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1. Introduction

Combinatorics is often very broadly defined as the study of finite or discrete structures.
While the earliest combinatorial investigations seem to go back much further [117], often
Euler’s solution to the “Seven bridges of Konigsberg” problem is mentioned as an early
example of graph theory, a central part of combinatorics. This work presents several results
in extremal combinatorics, in which one studies thresholds and “extremes” in the behaviour
of discrete structures like graphs and hypergraphs. Classic results in this area include
Turan’s theorem, which provides the threshold edge density of graphs above which the
existence of a clique as a subgraph is guaranteed, and Dirac’s theorem, which determines
the threshold minimum degree of graphs above which the existence of a Hamiltonian cycle
is guaranteed.

Extremal combinatorics has progressed significantly in the recent decades. Many
powerful tools, like Szemerédi’s regularity lemma, its extension to hypergraphs, the container
method, and the absorption method, have been developed. Due to this technological
improvement, progress has been made on several major open problems and some have
been solved. Simultaneously, connections to other fields of mathematics, such as number
theory and probability theory, have opened up. In combinatorics, it often happens that the
methods used to prove a new result are even more important than the result itself since
they may be applied to different problems and offer some deeper insight into the problem.
In this introduction, we shall therefore not only introduce the topics and results which are
proved in the subsequent chapters of the thesis but also give sketches of the arguments
used to obtain the results.

We will assume a basic knowledge of definitions and results as they can for instance be
found in Diestel’s standard book on graph theory [26]. Important objects investigated in this
work but not extensively covered in [26] are hypergraphs. A hypergraph H = (V, E) consists
of a verter set V and an edge set E < Z(V) = {e: e < V} and similarly as for graphs, we

may abbreviate the notation of an edge {v,..., v} to v1...vx. For a positive integer k,



we call H a k-uniform hypergraph (or a k-graph) if E € V) = {e C V : |e| = k}.' Note
that graphs are 2-uniform hypergraphs.

Below, we give a very rough overview over the topics covered in this thesis. Afterwards,
we provide slightly more detailed introductions to each of the topics. In order to not let
this introduction become too lengthy and technical, we will refrain from defining every
term we use here formally within this section if the exact definition is not very important
for the introduction. The full introduction to each result, with a broader background and
the necessary setup, will be given at the beginning of each chapter.

The first part of this thesis (Chapters 2-4) is devoted to several problems about
Hamiltonian cycles in hypergraphs. For the following reasons, these serve as good examples
of extremal combinatorics. Firstly, the results are typical threshold results, determining
above which value of some parameter, such as the minimum degree, a certain behaviour,
like the existence of a Hamiltonian cycle, is guaranteed. Secondly, “typical” combinatorial
counting and construction techniques are used throughout the works, first and foremost
the absorption method. Furthermore, we apply results on quasirandomness including a
(weak?) hypergraph version of the regularity lemma and we make use of the probabilistic
method at several points. Both quasirandom and probabilistic arguments have become
important tools in extremal combinatorics.

Afterwards, in Chapter 5, we look at another problem involving spanning substructures.
Here however, not only the methods but also the objects considered are random and we
mix the search for spanning substructures with Ramsey theory. Namely, we will try to
cover edge-coloured random graphs G(n, p) with as few monochromatic trees as possible.
The main threshold under investigation here is the value for p (at least the right order of
magnitude) above which with high probability any colouring of G(n, p) allows a covering
with few monochromatic trees.?

The results in Chapter 6 are not directly “threshold results” yet they are strongly
connected with extremal combinatorics. This connection is Sidorenko’s conjecture, which
basically states that, given a bipartite graph H, the number of copies of H in a graph G
is minimised when G is quasirandom. In other words, it makes an assertion about the
extremal behaviour of the “homomorphism density” of H. To approach this conjecture

as well as for its own sake, one can investigate for which graphs H we can define a norm

1Often also the notation 2V = (V) and (Z) = V) is used.

2Unfortunately, this thesis does not contain a proof using the “full” hypergraph regularity lemma, we
refer to [96] to see it at work.

3The number of trees needed could also be seen as a threshold. When we worked on this problem, the
“right” number of trees that suffice had not yet been found, even for relatively large p.



via its homomorphism density (we will make this more precise below). We prove that
several graphs which have been in the spotlight regarding Sidorenko’s conjecture do not
define a norm, which arguably makes them even more interesting for the investigation of
Sidorenko’s conjecture.

Lastly, we return to hypergraphs in Chapter 7. Call a hypergraph H = (V, E) hereditary
if for all e and €’ with ¢’ < e € E, we have ¢’ € E.* In Chapter 7, the extremal behaviour
of the number of edges in hereditary hypergraphs with respect to the minimum degree is
studied. That is, for certain integers s, we determine the maximum real m(s) such that

7> at most m(s) has minimum (vertex)

every hereditary hypergraph with “edge density
degree at most s.

While both the first few chapters and the last chapter are about results in hypergraphs,
the flavour is quite different. In the first chapters, the hypergraphs are uniform and the
uniformity is very small compared to the number of vertices. The problems and methods
are relatively closely related to those in graphs (although of course the consideration of
hypergraphs instead of graphs generally still brings with it major difficulties). Loosely
speaking, here we consider hypergraphs as “graphs of higher dimension”.

In contrast, the last chapter is set in a subarea of extremal combinatorics called extremal
set theory, where the hypergraphs dealt with are not necessarily uniform and if they are
uniform, often the number of vertices is only polynomial in the uniformity. The problems
studied in this field are often distinct from those studied in graphs; in fact, for several of
the problems, the graph versions would be rather trivial. In addition, extremal set theory

encompasses its own unique set of proof techniques.

1.1 Spanning substructures in graphs and
hypergraphs

The first part of this thesis concerns the question which conditions guarantee the existence
of spanning substructures in a graph or hypergraph, that is, substructures containing all
vertices. There has been significant progress on problems of this kind in the recent decade,
much due to the absorption method introduced by Rodl, Rucinski, and Szemerédi in their
paper [98] and reviewed by Szemerédi in [111]. Roughly speaking, this strategy reduces the

problem of finding some spanning substructure in a graph or hypergraph to the usually

4Hereditary hypergraphs are also called abstract simplicial complexes or downsets.
®More precisely, we mean |E|/|V].



much simpler problem of finding an almost spanning substructure.

1.1.1 Hamiltonian cycles

Hamiltonian cycles, that is, cycles containing every vertex of a graph, form a central
theme in classic graph theory. While the problem of determining whether or not a given
graph contains a Hamiltonian cycle is one of Karp’s initial 21 NP-complete problems [65]
and so there is probably no good characterisation of all Hamiltonian graphs, there are
several structural and extremal conditions that guarantee the existence of a Hamiltonian
cycle. Perhaps the best known result is Dirac’s theorem [27], which states that every
graph on n > 3 vertices with minimum degree at least 7 contains a Hamiltonian cycle.
Considering slightly imbalanced bipartite graphs shows that this result is tight.

Let us consider possible generalisations of this result to k-uniform hypergraphs. Katona
and Kierstead [67] initiated the study of minimal degree conditions for Hamiltonian
cycles in hypergraphs and introduced the following notation. Define a (tight) k-uniform
cycle of length ¢ as a k-uniform hypergraph C' for which there is an ordering of the
vertices V(C) = {vy,..., v} such that E(C) = {v;...vjsx_1 : i € [{]}, where we view the
indices as elements of Z/¢Z. Since we will only consider tight cycles here, we omit the
prefix “tight”. Naturally, a Hamiltonian cycle in a k-uniform hypergraph H is a cycle
in H containing all vertices of H. When looking for generalisations of Dirac’s theorem
to k-uniform hypergraphs, there are various minimum degrees that can be considered. For
a hypergraph H = (V, E) and a set S < V, we write d(S) = du(S) = {e€ E : S < ¢}
and we define the minimum i-degree as 0;(H) = ming.y @ d(S). The general problem now

reads as follows.

Problem 1.1.1. For k € N and i € [k — 1], determine the infimal d¥_, € [0,1] such
that every (large) k-uniform hypergraph H with 6,_;(H) > (df_; + o(1))(7) contains a

Hamiltonian cycle.

Note that lower bounds on §;(H) become more restrictive, that is, carry more informa-
tion, when j increases. Thus, it is not surprising that Problem 1.1.1 was first solved for ¢ = 1.
In [99], Rodl, Rucinski, and Szemerédi generalised Dirac’s result to hypergraphs by proving
that k-uniform hypergraphs H with &,_;(H) > (3 + o(1))n contain a Hamiltonian cycle,
which is asymptotically tight. The next step according to the “monotonicity” mentioned
above, namely to determine the minimum (k — 2)-degree guaranteeing a Hamiltonian cycle

in k-uniform hypergraphs (the case i = 2 of Problem 1.1.1) required several new tricks.



First, Reiher, Rodl, Ruciniski, Schacht, and Szemerédi [95] solved the 3-uniform case, after
which Polcyn, Reiher, R6dl, Rucinski, Schacht, and the author [92] proved the respective
result for 4-uniform hypergraphs. Recently, the general case was solved independently by
Lang and Sanhueza-Matamala [77] and by Polcyn, Reiher, Rodl, and myself [93], that is,

we proved the following theorem.

Theorem 1.1.2. For all integers k = 3 and all o > 0, there exists an integer ng such that

n

2) contains a

every k-uniform hypergraph H on n > ng vertices with 6,_o(H) = (2 + o)(

Hamiltonian cycle.

Chapter 2 contains the detailed discussion and proof of Theorem 1.1.2. There, we also
provide an example showing that this result is asymptotically optimal.

For ¢ > 3, the optimal bounds are not yet known. However, the solutions of the
cases ¢ = 1 and ¢ = 2 of Problem 1.1.1, in particular their proofs, and lower bound
constructions due to Han and Zhao [57] make the author cautiously believe that, in

fact, d¥_, is independent of k.

Conjecture 1.1.3. For every integer i > 1, there exists d; € [0,1] such that for all
integers k = i + 1 and all « > 0, there is an integer ng such that every k-uniform

hypergraph H on n = ng vertices with oy_;(H) = (d; + ) (T;) contains a Hamiltonian cycle.

An even stronger conjecture by Lang and Sanhueza-Matamala [77] states that those d;
exist and that they match the lower bounds due to Han and Zhao [57].

Although Dirac’s theorem is arguably the most famous result on Hamiltonian cycles,
there are strengthenings of it, in which several vertices are allowed to have smaller degrees
than n/2. Let G = ([n], E) be a graph on n > 3 vertices and let d(1) < --- < d(n) be
its degree sequence. Pédsa [94] proved that if d(i) = i + 1 for all i < (n — 1)/2 and if
furthermore d ([n/2]) = [n/2] when n is odd, then G contains a Hamiltonian cycle.

The strongest result of this kind is due to Chvatal [18]. For an integer n > 3, we say
that an integer sequence a; < --- < a,, is Hamiltonian if every graph G = (|n], £) whose
degree sequence d(1) < --- < d(n) satisfies a; < d(i), for all ¢ € [n], contains a Hamiltonian
cycle. Chvatal characterised all Hamiltonian sequences by showing that for n > 3, an
integer sequence 0 < a; < -+ < a, < n is Hamiltonian if and only if for all i < 7, we
have: a; <i= a,_; = n —1.

Building on work from my master thesis, I showed a Pdsa-type strengthening of the Dirac-
type result for 3-uniform hypergraphs that Rodl, Rucinski, and Szemerédi proved in [98].
Call a (symmetric) matrix (d;;);; Hamiltonian if every 3-uniform hypergraph H = ([n], E)

5



with d(i, ) = d({i,j}) = d;j, for all {i, j} € [n]®, contains a Hamiltonian cycle. It would
be very desirable to have a result for 3-uniform hypergraphs similar to the one by Chvatal
for degree sequences in graphs, that is, a characterisation of all Hamiltonian matrices. For
the graph case, Pdsa’s result was a step towards the characterisation by Chvatal. The
following theorem, which we prove in Chapter 3, can be seen as a 3-uniform (asymptotic)
analogue of the theorem by Pésa and a step towards a full characterisation of Hamiltonian

matrices.

Theorem 1.1.4. For a > 0, there exists ng € IN such that for all n € IN with n = nyg, the
following holds. If H = ([n], E) is a 3-uniform hypergraph with d(i, ) > min (,j,2) + an

for all ij € [n]®, then H contains a Hamiltonian cycle.

In Chapter 3, we also see that this result is tight in a certain sense.

A variation of the foregoing line of results concerns decompositions into Hamiltonian
cycles. A decomposition of a k-uniform hypergraph H into Hamiltonian cycles is a collection
of edge-disjoint Hamiltonian cycles in H such that the union of their edges is F(H). One of
the earliest results regarding decompositions of graphs is Walecki’s theorem from the 1890s,
which states that a complete graph on an odd number of vertices has a decomposition into
Hamiltonian cycles. An interesting follow-up of Problem 1.1.1 is how many edge-disjoint
Hamiltonian cycles can be guaranteed in k-uniform hypergraphs H satisfying the minimum
degree condition &_;(H) > (df_,+0(1))(%) (for some i € [k—1]) and, in particular, whether
such H can in fact be decomposed into Hamiltonian cycles if it is degree-regular. For
graphs, it was shown by Csaba, Kiihn, Lo, Osthus, and Treglown [24] that a decomposition
is indeed possible but for £ > 3, a proper decomposition even of complete k-uniform
hypergraphs into Hamiltonian cycles is not yet known to exist. Previous results about
approximate decompositions assumed strong quasirandomness properties [5,30] or did not
include tight Hamiltonian cycles [37]. In recent work, Joos, Kiithn, and the author [64]
proved an approximate decomposition result for regular k-uniform hypergraphs H = (V, E)
with 6x_1(H) = (1/2 + o(1))|V].

In fact, a much stronger result is shown. For 7, p,r > 0, we say that a k-uniform
hypergraph H = (V, E) is n-intersecting if for any two sets e, f € V=1 we have that their
neighbourhoods intersect in at least n|V| vertices, i.e., [{v e V : eu{v}, fu{v} e E}| = n|V|
and we call H p-almost r-regular if for every vertex v € V', we have d(v) = (1 £+ g)r. Note
that if H satisfies 6x_1(H) = (1/2 + n)|V], then it is 2n-intersecting and if H allows a
decomposition into r/k Hamiltonian cycles, then H is (0-almost) r-regular.

Our main result guarantees an approximate decomposition of n-intersecting g-almost



regular k-uniform hypergraphs not only into Hamiltonian cycles but into any cycle factors
of not too small girth.® Previously, it was not even known whether a single such cycle
factor is guaranteed by 051 (H) = (1/2 4+ o(1))|V].

Theorem 1.1.5. For all integers k = 2 and all n,e > 0, there exist integers L and ny,
and o > 0 such that every n-intersecting o-almost r-regular k-uniform hypergraph H
on n = ngy vertices contains edge-disjoint copies of any given cycle factors Cy,...,Cu,

where ' < (1 — e)r/k, whose girths are at least L.

For the sake of clarity, let us also state the following result, which follows from
Theorem 1.1.5. Let regy,(H) be the largest integer r divisible by k such that H contains
a spanning r-regular subhypergraph and note that H can have at most reg, (H)/k edge-

disjoint Hamiltonian cycles.

Theorem 1.1.6. For all integers k = 2 and all € > 0, there exists an integer ng such
that every k-uniform hypergraph H on n = ng vertices satisfying o,_1(H) = (1/2 + )n
contains (1 — €)reg,(H)/k edge-disjoint Hamiltonian cycles.

Thus, the (asymptotically) tight minimum (k — 1)-degree condition that ensures one
Hamiltonian cycle in fact already implies that H contains almost as many Hamiltonian
cycles as it possibly can, given trivial (degree-regularity) reasons. In particular, this gives
an approximate decomposition if H is vertex degree regular. We will prove these results in
Chapter 4.

Let us mention a few words about the proofs of the results above. The general strategy
is that of absorption which, in its modern form, was introduced by Rédl, Rucinski, and
Szemerédi [98] and surveyed by Szemerédi [111]. Assuming our goal is to construct a
Hamiltonian cycle in a k-uniform hypergraph H, then the main idea is as follows’. We
begin by setting aside a special structure, the absorbing path. This is a relatively short
path P, which can absorb any small set of vertices, that is, P4 has the property that for
every small set of vertices X, there is a path P} such that V(P)) = V(P4) u X and such
that the (k — 1)-tuples at both ends of P are the same as those at the ends of P4. Next, in
the complement of P4, we find a long path ) that contains almost all vertices. If we have
proved good connectivity properties (which often is a major obstacle in the proofs), we can

subsequently connect () and P4 to a cycle and absorb the remaining vertices into P, to

6As in graphs, we call a k-graph C a cycle factor (with respect to H) if C is a union of vertex-disjoint
cycles and has the same number of vertices as H. In particular, a Hamiltonian cycle is a cycle factor. The
girth of a cycle factor is the length of its shortest cycle.

"Figure 3.2.1 provides an illustration of this general strategy.



obtain a Hamiltonian cycle. We can thus divide a proof via absorption into the following
steps: connecting, absorbing, and covering®. The crucial point that makes this approach
so powerful is that for many problems, it is much easier to find a substructure containing
almost all vertices than one containing all.

Before giving a slightly more detailed explanation of the individual steps of the ab-
sorption method, let us briefly sketch how it is used to prove Theorem 1.1.5. We begin
by setting aside a small, randomly chosen spanning subhypergraph F' < H for later use.
Afterwards, by using a fractional cycle decomposition and a pseudorandom matching in
an auxiliary hypergraph, we (almost) decompose the other edges of H into edge-disjoint
collections of vertex-disjoint paths such that each of these collections covers almost all
vertices. Next, we aim to use the edges in F' to complete each collection P of paths to a
cycle factor. To this end, we essentially apply the usual steps of the absorption method
to F' induced on the vertices not covered by P. By choosing F' (and some paths in P
to be “dissolved”) randomly, we can guarantee enough quasirandom properties in that
hypergraph to be able to perform these steps. However, we also need to take care that we
do not use any edge of F' during the completion of two different path collections. This can
be achieved by performing each construction step probabilistically and using Freedman’s
inequality to ensure that F' retains quasirandom properties when used edges are deleted.

Having set up the overall picture, let us take a closer look at some of the new de-
velopments that the proofs of the theorems above brought to the three main steps of
the absorption method. For this discussion, let us introduce the following definition. It
is often useful to consider something like a projection of a hypergraph with respect to
some (small) vertex set. Given a hypergraph H = (V, E) and S < V, we define the link
of S (with respect to H) as the hypergraph Lg = (V N\ S, {ecV N S:eu S e F}) and
if S = {v} or S = {u, v}, we may simply say the link of u or the link of uv and write L., Ly,
respectively. Often the vertex set of the link is not very important and so it varies in

different definitions used for different problems.

Connecting

Usually, we need to connect several so called absorbers (see below), to the absorbing

path P4 and several long paths to the almost covering path ). Moreover, as mentioned

8Note that we will “connect” at several points and the actual “absorption” happens at a later stage
than what we usually refer to when speaking about “absorbing” as a step. More accurately, we should
” “

perhaps say the steps are “proof that connecting is possible”, “construction of the absorbing structure”,
“construction of the (almost) covering path(s)”, and “conclusion”.



above, we need to be able to connect P4 and (). The Connecting Lemma ensures that we
have a sufficiently good connectivity property in our hypergraph to make these connections.
In its simplest form, the Connecting Lemma would state that any two (k — 1)-tuples of
vertices can be connected by many paths of relatively short length.

While the proofs of the Connecting Lemma in the early articles on the (k — 1)-degree
were somewhat involved, it is now known that by using a simple adaptation of the proof
of the Connecting Lemma in [95], it can be shown quite easily that in a hypergraph H
with d;_1(H) = (1/2 + o(1))n any two (k — 1)-tuples (of vertices) can be connected by
many paths of constant length. However, if we just assume a minimum (k — 2)-degree
of (5/9 + 0(1))(5), such a general Connecting Lemma, stating that any two (k — 1)-tuples
of vertices can be connected by many paths of constant length, is not true (see [95] for
a counterexample). To deal with this, connectable pairs (and connectable (k — 1)-tuples)
were introduced in [95] and the subsequent articles on the (k — 2)-degree [92,93]. The
Connecting Lemma then states that any two connectable (k — 1)-tuples can be connected
by many paths of short length. Note that this forces us to take care in all subsequent
steps that we can guarantee connectable tuples in all those positions of our construction at
which we later need to make connections.

Let (a,...,ax—1) and (by,...,bg_1) be two connectable (k — 1)-tuples between which
we aim to find many paths of short length. Roughly speaking, we proceed as follows
(see also Figures 2.3.1 and 3.3.1). Using the eventual definition of a connectable (k —
1)-tuple, we can show that there are many tuples (u,q, ..., gax_4,w) of vertices such
that aj...ar_1u and by ...b,_jw are edges, (ag,...,ax_1) and (q1,...,qx—2) have “good
connectivity properties” in the link of u, while (gx_1,...,qex—4) and (by,...,bx_o) have
good connectivity properties in the link of w, and, lastly, q,...,qx_4 is a walk in the
link of uw. These good connectivity properties and the induction hypothesis then yield
many paths (of short length) between (as,...,a,r_1) and (qq,...,qr—2) in the link of u and
between (qx_1,.-.,qok—4) and (by,...,bx_2) in the link of w. One can show that this will
give rise to many short paths between (ay,...,a,_1) and (by,...,bx_1) in H by inserting
“different versions” of u respectively w at every k-th position of the aforementioned paths
in the links.

This sketch hints at two points. First, the key condition for this approach to work is
that there is some kind of connectivity property in the link hypergraphs of some vertices.
This can also be seen in the proof of Theorem 1.1.4 in Section 3.3, where in the links

of some vertices we essentially have Poésa’s degree sequence condition for graphs. The



insertion of some vertices qi, ..., gar_4 in the middle of the constructed path allows for
more flexibility in the proof by distributing the conditions with respect to (aq,...,ax_1)
and (by,...,bx_1) among u and w. This is not necessary in the basic version of the proof
in the setting of the (k — 1)-degree. Nevertheless, it also turned out to be crucial in the
proof of Theorem 1.1.4.

Second, the outline above indicates that to prove the Connecting Lemma given a
minimum (k — 2)-degree - and to define connectable tuples - induction will be helpful.
Indeed, this is how we will proceed in the proof of Theorem 1.1.2. However, to handle
the induction occurring in the covering part below more efficiently, it is useful to “store”
more information than just the hypergraph. Therefore, we will introduce constellations in
Chapter 2 and prove the Connecting Lemma in this context.

Lastly, let us mention that if there are many paths of fixed length between two (k — 1)-
tuples, then the probability that one particular set of vertices appears in a path chosen
uniformly at random is relatively small. Together with similar observations in the absorbing
and the covering part, this is basically the reason why all the constructions in an absorbing

proof can be performed probabilistically, which is key in the proof of Theorem 1.1.5.

Absorbing

The basic approach to construct an absorbing path is as follows. First, show that for
every vertex v, there are many v-absorbers. In the simplest case, a v-absorber is a short
path A not containing v such that v can be inserted at some “inner” position, meaning
that there is a path A’ containing v and having the same (k — 1)-tuples at both ends as A.
If there are many such absorbers for every vertex, we can pick a selection of relatively
few vertex-tuples which still contains a substantial number of absorbers for every vertex
(and only few overlapping pairs of absorbers). Subsequently, we connect the absorbers in
this collection to an absorbing path. Into this path, we can now absorb any small set of
vertices, by greedily inserting each vertex into a distinct absorber.

The main obstacle in this argument is to find the right structure for a v-absorber.
However, Polcyn and Reiher [91] suggested an approach that is somewhat more generic
and we use this to prove the minimum (k — 2)-degree condition for Hamiltonian cycles
in Chapter 2. It is based on a result by Erdés [31] which states that the Turan density
of a k-partite k-uniform hypergraph is 0. Due to supersaturation, this allows us to make
use of any k-partite structure in our absorbers. Then, one can argue that it is indeed

possible to extend such a structure in a way that a vertex v can be inserted and that all
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the end-tuples of paths in this structure are connectable.” The k-partite nature of these
absorbers entails that we will absorb k vertices at a time.

The difficulty to find the right absorbers in the setting of Theorem 1.1.4 is that there
may be pairs of vertices and (even) vertices of very small degree. To overcome this, we
introduce a different type of absorbers in that proof, which make use of the fact that with
the given degree condition it is possible to “climb up” the degree sequence (in fact, this is
essentially also what guarantees the connectivity property in the links which is used in the
proof of the Connecting Lemma).

The proof of Theorem 1.1.5 involves several rounds, in each of which we perform the
absorption method in a probabilistic way and there are some new obstacles arising here.
One is that instead of a Hamiltonian cycle we construct an arbitrary cycle factor, possibly
one in which each cycle is of constant length. Therefore, we potentially need to distribute
the absorbers in the “good” selection mentioned above among several paths.!" However,
since we do not know beforehand which set of vertices is leftover in the covering step, with
the usual approach we could not control which absorbers will be used when absorbing
this set. Thus, if the absorbers are distributed among several of these cycles, it would not
be possible to control the eventual cycle lengths. To deal with this problem, we consider
“meta absorbers” each of which is a path with a large but constant number of “normal”
absorbers as subpaths. We can construct these in such a way that for every small set (of
fixed size), there exists a way to absorb this set such that exactly one normal absorber
is used from each meta absorber. Since each meta absorber is of constant length, we can
distribute them among different paths, now knowing how many new vertices will be added
to each path later on. A second difficulty that arises in the proof, is that for the subsequent
covering step, we want the hypergraph to remain almost vertex-regular after setting aside
the absorber structures. To construct the meta absorbers while maintaining an almost
regular hypergraph, it turns out to be efficient to use random walks instead of picking each

absorber independently at random as in the usual approach.

Covering

In the covering part of proofs via absorption, a path containing almost all vertices is
constructed. Due to the Connecting Lemma (and the existence of the reservoir, but we

defer the discussion of this to the actual proofs), it is enough to cover almost all vertices

9See Figures 2.5.1 and 2.5.2.
10T obtain a cycle factor, we first cover almost all vertices by paths of short lengths and subsequently
connect these, together with “meta absorbers”, to cycles into which we absorb the remaining vertices.
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by paths whose lengths are a large constant.

The proofs in the chapters ahead will in fact provide three different approaches to proof
the existence of such a covering in some hypergraph H. In the proof of Theorem 1.1.4, we use
the weak hypergraph regularity lemma, which is a relatively straightforward generalisation
of Szemerédi’s regularity lemma for graphs. This provides a partitioning of the vertex set
into relatively few partition classes such that between almost any three of those partition
classes, the edges of H are distributed quasirandomly. Then the reduced hypergraph is
defined as the hypergraph which has the partition classes as vertices and whose edges
are given by those triples of vertex classes on which H is quasirandom and has some
positive density. One can then show (still in the setting of Theorem 1.1.4) that this reduced
hypergraph possesses a pair degree condition very similar to the one in H. This enables
us to construct a matching in the reduced hypergraph which covers almost all vertices.
Next, by a typical quasirandomness argumentation, one sees that each edge in the reduced
hypergraph can be “unpacked” to a collection of relatively long (vertex-disjoint) paths
in H covering almost all vertices of the three partition classes that form the edge. Thus,
the edges of the almost perfect matching in the reduced hypergraph yield an approximate
path cover in H as desired.

This approach would be more difficult if in addition we had to take care that all the
end-tuples of the paths in the covering are connectable. In the proof of the minimum pair
degree condition for Hamiltonian cycles in 4-uniform hypergraphs [92], we introduced a
different strategy that was based on the respective 3-uniform result [95] yet involved several
new aspects. Since this strategy is inductive in nature, we could lift it to full generality
in the proof of Theorem 1.1.2. Although the full proof involves several major technical
obstacles, we may give an idea of it here. Take a maximal collection € of vertex-disjoint
paths on M vertices (M-vertex paths) whose end-tuples are connectable and call the set
of uncovered vertices U. If |U| is not small enough, we consider so-called blocks, which
are the vertex sets of the paths in 4 as well as some arbitrary partition of the vertices
not covered by € into sets of size M. We aim to use (the vertices in) M of these blocks
together with vertices in U to construct M + 1 vertex-disjoint M-paths with connectable
end-tuples. Subsequently, replacing the paths in 4 corresponding to blocks used for this
construction by the M + 1 newly constructed paths, leaves us with a path collection that
contains at least one path more than %, a contradiction.

To find M blocks which enable this augmentation, we analyse societies, which are sets

of M blocks. Given a vertex u € U, we say that a society . is useful for wu, if the link
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(constellation) of w induced on S = | 5., B has certain nice properties. These will allow
us to apply induction and cover almost all vertices in S by “good” paths in the link of u
(the technicalities involved in this induction called for the definition of constellations to be
handled efficiently). We then use a probabilistic argument based on a weighted version of
Janson’s inequality to show that there is a society which is useful for many vertices in U.
By averaging, we obtain a set U’ < U such that in the link of each vertex in U’, there
exists the same covering of S. Inserting vertices of U’ at every k-th position then yields
the paths in H we were looking for to augment %. If we prepare a bit more, the properties
of the link constellation induced on the vertices of a useful society actually allow us to
make sure that the end-tuples of the so constructed paths are indeed connectable in H
(and not just in some link constellation).

In the proof of Theorem 1.1.5, more than a path covering of a hypergraph is needed.
On the one hand, since here the goal is to construct many edge-disjoint cycle factors, we
need to construct many edge-disjoint collections of approximate path coverings. Further,
we need to ensure certain quasirandomness conditions of these path covers.

On the other hand, when applying the absorption method to turn each of these
approximate path coverings P into a cycle factor, we need to provide a probabilistic
construction of an approximate path covering in a subhypergraph of H.!* To this end, we
can apply the result ensuring many edge-disjoint collections of approximate path coverings
(Proposition 4.4.1) and choose one of the path collections at random.

To prove such a covering result, we first consider a fractional cycle decomposition of H
(this is a weighted, weaker notion of a cycle decomposition), which exists by an earlier result
due to Joos and Kiihn [63]. Roughly speaking, we then construct an auxiliary hypergraph
whose vertex set consists of the edges of H as well as several disjoint copies of V(H) and
whose edges “represent” cycles in H of a fixed length. A matching in this hypergraph will
correspond to edge-disjoint collections of cycles in H. At this point, a weighted version of
a result by Erhard, Glock, and Joos [29] about quasirandom matchings in hypergraphs
can be applied to this auxiliary hypergraph with weights on the edges according to the
aforementioned fractional cycle decomposition of H. This will engender a matching in the
auxiliary hypergraph with enough quasirandom properties such that the corresponding

collection of cycles in H is as desired.

HBasically, we need such a covering in the hypergraph F[V(H) ~ V(P)], mentioned in the general
overview above, after setting aside absorbing paths in it.
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1.1.2 Covering edge-coloured random graphs with

monochromatic trees

In this subsection we combine the search for spanning substructures with Ramsey theory.
Ramsey’s theorem and Turan’s theorem are arguably the two cornerstones of extremal
combinatorics.

With Ramsey’s theorem in mind and given a positive integer r and some class C of
substructures (like cycles or trees), one may now ask for the minimum number m such that
for any r-edge-colouring of K, there are m monochromatic copies of elements in C such
that their union covers all vertices of K, (in this context, we allow the empty graph, single
vertices, and edges as trees and cycles). There has been extensive research on problems of
this kind and we refer to a review by Gyarfas [54] for an overview.

Here, we are interested in covering with monochromatic trees, in other words, we
are looking for the minimum number of monochromatic components that are needed to
cover an edge-coloured graph. More precisely, given a graph G and a positive integer r,
let te,(G) denote the minimum number m such that in any r-edge-colouring of G, there
are m monochromatic trees 171, ..., T, such that the union of their vertex sets covers V (G),

that is,
V(G)=V(Ty)u---uV(Ty).

We define tp,(G) analogously by requiring the union above to be disjoint (so in particu-
lar, tc,(G) < tp,(G)).

Erdés, Gyarfas, and Pyber [33] conjectured that tp,(K,) = r — 1 for all positive
integers n and proved the conjecture for r = 3 (for r = 2 it is easy). Currently, the best
known bound is tp,(K,) < r for sufficiently large n which was proved by Haxell and
Kohayakawa [59] and it is not even known whether tc,(K,) < r — 1.

Gyarfés [53] noticed a nice connection between this problem and the famous conjecture
by Ryser [61], which asserts that a generalisation of K6nig’s theorem is true for hypergraphs.
More precisely, Ryser’s conjecture states that if H is an r-partite r-uniform hypergraph,
then the smallest size of a vertex cover of H is at most r — 1 times the size of the largest
matching in H. We will come back to this connection in the sketch of the proof below.

As with many problems in combinatorics which are at first studied for complete
graphs, researchers also investigate the random graph G(n,p). For the problem above,

1/
)

Y

this investigation was started by Bal and DeBiasio [6], who proved that if p « (
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then with high probability (w.h.p.) we have tc,.(G(n,p)) — o (as n — ). They further
conjectured that for any r > 2, this is the correct threshold for the event tp,(G(n,p)) < r.
Kohayakawa, Mota, and Schacht [72] proved that this conjecture holds for r = 2, while
Ebsen, Mota, and Schnitzer (see also [72]) disproved it for more than two colours.

Subsequently, Buci¢, Korandi, and Sudakov [15] proved that for large r, the threshold
for the event tc,(G) < r is actually significantly larger than the one conjectured by Bal
and DeBiasio. In the quest for the best bounds on p which still guarantee tc,.(G(n,p)) < r
(before, only bounds directly implied by other results had been known'?), Buci¢, Kordndi,
and Sudakov showed that if p » (lc’%)mr, then w.h.p. tc,(G(n,p)) < r.

In the case of 3-colourings, the results in [15] imply that tcs(G(n,p)) < 3 holds w.h.p.
if we have p » (k’%)l/s, and if p » (1"%)%, then w.h.p. tes(G(n,p)) < 88.

Together with Kohayakawa, Mendonga, and Mota, the author [71] proved the following

improvement of these results.

Theorem 1.1.7. If p = p(n) satisfies p > (k’%)l/ﬁ, then with high probability we have
tes(G(n,p)) < 3.

Let us remark that the bound on tc3(G(n,p)) is optimal in the sense that if we
have p = 1 —w(n™!), then w.h.p. there is a 3-edge-colouring of G(n, p) for which three
monochromatic trees are needed to cover all vertices. To see this, consider three non-
adjacent vertices x1, xo, and x3 (which exist w.h.p. for such p), colour the edges incident
to x; with colour ¢z and colour all the remaining edges with any colour.

We now briefly sketch how to proof Theorem 1.1.7. Let G = G(n,p), with p » (IOEL"
and let ¢ : F(G) — {red, green, blue} be any 3-edge-colouring of GG. First note that

)1/6

Y

since we are looking for a covering of the vertices with monochromatic components, it is
enough to consider an auxiliary graph F, with V(F) = V(G) and ij € E(F) if and only
if there is, in the colouring ¢, a monochromatic path in G connecting ¢ and j. Define
a 3-edge-colouring ¢’ of F' with ¢/(ij) being the colour of any monochromatic path in G
connecting ¢ and j. Then any covering of F' with monochromatic trees with respect to the
colouring ¢’ corresponds to a covering of G with monochromatic trees with respect to the
colouring ¢ with the same number of trees.

In our proof, we consider different cases depending on the value of the independence

number a(F') of F. If a(F) = 1, then F is a complete 3-edge-coloured graph and by the

12When we worked on this problem, [15] had not yet appeared on arXiv.org and tcz(G(n,p)) < 6 was
the best known bound for any sensible p.
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aforementioned result by Erdds, Gyarfas, and Pyber [33], there exists a partition of V (F)
into 2 monochromatic trees. The remaining proof is divided into the cases «(F) > 3
and o(F) = 2.

Case o(F) = 3. In this case there exist three vertices r,b, g € V(G) such that between
any two of them there does not exist any monochromatic path. With high probability,
they have a common neighbourhood in G of size at least np®/2. Let X,4, be the largest
subset of this common neighbourhood such that for each i € {r,b, g}, the edges from i
to X,pe in G are all coloured with one colour. Then, since there are no monochromatic
paths between any two of 7, b, and g, we have | X,,| = np®/12 and we may assume that all
edges between r and X4, are red, all between b and X,,, are blue and those between g
and X, are green. Now notice that all vertices with a neighbour in X, are covered by
the union of the spanning trees of the red component of r, the blue component of b, and
the green component of g. Hence, nothing is left to show if every vertex has a neighbour
in X,44. If this is not the case, we continue by carefully choosing vertices and analysing
the possible colourings between these vertices and their common neighbourhood. In such a
way, we can first show that five monochromatic trees cover all vertices and subsequently

argue that, indeed, three of them suffice.

Case a(F') = 2. Let us consider a 3-uniform hypergraph H defined as follows (this definition
is inspired by a construction of Gyérfas [53]). The vertices of H are the monochromatic
components of F' and three vertices form a hyperedge if the corresponding three components
have a vertex in common. In particular, those three monochromatic components must be
of different colours and, hence, H is a 3-uniform 3-partite hypergraph. Observe that if A
is a vertex cover of H, then the monochromatic components associated with the vertices
in A cover all the vertices of F. This yields te3(G) < tesz(F) < 7(H), where 7(H) is the
covering number of . On the other hand, observe that each matching M in H gives rise
to an independent set of size |M| in F. Thus, we have v(H) < «(F) = 2, where v(H)
is the matching number of H. Recall that Ryser’s conjecture for r = 3 states that for
every 3-uniform 3-partite hypergraph H, we have 7(H) < 2v(H). As it turns out, r = 3
is next to r = 2 (K6nig’s theorem) the only known (non-trivial) case in which Ryser’s
conjecture is true; it was proved by Aharoni [1]. Together with the previous observation,
this implies tc3(G) < 4.

To show that actually tcg(G) < 3, we analyse the hypergraph H more carefully, reducing
the situation to a few possible settings of components covering all vertices. In each of

those cases, we can again analyse the possible colourings of edges between certain vertices,
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inferring that indeed there are 3 monochromatic components which cover all vertices.

1.2 Convex graphon parameters and graph norms

Let us turn our attention to an interesting modern theory within combinatorics, the theory
of graphons. This theory is closely related to the well-known conjecture by Sidorenko.!?
Roughly speaking, Sidorenko’s conjecture [104,105] asserts that for any bipartite graph H,
the number of copies of H in a graph G is minimised when G is a quasirandom graph. To
be more precise, let us introduce some notation and we refer the reader to [81] for further
background on graphons and graph limits.

A graphon (respectively signed graphon) is defined to be a measurable symmetric
function W : [0,1]*> — [0, 1] (respectively W : [0,1]*> — [—1,1]). Graphons can be seen as
a continuous generalisation of (weighted) graphs and, in fact, they appear as limit objects
of sequences of weighted graphs. Let VW be the vector space of symmetric (real-valued)
bounded measurable functions on [0, 1]2.

Given graphs H and G, we are often interested in the number of ways in which we
can embed H into G, that is, the number of homomorphisms from H to G (a graph
homomorphism from H to G is a map ¢ : V(H) — V(G) such that ¢(i)¢(j) € E(G)
whenever ij € E(H)). For W € W, we define the homomorphism density of H in W by

V) = [ TT W)™,

ijeE(H)

where p is the Lebesgue measure on [0, 1] and v(H) = |V(H)|.*

Now we can formulate Sidorenko’s conjecture.

Conjecture 1.2.1. Let H be a bipartite graph and let W be a graphon. Then
ty (W) = tr, (W), (1.2.1)

Given that norms are central in several areas of combinatorics, such as graph limits or
additive combinatorics, it is interesting to know if we can define norms by the homomorphism
density. Let us write [[W|, = [tx(W)[Y*5) and W], 4 = tu((W[)VH (again, we
write e(H) = |E(H)|) and call a graph H norming if ||-|| ; defines a norm on W, and weakly

13This conjecture was also proposed in a slightly different form by Erdés and Simonovits [35].
14The given integral is a short notation for S[o oo [ ijeny Wi, ©5) I Ly (y dp(ai)
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norming if [|-[|, ;) is a norm on W. Lovész [81] and Hatami [58] asked which graphs H are
(weakly) norming.

As it turns out, there are strong connections between the theory of norming graphs
and Sidorenko’s conjecture. In particular, every weakly norming graph satisfies (1.2.1) for
every graphon W [58] (we call a graph satisfying (1.2.1) for every graphon W Sidorenko).

Much of the work on Sidorenko’s conjecture focused on finding more Sidorenko graphs,
and although not every Sidorenko graph is weakly norming [20,74], at times new Sidorenko
graphs were found by finding new weakly norming graphs (see, for instance, [22,58,81]).
Moreover, Conlon and Lee [22] showed that weakly norming graphs can be used as “building
blocks” for Sidorenko graphs.

To approach the conjecture, Sidorenko [104,105] suggested to determine whether K5 5\
Cho (also called Mdébius ladder) is Sidorenko or not but despite various partial results on
Conjecture 1.2.1 [20-23,58,70,80,110], this is still not known. In joint work with Lee [79],
we showed that this graph is at least not weakly norming. While this does not disprove
Sidorenko’s conjecture, it underlines the importance of K55 \ Cjp in the investigation of
this conjecture.

In fact, we proved a more general result. For a graph H, we write H™ for the graph

with vertex set {v; : v e V(H),i € [2]} and edge set
{vyve cve V(H)} v {uw; :uww e E(H),{i,j} = [2]}.

Observe that Cz' is isomorphic to K55 ~\ Cho. Graphs of this type have been of interest in
the theory of weakly norming graphs, for instance, Hatami [58] asked whether C%; and the

Mbobius ladder C:* are weakly norming. We answer both these questions.
Theorem 1.2.2. For every k > 4, C}' is not weakly norming.

Our method, which can also be used to prove that certain graphs are not norming, relies
on the not very difficult to prove observation that H being weakly norming is equivalent

to ty being convex. More precisely, the following holds.

Theorem 1.2.3. A graph H is weakly norming if and only if ty(-) is a convex graphon

parameter.

The reason that this is helpful is that it will provide a computational way to show that

a graph is not weakly norming.
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Given an n x n symmetric matrix A = (a;;), let U4 be the two-variable symmetric step
function on [0, 1]? defined by

Uslz,y) = a;, if (i—1)/n<z<i/mand (j—1)/n<y<j/n

and Uy = 0 on the measure-zero set = 1 or y = 1 for simplicity. Then A — Uy, is a linear

map and

tp(Ua) =n~"00 ) [T aswso

¢:V(H)—[n] weE(H)

n+1
2

gree e(H). We call the polynomial Py ,(A) for A € Sym,,, where Sym,, denotes the (

v(H) )-variable polynomial of de-

n+1)_
2

In other words, ty(Uy) is n~ times a homogeneous (
dimensional vector space of n x n real symmetric matrices. It is not difficult to derive the

following formulation of Theorem 1.2.3 in terms of P ,.

Theorem 1.2.4. A graph H is weakly norming if and only if Py, (-) is a convex polynomial

on the positive orthant for every n € N.

Due to rather standard multidimensional analysis, this result on the other hand has

the following corollary.

Corollary 1.2.5. A graph H is weakly norming if and only if the Hessian V* Py ,,(A) is

positive semidefinite for every A € Sym,, with positive entries and n € N.

To show that a graph H is not weakly norming, it now suffices to find an example of
a graph G such that this Hessian is not positive semidefinite for the adjacency matrix
of G. While we used a computer program to find such an example initially, we were able to
simplify the example and prove that the Hessian is not positive semidefinite by explicitly
analysing homomorphisms from H to G. Thus, our eventual proof does not rely on any
computer calculations.

As mentioned before, we also use an analogous approach to prove similar results for

norming instead of weakly norming.

1.3 On extremal problems concerning traces

The last problem we consider in this thesis is a problem in extremal set theory, which

studies the extremal behaviour of families of sets. Let X be some set and consider some
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family F € 2(X) (so (X,F) is a hypergraph'®). We may now ask: How large can F
be, given that it has a certain property? What gives this subfield a distinctive flavour
compared to the problems mentioned above, is that here the considered families are not
always uniform and if they are, say, k-uniform, one is often also interested in relatively
small vertex sets, that is, | X| being only polynomial in k. Further, the proof techniques
are often quite different from those in (extremal) graph theory. We recommend the books
by Frankl and Tokushige [42] and by Gerbner and Patkos [48] for an overview of extremal
set theory.

Here, we are interested in the notion of traces. For a set X, a family F < (X)),
and a set T < X we define the trace of 7 on T to be Fip = {FFnT : F € F}. The
following problem can be interpreted as Turan problem for traces of arbitrary families.
For given positive integers n and s with n > s, how large does a family F on n vertices
have to be to guarantee that there is some subset of s vertices on which F has a “full”
trace? To make this precise and to set it into a broader context, let us introduce the
following notation. For integers n, m, a, and b, we write (n,m) — (a,b) if for every
family F < £(X) with |F| = m and |X| = n, there is an a-element set T < X
such that |Fjp| = b. The very general problem is to determine, given n, a, and b, the
minimal m such that (n,m) — (a,b). This problem has also been considered for uniform
hypergraphs, namely, what is the maximum number fi(n,v,e) of edges in a k-uniform
hypergraph on n vertices not containing e edges spanned by at most v vertices. The
investigation of the uniform version was initiated by Brown, Erdds, and Sés [14,107], who
also conjectured [32,34] that for every e > 3, f3(n, e + 3,¢) = o(n?), which is among the
most important open problems in extremal combinatorics. For a broader overview of the
study of traces, we refer the reader to Chapter 8 in [48].

Let us come back to the Turan problem for traces of arbitrary families. Regarding the
question asked above, Erdés [101] asked whether the following result holds, which was
subsequently proved independently by Sauer [101], Shelah and Perles [103], and Vapnik
and Cervonenkis [113].

Theorem 1.3.1. Letn > s =0 and m be integers with m > Y, _ (7;) Then
(n,m) — (s,2°).

Note that the bound on m is best possible. Further, although far beyond the scope of

15The terms “family” and “hypergraph” are often used interchangeably here when no confusion can
arise, that is, we may identify a hypergraph with its edge set.
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this thesis, let us mention that this result and the related VC dimension have important
applications in machine learning [3].

An even more basic question than the Turan problem is to ask up to which density of
edges we can still guarantee that every graph with this density contains a vertex of low
degree. While this question is rather easy for graphs, it becomes interesting for abstract
simplicial complexes (i.e., hereditary hypergraphs, see below).

This problem was posed in terms of traces by Fiiredi and Pach [46] and, more recently,
by Frankl and Tokushige as Problem 3.8 in [42]:16

Problem 1.3.2. Given non-negative integers n and s, what is the mazimum integer m(n, s)

such that for every integer m < m(n, s), we have
(n,m) - (n—1,m—s).

Recall that a family F < Z2(X) (where X is some set) is said to be hereditary if for
every [/ € F € F, we have that F' € F (such an F is also called abstract simplicial
complex). In [41], Frankl proved that among families with a fixed number of edges and
vertices, the trace is minimised by hereditary families (see Lemma 7.2.1 in Chapter 7).
Thus, problems regarding the arrowing notation and in particular Problem 1.3.2 can be
reduced to hereditary families (and so given Frankl’s result, Theorem 1.3.1 and other
previous results on the arrowing notation became easy corollaries).

So Problem 1.3.2 is asking for the maximum integer m such that in every hereditary
family on n vertices with at most m edges, there is still a vertex of degree at most s.
Conversely, we can say that m(n, s) + 1 is the minimum number of edges in a hereditary
hypergraph on n vertices with minimum (vertex) degree at least s + 1. The results on
Problem 1.3.2 are best formulated as results on m(s) = lim,_,4 w (it is not too difficult
to show that this limit exists, see [43]). The investigation of this problem started with
Bondy [11] and Bollobés [82] determining m(0) and m(1), respectively. Subsequently,
Watanabe [115], [116] and Frankl and Watanabe [43] worked out several more cases for
small s. Moreover, Frankl [41] and Frankl and Watanabe [43] proved the first and second

part of the following theorem, respectively.

Theorem 1.3.3. For d,n e N, we have m(2¢~" — 1) = 2L and m (247" — 2) = 222,

In joint work with Piga [89] we made further progress on Problem 1.3.2, solving it for

16There have been slightly different versions in use for the arrowing notation and for what we denote
by m(n,s). Here we follow the notation in [42].
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general s = 2971 — ¢ as long as c is linearly small in d. More precisely, our main result

reads as follows.
Theorem 1.3.4. Let d,c,n € N with ¢ < d/4. Then

2d _ ¢
T

m2T! —¢) =

We also determined m(s) for some small values of s, one of which had been conjectured
by Frankl and Watanabe [43]. Further, we provided a construction showing that the
equality in Theorem 1.3.4 does not hold for ¢ = d.

It turns out that determining m (247! — ¢) for ¢ = 3 becomes more difficult for a reason.
To see why this is the case and how these difficulties can be overcome, let us take a
look at the basic idea of the proof. If d | n, taking n/d disjoint copies of a hereditary
family on d vertices with 2¢ — ¢ + 1 edges, gives a family on n vertices with %(Zd —c)+1
edges in which each vertex has degree at least 22°' — ¢ + 1. Thus, when d | n, we
have m(n, 21 — ¢) < 2(2¢ — ¢), which yields m(2¢" — ¢) < 25<.

So the main part of the proof is to show that for every hereditary hypergraph F = (V, F)

with [V| = n and minimum degree at least 2¢~" — ¢ + 1, we have that |F| = 2(2¢ — ¢) + 1.
In the proofs of the identities in Theorem 1.3.3, Frankl and Watanabe used that we
have |F ~AD} = 3 .ev 2iprer, e Where Ly = {A €V : AU {v} € F} is the link of the
vertex v. Subsequently, they used a generalised form of the Kruskal-Katona theorem to
obtain a lower bound for >, IHI% that is independent of v. Due to the aforementioned
double counting, this in turn yields the lower bound on the number of edges.

For ¢ > 3, there are extremal families which show that a lower bound on ., IHIﬁ
independent of v is not sufficient to provide the desired bound on |F|. To overcome
this difficulty, first observe that the double counting argument can be generalised by
interpreting > .., ‘Hﬁ as the weight wz(v) of a vertex v. We will refer to this weight
as uniform weight since it can be imagined as uniformly distributing the unit weight of an
edge among all of its vertices. In contrast, to prove Theorem 1.3.4, we will at times use
non-uniform weights. Moreover, instead of bounding the weight of single vertices, we will
sometimes bound the weight of sets of vertices.

The overall structure of the proof can be seen as approximating F with an extremal
family and then showing that deviations of F from that extremal family engender an
increase of the weight of F (the sum of the weights of all vertices). We proceed by first

setting up the “global” structure and afterwards analysing “local” deviations.
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To this end, set V,, = N(v) u {v} for all v € V (where N(v) = {w e V ~ {v} : A €
F : {v,w} < A} is the neighbourhood of v) and let £ be a maximal set of vertices w
with |N(w)| < d — 1 such that V,, n V,, = @ for all v,v' € L. For all v € L, we call the
set V,, cluster. Observe that if the size of the neighbourhood of a vertex is at most d — 1,
then it has to intersect one of the clusters. For vertices whose neighbourhoods do not
intersect any cluster (and which therefore have a neighbourhood of size at least d), we use
the uniform weight. To bound these uniform weights, we introduce a “local” lemma which
is a close relative to the general form of the Kruskal-Katona theorem mentioned above.
Given a vertex of degree at least 2¢~! — ¢ + 1, it provides a lower bound on the uniform
weight and, furthermore, the minimum surplus if the link deviates enough from the family
which minimises the uniform weight.

The next step is to bound the weight of vertices in the clusters. The difficulty is that
the weights of different vertices in a cluster might vary and some weights may be relatively
small. To deal with this, instead of bounding the weight of each single vertex, we bound
the average weight of the vertices in a cluster. Even if the number of edges inside a cluster
is not large enough, F being hereditary and the minimum degree of F still provide some
lower bound for the number of edges in each cluster. Further, a second local lemma yields
that in each cluster with too few edges there are several vertices whose degree with respect
to the cluster is smaller than the minimum degree in F. Therefore, there have to be several
crossing edges, i.e., edges containing vertices from both the inside and the outside of the
cluster. If we use the uniform weight, these crossing edges will contribute enough to the
weight of the cluster, even more than needed.

At this point, we still need to bound the weight of vertices with neighbourhoods of
size at most d — 1 lying outside of any cluster. As mentioned above, the neighbourhood
of every such vertex intersects some cluster, meaning every such vertex is contained in a
crossing edge. Since distributing the unit weight of crossing edges uniformly among its
vertices would contribute more weight than needed to the inside of a cluster, we can assign

a larger share to the vertices outside so that both sides will get a share that is big enough.

Organisation

Chapters 2, 3, and 4 are dedicated, respectively, to the proper introductions and proofs
of Theorem 1.1.2, Theorem 1.1.4, and Theorem 1.1.5. They essentially consist of the
articles [64,93,102]. In Chapter 5, essentially consisting of [71], we more carefully introduce

and prove Theorem 1.1.7. Chapter 6 deals with “Convex graphon parameter and graph
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norms”. There we prove Theorem 1.2.3 and it basically consists of [79]. Lastly, we discuss
the problem on traces of sets in depth in Chapter 7, which includes a proof of Theorem 1.3.4
and essentially consists of [89].

In the appendix, short summaries of this thesis in both English and German are
provided and all my publications connected with my PhD studies are listed. In addition, I
make a declaration of contributions and a declaration of academic honesty. Further, I will

thank various people who have been crucial for this work and for my life.
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2. On Hamiltonian cycles in hypergraphs
with dense link graphs

2.1 Introduction

Hamiltonian cycles are a central theme in graph theory and extremal combinatorics. Dirac’s
classic result [27] states that every graph on n > 3 vertices whose minimum degree is
at least § contains a Hamiltonian cycle. The present work continues the investigation
of hypergraph generalisations of Dirac’s theorem — an area of research owing many deep

insights to Endre Szemerédi.

2.1.1 Hypergraphs and Hamiltonian cycles

For k = 2, a k-uniform hypergraph is defined to be a pair H = (V, ) consisting of a (finite)

set of vertices V and a set
EcVW®W {UcV:|U| =k}

of edges. A k-uniform hypergraph H = (V,E) with n vertices is said to contain a
Hamiltonian cycle if its vertex set admits a cyclic enumeration V' = {x;: i € Z/nZ}
such that {z;,x;11,...,2;4k_1} € E holds for all ¢ € Z/nZ. Observe that this naturally
generalises the familiar notion of Hamiltonian cycles in graphs.

In contrast to the graph case, there are several interesting minimum degree notions for
hypergraphs. For a k-uniform hypergraph H = (V, E) and a set S < V, the degree of S
in H is defined by

dy(S)=[{ee E: Sce}|.
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Moreover, for an integer ¢ with 1 < ¢ < k, the number
§;(H) = min{dp(S): Se VW}

is called the minimum i-degree of H.

The research on minimum i-degree conditions guaranteeing the existence of Hamiltonian
cycles in hypergraphs was initiated by Katona and Kierstead [67]. The main problem is to
determine, for any two given integers k > 2 and i € [k — 1], the optimal minimum i-degree
condition which for k-uniform hypergraphs ensures the existence of a Hamiltonian cycle.
Notice that Dirac’s aforementioned theorem solves the case (k,i) = (2,1).

In general, if ¢ < j, then a minimum j-degree condition seems to reveal more structural
information about a hypergraph than a minimum ¢-degree condition. For this reason, it
is reasonable to suspect that the difficulty of the problem we are interested in increases
with k — 4. The first case, i = k — 1, was solved more than a decade ago by Rodl, Rucinski,
and Szemerédi [99].

Theorem 2.1.1. For every integer k = 2 and every o > 0, there exists an integer ng such
that every k-uniform hypergraph H on n = ng vertices with d,_1(H) > (% + a) n contains

a Hamiltonian cycle.

Similarly as for Dirac’s theorem, slightly unbalanced bipartite hypergraphs show that
this result is asymptotically best possible. Our main result addresses the next case,
1=k —2.

Theorem 2.1.2. For every integer k = 3 and every o > 0, there exists an integer ng such

n2

5 contains

that every k-uniform hypergraph H on n = ng vertices with 0;_o(H) = (g + a)

a Hamiltonian cycle.

In previous articles written in collaboration with Ruciriski, Schacht, and Szemerédi [92,
95] we solved the cases k = 3 and k = 4. The general case was also obtained by Lang

and Sanhueza-Matamala [77] in independent research. A construction due to Han and

Zhao [57] reproduced in the introduction of [92] shows that the number 2 appearing in
Theorem 2.1.2 is optimal.

We would like to conclude this subsection by pointing to some problems for future
investigations. First and foremost, it remains an intriguing question whether for k > 4,
the minimum (k — 3)-degree condition 8,_3(H) = (2 + o(1)) % enforces the existence of a
Hamiltonian cycle. Here the number % would again match the construction of Han and

Zhao [57].
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Another possible area of research would be to extend the work of Pdsa [94] and
Chvatal [18], who in the graph case studied which conditions on the degree sequence
(rather than just on the minimum degree) guarantee the existence of Hamiltonian cycles.
Such degree sequence versions have recently been obtained for the Hajnal-Szemerédi
theorem [55] by Treglown [112] and for Pdsa’s conjecture (see [38, Problem 9]) by Staden
and Treglown [108]. It would be very interesting to find similar theorems for Hamiltonian

cycles in hypergraphs. For first results in this direction we refer to [102].

2.1.2 Organisation and overview

We use the absorption method developed by Rodl, Rucinski, and Szemerédi and surveyed
by Szemerédi himself in [111]. Therefore, the proof decomposes in the usual way into a
Connecting Lemma, an Absorbing Path Lemma, and a Covering Lemma.

Very roughly speaking, the Absorbing Path Lemma reduces the task of proving The-

orem 2.1.2 to the much easier problem of finding ‘almost spanning’ cycles in k-uniform

[V (H)[?

5~ ouch an almost spanning cycle is

hypergraphs H satisfying 6,—o(H) = (2 + o)
build in two main steps: First, the Covering Lemma asserts that we can cover almost all
vertices by means of long paths. Second, the Connecting Lemma allows us to connect these
‘pieces’ into one long cycle.

In our earlier articles we stored all information about H that became relevant in the
course of the proof in various ‘setups’ and the complexity of these setups got somewhat
out of control. To avoid this in the present work, we abandon the setups and replace them
by the much more flexible notion of a constellation (see Definition 2.2.10 below).

Section 2.2 lays out a systematic treatment of these constellations and contains several
auxiliary results that will assist us later. The subsequent Sections 2.3—2.6 deal with
the main lemmata enumerated above: connecting, absorbing, and covering. Lastly, in

Section 2.7 we derive Theorem 2.1.2 from these results.

2.2 Preliminaries

2.2.1 Graphs

In our earlier articles [92,95] dealing with the 3- and 4-uniform case of Theorem 2.1.2
we inductively reduced connectability properties of the hypergraphs under discussion to

connectability properties of their 2-uniform link graphs. Here we pursue the same strategy
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and the present subsection contains the graph theoretic preliminaries that we require for this
purpose. The central notion we work with in this context is taken from [95, Definition 2.2]
and reappeared as [92, Definition 2.1].

Definition 2.2.1. Given § > 0 and ¢ € IN a graph R is said to be (3, )-robust if for any

two distinct vertices x and y of R the number of z-y-paths of length ( is at least 3|V (R)[*~*.

It turns out that every graph whose edge density is larger than 5/9 possesses a robust
subgraph containing more than two thirds of its vertices that is quite disconnected from the
rest of the graph. The following statement to this effect was proved in [92, Proposition 2.2]

(marginally strengthening [95, Proposition 2.3]).
Proposition 2.2.2. Given o, p > 0, there exist f > 0 and an odd integer { = 3 such that
for sufficiently large n, every n-vertex graph G = (V, E) with |E| > (% + 04)%2 contains a
(B, €)-robust induced subgraph R < G satisfying

(i) V(R = (3 +5)n.

(i) and eq(V(R),V N V(R)) < pn®.

Remark 2.2.3. When using this result we can always assume a < 4/9, for otherwise the
hypothesis |[E| = (2 + «) %2 cannot hold. We shall only apply Proposition 2.2.2 with p < §.
In this case, clause (i) yields
5 ayn? (n—|V(R))*® /4 2 \n?
S (I LGRS et LA €10 VR P R 2.2.1
“() > (5+5)75 2 (5+35%)% (22.1)
where the second inequality relies on o < 4/9 < 2/3. Originally, (2.2.1) was included as a

third clause into [92, Proposition 2.2], but it seems preferable to omit this part.

In Section 2.5 below we need to render our absorbers connectable. To this end we shall

utilise a consequence of the following graph theoretic lemma.

Lemma 2.2.4. Let a > 0 and let G be a graph with n vertices and at least (g + a)%2
edges. If
A={zeV(G): d(z) <n/3}

and
B={zeV(G): |N(z) \ A| < an/3},
then
AuB) <™
e(Au )\1—8
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Proof. In the special case that [A] < (3

dlx) < [N(@) N Al + 4] < %,
which yields B € A and the desired inequality

1 1
AUB)=c¢(A) < =|A]? < —n?.
e(Av B) = e(A) < AP < <o

So henceforth we may suppose that

a5 (-5

Now the definition of A implies

gnQ Z d(x —|A\n +(n—|A)n =n?— f]A]n
zeV(G)
ie., )
A< 20,
and ) n* 1
(G — A) > <§+a>?— SlAln.

Setting X = V(G) \ (A u B) we conclude from the definition of B that

2e(BNA) +e(BNAX)= Y IN@)NAl<|BNAl-2n<on
reB\A 3
which together with (2.2.4) yields

| X]* = 2e(X) =2¢(G—A) —2e(B~A) —2e(B\ A, X)

D 2 2 5) 2
> <f + a>n2 — Z)AIn — Zan® = —n* — Z|A|n.
9 3 3 9 3

In view of (2.2.3) this entails

4 2 1 2 1 2
X[ > sn? = S Aln + 71412 = (50— 5141) .

wherefore

2
[X] > 3n - *\AI
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— §)n, every vertex x € B satisfies

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)



Next, we claim that

1 1 1 a
S1Aln + 1B~ Al|A 7X2<<f f)z. 92.9.7
A+ B AlAL+ 51XP < (5 + 2 2:2)

In view of |A| + |B \ A| + | X| = n the left side of this estimate rewrites as

1 1 4 3 1
—|A — Al — | XDIA| + =| X > = =|Aln — Z|A]? + = (4] — | X|)*.
Al + (0 — A= [XDIA]+ 5IXE = ZJAln - S|4 + S(14] - |X))

By (2.2.6) and X < V(G) \ A we have

2 3
and, hence,
9 9 (2 3 2
(14 = 1) < max { (n — 2142, (50— 514l) |-

So to conclude the proof of (2.2.7) it suffices to observe that

4 3 1 n® 1 (222) /1 «
ClAIn = ZIAP (=24 =2 v S — A (n—3|4]) < (f f) 2
Al AP+ S 204 = "k S A —34) L (4 D)
and, similarly,
4 3 1,2 3 N2 n2 /1 1, .82 1 n?
ClAn - 2jAP f(f —fA) :f—<f —7A> _Cap<
ldn =5l AP+ 5 (Gn=3l4l) =5 —(3n—3Ml) —gllh <3

Having thus established (2.2.7) we appeal to the definition of A again and observe

e(A) +e(G) = Y d(x) +e(G - A) < ;|An +e(G—A).

€A

Consequently,
1
e(Au B) +e(G) < §|A|n +e(BNAA) +e(BNA) +e(G—A)
and (2.2.5) leads to

1
e(AU B) +e(G) < S|Aln+ B~ AllA] + e(X) + Tn”.
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Owing to (2.2.7) we deduce

2

1 1
e(Au B) +e(G) < <§+%)n2+gn2 = (f—ka)% < 1—8n2+e(G),

which implies the desired estimate e(A U B) < £n?. ]

Remark 2.2.5. The set A already had an appearance in [92] and Lemma 2.3 there is
roughly equivalent to the weaker estimate e(A) < T—;. Concerning the set B one can prove

|B| < %, but this fact is not going to be exploited in the sequel.

The following consequence of Lemma 2.2.4 will later be generalised to k-uniform

hypergraphs (see Lemma 2.2.7) and constitutes the base case of an induction on k.

Corollary 2.2.6. Let a > 0, and let V' be a set of n vertices. If G, G' are two graphs with
V(G), V(G") <V and

71,2

e(@), e(G') = (5 + a);,

9

then there are at least %Qn?’ triples (z,vy,2) € V3 such that

o zyz is a walk in G,
e zye E(G),
o and dg(y), da(z) = §.

Proof. By adding some isolated vertices to G and G’ if necessary, we may assume that
V(G) = V(G'") = V. The sieve formula yields

n? n?

B(G) n B(C)] 2(3 T e (118 +a)n?.

Define the sets A and B with respect to G as in Lemma 2.2.4. In view of that lemma itself,
there are at least an? unordered pairs zy € F(G) n E(G’) for which z,y € A U B fails.
Consequently, there are at least an? ordered pairs (z,y) € V? such that zy € E(G) n E(G’)
and y ¢ AU B. For each of them there are, by the definition of B, at least $n vertices z
with yz € E(G) and z ¢ A. Altogether, this yields at least %Qn?’ triples (z,y, z) with the
desired properties. O

2.2.2 Hypergraphs

In this subsection we introduce our terminology and some preliminary results on hyper-

graphs. When there is no danger of confusion we shall omit several parentheses, braces,
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and commas. For instance, we write - - - x for the edge {z1,...,zx} of a k-uniform

hypergraph.

Walks, paths, and cycles

A k-uniform walk W of length ¢ > 0 is a hypergraph whose vertices can, possibly with
repetitions, be enumerated as (1, . . ., Tpy_1) in such a way that e € E(W) if and only if e =
x; - Tipp—1 for some i € [(]. The ordered (k—1)-tuples (z1,...,xx—1) and (Tps1,. .., Tosk—1)
are called the end-tuples of W and we say that W is a (1 - xg_1)-(Tp41 - - Topp_1)-walk.
This notion of end-tuples is not symmetric and implicitly fixes a direction of W. Sometimes
we refer to (z1,...,25_1) and (Tyi1,...,Terk—1) as the starting (k — 1)-tuple and ending
(k —1)-tuple of W, respectively. We call zy, ...,z the inner vertices of W. Counting them
with their multiplicities we say for £ > k — 1 that a walk of length ¢ has ¢ — k + 1 inner
vertices. We often identify a walk with the sequence of its vertices x1xo--- 2y p_1. If the
vertices 1, ..., Ty1r—1 are distinct we call the walk W a path. For ¢ > k a cycle of length ¢
is a hypergraph C' whose vertices and edges can be represented as V (C) = {z;: i € Z/{Z}
and E(C) = {z; - xjyx_1: 1 € Z/Z}.

Link hypergraphs
Given a k-uniform hypergraph H = (V, E) and a set S € V with |S| < k — 2 we define the
(k — |S|)-uniform link hypergraph Hg by V(Hg) = V(H) and

E(Hg)={e~S:SceeFE}.

Clearly the vertices in S are isolated in Hg and sometimes it is convenient to remove them.
In such cases, we write Hg = Hg — S. For instance, we have Hy = H, = H for every
hypergraph H. If S = {v} consists of a single vertex, we abbreviate Hy,, to H,.

A lemma with two hypergraphs

Our next step is to generalise Corollary 2.2.6 to hypergraphs.

Lemma 2.2.7. Suppose that k = 2, a > 0, and that V' is a set of n vertices. If H, H' are
two k-uniform hypergraphs satisfying

V(H),V(H)<V
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and

5 2

ua(H), Sia(H') = (3 +0) 5
then the number of (2k — 1)-tuples (1, ..., xo,1) € V= such that

o Xy Xok_1 1S a walk in H,

{xq,...,2x} € E(H'),
o and dy(za,...,21), dg(Tpy1, ..., Top—1) = 5§

k—1

s at least (%)2 n2k=1,

Proof. For k = 2 this follows from Corollary 2.2.6. Proceeding by induction on k, we
assume k > 3 and that the assertion holds for £ — 1 in place of k. Construct an auxiliary

bipartite graph I' with vertex classes V and V272 by drawing an edge between x € V and
(xla ey T2, Ty o - - 7w2k—2) € VQk_g

if and only if
(a) @1+ Tp_oTp - Top_o is a walk in H,,
() {x1,..., 252,24} € E(HY),
(c) dg (v2,...,06-2,7p) = § and dig (Tps1, ..., Top—2) = 5.

The induction hypothesis, applied to the hypergraphs H, and H', reveals that every vertex

k—2
x €V has at least degree (%)2 n?¢=3 in I'. Thus

2k—2
G(F) > (Q) n2k—2
2
and the Cauchy-Schwarz inequality implies
Ly o eD)? a2
> IN@PEE e (5)

TeV2k-3

where Nr(Z) denotes the neighbourhood of the vertex z in I'. Now if
T = ({L‘l,...,J]k_g,l’k,...,l‘gk_g) € V2k_3 and Tp—1,Tok—1 € NF<Zf)

are arbitrary, then (x1,...,zot_1) has the desired properties. ]
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Walks in dense hypergraphs

For later use we now state a lower bound on the number of walks of given length in a
given dense hypergraph, that is somewhat related to Sidorenko’s conjecture [104, 106].
It is well known that this conjecture holds for paths in graphs, i.e., that for d € [0,1]
and ¢ € N every graph G = (V, E) satisfying |E| > d|V|?/2 contains at least d‘|V|*!
walks of length ¢ (see [7] for a proof based on linear algebra and [2, Lemma 3.8| for a
different approach using vertex deletions and the tensor power trick). The latter argument
generalises in a straightforward manner to partite hypergraphs (see Lemma 2.2.8 below).
An alternative proof based on the entropy method was worked out by Fitch [39, Lemma 7]
and by Lee [78, Theorems 2.6 and 2.7].

Lemma 2.2.8. Suppose k > 2, d € [0,1], and that H is a k-partite k-uniform hypergraph
with vertex partition {V;: i € Z/kZ}. If H has d[ ];cz 5 [Vil edges, then for every r = k

there are at least
Jqr R+ 1_[ |V;|
i€[r]

walks (z1,...,x,) in H with x; € Vi,... xx € V.

Due to a request by the referee, we provide a brief sketch of an argument following the

ideas in [2, Lemma 3.8].

Proof of Lemma 2.2.8. The first step is to establish that there are at least yd"—**! [ Liep Vil
such walks, where v denotes some constant depending only on k£ and r but not on d and H.
To this end we iteratively delete all edges from H containing a (k — 1)-set of vertices whose
degree is small. In each step of the process we ask whether for some i € Z/kZ there is a
set S e V(H)* Y with |S n V| =1 for all j # i such that 0 < d(S) < &|Vi|. If so we
delete all edges containing S and continue. At the end of this process we obtain a spanning
subhypergraph H' < H which still has at least gniez/kz |Vi| edges. A simple counting
argument discloses that H’ and, hence, H contains at least yd"—**+! [ Licp [Vil walks of the
1 )T—k
Second, for every m € IN we consider the k-partite k-uniform hypergraph H®™ with

required kind, where y = £ (
vertex classes V™, ..., Vi and {Z1,..., T4} € E(H®™) for T; = (v, ..., Tim) if and only

if {x1,,...,2k,} € E(H) holds for all € [m]. Clearly e(H®™) = e(H)™ and if © denotes

the number of walks we are to bound from below, then H®™ contains exactly Q™ walks
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(Z1,...,2,) with 23 € V{™, ..., 2} € V™. Thus the result from the first step yields

O > ,_yd(r—k-‘rl)m H |V;|m

i€[r]

or, in other words, Q = 4""d" " [, ; [Vil. In the limit m — oo we obtain the desired

conclusion. O

By identifying the vertex classes one obtains the following, more standard, non-partite

version of this lemma.

Corollary 2.2.9. For k> 2 and d€ [0,1] let H = (V, E) be a k-uniform hypergraph. If
|E| = d|V|*/k!, then for every integer r = k there are at least d""**YV|" walks (z1,. .., z,)

in H. L]

2.2.3 Abstract connectability

Our intended way of using Proposition 2.2.2 is that given a k-uniform hypergraph H
satisfying 0,_o(H) = (2 + «)|V (H)|?/2 we can choose robust subgraphs of all the (/%))

link graphs. It will be convenient to collect the data thus arising into a single structure.

Definition 2.2.10. For k > 2 a k-uniform constellation is a pair
U= (H{R,: x e V(H)*2})

consisting of a k-uniform hypergraph H and a family of induced subgraphs R, < H,
of the 2-uniform link hypergraphs that can be formed in H. We write H(V) = H for
the underlying hypergraph of a constellation W and use the abbreviations V (V) = V(H),
E(V) = E(H) for its vertex set and edge set, respectively. For a constellation ¥ and
x e V(U)* =2 we denote the subgraph associated with x by RY = R,.

Example 2.2.11. A 2-uniform constellation is determined by its underlying graph H and
a distinguished induced subgraph Ry € Hy = H.

Notice that so far the induced subgraphs R, © H, are completely arbitrary and at
this moment there are no restrictions on their orders, sizes, and connectivity properties.
This allows us to study constellations “axiomatically”, adding further useful conditions
in each of the following subsections. The central connectability notions are definable
without any such assumptions and they will be introduced in the present subsection (see

Definition 2.2.14 below). Of course one cannot prove a meaningful Connecting Lemma at
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this level of generality, so our way of organising the material may appear somewhat peculiar
on first sight. When establishing the covering lemma in Section 2.6 however, we need to
analyse connectability in random subconstellations and for such situations the abstract
approach developed here turns out to be advantageous. Subconstellations themselves are

defined in the expected way.
Definition 2.2.12. Let
U= (H{R,: ze V(H)*?})

be a k-uniform constellation, where k = 2. For X < V(¥) we call
U[X] = (H[X],{R.[X]: 2 e X*2})

the subconstellation of ¥ induced by X. Moreover, V — X = W[V (V) \ X]| denotes the

constellation obtained from ¥ by removing X .
We can also form link constellations in the obvious way.

Definition 2.2.13. Let k > 2 and let
U= (H{R,: e V(H)*2})

be a k-uniform constellation. If S < V (V) and |S| < k — 2, then the (k — |S|)-uniform link

constellation Wg is defined to be
Vg = (Hs, {qus —S:ze(V(H) N S)(k—2—|5|)}) .

If z,y € V() are distinct, then in accordance with our convention to omit unnecessary
braces and commas, we shall often write ¥, and W,, for the link constellations Wy,
and Wy, .y, respectively.

Next we tell which (k — 1)-tuples of vertices of a k-uniform constellation are regarded
as being (-leftconnectable for a given real number ¢ > 0. The definition progresses by

recursion on k.

Definition 2.2.14. Let k > 2, ( > 0, let
U= (H{R,: e V(H)*2})

be a k-uniform constellation, and let T = (zy,...,25_1) € V(¥) "1 be a (k — 1)-tuple of

distinct vertices.
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(a) If k = 2 we say that x = (x1) is (-leftconnectable in V if x1 € V(Ry).

(b) If k = 3 we say that T is (-leftconnectable in W if

U3 (O] = ¢V,

where

UZ(Q)={2eV(V): 21 a_12 € E(V) and

(22, ...,my_1) is (-leftconnectable in V. } .

We remark that this is a “new” concept in the sense that in the earlier articles [92,95]
we managed to work with symmetric notions of connectability. For this reason, we need to
be careful when quoting the Connecting Lemma from [95] later.

Example 2.2.15. Let (x1, z2) be a pair of distinct vertices from a 3-uniform constellation ¥
and let ¢ > 0. According to part (b) of Definition 2.2.14 the pair (z1, z3) is (-leftconnectable
in ¥ if and only if (U, ,,(Q)] = ([V(¥)|. Due to part (a) the definition of this set unravels

x1,22)
to
U&wz)(f) ={zeV(¥): 21202 € E(¥) and 25 € V(R})}.
There is a dual notion of rightconnectability obtained by reversing the ordering of the
vertices.

Definition 2.2.16. Let k > 2, ( > 0, ¥, and 7 € V(¥)k~! be as in Definition 2.2.14.

(a) If the reverse tuple (vg_1,...,x1) is -leftconnectable, then T itself is said to be (-

rightconnectable.

(b) Further, z is called (-connectable if it is (-leftconnectable and (-rightconnectable.

Some readers may react negatively to our choice of the specifiers ‘left’ and ‘right’
in these notions, arguing that the definition of leftconnectability of # pivots on the
right end-segment of Z. The reason for our terminological choice is that the Connecting
Lemma (Proposition 2.3.1 below) will assert that under reasonable assumptions every
leftconnectable tuple can be connected to every rightconnectable tuple in such a way that
the leftconnectable tuple is ‘on the left side’ in the resulting path, while the rightconnectable
tuple is ‘on the right side’.

The following observation follows by a straightforward induction from Definition 2.2.14.

In later sections we will often use it either tacitly or by referring to ‘monotonicity’.
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Fact 2.2.17. For a k-uniform constellation ¥ and { > (' > 0 every (-leftconnectable
(k — 1)-tuple is also ('-leftconnectable. Similarly statements hold for rightconnectability

and connectability.

Proof. 1t suffices to display the argument for leftconnectability. We argue by induction
on k. In the base case k = 2 the definition of {-leftconnectability does not depend on ¢ and
there is nothing to prove. Now let £ > 3 and suppose that the assertion is true for k£ — 1
playing the role of k.

Let ( > ¢ >0,let ¥ = (H,{R,: v € V(H)*"2}) be a k-uniform constellation, and let
z = (z1,...,251) € V(¥)*! be a (-leftconnectable (k — 1)-tuple. We are to prove that z

is ("-leftconnectable as well. To this end we consider the sets

U={2eV(¥): 21 - xp_12€ E(V) and (z3,...,75_1) is (-leftconnectable in W}
and

W={zeV(¥): z1 - x)_12€ E(V) and (29, ...,1;_1) is ("-leftconnectable in ¥, }.

The induction hypothesis discloses U € W and the assumption that z is (-leftconnectable
means that |U] = ¢|V(¥)|. So altogether we have

(W= U] = ¢V(9)] =V (V)]

for which reason 7 is indeed (’-leftconnectable. O
Next, we study connectability in subconstellations.

Fact 2.2.18. Suppose that ¥V is a k-uniform constellation, that V' = V[X] is a subcon-
stellation induced by some X < V() with |X| = (V)| + k —2). IfZ € V(¥)* is
(2¢)-leftconnectable in V', then it is (-leftconnectable in ¥ as well. Similar statements hold

for ‘rightconnectability’ and ‘connectability’.

Proof. Again we only display the argument for leftconnectability and proceed by induction
on k. The base case k = 2 is trivial. For the induction step from £ — 1 to k we recall that
the assumption entails |U| = 2¢|V (V)| = ¢|V(V)|, where

U={2eV(¥): a1 z4_12€ E(V) and (23, ..., 24-1) is (2¢)-leftconnectable in W’} .
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Now consider an arbitrary vertex z € U. Since

V)= [V -1=

z

(JV(0)| + &k —4) = ;(W(wz)\ +k—3),

DO | —

the induction hypothesis is applicable to the constellation V¥,, its subconstellation V', and
to the (2¢)-leftconnectable (k — 2)-tuple (za,...,z5_1). It follows that

Uc{zeV(¥): 21 x4_12 € E(V) and (2, ..., 241) is (-leftconnectable in ¥, }

and together with |U| = |V (V)| this shows that z is indeed (-leftconnectable in W. I

We shall frequently have the situation that for some edge x;---x, of a k-uniform

constellation ¥ we know xj, € V(Rfl,__xkﬁ) and we would like to conclude from this state
of affairs that (xq,...,xy) is (-leftconnectable in W. While such deductions are invalid in

general, it turns out that for small values of ( there are only few exceptions to this rule of
inference. More precisely, we have the following result (cf. [95, Fact 4.1] and [92, Lemma 3.7

for similar statements).

Lemma 2.2.19. Let k > 2 and ¢ > 0 be given. If ¥ is a k-uniform constellation, then
there exist at most (k — 2)C|V (W) k-tuples (x4, ..., x1) € V()* such that

(a) {z1,..., 2} € E(V),

(b) zp e V(RY )

T1 T2

(¢) and (xg,...,xx) fails to be (-leftconnectable in V.

Proof. We argue by induction on k. In the base case k = 2 the demands (b) and (¢)
contradict each other and, hence, there are indeed no such pairs. Now let £ > 3 and
suppose that the lemma is true for k — 1 in place of k. Define A € V(¥)* to be the set of
all k-tuples satisfying (a)—(¢), set

A = {(ml, coaxp)E AT E U(?D2 mk)(C)}

.....

and define
Ag = {("L‘?w'ka) € V<\Il)k_l: (ZE,ZL‘Q,...,J]]C) € A\A,}

for every x € V(). Since

Al =14+ ) 1AL,
zeV (¥)
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it suffices to show
(1) |4 < v(P)*
(2) and |A”7] < (k —3)¢|V(¥,)[F! for every x € V().

Now (1) follows from the fact that for (zi,...,x;) € A < A we have

-----

by (¢) and the definition of (-leftconnectability. For the proof of (2) we apply the induction
hypothesis to the link constellation W,. Notice that if (zs,...,x;) € AZ, then

o {xo,... 2} € E(V,)

o and z; € V(RY= )

T2 Tp—2

follow from (a), (b), and the definition of ¥,. Moreover (x,zs,...,zx) € A~ A yields
x ¢ Ul .(C), which together with {x,zs,... 23} € E(V) reveals that

(x3,...,z) fails to be (-leftconnectable in U, .

So altogether the induction hypothesis leads to (2) and the induction step is complete. [

We proceed with a similar statement that will ultimately assist us in the construction

of the absorbing path.

Lemma 2.2.20. For k = 2, ( > 0, and a k-uniform constellation V, there are at most
(k —2)C|V(9)|?*=3 walks 1 - - - 293 in H(V) such that

(a) 21 € V(RY )

Tp " T2k—3

(b) but (x1,...,x5_1) fails to be (-leftconnectable.

Proof. Again we argue by induction on k. In the base case k = 2 condition (a) reads
z1 € V(RY), whereas (b) demands that (x;) fails to be (-leftconnectable in W. As these
requirements contradict each other, there are indeed no 1-vertex walks with the required
properties.

Now let £ > 3 and assume that the lemma is true for £ — 1 instead of k. Let
A < V(U)%73 be the set of all walks z; - - - w93 satisfying (a) and (b), set

A = {(xl, e Top_3) E A xp € U&l .... wkfl)(O}
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and put

Ag,y = {(xz, ey =1y Tht1y - - - ,I2k—3> € V(\Il)2k752

(.CI?,.%'Q, sy Te—1,Y, Th+1, - - - 71‘21673) e AN A/}
for all z,y € V(¥). In view of

Al =147+ ) 147,

(z,y)eV (¥)?
it suffices to prove
(1) A< V()2
(2) and A}, | < (k= 3)C|V(¥,)[** for all z,y € V().

The estimate (1) follows from the fact that due to (b) every (xy,..., 29, 3) € A’ S A
has the property }U(‘I’ (O] < C|V(\I/)‘ For the proof of (2) we intend to apply the

T1eTh—1

induction hypothesis to ¥,. Consider any (2k — 5)-tuple

- "
T = (9327---,$k—1,$k+1,---,932k—3) € Axvy‘

Since (T2, ..., Tp_1,Y, That,---,Top—3) is a walk in H(¥), we know that z itself is a walk

in H(¥,). Moreover, (a) rewrites as

Tp—1 € V(R‘I/y ) .

Tk+1"T2k—3

Finally, y ¢ Uy, (¢) and {z,xa,...,2x_1,y} € E(V) imply that

T2, T—1)

(xg,...,x,_1) fails to be (-leftconnectable in ¥, .

Altogether, the (2k — 5)-tuples in A} have the required properties for applying the
induction hypothesis to ¥,. This proves (2) and completes the induction step. O

We conclude this subsection by introducing one further notion.

Definition 2.2.21. Given k > 2, ( > 0, and a k-uniform constellation
U= (H AR, x e V(H) 2},

a k-tuple (z1,...,x;) € V(¥)* is said to be a (-bridge in ¥ if
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(CL) {xb s ,ZUk} € E(\Ij)7
(b) (x1,...,m_1) is (-rightconnectable,
(¢) and (xg,...,xx) is (-leftconnectable.

Such bridges will help us later to construct connecting paths between given (k—1)-tuples
of vertices. The fundamental existence result for such bridges (see Corollary 2.2.28 below)
asserts, roughly speaking, that under natural assumptions k-uniform constellations contain

many (-bridges for sufficiently small values of (.

2.2.4 On (o, u)-constellations

In this subsection we study some properties of constellations that can be deduced from
the order and size restrictions () and (i) in Proposition 2.2.2 alone without taking the

(B, £)-robustness into account. We are thus led to the following concept.

Definition 2.2.22. Let k > 2 and «, u > 0. A k-uniform constellation ¥ is said to be an

(o, pv)-constellation if

Se_s(H(W)) > (g +a) |V(;I’)|

and every x € V (U)*~2) satisfies
(a) V(B = (5 +5) V(D)
(b) as well as egw,) (V(RY), V(¥) N V(RY)) < p|V(¥)

It turns out that the level of generality provided by this concept is fully appropriate for
discussing the key parts of our absorbing mechanism and for constructing an important
building block entering the proof of the Connecting Lemma. Before reaching those results

we record a couple of easier observations.

Fact 2.2.23. If ¥ denotes a k-uniform (o, §)-constellation for some a > 0, then

V(PP

e(H(¥.) —e(RY) < =

holds for every x € V (W)k=2),

Proof. Using both parts of Definition 2.2.22 we obtain

e(H(P,)) — e(Ry) = enqw,) (V(P) N V(RY)) + enw,) (V(R), V(P) N V(R))
42



1 a\2|[V(9)?  « 9 1 o® «a

<(z-2 Lv(w :(f 7_7>V\1,2
(3-3) —7 +sVr- (g5 -5Vl

and it remains to observe that the minimum (k — 2)-degree condition imposed on H (V) is

only satisfiable for o < g. O]

Fact 2.2.24. Suppose that ¥ is a k-uniform («, u)-constellation. If x € V(U)*=2) s
arbitrary, then there are at most 24|V (V)| vertices z € V(¥) \ V(RY) with dgw,)(2) =
V(W) - 1.

Proof. Definition 2.2.22 (a) tells us that [V(¥) N V(RY)] < (3 — §)[V(¥)|. Consequently,
the number of edges that every vertex z from the set
Z = {z e V)~ VRY): dugw(2) = 1V (9) ~ 1)
sends to V(RY) is at least
()~ V) N (VIRY) 0 )] = 5Vl - 1= (5- 5)IV) +1

a
= —|V(¥)|.
V(o)
In combination with Definition 2.2.22 (b) this yields

a
§|V(‘I’)||Z| < GH(\III)(V(R\P

) V(0N V(RY)) < plV(D)P?
and the upper bound |Z| < 2|V ()| we are aiming for follows. O

Next, there is an obvious monotonicity statement.

Fact 2.2.25. Fork>2, a>da' >0, and ' = p > 0, every k-uniform («, u)-constellation

is an (o, p')-constellation as well. O

Link constellations ‘almost’ inherit being («, p)-constellations, but since we are slightly

shrinking the vertex set we need to be careful with clause (») of Definition 2.2.22.

Fact 2.2.26. Given k > 2, a > 0, and i/ > > 0 there exists a natural number ng with
the following property. If U denotes a k-uniform («, p)-constellation having at least ng
vertices and S < V (V) with |S| < k — 2 is arbitrary, then Vg is a (k — |S|)-uniform

(o, (') -constellation. O
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Now we estimate the number of walks of any short length in W, whose starting (k — 1)-
tuple is rightconnectable and whose ending (k — 1)-tuple is leftconnectable. Later we will
use these walks in the proof of the Connecting Lemma thus gaining control over the length

of the connections modulo k.

Lemma 2.2.27. For k > 2 and a > 0 let ¥ be a k-uniform («, §)-constellation. Provided
that |V (¥)| = %, there are for every positive integer r at least 5|V (¥)["*~ walks
T1Tg - Tpyp—1 of length v in H(V) starting with a Wﬂl—rightconnectable (k — 1)-tuple

(x1,...,25_1) and ending with a -leftconnectable (k — 1)-tuple (xpi1, ..., Tryk_1)-

1
k3T
Proof. Consider the auxiliary k-partite k-uniform hypergraph 7 whose vertex classes
WVi,...,Vj are copies of V(¥) and whose edges {z1,...,x;} € E(</) with

r1eVi,...,xL €V
signify that
(1) {z1,..., 2} € E(V),
(2) w1z € B(Ry,.,,),
(8) and @,y _2Tp 11 € E(R;I’T . )

where the indices in (3) are to be read modulo k.
In view of |[V(¥)] > % and 0,_o(H(¥)) = (2 + a) W(\P there are at least

5 5 koK
o k72_ < 2 < k
(V)= k)2 (G ) VP > (5 +e) (1= ) V)
5 k2
> (- 1-— V()|*
(5+)( |wm0|<”
5 k
><§+ay1—amqwﬂ
5
> Z|V(D)|
Q(N
possibilities (x1,...,z) € Vi x -+ x V}, satisfying (1), where in the last estimate we

used a = 4/9. Among them, there are by Fact 2.2.23 at most |V (¥)[* violating (2) and
at most the same number violating (3). Consequently, e() > 1|V (¥)[¥ and Lemma 2.2.8
applied to & and d = g shows that there are at least 5|V (¥)["**~! walks

T1X2 """ Tpyk—1
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of length 7 in o/ with 21 € Vi, ...,z € Vi. Among them, there are by (2) and Lemma 2.2.19

applied to ¢ = Wﬂl at most

k—2 ko 1 o
RV < )
walks for which (z1,...,24-1) fails to be zr-rightconnectable. Similarly (&) and

Lemma 2.2.19 ensure that at most |V (%)~ of our walks have the defect that

Tyi1,- .., Trip_1) fails to be —-leftconnectable. This leaves us with at least
( ) &
2 ko1 _ V(R
(3~ gw)VOI™ = = —
walks of the desired form. O

Corollary 2.2.28. Given k = 2 and o > 0 let U be a k-uniform (o, 2)-constellation. If U

’9
has at least %2 vertices, then the number of its g--bridges is at least §|V (¥)|*.

Proof. Plug r =1 into Lemma 2.2.27. O]

The following lemma builds a device that will assist us in the inductive proof of the

Connecting Lemma in the next section.

Lemma 2.2.29. Given k >4, a > 0, and ( € (O, 3;@%]; there exists an integer ng such

10
If two subsets U, W < V() satisfy |U|,|W| = (n, then there are at least (3n**~2

(2k — 2)-tuples (u,qy, ..., Gop—s,w) € V(¥)2*=2 such that

that the following holds for every k-uniform («, )-constellation W on n = ng vertices.

(i) we U and we W are distinct,
(1) q1 - qor—a @S a walk in H(V,,),
(ii1) (qi,---,qr_2) is (3-rightconnectable in ¥,
() and (qr_1,-- -, qor_4) is C3-leftconnectable in U,,.

Proof. Assuming that ng has been chosen sufficiently large for the subsequent arguments,
we commence by considering the (2k — 2)-tuples (u, qq, ..., g4, w) € V (V)72 satisfy-

ing (7), (it) as well as the conditions
(v) (q1,---,qr_3) is ¢3-rightconnectable in W,
(vi) (i, ..., qor—a) is C3-leftconnectable in W,,,,.
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First of all, by |U[,|W| = (n and n > ng > 2/C there are at least 3(?n? pairs
(u,w) in U x W with u # w. For each of them Fact 2.2.26 tells us that ¥,, is a
(k — 2)-uniform (v, §)-constellation. Applying the case r = k — 1 of Lemma 2.2.27 to this
constellation (with k—2 here in place of k there) we learn that the number of (2k —4)-tuples
(q1, -, qor—s) € V(¥u)*~* obeying (ii), (v), and (vi) is at least

i(n . 2)2k—4 >

3 > T n2k—4 > 6Cn2kz—4 )

Here we used tacitly that the assumption ¢ < ﬁ easily implies (* < m
Summarising, the number of (2k — 2)-tuples (u, qi, . . ., gog—4, W) satisfying (¢), (i7), (v),
and (vi) is at least 1(?n? - 6¢(n**~* = 3¢*n?*2. So it suffices to prove that among all

(2k — 2)-tuples (u, qu, . . ., Gok—a, w) € V(¥)*~2 there are
(1) at most (3n?*~2 with (44), (v), —(4i)
(2) and at most (*n*~2 with (i), (vi), —(iv).

For reasons of symmetry we only need to establish (2). To this end it is enough to

check that for fixed vertices w, qq,. .., qox—q € V(¥) the number of vertices u such that
o {u,qr-1,. ., qor-af € E(Vy),
o (vi), but —(iv).

is at most (*n. Now by Definition 2.2.14, the first bullet, and (vi) these vertices satisfy
u € U(\I'w )(§3) and by —(iv) the latter set has size at most 3|V (¥,,)|. O

qk—15--+» q2k—4

The last lemma of this subsection will help us to exchange arbitrary vertices by
‘absorbable’ ones in Section 2.5. Roughly speaking it asserts that for u « «a, k!, with
few exceptions, the links of two vertices in a k-uniform (c, p1)-constellation intersect in a

substantial number of connectable (k — 1)-tuples.

k—3
Lemma 2.2.30. Given k > 3 and o > 0 set p = ﬁ(%)Q o If U denotes a k-uniform

(e, p)-constellation on n vertices and ¢ > 0 is arbitrary, then there is a set X < V (V) of
size | X| < %n such that for every a € V(¥) and every x € V(V) ~ (X u {a}) the number of
¢-connectable (k — 1)-tuples (x1,...,xp_1) with {x1,..., 251} € E(V,) n E(V,) is at least
pV (R

Proof. Set

n— 110@‘) (2.2.8)



and V = V(¥). Since pu = g, we have

2
max {—’u, 2ku} <. (2.2.9)
o

The choice of X. With every x € V we shall associate two exceptional sets, the idea
being that on average these sets can be proved to be small. So there will only be few
vertices for which one of the exceptional sets is very large and these ‘unpleasant vertices’
will form the set X. For every vertex not belonging to X, we will then be able to show that
its link constellation intersect the link constellations of all other vertices in the desired way.

For an arbitrary x € V' the first of the exceptional sets A, consists of all (k — 1)-tuples
(z1,...,75_1) € VF! satisfying

o {x1,..., x5 1,2} € E(V)

o and z; € V(RY )

T3 Tp—_1T

» that fail to be (-rightconnectable in W.

We would like to point out that the second bullet does not involve the vertex x,. Moreover,
in the special case k = 3 the condition just means that z; € V/(RY).

The second exceptional set B, comprises all (2k—4)-tuples (z1, ..., Zp_1, Ths1,-- -, T2k_3)
in V2= such that

o Iy T 1XTTpyq - Top_g is a walk in H(W)
e and zp 1 € V(RY, | o o)
o for which (z,...,x,_1) fails to be (-leftconnectable in W.
Now we define
X' = {x eV:|A,] > 2k‘u|V|k_1},
X" ={zeV:|B,| > 2kp|V]* "},

and set X = X’ U X”. By Lemma 2.2.19 and double counting we have

2kp X'V < D A < (k= 2)¢VIF,

zeX’
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whence |X'| < £|V/|. Similarly, Lemma 2.2.20 yields
"

2| X [V < YT By < (k= 2)¢ [V,

zeX”

which shows that | X"] < iﬂ/] holds as well. Altogether we arrive at the desired estimate

X< 1X] + X" < S|V
I

For the rest of the proof we fix two distinct vertices a,x € V with x ¢ X. We are to

show that the number of (-connectable (k — 1)-tuples (x1,...,x,_1) such that
{ZEl, e ,ZL‘k_l} € E(‘I’a) N E(\I/x)

is at least p|V|*~!. The smallest case k = 3 receives a separate treatment.

The special case k = 3. We know that both of the graphs H(¥,) and H(¥,) have at
least (g + a) %2 edges and thus they have at least (é + 2a) ”72 edges in common. Owing to
Fact 2.2.23 this shows that H(¥,) and RY have at least an?® common edges or, in other
words, that there are at least 2an? ordered pairs (1, z9) such that xyz9 € E(¥,) n E(RY).
Due to x ¢ X’ we have |A,| < 6un® and thus at most 6un® of these pairs fail to be
(-rightconnectable. By symmetry, at most the same number of pairs under consideration
fails to be (-leftconnectable. Altogether, this demonstrates that among the ordered pairs
(71, 22) with x129 € E(V,) N E(U,) there are at least (2 — 12p)n? which are (-connectable.

a?

Because of 1 = 55

< 2 this is more than what we need.
The general case k > 4. Our first goal is to count (-leftconnectable (k — 1)-tuples in the

intersection of H(V,) and H(V,) that satisfy a certain minimum degree condition.

Claim 2.2.31. The number of (-leftconnectable (k — 1)-tuples (xy,...,xx_1) such that
(1) {xl, . 7I‘k,1} € E(‘I;a) M E(‘Ifm)

(2) and d(x, ..., xp1,2) = %

is at least 3nnF~1,

Proof. For every vertex xp_1 € V N {a,z} we apply Lemma 2.2.7 to the (k — 2)-uniform
hypergraphs H(V,,, ,) and H(V,,, ,). This yields a lower bound on the number of
(2k — 4)-tuples

2k—4
(.ZUl, sy Lh—15 Thtly - - - )ka—?)) eV
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such that
(a) T+ XTp_1XTpy1 - - Top_3 is & walk in H (V)
(b) {z1,..., 251} € E(¥,)

(c) d(xe, ... Tp1,7) >

w|3

(d) and d(2p—1,2, Tpyr, ..., Top—3) = §.

Notably, there are n — 2 possibilities for x;_; and for each of them Lemma 2.2.7 yields

(%) 2(k72)71n2(k—2)—1 (2:2.8) 10mn2+-5

possibilities for the remaining 2k — 5 vertices. Therefore the number of (2k — 4)-tuples
(T1, - v s Tpe1, Ths1, - - - Top—g) € VT

satisfying (a)—(d) is at least 10n(n — 2)n?*=5.

Because of the minimum (k — 2)-degree condition ¥ needs to have at least one edge,
whence n > k > 4. As this implies n — 2 > In, the total number of (2k — 4)-tuples
satisfying (a)—(d) is at least 5nn 4.

In view of (d) and Fact 2.2.24 applied to {x,xk,1,...,Z2,_3} here in place of x there

we know that all but at most %"n%*‘l of these (2k — 4)-tuples satisfy
(6) Tk—1 € V(RglaTkJrl'"IQk,;g)'

Now z ¢ X” yields |B,| < 2kun®*~%. So at most 2kun®~* of the (2k — 4)-tuples

satisfying (a) and (e) violate
(f) (x1,...,xx_1) is (-leftconnecctable.
Summarising, the number of (2k — 4)-tuples satisfying (a)—(f) is at least

(2.2.9)
(517 — %“ — 2kp)n?* = 3t

Ignoring the vertices xy,1, ..., To_3 as well as the conditions (d), (¢) we arrive at the
desired conclusion. O

Now we keep working with the {-leftconnectable (k — 1)-tuples satisfying (1) and (2)
obtained in Claim 2.2.31. According to (2) and Fact 2.2.24 applied to {z3,...,z5_1,x}

here in place of x there all but at most %“nk_l of them have the property
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(3) 22 € V(RY ).

T3 Tp_1T

Moreover, by Definition 2.2.22 (b) applied to the (k—2)-set {xs,..., 2z 1,2} at most pun*~1
tuples of length k — 1 satisfy (1) and (%) but not

(4) z1 € V(RY, ).

T3 Tp_1T

Finally, ¢ X’ implies |A,| < 2kun*~!, so among the (-leftconnectable (k — 1)-tuples
satisfying (1) (4) there are at most 2kun*~! for which

(5) (x1,...,7x_1) is (-rightconnectable

fails. In particular, the number of (-leftconnectable (k — 1)-tuples (z1, ..., x,_1) with (1)
and (5) is at least

2 (2.2.9)
(377 — EM o 2ku) L

Altogether this shows that the number of (k—1)-tuples (z1, ..., z_1) that are -leftconnect-
able, (-rightconnectable, and satisfy {z1,...,2,_1} € E(¥,) n E(¥,) is at least un*~1. In
view of Definition 2.2.16(b) this concludes the proof of Lemma 2.2.30. O

The ‘connectable’ edges in E(¥,) n E(¥,) considered in the previous lemma can be
used to build paths.

Corollary 2.2.32. For given k > 3 and o > 0 there exists a natural number ng such that
if p= wik(%)QkiBH, U is a k-uniform («, p)-constellation on n = ng vertices, and ¢ > 0
then there exists a set X < V() with | X| < ﬁn such that the following holds. For every
a € V(¥) and every x € V(¥)\ (X u{a}) the number of (k—1)-uniform paths biby - - - bog_2
in H(V,) n H(V,) such that (by,...,bx_1) and (b, ..., bar_2) are -connectable in V is at

1k, 2k—2
least 5u"n )

Proof. Let X be the set produced by Lemma 2.2.30. Consider two distinct vertices
a,z € V(¥) with ¢ X. Form an auxiliary (k — 1)-partite (k — 1)-uniform hypergraph

B=Viv...uVi,Ep)

whose vertex classes are k — 1 disjoint copies of V(¥) and whose edges {v1,...,vx_1} € E»
with v; € V; for i € [k — 1] correspond to (-connectable (k — 1)-tuples (vy,...,v,_1) such
that {vy,...,vs_1} € E(¥,) n E(V,).

Lemma 2.2.30 tells us that

|Eg| = pm*" .
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Thus Lemma 2.2.8 applied to #Z with (k — 1, i, 2k — 2) here in place of (k, d, r) there yields
at least u*n?*=2 walks (b, ..., ba_o) in & with by € Vi, ... by_1 € Vi_1. By the definition
of % each of these walks corresponds to a walk in H(¥,) n H(¥,) whose first and last
k — 1 vertices form a (-connectable (k — 1)-tuple in . At most O(n*~3) of these walks

can have repeated vertices and, hence, there are at least

paths of the desired from. n

2.2.5 On (o, ,/¢, u)-constellations

This subsection is dedicated to (c, ut)-constellations ¥ whose distinguished graphs RY have
the robustness property delivered by Proposition 2.2.2.

Definition 2.2.33. Let k > 2, o, 5, > 0 and let { > 3 be odd. A k-uniform constella-

tion ¥ is said to be an («, 3, ¢, u)-constellation if
(a) it is an (o, p)-constellation,

(b) and for all x € V(W) =2 and all distinct y, z € V(RY) the number of y-z-paths in RY
of length ( is at least 3|V (W)L

The main result of this subsection shows how to expand sufficiently large k-uniform
hypergraphs whose minimum (k — 2)-degree is at least (g + a) %2 for appropriate choices of
the parameters to such (o, 3, ¢, u)-constellations. Essentially, the proof of this observation

proceeds by applying Proposition 2.2.2 to all link graphs.

Fact 2.2.34. For all k = 2 and a, u > 0 there exist § = B(a, 1) > 0 and an odd integer
0 = l(a, 1) = 3 such that for sufficiently large n every k-uniform n-vertex hypergraph H
with 6,—o(H) = (3 + oz)%2 expands to an (o, B, ¢, p)-constellation.

Notice that this result is the reason why the study of («, 3, ¢, p)-constellations conducted

in the subsequent sections sheds light on Theorem 2.1.2.

Proof of Fact 2.2.84. For o and p Proposition 2.2.2 delivers some constant 5’ > 0 and an
odd integer £ > 3. We contend that 3 = (2/3)*"!3" and ¢ have the desired property.

To see this, we consider a sufficiently large k-uniform hypergraph H on n vertices
satisfying 0y_o(H) = (g - oz)”;. For every x € V(H)*~2 Proposition 2.2.2 applies to the
link graph H, and yields a (', £)-robust induced subgraph R, < H, satisfying
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(1) V(Ra)| = (5 +5)n

(ii) and eg, (V(R,),V(H) N\ V(R,)) < un.

We shall show that
U= (H{R,: e V(H)*2})

is the desired (a, 3, ¢, p)-constellation. By Definition 2.2.22 and (z), (i) above, U is an
(e, u)-constellation, meaning that part (a) of Definition 2.2.33 holds.

Moving on to the second part we fix an arbitrary (k — 2)-set + < V(H) as well as two
distinct vertices y, z of R,. Since R, is (', f)-robust, the number of y-z-paths in R, of
length ¢ is indeed at least

BV (R Y @)“6- (g ; ‘;‘)“r/—l > Bnt-L 0

The remainder of this subsection deals with the question to what extent being an
(e, B, ¢, p)-constellation is preserved under taking link constellations and removing a small
proportion of the vertices. Let us observe that if U denotes a k-uniform («, f3, ¢, p1)-
constellation, then for each # € V(¥)# =2 the vertices in z are isolated in H,, which
by Definition 2.2.33 (4) implies that they cannot be vertices of RY. Thus we have
V(RY) nx = @ for each z € V()*=2).

Let us now consider for some S < V() of size |S| < k — 2 the (k — |S])-uniform
link constellation Wg. For every z € V(Wg)* 27150 we have RYs = RY  ~ S = RY ..

Therefore, Uy inherits the property in Definition 2.2.33 (b) from ¥ and together with
Fact 2.2.26 this leads to the following conclusion.

Fact 2.2.35. Given k=2, a, >0, i/ > u > 0 and an odd integer £ > 3, there exists a
natural number ng such that the following holds.

If U is a k-uniform («, B, ¢, pv)-constellation with at least ng vertices and S < V()
consists of at most k — 2 vertices, then the (k — |S|)-uniform link constellation Vg is an

(o, B, 4, 1) -constellation. O
Next we deal with a similar result allowing vertex deletions as well.

Lemma 2.2.36. Given k > 2, o, 3,0 > 0 and an odd integer { = 3 set

a f }

ﬁzmin{z, Y]
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and let U be a k-uniform (a, B, ¢, u)-constellation on n = 6k vertices. If S, X < V() are
disjoint, |S| < k — 2, and | X| < Un, then Vg — X is an (, g,& 21) -constellation.

Proof. Let ¥ = (H,{R,: x € V(H)(k_2)}) be a k-uniform («, 3, ¢, u)-constellation on
n = 6k vertices. Recall that this means

2
Spo(H) = (5 +a)T, (2.2.10)
9 2
and that for every z € V(¥)*=2) the graph R, < H, has the following properties:
(i) V(R = (5 + $)n,
(i) e, (V(R),V(V) N\ V(R,)) < pun?,

(7i¢) and for all distinct y, z € V(R,,) the number of y-z-paths in R, of length ¢ is at least

Bnéfl‘

Further, let S, X < V(¥) be any disjoint sets such that |S| < k — 2 and |X| < Jn. We

are to prove that
_ (T } (k—2—|5])
U, =Vg—X=(Hs— X, {Ryus —X:ze (V(H)\ (SuX)) 3
is a (k—|S]|)-uniform (%, g, l, 2;1) -constellation, i.e., that its underlying hypergraph satisfies
an appropriate minimum degree conditions and that the distinguished subgraphs of its
link graphs have properties analogous to (i) — (7).

Because of

>(5+ )n 02><5+a)n2><5+a>|‘/(\11*)|2
= - a - n = - - - = N - 77
9 2 9 2/ 72 9 2 2

in the penultimate step, the minimum degree of the hypergraph

o

4
H(¥,) = Hs — X is indeed as large as we need it to be.

Now let = € (V(\If*))(kJ*'SD be arbitrary. Since z v S e (V(¥) \ X)(kfz), the above

statement (7) entails

where we utilised 9 <

V(R;")

2 «
— V(Raos — X)| = (g +5

> (; + 5 n—on> (; + D)z (?2) + D)V,

23
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which shows that the required variant of () holds for ¥,.
Next, the graph H(¥,), = (Hs — X), is a subgraph of H, s, so (i) tells us that

enw.), (V(RY), V(W) NV(RY)) < en,s(V(Reos), V() N V(Rypus)) < pn®.
and n = 6k we conclude

1 1 13 n
V()| =n—|X|—|9] = (1—9—6)n:18n>\/§

and thus we arrive indeed at
ey, (V(RY), V(V,) N V(RY)) < 2u|V (V)%

which concludes the proof that the appropriate modification of () holds for ¥,. Altogether,
we have thereby shown that W, is an (%, 2u)—constellation.

Finally we consider distinct vertices y, z € V(R s — X) and recall that by (44) above
the number of y-z-paths in R, s is at least An‘~t. At most (£ —1)|X|n*"2 < gn“l of these

paths can have an inner vertex in X and, consequently, R, s — X contains at least gne—1

a B

such paths. Therefore WU, is indeed an (5, 5.4, 2u)—c0nstellation. O]

2.3 The Connecting Lemma

In this section we establish the Connecting Lemma (Proposition 2.3.3). Given an («, 3, ¢, j1)-
constellation with appropriate parameters this result allows us to connect every leftcon-
nectable (k — 1)-tuple to every rightconnectable (k — 1)-tuple by means of a short path.
In the course of proving Theorem 2.1.2 the Connecting Lemma gets used Q(n) times and,
essentially, it allows us to convert an almost spanning path cover into an almost spanning
cycle. For some reasons related to our way of employing the absorption method, it will turn
out to be enormously helpful later if we can guarantee that the number of left-over vertices
outside this almost spanning cycle is a multiple of k. There are several possibilities how
one might try to accomplish this and our approach is to prove a version of the Connecting
Lemma with absolute control over the length of the connecting path modulo k. When
closing the almost spanning cycle by means of a final application of the Connecting Lemma,
we will then be able to prescribe in which residue class modulo k& the number of left-over

vertices is going to be. (For a different way to handle such a situation we refer to recent

o4



work of Aratjo, Piga, and Schacht [4]).
The following result is implicit in [95, Proposition 2.6] and after stating it we shall

briefly explain how it can be derived from the argument presented there.

Proposition 2.3.1. Depending on «,3,(. > 0 and an odd integer { = 3 there exist a
constant 9, = V. (a, B,4,() > 0 and a natural number ng with the following property.

2 are two

If W is a 3-uniform («, B, ¢, §)-constellation on n = ngy vertices, a, be V(¥)
disjoint pairs of vertices such that a is C.-leftconnectable and b is C.-rightconnectable, then

the number of a-b-paths in H(V) with 3¢ + 1 inner vertices is at least 9,n**". O

Observe that the Setup 2.4 we are assuming in [95, Proposition 2.6] is tantamount to
an (a, 3,4, §)-constellation. The connectabilty assumptions in [95] are slightly different.
Writing a@ = (z,y) we were using in the proof of [95, Proposition 2.6] that a set called U,,
there, and defined to consist of all vertices u with zy € E(RY), has at least the size |V (¥)].
When working with vertices v € U,,, however, we were only using y € V(R)) and
xyu € E(V). For this reason, the entire proof can also be carried out with the set
called U(‘fc’y)(g ) here, or in other words it suffices to suppose that a is (-leftconnectable.
Similarly, we may assume that b is (-rightconnectable rather than being (-connectable in
the sense of [95]. Next we introduce the function giving the number of inner vertices in our

connections.

Definition 2.3.2. Given integers k > 3,0 <1 < k, and ¢ > 3 we set
fk,i, 0) = [4"3(20 +4) — 2]k +i..

We are now ready to state the k-uniform Connecting Lemma.

Proposition 2.3.3 (Connecting Lemma). For all k > 3, o, 3,{ > 0, and odd integers
¢ = 3 there exist ¥ > 0 and ng € IN with the following property.

If W is a k-uniform («, B, 4, 355)-constellation on n = ng vertices, d, b e V()T are
two disjoint (k — 1)-tuples such that a is (-leftconnectable and b is C-rightconnectable, and
0 <i < k, then the number of G-b-paths in H(V) with f = f(k,i,£) inner vertices is at

least In'.

The proof of this result occupies the remainder of this section and before we begin
we provide a short overview over the main ideas. The plan is to proceed by induction
on k. When we reach a certain value of k, most of the work is devoted to showing the

weaker assertion (®;) that there exists at least one number f, = f.(k, ) such that the
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statement of the Connecting Lemma holds for connections with f, inner vertices. Once we
know (@) the induction can be completed by putting short ‘connectable” walks as obtained
by Lemma 2.2.27 in the middle and connecting them with two applications of (®) to a
and b.

The proof of (®y) itself is more complicated and starts by applying Lemma 2.2.29
to U} (¢) and Uy (¢) here in place of U and W there. This yields many (2k — 2)-tuples
(U, q1, - . ., Gor—a,w) in V(W)2~2 which, after some reordering, have good chances to end
up being middle segments of the desired connections. Applying the induction hypothesis
to ¥, and U, we can connect @ and b by many (k — 1)-uniform paths to these middle
segments and it remains to ‘augment’ these connections to k-uniform paths, which can be

done by averaging over many possibilities for v and w, respectively (see Figure 2.3.1).

Proof of Proposition 2.8.3. We proceed by induction on k, keeping «a, £, and ¢ fixed.
Choice of constants. Due to monotonicity (see Fact 2.2.17) we may suppose that

¢ < m% By recursion on k£ > 3 we define for every ( € (0, %%] a positive real number
Y(k, (). Starting with k& = 3 we set

9(3,¢) = C(0(e, 3,0.0))" for e (0,377,
where 9.(a, 8, ¢,¢) is given by Proposition 2.3.1. For k >4 and ¢ € (0, 35| we stipulate
I(k,¢) = O (O(k —1,¢%)",  where s = 4*4(2( + 4). (2.3.1)

Our goal is to prove the Connecting Lemma with 29(k, ¢) playing the role of 9.

The base case k = 3. Suppose that ¥ is a sufficiently large 3-uniform (o, 3,4, §)-
constellation, i € {0,1,2}, the pair @ = (ay,a3) € V(¥)? is (-leftconnectable, b = (b, by) is
(-rightconnectable, the four vertices ay, as, by, and by are distinct, and ¢ < 3% Lemma 2.2.27
applied to (3,7 + 2) here in place of (k,r) there tells us that there are at least gmn'*?
walks x7 - - - 2544 of length i + 2 in H(V) whose starting pair (z1, z3) is (-rightconnectable

and whose ending pair (z;43, ¥;14) is (-leftconnectable. Among these walks at least

36 > Bgni+4

: i+4 i+4
( .1 _4(z+4)>ni+4 . n
3z+3 n 31+4
avoid {al, as, bl, bg}
Now for each of them two applications of Proposition 2.3.1 to the («a, 3, ¢, %)—constellation

U enable us to find in H (W) at least 9,n* ! paths ayasp; - - - psey171272 and at least 9,n3!
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paths x; 324471 - - - 730010102 where 9, = 9, («, 5, ¢, (). Altogether, this reasoning leads to
at least 3¢9?n/ walks

a10P1 -+ P3e41T1T2 *  * Tig3Tipal1 - T30410102
with f inner vertices, where
[=2B0+1)+(i+4)=60+6+1i=f(3,i,0).

At most f2nf~1 = o(n’) of these walks fail to be paths and thus the assertion follows.

Induction Step. Suppose k > 4 and that the Connecting Lemma is already known
for k — 1 instead of k. Set

t=2k(s—1)+2 and n=C"0k—1,¢%)", (2.3.2)

where, let us recall, s = 4¥=4(2¢ + 4) was introduced in (2.3.1) while we chose our constants.
Following the plan outlined above, our first step is to prove a Connecting Lemma for

connections with ¢ inner vertices.

Claim 2.3.4. For any two disjoint (k —1)-tuples @ = (a1, ..., ax_1) and b = (b1, ..., bp_1)
such that @ is C-leftconnectable and b is C-rightconnectable, the number of @-b-walks with t

inner vertices in H(V) is at least 2nn’.

Proof. The connectability assumptions mean that the sets

U={ueV():a - -arue E(V) and (ay,...,a,_1) is (-leftconnectable in ¥, }
and

W ={weV(V): wby---bp_1 € E(V) and (by,...,bx_2) is (-rightconnectable in ¥,,}

satisfy |U|, W] = ¢n. Now by ;% < {5 and Fact 2.2.25 W is an (a, {5)-constellation.

Combined with ¢ < ﬁ and Lemma 2.2.29 this shows that the number of (2k — 2)-tuples
(U, a7w> = (U, qi,--- ,q2k747w) e U x V(\If)2k_4 < W

such that

(a) u#w,
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(b) q1 - qox—a is a walk in H(W,,),
(¢) (qi,--.,qu_2) is (3-rightconnectable in ¥,
(d) and (qr_1,- -, Gor—_4a) is *-leftconnectable in U,,.
is at least (3n2?*=2. For later reference we recall that v € U and w € W mean
(e) (ag,...,ar—1) is ¢-leftconnectable in W,,,
(f) {a1,...,ap_1,u} € E(V),
(9) (b1,...,br_2) is (-rightconnectable in W,
(h) and {w,by,...,bp_1} € E(V).

Notice that by Fact 2.2.35 the link constellation of every vertex is a (k — 1)-uniform
(a, B, ¢, 355 )-constellation and that f(k —1,1,¢) = (k — 1)(s — 2) + 1. Now for every
(2k — 2)-tuple (u, g, w) satisfying (a)—(h) we apply the induction hypothesis twice with
(¢3,1) here in place of ((,4) there. First, by {¢) and {e) we can connect (as,...,ax_1) to
(q1, ..., qr_2) in ¥, thus getting at least 20(k — 1,¢3)(n — 1)(F—D=2)+1

(Z) walks ag - - ap_1p1 - "P(k—1)(s—2)+141 * * " k-2 in ¥,

with f(k — 1,1, ¢) inner vertices. Second, (d) and (g) allow us to connect (qr_1, ..., qox—4)
to (br,. .., bx_s) in U, by at least 20(k — 1,¢?)(n — 1)k D=2+

(7) walks gy - - Q2k—4T (k—1)(s—2)+1 " ° “T1b1 - bp—g in Wy,
Altogether, the number of ((k — 1)(2s — 2) + 2)-tuples

(u, P, G, 7, w) € U x V(W) EDEH 1 (@26t 5 V() B D20 gy

with (a)—(j), where

D= (ph e 7p(k:—1)(s—2)+1) and 7 = (T(k—l)(s—2)+17 e 77"1) )

is at least 44-3(19( -1 <3)) ( )(k 1)(2s— )+2n2k—2 > 24—3(19( -1 <3)) n(k 1)(2s— 2)+2
Roughly speaking, we plan to derive the G- b-paths we are supposed to construct from
these ((k —1)(2s —2) + 2)—tuples by taking many copies of v and w and inserting them

in appropriate positions into (a, p, q, 7, 5) To analyse the number of ways of doing this,
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we consider the auxiliary 3-partite 3-uniform hypergraph &/ with vertex classes U*, M,
and W*, where U* and W* are two disjoint copies of V (¥), while M = V ()k-1(2s=2),

We represent the vertices in M as sequences

m = (ﬁ, q, ?) = (pla <oy P=1)(s—2)+15 415 - - - 5 Q2k—4, T (k—1)(s—2)+1y - - - ,7“1) .

The edges of o/ are defined to be the triples {u,m,w} with w e U < U*, m € M, and
we W < W*, for which the ((k — 1)(2s — 2) + 2)-tuple (u,m, w) satisfies (a)—(j). We
have just proved that

() = 203 (0(k — 1,¢%)) nt=D@=242 — 963 (9(k — 1, )’ |U || M|W*]. (2.3.3)
By the (ordered) bipartite link graph of a vertex m € M we mean the set of pairs

A = {(u,w) e U x W: umiw € E()} .

The convexity of the function x — z* on R~ yields

Z ‘Wm’s = ’M‘ (j(f]\j)) (223) n(k_l)(23—2) (2C3 (19(]6 . 17 Cg))2n2)s
meM

> 2C38 (19(/{: 1, C3>)25nk(2372)+2 (2.3.2) znnt‘ (2.3.4)
In other words, the number of ¢-tuples
(4,9, 4, 7,w) € U x V(B)E DO V)2t y (@) B0 ety

with

(ulawl)v ORI} (US,U)S) € %ﬁ’b7

where

u=(u,...,us), w=(wy,...,ws), and m=(p,q,7)eM,

is at least 2nn'. So to conclude the proof of Claim 2.3.4 it suffices to show that for every

such t-tuple the sequence

Q1A 1U1P1 - Pe—1U2PE " © * P2k—2U3 * * - Us—2P(k—1)(s—3)+1 * " " P(k—1)(s—2) Us—1P(k—1)(s—2)+1

q1 - Qr—2UsWsqr—1 " " " q2k—14
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T(k—1)(s—2)+1Ws—1T(k—1)(s—2) "~ " T(k—1)(s—3)+1Ws—2 =~ W3T2k—2 * * " T WaTk—1 " -~ riwyby - bp—y

indicated in Figure 2.3.1 is an a-b-walk in H ().

aq (05} as Qy p1

b4 b3 b? 1 T2 T3 T4s—12 T4s—11 T4s—10 T4s—9 T4s—8 Tas—7 q6

Figure 2.3.1: Connecting (aq, as, as, ay) and (b, bg, b3, by) in a 5-uniform constellation.

We shall now argue that this follows from the fact that for each j € [s] the condi-
tions (a)—(j) hold for u; and w; here in place of u and w there.
The first of the required edges is provided by the case u = wu; of (f). Together with (7)

this shows that the initial segment

a1ag -+ Qp—1U1P1 " * " Pe—1U2Pk * * - P2k—2U3 * * * Us—2P(k—1)(s—3)+1 " " " P(k—1)(s—2)

Us—1P(k—1)(s—2)+1491 "~ ~ qk—2Us

is a walk in H (V). Similarly, by (h) and (j) the terminal segment

WsAk—1 "+ q2k—4T (k—1)(s—2)+1Ws—1T(k—1)(s—2) * " T(k—1)(s—3)+1Ws—2 " - W3

Tok—2 "« TEWaTk_1 - T1W1by - - - bp_2bp_1
is a walk in H(¥). Finally, the middle part
1 Qr—2UsWsqr—1 " q2k—4

is a walk in H(¥), because by (b) we know that q; - - - qop_4 is @ walk in H(¥,,_,,.)- O

Returning to the induction step, we consider i € {0,1,...,k — 1}, a (-leftconnectable
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(k — 1)-tuple @ € V(¥)*!, and a (-rightconnectable (k — 1)-tuple b such that @ and b
have no vertices in common. Plugging » = ¢ + k — 3 into Lemma 2.2.27 we obtain
at least sr—n't?* 1 walks ;- ;4054 Of length i + k — 3 in H(V) that start with a

(-rightconnectable (k — 1)-tuple and end with a (-leftconnectable (k — 1)-tuple. Of these

walks, at least

i+2k—4 ni+2k74

. n .
i+2k—4 i+2k—4
)n Z Zirhe1 © 3%k >(n

< 1 2k — 1)(i + 2k — 4)

Jitk—2 n

have no common vertices with @ and b. For each such walk, Claim 2.3.4 tells us that we
can connect @ to (xq,...,7,_1) in at least 2nn' ways by a walk with ¢ inner vertices, and
the same applies to connections from (x;;x_2, ..., Titox—4) tO b.

Altogether this reasoning leads to 4¢n?n/ = 49(k,)n' walks in H () from a to b

with f inner vertices, where

f=2t+(i4+2k—4)=202ks — 2k +2)+ (i + 2k —4)
= (4s— 2k +i=[4"220+4) -2k +i=f(k,il).

As usual, at most O(n/~1) of these walks can fail to be paths. So, in particular, there
exist at least 20(k, ¢)n/ paths from d to b possessing f inner vertices. This completes the

induction step and, hence, the proof of the Connecting Lemma. O

2.4 Reservoir Lemma

In this section we discuss a standard device occurring in many applications of the absorption
method: the reservoir. The problem addressed by the Reservoir Lemma is that while the
Connecting Lemma delivers many connections for any two disjoint connectable (k — 1)-
tuples, it gives us no control where the inner vertices of these connections are. Thus it
might happen that each of these connections has an inner vertex which is ‘unavailable’ to
us, because we already assigned a different role to it in the Hamiltonian cycle we are about
to construct. To avoid this problem, one fixes a small random subset of the vertex set,
called the reservoir, and decides that the vertices in the reservoir will only be used for the

purpose of connecting pairs of (k — 1)-tuples by means of short paths.

Proposition 2.4.1 (Reservoir Lemma). Suppose that k > 3, «, 3,€,(w > 0, and that
¢ = 3 is an odd integer. If V. = V(k, v, 5,4, ) is provided by Proposition 2.3.3, then

61



there exists some ng € N such that for every k-uniform («, 3, ¢, k%().)—constellation v on

n = ng vertices there exists a subset R < V() with the following properties.
(i) We have 1én <|R| < &n.

(i) For all pairs of disjoint (k—1)-tuples @, b € V() =1 such that @ is C,.-leftconnectable
and b is Co.-rightconnectable in U, and for every i € [0, k), the number of a-b-paths
in H(V) with f = f(k,i,0) inner vertices all of which belong to R is at least 30,.|R|.

Since the proof of this result is quite standard, we will only provide a brief sketch here.
It suffices to prove that the binomial random subset R < V(V) including every vertex
independently with probability 2¢ a.a.s. has the properties (i) and (ii). Now (i) is a
straightforward consequence of Chernoft’s inequality. As there are only polynomially many
possibilities for (@, b,7) in (ii), it suffices to show that for each of them the probability
that there are fewer than 19..|R|/ paths of the desired form is at most exp(—(n)).
This can in turn be established by applying the Azuma-Hoeffding inequality to the at
least 9,,n/ such paths in V(¥)/ delivered by Proposition 2.3.3. For further details we refer
to [92, Proposition 4.1], where we gave a full account of the argument for k = 4.

Let us emphasise again that the set R provided by Proposition 2.4.1 is called the
reservoir. The connections in (4 ) whose inner vertices belong to R are called paths through
R.

In the proof of Theorem 2.1.2 we shall repeatedly connect suitable tuples through
the reservoir. Whenever such a connection is made, some of the vertices of the reservoir
are used and the part of R still available for further connections shrinks. Although the
reservoir gets used Q(|V(¥)|) times, we shall be able to keep an appropriate version of

property (i) of the reservoir intact throughout this process.
Corollary 2.4.2. Let a sufficiently large k-uniform («, 3, ¢, w15 ) -constellation ¥ as well
as a reservoir R < V (V) as in Proposition 2.4.1 be given. Moreover, let R' < R be an

arbitrary set with |R'| < $%=n. If d, b e V() are two disjoint (k — 1)-tuples such

that @ is Cue-leftconnectable and b is Co.-rightconnectable, then for every i € [0, k) there is
an @-b-path through R ~ R’ with f(k,i,{) inner vertices.

Proof. Set f = f(k,i,¢) and recall that f(k,i,£) = (4573(20 + 4) — 2)k + i < 4*2k(. So
the lower bound in Proposition 2.4.1 () together with the bound on |R’| yields

IulR| _ 9lR)

/
< <
R < i Af

62



Consider all @-b-paths through R with f inner vertices. On the one hand, there are at
R|” of them due to Proposition 2.4.1(37). On the other hand, there are at most

least 19—5*

— 19**
FIRIRI < SR

R/ — L=|R|F > 0 of

our paths have all their inner vertices in R ~ R/. O

such paths having an inner vertex in R’. Consequently, at least %

2.5 The absorbing path

2.5.1 Overview

In this section we establish that for p « « every sufficiently large (a, 3, ¢, u)-constellation
contains an absorbing path P4, whose main property is that it can ‘absorb’ an arbitrary
but not too large set of vertices whose cardinality is a multiple of k. Thus the problem
of proving Theorem 2.1.2 gets reduced to the simpler task of finding an almost spanning
cycle containing the absorbing path and missing a number of vertices that is divisible by k.
In order to have a realistic chance to include the absorbing path into such a cycle we make
sure that its first and last (k — 1)-tuple is connectable. Moreover, we will need to be able

to work outside a forbidden ‘reservoir set’ that later will have been selected in advance.

Proposition 2.5.1 (Absorbing Path Lemma). Given k >3, a > 0, 5 > 0, and an odd
integer £ = 3 there exist constants ¢ = ((«, k), U, = 9. (k,, B,¢,() > 0 and an integer ng

with the following property.

k-3
Suppose that V is a k-uniform (c, 8, €, i)-constellation with p = ﬁ (%)2 o

vertices. If R < V(W) with |R| < 9¥2n is arbitrary, then there exists a path Py < H(¥) —R
such that

onn = ny

(4) [V(Pa)| < dun,
(i) the starting and ending (k — 1)-tuple of P4 are (-connectable,

(iii) and for every subset Z < V(W) NV (Pa) with |Z] < 29%n and |Z] = 0 (mod k), there
exists a path Q < H (V) with V(Q) = V(Pa) U Z having the same end-(k — 1)-tuples

as Py.

Our absorbers will be analogous to those in [92] and we refer to [92, Section 5.1] for

further motivation. Here we will only recall that the absorbers have two kinds of main
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components reflecting the following observations.

» A complete k-partite subhypergraph S of H(¥) whose vertex classes {x;, i x, Titor}
are of size 3 (where i € [k]) contains a spanning path P = x;...x3;. Moreover, S
also contains the path P’ = xy...x,Tok41 ... 23, which has the same first and
last (k — 1)-tuple as P. Thus if the absorbing path contains P’ as a subpath but
avoids the vertices xg,1,...,T9, then it can absorb these vertices simultaneously
(see Figure 2.5.1a). However, not every k-element subset of V(W) is absorbable in

this manner.

o If the links of two vertices a and z intersect in a (k — 1)-uniform path b; ... by _o,
then we can form two k-uniform paths in H (), namely P, = by ...bg_1abg ... by
and P, = by...bg_12by ... bgy_1 (see Figure 2.5.1b). Now if the absorbing path
contains P, then we can remove x and insert a instead. We call such a structure an

(a, x)-exchanger.

Now the plan for absorbing an arbitrary set {ay, ..., a;} of k vertices is that we will find
an ‘absorbable’ set {x1,...,z;} such that for every i € [k] there is an (a;, z;)-exchanger.
The main difficulty in executing this strategy is that we need to pay a lot of attention to
connectability issues, because ultimately we need to connect all parts of the absorbers we
are about to construct to the rest of the Hamiltonian cycle we intend to exhibit. For this

reason, the definition of absorbers reads as follows.

Definition 2.5.2. Suppose that k > 3, a,u,( > 0, that ¥ is a k-uniform (o, p)-
constellation, and that a@ = (ay,...,a;) € V(¥)* is a k-tuple consisting of distinct vertices.
We say that

A= (U,%,,by,..., by)e V(U)W

with u = (uy,...,ug), T = (z1,...,7x), W = (wy,...,wy), and b, = (b1, - -, biar—2)) for

i€ [k] is an (a,()-absorber in U, if
(a) all 2k? + k vertices of A are distinct and different from those in @,
(b) uzw and uw are paths in H(¥),
(¢) (uq,...,ur_1) is ¢-rightconnectable and (ws, . .., wy) is (-leftconnectable in W,

(d) and for every i € k] the (2k — 2)-tuple b; is a path in H(V, ) n H(V,,) whose first
and last (k — 1)-tuple is (-connectable in V.
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W

(a) The K,E:k) (3) with two paths (b) A 5-uniform (a, x)-exchanger

Figure 2.5.1: The building blocks of an absorber.

We conclude this subsection with an explicit description how these absorbers are going
to be utilised (see Figure 2.5.2). Suppose to this end that for some k-tuple a = (ay, ..., ax)
consisting of k distinct vertices and some (@, ¢)-absorber (%, Z, @, by, . .., by,) it turns out
that the paths

uw and by - bie—1)Tibik - - - bior—2)  for i € [k] (2.5.1)

end up being subpaths of the absorbing path P4 we are about to construct, while aq, ..., ax

are not in V(P4). We may then replace for each i € [k] the path
bi1 + - bik—1)Tibix - - - byor—2) by the path by - bjg—1)@ibix - - biar—2)

and then

uw by uzw.

In this manner we transform P, into a new path @ with V(Q) = V(Pa) u {a4, ..., ax}
having the same first and last (k — 1)-tuple as P4. We say in this situation that @ arises
from P4 by absorbing {ai,...,ax}. The k + 1 paths enumerated in (2.5.1) are called the
pre-absorption paths of the absorber (u, z, w, by, ..., Ek) So there is one pre-absorption
path with 2k vertices, namely uw, and there are k pre-absorption paths with 2k — 1 vertices

having a vertex z; in the middle.
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Figure 2.5.2: Absorber for (aq, ..., a) before and after absorption.

2.5.2 Construction of the building blocks

We commence with the first part (u,Z,w) of our absorbers consisting of 3k vertices. As
we have already indicated, we shall find (3k)-tuples satisfying clause (b) of Definition 2.5.2
by looking for complete k-partite subhypergraphs of H (V) whose vertex classes are of size
three.

Let us recall for this purpose that by a classic result of Erdds [31] the Turdn density
of every k-partite k-uniform hypergraph vanishes. This means that, given a k-partite k-
uniform hypergraph F' and a constant € > 0, every sufficiently large k-uniform hypergraph
H satisfying |E(H)| = €|V (H)|* contains a copy of F'. Due to the so-called ‘supersaturation’
phenomenon later discovered by Erdds and Simonovits [35], the same assumption actually
implies that H contains Q(|V (H)|V)I) copies of F. For later reference, we record this

fact as follows.

Lemma 2.5.3. Given a k-partite k-uniform hypergraph F and € > 0, there are a constant
¢ > 0 and a natural number ng such that every k-uniform hypergraph H on n = ng vertices

with at least en® edges contains at least EnlV ) copies of F. ]

We shall now apply this result to F' = K ,Ek)(?)), the complete k-partite hypergraph
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with vertex classes of size 3, and to an auxiliary hypergraph whose edges are derived
from bridges (recall Definition 2.2.21). This will establish the following statement, whose
conditions (7) and (#7) coincide with () and (¢) from Definition 2.5.2.

Lemma 2.5.4. For every k = 2 there exists § = (k) > 0 such that for every a > 0 there

is an integer ng with the following property.

9
(u,z,w) € V(I)k x V(I)E x V(¥ such that writing i = (uy,...,ug), T = (21,...,74),

and W = (wy, ..., wg)

For every k-uniform (a, §)-constellation ¥ on n = ny vertices the number of (3k)-tuples

(i) both uzw and uw are k-uniform paths in U,
(i) (u1,...,up—1) is gz-rightconnectable and (ws, ..., wy) is 5-leftconnectable in W
is at least En3F.

Proof. Throughout the argument we assume that £ « k=1 is sufficiently small and that

1

no » a1 &7 is sufficiently large. Let ¥ be a k-uniform (o, &

)
vertices. Construct an auxiliary k-partite k-uniform hypergraph Z = (V; v ... v Vi, E»)

)-constellation on n = ny

whose vertex classes are k disjoint copies of V(W) and whose edges {v1, ..., v} € Eg with
v; € V; for i € [k] correspond to the g--bridges (vy,...,vy) of . Corollary 2.2.28 tells us

that
1, 1

9" T ok
So Lemma 2.5.3 applied to & and F = K,gk)(?)) leads to Q(n*) copies of K,gk) (3) in A,
where the implied constant only depends on k. In other words, for some constant & = £(k)
depending only on k there are at least &n®* tuples (4,7, w) € V(U)* x V(¥)* x V(T)*
such that, writing v = (uq,...,ux), T = (z1,...,2%), and W = (wy,...,wy), we have a
copy of K,gk)(?)) in A with w;, x;,w; € V; for all i € [k]. Clearly, these (3k)-tuples satisfy

|Ez| = V().

the demand (7) of the lemma and, since u and w are gik—bridges, they have property (i7)
as well (cf. Definition 2.2.21). O

Armed with this result and with Corollary 2.2.32 we can now prove that if {, u « a, k™1,
then for every k-tuple a of distinct vertices from a sufficiently large («, p)-constellation

the number of (@, ()-absorbers is at least Q(n?*"*%).

Lemma 2.5.5. For every k > 3 and o > 0 there exist constants ( = ((a, k) and & = &(a, k)

as well as an integer ng with the following property.
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,3+1

k
If W is a k-uniform (a, p)-constellation on n = ngy vertices, where j1 = i(% ? , and

o (5)
a € V(9)* is an arbitrary k-tuple of distinct vertices, then the number of (ad, ()-absorbers

in U is at least En®°+F.

Proof. Starting with the constant £” = £”(k) > 0 provided by Lemma 2.5.4 we set

k "
;M _ &y
5_ C 7k7

and ¢ = i(g’)’ff” (2.5.2)

and we suppose that ng is sufficiently large.

In order to show that ( and & have the desired property, we consider a k-uniform
(v, p)-constellation W on n > ny vertices as well as a k-tuple @ = (ay,...,a;) € V(¥)*
consisting of distinct vertices. The set X < V() delivered by Corollary 2.2.32 (with the

same meaning of U, a, p, and ¢ as here) satisfies
"
X< Sn @228, (2.5.3)
1

By pu < ¢, ¢ < 5, and monotonicity, Lemma 2.5.4 yields at least £"n* paths (4, Z, )

in V()3 Wlth the properties () and (i) of that lemma. Since the number of these paths

sharing a vertex with X U {aq,...,ax} can be bounded from above by
( 5// é-l/
3k(|X| + k)n®! 3k7k n3* 4+ 3kt < 5713]“,

there are at least %"n3k such paths avoiding both X and a. Now it suffices to establish
that each of them participates in at least %(f’ )kn2k2_2k absorbers.

For the rest of the proof we fix some such path (u, 2, w) € V(¥)3 and, as usual, we write
T = (z1,...,7). Now we apply Corollary 2.2.32 for every i € [k] to the vertices a; and z;,
thus obtaining &'n?~2 paths b; = (b;y, . .. biok—2)) € V(U)* 2 in H(T,,) n H(¥,,) whose
first and last (k — 1)-tuples are (-connectable in W. Altogether, this yields (¢’ )kn%Q—%
possibilities for (b1, ..., b;) and for most of them (i, Z, @, by, ..., by) is an (@, ¢)-absorber.
The only exceptions occur when some of these 2k% + k vertices coincide, but this can
happen in at most (2k? + k)(2k? — 2k)n(Zk=2k-1 < %(f’)kn%tﬂc ways. Thus (u, Z,w) is

indeed extendable in at least 3 (&’ )*n2¥*=2F distinct ways to an (d, ¢)-absorber. O
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2.5.3 Construction of the absorbing path

After these preparations the Absorbing Path Lemma can be shown in a rather standard
fashion. The argument starts by observing that a random selection of (2k* + k)-tuples
contains, with high probability, for every k-tuple a a positive proportion of (a, {)-absorbers.
Moreover, if we generate ©(n) such random tuples with a small implied constant, then
most of them will be disjoint to all others and it remains to connect the paths they consist

of by means of the Connecting Lemma.

Proof of Proposition 2.5.1. Given to us are k > 3, a, 8 > 0, an odd integer ¢ > 3, and
= wik(%)%igﬂ. Let ¢ = ((a, k) > 0 and £ = &(a, k) > 0 be the constants supplied by
Lemma 2.5.5, let ¥ = ¥(k, o, 5,4, () be provided by Proposition 2.3.3, define an auxiliary

constant by

13 v
48k2M?’ 8k M?

v = min{ }, where M = 472k( > 12k, (2.5.4)
and finally set
v, = 4kM~.

We contend that ¢ and ¥, have the desired properties.
To verify this we consider a k-uniform (o, 3, ¢, u)-constellation ¥ on n vertices, where
n is sufficiently large, as well as an arbitrary subset R = V(¥) whose size is at most 92n.
Let
t =2k +k < 3k

be the length of our absorbers. Since the desired absorbing path needs to be disjoint to R,
only the absorbers avoiding R are relevant in the sequel. For every k-tuple a € V()"

consisting of distinct vertices we denote the collection of appropriate absorbers by
o (d) ={Ae (V(¥)\R)": Ais an (a,()-absorber} .

Lemma 2.5.5 tells us that the total number of (@, ()-absorbers is at least {n' and by

subtracting those which meet R we obtain

. (@)| = én' —t|RIn"™ = (€ —t9D)n' = 2n'. (2.5.5)

DO [y
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Let
o = U{d : d € V(U)F consists of k distinet vertices} = (V(¥) \ R)t

be the set of all relevant absorbers. The probabilistic argument we have been alluding to

earlier leads to the following result.

Claim 2.5.6. There is a set B < o of mutually disjoint absorbers of size |B| < 2yn
satisfying |/ (a) n B| = 9*n for every k-tuple @ € V(V)* consisting of distinct vertices.

Proof. Let <7, < &/ be a random subset including every absorber in %7 independently with
probability p = yn'~*. As |47, is binomially distributed with expectation p|</| < pn' = n,
Markov’s inequality yields

P(|<,| = 2vn) < P(|4,| = 2p|e|) < (2.5.6)

[\D\»—t

Next we observe that the set
{{21, Z’} e /@ : A and A’ share a Vertex}

of overlapping pairs of absorbers has at most the cardinality t>n?~1. So the expected size

of its intersection with &7 is at most p*t*n®~! = y*t?n. Since

vt < 3k*y < 19,

4

a further application of Markov’s inequality reveals

IP(H{?L /T’} € %(2): A and A’ share a vertex}| = 19in > 411 (2.5.7)

Finally, for every k-tuple @ € V (V)" of distinct vertices the random variable |7, N <7 (a)|
is binomially distributed with expectation p|.<Z(a)|. By (2.5.5) we know that

1
ple (a)| = ifyfn > 24k°M?y°n = 39in
and, therefore, Chernoft’s inequality yields

P(|e, n o (a)| < 29n) < e M < —
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As there are at most n* possibilities for @, the union bound leads to

1
P (|, n o/ (d)| < 392n holds for some d) < - . (2.5.8)

=~

Taken together, the probabilities estimated in (2.5.6) —(2.5.8) amount to less than 1.
Thus there exists a deterministic set %, < o of size |%A.| < 2yn containing at most
192n pairs of overlapping absorbers and satisfying |4, n .« (a)| = 292n for all k-tuples
a € V(¥)F of distinct vertices.

Now it suffices to check that a maximal subcollection # < %, of mutually disjoint
absorbers has the desired properties. The upper bound |%| < |%.| < 2yn is clear and due

to |B. \ HB| < 19n we have
B o (@)] = 39%n — 1920 = ¥in

for every a. m

It remains to connect the absorbers we have just selected into a path. Recall that every
member of % possesses k + 1 pre-absorptions paths introduced in the last paragraph of Sub-
section 2.5.1. Each of these paths has at most 2k vertices, starts with a (-rightconnectable
(k — 1)-tuple, and ends with a (-leftconnectable (k — 1)-tuple. In fact, most of the
pre-absorptions paths even have (-connectable end-tuples (see Definition 2.5.2 (d)).

Setting r = (k + 1)|%8| < 4kvyn, let Py, ..., P, be the pre-absorption paths of the
absorbers in Z enumerated in such a way that the end-tuples of P; and P, are (-connectable.

We shall construct our absorbing path P4 to be of the form
PA = PchPQCZ o PT—10T—1PT7

where (1, ..., C,_; are connections that will be provided by Proposition 2.3.3. Since we

intend to use the Connecting Lemma with ¢ = 0, each of these connections is going to have
f=f(k,00)=[4"320+4) - 2]k <M — 2k
vertices, which will yield
[V(Pa)| < r(2k + (M —2k)) = rM < 4kM~yn. (2.5.9)
We will determine the connections C4,...,C,_; one by one. When choosing C; for
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some j € [r — 1], the Connecting Lemma (Proposition 2.3.3) offers us at least ¥n’ possible
ways to connect P; with P;,; by means of a path with f inner vertices. As we need to

avoid both the already constructed parts of P4 and the set R, there are at most

9K

254 (2.5.4)
( < )SkM2’ynf < on'

F(R| + 4kM~n)n' =t < (MVY? + 4kM>*~)n’
potential connections we cannot use, and thus the choice of C; is indeed possible. This
concludes the description of the construction of P4 and it remains to check that the path
we just defined has all required properties.

Condition () follows from (2.5.9) and (1) is guaranteed by our choice of the enumeration
Py, ..., P.. For the proof of (#i) we consider any set Z < V(W) \ V(P,) satisfying
|Z] < 20?n and |Z] =0 (mod k). Let dy,...,d, € V(¥)* with z = % < ¥2n be disjoint
k-tuples with the property that every vertex from Z occurs in exactly one of them. By
Claim 2.5.6 we can find distinct absorbers A, ..., A, € 2 such that flj is a (a;, ¢)-absorber

for every j € [z]. It remains to utilise these absorbers one by one. ]

2.6 Covering

The aim of this section is to prove that under natural assumptions on the parameters
almost all vertices of every large k-uniform («, 3, ¢, j1)-constellation can be covered by long
paths whose first and last (k — 1)-tuples are connectable. Before formulating the precise
statements let us give an overview of the argument, which will proceed by induction on k.

In the induction step from k—1 to k we study a largest possible collection € of mutually
vertex-disjoint M-vertex paths with connectable end-tuples and we denote the set of
currently uncovered vertices by U. If U is not small enough already, i.e., if |U| = Q(|V (V)]),
then we partition V(W) into sets of size M, the so-called blocks, such that the vertex set of
each path in % is one such block. Next, we show by probabilistic arguments that there is
a special selection of M blocks, called a useful society below, such that their union S has
the property that for ‘many’ vertices u € U the induction hypothesis applies to ¥, [S]. For
such vertices u we can then find M + 1 (actually even more) long disjoint (kK — 1)-uniform
paths in ¥, [S] starting and ending with connectable (k — 2)-tuples.

In fact, for some still not too small set U” < U’ these paths will coincide for all u e U”,
meaning that inserting vertices from U” at every k' position will yield M + 1 paths in ¥
with connectable end-tuples (see Figure 2.6.2). This allows us to take the original paths

contained in S out of ¥ and to add the newly constructed paths instead, thus increasing
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the size of €. The following covering principle lies at the heart of this inductive argument.

Definition 2.6.1. For k > 3 the statement Oy asserts that given «, 3,9, > 0 and an odd
integer ¢ > 3 there exists a constant (,, > 0 such that for every My € IN there exist a

natural number M > M, with M = —1 (mod k) and the following property:

da
17k

at most V2|V (V)| vertices by mutually vertex-disjoint M-vertex paths whose first and

For every sufficiently large k-uniform (v, 3, ¢, 25 )-constellation ¥ we can cover all but

last (k — 1)-tuples are (..-connectable.

For the base case k = 3 we quote [92, Lemma 2.14]. One needs to be a little bit
careful here, because [92] uses a slightly different notion of (,.-connectable pairs in
3-uniform hypergraphs. However, every pair that is (,.-connectable in the sense of [92] is
Ces-connectable in the sense of Definition 2.2.16 as well and, therefore, [92, Lemma 2.14] is

strictly stronger than Q3.
Fact 2.6.2. The assertion Q3 holds. O

There is one issue with the inductive proof of ©, sketched above: when applying the
induction hypothesis to a (k — 1)-uniform constellation of the form ¥,[S], where S is the
vertex set of a useful society, we would prefer to get a covering of almost all vertices in S by
paths of length Q(4/]S]) rather than (1), but prima facie O}_; does not seem to deliver
this. For this reason we also have to deal with the following statement capable of providing

coverings by very long paths.

Definition 2.6.3. For k > 3 the covering principle #, asserts that given «, 3, > 0 and
an odd integer { > 3, there exists an infinite arithmetic progression P < kIN with the
following property.

If ¥ is a k-uniform («, 8, {, {%)-constellation, M € P, and B = V (V) is a collection
of &-bridges in W with |B| = £|V(V)|*, then all but at most ||V (V)|| + M vertices of U
can be covered with mutually disjoint M-vertex paths starting and ending with bridges

from *B.

Observe that for a fixed k-uniform (o, 3, £, ;5 )-constellation ¥ we can apply # with
every M € P. For a larger value of M we have to cover fewer vertices, but, on the other
hand, we need to cover them with longer paths. Thus there is no obvious monotonicity
in M.

Now we plan to establish the implication ©,_; = #,_1 = Oy, thus decomposing
the induction step of the proof of ¢, into two simpler tasks. They will be treated in

Lemma 2.6.4 and Lemma 2.6.9, respectively.
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Figure 2.6.1: The case k = 3 of Lemma 2.6.4. The set X of vertices is reserved for bridges.

Lemma 2.6.4. If k = 3 and O holds, then so does #,.

The idea behind the proof of this implication is the following (see Figure 2.6.1). Given
an appropriate constellation ¥, our first step is to take out a reservoir set R. Next we
decide which bridges from B are going to appear at the ends of the paths we are supposed
to construct. After these choices are made, we apply ¢4 to the constellation obtained
from ¥ by removing R and the vertices reserved for the bridges, thus getting a covering of
almost all remaining vertices with ‘short’ paths. Now we partition the set of these paths
into groups of size p, where p denotes an arbitrary natural number. For each group we
connect all its paths through the reservoir. Moreover, we connect the ends of the resulting
paths to some of the bridges that have been put aside. In this manner we obtain a covering
of almost all vertices of ¥ with longer paths, whose precise length depends linearly on p.
Thus by varying p we can reach an arithmetic progression of possible lengths for the paths

in the new covering.

Proof of Lemma 2.6.4. Let o, 5, £ > 0 and an odd integer ¢ > 3 be given. Choose some

auxiliary constants obeying the hierarchy
O, B, 6k 0T > 0, > G > 0 > M gt

where M is an integer with M = —1 (mod k).
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We contend that
P ={M €kN: M >noand M' = f(k,0,0) + 2k (mod M + f(k,0,0))}

has the property demanded by #.

By Definition 2.3.2 the number f(k,0,¢) is divisible by k and, consequently, P is indeed
an infinite arithmetic progression. Now let ¥ be a k-uniform (o, 3, /, 3¢ )-constellation
with n vertices, let M’ € P be arbitrary, and let 8 < V(¥)* be a set of &-bridges in W
with |B| = [V (¥)|*. We are to cover all but at most &|V (¥)|+ M’ vertices of ¥ by mutually
disjoint M’'-vertex paths starting and ending with bridges from 8. If |[V(¥)| < M’, then
the empty set is such a collection of paths. Thus, we may assume that [V (V)| > M’ > ny.

Let R < V(¥) with |R| < dJ.n be the reservoir set provided by Proposition 2.4.1
with 9, = here in place of €, ¢, there. For later use we record that due to 9., « 9,, k=1, ¢!

2
the case ¢ = 0 of Corollary 2.4.2 yields:

(*) If R < R is an arbitrary set with |R/| < 92,|V(¥)|, the (k — 1)-tuple @ € V(¥)F1 is
C*7*—leftconnectable, and b e V(U)F1 s <5—*—rightconnectable and disjoint to a, then
there is an - b-path through R ~ R’ with f(k,0,¢) inner vertices.

Let by,...,b. be a maximal sequence of bridges from B that are mutually disjoint and
disjoint to R. Since the selected bridges and R together involve kr + |R| vertices, the
maximality implies

k(kr + RNV (@)[* = |B] = ¢V (D)[*,
whence
(€ — K0V (P)|
k2

Set x = |0,|V(V)|] and let X be the set of vertices constituting by, ..., b,. Lemma 2.2.36
reveals that U/ = ¥ — (X U R) is an (%, g,é, f%)—constellation. Therefore, the princi-
ple Oy yields a family % of disjoint M-vertex paths in W' which together cover all but at

r= = 0,V (P)]. (2.6.1)

most 92|V (¥')| vertices of U’ and whose end-tuples are (,,-connectable in W’. For later use
we remark that owing to Fact 2.2.18 the end-tuples of the paths in & are C*f—connectable
in .

By the definition of P there is a natural number p such that

M = (M + f(k,0,0)p+ f(k,0,0) + 2k

Fix an arbitrary partition ¢ = 6, v ... w €41 with |61 = - = |G\ = p > |Er1]-
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Now we declare our strategy for constructing vertex-disjoint paths Py, ..., P, € H (V)
witnessing the conclusion of #y. For every j € [A] we first intend to form a path P] by
connecting the p paths in €} through the reservoir R. Subsequently, we plan to derive P;
from P by connecting its ends with two bridges from the list bi,...,b,, say with by;
and by;. For all p + 1 connections required for this construction of P;, we want to appeal
to (x). Clearly, if the paths Pj,..., Py can be constructed, then each of them will consist
of M’ vertices.

Altogether, we are aiming for (p + 1)\ connections that require a total number of
(p+1)f (K, 0,0)A

vertices from the reservoir. If this number is less than 92, n, then repeated applications

of () allow us to choose our connections disjointly. Since M » 9.} » k, £, we have indeed

V(P)| 24KV (D)
Mp M

(p+1)f(k,0,0)\ < 2p -4kt - <92, |V(T)].

Similarly,
_ 2V _ 2vew)
Mp M

proves that we have sufficiently many bridges at our disposal.

2\

<O,V ()]

Altogether, the vertex-disjoint paths Py,..., Py € H(V) can indeed be constructed.

The number of vertices of W they fail to cover can be bounded from above by

X+ R+ [y s (Jvip)|+| | v < ke + o vl + o2V + Mp

Pe® Pe((”ﬂ)\#»l
< Mp + ((k+ 1), + 97) |V (D)
< M+ £V (v,
which concludes the proof of #;. O

The proof of our next result involves some probabilistic arguments based on the following

consequence of Janson’s inequality (see [92, Corollary A.3]).

Lemma 2.6.5. Let m = k and M be positive integers, and let n € (0, i) Suppose that V
is a finite set and that
V=Buv..vB vz

is a partition with |By| = ... = |B,| = M < n|V|, |Z] < n|V|, and v = m. Let
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S < {B,...,B,} be an m-element subset chosen uniformly at random and set S = J.7.
Further, let & be a real number with max(8k*n, 16k*/m) < & < 1.

(a) If Q < V* has size |Q] = d|V|¥, then

£ m
(b) Similarly, if G denotes a k-uniform hypergraph with vertex set V and d|V|*/k! edges,
then
k /1. E /1. £2m
P(|lec(S) — d(Mm)*/kl| = &(Mm)*/k!) < 12¢/mexp Rz ) O

This has the following consequence on random subconstellations.

Lemma 2.6.6. Given k =2, a, B, 14,€ > 0, and an odd integer £ = 3 there exists a natural
number My such that the following holds for every M = My. If V is a sufficiently large

k-uniform (o, B, ¢, p)-constellation,

VV)=Biv...uB,uB

is a partition with |By| = ... = |B,| = M and |B'| < 2M, and B < V(¥)* is a set of
&-bridges in ¥ of size |B| = |V (V)[*, then there are at least 3(},) sets &/ < {Bi,...,B,}
of size M such that their union S = |J.% has the properties that V[S] is a (5, g,é, 241)-

constellation and
B, ={7eBn S 7 is a§-bridge in U[S]}

has at least the size |B.| = §[S|*.

Proof. Let My » o1, 871, u=t, 671, k, £ be sufficiently large. We call the sets By, ..., B,
blocks. Choose a set .7 < {Bj, ..., B,} of M blocks uniformly at random among all ()
possibilities. We shall prove that the probability that S = | J.# fails to have the desired
properties is at most exp(—Q(M )), where the implied constant only depends on «, 3, u, &, k,
and ¢. Hence, by choosing M, sufficiently large, this probability can be pushed below i, as
desired. It will be convenient to set V' =V ~ B’. For y € V' we denote the unique block

containing y by B,.

Claim 2.6.7. The event that U[S] fails to be a (%,5,¢,2u)-constellation has at most the
probability exp(—Q(M)).
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Proof. We begin by estimating the probability of the unfortunate event 4l that W[S] fails

to be a (%, 2u)-constellation. For an arbitrary set z € (V/)*~2 we define
%, ={Byyex}, t,=|Zlelk—2],and 2, =|]Z.

Further, we consider the conditional probabilities

P1(95)=]P(e\pz(S\Zz)< (S“L?)W 7 e G- 2)7
i) =P (attsD) < (3 +3) r e[ we 50,

and
Py(z) = P (ew, s (V(RI[S]), S N V(RY[S]) > 2u(M —t,)*M? | z e SE2)
and observe that

P(Y) < P(z e S®2)(Pi(z) + Py(z) + P3(x)) . (2.6.2)
ze(V7)(k=2)

So if we manage to prove
Pi(z), Py(z), P3(z) < exp(—Q(M)), (2.6.3)
then
P(8h) < (M?)Zexp(—Q(M)) < exp(—Q(M)) (2.6.4)

will follow. Thus our next goal is to establish (2.6.3).
To this end, we will repeatedly apply Lemma 2.6.5 with

kM
M—t,,— B UZ,,v—t,, and min{$,u}
n

here in place of
m,n,Z,v, and &

there and relocating the elements of %, to the exceptional set of the partition.
First, the minimum degree condition imposed on H (V) implies that the graph H(¥,)
has at least (2 + «) ‘V ® edges. So Lemma 2.6.5 (b) applied with 2 and H(V,) here in
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place of k and G there yields Pi(z) < exp(—Q(M)).

Second, we know that [V(RY)| = (2 + %) |V(V)], since ¥ is an («, p)-constellation.
Hence, applying Lemma 2.6.5 (a) with 1 and V(RY)
Py(z) < exp(—Q(M)).

Lastly, from W being a (a, u1)-constellation it also follows that

here instead of k£ and () there entails

ev, (V(RY), VNV(RY)) < plV(¥)].

Hence, Lemma 2.6.5 (b) applied to the bipartite subgraph of H(¥,) between V(RY) and
its complement tells us that Ps(z) < exp(—Q(M)). This concludes the proof of (2.6.3)
and, hence, of (2.6.4). An analogous proof allows us to transfer part () of Definition 2.2.33
from ¥ to W[S] and we omit the details. O

It remains to prove that the event [B.| > §|S|* has high probability as well. Here we

start with the estimate
P(|%B.| < §|S*) < P(IB n S* < §IS)F) + P(—€),

where @ denotes the event that every &-bridge 7 € B n S¥ is a g—bridge in U[S]. Another
application of Lemma 2.6.5 (a) tells us that the first summand is at most exp(—Q(M))

and thus it remains to prove that
P(—€) < exp(—Q(M)). (2.6.5)

Towards this goal we analyse how connectability transfers to W[S].

Claim 2.6.8. If k' € [k—1], 2,2 € (V/)*1%) and 2 (V' (zuz’))k/ is a &-leftconnectable
tuple in W, then

P(Z fails to be §-leftconnectable in U.[S] | 7 € S¥ and 2 < S) < exp(—Q(M)).

Proof. We argue by induction on k’. In the base case k' = 1 the probability under
consideration vanishes. This is because a 1-tuple Z = (z) is &-leftconnectable in U, if and
only if z € V/(RY). Moreover, if z € S \ 2, then () is §-leftconnectable in W,[S] if and
only if z € R¥IS]. Due to RYIS] = RY[S] these two statements are equivalent to each other.

For the induction step from & — 1 to k' we write Z = (x1,...,z) and recall that the
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&-leftconnectability of z in W, means that |U| = |V (V,)|, where

U = {u e V(U,): z1--zpu € E(V,) and (z9,...,xp) is {-leftconnectable in \Ilzu}.

Assuming 7 € S¥ the analogous set whose size decides whether Z is %—leftconnectable
in W,[S] either contains U n S as a subset, or it does not. Accordingly, if Z fails to be
& -leftconnectable in W,[S], then either |[U n S| < §[V(L,[S])| or the event 2A that for some
ue SnU the (K —1)-tuple (za,..., 2w ) fails to be §-leftconnectable in U, [S] occurs. For

this reason, it suffices to prove

P(UNS| <5/ |7 €S and 2/ € ) < exp(—Q(M)) (2.6.6)
and P(A|Ze S¥ and 2 < S) < exp(—QM)). (2.6.7)

Now (2.6.6) follows in the usual way from Lemma 2.6.5 (a). To prove (2.6.7) we observe

that the induction hypothesis yields

P((xs,...,2y) fails to be §-leftconnectable in W,,[S] | (2, ..., zy) € Sk=1
and (2’ U {z1}) = 5) < exp(—Q(M))

for every u € U, whence

P(A|zeS* and 2/ < 9) < Z P(u e S)exp(—Q(M))
uelU

< M?exp(—Q(M)) < exp(—Q(M)) . O

By applying the case k' = k — 1 of Claim 2.6.8 to all {-leftconnectable (k — 1)-tuples in

U we obtain

IP(Some 7 € S*71 that is &-leftconnectable in W
fails to be §-leftconnectable in W[S]) < exp(—Q(M)).

By symmetry the same holds for rightconnectability as well and, therefore,
P (Some ¢&-bridge 7 € S* fails to be a §-bridge in U[S]) < exp(—Q(M)).

In other words, we have thereby proved (2.6.5) and, hence, Lemma 2.6.6. O
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The next lemma shows how to ascend from (k — 1)-uniform coverings to k-uniform

coverings.
Lemma 2.6.9. For ecvery k = 4 the covering principle #;_1 implies Q..

Proof. Let a, 5,9, > 0, and an odd integer £ > 3 be given. Without loss of generality we

may assume that 9, « o, 3, k=%, ¢~1. Pick a sufficiently small constant

Cox € Vs (2.6.8)

The statement #._; applied to g, g, l, C; here in place of o, 3, ¢, £ there delivers an
infinite arithmetic progression P < (k — 1)IN. Choose M » (' such that 22 (M + 1) € P
and notice that M = —1 (mod k) is clear.

Now let ¥ be a («a, 3, ¢, %)—constellation on n vertices, where n is sufficiently large. We
are to prove that all but at most 92|V (W) vertices of ¥ can be covered by vertex-disjoint

M-vertex paths starting end ending with (,,-connectable (k — 1)-tuples. Let

P ={P < H(V): Pis a k-uniform M-vertex path
whose first and last (k — 1)-tuple is Q*—connectable}

be the collection of all paths that might occur in such a covering, and let € < & be a

maximal subcollection of vertex-disjoint paths from &2. Further, let

U=v~ v

Pe%

be the set of uncovered vertices. We may assume that
U| > 92|V ()], (2.6.9)

since otherwise nothing is left to show. Now roughly speaking the strategy is to find
a set S < V(¥) of size M? meeting at most M paths from % such that for ‘many’
vertices u € U we can apply #y_; to the (k — 1)-uniform constellation ¥, [S], thus getting
at least M + 1 vertex-disjoint paths with %(M + 1) vertices. These paths will agree
for many vertices u € U and can then be augmented to k-uniform paths engendering a
contradiction to the maximality of €. In the intended application of #,_; we are allowed
to specify a set of bridges B that we potentially would like to see at the ends of the paths

we obtain. Since we ultimately aim at generating paths in & and, hence, paths starting
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and ending with (,,-connectable (k — 1)-tuples, it seems advisable to let 28 be the set of

%*—bridges in ¥, [S] that are (4.-connectable in W. This choice of B is only permissible

Gax
2

many cases exploits that for fixed v € U and a random choice of S < V(V¥) Lemma 2.6.6
tells us that the (,.-bridges in ¥, are likely to be C;*—bridges in U,[S]. Thus it suffices to

focus on vertices © € U which are not in the set

S|*=1). Our way of ensuring this in sufficiently

if |B] is sufficiently large (i.e., at least

Ubaag = {u € U: at most %nk’l of the (4,-bridges in ¥, are (,,-connectable in \IJ} .

The next claim states that this set is indeed small.

Claim 2.6.10. We have |Upaq| < 40, 0.

Proof. Set

IT= {(1:1, o Ty, w) € V(U)X Upaa: (21, ..., 25_1) is a (,,-bridge in ¥,

but not (,.-connectable in \IJ} .

For every u € Upaq Corollary 2.2.28 tells us that the number of (,,-bridges (x1,...,251)

1
10

them fail to be (,,-connectable in ¥. This proves that

in U, is at least é(n — 1)kt > Lpk~1 and by the definition of Up,q at least %nk_l among

1

) >
20

nF " Upadl -

On the other hand, an upper bound on |II| can be obtained as follows. Let TTjeg
be the set of k-tuples in II for which (xy,...,x,_1) fails to be (,.-leftconnectable and
define Il,g similarly with respect to rightconnectability. As a (k — 1)-tuple that is
not (,.-leftconnectable in ¥ can only be a (,,-bridge in ¥, for less than (,.n vertices u,
we have |[Ilie,| < (wn®. The same upper bound can be proved for |Ilig| and because
of TT = Meg, U Mg this yields || < 2¢,.n*. Combining the two bounds on |II| we obtain
indeed |Upaa| < 40(aun. O

Because of our choice of (. in (2.6.8) this yields |Upa| < %ﬁfn, which combined
with (2.6.9) implies

1
U N\ Upaa| = §ﬂ2n. (2.6.10)

Next we will partition the vertex set into blocks some of which will later be selected
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randomly for hosting the augmentation of 4. Form a partition
V(U)=Bjv...uB,uB, (2.6.11)

with |Bi| = --- = |B,| = M > |B’'|, where the first |€| classes By, ..., Bjg| are the vertex
sets of the paths in the collection ¢, and Bjg|41,..., B, are arbitrary disjoint M-sets
making (2.6.11) true. The sets By, ..., B, are called blocks. A society is a set of M blocks.
We point out that

if .7 is a society and S = Uy, then |S| = M?. (2.6.12)
Definition 2.6.11. A society . with S = | J. is called useful for a vertex u e U if

(1) ugs,

(2) W,[S] is a (k — 1)-uniform (

,g,ﬁ a/2 )-constellation.

(8) The number of (k—1)-tuples in S*~* that are 5*-bridges in ¥,,[S] and (,.-connectable
S|E=L,

in U is at least %

The next claim explains the naming of useful societies: ¥, [S] contains M + 1 “suitable”

paths.

Claim 2.6.12. If a society .7 is useful foru e U and S = | J.7, then there is a collection W
of mutually disjoint (k — 1)-uniform paths in W, [S] with the following properties.

(i) Bvery path in # has 2 (M + 1) vertices.
(i) Every path in W starts and ends with a (k — 1)-tuple that is (. -connectable in V.
(it) |W| =M+ 1.

Proof. By Definition 2.6.11 (8) and (2.6.12) the set
= ={ée 8" € is (i-connectable in ¥ and a %*-bridge in ¥, [S]}

satisfies || > %= (M?)"~1. Now we apply #y_; to ¥,[S], E, %+, and 2(M + 1) here in

place of ¥, B, &, and M there — which is permissible due to the selection of parameters in
the beginning of the proof of Lemma 2.6.9.

This application of #_; yields a collection # of mutually disjoint (k — 1)-uniform
paths in W, [S] that covers all but at most (S| + 21 (M + 1) vertices of S such that each
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path starts and ends with a bridge from =. Since each bridge in = is a (,.-connectable

tuple in ¥, it remains to check that |[#| > M + 1. Because of M » (' » k we have indeed

(1= Gu/DM? — EL(M +1) _ (1- Gu)M(M +1)

W 2 =
d EL(M +1) (1—Cu)M

=M+1. [l

Lemma 2.6.6 implies that some society is useful for many vertices.

Claim 2.6.13. There exists a society . that is useful for §|U N Upaa| vertices in U N Upggq.

Proof. By double counting it suffices to establish that for every vertex u € U ~ Upaq
at least % of all societies are useful. Fix an arbitrary such vertex u and suppose first
that u ¢ B’. Without loss of generality we may assume that v € B,. We plan to apply
Lemma 2.6.6 with (k — 1, ;55%=1, Cxx) here in place of (k, i1, §) there to the (k — 1)-uniform

constellation ¥, the partition
V(V,)=Byv...uB, 1w (B,uB ~{u}),
and the set
B, = {2 e V(V,)" ' 7 is (..-connectable in ¥ and a (,,-bridge in ¥, }.

Notice that Fact 2.2.35 tell us that W, is indeed an (o, 3, {, ;75 )-constellation. More-
over, u ¢ Upaq implies |B,] = 5501 > (. |[V(T,)[F1. So all assumptions of Lemma 2.6.6
hold and we conclude that at least %(”j\}l) > %( ]’\’4) societies are useful for u. The case
u € B’ is similar. O

For the remainder of this proof we fix a society . that is useful for at least §|U N Upad|
vertices in U N Upaq and set S = .. Claim 2.6.12 informs us that for every u € U,
for which . is useful, there is a collection #;, of M + 1 mutually vertex disjoint (k — 1)-
uniform paths in ¥,[S] consisting of *-1(M + 1) vertices each, which start and end
with (,.-connectable (k — 1)-tuples.

Since there are at most (M?)! possibilities to order the vertices in S, there has to exist

a subset U’ € U \ Uypaq such that #;, = # is the same for every u € U’ and

21U N Ubad @610 n (M —(k—1))(M +1)

R T T 1o Vel T k:
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Now, for every path in % put W distinct vertices from U’ aside and insert them at

every k-th position into the path from # (see Figure 2.6.2).

U /
AN IR

:./. A N
o) .7) '.) oy

Figure 2.6.2: Augmenting a yellow %(M + 1)-vertex path to a lila M-vertex path.

Since the starting and ending (k — 1)-tuples of every path in % are (,,-connectable in ¥

and the insertion of the additional vertices increases their length to %(M +1)+ w =

M, the resulting M + 1 paths are elements of &2. Hence, the collection ¢ can be augmented
by removing the at most M paths whose blocks lie in . and adding the M + 1 newly
constructed paths instead. As this contradicts the maximality of &, the assumption (2.6.9)

must have been false. This concludes the proof of Lemma 2.6.9. O
Finally, we arrive at the main result of this section.
Proposition 2.6.14. For every k > 3 the statement Oy holds.

Proof. We argue by induction on k, the base case being provided by Fact 2.6.2. The
Lemmata 2.6.4 and 2.6.9 show that O,_; = #,_1 = Oy, which is the induction step. [

2.7 The proof of Theorem 2.1.2

The results in the foregoing sections routinely imply Theorem 2.1.2, but for the sake of

completeness we provide the details.

Proof of Theorem £2.1.2. Given k > 3 and a > 0 we choose some auxiliary constants fitting

into the hierarchy
GE T > u» B0 > G 0> Gu > 0 > M ngt (2.7.1)

where ¢ > 3 is an odd integer and M = —1 (mod k).
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Now let H = (V,E) be a k-uniform hypergraph on n > ng vertices satisfying the
minimum (k — 2)-degree condition 8,_o(H) = (3 + oz)";. By Fact 2.2.34 and a » pu>» 3,07}
there exists an («, 3, ¢, u)-constellation W with underlying hypergraph H.

Stage A. We set aside a reservoir set R of size [R| < ¥2n provided by Proposition 2.4.1.
Let us recall that by Corollary 2.4.2 and ¥,, « 9,, k=%, 71

(1) for every set R’ € R of at most ¥2,n “forbidden” vertices, every (,,-leftconnectable
(k — 1)-tuple @, every (,,-rightconnectable (k — 1)-tuple b that is disjoint to @, and
every i € [0, k), there is an @-b-path through R ~ R’ with f(k,i,) inner vertices.

Stage B. Next, we choose an absorbing path avoiding R. More precisely, Proposition 2.5.1
yields a path P4 € H — R with the properties that

(2) [V(Pa)| < dn,
(3) the starting and ending (k — 1)-tuple of P4 are (4,-connectable,

(4) and for every subset Z < V N\ V(Py4) with |Z| < 29?n and |Z| =0 (mod k), there is
a path Q < H with V(Q) = V(P4) u Z having the same end-(k — 1)-tuples as Pj.

Stage C. We proceed by covering almost all vertices belonging neither to R nor to P4 by
long paths. To this end we set X = R u V(P4) and consider the constellation ¥/ = ¥ — X.
Since | X| < 9?n+9Y,n < 20,n, Lemma 2.2.36 tells us that ¥’ is an (%, g, l, 2,u)-constellation.
So the covering principle ¢, defined in Definition 2.6.1 and proved in Proposition 2.6.14
applies to ¥, 2(,. here in place of ¥, (,, there. In other words, in ¥’ there exists a
collection € of mutually disjoint M-vertex paths whose end-tuples are (2(,.)-connectable
in U’ such that

v~ V(P)’ < %n.

Pe%
Due to Fact 2.2.18, the end-tuples of the paths in ¢ are (,,-connectable in W.
Stage D. Now we want to connect the paths in € and P4, thus obtaining one long path T’
with (,.-connectable end-tuples. This is to be done by means of |€’| connections through

the reservoir, iteratively using (7) with ¢ = 0. Altogether these connections require

45 0kn

1500, <

2
< 79**”

vertices from the reservoir. So |%’| successive applications of (1) indeed allow us to construct
this long path T' (see Figure 2.7.1).
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PA\
~ DR

T

L %

Figure 2.7.1: The situation after Stage D.

Stage E. Moreover, we can still use (1) one more time in order to connect the end-tuples
of T, thus creating one long cycle C'. For this last connection we use f(k,1,{) inner vertices,
where i € [0, k) is determined by the congruence i = n — |V(7T')| (mod k). The current
situation is depicted in Figure 2.7.2.

A A

L ¢

Figure 2.7.2: The situation after Stage E. The dots in Z represent sets of k vertices each.
Our choice of i guarantees that the set Z = V(¥) \ V(C) satisfies
Zl=n—|V(T)| - f(k,i,£)=0 (mod k).
Furthermore, Z has at most the size

1Z] < [R| + )V(\Iﬂ) U V(P)‘ < 20%n.
Pe%

Stage F. Taken together, the last two displayed formulae and (4 ) show that Z can be
absorbed by Py, i.e., that there exists a path @ with V(Q) = V(P4) u Z having the
same end-tuples as P4. Upon replacing the subpath P4 of C' by () we obtain the desired
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Hamiltonian cycle in H (see Figure 2.7.3).

Q

Figure 2.7.3: The situation after Stage F.
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3. A pair degree condition for Hamiltonian

cycles in 3-uniform hypergraphs

3.1 Introduction

The search for conditions ensuring the existence of Hamiltonian cycles in graphs has been
one of the main themes in graph theory. For graphs, several classic results exist, starting
with the tight condition by Dirac [27] stating that every graph G = (V, E) on at least 3
vertices and with minimum degree 6(G) = |V'|/2 contains a Hamiltonian cycle. Pésa [94]

improved this result to a condition on the degree sequence:

Theorem 3.1.1. Let G = ([n], E) be a graph on n = 3 vertices with degree sequence
d(1) <---<d(n). Ifd(i) =i+ 1 for alli < (n—1)/2 and if furthermore d (|n/2]) = [n/2]

when n is odd, then G contains a Hamiltonian cycle.

Finally, Chvétal [18] achieved an even stronger result: A graph G = ([n], E) on n > 3
vertices with degree sequence d(1) < --- < d(n) contains a Hamiltonian cycle if for all ¢ < 7
we have: d(i) < i = d(n—i) = n—i. On the other hand, for any sequence a; < --- < a, <n
not satisfying this condition, there exists a graph on vertex set [n] with a; < d(i), for
all i € [n], that does not contain a Hamiltonian cycle. The aim of this article is to take a
first step towards a generalisation of Chvatal’s result to more general structures, namely
hypergraphs, by proving an analogue of Pésa’s result above for 3-uniform hypergraphs.

A k-uniform hypergraph (or k-graph) is a pair (V, E) consisting of a (vertex) set V and an
(edge) set E < V*). We sometimes write v(H) = |V (H)| and e(H) = |E(H)|. In the follow-
ing let H = (V, E) be a 3-graph. For U < V, we define H[U] := (U, E(U)) with E(U) :=
{ee E:e < U}. For vertices v,w € V, we denote by d(v,w) := |{x € V : vwz € E}| the
pair degree, where for convenience we write an edge as vwz instead of {v, w, x}. In addition,
it is also common to study the vertex degree d(v) := |{e € E : v € e}|. The minimum pair de-

gree is 0o(H) := min,, .y d(v, w) and the minimum vertex degree is 01 (H) := min,ey d(v).
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Often it is useful to consider something like a 2-uniform projection of H with respect to a
vertex v € V; we define the link graph L, of v as the graph (V,{zy : zyv € E}).

We will follow the definition of paths and cycles in [95], suggested by Katona and
Kierstead in [67]. A 3-graph P is a tight path of length ¢, if [V (P)| = ¢ + 2 and there is
an ordering of the vertices V(P) = {x1,...,2p2} such that E(P) = {z;x;412:42 : i € [{]}.
The tuple (21, x9) is the starting pair of P, the tuple (z,41,xs42) is the ending pair of P,
both are the end-pairs of P and we say that P is a tight (x1,22)-(2¢41, Tey2)-path. All
other vertices of P are called internal. We sometimes identify a path with the sequence
of its vertices x1,...,%so. Accordingly, a tight cycle C of length ¢ > 4 consists of a
path x, ..., z, of length ¢ — 2 together with the two hyperedges x,_z,x, and xpri25. A
tight walk of length ¢ is a hypergraph W with V(W) = {z1, ..., x,,2}, where the x; are not
necessarily distinct, and E(W) = {x;x; 1712 : i € [{]}. Note that the length of a path, a
cycle or a walk is the number of its edges and we will use this convention for cycles, paths,
and walks in graphs as well.

One might also consider degree conditions for loose Hamiltonian cycles in k-uniform
hypergraphs, in which consecutive edges intersect in less than k — 1 vertices. Loose
Hamiltonian cycles were for instance studied in [16,25,56,76]. From now on, we only
consider tight paths and cycles and consequently we may omit the prefix “tight”.

In recent years, there has been some progress to achieve Dirac like results for hypergraphs.
Rodl, Rucinski, and Szemerédi [98] started by showing that for o > 0, there is some ng
such that every 3-graph on n > ng vertices with minimum pair degree at least (% + a)n

contains a Hamiltonian cycle. Actually, in [100] they improved the result to the following.

Theorem 3.1.2. Let H be a 3-graph on n wvertices, where n is sufficiently large. If H
satisfies 0o(H) = |n/2|, then H has a Hamiltonian cycle. Moreover, for every n, there exists
an n-vertex 3-graph H,, such that 6o (H,) = |n/2] — 1 and H, does not have a Hamiltonian

cycle.

More recently, Reiher, Rodl, Rucinski, Schacht, and Szemerédi [95] proved the following

asymptotically optimal result.

Theorem 3.1.3. For every a > 0, there is an ng € IN such that every 3-graph H on n = ny

vertices with 61 (H) = (g + a) %2 contains a Hamiltonian cycle.

Since the first version of this article, this has been generalised to all k£ independently
by Lang and Sanhueza-Matamala [77] and by Polcyn, Reiher, Rodl, and myself [93].
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In this work, we study a new pair degree condition that forces large 3-graphs to contain
a Hamiltonian cycle. Call a matrix (d;;);; Hamiltonian if every 3-graph H = ([n], E)
with d(i, j) > d,;, for all ij € [n]®, contains a Hamiltonian cycle. It would be very desirable
to get a result for 3-graphs similar to the one by Chvatal for degree sequences in graphs,
that is, a characterisation of all Hamiltonian matrices. For the graph case, Pdsa’s result
(Theorem 3.1.1) was a step towards the characterisation by Chvétal. In a sense, our main

result can be seen as a 3-uniform (asymptotic) analogue of the theorem by Pésa.

Theorem 3.1.4 (Main result). For a > 0, there exists an ng € IN such that for all n € IN
withn = ng, the following holds. If H = ([n], E) is a 3-graph with d(i, j) > min (4, j, %) +an
for allij € [n]®, then H contains a (tight) Hamiltonian cycle.

This result strengthens the asymptotic version of Theorem 3.1.2 achieved in [98].

Let us remark that recently there have also been related results on degree sequences
in graphs. For example, Treglown [112] gave a degree sequence condition that forces the
graph to contain a clique factor and Staden and Treglown [108] proved a degree sequence
condition that forces the graph to contain the square of a Hamiltonian cycle. Since the
first version of this article, Bowtell and Hyde [12] obtained a degree sequence condition for
perfect matchings in 3-graphs.

Note that in the proof (and the proofs of the lemmas) we can always assume o <« 1.
Before we start with the outline of the proof of Theorem 3.1.4 in the next section, we give

the following examples showing that our result is asymptotically optimal in some regard.

Example 3.1.5. (i) Consider the partition X OY = [n] with X = [[™]] and let H be

the hypergraph on [n] containing all triples e € V) with |e n X| # 2.

Then we have d(i,j) = min (i,,2) — 1 for all ij € [n]®. However, if there was a
Hamiltonian cycle in H, it would contain at least one edge with two vertices from X.
But such an edge can only lie in a cycle in which all vertices are from X < [n].

Hence, H does not contain a Hamiltonian cycle.

(it) Nezt, look at the partition X OY = [n] with X = [|2|] and let H be the hypergraph

on [n] containing all triples e € V) such that |e 0 Y] # 2.

Then for all ij € [n]®, we have d(i,j) = 5 — 2. But a similar argument as above

shows that H does not contain a Hamiltonian cycle.

The two examples show that Theorem 3.1.4 does not hold when replacing the degree con-

dition with d(é, j) > min (4, , 2) —1 (not even when replacing it with d(z, j) > min (i, j)— 1)
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and neither when replacing it with d(¢,j) = min (7, j, 2 — 2). Note that this means that
Theorem 3.1.4 cannot (asymptotically) be improved on by decreasing the requirement on
the degree of every pair and neither by “capping” at a lower value than at § — 1. However,
it is not yet a Chvatal like characterisation of all Hamiltonian matrices. For instance, it is
easy to see that there are Hamiltonian matrices with d;; = 0 for Q(n?) choices of 7, j € [n].

In the following, we will omit rounding issues if they are not important, e.g., we will
assume that an etc. are natural numbers. Further, for A, B < R,, we write that a
statement & holds for all a € A and b € B with a < b, to say that for every b € B, there

exists an ag € R, such that for all a € A with a < ag, the statement & holds.

Organisation

In the next section we give an overview of the proof, state the auxiliary results for each
step and finally deduce the main result Theorem 3.1.4 from these. Sections 3.3-3.6 are
devoted to the proofs of the auxiliary results. In the end, we collect some interesting

related problems in Section 3.7.

3.2 Overview and final proof

The proof of Theorem 3.1.4 uses the absorption method introduced by Rodl, Rucinski, and
Szemerédi in [98], which helps to reduce the problem of finding a Hamiltonian cycle to the
problem of constructing a cycle containing almost all vertices.

This strategy proceeds by constructing a cycle containing almost all vertices of the
hypergraph H and a special subpath into which we can “absorb” any small set of vertices,
meaning we can integrate the left-over vertices into this subpath to obtain a Hamiltonian
cycle. For that, we use that for every vertex v € V(H), there exist many absorbers in H, a
structure consisting of several paths which can be restructured into paths containing v while
keeping the same end-pairs. Then, utilising the probabilistic method, we can construct
an absorbing path, a path containing many absorbers for every vertex. Lastly, we build a
long path in the remainder of H, consisting of almost all vertices, and connect it with the
absorbing path to a cycle into which the left-over vertices can be absorbed.

For these constructions we often need to connect two paths, that is, find a path between
their end-pairs. Hence, we will begin by showing that we can connect every pair of pairs of

vertices by a large number of paths with a fixed length.
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Lemma 3.2.1 (Connecting Lemma). Let o, > 0, n, L € N with 1/n « ¥ <« 1/L < a.
If H=([n],E) is a 3-graph with d(i,j) > min (i,4,%) + an, for all ij € [n]®, then for
all disjoint ordered pairs of distinct vertices (z,y), (w, z) € [n]?, the number of paths of

length L in H connecting (z,y) and (w, 2) is at least Int=2.

See Section 3.3 for the proof of Lemma 3.2.1.

Later, we will use this result whenever we need to connect different paths that have
been constructed before. However, when we want to connect paths after almost all the
vertices are covered by paths, we need to ensure that there still exist paths, disjoint to
all previously built paths. To this end, we will take a special selection of vertices - the
reservoir - aside, with the property that for every pair of pairs of vertices, we still have
many paths of fixed length connecting them, where all internal vertices of those paths are
vertices of the reservoir. The existence of such a set will be shown by the probabilistic

method.

Lemma 3.2.2 (Reservoir Lemma). Let o, > 0 andn, L € N such that 1/n « ¥ « 1/L « a.
If H = ([n], E) is a 3-graph satisfying d(i, j) > min (i, 5, %) + an, for all ij € [n]®, then
there exists a reservoir set R < [n] with %Qn < |R| < 9%n such that for all disjoint ordered
pairs of distinct vertices (x,y), (w, 2) € [n]?, there are at least ¥ |R|L72 /2 paths of length L

in H which connect (x,y) and (w, z) and whose internal vertices all belong to R.

It follows that removing a few vertices from the reservoir will not destroy its connectabil-

ity property.

Lemma 3.2.3 (Preservation of the Reservoir). Let o, > 0 and n, L € N such that 1/n <
¥ « 1/L « o. If H=([n],E) is a 3-graph satisfying d(i,j) > min (i,5,%) + an, for
all ij € [n]®, R is given by Lemma 5.2.2, and R' € R with |R'| < 29*n, then for all
disjoint ordered pairs of distinct vertices (z,y), (w, z) € [n]?, there is an (z,y)-(w, 2)-path

of length L in H with all internal vertices belonging to R ~ R’'.

See Section 3.4 for the proof of Lemma 3.2.2 and Lemma 3.2.3.

The proof will continue with the definition of the absorbers and we will show that for
each vertex, there are many absorbers. We make use of this fact when we show that a
small random selection of tuples still contains many absorbers for every v € V(H). With
the Connecting Lemma we can afterwards connect all the small paths in that selection to

a path that can absorb any small set of vertices.
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Lemma 3.2.4 (Absorbing Path). Let a,¥ > 0 and n, L € N such that 1/n « ¥ <« 1/L < a.
If H = ([n], E) is a 3-graph satisfying d(i,j) = min (i, j, 2) + an, for all ij € [n]®, and R
is given by Lemma 3.2.2, then there ezists a path P4 € H 'R with v(P4) < Yn and with
the (absorbing) property that for each X < [n] with |X| < 20?n, there is a path with vertex
set X U V(Pa) and the same end-pairs as Pa.

See Section 3.5 for the proof of Lemma 3.2.4.

By using weak hypergraph regularity and then an explicit result to obtain an almost
perfect matching in the reduced hypergraph, we show in Section 3.6 that in every hy-
pergraph H satisfying the degree condition in Theorem 3.1.4, there exists a path which

contains almost all vertices of H (see Proposition 3.2.5).

Proposition 3.2.5 (Long Path). Let a,9 > 0 and n, L € IN such that 1/n « ¥ <« 1/L < a.
Let H = ([n],V) be a 3-graph with d(i,j) > min (i,j, g) +an, for allij € [n]®, let R be
as in Lemma 3.2.2, and Py as in Lemma 3.2.4.

Then there exists a path ) € H ~ P4 such that
v(Q) = (1—29*)n— v (Pa)

and [V (Q) n R| < 9'n.

See Section 3.6 for the proof of Proposition 3.2.5.

Now we are ready to prove our main result, Theorem 3.1.4 (see also Figure 3.2.1).

Proof of Theorem 3.1.4. Let a,¥ > 0 and n, L € IN such that 1/n « ¥ « 1/L « . Now
let H = ([n], E) be a 3-graph satisfying the degree condition d(i, j) > min (4, j, 2) + an
for all ij € [n]®. Lemmas 3.2.2, 3.2.4, and Proposition 3.2.5 provide a reservoir R, an
absorbing path P4 € H \ R and a long path Q < H \ P4 with |R n V(Q)| < 9'n.
Let (a,b) and (c,d) be the end-pairs of P4 and let (r,s) and (t,u) be the end-pairs
of @ (note that they are disjoint since we have Q = H ~ P4). Since |R n V(Q)| < 9'n
and P4 € H 'R and by Lemma 3.2.3, we can choose a path P; of length L connecting (¢, u)
and (a,b) with all internal vertices in R ~ (V(Q) u V (P4)) and, by the hierarchy of
constants, we also find a path P, of length L connecting (¢, d) and (r, s) with all internal
vertices in R . (V(Q) uV (P4) uV (Py)). That leaves us with a cycle C' in H which
satisfies v(C') = (1 — 29?)n and P4 < C. The absorbing property of P, guarantees that
for X := [n] N\ V(C), there exists a path P} with V (P}) = V (P4) u X which has the
same end-pairs as P4 (which are connected to )) and hence there is a Hamiltonian cycle
in H. [l
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Figure 3.2.1: Overview of the proof

3.3 Connecting Lemma

Before we start with the actual proof of Lemma 3.2.1, let us take a look at the strategy. Say,
we want to connect two (ordered) pairs (x,y) and (w, z) in a hypergraph H satisfying the
condition in Theorem 3.1.4. One can easily reduce the case of both pairs being arbitrary to
that of both having pair degree at least § +an by “climbing up” in the degree sequence (see
the beginning of the proof). Then N ((z,y), (w, 2)), the set of common neighbours of (z,y)
and (w, z), is non-empty because of the high pair degrees of (x,y) and (w, z). If we were
able to find many (2-uniform) y-w-paths in the link graphs of elements in N ((x,y), (w, 2)),
we could subsequently insert the elements of N ((z,y), (w, z)) at every third position of
such a path, thereby obtaining a 3-uniform walk.

So we could indeed connect two pairs if the link graphs of vertices in N ((z,y), (w, 2))
would inherit the right degree condition, i.e., if the vertices would be large (regarded as
elements of IN). However, since we cannot control how large the elements in N ((z, ), (w, z))
are, the degree condition that the link graphs of vertices in N ((z,y), (w, z)) inherit may
not be strong enough to let us connect two vertices by “climbing up” the degree sequence.
The idea to insert a middle pair (a,b), as done in [95], overcomes this problem. If (a, b) has
some large common neighbours with (z,y) and some with (w, z), we can find enough (z, y)-
(w, z) walks passing through (a, b) by applying the strategy explained above (now we can
connect vertices in the link graphs by “climbing up” the degree sequence). The number of

those walks will depend on the number of large common neighbours that (a,b) has with
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each (x,y) and (w, z). So roughly speaking, if the sum over all (a,b) of large common
neighbours of (a,b) and (z,y) and of (a,b) and (w, z) is large, we can indeed prove the
Connecting Lemma. This last point (in its accurate form) will follow from the observation
that two link graphs of large vertices have many common edges.

Note that this strategy can be used in the seemingly different settings of our pair degree
condition and the minimum vertex degree condition in [95], since in both cases we have
“well connected” subgraphs in every link graph and each two of these subgraphs intersect
in many edges: In [95] those subgraphs are the robust subgraphs and in our case we can
just consider the link graphs of large vertices. After the first version of this article, this

idea has also been used extensively in [93].

Proof of Lemma 3.2.1. Observe that when we show that there exists an L € N and a 9 > 0
such that the statement of Lemma 3.2.1 holds for these, it easily follows that it holds for
all L e N and ¥ > 0 with 1/n « ¥ « 1/L « o « 1. Hence, let the hierarchy and H be
given as described in the lemma and let (z,y), (w, 2) € [n]* be two disjoint ordered pairs
of distinct vertices.

First, we will show that it is possible to “climb up” along the degree sequence in
(compared to n) few steps, starting from the pairs (x,y) and (w, z) and ending with pairs
of vertices > 7.

In the second step, we will connect these two by utilising an analogous “climb up”
argument in the link graphs of neighbours of a pair and slipping in an additional connective

pair. We first look for walks rather than paths and conclude by remarking that many of
them will actually be paths.

First Step

By induction on ¢ > 3, we will prove the following statement: There exist at least (%)h2 nt=2
walks ©1 = x,x9 = y, 23, ..., 2, such that for ¢ > 3 we have:
! n Q@
;> min (— '—2,f) a 3.3.1
x; > min (4n(z ) 5) t " ( )

We will first show the statement for ¢ = 3 and ¢ = 4 and then deduce it for any ¢ > 5 given
that it holds for ¢ — 1.
¢ = 3 : By the degree condition on H we have d(z,y) > min (1,2, g) + an. Hence,

there exist at least £n possible vertices x3 such that 1, 29,23 is a walk and z3 = §n + ¢n.
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¢n walks satisfying the condition (3.3.1) that we

get by the previous case. We then have d(z3, x3) = min (1 on ) + an, so there exist at

¢ =4: Let x1,x9, 23 be one of those

least £n possible vertices x4 such that 1,9, 23,74 is a walk and z; > n(z —-2)+ ¢
for ¢ = 3,4.

¢ >=5:Let x1,x9,23,...,29_1 be one of the (%)gi?’ n’=3 walks satisfying, for i > 3,
« n Q@
sz min (Gn(i-2),0) + 5
x; = min <4n(z ) 5) T 1"

that we get by induction. Then our pair degree condition entails

a n
d(xy_2,T¢—1) = min (4 (0—4)+ " 2) +an
which in turn gives rise to at least £n possible vertices x, such that xy, %, ...,z build a

walk and we have z; > min ($n(i — 2),%) + Yn for all i € [¢],i > 3.

This leaves us with (%)a ne possibilities for walks
1 =T, T2 =Y, T3, ... (L’2+2

with x2 y,22 , > 7 and an analogous argument for (w, z) with just as many possibilities
for Walks

21=Z,22=w723,...,2%+2

n
with 224152249 2 5

Second Step

Let m be the smallest even number > X + 1. It now suffices to show that for some ¢’ > 0
with 1/n « ¥ « a we have the following. For all ordered pairs (2/,y'), (v, ') € [n]?
for which the vertices within each pair are distinct and 2',y,w’, 2" = §, the number
of (z/,y')-(w', z") walks with 3m + 4 internal vertices is at least ¥/n3m™+4.

Since d(2',y’) = § + an, there exists a set Uyy = {u1,...,Uan} S [n] \ [n/2] such
that 2’y’ € E(L,,), for all i € [an] (recall that L, denotes the link graph of u;). Similarly,
there exists Uy = {v1,...,Van} S [n] N [1n/2] such that w'z’ € E(L,,), for all i € [an].

For (a,b) € [n]?, let I, = {i€[an]:abe E(L,)n E(L,)}. Since all vertices > %
(apart from u;, v;) have in both L,, and L,, at least § + an neighbours and therefore 2an

vertices that they are adjacent to in both L, and L,,, there are at least ¢~ edges in L,, "L,
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m—1

Figure 3.3.1: Idea of the second step, the picture is similar to [95, Fig. 4.1]

Thus, by double counting we have

O{TLQ

= —an.
4

Z Lap| = Z |E (Ly,) 0 E(Ly,)
a,b)e[n]?

(a, i€[an]

Next, for fixed (a,b) € [n]?, we find a lower bound on the number L, of 3-uniform

walks of the form

x'y/ui(l)rlrgui(g) .. .ui<%)rm_1rmui(%+l)ab

where y'riry ... 1 17na is a 2-uniform walk in L and i(k) € I, for all k € [% + 1].

To this goal, first observe that for all i € [an], the number of y'a-walks of length m +

Ui (k)

1 in L, is at least (2)" n™. Indeed, since u; > n/2, we know that for j € [n], we
have dp, (j) > min (j, %) + an. Therefore, there are at least (%)m_l walks of length m — 1
starting in @ in which each vertex is either at least § + < or at least < larger than the
preceding vertex. Since we set m > 1/a + 1, each of these walks ends in a vertex > § and
for at least (%)m_l of them the last vertex is distinct from y’. For each such walk T" with
its last vertex a/, # v/, there are 2an possibilities for common neighbours of 3" and a/,

(note that the degrees in L., of both ' and a7 are at least § + an). In total, that gives us
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at least (%)m y'a-walks of length m + 1 in L,
Now for i€ [n]™,

we set Dy, (7) := {i € I : y'7a is a walk in L, }. Again by double
counting and by the previous observation we infer

2 1Da (P = Y {7 e [n]

™ y'Fais a walk in Lyg) | = Lo (g) n™.
: 3
TE[n]™ i€lyy

Note that for each 7€ [n|™ that is a y'a-walk in L, for every k € |2 + 1], we have that

2y w1y - - .ui<%)rm_1rmui(%+l)ab

is a 3-uniform (2'y’)-(ab)-walk of length m + % + 3 in H. Hence, with Jensen’s inequality
we derive:

m 1 5 S o™\ 71
> 209 20 (S iow ) 2 (1l (5)7) 7

We define R,, analogously as the number of 3-uniform walks of the form

! !
abv;(1)51820j(2) - - Vi) Sm-1SmVj(m )W 2
where bs;sy ... 8,_1S,w’ is a 2-uniform walk in L,

S and J(k) € Iy, for all k € [% + 1],
and get the same lower bound by an analogous argument
At last, let W be the number of (2'y)-(w'z’)-

)-walks of length 3m + 6 in H. We apply
Jensen’s inequality a second time to obtain

W =) LayRay
(b)eln?

QN ™ *+2m m+2
= (3) EELQH
(a,b)e[n

+2
- 9m <a)m 24om 9 < 1 % n3)m
=N g n -

n? 4
2,9 2\ Mm+2
><Q>m+m a” p3mtd
=
3 4
O(2 m2+3m+2
3m+4
= — n
= .

In total, putting together the walks connecting (z,y) and (2,%'), («/,%') and (w',2)
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and (', 2’) and (w, z) we get that the number of (z,y)-(w, z)-walks of length 2- 2 +3m +6

in H is at least

o 2 2 062 m2+3m+2
o 2 3 4
(<5> na) « (4) pdm 5 gmty dsmd

Since only O (n§+3m+3> of these fail to be a path, we are done. O

3.4 Reservoir

In this section, we will prove the existence of a small set, the reservoir, such that any two
pairs of vertices can be connected by paths with all internal vertices lying in the reservoir.
The probabilistic proof of this lemma as done in [95] works in almost the same way with
different conditions as soon as the Connecting Lemma is provided. We will state two

inequalities first that we will need for the probabilistic method.

Lemma 3.4.1 (Chernoff, see for instance Cor. 2.3 in [62]). Let X1, X, ..., X,, be a sequence
of m independent random variables X; :— {0, 1} with P (X; = 1) = p and P (X; = 0) = 1—p.
Then we have for § € (0,1):

e P (Zie[m] X, = (1+9) pm) < exp (—%pm)

. P (Zie[m] X; < (1-9) pm> < exp (—%pm)

Lemma 3.4.2 (Azuma-Hoeffding, McDiarmid, Cor. 2.27 in [62] and Thm. 1 in [85]).
Suppose that X1, ..., X,, are independent random variables taking values in A+, ..., A, and
let f:Ay x---x A, — R be a measurable function. Moreover, suppose that for certain
real numbers ci, ..., cpn =0, we have that if J, J' € [ [ A; differ only in the k-th coordinate,
then |f(J) — f (J')| < ¢k. Then the random variable X := f (X1,..., X,,) satisfies

P(|X —E(X)| =t) <2exp (—52)

We are now ready to prove Lemma 3.2.2.

Proof of Lemma 3.2.2. Let «, L, ¥, n, and H be given as in the statement. We choose
a random subset R < [n], where we select each vertex independently with probability

p = (1 — 10%) ¥?. Since |R| is now binomially distributed, we can apply Chernoff’s
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inequality (Lemma 3.4.1) and utilise the hierarchy to obtain

P(|R| < 0°n/2) <P <|7z| < gE (R)) < exp (—(1/23) pn) <13 (3.4.1)

We also have 9?n = (1 + ¢(L)) E (|R|) for some small ¢(L) € (0, 1) not depending on n and

therefore, again by Chernoff we get for large n:

P(|R| > ¥*n) <P(IR| = (1 + ¢(L))E(R)) < exp (—C(?Qpn) <1/3 (3.4.2)
By Lemma 3.2.1, we have that for all disjoint ordered pairs of distinct vertices (x,y)
and (w, 2), the number of (x,y)-(w, z)-paths of length L in H is at least 9nl=2. Let X =
X ((z,y), (w, z)) denote the random variable counting the number of those (z,y)-(w, z)-
paths in H that are of length L and have all internal vertices in R. We then have E(X) >
pE29nt-2.

Now we apply the Azuma-Hoeffding inequality (Lemma 3.4.2) (with X7, ..., X}, being
the indicator variables for the events “1 € R”,... “n € R”) which gives us, since the

presence or absence of one particular vertex in R affects X by at most (L —2)nZ~3, that

B(Y))
9 (pL—20nL—2)2 )

S2exp <_9n (L — 2)nl—3)?

— exp (~Q(n)).

GV )

p(x <

Wl N

ﬁ(pn)L_2> <P (X <

By the union bound, also the probability that there is a pairs of pairs for which the

respective number of connecting paths with all internal vertices in R is less than %19(]971)’:_2

can be bounded from above by
exp (—2(n)) x n* < 1/3 (3.4.3)

for n large. Moreover, recalling our hierarchy we have

2 1\ 2?2 L2 _ v L2
gﬁpL 2,L-2 _ (1 - mL) gﬁ (19271) > 5 (19271)

which together with (3.4.2) and (3.4.3) implies the following: With probability > 1/3 the
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chosen set R satisfies |R| < ¥?n and has the property that for all disjoint ordered pairs
of distinct vertices (z,y) and (w, z) there exist at least & IR|*? paths of length L in H
that connect those pairs and have all their internal vertices in R. Therefore, combining
this with (3.4.1) ensures that there indeed exists a version of R that has all the required

properties of our reservoir set. 0
It is not hard now to show the preservation of the reservoir, Lemma 3.2.3.

Proof of Lemma 3.2.5. Let H, R, R’ be as in the statement of the Lemma. Consider any

two disjoint ordered pairs of distinct vertices (x,y) and (w, z). We have

192

IR < 20*n < 193/2571 <92 R
by the lower bound we get from Lemma 3.2.2. Since every particular vertex in R’ is an
internal vertex of at most (L — 2)|R|*~3 of the (x,y)-(w, z)-paths of length L in H with

all internal vertices from R, the Reservoir Lemma tells us that there are at least
U o2 / -3 - V52 3/2 L—2
SIRIPZ=IRI(L = 2[RI = SIR[P = 975(L = 2)[RI77 > 0

such (x,y)-(w, z)-paths with all internal vertices in R N\ R'. O

3.5 Absorbing path

In this section, we will construct a short (absorbing) path P4 that can “absorb” every
small set of arbitrary vertices: For each small set X < V, we can build a path P
with V(P}) = V(P4) u X which has the the same end-pairs as Ps. Later, it will then
suffice to find a cycle containing P4 and almost all vertices, and subsequently absorb the
remaining vertices into P4. Since we already have a Connecting Lemma, actually the only
step left will be to find a long path.

In order to construct such an absorbing path, one first has to find many absorbers
for each vertex v: In our case, an absorber is a “cascade” of small paths that allows us
to build a new such cascade of paths with the same end-pairs, containing all vertices of
the first two paths and in addition the “absorbed” vertex v (see Definition 3.5.1). This
makes sure that we can maintain the path structure of P4, when absorbing a vertex since
the linking pairs remain unchanged. Once we know that for every vertex v, there exist

many such v-absorbers in H, the probabilistic method provides a small set of disjoint paths
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with the property that for every vertex v, this set contains many v-absorbers. Lastly, we

will simply connect all these paths via the Connecting Lemma and note that then we can

absorb a small set of vertices by greedily inserting each vertex into a different absorber.
To construct the absorbers, we again utilize that we can “climb up” the degree sequence.

More precisely, we define the following “absorbers”.
Definition 3.5.1. Let a > 0, n € N, set s = s(a) = 2- X, and let H = ([n], E) be
a 3-graph.! For x € [n], a 4s-tuple

(Ubwlayla Rly -5 Usy Wsy Ys, ZS) € [n]48

of distinct vertices is called (z,a)-absorber (in H) if

1. vywixy, 21 is a path in H,

2. fori € [s — 1], we know that v;w;y;+12i+1 and v;, 1w;41Y;2; are paths in H, and

3. wvswsYszs Is a path in H.

When « is not important, we omit it in the notation, then simply speaking of x-
absorbers. Note that we can absorb z into an x-absorber (vi, w1, y1, 21, . . ., Vs, Ws, Ys, Zs)
as follows, see also Figure 3.5.1. Before absorption, we consider the paths v;w;y; 11241
and v, w;1Y;2;, for all odd i € [s]. After absorption, we consider the path vjw;xy; 2,
the paths v;w;y;412:41 and v qw;1y;2; for all even i € [s — 2], and the path vsw,yszs.
Note that the (ordered) end-pairs of the considered paths are the same before and after

absorption.

Lemma 3.5.2 (Many Absorbers). Let 1/n « 9 « a« <« 1. If H = ([n],E) is a 3-
graph with d(i, j) = min (i,j, %) + an for all ij € [n]@) and R s a reservoir set given by
Lemma 8.2.2, then for every x € [n], the number of (x,a)-absorbers in ([n] ~ R)* is at

least ()4,

Proof of Lemma 3.5.2. Let 1/n <« ¥ < a < 1, let H be as in the statement, and let x € [n].

There are at least § possibilities to choose a vertex w; € [n] \ (R U {z}) with w; >
min(zx + 5 %) Then, there are at least %* choices for a vertex v, € N(wy, ) \NR with v; >
min(z + %, §) since [N (wy, z)| = min(wy, z, §) + an and w; > min(x + %, §). Similarly,
an
3

% choices for a vertex z; € N(x,y1) N (Ru {v, w1 }) with z; > min(z + %, 5).

choices for a vertex y; € N(wy, z)~ (Ru{v;}) with y; = min(z+ %, 2)

there are at leas 5 5

and at leas

1

'Recall that in our convention = is an integer and, hence, s is an even integer.
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Figure 3.5.1: Structure of the absorbers with hyperedges used before absorption of x in
dark red and hyperedges used after absorption of x in light red.

Now assume that for some i € [s — 2], vertices v;, w;, y;, and z; have already been

selected, for all j € [i], in such a way that all edges required by Definition 3.5.1 are

present and v;, w;,y;, 2; = min(z + j5¢, ) for all j € [i], and denote the set containing

all these vertices, all vertices from R, and x by A;. Note that for all i € [s — 2], we
have |A;| < %*. Therefore, there are at least %' choices for a vertex w1 € N(ys, 2:) N A;

with w;y1 = min(z + (i +1)%, §). Further, there are at least <* choices for a vertex vy, €

202
N(wit1,yi) N As with v = min(z+(i+1)%", §). Similarly, there are at least %* choices for

272
avertex yiy1 € N (v, wi) N (A;U{vipr, wipr}) with gy > min(z+(i+1)9", §) and at least %

choices for a vertex zjy1 € N(wi, Yir1) (A U{vip1, wigp1}) with 24 = min(z+(i+1)%, 5).

Assume that v;, wj, y;, and z; have been selected for all j € [s — 1] such that all edges
required by Definition 3.5.1 are present and v;, w;, y;, z; = min(z+ 5%, §), for all j € [s—1],
and denote the set containing all these vertices, all vertices from R, and x by A;_;. Then
there are at least %* choices for a vertex wy € N (ys—1, zs—1) N As—1 With w, > min(z+s%", 7)
and at least % choices for a vertex y, € N(vs—1,ws—1) N (As—1 U {w,}) with y, = min(z +

5%, %). Note that by the choice of s we have vs_1,ws_1,Ys—1, 2s—1, Ws, Ys = min((s —

|N(ws, ys—1) N N(ws, ys)| = g +an + g +an —n = 2an

and so there are at least an choices for vs € N(ws, ys—1) N N(ws, ys) \ As—1 and, similarly,
we know that there are at least an choices for z; € N(ws_1,ys) N N(ws, ys) N (As—1 U {vs}).

Observe that if the vertices vy, wy, y1, 21, - . ., Us, Ws, Ys, 25 are chosen in the respective
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neighbourhoods as described above, they form an (z,«)-absorber. Hence, the number

of (z, a)-absorbers is indeed at least (%n)*(®). O
We are now ready to prove Lemma 3.2.4.

Proof of Lemma 3.2.4. The proof proceeds in two steps. First, we will use the probabilistic
method, showing that with positive probability a randomly chosen set of 4s-tuples contains
many absorbers for every vertex while being not too large. In the second, part we connect
all those paths using the Connecting Lemma.

Let 1/n « ¥ « «, let L € IN be given by the Connecting Lemma, let s = s(«), and
let H,R be given as in the statement.

Let X < ([n] ~ R)"™ be a random selection in which each 4s-tuple in ([n] ~ R)* is

,02343#»2 192345«!»2

included independently with probability p := “ = . Then E[|X[] < pnts = “—n and

by Markov’s inequality we get

234s+2
P <|X\ > 2 5 n) < (3.5.1)

0648

N | —

Calling two distinct 4s-tuples overlapping if they contain a common vertex, we observe
that there are at most (4s)?n%~1 ordered pairs of overlapping 4s-tuples. Let us denote
the number of overlapping pairs with both of their tuples occurring in X by D. We then

19234.9-%—2

get E[D] < (4s)*n®~1p? = (4s)? (225 )2n and Markov yields

) ) 192345-{-2 2 1
P[D > ¥n| <P D>64s( s >n <Z (3.5.2)
since 1/n € ¥ < a.

Next, we focus on the number of absorbers contained in X'. For x € [n], let A, denote

the set of all (z, a)-absorbers. Lemma 3.5.2 gives that for every z € [n],

4s
E[|A, n X[] > (%) p = 99%n.

Since |A, N X| is binomially distributed, we may apply Chernoff’s inequality to get for

every z € [n],

2 2
P (|4, n X| < 30°n) < exp (—(3’2)919271) < 51n : (3.5.3)
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Hence, by the union bound and (3.5.1), (3.5.2) and (3.5.3), there exists a selection
Fi < ([n] ~ R)* with:

° "F*| < 21920?;1584-2”

o F, contains at most ¥?n overlapping pairs

« F, contains at least 39?n z-absorbers, for every x € [n]

For each overlapping pair, we delete one of its 4s-tuples and thus, for every = € [n], we lose
at most 9¥?n x-absorbers. Furthermore, we delete every 4s-tuple A € F, for which there
does not exist an z € [n] such that A is an x-absorber. Note that now every remaining
tuple has all edges present as in Definition 3.5.1 and all its vertices are distinct. This

4s

deletion process gives rise to an F < ([n] N R)™ satisfying:

N ‘f| < 21929,;1:+2n7

o for every 4s-tuple A € F there is an = € [n] such that A is an z-absorber, in particular,
all the vertices in A are distinct and there are edges present as in Definition 3.5.1,

and

o for every x € [n], there are at least 29%n z-absorbers in F.

Next, we want to connect the elements in F to a path utilising the Connecting Lemma.
Let G be the set consisting of all the paths v;w;y;12;+1 and v; 1w;1y;2; for odd ¢ and for

each (U17w17ylazl7' s 7Us>wsvysvzs) e F:

g = U {VisjwitjYis1—jzie1-j 1 i € [s] odd, j € {0,1}}

('Ul sW1,Y1,215---,Vs,Ws 7?/5,28)6]:

We then have |G| = 2|F| < #23°2p Let G* = G be a maximal subset such that there

ads

exists a path P* € H — R with:

o P* contains all paths in G* as subpaths
« V(P*) 2 Upeggr V(P) = @
o P* satisfies v (P*) = (L +2) (|G*| — 1) + 4.

First assume G* < G, and let Q* € G \. G*. Notice that recalling 1/n « ¥ « o, 1/L « 1,

we have

204542
419#71 +9%n < on

= I

U(P*)+\ | V(P)‘ +IR| < (L+2)

Peg~g*
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Now Lemma 3.2.1 tells us that there are at least ¥n”~2 paths of length L connecting the
ending-pair (a,b) of P* with the starting-pair (b, c) of @* (which are disjoint by the choice
of P*). By (3.5.4), at least half of those are disjoint to R UUpeg. g+ Lo+ V() and (apart
from the end-pairs) disjoint to V' (P*) and V (Q*). Hence, there exists a path P** starting
with P* and ending with @Q* whose vertex set is disjoint to R U Upeg\(g*u{Q*}) V(P) and

for which we further have
v(P*)=v(P)+L—-24+v(Q") =4+ (L+2)(|g"u{Q"}—-1).

Therefore, G* U {@Q*} contradicts the maximality of G* and thus, G* = G. Further,
for P4 := P*, the hierarchy 1/n « ¥ « a,1/L « 1 gives us the required bound on v (Py):
4192348"1‘2

Lastly, the structure and the number of the absorbers in P4 ensure the absorbing
property: Let X < [n] with |X| < 29?n. For each x € X, we can choose one z-
absorber (vy, w1, y1, 21, - . ., Us, Ws, Ys, 2s) from F such that all chosen absorbers are distinct,
since for every x € V, the number of x-absorbers in F is at least 29?n. For every z € X,
we then “open” P, at the paths v;ijw;i;yir1-;2i11—; for ¢ € [s] odd and j € {0,1} and
reconnect it to a path containing x by instead considering the paths v jw;t;yit1—;2it1—j,
for all even i € [s] and j € {0, 1}, and the paths vjwizy;2; and vswgyszs. That leaves us
with a path P’ which satisfies V (P') = V (P4) u X and has the same end-pairs as P4. [

3.6 Long path

In this section, we will prove the existence of a path that contains almost all vertices. To do
so, we will need a weak form of the hypergraph regularity method which we will therefore

introduce briefly.
Let H = (V, E) be a 3-graph and Vi, V5, V3 € V; we write

E(‘/l;‘/Qa‘/?)) = {(U17U27U3) € ‘/1 X ‘/2 X ‘/E’) S V1023 € E}
and e (V1, V5, V3) = |E(Vi, Vo, V3)|. Further, we write

H(Vi, Vo, Vi) = (ViOVaUVa, E (V4 Vi, V3)).
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For 6 > 0,d = 0 and Vi, V5, V3 < V, we say that H(Vi, V5, V3) is weakly (6,d)-

quasirandom if for all Uy < Vi, Uy < V5, Us < V3, we have that
e (Ur, Us, Us) — d|Un| |Us| [Us]| < 6 [VA] [Va] V3] .

We say that H(Vi, Vs, V3) is weakly d-quasirandom if it is weakly (6, d)-quasirandom for
some d > 0. For brevity, we might also say that Vi, V5, V3 are weakly (6, d)-quasirandom
(or d-quasirandom) (in H). Lastly, since we only look at weak quasirandomness in this
section, we may omit the prefix “weakly”.

The regularity lemma is a strong tool in extremal combinatorics. While the full
generalisation to hypergraphs is more involved than the version for graphs, there is also a

light version for hypergraphs that can already be useful and indeed it is for us:

Lemma 3.6.1 (Weak Hypergraph Regularity Lemma). For § > 0,ty € IN, there exists
a Ty € N such that for every 3-graph H = ([n], E) with n > to, there exist an integer t

with ty <t < Ty and a partition [n] = VoOV1U ... UV, such that:
o |[Vo|<dn and |Vi| ==V

e fori =1, we have max (V;) < max (V;41) and max (V;) —min (V;) <

o there are at most 5t° sets ijk € [t]® such that the “triplet” V;, Vi, Vi, also written as

Vik is not §-quasirandom in H.

For a proof of Lemma 3.6.1 see for instance [17,40,109]. One can get the slight extra,
requirement on the ordering of the vertices by dividing the vertex set in intervals of length %
and afterwards going on with the proof refining those sets. This has been remarked before,
e.g., by Reiher, Rédl, and Schacht in [96].

We will regularise H and then observe that a quasirandom triplet V¥* with positive
density can almost be covered with not too short disjoint paths. Thus, we can think of the
situation as a reduced hypergraph with the partition classes as vertices and edges encoding
those “good triplets” that in H we can almost cover with paths. At that point we will
notice that the degree condition can almost be transferred to the reduced hypergraph. In
Lemma 3.6.3, we prove that this degree condition will ensure an almost perfect matching
in the reduced hypergraph. But that means that in H almost all vertices can be covered

with paths, which we can then connect through the reservoir to a long path in H.

Lemma 3.6.2 (Good Triplets). For £ > 0,d > 0,6 > 0,n € IN with dﬁz_‘;n > 1, the

following holds. Let H = (UOV OW, E) with |U|,|V|,|W| = n be a 3-graph and suppose
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that U, V., W are (9, d)-quasirandom in H. Then at least (1 — £)3n vertices of H can be
covered by vertex-disjoint paths of length at least @n — 2.

Proof of Lemma 3.6.2. For convenience set ¢ = %n. Let P be a maximal set of vertex-
disjoint paths of length 3¢ — 2 in H, where each path takes alternatingly vertices from each

partition class, i.e., each path is of the form
U1V1WLU2V2W2 . . . UV W,

with u; € U,v; € V,w; e W.
Assume that |V| — |Jpep V(P)| > 3¢n. Then the sets

—U~ VP,V =V V(P W =W V(P)
Pep Pep Pep

satisty |U'|, |[V'], |[W'| > &n.

Next, we will delete all the edges that contain vertex pairs of small pair degree. With
the edges that still remain after this process we can build a path of the required length.

We start with Fy = H[U', V', W] and set F;,, for i > 1, as the hypergraph ob-
tained from F; by deleting all edges containing a vertex pair zy with dp. (z,y) < c,
where df. (v,y) = {ee E(F;) :z,y€e,lenU'| =lenV'| = |en W’| =1}|. This process
stops with a hypergraph F; in which for all z,y € V (F}), we either have d;j (x,y) =0

or dy (z,y) = c. The deletion condition guarantees
e*(F) — e* (F}) < 3cn?,

with e* (F;) = {e€e E(F}) : lenU'| = |en V'| = |e n W'| = 1}|, and the quasirandomness
of U,V,W gives that e*(Fy) = e (U, V',W’') = (d&* — §)n®. Thus, there still exists an
edge wyvywy in Fj with vy € U', vy € V' and wy; € W’. But this means that there is
a path of length 3¢ — 2 in Fj: Let P* = wjviw; ... uvpwy, be a maximal path in F
with w; € U',v; € V' and w; € W', for all i € [k] (note that & > 1). Assuming k < ¢ for
a contradiction, less than ¢ vertices of U’ appear in P*. But since v,wy is contained
in the edge ugvgwy, € E (Fy), we actually have that di (vg,ws) > ¢, whence there is
a upp1 € UV (P*) such that P*uy44 is a path in Fj.

The same argument applied to wyus1 gives a vy, € V' such that P*uy, v, is a
path in F} and finally applying the argument to w1041 gives rise to a wg1 € W' such

that the path P*uj4 1054 1wp41 exists in F; and thus contradicts the maximality of P*,
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telling us that P* actually contains an alternating path of length 3¢ — 2. That, on the
other hand, gives us another alternating path of length at least 3¢ — 2 that is vertex-
disjoint to all paths in P and, therefore, contradicts the maximality of P. So we indeed
have [V| — |Upep V(P)| < 3&n. O

As mentioned before, we later want to find an almost perfect matching in a reduced
hypergraph whose edges represent “good” triplets as in Lemma 3.6.2. Then “translating
back” those edges in the matching will give us a set of (not too many) paths in H which
almost covers all vertices. To find an almost perfect matching in a hypergraph satisfying
the pair degree condition in Theorem 3.1.4 for almost all pairs, we look at a maximal
matching in which the sum of the vertices not contained in it is also maximal. This should
give us the best chance to enlarge the matching if too many vertices would be left over,
deriving a contradiction. A similar maximisation idea has also been used in [112] when a
degree sequence condition was given for a graph. The following Lemma will later guarantee

the existence of an almost perfect matching in the reduced hypergraph.

Lemma 3.6.3 (Matching). Let 1/n < a, . If H = ([n], E) is a 3-graph, Gy is a graph on
vertez set [n] with mazimum degree A (G) < Bn and H satisfies d(i, j) > min (i, j, %) +an,
for all ij € [n]® with ij ¢ E(Gy), then H has a matching M with v(M) = (1 — 35) n.

Proof of Lemma 3.6.5. Without restriction let & « 1 and § < 1/3 and let H, Gy be given
as in the statement. For matchings My, M, < H of maximal size, we write M; < My
if [n] N V(M) <jex [2] N\ V(M3), where <ok is the usual lexicographic order on & ([n]),
ie., A <ex Bif min AAB e A. Now, let M < H be a matching of maximal size which is
(subject to being of maximal size) maximal with respect to <. Assuming the statement is
false, gives an A < [n] N\ V(M) with |A] = 36n. Let us call a pair true if it is not an edge
in Gp. Since A (Gy) < fn, we can find 25n distinct vertices vy, ..., vg,, Wy, ..., wa, € A
such that all the pairs v;w; are true. Without restriction assume that v; < w;. Notice that
all the neighbours of each such pair lie inside V' (M), otherwise adding the respective edge
to M would lead to a larger matching. In the following, we will show two properties and
afterwards deduce the statement from them.

Firstly, we have that for each v;w;, there are at least % edges in M in which v;w;

has at least two neighbours: Let us first consider a pair v;w; with v; < 5. For any
edge abc of the matching with a € N (v;,w;), we have that min{b,c¢} < v; as other-
wise E(M) ~ {abc} U {av;w;} would be the edge set of a matching M’ with the same size

as M but with M < M’, contradicting our choice of M. This means that in each edge
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of M which contains only one neighbour of v;w; there is one vertex < v;. Thus, (and since
all those edges are disjoint), at most v; neighbours of v;w; can lie in edges that contain
no further neighbour of v;w;. Hence, recalling d (vi, w;) = v; + an, at least % edges in M
contain at least two neighbours of v;w;.

For a pair v;w; with v; = n/2, there exist at least %" edges in M containing more than
one neighbour of v;w; as well since d (v;, w;) = § + an but e(M) < n/3.

Secondly, note that any edge of M that contains at least two neighbours of one
true pair v;w; cannot contain a neighbour of any other true pair v;w;: Assume for
contradiction there were true pairs v;w; and vjw; together with an edge abc € E(M) such
that a € N (v;,w;) and [{abc} N N (v;,w;)| = 2. Then b or ¢, without restriction b, is a
neighbour of v;w; and E(M) \ {abc} U {avsw;, bvjw,} is the edge set of a matching in H
contradicting the maximal size of M.

Summarised, for each of the Sn true pairs vsw; in [n] NV (M), we get a set of at least %
edges in M that contain more than one neighbour of the respective pair and thus all those
sets of edges are pairwise disjoint. Therefore, we have %* x 3n distinct edges in M which is a

contradiction to 1/n « «, 5. So M was indeed a matching satisfying v(M) = (1 — 35)n. O

We are now ready to prove Proposition 3.2.5. For that we will apply the Weak Regularity
Lemma to H (actually to a slightly smaller subgraph), obtain a pair degree condition for
the reduced hypergraph and hence find a matching in it by the previous Lemma. Lastly,
we will “unfold” the edges of that matching to paths in H by Lemma 3.6.2 and connect
these to a long path by the Connecting Lemma.

Proof of Proposition 3.2.5. Let o, be given as in the Proposition and set o/ = o — 1 — 92
Next choose &, 4,y such that we have 1/tg « § « £ « ¥ « . Applying the Weak
Regularity Lemma 3.6.1 to 6 and ¢y gives us a T and by the hierarchy in the Proposition,
we may assume 1/n « 1/Ty. Now let H, R, and P4 be given as in the statement. Notice
that H' = H[[n] ~ (R UV (P4))] after a renaming of the vertices can be seen as a 3-
graph H' = ([n'], E') with n’ > (1 — 92 — ¥) n and satisfying the usual degree condition:
d(i, j) = min (4, , "5/) + o/n’ for all ij € [n']?.

For H', the statement of the Weak Regularity Lemma provides an integer ¢ € [tg, Tp|
and a partition V = VuV1uWLU ... UV, satistying all three points of Lemma 3.6.1. Set-
ting m = [Vi| = - -+ = |V;|, we have that % > m > %n’ and recall that |Vy| < on’. Note

that for v; € V;, we have v; > i-m — ?—0/ Summarised, we have the following hierarchy:

1 1 11
— K —, - — ki<« ad «1 3.6.1
<y <F<E<i<a (361)
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Let us write e* (V%) = |[{e€ E': len Vi| = e n V}| = |e n V};| = 1}| for the number of
crossing edges in V% and we call a triplet V7* dense, if e* (V7*) > %’”3

Now we will show that we can almost “transfer” the pair degree condition to a reduced
hypergraph. We will do this in two steps: First, we show that every pair V;V; belongs to
many dense triplets V%% and second, we show that we can almost keep that up when
restricting ourselves to quasirandom triplets.

a't

Claim 3.6.4. For every ij € [t]®), there are at least min (4, j, L) + %t many k € [t] — {4, j}

such that V9% is a dense triplet.

Proof. Suppose there is a pair V;V}, ij € [t](Q), belonging to less than min (z’,j, %) + %t
dense triplets V¥*. Let S be the set of hyperedges in H’ that contain one vertex in V;, one
in V; and a third vertex outside of V;UV;. By invoking the pair degree condition of H" and
with the hierarchy (3.6.1), we get that

n’ n' n'
S| =m? |min (i-m——,j-m——, = | +a'n’ —2m
t t’ 2

>n’3 (i1 +6 ,
— (mn|-,—, = —Q
12 t't’ 2 7

We will derive a contradiction by finding a smaller upper bound on |S|. To this aim,
we split S into two parts. By 57 let us denote the set of those edges in S that lie in
a dense triplet V¥* for some k € [t] \ {i,5}, (we say an edge e lies or is in V¥ if we
have e N Vi| = |e n V}| = |e n Vi| = 1). Since in one triplet there are at most m?* edges

and by assumption V;V; does not belong to many dense triplets, we get

t a't n' i g1 o
1< (on(03) )< o £2) 5

Let S; = S~ 57 be the set of edges in S lying in triplets that are not dense. There are less

3

than %m crossing edges in each triplet that is not dense and V;V; belongs to at most ¢

triplets. Hence
/ 13 /

|Ss| < T xts L
2
Summarised, we have
n' 17 1 6 , n’ i 71 5a’
— in{-,~, -]+ 2 < |S| = |51 + |92| < —= in|-,=, =] +—1,,
2 (mm<t t 2) 70‘) 5] =5+ 152] < 27 {min { .53 6
which is a contradiction. O
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From the Weak Regularity Lemma we also get that in total at most §t3 triplets V4%
are not d-quasirandom.

Let us now complete the “reduction” of the hypergraph and notice that we can find
an almost perfect matching in the reduced hypergraph. Denote by D the hypergraph on
the vertex set [t] with ijk being an edge if and only if the triplet V%* is dense. Let, on
the other hand, IR be the hypergraph on the vertex set [¢] with ijk being an edge if and
only if V¥* is not weakly d-quasirandom in H’. In the following, we will remove a few
vertices in such a way that D — I'R induced on the remaining vertices satisfies our pair
degree condition for almost all pairs.

We call a pair ij € [t]*> malicious pair if it belongs to more than /6t edges of IR.
Since e(IR) < 6t3, there are at most 3+/0t> malicious pairs. Let B be the graph on vertex
set [t] in which the edges are given by the malicious pairs. We call a vertex i malicious
vertez if dg(i) > 0"/, i.e., if it belongs to many malicious pairs. The upper bound on
the number of malicious pairs implies that there are at most 66/t malicious vertices.
Now we remove these malicious vertices and set D' := D[[t] \ {v € [¢] : v malicious}]
and B’ = B[[t] \ {v € [t] : v malicious}].

The reduced hypergraph we looked for is now K = D’ — IR, in which edges encode
dense, d-quasirandom triplets. In K, every pair ij € V(K)®? with ij ¢ F(B’) satisfies

. .t o 14 .t o
di(iyj) =min (i,5, = ) + (o — 66" =6 )t = min (i,5, - ) + —t.
2 3 2 4
Thus, we have that the graph Gk on vertex set V(K) with ij being an edge if and only

v(K)
2

if ij does not satisfy the degree condition dk (7, j) = min (i,j, ) + O‘ZIU(K) is a subgraph

of B'. Therefore, and since v(K) > (1 — 65/4)t, we have
A (Gg) < A(B') < 6V < 26Y*0(K)

and we can apply Lemma 3.6.3 to K with O‘Z' in place of o and 264 instead of B and obtain
a matching M in K covering all but at most 66"/t vertices of K.

Finally, notice that each triplet V¥* with ijk being an edge in K is (6, d;;1)-quasirandom
with d;j5, = %' —0= %/ Hence, we may apply Lemma 3.6.2 (with £ as in (3.6.1), d;j; > %/
in place of d and d as §) to each of the triplets V¥* that corresponds to an edge in M.

Doing so and recalling the definition of H’, we notice that in H we can cover at least

n—((0+65V*+65"*+&)n' +|R|+v(Pa)) =n— (20°n+ v (Pa))
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/
FE-9

5—m — 2 that are all disjoint to R and V' (P4). We
can connect all those at most —2t— paths in H through R to a path Q by Lemma 3.2.3

Dtl
FE-9

since until we connect the last one we have still only used at most

vertices with paths of length at least

3t

W<194n
3800

(L —=2)
vertices from R (recall the hierarchy (3.6.1)). In fact, we have that @) has at most
a small intersection with R, that is, |V(Q) n R| < ¥'n and it covers many vertices,
ie., v(Q) = (1 —29?)n — v (Py). Hence, Q is a path satisfying the claims in the statement.

O

3.7 Concluding remarks

We would like to finish by pointing to some related problems. Firstly, as mentioned in the

introduction, our result can be seen as a stepping stone towards a complete characterisation

of those pair degree matrices that force a 3-graph to contain a Hamiltonian cycle.
Further, it seems possible to generalise our proof without too much effort for k-uniform

hypergraphs H = ([n], F) with n large satisfying the (k — 1)-degree condition

dk—1(l1,...,zk_1)>m1n 21:-‘-,%—1,5 +an,

where dy,_1(i1,...,ix_1) =|{e€ E: {i1,...,ix_1} S e}|

Another very interesting problem is to get a similar result for the vertex degree,
strengthening the result by Reiher, Rodl, Rucinski, Schacht, and Szemerédi in [95]: Does
every 3-graph H = ([n], E) with d(i) > min (max (i,yn),3n) + an for some v < 5/9
contain a Hamiltonian cycle if n is large? The proof of Theorem 3.1.3 in [95] depends on
the existence of robust subgraphs for every vertex, for which one needs the factor 5/9.

Lastly, one could try to improve Theorem 3.1.4 by weakening the pair degree condition
to d(i,j) = min (i,j, %), i.e., without the additional an term, as Rodl, Rucinski, and

Szemerédi did for the minimum pair degree condition in [100].
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4. Decomposing hypergraphs into cycle

factors

4.1 Introduction

Decompositions are a very active branch of extremal combinatorics. One of the earliest
results regarding decompositions of graphs is Walecki’s theorem, which states that a
complete graph on an odd number of vertices has a decomposition into (edge-disjoint)
Hamiltonian cycles. In recent years, there have been many breakthroughs in the area of
decompositions, such as the verification of the existence of designs [50,68], the resolution
of the Oberwolfach problem [49], and the proof of Ringel’s conjecture [69,86].

A classic result by Dirac states that a graph on n > 3 vertices with minimum degree
at least n/2 contains a Hamiltonian cycle. It is natural to ask how many edge-disjoint
Hamiltonian cycles exist in this setting. Nash-Williams [87] showed that there are |5n/224|
edge-disjoint Hamiltonian cycles. As the union of edge-disjoint Hamiltonian cycles is an
even-regular spanning subgraph, there are at most r/2 edge-disjoint Hamiltonian cycles
where r is the largest even integer for which there exists an r-regular spanning subgraph.
Thus, for a graph G, we define reg,(G) to be the largest even integer r such that G contains
a spanning r-regular subgraph and set reg,(n,d) = min{reg,(G): |V(G)| = n,0(G) = §}.
Csaba, Kiithn, Lo, Osthus, and Treglown [24] improved the result by Nash-Williams
by showing that all large graphs G on n vertices contain at least reg,(n,d(G))/2 edge-
disjoint Hamiltonian cycles. Kiithn, Lapinskas, and Osthus [75] conjectured that this can
be strengthened as each single G may have reg,(G)/2 edge-disjoint Hamiltonian cycles
provided §(G) = n/2. They also asked whether an approximate version is true; namely,
that any graph G on n vertices with §(G) = (1/2 4+ o(1))n contains (1/2 — o(1)) reg,(G)
edge-disjoint Hamiltonian cycles. Subsequently, this was proved by Ferber, Krivelevich,
and Sudakov [36].

The main result of this paper implies an analogous statement for k-uniform hypergraphs
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for k > 2. To state our results, we recall some terminology. For an integer k > 2, a
hypergraph H is called k-uniform hypergraph or k-graph if all its edges have size k. We
call a k-graph whose vertex set has a cyclic ordering such that its edge set consists of all
sets of k consecutive vertices in this ordering a (tight) cycle (we only consider tight cycles
in this article). The length of a cycle C' is defined as the number of edges in C'. As usual, a
Hamiltonian cycle in H is a cycle containing all vertices of H. Let ;_1(H) = min|{e €
E(H) : x < e}| where the minimum is taken over all (k — 1)-sets x € V(H). In analogy to
the above, we define reg, (H) as the largest integer r divisible by k such that H contains a
spanning subgraph F' in which each vertex of F' belongs to exactly r edges of F.

Dirac’s result was first generalised to hypergraphs by Roédl, Rucinski, and Szemerédi
in [98-100]. They showed that any k-graph H on n vertices with &,_i(H) = (3 + o(1))n
contains a Hamiltonian cycle. Observe that, trivially, H contains at most reg,(H)/k
edge-disjoint Hamiltonian cycles. Our main result implies that H indeed asymptotically
contains that many edge-disjoint Hamiltonian cycles. More precisely, it yields the following

strengthening of the result by Rodl, Rucinski, and Szemerédi.

Theorem 4.1.1. For all integers k = 2 and all € > 0, there exists an integer ng such that
every k-graph H on n = ng vertices with 6p_1(H) = (1/2 + €)n contains (1 — ¢)reg,(H)/k

edge-disjoint Hamiltonian cycles.

This asymptotically solves (a much stronger version of) a conjecture due to Glock,
Kiithn, and Osthus [51, Conjecture 6.6] which states that if in addition to the assumptions
in Theorem 4.1.1, we assume that each vertex is contained in the same number of edges
and k | n, then H has a decomposition into perfect matchings. Observe that in this case a
Hamiltonian cycle contains k edge-disjoint perfect matchings. A similar observation also
applies to all other notions of cycles in hypergraphs, for instance, loose cycles.

In fact, there is no need to restrict our attention only to Hamiltonian cycles. We call
a k-graph C a cycle factor (with respect to H) if C is a union of vertex-disjoint cycles
and has the same number of vertices as H. The girth of a cycle factor is the length of its

shortest cycle.

Theorem 4.1.2. For all integers k = 2 and all ¢ > 0, there exist integers ng and L such
that every k-graph H on n = ng vertices with dx_1(H) = (1/2 + €)n contains edge-disjoint
copies of any given cycle factors Cy,...,Cp, where " < (1 —€)reg,(H)/k, whose girths are
at least L.

To the best of our knowledge, under the above condition not even the existence of a
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single given cycle factor was known previously. Note that L has to grow as k grows and ¢
shrinks, but we do not require any dependence on n.

As it turns out, we can restrict our attention to essentially vertex-regular k-graphs.
To this end, we call a k-graph H on n vertices g-almost r-reqular for some p,r = 0
if dy(v) = (1 £ o)r for all v € V(H) and p-almost regular if it is g-almost r-regular for
some 7 = 0. Note that g-almost r-regular k-graphs may simply be the disjoint union of
two cliques, say, and thus they may not even contain a single Hamiltonian cycle. To avoid

such scenarios, we work with the following fairly weak quasirandomness property. Given

a (k—1)-set x = {x1,..., 251} € (‘2(_1?), we write Ny (x) for the neighbourhood of x
in H, that is, the set {ve V(H) : {v,z1,...,2x_1} € E(H)}. Define H to be n-intersecting

V(H)

1), we have |[N(x) n N(y)| = nn. Considering a complete graph

if for all x,y € (
on n vertices where we delete the edges of a clique on (1 — 1/k + o(1))n vertices, implies
that being (1/k — o(1))-intersecting alone is not sufficient to ensure the existence of a
Hamiltonian cycle either.

The following theorem is our main result and Theorems 4.1.1 and 4.1.2 follow from it.

Theorem 4.1.3. For all integers k = 2 and all n,e > 0, there exist integers L and ny,
and o > 0 such that every n-intersecting o-almost r-reqular k-graph H on n = ngy vertices
contains edge-disjoint copies of any given cycle factors Cy,...,Cp, where v’ < (1 —¢e)r/k,

whose girths are at least L.

A result of Ferber, Krivelevich, and Sudakov [37] implies that any k-graph H on n

vertices with d,_;(H) = (1/2 + o(1))n, contains an n~'/?-almost r-regular spanning sub-

n
k—1

next result shows that this is not an obstacle for the application of Theorem 4.1.3.

graph F' for some r > é( ) This F' may not be n-intersecting for some n > 0, but the

Lemma 4.1.4. For all integers k and all € > 0, there exist an integer ng and n > 0
such that every k-graph H on n = ng vertices with 6,_1(H) > (3 + €)n which contains
a p-almost r-reqular spanning subgraph for some o € [0,1/2] and r = 0 also contains

an n-intersecting (o + n~3)-almost r'-regqular spanning subgraph for some r' = max{(1 —

ey ()}

In particular, Theorem 4.1.3 together with Lemma 4.1.4 implies Theorem 4.1.2 (and
thereby Theorem 4.1.1). In addition, for k-graphs H on n vertices with dz_1(H) =
(1/2 4+ o(1))n, we have reg,(H) = (1 — o(1))r’, where ' is the largest integer such that H

contains an o(1)-almost 7’-regular spanning subgraph.
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Theorem 4.1.3 for k = 2, is an implication of a bandwidth theorem for approximate
decompositions proved only recently by Condon, Kim, Kiithn, and Osthus [19], explicitly
mentioned as a statement in [51].

We prove Theorem 4.1.3 in Section 4.7 and Lemma 4.1.4 in Section 4.3.5.

Let us proceed with a few comments relating our results to results in the literature. In
comparison to graphs, k-graphs H with k£ > 3 exhibit a significantly more divers complexity
landscape. To see this, we define the degree dy(x) of a set x < V(H) as the number of
edges containing it, where |x| € [k —1]. We say H is g-almost ¢-degree regular if for some r,
we have dy(x) = (1 + o)r for all x € (V(f)). It is easy to see that if H is g-almost (-degree
regular, then it is also p-almost ¢’-degree regular for all ¢ < ¢. Similar relations also hold for
the minimum ¢-degree é,(H) of H. Consequently, lower bounds on d,(H) become stronger
the larger ¢ gets; similarly, the assumption of /-degree regularity also becomes stronger
the larger ¢ gets. Not surprisingly, Dirac’s result was first extended to hypergraphs with
a lower bound on d;_;(H). An asymptotically sharp lower bound for the existence of a
Hamiltonian cycle in terms of d;_o(H) was only proved recently [77,93,95] and analogous
results for §(H) where ¢ < k — 3 seem to be very difficult and at the moment out of reach.

With this in mind, the first natural step when extending the results of Ferber, Krivelevich,
and Sudakov in [36] to hypergraphs, is to consider k-graphs which are o(1)-almost (k —
1)-degree regular. In fact, progress towards this first step was made by Frieze and
Krivelevich [45] as well as Ferber, Krivelevich, and Sudakov [37]. However, their nice
approaches to reduce the problem to decomposition problems in graphs only works for
weaker notions of cycles (often called loose cycles) and in particular fails for tight cycles
as we consider them in this paper. Bal and Frieze [5] constructed decompositions of k-
graphs into tight Hamiltonian cycles by reducing the problem to a decomposition problem
in digraphs to the expense of an even more restrictive notion than o(1)-almost (k — 1)-
degree regularity. Unfortunately, this approach does not work when we only assume that
the k-graphs are o(1)-almost ¢-degree regular for some ¢ < k — 1.

In contrast to this, Theorem 4.1.3 only assumes that the k-graph is almost 1-degree
regular and therefore is considerably less restrictive than the above mentioned results; in
fact, our regularity assumption is necessary since every k-graph with a decomposition into
Hamiltonian cycles is 1-degree regular. Further, note that our second assumption that H
is o(1)-intersecting is much weaker than the assumed form of quasirandomness in [5] and is
still implied by the minimum degree condition assumed in [37]. Although the assumptions

of our main theorem are substantially weaker than those in the aforementioned results, it
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yields a stronger output by providing approximate decompositions into copies of any given
cycle factors of not too small girth. These differences in both the assumptions and the

results gave rise to a conceptually different proof compared to [5,36,37,45].

4.2 Proof sketch of Theorem 4.1.3

Suppose we are in the setting of Theorem 4.1.3; that is, suppose H is an n-intersecting
o-almost r-regular k-graph in which we aim to find edge-disjoint copies of the cycle factors.
Our argumentation is built on three stages which are described in Sections 4.4-4.6.

With some foresight, we set aside a thin randomly selected spanning subgraph F' of H;
in particular, F' is n/-intersecting and o’-almost regular for some 1’ < n and ¢’ > o.

In the first stage, we only consider the k-graph H' = H — F. For large L (but which
does not grow with n) the k-graph H’ has a fractional decomposition into cycles of length L,
by a recent result in [63] (see Theorem 4.3.4). Next, we exploit a result about hypergraph
matchings with pseudorandom properties [29] (see Theorem 4.3.5 and Corollary 4.3.6) to
turn this fractional decomposition of H’ into edge-disjoint collections P4, ..., P, of vertex-
disjoint paths of length L such that V(H) \ (pep, V(P) is very small for each i € [r]
and E(H") U
first stage.

ic(r) £(Pi) is very small as well (see Proposition 4.4.1). This completes the

The second stage in our approach deals with the question of how one can turn a single P;
into a particular cycle factor C; (see Lemma 4.6.3). For this we use the edges in F. One
might hope that one can proceed similarly as Rodl, Rucinski, and Szemerédi in [98-100] to
join up paths and absorb the remaining vertices to obtain the desired cycle factor. However,
as the cycles in C; may be very short, we cannot utilize an absorbing path of length o(n)
into which we could incorporate any small set of remaining vertices, simply because there
may not exist a cycle in the desired cycle factor which is long enough to contain such a
path. If we split the absorbing path into subpaths and distributed these among numerous
cycles in the cycle factor, we would have too little control over how many vertices each
cycle actually incorporates and, thereby, over the resulting cycle lengths.

To overcome this, we prepare by grouping small absorbing elements (paths on 2k
vertices) into more powerful absorbers, which we call blocks (see Section 4.5). The crucial
property is that in the end, regardless of the leftover vertices, each block absorbs exactly
one vertex. Thus, a cycle of length ¢ — b obtained by connecting paths in P; and b blocks

turns into a cycle of length ¢ during the absorption of the leftover vertices. Hence, keeping
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this predictable change of lengths in mind, we can construct an almost spanning collection
of vertex-disjoint cycles in such a way that the absorption of the leftover vertices engenders
a cycle factor as desired.

The third stage in our argumentation deals with the task of repeating the second stage
for every i € [r]. Proceeding in a greedy fashion, iteratively considering each i € [r], may
quickly ruin the quasirandom properties of F'. Therefore, we actually provide all tools from
the second stage as probabilistic constructions. With this, we can ensure a fairly uniform
use of the edges in F' when applying the arguments of the second stage iteratively for
each i € [r]. By using Freedman’s inequality, one observes that with positive probability
this process terminates successfully before significantly spoiling the quasirandomness of F

(see Proposition 4.6.4).

4.3 Preliminaries

4.3.1 Notation

For n € Ny, we set [n] = {1,...,n} and [n]y = {0,...,n}. For a set A, we say that A is
a k-set if |A| = k; we write (ﬁ) for the set of k-sets that are subsets of A and A% for the
set of tuples (z1,...,7;) € A" with x; # z; for all i # j. We often use x,y to refer to sets
and X,y when considering tuples; however, if the tuple arises from ordering the vertices of
an edge, then we often use &, f. We may subsequently drop the arrow to denote the set
of elements of a tuple, so that for a tuple X = (z1,...,x;), we have x = {z1,...,2x}. An
ordering of a k-set x = {x1,...,x1} is a sequence z; ...z without repetitions.

For non-negative reals «, 3,6, 0’, we write &« = (1 + )5 to mean (1-9§)5 < a < (1+9)5
and we write (1 +0)a = (1+0")f tomean (1 -0 < (1-d)a<(1+d)a < (1+)5. We
write a « 3 to mean that there is a non-decreasing function ag: (0,1] — (0, 1] such that for
any [ € (0,1], the subsequent statement holds for all a € (0, ap(f)]. Hierarchies with more
constants are defined similarly and should be read from the right to the left. Constants
in hierarchies will always be reals in (0, 1]. Moreover, if 1/n appears in a hierarchy, this
implicitly means that n is a positive integer. We ignore rounding issues when they do not
affect the argument.

Whenever we use k to refer to the uniformity of a hypergraph, we tacitly assume
that k > 2. Let H be a k-graph on n vertices. We write V(H) for the vertex set and E(H)
for the edge set of H and we define E(H) = {e € V(H)%: e € E(H)}. For j e [k — 1]

and x = {z1,...,2;} € (V(].H)), we write dy(x) or dy(xy...x;) for the j-degree |{e €
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E(H): x < e} of x, 6;(H) for the minimum j-degree min{dy(x): x € (V(jﬂ))} of H
and A;(H) for the maximum j-degree max{dp(x): x € (V(J,H))} of H. We define 6(H) =
dr—1(H) and A(H) = Ax_1(H). The k-graph H is vertez-regular if there is an r = 0 such
that dy(v) = r holds for all v e V(H).

For U € V(H), we write H[U] for the induced subgraph (U, {e € E(H): e € U}) and
if X is a set, we define H — X = H[V(H )\ X]. For two k-graphs H; with vertex set V; and
edge set E; for i € [2], we define Hy — Hy = (Vi, E1 N\ Ey) and Hyn Hy = (V1 n'Va, By N Ey)
and we write H; € H, to indicate that H; is a subgraph of Hs.

A walk W in H is a sequence wy . .. wy of vertices of H such that {w;,..., w51} is an
edge of H for all i € [{ — k + 1]; we say that W is an ¢-walk. The length of W is { — k + 1
and if £ > k, the walk W is a walk from (wy,...,wy) to (we_gs1,...,we). The walk W is
self-avoiding if no vertex of H appears twice in W.

A k-graph P on is called a path if there is an ordering vy ... v, of its vertex set such
that a k-set forms an edge of P if and only if its elements appear consecutively in vy ... vp.
We say that P is an ¢-path and the length of P is |E(P)|. A cycle of length ¢ is also called
an (-cycle. Sometimes P is identified with the sequence vy ...v,. Further, we call the
tuples (v1,...,v;) and (Vp_gy1,...,ve) with ¢ € [¢] end-tuples of P and whenever X is an
end-tuple of P, the set x is an end-set of P. End-tuples of P that are k-tuples are also
called ordered end-edges of P and end-sets of P that are k-sets are also called end-edges
of P. For end-tuples 8 and t of P with s nt = @, the graph P is also called an 3-t-path.
For ordered end-edges 3 and  of P with s Nt = &, we sometimes arbitrarily fix a direction
of P by saying that § is the ordered starting edge and t the ordered ending edge of P.

A matching M in H is a set of disjoint edges of H and M is perfect if all vertices
of H belong to an edge in M. We also treat a perfect matching M in a bipartite
graph G with bipartition {U,V} as a bijection u: A — B, this means that p is the
bijection with {u,u(u)} € M for all w € U. A perfect fractional matching in H is a
function w: E(H) — [0, 1] with X} sy, peew(€) = 1 for all v e V(H).

Sometimes we identify a set H of k-graphs on disjoint vertex sets with the k-graph with
vertex set ey V(H) and edge set | J; o4, £(H); in this case we refer to H as a collection

of k-graphs. For a collection H of k-graphs, we use |H| to refer to the size of H as a set.

4.3.2 Concentration inequalities

We use the following versions of Chernoft’s, McDiarmid’s and Freedman’s inequality.
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Lemma 4.3.1 (Chernoff’s inequality). Suppose Xi,...,X, are independent Bernoulli
random variables and let X = Zie[n] X;. Then, for all 6 > 0,

P[X = (1 +d)ex[X]] < exp<—2i_ 56X[X]),

and, if 0 < 6 < 1, then
52
P[X < (1 —9)ex[X]] < exp <—26X[X]>.

Lemma 4.3.2 (McDiarmid’s inequality). Suppose Xi, ..., X, are independent random
variables and let f: Im(X;) x ... x Im(X,,) — R. Assume for all i € [n] that changing
the i-th coordinate of X € dom(f) changes f(X) by at most ¢; > 0. Then, for all > 0,

P f(X1, ..., Xn) — ex[f(X1, ..., X)]| = u] < 2exp <—Z?f]cg> :

Lemma 4.3.3 (Freedman’s inequality [44]). Suppose X1, ..., X, are Bernoulli random
variables and let p1 > 0 with 33 ex[X; | X, ..., Xia] < p. Then,

]P[Z X, > 2#] < exp(—’é).

i€[n]

4.3.3 Fractional cycle decompositions

Suppose H and F' are a k-graphs and F is the set of copies of F' in H. We say a
function w: F — [0, 1] with Xz 7. ceppy w(F") = 1 for all e € E(H) is a fractional F-
decomposition of H. We are only interested in the case where F' is a cycle and need the

following result from [63].

Theorem 4.3.4 ([63, Theorem 1.4]). Suppose 1/n « 1/L « n,1/k. Suppose H is an n-
intersecting k-graph on n vertices with edge set E and Cp, is a k-uniform cycle of length L.
Then, there is a fractional C'-decomposition w of H with

Bl ey < B
AE =S 5

for all L-cycles C' in H.
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4.3.4 Matchings in hypergraphs

It is nowadays well-known that essentially vertex-regular hypergraphs admit almost perfect
matchings provided each pair of vertices is only contained in few edges [90,97]. In fact,
these matchings can be chosen in a way that they exhibit pseudorandom properties, which

is very useful for applications. The following result provides such matchings.

Theorem 4.3.5 ([29, Theorem 1.2]). Suppose 1/A « 0,1/k. Let € = ﬁ. Suppose H is
a k-graph with edge set E, Ay(H) < A, and Ay(H) < A0 as well as |E| < exp(A°).
Suppose that W is a set of at most exp(AEQ) functions from E to Rsqg. Then, there
exists a matching M in H such that Y., w(e) = (1 £ A7) (X .cpw(e))/A for allwe W

with Y.,y w(e) = maxepw(e) A,

It is straightforward to turn Theorem 4.3.5 into a result about edge sets in weighted
hypergraphs in the case where the functions in W are {0, 1}-valued. It can be obtained
from Theorem 4.3.5 by modelling the edge weights as corresponding numbers of edges in
an auxiliary (k + 1)-graph; see, for example [69], where a similar statement is deduced
from Theorem 4.3.5.

Corollary 4.3.6. Suppose 1/c « §,1/k. Let e = m. Suppose H is a k-graph with
vertex set V and edge set E and w: E — [1/c,1] is a function with Y, 5. .. w(e) <1
and Y. g, yoeew(€) < 1/¢ for all distinct u,v € V as well as Y, pw(e) < exp(c’).
Suppose that € is a family of at most exp(c=) subsets of E with Y., w(e) = ¢ for
all E" € €. Then, there exists a matching M in H with |M n E'| = (1 +£¢°) Y, . w(e)

for all E' € €.

Proof. We will apply Theorem 4.3.5 to an auxiliary hypergraph obtained by replacing every
edge in H with essentially w(e)M copies of itself, where M = (¢ — 1)c is a sufficiently large
convenient multiplicity. As we want to avoid multihypergraphs, we simply increase the
uniformity by 1 and add some dummy vertices. More precisely, consider the auxiliary (k+1)-
graph Hj; with vertex set V u (E x [M]) whose edges are the sets {vq,..., v, (€,7)}
with {v1,...,v} = e and i < [Mw(e)|. Let Ey = E(Hy). Observe that there is a
correspondence of matchings in Hj; and matchings in H, namely, for every matching M,
in Hys, those edges of H that are subsets of edges in M, form a matching in H.

We will verify that the given properties of H and w translate to properties of Hj; that
allow an application of Theorem 4.3.5 that in turn yields the desired matching in H via

the aforementioned correspondence. Let Ay = ¢, Since 1/c < w(e) holds for all e € F,
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we obtain dy (v) < ¢ and dy(uv) < ¢ for all distinct u,v € V as well as |E| < cexp(c).
This implies
diy(v) = Y, [Mw(e)] < M +du(v) < Ay

eeE: vee
and

M _ _
d, () = Y [Muw(e)] < 5 Hdu(uw) < AL < AL
eeFE: u,vee

as well as

Bl = Y [Muw(e)] < Mexp(c™) + |E| < ¢ exp(c) < exp(Af)).

ecE

Furthermore, observe that || < exp(¢®”) < exp(A3;). For E' € &, let E}, be the set of
edges {v1,..., v, (e,1)} of Hy with e € E'. We have

|Ev| = Z [Mw(e)] = M = A0 = A}\;é/4.

ecRE’

An application of Theorem 4.3.5, with Ay, 6/4, Hyy, the set of indicator functions of the
sets F', playing the roles of A, 6, H, W, yields a matching M, in Hy; with

ZeeE/ [Mw(e)]
AM '

[(Mar o Ey| = (1+Ay)

Since we have 1/c < w(e) for all e € E and thus |E'| < ¢, w(e) for all E' € &, this

implies

E'l+ M W o+ M .
M By < (e ag P Zusm 1) o g a2 2 3 e(0) < (1) T el

and

M Byl = (1— Ay M2 @) o (g mey S )

AM eceR’

for all E' € £. Thus, the edges in H which are subsets of edges in M, form a matching
in H with the desired properties. O

We also need the following result from [52] and another lemma concerning perfect

fractional matchings in hypergraphs. For a k-graph with edge set £ and C' > 0, we

if MeXeeE w(e)

e 1 0 (€) < C and we say w is balanced if it is 2-

say w: E — R.g is C-balanced

balanced.
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Lemma 4.3.7 ([52, Lemma 4.2]). Let 1/n <« 1/C < 7,1/k. Suppose H is a k-graph on n
vertices with 6(H) = (% + fy)n. Then there exists a C-balanced perfect fractional matching
m H.

Lemma 4.3.8. Suppose 1/n < o « n,1/k. Suppose H is an n-intersecting o-almost
reqular k-graph on n vertices. Then, there exists a balanced perfect fractional matching w
in H.

Proof. The strategy of the proof is as follows. We start with a uniform wight distribu-
tion wy: E(H) — [0, 1] and show that wy can be turned into a perfect fractional matching
as desired through a series of minor modifications.

Let V = V(H) and E = E(H). For w: E — [0,1] and v € V, we define w(v) =
Dcr veew(€). Let wo: B — [0,1] with wy(e) = g forall e € Eand &1V — R
with £(v) = wo(v) — 1 for all v e V. We have ), wo(v) = n and thus

D éw) =o. (4.3.1)
veV
We wish to choose the series of modifications of wy such that it mimics redistributing
the deviations £(v) from the target weight 1 uniformly across all vertices. We achieve
this by defining every modification as a manipulation of the weights on edges of suitable
walks of length 2 as follows. For a self-avoiding walk W = vy ... v in H, w: E — R,
and a € R, we say that w’': F — R is the function obtained from w by using W with
weight a if W'(e) = w(e) —a for e = {vq,..., v}, W'(e) = w(e) +a for e = {vg, ..., vk},
and w'(e) = w(e) otherwise. Hence w'(vy) = w(v1) —a, W' (vgs1) = w(vks1) +a, and W' (v) =
w(v) for all v e V ~ {vy, vp41}-
Since H is n-intersecting, the number of self-avoiding walks vy ... v, with v; = s
and vgy1 = ¢ is at least nn~1/2 for all distinct s,¢t € V. For distinct s,t € V, let Wy,
be a set of nn*~1/2 self-avoiding walks v;...vp1 in H with v; = s and vy, = t.

Let vi...0},q,..., 0" ... 0", be an ordering of |J W, and for i € [m], let w;

be the function obtained from w;_; by using v} ...v},,; with weight 20 Let w = wyp.

nnk
From (4.3.1) we conclude that

s,teV: s#t

k—1 2 k—1 2
w(v)zwo(v)—(n—l)-%-;gjz)—k 3 % 57(;;):1
ueV~{v}

holds for all v € V. Thus, it suffices to show w(e) = (1 £ 1/3)wy(e) for all e € E.

Since for all e € F/, there are at most 2k!n self-avoiding walks vy ... v, in H with e €
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{{v1, ..., vk}, {va, ..., vgs1}}, transitioning from wy to w changed the weight on e by at
most 2k!n - mﬁ%‘;lgw Observe that

n n

—_— = =144
k]E| dH(U) 0

Zuev dH(u) B

and hence |£(v)] < 4p holds for all v € V.. Thus we obtain

wle) = (1 + okln - 2 M)wo(e) _ (1 ; 1>w0(e)

nn n

wo(v) = dy(v)

for all ee E. O

4.3.5 Almost regular spanning subgraphs with intersecting

neighbourhoods

In this subsection we prove Lemma 4.1.4. We use the following statement which follows
from [37, Theorem 1.2] by considering the union of perfect matchings in an induced
subgraph obtained after removing at most k — 1 vertices to make the number of vertices

divisible by k£ and subsequently adding edges for the previously removed vertices.

Lemma 4.3.9 ([37, Theorem 1.2]). Suppose 1/n « e,1/k. Suppose H is a k-graph on n
vertices with §(H) = (% +¢). Then H contains an n~Y2-almost r-reqular spanning subgraph
for some r = (1+3¢/2)1(,")).

Proof of Lemma 4.1.4. Suppose 1/n « n < ,1/k. Suppose H is a k-graph on n vertices
with §(H) = (3 + €)n that contains a p-almost r-regular spanning subgraph for some ¢ €
[0,1/2] and r = 0. If r > (1 + 35/2)%(kf1), let op = o, rp = 7, otherwise let pop = n~1/?
and choose 7p = (1 + 32/2)%(,",) such that there exists a gp-almost rp-regular spanning
subgraph of H, which is possible by Lemma 4.3.9. Let F' denote a gog-almost rp-regular
spanning subgraph of H. In order to obtain a random spanning subgraph F’ of H that
has the desired properties with positive probability, we construct its edge set E(F’) by
essentially choosing the edges of F' while ensuring that each edge of H is included with
positive probability.

By Lemma 4.3.7 there is a 1/n%/3-balanced perfect fractional matching w in H. Let wyay =

maxcp(m)w(e). Construct the edge set of the random spanning subgraph F’ of H as follows.
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For all e € F(H), include e in E(F") independently at random with probability p., where

(1—e)+ 29 ifee B(F)

Wmax

ew(e) if e ¢ E(F).

Wmax

Pe =

Fixve V(H)and x,y € (‘2(_1?) Let r' = (1—g)rp+5— > n*=1/(9K!). Clearly, ex|[dp (v)] =

1/3

(1£op)r'. Since p. = en'/3 and since H is 2e-intersecting, we obtain ex[|Np (x) " Ng (y)|] =

2/3

e2n?3 - 2en = 2nn. Using Chernoff’s inequality (Lemma 4.3.1) and the union bound shows

that F” is as desired with positive probability. O

4.3.6 Different types of degrees

For a k-graph with vertex set V', the following lemma shows that whenever a set U € V/
meets the neighbourhood Ny (x) in roughly ¥dy(x) vertices for all x € (k‘jl), then all
vertex-degrees decrease by about a factor of ¥*~! when transitioning to the subgraph
induced by U.

Lemma 4.3.10. Suppose H is a k-graph with vertex set V. Let ¢ € (0,1) and € €
[0, 2] Suppose U = V is a set with dypox(x) = (1 + e)ddy(x) for all x € (k‘_/l)

Then dupuogy(v) = (1 £ 8k3)9*dy (v) for allve V.

Proof. Fix ve V. Let V! =V ~ {v} and U = U \ {v}. For i € [k — 1]y, let m; denote
the number of edges e € F(H) with v € e and |e n U’| = i. Then our task is to estimate
Mmi—1 = duuoy)(v). To this end, we inductively relate m; and m,_; for all i € [k — 1].

For i € [k — 1], we have

1m; = Z dH[Uu{v}uxuy]({U} UXUYy)
xe(L)ve(;50)
=(1te) Z dy({v} uxuy)
xe(Y)we(5Y)

= (1 xe)d((k —i)m;_1 + imy)

and hence,
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From this, we inductively conclude that

4k%e \ (1 —9)F 17 (k-1
m; = |1+ -9 T ;e

Recall that Y (F71) (1 — 9)F 1= = ((1 — ¥) +9)*~! = 1. Therefore,

p = Ak%e \ my_1 " (k-1 P
H(U)—mk—1=;)mi= 1i1_79 19’“—1;) . (1-19)

4k \ 1 — 9kt
DA A=

and thus,

8k2(1 — ¥k 1)e
1—v

Mp_1 = (1 + )ﬁk_ldH(v) = (1 + 8k3)9* tdy (v)

which completes the proof. O

4.3.7 Many paths in intersecting k-graphs

We say that a walk W = w;...w, in a k-graph is internally self-avoiding if the walks

Wy ... we—g and w41 . .. wy are self-avoiding. We use the following result from [63].

Lemma 4.3.11 ([63, Lemma 2.3]). Suppose 1/n <« a « 1/t « n,1/k. Suppose H is
an n-intersecting k-graph on n vertices with vertex set V.. Then, for all 3,1 € E(H), the

number of internally self-avoiding (-walks from 3 to t in H is at least an’=%".

4.4 Approximate decomposition into path coverings

In this section we use Corollary 4.3.6 to turn fractional decompositions provided by
Theorem 4.3.4 into approximate decompositions of almost vertex-regular k-graphs into
almost spanning collections of paths. These collections of paths form the basis for the
construction of cycle factors in Section 4.6.

We need to keep track of how k-sets that may be edges in a larger graph are distributed
with respect to the paths constructed below. Suppose H is a k-graph on n vertices with
vertex set V and P is a collection of paths in H. Let e € (Z) We use the following

terminology to classify e with respect to P, where we often tacitly assume that the collection
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of paths with respect to which we classify a k-set is obvious from the context. We say
that e is

(i) j-ending (or of type j-end) if j is the maximal integer for which there is a j-set x € e
and a path P € P such that x is an end-set of P;

(ii) ending if it is j-ending for some j € [k];
(iii) leftover (or of type lo) if it is neither ending nor a subset of V(P);

(iv) j-concentrated (or of type j-con) if it is neither ending nor leftover and j is the maximal

integer for which there is a j-set x € e and a path P € P such that x < V(P);

(v) concentrated if it is j-concentrated for some j € [k].

We denote the set of types by T = Tena U {lo} U Teon where Tong = {1-end, ..., k-end}
and Teon = {1-con, ..., k-con}. Note that given P and e, the k-set e has a unique type with
respect to P. Given multiple collections Py, ..., P, of paths, for i € [r], we use 7(e,?) to
denote the type of e with respect to P;, and for 7 € T, we set Z,(e) = {1 € [r]: 7(e,i) = 7},
where we tacitly assume that the index set and the collection of paths that belongs to a

given index are obvious from the context.

Proposition 4.4.1. Suppose 1/n « 0,1/L <« n,u,1/k. Let H be an n-intersecting k-graph
on n vertices with vertex set V' such that there is an integer r with kr < dg(v) < (1 + o)kr
for all v € V. Then, there exist edge-disjoint collections Py, ..., P. of L-paths in H

with |V(P;)| = (1 — p)n for all i € [r] such that the following holds for all e € (Z)

(1) |To(e)| < pr;
(i) |Zj-con(€)] < n*/m*L for all j € [k — 1] and |Zicon(€)| < n/n*t;
(i) |Zj.ena(e)| < n*=7/LY? for all j € [k — 1].

Note that the proof also yields edge-disjoint collections Cy,...,C, of L-cycles instead of
the paths with |V(C;)| = (1 — u)n for all ¢ € [r] (without the properties (i)—(iii)); we use
this in the proof of Lemma 4.6.3.

Proof of Proposition 4.4.1. First we argue that it suffices to find collections Cy,...,C, of L-
cycles in H with properties similar to those of collections of paths in the statement; then
we obtain such collections of cycles by applying Corollary 4.3.6 in an auxiliary hypergraph

that represents a fractional cycle decomposition given by Theorem 4.3.4.
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Suppose Cy,...,C, are edge-disjoint collections of L-cycles in H. Note that for all j €
[k —1] and x < (‘;), there are at most n*~7 collections C; with i € [r] where the elements
of x appear consecutively in a cycle in C; and for all i € [r], there is at most one cycle C' € C;
such that the elements of x appear consecutively in C'. Now, for all i € [r] and every
cycle in C' € C;, delete k — 1 consecutive edges uniformly at random and independently of
the edges deleted in the other cycles to obtain collections of paths Py, ..., P,.. Then the
expected value of the random variable counting the number of collections P; with i € [r]
where x is an end-set of a path in P; is at most 2n*77/L. Hence Chernoff’s inequality
(Lemma 4.3.1) entails that it is possible to delete k — 1 consecutive edges of every cycle
in C; for all i € [r] to obtain collections of paths Py, ..., P, such that for all j € [k — 1]
and x € (‘]/), there are at most 3n*~7/L collections P; with i € [r] where x is an end-set of
a path in P;. For such collections Pi,...,P,, j € [k — 1] and e € (}), we have Z; cna(e) <
(’;) -3nF~7 /L < n*77 /L2 and thus it suffices to obtain edge-disjoint collections Cy, ..., C,
of L-cycles in H with |V(C;)| = (1 — p)n for all i € [r] such that the following holds.

e {ie[r]:ve V(C)} < pr/k forall ve V;
e H{ier]:3CeCi:x<cV(O)}| < le*j/(UQL(I;)) for all j € [k —1] and x € (‘g/)

Let £ = E(H) and let C,(H) denote the set of L-cycles in H. From Theorem 4.3.4 we
obtain a fractional L-cycle decomposition w of H with
E 3|E
Bl ey < 35 (4.4.1)

~
nk ntn

for all C € C(H). Consider the 2L-graph H* with vertex set (V' x [r]) u E where we add
for each C' € Cr(H) and all i € [r], the edge ef; = {(v,i): v e V(C)} u E(C) (note that
the edge eg; uniquely identifies C' and 7). Let E* = E(H*) and I' = (1 + o)r = A(H)/k
and let w*: £* — [0, 1] be the edge weight function with w*(ef;;) = w(C)/T for all e* € £*.
Here, w* is a representation of w that is normalized such that for all v € V and i € [r], we

have

- 1 w 1 dy(v 1
> w(en) = - Z: Z:}):kx F()e[1+g,1]. (4.4.2)

Note that there is a correspondence of matchings in H* to edge-disjoint collections of L-
cycles in H, namely a matching M* in H* corresponds to the collections Cy,...,C,,

where C; = {C € C(H): ep; € M*} for all 7 € [r]. This will allow us to obtain collections
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of cycles with the desired properties from Corollary 4.3.6. We now introduce appropriate
parameters including suitable subsets of £* and check that the conditions necessary for a
suitable application of Corollary 4.3.6 hold in this setting.

Let § = 5, ¢ = 906%, and ¢ = nl. From (4.4.1) we obtain (with some room to spare)

c  2kIInt—k = I'nk I ntTnt = pllnt—k = pl-3/2

for all C' € Cr(H). To complete our analysis of the 1-degrees in H*, we observe that in

addition to (4.4.2), for all e € E, we have

C 1
Z wi(e*)=r- Z w(r) =7 < L (4.4.4)
e*eb: CeCr(H):
ece e E(C)

Let us now consider the 2-degrees in H*. For distinct u,v € V and distinct e, f € F, we

have

{CeCr(H): u,ve V(C)}| < Ln*2, |{CeCL(H):veV(C)Aeec E(C)} <kint*
and [{CeCL(H): e, fe E(C)} < 2kint*1,

Using (4.4.3), this yields for all i € [r], that

C L
Z wr(e*) = Z w(F) < WC_(S <, (4.4.5)
e*eE*: CeCr(H):
(u,z),(v,z)Ee* u,UEV(C)
C k!
Z wr(e*) = Z w(r ) < k_s/Qc*‘s <c¢®  and (4.4.6)
e*eE*: CeCr(H): n
(v,3),ece* veV(C) necE(C)
C 2k!
Sooowie)=r > “(F ) < nk_;c—(s <c (4.4.7)
e*eE*:e, fee* CeCr(H):
e,feE(C)

Furthermore, observe that

w(C) E| 2
Z w(e*)=r- Z —— =71 —— <exp(c) (4.4.8)
CeCy(H) T 'L

e*eE(H*)

gives an upper bound for the total weight on the edges of H*. Forie [r],veV, je [k—1],
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and x € (‘J/), we define edge-sets as follows.

={etge i =i}, E)={eg,eE :veV(C)}
and Ef ={ec, e " : xS V(CO)}.

We have C’ |E|
> > 4.4.
Z Z r'L FL ¢ (4.4.9)

and

ZW*(€*>:T‘]1€' Z 2 W(F):r‘]lg'dHF(U)> TS (4.4.10)

1+p

Since Lemma 4.3.11 implies |[{C € C(H): do(x) = 1}| = n*77/3, using (4.4.3) we obtain

C ; j
diwieN = ) w(p Dot ﬁ >nfT2 =00 (4.4.00)
ereBx CeCyr(H): ’

dc (X)Zl

Thus, since 7+ n + 3,y (?) < exp(¢®”) holds and by (4.4.2)(4.4.11) we may apply
Corollary 4.3.6 to obtain a matching M* in H* with

* * _ |E’ _rn n
EN>=(1-— 872 1— 572 1-— -,
M B> (=) s (=) 5 (1 -

2
MAB (-l W o s (1 - M)n

e
s

and
M A B < (1+c¢79) ) wie)
e*eb}
forallie[r],veV,je[k—1], and x € (‘J/) Since we have [{C' € CL(H): x < V(C)}| <
Lint=7  (4.4.3) implies
- - w(C) - L 3 (-
B < (1 Nr - —~—l <1 Ny Linl—i. < J
|M N x| ( +c )’f’ . ( tc )T n T]LFHL_k nQL(I;)n

and thus, choosing C; as the collection of L-cycles C'in H with ef,; € M* yields collections
of cycles in H with the desired properties. O
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4.5 Ingredients for absorption

Suppose we are given a k-graph H on n vertices. In this section we construct a collection
of paths P in H whose lengths do not grow with n such that any small set of vertices X
can be absorbed into these paths; that is, for every path P € P, there is a new path P’
with the same end-tuples as P and V(P’') < V(P) u X such that the new paths form a
collection of paths P’ with V(P') = V(P) u X.

There are two main novelties in our setting. Firstly, we choose P randomly in an
extremely uniform way such that V' (P) behaves like a uniformly chosen vertex set of size
[V(P)|. Secondly, we can control how many vertices each path in P will absorb if an
adversary determines a set of vertices to absorb. Here the main difficulty is that the lengths
of the paths in P do not grow with n. To the best of our knowledge, this problem has not

been dealt with in the literature so far.

4.5.1 Random walks and vertex absorbers

Let H be a k-graph on n vertices with vertex set V' and edge set . For x € V, a
path A = ay...a9 in H is called an z-absorber if a; ...agxag 1 ... aq, is also a path in H.
In what follows, we describe how certain random walks contain many vertex-disjoint x-
absorbers for all x € V' simultaneously and at the same time ensure that the set of vertices
visited by these random walks behaves like a vertex set chosen uniformly at random among
all vertex sets of the same size.

In what follows, a, ¢, £, L, t, are always positive integers. Let W = w; ... wy be a walk.
For i € [L/(2k + ()], we define

Af(W) = W(2k+0)(i—1)+1 - - - W(2k+£)(i—1)+2k and AK(W) = {Af(W) i€ [2/66— é] }
We may think of A? as the i-th potential absorber in W when requiring ¢ vertices between
absorbers whereas A‘(W) is the set of all these potential absorbers in W. To gain control
over where absorbed vertices will be placed, we consider absorbers in groups which we call
blocks. Towards the end of the section, our construction yields a set of blocks B and during
the absorption, every block B € B will absorb exactly one vertex. More precisely, we say
that a walk B = by ... bk in H is an (a, £)-block in H; that is, B can be split into a
consecutive walks that consist of a 2k-walk followed by an ¢-walk. For i € [L/(a(2k + ¢))],
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we define

BE (W) = Wagaks)io1)+1 - - - Wagkreyy and  BYH(W) = {BMW); i€ [a(2/~cL—|—€)] }
where B®(W) can be considered as the i-th (a, £)-block in W whereas B*!(W) is the set
of all these (a, ¢)-blocks in W. Later, we will choose absorbers and blocks randomly. In
contrast to other approaches existing in the literature, we build our absorbing structure
via random walks whose distributions are given by perfect fractional matchings to ensure a
very uniform distribution of the vertices visited by these random walks.

We introduce the convention that sequences s,, ...s, with m > n are considered as the
empty sequence which we identify with @. For w: E — Ry, j € [k], and vy,...,v; € V,
we define w(vi ... v;) = Yiep. 4y, e W(€) and we set w(D) = 3. pw(e).

Let w: E — R.g. We say a sequence of V-valued random variables X;...X,, is a
random walk in H with parameters (L,w), or simply an (L,w)-random walk in H, if its

distribution is given by

IP[Xt = Ut | X1 "'Xt—l =1 ...'Ut_l] = IP[Xt = Ut | Xt—m"'Xt—l = Ut—m'”vt—l]

B (]gfrs)(:jt(;:mvtz)t—l) if Ut ¢ {Ut—m) ey Ut_l}
0 if Ut € {Ut—my e 7’Ut_1}
(4.5.1)

for all t € [t.], m = min{k — 1, — 1 mod L}, and vy,...,v; € V with P[X;... X;; =
v1...v—1] > 0. This is indeed a probability distribution because for all j € [k — 1]

and vy,...,v; € V, we have

Z w(vy ...v0) = (k—jw(vy...v)).

veV~{vi,...,v;}

Whenever we consider an (L,w)-random walk in a k-graph H, we assume that L is a
positive integer and w: E(H) — R~¢. Observe that if X;...X,, is an (L,w)-random walk
in a k-graph H, then also X (s_1)41 ... X is an (L,w)-random walk in H for all s € [t,/L].

Observation 4.5.1. Suppose H is a k-graph. Suppose Xi...X;, is an (L,w)-random
walk in H. Then, the random walks X1 ... X5 and Xreiq...X;, are independent for all

positive integers s.

Recall that w: E — Ry is balanced if ﬁ%m < 2. For an (L,w)-random walk

Xi...X,;, in H for some balanced w, the balancedness of w allows us to bound the
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probability of the event that X; = Xy for some distinct ¢,t" € [¢,]; the union bound yields

the following observation.

Observation 4.5.2. Let 1/n « n,1/k. Suppose H is a k-graph on n vertices with §( H) >
nn. Suppose X, ... X,, witht, < 2n'? is an (L,w)-random walk in H for some balanced w.

Then, we have
P[X, ... X, is self-avoiding] = 1 —n~"*.

The following lemma shows that for an (L,w)-random walk X; ... X, in H not only
the transition probabilities are determined by w, but also the probability of X;...X,,

consecutively visiting a sequence of vertices can be easily computed in terms of w.

Lemma 4.5.3. Suppose H is a k-graph on n vertices with vertex set V. Suppose X1 ... X
is an (L,w)-random walk in H. Let t € [L] and j € [min{k,t}]. Then, we have

k— j)!W(U_j_H c. Uo)
klw(2)

IP[Xt,jJrl e Xt =V_j41--- Uo] = ( (452)

forallv_jiq1,...,v9€ V.

Proof. We prove the statement by induction on ¢. If ¢ = 1, then the statement is true by

choice of X;. Next assume that (4.5.2) is true for a t € [L — 1] and all j € [min{k, t}].
Given such a t € [L — 1], let j € [min{k,¢ + 1}] and m = min{k — 1,¢} (hence j <

m + 1) as well as v_j;1,...,v9 € V be given. Furthermore, let U =V ~ {v_j41,..., 00}

and h =m —j+ 1> 0. Now we establish (4.5.2) with ¢ + 1 instead of t. We compute

]P[Xt_j+2 . Xt+1 =V—j41--- Uo]

= Z IP[Xt_m+1 ce Xt+1 =V_m--- U()]

(V= yeeyv—j ) EUR

_ Wy V)P Xymat - Xp = Uy 0]
(U_mng)em (k—m)w_pm...v_1) (4.5.3)
_ Z WV_p . 00) - (K —m)lw(v_p ... v_1) (4.5.4)

(k —m)w(v_p, ...v_1) - klw(D)
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_ (k? — j)!w(’l]_j+1 - - Uo)
klw(2) ’

where we used (4.5.1) for (4.5.3) and the induction hypothesis for (4.5.4). O

The next lemma shows that whenever Xj ... Xy, is an (L, w)-random walk in H for some
balanced w and x a vertex in a slightly larger k-graph, then after a few steps X ... X},
has a decent chance of producing an x-absorber in 2k consecutive steps. This follows easily,
because as an n-intersecting k-graph, H contains sufficiently many suitable xz-absorbers,
Lemma 4.3.11 guarantees that there are sufficiently many ways for the random walk to
arrive at such an x-absorber independent of the starting conditions and the balancedness
of w entails that every walk extending an already chosen initial segment of the random

walk occurs with sufficiently large probability.

Observation 4.5.4. Let 1/n « a <« vy, 0 < n,1/k and L = 2k. Suppose H, is an 1-
intersecting k-graph on at most (1 + vy )n vertices with vertex set Vi, and H is an induced

subgraph of H, on n vertices. Suppose X; ... Xy is an (L,w)-random walk in H for some
balanced w. Then, for allt e {—{,..., L —{ — 2k} and x € V., we have

P[Xiio41 ... Xivoror @s an x-absorber in Hy | X; ... X{| = a.

Measuring the impact of removing the vertices of an (L, w)-random walk in H from H
is one of the core objectives in this subsection. The following lemma shows that for
each (k — 1)-set of vertices of H, its neighbourhood is essentially visited as often as

expected. Via Lemma 4.3.10, this transfers to the vertex degrees appropriately.

Lemma 4.5.5. Let 1/n « n,1/k,1/L. Suppose H is a k-graph on n vertices with vertex
set V and 6(H) = nn. Suppose X, ...X;, with n'3/2 <t, < 2n'? is an (L,w)-random
walk in H for some balanced perfect fractional matching w in H. Let U =V~ {X;: t € [t.]}.
Then, for all x € (k‘:l), we have

P {dH[UUX] (x) = (1 £ n=31/10) (1 — 2) dH(x)] > 1 — exp(—n/™). (4.5.5)

Proof. Since Lemma 4.5.3 yields P[X; = v] = 1/n for all t € [t,] and v € V and since for
all £ € [L], the random variables X (_1y4+¢ with s € [t./L] are mutually independent by

Observation 4.5.1, the statement is a consequence of Chernoff’s inequality (Lemma 4.3.1).
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Let us turn to the details. Fix x € (,”,). To see that (4.5.5) holds, we will show that
ls

P||Ng(x) n {X;: t e[t} = (1 +n YNy (x)]| =1 — exp(—n'/1). (4.5.6)
n

To this end, for ¢ € [L], let Y; denote the indicator random variable of the event
that X; € Ny(x). Note that Lemma 4.5.3 implies P|Y; = 1] = |Ny(x)|/n. For ¢ € [L],
let N, = Zse[t* /1] Y7(s—1)+¢. Crucially, note that N, is the sum of the independent random
variables Y7 (s_1)4¢ with s € [¢,/L]. Furthermore, for ¢ € [t.], let Z; denote the indicator
random variable of the event that X; € {Xy: ' € [t — 1]} n Ny(x) and let Z = 3, [, ; Z:.
Observe that

INup(x) n{X,:te[t]l = > N— Z.
Le[L]

Let us estimate N, and Z. For all ¢ € [L], Chernoff’s inequality (Lemma 4.3.1) entails

-1/8 N t*
IP[Ng _ (1 + n 5 ) | f;(X)|L] >1— exp(—n1/13).

Furthermore, from t, < 2n'/3, §(H) = nn, (4.5.1), and the balancedness of w, we obtain
P(Z, =1|Zy,....,Z 4] <n 12

for all t € [t,]. This shows that Z is stochastically dominated by a binomial random

variable with parameters ¢, and n~'/? and thus Chernoff’s inequality (Lemma 4.3.1) implies

_1/8t
P2 "l | < B[z (14 Do)
n

< exp(—n'/%).

The union bound yields (4.5.6). O

4.5.2 Building the absorbing structure

The following result verifies the existence of few vertex-disjoint paths whose union con-
tains many vertex absorbers. Moreover, there is in fact a “uniform” probabilistic con-
struction of these paths. To state the next result, we introduce the following ter-
minology concerning paths. For a path P = v;...v,, we define the boundary 0P
as 0P = P[{v,..., Uk, Vp—gs1,...,0¢}] if £ = 2k + 1 and 0P = P otherwise. Further-
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more, for a collection of paths P, we define 0P = | Jpp OP.

Lemma 4.5.6. Let 1/n « o « 1/L « 1/a « vy, 1/l « n,1/k. Suppose H, is an n-
intersecting k-graph on at most (14 vy )n vertices with vertex set Vo and H is an induced o-
almost regqular subgraph of H, on n vertices with edge set E. Let ¥ = 1/a and for allx € V.,
denote the set of x-absorbers in H, by A,. Then, there is a probabilistic construction of a
collection P of L-paths in H together with a set B < |Jpep B**(P) such that the following
holds.

(i) |P| < ¥*n/L;
(ii) H — V(P) is 20-almost reqular;
(iii) |{B e B: AYB) n A, # @}| = 39*n for all x € V, (in particular, |B| = 39*n);
(iv) {zeVi: AYB) n A, = @}| < 9'n for all B e B;
(v) Plee E(P)] < ¥ and Ple € E(OP)] < = for alle€ E.

Proof. The key idea of the proof is as follows. Constructing P by starting with P = @ and
iteratively adding suitable random walks in H to P yields a P as desired apart from (v)
with probability at least 1/5. This can be used to obtain an appropriate probability
distribution on such collections P.

More precisely, for ¢, = n'/3, we will construct P in s, = 9¥?n/t, stages, where in
stage s € [s,] we potentially add the L-walks generated by an (L, w*™!)-random walk X* =
X3 ... X} inarandom subgraph H*~! of H for a balanced perfect fractional matching w*~!
in H*~!. To this end, for every subgraph S < H with a balanced perfect fractional matching,
fix one such perfect fractional matching in S to which we refer as the perfect fractional
matching assigned to S. We inductively define the random k-graphs H = H° 2 ... 2 H*

and random walks X!, ..., X as follows.
(1) Let H° = H;

2) for s € [s,], define the random walk X* = X¢... X? in H* ! and H* € H* ! as
1 te

follows.

(2a) If there is a balanced perfect fractional matching in H¥7', let X* = X7 ... X}
be an (L, w* !)-random walk in H*~!, where w*™! denotes the perfect fractional

matching assigned to H*~!; otherwise let X* = X*°1;

(2b) if X* is self-avoiding, let H* = H*™1 — {X?: t € [t,]}; otherwise let H® = H*™1.
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Note that Lemma 4.3.8 guarantees a balanced perfect fractional matching in Hy = H and
that for s € [s,], if X* = X*7! then H* = H*"! by construction of H*"! even if X* is
self-avoiding.

We may think of stages s € [s,] where there is no balanced perfect fractional matching
in H5~! and stages s € [s,] where X* is not self-avoiding as failed stages as these stages
fail to generate L-paths disjoint from each other and all L-paths previously added to P.
While stages that fail due to the absence of a balanced perfect fractional matching in H**
are fatal in the sense that they entail failure in all subsequent stages, we can otherwise
recover from failure in the sense that subsequent stages may still be successful. We repeat
previously generated paths in the case of fatal failure simply for convenience.

Later we show that with probability at least 4/5 no fatal failure occurs; that is, there is
a balanced perfect fractional matching in H*! for all s € [s,]. We also show that with
probability at least 4/5, there are at most n'/? non-fatal failures, that is, there are at

most n'/?

For s € [s4]o, let V® = V(H®) and let V = VY = V(H). We use p, = t./L to refer

to the number of L-walks generated in every stage. For s € [s.] and p € [p.], let P} =

stages s € [s,] such that X* is not self-avoiding.

Xip—1)+1 - Xip denote the p-th walk generated in stage s and let P* = {PF;: p € [p.]}

denote the set of all walks generated in stage s. Let

P =JP, BP) =] B*P),

s€[s4] PeP’

P = U Pe and  B(P) = | | B*(P).

s€[s«]: X* is self-avoiding PeP

In accordance with (iv), we say that an (a,£)-block B is good if there are at most ¥'n
vertices z € V, such that A*(B) does not contain an z-absorber in H, and we call B bad

otherwise. We define events &, &, &3, and &4 as follows.

&i: For all x € V., there are at least 59*n triples (s, p,i) with s € [s.], p € [ps], i €
[L/(a(2k + €))], and AX(B{(P5)) n A, # @;

&y: there are at most ¥'n bad blocks in B(P’);

1/2

Es: there are at most n'/* stages s € [s,] such that X* is not self-avoiding;

&y H*> is (0 + n~Y'?)-almost regular.
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We claim the following.

If€ =& n...n&E occurs, then P with B = {B € B(P): B is good} satisfies (i)-
(iv).

To see that this is true, we argue as follows. First observe that since H — X is (1/2)-

(4.5.7)

intersecting for all X < V of size at most nn/2, the random k-graphs H® with s € [s,]
are (n/2)-intersecting. Thus if £, occurs, there exists a balanced perfect fractional matching
in H** by Lemma 4.3.8. This implies that there was a balanced perfect fractional matching
in H® for all s € [s.]p and thus no fatal failure occured; otherwise H** would be equal to
the first such k-graph without a perfect fractional matching by construction.

Next note that if & n & occurs, the number of triples (s,p,7) with s € [s,], p €
[p+], i € [L/(a(2k + £))], and AK(BF’Z(P;)) N A, # @ such that X* is self-avoiding
is at least 49*n for all « € V,. This together with the previous observation shows
that whenever £ n & n & occurs we have that for all € V.., there are at least 49%n
blocks B € B(P) with AY(B) n A, # @. If & now also occurs in addition to & N & N &y,
we lose at most ¥4n blocks by dropping bad blocks which shows that (iii) holds.

Finally, since we only consider good blocks, (iv) holds, s, - p, = ¥?n/L implies that (i)
holds by construction of P, and if & occurs, (ii) holds because H — V(P) = H®+. This
proves (4.5.7).

Let us finish the proof assuming P[£] = 1/5. By (4.5.7), this implies that choosing P
from all possible realisations of P such that P[P = Q] = P[P = Q | &] for all possible
realisations Q of P is a probabilistic construction as desired because for all e € E and i €
[L — k + 1], Lemma 4.5.3 entails

P X)) € P: {Xi,. . Xivp1} =] = P[H(Xt)te[L] eP X, .., Xivp1} =€ | E]
Z PHX;, .. Xivk—1} = €]

[s«] (Xt)terr1€P
- z el
s€[s] (X¢)te[L1EP*® klw (Q)

1
<5-8, py-k!- 2—

2

1

<Y
Ln

which implies (v).
It remains to prove P[€] = 1/5. This easily follows if P[&;] = 4/5 for all i € [4], which

is what we prove next. For x € V, and s € [s,], let Y, , denote the random variable
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counting the pairs (p,7) with p € [p.], i € [L/(2k + ()], and A{(P;) € A,. Note that &
occurs if Y, , = 59°n/s, for all z € V, and s € [s,]. Observation 4.5.1 in conjunction with

Observation 4.5.4 shows that Y, ; stochastically dominates a binomial random variable

L

L and 9¥'/2. Hence Chernoff’s inequality (Lemma 4.3.1) implies that
2k+0

with parameters p,

59%n 1 L
PlY, <P|Y,, <= 12 < 174
[“< 5*] l y VT by | s el
and the union bound yields P[&;] > 4/5.
For all z € V, and B € B(P’), Observation 4.5.4 implies

PAYB) A A, = @] < (1 — 92" < 92,

This entails
ex[|{z € Vi: AYB) n A, = o}|] < 9n.

Using Markov’s inequality we obtain P[B is bad] < ¢ for all B € B(P’). This shows that
the expected value of the random variable counting the number of bad blocks in B(P’) is

at most
L 94

= < 9'n/5.
Gl kg U

19-5*‘]?*'

Again using Markov’s inequality, this yields P[&;] = 4/5.

For all s € [s,], Observation 4.5.2 implies that X* is self-avoiding with probability at
least 1 — 2n~'%. From this, we obtain that the expected value of the random variable
counting the stages s € [s,] where X* is not self-avoiding is at most 2n=4 -5, = 292n>/'? <
n'/2/5. Using Markov’s inequality we conclude that P[£3] > 4/5.

To see that P[E4] = 4/5 holds, we show that all random k-graphs H® with s € [s,]o are
almost regular with high probability. More precisely, for s € [s.]o, let £ denote the event

that H* is (o + sn~%/*)-almost regular. Our goal is to show
IP[ﬂ Sj/] > 1 — sexp(n /") (4.5.8)
s'=0
for all s € [s,]o. This suffices because £5* < £;. We proceed by induction on s. First note

that P[£Y] = 1. Next, assume that (4.5.8) holds for some s € [s, — 1]o. Then, Lemma 4.3.8
guarantees that there is no fatal failure in stage s + 1. For U = VS~ {X;™': t € [t,]}
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and x € (k 1) Lemma 4.5.5 entails

Pl drmo) = (172 (1

ﬂ & ] > 1 — exp(—n'/1).

Lemma 4.3.10 and the union bound yield P& N2 &3] = 1 — exp(—nt/?®) and thus
by induction hypothesis [ﬂSH E'=1—(s+1)exp(—n'/15). -

In the following Proposition 4.5.8 we employ the absorbers provided by Lemma 4.5.6
to absorb sets of vertices X in the sense that for all suitable X, we find a selection of these
absorbers such that the selected absorbers can simultaneously absorb all vertices in X. As
this requires matching all vertices x € X to an z-absorber, we make use of the following
observation which follows easily by iteratively using Hall’s theorem and removing perfect

matchings.

Observation 4.5.7. Suppose G is a bipartite graph on 2n vertices with bipartition {V, Va}
with |Vi| = |Va| = n. For i € [2], let ; = min{dg(v): v € V;,}. Then, there are at
least (01 + 62 —m)/2 disjoint perfect matchings in G.

Proposition 4.5.8. Let 1/n < o « 1/L « ¥ « vy < n,1/k. Suppose H. is an n-
intersecting k-graph on at most (1+ v, )n vertices with vertex set V., and edge set E, and H
is a p-almost reqular induced subgraph of H, on n vertices. Then, there is a probabilistic
construction of a collection P of L-paths in H together with a function o: P — [L]o such
that the following holds.

(i) |P| < ¥*n/L;
(ii) c= ZPGP U(P) = 19471;
(i) H — V(P) is 2p-almost regular;

(iv) for all probabilistic constructions of a set X < V. with X nV(P) = @ and | X| = ¢,
there is a probabilistic construction of a collection P’ of paths in H, such that the

following holds.

(ivi) There is a bijection ¢ : P — P’ such that for all P € P, the path o(P) is
n (L + o(P))-path with V(p(P)) < V(P) u X that has the same ordered
end-edges as P;
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(iv.ii) for all e € E,, we have

1 1
< W and IP[G € E(@P/)] < Lnkil .

Ple e E(P)]

Proof. For the probabilistic construction of the collection P together with a function o, we
will employ Lemma 4.5.6. Then, for the probabilistic construction of P’ we will randomly
absorb all vertices x € X into the paths in P; that is, we will randomly place every
vertex x € X in the center of an z-absorber in H, that is a subgraph of a path in P.

In more detail, we argue as follows. Let £ = E(H). For x € V| let A, denote the set
of x-absorbers in H,. Choose ¢ such that ¥ « vy,1/¢ <« n,1/k. Let a = 1/¢. Lemma 4.5.6
provides a probabilistic construction of a collection P of L-paths in H together with a
set B € |Jpep B*(P) such that the following holds.

(1) 1P| < n/L;
(2) H —V(P) is 2p-almost regular;

(3) {BeB: AY(B) n A, # @}| = 3¢"n for all z € Vy;

(4) {ze Vi AYB) n A, = @} < 9'n for all B € B;

(5) Ple e E(P)] < V4~ and Ple € E(0P)] < 1 forall e € E.

Let o0: P — [L]o with o(P) = |B n B**(P)| for all P € P and let ¢ = |B|. Then (i)—(iii)
hold.

For all (a,f)-blocks B in H and all x € V, with A, n AYB) # 9, we fix one z-
absorber A,(B) € A*(B) in H, for later use. For PP as above and a probabilistic construction
ofaset X € V, with X nV(P) = @ and | X| = ¢, we obtain P’ through random absorption
of all elements of X into the paths in P as follows. Consider the auxiliary bipartite graph G
with bipartition { X, B} and an edge between z € X and B € B if and only if A,nA*(B) # @.
Intuitively, edges in this graph represent possible absorptions of elements of X into the
adjacent blocks. Thus, we may think of perfect matchings in G as representations of valid
stategies for the absorption of all elements of X. Due to (3) and (4), we have dg(z) = 39'n
for all z € X and dg(B) = ¢ — 9¥*n for all B € B. Therefore, Observation 4.5.7 guarantees
the existence of a set of ¥*n edge-disjoint perfect matchings in G. Pick one matching
uniformly at random from this set and interpret this matching as a bijection pu: X — B.
Let ¢ denote the bijection defined on P that maps P € P to the path obtained from P
when placing 1 (B) in the center of A,-1(5)(B) for all B € B n B**(P). Let P’ = Im(¢).
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It remains to check that this defines a probabilistic construction of a collection P’ of

paths satisfying (iv.ii). For all x € (kvjl) and all possible realisations Q of P, there is at

most one block B € | Jpeq B (P) with dp(x) = 1. Hence, for all z € V, and x € (V) we

have
1

(4.5.9)

by construction of p. Thus, for all e € £, (5) yields

Plee E(P)]|<PlxnX =0 rnee E(P )]—i—ZIP[xeX/\du(@(e\{x}) > 1]

Tee

— + Z]P[x e X Ndywy(e~{z}) =1 Adp(e~{z}) = 1]

ree

IPdP (e A{z}) = 1]

xee

Z Z [(e ~ {z}) U {v} e E(P)]

xee UEV+

//\

) - 1
nk—1 = Yapk—1"

—
ot
-

N

+7- (1+vi)n

nk=1 ¥n
Furthermore, we obtain

Ple € B(0P)] - Ple € B(7P)] < ~—

L nk-1 ’

which completes the proof. O]

4.6 From paths to cycles

In this section, we perform the step from the yield of Proposition 4.4.1 to the decomposition
into cycle factors as in our main theorem. We do this by describing a random process
which converts one almost spanning path collection into a cycle factor and subsequently
using another random process which repeatedly applies the first one to transform path
collection after path collection. The first step is done in Lemma 4.6.3 and the second in
Proposition 4.6.4.

We begin with the following somewhat standard lemma, which states that in any 7-
intersecting k-graph, there is a small (reservoir) set such that between any two ordered
edges, there are many short paths with all “inner” vertices in this set. Complementing the

notation 0P, for a path P = vy, ..., vy, we define the interior of P as (the subpath) P° =
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Uks1s .-, Vg if €= 2k + 1 and P° = P[@] otherwise. The vertex set of P° is the set of

inner vertices of P. For a collection P of paths, we define P° = | pep P°.

Lemma 4.6.1. Suppose 1/n < 5,0 < 1/ly,1/0; < n,1/k, where {y < {1. Suppose H is
an n-intersecting p-almost reqular k-graph on n vertices with vertex set V and edge set E.
Then there is a set R <V such that the following holds.

(i) Bn/2 <|R| < Bn;

(ii) for all 3,1 € E with s nt = & and all integers { € [ly, (1], the number of 3--paths P
in H with |V(P°)| = ¢ and V(P°) € R is at least B|R|*;

(iii) H — R is 20-almost regular.

This follows easily from Lemma 4.3.11 by considering a random set of vertices in which
each vertex is included independently at random (for instance, with probability 35/4) and
using Chernoff’s inequality, McDiarmid’s inequality, and the union bound to show that
the random set has the desired properties with high probability. We omit the calculations,
which are standard by now.

The next lemma ensures that under the right conditions, many tuples can be connected
in a probabilistically well behaved way. It will later be useful when building the cycle

factor in Lemma 4.6.3.

Lemma 4.6.2. Suppose 1/n « ( « B,1/01,1/ly < 1/k, where £y < {1. Suppose H is a k-
graph onn vertices with vertex set V and edge set E. Suppose that Q = {31,%1,...,3m,tm} S
E is a random set with m < (n, e n € = @ for all distinct &,¢ € Q, and P[e e Q] < n,f—,l
for every & € E. Further, for all i € [m], let \; € [lo, ¢1] and suppose that P; is a set of at
least fn?i 3;-t;-paths with \; inner vertices. Then, there is a probabilistic construction of a

collection W S e,y Pi of paths with W 'P;| = 1 for alli € [m] and Ple € E(W)] < %
for every e e E.

i€

Proof. We aim to connect the ordered edges 3; and #; by choosing one of the paths in P;
uniformly at random. However, since the paths shall be vertex-disjoint, we employ an
iterative procedure where in each step we only consider those paths in P; which are
vertex-disjoint from all previously chosen ones and all ordered edges in Q.

Suppose we have already chosen paths W1, ..., W;_; for some i € [m — 1], where W is

an 3;-{;-path with \; inner vertices for all j € [i — 1]. Then

’ U V(I/Vj)uUeléﬁl'm—i—Q(k—l)-mé n.

jeli—1] eeQ

EIRSS
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Thus, since |P;| = Bn’i, there are still at least fnti — gn’\i = gn’\i paths in P € P;

with V(P) 0 (Ujefi—g V(W;) U Uz €) = @. Choose one of these uniformly at random
as W;.

Now, set W = {W,...,W,,} and let us analyse the probabilities. For all j € [k]o, x €
(‘]/) and i € [m], the number of 3,—#;-paths W in H with |[V(IW°)| = \; and x < V(W°)
is at most ¢% - n*~J. Therefore, by the choice of W, this implies P[x < V(W?) |
31,00y By by b < % Furthermore, for all j € [k] and x € (‘J/), the number of
ordered edges ¢ € E with x < e is at most k¥ - n*7 and hence P[Je € Q: x € €] < ;jk,kl

holds. Thus, for all e € E, we obtain

Plee EW)] < Z Plecs;u V(W) vec V(W) Ut
ie[m]

<Y Y Plenye V) |lysePlyce]

ie[m] y<e *’E{Szﬂfz}

Zﬁ|e\y|2 Z [y =el

y<e m]e'e{3;,1;}
_ 4Alhm 20k
+ P[Ie'e Q:yc ¢
= Bnk yCe‘Zy;ﬁQ Bnle~yl [Fe'e Q:y c €]
A CRRe20k
= Bnk—l Bnk—l = opk-10

which completes the proof. n

In the following lemma, we transform a path collection as yielded by Proposition 4.4.1
into a cycle factor. It resembles the usual final step in a proof by absorption, in particular,
this is where we will use Proposition 4.5.8. However, in order to subsequently apply this
construction process multiple times in the proof of Proposition 4.6.4 without ruining certain
quasirandom properties, we need to construct the cycle factor probabilistically and take
care that the probability for any edge to occur in the constructed cycle factor is small

enough. Figure 4.6.1 illustrates this process.

Lemma 4.6.3. Suppose 1/n « pu,1/L <« § € o <« n,1/k. Suppose H is a k-graph on n
vertices with vertex set V. and F' is an n-intersecting o-almost reqular spanning subgraph
of H. Let P < H — F be a collection of L-paths with |V (P)| = (1 — pu)n and let C be a
cycle factor on n vertices of girth at least L>.

Then, there is a probabilistic construction of a copy C' of C in H such that C' < P U F
and for every e € E(F) of type 7 € T \ {k-end}, we have Ple € E(F n C")] < p,,
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§1/2 1 . 1
where Precon = =1, Pjeend = sE=y Jor all j € [k — 1], and pjcon = Plo = rpe=r for

all j e [k] ~ {1}.

Proof. We use the absorption method to transform the almost spanning collection of
paths P into the desired cycle factor C'. To this end, we perform the usual steps of a proof
via absorption in a k-graph similar to F[V ~ V(P)]. That is, we set aside the absorbing
structure (via Proposition 4.5.8), cover almost everything (via Proposition 4.4.1), connect
all the paths in the approximate covering, in the absorbing structure, and, in this case,
paths in P (via Lemma 4.3.11), and finally, we absorb the remaining vertices. Note however,
that here we actually want to perform all these steps as a probabilistic construction and
analyse the probabilities for edges of F' to occur in F' n C'.
Suppose

I/m«pul/Lcd<oc /L «p «pf«id«ly<ly<nl/k. (4.6.1)

We say a set P < P is good if for V. = V ~ V(P), we have |V]| € [2n,26n], for

2
all x,y € (,/,), we have [Nr(x) n Nr(y) N V| > g|17|, and F[V] is 2p-almost regu-
lar. Consider a random selection P,.,q of paths in P which includes every path in P
independently with probability 1 — §. Then McDiarmid’s inequality (Lemma 4.3.2) guar-
antees that P[Ppnq is good] = %, say. Denote the set of good sets by & and pick a

set P’ ={Py,...,P,} at random from & such that
IP[P/ = Q] = ]P[Prand =Q | Prana € f@]

forall @ € &2. Then P’ is good and we set V; = V.V (P’). For P € P, we have V(P) < V; if
and only if P ¢ P’, and each path in P is included in P’ independently with probability 1—4.
Thus, for distinct 151, e fN’k € P, we have

P[Prana € P AVi€ [k]: P, ¢ Prand]
IP[7)1ra,nd € @]
100 1006%

<P[Vie [k]: P; ¢ Prand] - 59 < 99

Pl UV en]|=
ielk]

(4.6.2)

Next, we describe the construction of a copy C’ of C and analyse Ple € E(F' nC') | P']
for all e € E' (note that fixing P’ in particular fixes V4). In the end, we use this to deduce
the upper bound on the probabilities for different types of edges of F to lie in E(F n ().

Since we perform several probabilistic constructions sequentially, in principle, we could
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Figure 4.6.1: Transforming a path collection into a Hamiltonian cycle.

obtain all the probabilities conditioned on all previous steps. However, for our analysis it
suffices to condition only on the choice of P’.

Set aside a set R < V; provided by applying Lemma 4.6.1 with F[Vi], 5, fo, 1, 20, /2
here taking the roles of H, 3, £y, ¢1, 0, n in Lemma 4.6.1. Then §|V1] < |R| < B|Vi| and
for all 3,7 € E(F) with s nt = @ and all integers ¢ € [{g, /1], the number of 3-#-paths P
in H with |V(P°)| = ¢ and V(P°) < R is at least 3|R|*. Further, Lemma 4.6.1 guarantees
that F[V1 \ R] is 4p-almost regular.

Since we later only want to deal with edges of F[V;], we extend all paths in P’ by an
edge of I at each end. More precisely, for ¢ € [m], let @; be the ordered starting edge and b
be the ordered ending edge of P; € P’ and inductively choose @; = (u},...,u") € E(F)
and v; = (v},...,v¥) e E(F) for each i € [m] as follows.

Suppose that for some i € [m], we already have defined ordered edges @y, vy € E(F)
for all ¢ € [i — 1] such that @y Py0y is a path in H. Set

UZ-=V1\<RU g uiluvi/>

i'efi—1]

and note that since m < %, we know that |U;| > (1 — 23)|V4| holds. Moreover, since P’ is

good, we know that for all x,y € (,”,) and U < V; with |U| > (1 — 23)|V4], we have

k-1
INp(x) A Np(y) nU| = g|v1| and  [Np(x) nU| = g|v1|. (4.6.3)

Suppose for some j € [k], vertices ufl are given for all 7/ € {j+1,...,k}. Then choose ul e
Np(ul™, ... ub,al, ... al™") AU, uniformly at random (note that due to (4.6.3), this means
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that u is chosen uniformly at random from a set of size at least 2|V1]). Subsequently,
suppose that for some j € [k], vertices vf/ are given for all j € [j — 1]. Then choose

vl e NG, .. 0k ol oo ol A (U N w)

79 Y1

uniformly at random. By this definition, the edges uy, vy, ..., Un, v, are pairwise disjoint.
Furthermore, observe that the definition of 7; and v; together with (4.6.3) yield the
following. For all j € [k], ¢ € [m], and x € (‘J/),

/ (3 Y _ b
PlxCw vx<Su | Pl<2K (77|V1|> <|V1|j' (4.6.4)
Now set Vo = Vi \ (R U e, wi V vi) and note that by (4.6.3), F[V2] is 1/3-intersecting.
Furthermore, since F'[Vi\ R] is n/3-intersecting and 4¢-almost regular and | ;e wivvi| <
2kn “we know that F[Va] is 5o-almost regular.
Now choose v, such that ¥ « v, « n,1/k and apply Proposition 4.5.8 with F[Vi], F[V3],
50, L', 9, vy, n/2 here in place of H,, H, o, L, ¥, vy, 1 there.
This engenders a probabilistic construction of a pair (S,0) where S is a collection

of L'-paths in F[V5] and 0: S — [L']y is a function such that the following holds.
(S1) [S| < 9*|Val/L";

(S2) ¢ = 2ges0(S) = V|Val;

(S3) setting V3 = V4 N\ V(S), we have that F[V3] is 10p-almost regular;

(S4) for all probabilistic constructions of a set X < V; with X n V(S) = @ and | X| = ¢,
there is a probabilistic construction of a collection 8’ of paths in F[V;] such that the

following holds.

(S4.1) There is a bijection ¢ : & — &’ such that for all S € S, the path ¢(9) is
an (L' + o(9))-path with V(p(S)) € V(S) u X that has the same ordered
end-edges as S;

(54.2) for all e € E(F'), we have

1

Plee B(S') | P] < e

< 7194|V2]k—1 and Plee E(0S") | P']

The next step is to cover almost all vertices of F'[V3] by long paths. As in the other
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steps, we need to do this in a probabilistic way. This will be achieved by utilising a weak
version of Proposition 4.4.1 followed by some random selections.

By (S1), F[V5] is n/4-intersecting and due to property (S3), it is 10p-almost r-regular
for some r > g(l‘:ﬂ) Thus, setting " = (1 — 100) yields kr' < dppys)(v) < (1 + 21o)kr’
for all v € V3. Hence, we can apply Proposition 4.4.1 with F[V3], 210, L', n/4, i/, v’ here
instead of H, o, L, n, u, r there. As remarked after the statement of Proposition 4.4.1, the
proof also provides edge-disjoint collections Wy, ..., W, of L'-cycles in F[V3] with V/(W;) >
(1 — /)| V3] for all i € [r']. Let W be a random collection of L'-paths obtained by choosing
one of Wy, ..., W, uniformly at random and then independently deleting k — 1 consecutive

edges in each cycle. Note that \V(W\)] > (1 — /)| V5] and that for each e € E(F"), we have

— 1 l
P E 1< =< 4.6.5
[cc EOV) | P]< 5 Vi (4.6.5)
and
Ple € B(0W) | P] < — ! (4.6.6)
€ S Lt L/2/3|V1|k—1 ) e

Next, we will utilise Lemma 4.6.2 applied to the ordered end-edges of the paths in 17\/\,
the ordered end-edges of the paths in S, and the ordered edges @y, ¥y, . . . , Uy, U, to connect
the respective paths to cycles. First, we say which paths we aim to put into one cycle and
afterwards we prepare for the application of Lemma 4.6.2.

Let C,...,Cy be the cycles in C and for i € [h], set L; = |[V(C;)| = L?. We now
inductively define collections of paths Zi,..., 2, which we use to construct copies of
the cycles Cy,...,C). Suppose that for i € [h], we already have chosen collections of
paths Zq,...,2Z;,_1. Next, we pick a set Z; of previously unused paths. More precisely,

for i' € [m], write P}, = iy Pyv; and choose
Zic({P,....PuwWus)~ | 2
jeli1]

such that |Z; n S| is maximal with [Z;| - ly + [V(2;)| + X gesz, 0(S) < Li and such that
subject to this | Z;| is maximal. Observe that since |V ({P],..., P/} U WUSN > n—94Y Vs,
since each path in {P],..., P/} U W U S has at most 2L vertices (and for a path S € S,
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we in fact have [V (S)| + 0(S) < 2L), and by (S2), this definition implies

Li=2L—ly < |Z| - b+ |V(Z2)|+ ), o) <Li. (4.6.7)
SESﬁZi
Therefore, L; > L3 entails | Z;| > L and so |Z;|(¢; — o) = 2L — {y. Together with (4.6.7),
this implies that there are integers A}, ..., )\LZ” € [lo, 1] with

M o= i—(|v<zi)|+ 3 0—(5)).

jellZil] SeSnZ;

Next, we aim to connect the paths in Z; by means of Lemma 4.6.2 to a cycle Z; for
every i € [h], using paths with A}, ..., )\‘Z-Zil inner vertices. To this end, list the paths in Z;
arbitrarily as Al, ..., A% for all i € [h], and for all i € [h] and g € [|Z;]], let 3 and # be the
starting and ending edge of A?, respectively. Further, write p, = Zie[h] |Z;| and for p € [p.],
let ¢1(p), ta(p) be such that (¢1(p),2(p)) is the p-th element in the lexicographic ordering

of the tuples in {(i,g) : i € [h], g € [|Z|]}. Now, for every p € [p.], set 3, = 3%3“

we view the upper index modulo t5(p)) and , E ; Note that when for every p € [p.],

(where

we connect 3, and 7, by a path with /\Ll(p) inner vertices, we obtain cycles Zy, ..., Z, such
that |[V(Zi)| = Li — Ylgesnz, 0(S) for all i € [h].
Set Q = {31,11,...,3p,,p, } and note that

2\V; 292| Vs Vi
”+ ’1|Jr |2\ |1|

’Q’ < (m + ’W’ + ‘S’) L I/ I/ L/1/2

Further, by (S4.2), by (4.6.4) (together with the union bound), and by (4.6.6) we know
that for e € E(F),

0, 1 N 1 < 1 '
L/|Vo|F—1 Ll/2“/1|k71 LBV =1 = LRkt

Plee Q| P < (4.6.8)
For i € [p.], let P; be the set of all 3,—#-paths P with \V(PO)| = )\LQ yand V(P°) € R.
@)
Recall that the properties of R guarantee that |P;| > 2|R > B&”H/ 00,
Now we apply Lemma 4.6.2 with F[Vi], Q, ()\ﬁgg) o (732)ZE o]y i A 0 6
here instead of H, Q, (Xi)iem]s (Pi)iefm]: ¢: B, b1, Lo there.

Lemma 4.6.2 then yields a probabilistic construction of a collection of paths W' <

Ll()
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Uiep. P with W' A P;| = 1 for all i € [p.] such that for every e € E(F'), we have

1

P[G € E(W/) | P/] < W

(4.6.9)
This leaves us with cycles Zi, ..., Z) such that for all i € [h], the cycle Z; contains the
paths in Z; as subpaths and [V(Z;)| = Li — X ges42, 0(S). Observe that in particular,
every element of § is a subpath in one of the cycles 73, ..., Z;.

We aim to absorb the set X = Vi \ ;) V(Zi) of not yet covered vertices into the
paths in S. For this, note that since |V(Z;)| = L; — X g5z, 0(5) for all i € [h], we
have [X| = X q.50(5) = ¢ because X, ;) Li = n. So property (S4) indeed allows us to
absorb X into the cycles Z;. More precisely, there is a probabilistic construction of a set S’
of vertex-disjoint paths in F'[V;] such that

o there is a bijection ¢ : § — &’ such that for all S € S, the path ¢(S) isan (L' +o(95))-
path with V(¢(S)) <€ V(S) u X that has the same end-tuples as S;

o for all e € E(F'), we have

1

P E(S ! < —.
lee E(S') | P ] LV

and Plee E(0S') | P’ (4.6.10)

] < ;
194|‘/2’k—1

Due to the properties of S’ replacing the every path S € S n Z; in the cycle Z; by the
path ¢(S) for all i € [h] leaves us with vertex-disjoint cycles C1,...,C} with |C!| = L;,
that is, C! is a copy of C; for all i € [h]. Thus we have constructed a copy of the cycle
factor C.

Finally, let us collect the upper bounds for the probabilities for the edges of different
types to occur in the constructed cycle factor C' = | J,.,; ;. First note that for i’ € [m]
and e € F(F) which is not ending (with respect to P), we have that e € E(uyad;) can only
happen for some i’ € [m] if e = uy and the analogous remark holds for byUy. Therefore,

given e € E(F) which is not ending, (4.6.4) (together with the union bound) yields

1

Plee |J Blaae) u Blm) | P) < fraer

i'e[m]

(4.6.11)

For j € [k — 1] and a j-ending edge e € E(F), we consider all partitions {x;,x5} of e
for which there exists a P € P such that x; is an end-set of P. The event e € E(uydy)

-

(respectively e € E(byU;)) can only happen for some ¢’ € [m], if for one of these partitions, x;

152



is an end-set of Py € P’ and x5 € u; (respectively x2 < v;7). Note that for a fixed realisation

of P’, this can happen for at most one partition and one ¢ € [m]. Further, since e is j-ending,
for each such partition, we have |x;| < j. Thus, (4.6.4) implies that

]P[e € U E(ﬂ\‘/a\'/) \ E(E'/Q_}'/) ‘ 'Pl] < 670 (4 6 12)

P N o

Note that the probabilities analysed after (4.6.2) were the probabilities for edges of F' to

occur in some subpath conditioned on the choice of P’. While we do not need to make use

of this for most types, we will do so for 1-concentrated edges. First note that for e € E(F),

if ee E(F n ('), then

ee EOW)u EW) L ES) u | ) E(@say) o E(byoy), (4.6.13)

i'e[m]
and if e is not ending, then in addition e € Vj holds. If e € E(F) is 1-concentrated with
respect to P, for the event e € V; to occur, V(P) < V; has to hold for each of the k paths

in P which contain a vertex of e. Therefore, using (4.6.13) together with the bounds on
the respective probabilities in (4.6.5), (4.6.9), (4.6.10), (4.6.11), and (4.6.2), entails

L' 1006  o&Y2

]P[eef_a(ch’)]=1P[eeE(ch’)|egv1]]P[egvl]<|V1|,H T

nk-1 ’

If e e E(F) is j-ending (with respect to P) for a j € [k — 1], (4.6.13) together with the
bounds in (4.6.5), (4.6.9), (4.6.10), and (4.6.12) give that

Ple e E(F n )] < Plee EOW) u EOWV) U E(S)] + ]P[e e | | BE@yay) v E(BZ-/@Z-,)]
i'e[m]
L ly 1
< + < .
Vit T (Vi Rk

Lastly, if e € E(F) is neither 1-concentrated nor ending, (4.6.13) together with (4.6.5),
(4.6.9), (4.6.10), and (4.6.11) entail that

L 1
S Vi [+ < Skpk—1"

Plee E(F n ()]

Summarised, we provided a probabilistic construction of a cycle factor C" which is a
copy of the cycle factor C such that for every e € E(F'), the probability Ple € E(F n C')]

is bounded as claimed in the statement. O
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The next proposition says that given an approximate decomposition of the edge set
into approximate partitions of the vertex set into long paths, that is, given the setup after
applying Proposition 4.4.1, we can indeed obtain an approximate decomposition of the

edge set into given cycle factors of not too small girth.

Proposition 4.6.4. Suppose 1/n « 1/L « p « o « n,1/k. Suppose H is a k-graph
on n vertices with verter set V and F is an n-intersecting o-almost reqular spanning
subgraph of H. Suppose Pi,..., P, are edge-disjoint collections of L-paths in H — F
with |V(P;)| = (1 — p)n for all i € [r] such that for alle € (), we have

(1) [Zio(e)| < pr;
(i) [Zjcon(€)| < 25°0*7 for all j € [k — 1] and |Ticon(e)] < 25 n;
(iii) |Zjena(e)| < B for all j e [k—1].

Then, for all cycle factors Cy, . ..,C, onn vertices of girth at least L3, there are edge-disjoint

copies of Cy,...,C, in H.

Proof. In the following, we will analyse a random process in which we utilise Lemma 4.6.3
to transform each collection of paths P; in a fairly uniform way into a cycle factor C! that
is a copy of C;.

Suppose 1 < 0 € o and define a random process inductively as follows. Suppose that
for some i € [r] and all j € [i — 1] and x € (,”,), we have defined a cycle factor Ciin H
and a {0, 1}-valued random variable Y*. Further, set C_; = J;c;;_1 C;-

Let & be the event that for all x € (k‘jl), we have that dp.c (x) < §V4n. If &
does not occur, we set C; = & and choose Y;¥.. such that P = 1| (Y)jei-1), &1 =
Z%(x}g): xcePr(ei)- In the end, we will show that with high probability, & occurs for
all i € [r].

If & occurs, it follows that for all x,y € ( v

k_l), we have

INp—c (x) 0 Np_er (y)| = |[Np(x) 0 Np(y)| — 26"*n > Tn

[\]

and that F' — C., is 2p-almost regular. This means that if & occurs, we may apply
Lemma 4.6.3, with H, F—C.,, L, C;, P;, n/2, 20, 6, j here instead of H, F', L, C, P, n, 0, §, pu

<)

there, to obtain a probabilistic construction of a cycle factor C; in H such that

« C!is a copy of the cycle factor C;;
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« E(C) < E(P;) v E(F —C.;) (in particular, C; is edge-disjoint from every cycle
factor C; for all j € [i — 1]);

e Plee E(FnC) | (ij)je[i,l],&] < Prey) for every e € (Z) where picon = 7?,1—/,21,
Pj-end = (Skn%—] for all .7 € [k - 1]? Pk-end = 07 and Pj-con = Plo = (Vﬂnﬁ for all ] €
[k] ~ {1} (here prena = 0 holds since if e € (V) is k-ending with respect to P;,

k
then e ¢ E(F)).

Denoting the indicator variable of the event dp~c/(x) > 1 by [* for every x € (,7,), this
definition of C; implies P[I* = 1| (Y})jefi—1), &l < 23

I¥e,- Thus, for all x € (k‘:l), we have

ee(‘é): xCe pT(e,i) and we set Y;x|5i =

{ie[r]: dpae/(x) = 1}] < ) V. (4.6.14)

i€[r]

By definition, we have that P[Y* = 1 | (YX)jep1y] < Zee(‘/)xcepf(e,i) holds for
VY xc

j
all i € [r] and this entails that for all x € ("), we have

DEN =1 (jein] < XL D pilZi(e)

i€[r] ee(‘é): xcCe TET
(D)) 1 51/ 2 o 1 nk=i 1
< ”(W" ot P T2 Z 2t s Z 1/2 kk7‘>
okn n sl T dkn Pt LY/2 §knk—i
§/3n
<
2

Thus, we obtain by Freedman’s inequality (Lemma 4.3.3) that

IP[ Yyre 51/3n] < exp(—nV?). (4.6.15)
i€(r]

Suppose now that 3., ¥;* < 630 holds for all x € (,). Then by (4.6.14), we conclude
that dp~cr (x) < §'4n holds for all i € [r] and x € (k‘il), meaning that the event &; occurs

for all i € [r]. Consequently, by (4.6.15) and the union bound we conclude that

IP[ ﬂ &} >]P{Z VX < 6Y3n for all x € (kvl)] > 0.
ie[r] ie[r] o

Thus, with positive probability it happens that & occurs for all ¢ € [r], meaning that in

each step ¢ of this random process we construct a copy of C; that is edge-disjoint from
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all previously constructed cycle factors. This yields edge-disjoint copies of Cy,...,C,, as
desired. ]

4.7 Proof of Theorem 4.1.3

We now prove our main theorem by combining Propositions 4.4.1 and 4.6.4.

Proof of Theorem 4.1.53. Suppose 1/n « 9,1/L « p < op € € « n,1/k. Suppose H
is an n-intersecting g-almost r-regular k-graph on n vertices. Let r’ = (1 — ¢)r/k and
suppose Cy,...,C,. are cycle factors, whose girth is at least L. We show that there is a
suitable spanning subgraph F' of H such that Proposition 4.4.1 guarantees the existence
of collections Py, ..., P, of paths in H — F that we can connect to cycles forming a copy
of C; for all i € [r'] via Proposition 4.6.4.

Let V =V(H) and F = E(H). Let F' be a random spanning subgraph of H for which
every edge e € E is included in E(F') independently at random with probability p = € — 2p.
Then Chernoff’s inequality (Lemma 4.3.1) and the union bound show that with positive
probability F is an £%n/2-intersecting 2p-almost pr-regular spanning subgraph of H such
that H — F' is n/2-intersecting. From now on, let F' denote such a subgraph.

For all v e V| we have
d(v) = ((1 = 0) — (1 +20)(¢ — 20))r = kr’
and
di(v) < (14 0) — (1 —20)(g — 20))r < (1 + 4o)kr’.

Thus with 40, L'/3, /2, u, H' playing the roles of o, L, n, u, H, Proposition 4.4.1 yields
edge-disjoint collections Py, . .., P, of LY3-paths in H' with |V (P;)| = (1—p)n for all i € [r']
such that the following holds for all e € (Z)
* |ZTo(e)] < pr';
o [Zicon(e)] < 17 /(1/2)2F" for all j € [k — 1] and [Tycon(e)| < n/(n/2)*"";
o |Zjena(e)| < nF7/LY6 for all j e [k —1].

Since F is 2p-almost regular, F is in particular pp-almost regular. Consequently, with L'/3, j,
or, €2n/2, H, F playing the roles of L, u, o, n, H, F, Proposition 4.6.4 yields copies of the

given cycle factors as desired. O]
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4.8 Concluding remarks

In this paper, we prove a strong generalization of both the well-known Dirac-type result
for the existence of one Hamiltonian cycle in large k-graphs due to Rodl, Rucinski, and
Szemerédi [98-100] and a result concerning asymptotically optimal packings of Hamiltonian
cycles in graphs by Ferber, Krivelevich, and Sudakov [36]. In fact, our result even applies
to cycle factors of large girth.

It was recently proved independently by Lang and Sanhueza-Matamala [77] and by
Polcyn, Reiher, Rédl, and Schiilke [93] that every large k-graph on n vertices with 0, _o(H) =
(5/9 4 0(1))(}) contains a Hamiltonian cycle. We wonder whether such k-graphs actually
contain (1 — o(1)) reg,(H)/k edge-disjoint Hamiltonian cycles.

There are yet other sufficient conditions for Hamiltonicity in hypergraphs, see for
instance [102]. It would be interesting to know which other sufficient conditions imply a
packing result similar to Theorem 4.1.1. Another tempting question in this direction is
as follows. Call a k-graph H robustly Hamiltonian if we can delete o(n) edges incident
to each (k — 1)-set and H still contains a Hamiltonian cycle. Does every large robustly
Hamiltonian k-graph H contain (1 — o(1)) reg, (H)/k edge-disjoint Hamiltonian cycles?

Lastly, it would of course be desirable to obtain a real decomposition of a k-graph into
Hamiltonian cycles, or even stronger, to show that any k-graph satisfying certain conditions
contains reg, (H)/k edge-disjoint Hamiltonian cycles. However, even decompositions of
cliques into Hamiltonian cycles are in general not known to exist. Further, it was recently
shown by Piga and Sanhueza-Matamala [88] that there are arbitrarily large 3-graphs H
with d2(H) > (3 — o(1))|V(H)| which do not contain regs(H)/3 edge-disjoint Hamilto-
nian cycles. Therefore, our results cannot be improved to exact decompositions without

increasing the lower bound on the minimum degree significantly.
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5. Covering 3-edge-coloured random graphs

with monochromatic trees

5.1 Introduction

Given a graph G and a positive integer 7, let tc,.(G) denote the minimum number & such
that in any r-edge-colouring of GG, there are £k monochromatic trees 71, ..., T} such that

the union of their vertex sets covers V(G), i.e.,

We define tp, (G) analogously by requiring the union above to be disjoint.

It is easy to see that tpy(K,,) = 1 for alln > 1, and Erdés, Gyarfas, and Pyber [33] proved
that tps(K,) = 2 for all n = 1, and conjectured that tp,(K,) = r — 1 for every n and r.
Haxell and Kohayakawa [59] showed that tp, (K,) < r for all sufficiently large n = no(r).
We remark that it is easy to see that tc,(K,,) < r (just pick any vertex v € V(K,,) and
let T}, for i € [r], be a maximal monochromatic tree of colour i containing v), but it is not
even known whether or not tc,.(K,) < r — 1 for every n and r (as would be implied by the
conjecture of Erdds, Gyarfas, and Pyber).

Concerning general graphs instead of complete graphs, Gyarfas [53] noted that a well-
known conjecture due to Ryser [61] on matchings and transversal sets in hypergraphs is
equivalent to the statement that for every graph G and integer r > 2, we have tc,(G) <
(r — 1)a(G). In particular, Ryser’s conjecture, if true, would imply that tc,(K,) <r —1,
for every n = 1 and r > 2. Ryser’s conjecture was proved in the case r = 3 by Aharoni [1],
but for r > 4 very little is known. For example, Haxell and Scott [60] proved (in the
context of Ryser’s original conjecture) that there exists ¢ > 0 such that for r € {4, 5}, we
have tc,.(G) < (r — €)a(G), for any graph G.

Bal and DeBiasio [6] initiated the study of covering and partitioning random graphs
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by monochromatic trees. They proved that if p « (10%)1/7«7 then with high probability*
we have tc,.(G(n,p)) — o0. They conjectured that for any r > 2, this was the correct
threshold for the event tp, (G(n,p)) < r. Kohayakawa, Mota, and Schacht [72] proved that
this conjecture holds for r = 2, while Ebsen, Mota, and Schnitzer? showed that it does not
hold for more than two colours.

Bucié, Korandi, and Sudakov [15] proved that if p « (10%)
have tc,(G(n,p)) = r + 1, which implies that the threshold for the event tc,.(G(n,p)) <r

o r—2
vir2 , then w.h.p. we

is in fact significantly larger than the one conjectured by Bal and DeBiasio when r is
large. Bucié¢, Korandi, and Sudakov also proved that w.h.p. we have tc,.(G(n,p)) < r
for p » (b%)l/zr. They were also able to roughly determine the typical behaviour
of tc,(G(n,p)) in terms of the range where p lies in (see [15, Theorems 1.3 and 1.4]).
Considering colourings with three colours, the general results from [15], as stated, imply
that if p » (k’%)l/g, then w.h.p. we have tc3(G(n,p)) < 3, and if p » (k’%)%, then w.h.p.
te3(G(n, p)) < 88 (the methods from [15] may actually give a somewhat better upper bound

than 88, if one optimizes their calculations). Our main result improves these bounds.

Theorem 5.1.1. If p = p(n) satisfies p > (loi”)l/fi, then with high probability we have
tes(G(n,p)) < 3.

It is easy to see that if p = 1 —w(n™1), then w.h.p. there is a 3-edge-colouring of G(n, p)
for which three monochromatic trees are needed to cover all vertices — it suffices to consider
three non-adjacent vertices xq, xs, and 3, and colour the edges incident to x; with colour ¢
and colour all the remaining edges with any colour. Therefore, the bound for tcs(G(n, p))
in Theorem 5.1.1 is best possible as long as p is not too close to 1.

We remark that, from the example described in [72], we know that for p « (10%)1/4,
we have w.h.p. tc3(G(n,p)) = 4. It would be very interesting to describe the behaviour
of tes(G(n, p)) when (10%)1/4 L p <« (10%)1/6.

This paper is organized as follows. In Section 5.2 we present some definitions and
auxiliary results that we will use in the proof of Theorem 5.1.1, which is outlined in

Section 5.3. The details of the proof of Theorem 5.1.1 are given in Section 5.4.

"'We will write shortly w.h.p. for with high probability.
2A description of this construction can be found in [72].
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5.2 Preliminaries

Most of our notation is standard (see [8,10,26] and [9,62]). However, we will mention
in the following few definitions regarding hypergraphs that will play a major role in our
proofs just for completeness.

We say that a set A of vertices in a hypergraph H is a vertex cover if every hyperedge of
H contains at least one element of A. The covering number of H, denoted by 7(H), is the
smallest size of a vertex cover in H. A matching in H is a collection of disjoint hyperedges
in H. The matching number of H, denoted by v(H), is the largest size of a matching in
H. An immediate relationship between 7(H) and v(#) is the inequality v(H) < 7(H).
If additionally H is r-uniform, then we have 7(#H) < rv(H). A conjecture due to Ryser
(which first appeared in the thesis of his Ph.D. student, Henderson [61]) states that for
every r-uniform r-partite hypergraph H, we have 7(H) < (r — 1)v(H). Note that the
Ko6nig-Egervary theorem corresponds to Ryser’s conjecture for r = 2. Aharoni [1] proved
that Ryser’s conjecture holds for » = 3, but the conjecture remains open for r > 4.

Given a vertex v in a 3-uniform hypergraph H, the link graph of H with respect to v is
the graph L, = (V| F) with vertex set V = V(H) and edge set E = {zy : {z,y,v} < H}.

We will use the following theorem due to Erdés, Gyéarfas and Pyber [33] in the proof of

our main result.

Theorem 5.2.1 (Erdés, Gyarfas and Pyber). For any 3-edge-colouring of a complete graph

K,, there exists a partition of V(K,,) into 2 monochromatic trees.

We will also use the following lemma, which is a simple application of Chernoft’s
inequality. For a proof of the first item see [73, Lemma 3.8]. The second item is an

immediate corollary of [73, Lemma 3.10].

Lemma 5.2.2. Let ¢ > 0. If p = p(n) » (bﬁ)l/ﬁ, then w.h.p. G € G(n,p) has the

n

following properties.

(i) For any disjoint sets X, Y < V(Q) with |X|, Y] » 10%, we have

[Ec(X,Y)] = (1+e)p[X[]Y].

(i) Every vertex v e V(G) has degree dg(v) = (1 £ €)pn and every set of i < 6 vertices

has (1 & &)p'n common neighbours.
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5.3 A sketch of the proof

In this section we will give an overview of the proof of 5.1.1. Let G = G(n,p), with
D> (1‘)%)1/6, and let ¢ : E(G) — {red, green, blue} be any 3-edge-colouring of G. We
consider an auxiliary graph F, with V(F) = V(G) and ij € E(F) if and only if there is,
in the colouring ¢, a monochromatic path in G connecting ¢ and j. Then we define a
3-edge-colouring ¢ of F' with ¢'(ij) being the colour of any monochromatic path in G
connecting ¢ and j. Note that any covering of F' with monochromatic trees with respect to
the colouring ¢ corresponds to a covering of G with monochromatic trees with respect to
the colouring ¢ with the same number of trees.

Next, we consider different cases depending on the value of a(F'). If a(F) = 1, then F'is
a complete 3-edge-coloured graph and by a theorem of Erdds, Gyéarfas and Pyber (see 5.2.1),
there exists a partition of V(F') into 2 monochromatic trees. The remaining proof now is
divided into the cases a(F) > 3 and a(F') = 2.

Case a(F) = 3. From the condition on the independence number of G, there exist three
vertices r, b, g € V(G) that pairwise do not have any monochromatic path connecting them.
With high probability, they have a common neighbourhood in G of size at least np?/2.
Let X4, be the largest subset of this common neighbourhood such that for each i € {r, b, g},
the edges from 7 to X4, in G are all coloured with one colour. Then, since there are no
monochromatic paths between any two of 7, b, g, we have | X,4,| = np*/12 and moreover we
may assume that all edges between r and X4, are red, all between b and X, are blue and
those between g and X4, are green. Now we notice that all vertices that have a neighbour
in X,p, are covered by the union of the spanning trees of the red component of r, the blue
component of b and the green component of g.

We are done in the case where every vertex has a neighbour in X4, as the vertices in
Xibg U Ni(Xypg) are covered by the red, blue and green component containing 7, b and g,
respectively. Otherwise, w.h.p. any vertex y € V' N (X4 U Ng(Xy)) has many common
neighbours with r, b and ¢ in G that are also neighbours of some vertex in X,,. An analysis
of the possible colourings of the edges between X,;, and the common neighbourhood of
the vertices r, b, g and y yields the following: for some i € {r, b, g}, let us say ¢ = r, every
vertex y € X4, can be connected to r by a monochromatic path in colour red or either
to g or b by a monochromatic path in the colour blue or green, respectively.

This already gives us that all vertices in G can be covered by 5 monochromatic trees,

since all the vertices in N (X,py) lie in the red component of r, or the green component of g,
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or in the blue component of b and every vertex in V' \ Ng(X,p,) lies in the red component
of r, in the blue component of g or in the green component of b. By analysing the colours
of edges to the common neighbourhood of carefully chosen vertices, we are able to show

that actually three of those five trees already cover all the vertices of G.

Case a(F) = 2. Let us consider a 3-uniform hypergraph H defined as follows (this
definition is inspired by a construction of Gyarfas [53] and also appears in [15]). The
vertices of H are the monochromatic components of F' and three vertices form a hyperedge
if the corresponding three components have a vertex in common (in particular, those three
monochromatic components must be of different colours). Hence, H is a 3-uniform 3-partite
hypergraph.

We observe that if A is a vertex cover of H, then the monochromatic components
associated with the vertices in A cover all the vertices of G. This implies that tc3(G) < 7(H).
Also, it is easy to see that v(H) < a(F') = 2. Now, recall that Aharoni’s result [1] (which
corresponds to Ryser’s conjecture for r = 3) states that for every 3-uniform 3-partite
hypergraph H we have 7(#H) < 2v(#H). Together with the previous observation, this
implies tcg(G) < 4. But our goal is to prove that teg(G) < 3. To this aim, we analyse
the hypergraph H more carefully, reducing the situation to a few possible settings of
components covering all vertices. In each of those cases, we can again analyse the possible
colouring of edges of common neighbours of specific vertices, inferring that indeed there

are 3 monochromatic components which cover all vertices.

5.4 Proof of 5.1.1

Instead of analysing the colouring of the graph G = G(n, p), it will be helpful to analyse
the following auxiliary graph.

Definition 5.4.1 (Shortcut graph). Let G be a graph and ¢ be a 3-edge-colouring of G.
The shortcut graph of G (with respect to ) is the graph F' = F(G, ¢) that has V(G) as

the vertex set and the following edge set:
{uv : u,v € V(G) and u and v are connected in G by a path monochromatic under ¢}.

Let us consider an edge-multicolouring ¢’ of F' = F(G, ¢) which assigns to an edge uv €

E(F (G, ¢)) the list of all the colours of monochromatic paths connecting v and v in G
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under the colouring ¢. We will say that ¢’ is the inherited colouring® of F(G,¢). We say
that an edge e € F(G, ¢) has colour o (or is coloured with p) if p belongs to the list of
colours assigned to e by ¢'. We say that a subgraph H of F (G, ¢) is monochromatic under
¢’ if all the edges of H are coloured with a common colour. Let tc(F, ¢’) be the minimum
number k such that there are k trees 77, . .., T}, which are monochromatic under ¢’ such that
V(F)=V(Ty)u---uV(Ty). Note that any covering of F'(G, ¢) with monochromatic trees
under ¢’ corresponds to a covering of G with monochromatic trees under the colouring ¢.
In particular, if we show that for every 3-edge-colouring ¢ of G, we have tc(F,¢') < 3,
where F' = F(G, ¢) is the shortcut graph of G with respect to ¢, and ¢’ is the inherited
colouring of F', then we have shown that tc3(G) < 3. Therefore, 5.1.1 follows from the

following lemma.

Lemma 5.4.2. Let p » (lo%)l/6 and let G = G(n,p). The following holds with high
probability. For any 3-edge-colouring ¢ of G, we have tc(F, ¢') < 3, where F is the shortcut
graph F' = F(G, ¢) and ¢’ is the inherited colouring of F.

The proof of 5.4.2 is divided into two different cases, depending on the independence
number of F. Subsections 5.4.1 and 5.4.2 are devoted, respectively, to the proof of 5.4.2
when a(F) > 3 and a(F) < 2.

From now on, we fix ¢ > 0 and assume that p » (k’%)l/ﬁ and n is sufficiently large.

Then, by 5.2.2, we may assume that the following holds w.h.p.:
1. There is an edge between any two sets of size w ((logn)/p).
2. Every vertex v € V(G) has degree dg(v) = (1 + €)pn.

3. Every set of i < 6 vertices has (1 & &)p'n common neighbours.

5.4.1 Shortcut graphs with independence number at least three

Proof of 5.4.2 for a(F) = 3. Since a(F') = 3, there exist three vertices r,b, g € V(G) that
pairwise do not have any monochromatic path connecting them in G. In particular, if v is
a common neighbour of r, b and g in G, then the edges vr, vb and vg have all different
colours. The common neighbourhood of 7, b and ¢ in G has size at least np?/2. Let X,
be the largest subset of this common neighbourhood such that for each i € {r,b, g}, the

edges between i and the vertices of X,;, are all coloured with the same colour in G.

3Although ¢’ is a multicolouring, in the sense that we assigned several colours to each edge, we will
refer to it as colouring, for simplicity.
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Then | X,4,] = np?/12. Without loss of generality, assume that all edges between r and the
vertices of X4, are red, between b and the vertices of X,;, are blue and those between g
and the vertices of X4, are green. Let Cred(7), Chlue(b) and Cgreen(g) be respectively the
red, blue and green components in G containing r, g and b.

Notice that all vertices of F' that have a neighbour in X, are covered by Ched(7), Chiue(D)
oI Cygreen(g). Therefore, the proof would be finished if every vertex had a neighbour in X,,.
If this is not the case, we fix an arbitrary vertex y € V ~\ (X4 U Ng(X;4g)). By our choice
of p, there are at least np*/2 common neighbours of y, r, b and g. Let X4, be the largest
subset of the common neighbourhood of y, r, b and g such that for each i € {r,b, g}, the
edges between ¢ and X4, are all coloured the same. Then |X,,,| > np* /12. Note that

since y & Ng(Xug), the sets X4y and X,y are disjoint. Furthermore, since | X4, | Xrpg| »

logn

o, we have

’EG(Xyrbg’ Xrbg)’ L.

\%

We now analyse the colours between r, b, g and the set X,,;,. Again, since there is
no monochromatic path connecting any two of r, b and g, all i € {r, b, g} have to connect
to Xypg in different colours. Since X, is disjoint from X4, by the maximality of X,
we cannot have r, b and g being simultaneously connected to X, by red, blue and
green edges, respectively. Assume first that for each i € {r,b, g}, the edges between i
and X4, have different colours from the edges between i and X,4,. Then let uv be an
edge between X, and X,;, and notice that whatever the colour of uv is, we will have a
monochromatic path connecting two of the vertices in {r, g, b}. Therefore, we can assume
that for some i € {r, g,b}, we have that all the edges between i and X, and all the
edges between ¢ and X4, coloured the same. Without loss of generality, we may say that
such ¢ is r. In this case, the edges between b and X4, are green and the edges between g
and X4, are blue. Finally, all the edges between X,;, and X, are red, otherwise we
would be able to connect b and g by some monochromatic path. Figure 5.4.1 shows the
colouring of the edges that we have analysed so far.

Let us now consider any further vertex x € V \ (X;45y U No(X;pg)) with 2 # y, if such
a vertex exists. We define X,,, analogously to X,,;, and observe that the colour pattern
from r, b, g to X,y must be the same as the one to X,,4,. Indeed, if this is not the
case, then a similar analysis of the colours of the edges between {r,b, g} and X, yields
that for some i € {b, g}, we know that the edges connecting ¢ to X,,4, are of the same

colour as the edges connecting i to X,4,. Without loss of generality, let us say that i is g.
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Figure 5.4.1: Analysis of the colouring of the edges incident on X,;, and on X,4,.

Figure 5.4.2: Analysis of the colour of the edges incident on X4, and on X,,4,.

Then the edges between b and X,,, are red and the edges between r and X4, are green,
otherwise X,y and X4, would not be disjoints sets. Figure 5.4.2 shows the colouring
of the edges incident to Xyp, and Xyppg. Since | Xy pg, | Xarsg| > 10%, we have that there
is some edge uv between X4, and X,,4,. But then however we colour uv, we will get a
monochromatic path connecting two vertices in {r, b, g}, which is a contradiction. Thus,
the colour pattern of edges between {r, b, g} and X,,, is the same as the colour pattern of
the edges between {r, b, g} and X,,p,.

Therefore, we have that each vertex in X4y U Ng(X,4y) belongs to one of the monochro-
matic components Cieq(7), Chiue(b) Or Cyreen(g), While a vertex in V(G) N (Xypg U Na(Xipg))
belongs to one of the monochromatic components Cred(7), Careen(b) 0r Chiue(g) where the
latter two are the green component containing b and the blue component containing g,
respectively. This gives a covering of G with five monochromatic trees. Next we will show
that actually three of those trees already cover all the vertices.

Suppose that at least four among the components Cred(r), Chiue(b), Cereen(D); Careen(9),
and Chpue(g) are needed to cover all vertices. Since there does not exist any monochromatic

path between any two of r, b, g, we know that for each i € {r, b, g}, any monochromatic
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component containing ¢ does not intersect {r,g,b} \ {i}. Hence, for each i € {r,b, g},
one of these components contains i. Also, one element in {r,b, g} belongs to two of
these components. Without loss of generality, let us say that b belongs to two of these
components. Therefore, Cred(r), Chue(b) and Cgeen(b) are three of these at least four
components needed to cover all the vertices. Now there are two cases regarding the fourth
component: we need Cyreen(g) as the fourth component or we need Che(g) (those two
cases might intersect).

We begin with the first case, where we need the components Creq(r), Chiue(b), Cereen (D)
and Cgreen(g) to cover all the vertices of G. Let

B € Cblue(b) N (Cred (T) U Ogreen(b) U Cgreen(g))

and let
§ € Cgreen(b) ~N (Cred(r) v C'blue(b) o Cgreen(Q)) .

Then let X;

bgrbg
each 7 € {B, g,m,b, g}, the edges from 7 to X;

be the maximum set of common neighbours of b, g,7,g,b such that for

rbg are all coloured the same. Since |X,;§Tbg| =

np° /240 > 10%, we have
| Ec(Xigrng: Xyrvg)| =2 1 and - [Eq(Xjg,0, Xrag)| = 1.

We will analyse the possible colours of the edges between the specified vertices and Xjg,,,.

If for each of r,b, g, the colour it sends to Xj;, is different from the colour it sends

to X,p4, then any edge between ngrbg and X, ensures a monochromatic path between
two of 7, b, g (in the colour of that edge). Similarly, it cannot happen that for each of r, b, g,

the colour it sends to Xj;,,, is different from the colour it sends to Xy4,. Thus, since r

sends red to both X4, and X4, while the colours from b (and g) to X4, and X4, are

switched, the colour of the edges between r and Xj;,, is red.

Now note that, by the choice of b and g, the edges between each of them and Xj;,,,

can not be red. Further, the choice implies that an edge between b and X; can not

grbg
be of the same colour (green or blue) as an edge between g and Xigrbg- 1t g would send

blue (and hence b would send green) edges to Xj,,,, there would either be a blue path

between b and g (if the edges between b and Xj, . are blue) or b would lie in Cypeen (D)

(if the edges between b and Xj

grbg

arbg are green). Since both those situations would mean a

contradiction, we may assume that each of r, b, g sends edges with that colour to Xj,,

as it does to X,4,. But then ngrbg is actually a subset of X,;, and since g has an edge
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to Xypg, it lies in one of Cred(r), Chiue(b), 0 Careen(9); & contradiction.
In the case where the forth component that we need is Chue(g), we repeat the construc-

tion of X5

bgrbg Similarly as before by letting

b € Chiue(b) N (Crea(r) U Clgreen(b) U Chine(9))

and
§ € Cgreen<b> ~N (Cred(r) v C1b1ue(b) O Cblue(g))~

Also as before, we end up with X, being part of Xp,. From the choice of g, the edges
it sends to X, have to be green, since otherwise it would be in Crea(r) or Che(b). But
that gives a green path between b and ¢, a contradiction.

Summarising, we infer that three components among Creda (), Coiue(b), Cereen(b), Cereen(9)

and Che(g) cover the vertex set of G. O

5.4.2 Shortcut graphs with independence number at most two

Proof of 5.4.2 for a(F) < 2. We start by noticing that if «(F) = 1, then the graph F'
together with the colouring ¢’ is a complete 3-coloured graph and therefore, by 5.2.1, there
exists a partition of V' (F') into 2 monochromatic trees. Thus, we may assume that o(F) = 2.

Let H be the 3-uniform hypergraph with V() being the collection of all the monochro-
matic components of F' under the colouring ¢’ and three monochromatic components
form a hyperedge in H if they share a vertex. Notice that H is 3-partite, since distinct
monochromatic components of the same colour do not have a common vertex and therefore
they can not belong to the same hyperedge. In other words, the colour of each component
give us a 3-partition of the vertex set of H. We denote by Vieq,Vie and Vgreen the set of
vertices of V(H) that correspond to, respectively, red, blue and green components. Such
construction was inspired by a construction due to Gyéarfas [53] and it was also used in [15].

Note that every vertex v of F'is contained in a monochromatic component for each one
of the colours (a monochromatic component could consist only of v). Therefore, any vertex
cover of H corresponds to a covering of the vertices of F' with monochromatic trees. Indeed,
if A is a vertex cover of H, then consider the monochromatic components corresponding
to each vertex in A. If any vertex v of F' is not covered by those components, then the
vertices in ‘H corresponding to the red, green and blue components in F' containing v do

not belong to A and they form an hyperedge. But this contradicts the fact that A is a
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vertex cover of H. Therefore,
te(F,¢') < 7(H). (5.4.1)

The inequality (5.4.1) corresponds to Proposition 4.1 in [15] in our setting.
Let L =

vertex cover of this bipartite graph L corresponds to a vertex cover of H of the same size.

L4 be the union of the link graphs L, of all vertices s € Vieq. Any

$€Vred
Therefore,
T(H) < 7(L). (5.4.2)

Furthermore, by the Kénig-Egervéary theorem we know that 7(L) = v(L). Thus, if v(L) < 3,
then by (5.4.1) and (5.4.2), we have

te(F,¢') < 7(H) <7(L) =v(L) < 3.

Therefore, we may assume that v(L) > 4, and fix a matching My of size at least four
in L. Let us say that M consists of the edges G1B;, G3Bs, G3B3, and G4B,4, where
{G1,G2,G5,G4} < Vereen and {B1, Ba, B3, B1} < Vige-

Now we give an upper bound for v(#). Note that any matching My, in ‘H gives us an
independent set I in F. Indeed, for each hyperedge e € My, let v, € V(F) be any vertex
in the intersection of those monochromatic components associated to the vertices in e and
let I = {v. : e € My}. We claim that [ is an independent set in F'. Indeed, if v. and vy
were adjacent vertices in I, then e and f intersect, as the edge connecting v, to vy in F
will connect the monochromatic components containing v, and vy of that colour that is

given to the edge v.vs. Therefore, since a(F) = 2, we have
v(H) < a(F) = 2. (5.4.3)

Now, if there are three different edges in M that are edges in the link graphs of three
different vertices of V,eq, then there would be a matching of size 3 in H, contradicting (5.4.3).
Therefore, we may assume that M is contained in the union of at most two link graphs,
say Lg, and Lg,, of vertices Ry, Ry € Vieq. Now we are left with three cases: (Case 1) two
edges of M}, belong to Lg, and two belong to Lg,; (Case 2) three edges of M} belong
to Lg, and one to Lg,; (Case 3) the four edges of M} belong to Lg,. Without loss of

generality, we can describe each of those three cases as follows (see Figures 5.4.3, 5.4.4
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and 5.4.5):

Case 1: The edges G1B; and G2B, belong to Ly, and the edges G3Bs and G4B,4 belong

to Lg,. That means that all the following four sets are non-empty:

Ji:= Ry nGyn By,
Jo := R n Gy N By,
J3 := Ry n G3 N Bs,
Jy = Ron Gy N By.

Case 2: The edges G1 By, G3Bs and G3B3 belong to Lg, and the edge G4By belongs to Lg,.

That means that all the following four sets are non-empty:

Ji:= Ry n Gy n By,
Jo := Ry n Gy N By,
J3 := Ry n G35 N Bs,
Jiy = Ron Gy N By.

Case 3: The edges G1B;, G2 By, G3B3 and G4 B, belong to Lg,. That means that all the

following four sets are non-empty:

Ji:= Ry n Gy n By,
Jy:= Ri n Gy N By,
J3 := Ry n G3 N Bs,
Jy:= RinGyn By

In this case, let Ry be any other red component different from R; and let B and G
be, respectively, a blue and a green component with R, n B n G # &. Suppose that
G ¢ {G1,G3,G3,Gy}. Then the three of the edges G1B;, GaBs, G3B3 and G4By are not
incident to GB (because B must be different from at least three of the sets By, By, By and
By) and these three edges together with GB may be analysed just as in Case 2. Therefore,
we may suppose that G € {G1, G2, G3,G4}. Let us say, without loss of generality, that
G = Gy. If B ¢ {By, By, B3}, then the edges G1 By, GoBs and G3B3 belong to Lg,, the
edge G B belongs to Ly, and this case may be analysed, again, just as in Case 2. Therefore,

we may assume that B € {B;, By, Bs}. Let us say, without loss of generality that B = Bs.
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Figure 5.4.3: Case 1

Then let J5 be the following non-empty set:
Js := Ry n G4 N Bs. (5.4.4)
Let us further remark that, since v(H) < 2, in each of the three cases above, we have
V(F)=RiUR, G UGy uG3uGyu By U Byu By U By.

Otherwise, for any uncovered vertex v € V(F'), the hyperedge given by the red, blue and
green components containing v together with the hyperedges R;B1G1 and Ry B3G5 (in
Cases 1 and 2) or RyB3Gy (in Case 3) is a matching of size 3 in H.

Let us start with Case 1.

Proof in Case 1. We will prove that R; and R, together with possibly one further
monochromatic component cover V(F). For each i € {1,2,3,4}, let B; = B; ~ (R, U Ry)
and G; = G; ~ (R, U Ry).

Pick vertices j; € .J;, with i € {1,2, 3,4}, arbitrarily. Consider a vertex o € By (if such
a vertex exists). Since a(F') = 2, there is an edge connecting two of o, js, j3. Because js
and j3 belong to different components of each colour, such an edge must be incident to
0. So let us say that such edge is oj;, for some i € {2,3}. Since 0 ¢ Ry U Ry, the edge oj;
cannot be red. And since o € By, 0j; cannot be blue either, otherwise we would connect
the blue components B; and B;. Now assume that o and j, are not adjacent. Then 0j3 is
a green edge in F'. By analogously analysing the edge between o, j, and j4 together with
the supposition that o7, is not an edge in F', we get that oj, must be a green edge in F'.
But then we have a green path js0j4 connecting js to j4, a contradiction. Therefore 0js is

an edge in F and it is green. That implies that o € G5. Therefore B; = G5. Analogously,
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we can conclude the following:

B, Gy, G C B,
By Gy, Gy< By,
By < Gy, G5 < By,
B, Gy, G4< Bs.

(5.4.5)

Claim 5.4.3. We have B UG, U By U Gy = @ or Bg U G3 UB,UG, =O.

Proof. Suppose for a contradiction that there exist o € B UGy U Byu Gy and oy €
B3 UG5 U By U Gy. Recall that from our choice of p, there is some z € N (41, j2, Js, Ja, 01, 02).
Two of the edges zj;,for i € {1,2,3,4}, have the same colour. Since each j; belongs to
different green and blue components, those two edges are red. Since {ji,jo} € Ry and
{43, ja} € Ra, those two red edges are either zj; and zj, or zj3 and zj,. Let us say that zj;
and zjy are red (the other case is similar). Then one of the edges zj3 and zj, has to be
green and the other blue. Now, since o; ¢ Ry, the edge zo; is either green or blue. Then
one of the paths 012j3 or 01274 is green or blue. This implies that 0, € B3 u G35 U By U Gy.
On the other hand, (5.4.5) implies that oy € (B; U Bs) n (G1 U G3). But then we reached
a contradiction, since that would mean that o; belongs to two different components of the

same colour. 0

We may assume without loss of generality that Bs U G3 U By U G4 is empty. Then,
recalling that v(H) < 2 and in view of (5.4.5), the union of the components Ry, By, G; and
Ry covers every vertex of F'. If we show that B; € G U Ry U Ry or that G; € B1 U Ry U Ry,
then we get three monochromatic components covering the vertices of F'. Our next claim

states precisely that.

Claim 5.4.4. We have By~ G, = @ or G, ~ B, = &.

Proof. Suppose that there exist two distinct vertices b € B; ~ G; and g € G, < B.
Let z € N(j1,72,J3,J4,0,g). As before, either zj; and zj, or zj3 and zj, are red edges.
First assume that zj; and zj, are red. Then one of the edges zj3 and zj4 has to be green
and the other blue. Now, since b ¢ Ry, the edge zb is either green or blue. Then one of the
paths bzjs or bzjs is green or blue. This implies that b € B3 u G3 U By U G4. On the other
hand, (5.4.5) implies that b € By n G3. Then we reached a contradiction, since that would

mean that b belongs to two different components of the same colour.
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Figure 5.4.4: Case 2

Therefore, the edges zj3 and zj4 are red and one of the edges zj; and zj, is green and
the other is blue. First let us say that zj; is green and zj; is blue. Since b ¢ (R U Ra),
the edge zb cannot be red. Also the edge zb cannot be blue otherwise the path bzj,
would connect the components B; and B,. Finally, zb cannot be green, otherwise the
path bzj; would gives us that b € G;. Therefore, zj; is blue and zj5 is green. But this case
analogously leads to a contradiction (with ¢ and G instead of b and B; and green and blue

switched). o

We proceed to the proof of Case 2.

Proof in Case 2: As in Case 1, pick vertices j; € J;, with i € {1, 2, 3,4} arbitrarily. We claim
that V(F) € Ry uRyu BysUGy. Indeed, let 0 € V(F)\ (Ry U Ry). Notice that since a(F') =
2, there is an edge in each of the following sets of three vertices: {o, js, j1}, {0, Js,J2},
and {o, js,js}. We claim that oj, is an edge of F. Indeed, if this was not the case,
then since there cannot be an edge between j, and j; for i = 1,2, 3, we would have the
edges 071, 0jo and 073 and all of them would be coloured green or blue. Thus, two of
them would be coloured the same, connecting two distinct components of one colour in
this colour, a contradiction. So o0j, € E(F) and since o0js cannot be red, we conclude
that o € (By U G4). Therefore, Ry, Ry, By and G4 cover all vertices of F.

If ByN(R1URyUGy) = @ or Gy~ (RyuRyu By) = &, then we get three monochromatic
components covering V(F'). So let us assume that there exist b € By \ (R U Ry U Gy)
and g € G4~ (R1 U Ry U By). If b and g are not adjacent, then since each of the sets {b, g, j;},
for i = 1,2, 3, has to induce at least one edge, there are two edges between b and {71, jo, js}
or two edges between ¢ and {j1, jo, j3}. However, from the choice of b, we know that all
the edges between b and {j1, jo, j3} are green, and therefore, two of such edges would give
us a green connection between two different green components, a contradiction. Similarly,
from the choice of g, we know that all the edges between b and {j1, j2, j3} are blue, and

two of such edges would give us a blue connection between two different blue components,
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Figure 5.4.5: Case 3

again a contradiction.

Hence, we conclude that bg € F for any b € By ~ (R; U Ry u G4) and any ¢ €
G4~ (R U Ry U By) and any such edge bg is red. Therefore, there is a red component Rj
covering (B4;AGy) \ (R U Ry), where ByAG, denotes the symmetric difference. If (By N
G4) N (R1URy) = @, then Ry, Ry and R3 cover V(F') and we are done. Therefore, suppose
there is a vertex x € (By n Gy) ~ (R1 U Ry). If Ry \ (Byu Gy) = &, then Ry, By, Gy
cover V(F) and we are done. Therefore, suppose there is a vertex y € Ry~ (Byu Gy). Note
that zy ¢ E(F), since x and y belong to different components in each of the colours. Also,
xj; ¢ E(F), for i e {1,2,3}, since otherwise two different components of the same colour
would be connected in that colour by the edge zj;. Now «(F') = 2 implies that yj; € E(F),
for i € {1,2,3} (otherwise, {z,y, j;} would be an independent set). But these edges must
all be green or blue, hence two of them are of the same colour, connecting two different
components of one colour in that colour, a contradiction.

We arrived at the last case, Case 3.

Proof in Case 3. Similarly to the previous cases, let us pick vertices j; € J;, with ¢ €
{1,2,3,4,5} arbitrarily. We will show first that we can cover all vertices of F' with four
monochromatic components. Let 01,09 € V/(F) \ (R; U By U G4) and let z be a vertex in
N(j1, 72, J3, 01,09, J5). At least one of the edges zji, zjo and zj3 is red, as otherwise we
would connect two distinct components of one colour in that colour. Therefore, z € R;.
Since o1, 09, j5 ¢ Ry, the edges z01, z0o and zj5 cannot be red. Furthermore, 0,2z and 0y2
are coloured with a colour different from the colour of the edge j5z, as otherwise they would
belong to B3 or G4. Thus, 0; and 0, are connected by a monochromatic path in green or
blue. Hence, we showed that any two vertices of V(F') N\ (R; u Bs u G4) are connected by
a monochromatic path in green or blue. We infer that there is a green or blue component
covering V(F') N\ (Ry u B3 U G4). Therefore, Ry, B3, G4 and one further blue or green

component C' cover all vertices of G. Let us assume that C' is a green component; the case
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where C' is a blue component is analogous.

We claim that Ry U B3 u C, or Ry u Gy u C, or Ry U B3 u Gy covers V(F'). Indeed,
suppose for the sake of contradiction that there exist vertices g € G4~ (R U B3 u (), be
By~ (RiuGysu(C)and ce C N\ (Ry U BsuGy). Let z € N(j1, jo, Js, 9, b, ¢) and note that
one of zj1, zjo and zjs is red. Consequently gz, cz and bz are not red. Notice, however,
that gz and bz can not be both green and neither both blue. Now let us say cz is green.
Since ¢ ¢ G4 and g € G4, we would have gz blue in this case. But then bz must be green
and since ¢ € C' and C is a green component, we have b € C, which is a contradiction.
Therefore, cz must be blue. Then, since ¢ ¢ B3 and b € Bs, the edge bz should be green.
Thus the edge gz is blue. Since this argument holds for any g € G4 \ (R; u B3 u C)
and ce C \ (Ry u B3 U Gy), we conclude that V(F) \ (R; u Bs) can be covered by one
blue tree. Hence, GG can be covered by the three monochromatic trees. This finishes the

last case and thereby the proof of 5.4.2. ]
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6. Convex graphon parameters and graph

norims

6.1 Introduction

In extremal combinatorics, quantifying quasirandomness by using a suitable norm has been
an extremely useful strategy. For instance, the main idea in the proof of the celebrated
Szemerédi regularity lemma is to use an L?-norm increment, the Gowers norms play a
central role in additive combinatorics, and the cut-norm is the key concept in the theory of
dense graph limits [84].

It is a natural question to ask what norms can be defined on the space of two-variable
real symmetric functions on [0, 1]?, which appear as the limit objects of sequences of
(weighted) large graphs. To formalise, a graphon (resp. signed graphon) W is a two-variable
symmetric measurable function from [0,1]? to [0,1] (resp. [—1,1]). We consider the
vector space W of two-variable symmetric bounded measurable functions on [0, 1]?, which
contains the set of (signed) graphons as a convex subset. Given a graph H and W e W,

the homomorphism density of H is defined by the functional

ta (W) IJ [T Wi a)dp™,

ije E(H)

where p is the Lebesgue measure on [0, 1].

Let [[W|lg := [ta(W)[Y*H ) and let [[W |, g = tu(W])V). We then say that a
graph H is (semi-)norming if ||-||; defines a (semi-)norm on W, and weakly norming
if H||T( sy is @ norm on WW. With this notation, we now state the following central question
in the area, asked by Lovasz [83] and Hatami [58]:

Question 6.1.1 ([83], Problem 24). What graphs H are (weakly) norming?
A moment’s thought will prove the fact that a weakly norming graph H must be

bipartite and that, as the name suggests, every (semi-)norming graph is weakly norming.
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The particular example |-, , where Cyy is the even cycle of length 2k, is already interesting,
as it corresponds to the Schatten—von Neumann norms in operator theory.

Perhaps one of the most important applications of weakly norming graphs is to
Sidorenko’s conjecture, a major open problem in extremal graph theory also proposed by

Erdés and Simonovits [35] in a slightly different form.

Conjecture 6.1.2 (Sidorenko’s conjecture [105]). Let H be a bipartite graph and let W be
a graphon. Then

tr(W) = tg, (W)U, (6.1.1)

If a graph H satisfies (6.1.1) for every graphon W, then we say that H is Sidorenko.
Szegedy observed! that every weakly norming graph is Sidorenko. Moreover, Conlon and
the first author [22] proved that weakly norming graphs can be used as ‘building blocks’
to construct a Sidorenko graph. On the other hand, there are Sidorenko graphs that
are verified to be not weakly norming. For instance, a bipartite graph that has a vertex
adjacent to all the vertices on the other side, proven to be Sidorenko by Conlon, Fox, and
Sudakov [20], is not weakly norming unless it is a complete bipartite graph. Moreover,
Kral’, Martins, Pach, and Wrochna [74] recently proved that there exists an edge-transitive
Sidorenko graph that is not weakly norming.

Although the weakly norming property is strictly stronger than being Sidorenko, partial
answers to Question 6.1.1 have also made significant progress towards Sidorenko’s conjecture.
Hatami [58], who firstly studied Question 6.1.1, showed that even cycles Cy, are norming,
and complete bipartite graphs K, , and hypercubes (); are weakly norming. Lovész [81]
later proved that [, , minus a perfect matching is weakly norming. Before their work, Q4
and K, , minus a perfect matching were unknown to be Sidorenko. Recently, Conlon and
the first author [22] obtained a much larger class of weakly norming graphs, which also
added many new examples to the class of Sidorenko graphs that played a crucial réle in
their subsequent work [23].

Despite a fair amount of recent progress [20-23,58,70,80,110], Sidorenko’s conjecture
remains open. In particular, none of the partial results succeeded in determining whether
the notorious Mabius ladder graph K 5~ C1g, suggested by Sidorenko [104,105], is Sidorenko
or not, although Conlon and the first author [23] proved that its ‘square’ is Sidorenko.
We make some progress in understanding this mysterious graph, by proving that it is not

weakly norming.

Tt appeared in [58].
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Figure 6.1.1: Cf* (the Mobius ladder) and Cg'.

Theorem 6.1.3. The Mébius ladder graph Ks5 ~\ Cio is not weakly norming.

For a graph H, let H™ be the graph obtained by blowing up every vertex v of H by an
edge v1v, and putting two edges usv; and ujv9 between each pair of blown-up edges uqus
and vyvy whenever uv € F(H). The resulting graph H™ is always a bipartite graph whose
bipartite adjacency matrix is the (symmetric) adjacency matrix of H plus the identity.
This blow-up was considered by Kim, Lee, and the first author [70]. They observed (see
Figure 6.1.1) that Cf* is isomorphic to the Mobius ladder and, if H is bipartite, H™ is
isomorphic to H o K5, where o denotes the Cartesian product of graphs. In particular, C*
is the 3-cube graph, proven to be weakly norming by Hatami. We prove a more general

result that implies Theorem 6.1.3.
Theorem 6.1.4. For every k > 4, C}' is not weakly norming.

In [58], Hatami asked whether two particular graphs, the Mobius strip and Cyy, o Ko,
are weakly norming. Theorem 6.1.4 hence answers both questions at once. We remark that
every (5. is known to be Sidorenko by [70], but except the case C5' = K33 it is still an

open question whether every C3; ., is Sidorenko or not.

Our proof relies on determining an equivalent condition of the (weakly) norming property.
A function f defined on the set of graphons is a (signed) graphon parameter if f(W) =
fW") for (signed) graphons W and W' for which there exists a measure-preserving
bijection ¢ : [0,1] — [0, 1] satisfying W (¢(x), p(y)) = W'(z,y). In particular, ¢ty (W) is

always a graphon parameter for any graph H.
Theorem 6.1.5. Let H be a graph. Then
(i) H is weakly norming if and only if ty(-) is a convexr graphon parameter.
(i) H is norming if and only if ty(-) is a strictly convexr signed graphon parameter.
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By using Theorem 6.1.5(ii), we also prove that K, minus a perfect matching, proven

to be weakly norming by Lovasz, is not norming if ¢ > 3.
Theorem 6.1.6. For everyt > 3, K;; minus a perfect matching is not norming.

As observed by Hatami [58, Observation 2.5(ii)], every norming graph must be eulerian,
i.e., every vertex has even degree. Thus, we only prove Theorem 6.1.6 for odd integers ¢,

which gives the first examples of weakly norming graphs that are eulerian but not norming.

6.2 Preliminaries

Given an n x n symmetric matrix A = (a;;), let U4 be the two-variable symmetric step
function on [0, 1]? defined by

Ualz,y) = a;j, f (1 —1)/n<z<i/mnand (j —1)/n<y<j/n

and Uy = 0 on the measure-zero set x = 1 or y = 1 for simplicity. Trivially, A — Uy is a

linear map and Uy satisfies the identity

tu(Ua) =0 1T agw-

¢:V(H)—[n] weE(H)

v(H)

In other words, ty(U,) is n™ times a homogeneous (”H)-Variable polynomial of degree

2

e(H). We call the polynomial Py, (A) for A € Sym,, where Sym, denotes the ("')-

dimensional vector space of n x n real symmetric matrices.

The cut norm |||, on W is defined by

W], = sup

S, 7<[0,1]

Wz, y)dxdy‘ )

SxT

Then the corresponding counting lemma is stated as follows:

Lemma 6.2.1 ([81], Exercise 10.28). Let U and W be signed graphons and let H be a
graph. Then

[t (U) = tu(W)| < 4e(H) |U = W[

The following lemma, which connects a (signed) graphon W to a step function of the
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form Uy, is an easy consequence of the fact [|[W||, < ||[W]|, and the dominated convergence

theorem.

Lemma 6.2.2. Let W be a signed graphon. For every ¢ > 0, there exists a symmetric
matriz A such that ||[W — Uyl < e.

To prove Theorem 6.1.5(ii), we shall use some facts about norming graphs, appeared
in [81].

Lemma 6.2.3 ([81], Exercise 14.8). Let H be a norming graph. Then ty(W) is always

positive for a nonzero signed graphon W. In particular, e(H) is even, since ty(—W) =

(=1t (W).

We follow the standard notion of convexity and related definitions. A convex set is a
subset C' of a vector space such that \x + (1 — \)y € C whenver z,y € C and A € (0,1). A

function f : C' — R is said to be conwvez if, for each 0 < A < 1,

fOz+ (1 =XNy) < Af(z) + (1 =2 f(y).

We say that a function f is strictly convex if the inequality above is strict whenever x and

y are distinct. We shall use a simple fact about convexity repeatedly in what follows:

Lemma 6.2.4. Let U be a convez subset of a vector space and let f be a convexr nonnegative

function on U. If g : Ry — R is an increasing convex function, then go f is also convez.

Proof. Let u,v € U. Then for each X € (0,1).

g(fQAu + (1= 2v)) < g(Af(uw) + (1= A)f(v) < Ag(f(u)) + (1 = A)g(f(v)),

where the first inequality uses convexity of f and monotonicity of g and the second uses

convexity of g. |

For a real-valued function f(z1,---,z,) that is twice differentiable on an open set

U < R", the Hessian of f, denoted by V2f, is the n x n matrix H = (h;;), where

o _f
h” - ariﬁx]"

matrix with polynomial-valued entries. Standard results in convex analysis, e.g., Section

We will only consider polynomials f, so its Hessian V2 f is always a symmetric

3.1.4 in [13], imply the following equivalence.

Lemma 6.2.5. Every n-variable polynomial P is convexr on a convex set C' < R"™ if and

only if its Hessian V2P is positive semidefinite on the interior of C.
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We also recall a basic fact in functional analysis.

Lemma 6.2.6. Let f be a nonnegative function on a vector space V' such that f(x) =0
if and only if x = 0, and f(Ax) = |A|f(z). If B:={x eV : f(x) < 1} is convez, then f

defines a norm on V.

Proof. 1t is enough to prove the triangle inequality f(x + y) < f(x) + f(y). For nonzero

x and y, both z; := z/f(z) and y; := y/f(y) lie in the convex set B. Set A = f(zjg(f}(y).

Then by convexity, Ax; + (1 — A)y; € B, and thus,

T Y ot (- g < 1.
(et ) =S <2

This proves subadditivity of f. n

6.3 Convexity and weakly norming graphs

Theorem 6.1.5(i) is a consequence of the following equivalence.
Theorem 6.3.1. Let H be a graph. Then the following are equivalent:
(i) H is weakly norming.
(i) ty(-) is a convex graphon parameter.
(79) Py, () is a convex polynomial on the positive orthant for every n € N.

Proof. ()= (ii). If |[-[|, (s, is convex, then by Lemma 6.2.4, ty(W) = HWH?E?I; is also

convex on the set of graphons.

(ii)=(i). Convexity of ty(-) for graphons naturally extends to all U, W € W with nonnega-
tive values. Thus, for all U, W € W and X € (0,1),

ta(|AW + (1 = NU|) <tg W[+ (1 =XN)|U]) < Mug((W]) + (1 = Ntu(|U]).

Indeed, 0 < W’ < W pointwise implies 0 < ty(W’) < ty(W), which gives the first

inequality, and the second follows from convexity of ¢y(-). Therefore, the set
B:={WeW: ty(|W]) <1} = {WeW : ty(|W])VH <1}

is convex. Lemma 6.2.6 now proves the triangle inequality for |[-[|, -
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(ii)=(iii). Let A = (a;;) and B = (b;;) be two n x n symmetric matrices with positive
entries. We may assume that maxa;; < 1 and maxb;; < 1. Then convexity of Py,

immediately follows from linearity of the map A — U, and convexity of ¢y (-) for graphons.

(iii)=>(ii). Let W} and W5 be two graphons. By Lemma 6.2.2, there exist n x n symmetric
matrices A; , and Ay, such that HW, —Ua,,

of Py, gives

‘ — 0 as n — oo for each © = 1,2. Convexity

tu(AUay, + (1= NUa,,) < Mu(Ua,,) + (1= Nta(Ua,,)-
Letting n — oo finishes the proof, as ty(W,,) — tg (W) if |W,, — W||, — 0 by Lemma 6.2.1.
[l

Remark 6.3.2. After proving the statement, we found that the equivalence between (i)
and (ii) in fact implicitly appeared in Dolezal et al. [28] by a different approach using

weak™ limits. We include our shorter proof for the sake of completeness.

In particular, (iii) enables a computational way of verifying weakly norming property,

by using Lemma 6.2.5.

Corollary 6.3.3. A graph H is weakly norming if and only if the Hessian NV* Py, (A) is

positive semidefinite for every A € Sym,, with positive entries and n € N.

To prove Theorem 6.1.4, we need some auxiliary facts about C}'. For a vertex subset
X cV(H), let N*(X):= N(X)~ X, where N(X) denotes the union of all neighbours of
reX.

Lemma 6.3.4. Let H = C}" for k > 4. Then

(i) there is an edge e in H such that N*(e) induces exactly one edge, i.e., e is contained

in exactly one 4-cycle, and
(i) iof X spans exactly two edges, then N*(X) contains an edge.

Note that C3' =~ K33 and Cj' = Q3 violate (i). We omit the proof, as it is seen by a

straightforward case analysis.

Proof of Theorem 6.1.4. Let H be the graph C}'. Since V?Pp,(A) is a matrix with

polynomial entries, its positive semidefiniteness for A € Sym,, with positive entries extends
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to those A € Sym,, with nonnegative entries. We analyse a 2 x 2 submatrix of the Hessian
V?Py3(A), where

110
A=1[1 0 1 |,
010
with respect to the two variables ai3 and ag3. Namely, we write h(z,y) := Pys(As,),
where
1 1y
Agy=| 1 0 1|,
y 1

and claim that V2h(z,y) is not positive semidefinite at z = y = 0.
We may decompose h into h(z,y) = q(z,y) + {(z,y) + r(y), where ¢(z,y) is the sum of
all monomials with z-degree at least two, ¢(z,y) is the sum of all monomials with z-degree

one, and r(y) is the rest only depending on y. Then the Hessian V2h(0,0) is the matrix

22(0,0)  £,(0,0)
lry(0,0)  7,,(0)

and we claim that ¢,,(0,0) = 0 and that ¢,,(0,0) > 0. We regard A, , as a looped, simple,
and edge-weighted graph on {1,2,3} with the weight a;; for each edge ij. Then ¢(x,y)
counts the weight on the homomorphisms from H to A,, that use the z-edge at least
twice.

If a homomorphism uses the z-edge more than twice, then the corresponding monomial
is divisible by x3 and vanishes in ¢,,(0,0). Thus, to compute g,.(0,0), we only count those
H-homomorphisms which use the z-edge exactly twice. Suppose that e;,es € E(H) are
mapped to the vertex 3 with the looped xz-edge. If a vertex in N*(e; U e3) is mapped to
the vertex 1, the homomorphism uses the y-edge and the corresponding monomial vanishes
in ¢,.(0,0). Otherwise, if all the vertices in N*(e; U ey) are mapped to the vertex 2, an
edge contained in N*(e; U ey), which exists by Lemma 6.3.4(ii), receives the loop weight 0.
Thus, ¢..(0,0) = 0.

It remains to prove £,,(0,0) > 0. By Lemma 6.3.4(i), there is an edge e contained in

at most one 4-cycle. Let ¢/ = uv be the edge disjoint from e in the 4-cycle that contains
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e. Consider the homomorphism that maps an edge e to the z-edge, i.e., both ends of e
to 3, exactly one end u of € to 1, all vertices in N*(e) \ {u} to 2, and the other vertices
to 1. Since N*(e) \ {u} is an independent set by the uniqueness of the 4-cycle containing
e, this is a homomorphism that uses both the x- and the y-edge exactly once. Thus, the

corresponding monomial is xy, which proves that ¢,,(0,0) > 1. H

6.4 Strict convexity and norming graphs

Theorem 6.1.5(ii) follows from a result analogous to Theorem 6.3.1.
Theorem 6.4.1. Let H be a graph. Then the following are equivalent:
(i) H 1is norming.
(i) ty(-) is a strictly convex parameter for signed graphons.
(7%) Pun(-) is a strictly convex polynomial on Sym,, for every n € N.
(iv) Ppn(-)Y" 4s a norm on Sym,,.
Proof. (i)=(ii). Let U, W € W. Hatami proved the following inequality (see (34) in [58]):
tg(U+ W) +tg(U — W) < 22Dty (U) + tg(W)).
Since H is norming, ty(U — W) > 0 unless U = W almost everywhere by Lemma 6.2.3.
This implies strict convexity of tx(-).

(ii)=(iii). This immediately follows from the linearity of the map A — Ua.
(iii)=(iv). If e(H) is odd, then Py, (A) + Py,(—A) = 0 for every A € Sym,,, which

contradicts strict convexity. Thus, e(H) is even. Again by strict convexity, 2Py ,(A) =
P n(A) + Py (—A) > 0 whenever A # 0. Hence, Py ,,(A)Y¢() is well-defined and positive
for every nonzero A. Furthermore, Py, (AA)YeH) = |\| Py, (A)YH) Since

B:={AeSym,: Py,(A) <1} = {AeSym, : PH,n(A)l/e(H) <1}

is a convex set, we may apply Lemma 6.2.6 and conclude that Py, (A) is a norm on Sym,,.

(iv)=(i). The proof is the same as the part (iii)=(ii) of Theorem 6.3.1. O
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Indeed, positive definiteness of the Hessian implies strict convexity of a polynomial, but
the converse is not true in general. Thus, the naive analogue of Corollary 6.3.3 obtained
by replacing weakly norming and positive semidefinite by norming and positive definite,
respectively, does not hold. One might still hope to prove that a graph H is norming by
showing that the Hessian V2Py ,,(A) is positive definite at each nonzero A € Sym,,, using
the one-sided implication. However, we show that this is impossible by proving that every

norming graph has a singular Hessian V2P ,,(A) at some A # 0 whenever n is even.

Proposition 6.4.2. For every n, there exists a nonzero 2n x 2n symmetric matriz A such

that V? Py 9, (A) is singular for every norming graph H.

I =y

Proof. Let A = [ ], where J,, denotes the n x n matrix with all entries equal

n n

to 1. We claim that V?Pp o, (A) has eigenvalue 0 with the eigenvector 1,, = (1,1,---,1)T €
R"27+1) Recall the folklore fact [81, Example 5.14] that ¢;(U,) is the indicator function

that F' is eulerian. In particular, H is eulerian and e(H) is even. Thus,
tH<UA - 8) + tH(UA + 6) = QtH(UA) + QZtJ(UA)Se(H)_e(J) =2+ 252ZtF(UA) + O<€4),
7 F

where the first sum is taken over all proper subgraphs J of H with even number of edges
and the second is taken over all subgraphs F' € H with e(F) = e(H) — 2. Since one
always obtains a non-eulerian subgraph F' by deleting two edges from an eulerian graph
H,tp(Us) =0. Thus, ty(Usy —€) +ty(Us +€) = 2+ O(e*). On the other hand, by the

Taylor expansions of Py o, at A,
PH72n(A + €J2n) + PH,2n(A — €J2n) = PH,2n(A) + 2521£V2PH727’L(A>1TL + 0(83).

Since Py on(A + eJay) + Pron(A —edo,) = (2n)° ) (t5(Us — €) + ty(Ua + €)), it follows
that 11V? Py ,(A)1, = 0. Since V?Py 2, (A) is positive semidefinite, V2 Py, (A)1,, must

be zero. This completes the proof of the claim. n

As already used in the last line of the proof, we are only able to obtain a weaker

analogue of Corollary 6.3.3.

Corollary 6.4.3. For a norming graph H, V*Py ,(A) is positive semidefinite for every A €
Sym,, .

It is still enough to find A € Sym,, such that V2Pg ,,(A) is not positive semidefinite to

prove that H is not norming. This is exactly what we do in the proof of Theorem 6.1.6.
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Proof of Theorem 6.1.6. Let H; be the graph K141 N (2t + 1) - K5. As mentioned
before, it is enough to prove that H; is not norming, as Ky 9, minus a perfect matching is

not eulerian and thus not norming. Let

and let h(z,y) := Py3(A). Here we suppress the dependency on 0 < € < 1, since ¢ is a
small constant to be chosen later. We analyse the 2 x 2 Hessian matrix V2h at (0,0). As

in the proof of Theorem 6.1.4, we decompose h(z,y) into three parts, i.e.,

h(z,y) = q(z,y) + Lz, y) +r(y),

where q(z,y) is the sum of monomials divisible by x?, £ is the sum of monomials whose

z-degree is 1, and r is the remaining terms. Then the Hessian V21(0,0) is the matrix

q21‘<070) g:):y<070)
lry(0,0)  7,,(0) .

We regard A as a looped, simple, and edge-weighted graph on {1, 2,3} with the weight a;;
for each edge ij. For the same reason as in the proof of Theorem 6.1.4, ¢,.(0,0) is equal to
the number of homomorphisms that use the x-edge exactly twice without using the y-edge.
Such a homomorphism ¢ maps at least three vertices V; in H; that induce exactly two
edges to the vertex 1 and never maps their neighbour to the vertex 2. Thus, N*(V}) must
be embedded to the vertex 3. Since H; is 2t-regular and V; contains exactly two edges,
e(Vi, N*(V1)) = 6t — 4 and thus, ¢ uses the c-edge at least 6t — 4 times.

Analogously, ¢,,(0,0) counts the number of homomorphisms that use both the z- and
y-edges exactly once and hence, use the s-edge at least 4¢ — 3 times. The homomorphisms
using the y-edge exactly twice and avoiding the z-edge must use c-edge at least 2t — 2

times. Therefore,

VZh(O O) _ %ﬁz(o,o) éxy<0,0) _ O(€6t_4) O(E4t—3)
) fmy(0,0) Tyy(()) O(€4t_3) O(gzt_Q) .

Here O(-) notation includes implicit multiplicative constants depending only on t.

Unfortunately, the product of the diagonal entries and the product of the off-diagonal
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entries are in the same order O(g%~9)

smaller than O(£%72) and also that [£,,(0,0)| = Q(£*~3), which implies that V2h(0,0) is
not positive semidefinite for a sufficiently small ¢ > 0.

Let A U B be the bipartition of H; and let A = {ay,- -+ , a1} and B = {by, -+ ,by1}
such that a;b;, 1 < 7 < 2t + 1, is the missing perfect matching in H,;. Firstly, let ®,,

. However, we claim that r,,(0) is asymptotically

be the set of homomorphisms that use the y-edge twice and the e-edge exactly 2t — 2
times while avoiding the z-edge. Each ¢ € ®,, must map one vertex, say a;, to 1, two
neighbours of a; to 2, and the other 2¢ — 2 neighbours of a; to 3. That is, once we choose
the vertex a; and two of its neighbours to be mapped to 2, all the embeddings of the
neighbours of a; are fixed. Consider these vertices as pre-embedded. Let V3 be the set
of 2t — 2 vertices mapped to 3 and let U be the vertices that are not yet embedded.
Then U = {ag, - ,ay+1} U {b1}. In particular, U induces a star centred at by, with 2¢
edges. Also note that by the definition of ®,,, the homomorphisms in ®,, do not map any

other vertex than a; to 1. For each ¢ € ®,,, denote by U, the subset of U mapped to the

vy

vertex 3. Then the coefficient of the term £*2y? in r(y) is determined by

2 (_l)e(Vg,U¢)+6(V3)+€(U¢)' (641)

PEDyy

Suppose by € U,. For each ¢, let b; and b;, i < j, be the two vertices mapped to the vertex
2. Then both a; and a; have all their 2¢ — 1 other neighbours than b; and b; mapped
to 3. Thus, by switching the image of a; under ¢ between 2 and 3, we produce another
homomorphism % whose weight (—1)¢(V3:Uz)+e(V3)+e(lz) has exactly the opposite sign of
that of ¢. This switching is an involution, and thus, the two terms pair up and cancel each
other in (6.4.1). If by ¢ Uy, then one may do an analogous switching with the minimum
indexed vertex amongst as, - - - , a1 that has an odd degree to those vertices mapped to
3. Thus, (6.4.1) evaluates to zero.

To prove |£,,(0,0)] = Q(e*73), let ¥,, be the set of homomorphisms that use each of
the - and y-edge exactly once. Suppose that, under ¢ € ¥,,,, a; and b;, i,7 > 1 and ¢ # j,
are mapped to 1 and by, ¢ # k > 1, is mapped to 2. To avoid using the y-edge more than
once, 1 must map (B~ {b;,b;,br}) U (A N {a;,a;}) to the vertex 3. Thus, there are only
two vertices a; and b; whose embedding is not yet determined. Note that a; and b; have
2t — 2 and 2t — 1 neighbours mapped to 3, respectively, and they are adjacent. Let oy, and
By be the indicator function that a; and b; are mapped to 3 by v, respectively. Then the
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coefficient of the term e ~3zy in £(x,y) is a nonzero constant times

Z (_1)(2t—2)a1/,+(2t—1),3¢+a1/,ﬁ¢ _ Z (_1),5¢+Oc¢,8¢.
PeEW 4y PEW 2y

Since each choice (ay, 8y) € {0,1}? determines a homomorphism ¢ € U, (ay, By) is
uniformly distributed on {0,1}2. Hence, the sum above evaluates to a nonzero constant,

which proves the claim. O

6.5 Concluding remarks

Our method using the Hessian matrix V2P, is reminiscent of [74] in the sense that both
rely on determining positive semidefiniteness of matrices given by homomorphism counts.
More precisely, in [74] they looked at two edges e and €’ in a graph G sharing a vertex and

used non-positive semidefiniteness of the 2 x 2 matrix

A - [ hee  hee ] |
hew heo
where h., ., counts the number of those homomorphisms from H to G which map a K »
in H to the homomorphic copy of Kj2’s formed by e; and ey, to prove that a certain H is
not weakly norming.

This is somewhat analogous to the Hessian matrix obtained by evaluating the corre-
sponding weights of e and €’ to be zero. However, the Hessian does not take the particular
K g-structure into account, so it has larger entries than A.. above. We did not attempt
to reprove their result using our language, but we remark that there are non-weakly
norming graphs that satisfy their positive semidefiniteness condition. For instance, take
a vertex-disjoint union of two non-isomorphic connected weakly norming graphs. This is
proven to be not weakly norming in [47], but the corresponding 2 x 2 matrix in [74] is
positive semidefinite, since it is a positive linear combination of the respective matrices of
the components. It would be interesting to see if the two distinct positive semidefiniteness

conditions are equivalent for connected graphs H.
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7. On extremal problems concerning the

traces of sets

7.1 Introduction

A hypergraph H is a pair (V,F) where V is the set of vertices and F < 2V = 2(V)
is the set of edges. In the literature, the problems we consider in this article are often
presented in the context of families rather than hypergraphs. If not necessary, it is then
not distinguished between the family F < 2V and the hypergraph (V, F). We will follow
this notational path and also use the “family” and “hypergraph” essentially synonymously.

Let V' be an n-element set and let F be a family of subsets of V. For a subset T" of V
define the trace of F on T by Fip = {F'nT : F € F}. For integers n, m, a, and b, we write

(n,m) — (a,b)

if for every family F < 2V with |F| = m and V| = n there is an a-element set T < V such
that |Fir| = b (we also say that (n,m) arrows (a,b)).

The first type of question that was asked for this arrowing notation is similar to the spirit
of the classic Turan problem: For a fixed number of vertices n, how many edges are needed
such that there is a subset of s vertices such that all its subsets lie in the trace. The following
result on this question was conjectured by Erdds [46] and was proved independently by
Sauer [101], Shelah and Perles [103], and Vapnik and Cervonenkis [114]. It states that for a
large family F on n vertices, there is an s-set of vertices such that all its subsets lie in the
trace of F. More precisely, they showed that (n,m) — (s,2°) whenever m > > _, . (7;)

Another fundamental question that was raised in the area is how large a family can
be at most so that there will still be a vertex v such that the trace on V'~ {v} is not
much smaller than the original family. More precisely, the following problem was posed by

Fiiredi and Pach [46] and, more recently, by Frankl and Tokushige as Problem 3.8 in their
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monograph [42]:!

Problem 7.1.1. Given non-negative integers n and s, what is the maximum integer m(n, s)

such that for every integer m < m(n, s), we have
(n,m) = (n—1,m —s).

A family F is hereditary if for every F' € F € F, we have that F' € F. In [41], Frankl
proves that among families with a fixed number of edges and vertices, the trace is minimised
by hereditary families. Thus, the problems considered here, and in particular Problem 7.1.1,
can be reduced to hereditary families (see Lemma 7.2.1). Hence, Problem 7.1.1 is asking for
the maximum integer m(n, s) such that every hereditary hypergraph on n vertices with at
most m(n, s) edges contains a vertex of degree at most s.2 Formulated differently, m(n, s)
is the minimal integer such that every hereditary hypergraph on n vertices with minimum
degree at least s + 1 has at least m(n, s) + 1 edges.

The investigation of this problem started with Bondy [11] and Bollobés [82] determin-
ing m(n,0) and m(n, 1), respectively. Later Frankl [41] and Frankl and Watanabe [43]
proved part (1) and (2), respectively, of the following theorem.

Theorem 7.1.2. For d,n e N and d|n, we have

1. m(n, 24t — 1) = 2(2¢ - 1),

U3

2. m(n,297t —2) = 2(27 - 2) .

a3

Consider a family consisting of a set of size d and all possible subsets, and take n/d
vertex disjoint copies of it. The resulting family has minimum degree 2¢~! and %(Qd -1)+1
edges. Thus, this family is an extremal construction for (1). By taking out all sets of size d,
we obtain an extremal construction for (2).

Our main result makes further progress on Problem 7.1.1, solving it for general s =

29=1 _ ¢ as long as c is linearly small in d.

Theorem 7.1.3 (Main theorem). Let d,c,n € N with d = 4c and dn. Then

_n
- d

IThere have been slightly different versions in use for the arrowing notation and for what we denote
by m(n,s). In this work, we follow the notation in [42].

2As usual, we define the degree of a vertex v in a hypergraph H = (V, F) as deg(v) = [{F € F :ve F}|
and the minimum degree of H is §(H) = min,ey deg(v).

m(n,2¢7 — ¢)

(2% —¢).
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Remark 7.1.4. In fact, our proof of Theorem 7.1.3 yields that for d > 4c and m < 2(2¢—c)
we have (n,m) — (n —1,m — (297! — ¢)) without any divisibility conditions on n. The
assumption d|n is only necessary for the extremal constructions showing the maximality
of 2(2% — ¢). Analogous remarks hold for Theorem 7.1.2 above and Theorem 7.1.5 below.
In Section 7.5 we provide a construction showing that the equality in Theorem 7.1.3 does
not hold for d = ¢ (see Construction 1).

One might also try to solve Problem 7.1.1 for small values of s. Apart from the aforemen-
tioned results by Bondy and Bollobas, progress was made by Frankl [41], Watanabe [115,116],
and by Frankl and Watanabe [43]. In [43], they conjectured that m(n,12) = (28/5+ o(1))n.
Theorem 7.1.3 does not consider cases for which d is very small in terms of ¢. The following
results extend Theorem 7.1.2 to ¢ = 3 and 4 and every d > 5 (for smaller d the respec-
tive m(n, s) is not defined or has been determined previously). In particular, it proves the

conjecture of Frankl and Watanabe for s = 12 in a strong sense.
Theorem 7.1.5. Let d,n € N with d = 5 and d|n. Then
1. m(n, 2% —3) = 2(2% - 3) and

2. m(n,297t —4) = 2(2¢ — 4). In particular, m(n,12) = Zn.

5

a3

Note that for larger d, this theorem is of course a special case of Theorem 7.1.3.

7.2 Preliminaries

In this work we consider the set of natural numbers IN to start with 1 and the logarithms
considered are to the base 2. Further, for i € N we set as usual [i] = {1,...,i}, and it is
also convenient to define [i]p = {0,...,7}. Given a set F' < IN and some i € IN, we denote
by F + i the set {j + i : j € F'}. For our considerations isolated vertices, i.e., vertices that
are contained in the vertex set of a hypergraph but do not lie in any edges, usually do
not play an important réle. This will lead to a few easy peculiarities in notation. For two
hypergraphs H and H' we write H =~ H’ if they are isomorphic up to isolated vertices,
more precisely, if there are vertex sets V' disjoint to V() and V' disjoint to V(#H') such
that the hypergraph (V(H) v V, E(H)) is isomorphic to (V(H') w V', E(H')).

For a hypergraph H = (V, E)) and v € V we define the link L, of v to be the hypergraph
on V with edge set {F \ {v}:v e F € E}. Further, we write

V, = {w € V: there is an e with {v,w} C e E},
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note that if v is not an isolated vertex, then v € V,,. This notation will be useful in the
proof of Theorem 7.1.3 when defining the clusters mentioned in the overview of the proof.
The following lemma due to Frankl [41] provides the aforementioned reduction of

Problem 7.1.1 to hereditary families.
Lemma 7.2.1. For n,m,a,be N the following statements are equivalent.

1. For every n-set V' and every hereditary famzly F < 2V with |F| = m, there exists a
set TV with |T| = a such that |Fir| >

2. (n,m) — (a,b).

In particular, this means that in the proof of our results we only need to consider
hereditary families.

Let n € IN, for A, B € 2I" we say that A <.,; B or A precedes B in the colezicographic
order if max(A A B) € B. Let m € IN with m < 2" and define R,,(m) to be the family
on n vertices containing the first m sets of 2l according to the colexicographic order. Note
that for n < n’ and m < 2", we have R, (m) = R,,(m) and hence, we will not distinguish
between R, (m) and R,,(m) and we will omit the subscript. The following theorem due to

Katona [66] is a generalisation of the well-known Kruskal-Katona theorem.

Theorem 7.2.2. Let f: Ny — R be a monotone non-increasing function and let F be a
hereditary family with |F| = m. Then

MHIFEN= > fUR).

FeF ReR(m)

Observe that for a hypergraph H = (V, E) a double counting argument yields

1

Y'Y oL plg
xeV Hel, |H| + 1

For the proofs of Theorems 7.1.3 and 7.1.5 we generalise this argument by considering

weights wy(v) for all vertices v. We will refer to > .., ﬁ as uniform weight since it

can be imagined as uniformly distributing the unit weight among its vertices.

Accordingly, Theorem 7.2.2 will normally be applied with F being the link of a vertex

L
k+1°

The weight of R(m) with respect to this f will come up repeatedly and hence, for brevity we
set W(m) := ZRGR(m) IRI%' Note that we have W (2¢71) = 2dd L and further the following

and, as we usually consider the uniform weight, the function f will often be f(k) =
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estimate® for W (2971 — ¢) for a c € [2¢72]:

2d _ 1 c
20=1 _ ) > — 2.1
Wi ) d d—logc (7.2.1)

Indeed, if A € 214711 R(2%7! — ¢), then there are at least 21714 sets in 20971
R (241 —c). Thus, it follows that for every A € 21U\ R(2%! —¢) we have |4| = d—1—logc.

This gives that W (2¢71) — W (2%°! —¢) < i ioze and thereby (7.2.1).

7.3 Proof of Theorem 7.1.3

For proving Theorem 7.1.3 we introduce two “local” lemmas. The first lemma says that if
a family deviates enough from R(m), the weight of this family will have a surplus with

respect to W (m).?

Lemma 7.3.1. Let d > 3 and ¢ < 2¢ be integers. For a hereditary family H, with |H| =
2¢ — ¢ the following holds.

1. ZHE?—[ ﬁ 2 W(2d — C).

2. If there are at least d + 1 non isolated vertices in H, then

P > W(2 )+ 5.

=, |H| + 1

3. If ce {2,3} and H % R(2% — ¢), then we have

1 11
> W(2¢ = in(=,-).
HZEH|H|+1 ( c)+m1n<6 d>
Proof. Let d, n, ¢, and H be given as in the statement. The first part follows by applying
Theorem 7.2.2 with f(k) = 5.

In order to prove part (2) and (3) we need some preparation. Denote by h; and r; the

number of i-sets in H and R(2% — ¢), respectively. Given s € [d]y set g(k) =1 for k < s
and g(k) = 0 for k > s. Then Theorem 7.2.2 applied with f = g yields

dihiz= > (7.3.1)
i€[s]o

€ [S]o

3To have a clearer presentation of our main results and their proofs, we refrained from striving for
optimal bounds.
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Next, let Hy, ..., Hjy| be an enumeration of the elements of H such that |H;| < [Hj1|.
Given i € [d — 1] let (i) be the number of edges of size at most 4 in the family R(2¢ — ¢),
Le., p(i) = Dicp, 75 Let Ho = {H1} = {@} and for i € [d — 1] consider the following set of
edges H; = {Hy(i—1)+1, - - - » Hy()} and observe that its size is r;. Inequality (7.3.1) implies
that for H € H;, where i € [d — 1]y, we have |H| < i. Thus,

Z Z \H\1+1> Z i:il:W(Qd—C)- (7.3.2)

i€[d—1]o HeEH; ie[d—1]o

If now at least d + 1 vertices are contained in edges of H, then even for Hy, 5 € Ho it holds
that |Hg.o| = 1. Hence, (7.3.2) now becomes Y, 4, ﬁ >3 — 3+ W(2%—¢)and (2) is
proved.

For proving (3), let ¢ € {2,3} and note that if there are at least d + 1 non isolated
vertices in H, then the result follows from (2). Thus, assume that there are only d non
isolated vertices in H. Observe that r; = (‘f) forie[d—2],rq=0and rg_y =d— (c—1).
Hence, due to (7.3.1) we have h; = (‘j) for i € [d — 2] and because of H being hereditary
and the size of H, further hy_1 = d— (c—1). In fact, hy_1 > rq_1 = d— (c—1) has to hold
since H £ R(2¢ — ¢). Together with (7.3.2) the result follows. O

The following is the second local lemma. Part (2) states that a hereditary family
on d vertices with high minimum degree contains many edges and therefore, considering
Lemma 7.2.1, this is a local version of Theorem 7.1.3. Moreover, Part (1) states that if a

hereditary family has not enough edges, then there are several vertices of low degree.
Lemma 7.3.2. Let d,c € N such that d > ¢, let V be a d-set and let H < 2V be hereditary.
1. If | H| < 2% —c—1, then deg(v) < 2971 — ¢ — 1 for at least d — c vertices v.
2. If 5(H) = 2971 — ¢, then |H| = 2¢ —c.

Proof. (1): By H denote the family {V . F : F € 2V \. H}. The bound on |H| implies
that ¢ + 1 < |H| and observe that since H is hereditary, H is hereditary. Consider some
ordering H = {Hy,..., Hyy} with |H;| < |H;1|. Note that because H is hereditary, we
know that if some vertex v € V is contained in one of the edges Hi, ..., H;, then in
fact {v} = H; for some ¢ € [j]. Thus, there are d — ¢ vertices that do not lie in any
of Hy,...,H..1. Note that these vertices lie in at least ¢ + 1 sets of 2" ~. H and therefore,
for each such v we have degy, (v) < 27! — ¢ — 1.

(2): Assume for contradiction that |H| < 2¢—c—1. Then (1) gives the contradiction. [J
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Now we are ready to prove Theorem 7.1.3.

Proof of Theorem 7.1.3. Let n, d, and ¢ be given as in the theorem. First note that

Fo = {F—l—(z’—l)d:FeR(Qd—(c—l)) and 7 € [g”gg[n]

shows that for m = %n + 1, we have (n,m) - (n—1,m — (297! — ¢)).

In a hereditary family on n vertices with m edges the existence of a set of size n — 1
on which the trace of the family has size at least m — (2971 — ¢) is equivalent to the
existence of a vertex with degree at most 2~ — ¢. Therefore, Lemma 7.2.1 implies that it
is sufficient to show that for every hereditary family F on n vertices with minimum degree
at least 2971 — ¢+ 1 we have |F| > 2dd_cn + 1. Let now F < 2V be such a hereditary family
on some n-set V in which every vertex has degree at least 2971 — ¢ + 1.

To prove the lower bound on the number of edges, we will define a weight function w
on V with the property that 1+ >, _,, wr(v) < |F|. Subsequently, it will be enough to
show that Y, wr(v) = 2dd_cn. Indeed, for ¢ = 1 from Lemma 7.3.1 (1) for H = L,, it
follows that the weight function >, ﬁ satisfies the desired inequality. Hence, from

now on we assume ¢ > 2. Note however, that for this uniform weight and c large, in F
there are vertices with weight below and above %. As mentioned in the overview, we
overcome this difficulty by using non-uniform weights and by bounding the average weight
of sets of vertices instead of bounding the weight of every single vertex.

To that aim, we will in the following consider a partition of V. Let us call a vertex v € V'
light if |V,,| = d. Further, let £ be a maximum set of light vertices such that V,, n V,, = @
for all v,v" € £ and call the sets V,, with v € L clusters. Later, the weight of a vertex will
be defined depending on how it relates to these clusters. Moreover, call the vertices u €
VN Upers Vo with |V,,| > d heavy vertices and let §) be the set of all heavy vertices. The
vertices in £ will be distinguished further into two different types £; and £, as follows.
Let £; be the set of those vertices v € £ for which every vertex in V,, is only contained in
edges of 2%, that is

£1={ve£:thereisnoee]:\2v“withem%#@}.

Furthermore, let £y be the set of those vertices v € £ for which there exists an x € V,, that

is contained in an edge of F ~ 2", in other words,
Ly ={ve L: thereis an e e F \ 2" with e n V, # @}. (7.3.3)
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Note that we have £ = L£; w Ly. Lastly, we collect the remaining vertices in the
set £=V N (90U, Vo). Thus, we have V =9 v e, Vo w Uep, Vo v L.

Next, for each of the partition classes 9, | J,cr, Vs Uper, Vo, and L the weights will be
defined and we will show that the average weight in each partition class is bounded from
below by %.

Assign the uniform weight wr(u) = >, ﬁ to every heavy vertex u € §). This

definition and (2) from Lemma 7.3.1 give that every heavy vertex has weight at least

2d _ 1 c—1 24 _ ¢
_l’_ —_

1
- > , 3.4
6 d d —log(c—1) d (7.3.4)

1
6+W(2d—1—c+1)>

where we used the bound (7.2.1) for the first inequality and d > 4¢ and logx < %x forx >1
for the second (recall that we can assume ¢ = 2).

Given v € Ly, we have that F[V,] is a family on d vertices with minimum degree at
least 2¢71 — ¢+ 1. Thus, from Lemma 7.3.2 (2) (with ¢ — 1 here in place of ¢ there) it follows
that |F[V,]| = 2% — ¢ + 1. Since summing the uniform vertex weights of all vertices of a
family amounts to the number of non-empty edges in that family, assigning the uniform

weight wr(z) = X pep. ﬁ to every x € V,, yields

1 | FVI N {2 N 2d _ ¢
d - d

(7.3.5)

Given v € Lo, the idea is that the vertices in V,, already have a relatively large uniform
weight just taking into account the edges on V,,. Thus, they only need a smaller proportion
of the weight of an edge that includes vertices outside of V,,. More precisely, we assign the

weight

1 1 c¢c—1

HeL,
to every vertex x € V,,. Since F is hereditary, the number of 2-uniform edges containing x
and crossing from the inside of the cluster to the outside is exactly |V, \ V,|. Hence, this
definition can be understood as vertices in V,, having basically the uniform weight but
then renouncing part of their uniform share of those crossing edges. Later, these edges will
contribute more than their uniform share to weight of the outside vertex.

Of course, if |F[V,]| = 2¢ — ¢ + 1, then again the bound (7.3.5) follows for v directly
by double counting and thus, we may assume that |F[V,]| < 2¢ — c. Define the set C as

the set of vertices x € V,, for which there exists some F, with x € F, € F ~ 2"». Note that

195



in fact, since F is hereditary, we may assume |F}| = 2. Considering the minimum degree
condition in F and applying Lemma 7.3.2 (1) to F[V,] (with ¢ — 1 here instead of ¢ there)
it follows that

Cl>d—c+1. (7.3.6)

Moreover, the minimum degree of F implies deg(v) = 297! — ¢ + 1 and hence, F being
hereditary gives that [2"» . F| < 2(c¢—1). Therefore, double counting the non-empty edges
in F[V,] yields

Fsfel =Y Y - losaioocit (7.3.7)

=
z€Vy HeL,n2Vv ‘H| +1

Now, for every vertex x € C' there is at least one 2-uniform edge F, € F ~ F[V,] which
contributes % to the sum of the weights. This, together with (7.3.7) and (7.3.6) give

1 1 c—1
_ >
1 3 wslo) > 1 (VI @) +IC15 )
x€V,
>d<2 —2c+1+(d—c+1)d_c>
2¢ — ¢
> (7.3.8)

Lastly consider vertices from £. Recall that in particular, these vertices are light and
could potentially have a too low weight if the uniform weight would be used. Note that by
the maximality of £, for every vertex a € £ we can pick a v(a) € £, such that there exists
an edge containing a and a vertex of V). Since the vertices in (J, ., Vi renounced part
of their share of some of those edges, the vertices in £ can be given a larger fraction. To

be precise, the weight for a € £ is defined as

1 1 c—1
wrle) = ) \H|+1+|V‘L“V”(“>’(2_d—c) ‘

HelL,

Lemma 7.3.1 (1) yields that

27 — ¢
d Y

1 e—1
w;(a)ZW(Qd_l—c+1)+§—2_c

1
>WERT —c+1) + 6> (7.3.9)

where the second inequality follows from d > 4c and the third follows as in (7.3.4). Observe
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that the definition of wz implies ) _,, wr(z) < 1+ |F| because the left-hand side counts

every edge of F apart from the empty set at most once. Since (7.3.4), (7.3.5), (7.3.8),

24 ¢
d

complete. O

and (7.3.9) say that the average weight per vertex in F is at least , the proof is

7.4 Proof of Theorem 7.1.5

This section is dedicated to the proof of Theorem 7.1.5. The proof is very similar to the
proof of the main theorem just with some adaptions to obtain more precise bounds at

certain points. Hence, we will omit some details that already appeared in the last section.

Proof of Theorem 7.1.5. Let ¢ € {3,4} and d > 5. Firstly, the family Fy from the proof of
Theorem 7.1.3 shows that for m = 2(2¢—c¢) + 1, we have (n,m) - (n — 1,m — (247! — ¢)).

Let now F < 2V be a hereditary family on some n-set V' in which every vertex has
degree at least 2471 — ¢ + 1. In the following we will show that |F| > (2d — c) o+ 1

To gain more precision later, this time we call a vertex v € V light if L, ~ R(2%* —
(¢ —1)). Again, let £ be a maximum set of light vertices such that V, n'V,, = & for
all v,0" € L. Call the vertices u e V ~\ |J,. Vo with L, & R(27 — (¢ — 1)) heavy vertices.
The sets £;, $3, L are defined similarly as in the proof of Theorem 7.1.3, just according to
the different definitions of light and heavy vertices here.

Again we assign the uniform weight to every heavy vertex of F. Note that then, due to
Lemma 7.3.1 (3) and the structure of R(2%7! — (¢ — 1)) for ¢ < 4, every heavy vertex has
weight at least

min<1 ! )+W(2d_1—(0—1))

6 d—1

11 21 (c—Dd—1_2¢—c
> min ( -, - > . 41
mm<6 d—1)+ d (d—1)d d (7.4.1)

For v € £, and x € V,, the weight is again defined as the uniform weight and as in the

proof of Theorem 7.1.3, we obtain

LS )z 2 (7.4.2)
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To write the next weight definitions in a compact way, we define the following set

S={HeF:|H =3andHn ||V, #@,HnL+2}
UE£2
Note that S is the set of those edges of size 3 in F crossing from the inside of some V,,

with v € £, to its outside and contain a vertex from £. For v € £, and a vertex z € V,,

assign the weight wz(x) = > 5, ﬁ —sl{H e L,: Hu{z}e S}

Claim 7.4.1. Forv e Ly we have 33\ wr(zx) = %l_c.

We postpone the proof of this claim to the end of the section and first finish the proof
of Theorem 7.1.5 using the claim.

For a vertex define the weight a € £ as wr(a) = Yy, |H|ﬁ +x{H € Ly : H U {a} e
S}|. Note that by the maximality of £, there exists a v(a) € Lo such that there are
an edge I’ and a vertex z, € Vi) with a,z, € F. In fact, it is easy to check that
since L, =~ R(2¢71 — (c—1)), the number of 2-sets in L, that contain z, is at least d—2 > 3.

Thus, Lemma 7.3.1 (1) and the definition of the weight yield

d—2

wr(a) = W2 = (c—1)) + 13

>WERr = (c—1)) +

where the last inequality follows similarly as in (7.4.1).

Now observe that the definition of wz implies Y, ., wr(z) < 1 + |F| because the
left-hand side counts every edge of F apart from the empty set at most once. In particular,
for H € S there are at least one v € H n | J V, and at most two a,a’ € H n L. Thus, H

UEEQ
contributes at most 1 to > _, wr(z).
Since (7.4.1), (7.4.2), Claim 7.4.1, and (7.4.3) say that the average weight per vertex

in F is at least 2dd’c, the proof is complete. O

Proof of Claim 7.4.1. Here, we will differ slightly depending on the value of c.

Case ¢ = 3: If §(F[V,]) = 24! — 2, then (7.4.2) holds for v as well and so we may
assume §(F[V,]) < 247! — 2 and thereby |2"* . F| = 3. On the other hand, since deg(v) >
2471 — 2 and F is hereditary, |2"* . F| < 4. So we can assume that |2 \ F| € {3,4}.
If |2 \ F| = 3, then deg(v) > 24! — 2 and F being hereditary imply that the sets
in 2¥v \ F are V,, V, ~ {v}, and some A € V*"V with v € A. Thus, each vertex z € A~ {v}
lies in all three sets of 2'» \. F, and so there has to be an F, € L, n (V \ V,)) because

of the minimum degree of F. Thus, the definition of the weight and double counting the
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non-empty edges in F[V,] implies

A d—2
Zw;(x)>\f[%]\{®}|+|\2{v}|>2d—4+2>2d—3.

zeVy

Similarly, if 2" \ F| = 4, then the sets in 2"* \ F are V,, V,, \ {v}, some A € V(=1
with v € A, and A\ {v}. Hence, there are d — 2 vertices x (namely, the vertices in A~ {v})
for which there has to be an F, € L, n (V ~ V) and at least one further F’ € L,
with F, n (V \V,) # @ and |F,| < 2. Noting that each F}, contributes 1/2 to > ;. wr(z)
and each F! at least 1/3 —1/9 = 2/9, we obtain in the usual way

d—2 2(d-2) _

d d
> wr(r) =27 -5+ st =223

eV,

and thereby the claim if ¢ = 3.

Case ¢ = 4: In a similar way as in the beginning of the case ¢ = 3, we observe that we
may assume [2Y* \ F| € {4,5,6}. Further observe that if [2"* \ F| = 4, then since deg(v) =
24=1 3, the sets in 2"* . F are V,,, V,~ {v}, A, and B for some distinct A, B € V,(*~Y which
both contain v. Thus, there are at least d — 3 vertices (namely those in A~ B\ {v}) that lie
in four sets of 2" . F. Since for any such vertex x there has to be an F, € L, n (V ~ Vv)(l),
we get >, wr(r) =29 -5+ 43 > 20 -4

Similarly, if |2"» \ F| = 5, the sets in 2"» N F are V,, V, \ {v}, 4, B, and A \ {v}
for some distinct A, B € V(=1 which both contain v. Hence, for the d — 3 vertices z €
A n B~ {v} there have to be an F, € L, n (V ~ V,)) and at least one further F! e L,
with F, n (V \'V,) # @ and |F}| < 2. In addition, for the one vertex z € A\ B there
has to be an F, € L, n (V ~V,)M. For a vertex z € A n B ~ {v} we observe the
following. If F, u {z} ¢ S, then F, contributes at least 1/3 to > . wz(r). On the
other hand, if F/ U {z} € S, then there is some a € £ with a € F!. Since for any a € L
we have L, =~ R(2¢7! — 3) (and d > 5), the number of 2-sets in L, which contain z is
at least d —2 > 3. So in this case the edges in {H € L, : H u {z} € §} contribute at
least 2 - 3 = 2/3. In either case, we derive

Z wz(x) >2d—6+d;2+d;3>2d—4.

€V,

Lastly, if |2V \ F| = 6, then the sets in 2'* \ F are V,, V, \ {v}, A, B, A~ {v},
and B\ {v} for some distinct A, B € V(=1 which both contain v. Thus, for the d — 3
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vertices ¥ € An B~ {v} thereis an F, € L, n (V ~ V) and at least two further F' € L,
with Fin (V\V,) # @ and |F¢| < 2, € [2]. In addition, there are two further vertices x €
AAB for which there is at least one F, € L, n (V ~. V,)1). For a vertex z € A n B\ {v}
we observe the following. If F! U {z} ¢ S for i = 1,2, then these two edges together
contribute at least 2/3 to >\, wr(x). If F, U {z} € S for some i € {1,2}, then the edges
in{HelL,:Hu{z}eS} contribute at least 2/3 as noted above. Therefore the definition
of the weight entails

d—1 2(d-3
Zw;(:c)?Qd—7+ + ( )>2d—4
2 3
€V
and thereby the claim is proved if ¢ = 4. O]

7.5 Further remarks and open problems

Consider m(s) to be the following limit introduced in [43]

m(n, s) ‘

m(s) = lim -

It is not difficult to check that m(s) is well-defined (see [43]). Rephrased by means of this

definition, Theorem 7.1.3 implies that for ¢ < % we have that

2¢ _ ¢

2d—l_ _
mzit o) = 2

(7.5.1)

The first open problem we would like to mention concerns finding a sharp relation
between d and ¢ such that (7.5.1) holds. More precisely, finding the maximum integer cq(d)
such that the equality (7.5.1) holds for every ¢ < ¢y. In view of Theorem 7.1.3 we have
that co(d) > 4], and below we will give a construction that proves that co(d) < d for d > 5.

Let F < 2V with |V| = n and d be a positive integer such that d|n. We say that F
is d-local if there exists a partition of V' into sets of size d such that every F' € F is a subset
of one of the sets of the partition. Observe that the extremal construction presented in
the proof of Theorem 7.1.3 is a d-local hypergraph with minimum degree 29~! — ¢ + 1 and
with m(n, 2% — ¢) + 1 edges. That construction can be generalised in the following way.

Take d > 5 and c € [2¢72] and set s = 2971 — ¢, for simplicity let d|n. By definition
of m(-,-), there is a family F on a d-set V' with m(d, s) + 1 edges such that for every v e V'
we have that |Fjy | < |F| —s — 1. Note that we may assume that @ € F and
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take n/d vertex disjoint copies of F. It is easy to see that for the resulting family F’ we
have [Fi 3] < [F'| —s =1 for every v e V' (where V' is the vertex set of ') and that
further | F'| = m(d, s)2 + 1. This gives the following general upper bound on m(2¢7! — ¢)

m(d,2%t — ¢)

m(27' —¢) < g

(7.5.2)

Moreover, we observe that for ¢ = d + 1 we have that m(d, 2! — (d+1)) < 2¢ — (d+1).
To see this, consider the family F < 2[4 containing all sets with at most d — 2 vertices.
Then F has 2¢ — (d + 1) edges and minimum degree 297 —d > 2471 —¢. Thus, from (7.5.2)

it follows that
24 — (d + 2)

d
This means (7.5.1) does not hold for ¢ = d + 1, and hence ¢y(d) < d.

Note that this construction is also d-local. An interesting problem is to find the values

m(27 = (d+1)) <

of ¢ for which there are no d-local extremal families.

Problem 7.5.1. Given a positive integer d > 2, find the minimal c,(d) € [1,2972] such

that for all ¢ = ¢, we have

m(d, 2%t — ¢)

2d—1 .
m( c) < y

A solution to this problem would give an insight into the structural behaviour of the
extremal families: For ¢ > ¢, and large n (possibly satisfying certain divisibility conditions)
there is no d-local extremal family for m(n,2%! — ¢). Note that the results in [41,43,115]
solved Problem 7.5.1 for d < 4.

In the following, given a vertex set of size n we describe a non d-local family that has
less edges than any possible d-local hereditary family with the same minimum degree.

More precisely, the construction below yields that, given d > 5 and ¢ = d, we have

20 —d — 3 d, 27 —d
2 < mid, ). (7.5.3)

20-1 _ ) <
m( ) 7

Construction 1. Let d > 5 and k a positive integer, set n = 2dk. Take V' to be a set of
n vertices. Consider Uy, ..., Uy to be a partition of V' into sets of size d, and for every

set U; arbitrarily pick a vertex x; € U;. Define

G ={S < V: thereis an i such that S < U; and |S| < d — 2}
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H={U;~A{x;}: forie{1,2,...,2k}}
T = {{xs,xi41}: forie{1,3,5,...,2k —1}}.

One can check that the number of edges of the family F =G U H U Z is given by

N[

d n 2d _ ( — 1
—2n )
d

2¢ —d—2 n
I|l= ——— 1+-+4+—=
61+ M) +1Z) = = —n+ 14+ 0+ 2

Moreover, every vertex in V has degree s = 2¢=! — d + 1. This implies the first inequality
of (7.5.3). Taking d = ¢+ 1 in Lemma 7.3.2 (1) yields

27 —d < m(d, 29 —d),

and thereby the second inequality in (7.5.3).

For s < 16 (that is d < 5), considering the results from [41,43,116] and Theorem 7.1.5
all values of m(s) are found, except m(11). We recall the conjecture of Frankl and

Watanabe [43], which states that Construction 1 is extremal for d = 5.
Conjecture 7.5.2 ([43]). m(11) = 5.3.
A complementary approach than the one taken in this paper could be as follows.

Problem 7.5.3. Given a positive integer d and an integer ¢ € [0,297Y), find the value
of m(2471 + ¢).

Naturally, for ¢ > 247! — ¢ Problem 7.5.3 is solved by Theorem 7.1.3. For ¢ < 2972, the

only general result is given in [43], where it is shown that m(2¢71) = Qdd_l + % For other
values of ¢ Problem 7.5.3 is still open.

Observe that Theorems 7.1.3 and 7.1.5 and the results presented in [41,43,115] concern
cases in which s is close to 2¢ for some value of d. In general, there are still large intervals
between powers of 2 for which the only bounds on m(s) that are known are those that follow
directly from the previously mentioned results. Finding a solution for Problem 7.5.1 might
shed light on this problem by possibly providing a first understanding of the structural

behaviour in those intervals.
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English summary

This thesis deals with several problems in extremal combinatorics. In extremal combina-
torics, thresholds and extremes in the behaviour of discrete structures like graphs and
hypergraphs are studied.

The first part is about Hamiltonicity in hypergraphs. Here, the goal is to generalise
results on Hamiltonian cycles in graphs to hypergraphs. In Chapter 2, we follow up on
the investigation of minimum degree conditions for Hamiltonian cycles in hypergraphs
initiated by Katona and Kierstead [67] and continued in particular by Rodl, Rucinski, and
Szemerédi [98-100], who generalised Dirac’s theorem to k-uniform hypergraphs and the
minimum (k — 1)-degree. In joint work with Polcyn, Reiher, and Rodl [93], the author
proved an analogue of Dirac’s theorem for k-uniform hypergraphs and the (k — 2)-degree,
that is, an asymptotically tight condition on dy_o(H) guaranteeing the existence of a
Hamiltonian cycle.

We then continue by proving a 3-uniform analogue of a result by Pésa [94] in Chapter 3,
based on the author’s work in [102]. Pdsa’s theorem states that graphs with certain degree
sequences contain a Hamiltonian cycle and it is stronger than Dirac’s result since it allows
vertices of small degree. Similarly, our result strengthens the result by Rodl, Rucinski, and
Szemerédi in [98] by also allowing pairs of vertices of small degree (and even vertices of
small degree).

As it turns out, the (asymptotically tight) minimum (k — 1)-degree condition assumed
in [98] and [99] is already enough to guarantee not only one but as many disjoint Hamiltonian
cycles in H as there “possibly could be” (due to degree regularity reasons). We proof this
and even stronger decomposition type results in Chapter 4, some of which generalise results
in graphs due to Ferber, Krivelevich, and Sudakov [36] to hypergraphs.

After this, we turn to a different problem in Chapter 5, in which we mix the search for
spanning substructures with a Ramsey-type setting. The problem is to cover edge-coloured
random graphs G(n, p) with as few trees as possible and for as a small p as possible. More
precisely, we prove that if p(n) » (10%)1/6, then with high probability we have that for
every 3-colouring of the edges, G(n, p) can be covered with three monochromatic trees. This
improves some previous results on this problem due to Buci¢, Kérandi, and Sudakov [15].

In Chapter 6, we solve a problem in the theory of graphons, which are limit objects of
sequences of large weighted graphs and can be seen as a continuous generalisation of graphs.

Lovasz [81] and Hatami [58] asked for which graphs H one can define a norm via the
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homomorphism density; a problem that is closely connected with Sidorenko’s conjecture.
We show that for certain graphs this is not possible, answering two questions of Hatami [58].
One of these graphs, K55 ~\ Cho, is of particular interest for Sidorenko’s conjecture.

This thesis ends with a result in extremal set theory. Given a non-negative integer s,
we investigate the maximum real m(s) such that every hereditary hypergraph (also called
abstract simplicial complex) with “edge density” at most m(s) has minimum (vertex) degree
at most s. While previously m(s) was only known for some small values of s and, due to
work by Frankl [41] and Frankl and Watanabe [43], for s = 2¢—c with d € N and c € {0, 1,2},
Piga and the author [89] determined m (2 — ¢) for all ¢,d € N with ¢ < d/4. In addition,
we determined m(s) for more small values of s, in particular proving a conjecture by Frankl
and Watanabe [43].
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German summary (Deutsche Zusammenfassung)

Diese Arbeit behandelt verschiedene Probleme in extremaler Kombinatorik. Extremale
Kombinatorik beschaftigt sich mit Schranken und Extremen im Verhalten diskreter Struk-
turen wie Graphen und Hypergraphen.

Im ersten Teil geht es um Hamiltonkreise in Hypergraphen. Ziel ist es dabei, Resultate
iitber Hamiltonkreise in Graphen zu verallgemeinern. In Kapitel 2 setzen wir Untersuchungen
zu minimalen Gradbedingungen fiir Hamiltonkreise in Hypergraphen fort, die von Katona
und Kierstead [67] begonnen und insbesondere von Rodl, Ruciniski und Szemerédi [98-100]
weitergefithrt wurden, indem sie den Satz von Dirac auf k-uniforme Hypergraphen und den
minimalen (k — 1)-Grad verallgemeinerten. In Zusammenarbeit mit Polcyn, Reiher und
R6dl [93] bewies der Autor ein Analogon des Satzes von Dirac fiir k-uniforme Hypergraphen
und den (k — 2)-Grad, das heifit eine asymptotisch scharfe Bedingung an d;_o(H), die die
Existenz eines Hamiltonkreises garantiert.

In Kapitel 3 zeigen wir basierend auf dem Artikel [102] des Autors eine 3-uniforme
Entsprechung des Satzes von Pésa [94], der besagt, dass Graphen mit gewissen Gradsequen-
zen einen Hamiltonkreis besitzen. Ebenso wie Pésa’s Satz den von Dirac verallgemeinert,
indem auch Ecken kleinen Grades zugelassen sind, verallgemeinert unser Resultat in Kapi-
tel 3 das von Rodl, Rucinski und Szemerédi in [98], indem wir Eckenpaare (und sogar
Ecken) kleinen Grades zulassen.

Wie sich herausstellt, ist die (asymptotisch scharfe) Bedingung an den minimalen (k—1)-
Grad in [98] und [99] schon genug, um so viele Hamiltonkreise in H zu garantieren,
wie es (aus Regularitatsgriinden) tiberhaupt nur geben kann. Dies und noch stérkere
Zerlegungsresultate zeigten Joos, Kithn und der Autor in der Arbeit [64], die die Grundlage
fiir Kapitel 4 bildet.

Anschlieend wenden wir uns in Kapitel 5 einem etwas anderen Problem zu. Wir
kombinieren hier die Suche nach aufspannenden Substrukturen mit Ramseytheorie, indem
wir versuchen, kantengefarbte Zufallsgraphen mit so wenig monochromatischen Baumen
wie moglich zu iiberdecken. Genauer gesagt zeigten Kohayakawa, Mendonga, Mota und
der Autor [71], dass wenn p(n) » (1"%)1/6 gilt, G(n, p) mit hoher Wahrscheinlichkeit fiir
jede 3-Farbung der Kanten mit drei monochromatischen Baumen tiberdeckt werden kann.
Dies verbessert einige frithere Schranken von Bucié¢, Kérandi und Sudakov [15].

In Kapitel 6 l6sen wir ein Problem in der Theorie der Graphone, die Grenzwertobjekte

von gewichteten Graphen sind. Lovész [81] und Hatami [58] fragten fiir welche Graphen H
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man mithilfe der Homomorphismendichte eine Norm definieren kann. Dieses Problem
ist eng mit Sidorenko’s Vermutung verkniipft. In Zusammenarbeit mit Lee [79] zeigte
der Autor, dass dies fiir bestimmte Graphen nicht der Fall ist, was zwei Fragen von
Hatami [58] beantwortet. Einer dieser Graphen, der K55 \ Cjo, steht in Bezug auf
Sidorenko’s Vermutung besonders im Fokus.

Wir schlieSen diese Arbeit mit einem Resultat in der extremalen Mengenlehre ab.
Gegeben eine nichtnegative ganze Zahl s untersuchen wir das maximale m(s), sodass
jeder abstrakte Simplizialkomplex mit “Kantendichte” hochstens m(s) eine Ecke von Grad
hochstens s enthélt. Wahrend m(s) zuvor nur fir einige kleine Werte von s und, durch
Arbeiten von Frankl [41] und Frankl und Watanabe [43], fir s = 2% — ¢ mit d € N
und ¢ € {0,1,2} bekannt war, bestimmten Piga und der Autor [89] m(2¢71 — ¢) fiir
alle ¢,d € N mit ¢ < d/4. Aulerdem bestimmten wir m(s) fiir weitere kleine Werte von s,

wodurch wir insbesondere eine Vermutung von Frankl und Watanabe l6sten.
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