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Abstract

This thesis is concerned with algebraic structures appearing on the moduli
spaces of mirror geometries enhanced with differential forms. It was shown
in [Mov12] that in the case of elliptic curves, the local structure of such mod-
uli spaces can be constructed from a variation of polarized Hodge structure,
giving rise to finitely generated graded differential rings, generalizing the ring
of quasi-modular forms. An algebra, named the Gauss-Manin or AMSY Lie
algebra, of derivations on these rings was constructed from a suitable com-
bination of vector fields on the moduli space. The program of investigating
moduli spaces of Landau-Ginzburg models enhanced with differential forms

was named the Gauss-Manin Connection in Disguise (GMCD).
The thesis is split in three independent parts:

In the first part the GMCD construction is carried out for several families of
lattice polarized elliptic K3 surfaces. The local structure of moduli spaces of
K3 surfaces enhanced with differential forms is identified and an algebra of
derivations on the rings of regular functions is found. We show that the ring
of regular functions can be identified with the ring of quasi-modular forms in

two variables.

In the second part of the thesis we extend the GMCD program to families of
non-compact Calabi-Yau threefolds. A definition of families enhanced with
differential forms is proposed and the local structure of the moduli spaces of
such families is investigated. We show that in the case of mirrors of local
P2 and local F? the rings of regular functions are closely related to the rings
of quasi-modular forms, arising from the associated mirror curves. We con-
struct the Gauss-Manin Lie algebra in both cases and identify an sl,(C) Lie
subalgebra.

The third part of the thesis is concerned with extending the GMCD program to

families of toric Landau-Ginzburg models. We propose a definition of Landau-



Ginzburg models, enhanced with a GKZ local system of solutions to differen-
tial equations, generalizing both of the previous constructions. We apply the
constructions to Landau-Ginzburg mirrors of CP", constructing differential
rings associated to the families and giving a first example of a GMCD con-

struction for non-Calabi-Yau Landau-Ginzburg models.



Zusammenfassung

Die vorliegende Arbeit befasst sich mit algebraischen Strukturen auf Mo-
dulrdumen von, mit Differentialformen ausgestatteten, Spiegelgeometrien. In
[Mov12] wurde gezeigt, dass die lokale Struktur solcher Modulraume, im Fall
von elliptischen Kurven, durch die Variation einer polarisierten Hodge-Struk-
tur konstruiert werden kann. Dies gibt Anlass zur Betrachtung von endlich er-
zeugten graduierten Differentialringen, welche den Ring der Quasi-Modulfor-
men verallgemeinern. Durch eine passende Kombination von Vektorfeldern
auf dem Modulraum kann auf diesen Ringen eine Algebra der Derivationen -
genannt die Gauss-Manin oder AMSY Lie-Algebra - konsturiert werden. Das
Verfahren zur Untersuchung von Modulraumen des Landau-Ginzburg Mo-
dells mit Differentialformen wird als Gauss-Manin Connection in Disguise
(GMCD) bezeichnet.

Die Arbeit ist unterteilt in drei unabhéngige Teile:

Im ersten Teil wird die GMCD fiir diverse Familien von gitterpolarisierten
K3-Flachen konstruiert. Es wird die lokale Struktur von Modulrdumen der
K3-Flachen mit Differentialformen identifiziert und eine Algebra der Deriva-
tionen auf dem Ring der reguldren Funktionen gefunden. Wir zeigen, dass der
Ring der reguldren Funktionen mit den Ring der Quasi-Modulformen in zwei

Variablen identifiziert werden kann.

Im zweiten Teil der Arbeit erweitern wir das GMCD Verfahren auf Famili-
en von nicht kompakten dreidimensionalen Calabi-Yau Mannigfaltigkeiten.
Eine Definition von Familien mit darauf definierten Differentialformen wird
unterbreitet und die lokale Struktur auf den Modulraumen solcher Familien
untersucht. Wir zeigen, dass im Fall von Spiegelungen des lokalen P? und
lokalen F? die Ringe von reguliren Funktionen genau mit den Ringen der
Quasi-Modulformen, welche aus den damit verbundenen Spiegelkurven ent-
stehen, zusammenhéangen. Wir konstruieren die Gauss-Manin Lie-Algebra fiir

beide Fille und identifizeren eine sl,(C) Lie-Unteralgebra.



Der dritte Teil der Arbeit beschéaftigt sich mit der Erweiterung des GMCD Ver-
fahrens auf Familien von torischen Landau-Ginzburg-Modellen. Wir fithren
eine Definition von Landau-Ginzburg Modellen, ausgestattet mit einem GKZ
Lokalsystem von Losungen von Differentialgleichungen ein, wodurch bei-
de der vorhergehenden Konstruktionen verallgemeinert werden. Wir wen-
den die Konstruktionen auf Landau-Ginzburg Spiegelgeometrien der CP" an,
konstruieren zu den Familien assoziierte Differentialringe und geben ein er-
stes Beispiel fiir eine GMCD-Konstruktion eines Nicht-Calabi-Yau Landau-
Ginzburg Modells.
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Chapter 1

Introduction

The main object of study of this work are moduli spaces of Landau-Ginzburg models. In
the recent years the wide-spread interest in the study of their properties was ignited by
the discovery of a duality between different supersymmetric Landau-Ginzburg models,
called mirror symmetry [LVW89]. Mirror symmetry was initially formulated for Calabi-
Yau manifolds of dimension three and has famously lead to the computation of rational
curves of an arbitrary degree for the quintic threefold in [CdIOGP91]. The construction
was extended beyond compact Calabi-Yau threefolds to compact Calabi-Yau manifolds in
any dimension, as well as non-compact Calabi-Yau manifolds and Fano manifolds, see
[CK99, HKK*03, KKP08] and references therein.

Mirror symmetry at higher genus was formulated in [BCOV94], providing a recur-
sive procedure to obtain the generating functions of higher genus curve counts using the
lower genus ones. In [YY04] it was shown that the higher genus Gromov-Witten generat-
ing functions for the quintic threefold are elements in special polynomial rings, which are
fixed by the special Kahler geometry. The result was later generalised to Calabi-Yau fam-
ilies with an arbitrary number of moduli [AL07] and has since been extended to a num-
ber of Calabi-Yau geometries, see e.g. [Ali13] and references therein. The results found
applications in solving the holomorphic anomaly equations and establishing rigorously
mirror symmetry for elliptic curves [Li11] conjectured in [Dij95], as well as higher genus
Gromov-Witten theory of K3 x T in [OP16], proving the Igusa cusp form conjecture of
[KKV99].

In the case of elliptic curves, it was shown in [Li11], that the higher genus generating
functions are elements of the ring of almost holomorphic modular forms, confirming the
prediction of [Dij95]. At the point of maximally unipotent monodromy, the generating

functions were shown to be elements in the ring of quasi-modular forms of [KZ95]. These



are graded differential rings, finitely generated by the Eisenstein series

, for k=1,23, (1.1)

where ( is the Riemann C-function. The Eisenstein series give, for example, the normal
forms for elliptic curves and are closely related to the Weierstrass g-function and thus
famously provide an interface between number theory, geometry and analysis. The ring
of quasi-modular forms is equipped with three distinguished differential structures. It is

common (see e.g. [Zag08]), to represent elements f € M= C[E,, E4, E¢] as formal sums

Pr= ) fixEsELEE, (1.2)
i,j,kENo

where f;jx € C, and the algebra of derivations on M can be defined via

E3-E4 0 E4E,—E¢ d E¢E,—EI 9
a — 2 4L2 6 4 P,
of ( 12 9E, 3  9E, 2 o)/

0 d 0
= — 1.3
Wf (252 3, +4E, 3F, +6E; 3 )Pf, (1.3)
0
Ff = —128—Ezpf.

It can be checked that the algebra of derivations is isomorphic to sl,(C).

While the geometric interpretation of the Eisenstein series in terms of line bundles
on elliptic curves is well-understood, more general g-expansions associated to Calabi-Yau
varieties are still largely unexplored. The project of constructing similar differential rings
was initiated in [Mov12] (based on the related work [Mov08]), where it was found that the
ring of quasi-modular forms M = Cl[E,, E4, Eg] appears naturally as the ring of regular
functions on the moduli space of elliptic curves, enhanced with differential one forms. This
discovery prompted the study of moduli spaces of varieties, enhanced with differential
forms and their rings of regular functions. In [Mov12] a set of techniques for describing
moduli spaces (denoted throughout this work by T) of varieties enhanced with differen-
tial forms was developed and soon after in a sequence of works [Mov13, Mov11, AMSY16]
several properties of such moduli spaces were established. The program was named the
Gauss-Manin Connection in Disguise (GMCD) [Mov17b], due to its close relationship with
the variation of Hodge structure and the important role the Gauss-Manin connection

plays in finding the algebraic structure on the rings of regular functions. The program



aims to describe the structure of moduli spaces of enhanced varieties, and determine their
algebraic structure. It was applied to a number of families of varieties, such as fami-
lies of elliptic curves [Mov12], K3 surfaces [DHMW 16, Ali17, Nik20, AV18], Calabi-Yau
threefolds [Mov15, AMSY16, Ali17] and Dwork families [MN16, Nik20]. The success of
the program shows in reproducing the classical quasi-modular forms in the elliptic curve
case [Mov12], as well as giving rise to more general rings of automorphic forms, for ex-
ample Siegel modular forms in the case of genus 2 hyperelliptic curves [CMY19], rings
of automorphic forms for Calabi-Yau threefolds [Mov15, AMSY16], and abelian varieties
[Fon18]. The approach found applications in the study of modularity of elliptic Calabi-Yau
manifolds [Hag17], the study of Noether Lefschetz loci in [Mov17c] and Hitchin systems
in [ABF19]. In [AMSY16, Ali17], a synthesis of Movasati’s approach and the differential
rings of the special geometry of Calabi-Yau threefolds [YY04, AL07] was made, see also
[Zho13].

The algebra of derivations on the rings of regular functions O was introduced in
[AMSY16] and was named the Gauss-Manin or AMSY Lie algebra in the literature. The
algebra of derivations on Ot was related to the existence of special (modular) vector fields
on T. It was observed that this algebra is closely related to the Lie algebra of the group of
automorphisms of the Hodge filtration, preserving compatibility with the Hodge filtration
in the case of Calabi-Yau manifolds. The Gauss-Manin Lie algebra for elliptic curves was
characterized in the framework of GMCD in [Mov12] and was computed for the mirror
quintic in [Mov15], for elliptic K3 surfaces in [AV18] and for Dwork families in [MN16,
Nik20].

Main Results

The contribution of this thesis is the following:

Gauss-Manin Lie algebra for elliptic K3 surfaces

In the first part of this work, we construct the moduli space T from the data of the holo-
morphic Gauss-Manin connection on the middle dimensional cohomology of the mirrors
of the elliptically fibered K3 manifolds. We show that T is 6-dimensional in accordance
with its general construction based on special geometry of Ref. [Ali17]. Away from the

discriminant locus T is a locally ringed space with the ring of regular functions Or.



Theorem 1.1. There is an isomorphism

—_—

Or = M(IH(N) xTH(N)), (1.4)

between the local ring Ot and the graded ring of quasi-modular forms of the modular sub-
group Iy(N) in two variables. The level N of the congruence subgroup is determined by the
type of elliptic fiber of the mirror.

We construct the Gauss-Manin Lie algebra & attached to T.

Theorem 1.2. There is an isomorphism

& = s1,(C) @ s1,(C). (1.5)

The algebra of derivations of quasi modular forms from mirror sym-
metry

In the second part of this work we develop the GMCD construction for families of non-
compact Calabi-Yau threefolds. The program is applied to two cases of interest, the mirror
families to local P? and local F2, as an illustration. The developed techniques are universal
and can be generalised to other non-compact Calabi-Yau varieties, as well as variations
of mixed Hodge structure associated to different families. For the mirrors of local P? and
2, the local structure of the moduli spaces can partially be characterised by the inclusion
of differential rings of the mirror curves into the differential ring of the non-compact
Calabi-Yau threefold family. The following structural theorem gives the isomorphism of

differential rings in the case of the mirror of local P?:

Theorem 1.3. There is an isomorphism between the ring of regular functions Oy for the
mirror of local P? equipped with the differential structure coming from a modular vector

field R on T and the ring of quasi-modular forms on Ty(3) with the derivation d..

For the mirror of local F? we prove the following theorem, relating the differential ring
of the family of non-compact Calabi-Yau threefold to the differential ring of the associated

mirror curve:

Theorem 1.4. The ring of regular functions Oy for the mirror of local F? equipped with the
differential structures coming from modular vector fields Ry and R, contains as a differential

sub-ring the ring of quasi-modular forms on I;y(2) with the derivation d,.



Moreover, the Gauss-Manin Lie algebra is computed in both cases and the following
theorems characterise its relation to the Gauss-Manin Lie algebra of the associated mirror

curve:

Theorem 1.5. There is an sl,(C) Lie subalgebra of the Gauss-Manin Lie algebra & for mir-
rors of local P? and local F?.

Gauss-Manin Connection in Disguise: CP"

The third part of this work is concerned with extending the GMCD program to the case of
Landau-Ginzburg models. In particular, we consider the case of complex projective spaces,
whose mirrors are given by the triples (Y, f;, w,), where Y, : {y; 9,1 = ¢} C C™lisa
family of affine surfaces over the moduli space B spanned by the formal parameter g = e’,
fq = Y1 +... + Yy restricted to Y, is called the superpotential and w, is a symplectic
form on Yq. We consider these Landau-Ginzburg models, enhanced with solutions of the
extended GKZ system (3.37). For the mirror families of CP", we construct a (modular)
vector field on the moduli space T of weakly enhanced Landau-Ginzburg models mirror
to CPP". We further determine the induced differential structure on the local ring and

compute the Gauss-Manin Lie algebra.

Theorem 1.6. There is an sl,(C) Lie subalgebra of the Gauss-Manin Lie algebra & for mir-
rors of complex projective spaces. For CP!, & = s1,(C).

Publications

The following manuscripts have resulted from the work of this thesis:

« Murad Alim and Martin Vogrin. Gauss-Manin Lie algebra of mirror elliptic K3 sur-
faces. arXiv preprint: arXiv:1812.03185, 2018 (Accepted for publication in Math. Res. Lett.).

« Murad Alim, Vadym Kurylenko, and Martin Vogrin. The algebra of derivations of

quasi modular forms from mirror symmetry. arXiv preprint: arXiv:2008.06523, 2020.



Organisation of the thesis

This thesis is organized as follows:

Chapter 2

In chapter 2 we put forward the basic definitions. We define graded differential rings of
modular forms and introduce certain algebraic operations on it. We further introduce
the concept of Hodge structures and their variation and the related concept of Frobenius

structure.

Chapter 3

In chapter 3 we review the basics of toric geometry and mirror symmetry. We construct
variation of Hodge structure for Calabi-Yau manifolds in large generality and comment
on the extension to Landau-Ginzburg models, which is treated later in chapter 7. We
relate the variation of Hodge structure on middle-dimensional cohomology to a variation
of Hodge structure on the space of solution of a certain differential operator. In the last

part we show that the constructed variations of Hodge structure are naturally polarized.

Chapter 4

Chapter 4 is designed as a self-contained introduction to the GMCD program. We in-
troduce enhanced varieties and construct their moduli spaces. We further introduce the
Gauss-Manin connection for them and an algebraic group acting on enhanced varieties.
From its Lie algebra, we give an algebraic construction of the Gauss-Manin Lie algebra
and show that it is isomorphic to a certain subalgebra of vector fields on the moduli space

of enhanced varieties. We apply the construction to the family of elliptic curves.

Chapter 5

In chapter 5 we study families of elliptic K3 surfaces given by lattice polarized K3 surfaces
as introduced by Dolgachev [Dol96]. We construct the moduli space of elliptic K3 surfaces
enhanced with differential forms T and show that, away from the discriminant locus T is
a locally ringed space with the local ring Ot = M(Iy(N)xTy(N)), where the level N of the
congruence subgroup is determined by the type of elliptic fiber of the mirror. Moreover,
we construct the Gauss-Manin Lie algebra (& attached to T and prove in Theorem 5.13 that

there is an isomorphism & = sl,(C) @ sl,(C).



Chapter 6

After defining a suitable generalization of the intersection pairing for non-compact Calabi-
Yau families, we define moduli spaces of non-compact varieties enhanced with differential
forms and give their local construction. We introduce certain algebraic structures on the
ring of regular functions, such as Ramanujan-Serre differential structure and the Gauss-
Manin Lie algebra and show how they arise naturally in the geometric framework of the
GMCD. In the second part of the chapter, we apply the construction to two families, mirror
to non-compact Calabi-Yau threefolds and prove the main Theorems 1.3, 1.4 and 1.5 for

these families.

Chapter 7

In chapter 7 we introduce the notion of (weakly) enhanced toric Landau-Ginzburg models,
by attaching to toric Landau-Ginzburg models a local system of solutions to the associated
GKZ system. We investigate moduli spaces of such pairs and construct the rings of reg-
ular functions. We treat in detail the case of Landau-Ginzburg models mirror to complex

projective spaces.



Chapter 2

Preliminaries

Cohomology groups of compact Kahler manifolds admit a Hodge decomposition and thus
carry a natural (polarized) Hodge structure. Similarly, families of compact Kahler mani-
folds are naturally equipped with a variation of (polarized) Hodge structure on their co-
homology groups. One might adapt the notion of frame bundles (see e.g. [KN96]) to this
setting, by imposing compatibility of the frame with the variation of Hodge structure. The
moduli space of families of compact Kahler manifolds, together with a frame of its middle
cohomology compatible with the variation of polarized Hodge structure on it, is a locally
ringed space with the ring of regular functions being a graded differential ring, generaliz-
ing the ring of quasi-modular forms. In this sense the GMCD program serves as a bridge
between geometry of (enhanced) varieties, and the theory of quasi-modular forms.
Moduli spaces of Landau-Ginzburg models are naturally equipped with a Frobenius al-
gebra on their holomorphic tangent space. Determining the Frobenius structure is equiv-
alent to solving the WDVV equations [DVV91, Wit90] for these Landau-Ginzburg mod-
els and in this sense provides a geometric version of the problem [Dub93, Dub96]. The
Frobenius structure plays an important role in mirror symmetry, as one version of the
correspondence identifies the Frobenius structures on the moduli spaces of mirror ge-
ometries. The first geometric construction of a Frobenius structure for Landau-Ginzburg
models was given by K. Saito [Sai83] in the case of isolated singularities, by introduc-
ing primitive forms (see also [Her03]). For Landau-Ginzburg models mirror to Calabi-Yau
manifolds in any dimension Frobenius structure on the moduli spaces was constructed in
[Bar00, Bar02] and for mirrors of projective spaces in [Bar01], by introducing the notion
of variation of semi-infinite Hodge structure, later investigated in the context of homolog-
ical mirror symmetry in [KKP08] and twistorial structures [Her03, HS08]. For Calabi-Yau

families, Frobenius structure on their moduli space is typically constructed from variation



of Hodge structure on the middle cohomology of the deformation family by introducing
a special set of (flat) coordinates.

This chapter is intended as an introduction to the geometry of moduli spaces of Landau-
Ginzburg models, variation of Hodge structure, Frobenius manifolds and differential rings

of quasi-modular forms.

2.1 Modular forms

The exposition in this section follows to a large extent [Zag08], see also [Zho13, Ali14]
and references therein.

Let H = {r € C| Im7t > 0} be the upper half plane and H = HU Q U {ico} be the
extended upper half plane. Consider the natural action of SL,(Z) on H

T

at+b (a b

Definition 2.1. A (meromorphic) modular form of weight k with respect to SL,(Z) is a
function f : H — P! such that the following conditions hold:

f(aT+b):(cr+d)kf(T), v(‘; Z)ESLZ(Z), (2.2)

cT+d

where (c7 + d)¥ is called the automorphy factor,
2. f is meromorphic on H,

3. f is meromorphic at the cusps in the sense that function (ct+d) ™ f (—) is mero-

morphic at T = ico for any y € PSL,(Z) = SL,(Z)/{£I}.

We denote by M, the space of modular forms for SL,(Z) of a fixed weight k. It is
non-trivial only for even k and finite dimensional for any k, see e.g. [Zag08]. The direct

sum

M= @Mk, (2.3)



will denote the graded ring of modular forms. Define the Eisenstein series

7)=1-24 ial(k)em"“, o1 (k) = Zd,

d:d|k
=1+240 Zo ek (k) = Zd3, (2.4)
d-dlk
Eg(t)=1 —504205(k)e2””“, o5(k) = ZdS.
k=1 d:dlk

The ring of modular forms M is isomorphic to C[Ey, Eg].

Definition 2.2. A (meromorphic) quasi-modular form for SL,(Z) of weight k and depth
p is a meromorphic function f : H — C and meromorphic at the cusps, such that there

exist p + 1 meromorphic functions fy, ..., f,, such that

(CT+d)_kf(?:c[:db) Zfl (CT+d) @3)

Example 2.3. The Eisenstein series E, is a quasi-modular form of depth 1 and weight 2

at+b\ ) a b
EZ(C’L’+d)_(CT+d) E>(t)+12¢(cT +4d), (c J

) € SL,(Z). (2.6)

It was shown in [KZ95], that there is a ring isomorphism M = M&C[E,] = C[E,, E4, Eg].
The second Eisenstein series E, is manifestly non-holomorphic, however we its holomor-

phic completion can be introduced

3

Ez =E>- nlmt’

2.7)

The ring M= (C[E}, E4, Eg] is called the ring of almost-holomorphic modular forms.

Remark 2.4. An element ]?6 M can be written as a polynomial

f= ZfiYi; Y = L, (2.8)

: Imt
ZGNO

with f; holomorphic functions on H. The constant term map M — Mis given by f»—> fo-
In other words, treating ¥ = ﬁ as an independent parameter, it is given by the Y — 0

limit.

10



Rings of quasi and almost holomorphic modular forms carry a natural differential
structure given by differentiation by 7. Explicitly, the differential structure on the ring

of quasi-modular forms is given by the following action on the generators

1 2
d.Ey = E(Ez —Ey),
1
aTE4 = §(E254 - E6)’ (29)

1
d.E¢ = E(EZE6 ~E}),

1 d

where d; = 5= =-. A similar relation holds for the ring of almost-holomorphic modular

forms with E, replaced by Ez.

Remark 2.5. The differential d, gives a map M — M. The ring of modular forms M is
closed under the Ramanujan-Serre differential D = d, — lk—zEz, where k is the weight of

the modular form.

In addition to the differential structure d,, there exist two other differential structures
on M (see e.g. [Zag08, Zag16]), which we denote by W and F. Due to the fact that M is

finitely generated, we can write any quasi-modular form f of weight k as a polynomial

in E2
f=Pi(Ey) = ZfiEé, (2.10)
iGNO
with f; € M of weight k — 2i. Define
Ff = —12PJZ(E2). (2.11)

The second operator operator simply returns the weight of the quasi-modular form
Wf =kf. (2.12)

Remark 2.6. The same differentiations can be defined for the ring of almost-holomorphic

modular forms by replacing E, with E\z.

Proposition 2.7. The Lie algebra of derivations on M is isomorphic to sl,(C). Explicitly

[W,0.]=29,, [W,F]=-2F, [d.,F]=W. (2.13)

11



Proof. Let f € Mbea quasi-modular form of weight k. It can be expanded as (2.10) for
fi € M of weight k — 2i. It then holds

(WoF-FoW)(f)= Z(—lZi(k —2)fiESY) +12ik iESY)) = —2F(f). (2.14)

iENO
Other commutators follow by a similar argument. [

Remark 2.8. There exists a similar Lie algebra of differentiations in the case of Jacobi
modular forms, see [OP19].
Quasi-modular forms for congruence subgroups of SL,(Z)

Let N be a positive integer, then the principal congruence sugbroup of level N is

F(N):{(Z Z)eSLZ(Z):(‘Z Z):((l) (1)) modN}. (2.15)

A subgroup I' of SL,(Z) is called a congruence subgroup if I'(N) CI'. For example,

rO(N):{(‘C‘ Z)ESL2(Z):(? Z):(o *) modN}. (2.16)

The ring of (quasi-)modular forms for I is defined analogously to definitions 2.1, respec-
tively 2.2 with SL,(Z) replaced by I'. We define weight one modular forms associated to
the congruence subgroups I)(N):

N A B C

1 Ey(7)/4 Eir) 2+l )1/ ° (E4<r>3/;—E6<r> )” °

5 (641(27)* 441 (x)*H) 4 n(o)* 23/2 n(27)*
n()2n(2t)? 1n(27)? 1(t)?

3 (275(37)"2+1(x)!2)1/3 n(r) 3n(3r)3
n(t)n(37) 1(37) n(t)

where 77(7) denotes the Dedekind #-function

1

Ey(7)’ — Eq(7)* |
= . 2.1
n(7) ( 1798 (2.17)
Define also the analogue of the Eisenstein series E, as
E=4d.logB'C’, (2.18)
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where r =6 for N =1,r =4 for N = 2 and r = 3 for N = 3. From the Ramanujan-Serre

differential ring of Eisenstein series (2.9) we deduce the following differential relations

1 r_Br
8TA:—A(E+C )

2r A2
1
d.B=—B(E-A?),
‘ 21r( ) (2.19)
= —C(E+A?
d.C 2rC( +A°),
1
E=—(E2-A"%.

The other derivations on the ring are given by
W:f—kf, (2.20)
and
F:f =2rdgPs(E), (2.21)

for a quasi modular form f € M(TO(N )) for a congruence subgroup I[H(N), where Pf(E)

is again viewed as a formal expansion of f in E. The Lie algebra of derivations is sl,(C).

2.2 Hodge theory

The motivating examples for defining (variations of) Hodge structures are the cohomology
groups of compact Kihler manifolds. For a pedagogical exposition to the construction
of Hodge structure we refer for example to [Voi07, Huy05] and to [Mov17a] for a recent
treatment, with an emphasis on the connection to the theory of enhanced varieties, which

appear later in the text.

Definition 2.9. A Hodge structure (Hy, {HP'9}) of weight n € 7Z is a finitely generated
free abelian group Hy and a decomposition H¢ = @,,4-,HP? of the complexification
H¢ = Hy ®7 C, which satisfies HP1 = H9P.

Definition 2.10. A polarized Hodge structure (Hy, HP1, Q) is a Hodge structure (Hy, HP'9)
together with an integral non-degenerate bilinear form Q on Hy, which extends to H¢

by linearity and satisfies
1. Q is symmetric if n is even and skew-symmetric if # is odd,
2. Q(C,n)=0for { € HP and j € HP"1 with p # ¢/,

13



n(n-1)

3. (1)~ 2 iP79Q(L,T) > 0 for ¢ € HP* non-zero.

A Hodge structure is said to be polarizable if it admits a polarization.

Equivalently one can define a (polarized) Hodge structure in terms of a decreasing
filtration FP on H¢
Hec=F'>F'>...oF">{0). (2.22)

The two definitions are equivalent, by defining
FP =@;5,H", (2.23)

or
HP9 = FP N Fa, (2.24)

Definition 2.11. A variation of Hodge structure on a complex variety B is a pair (Hy, F *)
such that

« Hy is a locally constant sheaf of finitely generated Z-modules on B,
« F°* is afinite decreasing filtration on H = Hy ®7, Og by holomorphic subbundles,
such that
« For each b € B the stalks 7,* form a decreasing filtration on (Hz);, ® C,
+ The Gauss-Manin conection V: H - H® Qé defined by
Vis®f)=s®df, (2.25)
for s € Hy, and f € Og, satisfies the Griffiths’ transversality condition

VFP c FPl gp, Q. (2.26)

A variation of Hodge structure is said to be polarized if there exists a V-flat bilinear pairing
Q:Hz®Hz — Z, (2.27)

such that it polarizes (Hz), for each b € B.
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Example 2.12. Let 7t : X — B be a family of compact Calabi-Yau varieties of dimension
n. The middle cohomology of a general fibre X;, = 7~ (b), b € B carries a Hodge structure
(H™"(Xy,Z), F*(X}p)), naturally polarized by

n(n—1)

Qap)= (0" [ anp  apeHx,D) (2.28)

and there is a polarized variation of Hodge structure (H7(X/B), F*), where H7(X/B) =
R"71t,Z, and F* are unique vector subbundles of H"(X/B) = H7(X/B) ®; Op such that
F* = F*(X}). The variation of Hodge structure is naturally polarized by (2.28).

In contrast to compact Calabi-Yau varieties, cohomology groups of non-compact Calabi-

Yau varieties are naturally endowed with a mixed Hodge structure introduced by [Del71].

Definition 2.13. A mixed Hodge structure (Hy, W,, F®) of weight n € Z is a Z-module
Hz, together with an increasing (weight) filtration W, on Hp = Hz ®7 Q and a decreasing
(Hodge) filtration F°®, which defines a pure Q-Hodge structure of weight i on the graded
piece Gr}/v = W;/W;_;.

A mixed Hodge structure (Hy, W,, F®) is called graded-polarized if the induced Hodge

structure on GrZW is polarized for all 1.

Definition 2.14. A variation of mixed Hodge structure on a complex variety B is a triple
(Hz, W,, F*), where

1. Hy is a locally constant sheaf of finitely generated Z-modules on B,
2. W, is an increasing filtration of Hg = Hz ®7 Q by locally constant subsheaves,

3. F°* is a decreasing filtration on H = Hy ®7 Og by holomorphic subbundles, satis-
fying Griffiths’ transversality.

A variation of mixed Hodge structure is called graded-polarized if there exists a pairing

Q, flat with respect to the Gauss-Manin connection V on each Gr}/v =W;,/W;_1.

2.3 Frobenius structure

An important set of manifolds which play a role in mirror symmetry for Landau-Ginzburg
models are Frobenius manifolds, investigated in [Dub93], based on the ft* geometry of
[CV91]. A detailed investigation of the relation between the two and the construction for

singularities was given in [Her03].
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Let B be a complex manifold. We will denote by 75 the holomorphic tangent bundle
of B.

Definition 2.15. A Frobenius manifold of rank n € Z is a tuple (B, 7, o, E, ¢) where
« B is a complex manifold of dimension #,
« 11: T3 ® Tz — Op is a non-degenerate Og-bilinear form,
+ o is an associative commutative #-invariant multiplication on 7g, i.e.

nuov,w)=n(u,vow), u,v,weTp, (2.29)

« The Levi-Civita connection V: 73 —» 7 ® Qé of 77 is flat

Vi Vol =V, u,veTp,
Vyov-Vyou=[uv], u,veTp, (2.30)

un(v,w)=n(Vyv,w)+n(v,V,w), u,v,weTg,

and satisfies the potentiality condition VC = 0, where C is the Higgs field, i.e. an
Og-linear map C : 7y — Tg ® Q' (B), s.t. C,(v) = —u o v,

« E is a holomorphic vector field called the Euler vector field, satisfying
Lieg(o) =0, Lieg(n)=(2-d)y, forsomedeC, (2.31)
+ eisa V-parallel holomorphic vector field, which is an identity for the multiplication,
ie.eou=u, YueTg.
Remark 2.16. Let us consider the space of parallel sections of V
T ey |Vyv=0YueT) (2.32)

which is a local system of rank # on B, such that # takes constant values on 7]3]( . Since 7]3/[
is abelian with respect to the commutator, it holds that at each point in B, there exists a

local coordinate system (t,...,t,_1), called flat coordinates, such that

d

:%(izl,...,n—l)spanTBf over C. (2.33)

i) e=dy, and ii) d;

e is sometimes called a primitive vector field, or a primitive derivation.
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Remark 2.17. The potentiality axiom VC = 0 implies the existence of a prepotential F

for the flat metric. At each point of B there exists a holomorphic function F satisfying

17(81-08]-,8,():q(&i,ajoak):aiajak}', Vi,j,k:O,...,n—l, (2.34)

where d; correspond to flat coordinates. In particular, one has
nij =1(;,0;) = 9; 0, F. (2.35)

A notion closely related to Frobenius structure is the notion of a Saito structure, which

we introduce next.

Definition 2.18. A Saito structure of weight w € ZonBisatuple (B,7t: V —B,V,#,C, Ry, Ry),

where

« 70: V — Bisacomplex vector bundle on B equipped with a metric #, a flat connec-

tion V and two endomorphisms R and R, satisfying the following conditions:
RV=0, d'C=0 Vy=0, CAC=0, C'=C, (2.36)

and

VRO +C = [C, Roo]l [Ro,C] = 0, RB = Ro,

(2.37)
VR, =0, R, +R,=-wldy.
Above dVC and C A C are End(V)-valued 2-forms, defined by
(dvc)u,v =Vu(Cy) =V (Cy),
(2.38)

(CA C)u,v =C,C, -GGy,
for any u,v € 7g, and * denotes the adjoint with respect to #.

AFrobenius manifold (B, o, e, 77, E) defines a Saito structure (1t : 75 — B, V, 1, C, R, R,),
where V is the Levi-Civita connection of 7, C,v = u ov, Ry = C¢ and R, = VE. Con-
versely a Saito bundle, whose rank is equal to the dimension of the base, together with a
suitably chosen parallel section of V (usually called primitive homogeneous), gives rise to

a Frobenius structure on the base of the bundle.
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Chapter 3

Mirror Geometries

In this chapter we introduce basics of toric geometry following to a large extent [CR18]
and [HKT95]. Toric geometry gives a very important set of examples of varieties, for
which mirror constructions are well understood. Two of the most commonly used mirror
constructions are the Batyrev-Borisov [Bat94, BB96] and Hori-Vafa [HV00, HIV00] mirror
constructions. For the families mirror to hypersurfaces in toric varieties a variation of
polarized Hodge structure can be constructed from the toric data. We define the classical
periods of Landau-Ginzburg models and introduce a set of (GKZ) differential operators

annihilating them.

3.1 Landau-Ginzburg models

Definition 3.1. A Landau-Ginzburg model is a tuple (Yq, fq, a)q), where
« Y, is a family of C**-manifold parametrized by ¢, with a symplectic form w,,

* f4: Yy, — Cis aproper C*-map, such that there exists an R > 0 so that over
{q € C|lq| > R} the map f, is a smooth fibration with fibers symplectic submanifolds
in (Yy, wy).

Definition 3.2. A Laurent polynomial f, € (C[xi—'l,...,xﬁl] is called toric if there is an
embedded degeneration Y, to a toric variety T whose fan polytope (the convex hull of
generators of its rays) coincides with the Newton polytope (the convex hull of non-zero
coefficients) of f,. A Laurent polynomial without the toric condition is called a weak

Landau-Ginzburg model.

Definition 3.3. A Calabi-Yau manifold X is a Kdhler manifold with ¢, (X) = 0.
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Remark 3.4. The condition ¢y (X) = 0 implies the existence of a unique nowhere vanish-

ing holomorphic form of degree 1 on X [Yau78].

Definition 3.5. A Landau-Ginzburg model is said to be of Calabi-Yau type if any fiber of

fq: Yy — C after some fiberwise compactification is a Calabi-Yau manifold.

3.2 Toric geometry

Definition 3.6. An affine toric variety of dimension # is an irreducible affine variety V
containing an algebraic torus T = (C*)" as a Zariski open subset, such that the action of

T on itself extends to an algebraic action on all V.
Let N be a lattice, i.e. a free abelian group of finite rank, and set N = N ® R.

Definition 3.7. A convex rational polyhedral cone in Ny, is a set

o:{Zuivi |C9€li20}gNR; (3-1)

1

forvq,...,v, €N.
A polyhedral cone is said to be strongly convex if o N (-c) = {0}.

Definition 3.8. Let M be the lattice dual to N and denote (, ) : M x N — Z. The dual
cone to o is a cone
o ={meMg|{mv)>0VYveo). (3.2)

Let 0 C N be a polyhedral cone, then oV is also a polyhedral cone in My and (0V)" =

0.

Definition 3.9. Let 0 be a cone and let A € ¢¥ N M. Then T = 0 N AL is called a face of

o.
The construction of toric varieties from a cone is as follows. For a cone ¢ consider
Se=0"NM, (3.3)
finitely generated by vectors 11y, ...,1,, > dimM. The non-trivial linear relations between

the generators of S, are denoted by

Z Hini = Z Vin, (3.4)

nieS(, }’Z,‘ESU
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with y;, v; non-negative integers. The cone o defines an affine toric variety

UG:{(ZI,...,ZP)E(CP |Z“:ZV}, (3.5)
where Z# = Z{ll -~-Z£p.

Definition 3.10. We call a collection ¥ of strongly convex rational polyhedral cones in
Npg a fan, if

1. Each face of a cone in ¥ is also a cone in ¥,
2. The intersection of any two cones is a face of each of them.

A toric variety Py for a fan ¥ is constructed by gluing U, 0 € ¥ along the faces

Py = U (3.6)

og€eX

The gluing works because U, is an open subset of both U, and U,-.

Definition 3.11. Let {vy,...,v,,} be the generators of the one-dimensional cones (1) C X.

We call the elements Q;; € Z satisfying

ZQijVi =0, (3.7)
i-1

the toric charges and the matrix Q = (Q;;) the charge matrix.

An equivalent description of toric varieties, which will turn out to be more applicable

to mirror constructions, is the description in terms of polytopes.

Definition 3.12. An integral polytope in My, is the convex hull of finitely many points
in M.

Definition 3.13. A rational polytope A C Mg, containing the origin, is called reflexive if
the dual polytope
A° ={neNg|{(mmn)>-1, Vme A}, (3.8)

is again a rational polytope.

Remark 3.14. To a rational polytope A one can associate a fan ¥(A), whose cones are
the cones over the faces of A with apex at the origin. In this way one can construct a toric

variety associated to A.
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Definition 3.15. Let f = Y a,,x™ € C[x{!,..., x2!] be a Laurent polynomial. Its Newton
polyhedron is the convex hull of {m € Z" | a,,, # 0} in R". We denote the space of Laurent
polynomials, whose Newton polyhedra are A by LL(A).

Definition 3.16. A Laurent polynomial f € L(A) is said to be A-regular if for every I-

dimensional face A’ C A, the equations

, OFY OFY
FA = E mo =, == =0, 3.9
meN NZ" " 9x, xy )

have no common solutions in T. We will denote the space of A-regular Laurent polyno-
mials by Lyeg(A).

3.3 Mirror symmetry and mirror families

Mirror symmetry originates in physics [LVW89] as a duality between superconformal
field theories. The construction has been adapted in various ways in the mathematics
literature. The simplest version is the so-called topological mirror symmetry, which states

that two Calabi-Yau manifolds (X, X ) of dimension # are mirror dual to each other if
WPA(X) = h"9P(X), Vp,qeN,, (3.10)

where h?1 = dim(HP"1) are the Hodge numbers of the variety. Mirror symmetry has
been extended to non-Calabi-Yau manifolds, notably to Fano manifolds, by [Giv95, Giv97,
Giv98], [BK98] and [HV00], for which the mirror pairs are known to be non-Calabi-Yau
Landau-Ginzburg models. The mirror duality was reinterpreted in [Kon95] as the isomor-
phism

Fuk(X) = D%(cohX), (3.11)

of the Fukaya category associated to a Calabi-Yau manifold X and the derived category of
coherent sheaves on the mirror X. This formulation goes under the name of homological
mirror symmetry and can be used as the definition of the mirror pairs. The conjecture
implies the existence of the Frobenius manifold structure on the moduli space of A-
deformations of the derived category of coherent sheaves on X. This structure coincides
with the Frobenius structure on the formal neighbourhood of zero in the even-degree
cohomology H¢*"(X), which can be constructed via Gromov-Witten classes, as reviewed

for example in [Man99].
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Remark 3.17. A notion of topological mirror symmetry can be formulated for non-
Calabi-Yau Landau-Ginzburg models by a suitable definition of Hodge numbers [KKP08],
see also [PS15].

There is a number of mirror constructions in the literature. For toric Calabi-Yau vari-
eties the mirror construction was proposed in [Bat94, BB96], and generalized later to toric
Landau-Ginzburg models [HV00], see also [HKK*03, CR18] for a review. More recently
a general mirror construction for Landau-Ginzburg models was proposed in [SYZ96] and
later formalised and significantly extended in [GS11]. The SYZ mirror construction was
applied to toric Fano [CL10] and Calabi-Yau manifolds [CLL*12].

3.3.1 Batyrev-Borisov mirrors

In case X(A) is a compact Calabi-Yau, a construction of a mirror pair due to Batyrev and

Borisov [Bat94, BB96] can be implemented.

Definition 3.18. Let A be a reflexive polyhedron and X(A) the associated family of

Calabi-Yau hypersurfaces. The Batyrev-Borisov mirror to X(A) is the family X(A°) for
A° a dual to A.

Variation of Hodge structure for the Batyrev-Borisov mirrors

Let

fla)=) aiyh =0, (3.12)
where p; denote coordinates in a weighted projective space P(A) and y#i denotes the
monomials of the form [ | yj(/”i )i. The Newton polynomial of A corresponds to the reflexive
polytope defining the toric variety X(A). Note that by rescaling the coordinates y; and
adjusting an overall normalization we can set the number of independent parameters to
|Al. The invariant coordinates on L¢(A) can be chosen as z = (—1)Rok T, a?ik. Let 7t :
X — B be a family of compact Calabi-Yau manifolds of dimension #, given by a (possible
desingularization of) Laurent polynomial f, = f(a;), using the subscript z to emphasize
the dependence of f (a;) on z. There exists a unique holomorphic section w of the middle
cohomology bundle H"(X/B) and a Gauss-Manin connection V on it. The two can be used
to construct a global frame w of H"(X'/B) by successive application of the Gauss-Manin
connection to wy. In the case of (compact) Calabi-Yau manifolds the holomorphic #n-form

wq as well as the Gauss-Manin connection can be constructed with the Griffiths-Dwork
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method, as reviewed below. Define a holomorphic (72+ 1)-form on the weighted projective

space P(wy,...,w,,7) by

n+2
Obtuy, o) = ) (1 Wiy Ao AdGE A Ay, (3.13)
k=1

where the hat denotes the omission of the k-th factor. For hypersurfaces defined by the

vanishing locus of f, Qp(y,,, . w, .,) can be used to construct a basis of H" (P(wy, ..., wy,42)—

Xj) by

_ PO, w0 (3.14)
A

where P; are homogeneous polynomials of degree kd — (}_w; + 1). E; restrict to the

[1]

i

hypersurface X}, via the residue map Res : H" 1 (P(wy, ..., w,.2)—X}) — PH"(X},), where
PH"(X}) denotes the primitive cohomology of Xj,. Let w; = Resg (;)—o(E;) € PH"(X,).

We define the Gauss-Manin connection by

VQI, w; = Resz(y)zo(QiEj), (3.15)
where 0; = zi%. The Gauss-Manin connection V satisfies Griffiths transversality [Gri69]
and consequently a basis w constructed from a fixed holomorphic #n form w( by successive

application of the Gauss-Manin connection is compatible with the Hodge filtration. The

holomorphic # form on Xj, can be chosen to be

& Ay A Ady AL Ady,

wo=Resg (-1)*w
07 o ; i )

The Gauss-Manin connection V : H"(X/B) — H"(X/B) ®, Qé in the frame w can

be expressed as

(3.16)

Vw = Bw, (3.17)

where B is a b, X b,, matrix of meromorphic 1-forms, b, = dim(H"(X,)). Let z;, i =

1,...,dim(B) be a set of coordinates on B. We can expand B as
B = Bydlog(z,) + B,dlog(z,) +... + Bydlog(zy), (3.18)
where B; = B(0;), in the basis w and h = dim(B), with (B;); x = (By)j -

Remark 3.19. The connection (3.17) can be written as a set of dim(B) differential equa-
tions for w of the form

d
V@ia) = BZ'C(), 91' = ZiE, (3.19)
i

which due to the fact that w is constructed by successive application of V gives a differ-

ential operator annihilating the holomorphic n-form w,.
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Polarization

A polarization on the middle-dimensional cohomology of compact Kéhler manifolds Xj,

of dimension 7 is given by the standard Poincaré pairing

Q:H"(X,)xH"(X;) > C,  Q(a,p) = (1) L aAB. (3.20)

The pairing between any two cohomology elements for compact Calabi-Yau families of

dimension n can be computed from the Griffiths-Yukawa couplings

Cil---ibn = —f wo N\ Vil cen Vibn o, (3.21)
Xp

where V; = Vg and b,, is the n-th Betti number of the general fibre Xj, of the family. They

satisfy a set of differential equations, which follow from the constraints on w:
fa)o A [Iiva)o =0 and on AVg,wy =0, i=1,...,dim(B). (3.22)
\Y .

Here L denotes the operator corresponding to (3.19).

3.3.2 Hori-Vafa mirrors

Definition 3.20. Let A be a not necessarily reflexive polyhedron and X(A) the associated
toric variety, with a charge matrix Q = (Q;;). The Hori-Vafa mirror to X(A) is a pair (Y, f),
where

Y: {ye@"ly?”---y,?”j:erf, ijl,...,r}, (3.23)

with r the dimension of the algebraic torus acting on the toric variety, 7; are complex

parameters, and
f=v1+... 4V (3.24)

restrictedto Y.

Variation of (mixed) Hodge structure for Hori-Vafa mirrors

Let X be a fan corresponding to the reflexive polyhedron A and denote by A(A) the set
of integral points of A. The 1-dimensional cones of the fan ¥ correspond to the integral

points of the polytope A, thus the coordinates y; can be parametrized by
Yk = ]—[t,(-m")", (3.25)
i
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with t,...,t, € (C*) and m = (my,...,m,) € A(A), dim(A(A)) = a. Define the following

rings
sa=EPsk,  sk= € ceem, (3.26)
k>0 meA(k)
where
A(k) := {m R e A} (k=1), A(0)={0}eR", (3.27)

and f( is an additional parameter. The grading is given by deg(t’ét’”) =k.

Definition 3.21. Let /¢ be the ideal in Sj generated by tof,t,6;, f,...,t6;, f. The Jaco-
bian ring is defined as Ry = Sp/J¢.

Denote by Rj[ the i-th homogeneous piece of Ry. It is possible to define a decreasing

Ei= @R", (3.28)

k<i

filtration using R}. Let

then we have a decreasing filtration
0cE’cEl'cE?c... (3.29)

There is also an increasing filtration. Define I'/) to be the homogeneous ideals in Sy
generated as C-subspaces by all monomials t’gt'”, k > 1 with m € A(k) which does not
belong to any face of codimension j. Since everything belongs to codimension 0 face, we
get [0 = 0. Everything that belongs to the face of codimension 2 also belongs to some

face of codimension 1, therefore I() ¢ 112, etc.. Hence I'/) form an increasing filtration
0=1"ciVc..c1? =s,, (3.30)
which defines under the quotient an increasing filtration on Ry:
0=ZyCcZyC...CL,=Ry. (3.31)
Polarization

A polarization on the Jacobian ring Ry is given by the residue pairing

a
Q:Rf xRy — O, Q(a, B) = Res a—ﬁafdyl Ao ANdy,|. (3.32)
=177

25



Theorem 3.22. [KM10] Let X — B be a family of (compact) Calabi-Yau manifolds of di-
mension n defined by {f (t) = 0} for the restriction of f(t) =y +... +y, to Y. There is an
isomorphism

T Rf(r) = Hn(XT,(C), (3.33)

for every T = (ty,...,7,). Therefore, as a consequence the filtrations E, and I, define a
mixed Hodge structure on H"(X,), namely FO% = r(E7%) and W5 = r(Z;), Wy = W5 =
1(Z3), Wg = r(Z4). Moreover, one can define the Gauss-Manin connection by differentiating
elements of the Jacobian ring with respect to parameters of f. Furthermore, the polarization

Q on R ¢(r) induces a polarization on H" (X, C).

3.4 Periods and Picard-Fuchs equations

Let X be a projective compact Calabi-Yau variety of dimension , given as the zero locus of
an irreducible homogeneous polynomial f and let w( be the unique holomorphic n-form

on X, as in (3.16). For any real n-dimensional cycle ¥ C X, we call the integral

f wo, (3.34)
)4

a period of X. Define also the period vector of X via

I:(J‘ wo,...,f 6()0), (335)
71 n

where y1,..., v, freely generate H, (X, Z).

Theorem 3.23. [GKZ89] Let X be a compact Calabi-Yau manifold defined by a polytope
A and let Q = (Q;;) denote the associated charge matrix. Denote by m; = (1, p;), for p; €
A,i=1,...,|A|. The period vector I satisfies the GKZ system of differential equations

L;I=0, and ZI=0, (3.36)
with
9 \%i 9 \"9i A
a=[Nm) -T1(7) - me 2=Lmo-e o
Qij>0 ] Qij<0 I i=1

where 6, = ai% andc=(-1,0,...,0).
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Remark 3.24. The GKZ system is equivalent to the system

d
6,I=B;I, 6,

=z,—, 3.38
1 Zdzi ( )

where B; are given by (3.19), due to (3.15).

Remark 3.25. Analogously one can define periods for non-compact Calabi-Yau varieties
by an appropriate choice of cycles. In the toric case they are annihilated by the system
(3.37).

Definition 3.26. Let (Yq, fq, a)q) be a toric Landau-Ginzburg model, and let A be the New-
ton polytope of f,. The classical period is the integral

I J‘ 1 dx; A... ANdx, (3.39)
r: ’ *
rl—tfo(xy,.x,)  xp0xy

for real cycles I' C Y.

i toric, with a Newton polytope A = (y1,..., yi,), denote by Q =

(pi

For f, = ¥;a; [T\
(Qjj) the associated charge matrix. The classical period satisfies the set of differential
equations (3.37). More precisely, the system (3.37) is referred to as the extended or better
behaved GKZ system [HKTY95, BH13]. When A is a reflexive polytope, the better behaved

GKZ system is the same as the standard GKZ system and admits vol(A) solutions.

Remark 3.27. For Calabi-Yau manifolds of dimension # given by the vanishing locus of a
homogeneous polynomial f with a Newton polyhedron A, the periods of the holomorphic
n-form and classical periods of f satisfy the same set of (GKZ) differential equations and
are thus related by a simple transformation (see e.g. [AB18] for the computation of the

transformation matrices in the case of varieties of Fermat type).
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Chapter 4

Gauss-Manin Connection in Disguise

This chapter is concerned with describing the local structure of the moduli spaces of
compact Calabi-Yau varieties, equipped with differential forms. An extension of the pro-
gram to non-compact Calabi-Yau varieties and non-Calabi-Yau Landau-Ginzburg models
is treated later in chapters 6 and 7. The investigation of moduli spaces of varieties en-
hanced with differential forms was initiated in [Mov12]. The starting point of the pro-
gram was the identification of the ring of regular functions Oy of the moduli space T of
elliptic curves, together with a basis of their first cohomology group, with the ring M
of quasi-modular forms. It has since been extended to a number of compact Calabi-Yau
varieties (see e.g. [Mov20] for a recent account), as well as hyperelliptic curves of genus
2 [CMY19] and examples of abelian varieties [Fon18]. The ring of regular functions Ot
associated to compact Calabi-Yau varieties can be equipped with a distinguished set of dif-
ferential structures R,, analogous to the Ramanujan differential structure on the ring of
quasi-modular forms M. The existence of the Ramanujan differential structures on Oy is
equivalent to existence of special (Ramanujan/modular) vector fields on T, given in (4.14).
For an n-dimensional compact Calabi-Yau varieties, both the ring of regular functions Oy
and the (Ramanujan) differential structures R, on it can be constructed from a variation
of polarized Hodge structure on the middle-dimensional cohomology bundle H"(X) by
a suitable choice of a global frame. Ramanujan differential relations were first observed
in the case of polarized variation of Hodge structure of weight 1 for families of elliptic
curves in [Mov12] and were extended to variations of Hodge structures of higher weight
in a number of works, e.g. [Mov15, Mov13, Ali17]. For compact Calabi-Yau varieties, there
exists a subgroup G of the group of automorphisms of the Hodge filtration, satisfying cer-

tain compatibility condition. Its Lie algebra is isomorphic to a subalgebra of vector fields

28



on T and hence gives rise to a set of derivations on the rings Oy. The algebra of derivations
on O is the Gauss-Manin or AMSY Lie algebra, introduced in [AMSY16].

4.1 Enhanced families

It was proposed in references [Mov12, Mov13] that the variation of Hodge structure can
be cast into an algebraic form by enlarging the complex structure moduli space by a choice
of the elements of filtration spaces. For a detailed account on enhanced varieties and their

moduli spaces, we refer to [Mov20].

Definition 4.1. Fix a finite dimensional vector space Vj, such that V|, = V; ®C, for some
lattice V7. Fix also a non-degenerate pairing Q : VxVy; — Z on Vy, extending bilinearly
to Vy. Let further FJ be a filtration on V|. We call the tuple (X,F*,Q,¢), where X is a
compact Calabi-Yau variety of dimension n and F* is the Hodge filtration on the middle
dimensional cohomology H"(X,C) of X, Q : H"(X,C)xH"(X,C) — C s the polarization
on it and

¢ : (H'(X,C),F*,Q) = (Vo, F§, Qo). (4.1)
is an isomorphism, an enhanced variety. ¢ : H"(X,C) — V| in (4.1) is an isomorphism in
a sense that

« it respects the Hodge filtration
¢(FP(X))=F;, Vp, (4.2)

« it respects the compatibility with the pairing
P(Q(a, B)) = Qo(¢p(a), p(B)), a,peH"(X,C). (4.3)
Definition 4.2. We call the tuple (X, F®, ¢») a weakly enhanced variety if
¢ (H'(X,C),F*) - (Vo, E), (@)
is an isomorphism. We require for ¢ the condition (4.2), but not (4.3).

Definition 4.3. Let B be a complex manifold and 7t : X — B a family of projective vari-
eties of dimension 1 over B. We call X = (H, F*,Qp,) a family of enhanced varieties if

there exists an isomorphism
¢ : (H,JT., QOB) —>(V0 ®OB,P5®OB, QO ®OB), (4.5)

where H = R"7t,C®Q0g and the bilinear pairing Qp, : HxH — Og is given by Q on each
fibre.
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4.2 Moduli space

Definition 4.4. A moduli space T of enhanced varieties is the set of enhanced varieties
(X,F*(X),Q, ¢), where two enhanced varieties are considered equivalent if there exists

an isomorphism f, such that

B 1 (Vo, FS, Qo) > 51 (Vo, S, Qo). (4.6)

For our discussion, a more useful way of defining the moduli space of enhanced vari-
eties will be the geometric construction due to [Mov20]. Let T denote the moduli space of
enhanced varieties, and let X/T be the associated family over it. Consider a family X'/B
of Calabi-Yau varieties of dimension 7 over B. Around any point b € B we can choose a
Zariski open neighbourhood V}, C B and a global frame w), of the vector bundle H"(X'/B),
such that at every point b’ of V}, the basis w,(b’) is compatible. At any b € V},, any com-
patible basis can be constructed by a transformation of w;(b’) by a non-singular lower
block-triangular matrix S,

¢ wy = Swy, (4.7)

such that
Q(Swp, Swy) = Qo- (4.8)
Equation (4.8) gives algebraic constraints on the entries of S. Define
; 1
— ind
U= Spec((C [sij ,m]), (4.9)

where sf;?d are the algebraically independent entries of the matrix S, then a patch T of the

moduli space T can be constructed as the fiber product
T=V,xcU. (4.10)

Remark 4.5. To construct the moduli space T globally one needs to ensure that the map
¢ is indeed an isomorphism, by considering in detail its singular behaviour. The construc-

tion was carried out for example in [Mov12, MN16].

4.3 Algebraic Gauss-Manin connection and modular vec-
tor fields

Let 7t : (X, ¢) — T be a family of enhanced compact Calabi-Yau varieties over the moduli

space T. One can extend the Gauss-Manin connection to a connection on T by composi-
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tion, giving rise to the algebraic Gauss-Manin connection (see e.g. [KO68])
V:H(X/T) - HX/T)® Q1. (4.11)

The action of the algebraic Gauss-Manin connection on a frame ¢(w) of Vy ® Op is given
by
Vip(w) = (€)™ + ) 27 (t2)S(B)S ) plw), (412)

where z; are coordinates on Band V_ » w = B;w, with B; given in (3.19).
1 dz;

Remark 4.6. An algebraic Gauss-Manin connection can be defined analogously for non-
compact Calabi-Yau varieties. We propose a modified definition for Landau-Ginzburg
models in chapter 7, by considering the local system of solutions to (3.37), rather than

the Gauss-Manin local system.

Definition 4.7. Let 7w : X — B be a family of compact Calabi-Yau varieties of dimen-
sion n and let V: H(X/T) - H(X/T)® Q% be the algebraic Gauss-Manin connection on
H(X/T) = R"1t,Z® O1. A modular vector field R is a rational vector field on T, such that

Vgt PR/ — PR/, (4.13)
where F* is a filtration on H(X/T) induced by F*. Hence R is of the form

Off *fufir Offin - Off
Ot Ofifin *uifu - 9fify

Vrp(w) = P(w) = Ardp(w), (4.14)

Oflrfn Ofl'fn—l Oflen—z o *fufo
Onfi %% O%fie - O%f

where f; := rk(fk/]:kH) and *, ; is an a x b matrix with entries in Or.

Remark 4.8. The existence of the Ramanujan vector field is equivalent to the existence

of differential structure on the ring Oy, due to (4.14), which we rewrite as
(RS)S™! +Zzi_1(Rzi)S(Bi)S_l = Ag. (4.15)

Writing out the relations gives a system of first order differential equations for z; and s;;.
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4.4 Gauss-Manin Lie algebra

Definition 4.9. A (weakly) enhanced variety (X, F*®, Q, ¢) is called full, if there exists
an algebraic group G, acting on X and T from the left, which commutes both with the
morphism X — T and ¢.

For enhanced Calabi-Yau varieties of dimension 7 the condition above is equivalent to

G being of the form
G= {g € GL(b,,C)|g block lower triangular and gQyg"" = QO}, (4.16)
where 7 is the n-th Betti number. The Lie algebra of G is given by
Lie(G) = {g € GL(b,, C)|g block lower triangular and gQg + Qog" = O}. (4.17)

Remark 4.10. Note that for weakly enhanced Calabi-Yau varieties the last condition is

not required and G is of the form
G ={g € GL(b,,C)|g block lower triangular}. (4.18)

Theorem 4.11. [AMSY16] For any g € Lie(Q), there exists a unique vector field Ry € X(T),
such that

Ve, (@) = 9¢(w), (4.19)
i.e. VR (Sw) =g(Sw).

Definition 4.12. The Gauss-Manin Lie algebra (& is the Or-module generated by Lie(G)
and the modular vector fields R, € X(T).

4.5 Example: Elliptic curves

The purpose of this section is to reproduce the algebraic construction of the ring of quasi-
modular forms due to Movasati [Mov12] and establish a relation between variation of
Hodge structure and rings of quasi-modular forms in the case of the Legendre family of

elliptic curves.

Theorem 4.13. [Movi2] Let 1t : £ — B be the family of elliptic curves given by (possible

desingularization of) the vanishing locus
1
{fz = xf + x% + xg —zl/3x1x2x3 = O} cP? zeP! \ {O, ﬁ,oo} =: B, (4.20)
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Let further w denote a global frame of the middle cohomology bundle H'(E,C) — B. There
exists a basis @ = Sw, S lower diagonal and filtration preserving, and a Ramanujan vector
field R, such that

01
Vra = (0 O)a. (4.21)
The latter is equivalent to the existence of a differential structure R on the ring C[s, 51, z]
RSO =951,
R:{Rs; = —62(1 - 272)s,°, (4.22)

Rz=(1- 272)2552.

Variation of Hodge structure

Let £ be a family of elliptic curves in (4.20). The variation of Hodge structure can be
constructed on the bundle H := R'7,C — B. We identify F° = H and F! as the unique
vector bundle over B given by F! |Z = H%!(X,), for z € B, X, = 7 !(z). A global frame
of H is given by

(4.23)

—X1dxy ANdxz+xpdxqy ANdx3—x3dx; Adx;
wy =Ress _g ,
§ f.

and the Gauss-Manin connection can be constructed as

—x1d d d dxs —x3d d d
a)k:V]éa)O ZZReSfZ_O(Qk X1 X2/\ X3+ X) xl/\ X3 — X3 Xl/\ XZ)’ 0

fz = ZE.

(4.24)

Proposition 4.14. The basis w = (wq, w1) is a global frame of H and satisfies

0 1
VQ(U = 1 27, W = BZCL). (425)
1-27z 1-27z
Proof. The proposition follows from the explicit forms of w( and w;. [
The polarization in the basis w is given by the pairing (3.20)
0 1
Qlw,w) = ( 1 1-272). (4.26)
T 1-27z 0

In order to construct the Ramanujan vector field, we only need to construct a vector

field R, such that in the global frame a = Sw,

0 1
Vea = (O O)a = ARa, (4.27)
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where S is of the form

S = (50 (_)1). (4.28)
51 Sy
From
Vra = (RSS! +27'R(2)SB,S Ha = Aga, (4.29)
we find R = d,, with
3!
=21 (4.30)
TTo
where 7t; and 7t are solutions to
(0% -32(30 +2)(30 + 1))7; = 0, (4.31)
and s; satisfy
0750 =51, 05 = —62(1-272)sy°, dyz=(1—-272)zs5°. (4.32)

The family of elliptic curves enhanced with one-forms is full with the algebraic group

G given by
G:{S:(SO s(_)l) |soe(C*,sle(C}. (4.33)

Its Lie algebra is easily computable and has two generators

d 1 0
go = (—5)5‘1 :( B ) (4.34)
dso soa \0 71

d
=|{=—S|s™'
. (951 )
The corresponding vector fields are given by

=5 J +s J R, =s J
9 0850 1851’ 91 0851.

0 0
= . (4.35)
S=Id (1 0)

R (4.36)

Proposition 4.15. The algebra generated by the vector fields R, Ry, Ry, is isomorphic to
the sl,(C) Lie algebra.

Proof. We can easily compute the commutators

[RRy,]=Ryy [RRg]=-2R [Ry,Ry]= 2Ry, (4.37)
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Theorem 4.16. [Mov12] The ring of regular functions Ot equipped with differential struc-
tures coming from the vector fields R, Ry , Ry, is isomorphic as differential ring to the ring of

quasi-modular forms for I'(3) with differential structures described in section 2.1.

Proof. The isomorphism is given by
_ 4 _ 2 -1 _ 4
A =5, E=(1-54z)s5—12s1s;, B =(1-54z)s, (4.38)

and the modular vector field R is equivalent to the Ramanujan relations (2.9). Moreover,

the action of Ry, and Ry, is equivalent to the action of W and F respectively. O
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Chapter 5

Mirror Elliptic K3 Surfaces

The work of Movasati on the enhanced moduli space of elliptic curves [Mov12] provided
an algebro-geometric context for a construction of rings quasi-modular forms with the
corresponding sl,(C) Lie algebra of derivations on it. The general automorphic or modular
properties for moduli spaces of Calabi-Yau threefolds such as the quintic are less clear (see
[Mov13]), although the analogous enhanced moduli spaces and Gauss-Manin Lie algebras
have been put forward [AMSY16]. Lattice polarized K3 manifolds therefore provide the
middle grounds between the classical theory of quasi modular forms and new structures
appearing in the moduli spaces of generic threefolds. We should note, that in various
limiting constructions both of elliptically fibered Calabi-Yau manifolds as well as non-
compact Calabi-Yau manifolds, connections to classical quasi modular forms have been
worked out, see e.g. [Hag17]. Correspondingly sl,(C) Lie-subalgebras of the full Gauss-
Manin Lie algebras have been put forward in the context of elliptic fibrations [HMY17].
A different kind of universal sl,(C) Lie sub-algebra of the Gauss-Manin Lie algebra stem-
ming from the rescaling of the holomorphic top form of the Griffiths-Dwork family of
Calabi-Yau n-folds has been studied in [Nik20]. Our result provides on the other hand the
full Gauss-Manin Lie algebra which is beyond, yet very close to the classical one, reducing

to a direct sum of two copies the classical one.

5.1 Elliptic K3 surfaces

An elliptic K3 surface is a K3 surface X, together with a surjective morphism 7 : X — P!,
such that the general fiber is an elliptic curve. Elliptic K3 surfaces were classified in
[Kod63] by classifying the singular fibers of 7t. A particularly interesting subset of these,

which are known to exhibit modular properties are projective K3 surfaces with singu-
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lar fibers of type E¢, E; and Eg, corresponding to elliptic singularities of the same type.
In Refs. [LY95, LY96b] Lian and Yau proved that a fundamental solution of the Picard-
Fuchs equations for the mirrors of these K3 surfaces factorizes as a product of two mod-
ular forms for congruence subgroups of SL,(Z). The modular subgroup is given by the
respective monodromy group of an elliptic fiber of the mirror. Moreover, the authors
discovered an intricate relationship between the mirror map for these families and the
McKay-Thompson series [LY96a] (see also Ref. [Dor00]). An orthogonal approach to con-
nect K3 periods to quasi modular forms was taken in Ref. [YY07], where the authors
started with certain quasi-modular forms in two parameters and constructed K3 surfaces

for which these modular forms are realized as classical periods.

Lattice polarized K3 surfaces

In this section we give a short review of mirror symmetry for lattice polarized projective
K3 surfaces following to a large extent [Dol96, Hos00]. A lattice polarized K3 surface is de-
fined by an even, non-degenerate lattice M of signature (1,19—m) that admits a primitive
embedding into the K3 lattice Ags = Eg(—1)®Eg(—1)®H®3 where H represents the rank
two hyperbolic lattice. An M-polarized K3 surface is a K3 surface X whose Picard lattice
Pic(X) is given by M. The orthogonal complement of M in Ags gives the transcendental
lattice of the K3 surface and, up to a factor of H, the lattice of the mirror K3. Consider a
mirror pair X5, Xa. of projective K3 surfaces described by dual three-dimensional reflex-
ive, integral polytopes (A, A°), as introduced in [Bat94, BB96], and denote by [Py and Pyo
the ambient toric varieties of X, and Xx. respectively. The polarization of the two sur-
faces is given by the pull-back of toric divisors, together with the divisors that arise from
possible splitting of the simple divisors intersected with the hypersurfaces into several
irreducible components. A toric Picard lattice is defined as Pic,,,(A) = 1*A(X,), where
1 : X5 — P, denotes the embedding of the K3 surface into the toric variety and A'(Py)
is the first Chow group of the toric variety. A mirror of a lattice polarized K3 surface
(Xa,Picsp,(A)) is a lattice polarized K3 surface (Xpo, Pic,,,(A°)), where Pic.,,(A°) is the
orthogonal complement of Pic,,,(A°) in H?(X,Z), see e. g. [Roh04].

Realization of elliptic K3 surfaces as hypersurfaces in weighted pro-
jective spaces

Elliptic K3 surfaces with singular fibres of types E¢, E; and Eg can be obtained as hyper-
surfaces of degrees d¢ = 6, d7 = 8 and dg = 12 in weighted projective spaces P(2,2,1,1),
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1 1(2)
DO 1 0 0 0 —(wl +w2)/2— 1 0
D, |1 0 0 1 wy/2 0
D, |1 0 1 0 wy/2 0
Dy |1 1 wy/2 wi/2 0 1
Dy |1 -1 wy/2 wy/2 0 1
D5 1 0 w2/2 w1/2 1 -2

Table 5.1: Toric data of the K3 surfaces.

P(4,2,1,1) and P(6,4, 1, 1). Explicitly, they are given as the zero loci of Fermat polyno-

mials of the form
{f(x) = xf/wl + x;l/wz + xg + xZ = O} CP(wy,wy,1,1), (5.1)

where x; denote the homogeneous coordinates in P(wq,w;, 1,1). In all three cases there
is a singular locus along x3 = x4 = 0 of the torus action resulting in the singular curve
C: xil/wl + x;l/wz = 0. The singularity in the ambient space can be resolved by introduc-
ing a linear relation x4 = Ax3. This defines an exceptional divisor E, which is a ruled
surface over the curve C. The resulting geometry is a K3 surface which is a double cover
of the associated elliptic curves by the map (x1,x;,x3,X4) = (A = X3/x4; %1, X2, V3 = x%),
branched over the elliptic curve. Elliptic fibers of type E¢, E; and Eg at a general point
are given by hypersurfaces P(1,1,1)[3], P(2,1,1)[4] and P(3,2,1)[6], where the degree
of the hypersurface is indicated in the square brackets. The monodromy groups of these
elliptic curves are genus zero congruence subgroups of SL,(Z). We define them in chap-
ter 2 and introduce quasi-modular forms for them. The congruence subgroups are Ij(3)
for elliptic curve of type Eg, [})(2) for elliptic curve of type E; and I[j(1) for elliptic curve
of type Eg. The polytopes A = {D;},i € {0,1,2,3,4,5} for elliptic K3 surfaces in (5.1)
are given in Table 5.1. The vectors I{)) of linear relations between the polytopes gener-
ate the Mori cone in the secondary fan of Pp.. The intersection numbers can be com-
puted from the toric data. Let L be the linear system generated by degree one poly-
nomials x3 and x4, and let H be the linear system generated by degree 2 polynomi-
als x%, X3X4, xi, x1 and x,. It is straightforward to compute the intersection numbers
Cir=L-L=0,Cg=Cyy=H-L=2d/(wiw;), Cyg = H-H =4d/(w w,).

The mirror variety X is constructed by the Batyrev-Borisov construction [BB96] as

a resolution of the quotient

d
(o0 @) =91 + 93" + 95 + 95 - dpyivapsys — 2095798 = 0}/G,  (52)
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in P(wy, wy, 1,1) with coordinates 1, 92,93, 94 and d is the degree of fy 4 (). The discrete
groups G are (Z/37) x (Z/27), (Z/4AZ) x (Z/27) and (Z/37) x (Z/37Z) for the three K3
surfaces in the usual order. The locus fy, ¢(y) = 0 defines a family X of lattice polarized
projective K3 surfaces over the moduli space B of dimension 2 for which ¢ and ¢ provide
a local coordinate chart. The polarization is given, up to a a rank two hyperbolic lattice,
by the orthogonal complement of the toric divisors defined by {D;} in the K3 lattice Ags.

For later purposes it will be useful to write down a general polynomial of the form (5.2)

d/w d/w d d das/2 d/2
farnnas (V) = @191 +a29)" 7 +a3y3 + a4y +a0Y1Y2Y394 +asys’ vy (5.3)

It is equivalent to the form (5.2) by a projective transformation of y;. We define the GKZ

coordinates
aw1/2aw2/2a d-d
1 2 5 344
Z1 = a2 2y = — (54)

The relations between (¢, ¢) and (zq,z;) are —dip = ZIZ/dzz and -2¢ = 251/2. We will
denote the homogeneous polynomial f, ¢ in (5.2) by f;, ., to highlight the dependence on
z; and z.

Variation of Hodge structure and Picard-Fuchs equations

Let B be a complex manifold and let 7w : X — B be a family of K3 surfaces. The vec-
tor bundle HéR(X ) = R?>7,C ® Og carries the Gauss-Manin connection V : HéR(X ) —
HéR(é\f ) ®0, Qé defined by the action on the locally constant subsheaf R*7,C by

Vis®f)=s®df, (5.5)

for s € R?1,C, f € Og, where Og denotes the C-algebra of regular functions on B and by
Q|13 we denote the Og-module of differential 1-forms on B. The Hodge filtration F*(X}) =
{FP(Xp)}p=0,1,2 = ®a2p H®%27%(X,) for each fiber specifies the Hodge bundle F* of the
family X'. The Hodge filtration F®(X};) varies holomorphically over the base B and V

satisfies Griffiths’ transversality
VFP c FP 1 gp, Q. (5.6)

We say that a family & of K3 surfaces is polarized by a lattice M if each fiber of X is po-
larized by M. The image of the polarization:: M — HﬁR(X ) consists of constant sections
of the Gauss-Manin connection. We will denote by V : HéR(X ), — H(ZiR(X ), ®0g Qjf the
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induced connection on the quotient HﬁR(X ), = HéR(X )/1(M). Furthermore, we will de-
note by F,* a filtration on HﬁR(X)l induced by F®. We say that a basis w = (wq,..., W42)
of HgR(Xb)l is compatible with its Hodge filtration if w; € F?, wy,..., w1 € F'\ F? and
Wyn € FO\ F1L.

For families of projective K3 surfaces in (5.2) the variation of Hodge structure can be
constructed with the Griffiths-Dwork method, as reviewed below. Define a holomorphic

3-form on P(wy, w,, w3, wy) by

4
O b(w, wy w3 4) = Z(—l Ywexpdxy Ao Adxg A... Adxy, (5.7)
k=1

where hat denotes the omission of the k-th factor. For hypersurfaces (5.2), Qp(w,,w,,ws,w,)

can be used to construct a basis of H3(P(w;, w,, w3, wy) — Xp) by

lji QP(wl,wz,w3,w4)
i= k
fZ1,Zz

where P; are homogeneous polynomials of degree kd — (}_w; + 1). E; restrict to the

[1]

, (5.8)

hypersurface X}, via the residue map Res : H3(P(wy, wy, w3, ws4)—X},) — PH?(X;), where
PH?(X}) denotes the primitive cohomology of X;,. Let wj = Resfzw2 (y)=0(&j) € PH?(Xp).

We define the Gauss-Manin connection by
V@ia)j = Resle,zz(y)=0(9i81')’ (5.9)

where 0; = z; % It is straightforward to check that Griffiths transversality is satisfied and
consequently a basis constructed from a fixed (2, 0) form w; by successive application of
the Gauss-Manin connection is compatible with the Hodge filtration. The holomorphic

(2,0) form on X can be chosen to be

dyi Ao Adyg AL Ady,

4
k
wy =Resg  (y)=0 (=1)* wi v (5.10)
flr 2(3/) ]; Y le,zz(y)
We furthermore define 2-forms w;,i = 2,3,4 as
Wy = V@lwl, w3 = nga)l, and Wy = V@l V@lwl. (5.11)

For dimensional reasons (w1, w,, w3, w4) provide a basis for H &QR(X p), and Griffiths transver-

sality ensures its compatibility with the Hodge filtration.
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Proposition 5.1. The Gauss-Manin connection in the basis w = (w1, W;, W3, Wy) is

Vo,0" = G;w", (5.12)
with
0 1 0 0
0 0 0 1
G, = , 5.13
T u-v)z 2(a-1) 0 A (5.13)
(G1)a1 (G1)az  (G1)az (Gi)as
0 0 1 0
Su(l-v)zy (A -1) 0 1A,
G2 = 221;1/(1—1/)2122 2(1—2A1)22 2z, (1—22A1)22 ’ (5-14)
A, A, N, A

(G2)a (G2)az  (G2)az  (Ga)aa

where we defined
A =1-wv’z,  A,=1-4z, (5.15)
with (u, v) given by (3,3), (4,4) and (12, 6) for K3 surfaces of elliptic type E¢, E; and Eg
respectively. The entries (G;)4;j of the Gauss-Manin connection matrices are
(1 =v)z (2(1-Ay) - 1)
(G1)a1 = — >
AT+ (A =1)(A)-1)
oz (L-v)(2-A1)A = 2) +v2(2A1A, - 1))

(ke AT+ (A - 1)(Ay - 1)2 ’

s

(G ) — 2”1(1 _V)21A2 (516)
VR AT (A - 1)(A - )Y
(Gy)as = 3uvizi(1—(1-A)Ay)
VRN (A - 1) (A - 12
and
(Ga)ay = (L =v)(1=Aq)z (1 - (1+A1)A)
7 2(A2+(Ar—1)(A —1)?)
(Ga)sn = pzi (1 =v)(1 = Ay) = v2(1 - Ap)(1 - (1+Ap)A,)
. 2T +(Ay—1)(A —1)?) ' 517
(Ga)as = — p(1-v)z1A 1Ay '
PETUAT (A - (A - )Y
() L (1=A)(=1+(1-A)(3A; - 1) = (1 - AD)A,)
v A2+ (A -1)(A, - 1)?) |
Parameters y and v can be computed from the toric data as
24 d wy/2-1 d wy/2-1 d
= _— (w—l) (w_z) , v=o. (5.18)
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Proof. Picard-Fuchs system for hypersurfaces in weighted projective varieties is equiva-
lent to the GKZ hypergeometric system [GKZ89] and can thus be determined from the
generators of the Mori cone I!) in Table 5.1. O

Let W), be the Poincaré dual of (M) in HjR(Xb). We define
HQ(Xb,Z)l :Hz(Xb,Z)/Wb. (519)

Denote the basis of H,(X},Z), by yg, j=1,...,m+2, and define the period matrix II by
integrating the basis w of HjR(Xb)l over the integral cycles 7/!]: € Hy(Xy,Z),

I = o vl e Hy(XyZ), ij=1,..,m+2. (5.20)
b
The first row of IT corresponds to the periods (X% X!, X?, X3) of w;. They satisfy the
Picard-Fuchs differential equations
(01(6) —20;) — pzy (vO, +v -1)(v0; +1))- X/ =0,
(63 —22(61 —26,)(61 - 20, -1))- X/ =0, j=0,1,2,3,
where (p,v) are (3,3), (4,4) and (12, 6) as in Proposition 5.1. The system (5.21) admits a

holomorphic solution

(5.21)

212y, (5.22)

X0 =
nz;zo (%n)! (%n)!(m!)z(n —2m)!
with leading term 1. There are unique solutions X%, a = 1,2 of (5.21) of the form

X% = (2mi) ' X log(z,) + %,  a=1,2, (5.23)
where S? is a convergent power series in z; and z,, with S* — 0 as |z;| — 0. The series

S% are fixed uniquely as a solution to (5.21).

Definition 5.2. The Griffiths-Yukawa couplings Y;; are

Yij = —J w1 /\VQiVQja)l, Z,] = 1,2. (5.24)
X

Proposition 5.3. The Griffiths-Yukawa couplings for the mirrors of elliptically fibered K3

surfaces are given by

2c
Yi1="= >
Al + (Az - 1)(A1 — 1)
cA
Yi2=Y1 =7 ! > (5.25)
Al + (AZ — ].)(Al — ].)

2c(2A1 - 1)z,

Yoo =

AT+ (A= 1)(A -1)2
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Proof. We compute

ele‘]’ = —J. ngwl A V@iVQja)l —J w1 A VBiVGjVkal- (5.26)
X X

Integrating by parts the first term, we find

2
GkYij = —gf w A V@iVQjVQka)l. (5.27)
X

From the Gauss-Manin system we can express the action of VQiVQjVQk in terms of lower
order operators. By Griffiths transversality only operators of second order will contribute
and Y;; are the solutions of the resulting differential equations. Moreover, we have the

following relations between Griffiths-Yukawa couplings
AlYll - 2Y12 =0 and A2Y22 + 422Y12 - 22Y11 =0, (528)
which fix Y, = Y, and Y5, in terms of Y. O

The intersection pairing

Q: Hix(X)x Hiz(X) — C, q@@ﬂi[@A%, (5.29)
X

in the basis w will be denoted by Q,,. It is given by

0 0 0 Y
I AN
Y11 361Y11 —302Y11+6;,Y1, Y4
with
Yyu=-— ! (—495Y11+1(A1—1)(1 +As(1+A1))01Y1y
AT+ (A= 1)(A - 1) 2 (5.31)
#3 (181 = 1)(2Ao(1 = A1) = 1)+ 4p(v = 12y (4(1 = Ag) +382) Yy ).

Note that the logarithmic derivatives of Y;; can be expressed in terms of multiplication

factors

(1-A7)*(Ay—1)

(1A (1 + (A —1)A2)Y
A +(Ay—1)(A;—1)2

0:1Y11 = 11, 0,Y11 =

Y1, (5.32
A2+ (Ay—1)(Ay —1)2 e (532)

hence all the entries in Q,, can be expressed in terms of Y;; and algebraic prefactors.
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Monodromy of Elliptic K3 Surfaces

The monodromy group of the families (5.2) can be derived by an analytic continuation of
solutions to (5.21) along closed paths around singular points in the moduli space. In the
cases considered here, the monodromy group is closely related to the monodromy group
of the elliptic fibre.

Proposition 5.4. [LY96b] The Gauss-Manin system (5.21) is equivalent to the system
902(1. —pa;(vOy, +v-1)(vO, +1), i=1,2, (5.33)

where a; are related to z; in (5.21) by

1 1 ajasr(1-aq)(1 —ay)
z1 = %(0‘1 tay—2may), 2= 7z ) : (5.39)
N 1

In Ref. [CDM17] a similar factorization is found for the Appell function F,, where
the solution vector of a rank 4 system analogous to (5.21) is constructed as a Kronecker
product of solutions to (5.33). In terms of differential forms on H §R(Xb)u the following

corollary gives the structure of the Gauss-Manin connection matrices.

Corollary 5.5. There exists a basis oijR(Xb)l, such that the Gauss-Manin connection

matrices composed with ai% are of the form
1

G =Gl By, Gy =1,,,BGY!

an’

(5.35)

where B denotes the Kronecker product and G/ is the rank two Gauss-Manin system for an

elliptic curve, given by

i1 0 1
Gy =|pv-Da  wia |- (5.36)

1-wv2a  1-pv2a
From the structure of the connection matrices, we infer that the monodromy of the

fundamental solutions is generated by
yiBlyo and 1oH®ys,  y1,72 €Io(N), (5.37)
for a K3 family with the monodromy group of elliptic fibre [;)(N).

Corollary 5.6. The monodromy of the elliptic K3 families with the monodromy group of
elliptic fibre Iy(N) in (5.2) is isomorphic to
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5.2 Moduli space of enhanced K3 surfaces

By moduli spaces T of lattice polarized K3 surfaces enhanced with differential forms we

refer to the moduli spaces of pairs (X, {w;};=1 _u+2) where X is a K3 surface polarized

by a lattice M of rank rk(M) = 20 — m with signature (1,19 — m) and {w;}1-1, 42 is
a basis of HjR(X )/ (M), where 1 : M — H c:{'R(X ) denotes the polarization map. A basis

.....

is given by the pairing

D =

0 O 1]
0 Cp 0], (5.39)
-1 0 0

where C,;, denote the intersection numbers of the elliptic K3 surface. Mirror families in-
troduced in the previous section are two-parameter families of hypersurfaces in weighted
projective spaces (5.2). They are polarized by the pull-back of the lattice of toric divisors
to the hypersurface. The rank of Pic.,,(X°) is 18, m = 2 and the moduli space T is 6-
dimensional. Away from the discriminant locus T is a locally ringed space with the local

ring Or. We will show that there is an isomorphism

Or = M(Ty(N) x To(N)), (5.40)

between the local ring Or and the graded ring of quasi-modular forms of the modular
subgroup [j(N) in two variables. The level N of the congruence subgroup is determined
by the type of elliptic fiber of the elliptic K3, as explained in the next subsection. For
explicit construction of the coordinates on T consider the filtration preserving transfor-
mation @ - a = Sw, G; > G, = Y, 2 24SG;S7 +9,5-S7, i,a = 1,2, where S is of

z; dt,
the form
SO O O
S=|s;, sz 0| (5.41)
S3,0 S3,i S33

and d, = % denotes the differentiation with respect to coordinates ¢,. The moduli space
T of K3 surfaces enhanced with differential forms consists of the moduli space B, together

with the independent parameters of S. The condition on the pairing

SQ,S" =@, (5.42)

45



reads explicitly:

1
$3,3 = soV11’
CZlbg =sgisp;Yijy Lj=12
53 = lsa_;Yﬁlsa 1 Vil Yo+ Y5 Y34, (5.43)
So So Y11
S3,0 = 2L((: '8)-1s  1sho Yoo(Y3s + YllY;M) SATALY —22Y12Y24Y34.
S0 250Y2, (Y11 Y2, - Y2))

For elliptic K3 surfaces we find 4 independent parameters. As coordinates on T we choose

S0,S1,S2 and 51'1 .

Algebraic variation of Hodge structure for projective elliptic K3 sur-
faces

Let (X, a) — T be a family of lattice polarized projective K3 surfaces with a fixed choice of
basis a of H(ziR(X ),» such that the intersection pairing in the basis & is @. Let furthermore
R denote the function ring of T. The relative algebraic de Rham cohomology H §R(X /T)
(see [Gro66]) carries the Gauss-Manin connection V : HéR(X) — H(%R(X/T)(X)RQ%, where
Q% is an R-module of differential forms in R [KO68]. As before, the Gauss-Manin connec-
tion restricts to the quotient HﬁR(X ),- Let Vec(T) be the Lie algebra of vector fields on T.

The algebraic Gauss-Manin connection V acts on « as
VEiCY = AEI,O(, Ei € Vec(T), (544)
where Ag. are (m + 2) x (m + 2) matrices with entries in Or.

Theorem 5.7. There are unique vector fields R, € Vec(T) and unique CZ;g €O1,a,b=1,2

symmetric in a,b such that

08 o
Ar,=|0 0 Cifl (5.45)
00 0

We call them modular vector fields. Furthermore
1
Ra, Cars = 0. (5.46)
Theorem 5.7 amounts to finding S and ¢, as above such that

1 0z
A, =) —22SG.S1+0.5.571, 5.47
% Z’Z,' ot, i T 0, ( )

1
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Proposition 5.8. The system (5.47) is solved by
Xa

= %o (5.48)

S = (XO)_l, t,

where X° denotes the fundamental period and X* denote the the periods with a logarithmic

pole at z;, = 0. Furthermore, the other independent parameters in S satisfy

1 dz;
Sai = Z—ia—t;so, S, = Z sqi0ilogs = d; logs,. (5.49)
1=1,2
Proof. The proof is computational. For a proof using the special Kahler structure of B see
[Ali17]. O]

Corollary 5.9. With this choice, we find that Czlbg are C;ﬂlg =Cyy, C?lzg = C;llg = Cyr and
C;lzg = Cyp = 0, which finishes the proof of Theorem 5.7.

Theorem 5.10. [LY95, LY96b] The fundamental period X° of a mirror to a projective elliptic

K3 surface factorizes

X% = A(1))A(1y), (5.50)

with T) = t1, T, = t; +t, and the weight 1 modular forms A are given in 2.1. For each model,
the quasi-modular form A is the quasi-modular form associated to the monodromy group of

the respective elliptic fiber. This can be checked by comparison with (5.22).

Proposition 5.11. There is an isomorphism

Or = M([y(N) x Ty(N)), (5.51)
between the local ring Ot and the graded ring of quasi-modular forms of the modular sub-
group Iy(N) in two variables. The level N of the congruence subgroup is the same as in the

monodromy group of the elliptic fibre of the elliptic K3 surface.

Proof. The independent variables t := {z;, S0, S,,S1,1}i,4=1,» formalocal chart for T. Denote
by O the local ring at t € T. Theorem 5.10 provides an isomorphism between the ring Oy

and the ring of quasi-modular forms in two variables. The isomorphism is given by the
C(ta)
A(Ty)

p
inverse mirror map z; = z;(fy, t,). Fix a, = ( ) , 7 as in 2.1. It satisfies
dr ap = 8y (1 —ay)A%(1y). (5.52)

In terms of these the inverse mirror map is

1 1 ajap(l-a;)(1-ay)
z] = %(0& +ay—2a1a3), 2=y 2 : (5.53)
N 1
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The remaining elements of the ring are found from (5.48), (5.49), (5.50) and (2.19)

1 2CT A’
Sa - ___ E(Ta)‘l' (Tu) (Ta) ,
2r AT2(1,)
(5.54)
- a(1-a1)(1-2a3) Alt)
Toa(l-ag)+as(l—ay) Alry)
O
Algebraic Group acting on T
We define a Lie group G by
G ={g e GL(m +2,C)| g block lower triangular and gPg" = ®}. (5.55)
It acts on T from the right as
(X,a)g=(X,a"g), (5.56)

where a = (ay,...,@,,42)" is the special basis defined as above, g € G, and a''g is the
standard matrix product. The condition gdg' = @ fixes dim(G) = dim(T) — 2 = 4. The
group G is generated by two elements isomorphic to the multiplicative group C* and two

elements isomorphic to the additive group C. The following lemma gives the generators

of G:

Lemma 5.12. For any g € G there are unique elements g; € G, i = 1,2,3,4 such that g can
be written as a product of at most four g;. For families (5.2), g; are given by

hgy 0 0 0 1 0 0 0
1o 10 o0 10 hyy hy O
E1710 01 0| 870 hy hy 0O
0 0 0 hy' 0 0 0 1
1 0 0 0 1 0 0 0 (5.57)
. Cih; 1 0 0 o - Ci¥h, 1.0 0
3 = ) 4 — )
C%hy 0 1 0 C%h, 01 0
0 h; 01 0 0 hy 1
where hij, i,j = 1,2 satisfy the constraints
1 1
Z C?]-ghikhjl = C?kg. (5.58)

i,j=1,2
The constraints can be solved by a simple algebraic manipulation, which yields only one

. ) .
independent parameter. We fix hy = C?zghg; as the independent parameter and express h;;

in terms of hs.
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The Lie algebra of G is given by
Lie(G) = {g € Mat(m + 2,C)| g is block lower triangular and g® + ®g=0}. (5.59)

The Lie algebra Lie(G) is a Lie sub-algebra of Vec(T). The basis of Lie(G) can be con-
structed from the elements g; € G. We find

100 0 0 0 0 0
o]0 000 gzoc‘flzg—c‘{’fo
1 000 OV 2 alg _ alg ’
00 0 -1 0 0 0 0
(5.60)
0O 0 00O 0O 0 00O
c® 0 0 0 c¥ 0 0 0
g3 = alg o 04 = alg .
C, 000 C,y 000
0O 1 00 0O 010

5.3 'The Gauss-Manin Lie algebra

The Gauss-Manin Lie algebra is defined to be the Ot module generated by Lie(G) and the
modular vector fields R, in (5.45). We write the action of the modular vector fields R, on

a explicitly

010 0 001 0
1 al
0 0 0 Ci¢ 0 0 0 C'$

AR, = el Ar, = oz |- (5.61)
00 0 Cj; 00 0 C5
000 O 000 O

Theorem 5.13. The Gauss-Manin Lie algebra, generated by g1,9,,93,94 and Ag,Ag,, is
isomorphic to sl,(C) @ sl,(C).

Proof. Let
1 0 0 0
0 wiwy 2W1W2 0
A= 2d w58 (5.62)
0 0 5 7 : 0
0 0 0 1



Here wézuz = C;ilL. The Lie algebra is given by the generators

10 0 0 1 0 0 0
L. lo1 0 o > 4|0 -1 0 0
j_A (gl+g2)_00_1 Ol j_A (gl 92)_0 0 1 0’
00 0 -1 0 0 0 -1
0000 0000
. 000 0 2 1 000
Jo=4-0=|1 g o o F=4%=g o o of (5.63)
010 0 0010
001 0 0100
4 A |00 01 2 4 A |00 00
Je=A P =lg g o of FTAATIg 0 0 1|
000 0 0000

which form a basis of sl,(C) @ sl,(C), with commutation relations
(78,7 =7% (J&TN=J [J&LT)=-T% [T} TH=0, a=1,2, (564

where e denotes any generator. [
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Chapter 6

Non-compact Calabi-Yau Manifolds

In this chapter we study moduli spaces of mirror non-compact Calabi-Yau threefolds en-
hanced with choices of differential forms in their middle cohomology. The Gauss-Manin
Lie algebra of derivations on the ring of regular functions is constructed. We study in
detail two families, appearing in mirror symmetry, mirrors to local P? and local IF,. The
families share several properties with the corresponding mirror curves, a locus where
the mirror families degenerate. The mirror curves in this case are of genus one and the
corresponding differential ring of quasi-modular forms (for the appropriate congruence
subgroup) is identified as a subring of the ring of regular functions of the moduli space of
enhanced non-compact families. Moreover, we identified the sl,(C) Lie subalgebra corre-
sponding to the algebra of derivations of quasi-modular forms in the cases of the mirrors
of local P? and local F,. We note that the mirror geometry of local F, has two parame-
ters, although the moduli space is only one-dimensional, this was already addressed, for
instance, in [ABKO08] and is related to the fact that [F, has two distinct curve classes but
only one non-trivial four-cycle. On the level of the Gauss-Manin Lie algebra we note
that the additional parameter gives rise to an additional vector field, enlarging the sl,(C)

algebra of derivations of the quasi-modular forms in this case.

6.1 Local Calabi-Yau and mirror families

In this work we consider toric Calabi-Yau threefolds which are given by the total space of
a bundle over a surface or a curve, we call these local Calabi-Yau threefolds. Toric varieties
can be described by a fan ¥, but substantial amount of information about it is encapsulated

by a charge matrix Q]ic that encodes the linear relations between one dimensional cones
¥(1) of the fan ¥, i.e. f;(l) Q]i(vz- =0 for v; € (1) and s = |X(1)|. The mirror families of
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such varieties are known to have the following form, see e. g. [KLM*96, KMV97, CKYZ99,
Hos00]:

s—1 s—1 .
X = {uv +F,(y;) =uv+ Zaiyi =0|lu,veCy; e (C*,]_[yiQ’l‘ = 1}. (6.1)
i=0 i=0
It is also common to set as a mirror family a family of curves
s—1 s—1 ;
ZZ{Fu(yi):Zai}’i:()l}’iGC*;l—[}’IQk = 1}- (6.2)
i=0 i=0

We are interested in a special class of local Calabi-Yau varieties, namely canonical bundles
over del Pezzo surfaces. In this case all the information can be encoded in a 2-dimensional
reflexive polytope A. In particular, the set of the one dimensional cones v; of the fan ¥ cor-
responds to the set A(A) of the integral points m; of the polytope A, thus the coordinates
y; can be parametrized by

pi= "=, byt € CF (6.3)
for m; = (m;1,m;,) € A(A). Hence the information about the general fibre X, of X is
encoded in the polynomial

F(t), 1)) = Z a;t". (6.4)
m;eA(A)

The parameters a; redundantly describe the deformations of complex structure on X,.
The GIT quotient of the space of parameters a; by the natural torus action induced by the
action F(ty,t3) — AgF(A1t1, A5t2) gives the complex structure moduli space B, for which
the torus-invariant local coordinates can be chosen as z; = (—l)Ql? -aQ;‘.
The holomorphic 3-form on X, is given by the residue of the top form on the ambient

space

L ﬁ/\@/\du/\dv, (6.5)

O =Res| ———
Fa(tl,t2)+uv tl tz

where Res is the residue map
Res : HY(C? x (C*)%, X,) — H3(X,), (6.6)

which sends an w € H*(C? x (C*)?,X,) to L/ w, with y € Hy(C? x(C*)?, X,) being a cycle
around uv + F,(t;,t,) = 0. The periods of the holomorphic 3-form satisfy Picard-Fuchs
equations, which are obtained from a GKZ system [GKZ89] of differential equations

9 \% 9\ %
]_[ (%) - ]_[ (%) j Q =0, yeH;Xg2) (6.7)
i:Q;;>O ! i;Q]i(<0 ! )4
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Mixed Hodge structure

This contents of this subsection follow closely section 3.4 and are meant as establishing
notation and making the chapter self-contained. A mixed Hodge structure on the middle
cohomology H3(X,,C) for the families (6.1) was described in [Bat94, KM10] (see also
[Sti98]). Define the following ring:

sa=(Psk,  sk= P o, (6.8)

k>0 meA(A(k))

where t is an additional parameter and
A(k) = {m 7P CR?| T e A} 6.9)

for k > 1, A(0) := {0} C R?. The grading is given by deg(tét’”) = k. Define also the

following differential operators on Sy

DO = 9t0+t0Fa1 Di = Gti +t06tiFa) i= 1,...,5—1, (610)
and a C-vector space
s—1
R :=Sp/( D;Sp). (6.11)
i=0
There is a decreasing filtration on Ry
0c&lce&lce?c.., (6.12)

with £7% being a subspace generated by monomials of degree < k.

There is also an increasing filtration. Define I(Aj) to be the homogeneous ideals in Sy
generated as C-subspaces by all monomials tlg t™ (k > 1) with m € A(k) which does not
belong to any face of codimension j. Since everything belongs to the codimension 0 face,
we get I(AO) = 0. Everything that belongs to the face of codimension 2 also belongs to some

. . 1 2 . .
face of codimension 1, therefore I(A) C I(A ). There are no faces of codimension 3, thus

3 . . 4 . .
I(A ) = @ k1 SZ, which contains the last two, and set I(A ) = Sa. These form an increasing
filtration on Sp:

0 1 2 3 4
0=1"ciVc1PcrVc1? =s,, (6.13)

which defines under the quotient an increasing filtration on R, :

OZIO CI]CIZ CI3 CI4:RFH, (6.14)
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where Z; is the image of I(Aj) in Rp,.

Let us consider Sp[a] = Sp ® C[a] and
Rp,[a]:=Salal/() D;Spla)). (6.15)
i=0

On S [a] we can define the following differential operators:

%
D, = =— +tyt"". (6.16)
! 8ai

Since they commute with D;, they descend to Rr,[a].

Theorem 6.1 ((KM10]). There is an isomorphism
r: Ry, = H*(X,,C), (6.17)

for every a. Therefore, as a consequence, the filtrations £, ,Z, define a mixed Hodge structure
on H3(X,,C), namely FOF = r(E7%) and W5 = r(I}), Wy = W5 = r(Z3), Wy = r(Zs).

Moreover the derivations D, correspond to the Gauss-Manin connection V 5 .
da;

Remark 6.2 ((KM10]). The weight 3 filtration space Wj is in fact just the first cohomology

of the corresponding curve X, which is the compactification of a fibre of (6.2) at a:
W5H?(X,) = H'(Z,). (6.18)

For the families (6.1) there is an inclusion WyH3(X,) = H'(X,) ¢ H3(X,). We define
a polarization (-, —) to be equal to the intersection pairing on W3H?(X,) and 0 otherwise.
It was shown in [KM10] that this pairing is flat on Gr}'v with respect to the Gauss-Manin
connection. Since in the case of local del Pezzo all the mirror curves are elliptic curves, in

a suitable basis the pairing matrix is

O(b,-2)x(b,-2)  O(b,-2)x2
0 -1 |,

(6.19)
O2><(bn—2) 1 0

where 0, is an a x b block of zeroes.
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6.2 Enhanced non-compact Calabi-Yau varieties

An important property of the intersection pairing in the case of compact Calabi-Yau vari-
eties is that it is flat with respect to the Gauss-Manin connection. In the case of variation
of mixed Hodge structure we no longer have this property, but we have flatness of the
pairing on the graded components Gr}-/\) = W,;/W,;_;. This fact motivates the following

definition.

Definition 6.3. An enhanced Calabi-Yau variety of dimension # is a pair (X, w), where

X is a Calabi-Yau variety of dimension n and
w = (a)l,...,a)i,...,wbn)tr, b, =dim H"(X,C), (6.20)
is a basis of H"(X,C) such that:
« It respects the Hodge filtration, i.e.
w = (w1,..., WgimFk) (6.21)
spans F k;
« it respects the weight filtration, i.e.
w = (Wp,—dimW,r-+» Vp,) (6.22)
spans Wj;

« the pairing (—,—) on Ger takes the form of a constant matrix @; in this basis for

all 1.

The construction of the moduli space of enhanced varieties, as well as the Gauss-
Manin Lie algebra generalize to this setting. The difference is the additional constraints
imposed on the entries of S by the second condition above. It sets some of the lower-
diagonal blocks to zero, in a similar fashion as the Hodge filtration condition sets the
upper-diagonal blocks of S to zero. Moreover, the pairing condition of the Definition 4.3

is imposed on each graded component of the weight filtration separately.

6.3 Examples from mirror symmetry

The construction of sections 6.1, 6.2 is applied to two families of non-compact Calabi-Yau
threefolds, mirrors to local P? and local F?. We construct the rings of regular functions

on T and the Gauss-Manin Lie algebra and prove Theorems 1.3, 1.4 and 1.5.

55



Local P?

Setup

The first example we study is the total space of the canonical bundle over the projective
plane P2 It is defined by the toric charge vectors Q = (-3,1,1,1) and the mirror family

is given by

X = {uv+a0y0 +a1V) tay) +Aasys = 0 | u,ve C,yk S C*,yly—g% = 1} (623)
Yo
We have

a
Pa(tl, t2) =apg+ait; +azt, + ﬁ (624)
1+2

The torus invariant coordinate reads

g =-A02% (6.25)
a9
and the Picard-Fuchs operator is
) d
L=(0°-3z(30+1)(36+2))0, 0= o (6.26)
The middle cohomology can be written as
H*(X,) =R, = CleCtydCtg, (6.27)

where we denote the general fibre of X by X, to emphasize the dependence on z. The

mixed Hodge structure described in the previous section is
W3 =W, = W5 =Cty®Ctj C Wy =Rp,, (6.28)
F’=ClcF’=Cl®CtycF' =F' =R, (6.29)
We can generate it with the help of D, :
J 2
Dao(l): a_+t0 (1) = to, Dao(to):to- (6.30)
ao
There is a patch of the moduli space B, where

d
64, = ~360 = 327 =30, (6.31)
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holds. Thus we can take (Q, Ve (), VéQ) as a basis of H3(X,) that satisfies first two con-
ditions from the Definition 6.3. The only non-zero pairing is between Vg() and VgQ. It

is the Yukawa coupling Y;;; for local P?, namely

1
2
Q, Vo)=Y =———. 32
(Vo VeQ)) =Y 3(1-272) (6.32)
In the basis
w=(Q,VoQ, Y, V5Q), (6.33)

the pairing has the form

0 0 O

00 -1 (6.34)

01 0

Moduli space T

0 -1
1 0
basis satisfying the conditions of the Definition 6.3, therefore we can construct (locally)

Let us fix O3 = ( and @g = (0) We saw in the previous subsection that w is a

the moduli space T by considering the complex structure modulus z and algebraically
independent entries of the matrix S. The requirement on S to preserve the Hodge filtration

restricts it to the lower-diagonal form

S11 0 0
S = S721 S22 0 1. (635)
531 S32 533

The second condition — preservation of the weight filtration, sets s,; = s3; = 0. Next, we

have to satisfy the condition that

<_' _>|Grg‘/ = CD31 <_1 _>|Gr6 = q)6' (6-36)

note that Gr}l’v and Grgv are empty. The second condition is empty, and the first one

1 0 0
S=|0 s33 0| (6.37)

0 s3 s$33

implies s, = sgé, thus we have

The element s;; corresponds to the normalization of the holomorphic 3-form and can be

set to 1, as it decouples from other s; i
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Modular vector field and Gauss-Manin Lie algebra

Modular vector fields have the form

0 = 0
Vth = O 0 * (L)t. (638)
0 00

We make a choice of normalization inspired by [ASYZ14]

0 Y '(t) 0
Vth[O 0 1]a)t. (6.39)

0 0 0

The Gauss-Manin connection matrix in the basis w reads

0 1 0
Vow=]0 0 Yi;|lw=A4qw. (6.40)
0 18z 0
Let P P
R=i — +i +i ) 6.41
2 T 255, 13305, (6.41)
then,
i dS aS
Vrw: = | 2(SApS ™) +izg5—S " +i335—S5 ! |y 6.42
ROt lz (SAS™) +1i32 52 33 3503 Wy (6.42)
Proposition 6.4. There exists a unique modular vector fieldR on T. It is given by
2 3
2533 0 , d 18zs3; d (6.43)

=3 — 53,53, + )
Yi11 0z dssz Y111 ds3

Introduce f = d f(R) for f € Or, then the existence of R is equivalent to the following

differential structure on the ring Or:
o _ 2 vl
z=1z833Y )
$30 = 18253, Y7}, (6.44)
: 2
533 = —532533-

Theorem 6.5. There is an isomorphism between the ring of regular functions Ot equipped

with the differential structure R and the ring M(Iy(3)) of quasi-modular forms on I;y(3) with

the derivation d.
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Proof. Define

A =V-3s33, a =27z (6.45)
B=(1-272)'3A, C=3z3A, E=dlog(B>C%R), (6.46)
Then we can rewrite the differential ring as
d=a(l-a)A?
1 3_p3
A= g(A15+c - B?),
1 5
B= gB(E -A%), (6.47)
1
C= gC(E +A?),
|
E=—(E?>-A%,
6
which is the differential ring of quasi-modular forms on /W(FO(S)) in section 2.1. O
Gauss-Manin Lie algebra
Theorem 6.6. The Gauss-Manin Lie algebra for local P? is spanned by
_ zs3, aJ 5352 d .\ 18253, 0
Y11y 0z P¥ds33 Yin sy
d
R =i 53y 6.48
933 533 8533 532 8532 ( )
d
Ry, = $335—
g3 — 533 ds3,
and it is isomorphic to sl,(C).
Proof. Lie(Q) is generated by
5 0 0 O
-1
933:(8 5)5 =10 -1 0f, (6.49)
533 s=d {0 0 1
B 0 00
gy = (a—s)s—1 =(0 0 of. (6.50)
532 s=d {0 1 0

The corresponding vector fields are exactly Rg,, and Rq .. It can be checked explicitly that

g32°
commutators are

[R’ Rg32] = R933’ [R’ 933] =-2R, [Rgsz’R%s] = 2R'£l32' (6.51)

]
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Local F,

The canonical bundle over the second Hirzebruch surface Kp, is defined by the toric
charge vectors Q; =(-2,1,0,1,0) and Q, =(0,0,1,-2,1) and the mirror family is given
by

4
X = uv+Zaiyi:Olu,ve(C,ykeC*,%#:l,yz—};lzl . (6.52)
i=0 Yo Y3
We have
a a
Fu(t), t2) =ag+arty +a2t2+t—3+2—4. (6.53)
The torus-invariant coordinates are
a,as aray
21 = 5 2y = 7 (654)
4 as

and the Picard-Fuchs operators read

£1 = 61(91 — 292) — 221(291 + 1)91 ,

d
Ly

03 —2,(0, —20,—-1)(0, —26,), 6;= Zi——.
Zi

The middle cohomology can be written as
4
H3(X,)=Rp, =CleCty® Ct—o ®Ct2. (6.55)
1
The mixed Hodge structure is

t
Ws =Cto@Cti c Wy=Ws =W, ea(Ct—O C Ws =Rk, (6.56)
1

t
F3=Cl1cF? :ClEB(CtO@Ct—O cF'=F'=Rp.. (6.57)
1

Using the Gauss-Manin connection we obtain

t
D, (1) = to, D, (to) = 3, Da3(1):£. (6.58)

On the moduli space B there is a patch where

% 0
aoa—ao = —291, a3a—a3 = 91 - 292, (659)
therefore in the basis
(Q,v(el_wz)g,velg,vglﬂ), (6.60)
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the pairing has the form

00 O 0
00 O 0
00 0 Yl (6.61)
0 0 Yy 0
where Y71, is the Yukawa coupling
Yii1 = ! (6.62)
i (1-4z,)% - 6422z, '
Moduli space
Let us fix
0 -1
q>3:(1 0 ) Dy =(0), P=(0). (6.63)

In addition to the complex structure moduli z; and z, we need to identify the independent

elements of the matrix S. The Hodge filtration condition restricts it to the lower-block

diagonal form

S =

The weight filtration condition gives

S

S =

—

1
0
0
0

522
532
542

0

522
0

0

523
533
543

0
523
533
543

0

0

0 (6.64)
544

0

0

0 (6.65)
544

The conditions on the pairing on Ger and Gr‘év are empty and the corresponding condi-

tion on Grgv gives us the final form of S:

511

0
S_O

0

Moreover, we again set s;; = 1.

0

522
0
0

61

0

523
-1

Sa4

543

(6.66)
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Modular vector fields

We define modular vector fields by

and

0 Y7't) Y,ht) o

0 0 0 0
VRi@e=1g o 1|“v

0 0 0 0

0 Y;it) Y;Mv) o

0 0 0 1
VR,@t=1g 0o of|“

0 0 0 0

for some Y;(t) € Or.

Theorem 6.7. There exist unique modular vector fields R{,R, € X(T).

(6.67)

(6.68)

Proof. The theorem follows from an explicit evaluation of equation (4.15) under the con-
dition (6.66).

]

The existence of the modular vector fields is equivalent to two differential structures

on Or. By defining

dr fi=df(Ry) and df:=df(R,)

for f € O, we can write

d, 21 :zlsi4s§§ (S99 + (1 —4z1)(1 —425)s93 —4z1(1 + 425)s20),
dr, 22 =225(-1 + 422)52455% (823 +421527),
e, S22 =42955, (523 +421522),
e, 523 =22153455) ((522 +553)° — 422553),
Oz, 543 =— 22154455, (=1 + 425)523(—543 + 425544)
+597 (543 — 425543 + 425(1 — 1021 + 82125)544)),
Or,Saa = — 534575 (221 (=1 + 422)523544 + 522 (543 + (—1 + 42)54))),
I, 21 =21 (1 = 42)(1 — 42,)544533,
dr, 22 =225(1 — 422)5445521,
01,520 = — 425544,
01,523 =S43 + 221544 + 22152354455% +82129544(1 — 52355% ),
O, 543 =221 (1 — 425544555 (543 — 422544,

2 1
01,544 =221 (=1 +42;)54455,.
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Theorem 6.8. The differential ring (OT, d7,s &’Tz) contains as differential subring the ring of

quasi-modular forms on I)(2).

Proof. By introducing a new variable

642522 6.71)
U=———->-:, :
(1-21)2
and
A=+/2(1-4z))s44, B=(1-u)"*4,  C=u"*4, (6.72)
2-8 -8z1(1+38
E = 0, log(B*CY) = S22 211 +82) (6.73)
ST1
the differential ring relations can be rewritten as
dr u=u(l- u)A2,
1 ct-B*
arlA = gA(E + T),
1
dv B =gB(E ~A?), (6.74)

1
d,C = gC(E +A?),
Lo a4
8T1E = g(E —A ),
which is the differential ring of quasi-modular forms for [;}(2) family of elliptic curves.
Furthermore, one can check that all of the functions u, A, B, C, E are independent of 7,.

]

Gauss-Manin Lie algebra

Theorem 6.9. The Gauss-Manin Lie algebra for local F? is isomorphic to the semi-direct
product Ly % sly(C), where 5y, denotes the Lie algebra of type V, as classified in [Bia01],

corresponding to an ideal of & generated by Ry, R, = andR

922 923"
Proof. In this case Lie(QG) is generated by
0 000
d 01 00
=|=—S]|s7!| = , 6.75
822 ( 8522 ) S=1d 0 00O ( )
0 00O
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0 00O

P o 0010
923—(@5)5 . loo o af (6.76)

- 0 00O

0 00O

P o 0000

0 01 0

00 0 O

J . 00 0 O
944—(—85445)5 S:Id— 00 -1 ol (6.78)

00 0 1

The associated vector fields Rgi], on T defined by VRg, Wy = gjjwy are
i

R 0 N %
=S S ,
922 22 8522 23 8523
R 5_1 i
923 44 os ’
23
5 (6.79)
R, =sg, -—,
043 44 (9543
0
Rg44 =544 + 543 .
8544 8543

Together with R; and R, these vector fields form the Gauss-Manin Lie algebra & and the

commutation relations are the following:

[Rl,Rg44]:—2R1, [Rl,Rg43]:Rg44, [Rg43,Rg44]=2Rg43,
[Ri,R2] =0, [Ri,Rg,,] =Ry, [Ri,Ry,,]1=0,
[Rg43,R2] =Ry, [Rg43, Rgza] =0, [Rg43,Rg22] =0,
[Rg44,R2] =R,, [Rg44, Rgza] = _Rgza’ [Rg44,Rg22] =0,
Ry, Rgz3] =0, Ry, Rgzz] =Ry, [R923,Rg22] = Rgz3'

The first line above is the sl,(C) Lie algebra corresponding to the quasi-modular forms.
The last line is the 3-dimensional algebra [y, according to the Bianchi’s classification and

it is an ideal in the Gauss-Manin Lie algebra (. Therefore, we have
G =Ly xsl,(C). (6.80)

]
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Chapter 7

Landau-Ginzburg Models

We adapt the techniques of the program Gauss-Manin Connection in Disguise to define
and compute graded differential rings associated to Landau-Ginzburg models. In particu-
lar, we will consider the case of complex projective spaces, whose mirrors are given by the
triples (Yy, f, w,), where Y, : {y;---9,,1 = ¢} C C™*! is a family of affine surfaces over the
moduli space B spanned by the formal parameter g = ¢, fg=91+...+Yy4 restricted to ¥,
is called the superpotential and w, is a symplectic form on Y,. Landau-Ginzburg families
of this type were investigated extensively in the literature, especially in the context of
integrable systems and their higher genus Gromov-Witten theory [CV91, Giv01, OP06].
Since we will mostly be interested in toric Landau-Ginzburg models, which inherit the
symplectic structure from the underlying projective space, we will denote families of

Landau-Ginzburg models parametrized by g simply by (Y, f,).

7.1 Mirrors of CP"

The mirrors of complex projective spaces are Landau-Ginzburg models (Y, f;, w,), where
Y, {1 yu1 =491 C C™*! is a family of affine surfaces over the moduli space B spanned
by the formal parameter g = ¢, fq =91 +... + Yy restricted to Y, is called the superpo-
tential and w,, is a symplectic form on Y. The classical period integrals (3.39) satisfy the
GKZ type differential equation (3.36) with A ={(1,0,...,0),...,(0,...,0,1),(1,...,1)} and
c=(-1,0,...,0). In particular, the classical period integrals satisfy

] d
Ol = (6" = t)Ir =0, o=ty (7.1)

which has n + 1 independent solutions, given by the Meijer G functions

0,7’1+1 o,..., 0 2TCZ Lrn_m(l—s) ) yeeey y .
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where I' denotes the I'-function and L is a loop in the complex plane.

The GKZ operator [] induces a connection
5:5g(0) - Se(0)@QL, (7.3)

on the vector bundle Sg(J) = S(L) Q@ Og, for a local system S([J) of solutions to (7.1). Let
Iy - I,
Xx=| ‘- S (7.4)

o'ly --- "I,
denote a global frame of Sg(lJ) and denote xy = (I, ..., ;). The differential equation (7.1)

in a frame x = (x,...,0"x)" is equivalent to the system of differential equations of the

form
01 0 - 0
00 1 .0
ox=[: : .. .. :|dlogtx="0sdlogtx. (7.5)
0 0 O 1
t 0 0

7.2 Enhanced toric Landau-Ginzburg models

The GKZ system defines a local system $S([J) of solutions to (3.36). Consider the vector
bundle Sg(LJ) = S(L) ® Op, where B is the GIT quotient of the space of parameters of f,
by the natural toric action on it. There exists a natural filtration on Sg(LJ), given by the
pole order. We will denote by x a global frame of Sg(LJ). The GKZ operators [J; can be

written as a first order differential equation for x of the form
(Sl'X = l:l(gl_x, (7.6)

where 9; = aia%i is a differentiation with respect to a parameter a; of f; and by L5, we by
abuse of notation denote the matrices corresponding to the GKZ operators [s; adapted
to the vector field 6; on B.

Any element of Sg([J) can be written in the form

1\ i dxy A...Ad
2701 r L=tfy(xy,..x,) X100 xy

with i; € Og. The pairing on Sg(UJ) can be defined as the residue pairing

s dxl /\.../\dxn
IZI] X1 Xy
dfy dfy

1E’...’xnd_xn

Q(I;, Ij) = Resg — (7.8)
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A basis of cycles I can be chosen, such that Q is constant, of the form

Q=0Qo =Ju+1s (7.9)
for n even, and
Q=Q=(" b (7.10)
0 _]n On ’ .
for n odd, where 0,, denotes a 1 x n block of zeroes and J,, is the following n x n matrix
00 -~ 01
00 - 10
Ln=1: ¢ 0 ) (7.11)
01 0 0
1 0 00

It induces a pairing on Sg([J) via
QB(Zaixir Zﬁjxj) = ZaiﬁjQ(Iz’J]‘)- (7.12)
ij

Let x = (x,...,0"xo)" be a frame of Sg(UJ). Qg(x, x) satisfies the constraint
6QB(X1 X) = AtQ(Xr X) + Q(X, X)Attrl (7-13)
which gives a recursive relation between the elements of Qg.

Remark 7.1. The mixed Hodge structure associated to a GKZ module was investigated
in [RW18]. In case a weight filtration on Sg([J) is introduced, a construction of moduli
spaces of enhanced Landau-Ginzburg models can be suitably generalized to this case, as
in chapter 6 ([AKV20]).

Enhanced toric Landau-Ginzburg models
Definition of enhanced varieties generalizes to the case of Landau-Ginzburg models.

Definition 7.2. Let (Y, f) be a toric Landau-Ginzburg model and OJ = {J;} the set of
associated GKZ operators (3.37). The set [J defines a local system of solutions S([J) and
we denote h = dim(S(0J)). Fix a finite dimensional vector space V|, of dimension h, such
that Vj; = V; ® C. Fix also a non-degenerate pairing Qg : Vz x V; — Z on V7, extending
bilinearly to V() and let F§ be a filtration on Vj,. We call the tuple ((Y, f), F*, Q, ¢), where
F* is a filtration on $S([J), Q : S(1J) x S() — C is the polarization on it and

¢ (S(0), F*, Q) — (Vo, F§, Qo) (7.14)
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is an isomorphism, an enhanced Landau-Ginzburg model. As in the case of varieties,

¢ : 5(0) — FJ in (7.14) is an isomorphism in a sense that
« It respects the Hodge filtration

$(FP(S(0)) =Fy,  Vp, (7.15)

+ It respects the compatibility with the pairing
P(Q(a, ) = Qo(Pp(a), §(p)), a,pe3(0). (7.16)

Definition 7.3. We call the tuple ((Y, f),F®, ¢) a weakly enhanced Landau-Ginzburg
model if
¢ (S(0), F*) = (Vo, Fp), (7.17)

is an isomorphism. We require for ¢ the condition (7.15), but not (7.16).

Definition 7.4. Let B be a complex manifold and 7t : (Y, f,) — B a family of toric Landau-
Ginzburg models over B. We call (Y, f,), ¢) a family of enhanced Landau-Ginzburg mod-

els if there exists an isomorphism
¢ (Se(0), F*, Qo) — (Vo ®0g, Fg ® O, Qo ® Og), (7.18)

where the bilinear pairing Qp, : Sg(0J) x Sg(LJ) — Og is given by Q on each fibre.

The same holds for families of weakly enhanced varieties with the isomorphism of
pairings omitted.
Moduli space

Let ((Yy, f4), ¢) be a family of weakly enhanced toric Landau-Ginzburg models. A frame

of Vy ® O can be constructed from a frame x of Sg([J) as a linear combination
Xs = SX. (7.19)

The constraint (7.15) manifests in S being block lower triangular of the form

*fn:fn Ofn'fn—l Ofn:fn—z te Ofn,f()
ofe fovfir Qifin o Ofif
S=| : : : S (7.20)
fofi ofir Mufia o %
* forfo *forfu-1 *fofaz ot Ffof
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where #£, ¢ denotes an fi % fj matrix with f, = rk(F*/F *+1). We will denote the elements
in S by t;;, in accordance to the label T of the moduli space of enhance Landau-Ginzburg
models. The moduli space T of weakly enhanced Landau-Ginzburg models ((Yy, f;), F, ¢)
constructed in this way is locally a ringed space with the ring of regular functions Oy =
Clt, t;;].

To construct a moduli space of fully enhanced Landau-Ginzburg models, we further

impose the compatibility condition (7.16), which reads
SQS™ = Qq, (7.21)

where Q, is the pairing Qg in the basis x. The moduli space T of enhanced Landau-
Ginzburg models ((Yy, f;), F*, Q, ¢) constructed in this way is a locally ringed space with
the local ring Or = C[t, t;;], t;; algebraically independent.

Let 7c: ((Y,, fo), F*,¢) — T be a family of (weakly) enhanced Landau-Ginzburg mod-
els. By writing a frame x; = Sx of V{y® Og, we can define a (Gauss-Manin) connection for
the family of Landau-Ginzburg models ((Yq, fq ), F*,¢)/T via

Sixs = | dS(t)S™! +Zt;1dti(t)SD5i8_1 X, (7.22)

1

Definition 7.5. A modular vector field R is a rational vector field on T such that
Op : FR/Fk+l s ph=1/pk) (7.23)
where F* is a filtration on S(0J) induced by F*°.

Remark 7.6. Such a modular vector field is of the form

Ofnffn *fn:fn—l Ofrvfn—z t Ofn'fo
Ot Ofifin *fio o Ofif

VRXs = Xs, (7.24)

Onfi s Ofifin o *A
Onfi  Ofsin Offiz - Offo
where f, := rk(F*/F**!) and » fiofs is an f; x f; matrix with entries in Or. Equation (7.22)

gives a system of differential equation for the entries of S

Spxs = [dS(R)S™! + Zti‘ldti(R)SDéiS‘l X;. (7.25)

i
The existence of the modular vector field is equivalent to the existence of solutions to
(7.25). Furthermore, the only elements appearing in (7.25) are the elements of the ring of

regular functions O, thus existence of a modular vector field is equivalent to existence

of a (Ramanujan) differential structure on Of.
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Gauss-Manin Lie algebra

Definition 7.7. A (weakly) enhanced Landau-Ginzburg ((Y, f), F®, Q, ¢) is called full, if
there exists an algebraic group G, acting on X and T from the left, which commutes both

with the morphism X — T and ¢.

For enhanced Landau-Ginzburg models with dim($(LJ)) = n the condition above is

equivalent to G being of the form
G= {g € GL,,(C)|g block lower triangular and gQog" = QO}, (7.26)
The Lie algebra of G is given by
Lie(G) = {g € GL,,(C)|g block lower triangular and gQq + Qg™ = o}. (7.27)

For weakly enhanced Landau-Ginzburg models the last condition is not required and G is
of the form
G ={g e GL,(C)|g block lower triangular}. (7.28)

The following Theorem of [AMSY16] extends to the Landau-Ginzburg setting.

Theorem 7.8. For any g € Lie(Q), there exists a unique vector field Ry € X(T), such that
VR, (%) = gp(x), (7.29)

Le. VRg (xs) = 9(xs)-

Definition 7.9. The Gauss-Manin Lie algebra (& is the Or-module generated by {R,} =
Lie(G) and the modular vector fields R, € X(T),a=1,...dim(B).

Weakly enhanced mirrors to CP”

Let (Sg(0), F*, ¢) be a family of weakly enhanced toric Landau-Ginzburg mirrors of CP".
A frame of Vy® Og = S¢(0J) ® Og can be constructed from a frame x = (I,d1,...,5"I)" of

Sg(0J) at t € B as a linear combination
Xg = SX. (7.30)

The constraint (7.15) manifests in S being lower triangular of the form

top O -+ 0
t t I

s=|["0 . (7.31)
tnO tnl tnn
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The moduli space T of weakly enhanced mirrors of CP" constructed in this way is locally
a ringed space of dimension 1 + (1 + 1)(n + 2)/2, with the ring of regular functions Ot =
Clt, t;;].

Theorem 7.10. Let 70 : ((Yy, fy), F*,¢) — T be a family of weakly enhanced Landau-
Ginzburg models mirror to CP" and let 6 : St(0)(X/T) - St(O)(X/T)® Q% be the alge-
braic Gauss-Manin connection on S1(1)(X/T) = S(U) ® Ot. There exists a modular vector
fieldR on T.

Proof. Let xg = ¢(x) = Sx. The action of 0 is given by
Spxe = |dS(R)S™! + Zt;ldti(R)SD(gS_l X (7.32)
i

where [ is the GKZ operator in (7.1). Definition 7.5 implies that

01 0 0 -~ 0 O
00Y O - 0 O
00 0 Y, --- 0 O
ORXs =1 1 ¢ : [xs = Urxs, (7.33)
00 0 0 -+ Y,» O
00 o0 o0 -~ 0 1
00 0 0 -~ 0 O
for Y; € Ot and x a basis of Sg([J) as above. O]

Denote the action R = #. Theorem 7.10 is equivalent to existence of a differential

structure on the ring Or = C[t, #;;]. For small n the differential structures are given by

en=1:
f =ttty
too = t1,
R: o (7.34)
10 — 11°00”
- -1
t11 = —tiot11tpos
and the vector field R is given by
R= ttlltaé—+tloi—ttfltaé——tlotlltaé—. (7.35)
ot dtoo dt1o dt1y
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f=ttto ™,

too = tio,

to = 111 t20to0 ™ t3,

R:{tyo = —tty1tantoe L, (7.36)
t1 = (_t10t11t22t%1 ta1)too ‘oL,

tr1 = —taotiitoo

tay = —ti1tartoo

and the vector field R is given by

-1 2 -1,-1 -1
R :ttll tOO a + tlo_atoo + tll t20t00 t22 _atlo — ttll t22t00 _atzo
(7.37)

2 1,41 -1 -1
+(=tioti1tti ta)togtay = —taoti1tog 5— — ti1tartog 5—-
11 002255~ 00 5r,, 00 3¢,

f =ttty

too = t1o,

to = t1t20tg0 22

t0 = ti1taot30t50 153

t30 = —tt1t33t00,

R:dti = (t11ta1 — tiota2)tii tog taa s (7.38)
th1 = (taats1 — botss)tiityg ta

t31 = —ti1tsotgg,

t22 = (taotsn — torta3) i1 tgg 53

t32 = —ti1t31tg0,

: -1
t33 = —t11t328(,

and the vector field R is given by
R= ttllt‘12 + o= + 12 tatad 151 7 + 1 tantaotad tad —— — th1t33t00 ——
—1,-1 —1,-1 -1
+(t11t21 — trota2)t11tgg 1o T (t22t31 — t20t33)t11 800 £33 T t11t30t00 T
11 21 31

1,41 -1 -1
+(tootsp — ta1t33)ti1tgg 133 5 — i ts1tgg =—— — tiitsatgo =
0033 5 00 5t 00 353
(7.39)
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Gauss-Manin Lie algebra

The algebraic group

G={geGL(n+1,C)|g lower triangular},

(7.40)

acts on the moduli space T of enhanced mirrors of CP" from the left. Its Lie algebra is

Lie(G) ={g € GL(n + 1,C)| g lower triangular},

and its generators are
gij = 0ij, J<i,
where 0;; is 1 for i = j and 0 otherwise.

Proposition 7.11. For small n, the generators of Lie(G) are given by

(10 ooy (00
gOO_O K 910_1 0 an gll_o 1/

The corresponding vector fields t;; € X(T) are given by

too = too yoo'

0
tio = fooat—m'

J
ti1 =t gp=— +t 1 =—.
11 108t10+118t11
on:2

1 00 0 00 0 0
goo=(0 0 Of, g10=|1 0 0,920=|0 O
0 1 0
0 00
g;11=10 1 Of, g;=(0 0 0], g,,=]0 O
0 0O 010 00
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(7.41)

(7.42)

(7.43)

(7.44)

(7.45)



The corresponding vector fields t;; are given by
too = 005,
dtoo
tio = too5,—
dtio

tro = foo yzo’

7.46
t1 =t +1 ? ( )
1= hog g
tyy =t +t J
21 — 1Oat20 118t21’
tyy =t +t J +t ?
2= hog TG g
Proof. The proof is computational and corresponds to solving the system
(Sti].XS = ginS' (7.47)
]

Together with R these vector fields form the Gauss-Manin Lie algebra &, which is
increasingly large with larger n.
Enhanced mirrors to CP"

Let Q be the pairing defined in (7.8) and (Sg(£), F*, Q, ¢) be a family of enhanced toric
Landau-Ginzburg models. As before frame of Vy ® Og = S¢(L) ® Og can be constructed

from a frame x = (I, 81,...,56" )" of Sg(L) at t € B as a linear combination
Xs = SX. (7.48)

The constraint (7.15) manifests in S being lower triangular of the form (7.31). Further, we

impose the compatibility condition (7.16), which reads

SQS™ = Qy, (7.49)

where Q, = Q) is the pairing Qg in the basis x. The moduli space T of enhanced Landau-
Ginzburg models ((Yy, f;), F, Q, ¢) constructed in this way is a locally ringed space with
the local ring Or ~ C[t, t;;], t;; algebraically independent.
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Conjecture 7.12. Let 7w : (Y, f3), F*,¢) — T be a family of fully enhanced Landau-
Ginzburg models mirror to CP" for odd # and let & : S1(0)(X/T) — S(O)(X/T)® Q7
be the algebraic Gauss-Manin connection on St(0)(X/T) = S(0) @ Ot. There exists a
vector field R such that

01 0 O 0 0
00Y, 0 0 0
00 0 Y, 0 0

e A F % = Uro(x), (7.50)
00 0 0 - Y, 0
000 0 - 0 1
000 0 - 0 0

for Y; € Ot and x a basis of Sg([J) as above.

The existence of enhanced varieties for underlying local system of rank 2 over a one
dimensional base was discussed in [ABF19], excuding the case n = 2. We checked the
existence for some small n. As in the case of weakly enhanced Landau-Ginzburg mod-
els, the existence of the modular vector field is equivalent to the existence of differential

structure on the local ring O, due to (7.50), which we rewrite as

dS(R)S™! + Zt;ldti(R)SDéS_l = Ok (7.51)

1

Writing out the relations gives a system of first order differential equations for t and t;;.
We were able to construct modular vector fields for odd #, while for even 7 there certain
algebraic constraints were not met, see e.g. [ABF19] for the constraints for local systems
of rank 2 over a one-dimensional base.

Denote the action R = #. Theorem 7.10 is equivalent to existence of a differential

structure on the ring Oy. For small # the differential structures are given by

o 11 = ]_
f=tty?,
R:dty=ty, (7.52)
f] = —tty>.

and the vector field R is given by

Ny

0 g (7.53)

1%
R=tty?— +t;=— —tt
0 9t " 1ot
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f =ttt

too = tio,

tio = H1t20tg0,

R: <ty = t30, (7.54)
t30 = ~tti1tyg,

ti1 = (—tiitio + £y t21)Egg,

tr1 = (—2t11ta0 + ta1tio)tgp -

and the vector field R is given by

; 9 9 r
R = ttlltoogﬁ'tloat +t11t20t008 +t30a ttlltOO 81‘30
(7.55)

J

3 . -1

+(=ty1ti0 + 111 £21) k00 5t (=2t11t0 + t21t10)t 00 T
11 21

Gauss-Manin Lie algebra

In the case of enhanced Landau-Ginzburg models the families are full and there is an

algebraic group
G= {g € GL(n+1,C)|g block lower triangular and gQyg"" = QO}, (7.56)

acting on the moduli space T of enhanced mirrors of CP" from the left. The condition
gQog" = Qy fixes dim(G) = dim(T) -1 = M Its Lie algebra is

Lie(G) = {g € GL(n + 1,C)| g lower triangular and gQg + Qg™ = 0}. (7.57)

Proposition 7.13. For small n, the generators of Lie(G) are given by

o 11 = ]_
1 0 00
gH—(O _1) and gF—(l O) (7.58)
The corresponding vector fields H,F € X(T) are given by
d d
H=t5——tiom,—
9200 ho (7.59)
F = tog=—
00 atl()
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1 00 O 00 0 O 00 0 O
000 O 01 0 O 10 0 O
900510 00 o9 7o 0 -1 o®T|o 0 0 of
0 0 0 -1 00 0 O 0 0 -10
(7.60)
0 0 0O 0 000 0 000
0 0 0O 0 000 0 000
90711 0 0 o' %o 0 0 oo 1 0 of
0 -1 00 1 000 0 000
The corresponding vector fields t;; are given by
d d
too = tooyoo — 130 ET
1=t J t J +t J t J
11 — IOatlo ZOatzo 118t11 2lat21’
d
t1o = too=—— + trg=——>
10 = Foo 7 205, 6D
tyo = ¢ J t ? |
20 = Fo0 5 =0 g,
t30 =t +t J
30 — 10(9t20 1181'21’
t21=t00?30-
Proof. The proof is computational and corresponds to solving the system
(Stl,],XS = ginS' (7.62)

Together with R these vector fields form the Gauss-Manin Lie algebra & and the commu-

tation relations are
[R.H]=R, [F,H]=-F, ,[RF]=2H, (7.63)

for n = 1, which is the sl,(C) Lie algebra corresponding to the algebra of derivaitons on

quasi-modular forms. O
The following structural theorem is a direct corollary of Proposition 7.13.

Theorem 7.14. The Gauss-Manin Lie algebra of the Landau-Ginzburg family mirror to CP!

is isomorphic to sl,(C).
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Inspired by these results, we identify the weight modular vector field as
Definition 7.15. The weight modular vector field H is defined as
OpXs = Zgi]-xs, g;; diagonal. (7.64)

The quasi-modular vector field F is defined by the condition

OFXs = Zgijxs: (7.65)

i#]
such that [R,F] = H.

The weight and quasi-modular vector fields for small n are given by

0 n:l
0 0
H=to5——-tiom,—
8200 ho (7.66)
F=tyHy=—.
ooatlo
. n:3
H=t¢ J t J +t J t J +t J t J
B Ooafoo 30<9t30 1081‘10 208t20 llatll 21 dty’ (7.67)
P )

F= tooy10 + tZOE.

By definition R,H and F satisfy the sl,(C) algebra in all cases.

78



Bibliography

[AB18]

[ABF19]

[ABKOS]

[AKV20]

[AL07]

[Ali13]

[Ali14]

[Ali17]

[AMSY16]

[ASYZ14]

[AV18]

[Bar00]

Konstantin Aleshkin and Aleksander Belavin. Exact Computation of the Special
Geometry for Calabi-Yau Hypersurfaces of Fermat Type. . Exp. Theor. Fizika,
108(10):705-709, November 2018.

Murad Alim, Florian Beck, and Laura Fredrickson. Parabolic Higgs bundles, tt* con-
nections and opers. arXiv preprint: arXiv:1911.06652, 2019.

Mina Aganagic, Vincent Bouchard, and Albrecht Klemm. Topological strings and
(almost) modular forms. Comm. Math. Phys., 277(3):771-819, 2008.

Murad Alim, Vadym Kurylenko, and Martin Vogrin. The algebra of derivations of
quasi modular forms from mirror symmetry. arXiv preprint: arXiv:2008.06523, 2020.

Murad Alim and Jean D. Lange. Polynomial structure of the (open) topological string
partition function. . High Energy Phys., 2007(10):045, 13, 2007.

Murad Alim. Lectures on mirror symmetry and topological string theory. In Open
problems and surveys of contemporary mathematics, volume 6 of Surv. Mod. Math.,
pages 1-44. Int. Press, Somerville, MA, 2013.

Murad Alim. Polynomial rings and topological strings. Proc. Symp. Pure Math.,
88:197-208, 2014.

Murad Alim. Algebraic structure of tt* equations for Calabi-Yau sigma models.
Comm. Math. Phys., 353(3):963-1009, 2017.

Murad Alim, Hossein Movasati, Emanuel Scheidegger, and Shing-Tung Yau. Gauss-
Manin connection in disguise: Calabi-Yau threefolds. @ Comm. Math. Phys.,
344(3):889-914, 2016.

Murad Alim, Emanuel Scheidegger, Shing-Tung Yau, and Jie Zhou. Special polyno-
mial rings, quasi modular forms and duality of topological strings. Adv. Theor. Math.
Phys., 18(2):401-467, 2014.

Murad Alim and Martin Vogrin. Gauss-Manin Lie algebra of mirror elliptic K3 sur-
faces. arXiv preprint: arXiv:1812.03185, 2018.

Serguei Barannikov. Semi-infinite Hodge structures and mirror symmetry for pro-
jective spaces. arXiv preprint: math/0010157, 2000.

79



[Bar01]

[Bar02]

[Bat94]

[BBY6]

[BCOV94]

[BH13]

[Bia01]

[BK98]

[CdIOGP91]

[CDM17]

[CK99]

[CKYZ99]

[CL10]

[CLL*12]

[CMY19]

[CR18]

Serguei Barannikov. Quantum periods. I. Semi-infinite variations of Hodge struc-
tures. Internat. Math. Res. Notices, 2001(23):1243-1264, 2001.

Serguei Barannikov. Non-commutative periods and mirror symmetry in higher di-
mensions. Comm. Math. Phys., 228(2):281-325, 2002.

Victor V. Batyrev. Dual polyhedra and mirror symmetry for Calabi-Yau hypersur-
faces in toric varieties. . Algebraic Geom., 3(3):493-535, 1994.

Victor V. Batyrev and Lev A. Borisov. On Calabi-Yau complete intersections in toric
varieties. In Higher-dimensional complex varieties (Trento, 1994), pages 39-65. de
Gruyter, Berlin, 1996.

Michael Bershadsky, Sergio Cecotti, Hirosi Ooguri, and Cumrun Vafa. Kodaira-
Spencer theory of gravity and exact results for quantum string amplitudes. Comm.
Math. Phys., 165(2):311-427, 1994.

Lev A. Borisov and Richard P. Horja. On the better behaved version of the GKZ
hypergeometric system. Math. Ann., 357(2):585-603, 2013.

Luigi Bianchi. On the three-dimensional spaces which admit a continuous group of
motions. Gen. Relativity Gravitation, 33(12):2171-2253 (2002), 2001.

Sergey Barannikov and Maxim Kontsevich. Frobenius manifolds and formality of Lie
algebras of polyvector fields. Internat. Math. Res. Notices, 1998(4):201-215, 1998.

Philip Candelas, Xenia de la Ossa, Paul S. Green, and Linda Parkes. A pair of Calabi-
Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys., B359(1):21-
74, 1991.

Adrian Clingher, Charles F. Doran, and Andreas Malmendier. Special function iden-
tities from superelliptic Kummer varieties. Asian . Math., 21(5):909-951, 2017.

David A. Cox and Sheldon Katz. Mirror symmetry and algebraic geometry, volume 68
of Mathematical Surveys and Monographs. American Mathematical Society, Provi-
dence, RI, 1999.

Ti-Ming Chiang, Albrecht Klemm, Shing-Tung Yau, and Eric Zaslow. Local mirror
symmetry: calculations and interpretations. Adv. Theor. Math. Phys., 3(3):495-565,
1999.

Kwokwai Chan and Naichung C. Leung. Mirror symmetry for toric Fano manifolds
via SYZ transformations. Adv. Math., 223(3):797-839, 2010.

Kwokwai Chan, Siu-Cheong Lau, Naichung C. Leung, et al. SYZ mirror symmetry
for toric Calabi-Yau manifolds. Journal of Differential Geometry, 90(2):177-250, 2012.

Jin Cao, Hossein Movasati, and Shing-Tung Yau. Gauss-Manin connection in dis-
guise: genus two curves. arXiv preprint: arXiv:1910.07624, 2019.

Emily Clader and Yongbin Ruan. Mirror symmetry constructions. In B-model
Gromov-Witten theory, Trends Math., pages 1-77. Birkhauser/Springer, Cham, 2018.

80



[CV91]

[Del71]

[DHMW16]

[Dij95]

[Dol96]

[Dor00]

[Dub93]

[Dub96]

[DVV91]

[Fon18]

[Giv95]

[Giv97]

[Giv9s8]

[Giv01]

[GKZ89]

Sergio Cecotti and Cumrun Vafa. Topological-anti-topological fusion. Nucl. Phys.,
B367:359-461, 1991.

Pierre Deligne. Théorie de Hodge. II. Inst. Hautes Etudes Sci. Publ. Math., 40(1):5-57,
1971.

Charles F. Doran, Andrew Harder, Hossein Movasati, and Ursula Whitcher. Hum-
bert surfaces and the moduli of lattice polarized K3 surfaces. In String-Math 2014,
volume 93 of Proc. Sympos. Pure Math., pages 109-140. Amer. Math. Soc., Providence,
RI, 2016.

Robbert Dijkgraaf. Mirror symmetry and elliptic curves. In The moduli space of curves
(Texel Island, 1994), volume 129 of Progr. Math., pages 149-163. Birkhauser Boston,
Boston, MA, 1995.

Igor V. Dolgachev. Mirror symmetry for lattice polarized K3 surfaces. J. Math. Sci.,
81(3):2599-2630, 1996.

Charles F. Doran. Picard-Fuchs uniformization and modularity of the mirror map.
Comm. Math. Phys., 212(3):625-647, 2000.

Boris Dubrovin. Geometry and integrability of topological-antitopological fusion.
Commun. Math. Phys., 152:539-564, 1993.

Boris Dubrovin. Geometry of 2D topological field theories. In Integrable systems and
quantum groups (Montecatini Terme, 1993), volume 1620 of Lecture Notes in Math.,
pages 120-348. Springer, Berlin, 1996.

Robbert Dijkgraaf, Herman Verlinde, and Erik Verlinde. Topological strings in d < 1.
Nuclear Physics B, 352(1):59-86, 1991.

Tiago J. Fonseca. Higher Ramanujan equations and periods of abelian varieties. arXiv
preprint: arXiv:1807.11044, 2018.

Alexander B. Givental. Homological geometry and mirror symmetry. In Proceedings
of the International Congress of Mathematicians, Vol. 1, 2 (Ziirich, 1994), pages 472—
480. Birkhauser, Basel, 1995.

Alexander B. Givental. Stationary phase integrals, quantum Toda lattices, flag man-
ifolds and the mirror conjecture. In Topics in singularity theory, volume 180 of Amer.
Math. Soc. Transl. Ser. 2, pages 103-115. Amer. Math. Soc., Providence, RI, 1997.

Alexander B. Givental. A mirror theorem for toric complete intersections. In Topolog-
ical field theory, primitive forms and related topics (Kyoto, 1996), volume 160 of Progr.
Math., pages 141-175. Birkhduser Boston, Boston, MA, 1998.

Alexander B. Givental. Semisimple Frobenius structures at higher genus. Interna-
tional mathematics research notices, 2001(23):1265-1286, 2001.

Israel M. Gel’fand, Mikhail M. Kapranov, and Andrei V. Zelevinskii. Hypergeometric
functions and toric varieties. Funktsional. Anal. i Prilozhen., 23(2):12-26, 1989.

81



[Gri69]

[Gro66]

[GS11]

[Hag17]

[Her03]

[HIVO00]

[HKK*03]

[HKT95]

[HKTY95]

[HMY17]

[Hos00]

[HS08]

[Huy05]

[HV00]

[KKP0S]

Phillip A. Griffiths. On the periods of certain rational integrals. I, Il. Ann. of Math.
(2) 90 (1969), 460-495; ibid. (2), 90:496—541, 1969.

Alexander Grothendieck. On the de Rham cohomology of algebraic varieties. Publi-
cations Mathématiques de I'THES, 29(1):95-103, 1966.

Mark Gross and Bernd Siebert. From real affine geometry to complex geometry. Ann.
of Math. (2), 174(3):1301-1428, 2011.

Babak Haghighat. Mirror symmetry and modularity. arXiv preprint:
arXiv/1712.00601, 2017.

Claus Hertling. tt* geometry, Frobenius manifolds, their connections, and the con-
struction for singularities. 7. Reine Angew. Math., 555:77-161, 2003.

Kentaro Hori, Amer Igbal, and Cumrun Vafa. D-branes and mirror symmetry. arXiv
preprint: hep-th/0005247, 2000.

Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard
Thomas, Cumrun Vafa, Ravi Vakil, and Eric Zaslow. Mirror symmetry, volume 1
of Clay Mathematics Monographs. American Mathematical Society, Providence, RI;
Clay Mathematics Institute, Cambridge, MA, 2003.

Shinobu Hosono, Albrecht Klemm, and Stefan Theisen. An extended lecture on mir-
ror symmetry. In R.C.P. 25, Vol. 47 (Strasbourg, 1993—1995), volume 1995/24 of Prépubl.
Inst. Rech. Math. Av., pages 33-76. Univ. Louis Pasteur, Strasbourg, 1995.

Shinobu Hosono, Albrecht Klemm, Stefan Theisen, and Shing-Tung Yau. Mirror sym-
metry, mirror map and applications to Calabi-Yau hypersurfaces. Commun. Math.
Phys., 167:301-350, 1995.

Babak Haghighat, Hossein Movasati, and Shing-Tung Yau. Calabi-Yau modular
forms in limit: elliptic fibrations. Commun. Number Theory Phys., 11(4):879-912,
2017.

Shinobu Hosono. Local mirror symmetry and type IIA monodromy of Calabi-Yau
manifolds. Adv. Theor. Math. Phys., 4(2):335-376, 2000.

Claus Hertling and Christian Sevenheck. Twistor structures, tt*-geometry and singu-
larity theory. In From Hodge theory to integrability and TQFT tt*-geometry, volume 78
of Proc. Sympos. Pure Math., pages 49-73. Amer. Math. Soc., Providence, RI, 2008.

Daniel Huybrechts. Complex geometry. Universitext. Springer-Verlag, Berlin, 2005.
An introduction.

Kentaro Hori and Cumrun Vafa. Mirror symmetry. arXiv preprint: hep-th/0002222,
February 2000.

Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev. Hodge theoretic aspects
of mirror symmetry. In From Hodge theory to integrability and TQFT tt*-geometry,
volume 78 of Proc. Sympos. Pure Math., pages 87-174. Amer. Math. Soc., Providence,
RI, 2008.

82



[KKV99]

[KLM*96]

[KM10]

[KMV97]

[KN96]

[KO68]

[Kod63]

[Kon95]

[KZ95]

[Li11]

[LVW89]

[LY95]

[LY96a]

[LY96b]

[Man99]

[MN16]

Sheldon Katz, Albrecht Klemm, and Cumrun Vafa. M-theory, topological strings and
spinning black holes. Adv. Theor. Math. Phys., 3(5):1445-1537, 1999.

Albrecht Klemm, Wolfgang Lerche, Peter Mayr, Cumrun Vafa, and Nicholas Warner.
Self-dual strings and N = 2 supersymmetric field theory. Nuclear Phys. B, 477(3):746-
764, 1996.

Yukiko Konishi and Satoshi Minabe. Local B-model and mixed Hodge structure. Adv.
Theor. Math. Phys., 14(4):1089-1145, 2010.

Sheldon Katz, Peter Mayr, and Cumrun Vafa. Mirror symmetry and exact solution
of 4D N = 2 gauge theories. I. Adv. Theor. Math. Phys., 1(1):53-114, 1997.

Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential geometry. Vol.
II. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1996. Reprint of the
1969 original, A Wiley-Interscience Publication.

Nicholas M. Katz and Tadao Oda. On the differentiation of de Rham cohomology
classes with respect to parameters. J. Math. Kyoto Univ., 8:199-213, 1968.

Kunihiko Kodaira. On compact analytic surfaces. II, IIl. Ann. of Math. (2) 77 (1963),
563-626; ibid., 78:1-40, 1963.

Maxim Kontsevich. Homological algebra of mirror symmetry. In Proceedings of
the International Congress of Mathematicians, Vol. 1, 2 (Ziirich, 1994), pages 120-139.
Birkhauser, Basel, 1995.

Masanobu Kaneko and Don Zagier. A generalized Jacobi theta function and quasi-
modular forms. In The moduli space of curves (Texel Island, 1994), volume 129 of Progr.
Math., pages 165-172. Birkhauser Boston, Boston, MA, 1995.

SiLi. BCOV theory on the elliptic curve and higher genus mirror symmetry. arXiv
preprint arXiv:1112.4063, 2011.

Wolfgang Lerche, Cumrun Vafa, and Nicholas P Warner. Chiral rings in n = 2 su-
perconformal theories. Nuclear Physics B, 324(2):427-474, 1989.

Bong H. Lian and Shing-Tung Yau. Mirror maps, modular relations and hypergeo-
metric series I. arXiv preprint: hep-th/9507151, 1995.

Bong H. Lian and Shing-Tung Yau. Arithmetic properties of mirror map and quantum
coupling. Commun. Math. Phys., 176(1):163-191, 1996.

Bong H. Lian and Shing-Tung Yau. Mirror maps, modular relations and hypergeo-
metric series II. Nucl. Phys. Proc. Suppl., 46:248-262, 1996.

Yuri I. Manin. Three constructions of Frobenius manifolds: a comparative study.
Asian J. Math., 3(1):179-220, 1999. Sir Michael Atiyah: a great mathematician of the
twentieth century.

Hossein Movasati and Younes Nikdelan. Gauss-Manin connection in disguise:
Dwork family. arXiv preprint: arXiv:1603.09411, 2016.

83



[Mov08]

[Mov11]

[Mov12]

[Mov13]

[Mov15]

[Mov17a]

[Mov17b]

[Mov17c]

[Mov20]

[Nik20]

[OP06]

[OP16]

[OP19]

[PS15]

[Roh04]

[RW18]

Hossein Movasati. On differential modular forms and some analytic relations be-
tween Eisenstein series. Ramanujan ¥., 17(1):53-76, 2008.

Hossein Movasati. Eisenstein type series for Calabi—Yau varieties. Nucl. Phys.,
B847(2):460-484, 2011.

Hossein Movasati. Quasi-modular forms attached to elliptic curves, I. Ann. Math.
Blaise Pascal, 19(2):307-377, 2012.

Hossein Movasati. Quasi-modular forms attached to Hodge structures. In Arith-
metic and geometry of K3 surfaces and Calabi-Yau threefolds, volume 67 of Fields Inst.
Commun., pages 567-587. Springer, New York, 2013.

Hossein Movasati. Modular-type functions attached to mirror quintic Calabi-Yau
varieties. Math. Z., 281(3-4):907-929, 2015.

Hossein Movasati. A course in Hodge theory: with emphasis on multiple integrals.
Available at author’s webpage, 2017.

Hossein Movasati. Gauss-Manin connection in disguise: Calabi-Yau modular forms.
Surveys of modern mathematics. International Press of Boston, Inc., 2017.

Hossein Movasati. Gauss-Manin connection in disguise: Noether-Lefschetz and
Hodge loci. Asian J. Math., 21(3):463-481, 2017.

Hossein Movasati. Modular and automorphic forms & beyond. Available on the
author’s webpage, 2020.

Younes Nikdelan. Modular vector fields attached to Dwork family: sl,(C) Lie algebra.
Moscow Math. ., 20(1):127-151, 2020.

Andrei Okounkov and Rahul Pandharipande. Gromov-Witten theory, Hurwitz the-
ory, and completed cycles. Ann. of Math. (2), 163(2):517-560, 2006.

Georg Oberdieck and Rahul Pandharipande. Curve counting on K3 x E, the Igusa
cusp form x, and descendent integration. In K3 surfaces and their moduli, volume
315 of Progr. Math., pages 245-278. Birkh&duser/Springer, [Cham], 2016.

Georg Oberdieck and Aaron Pixton. Gromov-Witten theory of elliptic fibrations:
Jacobi forms and holomorphic anomaly equations. Geom. Topol., 23(3):1415-1489,
2019.

Victor Przyjalkowski and Constantin Shramov. On Hodge numbers of complete in-
tersections and Landau-Ginzburg models. Int. Math. Res. Not. IMRN, 2015(21):11302-
11332, 2015.

Falk Rohsiepe. Lattice polarized toric K3 surfaces. arXiv preprint: hep-th/0409290,
2004.

Thomas Reichelt and Uli Walther. Weight filtrations on GKZ-systems. arXiv preprint:
arXiv:1809.04247, 2018.

84



[Sai83]

[Sti98]

[SYZ96]

[Voi07]

[Wit90]

[Yau78]

[YY04]

[YY07]

[Zag08]

[Zagl16]

[Zho13]

Kyoji Saito. Period mapping associated to a primitive form. Publ. Res. Inst. Math. Sci.,
19(3):1231-1264, 1983.

Jan Stienstra. Resonant hypergeometric systems and mirror symmetry. In Integrable
systems and algebraic geometry (Kobe/Kyoto, 1997), pages 412-452. World Sci. Publ,,
River Edge, NJ, 1998.

Andrew Strominger, Shing-Tung Yau, and Eric Zaslow. Mirror symmetry is T-
duality. Nuclear Phys. B, 479(1-2):243-259, 1996.

Claire Voisin. Hodge theory and complex algebraic geometry. I, volume 76 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
english edition, 2007. Translated from the French by Leila Schneps.

Edward Witten. On the structure of the topological phase of two-dimensional gravity.
Nuclear Physics B, 340(2-3):281-332, 1990.

Shing Tung Yau. On the Ricci curvature of a compact Kahler manifold and the com-
plex Monge-Ampere equation. I. Comm. Pure Appl. Math., 31(3):339-411, 1978.

Satoshi Yamaguchi and Shing-Tung Yau. Topological string partition functions as
polynomials. JHEP, 07:047, 2004.

Yifan Yang and Noriko Yui. Differential equations satisfied by modular forms and
K3 surfaces. Illinois J. Math., 51(2):667-696, 2007.

Don Zagier. Elliptic modular forms and their applications. In The 1-2-3 of modular
forms, Universitext, pages 1-103. Springer, Berlin, 2008.

Don Zagier. Partitions, quasimodular forms, and the Bloch-Okounkov theorem. Ra-
manujan J., 41(1-3):345-368, 2016.

Jie Zhou. Differential rings from special Kéhler geometry. arXiv preprint:
arXiv:1310.3555, 2013.

85



