, CD112R and 

PD-1 relative intensity on CD8+ T-cells as well as proliferating rate of CD8+ T-cells across niche 

and non-niche compartments. Unsupervised cluster analysis of these parameters revealed two 

major clusters, which met the criteria of an immune inflamed and immune desert phenotype 

(Figure 11). Hence, the fraction of CD8+ T-cell in niche was higher in the inflamed immune 

phenotype. Interestingly, the CD112R and PD-1 expression level was upregulated on CD8+ 

cytotoxic T-cells in an inflamed immune phenotype and on CD8+ T-cells located in T-cell niches 

(each p<0.001, Table 4). However, the CD112R expression level was significantly higher in 

CD8+ T-cells located at the invasive margin while PD-1 was upregulated in the center of the 

tumor (each p<0.001, Table 4).    

                    
 
Figure 11: An unsupervised cluster analysis of the CD8+ T-cell density (red), cell-to-cell 
contacts (green), CD112R and PD-1 relative intensity (RE, blue) and proliferation rate of CD8+ 
T-cells identified cases with an inflamed (top) as well as with a non-inflamed immune 
phenotype is depicted. 
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Table 4: Association between relative CD112R and PD-1 expression level and the localization 
of the CD8+ T-cells. 
 

3.4 CD112R and PD-1 upregulation on CD8+Ki67+ T-cells in tissue compartments and 
immune phenotypes 
 

3.4.1 The proliferating and non-proliferating CD8+ T-cell subsets 
The two main subsets of CD8+ T-cells (proliferating CD8+ T-cells and non-proliferating CD8+ 

T-cells) and corresponding immune checkpoints (CD112R and PD-1) expression were 

analyzed in this study (Figure 12,13). CD112R and/or PD-1 expression was detected on both 

the proliferating (Ki67+) as well as the non-proliferating CD8+ T-cell subset. The distribution of 

CD112R relative intensity and PD-1 relative intensity on the proliferating and non-proliferating 

subsets was shown using t-SNE algorithm (Figure 12).       

 

  

 
 

Figure 12: The expression level of CD112R and PD-1 on the proliferating CD8+ T-cells and 
non-proliferating CD8+ T-cells is shown according to the t-SNE algorithm. Each point 
represents a single CD8+ T-cell sample, and the axes (t-SNE1 and t-SNE2) have arbitrary 
units. The more similar the samples are, the closer together they appear on the t-SNE plot. 
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Figure 13: Representative multiplex fluorescence immunohistochemistry images of 
proliferating CD8+ T-cells and non-proliferating CD8+ T-cells in colorectal cancer. The 
expression of CD8 (orange), Ki67 (red), CD112R (green), and PD-1 (blue) are individually 
displayed. (184x magnification) 
 
 

3.4.2 Significant upregulation of Immune checkpoints in CD8+Ki67+ subset. 
Highest expression levels of both immune checkpoints were commonly also not found co-

expressed in proliferating as well as non-proliferating CD8+ cytotoxic T-cells. Although the 

proliferation rate of CD8+ T-cells was not significantly (p=0.5) different between the T-cell 

niches and other Tissue areas, the CD112R and PD-1 expression was significantly higher in 

the proliferating compared to the non-proliferating CD8+ T-cell subset across all analyzed 

tissue compartments and immune phenotypes (p<0.001 each, Figure 14-15). The highest 

immune checkpoint upregulation of the proliferating compared to the non-proliferating subset 

was identified at the invasive margin (1.5-fold) for CD112R and in the non-inflamed immune 

phenotype for PD-1 (2.3-fold, Figure 14-15). The lowest difference in the expression level 

between both CD8+ cell subsets was seen in T-cell niches for CD112R (1.1-fold) and PD-1 

(1.4-fold, Figure 14-15).  
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Figure 14: The relative intensity of CD112R is shown significantly increased (*** p<0.001) on 
the proliferating (black) compared to the non-proliferating (grey) CD8+ T-cell subset.   
 
 
 
 
 

 
 
Figure 15: The relative intensity of PD-1 is shown significantly increased (*** p<0.001) on the 
proliferating (black) compared to the non-proliferating (grey) CD8+ T-cell subset.   
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3.5 Prognostic relevance of spatial niche information 
To address the question of whether the spatial orchestration in niches of CD8+ T-cell subsets 

had a greater role in the tumor microenvironment compared to the widely used density of 

tumor-infiltrating lymphocytes, the density of T-cell subsets, the relative intensity of CD112R 

and PD-1, the proliferation rate of CD8+ T-cells, and the localization in T-cell niche were linked 

to clinicopathological data as well as overall survival. Elevation of all these parameters – 

representing an inflamed tumor microenvironment – were linked to a prolonged overall survival 

in univariate analysis (Table 5). In univariate analysis, the fraction of CD8+ T-cells located in 

T-cell niches (HR: 1.58, p=0.006) and the CD112R relative intensity on CD8+ T-cells (HR: 1.56, 

p<0.001) showed a higher hazard ratio compared to the CD8+ T-cell density (HR:1.34, 

p=0.028, Table 5).  

 

 
Table 5: Univariate analysis of fraction of CD8+ T-cells in niche, CD112R relative intensity on 
CD8+ T-cells, PD-1 relative intensity on CD8+ T-cells, CD8+ T-cell density, and fraction of 
proliferating CD8+ T-cells is shown. 
 

3.5.1 Unsupervised cluster analysis of TMA 
Unsupervised cluster analysis of TMA includes the fraction of CD8+ T-cells, CD8+ T-cells 

density, and immune checkpoints (CD112R and PD-1) relative intensity on CD8+ T-cells 

(Figure 16). Based on the dendrogram of unsupervised cluster, TMA patients are further 

divided into two clusters (a and b cluster and four clusters (a1, a2, b1, and b2), the 

corresponding survival analysis demonstrated significant (p<0.001 each) prognostic relevance 

(Figure 17).  

Fraction of 
CD8+ T-cells in niche

CD112R relative intensity 
on CD8+ T-cells

PD-1 relative intensity 
on CD8+ T-cells

CD8+ T-cell density
Fraction of 

proliferating CD8+ T-cell
HR: 1.58 (1.14-2.19) 1.56 (1.25-1.94) 1.46 (1.17-1.82) 1.34 (1.03-1.75) 1.19 (0.92-1.53)

p-value 0.006 <0.001 <0.001 0.028 0.19
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Figure 16: An unsupervised cluster analysis of the fraction of CD8+ T-cells in niche (pink), 
CD8+ T-cells density (red), CD8+Ki67+ density (red), CD8+Ki67- density (red), CD112R relative 
intensity on CD8+ T-cells (blue), and PD-1 relative intensity (blue) on CD8+ T-cells is depicted. 
 
 

  
Figure 17: The Kaplan-Meier Estimates analysis based on the unsupervised cluster (two 
clusters: a and b and four clusters: a1, a2, b1, and b2) is displayed. 
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3.5.2 Time-dependent receiver operating characteristic analysis 
ROC curves revealed that the niche integrated phenotypes from all available spatial and 

immune checkpoint expression parameters in unsupervised cluster analysis (AUC: 0.65,1.60-

0.70) had significantly (p<0.001) higher prognostic performance than the CD8+ T-cell density 

phenotypes from the survival analysis based on an unsupervised cluster analysis of T-cell 

densities (AUC: 0.57,1.53-0.61) (Figure 18).  

 

              
Figure 18: Time-dependent receiver operating characteristic curve with niche integrated 
phenotypes (black) and CD8+ T-cell density phenotypes (grey) is displayed. 
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4. Discussion  
 
This purpose of this study was to assess the expression level and spatial orchestration of 

CD112R and PD-1 on proliferating (Ki67+) as well as non-proliferating (Ki67-) CD8+ T-cells in 

a historical cohort of 523 colorectal cancers. Thus, the spatial organization of CD8+ T-cells was 

evaluated in serval tissue compartments and the relative immune checkpoint expression was 

evaluated on cytotoxic T-cells.   

 

The role of tumor infiltrating lymphocytes, to predict patients’ outcome (Galon et al., 2006) and 

response to immune checkpoint therapy (Havel et al., 2019), has been studied extensively in 

colorectal cancer, while only little is known about the spatial distribution patterns of TILs in the 

tumor microenvironment and its impact on patients’ survival. This might be due to the 

inconsistent definitions of TILs accumulations across several solid tumor types and the 

technological hurdle in automated assessment: In colorectal cancer, dense T-cell 

accumulations in the tumor microenvironment were identified as tumor-associated lymphoid 

nodules which are similar to normal lymphoid nodules but often be detected in the tumor region 

(McMullen et al., 2010), tertiary lymphoid tissue which is an ectopic lymphoid tissue and involve 

in the adaptive immune response (Di Caro et al., 2014), and ectopic lymphoid-like structures 

(Pitzalis et al., 2014) via manual inspection using H&E and conventional brightfield 

immunohistochemistry (e.g., lymphocyte markers, professional antigen presenting immune 

cell markers). In other tumor entities, accumulations of TILs were characterized as lymphocyte 

clusters, which refers to the area where B-cells are enriched. These characterizations were set 

using manual identification in multiplex fluorescence IHC as well as gene expression profiling 

in malignant melanoma (Cabrita et al., 2020) and as intratumoral APC niches (stem-like CD8+ 

T-cells reside in APC niche)  by manual annotation of multiplex fluorescence IHC staining in 

several solid cancer types such as kidney cancer, prostate cancer, and bladder cancer (Jansen 

et al., 2019). To address this issue, a framework for automated T-cell niche detection, which 

comprises a deep learning step for cell detection and an algorithm for detecting the local TILs 

density adjacent to the index cell – using multiplex fluorescence immunohistochemistry 

staining – was developed and validated in this study. The accuracy of the new approach for 

appropriate T-cell niche identification was validated by the concordance of the data with 

previous manual studies (McMullen et al., 2010, Di Caro et al., 2014) and the striking 

prognostic impact of cytotoxic T-cells located in T-cell niches. 

 

In colorectal cancer, 57% of CD8+ T-cells showed a CD112R expression, which was consistent 

with Whelan et al.: 60-80% of CD8+ T-cells expressed CD112R in a variety of tumor entities 

(e.g., ovarian cancer, renal cancer, colon cancer) (Whelan et al., 2019). The data also showed 

that 29% of CD8+ T-cell co-expressed CD112R and PD-1, compared with 44% of CD8+ T-cells 
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co-expressing CD112R and PD-1 in flow cytometry analysis (Whelan et al., 2019). However, 

the high expression of both immune checkpoints was detected in less than 1% of CD8+ T-cells. 

In an earlier study, delayed transcription and protein expression of CD112R were observed 

compared to TIGIT, which indicates the low co-expression of high CD112R and PD-1 may be 

due to the fact that CD112R and PD-1 may not be expressed at the same phase of T-cell 

exhaustion (Murter et al., 2019). Overall, the efficiency of automated quantification of CD112R 

and PD-1 expression on CD8+ T-cells was validated by the concordance of our data with 

previous studies. 

 

The data from this study identified upregulation of CD112R and PD-1 on proliferating CD8+ 

cytotoxic T-cells irrespective of the tissue compartment (i.e., niche, non-niche, inflamed, non-

inflamed, center of tumor, invasive margin). These findings were in line with previous studies 

showing that the increased PD-1 and CTLA-4 expression on proliferating CD8+ T-cells 

(Kamphorst et al., 2017) and a high PD-1 expression level was observed on proliferating 

(Ki67+) CD11a+ CD8+ cytotoxic T-cells (Liu et al., 2013). Interestingly, CD112R and PD-1 

represent exhaustion of T-cells (Zhu et al., 2016), whereas Ki67 indicates proliferation of T-

cells (Cuylen et al., 2016). Although proliferating CD8+ T-cells are showing hallmarks of 

exhaustion by expressing CD112R and PD-1, there is evidence that it might preserve its 

effector function. Kamphorst et al., found that a high fraction of inhibitory immune checkpoint 

receptors (PD-1) on proliferating CD8+ T-cell were linked to tumor regression after anti-PD-1 

therapy (Kamphorst et al., 2017). Moreover, a particular subset of PD-1+CD8+ was recognized 

as stem-like T-cell with proliferative capacity (Utzschneider et al., 2016). Taken together, it is 

tempting to speculate that proliferating CD8+ T-cells might retain ability to control tumor growth 

along with the expression of several exhaustion biomarkers. 

 

The fact that both inhibitory immune checkpoint receptors (i.e., CD112R and PD-1) were 

upregulated on cytotoxic T-lymphocytes located in T-cell niches compared to all other tumor 

components suggest an influence of the location in the tumor microenvironment on the 

cytotoxic T-cell effector/ exhaustion state. In agreement with our result, several earlier 

publications have shown that the upregulation of inhibitory immune checkpoint receptors 

occurs during constant T-cell stimulation in various conditions. For example, in chronic virus 

infection and cancer environment, the inhibitory immune checkpoint expression was increased 

due to sustained stimulation (McLane et al., 2019). The high PD-1 and TIGIT expression were 

observed in tumor-infiltrating lymphocytes in a study using flow cytometry (Hung et al., 2018). 

High PD-1 expression was detected in Melan-A melanoma (MLANA) antigen–specific CD8+ T-

cells compared with normal tissue (Ahmadzadeh et al., 2009). Elevated PD-1 expression was 

observed with RNA sequencing during the therapy with checkpoint inhibitors (Riaz et al., 2017). 
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However, growing evidence indicates that high expression levels of inhibitory immune 

checkpoint receptors does not necessarily indicate irreversible T-cell dysfunction. For instance, 

there are several distinct T-cell subsets showing an exhausted phenotype along with preserved 

effector function or anti-cancer reactivity such as precursors of exhausted T-cells (TPEX): 

TCF1+ cells which maintain high effector function, regeneration, and differentiation ability 

(Utzschneider et al., 2020, Siddiqui et al., 2019). Furthermore, follicular T-helper cells which 

express PD-1 are capable of accumulating T-cells to the germinal center and regulating the 

follicular recruitment (Shi et al., 2018). Moreover, PD-1T lymphocytes (distinct intertumoral 

CD8+ T-cell population with high PD-1 expression levels) display a strikingly different 

transcriptional and metabolic landscape other than CD8+ T-cells expressing low/negative PD-

1 and exhibit a strong prognosis relevance (Thommen et al., 2018). Interestingly, there is 

evidence that the PD-1T lymphocytes are largely localized in the tertiary lymphoid structures 

and significantly produce CXCL13 which mediates immune cell recruitment to T-cell niches 

(Thommen et al., 2018). This fact is a strong evidence for incorporating the location of cytotoxic 

T-cells as one parameter of T-cell function together with other effector and exhaustion markers 

as well as gene signatures to fully characterize the state of T-cell activation.  
 

The observation that a comprehensive assessment of the immune tumor microenvironment – 

by taking T-cell niches, immune checkpoint expression levels, and CD8+ T-cell subset densities 

into account – showed a significantly better predictive performance for patients’ overall survival 

compared to the sole analysis of T-cell densities, underlines the importance of T-cell 

localization for patients’ outcome. In agreement with these results, a favorable prognostic 

relevance has been described for some of the analyzed immune components in individual 

earlier studies. For example, a high CD8+ T-cell density in the invasive margin and the center 

of tumor  (Galon et al., 2006, Blessin et al., 2021c), a high proliferation rate of CD8+ cytotoxic 

T-cells (Blessin et al., 2021c), an elevated PD-1 expression levels (Berntsson et al., 2018), a 

high CD112R gene expression (Tang et al., 2019), and a high number of T-cells orchestrated 

in T-cell accumulations (McMullen et al., 2010, Di Caro et al., 2014) were associated with a 

favorable prognosis in colorectal cancer. This corresponds to the fact that the quantity of T-

cells represents only one out of a multitude of hallmarks characterizing the individual immune 

phenotypes (e.g., immune inflamed, immune excluded and immune desert phenotype) (Chen 

and Mellman, 2017). Therefore, these data emphasize to also incorporate the T-cell niche 

compartment in scores for patient’s outcome rather than just quantifying the T-cell density of 

the whole tumor center or the invasive margin.  

 

Although CD112R and PD-1 were both elevated in T-cell niches, a co-expression at low 

expression levels was only found in around 20% of all CD8+ cytotoxic T-cells, co-expression 
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at high levels was virtually absence, and CD112R was downregulated – while PD-1 was 

upregulated – in the center of the tumor. Thus, the histomorphological and phenotypical 

differences between both inhibitory immune checkpoints presented in this study emphasize a 

non-redundant function of both molecules in the tumor microenvironment and indicate CD112R 

and PD-1 as putative targets for a dual immune checkpoint receptor blockade. Accordingly, 

several unique aspects of CD112R were identified: Such as a significant association with an 

Eomes+T-bet- expression, which indicated the state of T-cells exhaustion and the rapid 

internalization of CD112R which might be correlated with regulatory mechanisms of CD112R 

(Whelan et al., 2019). Moreover, in vitro T-cell functional assays revealed that dual blockade 

of CD112R and PD-1 lead to a synergistic and additive effect on the IFNγ production and thus 

to enhance CD8+ T-cell cytokine production and effector function compared to the sole use of 

one immune checkpoint inhibitor (Whelan et al., 2019). This might be explained by a non-

redundant lymphocyte inhibitory pathway of both immune checkpoint receptors. While PD-1 

mediates its inhibitory function via the tyrosine phosphatase SHP-2 that leads to reduced 

phosphorylation of molecules within the T-cell receptor signaling cascade (Keir et al., 2008), 

there is some evidence that CD112R is rather in an interplay with SHIP than SHP-2 (Zhu et 

al., 2016). Zhu et al., found a strong association with SHIP and a weak association with SHP-

1 and SHP-2 in the MOLT4 cell line which is a T-cell leukemia cell line expressing CD112R 

(Zhu et al., 2016). Furthermore, Whelan et. al. observed – which is in line with the results of 

this study – a high (60%-80%) fraction of CD8+ cytotoxic T-cells showing CD112R expression, 

while co-expression of CD112R and PD-1 was seen markedly more infrequent in T-cells (44% 

of CD8+ T-cells as well as 20% of CD4+ T-cells) (Whelan et al., 2019). Given that it has been 

documented that the localization, proximity between PD-1+ and PD-L1+ cells, as well as the 

abundance of preexisting inhibitory immune checkpoint receptor expression on TILs were 

strong predictors for response to immune checkpoint therapy (Tumeh et al., 2014). The 

expression level of both immune checkpoints on CD8+ cytotoxic T-cells located in T-cell niches 

might predict response to such dual immune checkpoint blockade.    

 

In conclusion, CD8+ cytotoxic T-cells with high CD112R and PD-1 expression levels are 

orchestrated in T-cell niches of colorectal cancer and predict prolonged overall survival which 

emphasizes an important role of T-cell niches in the anti-tumor immune reaction. Therefore, 

this study provides a rationale for dual immune checkpoint blockade with anti-CD112R and 

anti-PD-1 therapy in T-cell niche rich colorectal cancers.   
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5. Summary 
 
Emerging evidence suggests that spatial T-cell organization is a key component for the 

characterization of the tumor immune microenvironment, to predict response to immune 

checkpoint therapies and to predict patient’s outcome in colorectal cancer. However, only little 

is known about the spatial organization of immune checkpoint expression on T-cells and the 

spatial relationship of clinically relevant novel immune checkpoint receptors (e.g., PD-1 and 

CD112R). Just recently, combined immune checkpoint blockade directed against PD-1 and 

CD112R showed clinical benefit rates of 75% in several advanced tumor entities and also 

partial response – in commonly non-responsive – microsatellite-stable colorectal cancer. 

To assess the expression level and spatial orchestration of CD112R and PD-1 on proliferating 

(Ki67+) as well as non-proliferating (Ki67-) CD8+ T-cells in a historical cohort of 523 colorectal 

cancers, a deep learning-based framework for automated T-cell-niche identification using 

multiplex fluorescence immunohistochemistry was developed and applied in this study.    

The data revealed that the spatial analysis of locally enriched CD8+ T-cell densities and cell-

to-cell contacts is a hallmark of T-cell-niches in the tumor microenvironment of colorectal 

cancer. CD112R and PD-1 expression on CD8+ T-cells located in T-cell-niches was found 

elevated compared to all other tumor compartments (p<0.001 each). Although the highest 

mean CD112R expression on CD8+ T-cells was observed at the invasive margin, the PD-1 

expression on CD8+ T-cells was elevated in the center of the tumor (p<0.001 each). Across all 

tissue compartments, proliferating CD8+ T-cells showed higher relative CD112R and PD-1 

expression compared to the non-proliferating CD8+ T-cell subset (p<0.001 each). Integration 

of all available spatial and immune checkpoint expression parameters (AUC: 0.65) revealed a 

superior predictive performance for overall survival compared to the commonly used CD8+ 

TILs density (AUC 0.57, p<0.001). In conclusion, cytotoxic T-cells with elevated CD112R and 

PD-1 expression levels are orchestrated in T-cells niches in colorectal cancer and predict 

favorable patient’s outcome. Proliferation of CD8+ T-cells is associated with elevated CD112R 

and PD-1 expression levels across all tissue compartments. Therefore, the data from this study 

provide a rationale for dual immune checkpoint blockade with anti-CD112R and anti-PD-1 

therapy in T-cell niche rich colorectal cancers.   
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6. Zusammenfassung 
 
Neue Erkenntnisse deuten darauf hin, dass die räumlichen T-Zell-Verteilungsmuster eine 

Schlüsselkomponente für die Charakterisierung der Tumor-Immun-Mikroumgebung und das 

Ansprechen auf Immun-Checkpoint-Therapien, im Darmkrebs, darstellt. Über die räumliche 

Organisation der Immuncheckpoint-Expression auf T-Zellen und die räumliche Beziehung 

klinisch relevanter neuer Immuncheckpoint-Rezeptoren (z. B. PD-1 und CD112R) ist jedoch 

nur wenig bekannt. Erst kürzlich zeigte eine kombinierte Immun-Checkpoint-Blockade gegen 

PD-1 und CD112R klinische Nutzenraten von 75 % bei mehreren fortgeschrittenen 

Tumorentitäten, sowie ein partielles Ansprechen bei – meist nicht ansprechendem – 

Mikrosatelliten-stabilem kolorektalen Karzinom.  

Zur Bewertung des Expressionsniveaus und der räumlichen Verteilung von CD112R und PD-

1 auf proliferierenden (Ki67+) sowie nicht proliferierenden (Ki67-) CD8+ T-Zellen in einer 

historischen Kohorte von 523 kolorektalen Karzinomen, wurde ein auf Deep Learning 

basierender Algorithmus für die automatisierte T-Zell-Nest-Identifizierung mittels Multiplex-

Fluoreszenz-Immunhistochemie entwickelt und in dieser Studie angewendet. 

Die Daten zeigten, dass lokal erhöhte CD8+ T-Zelldichte, welche mit einer lokal erhöhten 

Anzahl von Zell-zu-Zell-Kontakten einhergeht, ein Charakteristikum der T-Zell-Nester in der 

Tumormikroumgebung von Darmkrebs darstellt. Die Expression von CD112R und PD-1 auf 

CD8+ T-Zellen, die sich in T-Zell-Nestern befinden, war im Vergleich zu allen anderen 

Tumorkompartimenten signifikant erhöht (jeweils p<0,001). Obwohl die höchste mittlere 

CD112R-Expression auf CD8+ T-Zellen an der Invasionsfront des Tumors beobachtet wurde, 

war die PD-1-Expression auf CD8+ T-Zellen im Zentrum des Tumors erhöht (jeweils p<0,001). 

Über alle Gewebekompartimente hinweg zeigten proliferierende CD8+ T-Zellen eine höhere 

relative CD112R- und PD-1-Expression im Vergleich zur nicht proliferierenden CD8+ T-Zell-

Untergruppen (jeweils p<0,001). Die Integration aller verfügbaren räumlichen und Immun-

Checkpoint-Expressionsparameter (AUC: 0,65) zeigte eine überlegene Vorhersageleistung für 

das Gesamtüberleben im Vergleich zur üblicherweise verwendeten CD8+ T-Zell-Dichte (AUC 

0,57, p<0,001). Zusammenfassend lässt sich sagen, dass zytotoxische T-Zellen mit erhöhten 

CD112R- und PD-1-Expressionsniveaus sich räumlich in T-Zell-Nestern anordnen und mit 

einer günstigen Prognose von Darmkrebspatienten assoziiert sind. Die Proliferation von CD8+ 

T-Zellen geht mit einer erhöhten CD112R- und PD-1-Expressionsniveaus in allen 

Gewebekompartimenten einher. Daher liefern die Daten aus dieser Studie Hinweise für die 

Wirksamkeit einer duale Immun-Checkpoint-Blockade mit Anti-CD112R- und Anti-PD-1-

Therapie bei T-Zell-Nestern reichen kolorektalen Karzinomen. 
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7. Abbreviations 
 
APC  Antigen-presenting cells  

ATM/ATR Ataxia-telangiectasia mutated or/and Rad3-related 

bfIHC    brightfield-immunohistochemistry 

CD  Cluster of Differentiation 

CODEX Co-detection by indexing 

CTLA-4 Cytotoxic T-Lymphocyte Antigen 4 

CXCL     Chemokine (C-X-C motif) ligand 

DAPI  Diamidin-2-phenylindol 

DMEM  Dulbecco’s Modified Eagle’s Medium 

DNAM-1 DNAX Accessory Molecule-1, auch CD226 

i.e.,   id est 

e.g.,                 exempli gratia 

ELISA  Enzyme-linked Immunosorbent Assay 

FBS  Fetal bovine serum 

FDA  Food and Drug Administration 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

HE  Hematoxylin and eosin 

Hela  Human cervix epithelial carcinoma cells  

IFN  Interferon 

irAEs  immune-related adverse events 

ITIM  Immunoreceptor tyrosin-based inhibitory motifs 

mfIHC  multiplex-fluorescence-immunohistochemistry 

MSI/dMMR Microsatellite instability and/or mismatch-repair deficiency 

MSS/pMMR Microsatellite stability and/or mismatch-repair proficient 

mRNA   messenger ribonuclear acid 

NFAT  Nuclear factor of activated T-cells 

NK-cells Natural killer cells 

PBS  Phosphate buffered saline 

PD-1  Programmed cell death protein 1 

PD-L1  Programmed cell death 1 ligand 1  

PVR  Poliovirus receptor, also CD155 

PVRIG Poliovirus receptor-related immunoglobulin domain-containing, also CD112R 

RT-PCR Reverse transcriptase-polymerase chain reaction 

ROC Time-dependent receiver operating characteristic 

TACTILE T-cell-activated increased late expression, also CD96  
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TCF  T-cell factor 

TCR  T-cell receptor 

TIGIT  T-cell immunoreceptor with Ig and ITIM domains 

TILs  Tumor-infiltrated lymphocytes 

TLS  Tertiary lymphoid structures  

TMA  Tissue MicroArray  

TME  Tumor Microenvironment 

TPEX  Precursors of exhausted T-cells 

TSA  Tyramine signal amplification 

t-SNE  T-distributed stochastic neighbor embedding 
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