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1. Introduction

Combinatorics is often very broadly defined as the study of finite or discrete structures.
While the earliest combinatorial investigations seem to go back much further [  117 ], often
Euler’s solution to the “Seven bridges of Königsberg” problem is mentioned as an early
example of graph theory, a central part of combinatorics. This work presents several results
in extremal combinatorics, in which one studies thresholds and “extremes” in the behaviour
of discrete structures like graphs and hypergraphs. Classic results in this area include
Turán’s theorem, which provides the threshold edge density of graphs above which the
existence of a clique as a subgraph is guaranteed, and Dirac’s theorem, which determines
the threshold minimum degree of graphs above which the existence of a Hamiltonian cycle
is guaranteed.

Extremal combinatorics has progressed significantly in the recent decades. Many
powerful tools, like Szemerédi’s regularity lemma, its extension to hypergraphs, the container
method, and the absorption method, have been developed. Due to this technological
improvement, progress has been made on several major open problems and some have
been solved. Simultaneously, connections to other fields of mathematics, such as number
theory and probability theory, have opened up. In combinatorics, it often happens that the
methods used to prove a new result are even more important than the result itself since
they may be applied to different problems and offer some deeper insight into the problem.
In this introduction, we shall therefore not only introduce the topics and results which are
proved in the subsequent chapters of the thesis but also give sketches of the arguments
used to obtain the results.

We will assume a basic knowledge of definitions and results as they can for instance be
found in Diestel’s standard book on graph theory [ 26 ]. Important objects investigated in this
work but not extensively covered in [ 26 ] are hypergraphs. A hypergraph H “ pV,Eq consists
of a vertex set V and an edge set E Ď PpV q “ te : e Ď V u and similarly as for graphs, we
may abbreviate the notation of an edge tv1, . . . , vku to v1 . . . vk. For a positive integer k,
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we call H a k-uniform hypergraph (or a k-graph) if E Ď V pkq “ te Ď V : |e| “ ku. 

1
 Note

that graphs are 2-uniform hypergraphs.
Below, we give a very rough overview over the topics covered in this thesis. Afterwards,

we provide slightly more detailed introductions to each of the topics. In order to not let
this introduction become too lengthy and technical, we will refrain from defining every
term we use here formally within this section if the exact definition is not very important
for the introduction. The full introduction to each result, with a broader background and
the necessary setup, will be given at the beginning of each chapter.

The first part of this thesis (Chapters  2 - 4 ) is devoted to several problems about
Hamiltonian cycles in hypergraphs. For the following reasons, these serve as good examples
of extremal combinatorics. Firstly, the results are typical threshold results, determining
above which value of some parameter, such as the minimum degree, a certain behaviour,
like the existence of a Hamiltonian cycle, is guaranteed. Secondly, “typical” combinatorial
counting and construction techniques are used throughout the works, first and foremost
the absorption method. Furthermore, we apply results on quasirandomness including a
(weak 

2
 ) hypergraph version of the regularity lemma and we make use of the probabilistic

method at several points. Both quasirandom and probabilistic arguments have become
important tools in extremal combinatorics.

Afterwards, in Chapter  5 , we look at another problem involving spanning substructures.
Here however, not only the methods but also the objects considered are random and we
mix the search for spanning substructures with Ramsey theory. Namely, we will try to
cover edge-coloured random graphs Gpn, pq with as few monochromatic trees as possible.
The main threshold under investigation here is the value for p (at least the right order of
magnitude) above which with high probability any colouring of Gpn, pq allows a covering
with few monochromatic trees. 

3
 

The results in Chapter  6 are not directly “threshold results” yet they are strongly
connected with extremal combinatorics. This connection is Sidorenko’s conjecture, which
basically states that, given a bipartite graph H, the number of copies of H in a graph G

is minimised when G is quasirandom. In other words, it makes an assertion about the
extremal behaviour of the “homomorphism density” of H. To approach this conjecture
as well as for its own sake, one can investigate for which graphs H we can define a norm

1Often also the notation 2V “ PpV q and
`

V
k

˘

“ V pkq is used.
2Unfortunately, this thesis does not contain a proof using the “full” hypergraph regularity lemma, we

refer to [  96 ] to see it at work.
3The number of trees needed could also be seen as a threshold. When we worked on this problem, the

“right” number of trees that suffice had not yet been found, even for relatively large p.
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via its homomorphism density (we will make this more precise below). We prove that
several graphs which have been in the spotlight regarding Sidorenko’s conjecture do not
define a norm, which arguably makes them even more interesting for the investigation of
Sidorenko’s conjecture.

Lastly, we return to hypergraphs in Chapter  7 . Call a hypergraph H “ pV,Eq hereditary
if for all e and e1 with e1 Ď e P E, we have e1 P E. 

4
 In Chapter  7 , the extremal behaviour

of the number of edges in hereditary hypergraphs with respect to the minimum degree is
studied. That is, for certain integers s, we determine the maximum real mpsq such that
every hereditary hypergraph with “edge density”  

5
 at most mpsq has minimum (vertex)

degree at most s.
While both the first few chapters and the last chapter are about results in hypergraphs,

the flavour is quite different. In the first chapters, the hypergraphs are uniform and the
uniformity is very small compared to the number of vertices. The problems and methods
are relatively closely related to those in graphs (although of course the consideration of
hypergraphs instead of graphs generally still brings with it major difficulties). Loosely
speaking, here we consider hypergraphs as “graphs of higher dimension”.

In contrast, the last chapter is set in a subarea of extremal combinatorics called extremal
set theory, where the hypergraphs dealt with are not necessarily uniform and if they are
uniform, often the number of vertices is only polynomial in the uniformity. The problems
studied in this field are often distinct from those studied in graphs; in fact, for several of
the problems, the graph versions would be rather trivial. In addition, extremal set theory
encompasses its own unique set of proof techniques.

1.1 Spanning substructures in graphs and
hypergraphs

The first part of this thesis concerns the question which conditions guarantee the existence
of spanning substructures in a graph or hypergraph, that is, substructures containing all
vertices. There has been significant progress on problems of this kind in the recent decade,
much due to the absorption method introduced by Rödl, Ruciński, and Szemerédi in their
paper [ 98 ] and reviewed by Szemerédi in [ 111 ]. Roughly speaking, this strategy reduces the
problem of finding some spanning substructure in a graph or hypergraph to the usually

4Hereditary hypergraphs are also called abstract simplicial complexes or downsets.
5More precisely, we mean |E|{|V |.
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much simpler problem of finding an almost spanning substructure.

1.1.1 Hamiltonian cycles

Hamiltonian cycles, that is, cycles containing every vertex of a graph, form a central
theme in classic graph theory. While the problem of determining whether or not a given
graph contains a Hamiltonian cycle is one of Karp’s initial 21 NP-complete problems [ 65 ]
and so there is probably no good characterisation of all Hamiltonian graphs, there are
several structural and extremal conditions that guarantee the existence of a Hamiltonian
cycle. Perhaps the best known result is Dirac’s theorem [ 27 ], which states that every
graph on n ě 3 vertices with minimum degree at least n

2 contains a Hamiltonian cycle.
Considering slightly imbalanced bipartite graphs shows that this result is tight.

Let us consider possible generalisations of this result to k-uniform hypergraphs. Katona
and Kierstead [  67 ] initiated the study of minimal degree conditions for Hamiltonian
cycles in hypergraphs and introduced the following notation. Define a (tight) k-uniform
cycle of length ℓ as a k-uniform hypergraph C for which there is an ordering of the
vertices V pCq “ tv1, . . . , vℓu such that EpCq “ tvi . . . vi`k´1 : i P rℓsu, where we view the
indices as elements of Z{ℓZ. Since we will only consider tight cycles here, we omit the
prefix “tight”. Naturally, a Hamiltonian cycle in a k-uniform hypergraph H is a cycle
in H containing all vertices of H. When looking for generalisations of Dirac’s theorem
to k-uniform hypergraphs, there are various minimum degrees that can be considered. For
a hypergraph H “ pV,Eq and a set S Ď V , we write dpSq “ dHpSq “ |te P E : S Ď eu|

and we define the minimum i-degree as δipHq “ minSPV piq dpSq. The general problem now
reads as follows.

Problem 1.1.1. For k P N and i P rk ´ 1s, determine the infimal dkk´i P r0, 1s such
that every (large) k-uniform hypergraph H with δk´ipHq ě pdkk´i ` op1qq

`

n
i

˘

contains a
Hamiltonian cycle.

Note that lower bounds on δjpHq become more restrictive, that is, carry more informa-
tion, when j increases. Thus, it is not surprising that Problem  1.1.1 was first solved for i “ 1.
In [ 99 ], Rödl, Ruciński, and Szemerédi generalised Dirac’s result to hypergraphs by proving
that k-uniform hypergraphs H with δk´1pHq ě p

1
2 ` op1qqn contain a Hamiltonian cycle,

which is asymptotically tight. The next step according to the “monotonicity” mentioned
above, namely to determine the minimum pk ´ 2q-degree guaranteeing a Hamiltonian cycle
in k-uniform hypergraphs (the case i “ 2 of Problem  1.1.1 ) required several new tricks.
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First, Reiher, Rödl, Ruciński, Schacht, and Szemerédi [ 95 ] solved the 3-uniform case, after
which Polcyn, Reiher, Rödl, Ruciński, Schacht, and the author [ 92 ] proved the respective
result for 4-uniform hypergraphs. Recently, the general case was solved independently by
Lang and Sanhueza-Matamala [ 77 ] and by Polcyn, Reiher, Rödl, and myself [ 93 ], that is,
we proved the following theorem.

Theorem 1.1.2. For all integers k ě 3 and all α ą 0, there exists an integer n0 such that
every k-uniform hypergraph H on n ě n0 vertices with δk´2pHq ě p

5
9 ` αq

`

n
2

˘

contains a
Hamiltonian cycle.

Chapter  2 contains the detailed discussion and proof of Theorem  1.1.2 . There, we also
provide an example showing that this result is asymptotically optimal.

For i ě 3, the optimal bounds are not yet known. However, the solutions of the
cases i “ 1 and i “ 2 of Problem  1.1.1 , in particular their proofs, and lower bound
constructions due to Han and Zhao [ 57 ] make the author cautiously believe that, in
fact, dkk´i is independent of k.

Conjecture 1.1.3. For every integer i ě 1, there exists di P r0, 1s such that for all
integers k ě i ` 1 and all α ą 0, there is an integer n0 such that every k-uniform
hypergraph H on n ě n0 vertices with δk´ipHq ě pdi ` αq

`

n
i

˘

contains a Hamiltonian cycle.

An even stronger conjecture by Lang and Sanhueza-Matamala [ 77 ] states that those di
exist and that they match the lower bounds due to Han and Zhao [ 57 ].

Although Dirac’s theorem is arguably the most famous result on Hamiltonian cycles,
there are strengthenings of it, in which several vertices are allowed to have smaller degrees
than n{2. Let G “ prns, Eq be a graph on n ě 3 vertices and let dp1q ď ¨ ¨ ¨ ď dpnq be
its degree sequence. Pósa [ 94 ] proved that if dpiq ě i ` 1 for all i ă pn ´ 1q{2 and if
furthermore d prn{2sq ě rn{2s when n is odd, then G contains a Hamiltonian cycle.

The strongest result of this kind is due to Chvátal [ 18 ]. For an integer n ě 3, we say
that an integer sequence a1 ď ¨ ¨ ¨ ď an is Hamiltonian if every graph G “ prns, Eq whose
degree sequence dp1q ď ¨ ¨ ¨ ď dpnq satisfies ai ď dpiq, for all i P rns, contains a Hamiltonian
cycle. Chvátal characterised all Hamiltonian sequences by showing that for n ě 3, an
integer sequence 0 ď a1 ď ¨ ¨ ¨ ď an ă n is Hamiltonian if and only if for all i ă n

2 , we
have: ai ď iñ an´i ě n´ i.

Building on work from my master thesis, I showed a Pósa-type strengthening of the Dirac-
type result for 3-uniform hypergraphs that Rödl, Ruciński, and Szemerédi proved in [  98 ].
Call a (symmetric) matrix pdijqij Hamiltonian if every 3-uniform hypergraph H “ prns, Eq
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with dpi, jq “ dpti, juq ě dij, for all ti, ju P rnsp2q, contains a Hamiltonian cycle. It would
be very desirable to have a result for 3-uniform hypergraphs similar to the one by Chvátal
for degree sequences in graphs, that is, a characterisation of all Hamiltonian matrices. For
the graph case, Pósa’s result was a step towards the characterisation by Chvátal. The
following theorem, which we prove in Chapter  3 , can be seen as a 3-uniform (asymptotic)
analogue of the theorem by Pósa and a step towards a full characterisation of Hamiltonian
matrices.

Theorem 1.1.4. For α ą 0, there exists n0 P N such that for all n P N with n ě n0, the
following holds. If H “ prns, Eq is a 3-uniform hypergraph with dpi, jq ě min

`

i, j, n2
˘

` αn

for all ij P rnsp2q, then H contains a Hamiltonian cycle.

In Chapter  3 , we also see that this result is tight in a certain sense.
A variation of the foregoing line of results concerns decompositions into Hamiltonian

cycles. A decomposition of a k-uniform hypergraph H into Hamiltonian cycles is a collection
of edge-disjoint Hamiltonian cycles in H such that the union of their edges is EpHq. One of
the earliest results regarding decompositions of graphs is Walecki’s theorem from the 1890s,
which states that a complete graph on an odd number of vertices has a decomposition into
Hamiltonian cycles. An interesting follow-up of Problem  1.1.1 is how many edge-disjoint
Hamiltonian cycles can be guaranteed in k-uniform hypergraphs H satisfying the minimum
degree condition δk´ipHq ě pd

k
k´i`op1qq

`

n
i

˘

(for some i P rk´1s) and, in particular, whether
such H can in fact be decomposed into Hamiltonian cycles if it is degree-regular. For
graphs, it was shown by Csaba, Kühn, Lo, Osthus, and Treglown [ 24 ] that a decomposition
is indeed possible but for k ě 3, a proper decomposition even of complete k-uniform
hypergraphs into Hamiltonian cycles is not yet known to exist. Previous results about
approximate decompositions assumed strong quasirandomness properties [  5 ,  30 ] or did not
include tight Hamiltonian cycles [ 37 ]. In recent work, Joos, Kühn, and the author [ 64 ]
proved an approximate decomposition result for regular k-uniform hypergraphs H “ pV,Eq

with δk´1pHq ě p1{2` op1qq|V |.
In fact, a much stronger result is shown. For η, ϱ, r ą 0, we say that a k-uniform

hypergraph H “ pV,Eq is η-intersecting if for any two sets e, f P V pk´1q, we have that their
neighbourhoods intersect in at least η|V | vertices, i.e., |tv P V : eYtvu, fYtvu P Eu| ě η|V |

and we call H ϱ-almost r-regular if for every vertex v P V , we have dpvq “ p1˘ ϱqr. Note
that if H satisfies δk´1pHq ě p1{2 ` ηq|V |, then it is 2η-intersecting and if H allows a
decomposition into r{k Hamiltonian cycles, then H is (0-almost) r-regular.

Our main result guarantees an approximate decomposition of η-intersecting ϱ-almost
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regular k-uniform hypergraphs not only into Hamiltonian cycles but into any cycle factors
of not too small girth. 

6
 Previously, it was not even known whether a single such cycle

factor is guaranteed by δk´1pHq ě p1{2` op1qq|V |.

Theorem 1.1.5. For all integers k ě 2 and all η, ε ą 0, there exist integers L and n0,
and ϱ ą 0 such that every η-intersecting ϱ-almost r-regular k-uniform hypergraph H

on n ě n0 vertices contains edge-disjoint copies of any given cycle factors C1, . . . , Cr1,
where r1 ď p1´ εqr{k, whose girths are at least L.

For the sake of clarity, let us also state the following result, which follows from
Theorem  1.1.5 . Let regkpHq be the largest integer r divisible by k such that H contains
a spanning r-regular subhypergraph and note that H can have at most regkpHq{k edge-
disjoint Hamiltonian cycles.

Theorem 1.1.6. For all integers k ě 2 and all ε ą 0, there exists an integer n0 such
that every k-uniform hypergraph H on n ě n0 vertices satisfying δk´1pHq ě p1{2 ` εqn

contains p1´ εq regkpHq{k edge-disjoint Hamiltonian cycles.

Thus, the (asymptotically) tight minimum pk ´ 1q-degree condition that ensures one
Hamiltonian cycle in fact already implies that H contains almost as many Hamiltonian
cycles as it possibly can, given trivial (degree-regularity) reasons. In particular, this gives
an approximate decomposition if H is vertex degree regular. We will prove these results in
Chapter  4 .

Let us mention a few words about the proofs of the results above. The general strategy
is that of absorption which, in its modern form, was introduced by Rödl, Ruciński, and
Szemerédi [ 98 ] and surveyed by Szemerédi [  111 ]. Assuming our goal is to construct a
Hamiltonian cycle in a k-uniform hypergraph H, then the main idea is as follows  

7
 . We

begin by setting aside a special structure, the absorbing path. This is a relatively short
path PA which can absorb any small set of vertices, that is, PA has the property that for
every small set of vertices X, there is a path P 1

A such that V pP 1
Aq “ V pPAq YX and such

that the pk´1q-tuples at both ends of P 1
A are the same as those at the ends of PA. Next, in

the complement of PA, we find a long path Q that contains almost all vertices. If we have
proved good connectivity properties (which often is a major obstacle in the proofs), we can
subsequently connect Q and PA to a cycle and absorb the remaining vertices into PA to

6As in graphs, we call a k-graph C a cycle factor (with respect to H) if C is a union of vertex-disjoint
cycles and has the same number of vertices as H. In particular, a Hamiltonian cycle is a cycle factor. The
girth of a cycle factor is the length of its shortest cycle.

7Figure  3.2.1 provides an illustration of this general strategy.
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obtain a Hamiltonian cycle. We can thus divide a proof via absorption into the following
steps: connecting, absorbing, and covering 

8
 . The crucial point that makes this approach

so powerful is that for many problems, it is much easier to find a substructure containing
almost all vertices than one containing all.

Before giving a slightly more detailed explanation of the individual steps of the ab-
sorption method, let us briefly sketch how it is used to prove Theorem  1.1.5 . We begin
by setting aside a small, randomly chosen spanning subhypergraph F Ď H for later use.
Afterwards, by using a fractional cycle decomposition and a pseudorandom matching in
an auxiliary hypergraph, we (almost) decompose the other edges of H into edge-disjoint
collections of vertex-disjoint paths such that each of these collections covers almost all
vertices. Next, we aim to use the edges in F to complete each collection P of paths to a
cycle factor. To this end, we essentially apply the usual steps of the absorption method
to F induced on the vertices not covered by P. By choosing F (and some paths in P
to be “dissolved”) randomly, we can guarantee enough quasirandom properties in that
hypergraph to be able to perform these steps. However, we also need to take care that we
do not use any edge of F during the completion of two different path collections. This can
be achieved by performing each construction step probabilistically and using Freedman’s
inequality to ensure that F retains quasirandom properties when used edges are deleted.

Having set up the overall picture, let us take a closer look at some of the new de-
velopments that the proofs of the theorems above brought to the three main steps of
the absorption method. For this discussion, let us introduce the following definition. It
is often useful to consider something like a projection of a hypergraph with respect to
some (small) vertex set. Given a hypergraph H “ pV,Eq and S Ď V , we define the link
of S (with respect to H) as the hypergraph LS “ pV ∖ S, te Ď V ∖ S : e Y S P Euq and
if S “ tvu or S “ tu, vu, we may simply say the link of u or the link of uv and write Lu, Luv,
respectively. Often the vertex set of the link is not very important and so it varies in
different definitions used for different problems.

Connecting

Usually, we need to connect several so called absorbers (see below), to the absorbing
path PA and several long paths to the almost covering path Q. Moreover, as mentioned

8Note that we will “connect” at several points and the actual “absorption” happens at a later stage
than what we usually refer to when speaking about “absorbing” as a step. More accurately, we should
perhaps say the steps are “proof that connecting is possible”, “construction of the absorbing structure”,
“construction of the (almost) covering path(s)”, and “conclusion”.
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above, we need to be able to connect PA and Q. The Connecting Lemma ensures that we
have a sufficiently good connectivity property in our hypergraph to make these connections.
In its simplest form, the Connecting Lemma would state that any two pk ´ 1q-tuples of
vertices can be connected by many paths of relatively short length.

While the proofs of the Connecting Lemma in the early articles on the pk ´ 1q-degree
were somewhat involved, it is now known that by using a simple adaptation of the proof
of the Connecting Lemma in [ 95 ], it can be shown quite easily that in a hypergraph H

with δk´1pHq ě p1{2 ` op1qqn any two pk ´ 1q-tuples (of vertices) can be connected by
many paths of constant length. However, if we just assume a minimum pk ´ 2q-degree
of p5{9` op1qq

`

n
2

˘

, such a general Connecting Lemma, stating that any two pk ´ 1q-tuples
of vertices can be connected by many paths of constant length, is not true (see [ 95 ] for
a counterexample). To deal with this, connectable pairs (and connectable pk ´ 1q-tuples)
were introduced in [ 95 ] and the subsequent articles on the pk ´ 2q-degree [ 92 ,  93 ]. The
Connecting Lemma then states that any two connectable pk ´ 1q-tuples can be connected
by many paths of short length. Note that this forces us to take care in all subsequent
steps that we can guarantee connectable tuples in all those positions of our construction at
which we later need to make connections.

Let pa1, . . . , ak´1q and pb1, . . . , bk´1q be two connectable pk ´ 1q-tuples between which
we aim to find many paths of short length. Roughly speaking, we proceed as follows
(see also Figures  2.3.1 and  3.3.1 ). Using the eventual definition of a connectable pk ´
1q-tuple, we can show that there are many tuples pu, q1, . . . , q2k´4, wq of vertices such
that a1 . . . ak´1u and b1 . . . bk´1w are edges, pa2, . . . , ak´1q and pq1, . . . , qk´2q have “good
connectivity properties” in the link of u, while pqk´1, . . . , q2k´4q and pb1, . . . , bk´2q have
good connectivity properties in the link of w, and, lastly, q1, . . . , q2k´4 is a walk in the
link of uw. These good connectivity properties and the induction hypothesis then yield
many paths (of short length) between pa2, . . . , ak´1q and pq1, . . . , qk´2q in the link of u and
between pqk´1, . . . , q2k´4q and pb1, . . . , bk´2q in the link of w. One can show that this will
give rise to many short paths between pa1, . . . , ak´1q and pb1, . . . , bk´1q in H by inserting
“different versions” of u respectively w at every k-th position of the aforementioned paths
in the links.

This sketch hints at two points. First, the key condition for this approach to work is
that there is some kind of connectivity property in the link hypergraphs of some vertices.
This can also be seen in the proof of Theorem  1.1.4 in Section  3.3 , where in the links
of some vertices we essentially have Pósa’s degree sequence condition for graphs. The
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insertion of some vertices q1, . . . , q2k´4 in the middle of the constructed path allows for
more flexibility in the proof by distributing the conditions with respect to pa1, . . . , ak´1q

and pb1, . . . , bk´1q among u and w. This is not necessary in the basic version of the proof
in the setting of the pk ´ 1q-degree. Nevertheless, it also turned out to be crucial in the
proof of Theorem  1.1.4 .

Second, the outline above indicates that to prove the Connecting Lemma given a
minimum pk ´ 2q-degree - and to define connectable tuples - induction will be helpful.
Indeed, this is how we will proceed in the proof of Theorem  1.1.2 . However, to handle
the induction occurring in the covering part below more efficiently, it is useful to “store”
more information than just the hypergraph. Therefore, we will introduce constellations in
Chapter  2 and prove the Connecting Lemma in this context.

Lastly, let us mention that if there are many paths of fixed length between two pk ´ 1q-
tuples, then the probability that one particular set of vertices appears in a path chosen
uniformly at random is relatively small. Together with similar observations in the absorbing
and the covering part, this is basically the reason why all the constructions in an absorbing
proof can be performed probabilistically, which is key in the proof of Theorem  1.1.5 .

Absorbing

The basic approach to construct an absorbing path is as follows. First, show that for
every vertex v, there are many v-absorbers. In the simplest case, a v-absorber is a short
path A not containing v such that v can be inserted at some “inner” position, meaning
that there is a path A1 containing v and having the same pk ´ 1q-tuples at both ends as A.
If there are many such absorbers for every vertex, we can pick a selection of relatively
few vertex-tuples which still contains a substantial number of absorbers for every vertex
(and only few overlapping pairs of absorbers). Subsequently, we connect the absorbers in
this collection to an absorbing path. Into this path, we can now absorb any small set of
vertices, by greedily inserting each vertex into a distinct absorber.

The main obstacle in this argument is to find the right structure for a v-absorber.
However, Polcyn and Reiher [ 91 ] suggested an approach that is somewhat more generic
and we use this to prove the minimum pk ´ 2q-degree condition for Hamiltonian cycles
in Chapter  2 . It is based on a result by Erdős [ 31 ] which states that the Turán density
of a k-partite k-uniform hypergraph is 0. Due to supersaturation, this allows us to make
use of any k-partite structure in our absorbers. Then, one can argue that it is indeed
possible to extend such a structure in a way that a vertex v can be inserted and that all
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the end-tuples of paths in this structure are connectable. 

9
 The k-partite nature of these

absorbers entails that we will absorb k vertices at a time.
The difficulty to find the right absorbers in the setting of Theorem  1.1.4 is that there

may be pairs of vertices and (even) vertices of very small degree. To overcome this, we
introduce a different type of absorbers in that proof, which make use of the fact that with
the given degree condition it is possible to “climb up” the degree sequence (in fact, this is
essentially also what guarantees the connectivity property in the links which is used in the
proof of the Connecting Lemma).

The proof of Theorem  1.1.5 involves several rounds, in each of which we perform the
absorption method in a probabilistic way and there are some new obstacles arising here.
One is that instead of a Hamiltonian cycle we construct an arbitrary cycle factor, possibly
one in which each cycle is of constant length. Therefore, we potentially need to distribute
the absorbers in the “good” selection mentioned above among several paths. 

10
 However,

since we do not know beforehand which set of vertices is leftover in the covering step, with
the usual approach we could not control which absorbers will be used when absorbing
this set. Thus, if the absorbers are distributed among several of these cycles, it would not
be possible to control the eventual cycle lengths. To deal with this problem, we consider
“meta absorbers” each of which is a path with a large but constant number of “normal”
absorbers as subpaths. We can construct these in such a way that for every small set (of
fixed size), there exists a way to absorb this set such that exactly one normal absorber
is used from each meta absorber. Since each meta absorber is of constant length, we can
distribute them among different paths, now knowing how many new vertices will be added
to each path later on. A second difficulty that arises in the proof, is that for the subsequent
covering step, we want the hypergraph to remain almost vertex-regular after setting aside
the absorber structures. To construct the meta absorbers while maintaining an almost
regular hypergraph, it turns out to be efficient to use random walks instead of picking each
absorber independently at random as in the usual approach.

Covering

In the covering part of proofs via absorption, a path containing almost all vertices is
constructed. Due to the Connecting Lemma (and the existence of the reservoir, but we
defer the discussion of this to the actual proofs), it is enough to cover almost all vertices

9See Figures  2.5.1 and  2.5.2 .
10To obtain a cycle factor, we first cover almost all vertices by paths of short lengths and subsequently

connect these, together with “meta absorbers”, to cycles into which we absorb the remaining vertices.
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by paths whose lengths are a large constant.
The proofs in the chapters ahead will in fact provide three different approaches to proof

the existence of such a covering in some hypergraph H. In the proof of Theorem  1.1.4 , we use
the weak hypergraph regularity lemma, which is a relatively straightforward generalisation
of Szemerédi’s regularity lemma for graphs. This provides a partitioning of the vertex set
into relatively few partition classes such that between almost any three of those partition
classes, the edges of H are distributed quasirandomly. Then the reduced hypergraph is
defined as the hypergraph which has the partition classes as vertices and whose edges
are given by those triples of vertex classes on which H is quasirandom and has some
positive density. One can then show (still in the setting of Theorem  1.1.4 ) that this reduced
hypergraph possesses a pair degree condition very similar to the one in H. This enables
us to construct a matching in the reduced hypergraph which covers almost all vertices.
Next, by a typical quasirandomness argumentation, one sees that each edge in the reduced
hypergraph can be “unpacked” to a collection of relatively long (vertex-disjoint) paths
in H covering almost all vertices of the three partition classes that form the edge. Thus,
the edges of the almost perfect matching in the reduced hypergraph yield an approximate
path cover in H as desired.

This approach would be more difficult if in addition we had to take care that all the
end-tuples of the paths in the covering are connectable. In the proof of the minimum pair
degree condition for Hamiltonian cycles in 4-uniform hypergraphs [ 92 ], we introduced a
different strategy that was based on the respective 3-uniform result [  95 ] yet involved several
new aspects. Since this strategy is inductive in nature, we could lift it to full generality
in the proof of Theorem  1.1.2 . Although the full proof involves several major technical
obstacles, we may give an idea of it here. Take a maximal collection C of vertex-disjoint
paths on M vertices (M -vertex paths) whose end-tuples are connectable and call the set
of uncovered vertices U . If |U | is not small enough, we consider so-called blocks, which
are the vertex sets of the paths in C as well as some arbitrary partition of the vertices
not covered by C into sets of size M . We aim to use (the vertices in) M of these blocks
together with vertices in U to construct M ` 1 vertex-disjoint M -paths with connectable
end-tuples. Subsequently, replacing the paths in C corresponding to blocks used for this
construction by the M ` 1 newly constructed paths, leaves us with a path collection that
contains at least one path more than C , a contradiction.

To find M blocks which enable this augmentation, we analyse societies, which are sets
of M blocks. Given a vertex u P U , we say that a society S is useful for u, if the link
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(constellation) of u induced on S “
Ť

BPS B has certain nice properties. These will allow
us to apply induction and cover almost all vertices in S by “good” paths in the link of u
(the technicalities involved in this induction called for the definition of constellations to be
handled efficiently). We then use a probabilistic argument based on a weighted version of
Janson’s inequality to show that there is a society which is useful for many vertices in U .
By averaging, we obtain a set U 1 Ď U such that in the link of each vertex in U 1, there
exists the same covering of S. Inserting vertices of U 1 at every k-th position then yields
the paths in H we were looking for to augment C . If we prepare a bit more, the properties
of the link constellation induced on the vertices of a useful society actually allow us to
make sure that the end-tuples of the so constructed paths are indeed connectable in H

(and not just in some link constellation).
In the proof of Theorem  1.1.5 , more than a path covering of a hypergraph is needed.

On the one hand, since here the goal is to construct many edge-disjoint cycle factors, we
need to construct many edge-disjoint collections of approximate path coverings. Further,
we need to ensure certain quasirandomness conditions of these path covers.

On the other hand, when applying the absorption method to turn each of these
approximate path coverings P into a cycle factor, we need to provide a probabilistic
construction of an approximate path covering in a subhypergraph of H. 

11
 To this end, we

can apply the result ensuring many edge-disjoint collections of approximate path coverings
(Proposition  4.4.1 ) and choose one of the path collections at random.

To prove such a covering result, we first consider a fractional cycle decomposition of H
(this is a weighted, weaker notion of a cycle decomposition), which exists by an earlier result
due to Joos and Kühn [ 63 ]. Roughly speaking, we then construct an auxiliary hypergraph
whose vertex set consists of the edges of H as well as several disjoint copies of V pHq and
whose edges “represent” cycles in H of a fixed length. A matching in this hypergraph will
correspond to edge-disjoint collections of cycles in H. At this point, a weighted version of
a result by Erhard, Glock, and Joos [ 29 ] about quasirandom matchings in hypergraphs
can be applied to this auxiliary hypergraph with weights on the edges according to the
aforementioned fractional cycle decomposition of H. This will engender a matching in the
auxiliary hypergraph with enough quasirandom properties such that the corresponding
collection of cycles in H is as desired.

11Basically, we need such a covering in the hypergraph F rV pHq ∖ V pPqs, mentioned in the general
overview above, after setting aside absorbing paths in it.
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1.1.2 Covering edge-coloured random graphs with
monochromatic trees

In this subsection we combine the search for spanning substructures with Ramsey theory.
Ramsey’s theorem and Turán’s theorem are arguably the two cornerstones of extremal
combinatorics.

With Ramsey’s theorem in mind and given a positive integer r and some class C of
substructures (like cycles or trees), one may now ask for the minimum number m such that
for any r-edge-colouring of Kn, there are m monochromatic copies of elements in C such
that their union covers all vertices of Kn (in this context, we allow the empty graph, single
vertices, and edges as trees and cycles). There has been extensive research on problems of
this kind and we refer to a review by Gyárfás [ 54 ] for an overview.

Here, we are interested in covering with monochromatic trees, in other words, we
are looking for the minimum number of monochromatic components that are needed to
cover an edge-coloured graph. More precisely, given a graph G and a positive integer r,
let tcrpGq denote the minimum number m such that in any r-edge-colouring of G, there
are m monochromatic trees T1, . . . , Tm such that the union of their vertex sets covers V pGq,
that is,

V pGq “ V pT1q Y ¨ ¨ ¨ Y V pTmq.

We define tprpGq analogously by requiring the union above to be disjoint (so in particu-
lar, tcrpGq ď tprpGq).

Erdős, Gyárfás, and Pyber [ 33 ] conjectured that tprpKnq “ r ´ 1 for all positive
integers n and proved the conjecture for r “ 3 (for r “ 2 it is easy). Currently, the best
known bound is tprpKnq ď r for sufficiently large n which was proved by Haxell and
Kohayakawa [ 59 ] and it is not even known whether tcrpKnq ď r ´ 1.

Gyárfás [ 53 ] noticed a nice connection between this problem and the famous conjecture
by Ryser [ 61 ], which asserts that a generalisation of Kőnig’s theorem is true for hypergraphs.
More precisely, Ryser’s conjecture states that if H is an r-partite r-uniform hypergraph,
then the smallest size of a vertex cover of H is at most r ´ 1 times the size of the largest
matching in H. We will come back to this connection in the sketch of the proof below.

As with many problems in combinatorics which are at first studied for complete
graphs, researchers also investigate the random graph Gpn, pq. For the problem above,
this investigation was started by Bal and DeBiasio [ 6 ], who proved that if p !

` logn
n

˘1{r,
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then with high probability (w.h.p.) we have tcrpGpn, pqq Ñ 8 (as nÑ 8). They further
conjectured that for any r ě 2, this is the correct threshold for the event tprpGpn, pqq ď r.
Kohayakawa, Mota, and Schacht [ 72 ] proved that this conjecture holds for r “ 2, while
Ebsen, Mota, and Schnitzer (see also [ 72 ]) disproved it for more than two colours.

Subsequently, Bucić, Korándi, and Sudakov [ 15 ] proved that for large r, the threshold
for the event tcrpGq ď r is actually significantly larger than the one conjectured by Bal
and DeBiasio. In the quest for the best bounds on p which still guarantee tcrpGpn, pqq ď r

(before, only bounds directly implied by other results had been known 

12
 ), Bucić, Korándi,

and Sudakov showed that if p "
` logn

n

˘1{2r , then w.h.p. tcrpGpn, pqq ď r.
In the case of 3-colourings, the results in [ 15 ] imply that tc3pGpn, pqq ď 3 holds w.h.p.

if we have p "
` logn

n

˘1{8, and if p "
` logn

n

˘1{6, then w.h.p. tc3pGpn, pqq ď 88.
Together with Kohayakawa, Mendonça, and Mota, the author [ 71 ] proved the following

improvement of these results.

Theorem 1.1.7. If p “ ppnq satisfies p "
` logn

n

˘1{6, then with high probability we have

tc3
`

Gpn, pq
˘

ď 3.

Let us remark that the bound on tc3pGpn, pqq is optimal in the sense that if we
have p “ 1 ´ ωpn´1q, then w.h.p. there is a 3-edge-colouring of Gpn, pq for which three
monochromatic trees are needed to cover all vertices. To see this, consider three non-
adjacent vertices x1, x2, and x3 (which exist w.h.p. for such p), colour the edges incident
to xi with colour i and colour all the remaining edges with any colour.

We now briefly sketch how to proof Theorem  1.1.7 . Let G “ Gpn, pq, with p "
` logn

n

˘1{6,
and let ϕ : EpGq Ñ tred, green, blueu be any 3-edge-colouring of G. First note that
since we are looking for a covering of the vertices with monochromatic components, it is
enough to consider an auxiliary graph F , with V pF q “ V pGq and ij P EpF q if and only
if there is, in the colouring ϕ, a monochromatic path in G connecting i and j. Define
a 3-edge-colouring ϕ1 of F with ϕ1pijq being the colour of any monochromatic path in G

connecting i and j. Then any covering of F with monochromatic trees with respect to the
colouring ϕ1 corresponds to a covering of G with monochromatic trees with respect to the
colouring ϕ with the same number of trees.

In our proof, we consider different cases depending on the value of the independence
number αpF q of F . If αpF q “ 1, then F is a complete 3-edge-coloured graph and by the

12When we worked on this problem, [  15 ] had not yet appeared on arXiv.org and tc3pGpn, pqq ď 6 was
the best known bound for any sensible p.
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aforementioned result by Erdős, Gyárfás, and Pyber [ 33 ], there exists a partition of V pF q
into 2 monochromatic trees. The remaining proof is divided into the cases αpF q ě 3
and αpF q “ 2.

Case αpF q ě 3. In this case there exist three vertices r, b, g P V pGq such that between
any two of them there does not exist any monochromatic path. With high probability,
they have a common neighbourhood in G of size at least np3{2. Let Xrbg be the largest
subset of this common neighbourhood such that for each i P tr, b, gu, the edges from i

to Xrbg in G are all coloured with one colour. Then, since there are no monochromatic
paths between any two of r, b, and g, we have |Xrbg| ě np3{12 and we may assume that all
edges between r and Xrbg are red, all between b and Xrbg are blue and those between g

and Xrbg are green. Now notice that all vertices with a neighbour in Xrbg are covered by
the union of the spanning trees of the red component of r, the blue component of b, and
the green component of g. Hence, nothing is left to show if every vertex has a neighbour
in Xrbg. If this is not the case, we continue by carefully choosing vertices and analysing
the possible colourings between these vertices and their common neighbourhood. In such a
way, we can first show that five monochromatic trees cover all vertices and subsequently
argue that, indeed, three of them suffice.

Case αpF q “ 2. Let us consider a 3-uniform hypergraph H defined as follows (this definition
is inspired by a construction of Gyárfás [ 53 ]). The vertices of H are the monochromatic
components of F and three vertices form a hyperedge if the corresponding three components
have a vertex in common. In particular, those three monochromatic components must be
of different colours and, hence, H is a 3-uniform 3-partite hypergraph. Observe that if A
is a vertex cover of H, then the monochromatic components associated with the vertices
in A cover all the vertices of F . This yields tc3pGq ď tc3pF q ď τpHq, where τpHq is the
covering number of H. On the other hand, observe that each matching M in H gives rise
to an independent set of size |M | in F . Thus, we have νpHq ď αpF q “ 2, where νpHq
is the matching number of H. Recall that Ryser’s conjecture for r “ 3 states that for
every 3-uniform 3-partite hypergraph H, we have τpHq ď 2νpHq. As it turns out, r “ 3
is next to r “ 2 (Kőnig’s theorem) the only known (non-trivial) case in which Ryser’s
conjecture is true; it was proved by Aharoni [ 1 ]. Together with the previous observation,
this implies tc3pGq ď 4.

To show that actually tc3pGq ď 3, we analyse the hypergraph H more carefully, reducing
the situation to a few possible settings of components covering all vertices. In each of
those cases, we can again analyse the possible colourings of edges between certain vertices,
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inferring that indeed there are 3 monochromatic components which cover all vertices.

1.2 Convex graphon parameters and graph norms

Let us turn our attention to an interesting modern theory within combinatorics, the theory
of graphons. This theory is closely related to the well-known conjecture by Sidorenko. 
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Roughly speaking, Sidorenko’s conjecture [ 104 ,  105 ] asserts that for any bipartite graph H,
the number of copies of H in a graph G is minimised when G is a quasirandom graph. To
be more precise, let us introduce some notation and we refer the reader to [ 81 ] for further
background on graphons and graph limits.

A graphon (respectively signed graphon) is defined to be a measurable symmetric
function W : r0, 1s2 Ñ r0, 1s (respectively W : r0, 1s2 Ñ r´1, 1s). Graphons can be seen as
a continuous generalisation of (weighted) graphs and, in fact, they appear as limit objects
of sequences of weighted graphs. Let W be the vector space of symmetric (real-valued)
bounded measurable functions on r0, 1s2.

Given graphs H and G, we are often interested in the number of ways in which we
can embed H into G, that is, the number of homomorphisms from H to G (a graph
homomorphism from H to G is a map ϕ : V pHq Ñ V pGq such that ϕpiqϕpjq P EpGq
whenever ij P EpHq). For W P W , we define the homomorphism density of H in W by

tHpW q “

ż

ź

ijPEpHq

W pxi, xjqdµ
vpHq,

where µ is the Lebesgue measure on r0, 1s and vpHq “ |V pHq|. 
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Now we can formulate Sidorenko’s conjecture.

Conjecture 1.2.1. Let H be a bipartite graph and let W be a graphon. Then

tHpW q ě tK2pW q
epHq. (1.2.1)

Given that norms are central in several areas of combinatorics, such as graph limits or
additive combinatorics, it is interesting to know if we can define norms by the homomorphism
density. Let us write ∥W∥H “ |tHpW q|

1{epHq and ∥W∥rpHq
“ tHp|W |q

1{epHq (again, we
write epHq “ |EpHq|) and call a graph H norming if ∥¨∥H defines a norm on W , and weakly

13This conjecture was also proposed in a slightly different form by Erdős and Simonovits [ 35 ].
14The given integral is a short notation for

ş

r0,1svpHq

ś

ijPEpHq W pxi, xjq
ś

iPV pHq dµpxiq
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norming if ∥¨∥rpHq
is a norm on W . Lovász [ 81 ] and Hatami [ 58 ] asked which graphs H are

(weakly) norming.
As it turns out, there are strong connections between the theory of norming graphs

and Sidorenko’s conjecture. In particular, every weakly norming graph satisfies ( 1.2.1 ) for
every graphon W [ 58 ] (we call a graph satisfying ( 1.2.1 ) for every graphon W Sidorenko).

Much of the work on Sidorenko’s conjecture focused on finding more Sidorenko graphs,
and although not every Sidorenko graph is weakly norming [ 20 ,  74 ], at times new Sidorenko
graphs were found by finding new weakly norming graphs (see, for instance, [  22 ,  58 ,  81 ]).
Moreover, Conlon and Lee [ 22 ] showed that weakly norming graphs can be used as “building
blocks” for Sidorenko graphs.

To approach the conjecture, Sidorenko [ 104 ,  105 ] suggested to determine whether K5,5 ∖
C10 (also called Möbius ladder) is Sidorenko or not but despite various partial results on
Conjecture  1.2.1 [ 20 – 23 ,  58 ,  70 ,  80 ,  110 ], this is still not known. In joint work with Lee [ 79 ],
we showed that this graph is at least not weakly norming. While this does not disprove
Sidorenko’s conjecture, it underlines the importance of K5,5 ∖ C10 in the investigation of
this conjecture.

In fact, we proved a more general result. For a graph H, we write H’ for the graph
with vertex set tvi : v P V pHq, i P r2su and edge set

tv1v2 : v P V pHqu Y tuivj : uv P EpHq, ti, ju “ r2su.

Observe that C’
5 is isomorphic to K5,5 ∖ C10. Graphs of this type have been of interest in

the theory of weakly norming graphs, for instance, Hatami [ 58 ] asked whether C’
2k and the

Möbius ladder C’
5 are weakly norming. We answer both these questions.

Theorem 1.2.2. For every k ą 4, C’
k is not weakly norming.

Our method, which can also be used to prove that certain graphs are not norming, relies
on the not very difficult to prove observation that H being weakly norming is equivalent
to tH being convex. More precisely, the following holds.

Theorem 1.2.3. A graph H is weakly norming if and only if tHp¨q is a convex graphon
parameter.

The reason that this is helpful is that it will provide a computational way to show that
a graph is not weakly norming.
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Given an nˆ n symmetric matrix A “ paijq, let UA be the two-variable symmetric step
function on r0, 1s2 defined by

UApx, yq “ aij, if pi´ 1q{n ď x ă i{n and pj ´ 1q{n ď y ă j{n

and UA “ 0 on the measure-zero set x “ 1 or y “ 1 for simplicity. Then A ÞÑ UA is a linear
map and

tHpUAq “ n´vpHq
ÿ

ϕ:V pHqÑrns

ź

uvPEpHq

aϕpuqϕpvq.

In other words, tHpUAq is n´vpHq times a homogeneous
`

n`1
2

˘

-variable polynomial of de-
gree epHq. We call the polynomial PH,npAq for A P Symn, where Symn denotes the

`

n`1
2

˘

-
dimensional vector space of nˆ n real symmetric matrices. It is not difficult to derive the
following formulation of Theorem  1.2.3 in terms of PH,n.

Theorem 1.2.4. A graph H is weakly norming if and only if PH,np¨q is a convex polynomial
on the positive orthant for every n P N.

Due to rather standard multidimensional analysis, this result on the other hand has
the following corollary.

Corollary 1.2.5. A graph H is weakly norming if and only if the Hessian ∇2PH,npAq is
positive semidefinite for every A P Symn with positive entries and n P N.

To show that a graph H is not weakly norming, it now suffices to find an example of
a graph G such that this Hessian is not positive semidefinite for the adjacency matrix
of G. While we used a computer program to find such an example initially, we were able to
simplify the example and prove that the Hessian is not positive semidefinite by explicitly
analysing homomorphisms from H to G. Thus, our eventual proof does not rely on any
computer calculations.

As mentioned before, we also use an analogous approach to prove similar results for
norming instead of weakly norming.

1.3 On extremal problems concerning traces

The last problem we consider in this thesis is a problem in extremal set theory, which
studies the extremal behaviour of families of sets. Let X be some set and consider some
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family F Ď PpXq (so pX,Fq is a hypergraph 

15
 ). We may now ask: How large can F

be, given that it has a certain property? What gives this subfield a distinctive flavour
compared to the problems mentioned above, is that here the considered families are not
always uniform and if they are, say, k-uniform, one is often also interested in relatively
small vertex sets, that is, |X| being only polynomial in k. Further, the proof techniques
are often quite different from those in (extremal) graph theory. We recommend the books
by Frankl and Tokushige [ 42 ] and by Gerbner and Patkós [ 48 ] for an overview of extremal
set theory.

Here, we are interested in the notion of traces. For a set X, a family F Ď PpXq,
and a set T Ď X we define the trace of F on T to be F|T “ tF X T : F P Fu. The
following problem can be interpreted as Turán problem for traces of arbitrary families.
For given positive integers n and s with n ą s, how large does a family F on n vertices
have to be to guarantee that there is some subset of s vertices on which F has a “full”
trace? To make this precise and to set it into a broader context, let us introduce the
following notation. For integers n, m, a, and b, we write pn,mq Ñ pa, bq if for every
family F Ď PpXq with |F | ě m and |X| “ n, there is an a-element set T Ď X

such that |F|T | ě b. The very general problem is to determine, given n, a, and b, the
minimal m such that pn,mq Ñ pa, bq. This problem has also been considered for uniform
hypergraphs, namely, what is the maximum number fkpn, v, eq of edges in a k-uniform
hypergraph on n vertices not containing e edges spanned by at most v vertices. The
investigation of the uniform version was initiated by Brown, Erdős, and Sós [ 14 ,  107 ], who
also conjectured [ 32 ,  34 ] that for every e ě 3, f3pn, e` 3, eq “ opn2q, which is among the
most important open problems in extremal combinatorics. For a broader overview of the
study of traces, we refer the reader to Chapter 8 in [  48 ].

Let us come back to the Turán problem for traces of arbitrary families. Regarding the
question asked above, Erdős [ 101 ] asked whether the following result holds, which was
subsequently proved independently by Sauer [  101 ], Shelah and Perles [ 103 ], and Vapnik
and Červonenkis [  113 ].

Theorem 1.3.1. Let n ě s ě 0 and m be integers with m ą
ř

0ďiăs

`

n
i

˘

. Then

pn,mq Ñ ps, 2sq.

Note that the bound on m is best possible. Further, although far beyond the scope of
15The terms “family” and “hypergraph” are often used interchangeably here when no confusion can

arise, that is, we may identify a hypergraph with its edge set.
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this thesis, let us mention that this result and the related VC dimension have important
applications in machine learning [ 3 ].

An even more basic question than the Turán problem is to ask up to which density of
edges we can still guarantee that every graph with this density contains a vertex of low
degree. While this question is rather easy for graphs, it becomes interesting for abstract
simplicial complexes (i.e., hereditary hypergraphs, see below).

This problem was posed in terms of traces by Füredi and Pach [ 46 ] and, more recently,
by Frankl and Tokushige as Problem 3.8 in [ 42 ]: 

16
 

Problem 1.3.2. Given non-negative integers n and s, what is the maximum integer mpn, sq
such that for every integer m ď mpn, sq, we have

pn,mq Ñ pn´ 1,m´ sq.

Recall that a family F Ď PpXq (where X is some set) is said to be hereditary if for
every F 1 Ď F P F , we have that F 1 P F (such an F is also called abstract simplicial
complex). In [  41 ], Frankl proved that among families with a fixed number of edges and
vertices, the trace is minimised by hereditary families (see Lemma  7.2.1 in Chapter  7 ).
Thus, problems regarding the arrowing notation and in particular Problem  1.3.2 can be
reduced to hereditary families (and so given Frankl’s result, Theorem  1.3.1 and other
previous results on the arrowing notation became easy corollaries).

So Problem  1.3.2 is asking for the maximum integer m such that in every hereditary
family on n vertices with at most m edges, there is still a vertex of degree at most s.
Conversely, we can say that mpn, sq ` 1 is the minimum number of edges in a hereditary
hypergraph on n vertices with minimum (vertex) degree at least s ` 1. The results on
Problem  1.3.2 are best formulated as results on mpsq “ limnÑ8

mpn,sq

n
(it is not too difficult

to show that this limit exists, see [ 43 ]). The investigation of this problem started with
Bondy [ 11 ] and Bollobás [ 82 ] determining mp0q and mp1q, respectively. Subsequently,
Watanabe [ 115 ], [  116 ] and Frankl and Watanabe [  43 ] worked out several more cases for
small s. Moreover, Frankl [ 41 ] and Frankl and Watanabe [ 43 ] proved the first and second
part of the following theorem, respectively.

Theorem 1.3.3. For d, n P N, we have mp2d´1 ´ 1q “ 2d´1
d

and mp2d´1 ´ 2q “ 2d´2
d

.

In joint work with Piga [ 89 ] we made further progress on Problem  1.3.2 , solving it for
16There have been slightly different versions in use for the arrowing notation and for what we denote

by mpn, sq. Here we follow the notation in [ 42 ].
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general s “ 2d´1 ´ c as long as c is linearly small in d. More precisely, our main result
reads as follows.

Theorem 1.3.4. Let d, c, n P N with c ď d{4. Then

mp2d´1
´ cq “

2d ´ c
d

.

We also determined mpsq for some small values of s, one of which had been conjectured
by Frankl and Watanabe [  43 ]. Further, we provided a construction showing that the
equality in Theorem  1.3.4 does not hold for c “ d.

It turns out that determining mp2d´1 ´ cq for c ě 3 becomes more difficult for a reason.
To see why this is the case and how these difficulties can be overcome, let us take a
look at the basic idea of the proof. If d | n, taking n{d disjoint copies of a hereditary
family on d vertices with 2d ´ c` 1 edges, gives a family on n vertices with n

d
p2d ´ cq ` 1

edges in which each vertex has degree at least 2d´1 ´ c ` 1. Thus, when d | n, we
have mpn, 2d´1 ´ cq ď n

d
p2d ´ cq, which yields mp2d´1 ´ cq ď 2d´c

d
.

So the main part of the proof is to show that for every hereditary hypergraph F “ pV,Fq
with |V | “ n and minimum degree at least 2d´1 ´ c` 1, we have that |F | ě n

d
p2d ´ cq ` 1.

In the proofs of the identities in Theorem  1.3.3 , Frankl and Watanabe used that we
have |F ∖ t∅u| “

ř

vPV

ř

HPLv
1

|H|`1 , where Lv “ tA Ď V : AY tvu P Fu is the link of the
vertex v. Subsequently, they used a generalised form of the Kruskal-Katona theorem to
obtain a lower bound for

ř

HPLv
1

|H|`1 that is independent of v. Due to the aforementioned
double counting, this in turn yields the lower bound on the number of edges.

For c ě 3, there are extremal families which show that a lower bound on
ř

HPLv
1

|H|`1

independent of v is not sufficient to provide the desired bound on |F |. To overcome
this difficulty, first observe that the double counting argument can be generalised by
interpreting

ř

HPLv
1

|H|`1 as the weight wFpvq of a vertex v. We will refer to this weight
as uniform weight since it can be imagined as uniformly distributing the unit weight of an
edge among all of its vertices. In contrast, to prove Theorem  1.3.4 , we will at times use
non-uniform weights. Moreover, instead of bounding the weight of single vertices, we will
sometimes bound the weight of sets of vertices.

The overall structure of the proof can be seen as approximating F with an extremal
family and then showing that deviations of F from that extremal family engender an
increase of the weight of F (the sum of the weights of all vertices). We proceed by first
setting up the “global” structure and afterwards analysing “local” deviations.
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To this end, set Vv “ Npvq Y tvu for all v P V (where Npvq “ tw P V ∖ tvu : DA P
F : tv, wu Ď Au is the neighbourhood of v) and let L be a maximal set of vertices w
with |Npwq| ď d ´ 1 such that Vv X Vv1 “ ∅ for all v, v1 P L. For all v P L, we call the
set Vv cluster. Observe that if the size of the neighbourhood of a vertex is at most d´ 1,
then it has to intersect one of the clusters. For vertices whose neighbourhoods do not
intersect any cluster (and which therefore have a neighbourhood of size at least d), we use
the uniform weight. To bound these uniform weights, we introduce a “local” lemma which
is a close relative to the general form of the Kruskal-Katona theorem mentioned above.
Given a vertex of degree at least 2d´1 ´ c` 1, it provides a lower bound on the uniform
weight and, furthermore, the minimum surplus if the link deviates enough from the family
which minimises the uniform weight.

The next step is to bound the weight of vertices in the clusters. The difficulty is that
the weights of different vertices in a cluster might vary and some weights may be relatively
small. To deal with this, instead of bounding the weight of each single vertex, we bound
the average weight of the vertices in a cluster. Even if the number of edges inside a cluster
is not large enough, F being hereditary and the minimum degree of F still provide some
lower bound for the number of edges in each cluster. Further, a second local lemma yields
that in each cluster with too few edges there are several vertices whose degree with respect
to the cluster is smaller than the minimum degree in F . Therefore, there have to be several
crossing edges, i.e., edges containing vertices from both the inside and the outside of the
cluster. If we use the uniform weight, these crossing edges will contribute enough to the
weight of the cluster, even more than needed.

At this point, we still need to bound the weight of vertices with neighbourhoods of
size at most d´ 1 lying outside of any cluster. As mentioned above, the neighbourhood
of every such vertex intersects some cluster, meaning every such vertex is contained in a
crossing edge. Since distributing the unit weight of crossing edges uniformly among its
vertices would contribute more weight than needed to the inside of a cluster, we can assign
a larger share to the vertices outside so that both sides will get a share that is big enough.

Organisation

Chapters  2 ,  3 , and  4 are dedicated, respectively, to the proper introductions and proofs
of Theorem  1.1.2 , Theorem  1.1.4 , and Theorem  1.1.5 . They essentially consist of the
articles [ 64 ,  93 ,  102 ]. In Chapter  5 , essentially consisting of [ 71 ], we more carefully introduce
and prove Theorem  1.1.7 . Chapter  6 deals with “Convex graphon parameter and graph
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norms”. There we prove Theorem  1.2.3 and it basically consists of [ 79 ]. Lastly, we discuss
the problem on traces of sets in depth in Chapter  7 , which includes a proof of Theorem  1.3.4 

and essentially consists of [ 89 ].
In the appendix, short summaries of this thesis in both English and German are

provided and all my publications connected with my PhD studies are listed. In addition, I
make a declaration of contributions and a declaration of academic honesty. Further, I will
thank various people who have been crucial for this work and for my life.
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2. On Hamiltonian cycles in hypergraphs
with dense link graphs

2.1 Introduction

Hamiltonian cycles are a central theme in graph theory and extremal combinatorics. Dirac’s
classic result [  27 ] states that every graph on n ě 3 vertices whose minimum degree is
at least n

2 contains a Hamiltonian cycle. The present work continues the investigation
of hypergraph generalisations of Dirac’s theorem – an area of research owing many deep
insights to Endre Szemerédi.

2.1.1 Hypergraphs and Hamiltonian cycles

For k ě 2, a k-uniform hypergraph is defined to be a pair H “ pV,Eq consisting of a (finite)
set of vertices V and a set

E Ď V pkq
“ tU Ď V : |U | “ ku

of edges. A k-uniform hypergraph H “ pV,Eq with n vertices is said to contain a
Hamiltonian cycle if its vertex set admits a cyclic enumeration V “ txi : i P Z{nZu
such that txi, xi`1, . . . , xi`k´1u P E holds for all i P Z{nZ. Observe that this naturally
generalises the familiar notion of Hamiltonian cycles in graphs.

In contrast to the graph case, there are several interesting minimum degree notions for
hypergraphs. For a k-uniform hypergraph H “ pV,Eq and a set S Ď V , the degree of S
in H is defined by

dHpSq “ |te P E : S Ď eu| .
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Moreover, for an integer i with 1 ď i ă k, the number

δipHq “ min
␣

dHpSq : S P V piq
(

is called the minimum i-degree of H.
The research on minimum i-degree conditions guaranteeing the existence of Hamiltonian

cycles in hypergraphs was initiated by Katona and Kierstead [ 67 ]. The main problem is to
determine, for any two given integers k ě 2 and i P rk ´ 1s, the optimal minimum i-degree
condition which for k-uniform hypergraphs ensures the existence of a Hamiltonian cycle.
Notice that Dirac’s aforementioned theorem solves the case pk, iq “ p2, 1q.

In general, if i ă j, then a minimum j-degree condition seems to reveal more structural
information about a hypergraph than a minimum i-degree condition. For this reason, it
is reasonable to suspect that the difficulty of the problem we are interested in increases
with k´ i. The first case, i “ k´ 1, was solved more than a decade ago by Rödl, Ruciński,
and Szemerédi [ 99 ].

Theorem 2.1.1. For every integer k ě 2 and every α ą 0, there exists an integer n0 such
that every k-uniform hypergraph H on n ě n0 vertices with δk´1pHq ě

`1
2 ` α

˘

n contains
a Hamiltonian cycle.

Similarly as for Dirac’s theorem, slightly unbalanced bipartite hypergraphs show that
this result is asymptotically best possible. Our main result addresses the next case,
i “ k ´ 2.

Theorem 2.1.2. For every integer k ě 3 and every α ą 0, there exists an integer n0 such
that every k-uniform hypergraph H on n ě n0 vertices with δk´2pHq ě

`5
9 ` α

˘

n2

2 contains
a Hamiltonian cycle.

In previous articles written in collaboration with Ruciński, Schacht, and Szemerédi [ 92 ,
 95 ] we solved the cases k “ 3 and k “ 4. The general case was also obtained by Lang
and Sanhueza-Matamala [ 77 ] in independent research. A construction due to Han and
Zhao [  57 ] reproduced in the introduction of [ 92 ] shows that the number 5

9 appearing in
Theorem  2.1.2 is optimal.

We would like to conclude this subsection by pointing to some problems for future
investigations. First and foremost, it remains an intriguing question whether for k ě 4,
the minimum pk ´ 3q-degree condition δk´3pHq ě

`5
8 ` op1q

˘

n3

6 enforces the existence of a
Hamiltonian cycle. Here the number 5

8 would again match the construction of Han and
Zhao [ 57 ].
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Another possible area of research would be to extend the work of Pósa [ 94 ] and
Chvátal [ 18 ], who in the graph case studied which conditions on the degree sequence
(rather than just on the minimum degree) guarantee the existence of Hamiltonian cycles.
Such degree sequence versions have recently been obtained for the Hajnal-Szemerédi
theorem [ 55 ] by Treglown [ 112 ] and for Pósa’s conjecture (see [ 38 , Problem 9]) by Staden
and Treglown [ 108 ]. It would be very interesting to find similar theorems for Hamiltonian
cycles in hypergraphs. For first results in this direction we refer to [ 102 ].

2.1.2 Organisation and overview

We use the absorption method developed by Rödl, Ruciński, and Szemerédi and surveyed
by Szemerédi himself in [ 111 ]. Therefore, the proof decomposes in the usual way into a
Connecting Lemma, an Absorbing Path Lemma, and a Covering Lemma.

Very roughly speaking, the Absorbing Path Lemma reduces the task of proving The-
orem  2.1.2 to the much easier problem of finding ‘almost spanning’ cycles in k-uniform
hypergraphs H satisfying δk´2pHq ě

`5
9 ` α

˘

|V pHq|2

2 . Such an almost spanning cycle is
build in two main steps: First, the Covering Lemma asserts that we can cover almost all
vertices by means of long paths. Second, the Connecting Lemma allows us to connect these
‘pieces’ into one long cycle.

In our earlier articles we stored all information about H that became relevant in the
course of the proof in various ‘setups’ and the complexity of these setups got somewhat
out of control. To avoid this in the present work, we abandon the setups and replace them
by the much more flexible notion of a constellation (see Definition  2.2.10 below).

Section  2.2 lays out a systematic treatment of these constellations and contains several
auxiliary results that will assist us later. The subsequent Sections  2.3 –  2.6 deal with
the main lemmata enumerated above: connecting, absorbing, and covering. Lastly, in
Section  2.7 we derive Theorem  2.1.2 from these results.

2.2 Preliminaries

2.2.1 Graphs

In our earlier articles [ 92 ,  95 ] dealing with the 3- and 4-uniform case of Theorem  2.1.2 

we inductively reduced connectability properties of the hypergraphs under discussion to
connectability properties of their 2-uniform link graphs. Here we pursue the same strategy
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and the present subsection contains the graph theoretic preliminaries that we require for this
purpose. The central notion we work with in this context is taken from [ 95 , Definition 2.2]
and reappeared as [ 92 , Definition 2.1].

Definition 2.2.1. Given β ą 0 and ℓ P N a graph R is said to be pβ, ℓq-robust if for any
two distinct vertices x and y of R the number of x-y-paths of length ℓ is at least β|V pRq|ℓ´1.

It turns out that every graph whose edge density is larger than 5{9 possesses a robust
subgraph containing more than two thirds of its vertices that is quite disconnected from the
rest of the graph. The following statement to this effect was proved in [ 92 , Proposition 2.2]
(marginally strengthening [  95 , Proposition 2.3]).

Proposition 2.2.2. Given α, µ ą 0, there exist β ą 0 and an odd integer ℓ ě 3 such that
for sufficiently large n, every n-vertex graph G “ pV,Eq with |E| ě

`5
9 ` α

˘

n2

2 contains a
pβ, ℓq-robust induced subgraph R Ď G satisfying

(i ) |V pRq| ě
`2

3 `
α
2

˘

n,

(ii ) and eG
`

V pRq, V ∖ V pRq
˘

ď µn2.

Remark 2.2.3. When using this result we can always assume α ď 4{9, for otherwise the
hypothesis |E| ě

`5
9 `α

˘

n2

2 cannot hold. We shall only apply Proposition  2.2.2 with µ ď α
4 .

In this case, clause  (ii ) yields

epRq ě
´5

9 `
α

2

¯n2

2 ´
pn´ |V pRq|q2

2
 (i ) 

ě

´4
9 `

2
3α

¯n2

2 , (2.2.1)

where the second inequality relies on α ď 4{9 ă 2{3. Originally, ( 2.2.1 ) was included as a
third clause into [ 92 , Proposition 2.2], but it seems preferable to omit this part.

In Section  2.5 below we need to render our absorbers connectable. To this end we shall
utilise a consequence of the following graph theoretic lemma.

Lemma 2.2.4. Let α ą 0 and let G be a graph with n vertices and at least
`5

9 ` α
˘

n2

2

edges. If
A “

␣

x P V pGq : dpxq ă n{3
(

and
B “

␣

x P V pGq : |Npxq∖ A| ď αn{3
(

,

then
epAYBq ď

n2

18 .
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Proof. In the special case that |A| ă p1
3 ´

α
3 qn, every vertex x P B satisfies

dpxq ď |Npxq∖ A| ` |A| ă
n

3 ,

which yields B Ď A and the desired inequality

epAYBq “ epAq ď
1
2 |A|

2
ď

1
18n

2 .

So henceforth we may suppose that

|A| ě
´1

3 ´
α

3

¯

n . (2.2.2)

Now the definition of A implies

5
9n

2
ď 2epGq “

ÿ

xPV pGq

dpxq ď
1
3 |A|n` pn´ |A|qn “ n2

´
2
3 |A|n ,

i.e.,
|A| ď

2
3n , (2.2.3)

and
epG´ Aq ě

´5
9 ` α

¯n2

2 ´
1
3 |A|n . (2.2.4)

Setting X “ V pGq∖ pAYBq we conclude from the definition of B that

2epB ∖ Aq ` epB ∖ A,Xq “
ÿ

xPB∖A
|Npxq∖ A| ď |B ∖ A| ¨

α

3n ď
α

3n
2 , (2.2.5)

which together with (  2.2.4 ) yields

|X|2 ě 2epXq “ 2epG´ Aq ´ 2epB ∖ Aq ´ 2epB ∖ A,Xq

ě

´5
9 ` α

¯

n2
´

2
3 |A|n´

2
3αn

2
ě

5
9n

2
´

2
3 |A|n .

In view of ( 2.2.3 ) this entails

|X|2 ě
4
9n

2
´

2
3 |A|n`

1
4 |A|

2
“

´2
3n´

1
2 |A|

¯2
,

wherefore
|X| ě

2
3n´

1
2 |A| . (2.2.6)
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Next, we claim that

1
3 |A|n` |B ∖ A||A| `

1
2 |X|

2
ď

´1
3 `

α

6

¯

n2 . (2.2.7)

In view of |A| ` |B ∖ A| ` |X| “ n the left side of this estimate rewrites as

1
3 |A|n` pn´ |A| ´ |X|q|A| `

1
2 |X|

2
“

4
3 |A|n´

3
2 |A|

2
`

1
2p|A| ´ |X|q

2 .

By (  2.2.6 ) and X Ď V pGq∖ A we have

2
3n´

3
2 |A| ď |X| ´ |A| ď n´ 2|A|

and, hence,
p|A| ´ |X|q2 ď max

!

pn´ 2|A|q2,
´2

3n´
3
2 |A|

¯2)
.

So to conclude the proof of ( 2.2.7 ) it suffices to observe that

4
3 |A|n´

3
2 |A|

2
`

1
2pn´ 2|A|q2 “ n2

3 `
1
6pn´ |A|qpn´ 3|A|q

( 2.2.2 )
ď

´1
3 `

α

6

¯

n2

and, similarly,

4
3 |A|n´

3
2 |A|

2
`

1
2

´2
3n´

3
2 |A|

¯2
“
n2

3 ´

´1
3n´

1
2 |A|

¯2
´

1
8 |A|

2
ď
n2

3 .

Having thus established ( 2.2.7 ) we appeal to the definition of A again and observe

epAq ` epGq “
ÿ

xPA

dpxq ` epG´ Aq ď
1
3 |A|n` epG´ Aq .

Consequently,

epAYBq ` epGq ď
1
3 |A|n` epB ∖ A,Aq ` epB ∖ Aq ` epG´ Aq

and ( 2.2.5 ) leads to

epAYBq ` epGq ď
1
3 |A|n` |B ∖ A||A| ` epXq `

α

3n
2 .
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Owing to ( 2.2.7 ) we deduce

epAYBq ` epGq ď
´1

3 `
α

6

¯

n2
`
α

3n
2
“

´2
3 ` α

¯n2

2 ď
1
18n

2
` epGq ,

which implies the desired estimate epAYBq ď 1
18n

2.

Remark 2.2.5. The set A already had an appearance in [ 92 ] and Lemma 2.3 there is
roughly equivalent to the weaker estimate epAq ď n2

18 . Concerning the set B one can prove
|B| ď n

3 , but this fact is not going to be exploited in the sequel.
The following consequence of Lemma  2.2.4 will later be generalised to k-uniform

hypergraphs (see Lemma  2.2.7 ) and constitutes the base case of an induction on k.

Corollary 2.2.6. Let α ą 0, and let V be a set of n vertices. If G, G1 are two graphs with
V pGq, V pG1q Ď V and

epGq, epG1
q ě

´5
9 ` α

¯n2

2 ,

then there are at least α2

3 n
3 triples px, y, zq P V 3 such that

• xyz is a walk in G,

• xy P EpG1q,

• and dGpyq, dGpzq ě n
3 .

Proof. By adding some isolated vertices to G and G1 if necessary, we may assume that
V pGq “ V pG1q “ V . The sieve formula yields

|EpGq X EpG1
q| ě 2

´5
9 ` α

¯n2

2 ´
n2

2 “

´ 1
18 ` α

¯

n2 .

Define the sets A and B with respect to G as in Lemma  2.2.4 . In view of that lemma itself,
there are at least αn2 unordered pairs xy P EpGq X EpG1q for which x, y P A Y B fails.
Consequently, there are at least αn2 ordered pairs px, yq P V 2 such that xy P EpGqXEpG1q

and y R AYB. For each of them there are, by the definition of B, at least α
3n vertices z

with yz P EpGq and z R A. Altogether, this yields at least α2

3 n
3 triples px, y, zq with the

desired properties.

2.2.2 Hypergraphs

In this subsection we introduce our terminology and some preliminary results on hyper-
graphs. When there is no danger of confusion we shall omit several parentheses, braces,
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and commas. For instance, we write x1 ¨ ¨ ¨ xk for the edge tx1, . . . , xku of a k-uniform
hypergraph.

Walks, paths, and cycles

A k-uniform walk W of length ℓ ě 0 is a hypergraph whose vertices can, possibly with
repetitions, be enumerated as px1, . . . , xℓ`k´1q in such a way that e P EpW q if and only if e “
xi ¨ ¨ ¨ xi`k´1 for some i P rℓs. The ordered pk´1q-tuples px1, . . . , xk´1q and pxℓ`1, . . . , xℓ`k´1q

are called the end-tuples of W and we say that W is a px1 ¨ ¨ ¨ xk´1q-pxℓ`1 ¨ ¨ ¨ xℓ`k´1q-walk.
This notion of end-tuples is not symmetric and implicitly fixes a direction of W . Sometimes
we refer to px1, . . . , xk´1q and pxℓ`1, . . . , xℓ`k´1q as the starting pk ´ 1q-tuple and ending
pk´ 1q-tuple of W , respectively. We call xk, . . . , xℓ the inner vertices of W . Counting them
with their multiplicities we say for ℓ ě k ´ 1 that a walk of length ℓ has ℓ´ k ` 1 inner
vertices. We often identify a walk with the sequence of its vertices x1x2 ¨ ¨ ¨ xℓ`k´1. If the
vertices x1, . . . , xℓ`k´1 are distinct we call the walk W a path. For ℓ ą k a cycle of length ℓ
is a hypergraph C whose vertices and edges can be represented as V pCq “ txi : i P Z{ℓZu
and EpCq “ txi ¨ ¨ ¨ xi`k´1 : i P Z{ℓZu.

Link hypergraphs

Given a k-uniform hypergraph H “ pV,Eq and a set S Ď V with |S| ď k ´ 2 we define the
pk ´ |S|q-uniform link hypergraph HS by V pHSq “ V pHq and

EpHSq “ te∖ S : S Ď e P Eu .

Clearly the vertices in S are isolated in HS and sometimes it is convenient to remove them.
In such cases, we write HS “ HS ´ S. For instance, we have H∅ “ H∅ “ H for every
hypergraph H. If S “ tvu consists of a single vertex, we abbreviate Htvu to Hv.

A lemma with two hypergraphs

Our next step is to generalise Corollary  2.2.6 to hypergraphs.

Lemma 2.2.7. Suppose that k ě 2, α ą 0, and that V is a set of n vertices. If H, H 1 are
two k-uniform hypergraphs satisfying

V pHq, V pH 1
q Ď V
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and
δk´2pHq, δk´2pH

1
q ě

´5
9 ` α

¯n2

2 ,

then the number of p2k ´ 1q-tuples px1, . . . , x2k´1q P V
2k´1 such that

• x1 ¨ ¨ ¨ x2k´1 is a walk in H,

• tx1, . . . , xku P EpH
1q,

• and dHpx2, . . . , xkq, dHpxk`1, . . . , x2k´1q ě
n
3

is at least
`

α
2

˘2k´1
n2k´1.

Proof. For k “ 2 this follows from Corollary  2.2.6 . Proceeding by induction on k, we
assume k ě 3 and that the assertion holds for k ´ 1 in place of k. Construct an auxiliary
bipartite graph Γ with vertex classes V and V 2k´3 by drawing an edge between x P V and

px1, . . . , xk´2, xk, . . . , x2k´2q P V
2k´3

if and only if

(a ) x1 ¨ ¨ ¨ xk´2xk ¨ ¨ ¨ x2k´2 is a walk in Hx,

(b ) tx1, . . . , xk´2, xku P EpH
1
xq,

(c ) dHx
px2, . . . , xk´2, xkq ě

n
3 and dHx

pxk`1, . . . , x2k´2q ě
n
3 .

The induction hypothesis, applied to the hypergraphs Hx and H 1
x, reveals that every vertex

x P V has at least degree
`

α
2

˘2k´2
n2k´3 in Γ. Thus

epΓq ě
´α

2

¯2k´2

n2k´2

and the Cauchy-Schwarz inequality implies

ÿ

áxPV 2k´3

|NΓp
áxq|2 ě

epΓq2
n2k´3 ě

´α

2

¯2k´1

n2k´1 ,

where NΓp
áxq denotes the neighbourhood of the vertex áx in Γ. Now if

áx “ px1, . . . , xk´2, xk, . . . , x2k´2q P V
2k´3 and xk´1, x2k´1 P NΓp

áxq

are arbitrary, then px1, . . . , x2k´1q has the desired properties.
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Walks in dense hypergraphs

For later use we now state a lower bound on the number of walks of given length in a
given dense hypergraph, that is somewhat related to Sidorenko’s conjecture [ 104 ,  106 ].
It is well known that this conjecture holds for paths in graphs, i.e., that for d P r0, 1s
and ℓ P N every graph G “ pV,Eq satisfying |E| ě d|V |2{2 contains at least dℓ|V |ℓ`1

walks of length ℓ (see [ 7 ] for a proof based on linear algebra and [ 2 , Lemma 3.8] for a
different approach using vertex deletions and the tensor power trick). The latter argument
generalises in a straightforward manner to partite hypergraphs (see Lemma  2.2.8 below).
An alternative proof based on the entropy method was worked out by Fitch [ 39 , Lemma 7]
and by Lee [ 78 , Theorems 2.6 and 2.7].

Lemma 2.2.8. Suppose k ě 2, d P r0, 1s, and that H is a k-partite k-uniform hypergraph
with vertex partition tVi : i P Z{kZu. If H has d

ś

iPZ{kZ |Vi| edges, then for every r ě k

there are at least
dr´k`1

ź

iPrrs

|Vi|

walks px1, . . . , xrq in H with x1 P V1, . . . , xk P Vk.

Due to a request by the referee, we provide a brief sketch of an argument following the
ideas in [ 2 , Lemma 3.8].

Proof of Lemma  2.2.8 . The first step is to establish that there are at least γdr´k`1 ś
iPrrs

|Vi|

such walks, where γ denotes some constant depending only on k and r but not on d and H.
To this end we iteratively delete all edges from H containing a pk´ 1q-set of vertices whose
degree is small. In each step of the process we ask whether for some i P Z{kZ there is a
set S P V pHqpk´1q with |S X Vj| “ 1 for all j ‰ i such that 0 ă dpSq ă d

2k |Vi|. If so we
delete all edges containing S and continue. At the end of this process we obtain a spanning
subhypergraph H 1 Ď H which still has at least d

2
ś

iPZ{kZ |Vi| edges. A simple counting
argument discloses that H 1 and, hence, H contains at least γdr´k`1 ś

iPrrs
|Vi| walks of the

required kind, where γ “ 1
2

` 1
2k

˘r´k.
Second, for every m P N we consider the k-partite k-uniform hypergraph Hbm with

vertex classes V m
1 , . . . , V m

k and táx1, . . . ,
áxku P EpH

bmq for áxi “ pxi1, . . . , ximq if and only
if tx1µ, . . . , xkµu P EpHq holds for all µ P rms. Clearly epHbmq “ epHqm and if Ω denotes
the number of walks we are to bound from below, then Hbm contains exactly Ωm walks
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p
áx1, . . . ,

áxrq with áx1 P V
m

1 , . . . , áxk P V
m
k . Thus the result from the first step yields

Ωm
ě γdpr´k`1qm

ź

iPrrs

|Vi|
m

or, in other words, Ω ě γ1{mdr´k`1 ś
iPrrs

|Vi|. In the limit mÑ 8 we obtain the desired
conclusion.

By identifying the vertex classes one obtains the following, more standard, non-partite
version of this lemma.

Corollary 2.2.9. For k ě 2 and d P r0, 1s let H “ pV,Eq be a k-uniform hypergraph. If
|E| ě d|V |k{k!, then for every integer r ě k there are at least dr´k`1|V |r walks px1, . . . , xrq

in H.

2.2.3 Abstract connectability

Our intended way of using Proposition  2.2.2 is that given a k-uniform hypergraph H

satisfying δk´2pHq ě
`5

9 ` α
˘

|V pHq|2{2 we can choose robust subgraphs of all the
`

|V pHq|

k´2

˘

link graphs. It will be convenient to collect the data thus arising into a single structure.

Definition 2.2.10. For k ě 2 a k-uniform constellation is a pair

Ψ “
`

H,
␣

Rx : x P V pHqpk´2q
(˘

consisting of a k-uniform hypergraph H and a family of induced subgraphs Rx Ď Hx

of the 2-uniform link hypergraphs that can be formed in H. We write HpΨq “ H for
the underlying hypergraph of a constellation Ψ and use the abbreviations V pΨq “ V pHq,
EpΨq “ EpHq for its vertex set and edge set, respectively. For a constellation Ψ and
x P V pΨqpk´2q we denote the subgraph associated with x by RΨ

x “ Rx.

Example 2.2.11. A 2-uniform constellation is determined by its underlying graph H and
a distinguished induced subgraph R∅ Ď H∅ “ H.

Notice that so far the induced subgraphs Rx Ď Hx are completely arbitrary and at
this moment there are no restrictions on their orders, sizes, and connectivity properties.
This allows us to study constellations “axiomatically”, adding further useful conditions
in each of the following subsections. The central connectability notions are definable
without any such assumptions and they will be introduced in the present subsection (see
Definition  2.2.14 below). Of course one cannot prove a meaningful Connecting Lemma at
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this level of generality, so our way of organising the material may appear somewhat peculiar
on first sight. When establishing the covering lemma in Section  2.6 however, we need to
analyse connectability in random subconstellations and for such situations the abstract
approach developed here turns out to be advantageous. Subconstellations themselves are
defined in the expected way.

Definition 2.2.12. Let
Ψ “

`

H,
␣

Rx : x P V pHqpk´2q
(˘

be a k-uniform constellation, where k ě 2. For X Ď V pΨq we call

ΨrXs “
`

HrXs,
␣

RxrXs : x P Xpk´2q
(˘

the subconstellation of Ψ induced by X. Moreover, Ψ ´X “ ΨrV pΨq ∖Xs denotes the
constellation obtained from Ψ by removing X.

We can also form link constellations in the obvious way.

Definition 2.2.13. Let k ě 2 and let

Ψ “
`

H,
␣

Rx : x P V pHqpk´2q
(˘

be a k-uniform constellation. If S Ď V pΨq and |S| ď k ´ 2, then the pk ´ |S|q-uniform link
constellation ΨS is defined to be

ΨS “
`

HS,
␣

RxYS ´ S : x P pV pHq∖ Sqpk´2´|S|q
(˘

.

If x, y P V pΨq are distinct, then in accordance with our convention to omit unnecessary
braces and commas, we shall often write Ψx and Ψxy for the link constellations Ψtxu

and Ψtx,yu, respectively.
Next we tell which pk ´ 1q-tuples of vertices of a k-uniform constellation are regarded

as being ζ-leftconnectable for a given real number ζ ą 0. The definition progresses by
recursion on k.

Definition 2.2.14. Let k ě 2, ζ ą 0, let

Ψ “
`

H,
␣

Rx : x P V pHqpk´2q
(˘

be a k-uniform constellation, and let áx “ px1, . . . , xk´1q P V pΨqk´1 be a pk ´ 1q-tuple of
distinct vertices.
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(a ) If k “ 2 we say that áx “ px1q is ζ-leftconnectable in Ψ if x1 P V pR∅q.

(b ) If k ě 3 we say that áx is ζ-leftconnectable in Ψ if

|UΨ
áx pζq| ě ζ|V pΨq| ,

where

UΨ
áx pζq “

␣

z P V pΨq : x1 ¨ ¨ ¨ xk´1z P EpΨq and

px2, . . . , xk´1q is ζ-leftconnectable in Ψz

(

.

We remark that this is a “new” concept in the sense that in the earlier articles [ 92 ,  95 ]
we managed to work with symmetric notions of connectability. For this reason, we need to
be careful when quoting the Connecting Lemma from [ 95 ] later.
Example 2.2.15. Let px1, x2q be a pair of distinct vertices from a 3-uniform constellation Ψ
and let ζ ą 0. According to part  (b ) of Definition  2.2.14 the pair px1, x2q is ζ-leftconnectable
in Ψ if and only if |UΨ

px1,x2qpζq| ě ζ|V pΨq|. Due to part  (a ) the definition of this set unravels
to

UΨ
px1,x2qpζq “

␣

z P V pΨq : x1x2z P EpΨq and x2 P V pR
Ψ
z q
(

.

There is a dual notion of rightconnectability obtained by reversing the ordering of the
vertices.

Definition 2.2.16. Let k ě 2, ζ ą 0, Ψ, and áx P V pΨqk´1 be as in Definition  2.2.14 .

(a ) If the reverse tuple pxk´1, . . . , x1q is ζ-leftconnectable, then áx itself is said to be ζ-
rightconnectable.

(b ) Further, áx is called ζ-connectable if it is ζ-leftconnectable and ζ-rightconnectable.

Some readers may react negatively to our choice of the specifiers ‘left’ and ‘right’
in these notions, arguing that the definition of leftconnectability of áx pivots on the
right end-segment of áx. The reason for our terminological choice is that the Connecting
Lemma (Proposition  2.3.1 below) will assert that under reasonable assumptions every
leftconnectable tuple can be connected to every rightconnectable tuple in such a way that
the leftconnectable tuple is ‘on the left side’ in the resulting path, while the rightconnectable
tuple is ‘on the right side’.

The following observation follows by a straightforward induction from Definition  2.2.14 .
In later sections we will often use it either tacitly or by referring to ‘monotonicity’.
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Fact 2.2.17. For a k-uniform constellation Ψ and ζ ą ζ 1 ą 0 every ζ-leftconnectable
pk ´ 1q-tuple is also ζ 1-leftconnectable. Similarly statements hold for rightconnectability
and connectability.

Proof. It suffices to display the argument for leftconnectability. We argue by induction
on k. In the base case k “ 2 the definition of ζ-leftconnectability does not depend on ζ and
there is nothing to prove. Now let k ě 3 and suppose that the assertion is true for k ´ 1
playing the rôle of k.

Let ζ ą ζ 1 ą 0, let Ψ “
`

H,
␣

Rx : x P V pHqpk´2q
(˘

be a k-uniform constellation, and let
áx “ px1, . . . , xk´1q P V pΨqk´1 be a ζ-leftconnectable pk ´ 1q-tuple. We are to prove that áx

is ζ 1-leftconnectable as well. To this end we consider the sets

U “ tz P V pΨq : x1 ¨ ¨ ¨ xk´1z P EpΨq and px2, . . . , xk´1q is ζ-leftconnectable in Ψzu

and

W “ tz P V pΨq : x1 ¨ ¨ ¨ xk´1z P EpΨq and px2, . . . , xk´1q is ζ 1-leftconnectable in Ψzu .

The induction hypothesis discloses U Ď W and the assumption that áx is ζ-leftconnectable
means that |U | ě ζ|V pΨq|. So altogether we have

|W | ě |U | ě ζ|V pΨq| ě ζ 1
|V pΨq| ,

for which reason áx is indeed ζ 1-leftconnectable.

Next, we study connectability in subconstellations.

Fact 2.2.18. Suppose that Ψ is a k-uniform constellation, that Ψ1 “ ΨrXs is a subcon-
stellation induced by some X Ď V pΨq with |X| ě 1

2

`

|V pΨq| ` k ´ 2
˘

. If áx P V pΨ1qk´1 is
p2ζq-leftconnectable in Ψ1, then it is ζ-leftconnectable in Ψ as well. Similar statements hold
for ‘rightconnectability’ and ‘connectability’.

Proof. Again we only display the argument for leftconnectability and proceed by induction
on k. The base case k “ 2 is trivial. For the induction step from k ´ 1 to k we recall that
the assumption entails |U | ě 2ζ|V pΨ1q| ě ζ|V pΨq|, where

U “
␣

z P V pΨ1
q : x1 ¨ ¨ ¨ xk´1z P EpΨ1

q and px2, . . . , xk´1q is p2ζq-leftconnectable in Ψ1
z

(

.
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Now consider an arbitrary vertex z P U . Since

|V pΨ1
zq| “ |V pΨ1

q| ´ 1 ě 1
2
`

|V pΨq| ` k ´ 4
˘

“
1
2
`

|V pΨzq| ` k ´ 3
˘

,

the induction hypothesis is applicable to the constellation Ψz, its subconstellation Ψ1
z, and

to the p2ζq-leftconnectable pk ´ 2q-tuple px2, . . . , xk´1q. It follows that

U Ď
␣

z P V pΨq : x1 ¨ ¨ ¨ xk´1z P EpΨq and px2, . . . , xk´1q is ζ-leftconnectable in Ψz

(

and together with |U | ě ζ|V pΨq| this shows that áx is indeed ζ-leftconnectable in Ψ.

We shall frequently have the situation that for some edge x1 ¨ ¨ ¨ xk of a k-uniform
constellation Ψ we know xk P V pR

Ψ
x1¨¨¨xk´2

q and we would like to conclude from this state
of affairs that px2, . . . , xkq is ζ-leftconnectable in Ψ. While such deductions are invalid in
general, it turns out that for small values of ζ there are only few exceptions to this rule of
inference. More precisely, we have the following result (cf. [ 95 , Fact 4.1] and [ 92 , Lemma 3.7]
for similar statements).

Lemma 2.2.19. Let k ě 2 and ζ ą 0 be given. If Ψ is a k-uniform constellation, then
there exist at most pk ´ 2qζ|V pΨq|k k-tuples px1, . . . , xkq P V pΨqk such that

(a ) tx1, . . . , xku P EpΨq,

(b ) xk P V pR
Ψ
x1¨¨¨xk´2

q,

(c ) and px2, . . . , xkq fails to be ζ-leftconnectable in Ψ.

Proof. We argue by induction on k. In the base case k “ 2 the demands  (b ) and  (c ) 

contradict each other and, hence, there are indeed no such pairs. Now let k ě 3 and
suppose that the lemma is true for k ´ 1 in place of k. Define A Ď V pΨqk to be the set of
all k-tuples satisfying  (a ) –  (c ) , set

A1
“
␣

px1, . . . , xkq P A : x1 P U
Ψ
px2,...,xkqpζq

(

and define
A2
x “

␣

px2, . . . , xkq P V pΨqk´1 : px, x2, . . . , xkq P A∖ A1
(

for every x P V pΨq. Since
|A| “ |A1

| `
ÿ

xPV pΨq

|A2
x| ,
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it suffices to show

(1 ) |A1| ď ζ|V pΨq|k

(2 ) and |A2
x| ď pk ´ 3qζ|V pΨxq|

k´1 for every x P V pΨq.

Now  (1 ) follows from the fact that for px1, . . . , xkq P A
1 Ď A we have

ˇ

ˇUΨ
px2,...,xkqpζq

ˇ

ˇ ă ζ|V pΨq|

by  (c ) and the definition of ζ-leftconnectability. For the proof of  (2 ) we apply the induction
hypothesis to the link constellation Ψx. Notice that if px2, . . . , xkq P A

2
x, then

• tx2, . . . , xku P EpΨxq

• and xk P V pR
Ψx
x2¨¨¨xk´2

q

follow from  (a ) ,  (b ) , and the definition of Ψx. Moreover px, x2, . . . , xkq P A ∖ A1 yields
x R UΨ

px2,...,xkqpζq, which together with tx, x2, . . . , xku P EpΨq reveals that

px3, . . . , xkq fails to be ζ-leftconnectable in Ψx .

So altogether the induction hypothesis leads to  (2 ) and the induction step is complete.

We proceed with a similar statement that will ultimately assist us in the construction
of the absorbing path.

Lemma 2.2.20. For k ě 2, ζ ą 0, and a k-uniform constellation Ψ, there are at most
pk ´ 2qζ|V pΨq|2k´3 walks x1 ¨ ¨ ¨ x2k´3 in HpΨq such that

(a ) xk´1 P V pR
Ψ
xk¨¨¨x2k´3

q

(b ) but px1, . . . , xk´1q fails to be ζ-leftconnectable.

Proof. Again we argue by induction on k. In the base case k “ 2 condition  (a ) reads
x1 P V pR

Ψ
∅q, whereas  (b ) demands that px1q fails to be ζ-leftconnectable in Ψ. As these

requirements contradict each other, there are indeed no 1-vertex walks with the required
properties.

Now let k ě 3 and assume that the lemma is true for k ´ 1 instead of k. Let
A Ď V pΨq2k´3 be the set of all walks x1 ¨ ¨ ¨ x2k´3 satisfying  (a ) and  (b ) , set

A1
“
␣

px1, . . . , x2k´3q P A : xk P UΨ
px1,...,xk´1qpζq

(
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and put

A2
x,y “

␣

px2, . . . , xk´1, xk`1, . . . , x2k´3q P V pΨq2k´5 :

px, x2, . . . , xk´1, y, xk`1, . . . , x2k´3q P A∖ A1
(

for all x, y P V pΨq. In view of

|A| “ |A1
| `

ÿ

px,yqPV pΨq2

|A2
x,y|

it suffices to prove

(1 ) |A1| ď ζ|V pΨq|2k´3

(2 ) and |A2
x,y| ď pk ´ 3qζ|V pΨyq|

2k´5 for all x, y P V pΨq.

The estimate  (1 ) follows from the fact that due to  (b ) every px1, . . . , x2k´3q P A
1 Ď A

has the property
ˇ

ˇUΨ
px1,...,xk´1qpζq| ă ζ|V pΨq

ˇ

ˇ. For the proof of  (2 ) we intend to apply the
induction hypothesis to Ψy. Consider any p2k ´ 5q-tuple

áx “ px2, . . . , xk´1, xk`1, . . . , x2k´3q P A
2
x,y .

Since px2, . . . , xk´1, y, xk`1, . . . , x2k´3q is a walk in HpΨq, we know that áx itself is a walk
in HpΨyq. Moreover,  (a ) rewrites as

xk´1 P V pR
Ψy
xk`1¨¨¨x2k´3

q .

Finally, y R UΨ
px,x2,...,xk´1qpζq and tx, x2, . . . , xk´1, yu P EpΨq imply that

px2, . . . , xk´1q fails to be ζ-leftconnectable in Ψy .

Altogether, the p2k ´ 5q-tuples in A2
x,y have the required properties for applying the

induction hypothesis to Ψy. This proves  (2 ) and completes the induction step.

We conclude this subsection by introducing one further notion.

Definition 2.2.21. Given k ě 2, ζ ą 0, and a k-uniform constellation

Ψ “
`

H,
␣

Rx : x P V pHqpk´2q
(˘

,

a k-tuple px1, . . . , xkq P V pΨqk is said to be a ζ-bridge in Ψ if
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(a ) tx1, . . . , xku P EpΨq,

(b ) px1, . . . , xk´1q is ζ-rightconnectable,

(c ) and px2, . . . , xkq is ζ-leftconnectable.

Such bridges will help us later to construct connecting paths between given pk´1q-tuples
of vertices. The fundamental existence result for such bridges (see Corollary  2.2.28 below)
asserts, roughly speaking, that under natural assumptions k-uniform constellations contain
many ζ-bridges for sufficiently small values of ζ.

2.2.4 On pα, µq-constellations

In this subsection we study some properties of constellations that can be deduced from
the order and size restrictions  (i ) and  (ii ) in Proposition  2.2.2 alone without taking the
pβ, ℓq-robustness into account. We are thus led to the following concept.

Definition 2.2.22. Let k ě 2 and α, µ ą 0. A k-uniform constellation Ψ is said to be an
pα, µq-constellation if

δk´2
`

HpΨq
˘

ě

´5
9 ` α

¯

|V pΨq|2
2

and every x P V pΨqpk´2q satisfies

(a ) |V pRΨ
x q| ě

`2
3 `

α
2

˘

|V pΨq|

(b ) as well as eHpΨxq

`

V pRΨ
x q, V pΨq∖ V pRΨ

x q
˘

ď µ|V pΨq|2.

It turns out that the level of generality provided by this concept is fully appropriate for
discussing the key parts of our absorbing mechanism and for constructing an important
building block entering the proof of the Connecting Lemma. Before reaching those results
we record a couple of easier observations.

Fact 2.2.23. If Ψ denotes a k-uniform pα, α9 q-constellation for some α ą 0, then

e
`

HpΨxq
˘

´ epRΨ
x q ď

|V pΨq|2
18

holds for every x P V pΨqpk´2q.

Proof. Using both parts of Definition  2.2.22 we obtain

e
`

HpΨxq
˘

´ epRΨ
x q “ eHpΨxq

`

V pΨq∖ V pRΨ
x q
˘

` eHpΨxq

`

V pRΨ
x q, V pΨq∖ V pRΨ

x q
˘
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ď

´1
3 ´

α

2

¯2 |V pΨq|2
2 `

α

9 |V pΨq|
2
“

´ 1
18 `

α2

8 ´
α

18

¯

|V pΨq|2

and it remains to observe that the minimum pk ´ 2q-degree condition imposed on HpΨq is
only satisfiable for α ď 4

9 .

Fact 2.2.24. Suppose that Ψ is a k-uniform pα, µq-constellation. If x P V pΨqpk´2q is
arbitrary, then there are at most 2µ

α
|V pΨq| vertices z P V pΨq ∖ V pRΨ

x q with dHpΨxqpzq ě
1
3 |V pΨq| ´ 1.

Proof. Definition  2.2.22  (a ) tells us that |V pΨq∖ V pRΨ
x q| ď p

1
3 ´

α
2 q|V pΨq|. Consequently,

the number of edges that every vertex z from the set

Z “
␣

z P V pΨq∖ V pRΨ
x q : dHpΨxqpzq ě

1
3 |V pΨq| ´ 1

(

sends to V pRΨ
x q is at least

dHpΨxqpzq ´
ˇ

ˇV pΨq∖
`

V pRΨ
x q Y tzu

˘
ˇ

ˇ ě
1
3 |V pΨq| ´ 1´

´1
3 ´

α

2

¯

|V pΨq| ` 1

“
α

2 |V pΨq| .

In combination with Definition  2.2.22  (b ) this yields

α

2 |V pΨq||Z| ď eHpΨxq

`

V pRΨ
x q, V pΨq∖ V pRΨ

x q
˘

ď µ|V pΨq|2

and the upper bound |Z| ď 2µ
α
|V pΨq| we are aiming for follows.

Next, there is an obvious monotonicity statement.

Fact 2.2.25. For k ě 2, α ě α1 ą 0, and µ1 ě µ ą 0, every k-uniform pα, µq-constellation
is an pα1, µ1q-constellation as well.

Link constellations ‘almost’ inherit being pα, µq-constellations, but since we are slightly
shrinking the vertex set we need to be careful with clause  (b ) of Definition  2.2.22 .

Fact 2.2.26. Given k ě 2, α ą 0, and µ1 ą µ ą 0 there exists a natural number n0 with
the following property. If Ψ denotes a k-uniform pα, µq-constellation having at least n0

vertices and S Ď V pΨq with |S| ď k ´ 2 is arbitrary, then ΨS is a pk ´ |S|q-uniform
pα, µ1q-constellation.
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Now we estimate the number of walks of any short length in Ψ, whose starting pk ´ 1q-
tuple is rightconnectable and whose ending pk ´ 1q-tuple is leftconnectable. Later we will
use these walks in the proof of the Connecting Lemma thus gaining control over the length
of the connections modulo k.

Lemma 2.2.27. For k ě 2 and α ą 0 let Ψ be a k-uniform pα, α9 q-constellation. Provided
that |V pΨq| ě k2

α
, there are for every positive integer r at least 1

3r`1 |V pΨq|r`k´1 walks
x1x2 ¨ ¨ ¨ xr`k´1 of length r in HpΨq starting with a 1

k3r`1 -rightconnectable pk ´ 1q-tuple
px1, . . . , xk´1q and ending with a 1

k3r`1 -leftconnectable pk ´ 1q-tuple pxr`1, . . . , xr`k´1q.

Proof. Consider the auxiliary k-partite k-uniform hypergraph A whose vertex classes
V1, . . . , Vk are copies of V pΨq and whose edges tx1, . . . , xku P EpA q with

x1 P V1, . . . , xk P Vk

signify that

(1 ) tx1, . . . , xku P EpΨq,

(2 ) x1x2 P EpR
Ψ
x3¨¨¨xk

q,

(3 ) and xr`k´2xr`k´1 P EpR
Ψ
xr¨¨¨xr`k´3

q,

where the indices in  (3 ) are to be read modulo k.
In view of |V pΨq| ě k2

α
and δk´2pHpΨqq ě

`5
9 ` α

˘

|V pΨq|2

2 there are at least

p|V pΨq| ´ kqk´2
¨

´5
9 ` α

¯

|V pΨq|2 ě
´5

9 ` α
¯´

1´ k

|V pΨq|

¯k

|V pΨq|k

ě

´5
9 ` α

¯´

1´ k2

|V pΨq|

¯

|V pΨq|k

ě

´5
9 ` α

¯

p1´ αq|V pΨq|k

ě
5
9 |V pΨq|

k

possibilities px1, . . . , xkq P V1 ˆ ¨ ¨ ¨ ˆ Vk satisfying  (1 ) , where in the last estimate we
used α ě 4{9. Among them, there are by Fact  2.2.23 at most 1

9 |V pΨq|
k violating  (2 ) and

at most the same number violating  (3 ) . Consequently, epA q ě 1
3 |V pΨq|

k and Lemma  2.2.8 

applied to A and d “ 1
3 shows that there are at least 1

3r |V pΨq|
r`k´1 walks

x1x2 ¨ ¨ ¨ xr`k´1
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of length r in A with x1 P V1, . . . , xk P Vk. Among them, there are by  (2 ) and Lemma  2.2.19 

applied to ζ “ 1
k3r`1 at most

k ´ 2
k3r`1 |V pΨq|

r`k´1
ă

1
3r`1 |V pΨq|

r`k´1

walks for which px1, . . . , xk´1q fails to be 1
k3r`1 -rightconnectable. Similarly  (3 ) and

Lemma  2.2.19 ensure that at most 1
3r`1 |V pΨq|r`k´1 of our walks have the defect that

pxr`1, . . . , xr`k´1q fails to be 1
k3r`1 -leftconnectable. This leaves us with at least

´ 1
3r ´

2
3r`1

¯

|V pΨq|r`k´1
“
|V pΨq|r`k´1

3r`1

walks of the desired form.

Corollary 2.2.28. Given k ě 2 and α ą 0 let Ψ be a k-uniform pα, α9 q-constellation. If Ψ
has at least k2

α
vertices, then the number of its 1

9k -bridges is at least 1
9 |V pΨq|

k.

Proof. Plug r “ 1 into Lemma  2.2.27 .

The following lemma builds a device that will assist us in the inductive proof of the
Connecting Lemma in the next section.

Lemma 2.2.29. Given k ě 4, α ą 0, and ζ P
`

0, 1
3k`2

‰

, there exists an integer n0 such
that the following holds for every k-uniform pα, α10q-constellation Ψ on n ě n0 vertices.

If two subsets U,W Ď V pΨq satisfy |U |, |W | ě ζn, then there are at least ζ3n2k´2

p2k ´ 2q-tuples pu, q1, . . . , q2k´4, wq P V pΨq2k´2 such that

(i ) u P U and w P W are distinct,

(ii ) q1 ¨ ¨ ¨ q2k´4 is a walk in HpΨuwq,

(iii ) pq1, . . . , qk´2q is ζ3-rightconnectable in Ψu,

(iv ) and pqk´1, . . . , q2k´4q is ζ3-leftconnectable in Ψw.

Proof. Assuming that n0 has been chosen sufficiently large for the subsequent arguments,
we commence by considering the p2k ´ 2q-tuples pu, q1, . . . , q2k´4, wq P V pΨq2k´2 satisfy-
ing  (i ) ,  (ii ) as well as the conditions

(v ) pq1, . . . , qk´3q is ζ3-rightconnectable in Ψuw,

(vi ) pqk, . . . , q2k´4q is ζ3-leftconnectable in Ψuw.
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First of all, by |U |, |W | ě ζn and n ě n0 ě 2{ζ there are at least 1
2ζ

2n2 pairs
pu,wq in U ˆ W with u ‰ w. For each of them Fact  2.2.26 tells us that Ψuw is a
pk ´ 2q-uniform pα, α9 q-constellation. Applying the case r “ k ´ 1 of Lemma  2.2.27 to this
constellation (with k´2 here in place of k there) we learn that the number of p2k´4q-tuples
pq1, . . . , q2k´4q P V pΨuwq

2k´4 obeying  (ii ) ,  (v ) , and  (vi ) is at least

1
3k pn´ 2q2k´4

ě
6

3k`2n
2k´4

ě 6ζn2k´4 .

Here we used tacitly that the assumption ζ ď 1
3k`2 easily implies ζ3 ď 1

pk´2q3k .
Summarising, the number of p2k´ 2q-tuples pu, q1, . . . , q2k´4, wq satisfying  (i ) ,  (ii ) ,  (v ) ,

and  (vi ) is at least 1
2ζ

2n2 ¨ 6ζn2k´4 “ 3ζ3n2k´2. So it suffices to prove that among all
p2k ´ 2q-tuples pu, q1, . . . , q2k´4, wq P V pΨq2k´2 there are

(1 ) at most ζ3n2k´2 with  (ii ) ,  (v ) , ␣ (iii ) 

(2 ) and at most ζ3n2k´2 with  (ii ) ,  (vi ) , ␣ (iv ) .

For reasons of symmetry we only need to establish  (2 ) . To this end it is enough to
check that for fixed vertices w, q1, . . . , q2k´4 P V pΨq the number of vertices u such that

• tu, qk´1, . . . , q2k´4u P EpΨwq ,

•  (vi ) , but ␣ (iv ) .

is at most ζ3n. Now by Definition  2.2.14 , the first bullet, and  (vi ) these vertices satisfy
u P UΨw

pqk´1,...,q2k´4q
pζ3q and by ␣ (iv ) the latter set has size at most ζ3|V pΨwq|.

The last lemma of this subsection will help us to exchange arbitrary vertices by
‘absorbable’ ones in Section  2.5 . Roughly speaking it asserts that for µ ! α, k´1, with
few exceptions, the links of two vertices in a k-uniform pα, µq-constellation intersect in a
substantial number of connectable pk ´ 1q-tuples.

Lemma 2.2.30. Given k ě 3 and α ą 0 set µ “ 1
10k

`

α
2

˘2k´3`1. If Ψ denotes a k-uniform
pα, µq-constellation on n vertices and ζ ą 0 is arbitrary, then there is a set X Ď V pΨq of
size |X| ď ζ

µ
n such that for every a P V pΨq and every x P V pΨq∖ pX Ytauq the number of

ζ-connectable pk ´ 1q-tuples px1, . . . , xk´1q with tx1, . . . , xk´1u P EpΨaq XEpΨxq is at least
µ|V pΨq|k´1 .

Proof. Set
η “

1
10

´α

2

¯2k´3

(2.2.8)
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and V “ V pΨq. Since µ “ αη
2k , we have

max
!2µ
α
, 2kµ

)

ď η . (2.2.9)

The choice of X. With every x P V we shall associate two exceptional sets, the idea
being that on average these sets can be proved to be small. So there will only be few
vertices for which one of the exceptional sets is very large and these ‘unpleasant vertices’
will form the set X. For every vertex not belonging to X, we will then be able to show that
its link constellation intersect the link constellations of all other vertices in the desired way.

For an arbitrary x P V the first of the exceptional sets Ax consists of all pk ´ 1q-tuples
px1, . . . , xk´1q P V

k´1 satisfying

• tx1, . . . , xk´1, xu P EpΨq

• and x1 P V pR
Ψ
x3¨¨¨xk´1x

q

• that fail to be ζ-rightconnectable in Ψ.

We would like to point out that the second bullet does not involve the vertex x2. Moreover,
in the special case k “ 3 the condition just means that x1 P V pR

Ψ
x q.

The second exceptional setBx comprises all p2k´4q-tuples px1, . . . , xk´1, xk`1, . . . , x2k´3q

in V 2k´4 such that

• x1 ¨ ¨ ¨ xk´1xxk`1 ¨ ¨ ¨ x2k´3 is a walk in HpΨq

• and xk´1 P V pR
Ψ
xxk`1¨¨¨x2k´3

q,

• for which px1, . . . , xk´1q fails to be ζ-leftconnectable in Ψ.

Now we define

X 1
“
␣

x P V : |Ax| ą 2kµ|V |k´1( ,

X2
“
␣

x P V : |Bx| ą 2kµ|V |2k´4(,

and set X “ X 1 YX2. By Lemma  2.2.19 and double counting we have

2kµ|X 1
||V |k´1

ď
ÿ

xPX 1

|Ax| ď pk ´ 2qζ|V |k ,
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whence |X 1| ď
ζ

2µ |V |. Similarly, Lemma  2.2.20 yields

2kµ|X2
||V |2k´4

ď
ÿ

xPX2

|Bx| ď pk ´ 2qζ|V |2k´3 ,

which shows that |X2| ď
ζ

2µ |V | holds as well. Altogether we arrive at the desired estimate

|X| ď |X 1
| ` |X2

| ď
ζ

µ
|V | .

For the rest of the proof we fix two distinct vertices a, x P V with x R X. We are to
show that the number of ζ-connectable pk ´ 1q-tuples px1, . . . , xk´1q such that

tx1, . . . , xk´1u P EpΨaq X EpΨxq

is at least µ|V |k´1. The smallest case k “ 3 receives a separate treatment.

The special case k “ 3. We know that both of the graphs HpΨaq and HpΨxq have at
least

`5
9 ` α

˘

n2

2 edges and thus they have at least
`1

9 ` 2α
˘

n2

2 edges in common. Owing to
Fact  2.2.23 this shows that HpΨaq and RΨ

x have at least αn2 common edges or, in other
words, that there are at least 2αn2 ordered pairs px1, x2q such that x1x2 P EpΨaq XEpR

Ψ
x q.

Due to x R X 1 we have |Ax| ď 6µn2 and thus at most 6µn2 of these pairs fail to be
ζ-rightconnectable. By symmetry, at most the same number of pairs under consideration
fails to be ζ-leftconnectable. Altogether, this demonstrates that among the ordered pairs
px1, x2q with x1x2 P EpΨaqXEpΨxq there are at least p2α´12µqn2 which are ζ-connectable.
Because of µ “ α2

120 ă
α
7 this is more than what we need.

The general case k ě 4. Our first goal is to count ζ-leftconnectable pk ´ 1q-tuples in the
intersection of HpΨaq and HpΨxq that satisfy a certain minimum degree condition.

Claim 2.2.31. The number of ζ-leftconnectable pk ´ 1q-tuples px1, . . . , xk´1q such that

(1 ) tx1, . . . , xk´1u P EpΨaq X EpΨxq

(2 ) and dpx2, . . . , xk´1, xq ě
n
3

is at least 3ηnk´1.

Proof. For every vertex xk´1 P V ∖ ta, xu we apply Lemma  2.2.7 to the pk ´ 2q-uniform
hypergraphs HpΨxxk´1q and HpΨaxk´1q. This yields a lower bound on the number of
p2k ´ 4q-tuples

px1, . . . , xk´1, xk`1, . . . , x2k´3q P V
2k´4
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such that

(a ) x1 ¨ ¨ ¨ xk´1xxk`1 ¨ ¨ ¨ x2k´3 is a walk in HpΨq

(b ) tx1, . . . , xk´1u P EpΨaq

(c ) dpx2, . . . , xk´1, xq ě
n
3

(d ) and dpxk´1, x, xk`1, . . . , x2k´3q ě
n
3 .

Notably, there are n´ 2 possibilities for xk´1 and for each of them Lemma  2.2.7 yields

´α

2

¯2pk´2q´1

n2pk´2q´1 ( 2.2.8 )
“ 10ηn2k´5

possibilities for the remaining 2k ´ 5 vertices. Therefore the number of p2k ´ 4q-tuples

px1, . . . , xk´1, xk`1, . . . , x2k´3q P V
2k´4

satisfying  (a ) –  (d ) is at least 10ηpn´ 2qn2k´5.
Because of the minimum pk ´ 2q-degree condition Ψ needs to have at least one edge,

whence n ě k ě 4. As this implies n ´ 2 ě 1
2n, the total number of p2k ´ 4q-tuples

satisfying  (a ) –  (d ) is at least 5ηn2k´4.
In view of  (d ) and Fact  2.2.24 applied to tx, xk`1, . . . , x2k´3u here in place of x there

we know that all but at most 2µ
α
n2k´4 of these p2k ´ 4q-tuples satisfy

(e ) xk´1 P V pR
Ψ
xxk`1¨¨¨x2k´3

q.

Now x R X2 yields |Bx| ď 2kµn2k´4. So at most 2kµn2k´4 of the p2k ´ 4q-tuples
satisfying  (a ) and  (e ) violate

(f ) px1, . . . , xk´1q is ζ-leftconnecctable.

Summarising, the number of p2k ´ 4q-tuples satisfying  (a ) –  (f ) is at least

p5η ´ 2µ
α
´ 2kµqn2k´4 ( 2.2.9 )

ě 3ηn2k´4 .

Ignoring the vertices xk`1, . . . , x2k´3 as well as the conditions  (d ) ,  (e ) we arrive at the
desired conclusion.

Now we keep working with the ζ-leftconnectable pk ´ 1q-tuples satisfying  (1 ) and  (2 ) 

obtained in Claim  2.2.31 . According to  (2 ) and Fact  2.2.24 applied to tx3, . . . , xk´1, xu

here in place of x there all but at most 2µ
α
nk´1 of them have the property
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(3 ) x2 P V pR
Ψ
x3¨¨¨xk´1x

q.

Moreover, by Definition  2.2.22  (b ) applied to the pk´2q-set tx3, . . . , xk´1, xu at most µnk´1

tuples of length k ´ 1 satisfy  (1 ) and  (3 ) but not

(4 ) x1 P V pR
Ψ
x3¨¨¨xk´1x

q.

Finally, x R X 1 implies |Ax| ď 2kµnk´1, so among the ζ-leftconnectable pk ´ 1q-tuples
satisfying  (1 ) –  (4 ) there are at most 2kµnk´1 for which

(5 ) px1, . . . , xk´1q is ζ-rightconnectable

fails. In particular, the number of ζ-leftconnectable pk ´ 1q-tuples px1, . . . , xk´1q with  (1 ) 

and  (5 ) is at least
ˆ

3η ´ 2µ
α
´ µ´ 2kµ

˙

nk´1 ( 2.2.9 )
ě µnk´1 .

Altogether this shows that the number of pk´1q-tuples px1, . . . , xk´1q that are ζ-leftconnect-
able, ζ-rightconnectable, and satisfy tx1, . . . , xk´1u P EpΨaq X EpΨxq is at least µnk´1. In
view of Definition  2.2.16  (b ) this concludes the proof of Lemma  2.2.30 .

The ‘connectable’ edges in EpΨaq X EpΨxq considered in the previous lemma can be
used to build paths.

Corollary 2.2.32. For given k ě 3 and α ą 0 there exists a natural number n0 such that
if µ “ 1

10k

`

α
2

˘2k´3`1, Ψ is a k-uniform pα, µq-constellation on n ě n0 vertices, and ζ ą 0
then there exists a set X Ď V pΨq with |X| ď ζ

µ
n such that the following holds. For every

a P V pΨq and every x P V pΨq∖ pXYtauq the number of pk´1q-uniform paths b1b2 ¨ ¨ ¨ b2k´2

in HpΨaq XHpΨxq such that pb1, . . . , bk´1q and pbk, . . . , b2k´2q are ζ-connectable in Ψ is at
least 1

2µ
kn2k´2.

Proof. Let X be the set produced by Lemma  2.2.30 . Consider two distinct vertices
a, x P V pΨq with x R X. Form an auxiliary pk ´ 1q-partite pk ´ 1q-uniform hypergraph

B “ pV1 Ÿ . . . Ÿ Vk´1, EBq

whose vertex classes are k´ 1 disjoint copies of V pΨq and whose edges tv1, . . . , vk´1u P EB

with vi P Vi for i P rk ´ 1s correspond to ζ-connectable pk ´ 1q-tuples pv1, . . . , vk´1q such
that tv1, . . . , vk´1u P EpΨaq X EpΨxq.

Lemma  2.2.30 tells us that
|EB| ě µnk´1 .
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Thus Lemma  2.2.8 applied to B with pk´ 1, µ, 2k´ 2q here in place of pk, d, rq there yields
at least µkn2k´2 walks pb1, . . . , b2k´2q in B with b1 P V1, . . . , bk´1 P Vk´1. By the definition
of B each of these walks corresponds to a walk in HpΨaq XHpΨxq whose first and last
k ´ 1 vertices form a ζ-connectable pk ´ 1q-tuple in Ψ. At most Opn2k´3q of these walks
can have repeated vertices and, hence, there are at least

µkn2k´2
´Opn2k´3

q ě
µk

2 n
2k´2

paths of the desired from.

2.2.5 On pα, β, ℓ, µq-constellations

This subsection is dedicated to pα, µq-constellations Ψ whose distinguished graphs RΨ
x have

the robustness property delivered by Proposition  2.2.2 .

Definition 2.2.33. Let k ě 2, α, β, µ ą 0 and let ℓ ě 3 be odd. A k-uniform constella-
tion Ψ is said to be an pα, β, ℓ, µq-constellation if

(a ) it is an pα, µq-constellation,

(b ) and for all x P V pΨqpk´2q and all distinct y, z P V pRΨ
x q the number of y-z-paths in RΨ

x

of length ℓ is at least β|V pΨq|ℓ´1.

The main result of this subsection shows how to expand sufficiently large k-uniform
hypergraphs whose minimum pk´ 2q-degree is at least

`5
9 `α

˘

n2

2 for appropriate choices of
the parameters to such pα, β, ℓ, µq-constellations. Essentially, the proof of this observation
proceeds by applying Proposition  2.2.2 to all link graphs.

Fact 2.2.34. For all k ě 2 and α, µ ą 0 there exist β “ βpα, µq ą 0 and an odd integer
ℓ “ ℓpα, µq ě 3 such that for sufficiently large n every k-uniform n-vertex hypergraph H
with δk´2pHq ě

`5
9 ` α

˘

n2

2 expands to an pα, β, ℓ, µq-constellation.

Notice that this result is the reason why the study of pα, β, ℓ, µq-constellations conducted
in the subsequent sections sheds light on Theorem  2.1.2 .

Proof of Fact  2.2.34 . For α and µ Proposition  2.2.2 delivers some constant β1 ą 0 and an
odd integer ℓ ě 3. We contend that β “ p2{3qℓ´1β1 and ℓ have the desired property.

To see this, we consider a sufficiently large k-uniform hypergraph H on n vertices
satisfying δk´2pHq ě

`5
9 ` α

˘

n2

2 . For every x P V pHqpk´2q Proposition  2.2.2 applies to the
link graph Hx and yields a pβ1, ℓq-robust induced subgraph Rx Ď Hx satisfying
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(i ) |V pRxq| ě
`2

3 `
α
2

˘

n

(ii ) and eHxpV pRxq, V pHq∖ V pRxqq ď µn2.

We shall show that
Ψ “

`

H,
␣

Rx : x P V pHqpk´2q
(˘

is the desired pα, β, ℓ, µq-constellation. By Definition  2.2.22 and  (i ) ,  (ii ) above, Ψ is an
pα, µq-constellation, meaning that part  (a ) of Definition  2.2.33 holds.

Moving on to the second part we fix an arbitrary pk ´ 2q-set x Ď V pHq as well as two
distinct vertices y, z of Rx. Since Rx is pβ1, ℓq-robust, the number of y-z-paths in Rx of
length ℓ is indeed at least

β1
|V pRxq|

ℓ´1  (i ) 

ě

´3
2

¯ℓ´1
β ¨

´2
3 `

α

2

¯ℓ´1
nℓ´1

ě βnℓ´1 .

The remainder of this subsection deals with the question to what extent being an
pα, β, ℓ, µq-constellation is preserved under taking link constellations and removing a small
proportion of the vertices. Let us observe that if Ψ denotes a k-uniform pα, β, ℓ, µq-
constellation, then for each x P V pΨqpk´2q the vertices in x are isolated in Hx, which
by Definition  2.2.33  (b ) implies that they cannot be vertices of RΨ

x . Thus we have
V pRΨ

x q X x “ ∅ for each x P V pΨqpk´2q.
Let us now consider for some S Ď V pΨq of size |S| ď k ´ 2 the pk ´ |S|q-uniform

link constellation ΨS. For every x P V pΨSq
pk´2´|S|q we have RΨS

x “ RΨ
SYx ∖ S “ RΨ

SYx.
Therefore, ΨS inherits the property in Definition  2.2.33  (b ) from Ψ and together with
Fact  2.2.26 this leads to the following conclusion.

Fact 2.2.35. Given k ě 2, α, β ą 0, µ1 ą µ ą 0 and an odd integer ℓ ě 3, there exists a
natural number n0 such that the following holds.

If Ψ is a k-uniform pα, β, ℓ, µq-constellation with at least n0 vertices and S Ď V pΨq
consists of at most k ´ 2 vertices, then the pk ´ |S|q-uniform link constellation ΨS is an
pα, β, ℓ, µ1q-constellation.

Next we deal with a similar result allowing vertex deletions as well.

Lemma 2.2.36. Given k ě 2, α, β, µ ą 0 and an odd integer ℓ ě 3 set

ϑ “ min
!α

4 ,
β

2ℓ

)

,
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and let Ψ be a k-uniform pα, β, ℓ, µq-constellation on n ě 6k vertices. If S,X Ď V pΨq are
disjoint, |S| ď k ´ 2, and |X| ď ϑn, then ΨS ´X is an

`

α
2 ,

β
2 , ℓ, 2µ

˘

-constellation.

Proof. Let Ψ “
`

H,
␣

Rx : x P V pHqpk´2q
(˘

be a k-uniform pα, β, ℓ, µq-constellation on
n ě 6k vertices. Recall that this means

δk´2pHq ě
´5

9 ` α
¯n2

2 , (2.2.10)

and that for every x P V pΨqpk´2q the graph Rx Ď Hx has the following properties:

(i ) |V pRxq| ě
`2

3 `
α
2

˘

n,

(ii ) eHx
`

V pRxq, V pΨq∖ V pRxq
˘

ď µn2,

(iii ) and for all distinct y, z P V pRxq the number of y-z-paths in Rx of length ℓ is at least
βnℓ´1.

Further, let S,X Ď V pΨq be any disjoint sets such that |S| ď k ´ 2 and |X| ď ϑn. We
are to prove that

Ψ‹ “ ΨS ´X “
`

HS ´X,
␣

RxYS ´X : x P
`

V pHq∖ pS YXq
˘pk´2´|S|q(˘

is a pk´|S|q-uniform
`

α
2 ,

β
2 , ℓ, 2µ

˘

-constellation, i.e., that its underlying hypergraph satisfies
an appropriate minimum degree conditions and that the distinguished subgraphs of its
link graphs have properties analogous to  (i ) –  (iii ) .

Because of

δk´|S|´2pHS ´Xq ě δk´2pH ´Xq ě
´5

9 ` α
¯n2

2 ´ |X|n

ě

´5
9 ` α

¯n2

2 ´ ϑn2
ě

´5
9 `

α

2

¯n2

2 ě

´5
9 `

α

2

¯

|V pΨ‹q|
2

2 ,

where we utilised ϑ ď α
4 in the penultimate step, the minimum degree of the hypergraph

HpΨ‹q “ HS ´X is indeed as large as we need it to be.
Now let x P

`

V pΨ‹q
˘pk´2´|S|q be arbitrary. Since x Ÿ S P

`

V pΨq∖X
˘pk´2q, the above

statement  (i ) entails

|V pRΨ‹

x q| “ |V pRxYS ´Xq| ě
´2

3 `
α

2

¯

n´ |X|

ě

´2
3 `

α

2

¯

n´ ϑn ě
´2

3 `
α

4

¯

n ě
´2

3 `
α

4

¯

|V pΨ‹q| ,
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which shows that the required variant of  (i ) holds for Ψ‹.
Next, the graph HpΨ‹qx “ pHS ´Xqx is a subgraph of HxYS, so  (ii ) tells us that

eHpΨ‹qx

`

V pRΨ‹

x q, V pΨ‹q∖ V pRΨ‹

x q
˘

ď eHxYS

`

V pRxYSq, V pΨq∖ V pRxYSq
˘

ď µn2 .

From ϑ ď α
4 ď

1
9 and n ě 6k we conclude

|V pΨ‹q| “ n´ |X| ´ |S| ě
´

1´ 1
9 ´

1
6

¯

n “
13
18n ą

n
?

2

and thus we arrive indeed at

eHpΨ‹qx

`

V pRΨ‹

x q, V pΨ‹q∖ V pRΨ‹

x q
˘

ď 2µ|V pΨ‹q|
2 ,

which concludes the proof that the appropriate modification of  (ii ) holds for Ψ‹. Altogether,
we have thereby shown that Ψ‹ is an

`

α
2 , 2µ

˘

-constellation.
Finally we consider distinct vertices y, z P V pRxYS ´Xq and recall that by  (iii ) above

the number of y-z-paths in RxYS is at least βnℓ´1. At most pℓ´1q|X|nℓ´2 ď β
2n

ℓ´1 of these
paths can have an inner vertex in X and, consequently, RxYS ´X contains at least β

2n
ℓ´1

such paths. Therefore Ψ‹ is indeed an
`

α
2 ,

β
2 , ℓ, 2µ

˘

-constellation.

2.3 The Connecting Lemma

In this section we establish the Connecting Lemma (Proposition  2.3.3 ). Given an pα, β, ℓ, µq-
constellation with appropriate parameters this result allows us to connect every leftcon-
nectable pk ´ 1q-tuple to every rightconnectable pk ´ 1q-tuple by means of a short path.
In the course of proving Theorem  2.1.2 the Connecting Lemma gets used Ωpnq times and,
essentially, it allows us to convert an almost spanning path cover into an almost spanning
cycle. For some reasons related to our way of employing the absorption method, it will turn
out to be enormously helpful later if we can guarantee that the number of left-over vertices
outside this almost spanning cycle is a multiple of k. There are several possibilities how
one might try to accomplish this and our approach is to prove a version of the Connecting
Lemma with absolute control over the length of the connecting path modulo k. When
closing the almost spanning cycle by means of a final application of the Connecting Lemma,
we will then be able to prescribe in which residue class modulo k the number of left-over
vertices is going to be. (For a different way to handle such a situation we refer to recent
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work of Araújo, Piga, and Schacht [ 4 ]).
The following result is implicit in [ 95 , Proposition 2.6] and after stating it we shall

briefly explain how it can be derived from the argument presented there.

Proposition 2.3.1. Depending on α, β, ζ‹ ą 0 and an odd integer ℓ ě 3 there exist a
constant ϑ‹ “ ϑ‹pα, β, ℓ, ζ‹q ą 0 and a natural number n0 with the following property.

If Ψ is a 3-uniform pα, β, ℓ, α4 q-constellation on n ě n0 vertices, áa,
á

b P V pΨq2 are two
disjoint pairs of vertices such that áa is ζ‹-leftconnectable and

á

b is ζ‹-rightconnectable, then
the number of áa-

á

b -paths in HpΨq with 3ℓ` 1 inner vertices is at least ϑ‹n
3ℓ`1.

Observe that the Setup 2.4 we are assuming in [  95 , Proposition 2.6] is tantamount to
an pα, β, ℓ, α4 q-constellation. The connectabilty assumptions in [ 95 ] are slightly different.
Writing áa “ px, yq we were using in the proof of [ 95 , Proposition 2.6] that a set called Uxy
there, and defined to consist of all vertices u with xy P EpRΨ

u q, has at least the size ζ|V pΨq|.
When working with vertices u P Uxy, however, we were only using y P V pRΨ

u q and
xyu P EpΨq. For this reason, the entire proof can also be carried out with the set
called UΨ

px,yqpζq here, or in other words it suffices to suppose that áa is ζ-leftconnectable.
Similarly, we may assume that á

b is ζ-rightconnectable rather than being ζ-connectable in
the sense of [ 95 ]. Next we introduce the function giving the number of inner vertices in our
connections.

Definition 2.3.2. Given integers k ě 3, 0 ď i ă k, and ℓ ě 3 we set

fpk, i, ℓq “ r4k´3
p2ℓ` 4q ´ 2sk ` i .

We are now ready to state the k-uniform Connecting Lemma.

Proposition 2.3.3 (Connecting Lemma). For all k ě 3, α, β, ζ ą 0, and odd integers
ℓ ě 3 there exist ϑ ą 0 and n0 P N with the following property.

If Ψ is a k-uniform pα, β, ℓ, α
k`6q-constellation on n ě n0 vertices, áa,

á

b P V pΨqk´1 are
two disjoint pk ´ 1q-tuples such that áa is ζ-leftconnectable and

á

b is ζ-rightconnectable, and
0 ď i ă k, then the number of áa-

á

b-paths in HpΨq with f “ fpk, i, ℓq inner vertices is at
least ϑnf .

The proof of this result occupies the remainder of this section and before we begin
we provide a short overview over the main ideas. The plan is to proceed by induction
on k. When we reach a certain value of k, most of the work is devoted to showing the
weaker assertion pΦkq that there exists at least one number f‹ “ f‹pk, ℓq such that the
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statement of the Connecting Lemma holds for connections with f‹ inner vertices. Once we
know pΦkq the induction can be completed by putting short ‘connectable’ walks as obtained
by Lemma  2.2.27 in the middle and connecting them with two applications of pΦkq to áa

and á

b .
The proof of pΦkq itself is more complicated and starts by applying Lemma  2.2.29 

to UΨ
áa pζq and UΨ

à

b
pζq here in place of U and W there. This yields many p2k ´ 2q-tuples

pu, q1, . . . , q2k´4, wq in V pΨq2k´2 which, after some reordering, have good chances to end
up being middle segments of the desired connections. Applying the induction hypothesis
to Ψu and Ψw we can connect áa and á

b by many pk ´ 1q-uniform paths to these middle
segments and it remains to ‘augment’ these connections to k-uniform paths, which can be
done by averaging over many possibilities for u and w, respectively (see Figure  2.3.1 ).

Proof of Proposition  2.3.3 . We proceed by induction on k, keeping α, β, and ℓ fixed.

Choice of constants. Due to monotonicity (see Fact  2.2.17 ) we may suppose that
ζ ď 1

k32k . By recursion on k ě 3 we define for every ζ P
`

0, 1
k32k

‰

a positive real number
ϑpk, ζq. Starting with k “ 3 we set

ϑp3, ζq “ ζ
`

ϑ‹pα, β, ℓ, ζq
˘2 for ζ P

`

0, 3´7‰ ,

where ϑ‹pα, β, ℓ, ζq is given by Proposition  2.3.1 . For k ě 4 and ζ P
`

0, 1
k32k

‰

we stipulate

ϑpk, ζq “ ζ6s`1`ϑpk ´ 1, ζ3
q
˘4s

, where s “ 4k´4
p2ℓ` 4q . (2.3.1)

Our goal is to prove the Connecting Lemma with 2ϑpk, ζq playing the rôle of ϑ.

The base case k “ 3. Suppose that Ψ is a sufficiently large 3-uniform pα, β, ℓ, α9 q-
constellation, i P t0, 1, 2u, the pair áa “ pa1, a2q P V pΨq2 is ζ-leftconnectable, á

b “ pb1, b2q is
ζ-rightconnectable, the four vertices a1, a2, b1, and b2 are distinct, and ζ ď 1

37 . Lemma  2.2.27 

applied to p3, i ` 2q here in place of pk, rq there tells us that there are at least 1
3i`3n

i`4

walks x1 ¨ ¨ ¨ xi`4 of length i` 2 in HpΨq whose starting pair px1, x2q is ζ-rightconnectable
and whose ending pair pxi`3, xi`4q is ζ-leftconnectable. Among these walks at least

´ 1
3i`3 ´

4pi` 4q
n

¯

ni`4
ą
ni`4

3i`4 ě
ni`4

36 ě 3ζni`4

avoid ta1, a2, b1, b2u.
Now for each of them two applications of Proposition  2.3.1 to the pα, β, ℓ, α9 q-constellation

Ψ enable us to find in HpΨq at least ϑ‹n
3ℓ`1 paths a1a2p1 ¨ ¨ ¨ p3ℓ`1x1x2 and at least ϑ‹n

3ℓ`1
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paths xi`3xi`4r1 ¨ ¨ ¨ r3ℓ`1b1b2 where ϑ‹ “ ϑ‹pα, β, ℓ, ζq. Altogether, this reasoning leads to
at least 3ζϑ2

‹n
f walks

a1a2p1 ¨ ¨ ¨ p3ℓ`1x1x2 ¨ ¨ ¨ xi`3xi`4r1 ¨ ¨ ¨ r3ℓ`1b1b2

with f inner vertices, where

f “ 2p3ℓ` 1q ` pi` 4q “ 6ℓ` 6` i “ fp3, i, ℓq .

At most f 2nf´1 “ opnf q of these walks fail to be paths and thus the assertion follows.
Induction Step. Suppose k ě 4 and that the Connecting Lemma is already known
for k ´ 1 instead of k. Set

t “ 2kps´ 1q ` 2 and η “ ζ3s`ϑpk ´ 1, ζ3
q
˘2s

, (2.3.2)

where, let us recall, s “ 4k´4p2ℓ`4q was introduced in ( 2.3.1 ) while we chose our constants.
Following the plan outlined above, our first step is to prove a Connecting Lemma for
connections with t inner vertices.

Claim 2.3.4. For any two disjoint pk´ 1q-tuples áa “ pa1, . . . , ak´1q and
á

b “ pb1, . . . , bk´1q

such that áa is ζ-leftconnectable and
á

b is ζ-rightconnectable, the number of áa-
á

b -walks with t
inner vertices in HpΨq is at least 2ηnt.

Proof. The connectability assumptions mean that the sets

U “ tu P V pΨq : a1 ¨ ¨ ¨ ak´1u P EpΨq and pa2, . . . , ak´1q is ζ-leftconnectable in Ψuu

and

W “ tw P V pΨq : wb1 ¨ ¨ ¨ bk´1 P EpΨq and pb1, . . . , bk´2q is ζ-rightconnectable in Ψwu

satisfy |U |, |W | ě ζn. Now by α
k`6 ď

α
10 and Fact  2.2.25 Ψ is an pα, α10q-constellation.

Combined with ζ ď 1
3k`2 and Lemma  2.2.29 this shows that the number of p2k ´ 2q-tuples

pu, áq , wq “ pu, q1, . . . , q2k´4, wq P U ˆ V pΨq2k´4
ˆW

such that

(a ) u ‰ w,
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(b ) q1 ¨ ¨ ¨ q2k´4 is a walk in HpΨuwq,

(c ) pq1, . . . , qk´2q is ζ3-rightconnectable in Ψu,

(d ) and pqk´1, . . . , q2k´4q is ζ3-leftconnectable in Ψw.

is at least ζ3n2k´2. For later reference we recall that u P U and w P W mean

(e ) pa2, . . . , ak´1q is ζ-leftconnectable in Ψu,

(f ) ta1, . . . , ak´1, uu P EpΨq,

(g ) pb1, . . . , bk´2q is ζ-rightconnectable in Ψw,

(h ) and tw, b1, . . . , bk´1u P EpΨq.

Notice that by Fact  2.2.35 the link constellation of every vertex is a pk ´ 1q-uniform
pα, β, ℓ, α

k`5q-constellation and that fpk ´ 1, 1, ℓq “ pk ´ 1qps ´ 2q ` 1. Now for every
p2k ´ 2q-tuple pu, áq , wq satisfying  (a ) –  (h ) we apply the induction hypothesis twice with
pζ3, 1q here in place of pζ, iq there. First, by  (c ) and  (e ) we can connect pa2, . . . , ak´1q to
pq1, . . . , qk´2q in Ψu, thus getting at least 2ϑpk ´ 1, ζ3qpn´ 1qpk´1qps´2q`1

(i ) walks a2 ¨ ¨ ¨ ak´1p1 ¨ ¨ ¨ ppk´1qps´2q`1q1 ¨ ¨ ¨ qk´2 in Ψu

with fpk ´ 1, 1, ℓq inner vertices. Second,  (d ) and  (g ) allow us to connect pqk´1, . . . , q2k´4q

to pb1, . . . , bk´2q in Ψw by at least 2ϑpk ´ 1, ζ3qpn´ 1qpk´1qps´2q`1

(j ) walks qk´1 ¨ ¨ ¨ q2k´4rpk´1qps´2q`1 ¨ ¨ ¨ r1b1 ¨ ¨ ¨ bk´2 in Ψw.

Altogether, the number of
`

pk ´ 1qp2s´ 2q ` 2
˘

-tuples

pu, áp, áq , ár , wq P U ˆ V pΨqpk´1qps´2q`1
ˆ V pΨq2k´4

ˆ V pΨqpk´1qps´2q`1
ˆW

with  (a ) –  (j ) , where

áp “ pp1, . . . , ppk´1qps´2q`1q and ár “ prpk´1qps´2q`1, . . . , r1q ,

is at least 4ζ3`ϑpk ´ 1, ζ3q
˘2
pn´ 1qpk´1qp2s´4q`2n2k´2 ě 2ζ3`ϑpk ´ 1, ζ3q

˘2
npk´1qp2s´2q`2.

Roughly speaking, we plan to derive the áa-áb -paths we are supposed to construct from
these

`

pk ´ 1qp2s´ 2q ` 2
˘

-tuples by taking many copies of u and w and inserting them
in appropriate positions into páa, áp, áq , ár , ábq. To analyse the number of ways of doing this,
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we consider the auxiliary 3-partite 3-uniform hypergraph A with vertex classes U‹, M ,
and W ‹, where U‹ and W ‹ are two disjoint copies of V pΨq, while M “ V pΨqpk´1qp2s´2q.

We represent the vertices in M as sequences

Ýám “ p
áp, áq , árq “ pp1, . . . , ppk´1qps´2q`1, q1, . . . , q2k´4, rpk´1qps´2q`1, . . . , r1q .

The edges of A are defined to be the triples tu, Ýám,wu with u P U Ď U‹, Ýám P M , and
w P W Ď W ‹, for which the

`

pk ´ 1qp2s ´ 2q ` 2
˘

-tuple pu, Ýám,wq satisfies  (a ) –  (j ) . We
have just proved that

epA q ě 2ζ3`ϑpk ´ 1, ζ3
q
˘2
npk´1qp2s´2q`2

“ 2ζ3`ϑpk ´ 1, ζ3
q
˘2
|U‹
||M ||W ‹

| . (2.3.3)

By the (ordered) bipartite link graph of a vertex Ýám PM we mean the set of pairs

AÝÝám “
␣

pu,wq P U ˆW : uÝámw P EpA q
(

.

The convexity of the function x ÞÝÑ xs on Rě0 yields

ÿ

ÝÝámPM

|AÝÝám|
s
ě |M |

ˆ

epA q

|M |

˙s ( 2.3.3 )
ě npk´1qp2s´2q

`

2ζ3`ϑpk ´ 1, ζ3
q
˘2
n2˘s

ě 2ζ3s`ϑpk ´ 1, ζ3
q
˘2s
nkp2s´2q`2 ( 2.3.2 )

“ 2ηnt . (2.3.4)

In other words, the number of t-tuples

p
áu, áp, áq , ár , áwq P U s

ˆ V pΨqpk´1qps´2q`1
ˆ V pΨq2k´4

ˆ V pΨqpk´1qps´2q`1
ˆW s

with
pu1, w1q, . . . , pus, wsq P AÝÝám ,

where
áu “ pu1, . . . , usq ,

áw “ pw1, . . . , wsq , and Ýám “ p
áp, áq , árq PM ,

is at least 2ηnt. So to conclude the proof of Claim  2.3.4 it suffices to show that for every
such t-tuple the sequence

a1 ¨ ¨ ¨ ak´1u1p1 ¨ ¨ ¨ pk´1u2pk ¨ ¨ ¨ p2k´2u3 ¨ ¨ ¨us´2ppk´1qps´3q`1 ¨ ¨ ¨ ppk´1qps´2qus´1ppk´1qps´2q`1

q1 ¨ ¨ ¨ qk´2uswsqk´1 ¨ ¨ ¨ q2k´4
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rpk´1qps´2q`1ws´1rpk´1qps´2q ¨ ¨ ¨ rpk´1qps´3q`1ws´2 ¨ ¨ ¨w3r2k´2 ¨ ¨ ¨ rkw2rk´1 ¨ ¨ ¨ r1w1b1 ¨ ¨ ¨ bk´1

indicated in Figure  2.3.1 is an áa-áb -walk in HpΨq.

a1

b1

a2

b2

a3

b3

a4

b4

. . .

. . .
p1 p2 p3 p4 p5 p6 p7 p4s´8

r1 r2 r3 r4s´12 r4s´11 r4s´10 r4s´9 r4s´8 r4s´7

p4s´7

q5

q4

q6

ws

us

q3

q2

q1

w1 ws´2 ws´1

u1 u2 us´1

Figure 2.3.1: Connecting pa1, a2, a3, a4q and pb1, b2, b3, b4q in a 5-uniform constellation.

We shall now argue that this follows from the fact that for each j P rss the condi-
tions  (a ) –  (j ) hold for uj and wj here in place of u and w there.

The first of the required edges is provided by the case u “ u1 of  (f ) . Together with  (i ) 

this shows that the initial segment

a1a2 ¨ ¨ ¨ ak´1u1p1 ¨ ¨ ¨ pk´1u2pk ¨ ¨ ¨ p2k´2u3 ¨ ¨ ¨us´2ppk´1qps´3q`1 ¨ ¨ ¨ ppk´1qps´2q

us´1ppk´1qps´2q`1q1 ¨ ¨ ¨ qk´2us

is a walk in HpΨq. Similarly, by  (h ) and  (j ) the terminal segment

wsqk´1 ¨ ¨ ¨ q2k´4rpk´1qps´2q`1ws´1rpk´1qps´2q ¨ ¨ ¨ rpk´1qps´3q`1ws´2 ¨ ¨ ¨w3

r2k´2 ¨ ¨ ¨ rkw2rk´1 ¨ ¨ ¨ r1w1b1 ¨ ¨ ¨ bk´2bk´1

is a walk in HpΨq. Finally, the middle part

q1 ¨ ¨ ¨ qk´2uswsqk´1 ¨ ¨ ¨ q2k´4

is a walk in HpΨq, because by  (b ) we know that q1 ¨ ¨ ¨ q2k´4 is a walk in HpΨuswsq.

Returning to the induction step, we consider i P t0, 1, . . . , k ´ 1u, a ζ-leftconnectable
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pk ´ 1q-tuple áa P V pΨqk´1, and a ζ-rightconnectable pk ´ 1q-tuple á

b such that áa and á

b

have no vertices in common. Plugging r “ i ` k ´ 3 into Lemma  2.2.27 we obtain
at least 1

3i`k´2n
i`2k´4 walks x1 ¨ ¨ ¨ xi`2k´4 of length i ` k ´ 3 in HpΨq that start with a

ζ-rightconnectable pk ´ 1q-tuple and end with a ζ-leftconnectable pk ´ 1q-tuple. Of these
walks, at least

´ 1
3i`k´2 ´

2pk ´ 1qpi` 2k ´ 4q
n

¯

ni`2k´4
ą
ni`2k´4

3i`k´1 ą
ni`2k´4

32k ą ζni`2k´4

have no common vertices with áa and á

b . For each such walk, Claim  2.3.4 tells us that we
can connect áa to px1, . . . , xk´1q in at least 2ηnt ways by a walk with t inner vertices, and
the same applies to connections from pxi`k´2, . . . , xi`2k´4q to á

b .
Altogether this reasoning leads to 4ζη2nf “ 4ϑpk, ζqnf walks in HpΨq from áa to á

b

with f inner vertices, where

f “ 2t` pi` 2k ´ 4q “ 2p2ks´ 2k ` 2q ` pi` 2k ´ 4q

“ p4s´ 2qk ` i “ r4k´3
p2ℓ` 4q ´ 2sk ` i “ fpk, i, ℓq .

As usual, at most Opnf´1q of these walks can fail to be paths. So, in particular, there
exist at least 2ϑpk, ζqnf paths from áa to á

b possessing f inner vertices. This completes the
induction step and, hence, the proof of the Connecting Lemma.

2.4 Reservoir Lemma

In this section we discuss a standard device occurring in many applications of the absorption
method: the reservoir. The problem addressed by the Reservoir Lemma is that while the
Connecting Lemma delivers many connections for any two disjoint connectable pk ´ 1q-
tuples, it gives us no control where the inner vertices of these connections are. Thus it
might happen that each of these connections has an inner vertex which is ‘unavailable’ to
us, because we already assigned a different rôle to it in the Hamiltonian cycle we are about
to construct. To avoid this problem, one fixes a small random subset of the vertex set,
called the reservoir, and decides that the vertices in the reservoir will only be used for the
purpose of connecting pairs of pk ´ 1q-tuples by means of short paths.

Proposition 2.4.1 (Reservoir Lemma). Suppose that k ě 3, α, β, ξ, ζ‹‹ ą 0, and that
ℓ ě 3 is an odd integer. If ϑ‹‹ “ ϑpk, α, β, ℓ, ζ‹‹q is provided by Proposition  2.3.3 , then
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there exists some n0 P N such that for every k-uniform pα, β, ℓ, α
k`6q-constellation Ψ on

n ě n0 vertices there exists a subset R Ď V pΨq with the following properties.

(i ) We have 1
2ξn ď |R| ď ξn.

(ii ) For all pairs of disjoint pk´1q-tuples áa,
á

b P V pΨqk´1 such that áa is ζ‹‹-leftconnectable
and

á

b is ζ‹‹-rightconnectable in Ψ, and for every i P r0, kq, the number of áa-
á

b -paths
in HpΨq with f “ fpk, i, ℓq inner vertices all of which belong to R is at least 1

2ϑ‹‹|R|f .

Since the proof of this result is quite standard, we will only provide a brief sketch here.
It suffices to prove that the binomial random subset R Ď V pΨq including every vertex
independently with probability 3

4ξ a.a.s. has the properties  (i ) and  (ii ) . Now  (i ) is a
straightforward consequence of Chernoff’s inequality. As there are only polynomially many
possibilities for páa, áb , iq in  (ii ) , it suffices to show that for each of them the probability
that there are fewer than 1

2ϑ‹‹|R|f paths of the desired form is at most exp
`

´Ωpnq
˘

.
This can in turn be established by applying the Azuma-Hoeffding inequality to the at
least ϑ‹‹n

f such paths in V pΨqf delivered by Proposition  2.3.3 . For further details we refer
to [  92 , Proposition 4.1], where we gave a full account of the argument for k “ 4.

Let us emphasise again that the set R provided by Proposition  2.4.1 is called the
reservoir. The connections in  (ii ) whose inner vertices belong to R are called paths through
R.

In the proof of Theorem  2.1.2 we shall repeatedly connect suitable tuples through
the reservoir. Whenever such a connection is made, some of the vertices of the reservoir
are used and the part of R still available for further connections shrinks. Although the
reservoir gets used Ωp|V pΨq|q times, we shall be able to keep an appropriate version of
property  (ii ) of the reservoir intact throughout this process.

Corollary 2.4.2. Let a sufficiently large k-uniform pα, β, ℓ, α
k`6q-constellation Ψ as well

as a reservoir R Ď V pΨq as in Proposition  2.4.1 be given. Moreover, let R1 Ď R be an
arbitrary set with |R1| ď

ξϑ‹‹

4kkℓn. If áa,
á

b P V pΨqk´1 are two disjoint pk ´ 1q-tuples such
that áa is ζ‹‹-leftconnectable and

á

b is ζ‹‹-rightconnectable, then for every i P r0, kq there is
an áa-

á

b -path through R ∖ R1 with fpk, i, ℓq inner vertices.

Proof. Set f “ fpk, i, ℓq and recall that fpk, i, ℓq “ p4k´3p2ℓ ` 4q ´ 2qk ` i ă 4k´2kℓ. So
the lower bound in Proposition  2.4.1  (i ) together with the bound on |R1| yields

|R1
| ď

ϑ‹‹|R|
4k´1kℓ

ď
ϑ‹‹|R|

4f .
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Consider all áa-áb -paths through R with f inner vertices. On the one hand, there are at
least ϑ‹‹

2 |R|
f of them due to Proposition  2.4.1  (ii ) . On the other hand, there are at most

f |R1
||R|f´1

ď
ϑ‹‹

4 |R|
f

such paths having an inner vertex in R1. Consequently, at least ϑ‹‹

2 |R|
f ´ ϑ‹‹

4 |R|
f ą 0 of

our paths have all their inner vertices in R ∖ R1.

2.5 The absorbing path

2.5.1 Overview

In this section we establish that for µ ! α every sufficiently large pα, β, ℓ, µq-constellation
contains an absorbing path PA, whose main property is that it can ‘absorb’ an arbitrary
but not too large set of vertices whose cardinality is a multiple of k. Thus the problem
of proving Theorem  2.1.2 gets reduced to the simpler task of finding an almost spanning
cycle containing the absorbing path and missing a number of vertices that is divisible by k.
In order to have a realistic chance to include the absorbing path into such a cycle we make
sure that its first and last pk ´ 1q-tuple is connectable. Moreover, we will need to be able
to work outside a forbidden ‘reservoir set’ that later will have been selected in advance.

Proposition 2.5.1 (Absorbing Path Lemma). Given k ě 3, α ą 0, β ą 0, and an odd
integer ℓ ě 3 there exist constants ζ “ ζpα, kq, ϑ‹ “ ϑ‹pk, α, β, ℓ, ζq ą 0 and an integer n0

with the following property.
Suppose that Ψ is a k-uniform pα, β, ℓ, µq-constellation with µ “ 1

10k

`

α
2

˘2k´3`1 on n ě n0

vertices. If R Ď V pΨq with |R| ď ϑ2
‹n is arbitrary, then there exists a path PA Ď HpΨq´R

such that

(i ) |V pPAq| ď ϑ‹n,

(ii ) the starting and ending pk ´ 1q-tuple of PA are ζ-connectable,

(iii ) and for every subset Z Ď V pΨq∖V pPAq with |Z| ď 2ϑ2
‹n and |Z| ” 0 pmod kq, there

exists a path Q Ď HpΨq with V pQq “ V pPAq Y Z having the same end-pk ´ 1q-tuples
as PA.

Our absorbers will be analogous to those in [ 92 ] and we refer to [ 92 , Section 5.1] for
further motivation. Here we will only recall that the absorbers have two kinds of main
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components reflecting the following observations.

• A complete k-partite subhypergraph S of HpΨq whose vertex classes txi, xi`k, xi`2ku

are of size 3 (where i P rks) contains a spanning path P “ x1 . . . x3k. Moreover, S
also contains the path P 1 “ x1 . . . xkx2k`1 . . . x3k, which has the same first and
last pk ´ 1q-tuple as P . Thus if the absorbing path contains P 1 as a subpath but
avoids the vertices xk`1, . . . , x2k, then it can absorb these vertices simultaneously
(see Figure  2.5.1a ). However, not every k-element subset of V pΨq is absorbable in
this manner.

• If the links of two vertices a and x intersect in a pk ´ 1q-uniform path b1 . . . b2k´2,
then we can form two k-uniform paths in HpΨq, namely Pa “ b1 . . . bk´1abk . . . b2k´1

and Px “ b1 . . . bk´1xbk . . . b2k´1 (see Figure  2.5.1b ). Now if the absorbing path
contains Px, then we can remove x and insert a instead. We call such a structure an
pa, xq-exchanger.

Now the plan for absorbing an arbitrary set ta1, . . . , aku of k vertices is that we will find
an ‘absorbable’ set tx1, . . . , xku such that for every i P rks there is an pai, xiq-exchanger.
The main difficulty in executing this strategy is that we need to pay a lot of attention to
connectability issues, because ultimately we need to connect all parts of the absorbers we
are about to construct to the rest of the Hamiltonian cycle we intend to exhibit. For this
reason, the definition of absorbers reads as follows.

Definition 2.5.2. Suppose that k ě 3, α, µ, ζ ą 0, that Ψ is a k-uniform pα, µq-
constellation, and that áa “ pa1, . . . , akq P V pΨqk is a k-tuple consisting of distinct vertices.
We say that

á

A “ páu, áx, áw,
á

b1, . . . ,
á

bkq P V pΨq2k
2`k

with áu “ pu1, . . . , ukq, áx “ px1, . . . , xkq, áw “ pw1, . . . , wkq, and
á

b i “ pbi1, . . . , bip2k´2qq for
i P rks is an páa, ζq-absorber in Ψ, if

(a ) all 2k2 ` k vertices of á

A are distinct and different from those in áa,

(b ) áuáx áw and áu áw are paths in HpΨq,

(c ) pu1, . . . , uk´1q is ζ-rightconnectable and pw2, . . . , wkq is ζ-leftconnectable in Ψ,

(d ) and for every i P rks the p2k ´ 2q-tuple
á

b i is a path in HpΨaiq XHpΨxiq whose first
and last pk ´ 1q-tuple is ζ-connectable in Ψ.
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V1

V2

Vk´1

Vk

x1

x2

xk´1

xk

u1

u2

uk´1

uk

w1

w2

wk´1

wk

(a) The K
pkq

k p3q with two paths

a

x

(b) A 5-uniform pa, xq-exchanger

Figure 2.5.1: The building blocks of an absorber.

We conclude this subsection with an explicit description how these absorbers are going
to be utilised (see Figure  2.5.2 ). Suppose to this end that for some k-tuple áa “ pa1, . . . , akq

consisting of k distinct vertices and some páa, ζq-absorber páu, áx, áw, áb1, . . . ,
á

bkq it turns out
that the paths

áu áw and bi1 ¨ ¨ ¨ bipk´1qxibik ¨ ¨ ¨ bip2k´2q for i P rks (2.5.1)

end up being subpaths of the absorbing path PA we are about to construct, while a1, . . . , ak

are not in V pPAq. We may then replace for each i P rks the path

bi1 ¨ ¨ ¨ bipk´1qxibik ¨ ¨ ¨ bip2k´2q by the path bi1 ¨ ¨ ¨ bipk´1qaibik ¨ ¨ ¨ bip2k´2q ,

and then
áu áw by áuáx áw .

In this manner we transform PA into a new path Q with V pQq “ V pPAq Y ta1, . . . , aku

having the same first and last pk ´ 1q-tuple as PA. We say in this situation that Q arises
from PA by absorbing ta1, . . . , aku. The k ` 1 paths enumerated in ( 2.5.1 ) are called the
pre-absorption paths of the absorber páu, áx, áw, áb1, . . . ,

á

bkq. So there is one pre-absorption
path with 2k vertices, namely áu áw, and there are k pre-absorption paths with 2k´1 vertices
having a vertex xi in the middle.
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b11 . . . . . . b1p2k´2q b21 . . . . . . b2p2k´2q bk1 . . . . . . bkp2k´2q

x1 x2 xk

w1 w2 wk. . .

a1

u1

a2

u2

ak

uk

. . .

. . .
. . .

b11
. . .
b1pk´1q b1k

. . .
b1p2k´2q b21

. . .
b2pk´1q b2k

. . .
b2p2k´2q bk1

. . .
bkpk´1q bkk

. . .
bkp2k´2q

u1

a1

u2

a2

uk

ak

. . .

. . .

x1 xkx2. . .

w1 w2 . . . wk

Figure 2.5.2: Absorber for pa1, . . . , akq before and after absorption.

2.5.2 Construction of the building blocks

We commence with the first part páu, áx, áwq of our absorbers consisting of 3k vertices. As
we have already indicated, we shall find p3kq-tuples satisfying clause  (b ) of Definition  2.5.2 

by looking for complete k-partite subhypergraphs of HpΨq whose vertex classes are of size
three.

Let us recall for this purpose that by a classic result of Erdős [ 31 ] the Turán density
of every k-partite k-uniform hypergraph vanishes. This means that, given a k-partite k-
uniform hypergraph F and a constant ε ą 0, every sufficiently large k-uniform hypergraph
H satisfying |EpHq| ě ε|V pHq|k contains a copy of F . Due to the so-called ‘supersaturation’
phenomenon later discovered by Erdős and Simonovits [ 35 ], the same assumption actually
implies that H contains Ω

`

|V pHq||V pF q|
˘

copies of F . For later reference, we record this
fact as follows.

Lemma 2.5.3. Given a k-partite k-uniform hypergraph F and ε ą 0, there are a constant
ξ ą 0 and a natural number n0 such that every k-uniform hypergraph H on n ě n0 vertices
with at least εnk edges contains at least ξn|V pF q| copies of F .

We shall now apply this result to F “ K
pkq

k p3q, the complete k-partite hypergraph
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with vertex classes of size 3, and to an auxiliary hypergraph whose edges are derived
from bridges (recall Definition  2.2.21 ). This will establish the following statement, whose
conditions  (i ) and  (ii ) coincide with  (b ) and  (c ) from Definition  2.5.2 .

Lemma 2.5.4. For every k ě 2 there exists ξ “ ξpkq ą 0 such that for every α ą 0 there
is an integer n0 with the following property.

For every k-uniform pα, α9 q-constellation Ψ on n ě n0 vertices the number of p3kq-tuples
p
áu, áx, áwq P V pΨqk ˆ V pΨqk ˆ V pΨqk such that writing áu “ pu1, . . . , ukq, áx “ px1, . . . , xkq,

and áw “ pw1, . . . , wkq

(i ) both áuáx áw and áu áw are k-uniform paths in Ψ,

(ii ) pu1, . . . , uk´1q is 1
9k -rightconnectable and pw2, . . . , wkq is 1

9k -leftconnectable in Ψ

is at least ξn3k.

Proof. Throughout the argument we assume that ξ ! k´1 is sufficiently small and that
n0 " α´1, ξ´1 is sufficiently large. Let Ψ be a k-uniform pα, α9 q-constellation on n ě n0

vertices. Construct an auxiliary k-partite k-uniform hypergraph B “ pV1 Ÿ . . . Ÿ Vk, EBq

whose vertex classes are k disjoint copies of V pΨq and whose edges tv1, . . . , vku P EB with
vi P Vi for i P rks correspond to the 1

9k -bridges pv1, . . . , vkq of Ψ. Corollary  2.2.28 tells us
that

|EB| ě
1
9n

k
“

1
9kk |V pBq|

k .

So Lemma  2.5.3 applied to B and F “ K
pkq

k p3q leads to Ωpn3kq copies of Kpkq

k p3q in B,
where the implied constant only depends on k. In other words, for some constant ξ “ ξpkq

depending only on k there are at least ξn3k tuples páu, áx, áwq P V pΨqk ˆ V pΨqk ˆ V pΨqk

such that, writing áu “ pu1, . . . , ukq, áx “ px1, . . . , xkq, and áw “ pw1, . . . , wkq, we have a
copy of Kpkq

k p3q in B with ui, xi, wi P Vi for all i P rks. Clearly, these p3kq-tuples satisfy
the demand  (i ) of the lemma and, since áu and áw are 1

9k -bridges, they have property  (ii ) 

as well (cf. Definition  2.2.21 ).

Armed with this result and with Corollary  2.2.32 we can now prove that if ζ, µ ! α, k´1,
then for every k-tuple áa of distinct vertices from a sufficiently large pα, µq-constellation
the number of páa, ζq-absorbers is at least Ωpn2k2`kq.

Lemma 2.5.5. For every k ě 3 and α ą 0 there exist constants ζ “ ζpα, kq and ξ “ ξpα, kq

as well as an integer n0 with the following property.
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If Ψ is a k-uniform pα, µq-constellation on n ě n0 vertices, where µ “ 1
10k

`

α
2

˘2k´3`1, and
áa P V pΨqk is an arbitrary k-tuple of distinct vertices, then the number of páa, ζq-absorbers
in Ψ is at least ξn2k2`k.

Proof. Starting with the constant ξ2 “ ξ2pkq ą 0 provided by Lemma  2.5.4 we set

ξ1
“
µk

2 , ζ “
ξ2µ

7k , and ξ “
1
4pξ

1
q
kξ2 (2.5.2)

and we suppose that n0 is sufficiently large.
In order to show that ζ and ξ have the desired property, we consider a k-uniform

pα, µq-constellation Ψ on n ě n0 vertices as well as a k-tuple áa “ pa1, . . . , akq P V pΨqk

consisting of distinct vertices. The set X Ď V pΨq delivered by Corollary  2.2.32 (with the
same meaning of Ψ, α, µ, and ζ as here) satisfies

|X| ď
ζ

µ
n

( 2.5.2 )
“

ξ2

7kn . (2.5.3)

By µ ď α
9 , ζ ď 1

9k , and monotonicity, Lemma  2.5.4 yields at least ξ2n3k paths páu, áx, áwq
in V pΨq3k with the properties  (i ) and  (ii ) of that lemma. Since the number of these paths
sharing a vertex with X Y ta1, . . . , aku can be bounded from above by

3kp|X| ` kqn3k´1 ( 2.5.3 )
ď 3k ξ

2

7kn
3k
` 3k2n3k´1

ă
ξ2

2 n
3k ,

there are at least ξ2

2 n
3k such paths avoiding both X and áa. Now it suffices to establish

that each of them participates in at least 1
2pξ

1qkn2k2´2k absorbers.
For the rest of the proof we fix some such path páu, áx, áwq P V pΨq3k and, as usual, we write

áx “ px1, . . . , xkq. Now we apply Corollary  2.2.32 for every i P rks to the vertices ai and xi,
thus obtaining ξ1n2k´2 paths á

b i “ pbi1, . . . , bip2k´2qq P V pΨq2k´2 in HpΨaiq XHpΨxiq whose
first and last pk ´ 1q-tuples are ζ-connectable in Ψ. Altogether, this yields pξ1qkn2k2´2k

possibilities for páb1, . . . ,
á

bkq and for most of them p
áu, áx, áw,

á

b1, . . . ,
á

bkq is an páa, ζq-absorber.
The only exceptions occur when some of these 2k2 ` k vertices coincide, but this can
happen in at most p2k2 ` kqp2k2 ´ 2kqnp2k´2qk´1 ă 1

2pξ
1qkn2k2´2k ways. Thus páu, áx, áwq is

indeed extendable in at least 1
2pξ

1qkn2k2´2k distinct ways to an páa, ζq-absorber.
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2.5.3 Construction of the absorbing path

After these preparations the Absorbing Path Lemma can be shown in a rather standard
fashion. The argument starts by observing that a random selection of p2k2 ` kq-tuples
contains, with high probability, for every k-tuple áa a positive proportion of páa, ζq-absorbers.
Moreover, if we generate Θpnq such random tuples with a small implied constant, then
most of them will be disjoint to all others and it remains to connect the paths they consist
of by means of the Connecting Lemma.

Proof of Proposition  2.5.1 . Given to us are k ě 3, α, β ą 0, an odd integer ℓ ě 3, and
µ “ 1

10k

`

α
2

˘2k´3`1. Let ζ “ ζpα, kq ą 0 and ξ “ ξpα, kq ą 0 be the constants supplied by
Lemma  2.5.5 , let ϑ “ ϑpk, α, β, ℓ, ζq be provided by Proposition  2.3.3 , define an auxiliary
constant by

γ “ min
! ξ

48k2M2 ,
ϑ

8kM2

)

, where M “ 4k´2kℓ ě 12k , (2.5.4)

and finally set
ϑ‹ “ 4kMγ .

We contend that ζ and ϑ‹ have the desired properties.
To verify this we consider a k-uniform pα, β, ℓ, µq-constellation Ψ on n vertices, where

n is sufficiently large, as well as an arbitrary subset R Ď V pΨq whose size is at most ϑ2
‹n.

Let
t “ 2k2

` k ă 3k2

be the length of our absorbers. Since the desired absorbing path needs to be disjoint to R,
only the absorbers avoiding R are relevant in the sequel. For every k-tuple áa P V pΨqk

consisting of distinct vertices we denote the collection of appropriate absorbers by

A páaq “
␣á

A P pV pΨq∖ Rqt : á

A is an páa, ζq-absorber
(

.

Lemma  2.5.5 tells us that the total number of páa, ζq-absorbers is at least ξnt and by
subtracting those which meet R we obtain

|A páaq| ě ξnt ´ t|R|nt´1
ě pξ ´ tϑ2

‹qn
t
ě
ξ

2n
t . (2.5.5)
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Let

A “
ď

␣

A páaq : áa P V pΨqk consists of k distinct vertices
(

Ď
`

V pΨq∖ R
˘t

be the set of all relevant absorbers. The probabilistic argument we have been alluding to
earlier leads to the following result.

Claim 2.5.6. There is a set B Ď A of mutually disjoint absorbers of size |B| ď 2γn
satisfying |A páaq XB| ě ϑ2

‹n for every k-tuple áa P V pΨqk consisting of distinct vertices.

Proof. Let Ap Ď A be a random subset including every absorber in A independently with
probability p “ γn1´t. As |Ap| is binomially distributed with expectation p|A | ď pnt “ γn,
Markov’s inequality yields

P
`

|Ap| ě 2γn
˘

ď P
`

|Ap| ě 2p|A |
˘

ď
1
2 . (2.5.6)

Next we observe that the set

␣

t
á

A,
Ýá

A1
u P A p2q : á

A and
Ýá

A1 share a vertex
(

of overlapping pairs of absorbers has at most the cardinality t2n2t´1. So the expected size
of its intersection with A p2q

p is at most p2t2n2t´1 “ γ2t2n. Since

γt ď 3k2γ ď 1
4ϑ‹ ,

a further application of Markov’s inequality reveals

P
´

ˇ

ˇ

␣

t
á

A,
Ýá

A1
u P A p2q

p : á

A and
Ýá

A1 share a vertex
(
ˇ

ˇ ě 1
4ϑ

2
‹n
¯

ď
1
4 . (2.5.7)

Finally, for every k-tuple áa P V pΨqk of distinct vertices the random variable |ApXA páaq|

is binomially distributed with expectation p|A páaq|. By ( 2.5.5 ) we know that

p|A páaq| ě
1
2γξn ě 24k2M2γ2n “ 3

2ϑ
2
‹n

and, therefore, Chernoff’s inequality yields

P
`

|Ap XA páaq| ď 5
4ϑ

2
‹n
˘

ď e´Ωpnq
ă

1
4nk .
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As there are at most nk possibilities for áa, the union bound leads to

P
`

|Ap XA páaq| ď 5
4ϑ

2
‹n holds for some áa

˘

ă
1
4 . (2.5.8)

Taken together, the probabilities estimated in ( 2.5.6 ) – ( 2.5.8 ) amount to less than 1.
Thus there exists a deterministic set B‹ Ď A of size |B‹| ď 2γn containing at most
1
4ϑ

2
‹n pairs of overlapping absorbers and satisfying |B‹ XA páaq| ě 5

4ϑ
2
‹n for all k-tuples

áa P V pΨqk of distinct vertices.
Now it suffices to check that a maximal subcollection B Ď B‹ of mutually disjoint

absorbers has the desired properties. The upper bound |B| ď |B‹| ď 2γn is clear and due
to |B‹ ∖ B| ď 1

4ϑ
2
‹n we have

|B XA páaq| ě 5
4ϑ

2
‹n´

1
4ϑ

2
‹n “ ϑ2

‹n

for every áa.

It remains to connect the absorbers we have just selected into a path. Recall that every
member of B possesses k`1 pre-absorptions paths introduced in the last paragraph of Sub-
section  2.5.1 . Each of these paths has at most 2k vertices, starts with a ζ-rightconnectable
pk ´ 1q-tuple, and ends with a ζ-leftconnectable pk ´ 1q-tuple. In fact, most of the
pre-absorptions paths even have ζ-connectable end-tuples (see Definition  2.5.2  (d ) ).

Setting r “ pk ` 1q|B| ď 4kγn, let P1, . . . , Pr be the pre-absorption paths of the
absorbers in B enumerated in such a way that the end-tuples of P1 and Pr are ζ-connectable.
We shall construct our absorbing path PA to be of the form

PA “ P1C1P2C2 ¨ ¨ ¨Pr´1Cr´1Pr ,

where C1, . . . , Cr´1 are connections that will be provided by Proposition  2.3.3 . Since we
intend to use the Connecting Lemma with i “ 0, each of these connections is going to have

f “ fpk, 0, ℓq “ r4k´3
p2ℓ` 4q ´ 2sk ďM ´ 2k

vertices, which will yield

|V pPAq| ď r
`

2k ` pM ´ 2kq
˘

“ rM ď 4kMγn . (2.5.9)

We will determine the connections C1, . . . , Cr´1 one by one. When choosing Cj for
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some j P rr ´ 1s, the Connecting Lemma (Proposition  2.3.3 ) offers us at least ϑnf possible
ways to connect Pj with Pj`1 by means of a path with f inner vertices. As we need to
avoid both the already constructed parts of PA and the set R, there are at most

fp|R| ` 4kMγnqnf´1
ă pMϑ2

‹ ` 4kM2γqnf
( 2.5.4 )
ă 8kM2γnf

( 2.5.4 )
ď ϑnf

potential connections we cannot use, and thus the choice of Cj is indeed possible. This
concludes the description of the construction of PA and it remains to check that the path
we just defined has all required properties.

Condition  (i ) follows from ( 2.5.9 ) and  (ii ) is guaranteed by our choice of the enumeration
P1, . . . , Pr. For the proof of  (iii ) we consider any set Z Ď V pΨq ∖ V pPAq satisfying
|Z| ď 2ϑ2

‹n and |Z| ” 0 pmod kq. Let áa1, . . . ,
áaz P V pΨqk with z “ |Z|

k
ď ϑ2

‹n be disjoint
k-tuples with the property that every vertex from Z occurs in exactly one of them. By
Claim  2.5.6 we can find distinct absorbers á

A1, . . . ,
á

Az P B such that á

Aj is a páaj, ζq-absorber
for every j P rzs. It remains to utilise these absorbers one by one.

2.6 Covering

The aim of this section is to prove that under natural assumptions on the parameters
almost all vertices of every large k-uniform pα, β, ℓ, µq-constellation can be covered by long
paths whose first and last pk ´ 1q-tuples are connectable. Before formulating the precise
statements let us give an overview of the argument, which will proceed by induction on k.

In the induction step from k´1 to k we study a largest possible collection C of mutually
vertex-disjoint M -vertex paths with connectable end-tuples and we denote the set of
currently uncovered vertices by U . If U is not small enough already, i.e., if |U | “ Ωp|V pΨq|q,
then we partition V pΨq into sets of size M , the so-called blocks, such that the vertex set of
each path in C is one such block. Next, we show by probabilistic arguments that there is
a special selection of M blocks, called a useful society below, such that their union S has
the property that for ‘many’ vertices u P U the induction hypothesis applies to ΨurSs. For
such vertices u we can then find M ` 1 (actually even more) long disjoint pk ´ 1q-uniform
paths in ΨurSs starting and ending with connectable pk ´ 2q-tuples.

In fact, for some still not too small set U2 Ď U 1 these paths will coincide for all u P U2,
meaning that inserting vertices from U2 at every kth position will yield M ` 1 paths in Ψ
with connectable end-tuples (see Figure  2.6.2 ). This allows us to take the original paths
contained in S out of C and to add the newly constructed paths instead, thus increasing
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the size of C . The following covering principle lies at the heart of this inductive argument.

Definition 2.6.1. For k ě 3 the statement ♡k asserts that given α, β, ϑ‹ ą 0 and an odd
integer ℓ ě 3 there exists a constant ζ‹‹ ą 0 such that for every M0 P N there exist a
natural number M ěM0 with M ” ´1 pmod kq and the following property:

For every sufficiently large k-uniform pα, β, ℓ, 4α
17k q-constellation Ψ we can cover all but

at most ϑ2
‹|V pΨq| vertices by mutually vertex-disjoint M -vertex paths whose first and

last pk ´ 1q-tuples are ζ‹‹-connectable.

For the base case k “ 3 we quote [ 92 , Lemma 2.14]. One needs to be a little bit
careful here, because [ 92 ] uses a slightly different notion of ζ‹‹-connectable pairs in
3-uniform hypergraphs. However, every pair that is ζ‹‹-connectable in the sense of [ 92 ] is
ζ‹‹-connectable in the sense of Definition  2.2.16 as well and, therefore, [ 92 , Lemma 2.14] is
strictly stronger than ♡3.

Fact 2.6.2. The assertion ♡3 holds.

There is one issue with the inductive proof of ♡k sketched above: when applying the
induction hypothesis to a pk ´ 1q-uniform constellation of the form ΨurSs, where S is the
vertex set of a useful society, we would prefer to get a covering of almost all vertices in S by
paths of length Ωp

a

|S|q rather than Ωp1q, but prima facie ♡k´1 does not seem to deliver
this. For this reason we also have to deal with the following statement capable of providing
coverings by very long paths.

Definition 2.6.3. For k ě 3 the covering principle ♠k asserts that given α, β, ξ ą 0 and
an odd integer ℓ ě 3, there exists an infinite arithmetic progression P Ď kN with the
following property.

If Ψ is a k-uniform pα, β, ℓ, α
17k q-constellation, M P P , and B Ď V pΨqk is a collection

of ξ-bridges in Ψ with |B| ě ξ|V pΨq|k, then all but at most
X

ξ|V pΨq|
\

`M vertices of Ψ
can be covered with mutually disjoint M -vertex paths starting and ending with bridges
from B.

Observe that for a fixed k-uniform pα, β, ℓ, α
17k q-constellation Ψ we can apply ♠k with

every M P P . For a larger value of M we have to cover fewer vertices, but, on the other
hand, we need to cover them with longer paths. Thus there is no obvious monotonicity
in M .

Now we plan to establish the implication ♡k´1 ñ ♠k´1 ñ ♡k, thus decomposing
the induction step of the proof of ♡k into two simpler tasks. They will be treated in
Lemma  2.6.4 and Lemma  2.6.9 , respectively.
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X

R

Cλ`1

C2

C1 V

Figure 2.6.1: The case k “ 3 of Lemma  2.6.4 . The set X of vertices is reserved for bridges.

Lemma 2.6.4. If k ě 3 and ♡k holds, then so does ♠k.

The idea behind the proof of this implication is the following (see Figure  2.6.1 ). Given
an appropriate constellation Ψ, our first step is to take out a reservoir set R. Next we
decide which bridges from B are going to appear at the ends of the paths we are supposed
to construct. After these choices are made, we apply ♡k to the constellation obtained
from Ψ by removing R and the vertices reserved for the bridges, thus getting a covering of
almost all remaining vertices with ‘short’ paths. Now we partition the set of these paths
into groups of size p, where p denotes an arbitrary natural number. For each group we
connect all its paths through the reservoir. Moreover, we connect the ends of the resulting
paths to some of the bridges that have been put aside. In this manner we obtain a covering
of almost all vertices of Ψ with longer paths, whose precise length depends linearly on p.
Thus by varying p we can reach an arithmetic progression of possible lengths for the paths
in the new covering.

Proof of Lemma  2.6.4 . Let α, β, ξ ą 0 and an odd integer ℓ ě 3 be given. Choose some
auxiliary constants obeying the hierarchy

α, β, ξ, k´1, ℓ´1
" ϑ‹ " ζ‹‹ " ϑ‹‹ "M´1

" n´1
0 ,

where M is an integer with M ” ´1 pmod kq.
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We contend that

P “
␣

M 1
P kN : M 1

ą n0 and M 1
” fpk, 0, ℓq ` 2k pmod M ` fpk, 0, ℓqq

(

has the property demanded by ♠k.
By Definition  2.3.2 the number fpk, 0, ℓq is divisible by k and, consequently, P is indeed

an infinite arithmetic progression. Now let Ψ be a k-uniform pα, β, ℓ, α
17k q-constellation

with n vertices, let M 1 P P be arbitrary, and let B Ď V pΨqk be a set of ξ-bridges in Ψ
with |B| ě ξ|V pΨq|k. We are to cover all but at most ξ|V pΨq|`M 1 vertices of Ψ by mutually
disjoint M 1-vertex paths starting and ending with bridges from B. If |V pΨq| ďM 1, then
the empty set is such a collection of paths. Thus, we may assume that |V pΨq| ąM 1 ą n0.

Let R Ď V pΨq with |R| ď ϑ‹n be the reservoir set provided by Proposition  2.4.1 

with ϑ‹, ζ‹‹

2 here in place of ξ, ζ‹‹ there. For later use we record that due to ϑ‹‹ ! ϑ‹, k
´1, ℓ´1

the case i “ 0 of Corollary  2.4.2 yields:

p‹q If R1 Ď R is an arbitrary set with |R1| ď ϑ2
‹‹|V pΨq|, the pk´ 1q-tuple áa P V pΨqk´1 is

ζ‹‹

2 -leftconnectable, and á

b P V pΨqk´1 is ζ‹‹

2 -rightconnectable and disjoint to áa, then
there is an áa-áb -path through R ∖ R1 with fpk, 0, ℓq inner vertices.

Let b1, . . . , br be a maximal sequence of bridges from B that are mutually disjoint and
disjoint to R. Since the selected bridges and R together involve kr ` |R| vertices, the
maximality implies

kpkr ` |R|q|V pΨq|k´1
ě |B| ě ξ|V pΨq|k ,

whence
r ě

pξ ´ kϑ‹q|V pΨq|
k2 ě ϑ‹|V pΨq| . (2.6.1)

Set x “ tϑ‹|V pΨq|u and let X be the set of vertices constituting b1, . . . , bx. Lemma  2.2.36 

reveals that Ψ1 “ Ψ ´ pX Y Rq is an
`

α
2 ,

β
2 , ℓ,

2α
17k

˘

-constellation. Therefore, the princi-
ple ♡k yields a family C of disjoint M -vertex paths in Ψ1 which together cover all but at
most ϑ2

‹|V pΨ1q| vertices of Ψ1 and whose end-tuples are ζ‹‹-connectable in Ψ1. For later use
we remark that owing to Fact  2.2.18 the end-tuples of the paths in C are ζ‹‹

2 -connectable
in Ψ.

By the definition of P there is a natural number p such that

M 1
“
`

M ` fpk, 0, ℓq
˘

p` fpk, 0, ℓq ` 2k .

Fix an arbitrary partition C “ C1 Ÿ . . . Ÿ Cλ`1 with |C1| “ ¨ ¨ ¨ “ |Cλ| “ p ą |Cλ`1|.
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Now we declare our strategy for constructing vertex-disjoint paths P1, . . . , Pλ Ď HpΨq
witnessing the conclusion of ♠k. For every j P rλs we first intend to form a path P 1

j by
connecting the p paths in Cj through the reservoir R. Subsequently, we plan to derive Pj
from P 1

j by connecting its ends with two bridges from the list b1, . . . , bx, say with b2j´1

and b2j. For all p` 1 connections required for this construction of Pj, we want to appeal
to p‹q. Clearly, if the paths P1, . . . , Pλ can be constructed, then each of them will consist
of M 1 vertices.

Altogether, we are aiming for pp` 1qλ connections that require a total number of

pp` 1qfpk, 0, ℓqλ

vertices from the reservoir. If this number is less than ϑ2
‹‹n, then repeated applications

of p‹q allow us to choose our connections disjointly. Since M " ϑ´1
‹‹ " k, ℓ, we have indeed

pp` 1qfpk, 0, ℓqλ ď 2p ¨ 4kkℓ ¨ |V pΨq|
Mp

“
2 ¨ 4kkℓ|V pΨq|

M
ă ϑ2

‹‹|V pΨq| .

Similarly,
2λ ď 2|V pΨq|

Mp
ď

2|V pΨq|
M

ď ϑ‹|V pΨq|

proves that we have sufficiently many bridges at our disposal.
Altogether, the vertex-disjoint paths P1, . . . , Pλ Ď HpΨq can indeed be constructed.

The number of vertices of Ψ they fail to cover can be bounded from above by

|X| ` |R| `
ˇ

ˇ

ˇ
V pΨ1

q∖
ď

PPC

V pP q
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ď

PPCλ`1

V pP q
ˇ

ˇ

ˇ
ď kx` ϑ‹|V pΨq| ` ϑ2

‹|V pΨq| `Mp

ďMp`
`

pk ` 1qϑ‹ ` ϑ
2
‹

˘

|V pΨq|

ďM 1
` ξ|V pΨq| ,

which concludes the proof of ♠k.

The proof of our next result involves some probabilistic arguments based on the following
consequence of Janson’s inequality (see [ 92 , Corollary A.3]).

Lemma 2.6.5. Let m ě k and M be positive integers, and let η P p0, 1
2k q. Suppose that V

is a finite set and that
V “ B1 Ÿ . . . ŸBν Ÿ Z

is a partition with |B1| “ . . . “ |Bν | “ M ă η|V |, |Z| ă η|V |, and ν ě m. Let
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S Ď tB1, . . . , Bνu be an m-element subset chosen uniformly at random and set S “
Ť

S .
Further, let ξ be a real number with maxp8k2η, 16k2{mq ă ξ ă 1.

(a ) If Q Ď V k has size |Q| “ d|V |k, then

P
`ˇ

ˇ|QX Sk| ´ dpMmqk
ˇ

ˇ ě ξpMmqk
˘

ď 12
?
m exp

ˆ

´
ξ2m

48k2k`2

˙

.

(b ) Similarly, if G denotes a k-uniform hypergraph with vertex set V and d|V |k{k! edges,
then

P
`ˇ

ˇeGpSq ´ dpMmqk{k!
ˇ

ˇ ě ξpMmqk{k!
˘

ď 12
?
m exp

ˆ

´
ξ2m

48k2k`2

˙

.

This has the following consequence on random subconstellations.

Lemma 2.6.6. Given k ě 2, α, β, µ, ξ ą 0, and an odd integer ℓ ě 3 there exists a natural
number M0 such that the following holds for every M ě M0. If Ψ is a sufficiently large
k-uniform pα, β, ℓ, µq-constellation,

V pΨq “ B1 Ÿ . . . ŸBν ŸB
1

is a partition with |B1| “ . . . “ |Bν | “ M and |B1| ă 2M , and B Ď V pΨqk is a set of
ξ-bridges in Ψ of size |B| ě ξ|V pΨq|k, then there are at least 3

4

`

ν
M

˘

sets S Ď tB1, . . . , Bνu

of size M such that their union S “
Ť

S has the properties that ΨrSs is a pα2 ,
β
2 , ℓ, 2µq-

constellation and
B‹ “

␣

áx P BX Sk : áx is a ξ
2-bridge in ΨrSs

(

has at least the size |B‹| ě
ξ
2 |S|

k.

Proof. Let M0 " α´1, β´1, µ´1, ξ´1, k, ℓ be sufficiently large. We call the sets B1, . . . , Bν

blocks. Choose a set S Ď tB1, . . . , Bνu of M blocks uniformly at random among all
`

ν
M

˘

possibilities. We shall prove that the probability that S “
Ť

S fails to have the desired
properties is at most exp

`

´ΩpMq
˘

, where the implied constant only depends on α, β, µ, ξ, k,
and ℓ. Hence, by choosing M0 sufficiently large, this probability can be pushed below 1

4 , as
desired. It will be convenient to set V 1 “ V ∖B1. For y P V 1 we denote the unique block
containing y by By.

Claim 2.6.7. The event that ΨrSs fails to be a pα2 ,
β
2 , ℓ, 2µq-constellation has at most the

probability exp
`

´ΩpMq
˘

.
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Proof. We begin by estimating the probability of the unfortunate event U that ΨrSs fails
to be a pα2 , 2µq-constellation. For an arbitrary set x P pV 1qpk´2q we define

Zx “ tBy : y P xu , tx “ |Zx| P rk ´ 2s , and Zx “
ď

Zx .

Further, we consider the conditional probabilities

P1pxq “ P

ˆ

eΨxpS ∖ Zxq ă

ˆ

5
9 `

2α
3

˙

pM ´ txq
2M2

2

ˇ

ˇ

ˇ

ˇ

x P Spk´2q

˙

,

P2pxq “ P

ˆ

ˇ

ˇV pRΨ
x rSsq

ˇ

ˇ ă

ˆ

2
3 `

α

3

˙

pM ´ txqM

ˇ

ˇ

ˇ

ˇ

x P Spk´2q

˙

,

and

P3pxq “ P
`

eΨxrSs

`

V pRΨ
x rSsq, S ∖ V pRΨ

x rSsq
˘

ą 2µpM ´ txq
2M2 ˇ

ˇ x P Spk´2q
˘

and observe that

PpUq ď
ÿ

xPpV 1qpk´2q

Ppx P Spk´2q
q
`

P1pxq ` P2pxq ` P3pxq
˘

. (2.6.2)

So if we manage to prove

P1pxq, P2pxq, P3pxq ď exp
`

´ΩpMq
˘

, (2.6.3)

then
PpUq ď pM2

q
k´2 exp

`

´ΩpMq
˘

ď exp
`

´ΩpMq
˘

(2.6.4)

will follow. Thus our next goal is to establish ( 2.6.3 ).
To this end, we will repeatedly apply Lemma  2.6.5 with

M ´ tx ,
kM

n
,B1

Y Zx , ν ´ tx , and min
␣

α
6 , µ

(

here in place of
m, η , Z , ν , and ξ

there and relocating the elements of Zx to the exceptional set of the partition.
First, the minimum degree condition imposed on HpΨq implies that the graph HpΨxq

has at least
`5

9 ` α
˘

|V pΨq|2

2 edges. So Lemma  2.6.5  (b ) applied with 2 and HpΨxq here in

78



place of k and G there yields P1pxq ď exp
`

´ΩpMq
˘

.
Second, we know that |V pRΨ

x q| ě
`2

3 `
α
2

˘

|V pΨq|, since Ψ is an pα, µq-constellation.
Hence, applying Lemma  2.6.5  (a ) with 1 and V pRΨ

x q here instead of k and Q there entails
P2pxq ď exp

`

´ΩpMq
˘

.
Lastly, from Ψ being a pα, µq-constellation it also follows that

eΨx
`

V pRΨ
x q, V ∖ V pRΨ

x q
˘

ď µ|V pΨq|2 .

Hence, Lemma  2.6.5  (b ) applied to the bipartite subgraph of HpΨxq between V pRΨ
x q and

its complement tells us that P3pxq ď exp
`

´ΩpMq
˘

. This concludes the proof of ( 2.6.3 )
and, hence, of ( 2.6.4 ). An analogous proof allows us to transfer part  (b ) of Definition  2.2.33 

from Ψ to ΨrSs and we omit the details.

It remains to prove that the event |B‹| ě
ξ
2 |S|

k has high probability as well. Here we
start with the estimate

P
`

|B‹| ď
ξ
2 |S|

k
˘

ď P
`

|BX Sk| ď ξ
2 |S|

k
˘

` Pp␣Eq ,

where E denotes the event that every ξ-bridge áx P BX Sk is a ξ
2 -bridge in ΨrSs. Another

application of Lemma  2.6.5  (a ) tells us that the first summand is at most exp
`

´ΩpMq
˘

and thus it remains to prove that

Pp␣Eq ď exp
`

´ΩpMq
˘

. (2.6.5)

Towards this goal we analyse how connectability transfers to ΨrSs.

Claim 2.6.8. If k1 P rk´1s, z, z1 P pV 1qpk´1´k1q, and áx P
`

V 1∖pzYz1q
˘k1

is a ξ-leftconnectable
tuple in Ψz, then

P
`

áx fails to be ξ
2-leftconnectable in ΨzrSs |

áx P Sk
1 and z1

Ď S
˘

ď exp
`

´ΩpMq
˘

.

Proof. We argue by induction on k1. In the base case k1 “ 1 the probability under
consideration vanishes. This is because a 1-tuple áx “ pxq is ξ-leftconnectable in Ψz if and
only if x P V pRΨ

z q. Moreover, if x P S ∖ z, then pxq is ξ
2 -leftconnectable in ΨzrSs if and

only if x P RΨrSs
z . Due to RΨrSs

z “ RΨ
z rSs these two statements are equivalent to each other.

For the induction step from k1 ´ 1 to k1 we write áx “ px1, . . . , xk1q and recall that the

79



ξ-leftconnectability of áx in Ψz means that |U | ě ξ|V pΨzq|, where

U “
␣

u P V pΨzq : x1 ¨ ¨ ¨ xk1u P EpΨzq and px2, . . . , xk1q is ξ-leftconnectable in Ψzu

(

.

Assuming áx P Sk
1 the analogous set whose size decides whether áx is ξ

2 -leftconnectable
in ΨzrSs either contains U X S as a subset, or it does not. Accordingly, if áx fails to be
ξ
2 -leftconnectable in ΨzrSs, then either |U XS| ď ξ

2 |V pΨzrSsq| or the event A that for some
u P SXU the pk1´ 1q-tuple px2, . . . , xk1q fails to be ξ

2 -leftconnectable in ΨzurSs occurs. For
this reason, it suffices to prove

P
`

|U X S| ď ξ
2 |S| |

áx P Sk
1 and z1

Ď S
˘

ď exp
`

´ΩpMq
˘

(2.6.6)

and P
`

A | áx P Sk
1 and z1

Ď S
˘

ď exp
`

´ΩpMq
˘

. (2.6.7)

Now ( 2.6.6 ) follows in the usual way from Lemma  2.6.5  (a ) . To prove ( 2.6.7 ) we observe
that the induction hypothesis yields

P
`

px2, . . . , xk1q fails to be ξ
2 -leftconnectable in ΨzurSs | px2, . . . , xk1q P Sk

1´1 ,

and pz1
Y tx1uq Ď S

˘

ď exp
`

´ΩpMq
˘

for every u P U , whence

PpA | áx P Sk
1 and z1

Ď Sq ď
ÿ

uPU

Ppu P Sq exp
`

´ΩpMq
˘

ďM2 exp
`

´ΩpMq
˘

ď exp
`

´ΩpMq
˘

.

By applying the case k1 “ k ´ 1 of Claim  2.6.8 to all ξ-leftconnectable pk ´ 1q-tuples in
Ψ we obtain

P
`

Some áx P Sk´1 that is ξ-leftconnectable in Ψ

fails to be ξ
2 -leftconnectable in ΨrSs

˘

ď exp
`

´ΩpMq
˘

.

By symmetry the same holds for rightconnectability as well and, therefore,

P
`

Some ξ-bridge áx P Sk fails to be a ξ
2 -bridge in ΨrSs

˘

ď exp
`

´ΩpMq
˘

.

In other words, we have thereby proved ( 2.6.5 ) and, hence, Lemma  2.6.6 .
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The next lemma shows how to ascend from pk ´ 1q-uniform coverings to k-uniform
coverings.

Lemma 2.6.9. For every k ě 4 the covering principle ♠k´1 implies ♡k.

Proof. Let α, β, ϑ‹ ą 0, and an odd integer ℓ ě 3 be given. Without loss of generality we
may assume that ϑ‹ ! α, β, k´1, ℓ´1. Pick a sufficiently small constant

ζ‹‹ ! ϑ‹ . (2.6.8)

The statement ♠k´1 applied to α
2 , β

2 , ℓ, ζ‹‹

2 here in place of α, β, ℓ, ξ there delivers an
infinite arithmetic progression P Ď pk ´ 1qN. Choose M " ζ´1

‹‹ such that k´1
k
pM ` 1q P P

and notice that M ” ´1 pmod kq is clear.
Now let Ψ be a pα, β, ℓ, 4α

17k q-constellation on n vertices, where n is sufficiently large. We
are to prove that all but at most ϑ2

‹|V pΨq| vertices of Ψ can be covered by vertex-disjoint
M -vertex paths starting end ending with ζ‹‹-connectable pk ´ 1q-tuples. Let

P “
␣

P Ď HpΨq : P is a k-uniform M -vertex path

whose first and last pk ´ 1q-tuple is ζ‹‹-connectable
(

be the collection of all paths that might occur in such a covering, and let C Ď P be a
maximal subcollection of vertex-disjoint paths from P. Further, let

U “ V pΨq∖
ď

PPC

V pP q

be the set of uncovered vertices. We may assume that

|U | ą ϑ2
‹|V pΨq| , (2.6.9)

since otherwise nothing is left to show. Now roughly speaking the strategy is to find
a set S Ď V pΨq of size M2 meeting at most M paths from C such that for ‘many’
vertices u P U we can apply ♠k´1 to the pk ´ 1q-uniform constellation ΨurSs, thus getting
at least M ` 1 vertex-disjoint paths with k´1

k
pM ` 1q vertices. These paths will agree

for many vertices u P U and can then be augmented to k-uniform paths engendering a
contradiction to the maximality of C . In the intended application of ♠k´1 we are allowed
to specify a set of bridges B that we potentially would like to see at the ends of the paths
we obtain. Since we ultimately aim at generating paths in P and, hence, paths starting
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and ending with ζ‹‹-connectable pk ´ 1q-tuples, it seems advisable to let B be the set of
ζ‹‹

2 -bridges in ΨurSs that are ζ‹‹-connectable in Ψ. This choice of B is only permissible
if |B| is sufficiently large (i.e., at least ζ‹‹

2 |S|
k´1). Our way of ensuring this in sufficiently

many cases exploits that for fixed u P U and a random choice of S Ď V pΨq Lemma  2.6.6 

tells us that the ζ‹‹-bridges in Ψu are likely to be ζ‹‹

2 -bridges in ΨurSs. Thus it suffices to
focus on vertices u P U which are not in the set

Ubad “
␣

u P U : at most 1
20n

k´1 of the ζ‹‹-bridges in Ψu are ζ‹‹-connectable in Ψ
(

.

The next claim states that this set is indeed small.

Claim 2.6.10. We have |Ubad| ď 40ζ‹‹n.

Proof. Set

Π “
␣

px1, . . . , xk´1, uq P V pΨqk´1
ˆ Ubad : px1, . . . , xk´1q is a ζ‹‹-bridge in Ψu

but not ζ‹‹-connectable in Ψ
(

.

For every u P Ubad Corollary  2.2.28 tells us that the number of ζ‹‹-bridges px1, . . . , xk´1q

in Ψu is at least 1
9pn´ 1qk´1 ą 1

10n
k´1 and by the definition of Ubad at least 1

20n
k´1 among

them fail to be ζ‹‹-connectable in Ψ. This proves that

|Π| ě 1
20n

k´1
|Ubad| .

On the other hand, an upper bound on |Π| can be obtained as follows. Let Πleft

be the set of k-tuples in Π for which px1, . . . , xk´1q fails to be ζ‹‹-leftconnectable and
define Πright similarly with respect to rightconnectability. As a pk ´ 1q-tuple that is
not ζ‹‹-leftconnectable in Ψ can only be a ζ‹‹-bridge in Ψu for less than ζ‹‹n vertices u,
we have |Πleft| ď ζ‹‹n

k. The same upper bound can be proved for |Πright| and because
of Π “ Πleft Y Πright this yields |Π| ď 2ζ‹‹n

k. Combining the two bounds on |Π| we obtain
indeed |Ubad| ď 40ζ‹‹n.

Because of our choice of ζ‹‹ in ( 2.6.8 ) this yields |Ubad| ď
1
2ϑ

2
‹n, which combined

with ( 2.6.9 ) implies
|U ∖ Ubad| ě

1
2ϑ

2
‹n . (2.6.10)

Next we will partition the vertex set into blocks some of which will later be selected
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randomly for hosting the augmentation of C . Form a partition

V pΨq “ B1 Ÿ . . . ŸBν ŸB
1 , (2.6.11)

with |B1| “ ¨ ¨ ¨ “ |Bν | “M ą |B1|, where the first |C | classes B1, . . . , B|C | are the vertex
sets of the paths in the collection C , and B|C |`1, . . . , Bν are arbitrary disjoint M -sets
making ( 2.6.11 ) true. The sets B1, . . . , Bν are called blocks. A society is a set of M blocks.
We point out that

if S is a society and S “
ď

S , then |S| “M2. (2.6.12)

Definition 2.6.11. A society S with S “
Ť

S is called useful for a vertex u P U if

(1 ) u R S,

(2 ) ΨurSs is a pk ´ 1q-uniform pα2 ,
β
2 , ℓ,

α{2
17k´1 q-constellation.

(3 ) The number of pk´1q-tuples in Sk´1 that are ζ‹‹

2 -bridges in ΨurSs and ζ‹‹-connectable
in Ψ is at least ζ‹‹

2 |S|
k´1.

The next claim explains the naming of useful societies: ΨurSs contains M ` 1 “suitable”
paths.

Claim 2.6.12. If a society S is useful for u P U and S “
Ť

S , then there is a collection W

of mutually disjoint pk ´ 1q-uniform paths in ΨurSs with the following properties.

(i ) Every path in W has k´1
k
pM ` 1q vertices.

(ii ) Every path in W starts and ends with a pk ´ 1q-tuple that is ζ‹‹-connectable in Ψ.

(iii ) |W | ěM ` 1.

Proof. By Definition  2.6.11  (3 ) and (  2.6.12 ) the set

Ξ “
␣

áe P Sk´1 : áe is ζ‹‹-connectable in Ψ and a ζ‹‹

2 -bridge in ΨurSs
(

satisfies |Ξ| ě ζ‹‹

2 pM
2qk´1. Now we apply ♠k´1 to ΨurSs, Ξ, ζ‹‹

2 , and k´1
k
pM ` 1q here in

place of Ψ, B, ξ, and M there – which is permissible due to the selection of parameters in
the beginning of the proof of Lemma  2.6.9 .

This application of ♠k´1 yields a collection W of mutually disjoint pk ´ 1q-uniform
paths in ΨurSs that covers all but at most ζ‹‹

2 |S| `
k´1
k
pM ` 1q vertices of S such that each

83



path starts and ends with a bridge from Ξ. Since each bridge in Ξ is a ζ‹‹-connectable
tuple in Ψ, it remains to check that |W | ěM `1. Because of M " ζ´1

‹‹ " k we have indeed

|W | ě
p1´ ζ‹‹{2qM2 ´ k´1

k
pM ` 1q

k´1
k
pM ` 1q

ě
p1´ ζ‹‹qMpM ` 1q

p1´ ζ‹‹qM
“M ` 1 .

Lemma  2.6.6 implies that some society is useful for many vertices.

Claim 2.6.13. There exists a society S that is useful for 2
3 |U ∖Ubad| vertices in U ∖Ubad.

Proof. By double counting it suffices to establish that for every vertex u P U ∖ Ubad

at least 2
3 of all societies are useful. Fix an arbitrary such vertex u and suppose first

that u R B1. Without loss of generality we may assume that u P Bν . We plan to apply
Lemma  2.6.6 with pk ´ 1, α

4¨17k´1 , ζ‹‹q here in place of pk, µ, ξq there to the pk ´ 1q-uniform
constellation Ψu, the partition

V pΨuq “ B1 Ÿ . . . ŸBν´1 Ÿ pBν YB
1 ∖ tuuq ,

and the set

Bu “
␣

áx P V pΨuq
k´1 : áx is ζ‹‹-connectable in Ψ and a ζ‹‹-bridge in Ψu

(

.

Notice that Fact  2.2.35 tell us that Ψu is indeed an pα, β, ℓ, α
4¨17k´1 q-constellation. More-

over, u R Ubad implies |Bu| ě
1
20n

k´1 ą ζ‹‹|V pΨuq|
k´1. So all assumptions of Lemma  2.6.6 

hold and we conclude that at least 3
4

`

ν´1
M

˘

ą 2
3

`

ν
M

˘

societies are useful for u. The case
u P B1 is similar.

For the remainder of this proof we fix a society S that is useful for at least 2
3 |U ∖Ubad|

vertices in U ∖ Ubad and set S “
Ť

S . Claim  2.6.12 informs us that for every u P U ,
for which S is useful, there is a collection Wu of M ` 1 mutually vertex disjoint pk ´ 1q-
uniform paths in ΨurSs consisting of k´1

k
pM ` 1q vertices each, which start and end

with ζ‹‹-connectable pk ´ 1q-tuples.
Since there are at most pM2q! possibilities to order the vertices in S, there has to exist

a subset U 1 Ď U ∖ Ubad such that Wu “ W is the same for every u P U 1 and

|U 1
| ě

2
3 |U ∖ Ubad|

pM2q!
( 2.6.10 )
ě

ϑ2
‹n

3pM2q! ě
pM ´ pk ´ 1qqpM ` 1q

k
.
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Now, for every path in W put M´pk´1q

k
distinct vertices from U 1 aside and insert them at

every k-th position into the path from W (see Figure  2.6.2 ).

U 1

Figure 2.6.2: Augmenting a yellow 4
5pM ` 1q-vertex path to a lila M -vertex path.

Since the starting and ending pk´1q-tuples of every path in W are ζ‹‹-connectable in Ψ
and the insertion of the additional vertices increases their length to k´1

k
pM`1q`M´pk´1q

k
“

M , the resulting M`1 paths are elements of P . Hence, the collection C can be augmented
by removing the at most M paths whose blocks lie in S and adding the M ` 1 newly
constructed paths instead. As this contradicts the maximality of C , the assumption ( 2.6.9 )
must have been false. This concludes the proof of Lemma  2.6.9 .

Finally, we arrive at the main result of this section.

Proposition 2.6.14. For every k ě 3 the statement ♡k holds.

Proof. We argue by induction on k, the base case being provided by Fact  2.6.2 . The
Lemmata  2.6.4 and  2.6.9 show that ♡k´1 ñ ♠k´1 ñ ♡k, which is the induction step.

2.7 The proof of Theorem  2.1.2 

The results in the foregoing sections routinely imply Theorem  2.1.2 , but for the sake of
completeness we provide the details.

Proof of Theorem  2.1.2 . Given k ě 3 and α ą 0 we choose some auxiliary constants fitting
into the hierarchy

α, k´1
" µ " β, ℓ´1

" ζ‹ " ϑ‹ " ζ‹‹ " ϑ‹‹ "M´1
" n´1

0 , (2.7.1)

where ℓ ě 3 is an odd integer and M ” ´1 pmod kq.
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Now let H “ pV,Eq be a k-uniform hypergraph on n ě n0 vertices satisfying the
minimum pk´2q-degree condition δk´2pHq ě p

5
9`αq

n2

2 . By Fact  2.2.34 and α " µ " β, ℓ´1

there exists an pα, β, ℓ, µq-constellation Ψ with underlying hypergraph H.
Stage A. We set aside a reservoir set R of size |R| ď ϑ2

‹n provided by Proposition  2.4.1 .
Let us recall that by Corollary  2.4.2 and ϑ‹‹ ! ϑ‹, k

´1, ℓ´1

(1 ) for every set R1 Ď R of at most ϑ2
‹‹n “forbidden” vertices, every ζ‹‹-leftconnectable

pk ´ 1q-tuple áa, every ζ‹‹-rightconnectable pk ´ 1q-tuple á

b that is disjoint to áa, and
every i P r0, kq, there is an áa-áb -path through R ∖ R1 with fpk, i, ℓq inner vertices.

Stage B. Next, we choose an absorbing path avoiding R. More precisely, Proposition  2.5.1 

yields a path PA Ď H ´R with the properties that

(2 ) |V pPAq| ď ϑ‹n,

(3 ) the starting and ending pk ´ 1q-tuple of PA are ζ‹‹-connectable,

(4 ) and for every subset Z Ď V ∖ V pPAq with |Z| ď 2ϑ2
‹n and |Z| ” 0 pmod kq, there is

a path Q Ď H with V pQq “ V pPAq Y Z having the same end-pk ´ 1q-tuples as PA.

Stage C. We proceed by covering almost all vertices belonging neither to R nor to PA by
long paths. To this end we set X “ RY V pPAq and consider the constellation Ψ1 “ Ψ´X.
Since |X| ď ϑ2

‹n`ϑ‹n ď 2ϑ‹n, Lemma  2.2.36 tells us that Ψ1 is an
`

α
2 ,

β
2 , ℓ, 2µ

˘

-constellation.
So the covering principle ♡k defined in Definition  2.6.1 and proved in Proposition  2.6.14 

applies to Ψ1, 2ζ‹‹ here in place of Ψ, ζ‹‹ there. In other words, in Ψ1 there exists a
collection C of mutually disjoint M -vertex paths whose end-tuples are p2ζ‹‹q-connectable
in Ψ1 such that

ˇ

ˇ

ˇ
V pΨ1

q∖
ď

PPC

V pP q
ˇ

ˇ

ˇ
ď ϑ2

‹n .

Due to Fact  2.2.18 , the end-tuples of the paths in C are ζ‹‹-connectable in Ψ.
Stage D. Now we want to connect the paths in C and PA, thus obtaining one long path T
with ζ‹‹-connectable end-tuples. This is to be done by means of |C | connections through
the reservoir, iteratively using  (1 ) with i “ 0. Altogether these connections require

|C |fpk, 0, ℓq ď 4kℓkn
M

ď ϑ2
‹‹n

vertices from the reservoir. So |C | successive applications of  (1 ) indeed allow us to construct
this long path T (see Figure  2.7.1 ).
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T
C

R

PA

Figure 2.7.1: The situation after Stage D.

Stage E. Moreover, we can still use  (1 ) one more time in order to connect the end-tuples
of T , thus creating one long cycle C. For this last connection we use fpk, i, ℓq inner vertices,
where i P r0, kq is determined by the congruence i ” n ´ |V pT q| pmod kq. The current
situation is depicted in Figure  2.7.2 .

Z

fpk, i, ℓq

C
C

R

PA

Figure 2.7.2: The situation after Stage E. The dots in Z represent sets of k vertices each.

Our choice of i guarantees that the set Z “ V pΨq∖ V pCq satisfies

|Z| ” n´ |V pT q| ´ fpk, i, ℓq ” 0 pmod kq .

Furthermore, Z has at most the size

|Z| ď |R| `
ˇ

ˇ

ˇ
V pΨ1

q∖
ď

PPC

V pP q
ˇ

ˇ

ˇ
ď 2ϑ2

‹n .

Stage F. Taken together, the last two displayed formulae and  (4 ) show that Z can be
absorbed by PA, i.e., that there exists a path Q with V pQq “ V pPAq Y Z having the
same end-tuples as PA. Upon replacing the subpath PA of C by Q we obtain the desired
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Hamiltonian cycle in H (see Figure  2.7.3 ).

Q

R

Figure 2.7.3: The situation after Stage F.
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3. A pair degree condition for Hamiltonian
cycles in 3-uniform hypergraphs

3.1 Introduction

The search for conditions ensuring the existence of Hamiltonian cycles in graphs has been
one of the main themes in graph theory. For graphs, several classic results exist, starting
with the tight condition by Dirac [  27 ] stating that every graph G “ pV,Eq on at least 3
vertices and with minimum degree δpGq ě |V |{2 contains a Hamiltonian cycle. Pósa [  94 ]
improved this result to a condition on the degree sequence:

Theorem 3.1.1. Let G “ prns, Eq be a graph on n ě 3 vertices with degree sequence
dp1q ď ¨ ¨ ¨ ď dpnq. If dpiq ě i` 1 for all i ă pn´ 1q{2 and if furthermore d prn{2sq ě rn{2s

when n is odd, then G contains a Hamiltonian cycle.

Finally, Chvátal [ 18 ] achieved an even stronger result: A graph G “ prns, Eq on n ě 3
vertices with degree sequence dp1q ď ¨ ¨ ¨ ď dpnq contains a Hamiltonian cycle if for all i ă n

2

we have: dpiq ď iñ dpn´iq ě n´i. On the other hand, for any sequence a1 ď ¨ ¨ ¨ ď an ă n

not satisfying this condition, there exists a graph on vertex set rns with ai ď dpiq, for
all i P rns, that does not contain a Hamiltonian cycle. The aim of this article is to take a
first step towards a generalisation of Chvátal’s result to more general structures, namely
hypergraphs, by proving an analogue of Pósa’s result above for 3-uniform hypergraphs.

A k-uniform hypergraph (or k-graph) is a pair pV,Eq consisting of a (vertex) set V and an
(edge) set E Ď V pkq. We sometimes write vpHq “ |V pHq| and epHq “ |EpHq|. In the follow-
ing let H “ pV,Eq be a 3-graph. For U Ď V , we define HrU s :“ pU,EpUqq with EpUq :“
te P E : e Ď Uu. For vertices v, w P V , we denote by dpv, wq :“ |tx P V : vwx P Eu| the
pair degree, where for convenience we write an edge as vwx instead of tv, w, xu. In addition,
it is also common to study the vertex degree dpvq :“ |te P E : v P eu|. The minimum pair de-
gree is δ2pHq :“ minvwPV p2q dpv, wq and the minimum vertex degree is δ1pHq :“ minvPV dpvq.
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Often it is useful to consider something like a 2-uniform projection of H with respect to a
vertex v P V ; we define the link graph Lv of v as the graph pV, txy : xyv P Euq.

We will follow the definition of paths and cycles in [ 95 ], suggested by Katona and
Kierstead in [ 67 ]. A 3-graph P is a tight path of length ℓ, if |V pP q| “ ℓ ` 2 and there is
an ordering of the vertices V pP q “ tx1, . . . , xℓ`2u such that EpP q “ txixi`1xi`2 : i P rℓsu.
The tuple px1, x2q is the starting pair of P , the tuple pxℓ`1, xℓ`2q is the ending pair of P ,
both are the end-pairs of P and we say that P is a tight px1, x2q-pxℓ`1, xℓ`2q-path. All
other vertices of P are called internal. We sometimes identify a path with the sequence
of its vertices x1, . . . , xℓ`2. Accordingly, a tight cycle C of length ℓ ě 4 consists of a
path x1, . . . , xℓ of length ℓ´ 2 together with the two hyperedges xℓ´1xℓx1 and xℓx1x2. A
tight walk of length ℓ is a hypergraph W with V pW q “ tx1, . . . , xℓ`2u, where the xi are not
necessarily distinct, and EpW q “ txixi`1xi`2 : i P rℓsu. Note that the length of a path, a
cycle or a walk is the number of its edges and we will use this convention for cycles, paths,
and walks in graphs as well.

One might also consider degree conditions for loose Hamiltonian cycles in k-uniform
hypergraphs, in which consecutive edges intersect in less than k ´ 1 vertices. Loose
Hamiltonian cycles were for instance studied in [ 16 ,  25 ,  56 ,  76 ]. From now on, we only
consider tight paths and cycles and consequently we may omit the prefix “tight”.

In recent years, there has been some progress to achieve Dirac like results for hypergraphs.
Rödl, Ruciński, and Szemerédi [ 98 ] started by showing that for α ą 0, there is some n0

such that every 3-graph on n ě n0 vertices with minimum pair degree at least p1
2 ` αqn

contains a Hamiltonian cycle. Actually, in [  100 ] they improved the result to the following.

Theorem 3.1.2. Let H be a 3-graph on n vertices, where n is sufficiently large. If H
satisfies δ2pHq ě tn{2u, then H has a Hamiltonian cycle. Moreover, for every n, there exists
an n-vertex 3-graph Hn such that δ2 pHnq “ tn{2u´ 1 and Hn does not have a Hamiltonian
cycle.

More recently, Reiher, Rödl, Ruciński, Schacht, and Szemerédi [ 95 ] proved the following
asymptotically optimal result.

Theorem 3.1.3. For every α ą 0, there is an n0 P N such that every 3-graph H on n ě n0

vertices with δ1pHq ě
`5

9 ` α
˘

n2

2 contains a Hamiltonian cycle.

Since the first version of this article, this has been generalised to all k independently
by Lang and Sanhueza-Matamala [ 77 ] and by Polcyn, Reiher, Rödl, and myself [  93 ].
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In this work, we study a new pair degree condition that forces large 3-graphs to contain
a Hamiltonian cycle. Call a matrix pdijqij Hamiltonian if every 3-graph H “ prns, Eq

with dpi, jq ě dij , for all ij P rnsp2q, contains a Hamiltonian cycle. It would be very desirable
to get a result for 3-graphs similar to the one by Chvátal for degree sequences in graphs,
that is, a characterisation of all Hamiltonian matrices. For the graph case, Pósa’s result
(Theorem  3.1.1 ) was a step towards the characterisation by Chvátal. In a sense, our main
result can be seen as a 3-uniform (asymptotic) analogue of the theorem by Pósa.

Theorem 3.1.4 (Main result). For α ą 0, there exists an n0 P N such that for all n P N
with n ě n0, the following holds. If H “ prns, Eq is a 3-graph with dpi, jq ě min

`

i, j, n2
˘

`αn

for all ij P rnsp2q, then H contains a (tight) Hamiltonian cycle.

This result strengthens the asymptotic version of Theorem  3.1.2 achieved in [ 98 ].
Let us remark that recently there have also been related results on degree sequences

in graphs. For example, Treglown [  112 ] gave a degree sequence condition that forces the
graph to contain a clique factor and Staden and Treglown [ 108 ] proved a degree sequence
condition that forces the graph to contain the square of a Hamiltonian cycle. Since the
first version of this article, Bowtell and Hyde [ 12 ] obtained a degree sequence condition for
perfect matchings in 3-graphs.

Note that in the proof (and the proofs of the lemmas) we can always assume α ! 1.
Before we start with the outline of the proof of Theorem  3.1.4 in the next section, we give
the following examples showing that our result is asymptotically optimal in some regard.

Example 3.1.5. (i) Consider the partition X 9YY “ rns with X “
“P

n`1
3

T‰

and let H be
the hypergraph on rns containing all triples e P V p3q with |eXX| ‰ 2.

Then we have dpi, jq ě min
`

i, j, n2
˘

´ 1 for all ij P rnsp2q. However, if there was a
Hamiltonian cycle in H, it would contain at least one edge with two vertices from X.
But such an edge can only lie in a cycle in which all vertices are from X Ĺ rns.
Hence, H does not contain a Hamiltonian cycle.

(ii) Next, look at the partition X 9YY “ rns with X “
“X

n
2

\‰

and let H be the hypergraph
on rns containing all triples e P V p3q such that |eX Y | ‰ 2.

Then for all ij P rnsp2q, we have dpi, jq ě n
2 ´ 2. But a similar argument as above

shows that H does not contain a Hamiltonian cycle.

The two examples show that Theorem  3.1.4 does not hold when replacing the degree con-
dition with dpi, jq ě min

`

i, j, n2
˘

´1 (not even when replacing it with dpi, jq ě min pi, jq´1)
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and neither when replacing it with dpi, jq ě min
`

i, j, n2 ´ 2
˘

. Note that this means that
Theorem  3.1.4 cannot (asymptotically) be improved on by decreasing the requirement on
the degree of every pair and neither by “capping” at a lower value than at n

2 ´ 1. However,
it is not yet a Chvátal like characterisation of all Hamiltonian matrices. For instance, it is
easy to see that there are Hamiltonian matrices with dij “ 0 for Ωpn2q choices of i, j P rns.

In the following, we will omit rounding issues if they are not important, e.g., we will
assume that αn etc. are natural numbers. Further, for A,B Ď R`, we write that a
statement S holds for all a P A and b P B with a ! b, to say that for every b P B, there
exists an a0 P R` such that for all a P A with a ď a0, the statement S holds.

Organisation

In the next section we give an overview of the proof, state the auxiliary results for each
step and finally deduce the main result Theorem  3.1.4 from these. Sections  3.3 - 3.6 are
devoted to the proofs of the auxiliary results. In the end, we collect some interesting
related problems in Section  3.7 .

3.2 Overview and final proof

The proof of Theorem  3.1.4 uses the absorption method introduced by Rödl, Ruciński, and
Szemerédi in [ 98 ], which helps to reduce the problem of finding a Hamiltonian cycle to the
problem of constructing a cycle containing almost all vertices.

This strategy proceeds by constructing a cycle containing almost all vertices of the
hypergraph H and a special subpath into which we can “absorb” any small set of vertices,
meaning we can integrate the left-over vertices into this subpath to obtain a Hamiltonian
cycle. For that, we use that for every vertex v P V pHq, there exist many absorbers in H, a
structure consisting of several paths which can be restructured into paths containing v while
keeping the same end-pairs. Then, utilising the probabilistic method, we can construct
an absorbing path, a path containing many absorbers for every vertex. Lastly, we build a
long path in the remainder of H, consisting of almost all vertices, and connect it with the
absorbing path to a cycle into which the left-over vertices can be absorbed.

For these constructions we often need to connect two paths, that is, find a path between
their end-pairs. Hence, we will begin by showing that we can connect every pair of pairs of
vertices by a large number of paths with a fixed length.
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Lemma 3.2.1 (Connecting Lemma). Let α, ϑ ą 0, n, L P N with 1{n ! ϑ ! 1{L ! α.
If H “ prns, Eq is a 3-graph with dpi, jq ě min

`

i, j, n2
˘

` αn, for all ij P rnsp2q, then for
all disjoint ordered pairs of distinct vertices px, yq, pw, zq P rns2, the number of paths of
length L in H connecting px, yq and pw, zq is at least ϑnL´2.

See Section  3.3 for the proof of Lemma  3.2.1 .
Later, we will use this result whenever we need to connect different paths that have

been constructed before. However, when we want to connect paths after almost all the
vertices are covered by paths, we need to ensure that there still exist paths, disjoint to
all previously built paths. To this end, we will take a special selection of vertices - the
reservoir - aside, with the property that for every pair of pairs of vertices, we still have
many paths of fixed length connecting them, where all internal vertices of those paths are
vertices of the reservoir. The existence of such a set will be shown by the probabilistic
method.

Lemma 3.2.2 (Reservoir Lemma). Let α, ϑ ą 0 and n, L P N such that 1{n ! ϑ ! 1{L ! α.
If H “ prns, Eq is a 3-graph satisfying dpi, jq ě min

`

i, j, n2
˘

` αn, for all ij P rnsp2q, then
there exists a reservoir set R Ď rns with ϑ2

2 n ď |R| ď ϑ2n such that for all disjoint ordered
pairs of distinct vertices px, yq, pw, zq P rns2, there are at least ϑ |R|L´2

{2 paths of length L
in H which connect px, yq and pw, zq and whose internal vertices all belong to R.

It follows that removing a few vertices from the reservoir will not destroy its connectabil-
ity property.

Lemma 3.2.3 (Preservation of the Reservoir). Let α, ϑ ą 0 and n, L P N such that 1{n !
ϑ ! 1{L ! α. If H “ prns, Eq is a 3-graph satisfying dpi, jq ě min

`

i, j, n2
˘

` αn, for
all ij P rnsp2q, R is given by Lemma  3.2.2 , and R1 Ď R with |R1| ď 2ϑ4n, then for all
disjoint ordered pairs of distinct vertices px, yq, pw, zq P rns2, there is an px, yq-pw, zq-path
of length L in H with all internal vertices belonging to R ∖ R1.

See Section  3.4 for the proof of Lemma  3.2.2 and Lemma  3.2.3 .
The proof will continue with the definition of the absorbers and we will show that for

each vertex, there are many absorbers. We make use of this fact when we show that a
small random selection of tuples still contains many absorbers for every v P V pHq. With
the Connecting Lemma we can afterwards connect all the small paths in that selection to
a path that can absorb any small set of vertices.
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Lemma 3.2.4 (Absorbing Path). Let α, ϑ ą 0 and n, L P N such that 1{n ! ϑ ! 1{L ! α.
If H “ prns, Eq is a 3-graph satisfying dpi, jq ě min

`

i, j, n2
˘

`αn, for all ij P rnsp2q, and R
is given by Lemma  3.2.2 , then there exists a path PA Ď H ∖ R with vpPAq ď ϑn and with
the (absorbing) property that for each X Ď rns with |X| ď 2ϑ2n, there is a path with vertex
set X Y V pPAq and the same end-pairs as PA.

See Section  3.5 for the proof of Lemma  3.2.4 .
By using weak hypergraph regularity and then an explicit result to obtain an almost

perfect matching in the reduced hypergraph, we show in Section  3.6 that in every hy-
pergraph H satisfying the degree condition in Theorem  3.1.4 , there exists a path which
contains almost all vertices of H (see Proposition  3.2.5 ).

Proposition 3.2.5 (Long Path). Let α, ϑ ą 0 and n, L P N such that 1{n ! ϑ ! 1{L ! α.
Let H “ prns, V q be a 3-graph with dpi, jq ě min

`

i, j, n2
˘

` αn, for all ij P rnsp2q, let R be
as in Lemma  3.2.2 , and PA as in Lemma  3.2.4 .

Then there exists a path Q Ď H ∖ PA such that

vpQq ě
`

1´ 2ϑ2˘n´ v pPAq

and |V pQq XR| ď ϑ4n.

See Section  3.6 for the proof of Proposition  3.2.5 .
Now we are ready to prove our main result, Theorem  3.1.4 (see also Figure  3.2.1 ).

Proof of Theorem  3.1.4 . Let α, ϑ ą 0 and n, L P N such that 1{n ! ϑ ! 1{L ! α. Now
let H “ prns, Eq be a 3-graph satisfying the degree condition dpi, jq ě min

`

i, j, n2
˘

` αn

for all ij P rnsp2q. Lemmas  3.2.2 ,  3.2.4 , and Proposition  3.2.5 provide a reservoir R, an
absorbing path PA Ď H ∖ R and a long path Q Ď H ∖ PA with |RX V pQq| ď ϑ4n.
Let pa, bq and pc, dq be the end-pairs of PA and let pr, sq and pt, uq be the end-pairs
of Q (note that they are disjoint since we have Q Ď H ∖ PA). Since |RX V pQq| ď ϑ4n

and PA Ď H∖R and by Lemma  3.2.3 , we can choose a path P1 of length L connecting pt, uq
and pa, bq with all internal vertices in R ∖ pV pQq Y V pPAqq and, by the hierarchy of
constants, we also find a path P2 of length L connecting pc, dq and pr, sq with all internal
vertices in R ∖ pV pQq Y V pPAq Y V pP1qq. That leaves us with a cycle C in H which
satisfies vpCq ě p1´ 2ϑ2qn and PA Ď C. The absorbing property of PA guarantees that
for X :“ rns ∖ V pCq, there exists a path P 1

A with V pP 1
Aq “ V pPAq Y X which has the

same end-pairs as PA (which are connected to Q) and hence there is a Hamiltonian cycle
in H.
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Figure 3.2.1: Overview of the proof

3.3 Connecting Lemma

Before we start with the actual proof of Lemma  3.2.1 , let us take a look at the strategy. Say,
we want to connect two (ordered) pairs px, yq and pw, zq in a hypergraph H satisfying the
condition in Theorem  3.1.4 . One can easily reduce the case of both pairs being arbitrary to
that of both having pair degree at least n

2 `αn by “climbing up” in the degree sequence (see
the beginning of the proof). Then N ppx, yq, pw, zqq, the set of common neighbours of px, yq
and pw, zq, is non-empty because of the high pair degrees of px, yq and pw, zq. If we were
able to find many (2-uniform) y-w-paths in the link graphs of elements in N ppx, yq, pw, zqq,
we could subsequently insert the elements of N ppx, yq, pw, zqq at every third position of
such a path, thereby obtaining a 3-uniform walk.

So we could indeed connect two pairs if the link graphs of vertices in N ppx, yq, pw, zqq

would inherit the right degree condition, i.e., if the vertices would be large (regarded as
elements ofN). However, since we cannot control how large the elements in N ppx, yq, pw, zqq
are, the degree condition that the link graphs of vertices in N ppx, yq, pw, zqq inherit may
not be strong enough to let us connect two vertices by “climbing up” the degree sequence.
The idea to insert a middle pair pa, bq, as done in [ 95 ], overcomes this problem. If pa, bq has
some large common neighbours with px, yq and some with pw, zq, we can find enough px, yq-
pw, zq walks passing through pa, bq by applying the strategy explained above (now we can
connect vertices in the link graphs by “climbing up” the degree sequence). The number of
those walks will depend on the number of large common neighbours that pa, bq has with
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each px, yq and pw, zq. So roughly speaking, if the sum over all pa, bq of large common
neighbours of pa, bq and px, yq and of pa, bq and pw, zq is large, we can indeed prove the
Connecting Lemma. This last point (in its accurate form) will follow from the observation
that two link graphs of large vertices have many common edges.

Note that this strategy can be used in the seemingly different settings of our pair degree
condition and the minimum vertex degree condition in [  95 ], since in both cases we have
“well connected” subgraphs in every link graph and each two of these subgraphs intersect
in many edges: In [ 95 ] those subgraphs are the robust subgraphs and in our case we can
just consider the link graphs of large vertices. After the first version of this article, this
idea has also been used extensively in [  93 ].

Proof of Lemma  3.2.1 . Observe that when we show that there exists an L P N and a ϑ ą 0
such that the statement of Lemma  3.2.1 holds for these, it easily follows that it holds for
all L P N and ϑ ą 0 with 1{n ! ϑ ! 1{L ! α ! 1. Hence, let the hierarchy and H be
given as described in the lemma and let px, yq, pw, zq P rns2 be two disjoint ordered pairs
of distinct vertices.

First, we will show that it is possible to “climb up” along the degree sequence in
(compared to n) few steps, starting from the pairs px, yq and pw, zq and ending with pairs
of vertices ě n

2 .
In the second step, we will connect these two by utilising an analogous “climb up”

argument in the link graphs of neighbours of a pair and slipping in an additional connective
pair. We first look for walks rather than paths and conclude by remarking that many of
them will actually be paths.

First Step

By induction on ℓ ě 3, we will prove the following statement: There exist at least
`

α
5

˘ℓ´2
nℓ´2

walks x1 “ x, x2 “ y, x3, . . . , xℓ such that for i ě 3 we have:

xi ě min
´α

4npi´ 2q, n2

¯

`
α

4n (3.3.1)

We will first show the statement for ℓ “ 3 and ℓ “ 4 and then deduce it for any ℓ ě 5 given
that it holds for ℓ´ 1.

ℓ “ 3 : By the degree condition on H we have dpx, yq ě min
`

1, 2, n2
˘

` αn. Hence,
there exist at least α

5n possible vertices x3 such that x1, x2, x3 is a walk and x3 ě
α
4n`

α
4n.
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ℓ “ 4 : Let x1, x2, x3 be one of those α
5n walks satisfying the condition ( 3.3.1 ) that we

get by the previous case. We then have dpx2, x3q ě min
`

1, α2n,
n
2

˘

` αn, so there exist at
least α

5n possible vertices x4 such that x1, x2, x3, x4 is a walk and xi ě
α
4npi ´ 2q ` α

4n

for i “ 3, 4.
ℓ ě 5 : Let x1, x2, x3, . . . , xℓ´1 be one of the

`

α
5

˘ℓ´3
nℓ´3 walks satisfying, for i ě 3,

xi ě min
´α

4npi´ 2q, n2

¯

`
α

4n

that we get by induction. Then our pair degree condition entails

dpxℓ´2, xℓ´1q ě min
´α

4npℓ´ 4q ` α

4n,
n

2

¯

` αn

which in turn gives rise to at least α
5n possible vertices xℓ such that x1, x2, . . . , xℓ build a

walk and we have xi ě min
`

α
4npi´ 2q, n2

˘

` α
4n for all i P rℓs, i ě 3.

This leaves us with
`

α
5

˘
2
α n

2
α possibilities for walks

x1 “ x, x2 “ y, x3, . . . , x 2
α

`2

with x 2
α

`1, x 2
α

`2 ě
n
2 and an analogous argument for pw, zq with just as many possibilities

for walks
z1 “ z, z2 “ w, z3, . . . , z 2

α
`2

with z 2
α

`1, z 2
α

`2 ě
n
2 .

Second Step

Let m be the smallest even number ě 1
α
` 1. It now suffices to show that for some ϑ1 ą 0

with 1{n ! ϑ1 ! α we have the following. For all ordered pairs px1, y1q, pw1, z1q P rns2

for which the vertices within each pair are distinct and x1, y1, w1, z1 ě n
2 , the number

of px1, y1q-pw1, z1q walks with 3m` 4 internal vertices is at least ϑ1n3m`4.
Since dpx1, y1q ě n

2 ` αn, there exists a set Ux1y1 “ tu1, . . . , uαnu Ď rns ∖ rn{2s such
that x1y1 P E pLuiq, for all i P rαns (recall that Lui denotes the link graph of ui). Similarly,
there exists Uw1z1 “ tv1, . . . , vαnu Ď rns∖ rn{2s such that w1z1 P E pLviq, for all i P rαns.

For pa, bq P rns2, let Iab “ ti P rαns : ab P E pLuiq X E pLviqu. Since all vertices ě n
2

(apart from ui, vi) have in both Lui and Lvi at least n
2 ` αn neighbours, and therefore 2αn

vertices that they are adjacent to in both Lui and Lvi , there are at least αn2

4 edges in LviXLui .
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Ux1y1

uip1q

uip2q

uip m
2 `1q

Uw1z1

vjp1q

vjp2q

vjp m
2 `1q

Figure 3.3.1: Idea of the second step, the picture is similar to [ 95 , Fig. 4.1]

Thus, by double counting we have

ÿ

pa,bqPrns2

|Iab| ě
ÿ

iPrαns

|E pLviq X E pLuiq| ě
αn2

4 αn .

Next, for fixed pa, bq P rns2, we find a lower bound on the number Lab of 3-uniform
walks of the form

x1y1uip1qr1r2uip2q . . . uipm2 q
rm´1rmuipm2 `1qab

where y1r1r2 . . . rm´1rma is a 2-uniform walk in Luipkq
and ipkq P Iab, for all k P

“

m
2 ` 1

‰

.
To this goal, first observe that for all i P rαns, the number of y1a-walks of length m`

1 in Lui is at least
`

α
3

˘m
nm. Indeed, since ui ě n{2, we know that for j P rns, we

have dLui pjq ě min
`

j, n2
˘

`αn. Therefore, there are at least
`

αn
2

˘m´1 walks of length m´1
starting in a in which each vertex is either at least n

2 `
αn
2 or at least αn

2 larger than the
preceding vertex. Since we set m ě 1{α ` 1, each of these walks ends in a vertex ě n

2 and
for at least

`

αn
3

˘m´1 of them the last vertex is distinct from y1. For each such walk T with
its last vertex a1

T ‰ y1, there are 2αn possibilities for common neighbours of y1 and a1
T

(note that the degrees in Lui of both y1 and a1
T are at least n

2 ` αn). In total, that gives us
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at least
`

αn
3

˘m
y1a-walks of length m` 1 in Lui .

Now for r⃗ P rnsm, we set Dab pr⃗q :“ ti P Iab : y1r⃗a is a walk in Luiu. Again by double
counting and by the previous observation we infer

ÿ

r⃗Prnsm

|Dab pr⃗q| “
ÿ

iPIab

ˇ

ˇ

␣

r⃗ P rnsm : y1r⃗a is a walk in Lupiq

(
ˇ

ˇ ě |Iab|
´α

3

¯m

nm.

Note that for each r⃗ P rnsm that is a y1a-walk in Luipkq
for every k P

“

m
2 ` 1

‰

, we have that

x1y1uip1qr1r2uip2q . . . uipm2 q
rm´1rmuipm2 `1qab

is a 3-uniform px1y1q-pabq-walk of length m` m
2 ` 3 in H. Hence, with Jensen’s inequality

we derive:

Lab ě
ÿ

r⃗Prnsm

|Dab pr⃗q|
m
2 `1

ě nm
ˆ

ÿ 1
nm
|Dab pr⃗q|

˙
m
2 `1

ě nm
´

|Iab|
´α

3

¯m¯m
2 `1

.

We define Rab analogously as the number of 3-uniform walks of the form

abvjp1qs1s2vjp2q . . . vjpm2 q
sm´1smvjpm2 `1qw

1z1 ,

where bs1s2 . . . sm´1smw
1 is a 2-uniform walk in Lvjpkq

and jpkq P Iab, for all k P
“

m
2 ` 1

‰

,
and get the same lower bound by an analogous argument.

At last, let W be the number of px1y1q-pw1z1q-walks of length 3m` 6 in H. We apply
Jensen’s inequality a second time to obtain:

W ě
ÿ

pa,bqPrns2

LabRab

ěn2m
´α

3

¯m2`2mÿ

pa,bqPrns2

|Iab|
m`2

ěn2m
´α

3

¯m2`2m
n2

ˆ

1
n2
α2n3

4

˙m`2

ě

´α

3

¯m2`2m
ˆ

α2

4

˙m`2

n3m`4

ě

ˆ

α2

4

˙m2`3m`2

n3m`4.

In total, putting together the walks connecting px, yq and px1, y1q, px1, y1q and pw1, z1q
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and pw1, z1q and pw, zq we get that the number of px, yq-pw, zq-walks of length 2 ¨ 2
α
`3m`6

in H is at least
ˆ

´α

5

¯
2
α
n

2
α

˙2

ˆ

ˆ

α2

4

˙m2`3m`2

n3m`4
ě αm

3
n

4
α

`3m`4 .

Since only O
´

n
4
α

`3m`3
¯

of these fail to be a path, we are done.

3.4 Reservoir

In this section, we will prove the existence of a small set, the reservoir, such that any two
pairs of vertices can be connected by paths with all internal vertices lying in the reservoir.
The probabilistic proof of this lemma as done in [ 95 ] works in almost the same way with
different conditions as soon as the Connecting Lemma is provided. We will state two
inequalities first that we will need for the probabilistic method.

Lemma 3.4.1 (Chernoff, see for instance Cor. 2.3 in [ 62 ]). Let X1, X2, . . . , Xm be a sequence
of m independent random variables Xi :Ñ t0, 1u with P pXi “ 1q “ p and P pXi “ 0q “ 1´p.
Then we have for δ P p0, 1q:

• P
´

ř

iPrms
Xi ě p1` δq pm

¯

ď exp
´

´ δ2

3 pm
¯

• P
´

ř

iPrms
Xi ď p1´ δq pm

¯

ď exp
´

´ δ2

2 pm
¯

Lemma 3.4.2 (Azuma-Hoeffding, McDiarmid, Cor. 2.27 in [ 62 ] and Thm. 1 in [ 85 ]).
Suppose that X1, . . . , Xm are independent random variables taking values in Λ1, . . . ,Λm and
let f : Λ1 ˆ ¨ ¨ ¨ ˆ Λm Ñ R be a measurable function. Moreover, suppose that for certain
real numbers c1, . . . , cm ě 0, we have that if J, J 1 P

ś

Λi differ only in the k-th coordinate,
then |fpJq ´ f pJ 1q| ď ck. Then the random variable X :“ f pX1, . . . , Xmq satisfies

P p|X ´ EpXq| ě tq ď 2 exp
ˆ

´
2t2
ř

c2
i

˙

We are now ready to prove Lemma  3.2.2 .

Proof of Lemma  3.2.2 . Let α, L, ϑ, n, and H be given as in the statement. We choose
a random subset R Ď rns, where we select each vertex independently with probability
p “

`

1´ 1
10L

˘

ϑ2. Since |R| is now binomially distributed, we can apply Chernoff’s
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inequality (Lemma  3.4.1 ) and utilise the hierarchy to obtain

P
`

|R| ă ϑ2n{2
˘

ď P
ˆ

|R| ă 2
3E pRq

˙

ď exp
˜

´
p1{3q2

2 pn

¸

ă 1{3. (3.4.1)

We also have ϑ2n ě p1` cpLqqE p|R|q for some small cpLq P p0, 1q not depending on n and
therefore, again by Chernoff we get for large n:

P
`

|R| ą ϑ2n
˘

ď P p|R| ě p1` cpLqqE pRqq ď exp
ˆ

´
cpLq2

3 pn

˙

ă 1{3 (3.4.2)

By Lemma  3.2.1 , we have that for all disjoint ordered pairs of distinct vertices px, yq
and pw, zq, the number of px, yq-pw, zq-paths of length L in H is at least ϑnL´2. Let X “

X ppx, yq, pw, zqq denote the random variable counting the number of those px, yq-pw, zq-
paths in H that are of length L and have all internal vertices in R. We then have EpXq ě
pL´2ϑnL´2.

Now we apply the Azuma-Hoeffding inequality (Lemma  3.4.2 ) (with X1, . . . , Xn being
the indicator variables for the events “1 P R”,. . . ,“n P R”) which gives us, since the
presence or absence of one particular vertex in R affects X by at most pL´ 2qnL´3, that

P
ˆ

X ď
2
3ϑppnq

L´2
˙

ďP
ˆ

X ď
2
3EpXq

˙

ď2 exp
˜

´
2
`

pL´2ϑnL´2˘2

9n ppL´ 2qnL´3q
2

¸

“ exp p´Ωpnqq .

By the union bound, also the probability that there is a pairs of pairs for which the
respective number of connecting paths with all internal vertices in R is less than 2

3ϑppnq
L´2

can be bounded from above by

exp p´Ωpnqq ˆ n4
ă 1{3 (3.4.3)

for n large. Moreover, recalling our hierarchy we have

2
3ϑp

L´2nL´2
“

ˆ

1´ 1
10L

˙L´2 2
3ϑ

`

ϑ2n
˘L´2

ě
ϑ

2
`

ϑ2n
˘L´2

which together with ( 3.4.2 ) and (  3.4.3 ) implies the following: With probability ą 1{3 the
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chosen set R satisfies |R| ď ϑ2n and has the property that for all disjoint ordered pairs
of distinct vertices px, yq and pw, zq there exist at least ϑ

2 |R|
L´2 paths of length L in H

that connect those pairs and have all their internal vertices in R. Therefore, combining
this with ( 3.4.1 ) ensures that there indeed exists a version of R that has all the required
properties of our reservoir set.

It is not hard now to show the preservation of the reservoir, Lemma  3.2.3 .

Proof of Lemma  3.2.3 . Let H,R,R1 be as in the statement of the Lemma. Consider any
two disjoint ordered pairs of distinct vertices px, yq and pw, zq. We have

|R1
| ď 2ϑ4n ď ϑ3{2ϑ

2

2 n ď ϑ3{2
|R|

by the lower bound we get from Lemma  3.2.2 . Since every particular vertex in R1 is an
internal vertex of at most pL´ 2q|R|L´3 of the px, yq-pw, zq-paths of length L in H with
all internal vertices from R, the Reservoir Lemma tells us that there are at least

ϑ

2 |R|
L´2

´ |R1
| pL´ 2q|R|L´3

ě
ϑ

2 |R|
L´2

´ ϑ3{2
pL´ 2q|R|L´2

ą 0

such px, yq-pw, zq-paths with all internal vertices in R ∖ R1.

3.5 Absorbing path

In this section, we will construct a short (absorbing) path PA that can “absorb” every
small set of arbitrary vertices: For each small set X Ď V , we can build a path P 1

A

with V pP 1
Aq “ V pPAq Y X which has the the same end-pairs as PA. Later, it will then

suffice to find a cycle containing PA and almost all vertices, and subsequently absorb the
remaining vertices into PA. Since we already have a Connecting Lemma, actually the only
step left will be to find a long path.

In order to construct such an absorbing path, one first has to find many absorbers
for each vertex v: In our case, an absorber is a “cascade” of small paths that allows us
to build a new such cascade of paths with the same end-pairs, containing all vertices of
the first two paths and in addition the “absorbed” vertex v (see Definition  3.5.1 ). This
makes sure that we can maintain the path structure of PA when absorbing a vertex since
the linking pairs remain unchanged. Once we know that for every vertex v, there exist
many such v-absorbers in H, the probabilistic method provides a small set of disjoint paths

102



with the property that for every vertex v, this set contains many v-absorbers. Lastly, we
will simply connect all these paths via the Connecting Lemma and note that then we can
absorb a small set of vertices by greedily inserting each vertex into a different absorber.

To construct the absorbers, we again utilize that we can “climb up” the degree sequence.
More precisely, we define the following “absorbers”.

Definition 3.5.1. Let α ą 0, n P N, set s “ spαq “ 2 ¨ 1
α
, and let H “ prns, Eq be

a 3-graph. 

1
 For x P rns, a 4s-tuple

pv1, w1, y1, z1, . . . , vs, ws, ys, zsq P rns
4s

of distinct vertices is called px, αq-absorber (in H) if

1. v1w1xy1z1 is a path in H,

2. for i P rs´ 1s, we know that viwiyi`1zi`1 and vi`1wi`1yizi are paths in H, and

3. vswsyszs is a path in H.

When α is not important, we omit it in the notation, then simply speaking of x-
absorbers. Note that we can absorb x into an x-absorber pv1, w1, y1, z1, . . . , vs, ws, ys, zsq

as follows, see also Figure  3.5.1 . Before absorption, we consider the paths viwiyi`1zi`1

and vi`1wi`1yizi, for all odd i P rss. After absorption, we consider the path v1w1xy1z1,
the paths viwiyi`1zi`1 and vi`1wi`1yizi for all even i P rs ´ 2s, and the path vswsyszs.
Note that the (ordered) end-pairs of the considered paths are the same before and after
absorption.

Lemma 3.5.2 (Many Absorbers). Let 1{n ! ϑ ! α ! 1. If H “ prns, Eq is a 3-
graph with dpi, jq ě min

`

i, j, n2
˘

` αn for all ij P rnsp2q and R is a reservoir set given by
Lemma  3.2.2 , then for every x P rns, the number of px, αq-absorbers in prns∖ Rq4spαq is at
least pαn3 q

4spαq.

Proof of Lemma  3.5.2 . Let 1{n ! ϑ ! α ! 1, let H be as in the statement, and let x P rns.
There are at least n

3 possibilities to choose a vertex w1 P rns ∖ pR Y txuq with w1 ě

minpx` αn
2 ,

n
2 q. Then, there are at least αn

3 choices for a vertex v1 P Npw1, xq∖R with v1 ě

minpx` αn
2 ,

n
2 q since |Npw1, xq| ě minpw1, x,

n
2 q ` αn and w1 ě minpx` αn

2 ,
n
2 q. Similarly,

there are at least αn
3 choices for a vertex y1 P Npw1, xq∖pRYtv1uq with y1 ě minpx` αn

2 ,
n
2 q

and at least αn
3 choices for a vertex z1 P Npx, y1q∖ pRYtv1, w1uq with z1 ě minpx` αn

2 ,
n
2 q.

1Recall that in our convention 1
α is an integer and, hence, s is an even integer.
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Figure 3.5.1: Structure of the absorbers with hyperedges used before absorption of x in
dark red and hyperedges used after absorption of x in light red.

Now assume that for some i P rs ´ 2s, vertices vj, wj, yj, and zj have already been
selected, for all j P ris, in such a way that all edges required by Definition  3.5.1 are
present and vj, wj, yj, zj ě minpx ` j αn2 ,

n
2 q for all j P ris, and denote the set containing

all these vertices, all vertices from R, and x by Ai. Note that for all i P rs ´ 2s, we
have |Ai| ď αn

7 . Therefore, there are at least αn
3 choices for a vertex wi`1 P Npyi, ziq∖ Ai

with wi`1 ě minpx`pi` 1qαn2 ,
n
2 q. Further, there are at least αn

3 choices for a vertex vi`1 P

Npwi`1, yiq∖Ai with vi`1 ě minpx`pi`1qαn2 ,
n
2 q. Similarly, there are at least αn

3 choices for
a vertex yi`1 P Npvi, wiq∖pAiYtvi`1, wi`1uq with yi`1 ě minpx`pi`1qαn2 ,

n
2 q and at least αn

3

choices for a vertex zi`1 P Npwi, yi`1q∖pAiYtvi`1, wi`1uq with zi`1 ě minpx`pi`1qαn2 ,
n
2 q.

Assume that vj, wj, yj, and zj have been selected for all j P rs´ 1s such that all edges
required by Definition  3.5.1 are present and vj, wj, yj, zj ě minpx`j αn2 ,

n
2 q, for all j P rs´1s,

and denote the set containing all these vertices, all vertices from R, and x by As´1. Then
there are at least αn

3 choices for a vertex ws P Npys´1, zs´1q∖As´1 with ws ě minpx`sαn2 ,
n
2 q

and at least αn
3 choices for a vertex ys P Npvs´1, ws´1q∖ pAs´1 Y twsuq with ys ě minpx`

sαn2 ,
n
2 q. Note that by the choice of s we have vs´1, ws´1, ys´1, zs´1, ws, ys ě minpps ´

1qαn2 ,
n
2 q “

n
2 . Thus, we know that

|Npws, ys´1q XNpws, ysq| ě
n

2 ` αn`
n

2 ` αn´ n ě 2αn

and so there are at least αn choices for vs P Npws, ys´1q XNpws, ysq∖As´1 and, similarly,
we know that there are at least αn choices for zs P Npws´1, ysqXNpws, ysq∖ pAs´1Ytvsuq.

Observe that if the vertices v1, w1, y1, z1, . . . , vs, ws, ys, zs are chosen in the respective
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neighbourhoods as described above, they form an px, αq-absorber. Hence, the number
of px, αq-absorbers is indeed at least pα3nq

4spαq.

We are now ready to prove Lemma  3.2.4 .

Proof of Lemma  3.2.4 . The proof proceeds in two steps. First, we will use the probabilistic
method, showing that with positive probability a randomly chosen set of 4s-tuples contains
many absorbers for every vertex while being not too large. In the second, part we connect
all those paths using the Connecting Lemma.

Let 1{n ! ϑ ! α, let L P N be given by the Connecting Lemma, let s “ spαq, and
let H,R be given as in the statement.

Let X Ď prns∖ Rq4s be a random selection in which each 4s-tuple in prns∖ Rq4s is
included independently with probability p :“ ϑ234s`2

α4sn4s´1 . Then E r|X |s ď pn4s “ ϑ234s`2

α4s n and
by Markov’s inequality we get

P
ˆ

|X | ą 2ϑ
234s`2

α4s n

˙

ď
1
2 . (3.5.1)

Calling two distinct 4s-tuples overlapping if they contain a common vertex, we observe
that there are at most p4sq2n8s´1 ordered pairs of overlapping 4s-tuples. Let us denote
the number of overlapping pairs with both of their tuples occurring in X by D. We then
get ErDs ď p4sq2n8s´1p2 “ p4sq2

`

ϑ234s`2

α4s

˘2
n and Markov yields

P
“

D ą ϑ2n
‰

ď P

«

D ą 64s2
ˆ

ϑ234s`2

α4s

˙2

n

ff

ď
1
4 (3.5.2)

since 1{n ! ϑ ! α.
Next, we focus on the number of absorbers contained in X . For x P rns, let Ax denote

the set of all px, αq-absorbers. Lemma  3.5.2 gives that for every x P rns,

E r|Ax X X |s ě
´αn

3

¯4s
p “ 9ϑ2n.

Since |Ax X X | is binomially distributed, we may apply Chernoff’s inequality to get for
every x P rns,

P
`

|Ax X X | ď 3ϑ2n
˘

ď exp
˜

´

`2
3

˘2

2 9ϑ2n

¸

ă
1

5n . (3.5.3)
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Hence, by the union bound and ( 3.5.1 ), ( 3.5.2 ) and ( 3.5.3 ), there exists a selection
F˚ Ď prns∖ Rq4s with:

• |F˚| ď
2ϑ234s`2

α4s n

• F˚ contains at most ϑ2n overlapping pairs

• F˚ contains at least 3ϑ2n x-absorbers, for every x P rns

For each overlapping pair, we delete one of its 4s-tuples and thus, for every x P rns, we lose
at most ϑ2n x-absorbers. Furthermore, we delete every 4s-tuple A P F˚ for which there
does not exist an x P rns such that A is an x-absorber. Note that now every remaining
tuple has all edges present as in Definition  3.5.1 and all its vertices are distinct. This
deletion process gives rise to an F Ď prns∖ Rq4s satisfying:

• |F | ď 2ϑ234s`2

α4s n,

• for every 4s-tuple A P F there is an x P rns such that A is an x-absorber, in particular,
all the vertices in A are distinct and there are edges present as in Definition  3.5.1 ,
and

• for every x P rns, there are at least 2ϑ2n x-absorbers in F .

Next, we want to connect the elements in F to a path utilising the Connecting Lemma.
Let G be the set consisting of all the paths viwiyi`1zi`1 and vi`1wi`1yizi for odd i and for
each pv1, w1, y1, z1, . . . , vs, ws, ys, zsq P F :

G “
ď

pv1,w1,y1,z1,...,vs,ws,ys,zsqPF

␣

vi`jwi`jyi`1´jzi`1´j : i P rss odd, j P t0, 1u
(

We then have |G| “ 2|F | ď 4ϑ234s`2

α4s n. Let G˚ Ď G be a maximal subset such that there
exists a path P ˚ Ď H ´R with:

• P ˚ contains all paths in G˚ as subpaths

• V pP ˚q X
Ť

PPG∖G˚ V pP q “ ∅

• P ˚ satisfies v pP ˚q “ pL` 2q p|G˚| ´ 1q ` 4.

First assume G˚ Ĺ G, and let Q˚ P G ∖ G˚. Notice that recalling 1{n ! ϑ ! α, 1{L ! 1,
we have

v pP ˚
q `

ˇ

ˇ

ˇ

ď

PPG∖G˚

V pP q
ˇ

ˇ

ˇ
` |R| ď pL` 2q 4ϑ234s`2

α4s n` ϑ2n ď
ϑn

2 pL´ 2q . (3.5.4)
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Now Lemma  3.2.1 tells us that there are at least ϑnL´2 paths of length L connecting the
ending-pair pa, bq of P ˚ with the starting-pair pb, cq of Q˚ (which are disjoint by the choice
of P ˚). By ( 3.5.4 ), at least half of those are disjoint to RY

Ť

PPG∖pG˚YtQ˚uq
V pP q and (apart

from the end-pairs) disjoint to V pP ˚q and V pQ˚q. Hence, there exists a path P ˚˚ starting
with P ˚ and ending with Q˚ whose vertex set is disjoint to RY

Ť

PPG∖pG˚YtQ˚uq
V pP q and

for which we further have

v pP ˚˚
q “ v pP ˚

q ` L´ 2` v pQ˚
q “ 4` pL` 2q p|G˚

Y tQ˚
u| ´ 1q .

Therefore, G˚ Y tQ˚u contradicts the maximality of G˚ and thus, G˚ “ G. Further,
for PA :“ P ˚, the hierarchy 1{n ! ϑ ! α, 1{L ! 1 gives us the required bound on v pPAq:

v pPAq ď 4` pL` 2q4ϑ
234s`2

α4s n ď ϑn.

Lastly, the structure and the number of the absorbers in PA ensure the absorbing
property: Let X Ď rns with |X| ď 2ϑ2n. For each x P X, we can choose one x-
absorber pv1, w1, y1, z1, . . . , vs, ws, ys, zsq from F such that all chosen absorbers are distinct,
since for every x P V , the number of x-absorbers in F is at least 2ϑ2n. For every x P X,
we then “open” PA at the paths vi`jwi`jyi`1´jzi`1´j for i P rss odd and j P t0, 1u and
reconnect it to a path containing x by instead considering the paths vi`jwi`jyi`1´jzi`1´j,
for all even i P rss and j P t0, 1u, and the paths v1w1xy1z1 and vswsyszs. That leaves us
with a path P 1 which satisfies V pP 1q “ V pPAq YX and has the same end-pairs as PA.

3.6 Long path

In this section, we will prove the existence of a path that contains almost all vertices. To do
so, we will need a weak form of the hypergraph regularity method which we will therefore
introduce briefly.

Let H “ pV,Eq be a 3-graph and V1, V2, V3 Ď V ; we write

E pV1, V2, V3q “ tpv1, v2, v3q P V1 ˆ V2 ˆ V3 : v1v2v3 P Eu

and e pV1, V2, V3q “ |EpV1, V2, V3q|. Further, we write

HpV1, V2, V3q “ pV1 9YV2 9YV3, E pV1, V2, V3qq.
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For δ ą 0, d ě 0 and V1, V2, V3 Ď V , we say that HpV1, V2, V3q is weakly pδ, dq-
quasirandom if for all U1 Ď V1, U2 Ď V2, U3 Ď V3, we have that

|e pU1, U2, U3q ´ d |U1| |U2| |U3|| ď δ |V1| |V2| |V3| .

We say that HpV1, V2, V3q is weakly δ-quasirandom if it is weakly pδ, dq-quasirandom for
some d ě 0. For brevity, we might also say that V1, V2, V3 are weakly pδ, dq-quasirandom
(or δ-quasirandom) (in H). Lastly, since we only look at weak quasirandomness in this
section, we may omit the prefix “weakly”.

The regularity lemma is a strong tool in extremal combinatorics. While the full
generalisation to hypergraphs is more involved than the version for graphs, there is also a
light version for hypergraphs that can already be useful and indeed it is for us:

Lemma 3.6.1 (Weak Hypergraph Regularity Lemma). For δ ą 0, t0 P N, there exists
a T0 P N such that for every 3-graph H “ prns, Eq with n ě t0, there exist an integer t
with t0 ď t ď T0 and a partition rns “ V0 9YV1 9Y . . . 9YVt such that:

• |V0| ď δn and |V1| “ ¨ ¨ ¨ “ |Vt|

• for i ě 1, we have max pViq ď max pVi`1q and max pViq ´min pViq ď n
t0

• there are at most δt3 sets ijk P rtsp3q such that the “triplet” Vi, Vj, Vk, also written as
V ijk, is not δ-quasirandom in H.

For a proof of Lemma  3.6.1 see for instance [ 17 ,  40 ,  109 ]. One can get the slight extra
requirement on the ordering of the vertices by dividing the vertex set in intervals of length n

t0

and afterwards going on with the proof refining those sets. This has been remarked before,
e.g., by Reiher, Rödl, and Schacht in [ 96 ].

We will regularise H and then observe that a quasirandom triplet V ijk with positive
density can almost be covered with not too short disjoint paths. Thus, we can think of the
situation as a reduced hypergraph with the partition classes as vertices and edges encoding
those “good triplets” that in H we can almost cover with paths. At that point we will
notice that the degree condition can almost be transferred to the reduced hypergraph. In
Lemma  3.6.3 , we prove that this degree condition will ensure an almost perfect matching
in the reduced hypergraph. But that means that in H almost all vertices can be covered
with paths, which we can then connect through the reservoir to a long path in H.

Lemma 3.6.2 (Good Triplets). For ξ ą 0, d ą 0, δ ą 0, n P N with dξ3´δ
2 n ě 1, the

following holds. Let H “ pU 9YV 9YW,Eq with |U |, |V |, |W | “ n be a 3-graph and suppose

108



that U, V,W are pδ, dq-quasirandom in H. Then at least p1 ´ ξq3n vertices of H can be
covered by vertex-disjoint paths of length at least dξ3´δ

2 n´ 2.

Proof of Lemma  3.6.2 . For convenience set c “ dξ3´δ
6 n. Let P be a maximal set of vertex-

disjoint paths of length 3c´ 2 in H, where each path takes alternatingly vertices from each
partition class, i.e., each path is of the form

u1v1w1u2v2w2 . . . ucvcwc

with ui P U, vi P V,wi P W .
Assume that |V | ´ |

Ť

PPP V pP q| ą 3ξn. Then the sets

U 1 :“ U ∖
ď

PPP
V pP q, V 1 :“ V ∖

ď

PPP
V pP q,W 1 :“ W ∖

ď

PPP
V pP q

satisfy |U 1| , |V 1| , |W 1| ą ξn.
Next, we will delete all the edges that contain vertex pairs of small pair degree. With

the edges that still remain after this process we can build a path of the required length.
We start with F1 “ H rU 1, V 1,W 1s and set Fi`1, for i ě 1, as the hypergraph ob-

tained from Fi by deleting all edges containing a vertex pair xy with dˆ
Fi
px, yq ď c,

where dˆ
Fi
px, yq “ |te P E pFiq : x, y P e, |eX U 1| “ |eX V 1| “ |eXW 1| “ 1u|. This process

stops with a hypergraph Fj in which for all x, y P V pFjq, we either have dˆ
Fj
px, yq “ 0

or dˆ
Fj
px, yq ě c. The deletion condition guarantees

eˆ
pF1q ´ e

ˆ
pFjq ď 3cn2 ,

with eˆ pFiq “ |te P E pFiq : |eX U 1| “ |eX V 1| “ |eXW 1| “ 1u|, and the quasirandomness
of U, V,W gives that eˆpF1q “ e pU 1, V 1,W 1q ě pdξ3 ´ δqn3. Thus, there still exists an
edge u1v1w1 in Fj with u1 P U

1, v1 P V
1 and w1 P W

1. But this means that there is
a path of length 3c ´ 2 in Fj: Let P ˚ “ u1v1w1 . . . ukvkwk be a maximal path in Fj

with ui P U
1, vi P V

1 and wi P W
1, for all i P rks (note that k ě 1). Assuming k ă c for

a contradiction, less than c vertices of U 1 appear in P ˚. But since vkwk is contained
in the edge ukvkwk P E

ˆ pFjq, we actually have that dˆ
Fj
pvk, wkq ě c, whence there is

a uk`1 P U
1 ∖ V pP ˚q such that P ˚uk`1 is a path in Fj.

The same argument applied to wkuk`1 gives a vk`1 P V
1 such that P ˚uk`1vk`1 is a

path in Fj and finally applying the argument to uk`1vk`1 gives rise to a wk`1 P W
1 such

that the path P ˚uk`1vk`1wk`1 exists in Fj and thus contradicts the maximality of P ˚,
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telling us that P ˚ actually contains an alternating path of length 3c ´ 2. That, on the
other hand, gives us another alternating path of length at least 3c ´ 2 that is vertex-
disjoint to all paths in P and, therefore, contradicts the maximality of P. So we indeed
have |V | ´ |

Ť

PPP V pP q| ď 3ξn.

As mentioned before, we later want to find an almost perfect matching in a reduced
hypergraph whose edges represent “good” triplets as in Lemma  3.6.2 . Then “translating
back” those edges in the matching will give us a set of (not too many) paths in H which
almost covers all vertices. To find an almost perfect matching in a hypergraph satisfying
the pair degree condition in Theorem  3.1.4 for almost all pairs, we look at a maximal
matching in which the sum of the vertices not contained in it is also maximal. This should
give us the best chance to enlarge the matching if too many vertices would be left over,
deriving a contradiction. A similar maximisation idea has also been used in [ 112 ] when a
degree sequence condition was given for a graph. The following Lemma will later guarantee
the existence of an almost perfect matching in the reduced hypergraph.

Lemma 3.6.3 (Matching). Let 1{n ! α, β. If H “ prns, Eq is a 3-graph, GH is a graph on
vertex set rns with maximum degree ∆ pGHq ď βn and H satisfies dpi, jq ě min

`

i, j, n2
˘

`αn,
for all ij P rnsp2q with ij R E pGHq, then H has a matching M with vpMq ě p1´ 3βqn.

Proof of Lemma  3.6.3 . Without restriction let α ! 1 and β ă 1{3 and let H,GH be given
as in the statement. For matchings M1,M2 Ď H of maximal size, we write M1 ă M2

if rns∖ V pM1q ďlex rns∖ V pM2q, where ďlex is the usual lexicographic order on Pprnsq,
i.e., A ďlex B if minA△B P A. Now, let M Ď H be a matching of maximal size which is
(subject to being of maximal size) maximal with respect to ă. Assuming the statement is
false, gives an A Ď rns∖ V pMq with |A| ě 3βn. Let us call a pair true if it is not an edge
in GH . Since ∆ pGHq ď βn, we can find 2βn distinct vertices v1, . . . , vβn, w1, . . . , wβn P A

such that all the pairs viwi are true. Without restriction assume that vi ă wi. Notice that
all the neighbours of each such pair lie inside V pMq, otherwise adding the respective edge
to M would lead to a larger matching. In the following, we will show two properties and
afterwards deduce the statement from them.

Firstly, we have that for each viwi, there are at least αn
3 edges in M in which viwi

has at least two neighbours: Let us first consider a pair viwi with vi ď
n
2 . For any

edge abc of the matching with a P N pvi, wiq, we have that mintb, cu ď vi as other-
wise EpMq∖ tabcu Y taviwiu would be the edge set of a matching M 1 with the same size
as M but with M ă M 1, contradicting our choice of M . This means that in each edge
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of M which contains only one neighbour of viwi there is one vertex ď vi. Thus, (and since
all those edges are disjoint), at most vi neighbours of viwi can lie in edges that contain
no further neighbour of viwi. Hence, recalling d pvi, wiq ě vi ` αn, at least αn

3 edges in M

contain at least two neighbours of viwi.
For a pair viwi with vi ě n{2, there exist at least αn

3 edges in M containing more than
one neighbour of viwi as well since d pvi, wiq ě n

2 ` αn but epMq ď n{3.
Secondly, note that any edge of M that contains at least two neighbours of one

true pair viwi cannot contain a neighbour of any other true pair vjwj: Assume for
contradiction there were true pairs viwi and vjwj together with an edge abc P EpMq such
that a P N pvi, wiq and |tabcu XN pvj, wjq| ě 2. Then b or c, without restriction b, is a
neighbour of vjwj and EpMq∖ tabcu Y taviwi, bvjwju is the edge set of a matching in H

contradicting the maximal size of M .
Summarised, for each of the βn true pairs viwi in rns∖V pMq, we get a set of at least αn

3

edges in M that contain more than one neighbour of the respective pair and thus all those
sets of edges are pairwise disjoint. Therefore, we have αn

3 ˆβn distinct edges in M which is a
contradiction to 1{n ! α, β. So M was indeed a matching satisfying vpMq ě p1´ 3βqn.

We are now ready to prove Proposition  3.2.5 . For that we will apply the Weak Regularity
Lemma to H (actually to a slightly smaller subgraph), obtain a pair degree condition for
the reduced hypergraph and hence find a matching in it by the previous Lemma. Lastly,
we will “unfold” the edges of that matching to paths in H by Lemma  3.6.2 and connect
these to a long path by the Connecting Lemma.

Proof of Proposition  3.2.5 . Let α, ϑ be given as in the Proposition and set α1 “ α´ϑ´ϑ2.
Next choose ξ, δ, t0 such that we have 1{t0 ! δ ! ξ ! ϑ ! α1. Applying the Weak
Regularity Lemma  3.6.1 to δ and t0 gives us a T0 and by the hierarchy in the Proposition,
we may assume 1{n ! 1{T0. Now let H, R, and PA be given as in the statement. Notice
that H 1 “ H

“

rns ∖ pRY V pPAqq
‰

after a renaming of the vertices can be seen as a 3-
graph H 1 “ prn1s, E 1q with n1 ě p1´ ϑ2 ´ ϑqn and satisfying the usual degree condition:
dpi, jq ě min

`

i, j, n
1

2

˘

` α1n1 for all ij P rn1sp2q.
For H 1, the statement of the Weak Regularity Lemma provides an integer t P rt0, T0s

and a partition V “ V0 9YV1 9YV2 9Y . . . 9YVt satisfying all three points of Lemma  3.6.1 . Set-
ting m “ |V1| “ ¨ ¨ ¨ “ |Vt|, we have that n1

t
ě m ě 1´δ

t
n1 and recall that |V0| ď δn1. Note

that for vi P Vi, we have vi ě i ¨m´ n1

t0
. Summarised, we have the following hierarchy:

1
n1
!

1
T0
,
1
t
,

1
t0
! δ ! ξ ! ϑ ! α1

! 1 (3.6.1)
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Let us write eˆ
`

V ijk
˘

“ |te P E 1 : |eX Vi| “ |eX Vj| “ |eX Vk| “ 1u| for the number of
crossing edges in V ijk and we call a triplet V ijk dense, if eˆ

`

V ijk
˘

ě α1m3

2 .
Now we will show that we can almost “transfer” the pair degree condition to a reduced

hypergraph. We will do this in two steps: First, we show that every pair ViVj belongs to
many dense triplets V ijk, and second, we show that we can almost keep that up when
restricting ourselves to quasirandom triplets.

Claim 3.6.4. For every ij P rtsp2q, there are at least min
`

i, j, t2
˘

` α1t
3 many k P rts ´ ti, ju

such that V ijk is a dense triplet.

Proof. Suppose there is a pair ViVj, ij P rtsp2q, belonging to less than min
`

i, j, t2
˘

` α1t
3

dense triplets V ijk. Let S be the set of hyperedges in H 1 that contain one vertex in Vi, one
in Vj and a third vertex outside of Vi 9YVj . By invoking the pair degree condition of H 1 and
with the hierarchy ( 3.6.1 ), we get that

|S| ěm2
„

min
ˆ

i ¨m´
n1

t0
, j ¨m´

n1

t0
,
n1

2

˙

` α1n1
´ 2m

ȷ

ą
n13

t2

ˆ

min
ˆ

i

t
,
j

t
,
1
2

˙

`
6
7α

1

˙

We will derive a contradiction by finding a smaller upper bound on |S|. To this aim,
we split S into two parts. By S1 let us denote the set of those edges in S that lie in
a dense triplet V ijk, for some k P rts ∖ ti, ju, (we say an edge e lies or is in V ijk if we
have |e X Vi| “ |e X Vj| “ |e X Vk| “ 1). Since in one triplet there are at most m3 edges
and by assumption ViVj does not belong to many dense triplets, we get

|S1| ă

ˆ

min
ˆ

i, j,
t

2

˙

`
α1t

3

˙

m3
ď
n13

t2

ˆ

min
ˆ

i

t
,
j

t
,
1
2

˙

`
α1

3

˙

Let S2 “ S ∖ S1 be the set of edges in S lying in triplets that are not dense. There are less
than α1

2 m
3 crossing edges in each triplet that is not dense and ViVj belongs to at most t

triplets. Hence
|S2| ă

α1

2 m
3
ˆ t ď

n13

t2
α1

2 .

Summarised, we have

n13

t2

ˆ

min
ˆ

i

t
,
j

t
,
1
2

˙

`
6
7α

1

˙

ă |S| “ |S1| ` |S2| ă
n13

t2

ˆ

min
ˆ

i

t
,
j

t
,
1
2

˙

`
5α1

6

˙

,

which is a contradiction.
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From the Weak Regularity Lemma we also get that in total at most δt3 triplets V ijk

are not δ-quasirandom.
Let us now complete the “reduction” of the hypergraph and notice that we can find

an almost perfect matching in the reduced hypergraph. Denote by D the hypergraph on
the vertex set rts with ijk being an edge if and only if the triplet V ijk is dense. Let, on
the other hand, IR be the hypergraph on the vertex set rts with ijk being an edge if and
only if V ijk is not weakly δ-quasirandom in H 1. In the following, we will remove a few
vertices in such a way that D ´ IR induced on the remaining vertices satisfies our pair
degree condition for almost all pairs.

We call a pair ij P rts2 malicious pair if it belongs to more than
?
δt edges of IR.

Since epIRq ď δt3, there are at most 3
?
δt2 malicious pairs. Let B be the graph on vertex

set rts in which the edges are given by the malicious pairs. We call a vertex i malicious
vertex if dBpiq ą δ1{4t, i.e., if it belongs to many malicious pairs. The upper bound on
the number of malicious pairs implies that there are at most 6δ1{4t malicious vertices.
Now we remove these malicious vertices and set D1 :“ D

“

rts∖ tv P rts : v maliciousu
‰

and B1 “ B
“

rts∖ tv P rts : v maliciousu
‰

.
The reduced hypergraph we looked for is now K “ D1 ´ IR, in which edges encode

dense, δ-quasirandom triplets. In K, every pair ij P V pKqp2q with ij R EpB1q satisfies

dKpi, jq ě min
ˆ

i, j,
t

2

˙

`

ˆ

α1

3 ´ 6δ1{4
´
?
δ

˙

t ě min
ˆ

i, j,
t

2

˙

`
α1

4 t.

Thus, we have that the graph GK on vertex set V pKq with ij being an edge if and only
if ij does not satisfy the degree condition dKpi, jq ě min

´

i, j, vpKq

2

¯

` α1

4 vpKq is a subgraph
of B1. Therefore, and since vpKq ě p1´ 6δ1{4qt, we have

∆ pGKq ď ∆ pB1
q ď δ1{4t ď 2δ1{4vpKq

and we can apply Lemma  3.6.3 to K with α1

4 in place of α and 2δ1{4 instead of β and obtain
a matching M in K covering all but at most 6δ1{4t vertices of K.

Finally, notice that each triplet V ijk with ijk being an edge in K is pδ, dijkq-quasirandom
with dijk ě α1

2 ´ δ ě
α1

3 . Hence, we may apply Lemma  3.6.2 (with ξ as in (  3.6.1 ), dijk ě α1

3

in place of d and δ as δ) to each of the triplets V ijk that corresponds to an edge in M .
Doing so and recalling the definition of H 1, we notice that in H we can cover at least

n´
``

δ ` 6δ1{4
` 6δ1{4

` ξ
˘

n1
` |R| ` v pPAq

˘

ě n´
`

2ϑ2n` v pPAq
˘
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vertices with paths of length at least
α1

3 ξ
3´δ

2 m´ 2 that are all disjoint to R and V pPAq. We
can connect all those at most 3t

α1

3 ξ
3´δ

paths in H through R to a path Q by Lemma  3.2.3 

since until we connect the last one we have still only used at most

pL´ 2q ¨ 3t
α1

3 ξ
3 ´ δ

ă ϑ4n

vertices from R (recall the hierarchy ( 3.6.1 )). In fact, we have that Q has at most
a small intersection with R, that is, |V pQq XR| ď ϑ4n and it covers many vertices,
i.e., vpQq ě p1´ 2ϑ2qn´ v pPAq. Hence, Q is a path satisfying the claims in the statement.

3.7 Concluding remarks

We would like to finish by pointing to some related problems. Firstly, as mentioned in the
introduction, our result can be seen as a stepping stone towards a complete characterisation
of those pair degree matrices that force a 3-graph to contain a Hamiltonian cycle.

Further, it seems possible to generalise our proof without too much effort for k-uniform
hypergraphs H “ prns, Eq with n large satisfying the pk ´ 1q-degree condition

dk´1pi1, . . . , ik´1q ě min
´

i1, . . . , ik´1,
n

2

¯

` αn ,

where dk´1pi1, . . . , ik´1q “ |t e P E : ti1, . . . , ik´1u Ď e u|.
Another very interesting problem is to get a similar result for the vertex degree,

strengthening the result by Reiher, Rödl, Ruciński, Schacht, and Szemerédi in [ 95 ]: Does
every 3-graph H “ prns, Eq with dpiq ě min

`

max pi, γnq , 5
9n
˘

` αn for some γ ă 5{9
contain a Hamiltonian cycle if n is large? The proof of Theorem  3.1.3 in [ 95 ] depends on
the existence of robust subgraphs for every vertex, for which one needs the factor 5{9.

Lastly, one could try to improve Theorem  3.1.4 by weakening the pair degree condition
to dpi, jq ě min

`

i, j, n2
˘

, i.e., without the additional αn term, as Rödl, Ruciński, and
Szemerédi did for the minimum pair degree condition in [ 100 ].
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4. Decomposing hypergraphs into cycle
factors

4.1 Introduction

Decompositions are a very active branch of extremal combinatorics. One of the earliest
results regarding decompositions of graphs is Walecki’s theorem, which states that a
complete graph on an odd number of vertices has a decomposition into (edge-disjoint)
Hamiltonian cycles. In recent years, there have been many breakthroughs in the area of
decompositions, such as the verification of the existence of designs [ 50 ,  68 ], the resolution
of the Oberwolfach problem [ 49 ], and the proof of Ringel’s conjecture [  69 ,  86 ].

A classic result by Dirac states that a graph on n ě 3 vertices with minimum degree
at least n{2 contains a Hamiltonian cycle. It is natural to ask how many edge-disjoint
Hamiltonian cycles exist in this setting. Nash-Williams [ 87 ] showed that there are t5n{224u

edge-disjoint Hamiltonian cycles. As the union of edge-disjoint Hamiltonian cycles is an
even-regular spanning subgraph, there are at most r{2 edge-disjoint Hamiltonian cycles
where r is the largest even integer for which there exists an r-regular spanning subgraph.
Thus, for a graph G, we define reg2pGq to be the largest even integer r such that G contains
a spanning r-regular subgraph and set reg2pn, δq “ mintreg2pGq : |V pGq| “ n, δpGq “ δu.
Csaba, Kühn, Lo, Osthus, and Treglown [  24 ] improved the result by Nash-Williams
by showing that all large graphs G on n vertices contain at least reg2pn, δpGqq{2 edge-
disjoint Hamiltonian cycles. Kühn, Lapinskas, and Osthus [ 75 ] conjectured that this can
be strengthened as each single G may have reg2pGq{2 edge-disjoint Hamiltonian cycles
provided δpGq ě n{2. They also asked whether an approximate version is true; namely,
that any graph G on n vertices with δpGq ě p1{2 ` op1qqn contains p1{2 ´ op1qq reg2pGq

edge-disjoint Hamiltonian cycles. Subsequently, this was proved by Ferber, Krivelevich,
and Sudakov [ 36 ].

The main result of this paper implies an analogous statement for k-uniform hypergraphs
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for k ě 2. To state our results, we recall some terminology. For an integer k ě 2, a
hypergraph H is called k-uniform hypergraph or k-graph if all its edges have size k. We
call a k-graph whose vertex set has a cyclic ordering such that its edge set consists of all
sets of k consecutive vertices in this ordering a (tight) cycle (we only consider tight cycles
in this article). The length of a cycle C is defined as the number of edges in C. As usual, a
Hamiltonian cycle in H is a cycle containing all vertices of H. Let δk´1pHq “ min |te P
EpHq : x Ď eu| where the minimum is taken over all pk ´ 1q-sets x Ď V pHq. In analogy to
the above, we define regkpHq as the largest integer r divisible by k such that H contains a
spanning subgraph F in which each vertex of F belongs to exactly r edges of F .

Dirac’s result was first generalised to hypergraphs by Rödl, Ruciński, and Szemerédi
in [ 98 – 100 ]. They showed that any k-graph H on n vertices with δk´1pHq ě p

1
2 ` op1qqn

contains a Hamiltonian cycle. Observe that, trivially, H contains at most regkpHq{k
edge-disjoint Hamiltonian cycles. Our main result implies that H indeed asymptotically
contains that many edge-disjoint Hamiltonian cycles. More precisely, it yields the following
strengthening of the result by Rödl, Ruciński, and Szemerédi.

Theorem 4.1.1. For all integers k ě 2 and all ε ą 0, there exists an integer n0 such that
every k-graph H on n ě n0 vertices with δk´1pHq ě p1{2` εqn contains p1´ εq regkpHq{k
edge-disjoint Hamiltonian cycles.

This asymptotically solves (a much stronger version of) a conjecture due to Glock,
Kühn, and Osthus [ 51 , Conjecture 6.6] which states that if in addition to the assumptions
in Theorem  4.1.1 , we assume that each vertex is contained in the same number of edges
and k | n, then H has a decomposition into perfect matchings. Observe that in this case a
Hamiltonian cycle contains k edge-disjoint perfect matchings. A similar observation also
applies to all other notions of cycles in hypergraphs, for instance, loose cycles.

In fact, there is no need to restrict our attention only to Hamiltonian cycles. We call
a k-graph C a cycle factor (with respect to H) if C is a union of vertex-disjoint cycles
and has the same number of vertices as H. The girth of a cycle factor is the length of its
shortest cycle.

Theorem 4.1.2. For all integers k ě 2 and all ε ą 0, there exist integers n0 and L such
that every k-graph H on n ě n0 vertices with δk´1pHq ě p1{2` εqn contains edge-disjoint
copies of any given cycle factors C1, . . . , Cr1, where r1 ď p1´ εq regkpHq{k, whose girths are
at least L.

To the best of our knowledge, under the above condition not even the existence of a
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single given cycle factor was known previously. Note that L has to grow as k grows and ε

shrinks, but we do not require any dependence on n.
As it turns out, we can restrict our attention to essentially vertex-regular k-graphs.

To this end, we call a k-graph H on n vertices ϱ-almost r-regular for some ϱ, r ě 0
if dHpvq “ p1 ˘ ϱqr for all v P V pHq and ϱ-almost regular if it is ϱ-almost r-regular for
some r ě 0. Note that ϱ-almost r-regular k-graphs may simply be the disjoint union of
two cliques, say, and thus they may not even contain a single Hamiltonian cycle. To avoid
such scenarios, we work with the following fairly weak quasirandomness property. Given
a pk ´ 1q-set x “ tx1, . . . , xk´1u P

`

V pHq

k´1

˘

, we write NHpxq for the neighbourhood of x
in H, that is, the set tv P V pHq : tv, x1, . . . , xk´1u P EpHqu. Define H to be η-intersecting
if for all x,y P

`

V pHq

k´1

˘

, we have |Npxq X Npyq| ě ηn. Considering a complete graph
on n vertices where we delete the edges of a clique on p1´ 1{k ` op1qqn vertices, implies
that being p1{k ´ op1qq-intersecting alone is not sufficient to ensure the existence of a
Hamiltonian cycle either.

The following theorem is our main result and Theorems  4.1.1 and  4.1.2 follow from it.

Theorem 4.1.3. For all integers k ě 2 and all η, ε ą 0, there exist integers L and n0,
and ϱ ą 0 such that every η-intersecting ϱ-almost r-regular k-graph H on n ě n0 vertices
contains edge-disjoint copies of any given cycle factors C1, . . . , Cr1, where r1 ď p1´ εqr{k,
whose girths are at least L.

A result of Ferber, Krivelevich, and Sudakov [ 37 ] implies that any k-graph H on n

vertices with δk´1pHq ě p1{2 ` op1qqn, contains an n´1{2-almost r-regular spanning sub-
graph F for some r ą 1

8

`

n
k´1

˘

. This F may not be η-intersecting for some η ą 0, but the
next result shows that this is not an obstacle for the application of Theorem  4.1.3 .

Lemma 4.1.4. For all integers k and all ε ą 0, there exist an integer n0 and η ą 0
such that every k-graph H on n ě n0 vertices with δk´1pHq ě p

1
2 ` εqn which contains

a ϱ-almost r-regular spanning subgraph for some ϱ P r0, 1{2s and r ě 0 also contains
an η-intersecting pϱ` n´1{3q-almost r1-regular spanning subgraph for some r1 ě maxtp1´
εqr, 1

8

`

n
k´1

˘

u.

In particular, Theorem  4.1.3 together with Lemma  4.1.4 implies Theorem  4.1.2 (and
thereby Theorem  4.1.1 ). In addition, for k-graphs H on n vertices with δk´1pHq ě

p1{2` op1qqn, we have regkpHq “ p1´ op1qqr1, where r1 is the largest integer such that H
contains an op1q-almost r1-regular spanning subgraph.
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Theorem  4.1.3 for k “ 2, is an implication of a bandwidth theorem for approximate
decompositions proved only recently by Condon, Kim, Kühn, and Osthus [ 19 ], explicitly
mentioned as a statement in [ 51 ].

We prove Theorem  4.1.3 in Section  4.7 and Lemma  4.1.4 in Section  4.3.5 .
Let us proceed with a few comments relating our results to results in the literature. In

comparison to graphs, k-graphs H with k ě 3 exhibit a significantly more divers complexity
landscape. To see this, we define the degree dHpxq of a set x Ď V pHq as the number of
edges containing it, where |x| P rk´1s. We say H is ϱ-almost ℓ-degree regular if for some r,
we have dHpxq “ p1˘ ϱqr for all x P

`

V pHq

ℓ

˘

. It is easy to see that if H is ϱ-almost ℓ-degree
regular, then it is also ϱ-almost ℓ1-degree regular for all ℓ1 ď ℓ. Similar relations also hold for
the minimum ℓ-degree δℓpHq of H. Consequently, lower bounds on δℓpHq become stronger
the larger ℓ gets; similarly, the assumption of ℓ-degree regularity also becomes stronger
the larger ℓ gets. Not surprisingly, Dirac’s result was first extended to hypergraphs with
a lower bound on δk´1pHq. An asymptotically sharp lower bound for the existence of a
Hamiltonian cycle in terms of δk´2pHq was only proved recently [  77 ,  93 ,  95 ] and analogous
results for δℓpHq where ℓ ď k ´ 3 seem to be very difficult and at the moment out of reach.

With this in mind, the first natural step when extending the results of Ferber, Krivelevich,
and Sudakov in [  36 ] to hypergraphs, is to consider k-graphs which are op1q-almost pk ´
1q-degree regular. In fact, progress towards this first step was made by Frieze and
Krivelevich [ 45 ] as well as Ferber, Krivelevich, and Sudakov [ 37 ]. However, their nice
approaches to reduce the problem to decomposition problems in graphs only works for
weaker notions of cycles (often called loose cycles) and in particular fails for tight cycles
as we consider them in this paper. Bal and Frieze [ 5 ] constructed decompositions of k-
graphs into tight Hamiltonian cycles by reducing the problem to a decomposition problem
in digraphs to the expense of an even more restrictive notion than op1q-almost pk ´ 1q-
degree regularity. Unfortunately, this approach does not work when we only assume that
the k-graphs are op1q-almost ℓ-degree regular for some ℓ ă k ´ 1.

In contrast to this, Theorem  4.1.3 only assumes that the k-graph is almost 1-degree
regular and therefore is considerably less restrictive than the above mentioned results; in
fact, our regularity assumption is necessary since every k-graph with a decomposition into
Hamiltonian cycles is 1-degree regular. Further, note that our second assumption that H
is op1q-intersecting is much weaker than the assumed form of quasirandomness in [ 5 ] and is
still implied by the minimum degree condition assumed in [ 37 ]. Although the assumptions
of our main theorem are substantially weaker than those in the aforementioned results, it
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yields a stronger output by providing approximate decompositions into copies of any given
cycle factors of not too small girth. These differences in both the assumptions and the
results gave rise to a conceptually different proof compared to [ 5 ,  36 ,  37 ,  45 ].

4.2 Proof sketch of Theorem  4.1.3 

Suppose we are in the setting of Theorem  4.1.3 ; that is, suppose H is an η-intersecting
ϱ-almost r-regular k-graph in which we aim to find edge-disjoint copies of the cycle factors.
Our argumentation is built on three stages which are described in Sections  4.4 – 4.6 .

With some foresight, we set aside a thin randomly selected spanning subgraph F of H;
in particular, F is η1-intersecting and ϱ1-almost regular for some η1 ă η and ϱ1 ą ϱ.

In the first stage, we only consider the k-graph H 1 “ H ´ F . For large L (but which
does not grow with n) the k-graph H 1 has a fractional decomposition into cycles of length L,
by a recent result in [ 63 ] (see Theorem  4.3.4 ). Next, we exploit a result about hypergraph
matchings with pseudorandom properties [ 29 ] (see Theorem  4.3.5 and Corollary  4.3.6 ) to
turn this fractional decomposition of H 1 into edge-disjoint collections P1, . . . ,Pr of vertex-
disjoint paths of length L such that V pHq ∖

Ť

PPPi V pP q is very small for each i P rrs

and EpH 1q∖
Ť

iPrrs
EpPiq is very small as well (see Proposition  4.4.1 ). This completes the

first stage.
The second stage in our approach deals with the question of how one can turn a single Pi

into a particular cycle factor Ci (see Lemma  4.6.3 ). For this we use the edges in F . One
might hope that one can proceed similarly as Rödl, Ruciński, and Szemerédi in [ 98 – 100 ] to
join up paths and absorb the remaining vertices to obtain the desired cycle factor. However,
as the cycles in Ci may be very short, we cannot utilize an absorbing path of length opnq

into which we could incorporate any small set of remaining vertices, simply because there
may not exist a cycle in the desired cycle factor which is long enough to contain such a
path. If we split the absorbing path into subpaths and distributed these among numerous
cycles in the cycle factor, we would have too little control over how many vertices each
cycle actually incorporates and, thereby, over the resulting cycle lengths.

To overcome this, we prepare by grouping small absorbing elements (paths on 2k
vertices) into more powerful absorbers, which we call blocks (see Section  4.5 ). The crucial
property is that in the end, regardless of the leftover vertices, each block absorbs exactly
one vertex. Thus, a cycle of length ℓ´ b obtained by connecting paths in Pi and b blocks
turns into a cycle of length ℓ during the absorption of the leftover vertices. Hence, keeping
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this predictable change of lengths in mind, we can construct an almost spanning collection
of vertex-disjoint cycles in such a way that the absorption of the leftover vertices engenders
a cycle factor as desired.

The third stage in our argumentation deals with the task of repeating the second stage
for every i P rrs. Proceeding in a greedy fashion, iteratively considering each i P rrs, may
quickly ruin the quasirandom properties of F . Therefore, we actually provide all tools from
the second stage as probabilistic constructions. With this, we can ensure a fairly uniform
use of the edges in F when applying the arguments of the second stage iteratively for
each i P rrs. By using Freedman’s inequality, one observes that with positive probability
this process terminates successfully before significantly spoiling the quasirandomness of F
(see Proposition  4.6.4 ).

4.3 Preliminaries

4.3.1 Notation

For n P N0, we set rns “ t1, . . . , nu and rns0 “ t0, . . . , nu. For a set A, we say that A is
a k-set if |A| “ k; we write

`

A
k

˘

for the set of k-sets that are subsets of A and Ak for the
set of tuples px1, . . . , xkq P A

k with xi ‰ xj for all i ‰ j. We often use x,y to refer to sets
and áááááx,áááááy when considering tuples; however, if the tuple arises from ordering the vertices of
an edge, then we often use áááe,

ááááá
f . We may subsequently drop the arrow to denote the set

of elements of a tuple, so that for a tuple áááááx “ px1, . . . , xkq, we have x “ tx1, . . . , xku. An
ordering of a k-set x “ tx1, . . . , xku is a sequence x1 . . . xk without repetitions.

For non-negative reals α, β, δ, δ1, we write α “ p1˘δqβ to mean p1´δqβ ď α ď p1`δqβ
and we write p1˘ δqα “ p1˘ δ1qβ to mean p1´ δ1qβ ď p1´ δqα ď p1` δqα ď p1` δ1qβ. We
write α ! β to mean that there is a non-decreasing function α0 : p0, 1s Ñ p0, 1s such that for
any β P p0, 1s, the subsequent statement holds for all α P p0, α0pβqs. Hierarchies with more
constants are defined similarly and should be read from the right to the left. Constants
in hierarchies will always be reals in p0, 1s. Moreover, if 1{n appears in a hierarchy, this
implicitly means that n is a positive integer. We ignore rounding issues when they do not
affect the argument.

Whenever we use k to refer to the uniformity of a hypergraph, we tacitly assume
that k ě 2. Let H be a k-graph on n vertices. We write V pHq for the vertex set and EpHq
for the edge set of H and we define ááááááá

EpHq “ táááe P V pHqk : e P EpHqu. For j P rk ´ 1s
and x “ tx1, . . . , xju P

`

V pHq

j

˘

, we write dHpxq or dHpx1 . . . xjq for the j-degree |te P
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EpHq : x Ď eu| of x, δjpHq for the minimum j-degree min
␣

dHpxq : x P
`

V pHq

j

˘(

of H
and ∆jpHq for the maximum j-degree max

␣

dHpxq : x P
`

V pHq

j

˘(

of H. We define δpHq “
δk´1pHq and ∆pHq “ ∆k´1pHq. The k-graph H is vertex-regular if there is an r ě 0 such
that dHpvq “ r holds for all v P V pHq.

For U Ď V pHq, we write HrU s for the induced subgraph pU, te P EpHq : e Ď Uuq and
if X is a set, we define H´X “ HrV pHq∖Xs. For two k-graphs Hi with vertex set Vi and
edge set Ei for i P r2s, we define H1´H2 “ pV1, E1 ∖E2q and H1XH2 “ pV1XV2, E1XE2q

and we write H1 Ď H2 to indicate that H1 is a subgraph of H2.
A walk W in H is a sequence w1 . . . wℓ of vertices of H such that twi, . . . , wi`k´1u is an

edge of H for all i P rℓ´ k ` 1s; we say that W is an ℓ-walk. The length of W is ℓ´ k ` 1
and if ℓ ě k, the walk W is a walk from pw1, . . . , wkq to pwℓ´k`1, . . . , wℓq. The walk W is
self-avoiding if no vertex of H appears twice in W .

A k-graph P on is called a path if there is an ordering v1 . . . vℓ of its vertex set such
that a k-set forms an edge of P if and only if its elements appear consecutively in v1 . . . vℓ.
We say that P is an ℓ-path and the length of P is |EpP q|. A cycle of length ℓ is also called
an ℓ-cycle. Sometimes P is identified with the sequence v1 . . . vℓ. Further, we call the
tuples pv1, . . . , viq and pvℓ´k`1, . . . , vℓq with i P rℓs end-tuples of P and whenever áááááx is an
end-tuple of P , the set x is an end-set of P . End-tuples of P that are k-tuples are also
called ordered end-edges of P and end-sets of P that are k-sets are also called end-edges
of P . For end-tuples ááás and ááát of P with sX t “ ∅, the graph P is also called an ááás–ááát-path.
For ordered end-edges ááás and áá

t of P with sX t “ ∅, we sometimes arbitrarily fix a direction
of P by saying that ááás is the ordered starting edge and ááát the ordered ending edge of P .

A matching M in H is a set of disjoint edges of H and M is perfect if all vertices
of H belong to an edge in M. We also treat a perfect matching M in a bipartite
graph G with bipartition tU, V u as a bijection µ : A Ñ B, this means that µ is the
bijection with tu, µpuqu P M for all u P U . A perfect fractional matching in H is a
function ω : EpHq Ñ r0, 1s with

ř

ePEpHq : vPe ωpeq “ 1 for all v P V pHq.
Sometimes we identify a set H of k-graphs on disjoint vertex sets with the k-graph with

vertex set
Ť

HPH V pHq and edge set
Ť

HPH EpHq; in this case we refer to H as a collection
of k-graphs. For a collection H of k-graphs, we use |H| to refer to the size of H as a set.

4.3.2 Concentration inequalities

We use the following versions of Chernoff’s, McDiarmid’s and Freedman’s inequality.
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Lemma 4.3.1 (Chernoff’s inequality). Suppose X1, . . . , Xn are independent Bernoulli
random variables and let X “

ř

iPrns
Xi. Then, for all δ ą 0,

PrX ě p1` δqexrXss ď exp
ˆ

´
δ2

2` δ exrXs
˙

,

and, if 0 ă δ ă 1, then

PrX ď p1´ δqexrXss ď exp
ˆ

´
δ2

2 exrXs
˙

.

Lemma 4.3.2 (McDiarmid’s inequality). Suppose X1, . . . , Xn are independent random
variables and let f : ImpX1q ˆ . . . ˆ ImpXnq Ñ R. Assume for all i P rns that changing
the i-th coordinate of áááááx P dompfq changes fpáááááxq by at most ci ą 0. Then, for all µ ą 0,

Pr|fpX1, . . . , Xnq ´ exrfpX1, . . . , Xnqs| ě µs ď 2 exp
˜

´
2µ2

ř

iPrns
c2
i

¸

.

Lemma 4.3.3 (Freedman’s inequality [ 44 ]). Suppose X1, . . . , Xn are Bernoulli random
variables and let µ ą 0 with

ř

iPrns
exrXi | X1, . . . , Xi´1s ď µ. Then,

P
”

ÿ

iPrns

Xi ě 2µ
ı

ď exp
ˆ

´
µ

6

˙

.

4.3.3 Fractional cycle decompositions

Suppose H and F are a k-graphs and F is the set of copies of F in H. We say a
function ω : F Ñ r0, 1s with

ř

F 1PF : ePEpF 1q
ωpF 1q “ 1 for all e P EpHq is a fractional F -

decomposition of H. We are only interested in the case where F is a cycle and need the
following result from [ 63 ].

Theorem 4.3.4 ([ 63 , Theorem 1.4]). Suppose 1{n ! 1{L ! η, 1{k. Suppose H is an η-
intersecting k-graph on n vertices with edge set E and CL is a k-uniform cycle of length L.
Then, there is a fractional CL-decomposition ω of H with

|E|
∆pHqL ď ωpCq ď

3|E|
δpHqL

for all L-cycles C in H.
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4.3.4 Matchings in hypergraphs

It is nowadays well-known that essentially vertex-regular hypergraphs admit almost perfect
matchings provided each pair of vertices is only contained in few edges [ 90 ,  97 ]. In fact,
these matchings can be chosen in a way that they exhibit pseudorandom properties, which
is very useful for applications. The following result provides such matchings.

Theorem 4.3.5 ([ 29 , Theorem 1.2]). Suppose 1{∆ ! δ, 1{k. Let ε “ δ
50k2 . Suppose H is

a k-graph with edge set E, ∆1pHq ď ∆, and ∆2pHq ď ∆1´δ as well as |E| ď expp∆ε2
q.

Suppose that W is a set of at most expp∆ε2
q functions from E to Rě0. Then, there

exists a matching M in H such that
ř

ePM ωpeq “ p1˘∆´εqp
ř

ePE ωpeqq{∆ for all ω P W
with

ř

ePE ωpeq ě maxePE ωpeq∆1`δ.

It is straightforward to turn Theorem  4.3.5 into a result about edge sets in weighted
hypergraphs in the case where the functions in W are t0, 1u-valued. It can be obtained
from Theorem  4.3.5 by modelling the edge weights as corresponding numbers of edges in
an auxiliary pk ` 1q-graph; see, for example [ 69 ], where a similar statement is deduced
from Theorem  4.3.5 .

Corollary 4.3.6. Suppose 1{c ! δ, 1{k. Let ε “ δ
200pk`1q2 . Suppose H is a k-graph with

vertex set V and edge set E and ω : E Ñ r1{c, 1s is a function with
ř

ePE : vPe ωpeq ď 1
and

ř

ePE : u,vPe ωpeq ď 1{cδ for all distinct u, v P V as well as
ř

ePE ωpeq ď exppcε2
q.

Suppose that E is a family of at most exppcε2
q subsets of E with

ř

ePE1 ωpeq ě cδ for
all E 1 P E. Then, there exists a matching M in H with |MX E 1| “ p1˘ c´εq

ř

ePE1 ωpeq

for all E 1 P E.

Proof. We will apply Theorem  4.3.5 to an auxiliary hypergraph obtained by replacing every
edge in H with essentially ωpeqM copies of itself, where M “ pc´ 1qc is a sufficiently large
convenient multiplicity. As we want to avoid multihypergraphs, we simply increase the
uniformity by 1 and add some dummy vertices. More precisely, consider the auxiliary pk`1q-
graph HM with vertex set V Y pE ˆ rM sq whose edges are the sets tv1, . . . , vk, pe, iqu

with tv1, . . . , vku “ e and i ď rMωpeqs. Let EM “ EpHMq. Observe that there is a
correspondence of matchings in HM and matchings in H, namely, for every matching MM

in HM , those edges of H that are subsets of edges in MM form a matching in H.
We will verify that the given properties of H and ω translate to properties of HM that

allow an application of Theorem  4.3.5 that in turn yields the desired matching in H via
the aforementioned correspondence. Let ∆M “ c2. Since 1{c ď ωpeq holds for all e P E,
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we obtain dHpvq ď c and dHpuvq ď c1´δ for all distinct u, v P V as well as |E| ď c exppcε2
q.

This implies
dHM pvq “

ÿ

ePE : vPe

rMωpeqs ďM ` dHpvq ď ∆M

and
dHM puvq “

ÿ

ePE : u,vPe

rMωpeqs ď
M

cδ
` dHpuvq ď ∆1´δ{2

M ď ∆1´δ{4
M

as well as

|EM | “
ÿ

ePE

rMωpeqs ďM exppcε2
q ` |E| ď c2 exppcε2

q ď expp∆ε2

Mq.

Furthermore, observe that |E| ď exppcε2
q ď expp∆ε2

Mq. For E 1 P E , let E 1
M be the set of

edges tv1, . . . , vk, pe, iqu of HM with e P E 1. We have

|E 1
M | “

ÿ

ePE1

rMωpeqs ěMcδ ě c2cδ{2
“ ∆1`δ{4

M .

An application of Theorem  4.3.5 , with ∆M , δ{4, HM , the set of indicator functions of the
sets E 1

M playing the roles of ∆, δ, H, W , yields a matching MM in HM with

|MM X E
1
M | “ p1˘∆´ε

M q

ř

ePE1rMωpeqs

∆M

.

Since we have 1{c ď ωpeq for all e P E and thus |E 1| ď c
ř

ePE1 ωpeq for all E 1 P E , this
implies

|MMXE
1
M | ď p1`∆´ε

M q
|E 1|`M

ř

ePE1 ωpeq

∆M

ď p1`∆´ε
M q

c`M

∆M

ÿ

ePE1

ωpeq ď p1`c´ε
q
ÿ

ePE1

ωpeq

and
|MM X E

1
M | ě p1´∆´ε

M q
M

ř

ePE1 ωpeq

∆M

ě p1´ c´ε
q
ÿ

ePE1

ωpeq

for all E 1 P E . Thus, the edges in H which are subsets of edges in MM form a matching
in H with the desired properties.

We also need the following result from [ 52 ] and another lemma concerning perfect
fractional matchings in hypergraphs. For a k-graph with edge set E and C ą 0, we
say ω : E Ñ Rą0 is C-balanced if maxePE ωpeq

minePE ωpeq
ď C and we say ω is balanced if it is 2-

balanced.
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Lemma 4.3.7 ([ 52 , Lemma 4.2]). Let 1{n ! 1{C ! γ, 1{k. Suppose H is a k-graph on n

vertices with δpHq ě
`1

2 ` γ
˘

n. Then there exists a C-balanced perfect fractional matching
in H.

Lemma 4.3.8. Suppose 1{n ! ϱ ! η, 1{k. Suppose H is an η-intersecting ϱ-almost
regular k-graph on n vertices. Then, there exists a balanced perfect fractional matching ω
in H.

Proof. The strategy of the proof is as follows. We start with a uniform wight distribu-
tion ω0 : EpHq Ñ r0, 1s and show that ω0 can be turned into a perfect fractional matching
as desired through a series of minor modifications.

Let V “ V pHq and E “ EpHq. For ω : E Ñ r0, 1s and v P V , we define ωpvq “
ř

ePE : vPe ωpeq. Let ω0 : E Ñ r0, 1s with ω0peq “
n
k|E| for all e P E and ξ : V Ñ R

with ξpvq “ ω0pvq ´ 1 for all v P V . We have
ř

vPV ω0pvq “ n and thus

ÿ

vPV

ξpvq “ 0. (4.3.1)

We wish to choose the series of modifications of ω0 such that it mimics redistributing
the deviations ξpvq from the target weight 1 uniformly across all vertices. We achieve
this by defining every modification as a manipulation of the weights on edges of suitable
walks of length 2 as follows. For a self-avoiding walk W “ v1 . . . vk`1 in H, ω : E Ñ R,
and a P R, we say that ω1 : E Ñ R is the function obtained from ω by using W with
weight a if ω1peq “ ωpeq ´ a for e “ tv1, . . . , vku, ω1peq “ ωpeq ` a for e “ tv2, . . . , vk`1u,
and ω1peq “ ωpeq otherwise. Hence ω1pv1q “ ωpv1q´a, ω1pvk`1q “ ωpvk`1q`a, and ω1pvq “

ωpvq for all v P V ∖ tv1, vk`1u.
Since H is η-intersecting, the number of self-avoiding walks v1 . . . vk`1 with v1 “ s

and vk`1 “ t is at least ηnk´1{2 for all distinct s, t P V . For distinct s, t P V , let Ws,t

be a set of ηnk´1{2 self-avoiding walks v1 . . . vk`1 in H with v1 “ s and vk`1 “ t.
Let v1

1 . . . v
1
k`1, . . . , v

m
1 . . . vmk`1 be an ordering of

Ť

s,tPV : s‰tWs,t and for i P rms, let ωi
be the function obtained from ωi´1 by using vi1 . . . v

i
k`1 with weight 2ξpvi1q

ηnk
. Let ω “ ωm.

From (  4.3.1 ) we conclude that

ωpvq “ ω0pvq ´ pn´ 1q ¨ ηn
k´1

2 ¨
2ξpvq
ηnk

`
ÿ

uPV ∖tvu

ηnk´1

2 ¨
2ξpuq
ηnk

“ 1

holds for all v P V . Thus, it suffices to show ωpeq “ p1˘ 1{3qω0peq for all e P E.
Since for all e P E, there are at most 2k!n self-avoiding walks v1 . . . vk`1 in H with e P
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ttv1, . . . , vku, tv2, . . . , vk`1uu, transitioning from ω0 to ω changed the weight on e by at
most 2k!n ¨ 2 maxvPV |ξpvq|

ηnk
. Observe that

ω0pvq “ dHpvq
n

k|E|
“ dHpvq

n
ř

uPV dHpuq
“ 1˘ 4ϱ

and hence |ξpvq| ď 4ϱ holds for all v P V . Thus we obtain

ωpeq “

ˆ

1˘ 2k!n ¨ 8ϱ
ηnk

¨
k|E|
n

˙

ω0peq “

ˆ

1˘ 1
3

˙

ω0peq

for all e P E.

4.3.5 Almost regular spanning subgraphs with intersecting
neighbourhoods

In this subsection we prove Lemma  4.1.4 . We use the following statement which follows
from [ 37 , Theorem 1.2] by considering the union of perfect matchings in an induced
subgraph obtained after removing at most k ´ 1 vertices to make the number of vertices
divisible by k and subsequently adding edges for the previously removed vertices.

Lemma 4.3.9 ([ 37 , Theorem 1.2]). Suppose 1{n ! ε, 1{k. Suppose H is a k-graph on n

vertices with δpHq ě p1
2`εq. Then H contains an n´1{2-almost r-regular spanning subgraph

for some r ě p1` 3ε{2q1
8

`

n
k´1

˘

.

Proof of Lemma  4.1.4 . Suppose 1{n ! η ! ε, 1{k. Suppose H is a k-graph on n vertices
with δpHq ě p1

2 ` εqn that contains a ϱ-almost r-regular spanning subgraph for some ϱ P
r0, 1{2s and r ě 0. If r ě p1 ` 3ε{2q1

8

`

n
k´1

˘

, let ϱF “ ϱ, rF “ r, otherwise let ϱF “ n´1{2

and choose rF ě p1` 3ε{2q1
8

`

n
k´1

˘

such that there exists a ϱF -almost rF -regular spanning
subgraph of H, which is possible by Lemma  4.3.9 . Let F denote a ϱF -almost rF -regular
spanning subgraph of H. In order to obtain a random spanning subgraph F 1 of H that
has the desired properties with positive probability, we construct its edge set EpF 1q by
essentially choosing the edges of F while ensuring that each edge of H is included with
positive probability.

By Lemma  4.3.7 there is a 1{η1{3-balanced perfect fractional matching ω inH. Let ωmax “

maxePEpHq ωpeq. Construct the edge set of the random spanning subgraph F 1 of H as follows.
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For all e P EpHq, include e in EpF 1q independently at random with probability pe, where

pe “

$

&

%

p1´ εq ` εωpeq

ωmax
if e P EpF q

εωpeq

ωmax
if e R EpF q.

Fix v P V pHq and x,y P
`

V pHq

k´1

˘

. Let r1 “ p1´εqrF` ε
ωmax

ě nk´1{p9k!q. Clearly, exrdF 1pvqs “

p1˘ϱF qr1. Since pe ě εη1{3 and since H is 2ε-intersecting, we obtain exr|NF 1pxqXNF 1pyq|s ě
ε2η2{3 ¨ 2εn ě 2ηn. Using Chernoff’s inequality (Lemma  4.3.1 ) and the union bound shows
that F 1 is as desired with positive probability.

4.3.6 Different types of degrees

For a k-graph with vertex set V , the following lemma shows that whenever a set U Ď V

meets the neighbourhood NHpxq in roughly ϑdHpxq vertices for all x P
`

V
k´1

˘

, then all
vertex-degrees decrease by about a factor of ϑk´1 when transitioning to the subgraph
induced by U .

Lemma 4.3.10. Suppose H is a k-graph with vertex set V . Let ϑ P p0, 1q and ε P
“

0, 1´ϑ
8k2

‰

. Suppose U Ď V is a set with dHrUYxspxq “ p1 ˘ εqϑdHpxq for all x P
`

V
k´1

˘

.
Then dHrUYtvuspvq “ p1˘ 8k3εqϑk´1dHpvq for all v P V .

Proof. Fix v P V . Let V 1 “ V ∖ tvu and U 1 “ U ∖ tvu. For i P rk ´ 1s0, let mi denote
the number of edges e P EpHq with v P e and |eX U 1| “ i. Then our task is to estimate
mk´1 “ dHrUYtvuspvq. To this end, we inductively relate mi and mi´1 for all i P rk ´ 1s.

For i P rk ´ 1s, we have

imi “
ÿ

xPp U
1

i´1q,yPpV
1∖U 1

k´i´1q

dHrUYtvuYxYysptvu Y x Y yq

“ p1˘ εqϑ
ÿ

xPp U
1

i´1q,yPpV
1∖U 1

k´i´1q

dHptvu Y x Y yq

“ p1˘ εqϑppk ´ iqmi´1 ` imiq

and hence,
mi´1 “

ˆ

1˘ 4ε
1´ ϑ

˙

1´ ϑ
ϑ

i

k ´ i
mi.
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From this, we inductively conclude that

mi “

ˆ

1˘ 4k2ε

1´ ϑ

˙

p1´ ϑqk´1´i

ϑk´1´i

ˆ

k ´ 1
i

˙

mk´1.

Recall that
řk´1
i“0

`

k´1
i

˘

p1´ ϑqk´1´iϑi “ pp1´ ϑq ` ϑqk´1 “ 1. Therefore,

dHpvq ´mk´1 “

k´2
ÿ

i“0
mi “

ˆ

1˘ 4k2ε

1´ ϑ

˙

mk´1

ϑk´1

k´2
ÿ

i“0

ˆ

k ´ 1
i

˙

p1´ ϑqk´1´iϑi

“

ˆ

1˘ 4k2ε

1´ ϑ

˙

1´ ϑk´1

ϑk´1 mk´1

and thus,

mk´1 “

ˆ

1˘ 8k2p1´ ϑk´1qε

1´ ϑ

˙

ϑk´1dHpvq “ p1˘ 8k3εqϑk´1dHpvq

which completes the proof.

4.3.7 Many paths in intersecting k-graphs

We say that a walk W “ w1 . . . wℓ in a k-graph is internally self-avoiding if the walks
w1 . . . wℓ´k and wk`1 . . . wℓ are self-avoiding. We use the following result from [ 63 ].

Lemma 4.3.11 ([ 63 , Lemma 2.3]). Suppose 1{n ! α ! 1{ℓ ! η, 1{k. Suppose H is
an η-intersecting k-graph on n vertices with vertex set V . Then, for all ááás,

áá
t P

ááááááá
EpHq, the

number of internally self-avoiding ℓ-walks from ááás to áá
t in H is at least αnℓ´2k.

4.4 Approximate decomposition into path coverings

In this section we use Corollary  4.3.6 to turn fractional decompositions provided by
Theorem  4.3.4 into approximate decompositions of almost vertex-regular k-graphs into
almost spanning collections of paths. These collections of paths form the basis for the
construction of cycle factors in Section  4.6 .

We need to keep track of how k-sets that may be edges in a larger graph are distributed
with respect to the paths constructed below. Suppose H is a k-graph on n vertices with
vertex set V and P is a collection of paths in H. Let e P

`

V
k

˘

. We use the following
terminology to classify e with respect to P , where we often tacitly assume that the collection
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of paths with respect to which we classify a k-set is obvious from the context. We say
that e is

(i) j-ending (or of type j-end) if j is the maximal integer for which there is a j-set x Ď e
and a path P P P such that x is an end-set of P ;

(ii) ending if it is j-ending for some j P rks;

(iii) leftover (or of type lo) if it is neither ending nor a subset of V pPq;

(iv) j-concentrated (or of type j-con) if it is neither ending nor leftover and j is the maximal
integer for which there is a j-set x Ď e and a path P P P such that x Ď V pP q;

(v) concentrated if it is j-concentrated for some j P rks.

We denote the set of types by T “ Tend Y tlou Y Tcon where Tend “ t1-end, . . . , k-endu
and Tcon “ t1-con, . . . , k-conu. Note that given P and e, the k-set e has a unique type with
respect to P. Given multiple collections P1, . . . ,Pr of paths, for i P rrs, we use τpe, iq to
denote the type of e with respect to Pi, and for τ P T , we set Iτ peq “ ti P rrs : τpe, iq “ τu,
where we tacitly assume that the index set and the collection of paths that belongs to a
given index are obvious from the context.

Proposition 4.4.1. Suppose 1{n ! ϱ, 1{L ! η, µ, 1{k. Let H be an η-intersecting k-graph
on n vertices with vertex set V such that there is an integer r with kr ď dHpvq ď p1` ϱqkr
for all v P V . Then, there exist edge-disjoint collections P1, . . . ,Pr of L-paths in H

with |V pPiq| ě p1´ µqn for all i P rrs such that the following holds for all e P
`

V
k

˘

.

(i) |Ilopeq| ď µr;

(ii) |Ij-conpeq| ď nk´j{η2L for all j P rk ´ 1s and |Ik-conpeq| ď n{η2L;

(iii) |Ij-endpeq| ď nk´j{L1{2 for all j P rk ´ 1s.

Note that the proof also yields edge-disjoint collections C1, . . . , Cr of L-cycles instead of
the paths with |V pCiq| ě p1´ µqn for all i P rrs (without the properties  (i) – (iii) ); we use
this in the proof of Lemma  4.6.3 .

Proof of Proposition  4.4.1 . First we argue that it suffices to find collections C1, . . . , Cr of L-
cycles in H with properties similar to those of collections of paths in the statement; then
we obtain such collections of cycles by applying Corollary  4.3.6 in an auxiliary hypergraph
that represents a fractional cycle decomposition given by Theorem  4.3.4 .
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Suppose C1, . . . , Cr are edge-disjoint collections of L-cycles in H. Note that for all j P
rk ´ 1s and x Ď

`

V
j

˘

, there are at most nk´j collections Ci with i P rrs where the elements
of x appear consecutively in a cycle in Ci and for all i P rrs, there is at most one cycle C P Ci
such that the elements of x appear consecutively in C. Now, for all i P rrs and every
cycle in C P Ci, delete k ´ 1 consecutive edges uniformly at random and independently of
the edges deleted in the other cycles to obtain collections of paths P1, . . . ,Pr. Then the
expected value of the random variable counting the number of collections Pi with i P rrs

where x is an end-set of a path in Pi is at most 2nk´j{L. Hence Chernoff’s inequality
(Lemma  4.3.1 ) entails that it is possible to delete k ´ 1 consecutive edges of every cycle
in Ci for all i P rrs to obtain collections of paths P1, . . . ,Pr such that for all j P rk ´ 1s
and x P

`

V
j

˘

, there are at most 3nk´j{L collections Pi with i P rrs where x is an end-set of
a path in Pi. For such collections P1, . . . ,Pr, j P rk ´ 1s and e P

`

V
k

˘

, we have Ij-endpeq ď
`

k
j

˘

¨ 3nk´j{L ď nk´j{L1{2 and thus it suffices to obtain edge-disjoint collections C1, . . . , Cr
of L-cycles in H with |V pCiq| ě p1´ µqn for all i P rrs such that the following holds.

• |ti P rrs : v R V pCiqu| ď µr{k for all v P V ;

• |ti P rrs : DC P Ci : x Ď V pCqu| ď nk´j{pη2L`k
j

˘

q for all j P rk ´ 1s and x P
`

V
j

˘

.

Let E “ EpHq and let CLpHq denote the set of L-cycles in H. From Theorem  4.3.4 we
obtain a fractional L-cycle decomposition ω of H with

|E|
nL

ď ωpCq ď
3|E|
ηLnL

(4.4.1)

for all C P CLpHq. Consider the 2L-graph H‹ with vertex set pV ˆ rrsq Y E where we add
for each C P CLpHq and all i P rrs, the edge e‹

C,i “ tpv, iq : v P V pCqu Y EpCq (note that
the edge e‹

C,i uniquely identifies C and i). Let E‹ “ EpH‹q and Γ “ p1` ϱqr ě ∆pHq{k
and let ω‹ : E‹ Ñ r0, 1s be the edge weight function with ω‹pe‹

C,iq “ ωpCq{Γ for all e‹ P E‹.
Here, ω‹ is a representation of ω that is normalized such that for all v P V and i P rrs, we
have

ÿ

e‹PE‹ :
pv,iqPe‹

ω‹
pe‹
q “

1
k
¨

ÿ

ePEpHq :
vPe

ÿ

CPCLpHq :
ePEpCq

ωpCq

Γ “
1
k
¨
dHpvq

Γ P

„

1
1` ϱ, 1

ȷ

. (4.4.2)

Note that there is a correspondence of matchings in H‹ to edge-disjoint collections of L-
cycles in H, namely a matching M‹ in H‹ corresponds to the collections C1, . . . , Cr,
where Ci “ tC P CLpHq : e‹

C,i P M‹u for all i P rrs. This will allow us to obtain collections
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of cycles with the desired properties from Corollary  4.3.6 . We now introduce appropriate
parameters including suitable subsets of E‹ and check that the conditions necessary for a
suitable application of Corollary  4.3.6 hold in this setting.

Let δ “ 1
3L , ε “ δ

900L2 , and c “ nL. From ( 4.4.1 ) we obtain (with some room to spare)

1
c
ď

η

2k!ΓnL´k
ď

|E|
ΓnL ď

ωpCq

Γ ď
3|E|
ηLΓnL ď

3
ηLΓnL´k

ď
1

nL´3{2 c
´δ (4.4.3)

for all C P CLpHq. To complete our analysis of the 1-degrees in H‹, we observe that in
addition to ( 4.4.2 ), for all e P E, we have

ÿ

e‹PE‹ :
ePe‹

ω‹
pe‹
q “ r ¨

ÿ

CPCLpHq :
ePEpCq

ωpCq

Γ “ r ¨
1
Γ ď 1. (4.4.4)

Let us now consider the 2-degrees in H‹. For distinct u, v P V and distinct e, f P E, we
have

|tC P CLpHq : u, v P V pCqu| ď LnL´2, |tC P CLpHq : v P V pCq ^ e P EpCqu| ď k!nL´k

and |tC P CLpHq : e, f P EpCqu| ď 2k!nL´k´1.

Using ( 4.4.3 ), this yields for all i P rrs, that

ÿ

e‹PE‹:
pu,iq,pv,iqPe‹

ω‹
pe‹
q “

ÿ

CPCLpHq:
u,vPV pCq

ωpCq

Γ ď
L

n1{2 c
´δ
ď c´δ, (4.4.5)

ÿ

e‹PE‹:
pv,iq,ePe‹

ω‹
pe‹
q “

ÿ

CPCLpHq:
vPV pCq^ePEpCq

ωpCq

Γ ď
k!

nk´3{2 c
´δ
ď c´δ, and (4.4.6)

ÿ

e‹PE‹:e,fPe‹

ω‹
pe‹
q “ r ¨

ÿ

CPCLpHq:
e,fPEpCq

ωpCq

Γ ď
2k!r
nk´1{2 c

´δ
ď c´δ. (4.4.7)

Furthermore, observe that

ÿ

e‹PEpH‹q

ω‹
pe‹
q “ r ¨

ÿ

CPCLpHq

ωpCq

Γ “ r ¨
|E|
ΓL ď exppcε2

q (4.4.8)

gives an upper bound for the total weight on the edges of H‹. For i P rrs, v P V , j P rk´1s,
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and x P
`

V
j

˘

, we define edge-sets as follows.

E‹
i “ te

‹
C,i1 P E

‹ : i1 “ iu, E‹
v “ te

‹
C,i1 P E

‹ : v P V pCqu

and E‹
x “ te

‹
C,i1 P E

‹ : x Ď V pCqu.

We have
ÿ

e‹PE‹
i

ω‹
pe‹
q “

ÿ

CPCLpHq

ωpCq

Γ “
|E|
ΓL ě

rn

ΓL ě cδ (4.4.9)

and

ÿ

e‹PE‹
v

ω‹
pe‹
q “ r ¨

1
k
¨

ÿ

ePEpHq :
vPe

ÿ

CPCLpHq :
ePEpCq

ωpCq

Γ “ r ¨
1
k
¨
dHpvq

Γ ě
r

1` ϱ ě cδ. (4.4.10)

Since Lemma  4.3.11 implies |tC P CLpHq : dCpxq ě 1u| ě nL´j´1{3, using ( 4.4.3 ) we obtain

ÿ

e‹PE‹
x

ω‹
pe‹
q ě r ¨

ÿ

CPCLpHq :
dCpxqě1

ωpCq

Γ ě r ¨ nL´j´1{3
¨

η

2k!ΓnL´k
ě nk´j´1{2

ě cδ. (4.4.11)

Thus, since r ` n `
ř

jPrk´1s

`

n
j

˘

ď exppcε2
q holds and by ( 4.4.2 )–( 4.4.11 ) we may apply

Corollary  4.3.6 to obtain a matching M‹ in H‹ with

|M‹
X E‹

i | ě p1´ c´ε
q
|E|
ΓL ě p1´ c

´ε
q
rn

ΓL ě p1´ µq
n

L
,

|M‹
X E‹

v | ě p1´ c´ε
q
r

k
¨
dHpvq

Γ ě p1´ c´ε
q
r2

Γ ě

ˆ

1´ µ

k

˙

r,

and
|M‹

X E‹
x| ď p1` c´ε

q
ÿ

e‹PE‹
x

ω‹
pe‹
q

for all i P rrs, v P V , j P rk ´ 1s, and x P
`

V
j

˘

. Since we have |tC P CLpHq : x Ď V pCqu| ď
LjnL´j, (  4.4.3 ) implies

|M‹
X E‹

x| ď p1` c´ε
qr ¨

ÿ

CPCLpHq :
xĎV pCq

ωpCq

Γ ď p1` c´ε
qr ¨ LjnL´j

¨
3

ηLΓnL´k
ď

1
η2L

`

k
j

˘nk´j

and thus, choosing Ci as the collection of L-cycles C in H with e‹
C,i P M‹ yields collections

of cycles in H with the desired properties.
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4.5 Ingredients for absorption

Suppose we are given a k-graph H on n vertices. In this section we construct a collection
of paths P in H whose lengths do not grow with n such that any small set of vertices X
can be absorbed into these paths; that is, for every path P P P, there is a new path P 1

with the same end-tuples as P and V pP 1q Ď V pP q YX such that the new paths form a
collection of paths P 1 with V pP 1q “ V pP q YX.

There are two main novelties in our setting. Firstly, we choose P randomly in an
extremely uniform way such that V pPq behaves like a uniformly chosen vertex set of size
|V pPq|. Secondly, we can control how many vertices each path in P will absorb if an
adversary determines a set of vertices to absorb. Here the main difficulty is that the lengths
of the paths in P do not grow with n. To the best of our knowledge, this problem has not
been dealt with in the literature so far.

4.5.1 Random walks and vertex absorbers

Let H be a k-graph on n vertices with vertex set V and edge set E. For x P V , a
path A “ a1 . . . a2k in H is called an x-absorber if a1 . . . akxak`1 . . . a2k is also a path in H.
In what follows, we describe how certain random walks contain many vertex-disjoint x-
absorbers for all x P V simultaneously and at the same time ensure that the set of vertices
visited by these random walks behaves like a vertex set chosen uniformly at random among
all vertex sets of the same size.

In what follows, a, i, ℓ, L, t‹ are always positive integers. Let W “ w1 . . . wL be a walk.
For i P rL{p2k ` ℓqs, we define

AℓipW q “ wp2k`ℓqpi´1q`1 . . . wp2k`ℓqpi´1q`2k and Aℓ
pW q “

"

AℓipW q : i P
„

L

2k ` ℓ

ȷ*

.

We may think of Aℓi as the i-th potential absorber in W when requiring ℓ vertices between
absorbers whereas AℓpW q is the set of all these potential absorbers in W . To gain control
over where absorbed vertices will be placed, we consider absorbers in groups which we call
blocks. Towards the end of the section, our construction yields a set of blocks B and during
the absorption, every block B P B will absorb exactly one vertex. More precisely, we say
that a walk B “ b1 . . . bap2k`ℓq in H is an pa, ℓq-block in H; that is, B can be split into a
consecutive walks that consist of a 2k-walk followed by an ℓ-walk. For i P rL{pap2k ` ℓqqs,
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we define

Ba,ℓ
i pW q “ wap2k`ℓqpi´1q`1 . . . wap2k`ℓqi and Ba,ℓ

pW q “

"

Ba,ℓ
i pW q : i P

„

L

ap2k ` ℓq

ȷ*

where Ba,ℓ
i pW q can be considered as the i-th pa, ℓq-block in W whereas Ba,ℓpW q is the set

of all these pa, ℓq-blocks in W . Later, we will choose absorbers and blocks randomly. In
contrast to other approaches existing in the literature, we build our absorbing structure
via random walks whose distributions are given by perfect fractional matchings to ensure a
very uniform distribution of the vertices visited by these random walks.

We introduce the convention that sequences sm . . . sn with m ą n are considered as the
empty sequence which we identify with ∅. For ω : E Ñ Rě0, j P rks, and v1, . . . , vj P V ,
we define ωpv1 . . . vjq “

ř

ePE : v1,...,vjPe ωpeq and we set ωp∅q “
ř

ePE ωpeq.
Let ω : E Ñ Rą0. We say a sequence of V -valued random variables X1 . . . Xt‹ is a

random walk in H with parameters pL, ωq, or simply an pL, ωq-random walk in H, if its
distribution is given by

PrXt “ vt | X1 . . . Xt´1 “ v1 . . . vt´1s “ PrXt “ vt | Xt´m . . . Xt´1 “ vt´m . . . vt´1s

“

$

&

%

ωpvt´m...vtq
pk´mqωpvt´m...vt´1q

if vt R tvt´m, . . . , vt´1u

0 if vt P tvt´m, . . . , vt´1u

(4.5.1)
for all t P rt‹s, m “ mintk ´ 1, t ´ 1 mod Lu, and v1, . . . , vt P V with PrX1 . . . Xt´1 “

v1 . . . vt´1s ą 0. This is indeed a probability distribution because for all j P rk ´ 1s
and v1, . . . , vj P V , we have

ÿ

vPV ∖tv1,...,vju

ωpv1 . . . vjvq “ pk ´ jqωpv1 . . . vjq.

Whenever we consider an pL, ωq-random walk in a k-graph H, we assume that L is a
positive integer and ω : EpHq Ñ Rą0. Observe that if X1 . . . Xt‹ is an pL, ωq-random walk
in a k-graph H, then also XLps´1q`1 . . . XLs is an pL, ωq-random walk in H for all s P rt‹{Ls.

Observation 4.5.1. Suppose H is a k-graph. Suppose X1 . . . Xt‹ is an pL, ωq-random
walk in H. Then, the random walks X1 . . . XLs and XLs`1 . . . Xt‹ are independent for all
positive integers s.

Recall that ω : E Ñ Rą0 is balanced if maxePE ωpeq

minePE ωpeq
ď 2. For an pL, ωq-random walk

X1 . . . Xt‹ in H for some balanced ω, the balancedness of ω allows us to bound the
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probability of the event that Xt “ Xt1 for some distinct t, t1 P rt‹s; the union bound yields
the following observation.

Observation 4.5.2. Let 1{n ! η, 1{k. Suppose H is a k-graph on n vertices with δpHq ě
ηn. Suppose X1 . . . Xt‹ with t‹ ď 2n1{3 is an pL, ωq-random walk in H for some balanced ω.
Then, we have

PrX1 . . . Xt‹ is self-avoidings ě 1´ n´1{4.

The following lemma shows that for an pL, ωq-random walk X1 . . . Xt‹ in H not only
the transition probabilities are determined by ω, but also the probability of X1 . . . Xt‹

consecutively visiting a sequence of vertices can be easily computed in terms of ω.

Lemma 4.5.3. Suppose H is a k-graph on n vertices with vertex set V . Suppose X1 . . . XL

is an pL, ωq-random walk in H. Let t P rLs and j P rmintk, tus. Then, we have

PrXt´j`1 . . . Xt “ v´j`1 . . . v0s “
pk ´ jq!ωpv´j`1 . . . v0q

k!ωp∅q (4.5.2)

for all v´j`1, . . . , v0 P V .

Proof. We prove the statement by induction on t. If t “ 1, then the statement is true by
choice of X1. Next assume that ( 4.5.2 ) is true for a t P rL´ 1s and all j P rmintk, tus.

Given such a t P rL ´ 1s, let j P rmintk, t ` 1us and m “ mintk ´ 1, tu (hence j ď
m ` 1) as well as v´j`1, . . . , v0 P V be given. Furthermore, let U “ V ∖ tv´j`1, . . . , v0u

and h “ m´ j ` 1 ě 0. Now we establish ( 4.5.2 ) with t` 1 instead of t. We compute

PrXt´j`2 . . . Xt`1 “ v´j`1 . . . v0s

“
ÿ

pv´m,...,v´jqPUh

PrXt´m`1 . . . Xt`1 “ v´m . . . v0s

“
ÿ

pv´m,...,v´jqPUh

ωpv´m . . . v0qPrXt´m`1 . . . Xt “ v´m . . . v´1s

pk ´mqωpv´m . . . v´1q
(4.5.3)

“
ÿ

pv´m,...,v´jqPUh

ωpv´m . . . v0q ¨ pk ´mq!ωpv´m . . . v´1q

pk ´mqωpv´m . . . v´1q ¨ k!ωp∅q (4.5.4)

“
pk ´m´ 1q!
k!ωp∅q

ÿ

pv´m,...,v´jqPUh

ωpv´m . . . v0q

“
pk ´m´ 1q!
k!ωp∅q

ÿ

ePE :
v´j`1,...,v0Pe

ˆ

k ´ j

h

˙

¨ h! ¨ ωpeq
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“
pk ´ jq!ωpv´j`1 . . . v0q

k!ωp∅q ,

where we used ( 4.5.1 ) for ( 4.5.3 ) and the induction hypothesis for ( 4.5.4 ).

The next lemma shows that whenever X1 . . . Xt‹ is an pL, ωq-random walk in H for some
balanced ω and x a vertex in a slightly larger k-graph, then after a few steps X1 . . . Xt‹

has a decent chance of producing an x-absorber in 2k consecutive steps. This follows easily,
because as an η-intersecting k-graph, H contains sufficiently many suitable x-absorbers,
Lemma  4.3.11 guarantees that there are sufficiently many ways for the random walk to
arrive at such an x-absorber independent of the starting conditions and the balancedness
of ω entails that every walk extending an already chosen initial segment of the random
walk occurs with sufficiently large probability.

Observation 4.5.4. Let 1{n ! α ! ν`, ℓ ! η, 1{k and L ě 2k. Suppose H` is an η-
intersecting k-graph on at most p1` ν`qn vertices with vertex set V` and H is an induced
subgraph of H` on n vertices. Suppose X1 . . . XL is an pL, ωq-random walk in H for some
balanced ω. Then, for all t P t´ℓ, . . . , L´ ℓ´ 2ku and x P V`, we have

PrXt`ℓ`1 . . . Xt`ℓ`2k is an x-absorber in H` | X1 . . . Xts ě α.

Measuring the impact of removing the vertices of an pL, ωq-random walk in H from H

is one of the core objectives in this subsection. The following lemma shows that for
each pk ´ 1q-set of vertices of H, its neighbourhood is essentially visited as often as
expected. Via Lemma  4.3.10 , this transfers to the vertex degrees appropriately.

Lemma 4.5.5. Let 1{n ! η, 1{k, 1{L. Suppose H is a k-graph on n vertices with vertex
set V and δpHq ě ηn. Suppose X1 . . . Xt‹ with n1{3{2 ď t‹ ď 2n1{3 is an pL, ωq-random
walk in H for some balanced perfect fractional matching ω in H. Let U “ V ∖tXt : t P rt‹su.
Then, for all x P

`

V
k´1

˘

, we have

P

„

dHrUYxspxq “ p1˘ n´31{40
q

ˆ

1´ t‹
n

˙

dHpxq
ȷ

ě 1´ expp´n1{14
q. (4.5.5)

Proof. Since Lemma  4.5.3 yields PrXt “ vs “ 1{n for all t P rt‹s and v P V and since for
all ℓ P rLs, the random variables XLps´1q`ℓ with s P rt‹{Ls are mutually independent by
Observation  4.5.1 , the statement is a consequence of Chernoff’s inequality (Lemma  4.3.1 ).
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Let us turn to the details. Fix x P
`

V
k´1

˘

. To see that ( 4.5.5 ) holds, we will show that

P

„

|NHpxq X tXt : t P rt‹su| “ p1˘ n´1{8
q
t‹
n

|NHpxq|
ȷ

ě 1´ expp´n1{14
q. (4.5.6)

To this end, for t P rLs, let Yt denote the indicator random variable of the event
that Xt P NHpxq. Note that Lemma  4.5.3 implies PrYt “ 1s “ |NHpxq|{n. For ℓ P rLs,
let Nℓ “

ř

sPrt‹{Ls
YLps´1q`ℓ. Crucially, note that Nℓ is the sum of the independent random

variables YLps´1q`ℓ with s P rt‹{Ls. Furthermore, for t P rt‹s, let Zt denote the indicator
random variable of the event that Xt P tXt1 : t1 P rt´ 1su XNHpxq and let Z “

ř

tPrt‹s
Zt.

Observe that
|NHpxq X tXt : t P rt‹su| “

ÿ

ℓPrLs

Nℓ ´ Z.

Let us estimate Nℓ and Z. For all ℓ P rLs, Chernoff’s inequality (Lemma  4.3.1 ) entails

P

„

Nℓ “

ˆ

1˘ n´1{8

2

˙

|NHpxq|
n

t‹
L

ȷ

ě 1´ expp´n1{13
q.

Furthermore, from t‹ ď 2n1{3, δpHq ě ηn, (  4.5.1 ), and the balancedness of ω, we obtain

PrZt “ 1 | Z1, . . . , Zt´1s ď n´1{2

for all t P rt‹s. This shows that Z is stochastically dominated by a binomial random
variable with parameters t‹ and n´1{2 and thus Chernoff’s inequality (Lemma  4.3.1 ) implies

P

„

Z ě
n´1{8

2
t‹
n

|NHpxq|
ȷ

ď P

„

Z ě

ˆ

1` η

3n
3{8
˙

n´1{2t‹

ȷ

ď expp´n1{6
q.

The union bound yields ( 4.5.6 ).

4.5.2 Building the absorbing structure

The following result verifies the existence of few vertex-disjoint paths whose union con-
tains many vertex absorbers. Moreover, there is in fact a “uniform” probabilistic con-
struction of these paths. To state the next result, we introduce the following ter-
minology concerning paths. For a path P “ v1 . . . vℓ, we define the boundary BP

as BP “ P rtv1, . . . , vk, vℓ´k`1, . . . , vℓus if ℓ ě 2k ` 1 and BP “ P otherwise. Further-
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more, for a collection of paths P , we define BP “
Ť

PPP BP .

Lemma 4.5.6. Let 1{n ! ϱ ! 1{L ! 1{a ! ν`, 1{ℓ ! η, 1{k. Suppose H` is an η-
intersecting k-graph on at most p1`ν`qn vertices with vertex set V` and H is an induced ϱ-
almost regular subgraph of H` on n vertices with edge set E. Let ϑ “ 1{a and for all x P V`,
denote the set of x-absorbers in H` by Ax. Then, there is a probabilistic construction of a
collection P of L-paths in H together with a set B Ď

Ť

PPP Ba,ℓpP q such that the following
holds.

(i) |P| ď ϑ2n{L;

(ii) H ´ V pPq is 2ϱ-almost regular;

(iii) |tB P B : AℓpBq XAx ‰ ∅u| ě 3ϑ4n for all x P V` (in particular, |B| ě 3ϑ4n);

(iv) |tx P V` : AℓpBq XAx “ ∅u| ď ϑ4n for all B P B;

(v) Pre P EpPqs ď ϑ 1
nk´1 and Pre P EpBP qs ď 1

L
1

nk´1 for all e P E.

Proof. The key idea of the proof is as follows. Constructing P by starting with P “ ∅ and
iteratively adding suitable random walks in H to P yields a P as desired apart from  (v) 

with probability at least 1{5. This can be used to obtain an appropriate probability
distribution on such collections P .

More precisely, for t‹ “ n1{3, we will construct P in s‹ “ ϑ2n{t‹ stages, where in
stage s P rs‹s we potentially add the L-walks generated by an pL, ωs´1q-random walk Xs “

Xs
1 . . . X

s
t‹ in a random subgraph Hs´1 of H for a balanced perfect fractional matching ωs´1

in Hs´1. To this end, for every subgraph S Ď H with a balanced perfect fractional matching,
fix one such perfect fractional matching in S to which we refer as the perfect fractional
matching assigned to S. We inductively define the random k-graphs H “ H0 Ě . . . Ě Hs‹

and random walks X1, . . . , Xs‹ as follows.

(1) Let H0 “ H;

(2) for s P rs‹s, define the random walk Xs “ Xs
1 . . . X

s
t‹ in Hs´1 and Hs Ď Hs´1 as

follows.

(2a) If there is a balanced perfect fractional matching in Hs´1, let Xs “ Xs
1 . . . X

s
t‹

be an pL, ωs´1q-random walk in Hs´1, where ωs´1 denotes the perfect fractional
matching assigned to Hs´1; otherwise let Xs “ Xs´1;

(2b) if Xs is self-avoiding, let Hs “ Hs´1 ´ tXs
t : t P rt‹su; otherwise let Hs “ Hs´1.
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Note that Lemma  4.3.8 guarantees a balanced perfect fractional matching in H0 “ H and
that for s P rs‹s, if Xs “ Xs´1, then Hs “ Hs´1 by construction of Hs´1 even if Xs is
self-avoiding.

We may think of stages s P rs‹s where there is no balanced perfect fractional matching
in Hs´1 and stages s P rs‹s where Xs is not self-avoiding as failed stages as these stages
fail to generate L-paths disjoint from each other and all L-paths previously added to P.
While stages that fail due to the absence of a balanced perfect fractional matching in Hs´1

are fatal in the sense that they entail failure in all subsequent stages, we can otherwise
recover from failure in the sense that subsequent stages may still be successful. We repeat
previously generated paths in the case of fatal failure simply for convenience.

Later we show that with probability at least 4{5 no fatal failure occurs; that is, there is
a balanced perfect fractional matching in Hs´1 for all s P rs‹s. We also show that with
probability at least 4{5, there are at most n1{2 non-fatal failures, that is, there are at
most n1{2 stages s P rs‹s such that Xs is not self-avoiding.

For s P rs‹s0, let V s “ V pHsq and let V “ V 0 “ V pHq. We use p‹ “ t‹{L to refer
to the number of L-walks generated in every stage. For s P rs‹s and p P rp‹s, let P s

p “

Xs
Lpp´1q`1 . . . X

s
Lp denote the p-th walk generated in stage s and let Ps “ tP s

p : p P rp‹su

denote the set of all walks generated in stage s. Let

P 1
“

ď

sPrs‹s

Ps, BpP 1
q “

ď

PPP 1

Ba,ℓ
pP q,

P “
ď

sPrs‹s : Xs is self-avoiding
Ps and BpPq “

ď

PPP
Ba,ℓ

pP q.

In accordance with  (iv) , we say that an pa, ℓq-block B is good if there are at most ϑ4n

vertices x P V` such that AℓpBq does not contain an x-absorber in H` and we call B bad
otherwise. We define events E1, E2, E3, and E4 as follows.

E1: For all x P V`, there are at least 5ϑ4n triples ps, p, iq with s P rs‹s, p P rp‹s, i P
rL{pap2k ` ℓqqs, and AℓpBa,ℓ

i pP
s
p qq XAx ‰ ∅;

E2: there are at most ϑ4n bad blocks in BpP 1q;

E3: there are at most n1{2 stages s P rs‹s such that Xs is not self-avoiding;

E4: Hs‹ is pϱ` n´1{12q-almost regular.
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We claim the following.

If E “ E1X . . .XE4 occurs, then P with B “ tB P BpPq : B is goodu satisfies  (i) –
 (iv) .

(4.5.7)

To see that this is true, we argue as follows. First observe that since H ´ X is pη{2q-
intersecting for all X Ď V of size at most ηn{2, the random k-graphs Hs with s P rs‹s

are pη{2q-intersecting. Thus if E4 occurs, there exists a balanced perfect fractional matching
in Hs‹ by Lemma  4.3.8 . This implies that there was a balanced perfect fractional matching
in Hs for all s P rs‹s0 and thus no fatal failure occured; otherwise Hs‹ would be equal to
the first such k-graph without a perfect fractional matching by construction.

Next note that if E1 X E3 occurs, the number of triples ps, p, iq with s P rs‹s, p P
rp‹s, i P rL{pap2k ` ℓqqs, and AℓpBa,ℓ

i pP
s
p qq X Ax ‰ ∅ such that Xs is self-avoiding

is at least 4ϑ4n for all x P V`. This together with the previous observation shows
that whenever E1 X E3 X E4 occurs we have that for all x P V`, there are at least 4ϑ4n

blocks B P BpPq with AℓpBq XAx ‰ ∅. If E2 now also occurs in addition to E1 X E3 X E4,
we lose at most ϑ4n blocks by dropping bad blocks which shows that  (iii) holds.

Finally, since we only consider good blocks,  (iv) holds, s‹ ¨ p‹ “ ϑ2n{L implies that  (i) 

holds by construction of P, and if E4 occurs,  (ii) holds because H ´ V pPq “ Hs‹ . This
proves ( 4.5.7 ).

Let us finish the proof assuming PrEs ě 1{5. By ( 4.5.7 ), this implies that choosing P̂
from all possible realisations of P such that PrP̂ “ Qs “ PrP “ Q | Es for all possible
realisations Q of P is a probabilistic construction as desired because for all e P E and i P

rL´ k ` 1s, Lemma  4.5.3 entails

PrDpXtqtPrLs P P̂ : tXi, . . . , Xi`k´1u “ es “ PrDpXtqtPrLs P P : tXi, . . . , Xi`k´1u “ e | Es

ď 5
ÿ

sPrs‹s

ÿ

pXtqtPrLsPPs
PrtXi, . . . , Xi`k´1u “ es

“ 5
ÿ

sPrs‹s

ÿ

pXtqtPrLsPPs
k! ωs´1peq

k!ωs´1p∅q

ď 5 ¨ s‹ ¨ p‹ ¨ k! ¨ 2 1
η
2n

k
ď
ϑ

L

1
nk´1 ,

which implies  (v) .
It remains to prove PrEs ě 1{5. This easily follows if PrEis ě 4{5 for all i P r4s, which

is what we prove next. For x P V` and s P rs‹s, let Yx,s denote the random variable
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counting the pairs pp, iq with p P rp‹s, i P rL{p2k ` ℓqs, and AℓipP
s
p q P Ax. Note that E1

occurs if Yx,s ě 5ϑ3n{s‹ for all x P V` and s P rs‹s. Observation  4.5.1 in conjunction with
Observation  4.5.4 shows that Yx,s stochastically dominates a binomial random variable
with parameters p‹

L
2k`ℓ

and ϑ1{2. Hence Chernoff’s inequality (Lemma  4.3.1 ) implies that

P

„

Yx,s ă
5ϑ3n

s‹

ȷ

ď P

„

Yx,s ď
1
2 ¨ ϑ

1{2
¨ p‹

L

2k ` ℓ

ȷ

ď expp´n1{4
q

and the union bound yields PrE1s ě 4{5.
For all x P V` and B P BpP 1q, Observation  4.5.4 implies

PrAℓ
pBq XAx “ ∅s ď p1´ ϑ1{2

q
a
ď ϑ5

{2.

This entails
exr|tx P V` : Aℓ

pBq XAx “ ∅u|s ď ϑ5n.

Using Markov’s inequality we obtain PrB is bads ď ϑ for all B P BpP 1q. This shows that
the expected value of the random variable counting the number of bad blocks in BpP 1q is
at most

ϑ ¨ s‹ ¨ p‹ ¨
L

ap2k ` ℓq “
ϑ4

2k ` ℓn ď ϑ4n{5.

Again using Markov’s inequality, this yields PrE2s ě 4{5.
For all s P rs‹s, Observation  4.5.2 implies that Xs is self-avoiding with probability at

least 1 ´ 2n´1{4. From this, we obtain that the expected value of the random variable
counting the stages s P rs‹s where Xs is not self-avoiding is at most 2n´1{4 ¨s‹ “ 2ϑ2n5{12 ď

n1{2{5. Using Markov’s inequality we conclude that PrE3s ě 4{5.
To see that PrE4s ě 4{5 holds, we show that all random k-graphs Hs with s P rs‹s0 are

almost regular with high probability. More precisely, for s P rs‹s0, let Es4 denote the event
that Hs is pϱ` sn´3{4q-almost regular. Our goal is to show

P
”

s
č

s1“0
Es1

4

ı

ě 1´ s exppn´1{15
q (4.5.8)

for all s P rs‹s0. This suffices because Es‹

4 Ď E4. We proceed by induction on s. First note
that PrE0

4 s “ 1. Next, assume that ( 4.5.8 ) holds for some s P rs‹´ 1s0. Then, Lemma  4.3.8 

guarantees that there is no fatal failure in stage s ` 1. For U “ V s ∖ tXs`1
t : t P rt‹su
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and x P
`

V s

k´1

˘

, Lemma  4.5.5 entails

P

„

dHsrUYxspxq “ p1˘ n´31{40
q

ˆ

1´ t‹
|V s|

˙

dHspxq
ˇ

ˇ

ˇ

ˇ

s
č

s1“0
Es1

4

ȷ

ě 1´ expp´n1{14
q.

Lemma  4.3.10 and the union bound yield PrEs`1
4 |

Şs
s1“0 Es1

4 s ě 1´ expp´n1{15q and thus
by induction hypothesis Pr

Şs`1
s1“0 Es1

4 s ě 1´ ps` 1q expp´n1{15q.

In the following Proposition  4.5.8 we employ the absorbers provided by Lemma  4.5.6 

to absorb sets of vertices X in the sense that for all suitable X, we find a selection of these
absorbers such that the selected absorbers can simultaneously absorb all vertices in X. As
this requires matching all vertices x P X to an x-absorber, we make use of the following
observation which follows easily by iteratively using Hall’s theorem and removing perfect
matchings.

Observation 4.5.7. Suppose G is a bipartite graph on 2n vertices with bipartition tV1, V2u

with |V1| “ |V2| “ n. For i P r2s, let δi “ mintdGpvq : v P Vi¸u. Then, there are at
least pδ1 ` δ2 ´ nq{2 disjoint perfect matchings in G.

Proposition 4.5.8. Let 1{n ! ϱ ! 1{L ! ϑ ! ν` ! η, 1{k. Suppose H` is an η-
intersecting k-graph on at most p1`ν`qn vertices with vertex set V` and edge set E` and H
is a ϱ-almost regular induced subgraph of H` on n vertices. Then, there is a probabilistic
construction of a collection P of L-paths in H together with a function σ : P Ñ rLs0 such
that the following holds.

(i) |P| ď ϑ2n{L;

(ii) c “
ř

PPP σpP q ě ϑ4n;

(iii) H ´ V pPq is 2ϱ-almost regular;

(iv) for all probabilistic constructions of a set X Ď V` with X X V pPq “ ∅ and |X| “ c,
there is a probabilistic construction of a collection P 1 of paths in H` such that the
following holds.

(iv.i) There is a bijection φ : P Ñ P 1 such that for all P P P, the path φpP q is
an pL ` σpP qq-path with V pφpP qq Ď V pP q Y X that has the same ordered
end-edges as P ;
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(iv.ii) for all e P E`, we have

Pre P EpP 1
qs ď

1
ϑ4nk´1 and Pre P EpBP 1

qs ď
1

Lnk´1 .

Proof. For the probabilistic construction of the collection P together with a function σ, we
will employ Lemma  4.5.6 . Then, for the probabilistic construction of P 1 we will randomly
absorb all vertices x P X into the paths in P; that is, we will randomly place every
vertex x P X in the center of an x-absorber in H` that is a subgraph of a path in P .

In more detail, we argue as follows. Let E “ EpHq. For x P V`, let Ax denote the set
of x-absorbers in H`. Choose ℓ such that ϑ ! ν`, 1{ℓ ! η, 1{k. Let a “ 1{ϑ. Lemma  4.5.6 

provides a probabilistic construction of a collection P of L-paths in H together with a
set B Ď

Ť

PPP Ba,ℓpP q such that the following holds.

(1) |P| ď ϑ2n{L;

(2) H ´ V pPq is 2ϱ-almost regular;

(3) |tB P B : AℓpBq XAx ‰ ∅u| ě 3ϑ4n for all x P V`;

(4) |tx P V` : AℓpBq XAx “ ∅u| ď ϑ4n for all B P B;

(5) Pre P EpPqs ď ϑ 1
nk´1 and Pre P EpBP qs ď 1

L
1

nk´1 for all e P E.

Let σ : P Ñ rLs0 with σpP q “ |B X Ba,ℓpP q| for all P P P and let c “ |B|. Then  (i) – (iii) 

hold.
For all pa, ℓq-blocks B in H and all x P V` with Ax X AℓpBq ‰ ∅, we fix one x-

absorber AxpBq P AℓpBq in H` for later use. For P as above and a probabilistic construction
of a set X Ď V` with XXV pPq “ ∅ and |X| “ c, we obtain P 1 through random absorption
of all elements of X into the paths in P as follows. Consider the auxiliary bipartite graph G
with bipartition tX,Bu and an edge between x P X and B P B if and only if AxXAℓpBq ‰ ∅.
Intuitively, edges in this graph represent possible absorptions of elements of X into the
adjacent blocks. Thus, we may think of perfect matchings in G as representations of valid
stategies for the absorption of all elements of X. Due to  (3) and  (4) , we have dGpxq ě 3ϑ4n

for all x P X and dGpBq ě c´ ϑ4n for all B P B. Therefore, Observation  4.5.7 guarantees
the existence of a set of ϑ4n edge-disjoint perfect matchings in G. Pick one matching
uniformly at random from this set and interpret this matching as a bijection µ : X Ñ B.
Let φ denote the bijection defined on P that maps P P P to the path obtained from P

when placing µ´1pBq in the center of Aµ´1pBqpBq for all B P B X Ba,ℓpP q. Let P 1 “ Impφq.
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It remains to check that this defines a probabilistic construction of a collection P 1 of
paths satisfying  (iv.ii) . For all x P

`

V`

k´1

˘

and all possible realisations Q of P, there is at
most one block B P

Ť

PPQ Ba,ℓpP q with dBpxq ě 1. Hence, for all x P V` and x P
`

V`

k´1

˘

, we
have

Prx P X ^ dµpxqpxq ě 1 | P , Xs ď 1
ϑ4n

(4.5.9)

by construction of µ. Thus, for all e P E`,  (5) yields

Pre P EpP 1
qs ď Prx XX “ ∅^ e P EpPqs `

ÿ

xPe

Prx P X ^ dµpxqpe∖ txuq ě 1s

 (5) 

ď
ϑ

nk´1 `
ÿ

xPe

Prx P X ^ dµpxqpe∖ txuq ě 1^ dPpe∖ txuq ě 1s

( 4.5.9 )
ď

ϑ

nk´1 `
ÿ

xPe

1
ϑ4n

PrdPpe∖ txuq ě 1s

ď
ϑ

nk´1 `
ÿ

xPe

1
ϑ4n

ÿ

vPV`

Prpe∖ txuq Y tvu P EpPqs

 (5) 

ď
ϑ

nk´1 ` j ¨
1
ϑ4n

¨ p1` ν`qn ¨
ϑ

nk´1 ď
1

ϑ4nk´1 .

Furthermore, we obtain

Pre P EpBP 1
qs “ Pre P EpBPqs ď 1

L

1
nk´1 ,

which completes the proof.

4.6 From paths to cycles

In this section, we perform the step from the yield of Proposition  4.4.1 to the decomposition
into cycle factors as in our main theorem. We do this by describing a random process
which converts one almost spanning path collection into a cycle factor and subsequently
using another random process which repeatedly applies the first one to transform path
collection after path collection. The first step is done in Lemma  4.6.3 and the second in
Proposition  4.6.4 .

We begin with the following somewhat standard lemma, which states that in any η-
intersecting k-graph, there is a small (reservoir) set such that between any two ordered
edges, there are many short paths with all “inner” vertices in this set. Complementing the
notation BP , for a path P “ v1, . . . , vℓ, we define the interior of P as (the subpath) P ˝ “
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vk`1, . . . , vℓ´k if ℓ ě 2k ` 1 and P ˝ “ P r∅s otherwise. The vertex set of P ˝ is the set of
inner vertices of P . For a collection P of paths, we define P˝ “

Ť

PPP P
˝.

Lemma 4.6.1. Suppose 1{n ! β, ϱ ! 1{ℓ0, 1{ℓ1 ! η, 1{k, where ℓ0 ď ℓ1. Suppose H is
an η-intersecting ϱ-almost regular k-graph on n vertices with vertex set V and edge set E.
Then there is a set R Ď V such that the following holds.

(i) βn{2 ď |R| ď βn;

(ii) for all ááás,
áá
t P

ááááááá
E with sX t “ ∅ and all integers ℓ P rℓ0, ℓ1s, the number of ááás–áá

t-paths P
in H with |V pP ˝q| “ ℓ and V pP ˝q Ď R is at least β|R|ℓ;

(iii) H ´R is 2ϱ-almost regular.

This follows easily from Lemma  4.3.11 by considering a random set of vertices in which
each vertex is included independently at random (for instance, with probability 3β{4) and
using Chernoff’s inequality, McDiarmid’s inequality, and the union bound to show that
the random set has the desired properties with high probability. We omit the calculations,
which are standard by now.

The next lemma ensures that under the right conditions, many tuples can be connected
in a probabilistically well behaved way. It will later be useful when building the cycle
factor in Lemma  4.6.3 .

Lemma 4.6.2. Suppose 1{n ! ζ ! β, 1{ℓ1, 1{ℓ0 ! 1{k, where ℓ0 ď ℓ1. Suppose H is a k-
graph on n vertices with vertex set V and edge set E. Suppose that Q “ tááás1,

áá
t1, . . . ,

ááásm,
áá
tmu Ď

ááááááá
E is a random set with m ď ζn, eX e1 “ ∅ for all distinct áááe,áááe1 P Q, and Práááe P Qs ď ζ

nk´1

for every áááe P
ááááááá
E. Further, for all i P rms, let λi P rℓ0, ℓ1s and suppose that Pi is a set of at

least βnλi ááási–
áá
ti-paths with λi inner vertices. Then, there is a probabilistic construction of a

collection W Ď
Ť

iPrms
Pi of paths with |WXPi| “ 1 for all i P rms and Pre P EpWqs ď

ζ1{2

nk´1

for every e P E.

Proof. We aim to connect the ordered edges ááási and áá
ti by choosing one of the paths in Pi

uniformly at random. However, since the paths shall be vertex-disjoint, we employ an
iterative procedure where in each step we only consider those paths in Pi which are
vertex-disjoint from all previously chosen ones and all ordered edges in Q.

Suppose we have already chosen paths W1, . . . ,Wi´1 for some i P rm´ 1s, where Wj is
an ááásj–áá

tj-path with λj inner vertices for all j P ri´ 1s. Then

ˇ

ˇ

ˇ

ď

jPri´1s

V pWjq Y
ď

ááePQ
e
ˇ

ˇ

ˇ
ď ℓ1 ¨m` 2pk ´ 1q ¨m ď

β

2n .
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Thus, since |Pi| ě βnλi , there are still at least βnλi ´ β
2n

λi “
β
2n

λi paths in P P Pi

with V pP q X p
Ť

jPri´1s
V pWjq Y

Ť

ááePQ eq “ ∅. Choose one of these uniformly at random
as Wi.

Now, set W “ tW1, . . . ,Wmu and let us analyse the probabilities. For all j P rks0, x P
`

V
j

˘

and i P rms, the number of ááási–áá
ti-paths W in H with |V pW ˝q| “ λi and x Ď V pW ˝q

is at most ℓk1 ¨ n
λi´j. Therefore, by the choice of W, this implies Prx Ď V pW ˝

i q |

ááás1, . . . ,
ááásm,

áá
t1, . . . ,

áá
tms ď

2ℓk1
βnj

. Furthermore, for all j P rks and x P
`

V
j

˘

, the number of
ordered edges áááe P

ááááááá
E with x Ď e is at most kk ¨ nk´j and hence PrDáááe P Q : x Ď es ď ζkk

nj´1

holds. Thus, for all e P E, we obtain

Pre P EpWqs ď
ÿ

iPrms

Pre Ď si Y V pW
˝
i q _ e Ď V pW ˝

i q Y tis

ď
ÿ

iPrms

ÿ

yĎe

ÿ

ááe1Ptáási,
áá
tiu

Pre∖ y Ď V pW ˝
i q | y Ď e1

sPry Ď e1
s

ď
ÿ

yĎe

2ℓk1
βn|e∖y|

ÿ

iPrms

ÿ

ááe1Ptáási,
áá
tiu

Pry Ď e1
s

“
4ℓk1m
βnk

`
ÿ

yĎe : y‰∅

2ℓk1
βn|e∖y|PrD

áááe1
P Q : y Ď e1

s

ď
4ζℓk1
βnk´1 ` 2k ¨ ζk

k ¨ 2ℓk1
βnk´1 ď

ζ1{2

nk´1 ,

which completes the proof.

In the following lemma, we transform a path collection as yielded by Proposition  4.4.1 

into a cycle factor. It resembles the usual final step in a proof by absorption, in particular,
this is where we will use Proposition  4.5.8 . However, in order to subsequently apply this
construction process multiple times in the proof of Proposition  4.6.4 without ruining certain
quasirandom properties, we need to construct the cycle factor probabilistically and take
care that the probability for any edge to occur in the constructed cycle factor is small
enough. Figure  4.6.1 illustrates this process.

Lemma 4.6.3. Suppose 1{n ! µ, 1{L ! δ ! ϱ ! η, 1{k. Suppose H is a k-graph on n

vertices with vertex set V and F is an η-intersecting ϱ-almost regular spanning subgraph
of H. Let P Ď H ´ F be a collection of L-paths with |V pPq| ě p1 ´ µqn and let C be a
cycle factor on n vertices of girth at least L3.

Then, there is a probabilistic construction of a copy C 1 of C in H such that C 1 Ď P Y F
and for every e P EpF q of type τ P T ∖ tk-endu, we have Pre P EpF X C 1qs ď pτ ,
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where p1-con “
δ1{2

nk´1 , pj-end “
1

δknk´j for all j P rk ´ 1s, and pj-con “ plo “
1

δknk´1 for
all j P rks∖ t1u.

Proof. We use the absorption method to transform the almost spanning collection of
paths P into the desired cycle factor C 1. To this end, we perform the usual steps of a proof
via absorption in a k-graph similar to F rV ∖ V pPqs. That is, we set aside the absorbing
structure (via Proposition  4.5.8 ), cover almost everything (via Proposition  4.4.1 ), connect
all the paths in the approximate covering, in the absorbing structure, and, in this case,
paths in P (via Lemma  4.3.11 ), and finally, we absorb the remaining vertices. Note however,
that here we actually want to perform all these steps as a probabilistic construction and
analyse the probabilities for edges of F to occur in F X C 1.

Suppose

1{n ! µ, 1{L ! δ ! ϱ ! 1{L1
! µ1

! β ! ϑ ! ℓ1 ! ℓ0 ! η, 1{k . (4.6.1)

We say a set P̂ Ď P is good if for V̂ “ V ∖ V pP̂q, we have |V̂ | P r δ2n,
3
2δns, for

all x,y P
`

V
k´1

˘

, we have |NF pxq X NF pyq X V̂ | ě η
2 |V̂ |, and F rV̂ s is 2ϱ-almost regu-

lar. Consider a random selection Prand of paths in P which includes every path in P
independently with probability 1´ δ. Then McDiarmid’s inequality (Lemma  4.3.2 ) guar-
antees that PrPrand is goods ě 99

100 , say. Denote the set of good sets by P and pick a
set P 1 “ tP1, . . . , Pmu at random from P such that

PrP 1
“ Qs “ PrPrand “ Q | Prand P Ps

for all Q P P . Then P 1 is good and we set V1 “ V∖V pP 1q. For P P P , we have V pP q Ď V1 if
and only if P R P 1, and each path in P is included in P 1 independently with probability 1´δ.
Thus, for distinct rP1, . . . , rPk P P , we have

P
”

ď

iPrks

V p rPiq Ď V1

ı

“
PrPrand P P ^ @i P rks : rPi R Prands

PrPrand P Ps

ďPr@i P rks : rPi R Prands ¨
100
99 ď

100δk
99 . (4.6.2)

Next, we describe the construction of a copy C 1 of C and analyse Pre P EpF X C 1q | P 1s

for all e P E (note that fixing P 1 in particular fixes V1). In the end, we use this to deduce
the upper bound on the probabilities for different types of edges of F to lie in EpF X C 1q.
Since we perform several probabilistic constructions sequentially, in principle, we could

147



P

P 1 Pi

xW S

áááááui
ááááávi

X

R

V1

Figure 4.6.1: Transforming a path collection into a Hamiltonian cycle.

obtain all the probabilities conditioned on all previous steps. However, for our analysis it
suffices to condition only on the choice of P 1.

Set aside a set R Ď V1 provided by applying Lemma  4.6.1 with F rV1s, β, ℓ0, ℓ1, 2ϱ, η{2
here taking the roles of H, β, ℓ0, ℓ1, ϱ, η in Lemma  4.6.1 . Then β

2 |V1| ď |R| ď β|V1| and
for all ááás,

áá
t P

ááááááá
EpF q with sX t “ ∅ and all integers ℓ P rℓ0, ℓ1s, the number of ááás–áá

t-paths P
in H with |V pP ˝q| “ ℓ and V pP ˝q Ď R is at least β|R|ℓ. Further, Lemma  4.6.1 guarantees
that F rV1 ∖Rs is 4ϱ-almost regular.

Since we later only want to deal with edges of F rV1s, we extend all paths in P 1 by an
edge of F at each end. More precisely, for i P rms, let ááááai be the ordered starting edge and ááá

bi

be the ordered ending edge of Pi P P 1 and inductively choose ááááui “ pu
1
i , . . . , u

k
i q P

ááááááá
EpF q

and áááávi “ pv
1
i , . . . , v

k
i q P

ááááááá
EpF q for each i P rms as follows.

Suppose that for some i P rms, we already have defined ordered edges ááááui1 ,
áááávi1 P

ááááááá
EpF q

for all i1 P ri´ 1s such that ááááui1Pi1
áááávi1 is a path in H. Set

Ui “ V1 ∖
´

R Y
ď

i1Pri´1s

ui1 Y vi1
¯

and note that since m ď n
L

, we know that |Ui| ě p1´ 3
2βq|V1| holds. Moreover, since P 1 is

good, we know that for all x,y P
`

V
k´1

˘

and U Ď V1 with |U | ě p1´ 2βq|V1|, we have

|NF pxq XNF pyq X U | ě
η

3 |V1| and |NF pxq X U | ě
η

3 |V1| . (4.6.3)

Suppose for some j P rks, vertices uj
1

i are given for all j1 P tj`1, . . . , ku. Then choose uji P
NF pu

j`1
i , . . . , uki , a

1
i , . . . , a

j´1
i qXUi uniformly at random (note that due to ( 4.6.3 ), this means
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that uji is chosen uniformly at random from a set of size at least η
3 |V1|). Subsequently,

suppose that for some j P rks, vertices vj
1

i are given for all j1 P rj ´ 1s. Then choose

vji P NF pb
j`1
i , . . . , bki , v

1
i , . . . , v

j´1
i q X pUi ∖ uiq

uniformly at random. By this definition, the edges u1, v1, . . . , um, vm are pairwise disjoint.
Furthermore, observe that the definition of ááááui and áááávi together with ( 4.6.3 ) yield the
following. For all j P rks, i P rms, and x P

`

V
j

˘

,

Prx Ď ui _ x Ď vi | P 1
s ď 2kj

ˆ

3
η|V1|

˙j

ď
ℓ0

|V1|j
. (4.6.4)

Now set V2 “ V1∖pRY
Ť

iPrms
uiYviq and note that by ( 4.6.3 ), F rV2s is η{3-intersecting.

Furthermore, since F rV1∖Rs is η{3-intersecting and 4ϱ-almost regular and |
Ť

iPrms
uiYvi| ď

2kn
L

, we know that F rV2s is 5ϱ-almost regular.
Now choose ν` such that ϑ ! ν` ! η, 1{k and apply Proposition  4.5.8 with F rV1s, F rV2s,

5ϱ, L1, ϑ, ν`, η{2 here in place of H`, H, ϱ, L, ϑ, ν`, η there.
This engenders a probabilistic construction of a pair pS, σq where S is a collection

of L1-paths in F rV2s and σ : S Ñ rL1s0 is a function such that the following holds.

(S1) |S| ď ϑ2|V2|{L
1;

(S2) c “
ř

SPS σpSq ě ϑ4|V2|;

(S3) setting V3 “ V2 ∖ V pSq, we have that F rV3s is 10ϱ-almost regular;

(S4) for all probabilistic constructions of a set X Ď V1 with X X V pSq “ ∅ and |X| “ c,
there is a probabilistic construction of a collection S 1 of paths in F rV1s such that the
following holds.

(S4.1) There is a bijection φ : S Ñ S 1 such that for all S P S, the path φpSq is
an pL1 ` σpSqq-path with V pφpSqq Ď V pSq Y X that has the same ordered
end-edges as S;

(S4.2) for all e P EpF q, we have

Pre P EpS 1
q | P 1

s ď
1

ϑ4|V2|k´1 and Pre P EpBS 1
q | P 1

s ď
1

L1|V2|k´1 .

The next step is to cover almost all vertices of F rV3s by long paths. As in the other
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steps, we need to do this in a probabilistic way. This will be achieved by utilising a weak
version of Proposition  4.4.1 followed by some random selections.

By  (S1) , F rV3s is η{4-intersecting and due to property  (S3) , it is 10ϱ-almost r-regular
for some r ě η

5

`

|V3|

k´1

˘

. Thus, setting r1 “ p1 ´ 10ϱq r
k

yields kr1 ď dF rV3spvq ď p1 ` 21ϱqkr1

for all v P V3. Hence, we can apply Proposition  4.4.1 with F rV3s, 21ϱ, L1, η{4, µ1, r1 here
instead of H, ϱ, L, η, µ, r there. As remarked after the statement of Proposition  4.4.1 , the
proof also provides edge-disjoint collections W1, . . . ,Wr1 of L1-cycles in F rV3s with V pWiq ě

p1´ µ1q|V3| for all i P rr1s. Let xW be a random collection of L1-paths obtained by choosing
one of W1, . . . ,Wr1 uniformly at random and then independently deleting k´ 1 consecutive
edges in each cycle. Note that |V pxWq| ě p1´ µ1q|V3| and that for each e P EpF q, we have

Pre P EpxWq | P 1
s ď

1
r1
ď

ℓ0

|V1|k´1 (4.6.5)

and

Pre P EpBxWq | P 1
s ď

2
L1r1

ď
1

L12{3|V1|k´1 . (4.6.6)

Next, we will utilise Lemma  4.6.2 applied to the ordered end-edges of the paths in xW ,
the ordered end-edges of the paths in S, and the ordered edges ááááu1,

ááááv1, . . . ,
ááááum,

áááávm to connect
the respective paths to cycles. First, we say which paths we aim to put into one cycle and
afterwards we prepare for the application of Lemma  4.6.2 .

Let C1, . . . , Ch be the cycles in C and for i P rhs, set Li “ |V pCiq| ě L3. We now
inductively define collections of paths Z1, . . . ,Zh which we use to construct copies of
the cycles C1, . . . , Ch. Suppose that for i P rhs, we already have chosen collections of
paths Z1, . . . ,Zi´1. Next, we pick a set Zi of previously unused paths. More precisely,
for i1 P rms, write P 1

i1 “
ááááui1Pi1

áááávi1 and choose

Zi Ď
`

tP 1
1, . . . , P

1
mu Y

xW Y S
˘

∖
ď

jPri´1s

Zj

such that |Zi X S| is maximal with |Zi| ¨ ℓ0 ` |V pZiq| `
ř

SPSXZi σpSq ď Li and such that
subject to this |Zi| is maximal. Observe that since |V ptP 1

1, . . . , P
1
muY

xWYSq| ě n´ϑ4|V2|,
since each path in tP 1

1, . . . , P
1
mu Y

xW Y S has at most 2L vertices (and for a path S P S,
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we in fact have |V pSq| ` σpSq ď 2L), and by  (S2) , this definition implies

Li ´ 2L´ ℓ0 ă |Zi| ¨ ℓ0 ` |V pZiq| `
ÿ

SPSXZi

σpSq ď Li . (4.6.7)

Therefore, Li ě L3 entails |Zi| ě L and so |Zi|pℓ1 ´ ℓ0q ě 2L´ ℓ0. Together with ( 4.6.7 ),
this implies that there are integers λ1

i , . . . , λ
|Zi|
i P rℓ0, ℓ1s with

ÿ

jPr|Zi|s

λji “ Li ´
´

|V pZiq| `
ÿ

SPSXZi

σpSq
¯

.

Next, we aim to connect the paths in Zi by means of Lemma  4.6.2 to a cycle Zi for
every i P rhs, using paths with λ1

i , . . . , λ
|Zi|
i inner vertices. To this end, list the paths in Zi

arbitrarily as A1
i , . . . , A

|Zi|
i for all i P rhs, and for all i P rhs and g P r|Zi|s, let ááásgi and áá

tgi be the
starting and ending edge of Agi , respectively. Further, write p‹ “

ř

iPrhs
|Zi| and for p P rp‹s,

let ι1ppq, ι2ppq be such that pι1ppq, ι2ppqq is the p-th element in the lexicographic ordering
of the tuples in tpi, gq : i P rhs, g P r|Zi|su. Now, for every p P rp‹s, set ááásp “

ááás
ι2ppq`1
ι1ppq

(where
we view the upper index modulo ι2ppq) and áá

tp “
áá
t
ι2ppq

ι1ppq
. Note that when for every p P rp‹s,

we connect ááásp and áá
tp by a path with λι2ppq

ι1ppq
inner vertices, we obtain cycles Z1, . . . , Zh such

that |V pZiq| “ Li ´
ř

SPSXZi σpSq for all i P rhs.
Set Q “ tááás1,

áá
t1, . . . ,

ááásp‹
,

áá
tp‹
u and note that

|Q| ď 2
`

m` |xW | ` |S|
˘

ď
2n
L
`

2|V1|

L1
`

2ϑ2|V2|

L1
ď
|V1|

L11{2 .

Further, by  (S4.2) , by ( 4.6.4 ) (together with the union bound), and by ( 4.6.6 ) we know
that for e P EpF q,

Práááe P Q | P 1
s ď

ϑ

L1|V2|k´1 `
1

L1{2|V1|k´1 `
1

L12{3|V1|k´1 ď
1

L11{2|V1|k´1 . (4.6.8)

For i P rp‹s, let Pi be the set of all ááási–áá
ti-paths P with |V pP ˝q| “ λ

ι2piq
ι1piq and V pP ˝q Ď R.

Recall that the properties of R guarantee that |Pi| ě
β
2 |R|

λ
ι2piq

ι1piq ě βℓ1`2|V1|
λ
ι2piq

ι1piq .
Now we apply Lemma  4.6.2 with F rV1s, Q,

`

λ
ι2piq
ι1piq

˘

iPrp‹s
, pPiqiPrp‹s, 1

L11{2 , βℓ1`2, ℓ1, ℓ0

here instead of H, Q, pλiqiPrms, pPiqiPrms, ζ, β, ℓ1, ℓ0 there.
Lemma  4.6.2 then yields a probabilistic construction of a collection of paths W 1 Ď
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Ť

iPrp‹s
Pi with |W 1 X Pi| “ 1 for all i P rp‹s such that for every e P EpF q, we have

Pre P EpW 1
q | P 1

s ď
1

L11{4|V1|k´1 . (4.6.9)

This leaves us with cycles Z1, . . . , Zh such that for all i P rhs, the cycle Zi contains the
paths in Zi as subpaths and |V pZiq| “ Li ´

ř

SPSXZi σpSq. Observe that in particular,
every element of S is a subpath in one of the cycles Z1, . . . , Zh.

We aim to absorb the set X “ V1 ∖
Ť

iPrhs
V pZiq of not yet covered vertices into the

paths in S. For this, note that since |V pZiq| “ Li ´
ř

SPSXZi σpSq for all i P rhs, we
have |X| “

ř

SPS σpSq “ c because
ř

iPrhs
Li “ n. So property  (S4) indeed allows us to

absorb X into the cycles Zi. More precisely, there is a probabilistic construction of a set S 1

of vertex-disjoint paths in F rV1s such that

• there is a bijection φ : S Ñ S 1 such that for all S P S, the path φpSq is an pL1`σpSqq-
path with V pφpSqq Ď V pSq YX that has the same end-tuples as S;

• for all e P EpF q, we have

Pre P EpS 1
q | P 1

s ď
1

ϑ4|V2|k´1 and Pre P EpBS 1
q | P 1

s ď
1

L1|V2|k´1 . (4.6.10)

Due to the properties of S 1, replacing the every path S P S X Zi in the cycle Zi by the
path φpSq for all i P rhs leaves us with vertex-disjoint cycles C 1

1, . . . , C
1
h with |C 1

i| “ Li,
that is, C 1

i is a copy of Ci for all i P rhs. Thus we have constructed a copy of the cycle
factor C.

Finally, let us collect the upper bounds for the probabilities for the edges of different
types to occur in the constructed cycle factor C 1 “

Ť

iPrhs
C 1
i. First note that for i1 P rms

and e P EpF q which is not ending (with respect to P), we have that e P Epááááui1
ááááai1q can only

happen for some i1 P rms if e “ ui1 and the analogous remark holds for ááá
bi1

áááávi1 . Therefore,
given e P EpF q which is not ending, ( 4.6.4 ) (together with the union bound) yields

P
”

e P
ď

i1Prms

Epááááui1
ááááai1q Y Ep

ááá
bi1

áááávi1q | P 1
ı

ď
1

L1{2|V1|k´1 . (4.6.11)

For j P rk ´ 1s and a j-ending edge e P EpF q, we consider all partitions tx1,x2u of e
for which there exists a P P P such that x1 is an end-set of P . The event e P Epááááui1

ááááai1q

(respectively e P Epááá
bi1

áááávi1q) can only happen for some i1 P rms, if for one of these partitions, x1
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is an end-set of Pi1 P P 1 and x2 Ď ui1 (respectively x2 Ď vi1). Note that for a fixed realisation
of P 1, this can happen for at most one partition and one i1 P rms. Further, since e is j-ending,
for each such partition, we have |x1| ď j. Thus, (  4.6.4 ) implies that

P
”

e P
ď

i1Prms

Epááááui1
ááááai1q Y Ep

ááá
bi1

áááávi1q | P 1
ı

ď
ℓ0

|V1|k´j
. (4.6.12)

Note that the probabilities analysed after ( 4.6.2 ) were the probabilities for edges of F to
occur in some subpath conditioned on the choice of P 1. While we do not need to make use
of this for most types, we will do so for 1-concentrated edges. First note that for e P EpF q,
if e P EpF X C 1q, then

e P EpxWq Y EpW 1
q Y EpS 1

q Y
ď

i1Prms

Epááááui1
ááááai1q Y Ep

ááá
bi1

áááávi1q , (4.6.13)

and if e is not ending, then in addition e Ď V1 holds. If e P EpF q is 1-concentrated with
respect to P , for the event e Ď V1 to occur, V pP q Ď V1 has to hold for each of the k paths
in P which contain a vertex of e. Therefore, using ( 4.6.13 ) together with the bounds on
the respective probabilities in ( 4.6.5 ), (  4.6.9 ), (  4.6.10 ), (  4.6.11 ), and ( 4.6.2 ), entails

Pre P EpF X C 1
qs “ P

“

e P EpF X C 1
q | e Ď V1

‰

Pre Ď V1s ď
L1

|V1|k´1
100δk

99 ď
δ1{2

nk´1 .

If e P EpF q is j-ending (with respect to P) for a j P rk ´ 1s, ( 4.6.13 ) together with the
bounds in ( 4.6.5 ), (  4.6.9 ), (  4.6.10 ), and ( 4.6.12 ) give that

Pre P EpF X C 1
qs ď P

“

e P EpxWq Y EpW 1
q Y EpS 1

q
‰

` P
”

e P
ď

i1Prms

Epááááui1
ááááai1q Y Ep

ááá
bi1

áááávi1q
ı

ď
L1

|V1|k´1 `
ℓ0

|V1|k´j
ď

1
δknk´j

.

Lastly, if e P EpF q is neither 1-concentrated nor ending, ( 4.6.13 ) together with ( 4.6.5 ),
( 4.6.9 ), (  4.6.10 ), and ( 4.6.11 ) entail that

Pre P EpF X C 1
qs ď

L1

|V1|k´1 ď
1

δknk´1 .

Summarised, we provided a probabilistic construction of a cycle factor C 1 which is a
copy of the cycle factor C such that for every e P EpF q, the probability Pre P EpF X C 1qs

is bounded as claimed in the statement.
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The next proposition says that given an approximate decomposition of the edge set
into approximate partitions of the vertex set into long paths, that is, given the setup after
applying Proposition  4.4.1 , we can indeed obtain an approximate decomposition of the
edge set into given cycle factors of not too small girth.

Proposition 4.6.4. Suppose 1{n ! 1{L ! µ ! ϱ ! η, 1{k. Suppose H is a k-graph
on n vertices with vertex set V and F is an η-intersecting ϱ-almost regular spanning
subgraph of H. Suppose P1, . . . ,Pr are edge-disjoint collections of L-paths in H ´ F

with |V pPiq| ě p1´ µqn for all i P rrs such that for all e P
`

V
k

˘

, we have

(i) |Ilopeq| ď µr;

(ii) |Ij-conpeq| ď 2L2
nk´j for all j P rk ´ 1s and |Ik-conpeq| ď 2L2

n;

(iii) |Ij-endpeq| ď nk´j

L1{2 for all j P rk ´ 1s.

Then, for all cycle factors C1, . . . , Cr on n vertices of girth at least L3, there are edge-disjoint
copies of C1, . . . , Cr in H.

Proof. In the following, we will analyse a random process in which we utilise Lemma  4.6.3 

to transform each collection of paths Pi in a fairly uniform way into a cycle factor C 1
i that

is a copy of Ci.
Suppose µ ! δ ! ϱ and define a random process inductively as follows. Suppose that

for some i P rrs and all j P ri ´ 1s and x P
`

V
k´1

˘

, we have defined a cycle factor C 1
j in H

and a t0, 1u-valued random variable Y x
j . Further, set C 1

ăi “
Ť

jPri´1s
C 1
j.

Let Ei be the event that for all x P
`

V
k´1

˘

, we have that dFXC1
ăi
pxq ď δ1{4n. If Ei

does not occur, we set C 1
i “ ∅ and choose Y x

i |Eci
such that PrY x

i “ 1 | pY x
j qjPri´1s, Eci s “

ř

ePpVkq : xĎe pτpe,iq. In the end, we will show that with high probability, Ei occurs for
all i P rrs.

If Ei occurs, it follows that for all x,y P
`

V
k´1

˘

, we have

|NF´C1
ăi
pxq XNF´C1

ăi
pyq| ě |NF pxq XNF pyq| ´ 2δ1{4n ě

η

2n

and that F ´ C 1
ăi is 2ϱ-almost regular. This means that if Ei occurs, we may apply

Lemma  4.6.3 , with H, F´C 1
ăi, L, Ci, Pi, η{2, 2ϱ, δ, µ here instead of H, F , L, C, P , η, ϱ, δ, µ

there, to obtain a probabilistic construction of a cycle factor C 1
i in H such that

• C 1
i is a copy of the cycle factor Ci;
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• EpC 1
iq Ď EpPiq Y EpF ´ C 1

ăiq (in particular, C 1
i is edge-disjoint from every cycle

factor C 1
j for all j P ri´ 1s);

• Pre P EpF X C 1
iq | pY

x
j qjPri´1s, Eis ď pτpe,iq for every e P

`

V
k

˘

where p1-con “
δ1{2

nk´1 ,
pj-end “

1
δknk´j for all j P rk ´ 1s, pk-end “ 0, and pj-con “ plo “

1
δknk´1 for all j P

rks ∖ t1u (here pk-end “ 0 holds since if e P
`

V
k

˘

is k-ending with respect to Pi,
then e R EpF q).

Denoting the indicator variable of the event dFXC1
i
pxq ě 1 by Ix

i for every x P
`

V
k´1

˘

, this
definition of C 1

i implies PrIx
i “ 1 | pY x

j qjPri´1s, Eis ď
ř

ePpVkq : xĎe pτpe,iq and we set Y x
i |Ei “

Ix
i |Ei . Thus, for all x P

`

V
k´1

˘

, we have

ˇ

ˇti P rrs : dFXC1
i
pxq ě 1u

ˇ

ˇ ď
ÿ

iPrrs

Y x
i . (4.6.14)

By definition, we have that PrY x
i “ 1 | pY x

j qjPri´1ss ď
ř

ePpVkq : xĎe pτpe,iq holds for
all i P rrs and this entails that for all x P

`

V
k´1

˘

, we have

ÿ

iPrrs

E
“

Y x
i “ 1 | pY x

j qjPri´1s

‰

ď
ÿ

ePpVkq : xĎe

ÿ

τPT
pτ |Iτ peq|

 (i) – (iii) 

ď n
´

µr ¨
1

δknk´1 ` r ¨
δ1{2

nk´1 ` 2
ÿ

jPrk´1s∖t1u

2L2
nk´j 1

δknk´1 `
ÿ

jPrk´1s

nk´j

L1{2
1

δknk´j

¯

ď
δ1{3n

2 .

Thus, we obtain by Freedman’s inequality (Lemma  4.3.3 ) that

P
”

ÿ

iPrrs

Y x
i ě δ1{3n

ı

ď expp´n1{2
q . (4.6.15)

Suppose now that
ř

iPrrs
Y x
i ď δ1{3n holds for all x P

`

V
k´1

˘

. Then by ( 4.6.14 ), we conclude
that dFXC1

ăi
pxq ď δ1{4n holds for all i P rrs and x P

`

V
k´1

˘

, meaning that the event Ei occurs
for all i P rrs. Consequently, by ( 4.6.15 ) and the union bound we conclude that

P
”

č

iPrrs

Ei
ı

ě P

„

ÿ

iPrrs

Y x
i ď δ1{3n for all x P

ˆ

V

k ´ 1

˙ȷ

ą 0 .

Thus, with positive probability it happens that Ei occurs for all i P rrs, meaning that in
each step i of this random process we construct a copy of Ci that is edge-disjoint from
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all previously constructed cycle factors. This yields edge-disjoint copies of C1, . . . , Cr, as
desired.

4.7 Proof of Theorem  4.1.3 

We now prove our main theorem by combining Propositions  4.4.1 and  4.6.4 .

Proof of Theorem  4.1.3 . Suppose 1{n ! ϱ, 1{L ! µ ! ϱF ! ε ! η, 1{k. Suppose H

is an η-intersecting ϱ-almost r-regular k-graph on n vertices. Let r1 “ p1 ´ εqr{k and
suppose C1, . . . , Cr1 are cycle factors, whose girth is at least L. We show that there is a
suitable spanning subgraph F of H such that Proposition  4.4.1 guarantees the existence
of collections P1, . . . ,Pr1 of paths in H ´ F that we can connect to cycles forming a copy
of Ci for all i P rr1s via Proposition  4.6.4 .

Let V “ V pHq and E “ EpHq. Let F be a random spanning subgraph of H for which
every edge e P E is included in EpF q independently at random with probability p “ ε´ 2ϱ.
Then Chernoff’s inequality (Lemma  4.3.1 ) and the union bound show that with positive
probability F is an ε2η{2-intersecting 2ϱ-almost pr-regular spanning subgraph of H such
that H ´ F is η{2-intersecting. From now on, let F denote such a subgraph.

For all v P V , we have

dH 1pvq ě pp1´ ϱq ´ p1` 2ϱqpε´ 2ϱqqr ě kr1

and
dH 1pvq ď pp1` ϱq ´ p1´ 2ϱqpε´ 2ϱqqr ď p1` 4ϱqkr1.

Thus with 4ϱ, L1{3, η{2, µ, H 1 playing the roles of ϱ, L, η, µ, H, Proposition  4.4.1 yields
edge-disjoint collections P1, . . . ,Pr1 of L1{3-paths in H 1 with |V pPiq| ě p1´µqn for all i P rr1s

such that the following holds for all e P
`

V
k

˘

.

• |Ilopeq| ď µr1;

• |Ij-conpeq| ď nk´j{pη{2q2L1{3 for all j P rk ´ 1s and |Ik-conpeq| ď n{pη{2q2L1{3 ;

• |Ij-endpeq| ď nk´j{L1{6 for all j P rk ´ 1s.

Since F is 2ϱ-almost regular, F is in particular ϱF -almost regular. Consequently, with L1{3, µ,
ϱF , ε2η{2, H, F playing the roles of L, µ, ϱ, η, H, F , Proposition  4.6.4 yields copies of the
given cycle factors as desired.
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4.8 Concluding remarks

In this paper, we prove a strong generalization of both the well-known Dirac-type result
for the existence of one Hamiltonian cycle in large k-graphs due to Rödl, Ruciński, and
Szemerédi [ 98 – 100 ] and a result concerning asymptotically optimal packings of Hamiltonian
cycles in graphs by Ferber, Krivelevich, and Sudakov [ 36 ]. In fact, our result even applies
to cycle factors of large girth.

It was recently proved independently by Lang and Sanhueza-Matamala [ 77 ] and by
Polcyn, Reiher, Rödl, and Schülke [ 93 ] that every large k-graph on n vertices with δk´2pHq ě

p5{9` op1qq
`

n
2

˘

contains a Hamiltonian cycle. We wonder whether such k-graphs actually
contain p1´ op1qq regkpHq{k edge-disjoint Hamiltonian cycles.

There are yet other sufficient conditions for Hamiltonicity in hypergraphs, see for
instance [ 102 ]. It would be interesting to know which other sufficient conditions imply a
packing result similar to Theorem  4.1.1 . Another tempting question in this direction is
as follows. Call a k-graph H robustly Hamiltonian if we can delete opnq edges incident
to each pk ´ 1q-set and H still contains a Hamiltonian cycle. Does every large robustly
Hamiltonian k-graph H contain p1´ op1qq regkpHq{k edge-disjoint Hamiltonian cycles?

Lastly, it would of course be desirable to obtain a real decomposition of a k-graph into
Hamiltonian cycles, or even stronger, to show that any k-graph satisfying certain conditions
contains regkpHq{k edge-disjoint Hamiltonian cycles. However, even decompositions of
cliques into Hamiltonian cycles are in general not known to exist. Further, it was recently
shown by Piga and Sanhueza-Matamala [ 88 ] that there are arbitrarily large 3-graphs H
with δ2pHq ě p2

3 ´ op1qq|V pHq| which do not contain reg3pHq{3 edge-disjoint Hamilto-
nian cycles. Therefore, our results cannot be improved to exact decompositions without
increasing the lower bound on the minimum degree significantly.
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5. Covering 3-edge-coloured random graphs
with monochromatic trees

5.1 Introduction

Given a graph G and a positive integer r, let tcrpGq denote the minimum number k such
that in any r-edge-colouring of G, there are k monochromatic trees T1, . . . , Tk such that
the union of their vertex sets covers V pGq, i.e.,

V pGq “ V pT1q Y ¨ ¨ ¨ Y V pTkq.

We define tprpGq analogously by requiring the union above to be disjoint.
It is easy to see that tp2pKnq “ 1 for all n ě 1, and Erdős, Gyárfás, and Pyber [ 33 ] proved

that tp3pKnq “ 2 for all n ě 1, and conjectured that tprpKnq “ r ´ 1 for every n and r.
Haxell and Kohayakawa [ 59 ] showed that tprpKnq ď r for all sufficiently large n ě n0prq.
We remark that it is easy to see that tcrpKnq ď r (just pick any vertex v P V pKnq and
let Ti, for i P rrs, be a maximal monochromatic tree of colour i containing v), but it is not
even known whether or not tcrpKnq ď r ´ 1 for every n and r (as would be implied by the
conjecture of Erdős, Gyárfás, and Pyber).

Concerning general graphs instead of complete graphs, Gyárfás [ 53 ] noted that a well-
known conjecture due to Ryser [ 61 ] on matchings and transversal sets in hypergraphs is
equivalent to the statement that for every graph G and integer r ě 2, we have tcrpGq ď
pr ´ 1qαpGq. In particular, Ryser’s conjecture, if true, would imply that tcrpKnq ď r ´ 1,
for every n ě 1 and r ě 2. Ryser’s conjecture was proved in the case r “ 3 by Aharoni [ 1 ],
but for r ě 4 very little is known. For example, Haxell and Scott [ 60 ] proved (in the
context of Ryser’s original conjecture) that there exists ε ą 0 such that for r P t4, 5u, we
have tcrpGq ď pr ´ εqαpGq, for any graph G.

Bal and DeBiasio [  6 ] initiated the study of covering and partitioning random graphs
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by monochromatic trees. They proved that if p !
` logn

n

˘1{r, then with high probability 

1
 

we have tcrpGpn, pqq Ñ 8. They conjectured that for any r ě 2, this was the correct
threshold for the event tprpGpn, pqq ď r. Kohayakawa, Mota, and Schacht [ 72 ] proved that
this conjecture holds for r “ 2, while Ebsen, Mota, and Schnitzer 

2
 showed that it does not

hold for more than two colours.
Bucić, Korándi, and Sudakov [ 15 ] proved that if p !

` logn
n

˘

?
r{2r´2

, then w.h.p. we
have tcrpGpn, pqq ě r ` 1, which implies that the threshold for the event tcrpGpn, pqq ď r

is in fact significantly larger than the one conjectured by Bal and DeBiasio when r is
large. Bucić, Korándi, and Sudakov also proved that w.h.p. we have tcrpGpn, pqq ď r

for p "
` logn

n

˘1{2r . They were also able to roughly determine the typical behaviour
of tcrpGpn, pqq in terms of the range where p lies in (see [ 15 , Theorems 1.3 and 1.4]).

Considering colourings with three colours, the general results from [  15 ], as stated, imply
that if p "

` logn
n

˘1{8, then w.h.p. we have tc3pGpn, pqq ď 3, and if p "
` logn

n

˘1{6, then w.h.p.
tc3pGpn, pqq ď 88 (the methods from [ 15 ] may actually give a somewhat better upper bound
than 88, if one optimizes their calculations). Our main result improves these bounds.

Theorem 5.1.1. If p “ ppnq satisfies p "
` logn

n

˘1{6, then with high probability we have

tc3
`

Gpn, pq
˘

ď 3.

It is easy to see that if p “ 1´ωpn´1q, then w.h.p. there is a 3-edge-colouring of Gpn, pq
for which three monochromatic trees are needed to cover all vertices — it suffices to consider
three non-adjacent vertices x1, x2, and x3, and colour the edges incident to xi with colour i
and colour all the remaining edges with any colour. Therefore, the bound for tc3pGpn, pqq

in Theorem  5.1.1 is best possible as long as p is not too close to 1.
We remark that, from the example described in [ 72 ], we know that for p !

` logn
n

˘1{4,
we have w.h.p. tc3pGpn, pqq ě 4. It would be very interesting to describe the behaviour
of tc3pGpn, pqq when

` logn
n

˘1{4
! p !

` logn
n

˘1{6.
This paper is organized as follows. In Section  5.2 we present some definitions and

auxiliary results that we will use in the proof of Theorem  5.1.1 , which is outlined in
Section  5.3 . The details of the proof of Theorem  5.1.1 are given in Section  5.4 .

1We will write shortly w.h.p. for with high probability.
2A description of this construction can be found in [ 72 ].
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5.2 Preliminaries

Most of our notation is standard (see [ 8 ,  10 ,  26 ] and [ 9 ,  62 ]). However, we will mention
in the following few definitions regarding hypergraphs that will play a major role in our
proofs just for completeness.

We say that a set A of vertices in a hypergraph H is a vertex cover if every hyperedge of
H contains at least one element of A. The covering number of H, denoted by τpHq, is the
smallest size of a vertex cover in H. A matching in H is a collection of disjoint hyperedges
in H. The matching number of H, denoted by νpHq, is the largest size of a matching in
H. An immediate relationship between τpHq and νpHq is the inequality νpHq ď τpHq.
If additionally H is r-uniform, then we have τpHq ď rνpHq. A conjecture due to Ryser
(which first appeared in the thesis of his Ph.D. student, Henderson [ 61 ]) states that for
every r-uniform r-partite hypergraph H, we have τpHq ď pr ´ 1qνpHq. Note that the
König–Egerváry theorem corresponds to Ryser’s conjecture for r “ 2. Aharoni [ 1 ] proved
that Ryser’s conjecture holds for r “ 3, but the conjecture remains open for r ě 4.

Given a vertex v in a 3-uniform hypergraph H, the link graph of H with respect to v is
the graph Lv “ pV,Eq with vertex set V “ V pHq and edge set E “ txy : tx, y, vu Ď Hu.

We will use the following theorem due to Erdős, Gyárfás and Pyber [  33 ] in the proof of
our main result.

Theorem 5.2.1 (Erdős, Gyárfás and Pyber). For any 3-edge-colouring of a complete graph
Kn, there exists a partition of V pKnq into 2 monochromatic trees.

We will also use the following lemma, which is a simple application of Chernoff’s
inequality. For a proof of the first item see [  73 , Lemma 3.8]. The second item is an
immediate corollary of [ 73 , Lemma 3.10].

Lemma 5.2.2. Let ε ą 0. If p “ ppnq "
` logn

n

˘1{6, then w.h.p. G P Gpn, pq has the
following properties.

(i ) For any disjoint sets X, Y Ď V pGq with |X|, |Y | " logn
p

, we have

|EGpX, Y q| “ p1˘ εqp|X||Y |.

(ii ) Every vertex v P V pGq has degree dGpvq “ p1˘ εqpn and every set of i ď 6 vertices
has p1˘ εqpin common neighbours.
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5.3 A sketch of the proof

In this section we will give an overview of the proof of  5.1.1 . Let G “ Gpn, pq, with
p "

` logn
n

˘1{6, and let ϕ : EpGq Ñ tred, green, blueu be any 3-edge-colouring of G. We
consider an auxiliary graph F , with V pF q “ V pGq and ij P EpF q if and only if there is,
in the colouring ϕ, a monochromatic path in G connecting i and j. Then we define a
3-edge-colouring ϕ1 of F with ϕ1pijq being the colour of any monochromatic path in G

connecting i and j. Note that any covering of F with monochromatic trees with respect to
the colouring ϕ1 corresponds to a covering of G with monochromatic trees with respect to
the colouring ϕ with the same number of trees.

Next, we consider different cases depending on the value of αpF q. If αpF q “ 1, then F is
a complete 3-edge-coloured graph and by a theorem of Erdős, Gyárfás and Pyber (see  5.2.1 ),
there exists a partition of V pF q into 2 monochromatic trees. The remaining proof now is
divided into the cases αpF q ě 3 and αpF q “ 2.

Case αpF q ě 3. From the condition on the independence number of G, there exist three
vertices r, b, g P V pGq that pairwise do not have any monochromatic path connecting them.
With high probability, they have a common neighbourhood in G of size at least np3{2.
Let Xrbg be the largest subset of this common neighbourhood such that for each i P tr, b, gu,
the edges from i to Xrbg in G are all coloured with one colour. Then, since there are no
monochromatic paths between any two of r, b, g, we have |Xrbg| ě np3{12 and moreover we
may assume that all edges between r and Xrbg are red, all between b and Xrbg are blue and
those between g and Xrbg are green. Now we notice that all vertices that have a neighbour
in Xrbg are covered by the union of the spanning trees of the red component of r, the blue
component of b and the green component of g.

We are done in the case where every vertex has a neighbour in Xrbg, as the vertices in
Xrbg YNGpXrbgq are covered by the red, blue and green component containing r, b and g,
respectively. Otherwise, w.h.p. any vertex y P V ∖ pXrbg YNGpXrbgqq has many common
neighbours with r, b and g in G that are also neighbours of some vertex in Xrbg. An analysis
of the possible colourings of the edges between Xrbg and the common neighbourhood of
the vertices r, b, g and y yields the following: for some i P tr, b, gu, let us say i “ r, every
vertex y P Xrbg can be connected to r by a monochromatic path in colour red or either
to g or b by a monochromatic path in the colour blue or green, respectively.

This already gives us that all vertices in G can be covered by 5 monochromatic trees,
since all the vertices in NGpXrbgq lie in the red component of r, or the green component of g,
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or in the blue component of b and every vertex in V ∖NGpXrbgq lies in the red component
of r, in the blue component of g or in the green component of b. By analysing the colours
of edges to the common neighbourhood of carefully chosen vertices, we are able to show
that actually three of those five trees already cover all the vertices of G.

Case αpF q “ 2. Let us consider a 3-uniform hypergraph H defined as follows (this
definition is inspired by a construction of Gyárfás [ 53 ] and also appears in [ 15 ]). The
vertices of H are the monochromatic components of F and three vertices form a hyperedge
if the corresponding three components have a vertex in common (in particular, those three
monochromatic components must be of different colours). Hence, H is a 3-uniform 3-partite
hypergraph.

We observe that if A is a vertex cover of H, then the monochromatic components
associated with the vertices in A cover all the vertices of G. This implies that tc3pGq ď τpHq.
Also, it is easy to see that νpHq ď αpF q “ 2. Now, recall that Aharoni’s result [ 1 ] (which
corresponds to Ryser’s conjecture for r “ 3) states that for every 3-uniform 3-partite
hypergraph H we have τpHq ď 2νpHq. Together with the previous observation, this
implies tc3pGq ď 4. But our goal is to prove that tc3pGq ď 3. To this aim, we analyse
the hypergraph H more carefully, reducing the situation to a few possible settings of
components covering all vertices. In each of those cases, we can again analyse the possible
colouring of edges of common neighbours of specific vertices, inferring that indeed there
are 3 monochromatic components which cover all vertices.

5.4 Proof of  5.1.1 

Instead of analysing the colouring of the graph G “ Gpn, pq, it will be helpful to analyse
the following auxiliary graph.

Definition 5.4.1 (Shortcut graph). Let G be a graph and φ be a 3-edge-colouring of G.
The shortcut graph of G (with respect to φ) is the graph F “ F pG, ϕq that has V pGq as
the vertex set and the following edge set:

tuv : u, v P V pGq and u and v are connected in G by a path monochromatic under ϕu.

Let us consider an edge-multicolouring ϕ1 of F “ F pG, ϕq which assigns to an edge uv P
EpF pG, ϕqq the list of all the colours of monochromatic paths connecting u and v in G
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under the colouring ϕ. We will say that ϕ1 is the inherited colouring  

3
 of F pG, ϕq. We say

that an edge e P F pG, ϕq has colour ϱ (or is coloured with ϱ) if ϱ belongs to the list of
colours assigned to e by ϕ1. We say that a subgraph H of F pG, ϕq is monochromatic under
ϕ1 if all the edges of H are coloured with a common colour. Let tcpF, ϕ1q be the minimum
number k such that there are k trees T1, . . . , Tk which are monochromatic under ϕ1 such that
V pF q “ V pT1qY ¨ ¨ ¨YV pTkq. Note that any covering of F pG, ϕq with monochromatic trees
under ϕ1 corresponds to a covering of G with monochromatic trees under the colouring ϕ.
In particular, if we show that for every 3-edge-colouring ϕ of G, we have tcpF, ϕ1q ď 3,
where F “ F pG, ϕq is the shortcut graph of G with respect to ϕ, and ϕ1 is the inherited
colouring of F , then we have shown that tc3pGq ď 3. Therefore,  5.1.1 follows from the
following lemma.

Lemma 5.4.2. Let p "
` logn

n

˘1{6 and let G “ Gpn, pq. The following holds with high
probability. For any 3-edge-colouring ϕ of G, we have tcpF, ϕ1q ď 3, where F is the shortcut
graph F “ F pG, ϕq and ϕ1 is the inherited colouring of F .

The proof of  5.4.2 is divided into two different cases, depending on the independence
number of F . Subsections  5.4.1 and  5.4.2 are devoted, respectively, to the proof of  5.4.2 

when αpF q ě 3 and αpF q ď 2.
From now on, we fix ε ą 0 and assume that p "

` logn
n

˘1{6 and n is sufficiently large.
Then, by  5.2.2 , we may assume that the following holds w.h.p.:

1. There is an edge between any two sets of size ω pplog nq{pq.

2. Every vertex v P V pGq has degree dGpvq “ p1˘ εqpn.

3. Every set of i ď 6 vertices has p1˘ εqpin common neighbours.

5.4.1 Shortcut graphs with independence number at least three

Proof of  5.4.2 for αpF q ě 3. Since αpF q ě 3, there exist three vertices r, b, g P V pGq that
pairwise do not have any monochromatic path connecting them in G. In particular, if v is
a common neighbour of r, b and g in G, then the edges vr, vb and vg have all different
colours. The common neighbourhood of r, b and g in G has size at least np3{2. Let Xrbg

be the largest subset of this common neighbourhood such that for each i P tr, b, gu, the
edges between i and the vertices of Xrbg are all coloured with the same colour in G.

3Although ϕ1 is a multicolouring, in the sense that we assigned several colours to each edge, we will
refer to it as colouring, for simplicity.
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Then |Xrbg| ě np3{12. Without loss of generality, assume that all edges between r and the
vertices of Xrbg are red, between b and the vertices of Xrbg are blue and those between g

and the vertices of Xrbg are green. Let Credprq, Cbluepbq and Cgreenpgq be respectively the
red, blue and green components in G containing r, g and b.

Notice that all vertices of F that have a neighbour in Xrbg are covered by Credprq, Cbluepbq

or Cgreenpgq. Therefore, the proof would be finished if every vertex had a neighbour in Xrbg.
If this is not the case, we fix an arbitrary vertex y P V ∖ pXrbg YNGpXrbgqq. By our choice
of p, there are at least np4{2 common neighbours of y, r, b and g. Let Xyrbg be the largest
subset of the common neighbourhood of y, r, b and g such that for each i P tr, b, gu, the
edges between i and Xyrbg are all coloured the same. Then |Xyrbg| ě np4{12. Note that
since y R NGpXrbgq, the sets Xyrbg and Xrbg are disjoint. Furthermore, since |Xyrbg|, |Xrbg| "

logn
p

, we have

|EGpXyrbg, Xrbgq| ě 1.

We now analyse the colours between r, b, g and the set Xyrbg. Again, since there is
no monochromatic path connecting any two of r, b and g, all i P tr, b, gu have to connect
to Xyrbg in different colours. Since Xyrbg is disjoint from Xrbg, by the maximality of Xrbg

we cannot have r, b and g being simultaneously connected to Xyrbg by red, blue and
green edges, respectively. Assume first that for each i P tr, b, gu, the edges between i

and Xyrbg have different colours from the edges between i and Xrbg. Then let uv be an
edge between Xyrbg and Xrbg and notice that whatever the colour of uv is, we will have a
monochromatic path connecting two of the vertices in tr, g, bu. Therefore, we can assume
that for some i P tr, g, bu, we have that all the edges between i and Xrbg and all the
edges between i and Xyrbg coloured the same. Without loss of generality, we may say that
such i is r. In this case, the edges between b and Xyrbg are green and the edges between g
and Xyrbg are blue. Finally, all the edges between Xyrbg and Xrbg are red, otherwise we
would be able to connect b and g by some monochromatic path. Figure  5.4.1 shows the
colouring of the edges that we have analysed so far.

Let us now consider any further vertex x P V ∖ pXrbg YNGpXrbgqq with x ‰ y, if such
a vertex exists. We define Xxrbg analogously to Xyrbg and observe that the colour pattern
from r, b, g to Xxrbg must be the same as the one to Xyrbg. Indeed, if this is not the
case, then a similar analysis of the colours of the edges between tr, b, gu and Xxrbg yields
that for some i P tb, gu, we know that the edges connecting i to Xxrbg are of the same
colour as the edges connecting i to Xrbg. Without loss of generality, let us say that i is g.

164



r

b

g

y

Xrbg

Xyrbg

Figure 5.4.1: Analysis of the colouring of the edges incident on Xrbg and on Xyrbg.
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Figure 5.4.2: Analysis of the colour of the edges incident on Xyrbg and on Xxrbg.

Then the edges between b and Xxrbg are red and the edges between r and Xxrbg are green,
otherwise Xxrbg and Xrbg would not be disjoints sets. Figure  5.4.2 shows the colouring
of the edges incident to Xyrbg and Xxrbg. Since |Xyrbg|, |Xxrbg| "

logn
p

, we have that there
is some edge uv between Xyrbg and Xxrbg. But then however we colour uv, we will get a
monochromatic path connecting two vertices in tr, b, gu, which is a contradiction. Thus,
the colour pattern of edges between tr, b, gu and Xxrbg is the same as the colour pattern of
the edges between tr, b, gu and Xyrbg.

Therefore, we have that each vertex in XrbgYNGpXrbgq belongs to one of the monochro-
matic components Credprq, Cbluepbq or Cgreenpgq, while a vertex in V pGq∖pXrbg YNGpXrbgqq

belongs to one of the monochromatic components Credprq, Cgreenpbq or Cbluepgq where the
latter two are the green component containing b and the blue component containing g,
respectively. This gives a covering of G with five monochromatic trees. Next we will show
that actually three of those trees already cover all the vertices.

Suppose that at least four among the components Credprq, Cbluepbq, Cgreenpbq, Cgreenpgq,
and Cbluepgq are needed to cover all vertices. Since there does not exist any monochromatic
path between any two of r, b, g, we know that for each i P tr, b, gu, any monochromatic
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component containing i does not intersect tr, g, bu ∖ tiu. Hence, for each i P tr, b, gu,
one of these components contains i. Also, one element in tr, b, gu belongs to two of
these components. Without loss of generality, let us say that b belongs to two of these
components. Therefore, Credprq, Cbluepbq and Cgreenpbq are three of these at least four
components needed to cover all the vertices. Now there are two cases regarding the fourth
component: we need Cgreenpgq as the fourth component or we need Cbluepgq (those two
cases might intersect).

We begin with the first case, where we need the components Credprq, Cbluepbq, Cgreenpbq

and Cgreenpgq to cover all the vertices of G. Let

b̃ P Cbluepbq∖ pCredprq Y Cgreenpbq Y Cgreenpgqq

and let
g̃ P Cgreenpbq∖ pCredprq Y Cbluepbq Y Cgreenpgqq .

Then let Xb̃g̃rbg be the maximum set of common neighbours of b̃, g̃, r, g, b such that for
each i P tb̃, g̃, r, b, gu, the edges from i to Xb̃g̃rbg are all coloured the same. Since |Xb̃g̃rbg| ě

np5{240 " logn
p

, we have

|EGpXb̃g̃rbg, Xyrbgq| ě 1 and |EGpXb̃g̃rbg, Xrbgq| ě 1.

We will analyse the possible colours of the edges between the specified vertices and Xb̃g̃rbg.
If for each of r, b, g, the colour it sends to Xb̃g̃rbg is different from the colour it sends
to Xrbg, then any edge between Xb̃g̃rbg and Xrbg ensures a monochromatic path between
two of r, b, g (in the colour of that edge). Similarly, it cannot happen that for each of r, b, g,
the colour it sends to Xb̃g̃rbg is different from the colour it sends to Xyrbg. Thus, since r
sends red to both Xrbg and Xyrbg while the colours from b (and g) to Xrbg and Xyrbg are
switched, the colour of the edges between r and Xb̃g̃rbg is red.

Now note that, by the choice of b̃ and g̃, the edges between each of them and Xb̃g̃rbg

can not be red. Further, the choice implies that an edge between b̃ and Xb̃g̃rbg can not
be of the same colour (green or blue) as an edge between g̃ and Xb̃g̃rbg. If g would send
blue (and hence b would send green) edges to Xb̃g̃rbg, there would either be a blue path
between b and g (if the edges between b̃ and Xb̃g̃rbg are blue) or b̃ would lie in Cgreenpbq

(if the edges between b̃ and Xb̃g̃rbg are green). Since both those situations would mean a
contradiction, we may assume that each of r, b, g sends edges with that colour to Xb̃g̃rbg

as it does to Xrbg. But then Xb̃g̃rbg is actually a subset of Xrbg and since g̃ has an edge
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to Xrbg, it lies in one of Credprq, Cbluepbq, or Cgreenpgq; a contradiction.
In the case where the forth component that we need is Cbluepgq, we repeat the construc-

tion of Xb̃g̃rbg similarly as before by letting

b̃ P Cbluepbq∖ pCredprq Y Cgreenpbq Y Cbluepgqq

and
g̃ P Cgreenpbq∖ pCredprq Y Cbluepbq Y Cbluepgqq.

Also as before, we end up with Xb̃g̃rbg being part of Xrbg. From the choice of g̃, the edges
it sends to Xb̃g̃rbg have to be green, since otherwise it would be in Credprq or Cbluepbq. But
that gives a green path between b and g, a contradiction.

Summarising, we infer that three components among Credprq, Cbluepbq, Cgreenpbq, Cgreenpgq

and Cbluepgq cover the vertex set of G.

5.4.2 Shortcut graphs with independence number at most two

Proof of  5.4.2 for αpF q ď 2. We start by noticing that if αpF q “ 1, then the graph F

together with the colouring φ1 is a complete 3-coloured graph and therefore, by  5.2.1 , there
exists a partition of V pF q into 2 monochromatic trees. Thus, we may assume that αpF q “ 2.

Let H be the 3-uniform hypergraph with V pHq being the collection of all the monochro-
matic components of F under the colouring φ1 and three monochromatic components
form a hyperedge in H if they share a vertex. Notice that H is 3-partite, since distinct
monochromatic components of the same colour do not have a common vertex and therefore
they can not belong to the same hyperedge. In other words, the colour of each component
give us a 3-partition of the vertex set of H. We denote by Vred,Vblue and Vgreen the set of
vertices of V pHq that correspond to, respectively, red, blue and green components. Such
construction was inspired by a construction due to Gyárfás [ 53 ] and it was also used in [ 15 ].

Note that every vertex v of F is contained in a monochromatic component for each one
of the colours (a monochromatic component could consist only of v). Therefore, any vertex
cover of H corresponds to a covering of the vertices of F with monochromatic trees. Indeed,
if A is a vertex cover of H, then consider the monochromatic components corresponding
to each vertex in A. If any vertex v of F is not covered by those components, then the
vertices in H corresponding to the red, green and blue components in F containing v do
not belong to A and they form an hyperedge. But this contradicts the fact that A is a
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vertex cover of H. Therefore,

tcpF, ϕ1
q ď τpHq. (5.4.1)

The inequality (  5.4.1 ) corresponds to Proposition 4.1 in [  15 ] in our setting.
Let L “

Ť

sPVred
Ls be the union of the link graphs Ls of all vertices s P Vred. Any

vertex cover of this bipartite graph L corresponds to a vertex cover of H of the same size.
Therefore,

τpHq ď τpLq. (5.4.2)

Furthermore, by the König–Egerváry theorem we know that τpLq “ νpLq. Thus, if νpLq ď 3,
then by (  5.4.1 ) and ( 5.4.2 ), we have

tcpF, ϕ1
q ď τpHq ď τpLq “ νpLq ď 3.

Therefore, we may assume that νpLq ě 4, and fix a matching ML of size at least four
in L. Let us say that ML consists of the edges G1B1, G2B2, G3B3, and G4B4, where
tG1, G2, G3, G4u Ď Vgreen and tB1, B2, B3, B4u Ď Vblue.

Now we give an upper bound for νpHq. Note that any matching MH in H gives us an
independent set I in F . Indeed, for each hyperedge e PMH, let ve P V pF q be any vertex
in the intersection of those monochromatic components associated to the vertices in e and
let I “ tve : e P MHu. We claim that I is an independent set in F . Indeed, if ve and vf

were adjacent vertices in I, then e and f intersect, as the edge connecting ve to vf in F

will connect the monochromatic components containing ve and vf of that colour that is
given to the edge vevf . Therefore, since αpF q “ 2, we have

νpHq ď αpF q “ 2. (5.4.3)

Now, if there are three different edges in ML that are edges in the link graphs of three
different vertices of Vred, then there would be a matching of size 3 in H, contradicting ( 5.4.3 ).
Therefore, we may assume that ML is contained in the union of at most two link graphs,
say LR1 and LR2 , of vertices R1, R2 P Vred. Now we are left with three cases: (Case  1 ) two
edges of ML belong to LR1 and two belong to LR2 ; (Case  2 ) three edges of ML belong
to LR1 and one to LR2 ; (Case  3 ) the four edges of ML belong to LR1 . Without loss of
generality, we can describe each of those three cases as follows (see Figures  5.4.3 ,  5.4.4 

168



and  5.4.5 ):

Case 1: The edges G1B1 and G2B2 belong to LR1 and the edges G3B3 and G4B4 belong
to LR2 . That means that all the following four sets are non-empty:

J1 :“ R1 XG1 XB1,

J2 :“ R1 XG2 XB2,

J3 :“ R2 XG3 XB3,

J4 :“ R2 XG4 XB4.

Case 2: The edges G1B1, G2B2 and G3B3 belong to LR1 and the edge G4B4 belongs to LR2 .
That means that all the following four sets are non-empty:

J1 :“ R1 XG1 XB1,

J2 :“ R1 XG2 XB2,

J3 :“ R1 XG3 XB3,

J4 :“ R2 XG4 XB4.

Case 3: The edges G1B1, G2B2, G3B3 and G4B4 belong to LR1 . That means that all the
following four sets are non-empty:

J1 :“ R1 XG1 XB1,

J2 :“ R1 XG2 XB2,

J3 :“ R1 XG3 XB3,

J4 :“ R1 XG4 XB4.

In this case, let R2 be any other red component different from R1 and let B and G

be, respectively, a blue and a green component with R2 X B X G ‰ ∅. Suppose that
G R tG1, G2, G3, G4u. Then the three of the edges G1B1, G2B2, G3B3 and G4B4 are not
incident to GB (because B must be different from at least three of the sets B1, B2, B3 and
B4) and these three edges together with GB may be analysed just as in Case  2 . Therefore,
we may suppose that G P tG1, G2, G3, G4u. Let us say, without loss of generality, that
G “ G4. If B R tB1, B2, B3u, then the edges G1B1, G2B2 and G3B3 belong to LR1 , the
edge GB belongs to LR2 and this case may be analysed, again, just as in Case  2 . Therefore,
we may assume that B P tB1, B2, B3u. Let us say, without loss of generality that B “ B3.
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Figure 5.4.3: Case 1

Then let J5 be the following non-empty set:

J5 :“ R2 XG4 XB3. (5.4.4)

Let us further remark that, since νpHq ď 2, in each of the three cases above, we have

V pF q “ R1 YR2 YG1 YG2 YG3 YG4 YB1 YB2 YB3 YB4.

Otherwise, for any uncovered vertex v P V pF q, the hyperedge given by the red, blue and
green components containing v together with the hyperedges R1B1G1 and R2B3G3 (in
Cases  1 and  2 ) or R2B3G4 (in Case  3 ) is a matching of size 3 in H.

Let us start with Case  1 .

Proof in Case  1 : We will prove that R1 and R2 together with possibly one further
monochromatic component cover V pF q. For each i P t1, 2, 3, 4u, let B̃i “ Bi ∖ pR1 YR2q

and G̃i “ Gi ∖ pR1 YR2q.
Pick vertices ji P Ji, with i P t1, 2, 3, 4u, arbitrarily. Consider a vertex o P B̃1 (if such

a vertex exists). Since αpF q “ 2, there is an edge connecting two of o, j2, j3. Because j2

and j3 belong to different components of each colour, such an edge must be incident to
o. So let us say that such edge is oji, for some i P t2, 3u. Since o R R1 YR2, the edge oji
cannot be red. And since o P B1, oji cannot be blue either, otherwise we would connect
the blue components B1 and Bi. Now assume that o and j2 are not adjacent. Then oj3 is
a green edge in F . By analogously analysing the edge between o, j2 and j4 together with
the supposition that oj2 is not an edge in F , we get that oj4 must be a green edge in F .
But then we have a green path j3oj4 connecting j3 to j4, a contradiction. Therefore oj2 is
an edge in F and it is green. That implies that o P G2. Therefore B̃1 Ď G2. Analogously,
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we can conclude the following:

B̃1 Ď G2, G̃1 Ď B2,

B̃2 Ď G1, G̃2 Ď B1,

B̃3 Ď G4, G̃3 Ď B4,

B̃4 Ď G3, G̃4 Ď B3.

(5.4.5)

Claim 5.4.3. We have B̃1 Y G̃1 Y B̃2 Y G̃2 “ ∅ or B̃3 Y G̃3 Y B̃4 Y G̃4 “ ∅.

Proof. Suppose for a contradiction that there exist o1 P B̃1 Y G̃1 Y B̃2 Y G̃2 and o2 P

B̃3Y G̃3Y B̃4Y G̃4. Recall that from our choice of p, there is some z P Npj1, j2, j3, j4, o1, o2q.
Two of the edges zji,for i P t1, 2, 3, 4u, have the same colour. Since each ji belongs to
different green and blue components, those two edges are red. Since tj1, j2u P R1 and
tj3, j4u P R2, those two red edges are either zj1 and zj2 or zj3 and zj4. Let us say that zj1

and zj2 are red (the other case is similar). Then one of the edges zj3 and zj4 has to be
green and the other blue. Now, since o1 R R1, the edge zo1 is either green or blue. Then
one of the paths o1zj3 or o1zj4 is green or blue. This implies that o1 P B3 YG3 YB4 YG4.
On the other hand, ( 5.4.5 ) implies that o1 P pB1 YB2q X pG1 YG2q. But then we reached
a contradiction, since that would mean that o1 belongs to two different components of the
same colour. l

We may assume without loss of generality that B̃3 Y G̃3 Y B̃4 Y G̃4 is empty. Then,
recalling that νpHq ď 2 and in view of ( 5.4.5 ), the union of the components R1, B1, G1 and
R2 covers every vertex of F . If we show that B1 Ď G1YR1YR2 or that G1 Ď B1YR1YR2,
then we get three monochromatic components covering the vertices of F . Our next claim
states precisely that.

Claim 5.4.4. We have B̃1 ∖G1 “ ∅ or G̃1 ∖B1 “ ∅.

Proof. Suppose that there exist two distinct vertices b P B̃1 ∖ G1 and g P G̃1 ∖ B1.
Let z P Npj1, j2, j3, j4, b, gq. As before, either zj1 and zj2 or zj3 and zj4 are red edges.
First assume that zj1 and zj2 are red. Then one of the edges zj3 and zj4 has to be green
and the other blue. Now, since b R R1, the edge zb is either green or blue. Then one of the
paths bzj3 or bzj4 is green or blue. This implies that b P B3 YG3 YB4 YG4. On the other
hand, ( 5.4.5 ) implies that b P B1 XG2. Then we reached a contradiction, since that would
mean that b belongs to two different components of the same colour.
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Figure 5.4.4: Case 2

Therefore, the edges zj3 and zj4 are red and one of the edges zj1 and zj2 is green and
the other is blue. First let us say that zj1 is green and zj2 is blue. Since b R pR1 Y R2q,
the edge zb cannot be red. Also the edge zb cannot be blue otherwise the path bzj2

would connect the components B1 and B2. Finally, zb cannot be green, otherwise the
path bzj1 would gives us that b P G1. Therefore, zj1 is blue and zj2 is green. But this case
analogously leads to a contradiction (with g and Gi instead of b and Bi and green and blue
switched). l

We proceed to the proof of Case  2 .

Proof in Case  2 : As in Case  1 , pick vertices ji P Ji, with i P t1, 2, 3, 4u arbitrarily. We claim
that V pF q Ď R1YR2YB4YG4. Indeed, let o P V pF q∖pR1YR2q. Notice that since αpF q “
2, there is an edge in each of the following sets of three vertices: to, j4, j1u, to, j4, j2u,
and to, j4, j3u. We claim that oj4 is an edge of F . Indeed, if this was not the case,
then since there cannot be an edge between j4 and ji for i “ 1, 2, 3, we would have the
edges oj1, oj2 and oj3 and all of them would be coloured green or blue. Thus, two of
them would be coloured the same, connecting two distinct components of one colour in
this colour, a contradiction. So oj4 P EpF q and since oj4 cannot be red, we conclude
that o P pB4 YG4q. Therefore, R1, R2, B4 and G4 cover all vertices of F .

If B4∖pR1YR2YG4q “ ∅ or G4∖pR1YR2YB4q “ ∅, then we get three monochromatic
components covering V pF q. So let us assume that there exist b P B4 ∖ pR1 Y R2 Y G4q

and g P G4∖pR1YR2YB4q. If b and g are not adjacent, then since each of the sets tb, g, jiu,
for i “ 1, 2, 3, has to induce at least one edge, there are two edges between b and tj1, j2, j3u

or two edges between g and tj1, j2, j3u. However, from the choice of b, we know that all
the edges between b and tj1, j2, j3u are green, and therefore, two of such edges would give
us a green connection between two different green components, a contradiction. Similarly,
from the choice of g, we know that all the edges between b and tj1, j2, j3u are blue, and
two of such edges would give us a blue connection between two different blue components,
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Figure 5.4.5: Case 3

again a contradiction.
Hence, we conclude that bg P F for any b P B4 ∖ pR1 Y R2 Y G4q and any g P

G4 ∖ pR1 YR2 YB4q and any such edge bg is red. Therefore, there is a red component R3

covering pB4△G4q∖ pR1 YR2q, where B4△G4 denotes the symmetric difference. If pB4 X

G4q∖ pR1YR2q “ ∅, then R1, R2 and R3 cover V pF q and we are done. Therefore, suppose
there is a vertex x P pB4 X G4q ∖ pR1 Y R2q. If R2 ∖ pB4 Y G4q “ ∅, then R1, B4, G4

cover V pF q and we are done. Therefore, suppose there is a vertex y P R2 ∖ pB4YG4q. Note
that xy R EpF q, since x and y belong to different components in each of the colours. Also,
xji R EpF q, for i P t1, 2, 3u, since otherwise two different components of the same colour
would be connected in that colour by the edge xji. Now αpF q “ 2 implies that yji P EpF q,
for i P t1, 2, 3u (otherwise, tx, y, jiu would be an independent set). But these edges must
all be green or blue, hence two of them are of the same colour, connecting two different
components of one colour in that colour, a contradiction.

We arrived at the last case, Case  3 .

Proof in Case  3 : Similarly to the previous cases, let us pick vertices ji P Ji, with i P

t1, 2, 3, 4, 5u arbitrarily. We will show first that we can cover all vertices of F with four
monochromatic components. Let o1, o2 P V pF q∖ pR1 YB3 YG4q and let z be a vertex in
Npj1, j2, j3, o1, o2, j5q. At least one of the edges zj1, zj2 and zj3 is red, as otherwise we
would connect two distinct components of one colour in that colour. Therefore, z P R1.
Since o1, o2, j5 R R1, the edges zo1, zo2 and zj5 cannot be red. Furthermore, o1z and o2z

are coloured with a colour different from the colour of the edge j5z, as otherwise they would
belong to B3 or G4. Thus, o1 and o2 are connected by a monochromatic path in green or
blue. Hence, we showed that any two vertices of V pF q∖ pR1 YB3 YG4q are connected by
a monochromatic path in green or blue. We infer that there is a green or blue component
covering V pF q ∖ pR1 Y B3 Y G4q. Therefore, R1, B3, G4 and one further blue or green
component C cover all vertices of G. Let us assume that C is a green component; the case
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where C is a blue component is analogous.
We claim that R1 Y B3 Y C, or R1 Y G4 Y C, or R1 Y B3 Y G4 covers V pF q. Indeed,

suppose for the sake of contradiction that there exist vertices g P G4 ∖ pR1 YB3 Y Cq, b P
B3 ∖ pR1 YG4 YCq and c P C ∖ pR1 YB3 YG4q. Let z P Npj1, j2, j3, g, b, cq and note that
one of zj1, zj2 and zj3 is red. Consequently gz, cz and bz are not red. Notice, however,
that gz and bz can not be both green and neither both blue. Now let us say cz is green.
Since c R G4 and g P G4, we would have gz blue in this case. But then bz must be green
and since c P C and C is a green component, we have b P C, which is a contradiction.
Therefore, cz must be blue. Then, since c R B3 and b P B3, the edge bz should be green.
Thus the edge gz is blue. Since this argument holds for any g P G4 ∖ pR1 Y B3 Y Cq

and c P C ∖ pR1 Y B3 YG4q, we conclude that V pF q∖ pR1 Y B3q can be covered by one
blue tree. Hence, G can be covered by the three monochromatic trees. This finishes the
last case and thereby the proof of  5.4.2 .
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6. Convex graphon parameters and graph
norms

6.1 Introduction

In extremal combinatorics, quantifying quasirandomness by using a suitable norm has been
an extremely useful strategy. For instance, the main idea in the proof of the celebrated
Szemerédi regularity lemma is to use an L2-norm increment, the Gowers norms play a
central role in additive combinatorics, and the cut-norm is the key concept in the theory of
dense graph limits [ 84 ].

It is a natural question to ask what norms can be defined on the space of two-variable
real symmetric functions on r0, 1s2, which appear as the limit objects of sequences of
(weighted) large graphs. To formalise, a graphon (resp. signed graphon) W is a two-variable
symmetric measurable function from r0, 1s2 to r0, 1s (resp. r´1, 1sq. We consider the
vector space W of two-variable symmetric bounded measurable functions on r0, 1s2, which
contains the set of (signed) graphons as a convex subset. Given a graph H and W P W,
the homomorphism density of H is defined by the functional

tHpW q “

ż

ź

ijPEpHq

W pxi, xjqdµ
vpHq,

where µ is the Lebesgue measure on r0, 1s.
Let ∥W∥H :“ |tHpW q|

1{epHq and let ∥W∥rpHq
:“ tHp|W |q

1{epHq. We then say that a
graph H is (semi-)norming if ∥¨∥H defines a (semi-)norm on W, and weakly norming
if ∥¨∥rpHq

is a norm on W . With this notation, we now state the following central question
in the area, asked by Lovász [ 83 ] and Hatami [ 58 ]:
Question 6.1.1 ([ 83 ], Problem 24). What graphs H are (weakly) norming?

A moment’s thought will prove the fact that a weakly norming graph H must be
bipartite and that, as the name suggests, every (semi-)norming graph is weakly norming.
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The particular example ∥¨∥C2k
, where C2k is the even cycle of length 2k, is already interesting,

as it corresponds to the Schatten–von Neumann norms in operator theory.
Perhaps one of the most important applications of weakly norming graphs is to

Sidorenko’s conjecture, a major open problem in extremal graph theory also proposed by
Erdős and Simonovits [ 35 ] in a slightly different form.

Conjecture 6.1.2 (Sidorenko’s conjecture [ 105 ]). Let H be a bipartite graph and let W be
a graphon. Then

tHpW q ě tK2pW q
epHq. (6.1.1)

If a graph H satisfies ( 6.1.1 ) for every graphon W , then we say that H is Sidorenko.
Szegedy observed 

1
 that every weakly norming graph is Sidorenko. Moreover, Conlon and

the first author [ 22 ] proved that weakly norming graphs can be used as ‘building blocks’
to construct a Sidorenko graph. On the other hand, there are Sidorenko graphs that
are verified to be not weakly norming. For instance, a bipartite graph that has a vertex
adjacent to all the vertices on the other side, proven to be Sidorenko by Conlon, Fox, and
Sudakov [ 20 ], is not weakly norming unless it is a complete bipartite graph. Moreover,
Král’, Martins, Pach, and Wrochna [ 74 ] recently proved that there exists an edge-transitive
Sidorenko graph that is not weakly norming.

Although the weakly norming property is strictly stronger than being Sidorenko, partial
answers to Question  6.1.1 have also made significant progress towards Sidorenko’s conjecture.
Hatami [ 58 ], who firstly studied Question  6.1.1 , showed that even cycles C2k are norming,
and complete bipartite graphs Km,n and hypercubes Qd are weakly norming. Lovász [ 81 ]
later proved that Kn,n minus a perfect matching is weakly norming. Before their work, Qd

and Kn,n minus a perfect matching were unknown to be Sidorenko. Recently, Conlon and
the first author [ 22 ] obtained a much larger class of weakly norming graphs, which also
added many new examples to the class of Sidorenko graphs that played a crucial rôle in
their subsequent work [  23 ].

Despite a fair amount of recent progress [ 20 – 23 ,  58 ,  70 ,  80 ,  110 ], Sidorenko’s conjecture
remains open. In particular, none of the partial results succeeded in determining whether
the notorious Möbius ladder graph K5,5∖C10, suggested by Sidorenko [  104 ,  105 ], is Sidorenko
or not, although Conlon and the first author [ 23 ] proved that its ‘square’ is Sidorenko.
We make some progress in understanding this mysterious graph, by proving that it is not
weakly norming.

1It appeared in [ 58 ].
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Figure 6.1.1: C’
5 (the Möbius ladder) and C’

6 .

Theorem 6.1.3. The Möbius ladder graph K5,5 ∖ C10 is not weakly norming.

For a graph H, let H’ be the graph obtained by blowing up every vertex v of H by an
edge v1v2 and putting two edges u2v1 and u1v2 between each pair of blown-up edges u1u2

and v1v2 whenever uv P EpHq. The resulting graph H’ is always a bipartite graph whose
bipartite adjacency matrix is the (symmetric) adjacency matrix of H plus the identity.
This blow-up was considered by Kim, Lee, and the first author [ 70 ]. They observed (see
Figure  6.1.1 ) that C’

5 is isomorphic to the Möbius ladder and, if H is bipartite, H’ is
isomorphic to H ˝K2, where ˝ denotes the Cartesian product of graphs. In particular, C’

4

is the 3-cube graph, proven to be weakly norming by Hatami. We prove a more general
result that implies Theorem  6.1.3 .

Theorem 6.1.4. For every k ą 4, C’
k is not weakly norming.

In [ 58 ], Hatami asked whether two particular graphs, the Möbius strip and C2k ˝K2,
are weakly norming. Theorem  6.1.4 hence answers both questions at once. We remark that
every C’

2k is known to be Sidorenko by [  70 ], but except the case C’
3 – K3,3 it is still an

open question whether every C’
2k`1 is Sidorenko or not.

Our proof relies on determining an equivalent condition of the (weakly) norming property.
A function f defined on the set of graphons is a (signed) graphon parameter if fpW q “
fpW 1q for (signed) graphons W and W 1 for which there exists a measure-preserving
bijection φ : r0, 1s Ñ r0, 1s satisfying W pφpxq, φpyqq “ W 1px, yq. In particular, tHpW q is
always a graphon parameter for any graph H.

Theorem 6.1.5. Let H be a graph. Then

(i ) H is weakly norming if and only if tHp¨q is a convex graphon parameter.

(ii ) H is norming if and only if tHp¨q is a strictly convex signed graphon parameter.
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By using Theorem  6.1.5 (ii), we also prove that Kt,t minus a perfect matching, proven
to be weakly norming by Lovász, is not norming if t ą 3.

Theorem 6.1.6. For every t ą 3, Kt,t minus a perfect matching is not norming.

As observed by Hatami [ 58 , Observation 2.5(ii)], every norming graph must be eulerian,
i.e., every vertex has even degree. Thus, we only prove Theorem  6.1.6 for odd integers t,
which gives the first examples of weakly norming graphs that are eulerian but not norming.

6.2 Preliminaries

Given an n ˆ n symmetric matrix A “ paijq, let UA be the two-variable symmetric step
function on r0, 1s2 defined by

UApx, yq “ aij, if pi´ 1q{n ď x ă i{n and pj ´ 1q{n ď y ă j{n

and UA “ 0 on the measure-zero set x “ 1 or y “ 1 for simplicity. Trivially, A ÞÑ UA is a
linear map and UA satisfies the identity

tHpUAq “ n´vpHq
ÿ

ϕ:V pHqÑrns

ź

uvPEpHq

aϕpuqϕpvq.

In other words, tHpUAq is n´vpHq times a homogeneous
`

n`1
2

˘

-variable polynomial of degree
epHq. We call the polynomial PH,npAq for A P Symn, where Symn denotes the

`

n`1
2

˘

-
dimensional vector space of nˆ n real symmetric matrices.

The cut norm ∥¨∥
˝

on W is defined by

∥W∥
˝

:“ sup
S,TĎr0,1s

ˇ

ˇ

ˇ

ˇ

ż

SˆT

W px, yqdxdy

ˇ

ˇ

ˇ

ˇ

.

Then the corresponding counting lemma is stated as follows:

Lemma 6.2.1 ([ 81 ], Exercise 10.28). Let U and W be signed graphons and let H be a
graph. Then

|tHpUq ´ tHpW q| ď 4epHq ∥U ´W∥
˝
.

The following lemma, which connects a (signed) graphon W to a step function of the
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form UA, is an easy consequence of the fact ∥W∥
˝
ď ∥W∥1 and the dominated convergence

theorem.

Lemma 6.2.2. Let W be a signed graphon. For every ε ą 0, there exists a symmetric
matrix A such that ∥W ´ UA∥

˝
ă ε.

To prove Theorem  6.1.5 (ii), we shall use some facts about norming graphs, appeared
in [  81 ].

Lemma 6.2.3 ([ 81 ], Exercise 14.8). Let H be a norming graph. Then tHpW q is always
positive for a nonzero signed graphon W . In particular, epHq is even, since tHp´W q “
p´1qepHqtHpW q.

We follow the standard notion of convexity and related definitions. A convex set is a
subset C of a vector space such that λx` p1´ λqy P C whenver x, y P C and λ P p0, 1q. A
function f : C Ñ R is said to be convex if, for each 0 ă λ ă 1,

fpλx` p1´ λqyq ď λfpxq ` p1´ λqfpyq.

We say that a function f is strictly convex if the inequality above is strict whenever x and
y are distinct. We shall use a simple fact about convexity repeatedly in what follows:

Lemma 6.2.4. Let U be a convex subset of a vector space and let f be a convex nonnegative
function on U . If g : Rě0 Ñ R is an increasing convex function, then g ˝ f is also convex.

Proof. Let u, v P U . Then for each λ P p0, 1q.

gpfpλu` p1´ λqvqq ď gpλfpuq ` p1´ λqfpvqq ď λgpfpuqq ` p1´ λqgpfpvqq,

where the first inequality uses convexity of f and monotonicity of g and the second uses
convexity of g.

For a real-valued function fpx1, ¨ ¨ ¨ , xnq that is twice differentiable on an open set
U Ď Rn, the Hessian of f , denoted by ∇2f , is the n ˆ n matrix H “ phijq, where
hij “

B2f
BxiBxj

. We will only consider polynomials f , so its Hessian ∇2f is always a symmetric
matrix with polynomial-valued entries. Standard results in convex analysis, e.g., Section
3.1.4 in [ 13 ], imply the following equivalence.

Lemma 6.2.5. Every n-variable polynomial P is convex on a convex set C Ď Rn if and
only if its Hessian ∇2P is positive semidefinite on the interior of C.
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We also recall a basic fact in functional analysis.

Lemma 6.2.6. Let f be a nonnegative function on a vector space V such that fpxq “ 0
if and only if x “ 0, and fpλxq “ |λ|fpxq. If B :“ tx P V : fpxq ď 1u is convex, then f

defines a norm on V .

Proof. It is enough to prove the triangle inequality fpx` yq ď fpxq ` fpyq. For nonzero
x and y, both x1 :“ x{fpxq and y1 :“ y{fpyq lie in the convex set B. Set λ “ fpxq

fpxq`fpyq
.

Then by convexity, λx1 ` p1´ λqy1 P B, and thus,

f

ˆ

x` y

fpxq ` fpyq

˙

“ fpλx1 ` p1´ λqy1q ď 1.

This proves subadditivity of f .

6.3 Convexity and weakly norming graphs

Theorem  6.1.5 (i) is a consequence of the following equivalence.

Theorem 6.3.1. Let H be a graph. Then the following are equivalent:

(i ) H is weakly norming.

(ii ) tHp¨q is a convex graphon parameter.

(iii ) PH,np¨q is a convex polynomial on the positive orthant for every n P N.

Proof. (i)ñ (ii). If ∥¨∥rpHq
is convex, then by Lemma  6.2.4 , tHpW q “ ∥W∥epHq

rpHq
is also

convex on the set of graphons.

(ii)ñ(i). Convexity of tHp¨q for graphons naturally extends to all U,W P W with nonnega-
tive values. Thus, for all U,W P W and λ P p0, 1q,

tHp|λW ` p1´ λqU |q ď tHpλ|W | ` p1´ λq|U |q ď λtHp|W |q ` p1´ λqtHp|U |q.

Indeed, 0 ď W 1 ď W pointwise implies 0 ď tHpW
1q ď tHpW q, which gives the first

inequality, and the second follows from convexity of tHp¨q. Therefore, the set

B :“ tW P W : tHp|W |q ď 1u “ tW P W : tHp|W |q1{epHq
ď 1u

is convex. Lemma  6.2.6 now proves the triangle inequality for ∥¨∥rpHq
.
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(ii)ñ(iii). Let A “ paijq and B “ pbijq be two n ˆ n symmetric matrices with positive
entries. We may assume that max aij ď 1 and max bij ď 1. Then convexity of PH,n
immediately follows from linearity of the map A ÞÑ UA and convexity of tHp¨q for graphons.

(iii)ñ(ii). Let W1 and W2 be two graphons. By Lemma  6.2.2 , there exist nˆ n symmetric
matrices A1,n and A2,n such that

∥∥∥Wi ´ UAi,n

∥∥∥
˝
Ñ 0 as nÑ 8 for each i “ 1, 2. Convexity

of PH,n gives

tHpλUA1,n ` p1´ λqUA2,nq ď λtHpUA1,nq ` p1´ λqtHpUA2,nq.

Letting nÑ 8 finishes the proof, as tHpWnq Ñ tHpW q if ∥Wn ´W∥
˝
Ñ 0 by Lemma  6.2.1 .

Remark 6.3.2. After proving the statement, we found that the equivalence between (i)
and (ii) in fact implicitly appeared in Doležal et al. [ 28 ] by a different approach using
weak˚ limits. We include our shorter proof for the sake of completeness.

In particular, (iii) enables a computational way of verifying weakly norming property,
by using Lemma  6.2.5 .

Corollary 6.3.3. A graph H is weakly norming if and only if the Hessian ∇2PH,npAq is
positive semidefinite for every A P Symn with positive entries and n P N.

To prove Theorem  6.1.4 , we need some auxiliary facts about C’
k . For a vertex subset

X Ď V pHq, let N˚pXq :“ NpXq∖X, where NpXq denotes the union of all neighbours of
x P X.

Lemma 6.3.4. Let H “ C’
k for k ą 4. Then

(i ) there is an edge e in H such that N˚peq induces exactly one edge, i.e., e is contained
in exactly one 4-cycle, and

(ii ) if X spans exactly two edges, then N˚pXq contains an edge.

Note that C’
3 – K3,3 and C’

4 – Q3 violate (i). We omit the proof, as it is seen by a
straightforward case analysis.

Proof of Theorem  6.1.4 . Let H be the graph C’
k . Since ∇2PH,npAq is a matrix with

polynomial entries, its positive semidefiniteness for A P Symn with positive entries extends
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to those A P Symn with nonnegative entries. We analyse a 2ˆ 2 submatrix of the Hessian
∇2PH,3pAq, where

A “

»

—

—

–

1 1 0
1 0 1
0 1 0

fi

ffi

ffi

fl

,

with respect to the two variables a13 and a33. Namely, we write hpx, yq :“ PH,3pAx,yq,
where

Ax,y :“

»

—

—

–

1 1 y

1 0 1
y 1 x

fi

ffi

ffi

fl

,

and claim that ∇2hpx, yq is not positive semidefinite at x “ y “ 0.
We may decompose h into hpx, yq “ qpx, yq ` ℓpx, yq ` rpyq, where qpx, yq is the sum of

all monomials with x-degree at least two, ℓpx, yq is the sum of all monomials with x-degree
one, and rpyq is the rest only depending on y. Then the Hessian ∇2hp0, 0q is the matrix

«

qxxp0, 0q ℓxyp0, 0q
ℓxyp0, 0q ryyp0q

ff

and we claim that qxxp0, 0q “ 0 and that ℓxyp0, 0q ą 0. We regard Ax,y as a looped, simple,
and edge-weighted graph on t1, 2, 3u with the weight aij for each edge ij. Then qpx, yq

counts the weight on the homomorphisms from H to Ax,y that use the x-edge at least
twice.

If a homomorphism uses the x-edge more than twice, then the corresponding monomial
is divisible by x3 and vanishes in qxxp0, 0q. Thus, to compute qxxp0, 0q, we only count those
H-homomorphisms which use the x-edge exactly twice. Suppose that e1, e2 P EpHq are
mapped to the vertex 3 with the looped x-edge. If a vertex in N˚pe1 Y e2q is mapped to
the vertex 1, the homomorphism uses the y-edge and the corresponding monomial vanishes
in qxxp0, 0q. Otherwise, if all the vertices in N˚pe1 Y e2q are mapped to the vertex 2, an
edge contained in N˚pe1 Y e2q, which exists by Lemma  6.3.4 (ii), receives the loop weight 0.
Thus, qxxp0, 0q “ 0.

It remains to prove ℓxyp0, 0q ą 0. By Lemma  6.3.4 (i), there is an edge e contained in
at most one 4-cycle. Let e1 “ uv be the edge disjoint from e in the 4-cycle that contains

182



e. Consider the homomorphism that maps an edge e to the x-edge, i.e., both ends of e
to 3, exactly one end u of e1 to 1, all vertices in N˚peq∖ tuu to 2, and the other vertices
to 1. Since N˚peq∖ tuu is an independent set by the uniqueness of the 4-cycle containing
e, this is a homomorphism that uses both the x- and the y-edge exactly once. Thus, the
corresponding monomial is xy, which proves that ℓxyp0, 0q ě 1.

6.4 Strict convexity and norming graphs

Theorem  6.1.5 (ii) follows from a result analogous to Theorem  6.3.1 .

Theorem 6.4.1. Let H be a graph. Then the following are equivalent:

(i ) H is norming.

(ii ) tHp¨q is a strictly convex parameter for signed graphons.

(iii ) PH,np¨q is a strictly convex polynomial on Symn for every n P N.

(iv ) PH,np¨q
1{epHq is a norm on Symn.

Proof. (i)ñ(ii). Let U,W P W . Hatami proved the following inequality (see (34) in [ 58 ]):

tHpU `W q ` tHpU ´W q ď 2epHq´1
ptHpUq ` tHpW qq.

Since H is norming, tHpU ´W q ą 0 unless U “ W almost everywhere by Lemma  6.2.3 .
This implies strict convexity of tHp¨q.

(ii)ñ(iii). This immediately follows from the linearity of the map A ÞÑ UA.

(iii)ñ(iv). If epHq is odd, then PH,npAq ` PH,np´Aq “ 0 for every A P Symn, which
contradicts strict convexity. Thus, epHq is even. Again by strict convexity, 2PH,npAq “
PH,npAq`PH,np´Aq ą 0 whenever A ‰ 0. Hence, PH,npAq1{epHq is well-defined and positive
for every nonzero A. Furthermore, PH,npλAq1{epHq “ |λ|PH,npAq

1{epHq. Since

B :“ tA P Symn : PH,npAq ď 1u “ tA P Symn : PH,npAq1{epHq
ď 1u

is a convex set, we may apply Lemma  6.2.6 and conclude that PH,npAq is a norm on Symn.

(iv)ñ(i). The proof is the same as the part (iii)ñ(ii) of Theorem  6.3.1 .
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Indeed, positive definiteness of the Hessian implies strict convexity of a polynomial, but
the converse is not true in general. Thus, the naive analogue of Corollary  6.3.3 obtained
by replacing weakly norming and positive semidefinite by norming and positive definite,
respectively, does not hold. One might still hope to prove that a graph H is norming by
showing that the Hessian ∇2PH,npAq is positive definite at each nonzero A P Symn, using
the one-sided implication. However, we show that this is impossible by proving that every
norming graph has a singular Hessian ∇2PH,npAq at some A ‰ 0 whenever n is even.

Proposition 6.4.2. For every n, there exists a nonzero 2nˆ 2n symmetric matrix A such
that ∇2PH,2npAq is singular for every norming graph H.

Proof. Let A “
«

Jn ´Jn

´Jn Jn

ff

, where Jn denotes the nˆ n matrix with all entries equal

to 1. We claim that ∇2PH,2npAq has eigenvalue 0 with the eigenvector 1n “ p1, 1, ¨ ¨ ¨ , 1qT P
Rnp2n`1q. Recall the folklore fact [ 81 , Example 5.14] that tF pUAq is the indicator function
that F is eulerian. In particular, H is eulerian and epHq is even. Thus,

tHpUA ´ εq ` tHpUA ` εq “ 2tHpUAq ` 2
ÿ

J

tJpUAqε
epHq´epJq

“ 2` 2ε2
ÿ

F

tF pUAq `Opε
4
q,

where the first sum is taken over all proper subgraphs J of H with even number of edges
and the second is taken over all subgraphs F Ď H with epF q “ epHq ´ 2. Since one
always obtains a non-eulerian subgraph F by deleting two edges from an eulerian graph
H, tF pUAq “ 0. Thus, tHpUA ´ εq ` tHpUA ` εq “ 2` Opε4q. On the other hand, by the
Taylor expansions of PH,2n at A,

PH,2npA` εJ2nq ` PH,2npA´ εJ2nq “ PH,2npAq ` 2ε21Tn∇2PH,2npAq1n `Opε3
q.

Since PH,2npA ` εJ2nq ` PH,2npA ´ εJ2nq “ p2nqvpHqptHpUA ´ εq ` tHpUA ` εqq, it follows
that 1Tn∇2PH,2npAq1n “ 0. Since ∇2PH,2npAq is positive semidefinite, ∇2PH,2npAq1n must
be zero. This completes the proof of the claim.

As already used in the last line of the proof, we are only able to obtain a weaker
analogue of Corollary  6.3.3 .

Corollary 6.4.3. For a norming graph H, ∇2PH,npAq is positive semidefinite for every A P
Symn.

It is still enough to find A P Symn such that ∇2PH,npAq is not positive semidefinite to
prove that H is not norming. This is exactly what we do in the proof of Theorem  6.1.6 .
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Proof of Theorem  6.1.6 . Let Ht be the graph K2t`1,2t`1 ∖ p2t ` 1q ¨ K2. As mentioned
before, it is enough to prove that Ht is not norming, as K2t,2t minus a perfect matching is
not eulerian and thus not norming. Let

A “

»

—

—

–

x y ε

y 1 1
ε 1 ´1

fi

ffi

ffi

fl

and let hpx, yq :“ PH,3pAq. Here we suppress the dependency on 0 ă ε ă 1, since ε is a
small constant to be chosen later. We analyse the 2ˆ 2 Hessian matrix ∇2h at p0, 0q. As
in the proof of Theorem  6.1.4 , we decompose hpx, yq into three parts, i.e.,

hpx, yq “ qpx, yq ` ℓpx, yq ` rpyq,

where qpx, yq is the sum of monomials divisible by x2, ℓ is the sum of monomials whose
x-degree is 1, and r is the remaining terms. Then the Hessian ∇2hp0, 0q is the matrix

«

qxxp0, 0q ℓxyp0, 0q
ℓxyp0, 0q ryyp0q

ff

.

We regard A as a looped, simple, and edge-weighted graph on t1, 2, 3u with the weight aij
for each edge ij. For the same reason as in the proof of Theorem  6.1.4 , qxxp0, 0q is equal to
the number of homomorphisms that use the x-edge exactly twice without using the y-edge.
Such a homomorphism ϕ maps at least three vertices V1 in Ht that induce exactly two
edges to the vertex 1 and never maps their neighbour to the vertex 2. Thus, N˚pV1q must
be embedded to the vertex 3. Since Ht is 2t-regular and V1 contains exactly two edges,
epV1, N

˚pV1qq ě 6t´ 4 and thus, ϕ uses the ε-edge at least 6t´ 4 times.
Analogously, ℓxyp0, 0q counts the number of homomorphisms that use both the x- and

y-edges exactly once and hence, use the ε-edge at least 4t´ 3 times. The homomorphisms
using the y-edge exactly twice and avoiding the x-edge must use ε-edge at least 2t ´ 2
times. Therefore,

∇2hp0, 0q “
«

qxxp0, 0q ℓxyp0, 0q
ℓxyp0, 0q ryyp0q

ff

“

«

Opε6t´4q Opε4t´3q

Opε4t´3q Opε2t´2q

ff

.

Here Op¨q notation includes implicit multiplicative constants depending only on t.
Unfortunately, the product of the diagonal entries and the product of the off-diagonal
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entries are in the same order Opε8t´6q. However, we claim that ryyp0q is asymptotically
smaller than Opε2t´2q and also that |ℓxyp0, 0q| “ Ωpε4t´3q, which implies that ∇2hp0, 0q is
not positive semidefinite for a sufficiently small ε ą 0.

Let AYB be the bipartition of Ht and let A “ ta1, ¨ ¨ ¨ , a2t`1u and B “ tb1, ¨ ¨ ¨ , b2t`1u

such that aibi, 1 ď i ď 2t ` 1, is the missing perfect matching in Ht. Firstly, let Φyy

be the set of homomorphisms that use the y-edge twice and the ε-edge exactly 2t ´ 2
times while avoiding the x-edge. Each φ P Φyy must map one vertex, say a1, to 1, two
neighbours of a1 to 2, and the other 2t´ 2 neighbours of a1 to 3. That is, once we choose
the vertex a1 and two of its neighbours to be mapped to 2, all the embeddings of the
neighbours of a1 are fixed. Consider these vertices as pre-embedded. Let V3 be the set
of 2t ´ 2 vertices mapped to 3 and let U be the vertices that are not yet embedded.
Then U “ ta2, ¨ ¨ ¨ , a2t`1u Y tb1u. In particular, U induces a star centred at b1 with 2t
edges. Also note that by the definition of Φyy, the homomorphisms in Φyy do not map any
other vertex than a1 to 1. For each φ P Φyy, denote by Uφ the subset of U mapped to the
vertex 3. Then the coefficient of the term ε2t´2y2 in rpyq is determined by

ÿ

φPΦyy

p´1qepV3,Uφq`epV3q`epUφq. (6.4.1)

Suppose b1 P Uφ. For each φ, let bi and bj , i ă j, be the two vertices mapped to the vertex
2. Then both ai and aj have all their 2t ´ 1 other neighbours than bi and bj mapped
to 3. Thus, by switching the image of ai under φ between 2 and 3, we produce another
homomorphism φ whose weight p´1qepV3,Uφq`epV3q`epUφq has exactly the opposite sign of
that of φ. This switching is an involution, and thus, the two terms pair up and cancel each
other in ( 6.4.1 ). If b1 R Uφ, then one may do an analogous switching with the minimum
indexed vertex amongst a2, ¨ ¨ ¨ , a2t`1 that has an odd degree to those vertices mapped to
3. Thus, ( 6.4.1 ) evaluates to zero.

To prove |ℓxyp0, 0q| “ Ωpε4t´3q, let Ψxy be the set of homomorphisms that use each of
the x- and y-edge exactly once. Suppose that, under ψ P Ψxy, ai and bj , i, j ą 1 and i ‰ j,
are mapped to 1 and bk, i ‰ k ą 1, is mapped to 2. To avoid using the y-edge more than
once, ψ must map pB ∖ tbi, bj, bkuq Y pA∖ tai, ajuq to the vertex 3. Thus, there are only
two vertices aj and bi whose embedding is not yet determined. Note that aj and bi have
2t´ 2 and 2t´ 1 neighbours mapped to 3, respectively, and they are adjacent. Let αψ and
βψ be the indicator function that aj and bi are mapped to 3 by ψ, respectively. Then the
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coefficient of the term ε4t´3xy in ℓpx, yq is a nonzero constant times

ÿ

ψPΨxy

p´1qp2t´2qαψ`p2t´1qβψ`αψβψ “
ÿ

ψPΨxy

p´1qβψ`αψβψ .

Since each choice pαψ, βψq P t0, 1u2 determines a homomorphism ψ P Ψxy, pαψ, βψq is
uniformly distributed on t0, 1u2. Hence, the sum above evaluates to a nonzero constant,
which proves the claim.

6.5 Concluding remarks

Our method using the Hessian matrix ∇2PH,n is reminiscent of [ 74 ] in the sense that both
rely on determining positive semidefiniteness of matrices given by homomorphism counts.
More precisely, in [ 74 ] they looked at two edges e and e1 in a graph G sharing a vertex and
used non-positive semidefiniteness of the 2ˆ 2 matrix

Ae,e1 “

«

he,e he,e1

he,e1 he1,e1

ff

,

where he1,e2 counts the number of those homomorphisms from H to G which map a K1,2

in H to the homomorphic copy of K1,2’s formed by e1 and e2, to prove that a certain H is
not weakly norming.

This is somewhat analogous to the Hessian matrix obtained by evaluating the corre-
sponding weights of e and e1 to be zero. However, the Hessian does not take the particular
K1,2-structure into account, so it has larger entries than Ae,e1 above. We did not attempt
to reprove their result using our language, but we remark that there are non-weakly
norming graphs that satisfy their positive semidefiniteness condition. For instance, take
a vertex-disjoint union of two non-isomorphic connected weakly norming graphs. This is
proven to be not weakly norming in [ 47 ], but the corresponding 2 ˆ 2 matrix in [ 74 ] is
positive semidefinite, since it is a positive linear combination of the respective matrices of
the components. It would be interesting to see if the two distinct positive semidefiniteness
conditions are equivalent for connected graphs H.
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7. On extremal problems concerning the
traces of sets

7.1 Introduction

A hypergraph H is a pair pV,Fq where V is the set of vertices and F Ď 2V “ PpV q

is the set of edges. In the literature, the problems we consider in this article are often
presented in the context of families rather than hypergraphs. If not necessary, it is then
not distinguished between the family F Ď 2V and the hypergraph pV,Fq. We will follow
this notational path and also use the “family” and “hypergraph” essentially synonymously.

Let V be an n-element set and let F be a family of subsets of V . For a subset T of V
define the trace of F on T by F|T “ tF XT : F P Fu. For integers n, m, a, and b, we write

pn,mq Ñ pa, bq

if for every family F Ď 2V with |F | ě m and |V | “ n there is an a-element set T Ď V such
that |F|T | ě b (we also say that pn,mq arrows pa, bq).

The first type of question that was asked for this arrowing notation is similar to the spirit
of the classic Turán problem: For a fixed number of vertices n, how many edges are needed
such that there is a subset of s vertices such that all its subsets lie in the trace. The following
result on this question was conjectured by Erdős [ 46 ] and was proved independently by
Sauer [  101 ], Shelah and Perles [  103 ], and Vapnik and Červonenkis [ 114 ]. It states that for a
large family F on n vertices, there is an s-set of vertices such that all its subsets lie in the
trace of F . More precisely, they showed that pn,mq Ñ ps, 2sq whenever m ą

ř

0ďiăs

`

n
i

˘

.
Another fundamental question that was raised in the area is how large a family can

be at most so that there will still be a vertex v such that the trace on V ∖ tvu is not
much smaller than the original family. More precisely, the following problem was posed by
Füredi and Pach [  46 ] and, more recently, by Frankl and Tokushige as Problem 3.8 in their
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monograph [ 42 ]: 

1
 

Problem 7.1.1. Given non-negative integers n and s, what is the maximum integer mpn, sq
such that for every integer m ď mpn, sq, we have

pn,mq Ñ pn´ 1,m´ sq.

A family F is hereditary if for every F 1 Ď F P F , we have that F 1 P F . In [ 41 ], Frankl
proves that among families with a fixed number of edges and vertices, the trace is minimised
by hereditary families. Thus, the problems considered here, and in particular Problem  7.1.1 ,
can be reduced to hereditary families (see Lemma  7.2.1 ). Hence, Problem  7.1.1 is asking for
the maximum integer mpn, sq such that every hereditary hypergraph on n vertices with at
most mpn, sq edges contains a vertex of degree at most s. 

2
 Formulated differently, mpn, sq

is the minimal integer such that every hereditary hypergraph on n vertices with minimum
degree at least s` 1 has at least mpn, sq ` 1 edges.

The investigation of this problem started with Bondy [ 11 ] and Bollobás [ 82 ] determin-
ing mpn, 0q and mpn, 1q, respectively. Later Frankl [ 41 ] and Frankl and Watanabe [ 43 ]
proved part ( 1 ) and ( 2 ), respectively, of the following theorem.

Theorem 7.1.2. For d, n P N and d|n, we have

1. mpn, 2d´1 ´ 1q “ n
d
p2d ´ 1q ,

2. mpn, 2d´1 ´ 2q “ n
d
p2d ´ 2q .

Consider a family consisting of a set of size d and all possible subsets, and take n{d
vertex disjoint copies of it. The resulting family has minimum degree 2d´1 and n

d
p2d´1q`1

edges. Thus, this family is an extremal construction for ( 1 ). By taking out all sets of size d,
we obtain an extremal construction for ( 2 ).

Our main result makes further progress on Problem  7.1.1 , solving it for general s “
2d´1 ´ c as long as c is linearly small in d.

Theorem 7.1.3 (Main theorem). Let d, c, n P N with d ě 4c and d|n. Then

mpn, 2d´1
´ cq “

n

d
p2d ´ cq.

1There have been slightly different versions in use for the arrowing notation and for what we denote
by mpn, sq. In this work, we follow the notation in [ 42 ].

2As usual, we define the degree of a vertex v in a hypergraph H “ pV, Fq as degpvq “ |tF P F : v P F u|

and the minimum degree of H is δpHq “ minvPV degpvq.
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Remark 7.1.4. In fact, our proof of Theorem  7.1.3 yields that for d ě 4c and m ď n
d
p2d´cq

we have pn,mq Ñ pn ´ 1,m ´ p2d´1 ´ cqq without any divisibility conditions on n. The
assumption d|n is only necessary for the extremal constructions showing the maximality
of n

d
p2d ´ cq. Analogous remarks hold for Theorem  7.1.2 above and Theorem  7.1.5 below.

In Section  7.5 we provide a construction showing that the equality in Theorem  7.1.3 does
not hold for d “ c (see Construction  1 ).

One might also try to solve Problem  7.1.1 for small values of s. Apart from the aforemen-
tioned results by Bondy and Bollobás, progress was made by Frankl [ 41 ], Watanabe [ 115 ,  116 ],
and by Frankl and Watanabe [ 43 ]. In [ 43 ], they conjectured that mpn, 12q “ p28{5` op1qqn.
Theorem  7.1.3 does not consider cases for which d is very small in terms of c. The following
results extend Theorem  7.1.2 to c “ 3 and 4 and every d ě 5 (for smaller d the respec-
tive mpn, sq is not defined or has been determined previously). In particular, it proves the
conjecture of Frankl and Watanabe for s “ 12 in a strong sense.

Theorem 7.1.5. Let d, n P N with d ě 5 and d|n. Then

1. mpn, 2d´1 ´ 3q “ n
d
p2d ´ 3q and

2. mpn, 2d´1 ´ 4q “ n
d
p2d ´ 4q. In particular, mpn, 12q “ 28

5 n.

Note that for larger d, this theorem is of course a special case of Theorem  7.1.3 .

7.2 Preliminaries

In this work we consider the set of natural numbers N to start with 1 and the logarithms
considered are to the base 2. Further, for i P N we set as usual ris “ t1, . . . , iu, and it is
also convenient to define ris0 “ t0, . . . , iu. Given a set F Ď N and some i P N, we denote
by F ` i the set tj ` i : j P F u. For our considerations isolated vertices, i.e., vertices that
are contained in the vertex set of a hypergraph but do not lie in any edges, usually do
not play an important rôle. This will lead to a few easy peculiarities in notation. For two
hypergraphs H and H1 we write H – H1 if they are isomorphic up to isolated vertices,
more precisely, if there are vertex sets V disjoint to V pHq and V 1 disjoint to V pH1q such
that the hypergraph pV pHq Ÿ V,EpHqq is isomorphic to pV pH1q Ÿ V 1, EpH1qq.

For a hypergraph H “ pV,Eq and v P V we define the link Lv of v to be the hypergraph
on V with edge set tF ∖ tvu : v P F P Eu. Further, we write

Vv “ tw P V : there is an e with tv, wu Ď e P Eu ,
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note that if v is not an isolated vertex, then v P Vv. This notation will be useful in the
proof of Theorem  7.1.3 when defining the clusters mentioned in the overview of the proof.

The following lemma due to Frankl [ 41 ] provides the aforementioned reduction of
Problem  7.1.1 to hereditary families.

Lemma 7.2.1. For n,m, a, b P N the following statements are equivalent.

1. For every n-set V and every hereditary family F Ď 2V with |F | ě m, there exists a
set T Ď V with |T | “ a such that |F|T | ě b.

2. pn,mq Ñ pa, bq.

In particular, this means that in the proof of our results we only need to consider
hereditary families.

Let n P N, for A,B P 2rns we say that A ăcol B or A precedes B in the colexicographic
order if maxpA △ Bq P B. Let m P N with m ď 2n and define Rnpmq to be the family
on n vertices containing the first m sets of 2rns according to the colexicographic order. Note
that for n ď n1 and m ď 2n, we have Rnpmq – Rn1pmq and hence, we will not distinguish
between Rnpmq and Rn1pmq and we will omit the subscript. The following theorem due to
Katona [  66 ] is a generalisation of the well-known Kruskal-Katona theorem.

Theorem 7.2.2. Let f : N0 Ñ R be a monotone non-increasing function and let F be a
hereditary family with |F | “ m. Then

ÿ

FPF
fp|F |q ě

ÿ

RPRpmq

fp|R|q.

Observe that for a hypergraph H “ pV,Eq a double counting argument yields

ÿ

xPV

ÿ

HPLx

1
|H| ` 1 “ |E ∖∅|.

For the proofs of Theorems  7.1.3 and  7.1.5 we generalise this argument by considering
weights wHpvq for all vertices v. We will refer to

ř

HPLx
1

|H|`1 as uniform weight since it
can be imagined as uniformly distributing the unit weight among its vertices.

Accordingly, Theorem  7.2.2 will normally be applied with F being the link of a vertex
and, as we usually consider the uniform weight, the function f will often be fpkq “ 1

k`1 .
The weight of Rpmq with respect to this f will come up repeatedly and hence, for brevity we
set W pmq :“

ř

RPRpmq
1

|R|`1 . Note that we have W p2d´1q “ 2d´1
d

and further the following
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estimate 

3
 for W p2d´1 ´ cq for a c P r2d´2s:

W p2d´1
´ cq ě

2d ´ 1
d

´
c

d´ log c (7.2.1)

Indeed, if A P 2rd´1s ∖ Rp2d´1 ´ cq, then there are at least 2d´1´|A| sets in 2rd´1s ∖
Rp2d´1´cq. Thus, it follows that for every A P 2rd´1s∖Rp2d´1´cq we have |A| ě d´1´log c.
This gives that W p2d´1q ´W p2d´1 ´ cq ď c

d´log c and thereby (  7.2.1 ).

7.3 Proof of Theorem  7.1.3 

For proving Theorem  7.1.3 we introduce two “local” lemmas. The first lemma says that if
a family deviates enough from Rpmq, the weight of this family will have a surplus with
respect to W pmq. 3 

Lemma 7.3.1. Let d ě 3 and c ď 2d be integers. For a hereditary family H, with |H| ě
2d ´ c the following holds.

1.
ř

HPH
1

|H|`1 ě W p2d ´ cq.

2. If there are at least d` 1 non isolated vertices in H, then

ÿ

HPH

1
|H| ` 1 ě W p2d ´ cq ` 1

6 .

3. If c P t2, 3u and H fl Rp2d ´ cq, then we have

ÿ

HPH

1
|H| ` 1 ě W p2d ´ cq `min

ˆ

1
6 ,

1
d

˙

.

Proof. Let d, n, c, and H be given as in the statement. The first part follows by applying
Theorem  7.2.2 with fpkq “ 1

k`1 .
In order to prove part (  2 ) and ( 3 ) we need some preparation. Denote by hi and ri the

number of i-sets in H and Rp2d ´ cq, respectively. Given s P rds0 set gpkq “ 1 for k ď s

and gpkq “ 0 for k ą s. Then Theorem  7.2.2 applied with f “ g yields

ÿ

iPrss0

hi ě
ÿ

iPrss0

ri. (7.3.1)

3To have a clearer presentation of our main results and their proofs, we refrained from striving for
optimal bounds.
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Next, let H1, . . . , H|H| be an enumeration of the elements of H such that |Hj| ď |Hj`1|.
Given i P rd´ 1s let φpiq be the number of edges of size at most i in the family Rp2d ´ cq,
i.e., φpiq “

ř

jPris0
rj . Let H0 “ tH1u “ t∅u and for i P rd´ 1s consider the following set of

edges Hi “ tHφpi´1q`1, . . . , Hφpiqu and observe that its size is ri. Inequality ( 7.3.1 ) implies
that for H P Hi, where i P rd´ 1s0, we have |H| ď i. Thus,

ÿ

iPrd´1s0

ÿ

HPHi

1
|H| ` 1 ě

ÿ

iPrd´1s0

ri
i` 1 “ W p2d ´ cq . (7.3.2)

If now at least d` 1 vertices are contained in edges of H, then even for Hd`2 P H2 it holds
that |Hd`2| “ 1. Hence, ( 7.3.2 ) now becomes

ř

HPH
1

|H|`1 ě
1
2 ´

1
3 `W p2

d ´ cq and ( 2 ) is
proved.

For proving ( 3 ), let c P t2, 3u and note that if there are at least d ` 1 non isolated
vertices in H, then the result follows from ( 2 ). Thus, assume that there are only d non
isolated vertices in H. Observe that ri “

`

d
i

˘

for i P rd´ 2s, rd “ 0 and rd´1 “ d´ pc´ 1q.
Hence, due to ( 7.3.1 ) we have hi “

`

d
i

˘

for i P rd´ 2s and because of H being hereditary
and the size of H, further hd´1 ě d´pc´ 1q. In fact, hd´1 ą rd´1 “ d´pc´ 1q has to hold
since H fl Rp2d ´ cq. Together with ( 7.3.2 ) the result follows.

The following is the second local lemma. Part ( 2 ) states that a hereditary family
on d vertices with high minimum degree contains many edges and therefore, considering
Lemma  7.2.1 , this is a local version of Theorem  7.1.3 . Moreover, Part ( 1 ) states that if a
hereditary family has not enough edges, then there are several vertices of low degree.

Lemma 7.3.2. Let d, c P N such that d ą c, let V be a d-set and let H Ď 2V be hereditary.

1. If |H| ď 2d ´ c´ 1, then degpvq ď 2d´1 ´ c´ 1 for at least d´ c vertices v.

2. If δpHq ě 2d´1 ´ c, then |H| ě 2d ´ c.

Proof. ( 1 ): By sH denote the family tV ∖ F : F P 2V ∖ Hu. The bound on |H| implies
that c` 1 ď | sH| and observe that since H is hereditary, sH is hereditary. Consider some
ordering sH “ tH1, . . . , H| sH|u with |Hi| ď |Hi`1|. Note that because sH is hereditary, we
know that if some vertex v P V is contained in one of the edges H1, . . . , Hj, then in
fact tvu “ Hi for some i P rjs. Thus, there are d ´ c vertices that do not lie in any
of H1, . . . , Hc`1. Note that these vertices lie in at least c` 1 sets of 2V ∖ H and therefore,
for each such v we have degHpvq ď 2d´1 ´ c´ 1.

( 2 ): Assume for contradiction that |H| ď 2d´c´1. Then ( 1 ) gives the contradiction.
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Now we are ready to prove Theorem  7.1.3 .

Proof of Theorem  7.1.3 . Let n, d, and c be given as in the theorem. First note that

F0 “
!

F ` pi´ 1qd : F P Rp2d ´ pc´ 1qq and i P
”n

d

ı)

Ď 2rns

shows that for m “ 2d´c
d
n` 1, we have pn,mq Û

`

n´ 1,m´ p2d´1 ´ cq
˘

.
In a hereditary family on n vertices with m edges the existence of a set of size n´ 1

on which the trace of the family has size at least m ´ p2d´1 ´ cq is equivalent to the
existence of a vertex with degree at most 2d´1 ´ c. Therefore, Lemma  7.2.1 implies that it
is sufficient to show that for every hereditary family F on n vertices with minimum degree
at least 2d´1´ c` 1 we have |F | ě 2d´c

d
n` 1. Let now F Ď 2V be such a hereditary family

on some n-set V in which every vertex has degree at least 2d´1 ´ c` 1.
To prove the lower bound on the number of edges, we will define a weight function w

on V with the property that 1 `
ř

vPV wFpvq ď |F |. Subsequently, it will be enough to
show that

ř

vPV wFpvq ě
2d´c
d
n. Indeed, for c “ 1 from Lemma  7.3.1 ( 1 ) for H “ Lv, it

follows that the weight function
ř

HPLv
1

|H|`1 satisfies the desired inequality. Hence, from
now on we assume c ě 2. Note however, that for this uniform weight and c large, in F0

there are vertices with weight below and above 2d´c
d

. As mentioned in the overview, we
overcome this difficulty by using non-uniform weights and by bounding the average weight
of sets of vertices instead of bounding the weight of every single vertex.

To that aim, we will in the following consider a partition of V . Let us call a vertex v P V
light if |Vv| “ d. Further, let L be a maximum set of light vertices such that Vv X Vv1 “ ∅
for all v, v1 P L and call the sets Vv with v P L clusters. Later, the weight of a vertex will
be defined depending on how it relates to these clusters. Moreover, call the vertices u P
V ∖

Ť

vPL Vv with |Vu| ą d heavy vertices and let H be the set of all heavy vertices. The
vertices in L will be distinguished further into two different types L1 and L2 as follows.
Let L1 be the set of those vertices v P L for which every vertex in Vv is only contained in
edges of 2Vv , that is

L1 “ tv P L : there is no e P F ∖ 2Vv with eX Vv ‰ ∅u.

Furthermore, let L2 be the set of those vertices v P L for which there exists an x P Vv that
is contained in an edge of F ∖ 2Vv , in other words,

L2 “ tv P L : there is an e P F ∖ 2Vv with eX Vv ‰ ∅u. (7.3.3)
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Note that we have L “ L1 Ÿ L2. Lastly, we collect the remaining vertices in the
set sL “ V ∖ pHY

Ť

vPL Vvq. Thus, we have V “ H Ÿ
Ť

vPL1
Vv Ÿ

Ť

vPL2
Vv Ÿ sL.

Next, for each of the partition classes H,
Ť

vPL1
Vv,

Ť

vPL2
Vv, and sL the weights will be

defined and we will show that the average weight in each partition class is bounded from
below by 2d´c

d
.

Assign the uniform weight wFpuq “
ř

HPLu
1

|H|`1 to every heavy vertex u P H. This
definition and ( 2 ) from Lemma  7.3.1 give that every heavy vertex has weight at least

1
6 `W p2

d´1
´ c` 1q ě 1

6 `
2d ´ 1
d

´
c´ 1

d´ logpc´ 1q ě
2d ´ c
d

, (7.3.4)

where we used the bound ( 7.2.1 ) for the first inequality and d ě 4c and log x ď 2
3x for x ě 1

for the second (recall that we can assume c ě 2).
Given v P L1, we have that FrVvs is a family on d vertices with minimum degree at

least 2d´1´c`1. Thus, from Lemma  7.3.2 ( 2 ) (with c´1 here in place of c there) it follows
that |FrVvs| ě 2d ´ c` 1. Since summing the uniform vertex weights of all vertices of a
family amounts to the number of non-empty edges in that family, assigning the uniform
weight wFpxq “

ř

HPLx
1

|H|`1 to every x P Vv yields

1
d

ÿ

xPVv

wFpxq “
|FrVvs∖ t∅u|

d
ě

2d ´ c
d

. (7.3.5)

Given v P L2, the idea is that the vertices in Vv already have a relatively large uniform
weight just taking into account the edges on Vv. Thus, they only need a smaller proportion
of the weight of an edge that includes vertices outside of Vv. More precisely, we assign the
weight

wFpxq “
ÿ

HPLx

1
|H| ` 1 ´ |Vx ∖ Vv|

ˆ

1
2 ´

c´ 1
d´ c

˙

to every vertex x P Vv. Since F is hereditary, the number of 2-uniform edges containing x
and crossing from the inside of the cluster to the outside is exactly |Vx ∖ Vv|. Hence, this
definition can be understood as vertices in Vv having basically the uniform weight but
then renouncing part of their uniform share of those crossing edges. Later, these edges will
contribute more than their uniform share to weight of the outside vertex.

Of course, if |FrVvs| ě 2d ´ c` 1, then again the bound ( 7.3.5 ) follows for v directly
by double counting and thus, we may assume that |FrVvs| ď 2d ´ c. Define the set C as
the set of vertices x P Vv for which there exists some Fx with x P Fx P F ∖ 2Vv . Note that
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in fact, since F is hereditary, we may assume |Fx| “ 2. Considering the minimum degree
condition in F and applying Lemma  7.3.2 ( 1 ) to FrVvs (with c´ 1 here instead of c there)
it follows that

|C| ě d´ c` 1 . (7.3.6)

Moreover, the minimum degree of F implies degpvq ě 2d´1 ´ c ` 1 and hence, F being
hereditary gives that |2Vv ∖F | ď 2pc´ 1q. Therefore, double counting the non-empty edges
in FrVvs yields

|FrVvs∖ t∅u| “
ÿ

xPVv

ÿ

HPLxX2Vv

1
|H| ` 1 ě 2d ´ 2c` 1 . (7.3.7)

Now, for every vertex x P C there is at least one 2-uniform edge Fx P F ∖ F rVvs which
contributes c´1

d´c
to the sum of the weights. This, together with ( 7.3.7 ) and ( 7.3.6 ) give

1
d

ÿ

xPVv

wFpxq ě
1
d

ˆ

|FrVvs∖ t∅u| ` |C|
c´ 1
d´ c

˙

ě
1
d

ˆ

2d ´ 2c` 1` pd´ c` 1qc´ 1
d´ c

˙

ě
2d ´ c
d

. (7.3.8)

Lastly consider vertices from sL. Recall that in particular, these vertices are light and
could potentially have a too low weight if the uniform weight would be used. Note that by
the maximality of L, for every vertex a P sL we can pick a vpaq P L2 such that there exists
an edge containing a and a vertex of Vvpaq. Since the vertices in

Ť

vPL2
Vv renounced part

of their share of some of those edges, the vertices in sL can be given a larger fraction. To
be precise, the weight for a P sL is defined as

wFpaq “
ÿ

HPLa

1
|H| ` 1 `

ˇ

ˇVa X Vvpaq

ˇ

ˇ

ˆ

1
2 ´

c´ 1
d´ c

˙

.

Lemma  7.3.1 ( 1 ) yields that

wFpaq ě W p2d´1
´ c` 1q ` 1

2 ´
c´ 1
d´ c

ě W p2d´1
´ c` 1q ` 1

6 ě
2d ´ c
d

, (7.3.9)

where the second inequality follows from d ě 4c and the third follows as in ( 7.3.4 ). Observe
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that the definition of wF implies
ř

xPV wFpxq ď 1` |F | because the left-hand side counts
every edge of F apart from the empty set at most once. Since ( 7.3.4 ), ( 7.3.5 ), ( 7.3.8 ),
and ( 7.3.9 ) say that the average weight per vertex in F is at least 2d´c

d
, the proof is

complete.

7.4 Proof of Theorem  7.1.5 

This section is dedicated to the proof of Theorem  7.1.5 . The proof is very similar to the
proof of the main theorem just with some adaptions to obtain more precise bounds at
certain points. Hence, we will omit some details that already appeared in the last section.

Proof of Theorem  7.1.5 . Let c P t3, 4u and d ě 5. Firstly, the family F0 from the proof of
Theorem  7.1.3 shows that for m “ n

d
p2d´ cq`1, we have pn,mq Û

`

n´ 1,m´ p2d´1 ´ cq
˘

.
Let now F Ď 2V be a hereditary family on some n-set V in which every vertex has

degree at least 2d´1 ´ c` 1. In the following we will show that |F | ě
`

2d ´ c
˘

n
d
` 1.

To gain more precision later, this time we call a vertex v P V light if Lv – Rp2d´1 ´

pc ´ 1qq. Again, let L be a maximum set of light vertices such that Vv X Vv1 “ ∅ for
all v, v1 P L. Call the vertices u P V ∖

Ť

vPL Vv with Lu fl Rp2d´1 ´ pc´ 1qq heavy vertices.
The sets Li, H, sL are defined similarly as in the proof of Theorem  7.1.3 , just according to
the different definitions of light and heavy vertices here.

Again we assign the uniform weight to every heavy vertex of F . Note that then, due to
Lemma  7.3.1 ( 3 ) and the structure of Rp2d´1 ´ pc´ 1qq for c ď 4, every heavy vertex has
weight at least

min
ˆ

1
6 ,

1
d´ 1

˙

`W p2d´1
´ pc´ 1qq

ěmin
ˆ

1
6 ,

1
d´ 1

˙

`
2d ´ 1
d

´
pc´ 1qd´ 1
pd´ 1qd ě

2d ´ c
d

. (7.4.1)

For v P L1 and x P Vv the weight is again defined as the uniform weight and as in the
proof of Theorem  7.1.3 , we obtain

1
d

ÿ

xPVv

wFpxq ě
2d ´ c
d

. (7.4.2)
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To write the next weight definitions in a compact way, we define the following set

S “
␣

H P F : |H| “ 3 and H X
ď

vPL2

Vv ‰ ∅, H X sL ‰ ∅
(

Note that S is the set of those edges of size 3 in F crossing from the inside of some Vv
with v P L2 to its outside and contain a vertex from sL. For v P L2 and a vertex x P Vv,
assign the weight wFpxq “

ř

HPLx
1

|H|`1 ´
1
9 |tH P Lx : H Y txu P Su|.

Claim 7.4.1. For v P L2 we have 1
d

ř

xPVv
wFpxq ě

2d´c
d

.

We postpone the proof of this claim to the end of the section and first finish the proof
of Theorem  7.1.5 using the claim.

For a vertex define the weight a P sL as wFpaq “
ř

HPLa
1

|H|`1 `
1
18 |tH P La : H Y tau P

Su| . Note that by the maximality of L, there exists a vpaq P L2 such that there are
an edge F and a vertex xa P Vvpaq with a, xa P F . In fact, it is easy to check that
since La – Rp2d´1´pc´1qq, the number of 2-sets in La that contain xa is at least d´2 ě 3.
Thus, Lemma  7.3.1 ( 1 ) and the definition of the weight yield

wFpaq ě W p2d´1
´ pc´ 1qq ` d´ 2

18 ě W p2d´1
´ pc´ 1qq ` 1

6 ě
2d ´ c
d

, (7.4.3)

where the last inequality follows similarly as in ( 7.4.1 ).
Now observe that the definition of wF implies

ř

xPV wFpxq ď 1 ` |F | because the
left-hand side counts every edge of F apart from the empty set at most once. In particular,
for H P S there are at least one x P H X

Ť

vPL2
Vv and at most two a, a1 P H X sL. Thus, H

contributes at most 1 to
ř

xPV wFpxq.
Since (  7.4.1 ), (  7.4.2 ), Claim  7.4.1 , and ( 7.4.3 ) say that the average weight per vertex

in F is at least 2d´c
d

, the proof is complete.

Proof of Claim  7.4.1 . Here, we will differ slightly depending on the value of c.
Case c “ 3: If δpFrVvsq ě 2d´1 ´ 2, then ( 7.4.2 ) holds for v as well and so we may

assume δpFrVvsq ă 2d´1´ 2 and thereby |2Vv ∖F | ě 3. On the other hand, since degpvq ě
2d´1 ´ 2 and F is hereditary, |2Vv ∖ F | ď 4. So we can assume that |2Vv ∖ F | P t3, 4u.
If |2Vv ∖ F | “ 3, then degpvq ě 2d´1 ´ 2 and F being hereditary imply that the sets
in 2Vv ∖F are Vv, Vv∖ tvu, and some A P V pd´1q

v with v P A. Thus, each vertex x P A∖ tvu
lies in all three sets of 2Vv ∖ F , and so there has to be an Fx P Lx X pV ∖ Vvq

p1q because
of the minimum degree of F . Thus, the definition of the weight and double counting the
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non-empty edges in FrVvs implies

ÿ

xPVv

wFpxq ě |FrVvs∖ t∅u| `
|A∖ tvu|

2 ě 2d ´ 4` d´ 2
2 ě 2d ´ 3.

Similarly, if |2Vv ∖ F | “ 4, then the sets in 2Vv ∖ F are Vv, Vv ∖ tvu, some A P V pd´1q
v

with v P A, and A∖ tvu. Hence, there are d´ 2 vertices x (namely, the vertices in A∖ tvu)
for which there has to be an Fx P Lx X pV ∖ Vvq

p1q and at least one further F 1
x P Lx

with F 1
xX pV ∖ Vvq ‰ ∅ and |F 1

x| ď 2. Noting that each Fx contributes 1{2 to
ř

xPVv
wFpxq

and each F 1
x at least 1{3´ 1{9 “ 2{9, we obtain in the usual way

ÿ

xPVv

wFpxq ě 2d ´ 5` d´ 2
2 `

2pd´ 2q
9 ě 2d ´ 3

and thereby the claim if c “ 3.
Case c “ 4: In a similar way as in the beginning of the case c “ 3, we observe that we

may assume |2Vv ∖F | P t4, 5, 6u. Further observe that if |2Vv ∖F | “ 4, then since degpvq “
2d´1´3, the sets in 2Vv∖F are Vv, Vv∖tvu, A, and B for some distinct A,B P V pd´1q

v which
both contain v. Thus, there are at least d´3 vertices (namely those in AXB∖tvu) that lie
in four sets of 2Vv ∖F . Since for any such vertex x there has to be an Fx P LxXpV ∖Vvq

p1q,
we get

ř

xPVv
wFpxq ě 2d ´ 5` d´3

2 ě 2d ´ 4.
Similarly, if |2Vv ∖ F | “ 5, the sets in 2Vv ∖ F are Vv, Vv ∖ tvu, A, B, and A ∖ tvu

for some distinct A,B P V pd´1q
v which both contain v. Hence, for the d ´ 3 vertices x P

A X B ∖ tvu there have to be an Fx P Lx X pV ∖ Vvq
p1q and at least one further F 1

x P Lx

with F 1
x X pV ∖ Vvq ‰ ∅ and |F 1

x| ď 2. In addition, for the one vertex x P A ∖ B there
has to be an Fx P Lx X pV ∖ Vvq

p1q. For a vertex x P A X B ∖ tvu we observe the
following. If F 1

x Y txu R S, then F 1
x contributes at least 1{3 to

ř

xPVv
wFpxq. On the

other hand, if F 1
x Y txu P S, then there is some a P sL with a P F 1

x. Since for any a P sL
we have La – Rp2d´1 ´ 3q (and d ě 5), the number of 2-sets in La which contain x is
at least d ´ 2 ě 3. So in this case the edges in tH P Lx : H Y txu P Su contribute at
least 2

9 ¨ 3 “ 2{3. In either case, we derive

ÿ

xPVv

wFpxq ě 2d ´ 6` d´ 2
2 `

d´ 3
3 ě 2d ´ 4 .

Lastly, if |2Vv ∖ F | “ 6, then the sets in 2Vv ∖ F are Vv, Vv ∖ tvu, A, B, A ∖ tvu,
and B ∖ tvu for some distinct A,B P V pd´1q

v which both contain v. Thus, for the d ´ 3
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vertices x P AXB ∖ tvu there is an Fx P Lx X pV ∖ Vvq
p1q and at least two further F i

x P Lx

with F i
xXpV ∖Vvq ‰ ∅ and |F i

x| ď 2, i P r2s. In addition, there are two further vertices x P
A△B for which there is at least one Fx P Lx X pV ∖ Vvq

p1q. For a vertex x P AXB ∖ tvu
we observe the following. If F i

x Y txu R S for i “ 1, 2, then these two edges together
contribute at least 2{3 to

ř

xPVv
wFpxq. If F i

x Y txu P S for some i P t1, 2u, then the edges
in tH P Lx : H Y txu P Su contribute at least 2{3 as noted above. Therefore the definition
of the weight entails

ÿ

xPVv

wFpxq ě 2d ´ 7` d´ 1
2 `

2pd´ 3q
3 ě 2d ´ 4

and thereby the claim is proved if c “ 4.

7.5 Further remarks and open problems

Consider mpsq to be the following limit introduced in [ 43 ]

mpsq :“ lim
nÑ8

mpn, sq

n
.

It is not difficult to check that mpsq is well-defined (see [ 43 ]). Rephrased by means of this
definition, Theorem  7.1.3 implies that for c ď d

4 we have that

mp2d´1
´ cq “

2d ´ c
d

. (7.5.1)

The first open problem we would like to mention concerns finding a sharp relation
between d and c such that (  7.5.1 ) holds. More precisely, finding the maximum integer c0pdq

such that the equality (  7.5.1 ) holds for every c ď c0. In view of Theorem  7.1.3 we have
that c0pdq ě td4 u, and below we will give a construction that proves that c0pdq ď d for d ě 5.

Let F Ď 2V with |V | “ n and d be a positive integer such that d|n. We say that F
is d-local if there exists a partition of V into sets of size d such that every F P F is a subset
of one of the sets of the partition. Observe that the extremal construction presented in
the proof of Theorem  7.1.3 is a d-local hypergraph with minimum degree 2d´1 ´ c` 1 and
with mpn, 2d´1 ´ cq ` 1 edges. That construction can be generalised in the following way.

Take d ě 5 and c P r2d´2s and set s “ 2d´1 ´ c, for simplicity let d|n. By definition
of mp¨, ¨q, there is a family F on a d-set V with mpd, sq ` 1 edges such that for every v P V
we have that |F|V ∖tvu| ď |F | ´ s ´ 1. Note that we may assume that ∅ P F and
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take n{d vertex disjoint copies of F . It is easy to see that for the resulting family F 1 we
have |F 1

|V 1∖tvu| ď |F 1| ´ s´ 1 for every v P V 1 (where V 1 is the vertex set of F 1) and that
further |F 1| “ mpd, sqn

d
` 1. This gives the following general upper bound on mp2d´1 ´ cq

mp2d´1
´ cq ď

mpd, 2d´1 ´ cq

d
. (7.5.2)

Moreover, we observe that for c “ d`1 we have that mpd, 2d´1´pd`1qq ă 2d´pd`1q.
To see this, consider the family F Ď 2rds containing all sets with at most d ´ 2 vertices.
Then F has 2d´pd` 1q edges and minimum degree 2d´1´ d ą 2d´1´ c. Thus, from ( 7.5.2 )
it follows that

mp2d´1
´ pd` 1qq ď 2d ´ pd` 2q

d
.

This means ( 7.5.1 ) does not hold for c “ d` 1, and hence c0pdq ď d.
Note that this construction is also d-local. An interesting problem is to find the values

of c for which there are no d-local extremal families.

Problem 7.5.1. Given a positive integer d ě 2, find the minimal c‹pdq P r1, 2d´2s such
that for all c ě c‹ we have

mp2d´1
´ cq ă

mpd, 2d´1 ´ cq

d
.

A solution to this problem would give an insight into the structural behaviour of the
extremal families: For c ě c‹ and large n (possibly satisfying certain divisibility conditions)
there is no d-local extremal family for mpn, 2d´1 ´ cq. Note that the results in [ 41 ,  43 ,  115 ]
solved Problem  7.5.1 for d ď 4.

In the following, given a vertex set of size n we describe a non d-local family that has
less edges than any possible d-local hereditary family with the same minimum degree.
More precisely, the construction below yields that, given d ě 5 and c “ d, we have

mp2d´1
´ dq ď

2d ´ d´ 1
2

d
ă
mpd, 2d´1 ´ dq

d
. (7.5.3)

Construction 1. Let d ě 5 and k a positive integer, set n “ 2dk. Take V to be a set of
n vertices. Consider U1, . . . , U2k to be a partition of V into sets of size d, and for every
set Ui arbitrarily pick a vertex xi P Ui. Define

G “ tS Ď V : there is an i such that S Ď Ui and |S| ď d´ 2u
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H “ tUi ∖ txiu : for i P t1, 2, . . . , 2kuu

I “ ttxi, xi`1u : for i P t1, 3, 5, . . . , 2k ´ 1uu .

One can check that the number of edges of the family F “ G YH Y I is given by

|G| ` |H| ` |I| “ 2d ´ d´ 2
d

n` 1` n

d
`

n

2d “
2d ´ d´ 1

2
d

n` 1.

Moreover, every vertex in V has degree s “ 2d´1 ´ d` 1. This implies the first inequality
of ( 7.5.3 ). Taking d “ c` 1 in Lemma  7.3.2 ( 1 ) yields

2d ´ d ď mpd, 2d´1
´ dq,

and thereby the second inequality in ( 7.5.3 ).

For s ď 16 (that is d ď 5q, considering the results from [ 41 ,  43 ,  116 ] and Theorem  7.1.5 

all values of mpsq are found, except mp11q. We recall the conjecture of Frankl and
Watanabe [ 43 ], which states that Construction  1 is extremal for d “ 5.

Conjecture 7.5.2 ([ 43 ]). mp11q “ 5.3.

A complementary approach than the one taken in this paper could be as follows.

Problem 7.5.3. Given a positive integer d and an integer c P r0, 2d´1q, find the value
of mp2d´1 ` cq.

Naturally, for c ě 2d´1 ´ d
4 Problem  7.5.3 is solved by Theorem  7.1.3 . For c ď 2d´2, the

only general result is given in [  43 ], where it is shown that mp2d´1q “ 2d´1
d
` 1

2 . For other
values of c Problem  7.5.3 is still open.

Observe that Theorems  7.1.3 and  7.1.5 and the results presented in [ 41 ,  43 ,  115 ] concern
cases in which s is close to 2d for some value of d. In general, there are still large intervals
between powers of 2 for which the only bounds on mpsq that are known are those that follow
directly from the previously mentioned results. Finding a solution for Problem  7.5.1 might
shed light on this problem by possibly providing a first understanding of the structural
behaviour in those intervals.
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English summary

This thesis deals with several problems in extremal combinatorics. In extremal combina-
torics, thresholds and extremes in the behaviour of discrete structures like graphs and
hypergraphs are studied.

The first part is about Hamiltonicity in hypergraphs. Here, the goal is to generalise
results on Hamiltonian cycles in graphs to hypergraphs. In Chapter  2 , we follow up on
the investigation of minimum degree conditions for Hamiltonian cycles in hypergraphs
initiated by Katona and Kierstead [  67 ] and continued in particular by Rödl, Ruciński, and
Szemerédi [  98 – 100 ], who generalised Dirac’s theorem to k-uniform hypergraphs and the
minimum pk ´ 1q-degree. In joint work with Polcyn, Reiher, and Rödl [ 93 ], the author
proved an analogue of Dirac’s theorem for k-uniform hypergraphs and the pk ´ 2q-degree,
that is, an asymptotically tight condition on δk´2pHq guaranteeing the existence of a
Hamiltonian cycle.

We then continue by proving a 3-uniform analogue of a result by Pósa [ 94 ] in Chapter  3 ,
based on the author’s work in [ 102 ]. Pósa’s theorem states that graphs with certain degree
sequences contain a Hamiltonian cycle and it is stronger than Dirac’s result since it allows
vertices of small degree. Similarly, our result strengthens the result by Rödl, Ruciński, and
Szemerédi in [ 98 ] by also allowing pairs of vertices of small degree (and even vertices of
small degree).

As it turns out, the (asymptotically tight) minimum pk ´ 1q-degree condition assumed
in [ 98 ] and [ 99 ] is already enough to guarantee not only one but as many disjoint Hamiltonian
cycles in H as there “possibly could be” (due to degree regularity reasons). We proof this
and even stronger decomposition type results in Chapter  4 , some of which generalise results
in graphs due to Ferber, Krivelevich, and Sudakov [  36 ] to hypergraphs.

After this, we turn to a different problem in Chapter  5 , in which we mix the search for
spanning substructures with a Ramsey-type setting. The problem is to cover edge-coloured
random graphs Gpn, pq with as few trees as possible and for as a small p as possible. More
precisely, we prove that if ppnq "

` logn
n

˘1{6, then with high probability we have that for
every 3-colouring of the edges, Gpn, pq can be covered with three monochromatic trees. This
improves some previous results on this problem due to Bucić, Kórandi, and Sudakov [  15 ].

In Chapter  6 , we solve a problem in the theory of graphons, which are limit objects of
sequences of large weighted graphs and can be seen as a continuous generalisation of graphs.
Lovász [ 81 ] and Hatami [  58 ] asked for which graphs H one can define a norm via the
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homomorphism density; a problem that is closely connected with Sidorenko’s conjecture.
We show that for certain graphs this is not possible, answering two questions of Hatami [ 58 ].
One of these graphs, K5,5 ∖ C10, is of particular interest for Sidorenko’s conjecture.

This thesis ends with a result in extremal set theory. Given a non-negative integer s,
we investigate the maximum real mpsq such that every hereditary hypergraph (also called
abstract simplicial complex) with “edge density” at most mpsq has minimum (vertex) degree
at most s. While previously mpsq was only known for some small values of s and, due to
work by Frankl [ 41 ] and Frankl and Watanabe [ 43 ], for s “ 2d´c with d P N and c P t0, 1, 2u,
Piga and the author [  89 ] determined mp2d ´ cq for all c, d P N with c ď d{4. In addition,
we determined mpsq for more small values of s, in particular proving a conjecture by Frankl
and Watanabe [ 43 ].
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German summary (Deutsche Zusammenfassung)

Diese Arbeit behandelt verschiedene Probleme in extremaler Kombinatorik. Extremale
Kombinatorik beschäftigt sich mit Schranken und Extremen im Verhalten diskreter Struk-
turen wie Graphen und Hypergraphen.

Im ersten Teil geht es um Hamiltonkreise in Hypergraphen. Ziel ist es dabei, Resultate
über Hamiltonkreise in Graphen zu verallgemeinern. In Kapitel  2 setzen wir Untersuchungen
zu minimalen Gradbedingungen für Hamiltonkreise in Hypergraphen fort, die von Katona
und Kierstead [ 67 ] begonnen und insbesondere von Rödl, Ruciński und Szemerédi [  98 – 100 ]
weitergeführt wurden, indem sie den Satz von Dirac auf k-uniforme Hypergraphen und den
minimalen pk ´ 1q-Grad verallgemeinerten. In Zusammenarbeit mit Polcyn, Reiher und
Rödl [  93 ] bewies der Autor ein Analogon des Satzes von Dirac für k-uniforme Hypergraphen
und den pk ´ 2q-Grad, das heißt eine asymptotisch scharfe Bedingung an δk´2pHq, die die
Existenz eines Hamiltonkreises garantiert.

In Kapitel  3 zeigen wir basierend auf dem Artikel [ 102 ] des Autors eine 3-uniforme
Entsprechung des Satzes von Pósa [ 94 ], der besagt, dass Graphen mit gewissen Gradsequen-
zen einen Hamiltonkreis besitzen. Ebenso wie Pósa’s Satz den von Dirac verallgemeinert,
indem auch Ecken kleinen Grades zugelassen sind, verallgemeinert unser Resultat in Kapi-
tel  3 das von Rödl, Ruciński und Szemerédi in [ 98 ], indem wir Eckenpaare (und sogar
Ecken) kleinen Grades zulassen.

Wie sich herausstellt, ist die (asymptotisch scharfe) Bedingung an den minimalen pk´1q-
Grad in [ 98 ] und [ 99 ] schon genug, um so viele Hamiltonkreise in H zu garantieren,
wie es (aus Regularitätsgründen) überhaupt nur geben kann. Dies und noch stärkere
Zerlegungsresultate zeigten Joos, Kühn und der Autor in der Arbeit [ 64 ], die die Grundlage
für Kapitel  4 bildet.

Anschließend wenden wir uns in Kapitel  5 einem etwas anderen Problem zu. Wir
kombinieren hier die Suche nach aufspannenden Substrukturen mit Ramseytheorie, indem
wir versuchen, kantengefärbte Zufallsgraphen mit so wenig monochromatischen Bäumen
wie möglich zu überdecken. Genauer gesagt zeigten Kohayakawa, Mendonça, Mota und
der Autor [  71 ], dass wenn ppnq "

` logn
n

˘1{6 gilt, Gpn, pq mit hoher Wahrscheinlichkeit für
jede 3-Färbung der Kanten mit drei monochromatischen Bäumen überdeckt werden kann.
Dies verbessert einige frühere Schranken von Bucić, Kórandi und Sudakov [ 15 ].

In Kapitel  6 lösen wir ein Problem in der Theorie der Graphone, die Grenzwertobjekte
von gewichteten Graphen sind. Lovász [ 81 ] und Hatami [ 58 ] fragten für welche Graphen H
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man mithilfe der Homomorphismendichte eine Norm definieren kann. Dieses Problem
ist eng mit Sidorenko’s Vermutung verknüpft. In Zusammenarbeit mit Lee [  79 ] zeigte
der Autor, dass dies für bestimmte Graphen nicht der Fall ist, was zwei Fragen von
Hatami [ 58 ] beantwortet. Einer dieser Graphen, der K5,5 ∖ C10, steht in Bezug auf
Sidorenko’s Vermutung besonders im Fokus.

Wir schließen diese Arbeit mit einem Resultat in der extremalen Mengenlehre ab.
Gegeben eine nichtnegative ganze Zahl s untersuchen wir das maximale mpsq, sodass
jeder abstrakte Simplizialkomplex mit “Kantendichte” höchstens mpsq eine Ecke von Grad
höchstens s enthält. Während mpsq zuvor nur für einige kleine Werte von s und, durch
Arbeiten von Frankl [ 41 ] und Frankl und Watanabe [ 43 ], für s “ 2d ´ c mit d P N
und c P t0, 1, 2u bekannt war, bestimmten Piga und der Autor [ 89 ] mp2d´1 ´ cq für
alle c, d P N mit c ď d{4. Außerdem bestimmten wir mpsq für weitere kleine Werte von s,
wodurch wir insbesondere eine Vermutung von Frankl und Watanabe lösten.

214



Publications related to this dissertation

Articles
[1] F. Joos, M. Kühn, and B. Schülke, Decomposing hypergraphs into cycle factors (2021), available at

 arXiv:2104.06333 . Submitted. Ò

[2] P. Gupta, Y. Mogge, S. Piga, and B. Schülke, r-cross t-intersecting families via necessary intersection
points (2020), available at  arXiv:2010.11928 . Submitted. Ò

[3] B. Schülke, A pair degree condition for Hamiltonian cycles in 3-uniform hypergraphs (2021), available
at  arXiv:1910.02691 . To appear in Combin. Probab. Comput. Ò

[4] Y. Kohayakawa, W. Mendonça, G. O. Mota, and B. Schülke, Covering 3-edge-colored ran-
dom graphs with monochromatic trees, SIAM J. Discrete Math. 35 (2021), no. 2, 1447–1459,
DOI  10.1137/20M137464X . Ò

[5] J. Lee and B. Schülke, Convex graphon parameters and graph norms, Israel J. Math. 242 (2021),
no. 2, 549–563, DOI  10.1007/s11856-021-2112-6 . Ò

[6] J. Polcyn, Chr. Reiher, V. Rödl, and B. Schülke, On Hamiltonian cycles in hypergraphs with dense
link graphs, J. Combin. Theory Ser. B 150 (2021), 17–75, DOI  10.1016/j.jctb.2021.04.001 . Ò

[7] S. Piga and B. Schülke, On extremal problems concerning the traces of sets, J. Combin. Theory Ser. A
182 (2021), 105447, 15, DOI  10.1016/j.jcta.2021.105447 . Ò

[8] J. Bellmann and B. Schülke, Short proof that Kneser graphs are Hamiltonian for n ě 4k, Discrete
Math. 344 (2021), no. 7, 112430, 2, DOI  10.1016/j.disc.2021.112430 . Ò

[9] O. Ebsen, G. S. Maesaka, Chr. Reiher, M. Schacht, and B. Schülke, Embedding spanning subgraphs in
uniformly dense and inseparable graphs, Random Structures Algorithms 57 (2020), no. 4, 1077–1096,
DOI  10.1002/rsa.20957 . Ò

[10] J. Polcyn, Chr. Reiher, V. Rödl, A. Ruciński, M. Schacht, and B. Schülke, Minimum pair degree
condition for tight Hamiltonian cycles in 4-uniform hypergraphs, Acta Math. Hungar. 161 (2020),
no. 2, 647–699, DOI  10.1007/s10474-020-01078-7 . Ò

Extended abstracts
[1] P. Gupta, Y. Mogge, S. Piga, and B. Schülke, Maximum size of r-cross t-intersecting families, Procedia

Computer Science 195 (2021), 453-458, DOI  10.1016/j.procs.2021.11.055 . Proceedings of the XI Latin
and American Algorithms, Graphs and Optimization Symposium. Ò

[2] S. Piga and B. Schülke, On extremal problems concerning the traces of sets, Extended Abstracts
EuroComb 2021, Trends in Mathematics, 2021, DOI  10.1007/978-3-030-83823-2_104 . Ò

215

http://arxiv.org/abs/2104.06333
http://arxiv.org/abs/2010.11928
http://arxiv.org/abs/1910.02691
https://doi.org/10.1137/20M137464X
https://doi.org/10.1007/s11856-021-2112-6
https://doi.org/10.1016/j.jctb.2021.04.001
https://doi.org/10.1016/j.jcta.2021.105447
https://doi.org/10.1016/j.disc.2021.112430
https://doi.org/10.1002/rsa.20957
https://doi.org/10.1007/s10474-020-01078-7
https://doi.org/10.1016/j.procs.2021.11.055
https://doi.org/10.1007/978-3-030-83823-2_104


[3] Y. Kohayakawa, W. Mendonça, G. Mota, and B. Schülke, Covering 3-coloured random graphs with
monochromatic trees, Acta Math. Univ. Comenian. (N.S.) 88 (2019), no. 3, 871–875. Ò

[4] O. Ebsen, G. S. Maesaka, Chr. Reiher, M. Schacht, and B. Schülke, Powers of Hamiltonian cycles in
µ-inseparable graphs, Acta Math. Univ. Comenian. (N.S.) 88 (2019), no. 3, 637–641. Ò

[5] Chr. Reiher, V. Rödl, A. Ruciński, M. Schacht, and B. Schülke, Minimum pair-degree for tight
Hamiltonian cycles in 4-uniform hypergraphs, Acta Math. Univ. Comenian. (N.S.) 88 (2019), no. 3,
1023–1027. Ò

216



Declaration of contributions

This thesis is based on work I did with several co-authors and all chapters have benefited
from the discussions with them.

Chapter  2 is essentially the article [ 93 ], which is joint work with Joanna Polcyn, Christian
Reiher, and Vojtěch Rödl. Vojtěch Rödl has been a driving force behind the progress on
hypergraph generalisations of Dirac’s theorem for more than 15 years. Christian Reiher
gave us notes on the the proof of the main result and Joanna Polcyn and I worked out the
details. All of us were involved in proofreading the article.

Chapter  3 is essentially the article [ 102 ], which is a continuation of my master thesis,
for which Christian Reiher suggested me to work towards a hypergraph generalisation of
Chvátal’s theorem on Hamiltonian cycles in graphs.

Chapter  4 is essentially the article [ 64 ], which is joint work with Felix Joos and Marcus
Kühn. Felix Joos suggested the basic problem and the general proof strategy. Subsequently,
all of us discussed various strengthenings which are now our main theorems and their
proofs as well as occurring problems and their fixes. Then Marcus Kühn and I worked
out the details in discussion with each other and Felix Joos. All of us were involved in
proofreading.

Chapter  5 is essentially the article [ 71 ], which is joint work with Yoshiharu Kohayakawa,
Walner Mendonça, and Guilherme Mota. The problem was suggested by Yoshiharu
Kohayakawa and he and Guilherme Mota told us about previous work on a related problem,
namely [ 72 ]. Walner Mendonça and Guilherme Mota turned a draft of the proof into an
article. All of us were involved in finalising and proofreading the article.

Chapter  6 is essentially the article [ 79 ] which is joint work with Joonkyung Lee. He
introduced me to graphons, suggested the problem and that it might be possible to use
computer calculations to find an example of a graph “at which convexity fails”. After the
example was found, we simplified it and worked out a proof that does not rely on computer
calculations in discussion. Joonkyung Lee had a larger share of writing up the work, both
of us were involved in finalising and proofreading the article.

Chapter  7 is essentially the article [ 89 ] which is joint work with Simón Piga.
For the introduction, I have in parts also used extended abstracts of some of the

aforementioned articles.

217



Acknowledgements

First of all, I would like to thank my advisor Christian Reiher. He is not only an outstanding
researcher but also a strikingly good teacher, who can convey both deep understanding of
and a scintillating fascination for whichever topic at hand. I deeply appreciate all of his
advice, on mathematics and beyond.

Further, I would like to thank Mathias Schacht, who always took extraordinarily great
care of me in many respects during the years of my studies.

I am also grateful to all of my co-authors, from whom and with whom I could enjoy
learning and thinking about mathematics and life in general. In addition, I would like to
thank the whole discrete mathematics group at the University of Hamburg for creating
a nice and friendly environment to learn and think. I also thank the German-Israeli
Foundation for Scientific Research and Development, who supported me financially.

Moreover, I am thankful to all of my wonderful friends, who are like a family to me
and always bring me peace, joy, and excitement.

I am grateful to my parents Karin Steinhardt and Michael Schülke, who raised me with
care and effort, made me curious for the world, and left me all the freedom to explore it.

Lastly, I would like to thank my brother Rasmus Schülke, who has always protected,
taught, and inspired me in more ways than I can comprehend.

218



Declaration of academic honesty

I hereby declare on oath, that I have written the present thesis on my own and have
not used other than the acknowledged resources and aids - especially no uncited internet
sources - and that I have not handed in this thesis in another examination procedure. The
submitted written version corresponds to the version on the electronic storage medium.
Die vorliegende Arbeit habe ich selbständig verfasst und keine anderen als die angegebenen
Hilfsmittel - insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen -
benutzt. Die Arbeit habe ich vorher nicht in einem anderen Prüfungsverfahren eingere-
icht. Die eingereichte schriftliche Fassung entspricht genau der auf dem elektronischen
Speichermedium.

Bjarne Schülke
Hamburg, Oktober 20, 2021

219


	Introduction
	Spanning substructures in graphs and hypergraphs
	Hamiltonian cycles
	Covering edge-coloured random graphs with monochromatic trees

	Convex graphon parameters and graph norms
	On extremal problems concerning traces

	On Hamiltonian cycles in hypergraphs with dense link graphs
	Introduction
	Hypergraphs and Hamiltonian cycles
	Organisation and overview

	Preliminaries
	Graphs
	Hypergraphs
	Abstract connectability
	On (alpha, mu)-constellations
	On (alpha, beta, ell, mu)-constellations

	The Connecting Lemma
	Reservoir Lemma
	The absorbing path
	Overview
	Construction of the building blocks
	Construction of the absorbing path

	Covering
	The proof of Theorem 2.1.2

	A pair degree condition for Hamiltonian cycles in 3-graphs
	Introduction
	Overview and final proof
	Connecting Lemma
	Reservoir
	Absorbing path
	Long path
	Concluding remarks

	Decomposing hypergraphs into cycle factors
	Introduction
	Proof sketch of Theorem 4.1.3
	Preliminaries
	Notation
	Concentration inequalities
	Fractional cycle decompositions
	Matchings in hypergraphs
	Almost regular spanning subgraphs with intersecting neighbourhoods
	Different types of degrees
	Many paths in intersecting k-graphs

	Approximate decomposition into path coverings
	Ingredients for absorption
	Random walks and vertex absorbers
	Building the absorbing structure

	From paths to cycles
	Proof of Theorem 4.1.3
	Concluding remarks

	Covering 3-edge-coloured random graphs with monochromatic trees
	Introduction
	Preliminaries
	A sketch of the proof
	Proof of 5.1.1
	Shortcut graphs with independence number at least three
	Shortcut graphs with independence number at most two


	Convex graphon parameters and graph norms
	Introduction
	Preliminaries
	Convexity and weakly norming graphs
	Strict convexity and norming graphs
	Concluding remarks

	On extremal problems concerning the traces of sets
	Introduction
	Preliminaries
	Proof of Theorem 7.1.3
	Proof of Theorem 7.1.5
	Further remarks and open problems

	Appendix
	English summary
	German summary (Deutsche Zusammenfassung)
	Publications related to this dissertation
	Declaration of contributions
	Acknowledgements
	Declaration of academic honesty


