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Abstract
A broad application of robots in both industry and everyday life needs an agile and stable
control strategy when faced with variable circumstance. Among all the everyday tasks,
object pushing and grasping are two basic manipulations. The robot control process can
be divided into perception and decision-making, which are usually dealt with separately
in traditional control frameworks. Especially when confronted with multimodal sens-
ing, different mathematical methods may be necessary to extract features from data of
different modalities. The prevalence of deep learning brings a lot of new thoughts to
robot research fields. The flexibility and scalability of the neural networks promote the
end-to-end learning methods, which can do the perception and control together. The
main content of this thesis is the study of pushing and dexterous grasping with deep
reinforcement learning.

This thesis starts from modeling the planar object pushing. Recurrent model pre-
dictive path integral, a sampling-based method, is proposed accordingly to push the
unknown object to a target pose. Real-world experiment results show that the policy can
be well transferred to the real world without any fine-tuning after training only in sim-
ulation. Comparatively, the policy trained with reinforcement learning cannot be easily
generalized to a differently shaped object, but the agent can make intelligent pushing
side switching decisions according to the relative positions of the current object pose
and target pose.

In order to endow the reinforcement learning policy with generalization ability to
different shaped objects, the necessity of taking images as input is analyzed. A vision-
proprioception model is proposed, which can extract pose and shape features from an
object mask and fuse with the robot end-effector position into a low-dimensional latent
space as the state of the agent. Through domain randomization, the policy trained in
simulation is again well transferred to the real world. However, the real robot setup is
very complex because of the sensitive light requirement.

The question is raised: whether the robot can still push if we simplify the robot setup.
However, taking high-dimensional RGB images as the input increases the perception
difficulty. A novel self-supervised attention mechanism is proposed to highlight task-
related information from the images, which can help learn the valuable representation.
Then the attention module is integrated into the reinforcement learning framework. The
pre-trained pushing model from the previous chapter is used as the teacher policy to
guide the agent during the training process.

The last part of this thesis continues to study reinforcement learning through a dex-
terous grasping case. A multimodal grasping policy that fuses joint torques, joint an-
gles and tactile sensing is trained in the simulator. To reduce the exploration space of
the agent, postural synergies are generated through principal component analysis on a
dataset covering various grasp types. The hand motion is planned in the latent space.
Through sensor mapping, the trained policy is successfully transferred to a real robot
platform.
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Zusammenfassung
Eine breitere Verwendung von Robotern sowohl in der Industrie wie auch im Alltag
einiger Menschen benötigt dynamische und stabile Kontrollmechanismen, wenn man
die Roboter komplexen und sich verändernden Umgebungen aussetzt. Unter allen alltäg-
lichen Aufgaben sind das Verschieben von Objekten und das Greifen zwei essenzielle
Manipulationen. Der Roboterkontrollprozess kann in die Bereiche Wahrnehmung und
Entscheidungsfindung aufgeteilt werden, welche normalerweise separat von tradition-
ellen Kontrollframeworks behandelt werden. Besonders wenn man mit multimodaler
Wahrnehmung konfrontiert ist, mögen unkonventionelle mathematische Methoden nötig
sein, um signifikante Merkmale der unterschiedlichen Modalitäten zu extrahieren. Die
Verbreitung von Deep Learning bringt eine Reihe neuer Ideen in den Forschungsbere-
ich der Robotik. Die Flexibilität und Skalierbarkeit künstlicher neuronaler Netze unter-
stützt End-to-End Learning Methoden, welche Wahrnehmung und Kontrollmechanis-
men vereinen. Der Hauptinhalt dieser Arbeit ist die Untersuchung von Schieben und
geschicktem Greifen mit Deep Reinforcement Learning.

Die Arbeit beginnt mit der Modellierung von planarem Schieben von Objekten. Der
Recurrent Model Predictive Path Integral, eine Sampling-basierte Methode, wird anhand
der Aufgabe, ein unbekanntes Objekt an eine Zielpose zu schieben, vorgestellt. Experi-
mente in der Echtwelt belegen, dass die so nur im Simulator gelernten Strategien ohne
Anpassungen gut in die Realität übertragen werden können. Im Vergleich dazu kann
eine Strategie, welche mit Reinforcement Learning gelernt wurde, nicht so leicht für an-
dersförmige Objekte generalisiert werden. Jedoch ist der Agent in der Lage, intelligente
Entscheidungen zum Wechseln der Schiebeseite basierend auf den relativen Objekt- und
Zielposen zu treffen.

Die Notwendigkeit zur Verwendung von bildbasiertem Input wird analysiert, um
die Reinforcement Learning basierte Strategie mit einer Generalisierung über diverse
Objektformen hinweg auszustatten. Ein bildbasiertes Wahrnehmungssystem, welches
Positions- und Formmerkmale aus einer Objektmaske extrahiert und mit Informationen
über die Pose des Roboterendeffektors in einem niederdimensionalem latenten Raum
zu einer Zustandsrepräsentation fusioniert, wird präsentiert. Durch Randomisierung in
der Trainingsumgebung ist die gelernte Strategie gut für den Einsatz auf einem echten
Roboter transferierbar. Besonders aufgrund einer hohen Empfindlichkeit des Systems in
Bezug auf die Ausleuchtung der Umgebung ist der Versuchsaufbau jedoch sehr kom-
plex.

Folgend wird die Frage gestellt, ob ein Roboter die Aufgabe trotz einer Verein-
fachung des Aufbaus noch lösen kann. Generell ist der Aufwand der Verarbeitung von
hochdimensionalen RGB-Bildern als Input höher. Ein neuartiger selbstkontrollieren-
der Aufmerksamkeitsmechanismus wird präsentiert, welcher die aufgabenrelevanten In-
formationen hervorhebt, was hilft, eine aussagekräftige Repräsentation zu lernen. Der
Mechanismus wird in das Reinforcement Learning Framework integriert. Das vortrainierte
Netzwerk aus dem vorherigen Kapitel wird als Lehrstrategie verwendet, um den Agen-
ten im Trainingsprozess zu führen.

Der letzte Teil der Arbeit setzt anhand von geschicktem Greifen mit der Unter-
suchung von Reinforcement Learning fort. Eine multimodale Greifstrategie, welche Ge-
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Abstract

lenkdrehmomente, Gelenkwinkel und taktile Wahrnehmung vereint, wurde im Simula-
tor trainiert. Um den Exploration Space des Agenten zu reduzieren, werden Synergien
mithilfe von Hauptkomponentenanalyse auf einem Datensatz, welcher diverse Greifs-
trategien enthält, generiert. Die vollständige Handbewegung wird im latenten Raum ge-
plant. Durch Sensor Mapping wird die trainierte Strategie erfolgreich auf eine Roboter-
plattform in der Realität übertragen.
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Chapter 1

Introduction

1.1 Motivation

Throughout the history of humankind, one accidental revolution is enough to change
the course of human history. What is exciting about living in the current era is that we
are going through another revolution: the Deep Learning Revolution, transforming the
AI research. Deep learning is reshaping our life in many important ways. Self-driving
cars empowered with deep learning knowledge are changing the way of traveling; Al-
phaFold [126] is a new scientific breakthrough, which can predict 3D models of pro-
tein structures and has the potential to accelerate research in most fields of biology;
GPT3 [21], which can be used in conversation and text completion, powers the next
generation of Apps. Besides, deep learning also brings new ideas to the field of robot
control. The problem of intelligent robot control can be taken as a decision-making pro-
cess based on the current environment state to reach the final goal of the specific task.
Reinforcement Learning (RL) is the study of how intelligent agents ought to take ac-
tions in an environment in order to maximize the notion of cumulative reward [51]. The
combination of RL and deep learning, namely Deep Reinforcement Learning (DRL), ex-
tends the application scope of traditional RL by using a deep neural network to process
unstructured data without manual engineering of the state space.

One of the most notable breakthroughs brought by DRL is AlphaGo, developed
by Silver et al. [128]. AlphaGo is a DRL algorithm with an actor-critic structure, which
learns both a value network (critic) and a policy network (actor) through self-play games.
Before the success of AlphaGo, the game of Go was regarded as a challenging problem
in machine learning and was expected to be out of research for the technology of the
time. In October 2015, it became the first program to defeat a professional human player,
and several months later, it defeated the top human player (Lee Sedol) at the time. Since
then, the potential of DRL to solve highly complicated strategy problems entered into
researchers’ horizons.

When using the traditional Model Predictive Control (MPC) method to control the
robot, the performance heavily relies on the accuracy of the model. However, because
of the stochastic nature of the actual physical world, an accurate dynamic model of a
robot or robot-object interaction during the control process is hard to get. Researchers
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Chapter 1. Introduction

have proposed various modeling methods to overcome the uncertainty during the control
process, including analytical and data-driven models. Accordingly, choosing different
control methods for different models is also critical to reach a satisfying control effect,
which is always not trivial. One significant advantage of using DRL for robot control
is that the control process is end-to-end, which means the algorithm is model-free, no
explicit dynamic model is necessary. The agent can directly map the current state to
actions.

Figure 1.1: Scalable RL training with multiple robots in the real world [59].

Figure 1.2: Isaac Gym (a learning platform to train policies on GPU) developed by Nvidia [83].

In most of the real robot manipulation scenarios, the model of the environment is
unknown. Therefore, the only way to collect samples about the environment is to in-
teract with it. At the beginning of the training process, the actions applied by the agent
are random, leading to massively ineffective interactions (One extreme case is all the
rewards are zero, the agent learns nothing from the trajectory). Random exploration
without any prior model of the environment causes the notorious low sample efficiency
of RL. Therefore, training a satisfied agent usually requests large amounts of interaction
data, making the training process long and expensive. Especially when the training is
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performed on a real robot platform, collecting enough interaction data is always time-
consuming and laborious. Kalashnikov et al. [59] propose a scalable DRL framework
to train robot grasping, in which a group of robot arms is used together to collect the
data (Figure 1.1). One feasible option to reduce the experiment cost and training time is
to train the robots in simulation. Training in simulation is faster for two main reasons:
1) execution in a simulator is often faster than execution in the real world; 2) experi-
ment reset in simulation is more convenient and faster. Isaac Gym (Figure 1.2) is a new
physics simulation environment for reinforcement learning which can use fewer GPUs
to replace thousands of CPU cores. Besides running experiments in parallel to collect
more data, the sample efficiency can also be improved by modifying the algorithm.
Hindsight Experience Replay (HER) [4] is proposed to increase the sample efficiency
for off-policy RL algorithms. However, training in simulation brings a sim-to-real gap,
leading to the policy trained in simulation usually being hard to apply in the real world
directly. How to bridge this gap is also widely studied in the robotic community.

(a) (b) (c)

✓

Figure 1.3: Using shadow hand to grasp a book. (a) The book is too big to grasp from top. (b)
Pushing the book to the edge of the platform. (c) Grasp from a different side.

To summarize, using DRL in robot tasks is a newly arisen research direction. Even
though the training usually calls for excessive computation resources, but the potential
of RL to solve long-term tasks in the future has emerged. The core content of this thesis
is to study the application of DRL in real robot control. Two elementary manipulation
tasks are chosen as the research context, which are pushing and grasping. Pushing can be
executed as a pre-grasping action, usually for a better grasping pose (Figure 1.3). Both
of the two manipulations are regular human daily operations but are still challenging for
autonomous robots.

1.2 Contributions
This thesis focuses on training robots to do object manipulation with RL in simulation
and then transferring to real robot platforms. The main contributions of this thesis are
summarized as follows:

• New pushing model and the corresponding control method: A novel self-
adapting model for object push is proposed. Both the analytical and data-driven
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aspects can be reflected in the model. The model assumes no prior knowledge
of the pushing object and can be generalized to different objects by performing
online self-adapting according to the real-time interaction trajectories. Further, a
sample-based path integral control algorithm is proposed to achieve object push-
ing on a real robot.

• Vision-proprioception fusion model for RL: To encode the visual information
into the state of a Markov Decision Process (MDP), a new vision-proprioception
model is proposed. The model can fuse all task-related information from the en-
vironment (object mask, goal pose mask, and end-effector position) into one low-
dimensional vector. Variational Autoencoder (VAE) is used in the model to com-
press an image mask into a latent space. In order to train the robot pushing objects
with RL in a simulator, a Mujoco [134] simulation environment is built based on
our UR5 robot platform. One feasible policy is obtained through training in the
simulation by taking the feature from the fusion model as the agent’s state. A GUI
tool is also built to visualize the latent vectors from the VAE.

• Attention Augmented RL: Learning a representation of the high-dimensional
RGB image and the corresponding control policy at the same time is quite chal-
lenging. A self-supervised top-down attention mechanism is proposed to extract
task-related regions from an image. The highlight parts of the image are allocated
higher weights, enabling the network to pay more attention to the vital part. The
attention mechanism can be pre-trained and easily integrated into an RL frame-
work, improving the training performance to a large degree.

• Multimodal RL for dexterous grasping: A multimodal RL framework is pro-
posed for multi-finger grasping. Different modalities (including joint angles, joint
torques, tactile sensing) are tested to reach the best perception performance.
Principal Component Analysis (PCA) is used to reduce the action dimension and
also generate human-like hand motions, which turns out to be effective in com-
pressing the exploration space and avoiding weird hand postures. A sensor map-
ping method is also proposed to transfer the model to a real robot platform.

1.3 Research Questions
The following problems are studied in this thesis:

• Pushing Object-Based on Dynamic Model: How to learn a dynamic object push-
ing model in simulation which can be used in the real world and also generalized
to objects with different physics parameters? Given the dynamic model, how to
design a controller which can perform online self-adapting according to the his-
torical interaction trajectory?

• Visual Pushing with RL: How to endow the robot with intelligent side switching
ability, and at the same time can generalize to different objects. How to deal with
the high-dimensional image input in the problem setting of goal-based RL?
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Figure 1.4: Structure of the thesis. The main theoretical contributions of each chapter are listed.

• Attention Augmented RL framewrok: Is it possible to simplify the robot setup
requested by the method proposed in the previous chapter by modifying the algo-
rithm framework? How to integrate the attention mechanism into the RL frame-
work to improve learning performance?

• Multimodal RL for Dexterous Grasping: How to train an arm-hand system to do
multi-finger grasping with RL in simulation and transfer to a real robot platform?
How to increase the robustness of the policy by using multimodal sensor data?

1.4 Thesis Structure
The structure of this thesis is shown in Figure 1.4. The main contents are organized as
follows:

• Chapter 1 gives an overview of the thesis from motivation, research question, and
contribution.

• Chapter 2 presents the most recent researches related to the thesis.

• As RL is used as the core solution to all the robot tasks in this thesis, chapter
3 details all the necessary math fundamentals and concepts to fully understand
the RL algorithms. Besides, some applications of RL in other industries are also
introduced.

• Chapter 4 first introduces the problem of the robot planar pushing and some ex-
isting solutions, including the analytical motion model and the data-driven model
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of object pushing. Then a novel combination of analytical and data-driven mod-
els, which can adapt the prediction according to the recent sequence of interaction
data, is proposed. Given the dynamic model, a new MPC method is presented
accordingly. Apart from the model-based pushing method, an RL policy is also
trained as a model-free baseline. After that, how Automatic Domain Random-
ization (ADR) is applied during the data collection to bridge the gap between
real-world and simulation is explained. Finally, the real robot platform setup is
described, and both the proposed model and the RL policy are verified on the real
robot.

• Chapter 5 tries to solve the pushing problem from pixel inputs. The state input
used in chapter 4 lacks object shape and size information, which is essential for
the algorithm’s generalization to push different objects. A vision-proprioception
model is proposed based on Variational Autoencoders, and the corresponding RL
framework to train the agent is also presented in detail. At last, to verify the
model’s performance in the real world, the same real robot set up as in the simu-
lation is built.

• Chapter 6 continues with the visual RL but attempts to solve the pushing prob-
lem with a simpler robot setup (getting rid of the transparent table and the bot-
tom camera). Taking the image from the front camera as the only input increases
the training difficulty of the agent for two reasons: the network has to learn the
high-dimensional representation and the control at the same time; the ground-
truth robot state is no longer available directly but has to be inferred from the
RGB image. The novel top-down self-supervised attention mechanism, which can
pay attention to the task-relevant part of the image, is presented and integrated
into the RL framework.

• Chapter 7 presents a multimodal RL algorithm for robot dexterous grasping. In-
spired by the idea of fusing visual information and proprioception states and plan-
ning in the fusion space proposed in chapter 5, further in-depth research on multi-
modal RL is performed. The algorithm includes feature fusion and action control
in two parts. After enough episodes of training in simulation, the model is verified
on a real robot platform.

• Chapter 8 first summarizes the scientific contributions of the thesis, then some
limitations of the current state are also analyzed. Finally, an outlook of the up-
coming future research is given to close the whole thesis.

1.5 Thesis Related Publications
During the four years of studying, several publications were contributed to different
conferences and journals. Most of them are the results of collaboration with colleagues.
The works listed here are directly related to the core of this thesis. Till the submission
of this thesis, three of them are already published or accepted papers:
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1.5. Thesis Related Publications

• Lin Cong, Michael Görner, Philipp Ruppel, Hongzhuo Liang, Norman Hendrich,
and Jianwei Zhang. "Self-Adapting Recurrent Models for Object Pushing from
Learning in Simulation," In International Conference on Intelligent Robots and
Systems (IROS) 2020, Las Vegas, USA. (published)

• Hongzhuo Liang, Lin Cong*, Norman Hendrich, Shuang Li, Fuchun Sun, and
Jianwei Zhang. "Multifingered Grasping Based on Multimodal Reinforcement
Learning." In Robotics and Automation Letters (RA-L). (accepted)

• Lin Cong, Yunlei Shi, and Jianwei Zhang. "Self-supervised Attention Learning
for Robot Control", In: International Conference on Robotics and Biomimetics,
(ROBIO) 2021, Sanya, China. (accepted)

One paper is submitted to Frontiers in Neurorobotics and under review:

• Lin Cong, Hongzhuo Liang,Philipp Ruppel, Yunlei Shi, Michael Görner, Norman
Hendrich and Jianwei Zhang. "Reinforcement Learning with Vision-Proprioception
Model for Robot Planar Pushing."
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Chapter 2

Related Work

DRL can learn high-dimensional visual representations (usually RGB image inputs) for
common robotic tasks and the corresponding control policy at the same time. However,
trajectory collection and policy exploration via running an agent in the real world is
always extremely time-consuming. Training in simulation and transferring the policy to
a real robot is an alternative to applying the RL method. The problem is that there is
always a gap between the physics simulator and the real world. Recently, many methods
have been proposed to bridge the sim-to-real gap in robotic researches.

The components in this chapter are organized as follows: Section 2.1 gives an intro-
duction on the recent progress of bridging the sim-to-real gap. From the perspective of
concrete tasks, this thesis takes solving real-world object pushing and dexterous grasp-
ing as examples. Therefore, the second and third parts of the chapter briefly summarise
the object pushing and dexterous grasping problem and some existing solutions. Be-
cause RL is used as the primary method for solving the manipulation task in the thesis,
Section 2.2.2 introduces some state-of-the-art RL-based robot control applications. At
last, Section 2.4 gives a supplementary introduction to attention mechanism, which is
used in chapter 5 to improve the performance of visual reinforcement learning.

2.1 Robot Learning from Simulation to Real Environ-
ment

Compared to training robots in the real world, learning in a simulated environment is
an easy alternative, which reduces the time spent on the expensive data collection on
real robots, and we do not have to consider safety problems during the training process.
However, transferring results or policies trained in simulation to a real environment is
always challenging due to the gap between visual and dynamics. This reality gap has
been addressed in numerous works. Saxena et al. [122] learn to grasp novel objects
with simulator rendered objects. Rusu et al. [116] propose using progressive networks
to bridge the reality gap, and transfer learned policies from simulation to the real world.
Three frequently-used methods are mainly introduced in this section (Figure 2.1): visual
domain adaptation, domain randomization (can be used for both domains), and actual
data actuator modeling (used for the dynamics domain).
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Figure 2.1: Illustration of different sim-to-real transfer methods. (a) The training process in
domain adaption usually happens in one specific simulation domain. When applied to real robots,
the real domain observation is translated into the simulation domain, where the controller is
effective. (b) The controller is trained in various simulation domains, in which the real domain
may be one of the variants among them. (c) Modeling the actuator in simulation with real data
collected from the real domain to make the simulation and real domains match with each other.

2.1.1 Visual Domain adaptation

Visual domain adaptation is a process that allows a model trained with samples from
a source domain to generalize to a target domain [98]. It has been an effective method
for solving the problem of adapting vision-based models trained in a source domain to
a previously unseen target domain [133], widely used in visual application scenarios
like action recognition [29], object detection [145], and image classification [118]. Var-
ious approaches have been proposed, including model-retraining [147], model weights
adaptation based on the feature distributions of source and target domains [73], and
learning invariant features between domains [41, 135]. Typically, large amounts of un-
labelled real-world data are necessary to cross the visual reality gap. In [56], a novel
approach Randomized-to-Canonical Adaptation Networks is proposed to cross the vi-
sual reality gap, which uses no real-world data by translating randomized rendered im-
ages into equivalent non-randomized, canonical versions, in which way, real images are
also translated into canonical sim images (Figure 2.2). During real robot application,
the observation is translated into the canonical domain, in which the agent is trained.
However, the real grasping performance relies heavily on the adaptation quality. Recent
research has also shown that the learning of domain adaptation and the learning of con-
trol policy can be performed in one framework and mutually benefit from each other.
Zhu et al. [159] propose a joint learning framework that integrates adversarial feature
adaptation and policy mimic together to solve 3D indoor navigation. Ho et al. [48] in-
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(a) (b) (c)

Figure 2.2: An example of visual domain adaptation. (a) The randomized version of simulated
environment. (b) The canonical version of the same observation. (c) The real-world observa-
tion [56].

troduce the perception consistency loss into the Generative Adversarial Network (GAN)
to adapt simulated images to realistic ones. The algorithm is tested on real robot tasks
like object grasping, pushing, and door opening.

2.1.2 Domain Randomization

Domain randomization, first proposed in [55] as an idea to develop robust controllers
by randomizing all aspects of the simulator, is a valuable technique that randomizes the
simulator parameters [117, 144, 154] (can be appearance properties like object textures,
a field of view of the camera, lighting conditions; or dynamics parameters [8, 132, 150]
like object mass and size, surface friction coefficients, robot joint damping coefficients)
in the hopes to improve the transferability of learned policies. In [101], Peng et al. use
Domain Randomization to bridge the gap by randomizing the dynamics parameters in
simulation during training. Tobin et al. train a real-world object detector using only data
on simulated images by randomizing rendering in the simulator (Figure 2.3). OpenAI et
al. [6] randomize most of the aspects, including dynamics and visual properties of the
simulated environment, in order to learn both a policy and a vision model that gener-
alizes to reality. The policies show excellent robustness on real robots. However, both
of the two algorithms rely on a high-performance machine. The former takes approx-
imately 8 hours for the policy to do exploration on a 100 core cluster, and the second
policy is trained on a pool of 384 worker machines, each with 16 CPU cores. All the
randomization processes mentioned above are independent of the training of the agent.
ADR [6] automates the parameter tuning by correlating the parameter randomization
with the learning process. However, the correlation needs carefully manual design to
avoid getting stuck into suboptimal solutions.
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Figure 2.3: An example of visual domain randomization for fetch robot [133].

2.1.3 Actuator Modeling from Real Data
Building dynamic models for simulators from time-serial data of real systems has widely
been studied in recent years. Actuator modeling makes the simulator closely match the
physical reality by modeling the simulator from real data. In general, the simulator mod-
els can be classified into 3 different kinds, namely analytical model [28,52,70,134], data-
driven model [74,120], and hybrid model [1,39,45,54], which is a fusion of the former
two methods. Different from visual domain adaptation (Section 2.1.1) or domain ran-
domization (Section 2.1.2), actuator modeling is always used to learn a forward model
of the dynamics, which is a mapping or transition distribution from the current state and
the action to the next state.

Heiden et al. [45] propose a network-based differentiable hybrid simulator, which
can model complex effects involving frictional contacts and viscous friction from real
data. They also show that inserting networks can also accelerate model-based control
architectures. Golemo et al. [39] introduce a method for training a Recurrent Neural
Network (RNN) on the differences between simulator and real robot and use this model
to augment the simulator. The neural augmented simulator can train an agent, which
transfers better to the real world than the agent trained in the original simulator.

2.2 Object Manipulation
Object pushing is an active research topic in robot manipulation, the essence of which
is the single contact underactuated control. Pushing can be taken as a pre-action before
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Figure 2.4: One example of object planar pushing research from [14]: using ABB arm to push
an object doing trajectory tracking. Black and blue lines represent the desired trajectory and the
motion followed by the object’s geometric center respectively.

some other action, such as grasping. In general, the solutions to most kinds of robot
manipulation can be divided iMPC, is widely used in various robotic tasks. After Mason
introduced the modeling problem of pushing decades ago [85], much research has been
done around the modeling of planar pushing. Modeling methods for pushing dynamics
can be divided into analytical modeling, which is detailed in Section 2.2.1 and data-
driven modeling in Section 2.2.1. In [14], Bauza et al. study both methods from the
perspective of data-complexity required for control (Figure 2.4).

Given a correct general model, the feedback mechanism of control theory can achieve
satisfactory control results. In many robot tasks that involve complex interactions like
manipulating a cube with a robotic hand [5] or the problem of using tools [110], it is
impossible to model precisely for every contact situation. In these cases, a model-free
method such as deep reinforcement learning, which can map from high-dimensional
state space to action space directly, is more suitable. However, deep reinforcement learn-
ing suffers from the necessity for large amounts of experience data, which is difficult for
real robots. Recently some literature has also been combining model-based with model-
free methods [58] to improve exploring efficiency.

2.2.1 Planar Pushing

A traditional method to predict an object’s motion is to describe the dynamics as an
analytical model [62]. An analytical method is always the right choice when the param-
eters of the specific object are known for sure. Parameters in the analytical model have
specific physical meanings. Therefore, the model can be easily transferred to similar
problems given specific system parameters. However, getting a stable dynamic model in
a real environment is never an easy task. Therefore, generalizing the analytical model to
unknown objects is even more difficult, especially when the object’s properties, such as
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Figure 2.5: Illustration of different distributions under three different pushes (repeated 100 times
for each push). The trajectories of the center of mass of the block are shown in green; orange
ellipse areas represent the distribution of final poses [15].

friction and inertia, are hard to get.
After the first analytical object pushing model was proposed by Mason [85], which

introduces the voting theorem to predict object rotation under an external force, sev-
eral different practical models emerged. One notable model was proposed by Lynch
et al. [82] in 1992, which used the concept of limit surface [40] to model the relation
between the pusher and the object velocities.

Pushing in the real world is proven to be a stochastic process, as is shown in Fig-
ure 2.5. Data-driven methods [13,15,63] for building a dynamic model for complicated
nonlinear systems have increasingly attracted attention from researchers. Gaussian Pro-
cess Regression (GPR) [113] and deep neural network [79] are two typical data-driven
modeling methods widely used. The general model-based solution is to build a data-
driven model with large amounts of robot-object interaction datasets and then apply
MPC as a robot control strategy.

However, collecting real interaction trajectories is very time-consuming, while physics
parameters in real situations can only be approximated, both making the model-based
methods hard to apply. In [14], Bauza et al. use Gaussian Process to fit the dynamic
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model with less than 100 data points from the real environment and get a very stable
trajectory tracing performance. The approach is highly efficient. However, the model
cannot deal with new objects. In [9], Arruda et al. use GPR and an Ensemble of Mix-
ture Density Networks and get both mean and variance, which is a good evaluation of
uncertainty in their predictions. As mentioned in Section 2.2.1, Lynch et al. [82] built
the analytical based on the assumption of quasi-static interactions, which neglects iner-
tial forces. To circumvent the approximations made by Lynch et al., Bauza et al. [15]
employ a data-driven approach to fit the system dynamics, taking uncertain parameters
such as friction coefficients and uneven distributions into consideration.

2.2.2 Dexterous Grasping

Grasping is widely studied in the robot research field. According to the mechanical
structure of robot gripper, grasping can be divided into two-fingered grasping and multi-
fingered grasping. From the perspective of the controller, due to the high Degree of
Freedom (DoF) of dexterous hand joints, multi-fingered grasping is more complicated.
Even without considering object dynamics, the grasping pose synthesis of a high DoF
dexterous hand is still a challenging task [114]. Brahmbhatt et al. [19] present a novel
framework for grasp synthesis. They collect human-demonstrated contact maps on vari-
ous objects and take the overlapping of contact maps with demonstration data as a target
to optimize and refine the grasp candidates with GraspIt! [26]. However, contact maps
are hard to generate for unknown objects in the real world. Ficuciello et al. [32] propose
a synergy-based strategy; the weakness is that the grasping performance heavily depends
on the quality of hand preshaping. They further propose a hand-arm grasp system [31],
but the shape of the objects used in their experiments are not diversified enough. Be-
sides, the training is performed in the real world, which is always time-consuming for
robotic tasks. Kumar et al. [66] use human hand motion demonstration to initialize a
multi-fingered hand in order to reduce the search space. However, pose estimation is re-
quired to get an object bounding box, which is already difficult in real robot applications.
Wu et al. [140] discretizes the finger action space. The finger motion resolution is low
at the beginning and increases during the training process to reduce training difficulty.
The hand motion is binary: the robot makes decisions whether to close a finger or open
it. However, the agent is easy to train because of the low DoF of the robot hand. Object
pose and visual feedback are assumed to be unknown in the above work. In [86] both the
contact forces and object pose belong to the robot observation, and they conclude that
contact forces can improve the grasping robustness specifically under pose uncertainty.
However, the theory lacks real experimental verification, as accurate contact force is
hard to get in the real world.
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2.3 Reinforcement Learning Based Methods for Robot
Control

Learning-based methods are becoming more and more popular in robotic manipulation
researches recently. Especially deep learning methods, based on artificial neural net-
works, have reached state-of-the-art performance among standard robot tasks such as
grasping from the complex scene, object in-hand manipulation, and components assem-
bling. However, most of the simple dexterous manipulations that are regular tasks for
humans in our everyday lives, such as opening a door with the key, flipping through a
book, screwing a bottle lid, are still challenging for a robot to perform. The main chal-
lenges include the perception of the environment and the corresponding control policy.
Human perception of the environment is multimodal, usually including visual, tactile,
proprioception, and even audio. The human brain can make accurate decisions through
multimodal perception and information fusion, a very complicated neural process. In-
spired by humans’ neural processing mechanism and the ability to learn from both posi-
tive and negative rewards from the exploration to a task, using deep reinforcement learn-
ing methods to solve robot manipulation tasks receives more and more attention [10].

RL can be used to get actions directly from the ground truth state [101], or raw pixel
images [152]. However, generalization of the model to different manipulation objects is
hard for state-based inputs (pose, velocity, joint angles) while extracting useful features
such as object shape, size, and the robot’s relative position from raw images for a sub-
sequent policy network is always difficult. Convolutional Neural Network (CNN) [68]
is always used as an encoder in modern RL algorithms to get spatial features from im-
ages. Recent work achieves impressive results on DeepMind Control Suite and OpenAI
Gym benchmarks with learning trick-like image reconstruction [42, 146], data augmen-
tation [67] and contrastive learning [67]. However, low data sample efficiency during
exploration makes it hard to train directly on real robot platforms. In our work, ADR [5]
is applied to bridge the gap between simulation and the real world.

Using dense (pixelwise) visual description as the representation has been proven
effective in visual correspondence estimation [25, 123]. Florence et al. [34] propose a
self-supervised system to learn consistent dense representation for robotic manipula-
tion. Contrastive learning [44, 94] is always used as an unsupervised learning approach
to extract useful representations from high-dimensional data, which has been applied
successfully to image recognition [46] and RL [2, 67]. Contrastive loss is also used in
Time Contrastive Networks [127], which learn state representation using temporal in-
formation from unlabelled demonstration videos. Other methods rely on generative re-
construction loss like VAE [61] and its variations to compress images to latent vectors.
In [42] the latent vector representing what the agent sees at each time frame is then fed
into recurrent neural networks (RNN) to predict the future. Finn et al. [33] train a deep
spatial autoencoder to map camera images to latent features and perform a motion skill
directly in the latent space.
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2.3.1 In-hand Manipulation
One of the most notable breakthroughs in deep reinforcement learning on robot appli-
cations in recent years is from OpenAI [5]. Andrychowicz et al. use RL to train Shadow
Dexterous Hand learning manipulating a block (Figure 2.6(a)) and the following re-
search, solving Rubik’s cube [5] (Figure 2.6(b)). Their works demonstrate that models
trained only in simulation can be used on real robots to solve complex manipulation
tasks. Moreover, from the control policy perspective, RNN based policy with memory
mechanism trained with ADR shows noticeable sim-to-real transfer performance im-
provement.

(a) (b)

Figure 2.6: Using reinforcement Learning to do robot in-hand manipulation. (a) Block rotation.
(b) Solving Rubik’s cube [5].

2.3.2 Quadrupedal Locomotion
Another impressive application of deep RL in robotics is the quadrupedal locomotion
control. Lee et al. propose an RL-based solution to use only proprioceptive informa-
tion to control legged robot walking in challenging natural environments (Figure 2.7).
In contrast to the conventional controllers, which are usually based on elaborate state
machines, the RL policy shows more robustness and better generalization to unseen
conditions.

Figure 2.7: Using reinforcement learning to control quadrupedal over challenging terrain [71].
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2.4 Attention Mechanism in Deep Learning

Laskin et al. [67] have also shown that RL consistently achieves better learning perfor-
mance given ground truth states compared with pixel inputs. One reason is that an image
input usually needs a more complicated network structure like CNN to process spatial
features, which increases training difficulty. Also, it is challenging to uncover attended
regions and eliminate interference from unrelated pixel perturbations without any priv-
ileged information on the image. Top-down attention mechanisms are used in [84, 88]
to force the agent to focus on task-relevant information. A partially observable ground
truth state can also be used to train the agent with image input. For example, Salter
et al. [119] propose to use the asymmetric actor-critic method [104] via access to the
real state while providing only images for the actor, improving both the robustness and
sample efficiency as a result.

The combination of deep learning and attention mechanism has been studied in vari-
ous research fields, especially in computer vision, Natural Language Processing (NLP),
and the cross-field of both, such as image caption [3, 141, 148], and Visual Question
Answering [7,81,151]. Different kinds of attention module architectures have been pro-
posed accordingly.

Figure 2.8: Example of attention visualization for a sentiment analysis task [12].

2.4.1 Attention Mechanism in NLP

BERT [30] and GPT-n series [21,107] (including their variants), which are the most pop-
ular and powerful techniques for NLP developed recently, are all transformer-based deep
learning models. Before the transformer is invented, the sequence transduction models
for NLP are based on complex RNN or CNN, including an encoder and a decoder. The
best-performing models also use the attention model to connect the encoder and de-
coder. The transformer module is proposed in [136], using only the attention module for
machine translation.
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Figure 2.9: An example showing a generated caption for the attended image regions [3].

Figure 2.10: Examples of learned image and question attentions [151].

Besides, attention-based models are also used in low-resource scenarios, such as
Bao et al. [12] train a domain-invariant representation and derive attention scores for
words in a sentence from human rationales (Figure 2.8). The alignment model proposed
by Bahdanau et al. [11] can search for parts of a source sentence that are relevant to
predicting a target word. Attention mechanism can also be used for image captioning
and question answering (Figure 2.9 and 2.10). All these attention modules are designed
to deal with sequence modeling and generative modeling tasks in NLP.

2.4.2 Visual Attention Mechanism
Visual attention is the selective process that enables us to act effectively in our com-
plex environment. In general, visual attention can be divided into two different cate-
gories: bottom-up attention, which is derived from the conspicuousness of regions in
a visual scene, and top-down attention, which is driven by the “ mental state” of the
subject [35]. In real robotic applications, Region of Interest (ROI) of the same image
may vary from different tasks. Attention-based model has been successfully applied in
many research fields like visual SLAM [36], image caption [142], image classification
and recognition [23, 50, 57], auxiliary disease diagnosis [92], and also question answer-
ing [53, 109, 141]. Even though the attention mechanism has achieved impressive re-
sults, massive manual annotation works are needed for building training datasets. Xu et
al. [142] introduce two different attention models: a soft deterministic attention mech-
anism that can be trained by standard back-propagation and a hard stochastic attention
mechanism that is trained with a reinforcement learning framework. Bello et al. [16] in-
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troduce a two-dimensional relative self-attention mechanism and use it as an alternative
to convolutional networks for image classification.

The attention mechanism is also used in unsupervised learning, like reinforcement
learning. Rao et al. [112] propose an attention-aware model for video face recognition,
which can discard misleading frames and find attention focuses. They formulate the
attention finding process as an MDP and train the model using a reinforcement learning
framework. Mott et al. [88] propose a top-down attention model, forcing the agent to
focus on task-relevant information and select actions. They achieve the state-of-the-art
performance for some Atari games and endow the agent actions with interpretability.
However, the model is challenging to train because of its high complexity.
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Chapter 3

Reinforcement Learning Fundamentals

3.1 Introduction to Reinforcement Learning
In this chapter, we present the preliminaries necessary to fully understand the Reinforce-
ment Learning Algorithms in this thesis. RL is a machine learning method to train agents
to solve specific tasks by exploration in the given environment. It is one of three basic
machine learning paradigms, alongside supervised learning and unsupervised learning.
The environment of RL is modeled in the form of MDP [49]. The core idea is that the
agent can learn a feasible policy after enough trials and errors. All the algorithms pro-
posed in this thesis are based on DRL. The main contents of this chapter are divided
into two parts, the brief introduction to RL in Section 3.1.2 and different kinds of RL
algorithms in Section 3.2.

Agent

Environment

State, Reward Action

Figure 3.1: The interaction loop of agent and environment.

3.1.1 Real Applications of Reinforcement Learning

RL receives attention from various research fields and has a wide application in indus-
tries, ranging from autonomous fields like self-driving and robot control to the chem-
istry industry like drug design. The recent combination of deep learning and RL has
made breakthroughs in the area of strategy games, like Go and DOTA, occupying the
top of the ranking list and beating human players [17, 129]. Table 3.1 shows some real
applications of RL in different industries.
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Table 3.1: Reinforcement Learning Real Applications

Field Application

Game
Train RL to play MOBA game [17]

Train RL to play Go against Human [129]

Animation
Physical skills imitating from videos [103]

Physics-Based character skills learning [100]

Robot
Control

Bipedal robots locomotion control [75]
Quadrupedal robot locomotion control [71]

Solving Rubik’s cube with dexterous hand [5]
Robot Imitating Animals [102]

Resources
Management

Home energy management system control [78]
Google data centre cooling system control [38]

Trading
News recommendation [156]

Sequential Recommendation [137]
Online advertising recommendation [155]

NLP
Abstractive summarization [99]

Dialogue generation [72]

Health Care
Equipment health status prediction [153]
Personalized health recommendation [89]

Chemistry
Chemical reactions optimization [158]

Drug design [106]

3.1.2 Key Concepts
Two essential parts of RL are the agent and the environment. The agent exists in and
interacts with the environment. At each time step of the interaction, the agent obtains a
whole or partial observation of the environment and takes an action according to the
current policy. The environment also makes some changes during the interaction, and
the result is usually stochastic. The agent receives a reward from the environment after
each time step, which is a value quantifying the current state. The reward always comes
from a reward function that needs to be carefully designed according to the task to learn.
The goal of the agent is to maximize the cumulative reward.

The frequently used key concepts in RL include:

• Markov Decision Process

• Policy (Deterministic and Stochastic)

• Return

• Value Function
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Figure 3.2: Diagrams for (a) V π(s), (b) V ∗(s), (c) Qπ(s,a), and (d) Q∗(s,a) [131].

• Optimal Policy and Optimal Value Function

• Bellman Equation

RL is modeled as a Markov Decision Process, which is a discrete-time stochastic
control process. A MDP can be represented as a 5-tuple, ⟨S,A,R,P,ρ0⟩. Where

• S is the set of all valid states,

• A is the set of all valid actions,

• R : S×A×S→ R is the reward function,

• P : S×A→ P(S) is the transition probability function,

• ρ0 is the starting state distribution.

A policy in RL is the controller of the agent, deciding the action to take based on
the current state. A policy can be deterministic, in which case denoted by at = µ(st), or
stochastic, in which case denoted by at ∼ π(·|st). As the policies in this thesis are all pa-
rameterized (by weights and biases) with trainable networks, the symbols are uniformly
denoted as, at = µθ (st) and at ∼ πθ (·|st). A sequence of states and actions experienced
by the agent is called a trajectory τ = (s0,a0,s1,a1, ...)

Return is the cumulative reward over a trajectory τ , denoted as R(τ) = ∑
∞
t=0 γ trt ,

in which the immediate reward rt depends on the current state, the action taken at this
time step, and the next state of the world: rt = R(st ,at ,st+1). The discount factor γ ∈
(0,1) is necessary for the convergence of the infinite-horizon return, and has an intuitive
meaning: immediate reward is better than the reward coming later.

Value function is used to approximate the value of a state in every RL algorithm
of this thesis. Value is the expected return starting from that state of a state-action pair
and then interacting with the environment following a particular policy π . There are two
kinds of value function frequently used by RL algorithms, namely the value function
V π(s), which represents the expected return of an agent starting from state s and acts
according to policy π:

V π(s) = Eτ∼π [R(τ)|s0 = s] (3.1)

23



Chapter 3. Reinforcement Learning Fundamentals

and action-value function Qπ(s,a), which represents the expected return of an agent
starting form state s, taking an arbitrary action a (not necessarily from the current policy
π), and then acting according to policy π:

Qπ(s,a) = Eτ∼π [R(τ)|s0 = s,a0 = a] (3.2)

Therefore, when action a samples from the current policy π , the two kinds of value
functions are unified:

V π(s) = Ea∼π [Qπ(s,a)] (3.3)

We assume that the environment transitions are stochastic, in which cases, the prob-
ability of a T-step trajectory under the decision of policy π is:

P(τ|π) = ρ0(s0)
T−1

∏
t=0

P(st+1|st ,at)π(at |st) (3.4)

And the expected return is:

Eτ∼π [R(τ)] =
∫

τ

P(τ|π)R(τ) (3.5)

The optimal policy π∗ can be obtained by solving the optimization problem:

π
∗ = argmax

π

Eτ∼π [R(τ)] (3.6)

The Optimal value function V ∗(s), which represents the expected return of an agent
starting from state s and acting according to optimal policy π∗:

V ∗(s) = max
π

Eτ∼π [R(τ)|s0 = s] (3.7)

Accordingly, the optimal action-value function Q∗(s,a), which represents the expected
return of an agent starting form state s, taking an arbitrary action a, and then acting
according to the optimal policy π∗:

Q∗(s,a) = max
π

Eτ∼π [R(τ)|s0 = s,a0 = a] (3.8)

The difference of several mentioned values is illustrated in Figure 3.2.
The Bellman Equations state an idea: The value of the starting state is the expected

reward to get from being there, plus the value of the next state to arrive at. Both the
value functions and the action-value function obey the Bellman Equations:

V π(s) = Ea∼π [r(s,a)+ γV π(s′)]

Qπ(s,a) = E
[
r(s,a)+ γEa′∼π [Q

π(s′,a′)]
] (3.9)
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RL Algorithms
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RL
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Figure 3.3: A Taxonomy of RL Algorithms [95], algorithms marked in red are used in the thesis.

3.2 Representative Algorithms

There are different ways to classify RL algorithms. From the perspective of complexity,
the solutions of the RL problem can be divided into two broad categories, which are tab-
ular solution methods and approximate solution methods [131]. The former methods
are suitable for simple RL tasks, whose state and action spaces are small, and the value
function can be represented in table form. In this case, the exact optimal value function
and policy to the task can be found. However, when the problem is getting complex, as-
suming that most states encountered by the agent are never seen before, which is always
the case when the state or action space (or both) is continuous. This requires that the
value function can produce a good approximation over the whole state and action set.

From the perspective of the access to the model of the environment, which is used
to predict the transitions and rewards, the RL algorithms can be divided into model-free
and model-based methods. With the model available, the agent can plan the following
action sequence in the future. The decision process is similar to MPC. The advantage
of Model-Based methods is that the algorithms are of more sample efficiency. However,
a ground truth model of the environment is usually hard to get, limiting applications’
scope. Figure 3.3 shows a taxonomy of modern RL algorithms.

All the RL algorithms used in this thesis belong to DRL, which uses Deep Neural
Networks to approximate the optimal policy and value function. With the continuous
attention and the rapid development of the RL, it goes through a trail of research and
finally evolves to powerful algorithms like Proximal Policy Optimization (PPO) (on-
policy) and Soft Actor-Critic (SAC) (off-policy), which are state of the art algorithms on
reliability and sample efficiency respectively. The RL algorithm selection in this thesis
results from careful consideration of both reliability and sample efficiency according to
the specific task.
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Reply 
Buffer

On-Policy

Off-Policy

...

...

Figure 3.4: Updating of on-policy and off-policy algorithms. Blue and red arrows represent the
trajectory collection and policy (or value function) updating process. On-Policy algorithms up-
date policy πt using the trajectories collected by the policy at the time (τt). off-policy algorithms
use a large replay buffer to restore all the trajectories collected from both former and current
versions of policies and sample some data from the buffer each time to update the policy πt .

3.2.1 On-policy and Off-policy Algorithms
One pair of frequently mentioned concepts in RL are on-policy and off-policy (Fig-
ure 3.4). The key difference between the two kinds of algorithms is whether they use
old data generated from former policies. On-policy algorithms do not use old data be-
cause the direct optimization of the policy performance calls for on-policy data (data
generated by the current policy) to calculate the updates mathematically, which leads to
the low sample efficiency. This kind of algorithm trades off sample efficiency for policy
stability. On the contrary, off-policy algorithms can use data collected during training
to update the value function efficiently. Bellman Equations is the mathematical basis to
optimize the Q-function, in which case all interaction data from both the most recent
version of the policy and former policies are effective. However, satisfying Bellman
Equation can not guarantee a good policy performance. The disadvantage is that algo-
rithms of this class are potentially unstable, e.g., more sensitive to hyper-parameters.

3.2.2 Policy Optimization and Q-Learning
As is shown in Figure 3.3, from the perspective of optimization approach, model-free RL
includes two main kinds: policy optimization and Q-Learning. Four different model-
free RL algorithms are used in this thesis. PPO and Trust Region Policy Optimiza-
tion (TRPO) belong to policy optimization methods, Deep Deterministic Policy Gradi-
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ent (DDPG) and SAC belong to the cross-field of Policy Optimization and Q-Learning.
Policy optimization methods update the network weights by optimizing the accumula-
tive expected return Eτ∼π [R(τ)] (Equation 3.5) directly in the on-policy way. The pri-
mary strength of this approach is that the optimization target (expected return) positively
correlates with the agent’s performance, which ensures the reliance on the algorithm. By
contrast, Q-learning algorithms optimize the policy indirectly by learning an approxi-
mator of the optimal action-value function Q∗(s,a) (Equation 3.8) through the Bellman
Equation in an off-policy way. The optimal policy is obtained by taking actions that
maximizes the action-value function:

a(s) = argmax
a

Q(s,a) (3.10)

Q-learning methods reuse data to update networks more efficiently than policy optimiza-
tion but come with the trade-off of the algorithm stability.
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Chapter 4

Self-adapting Recurrent Model for
Object Pushing

Planar pushing remains a challenging research topic, where building the dynamic model
of the interaction is the core issue. Even an accurate analytical dynamic model is in-
herently unstable because physics parameters such as inertia and friction can only be
approximated. Data-driven models usually rely on large amounts of training data, but
data collection is time-consuming when working with real robots.

ABCD

E

camera

pusher

Figure 4.1: Our experiment platform consists of an UR5 robot with Robotiq 3-finger hand which
grasps the 3D-printed vertical pusher rod. Its cylindrical part, designed to touch and push the
moving object, is 6 mm in diameter. The five objects marked from A to E are test objects with
different physical properties (sliding friction, rotating friction, mass, and size). Object position
and motion are tracked using AprilTag markers and the camera.

In this chapter, we introduce a model-based control method for object planar push-
ing. We collect all training data in a physics simulator and build an Long Short-Term
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Memory (LSTM) based model to fit the pushing dynamics. Domain Randomization is
applied to capture the pushing trajectories of a generalized class of objects. The trained
recursive model adapts to the tracked object’s real dynamics within a few steps when
executed on the real robot. In summary, our work investigates using an LSTM-based
dynamic model, trained fully in simulation, to predict motion in a real environment, and
apply MPC to control the robot. The whole framework is illustrated in Figure 4.2. The
content of this chapter is organized as follows:

Section 4.1 elaborates on the question of object planar pushing and the correspond-
ing dynamic model during the pushing process. Given an unknown object, a human
tends to make some pushing primitives, learn the pushing dynamics from the interac-
tive trajectory, and adapt motions according to the online generated trajectories. Inspired
by how human beings learn from this kind of interactive process, we propose the self-
adapting recurrent model (Section 4.2.1). The corresponding algorithm Model Predic-
tive Path Integral (RMPPI) in the following Section 4.2.2 is a variation of the original
Model Predictive Path Integral (MPPI) [138] approach.

As a comparison, we also train an RL policy with DDPG as a model-free baseline
(Section 4.3), which is also used as the action generator in the data collection phase.
During policy training, HER is used to improve exploration efficiency. Section 4.3.3
gives details on how we collect pushing trajectories in simulation using ADR. At last,
real pushing experiments on our UR5 platform demonstrate the model’s adaptability and
the effectiveness of the proposed framework in Section 4.4.

𝑀: 𝑚𝑚𝑖𝑛 𝑚𝑚𝑖𝑛+𝑠𝑡𝑒𝑝 … 𝑚𝑚𝑎𝑥

𝐹: 𝑓𝑚𝑖𝑛 𝑓𝑚𝑖𝑛+𝑠𝑡𝑒𝑝 … 𝑓𝑚𝑎𝑥

𝑆: 𝑠𝑚𝑖𝑛 𝑠𝑚𝑖𝑛+𝑠𝑡𝑒𝑝 … 𝑠𝑚𝑎𝑥

…
…

…

𝑚 = 𝑚𝑥

𝑓 = 𝑓𝑥
𝑠 = 𝑠𝑥

𝐷𝐷𝑃𝐺 + 𝐻𝐸𝑅

𝑚𝑜𝑑𝑒𝑙 − 𝑓𝑟𝑒𝑒
𝑝𝑜𝑙𝑖𝑐𝑦

LSTM-based
Dynamic Model

Dataset
(Trajectories)

Train

Recurrent Model 
Predictive Path 

Integral

Domain Randomization
Reinforcement 

Learning

Simulation Model Real

（a） （b） （c） （d）

Figure 4.2: Overview: (a) A model-free generator policy (baseline also) is trained using DDPG
and HER to push a prototypical object in a physics simulation. (b) The generator policy explores
the randomized object with biased object interactions in the simulator. M, F , and S represent
mass, friction, and size, respectively. (c) All sampled trajectories are used to train an LSTM-
based dynamic model. (c-d) The model provides multi-step rollouts for a RMPPI controller to
actuate the robotic system.
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4.1 Problem Statement of Planar Pushing
Pushing can be taken as a pre-action before some purposive action, such as grasping. In
general, the solutions to most kinds of robot manipulation can be divided into model-
based and model-free. The model-based method, combined with MPC, is widely used in
various robotic tasks. An analytical method is always the right choice when the param-
eters of the specific object are known for sure. However, getting an accurate dynamic
model in a real environment is never an easy task.

Planar object pushing with a single contact is a typical instance of underactuated
robot manipulation. The uncertainty of different physics parameters and the pressure
distribution makes building a precise motion model for real interactions difficult. Fig-
ure 2.5 in chapter 2 illustrates the stochastic nature of a pushing process. Learning a
data-driven model [13, 15] is an effective method due to this. Besides the model-based
method, end-to-end policy learning by mapping from state space to action space directly
is also becoming a trend [5]. A primary defect of such model-free methods remains the
difficulty of collecting sufficient manipulation experience on real robots. Notorious in-
stability of robot behavior during the exploration phase limits the feasibility of training.
Policies can be trained in simulation environments to avoid physical training. In order
to deploy such policies successfully in the real world, the training framework has to
overcome the well-known gap between simulation and reality. In [5], Andrychowicz et
al. use domain randomization to transfer their simulation result to a real environment
successfully.

4.1.1 Analytical Model

(a) (b)

Figure 4.3: Illustration of analytical model. (a) Illustration of planar pushing model in world
frame Fa and body frame Fb (b) Coulomb’s frictional law. µp is the coefficient of friction [14].

A traditional method to predict an object’s motion is to describe the dynamics as an ana-
lytical model [62]. Parameters in the analytical model have specific physical meanings.
Therefore, the model can be easily transferred to similar problems given specific system
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parameters. However, generalizing the analytical model to unknown objects is difficult,
especially when the object’s properties, such as friction and inertia, are hard to get.

According to the analytical model built by Bauza et al. [14], when the pusher inter-
acts with the object, it impresses a normal force fn, a tangential frictional force ft , and
torque τ about the center of mass (Figure 4.3(a)). The applied force causes the object to
move in the perpendicular direction H(w), as defined by Zhou et al. [157]. The object
twist in the body frame is given by t = ∇H(w) where the applied wrench w = [ fn ft τ]

can be written as w= JT (n fn+d ft) with n= [1 0]T , d = [0 1]T , and J =

[
1 0 −py

0 1 px

]
.

The system’s motion equations are

ẋ = fm(x,um) =

[
Rt
ṗy

]
, R =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (4.1)

where x = [x y θ py]
T is the state vector and um = [ fn ft ṗy] is the control input. The

applied forces fn, ft and the relative contact velocity ṗy must obey frictional contact
laws 4.3(b).

4.1.2 Data-driven Model

(a) (b)

Figure 4.4: Illustration of data-driven model. (a) The pusher action (input of data-driven model).
(b) Motion prediction in the body frame [15].

The data-driven model is an alternative to the traditional analytical model, which is more
amenable than the analytical model for MPC because it presents continuous differential
equations [14]. Bauza et al. presented a Variational Heteroscedastic Gaussian Processes
based data-driven model on predicting the outcome of a planar push and its expected
variability. The model can learn accurate models that outperform analytical models with
no more than 100 samples. As is defined in [15], the object’s expected motion and its
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variance are denoted as:
∆x∼ N(µx(u),σx

2(u))

∆y∼ N(µy(u),σy
2(u))

∆θ ∼ N(µz(u),σz
2(u))

(4.2)

where u = (vp,c,β ) is the pusher action, µ(u) and σ2(u) are the expected outcome and
variance (Figure 4.4(a)).

4.2 Model Design and the Control Algorithm

4.2.1 Self-Adapting Recurrent Model

(Δ𝑥, Δ𝑦, Δ𝜃)

𝑡𝑛

𝑡𝑛−1

𝑡𝑛−𝑘

…

𝜃

(𝑥, 𝑦, 𝜃) 𝑝𝑦

𝑝𝑥

𝑎𝑦
𝑎𝑥

(𝑝𝑥, 𝑝𝑦)

𝐶𝑤

𝐶𝑜

Figure 4.5: The figure illustrates a planar pushing system by showing the time sequence and
variable representations. Cw and Co denote word coordinate and object coordinate, respectively.

Humans can approximate dynamic models from several pushing steps during the in-
teraction with an object and choose the proper pushing direction and velocity given
a target pose. With the distinctive ability to recognize patterns in data sequences, the
LSTM module is chosen to fit the object motion dynamics during the pushing process.
We apply MPC as a control strategy to push the objects to target poses with a single
point of contact. A new fusion motion prediction model without interaction force is pro-
posed. Figure 4.5 illustrates the planar pushing system, where px, py, and ax,ay denote
the pusher’s position and the action in the object’s frame. These variables are taken as
inputs for the model in [14, 15]. x,y,θ denote the position of the object’s geometric
center and the object’s rotation in the world frame. ∆x,∆y,∆θ are the corresponding in-
crements relative to a previous moment in the object’s frame. What is different from the
analytical model mentioned above (Section 4.1.1) is that the prediction of the interaction
is inferred from its historical motion trajectory with LSTM rather than the current inter-
action force, which is hard to measure. In this model, the state increments ∆x,∆y,∆θ are
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𝑡
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LSTM

Recurrent Model

∆𝑥𝑡+1, ∆𝑦𝑡+1, ∆𝜃𝑡+1

1 × 3

state increment of object position of pusher action of pusher

motion prediction

(𝑘 + 1) × 7

Figure 4.6: The model architecture used in our experiments. The trajectory steps are prepro-
cessed and stacked into the input sequence for the LSTM module, followed by a two-layer fully
connected network (the blue bar in the figure). The output from the module is also a motion
sequence, the last element of which is the motion prediction for the next step. In the figure, we
present only the last element instead of the whole output sequence.

adopted as part of the input, instead of absolute trajectory data x,y,θ to eliminate the
influence of possible data distribution drift caused by different world coordinate origins:

∆xt ,∆yt ,∆θt =

{
0, if t = 0
[xt− xt−1,yt− yt−1,θt−θt−1], if t > 0

(4.3)

In summary, at moment t, a tensor representing the current state of the system can
be denoted as St :

St = [∆xt ,∆yt ,∆θt , pxt , pyt , axt ,ayt ] (4.4)

We assume that the model M relies on the previous system state of k+ 1 time steps as
the input to predict the motion in the object’s frame for the next time step:

∆xt+1,∆yt+1,∆θt+1 = M([St−k,St−k+1, ...,St ]) (4.5)

After all necessary states are preprocessed and stacked as input, they are fed into the
recurrent module (2-layer LSTM with 128 and 64 units). By preserving sequential infor-
mation in the recurrent network’s hidden state, the LSTM module achieves self-adapting
to the real dynamics and outputs a tensor of 64 recurrent features. Then the motion pre-
dictor (2-layer fully connected network) takes the recurrent tensor as input and yields
the motion prediction in the object’s frame. Figure 4.6 illustrates the details of the re-
current model. The dropout rate is set to 0.5 for both layers of the LSTM. We train the
model through stochastic gradient descent on the L2 loss between the prediction from
the network and the real object motion using the Adam [60] optimizer.

4.2.2 Recurrent Model Predictive Path Integral
MPPI [138,139], as a typical MPC method, is investigated for optimizing nonlinear sys-
tem model control. We focus on the planar pushing problem and set the task as pushing
different objects with unknown physics parameters to different target poses. The algo-
rithm has already been successfully applied in [80] for complicated robot manipulation
problems in simulation. In order to endow the original MPPI with a memory mecha-
nism, we add a history buffer H into the algorithm. We propose RMPPI, integrating
traditional MPPI with recurrent state-dependent models. Algorithm 1 gives details of
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Algorithm 1: Recurrent Model Predictive Path Integral (RMPPI)
Given:
N: Number of sampled action sequences;
T : Number of time steps to roll out;
K +1: Number of initial action steps;

M : HistoryBuffer × Action→ State: Dynamic Model;
C : State × Environment→ Cost: Cost function;

(u0,u1, ...,uK): Initial control sequence;

LSTM Warm Up Stage:
H = empty HistoryBuffer;
for t← 0 to K do

St ← GetState(t);
append St to H;
RobotAction(ut);

Model Based Action Stage:
while not TaskCompleted() do

Sample rollout actions U1...N
1...T ;

H1...n = H;
for t← 0 to T −1 do in parallel

Sn
t+1 = M(Hn,Un

t );
append Sn

t+1 to Hn;
Cn

t+1 =C(Sn
t+1,Env);

U∗1,...,n = MPPI(C,U);
RobotAction(U∗1 );
St ← GetState(t);
append St to H;

the whole framework. The results from our real experiments prove the effectiveness of
our algorithm.

Before arriving at reasonable predictions, the LSTM module needs several steps
to warm up. At the start of each pushing episode, we give K + 1 steps of the initial
control sequence (u0,u1, ...,uK) to the robot, which is the ‘LSTM Warm Up Stage’ in
Algorithm 1. The length of the initial control sequence depends on the input sequence
we need to feed into the network.

After this stage, the memory buffer stores adequate states for the model to predict
the object’s motion. Then the algorithm goes into the ‘Model Based Action Stage.’ For
each pushing step, N pushing action sequences are sampled, and the LSTM prediction is
calculated in parallel for all N sample trajectories and recurrently for T time steps to do
the rollouts. The costs of each sampled action sequence are set as the distance between
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the current state and the target.

Ct = ∥Statet−Targett∥ (4.6)

Then, using the path integral formula, an optimal action list (u∗t+1,u
∗
t+2, ...,u

∗
t+T ) is com-

puted. Only the first action u∗t+1 is sent to the robot actuator and this process is repeated
for every pushing step.

4.3 Model-free Pushing Baselines

In our task, a policy network is trained as a model-free baseline that maps the system’s
current state to robot action directly using the classic off-policy RL method DDPG [77].
The technique HER [4], which can be combined with an arbitrary off-policy RL to
improve the exploration efficiency, is applied during training. The initial idea of training
this policy network is to do a comparative experiment as the model-free baseline. The
simulation and real experiments show that the model-free method is valid only for the
prototypical object used during the training process but cannot be generalized to objects
with different physical parameters. Even though the policy is not sufficient for achieving
pushing tasks of a different object, we find that the policy can be used to collect pushing
data for different objects during the study.

4.3.1 Deep Deterministic Policy Gradient

DDPG is an off-policy RL algorithm, which uses the Bellman equation to learn the Q-
function, and then uses Q functions to learn a policy. The optimal action-value function
Q∗(s,a) can be represented through the Bellman equation:

Q∗(s,a) = Es′∼P

[
r(s,a)+ γ max

a′
Q∗(s′,a′)

]
(4.7)

where s and s′ are the current system state and next state; s′ is sampled by the environ-
ment from distribution P(s′|s,a).

A deep neural network Qφ with parameter φ is used to approximate Q∗(s,a). As
an off-policy algorithm, DDPG takes advantage of the replay buffer D, composed of a
set of transitions (s,a,r,s′,d), where d indicates whether s′ is the terminal state of the
episode. All transitions from D can be used to minimize the mean squared Bellman error
function to fit the approximator Qφ :

L(φ ,D) = E(s,a,r,s′,d)∼D

(
Qφ (s,a)−

(
r+ γ(1−d)max

a′
Qφ (s′,a′)

))2

(4.8)

in which the term
r+ γ(1−d)max

a′
Qφ (s′,a′) (4.9)
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is called the target. It is the fitting target of the Q function when minimizing the MSBE
loss. Because the target depends on the same parameters with the network Qφ , the train-
ing process of loss minimization becomes unstable. A time-delayed network (target net-
work) is proposed whose parameters is close to φ , but lags the first for several updating
time steps. The parameters are denoted φtarg, and updated by Polyak averaging:

φtarg← ρφtarg +(1−ρ)φ (4.10)

where ρ is a hyperparameter: ρ ∈ [0,1]. Then the max over actions in the target

max
a′

Qφ (s′,a′) (4.11)

can be approximated by the target network Qφtarg .
By composing a target policy network µθtarg to compute an action which approxi-

mately maximizes Qφtarg . The parameters θ are updated by polyak averaging using the
same as target Q-function. To summary, Q-function is trained by minimizing the MSBE
loss with gradient descent:

L(φ ,D) = E(s,a,r,s′,d)∼D

(
Qφ (s,a)−

(
r+ γ(1−d)Qφtarg(s

′,µθtarg(s
′))

))2

(4.12)

And the gradient ascent formula for the policy learning can be derived by solving:

max
θ

Es∈D
[
Qφ (s,µθ (s))

]
(4.13)

which means searching for the action that maximizes Q-function.

4.3.2 Policy Details
In our task, the pusher mounted on the robot arm is the agent interacting with the
stochastic environment E, which is the pushing task scenario. The agent’s behavior is
determined by policy π , which maps states to actions π : S→ A. In the task, we take
sparse binary rewards and follow a Goal-Based Reinforcement Learning framework in
which the agent is told what to do using additional input [105]. We model it as an MDP
with state space:

S = [Xo,Yo,θo, Xr,Yr, Xg,Yg,θg] (4.14)

in which the variables denote the current pose of the object, the robot end effector and
the goal pose respectively. The action space is:

A = [Xa,Ya] (4.15)

in which Xa and Ya denote the action of the robot end-effector. Other elements in the
MDP are: initial state distribution p(s0); transition dynamics p(st+1|st ,at), and sparse
reward function:

r(st ,at) =

{
−1, if goal is not achieved
1, if goal achieved

(4.16)

The return of a state-action pair is defined as the sum of discounted future reward Rt =

∑
T
i=t γ(i−t)r(si,ai) in which γ is a discounting factor γ ∈ [0,1].
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Table 4.1: Dynamic Parameters and Their Ranges in Simulation

Parameters Range
Size [8, 25] cm in length = width
Mass [0.01, 0.8] kg
Sliding Friction Coefficient [0.1, 1]
Rotation Friction Coefficient [0.001, 0.01]
Damping Coefficient [0.01, 0.015]

4.3.3 Trajectory Collection with ADR in Simulation

Performing robotic learning in simulation has recently become especially promising for
reaching human-level performance in various tasks such as using tools [110], object lo-
calization [133], and games like Atari [60]. The main advantage of learning in simulation
is a faster, lower-cost data collection process. We use domain randomization in simula-
tion to change the physics parameters of the target objects, including mass, size, sliding
friction, and rotational friction. In the real-world pushing process, the trained LSTM
continuously observes the actual object motion and self-adapts to the object physics
within a few (less than 5) pushing steps. We randomize 300 objects with different phys-
ical parameters. With enough variability, an object from the real world may appear to be
a variation from the randomized domains [101]. As represented in Figure 4.2, objects
are generated according to physics parameters from different domains in Gym [20,134],
after which the data collection process is performed on these objects. All objects in the
simulation have the same size in height (2.5 cm). Table 4.1 details the range of objects’
parameters.

Instead of applying random actions to exploring object properties as in [13,149], we
use the trained model-free policy to generate actions to push the randomized objects to
goal poses. The DDPG policy is trained with a prototypical object with fixed parameters
and cannot generalize to different objects. The specific parameter of the prototypical
object is shown in table 4.2 as object P. As a result, this policy cannot push the ran-
dom object to the target pose ideally, and it will generate noisy actions, but the general
movement tendency is towards the target pose. This kind of robot motion is especially
suitable for exploring the objects’ properties. During the whole exploration (data col-
lection) process, the initial and target poses of the objects are set randomly for going
through as many different states of the object as possible. An episode is finished when
the object reaches the target pose, or the robot executes the 60th pushing step. This data
collection approach proves to be sufficient to explore objects with different parameters.
The collection result shows that a model-free policy trained with a prototypical object
can efficiently bias the exploration of novel objects for subsequent model learning.
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Figure 4.7: The illustration of trajectory collection with domain randomization. Three columns
show the pushing process of three different objects (6 steps for each process). The first column
is the prototype object used for training, and the others are two random objects with different
physics parameters.
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4.4 Experiments

Through real experiments, we demonstrate that a state-dependent model trained from
simulation can effectively predict the motion of real objects without further fine-tuning.

box1

keyboard

book

box2

0 1

Figure 4.8: Example pushing trajectory of 4 different objects. The pictures in the first-row show
camera images from the real robot experiment with visualization overlays for each object. Sec-
ond row: Visual markers in rviz in which the green marker represents the current pose of the
object, and the red marker represents the goal pose. For each pushing step, 1024 sampled roll-
out action sequences are sampled. The different colors of the trajectories are normalized costs
(ranged in [0,1]). One optimal action sequence is computed in every picture. The color bar rep-
resents the cost value.
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4.4.1 Robot Setup

We test our methods in the real world on a UR5 robot shown in Figure 4.1. The robot is
mounted to a wall above a table and holds a pushing rod (pusher) to interact with the ob-
jects. Object positions are measured using a camera and AprilTag markers [93]. Pushing
commands are interpreted as Cartesian motion goals. These motion goals are translated
by an online controller [115] into joint-space robot commands under kinematic and dy-
namic constraints. End-effector positions are restricted to a rectangular workspace above
the table, and the axis along the pushing rod is fixed in an upright position. Motions are
constrained by velocity and acceleration limits.

4.4.2 Benchmark Description

We propose a model-based method for pushing different objects, and the model is
trained with all the data from the simulation. A model-free method, which is a deep
policy network trained by DDPG, is taken as the baseline (Section 4.3.2). The trained
policy is also deployed on the real robot platform (Figure 4.9). Both approaches are
evaluated in real experiments. Through experiments, we find that the hyperparameters
in RMPPI have a significant impact on the pushing performance. The data analysis is
detailed in the next section. Figure 4.8 shows selected steps from one pushing experi-
ment using four different objects in rviz. The pictures from each column represent robot
and object states of the same time step. Green and red rectangles represent the current
pose and target pose, respectively. In each figure, the 1024 rollout action sequences of
the pusher are shown. The color of each line is the normalized estimated cost of the ac-
tion sequence, computed by the cost function we defined acting on the prediction results
from the dynamic model. Red means a low-cost pushing direction, while blue stands for
a high cost.

Table 4.2: Parameters of Experimental Objects

Mass (kg) Length (m) Width (m) Sliding Friction (N)
A 0.016 0.116 0.116 < 0.1
B 0.615 0.168 0.237 ≈ 1.4
C 0.565 0.198 0.198 ≈ 1.1
D 0.587 0.166 0.228 ≈ 1.8
E 0.506 0.153 0.462 ≈ 0.9
P 0.015 0.120 0.120 ≈ 0.05

To demonstrate the adaptability of our model by predicting objects with unknown
motion properties, we plot the trajectories of both object and pusher in Figure 4.10, in
which (a) and (b) denote trajectories of objects E and C, respectively, during the pushing
process towards the three target poses “left,” “middle,” and “right.” Target poses are
marked by “red,” “blue,” and “green” squares, respectively. Light gray squares represent
the final poses in the real experiment. Black squares also denote starting positions. (c)
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and (d) denote the corresponding trajectories of the pusher generated by RMPPI in the
same experiment (a) and (b).

1

2

3

4

5

6

a b

Figure 4.9: model free pushing policy trained with DDPG is applied on a real robot platform.
The figure shows two pushing processes of the prototype object used during simulation training
(6 steps for each process). The red rectangle on the table is the target pose.

To compare the motion properties of different objects, during the experiment, we set
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the same target poses for different objects. From the trajectories of the pusher, we notice
that the initial several pushing steps are taken straightforward, which corresponds to
the warm-up stage in algorithm 1. Then the robot pushes objects using the computation
result from RMPPI. From the pusher trajectories of the “middle” target pose, we notice
that tiny direction adjustments are adopted to keep the object facing forward. Comparing
the trajectory distribution towards the same target pose between (c) and (d), we can
notice that the network can adapt itself to the real dynamics of different objects. The
final poses reached are all close to the goal poses, proving that RMPPI is highly robust in
the real environment. The length of each pushing is set as 0.5 cm. Because only the first
action is executed, the motion is not smooth, with a momentary stop after each pushing
action. Executing the sequence’s first two or three actions and running the model in
parallel can make the motion smooth; this will be done in future work.
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Figure 4.10: Example trajectories from the real robot experiment. (a,c) Trajectories of the key-
board and the robot. (b, d) Trajectories of the square box and the robot.

4.4.3 Analysis
We choose objects with different physical parameters as test objects and measure their
parameters after the experiments. The results are shown in Table 4.2. Five different
objects (A-E) are used to evaluate our model’s adaptability, among which object A has
almost the same parameters (size, mass, friction) as the prototypical object (P) we used
for training the model-free baseline. Table 4.3 shows the success rate of pushing objects
to target poses under different thresholds. in which:

Level 1: (Ex < 0.025(m))&(Ey < 0.010(m)&(Eθ < 0.052(rad))
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Level 2: (Ex < 0.035(m))&(Ey < 0.015(m)&(Eθ < 0.087(rad))
Level 3: (Ex < 0.050(m))&(Ey < 0.025(m)&(Eθ < 0.17(rad))
Our model fits all five object motion properties and achieves a reasonable pushing

success rate, while the model-free baseline does not work well on any object that differs
from the prototypical one trained in simulation.

A B C D E
Objects

0

5

10

15

Sc
or

e

baseline
K=2, T=3
K=3, T=4
K=4, T=5
K=5, T=6
K=6, T=7

Figure 4.11: The scores computed according to the evaluation formula, K + 1 is the length of
the sequence fed into LSTM for each prediction, which is also the same as that in Equation (4.5).
T is the number of steps to roll out in algorithm 1, the baseline is the score of the model-free
approach.

In order to get a comprehensive evaluation for each pushing result, we set a score
calculation formula with the absolute error in X direction, Y direction, and θ :

S =
1

Ex +3 ·Ey +0.5 ·Eθ +σ
(4.17)

in which Ex, Ey and Eθ are the final errors to the target pose, constant σ = 1e−7. The
factors used for the different errors are chosen to keep them on the same magnitude.
During the real experiments, we find that the two hyperparameters in RMPPI that influ-
ence the pushing performance the most are K in Equation (4.5) and T in Algorithm 1;
the number of previous states used as inputs to the LSTM, and the number of timesteps
used in the rollouts before calculating the costs. During the LSTM warm-up stage, we
set straightforward pushes as the first K +1 actions of the pusher. To find the best com-
bination (K∗,T ∗), we try different groups of K and T in real experiments and plot part
of the combined performance in Figure 4.11. As K increases from 2 to 4, the score keeps
increasing and reaches the top at 4. This means the LSTM module needs a sequence of at
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Table 4.3: Success Rate Comparison with Model-Free Baseline

Threshold Method A B C D E

Level 1
RMPPI 85.3% 82.8% 87.2% 83.3% 81.4%
Model-Free 85.5% 22.6% 19.1% 11.7% 12.3%

Level 2
RMPPI 90.5% 88.9% 91.5% 88.3% 87.5%
Model-Free 87.8% 24.9% 19.6% 12.5% 12.5%

Level 3
RMPPI 93.5% 90.9% 93.9% 91.6% 89.5%
Model-Free 92.8% 25.6% 19.3% 14.8% 13.7%

least 4 time steps to get the best prediction; a longer input sequence will not improve the
prediction accuracy further. Because the prediction error can be accumulated through
action sequence [ustep, ...,ustep+T−1] from the current step to T later steps, there is also
the best prediction step number T ∗. Through testing, we find the best combination is
K∗ = 4,T ∗ = 5.

4.5 Summary
This chapter builds a recurrent model that can adapt to the real interaction dynamics in
object pushing tasks. RMPPI is proposed as the controller. Through domain random-
ization, we bridge the gap between simulation and the real environment. The model is
trained in simulation only but can be used in the real environment without any fine-
tuning. Although the model requires an initial warm-up stage for adjusting itself, this
is exactly what humans do as well when we start working with a novel object. Results
show that the new algorithm is of high robustness.

Besides, a model-free RL pushing policy is also trained as the baseline in simulation.
The agent can switch the pushing side according to the relative pose of the object and
target. However, the weakness is the generalization ability. Through the analysis of the
results, our key findings are:

• Given proper state variables, a well-trained LSTM-based model can learn to pre-
dict object motions for objects of different sizes and shapes, self-adapting to the
actual object dynamics online after only a few pushing steps like a human.

• Recurrent model can be integrated effectively in an MPC framework.

• Domain randomization effectively bridges the gap between simulation and real
environment in robotic learning tasks.
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Chapter 5

Vision-Proprioception Model for
Object Pushing

In the previous chapter, we focused on a model-based method. We built a fusion model
which adapts itself to the real interaction dynamics after several pushing interactions
using the proposed RMPPI algorithm as the controller. One limitation of this method is
that the robot cannot effectively switch pushing sides according to the object’s current
pose during the pushing process. Another limitation is that we need AprilTag [93] to lo-
cate the object in real-time. This chapter trains an RL policy that takes the raw image and
the pusher position as input. After enough training episodes in simulation, the trained
agent learns to make good decisions on switching the pushing side both in simulation
(Figure 5.7) and in the real world (Figure 5.9).

We propose a vision-proprioception model for planar object pushing, efficiently in-
tegrating all necessary information from the environment. For the vision part, a VAE
is used to extract valuable representations from the task-relevant part of the image into
latent space, the same way as the goal information is encoded. With the real-time robot
state obtained easily from the hardware system, we fuse the latent representations from
the VAE and the robot end-effector position into the state of an MDP. We use SAC
to train the robot to push different objects from random start poses to target positions
in simulation. During the training process, HER is applied to improve the sample ef-
ficiency. Experiments demonstrate that our algorithm achieves a pushing performance
superior to a state-based baseline model that cannot be generalized to a different object.
Moreover, it outperforms state-of-the-art policies operating on raw image observations
only. At last, we verify that our trained model has a good generalization ability to unseen
objects in the real world.

The remainder of this chapter is organized as follows: the necessity of visual input
(image) is elaborated in Section 5.1.1. Section 5.1.2 introduces the usage of VAE in our
work and shows the GUI, which is designed to visualize the latent space of the encoder.
The vision-proprioception model and the training method of the policy with the fusion
model are detailed in Section 5.1.3 and Section 5.2.2. Both the simulation results and
real experiments analysis are given in Section 5.3.
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Figure 5.1: Our experiment platform consists of a UR5 robot with a Robotiq 3-finger gripper
that grasps the 3D-printed vertical pusher rod. The pushing target placed on the transparent table
is painted red to obtain masks easily through color filtering. The bottom camera (to get the input
image) is set right below the table, and another front camera is added to record experiment
videos.

5.1 Vision-Proprioception Model

5.1.1 Necessity Analysis of Image Input

To enhance the robot’s generalization ability to manipulate different objects by extract-
ing task-relevant information such as the object’s shape and pose features from image
observations. However, in most situations, the raw image from the camera always in-
cludes complicated components such as noisy background, which is hard for the robot
to understand. This work extracts useful information by segmenting an object mask
from the image and constructing a latent representation through a VAE. As the decoder
from the trained VAE can roughly reconstruct most of the original masks from the latent
features, these features should include the object’s pose and shape information.

The robot state could be inferred from the camera image through a deep network, but
this is usually unnecessarily difficult. Unlike the object state, the robot state, including
the end-effector pose, can be obtained directly from the hardware system. We, there-
fore, propose a vision-proprioception model to fuse the latent features and robot states
as the RL inputs. We train the robot to push objects to target positions using a carefully
designed reward function (Section 5.2.3). The models are evaluated by the distance be-
tween final real positions and target positions.
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5.1.2 Variational Autoencoders

Encoder Decoder

z

Figure 5.2: The training dataset (left) and reconstruction (right) of the VAE. All of the images
are sized 64x64. The dataset includes 20000 images. As we can see, the position and general
shape are well reconstructed, even though some details such as the rotation angle and sharp
corners are not exactly the same as the originals.

5cm

Figure 5.3: We use 18 different objects in our pushing task, all of them of 2 cm height. The
physical parameters which can affect the dynamics are randomized from a range in Table 5.2
with ADR during training.

To deal with high-dimensional image inputs, we train a latent representation of the state
by VAE. A VAE is a probabilistic generative model composed by an encoder which
converts state x into a prior distribution qθ (z|x) and a decoder that converts the latent
variable z back to a state distribution pω(x|z) as is shown in Figure 5.2. The model
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is trained by minimizing the reconstruction loss of original states x (the first term in
the Equation 5.1) and forcing the latent representation z to be similar (in the form of KL
divergence [65]) to a prior distribution (second term) at the same time. We take Gaussian
distribution as prior here.

Figure 5.4: We write a GUI for the VAE, which is used to visualize the latent space. The image
on the left and right sides are the input and the reconstruction of the latent values. The recon-
struction image on the right changes accordingly by resetting the value bar’s latent values in the
middle.
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L(θ ,ω) =−Eqθ (z|x)[log pω(x|z)]+KL(qθ (z|x)||p(z)) (5.1)

In this task, we only care about the pose and shape of the object and target in the im-
age; color and texture information can be ignored. We filter the image from the bottom
camera by color (red) and obtain the masks (Figure 5.5). The VAE is trained on these
one-channel 64x64 masks. We collect a mask dataset by randomizing the pose of differ-
ent objects on the table. Figure 5.3 shows all the objects used in the dataset.

5.1.3 Model Structure
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Train in Simulation Apply on Real RobotSim2Real

Figure 5.5: Overview: The training process in simulation is shown on the left, and the model is
transferred directly to the real platform. The camera is put below the transparent table to avoid
possible occlusions between the camera view and the object during manipulation. Color filtering
is applied to the image from the bottom camera to obtain both the object (red) and goal (blue)
masks. The two masks are fed into the pre-trained autoencoder and then concatenated with the
gripper position into a fusion space, where the policy plans.

One of the most challenging parts of visual RL tasks is that the agent needs to simul-
taneously learn perceptions from high dimensional data and the corresponding control
policy. Given an image, a usual perceptron like Multi-Layer Perception (MLP) or CNN
encodes all the information from the input, while human beings only pay attention to
related information, which is a more efficient way when solving a complicated task.
Besides visual input, proprioception is also an essential channel among all the modali-
ties that humans perceive. Inspired by the way human beings solve a task through both
vision and proprioception, our vision-proprioception model performs planning in the
fusion space.

We embed the object mask mo and goal mask mg into a latent space z with the
pre-trained encoder e in Section 5.1.2, getting the latent object state zo = e(mo) and la-
tent goal state zg = e(mg). As the latent variable z samples from Gaussian distribution
qθ (z|x) = N(µθ (x),σ2

θ
(x)), we take the mean of the encoder µθ (x) as the state encod-

ing. With the planar position of the pusher pr = [x,y] easily obtained from forward-
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kinematics on the joint-angles during robot manipulation, we construct a fusion state
space S = [pr,zo,zg] in which the policy πφ (at |s,s ∈ S) does its planning. The action
a = [ax,ay] is a continuous vector, representing the pusher’s 2-D velocity in the mo-
tion plane. We use squashed action implementation from [108]: a = tanh(ā), in which
ā∼ N(µφ (x),σ2

φ
(x)).

5.2 Reinforcement Learning with Vision-Proprioception
Model

5.2.1 Soft Actor-Critic
SAC is also an off-policy algorithm that uses experienced transitions from previous
episodes to update a stochastic policy. SAC is different from DDPG due to the inher-
ent stochasticity of the policy, leading to a smoother target policy. A central feature of
SAC is entropy regularization. The policy is trained to maximize the expected return
while punishing the decreasing entropy, a measure of policy randomness. This is an
exploration-exploitation trade-off: higher entropy means more exploration, which may
accelerate learning later. The punishment of a fast decreasing entropy also prevents the
policy from converging to a local optimum.

Denote entropy H of variable x as:

H(P) = Ex∼P[− logP(x)] (5.2)

in which P(x) represents its distribution. The optimization object of entropy-regularized
reinforcement learning is slightly different from normal ones, because at each time step,
the agent gets an extra bonus reward proportional to the entropy of the policy:

π
∗ = argmax

π

Eτ∼π

[
∞

∑
t=0

γ
t
(

R(st ,at ,st+1)+αH(π(·|st))

)]
(5.3)

In which α > 0 is the coefficient. Because of the slight change of the optimization
objective, now V π is updated to include the entropy item:

V π(s) = Eτ∼π

[
∞

∑
t=0

γ
t
(

R(st ,at ,st+1)+αH(π(·|st))

)∣∣∣∣s0 = s
]

(5.4)

In this situation, the relation between Vπ and Qπ can be denoted as:

V π(s) = Ea∼π [Qπ(s,a)]+αH(π(·|s)) (5.5)

The Bellman equation for Qπ is:

Qπ(s,a) = Es′∼P
[
R(s,a,s′)+ γV π(s′)

]
(5.6)

Like TD3 [37], SAC uses the clipped double-Q trick, and takes the minimum Q-value
between the two Q approximators. According to the derivations above, the objective to
minimize for the Q-networks in SAC is:

L(φi,D) = E(s,a,r,s′,d)∼D

[(
Qφi(s,a)− y(r,s′,d)

)2]
(5.7)
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where y is the target Q-value:

y(r,s′,d) = r+ γ(1−d)
(

min
i=1,2

Qφtarg, j(s
′, ã′)−α logπθ (ã′|s)

)
, ã′ ∼ πθ (·|s′) (5.8)

By maximizing the expected future return and the expected entropy, the optimization
objective of the policy net is given by:

V π(s) = Ea∼π [Qπ(s,a)]−α log(π(a|s)) (5.9)

5.2.2 Model Architecture

In this part, we show how to train RL with the model we propose in Section 5.1.3.
To improve the sample efficiency of RL, we use the stochastic off-policy algorithm
SAC [43] with the goal relabelling trick HER [4]. With an entropy regularization as
part of the optimization, the policy is trained to maximize the expected return and the
policy entropy, which is a randomness of the policy. The general training process is
similar to other off-policy RL algorithms by optimizing two targets: value function J(Q)
and policy function J(π). The model architecture is shown in Table 5.1. FC(), Conv(),
and ConvT() represent the fully connected, convolutional, and transposed convolutional
networks, respectively. The arguments of FC() and Conv() / ConvT() are [node] and
[channels, kernel size, stride]. The training process of the whole framework is shown in
Figure 5.6. VAE is pre-trained before being used in RL; the two encoders for object and
goal share the same weights. During the experiment, we can understand what the agent
sees by visualizing the reconstruction image from the decoder, which is quite useful for
debugging during the training process.

Table 5.1: Model Architecture

Model Architecture

Encoder
Conv([[32,4,2],[64,4,2],[128,4,2],[256,4,2]])

FC([256,6])

Decoder
FC([256,1024])

ConvT([[32,5,2],[32,5,2],[16,6,2],[1,6,2]])
Actor FC([128,256,64,2])
Critic FC([128,256,64,1])
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Decoder

J(AE)

critic

MLP

MLP

J(π)

J(Q)+
gripper pos

goal

object

actor
Encoder

VAE

Figure 5.6: Network structure of our RL framework, in which dash arrows represent back prop-
agation. VAE and RL are trained separately, encoders from VAE do not update during the RL
training process. The critic and actor part are optimized by value target J(Q) and expected future
return J(π).

Algorithm 2: RL with Vision-Proprioception Model
Given: Pre-trained Encoder eθ (x);
Policy πφ (at |pr,zo,zg);
Value Function Qψ(pr,zo,zg,a);
Replay Buffer D : {τ(1∼N)};
for n← 1 to N episodes do

Reset environment;
Sample and store pg,xg in τn;
for t← 1 to H episodes do

Get state St = {pr, po,xo};
Encode zo = eθ (xo), zg = eθ (xg);
Select action at ∼ πφ (at |pr,zo,zg);
Execute at in the simulation;
Get next state S

′
t = {p

′
r, p

′
o,x

′
o}, reward rt ;

Store (St ,at ,rt ,S
′
t) in τn;

Sample transitions (S,a,r,S
′
)∼ D;

Relabel pg,xg to pη
g ,x

η
g with method in [4];

Get new encoding zg = eθ (x
η
g ) and compute new reward rn from function

5.10;
Minimize J(Q) and J(π) in Figure 5.6 using (S,a,rn,S

′
)
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5.2.3 State Space and Reward Specification
We use the following symbols in Algorithm 2: pr, po, pg are the ground truth positions
of the robot pusher, center of the object, and goal, respectively. Both po and pg are
only used to compute the step reward during the training process in simulation, but not
during tests or in the real robot experiment. xo,xg are pixel observations of the object and
goal, zo,zg are corresponding encodings. Different reward functions can lead to diverse
training results. Nair et al. [143] train the robot in the real world and compute rewards in
the latent space of the pixel observation. In the simulation, computing rewards from the
ground truth data is also possible, as all ground truth information is readily available.
In our work, we consider three different kinds of reward functions. The first is dense
reward in latent space:

r(zo,zg) =−∥zo− zg∥ (5.10)

and the second is sparse reward computed by the ground truth state:

r(po, pg) =

{
−1, if∥po− pg∥> threshold
0, if∥po− pg∥⩽ threshold

(5.11)

The third is dense reward with ground truth state:

r(po, pg) =−∥po− pg∥ (5.12)

The results are compared in the next section.

5.2.4 Sim2Real
We use Robogym [96] as the framework and build our simulation environment accord-
ing to our UR5 platform. We apply 18 differently shaped objects during the training
process (Figure 5.3) and randomize their physical parameters, including mass, sliding,
and rotation friction coefficient of the object from a reasonable range. Details of the
physical parameters are shown in Table 5.2. We randomize 20 different combinations of
physical parameters for each of the objects. At the beginning of each episode, one com-
bination of the physical parameter is chosen and remains unchanged during the episode
(50 action steps in the training process). During training and testing, we find an obvious
gap between simulation and the real world in all objects’ rotational motion: given the
same pushing action, the object shows more rotation in the real world.

Table 5.2: Dynamic Parameters and Their Ranges in Simulation

Parameters Range
Size [4, 15] cm in length, fixed height=2cm
Mass [0.05, 0.3] kg
Sliding Friction Coefficient [0.1, 1]
Rotation Friction Coefficient [0.001, 0.01]
Damping Coefficient [0.01, 0.015]
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5.3 Experiments

We test our algorithm by training an agent in simulation first, then evaluate the training
results by applying the model directly to a real robot platform. As is shown in Figure 5.5,
the red rectangle represents the object to be pushed, and blue is the goal position. In
simulation [134], the non-collision goal object can be rendered conveniently. However,
in real experiments, for each episode, we first put the object at the point we want, take
an image with the bottom camera and record it as the target image. Underactive human
interference, the robot can switch the pushing side accordingly and keep pushing the
object to the target consistently. We use the same online controller [115] to translate
Cartesian motions of the pusher into joint-space robot commands as in our previous
pushing research [27].

5.3.1 Simulation Results

We evaluate our method against two prior model-free state-of-the-art algorithms and do
ablation studies to determine how critical each method component is. In Figure 5.8, we
compare the learning performances with the pushing success rate. From top to bottom:
model trained with different VAE latent space dimensions (first row), reward functions
(second row), and input modalities (third row). Oracle in the third figure is the training
results of a state-based agent on one single object (cylinder, d = 4cm). RIG [91] takes
only the image as input. We set random explorations at the first 200 episodes for each
training process, leading to an initial success rate of around 20% for each learning curve.

One episode is considered a success if the final center point distance is within
the threshold (5cm) we set in Equation 5.11. Orientation error is not considered in
the reward function. To our best knowledge, Reinforcement Learning with Imagined
Goals (RIG) is the state-of-the-art algorithm for the visual pushing task [90, 91]. We
choose RIG as the baseline method. Besides, we also give the results with direct access
to state information, including the robot’s end-effector position and the object’s pose
(Oracle). However, because the interaction dynamics of differently shaped objects differ
a lot from each other, one state-based policy can neither learn to push all 18 candidates
used in our experiment nor train on one specific object and then generalize to another
object. Therefore, the Oracle learning curve is the learning result of pushing one spe-
cific cylinder. For the other experiments, one random object is selected from all the
candidates at the beginning of each episode.
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Switch 
pushing side

Switch 
pushing side

(a) (b)

Figure 5.7: The figure shows two pushing processes: (a) triangle and (b) cylinder. Both the
initial and target position is generated randomly at the beginning of each episode. We show both
the front view (first column) to give an overall robot-object scene and the bottom view (second
column) to show what the robot sees. The transparency of the table is set to 0.3 in the simulation.
The brown point and the dashed line represent the pusher position and trajectory, respectively. In
both (a) and (b), we can see that the robot learns to firstly choose a proper initial pushing direction
and switch the pushing side when the object deviates from the target. The final orientation error
in b) is explained in Section 5.3.1 .
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Figure 5.8: Learning curves in simulation.

56



5.3. Experiments

During experiments, we find that two components have the most significant influence
on the training performance: 1) the dimension of VAE latent space and 2) the reward
function type. We first compare learning results using VAE models with different latent
space dimensions (Figure 5.8 first figure). During all training processes of the VAE, as
the training epoch keeps rising, the model goes from under-fitting to over-fitting. Most
of the over-fitting happens between the range of (60,90) epochs. For the models with
different latent spaces, we choose the saved ones, which occur just before the over-
fitting happens. Through analysis, we find that the best latent dimension is 6. This may
be because it is a suitable dimension to remember the shape and pose of the object,
and at the same time, its representation is not too complicated for the agent to learn an
effective policy.

One of the differences between our work and [91] is that we train our model in
simulation and use it in on a real robot. This reduces training time considerably and
facilitates access to the environment’s ground truth state, while in the former work, the
policy is directly trained in the real world. We apply three different reward functions
(Section 5.2.3) in the training time and get the following results: 1) sparse reward from
ground truth state (Equation 5.11) leads to the best pushing performance (90% success
rate), 2) dense reward in latent space (Equation 5.10) can also guide the agent to a
working policy, 3) dense reward from ground truth state is invalid (Figure 5.8).

5.3.2 Real Robot Verification
This part evaluates whether our model can be transferred to the real world and ma-
nipulate unseen objects (with similar shape and size) without any fine-tuning. All the
models in our method, including the VAE and policy network, are trained in simulation.
The robot setup and debugging interface are shown in Figure 5.9. We visualize both the
original object mask (1c) and its reconstruction (1a) in real-time to check whether the
information in latent space is correct or not. The object is put at an initial pose (marked
with a blue box in (e)), then the bottom camera takes an image and records it as the target
image, which is the blue mask in (b). The robot keeps pushing the object to the target. In
1b) a comprehensive view is given: the blue and red rectangles represent the target and
real-time object pose, respectively, the yellow cross represents the pusher position. 1c)
and 1a) are the real-time object masks after the color filter and the mask reconstruction
from the decoder. We find it quite useful to visualize the two masks during debugging
for the experiment. 1d) shows what the robot sees from the bottom camera. From (1)
to (3), we can also see that the robot is switching the pushing side as in the simulation.
In (3), the first pushing target is reached, and we give an active interference in (4). Till
(6), the robot adjusts the pusher consistently and finishes the second pushing process
successfully.

During experiments, we find that the interaction dynamics in the real world are dif-
ferent from that in simulation, especially on the rotation motion of the object. The ob-
jects turn quickly around the vertical axis in the real world under the robot’s pushing
actions. Even though we randomize the physical parameters in simulation from a wide
range, the gap cannot be eliminated. We assume this is because the simulator simplifies
the contact model to save computation resources. The position distribution frequency
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from 500 episode trajectories is shown in Figure 5.10. We set the same robot work-
ing space and goal randomization space for simulation and the real world. However,
because the objects rotate easily in the real world, the robot needs more adjusting mo-
tions to push the object to goal positions than in simulation. Most of these unexpected
adjusting motions happen around the workspace center, making the object and pusher
trajectory distribution more intensive in the center part. To analyze the transfer perfor-
mance of our model, we measure the distance between the goal position of the object
and the final position (without orientation), also the corresponding time consumption.
We test 3 objects from the training dataset and two novel objects (similar shape but dif-
ferent size) in the experiment. Table 5.3 shows the pushing performance comparison on
average final position error and the corresponding time consumption between simulation
and the real world. Objects from the last two rows are novel objects (outside the training
set but in our pre-designed size range. More adjusting pushing actions also mean more
time consumption for each push. As the threshold we set in the reward function 5.11 is 5
cm, the mean distance between goal and final position is within 5 cm in both simulation
and the real world.

eb

d

(1)

(2) (5)

(6)(3)

(4)

Figure 5.9: A cuboid pushing process under human interference on a real robot platform. The
first pushing process is shown from (1) to (3), the interference happens in (4).
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0.00 %

0.02 %

0.04 %

0.08 %

0.06 %

0.10 %

Figure 5.10: Distribution of the object and pusher’s position during tests in both simulation and
real experiments. The colorbar represents the occurrence frequency.

Table 5.3: Comparison of Pushing Results

In Simulation In Real World
Triangle (l = 8 cm) 3.2 (cm) / 5.5 (s) 3.5 (cm) / 22.9 (s)
Cylinder (d = 6 cm) 3.5 (cm) / 4.6 (s) 3.7 (cm) / 18.6 (s)
Square1 (l = 8 cm) 2.9 (cm) / 4.3 (s) 3.1 (cm) / 19.4 (s)
Square2 (l = 10 cm) 3.6 (cm) / 5.6 (s) 3.9 (cm) / 21.5 (s)
Rectangle (l1 = 6, l2 = 8 cm) 4.2 (cm) / 6.2 (s) 4.5 (cm) / 23.3 (s)

5.4 Summary
In this chapter, we present a self-supervised pixel-based method that can encode visual
inputs into latent space and fuse with a robot’s proprioception into one model to solve the
task of object pushing and achieve a competitive advantage over a state-based method.
The latter method can only be trained on a single object without generalizing it to other
objects. Our model is trained in a simulation environment and can be applied on the real
robot platform without any fine-tuning. Real experiment results show that the model is
of high robustness to unseen objects.

The core idea of our method is to force the agent only to pay attention to valuable
information in the image and fuse the encoding with information from other perceptions
in the environment, making use of all task-relevant inputs from multiple channels. We
believe our method can be taken as an inspiration to extract useful information from
different modalities and fuse them for end-to-end decision-making problems, improving
learning efficiency and performance in real robot RL tasks.

One limitation of the current method is that the agent cannot judge intelligently
whether the information is helpful to the task or not. Learning and inferring task-relevant
information from sequential observations could solve more complicated tasks and make
our algorithm more generalizable.
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Chapter 6

Attention Augmented Reinforcement
Learning for Object Pushing

In the previous chapters, two different methods were proposed for object planar push-
ing. The model-based method from chapter 4 builds a fusion motion prediction model
first and plans the action of the robot end-effector with RMPPI. To endow the controller
with the ability to switch pushing sides intelligently and get rid of the dependence on
Apriltag, we propose the model-free visual-pushing method in chapter 5, taking the fil-
tered object masks obtained from the bottom camera as input. However, the requirement
of mounting the camera below the transparent table makes the experiment setup com-
plex, and the lighting in the room also influences the performance of the experiment. To
simplify the experiment setup, get rid of the transparent table and the bottom camera, a
new planar pushing method taking only a front view is introduced in this chapter.

State Based Pushing Visual Pushing (mask) Visual Pushing (raw image)

Setup

Input State (object pose) Object mask (bottom camera) Raw image (front camera)

Algorithm RMPPI (model based) SAC (model free) RL + imitation learning (model free)

Weakness AprilTag dependence & can’t 
switch pushing side Complicated setup Hard to train 

Figure 6.1: Comparison of different pushing methods proposed in the thesis.

Section 6.1 introduces a self-supervised attention mechanism to predict the attention
map, which corresponds to the motion part (maybe the robot arm, or the manipulating
object, or both) among all anchor-target pairs in the training dataset (detailed in Sec-
tion 6.1.3). The anchor-target pair is easy to collect during the training process of RL
in simulation. Section 6.2 proposes a learning framework that integrates RL and the
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pre-trained attention mechanism. Through comparison experiments, the attention aug-
mented reinforcement learning is proven effective and leads to better performance than
the original framework without attention.

6.1 Self-supervised Attention Mechanism

robot arm object 1 object 2

real

sim

Figure 6.2: Given different anchor-target pairs as training dataset, our model can learn to pay
attention to different motion parts (robot and different objects separately) from one same image.
The figure shows the training results of our UR5 platform in real word and simulator.

Attention map is defined in [130] as a scalar matrix representing the relative importance
of layer activations at different 2D spatial locations to the target task. In robot tasks,
most task-related parts in the vision are the motion parts. Taking the pushing task in
Figure 6.2 as an example, the moving parts in the image are the robot arm, the object
to push (green), and the target pose (red object). These components are the task-related
parts in the image which may attract a human’s attention while solving the task. Paying
more attention to some specific parts while neglecting unrelated background increase
our working efficiency to a large degree. Recent end-to-end learning framework [67,69]
learn control strategy by mapping high-dimensional visual inputs to robot actions di-
rectly. This requires the model to learn the visual representation and corresponding con-
trol policy at the same time, which always leads to poor strategy and low learning effi-
ciency [69]. Inspiring works [84,88,119] propose to combine attention mechanism with
reinforcement learning to increase agent’s performance and interpretability. However,
all of these work only add extra attention mechanisms into the model, increasing the
complexity of the model, but the RL and control strategy is still not separated apart. In
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this work, we address the problem by decoupling the two parts. The output attention
map can be used for downstream control tasks by training a self-supervised attention
model and highlighting the task-related parts in the image.

Humans tend to focus on different parts of an image for different manipulation pur-
poses. By adding different anchor-target image pairs into the dataset (detailed in Sec-
tion 6.1.3), our model can also learn to pay attention to different components from the
same image. As is shown in Figure 6.2, we train the model with different anchor-target
pairs, and the model successfully learns to highlight different parts.

6.1.1 Attention Mechanism Structure

anchor
attention 

maps

target
attention 

maps

E
nc

od
er

E
nc

od
er

Attention 
Module

D
ec

od
er

D
ec

od
er

Attention 
Module

Encoder-Decoder Training Process

Attention Module Training Process
target 

reconstruction

anchor 
reconstruction

anchor spatial
 features

target spatial features

fused spatial 
features

anchor

target

Figure 6.3: Illustration of the framework. The green and purple frames in the dashed line rep-
resent the Encoder-Decoder and Attention module training process, respectively. The spatial
features Φ(x) is taken as the intermediate variable, used both for the training of the Encoder-
Decoder module and for spatial feature fusion to reconstruct the target image in the Attention
module training process (spatial features fusion is illustrated in Figure 6.4). The black point in
the figure represents the gradient stop. By learning to transform an anchor image xa into another
target image xt , our model is forced to find and highlight the motion part among all the image
pairs in the dataset.
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X X

+

Figure 6.4: Spatial feature fusion process (red dash circle in Figure 6.3) of the attention trans-
porter.

As is illustrated in Figure 6.3, given an input RGB image x ∈ RH×W×3, our objective is
to predict the attention map Ψ(Φ(x)) ∈ RH

′′×W
′′
, which corresponds to the motion part

among all anchor-target frames pairs (xa,xt) in the training dataset. Before training, we
collect our own dataset in a way that all of the anchor-target frame pairs (xa,xt) differ
only in the part which we hope to highlight. It could be the whole robot, part of the robot
or even one of the manipulation target in the workspace like in Figure 6.2. The whole
training process can be divided into the Encoder-Decoder training part and Attention
Module training part: (i) the Encoder (ConvNet block in green frame from Figure 6.5)
module turns the image x into spatial feature Φ(x)∈RH

′×W
′×64; then the Decoder (blue

frame in Figure 6.5) maps from the spatial features Φ(x) back to an reconstruction im-
age x

′
. The weights of the two networks are trained by minimizing the pixel-wise L2

reconstruction loss ∥x′ − x∥; (ii) the anchor and target spatial features Φ(xa),Φ(xt) go
into the Attention Module (detailed in Section 6.1.2) and comes out as anchor and target
attention maps Ψ(Φ(xa)),Ψ(Φ(xt)). Then the fused spatial features are generated by the
spatial feature fusion module (Figure 6.4) through removing the highlight part from the
anchor spatial features Φ(xa) and compensating with corresponding part of the target
spatial features Φ(xt) as proposed in [64]:

Φ(xa,xt) = (1−Ψ(Φ(xa))) · (1−Ψ(Φ(xt))) ·Φ(xa)+Ψ(Φ(xt)) ·Φ(xt) (6.1)

In summary, the spatial features from the anchor image Φ(xa) at the highlight part
Ψ(Φ(xt)) are replaced with the spatial features from the target image Ψ(Φ(xt)) ·Φ(xt); at
the same time, those highlight spatial features Ψ(Φ(xa)) from the anchor image are set to
zero. Then the Decoder maps the fused feature Φ(xa,xt) back to the target reconstruction
image x

′
t . By minimizing the L2 loss ∥x′ t − xt∥ in pixel wise, we enforce the Attention

Module to learn to focus on the motion part.
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6.1.2 Trainable Attention Module
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Figure 6.5: Network architecture of the module used in our model. We use the VGG as the
backbone but choose lower channel numbers in all Conv blocks to reduce the computation. The
Soft attention block takes the feature vectors output by the Conv4 as inputs and gives the attention
map as output. The Encoder and Decoder modules are trained first through reconstruction loss
and keep weights unchanged during the training of the Attention module.

As illustrated in Figure 6.5, the Attention Module (in purple frame) takes the spatial
features Φ(x) from the Encoder as input, first extracting a set of feature vectors with
Conv4 block

L = {l1, l2, ..., ln}=Conv4(Φ(x)) ∈ RH
′′′×W

′′′×64 (6.2)

in which each ln is the output vector at spatial location i of n = H
′′′×W

′′′
total spatial

locations. The global feature g ∈ R1×64 is the encoding vector of the entire image, fol-
lowing after a series of Conv blocks and at last a fully connected layer FC-1. Then we
construct a compatibility score function C with trainable variable u as proposed in [57],
which takes two vectors of equal dimension and gives a scalar compatibility scores as
output:

(L,g) = {c1,c2, ...,cn} (6.3)

in which:
ci = ⟨u, li +g⟩, i ∈ {1...n} (6.4)

Then the compatibility scores are normalised by the softmax operation:

si =
exp(ci)

∑
n
i=1 exp(ci)

i ∈ {1...n} (6.5)

As the values in attention map matrix Ψ(Φ(xt)) from Equation 6.1 need to be ranged in
[0,1] (representing from zero attention to full attention at the corresponding location),
we rescale the compatibility scores by:

ai = exp
(
δ ∗ (si− smax)

)
i ∈ {1...n} (6.6)
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in which
smax = max{s1,s2, ...,sn} i ∈ {1...n} (6.7)

δ is a hyperparameter during the training process, we find δ = 1000 gives pretty good
performance. Finally, the attention map can be denoted as:

Ψ(Φ(x)) = {a1,a2, ...,an}, ai ∈ [0,1] (6.8)

6.1.3 Dataset Collection

anchor

object 2object 1robot

anchoranchor

Sim 1 Sim 2 Sim 3

Anchor
 state

Target
 state

anchor-object 1anchor-robot anchor-object 2

Figure 6.6: Illustration of the anchor-target pair generation process in robot scenario. We run
three simulators in parallel to generate different anchor-target pairs (anchor-robot, anchor-object
1, anchor-object 2). The process can be divided into two steps: 1) initialize the robot and object
state randomly, take as the anchor state, and save as anchor image. 2) Individually change the
robot, object 1 and object 2 states in 3 simulators, save as target image. The dashed line in the
target state represents the original pose of the moving target. The dataset with three groups of
anchor-target pairs is generated by repeating the above generation process 3000 times.

We first collect the dataset, then train the model with the proposed method. We use
Intersection over Union (IoU) to evaluate the performance of our algorithm. It is slightly
different between the robot scenarios (UR5 and Fetch robot) and the DeepMind Control
Suit. For the robot scenarios, to train the model to highlight different components (robot
arm, object 1, and object 2) in the image, we separated the dataset into three groups:
anchor-robot, anchor-object 1, and anchor-object 2. The dataset generation process is
shown in Figure 6.6. Take the real UR5 robot as an example (Figure 6.7); the anchor
image is generated by randomizing the initial state of the robot and two objects. Through
moving only the robot to a new pose, the anchor-robot image pair is obtained. Similarly,
we keep the robot still and change the object pose only to get the anchor-object pair.
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We collect three image pairs each time by running three simulators in parallel. The
procedure is repeated 3000 times to collect a dataset with 3000 image pairs for each
anchor-target group. When we collect images on the real robot platform, we use virtual
objects.

It is easier to collect datasets in the DeepMind Control Suit. We let the agent do
random explorations in the environment, at the same time, collect the pixel observations
each time-step, and reset the environment every five time-steps. We collect 1000 images
for each environment which can give us 9.99× 105 different image pairs. There is no
manual labeling during the dataset collecting.

anchor robot object 1 object 2

1

2

3

Figure 6.7: Example of three groups of anchor-target pairs from real UR5 dataset. In each group,
the first column is the anchor image, forming different anchor-target pairs with images from
“robot”, “object 1”, and “object 2” columns separately.

6.1.4 Training Result Analysis
We use IoU as the metric to evaluate the performance of our model. We choose 50
images randomly from each group of the dataset and mask the motion part in the images
manually. As all the pixel values ai from the attention map matrix are ranged in [0,1],
we set a threshold σ ∈ [0,1] to classify the pixel values with:

ai =

{
0 i f ai < σ

1 i f ai >= σ
(6.9)

Then we compute the IoU of the ground truth masks and the threshold cut of the
attention map Ψ(Φ(x)). During experiments, we find that σ = 0.8 can lead to the best
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IoU for the robot scenarios while σ = 0.9 is better for DeepMind Control Suit. The
result is shown in Table 6.1 and Table 6.2. In the table, “a-r”, “a-o1”, and “a-o2” are
short for “anchor-robot”, “anchor-object 1”, and “anchor-object 2”. Both the attention
map and the corresponding threshold cut are shown in Figure 6.8 and Figure 6.9. For the
robot scenarios, we only give the result of the anchor-robot group as the training results
of the anchor-object group are quite similar to that of the DeepMind Control Suit.

Cart-pole Cheetah Reacher Finger

Figure 6.8: Attention maps and the corresponding threshold cut when σ = 0.8. As we can see,
the model learns to find the motion part successfully from the background. In the Cart-pole,
Cheetah, and Finger samples, errors are caused by some disturbance components like the rail of
the cart, the reflection from the ground, and the shadow on the ground (which is also moving
together with the robot). While the attention maps from Reacher samples are quite clean.

Table 6.1: IoU of Robot Environment Attention Maps on Different Thresholds

σ Fetch sim, a-r sim, a-o1 sim, a-o2 real, a-r real, a-o1 real, a-o2
0.7 0.65 0.83 0.82 0.82 0.81 0.80 0.81
0.8 0.67 0.86 0.83 0.85 0.84 0.86 0.82
0.9 0.71 0.82 0.79 0.82 0.83 0.81 0.83

Table 6.2: IoU of Deepmind Control Suit Attention Maps on Different Thresholds

σ Cart-pole Cheetah Reacher Finger
0.7 0.66 0.64 0.70 0.57
0.8 0.71 0.68 0.75 0.59
0.9 0.75 0.72 0.70 0.68
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Real UR5 Fetch Sim UR5

Distinguish from 
similar color

Distinguish from 
similar color

Figure 6.9: We can observe some interesting details from the original images and their corre-
sponding attention maps in the real UR5 samples: 1) the model learns to distinguish the arm
from the mounting base even though they are similar in the color; 2) the joint part of the robot
arm also shares very close color (gray) to the vertical pillar beside the wall, our model also learns
to distinguish them from each other. Both mean that color is not the only classification criteria
of the model; it does learn some deeper features such as shape and appearance.

6.2 Attention Augmented Reinforcement Learning Frame-
work

Taking the image from the front view camera as the only input makes the training pro-
cess even harder than our previous proposed vision-proprioception model for the fol-
lowing reasons:

• The input to the model is the high-dimensional RGB image from the front camera
now. In the previous model, we used a one-channel object mask.

• In the new model, the network has to learn the relative position between the ob-
jects and the robot end-effector from the image. However, the position of the end-
effector is obtained directly from forward-kinematics on the joint-angles.

• The network in the new model has to simultaneously learn the visual representa-
tions (perception problem) and the control policy (control problem). In compar-
ison, the representation learning of the visual part is pre-trained in the previous
vision-proprioception model.

68



6.2. Attention Augmented Reinforcement Learning Framework

To deal with the problems mentioned above, we propose the attention augmented
reinforcement learning algorithm. The attention mechanism (Section 6.1) is integrated
into the RL framework to enforce the policy net to focus on the task-relevant part (object
and robot arm) in the image, ignoring the changing background during robot motion.

6.2.1 Pre-training of the Attention Mechanism

anchor

target

Figure 6.10: Samples from dataset of UR5 in simulator, both robot arm and objects are different
from each other in one anchor-target pair.

As is discussed in Section 6.1, the attention module can learn to focus on different com-
ponents in the same scenario. In this pushing task, task-relevant information includes
both the object and the robot arm’s pose. Therefore, in the dataset, the target image
should differ from the anchor image on both elements. Some samples of image pairs are
shown in Figure 6.10. After training, the attention module learns to highlight the three
components (manipulating the object, the target, and the robot arm) in the image. The
training result is shown in Figure 6.11.

Figure 6.11: Attention maps of our UR5 platform in simulation.
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6.2.2 Trust Region Policy Optimization
TRPO is used as the student policy in the proposed reinforcement learning frame-
work 6.12. Different from the reinforcement learning algorithm used in previous chap-
ters (DDPG in chapter 3 and SAC in chapter 4, two state-of-the-art off-policy algo-
rithms). As the goal information of each episode is not provided explicitly by the envi-
ronment, the goal relabelling of HER can not be performed easily with the RGB images
as the only input.

TRPO updates policies by taking the largest step possible to improve performance
under a special constraint that prevents the new policy from deviating too much from
the old policies. The KL-Divergence is used as the constraint to measure the distance
between the two policy distributions. The normal policy gradient keeps new and old
policies close in parameter space, but even one bad step that causes slight differences in
parameter space may lead to performance collapse. TRPO is proposed to avoid this col-
lapse and improve performance monotonically. This can be presented with the equation
as:

θk+1 = argmax
θ

L(θk,θ) s.t. D̄KL(θ ∥ θk)≤ δ (6.10)

where πθ denotes a policy with trainable parameters θ , L(θk,θ) is the surrogate advan-
tage which measures the relative performance of the policy πθ to the old policy πθk :

L(θk,θ) = Es,a∼πθk

[
πθ (a|s)
πθk(a|s)

Aπθk (s,a)
]

(6.11)

and the average KL-divergence between the old policy and new policy across the visited
states can be presented as:

D̄KL(θ ∥ θk) = Es∼πθk

[
DKL(πθ (·|s) ∥ πθk(·|s))

]
(6.12)

TRPO makes the approximation to get an easy update format through Taylor expand
the objective and constraint around θk:

L(θk,θ)≈ gT (θ −θk)

D̄KL(θ ∥ θk)≈
1
2
(θ −θk)

T H(θ −θk)
(6.13)

The approximate problem can be solved through Lagrangian duality:

θk+1 = θk +

√
2δ

gT H−1g
H−1g (6.14)

TRPO slightly modify the formula to satisfy the KL constraint as follows:

θk+1 = θk +α
j

√
2δ

gT H−1g
H−1g (6.15)

where α ∈ (0,1) is the backtracking coefficient and j is the smallest nonnegative integer
such that πθk+1 satisfies the KL constraint.
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6.2.3 Attention Augmented Reinforcement Learning Framework

Attention 
Module

Fusion
Layer

Policy
Layer

Vision-Proprioception ModelVariational 
Autoencoder

Policy
Net

Weights Multiplied 

action 

action 

Imitate

Teacher Policy

Student Policy

Bottom camera

Mask

Attention 
map

Pusher Position

Image Encoder

Figure 6.12: Overview of the attention augmented reinforcement learning framework.

The representation of the high-dimensional image and the policy network are trained at
the same time. TRPO with convolutional networks as image encoder behaves poorly on
the pushing task often gets stuck at locally optimum and learns very slowly (as shown
in Figure 6.14). Two methods are proposed to accelerate the learning process:

• The attention module proposed in Section 6.1.2 is integrated into the RL frame-
work to force the agent to focus only on the valuable information from the input;
we assume this can help with the image representation learning.

• The trained teacher policy guides the student policy to an optimal solution, accel-
erating the learning process.

An overview of our framework is illustrated in Figure 6.12. Inspired by “privileged
learning strategy” [71], we first train a teacher policy that has access to the robot pusher
position and the objects’ filtered mask from the bottom camera (the same model pro-
posed in the previous chapter). This teacher policy is then used as the guide for the
student policy, which does not rely on the information provided by the bottom camera.

The teacher policy computes a fusion embedding with the latent variables from
VAE and the pusher position with the fusion layer. The policy layer in the vision-
proprioception model takes the fusion embedding and outputs action â. The training
details of the teacher policy are also described in the previous chapter. After the teacher
policy is trained, it is used to supervise a student policy, which takes only the visual in-
put from the front camera. The optimization is performed through imitating the teacher
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policy and maximum the expected reward at the same time. The imitation loss is defined
as the mean squared error between the student policy action a and the action from the
teacher policy â. The attention maps from the attention module are multiplied as weights
to the input image. The whole framework is illustrated in Figure 6.12.

6.2.4 State Space and Reward Specification
As is shown in Figure 6.12, the pushing task can be described the same as previous:
pushing the object (red) from a random initial pose to a given target pose (blue), which
is also a goal-conditioned RL problem. The difference is that the pushing model pro-
posed in Chapter 4 requires the goal information provided explicitly (through the filterer
object mask) by the environment. However, in this framework (Section 6.2.3), the goal
information (presented as transparent blue object) is included in the visual observation,
and the agent needs to learn the perception implicitly. A finite-horizon discounted MDP
is constructed by (S,A, p,r), where state s ∈RH×W×3 is the visual observation (an RGB
frame of height H and width W ) from the front camera; a = [ax,ay] is the continuous
action, representing the pusher’s 2-D velocity in the motion plane.

The reward is composed of 2 parts, namely the imitation reward and object-target
distance reward:

r =−0.8∗∥â−a∥−1.5∗∥po− pg∥ (6.16)

in which po and pg are the object center positions of the pushing object and the goal.

6.3 Experiments
Comparison experiments are performed to verify the improvement of the attention mech-
anism and the teacher policy for the pushing task. The experiment is divided into three
groups:

• The policy takes image observation x as input, trained without attention mech-
anism or teaching policy. The reward is only the negative distance between the
current and goal positions: −∥po− pg∥.

• The policy takes image observation x multiplied with attention map as input,
which can be denoted as x ·Ψ(Φ(x)). The reward function is also −∥po− pg∥
without the guidance of teacher policy.

• The policy takes image observation multiplied with attention map as input, trained
with the guidance of the pre-trained teacher policy. The reward function is speci-
fied in Formula 6.16.

The learning curve is shown in Figure 6.14: both the pre-trained teacher policy and
the attention mechanism improve the pushing performance significantly. Taking the
high-dimensional RGB image as input, TRPO can hardly learn a proper pushing pol-
icy without guidance. The high variance is because the policy always gets stuck in a
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local optimum. Under the correct guidance (teacher policy), the student policy is more
likely to jump out of the local optimum.

Through the comparison of the learning curve between the original image input
(green line) and the input weighted by the attention map (orange line), the improve-
ment of the attention module for visual reinforcement learning is also prominent, we
assume this is because the pre-trained weights of each spatial location for the image
input can help with the image representation learning.

a)

b)

Figure 6.13: Examples of two pushing process. The first and second row show the image obser-
vation and the corresponding attention map respectively.
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Figure 6.14: Learning performance comparison of different reinforcement learning frameworks.
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6.4 Summary
This chapter presents a new top-down self-supervised model for finding the motion part
from the noisy background. The output attention map is then used in the object pushing
task by properly weighting all the spatial locations of the image input (highlighting the
task-related part of the high-dimensional visual input), reducing the difficulty of the rep-
resentation learning of the deep network. The training of the attention mechanism does
not need any manual labeling, which is a promising method for other customized robotic
tasks. Then we propose the attention augmented reinforcement learning framework, in-
tegrating the attention module and the pre-trained teacher policy. Through comparison
experiments in simulation, the effectiveness of the algorithm is verified.
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Chapter 7

Multimodal Reinforcement Learning
for Multifingered Dexterous Grasping

In the previous chapters, three different RL-based methods were proposed for the object
planar pushing task. This chapter continues to focus on the RL-based real robot control.
A multimodal (including tactile, joint angles, and joint torques) RL framework is pro-
posed to fuse the data from different sensors and apply motion control with the fusion
representation. The model is evaluated with multifingered dexterous grasping task, gen-
eralizing over different shaped objects. Similar to the methods used in the previous three
chapters, all the training processes are performed in simulation, and the trained model
is directly applied on our Shadow Hand + UR10 robot platform (Figure 7.1).

camera

UR10+shadow hand

Figure 7.1: UR10+Shadow hand platform.
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7.1 Multimodal Representation Model for Grasping
How to design a robot controller which can combine modalities with different charac-
teristics is always a challenging problem. Humans tend to solve a manipulation task
through multiple sensing feedbacks, such as tactile, proprioception, vision, and even
audition. The diverse set of modality data makes the feature representation and sensor
fusion very challenging. Choosing proper modalities for a specific task is critical to the
performance of the controller. Different combinations of modality representations are
tested using the model proposed in Section 7.1.3.

7.1.1 Principal Component Analysis for Action Dimension Reduc-
tion

LF
RF

MF
FF

TH
1

2

3
4

5

1

2

4

5

3

WR1WR2

Figure 7.2: Joints mechanics of the Shadow hand. WR1, WR2, LF, RF, MF, FF, and TH refer
to wrist joint1, wrist joint2, little finger, ring finger, middle finger, first finger, and thumb. Joint1
and joint2 marked as blue in each finger are coupled (these two joints are controlled by one
motor).

The human hand is a high-dimensional, complex, and versatile end-effector system.
Usually, a substantial computational resource in robotics applications is necessary to
control a system like the human hand. However, according to the research from [121]:
human beings control their hand in a subspace of much lower dimension than the orig-
inal hand’s DoF. Shadow Hand has 20 active actuators, among which 18 motors are
used for 22 finger joints and the other two motors for two wrist joints (24 DoFs in total,
illustrated in Figure 7.2).

An RL agent with 20 active actuators has a huge exploration space to search for the
optimum policy. Training robot hand with RL in high-dimension action space means a
huge exploration space, which usually causes low sample efficiency and local optimum
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and generates weird hand poses under no constraints during training. PCA is used for
grasping synergies definition [121] and action space reduction in this task. A Shadow
Hand motion dataset is collected to calculate the eigenvectors and eigenvalues repre-
senting the correlated directions in joint space. We obtain 3000 motion samples by con-
trolling the simulation hand by wearing the Cyberglove. Afterward, PCA is performed
to reduce the action dimension, mapping from joint space to a subspace. The proper sub-
space dimension N and the corresponding performance are discussed in Section 7.2.1.

7.1.2 Proximal Policy Optimization
PPO tries to solve the classic reinforcement learning problem: how to make the biggest
possible improvement step on a policy using the current data, without stepping so far,
which may cause performance collapse? TRPO [124] (used in the previous) chapter
deals with this problem with a complex second-order method, while PPO is a first-order
method to keep new policies close to the old ones. From the implement perspective, PPO
is much easier than TRPO but always comes with better performance than TRPO. PPO
is an abbreviation of a family of algorithms, among which two are commonly used:
PPO-Penalty and PPO-Clip. The former penalizes the KL divergence in the objective
function, and the other designs a specialized clipping in the objective function to prevent
the new policy from getting far away from the old policy by one step. PPO-Clip is used
in the following framework (section 7.1.3).

Let πθ denote a policy with trainable parameters θ . PPO-clip updates parameters
with:

θk+1 = argmax
θ

Es,a∼πθk

[
L(s,a,θk,θ)

]
(7.1)

in which L is given by:

L(s,a,θk,θ) = min
(

πθ (a|s)
πθk(a|s)

Aπθk (s,a),clip
(

πθ (a|s)
πθk(a|s)

,1− ε,1+ ε

)
Aπθk (s,a)

)
(7.2)

Usually in the implementation, taking multiple steps of Stochastic Gradient Descent
(SGD) to maximize the objective. ε is the hyperparameter represents the abstract dis-
tance how far the new policy is allowed to be updated from the old policy by one step.
The upper formula can be simplified as a version which can be easily implemented in
code:

L(s,a,θk,θ) = min
(

πθ (a|s)
πθk(a|s)

Aπθk (s,a),g(ε,Aπθk (s,a))
)

(7.3)

where

g(ε,Aθk(s,a)) =

{
(1+ ε)A A≥ 0
(1− ε)A A≤ 0

(7.4)

Suppose the advantage function Aθk(s,a) is positive, in this case, the objective function
is simplified to:

L(s,a,θk,θ) = min
(

πθ (a|s)
πθk(a|s)

,(1+ ε)

)
Aπθk (s,a) (7.5)
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Suppose the advantage is negative, in this case, it is simplified to:

L(s,a,θk,θ) = min
(

πθ (a|s)
πθk(a|s)

,(1− ε)

)
Aπθk (s,a) (7.6)

7.1.3 Reinforcement Learning Framework
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Figure 7.3: An overview of our multimodal reinforcement learning structure. Four different
types of input information are captured from the environment and concatenated as one vector
at each timestep, representing the agent’s current state. This state vector is then stacked with
several history states as the input and goes into the policy net. Three actions are generated from
the policy net, controlling the lifting decision, wrist rotation, and finger joints separately. The
observation history buffer keeps track of several previous state transitions. All trials are collected
into the trajectory buffer as training data to update the policy.

A complete grasp could be defined from four aspects 1) the grasping point describing
the tool center position, 2) the approach vector in which the robot hand approaches
the grasping point, 3) the wrist orientation, and 4) an initial finger configuration [18].
To generate a grasp for Shadow hand, we need to control the finger and wrist joints
during the RL agent training process. Instead of generating a fixed grasp candidate each
time, we propose a two-stage dynamic grasping method where the robot continuously
adjusts its motions until a lift-up decision. In the first stage, the hand tries to make a
closing motion from the initial setup following a human-like hand closing trajectory
until contact is detected between any of the five fingertips and the object. Afterward, the
hand closing motion is stopped, and the robot goes into the second stage. This stage is
a closed-loop control process, during which the hand obtains a set of observations from
proprioception, binary tactile values of the fingertips, and finger joint torques. No visual
perception or object model is provided in the simulation environment. The robot adjusts
all the joint angles continuously to grasp the object better until it lifts the object. The
overview of our multimodal reinforcement learning is illustrated in Figure 7.3.

The whole multifingered grasping process is modeled as a finite-horizon discounted
MDP. At each timestep t, the agent perceives an observation ot ∈ O from the environ-
ment, executes an action at ∈A and obtains a reward rt ∈R. The agent executes an action
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according to a stochastic policy π(at |Ot), a distribution over actions conditioned on sev-
eral recent observations. The goal is to find a policy π that maximizes the expected sum
of discounted rewards over a finite trajectory T . The action value function is defined as:

π
∗ = argmax

π

Eτ(π)

[ T

∑
t=0

γ
trt

]
(7.7)

where γ ∈ (0,1) is the discount factor, τ is the trajectory distribution under the policy π .
We apply PPO [125], an on-policy gradient algorithm to solve the specified policy

optimization problem. Default network parameters are used in our work.

Observations Inspired by how humans use multimodal sensing to grasp objects, we
also introduce tactile sensing, torques, and joint angles in the observation space of the
Shadow hand agent. The agent’s observations should match a real robot as much as
possible to transfer the training model directly from the simulation to a real platform
without any further training. As accurate contact force values and joint torque values
are notoriously hard to get in simulation environments and these continuous values are
difficult to map to a real robot, we use the binary contact information of the fingertip
denoted as φ ∈ {0,1} and level-based joint torque denoted as τ ∈ {0, ...,5} in the model
to minimize the gap between simulation and real scene. Detailed mapping from raw
values to the abstracted values is described in Section 7.2.2. The whole observation at
t = tk is defined as ok = ⟨ak−1,φ ,τ,θ⟩, where ak−1 is the previous target action, τ are the
joint torques, θ = {θ f ,θw} are finger joint and wrist joint angles of the hand. We find
that the historical observations of several previous timesteps are meaningful during the
training process. This may be because these initial observations can characterize the sur-
face shape of the object, which helps with the exploring process of the agent. Finally, the
input observation values at timestep t can be denoted as a vector Ot = ⟨ot−h, ...,ot−1,ot⟩.

Actions The action generated from the policy comprises two continuous parts. 1) prin-
cipal component value increments ∆ε , representing the increments of the first n principal
components (n ≤ 10 in our model). 2) wrist joint angle increments ∆θw, and a discrete
part 3) lifting decision ρ , which decides whether or not to lift the hand for a pick-up at-
tempt. The combined action output from the policy is represented as at = {∆ε,∆θw,ρ}.

We do action planning and optimization in the subspace in our method after apply-
ing PCA dimension reduction to the 22 finger joints. As is illustrated in Figure 7.3, the
output action ∆ε from policy net is an increment based on the current principal compo-
nents ε = P(θ f ), in which P is the function mapping from joint space to the subspace of
planning. Target joint angles of the current timestep can be denoted as:

θ
target
f = P−1(∆ε +P(θ f )) (7.8)

The initial palm pose may not always be a proper grasping pose when the objects
move because of external interference, so we also consider wrist motion. The robot can
adjust its wrist joint angles to a better palm pose like humans do while grasping objects.
The Shadow hand has two wrist joints; ∆θw is a 2-dimensional vector representing the
rotation angles around the two wrist axes.
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The robot’s decision to lift its arm for a pick-up or not is also determined by policy
output ρ . The robot arm keeps the original pose if ρ = 0 else lifts to a fixed height above
the object. During lifting all hand joints stay invariant and the episode terminates after
the lifting attempt. The log action probability can be denoted as:

logπ(at |Ot) = logπ(ρ|Ot)+

(1−ρ)
[
(logπ(∆ε|Ot)+ logπ(∆θw|Ot)

] (7.9)

To ensure state-space exploration, the PPO learning algorithm used for our agent in-
ternally represents the policy as a set of Gaussian functions, whose mean µ and variance
σ are updated during learning. The stochastic action output from the policy net F(Ot)
at timestep t is therefore a tuple of two Gaussian samples (namely the change of princi-
pal component values for the fingers, ∆εw ∼ N(µε(Ot),σε(Ot)), and the update of hand
wrist angles ∆θw ∼ N(µθ (Ot),σθ (Ot))) and one discrete value taken from a Bernoulli
distribution, ρ ∼ Bern(sigmoid(βρ(Ot))).

Reward Designing a reward function for a specific task to apply RL in robotic re-
search is always necessary. In our multifingered grasping task, a training episode is ter-
minated after the lifting attempt, and then a binary reward rb ∈ {0,1} represents whether
the object picked up the object successfully is returned. The concrete reward function is
defined as:

R =

{
rb, t = t f inal

0.03rc t ∈ [1, t f inal−1]
(7.10)

The hand closing reward (rc) is to guide the agent towards closing the hand. We
assume that the combination of positive increments in several key joints:

J∗ = {FF3,MF3,RF3,LF3,T H5} (7.11)

will lead to a close-up hand motion. Therefore we denote a mask matrix M = [m1,m2...mn],
mi ∈ {0,1} representing joint Ji in J∗ or not.

rc = ∑
i∈ joints

(θ target
f −θ f ) ·M (7.12)

Curriculum Learning The grasped object’s initial horizontal position and rotation
angle are randomized in a variable range related to the learning process p, namely cur-
riculum learning. The aim is to choose environmental parameters that are neither too
challenging nor too trivial for the agents [71]. During the experiment, we found that
the initial pose of the object is essential for the hand to generate an effective grasp. In
the beginning, we chose one fixed pose for every object to grasp in our simulation en-
vironment. As the training process goes on, we increase the task difficulty by adding
a randomized disturbance to the initial pose. The new position posstart and orientation
rotstart of the object at the beginning of each episode change according to the grasping
success rate rs, original position poso, and roto.{

posstart = poso +δpos δpos ∈ [−δp,+δp]

rotstart = roto +δrot δrot ∈ [−δo,+δo]
(7.13)
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in which δp = 1.2(rs + 0.2) and δo = 0.035rs are the variation range of orientation
and position, respectively. δpos and δrot are both sampled from uniform distribution:
U(−δ ,δ ).

Figure 7.4: All the objects used for training in simulation, objects in the first row, second row
and third row are selected from YCB objects [22], ShapeNet [24], and EGAD objects [87].

7.2 Experiments

This section evaluates the model’s performance with different modalities and network
structures in terms of grasping success rate. The agent is trained in simulation and trans-
ferred to a real robot platform (Shadow + UR10 in Figure 7.1). As there is always an
apparent sim-to-real gap, a sensor mapping from simulation data to real robot data is
necessary (Section 7.2.2). 24 different shaped objects (Figure 7.4) are used in the simu-
lation environment to train and test the agent.

7.2.1 Performance Analysis of Different Modalities and Structures

The performance of the algorithm with different parameters is evaluated from 3 per-
spectives, which are input modalities (combination of fingertip tactile, joint torque,
joint angle), network structures (MLP or GRU), and the dimension of subspace from
PCA, (ranging from 3 to 10). We use the below pattern for naming the models, M-
X where X ∈ {1,2,3} means the different number of input modalities. PCA-N where
N ∈ {3,5,8,10} represents the dimension of subspace. All models are trained with three
timesteps of history observations as input. The experiment results in Figure 7.5 show the
grasp success rate of the above three experiments, respectively. Each curve is plotted us-
ing five individual runs. All models are trained for 1500 episodes.

81



Chapter 7. Multimodal Reinforcement Learning for Multifingered Dexterous Grasping

0 200 400 600 800 1000 1200 1400
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Input modalities

GRU-M1PCA5
GRU-M2PCA5

GRU-M3PCA5

0 200 400 600 800 1000 1200 1400
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Network architectures

MLP-M3PCA5 GRU-M3PCA5

0 200 400 600 800 1000 1200 1400
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

PCA components

GRU-M3PCA10
GRU-M3PCA3

GRU-M3PCA5
GRU-M3PCA8

Figure 7.5: Network evaluation with different parameters. (top) Different input modalities. (mid-
dle) Different network architectures. (bottom) Different dimensional subspace after PCA.
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The first factor we test is the input modality (Figure 7.5 top). M1,2,3 represents
the input modality of joint angles; the fusion of joint angles and fingertip sensing; the
fusion of joint angles, fingertip sensing, and joint torques. The learning performance of
different input modalities is quite similar from the start. However, as the task difficulty is
increasing gradually (see Section 7.1.3), the learning curve of the single modality (M1)
shows volatility from the 600th episode. M2 begins to drop from around the 1200th
episode, while M3 shows the best stability, verifying that the multimodal inputs can
improve the model robustness.

The second experiment (Figure 7.5 middle) shows the comparison between models
with different network structures. The model with recurrent architecture (GRU) outper-
forms the MLP model, and this can prove that the memory mechanism of GRU can learn
a better representation from the interaction sequence.

In the third experiment (Figure 7.5 bottom), we test different dimensional action
spaces. Because the finger motions are planned in the subspace of PCA, the latent space
with a higher dimension can express more dexterous finger motions. Meanwhile, the
action space for the agent to explore is also bigger, which usually increases the learning
difficulty. Therefore, a properly dimensional reduction is important for grasping perfor-
mance. From the figure, we can conclude that the best dimension for the subspace is five
(the purple curve), three dimensional PCA (red curve) can learn faster but converges
at a lower success rate. Higher-dimensional PCA (eight and ten) cannot improve the
performance further.

Figure 7.6: Grasping configurations in simulation.
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7.2.2 Sensor Mapping

The sensor mapping system from real sensor data to the data reading in simulation is
introduced in this section. For the tactile sensing on the fingertip, the binary data 0,1 is
used to describe the contact status. The fingertip force sensor on the real Shadow Hand
is a continuous pressure reading. The calibration experiment is performed to get the
lower and upper raw data reading range by pressing each force sensor manually. The
lower range of the tactile is defined by keeping the hand still, reading the sensor raw
value ten times, and calculating an average value. During the grasping experiment, a
tactile observation is considered 1 if the sensor reading is higher than 0.3% of the sensor
range, otherwise 0. In this way, the continuous sensor reading is mapped into binary
data, the same as the data format used in the simulator.

For the sensing of joint torques, the real Shadow Hand provides only the tendon force
reading. The tendon reading is recorded when the hand is empty at the beginning of each
grasp attempt and set as the initial tendon value τ j,0 for each joint. We use empirical
thresholds ∈ {−200,−100,0,100,200} for the real robot and {−20,−10,0,10,20} for
the simulation robot to map the reading τ j−τ j,0 to the interval [0,5], which is the default
value range of the RL agent during training.

7.2.3 Real Robot Verification

15 different objects are tested on the real robot platform, including 9 training objects
(number from 1-9 in Figure 7.7) and 6 unseen objects (number from 10-15 in Fig-
ure 7.8). The previous work from our group PointNetGPD [76] is used to generate the
initial grasp pose. The robot setup is illustrated in Figure 7.1. A Kinect depth camera
is used to receive object point cloud, which is taken as the input for the PointNetGPD.
AprilTags on the table surface are used to locate the camera pose. At the beginning of
each experiment, the grasping target is put at a fixed position on the table. Then the
initial grasp pose is generated by PointNetGPD, after which the hand motion from the
above three policies is performed. For each target, three different policies are tested for
ten grasp attempts. The results are shown in Table 7.2 and 7.1. In baseline1, we set a
torque limit for each joint and control the hand in position mode. All active joints are
controlled to track the given trajectory until reaching the target positions or the tendon
force limit. In baseline2, besides joint position and joint torque-sensing, we add one
more modality: tactile sensing. The first finger, middle finger, and ring finger will stop
closing if the tactile sensor on the fingertip is triggered, which helps prevent from over
pushing the object beyond a proper grasping position. The model with the best grasping
performance in simulation: GRU-M3-PCA5, and a comparison model GRU-M2-PCA
are applied directly to the real robot.

As is shown in Table 7.1 and 7.2, baseline2 is slightly better than baseline1. Our
algorithm still outperforms both the baselines, indicating that the agent learns to adjust
hand motions according to the multimodal feedback as we proposed.
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Figure 7.7: Grasping examples on training objects.

Table 7.1: Robot experiment result on training objects (from 1-9)

Object ID 1 2 3 4 5 6 7 8 9

Baseline1 80% 70% 40% 40% 20% 20% 50% 50% 80%
Baseline2 70% 80% 40% 40% 30% 40% 60% 80% 70%

GRU-M2-PCA5 60% 90% 80% 60% 50% 80% 60% 70% 90%
GRU-M3-PCA5 100% 100% 80% 50% 40% 80% 70% 70% 100%

151413121110

Figure 7.8: Grasping examples on novel objects.

Table 7.2: Robot experiment result on novel objects (from 10-15)

Object ID 10 11 12 13 14 15

Baseline1 60% 60% 100% 50% 70% 100%
Baseline2 70% 60% 100% 60% 80% 100%

GRU-M2-PCA5 100% 90% 100% 90% 80% 100%
GRU-M3-PCA5 100% 100% 100% 100% 70% 100%
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7.3 Summary
In this chapter, we propose a multimodal RL algorithm to do multifingered dexterous
grasping. First, a hand pose dataset is collected by humans grasping different objects
while wearing the data glove. Afterward, we train a hand synergy using PCA, reducing
the agent’s action space dimension and generating human-like finger motions. Through
experiments in simulation, we test different combinations of modalities as policy input,
policy network structures (MLP and GRU), and the proper dimension of action space.
The results show that the multimodal model with GRU as a policy network achieves the
best grasping success rate. Finally, we successfully apply the model trained in simulation
on the real robot through sensor mapping.
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Chapter 8

Conclusions and Future Work

8.1 Summary
This thesis studies the application of RL in the scenario of object pushing and dexterous
grasping, which are everyday tasks. The method or algorithm proposed in a later chapter
always aims to solve the limitation or extend the generalization of the previous method.
In conclusion, the research questions from Section 1.3 can be answered as follows:

• Pushing Object Based on Dynamic Model: A fusion of data-driven and an-
alytical models for object pushing, which can perform online self-adapting, is
proposed, the training data for the model is collected in the simulation. Domain
adaption is adopted to bridge the sim-to-real gap. Recurrent Model Predictive Path
Integral is developed to predict object motion for a few future steps according to
recent interaction histories.

• Visual Pushing with RL: For an intelligent pushing side switch, RL is used to
make the decision. Visual input is shown necessary for the generalization to ma-
nipulating a different object. Object mask is obtained through color filtering, then
encoded into low-dimensional latent variables as the state for RL agent.

• Attention Augmented RL framework: Given the front camera as the only sen-
sor, the understanding of the image, including the robot arm, the pushing object,
and the goal pose, is more complicated. A self-supervised attention mechanism
that can highlight the task-related region of an image is developed and integrated
into the RL framework and proven to be effective in improving learning perfor-
mance.

• Multimodal RL for Dexterous Grasping: A copy of our UR10-Shadow Hand
platform is built in simulation to train grasping policy. The action planning is per-
formed in a subspace of PCA. To verify the assumption that multimodal sensor
data can improve the grasping success rate, comparison experiments of taking dif-
ferent modalities as input are performed to get the best multimodal combination.

The core contribution of this thesis is the deep study of RL around the problem of object
pushing and grasping. The input of different modalities are tried through all chapters
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(ground truth pose state in chapter 4, object mask and robot proprioception in chapter
5, raw images in chapter 6, multimodal sensory data including torques, joint angles, and
tactile data in chapter 7). Accordingly, different RL algorithms are proposed to train the
agent in simulation. Models are verified on real robot experiments.

8.2 Challenges
Despite the promising results presented in the previous chapters, some defects still exist
in the methods.

One limitation of the dynamic motion model proposed in chapter 4 is that while
pushing, the robot cannot effectively switch sides to control the object more precisely.
However, benefiting from one of the advantages of model-based control, the learned
model can be adapted to new tasks. The solution may be adding an upper-level controller
in RMPPI. Another limitation is the generalization ability to off-centered objects during
real experiments, which the model can learn by adding more off-centered objects in the
simulation.

The vision-proprioception model proposed in chapter 5 has strict requirements for
the experiment setup, limiting the application to other manipulation tasks. During real
experiments, the pushing performance is influenced by lighting conditions such as il-
lumination angle, the table’s reflection, and light intensity because all the factors can
affect the object mask filtering through a transparent table.

In the attention augmented RL framework, the attention mechanism needs to be pre-
trained before the training start of the RL agent, and one specific dataset needs to be
collected to train the attention module. Besides, further work is necessary to transfer the
model trained in simulation to the real world.

One of the weaknesses of the multimodal grasping policy is the lack of reopening
action. When trying to grasp a novel object, human beings can reopen their hands and
adjust to a better grasping pose if the initial trying fails until reaching a comfortable
grasping pose. Another limitation is that there is no visual information in the observa-
tion, which is a valuable input modality for robot manipulation.

8.3 Future Research
Based on the current results, some future researches can be planned. One direction is to
transfer the attention augmented pushing model to the real world, in which some visual
domain randomization methods can be used. A technical problem in this task is to render
a virtual pushing target pose (a no-collision transparent object in simulation) in real-time
on the camera observation during real experiments, which is easier to do in a simulator.

To transfer the attention augmented RL model to the real world is not trivial. Possi-
ble solutions include: adding the visual domain randomization into the training process
in simulation, which may increase the training difficulty, or using CycleGAN [111] to
transfer the real images into the simulation domain. Some initial work has already been
in progress: as is shown in Figure 8.1, Contrastive Unpaired Translation (CUT) [97] is
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Figure 8.1: Examples of using CUT to transfer images from simulation domain (first row) to
real world domain (second row).

Figure 8.2: 2 DOF sliding friction force sensor for pushing experiments [47].

applied to transfer images from simulation domain to real domain. The images from
the first line are taken as inputs to the translation model, and the second line shows the
corresponding outputs. Current results show that some important details of the pushing
targets (red and green boxes in the images), like the rotation and shape, are not correctly
translated, which further research needs to improve.

Another direction to improve the pushing experiment is by adding more sensing
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modalities. As is proved by the experiments in chapter 7, taking advantage of multi-
modal information from proper modalities in reinforcement learning can improve the
final learning performance. Inspired by this finding, future research is to apply multi-
modal reinforcement learning in object planar pushing. The friction between the table-
top and the pushing target during motion is an essential factor that can represent the
current interaction state and influence the optimal pushing action of the next step. One
2-DOF 3D printed sensor is designed [47] to measure friction forces during the pushing
experiments, which can be easily mounted into different pushing targets.
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Appendix A

List of Abbreviations

ADR Automatic Domain Randomization

CNN Convolutional Neural Network

DDPG Deep Deterministic Policy Gradient

DoF Degree of Freedom

DRL Deep Reinforcement Learning

GAN Generative Adversarial Network

GPR Gaussian Process Regression

GRU Gated Recurrent Units

HER Hindsight Experience Replay

IoU Intersection over Union

LSTM Long Short-Term Memory

MDP Markov Decision Process
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MPC Model Predictive Control

MPPI Model Predictive Path Integral

MLP Multi-Layer Perception

NLP Natural Language Processing

PCA Principal Component Analysis

PPO Proximal Policy Optimization

RIG Reinforcement Learning with Imagined Goals

RL Reinforcement Learning

RMPPI Model Predictive Path Integral

RNN Recurrent Neural Network

ROI Region of Interest

SAC Soft Actor-Critic

TRPO Trust Region Policy Optimization

VAE Variational Autoencoder
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