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Abstract

X-ray fluorescence tomograms of large or highly absorbing samples often suffer from self-

absorption effects. For qualitative and quantitative results, it is necessary to correct these effects.

In this thesis, a fully 3D self-absorption corrected reconstruction algorithm for X-ray fluo-

rescence tomography datasets is presented. As an extension of the tomographic maximum-

likelihood expectation-maximization algorithm, it is an iterative algorithm that reconstructs the

density volumes of all measured elements in parallel. The algorithm includes multiple optional

parts to aid its convergence, including density and background constraints. Noise may be re-

duced by using a priori information of the sample to introduce a weighted penalty term. All

calibration parameters are derived from experimental measurements and small inconsistencies

in those values may be corrected by a rudimentary adaptive calibration. Parallel calculations on

CPU and GPU as well as downscaling approximations are used to assure high performance of

the algorithm and to allow for online reconstruction during experiments.

Numerical simulations of multi-element phantoms without and with added noise confirmed the

qualitative as well as quantitative properties of the self-absorption correction. Additionally, to-

mographic STXM and XRF measurements of a barred olivine micrometeorite were performed

at beamline P06 of the PETRA III synchrotron storage ring at DESY in Hamburg, Germany.

Although the algorithm was able to correct parts of the self-absorption effects in the microme-

teorite data, the qualitative and quantitative properties of the final reconstructions were severely

limited by inconsistencies in the experimental calibration, mainly the deadtime and pile-up cor-

rections.
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Zusammenfassung

Röntgenfluoreszenztomogramme großer oder stark absorbierender Proben leiden oft an Selbst-

absorptionseffekten. Für qualitative und quantitative Ergebnisse ist es notwendig diese Effekte

zu korrigieren.

In dieser Arbeit wird ein 3D selbstabsorptionskorrigierter Rekonstruktionsalgorithmus für

Röntgenfluoreszenztomographiedatensätze präsentiert. Als eine Erweiterung des tomogra-

phischen Maximum-Likelihood Expectation-Maximization Algorithmus ist es ein iterativer

Algorithmus der die Dichtevolumen aller gemessenen Elemente parallel rekonstruiert. Der

Algorithmus beinhaltet mehrere optionale Teile die die Konvergenz fördern, inklusive Dichte-

und Hintergrundbeschränkungen. Rauschen kann reduziert werden, indem a priori Informa-

tionen über die Probe dazu benutzt werden einen gewichteten Strafterm einzuführen. Alle

Kalibrationsparameter sind von experimentellen Messungen abgeleitet und kleine Inkonsi-

stenzen in diesen Werten können mit einer rudimentären adaptiven Kalibrierung korrigiert

werden. Parallele Berechnungen auf CPU und GPU sowie Downscaling-Näherungen werden

benutzt um eine hohe Performance des Algorithmus sicherzustellen und Online-Rekonstruktion

während der Experimente zu ermöglichen.

Numerische Simulationen von Mehrelement-Phantomen ohne und mit zusätzlichem Rauschen

bestätigten die qualitativen sowie quantitativen Eigenschaften der Selbstabsorptionskorrektur.

Zusätzlich wurden Röntgenabsorptions- und Röntgenfluoreszenzmessungen an einem Barred

Olivine Mikrometeoriten an Strahlführung P06 des PETRA III Speicherrings am DESY in

Hamburg, Deutschland, durchgeführt. Obwohl der Algorithmus in der Lage war Teile der Selb-

stabsorptionseffekte in den Mikrometeoritdaten zu korrigieren, haben Inkonsistenzen in der ex-

perimentellen Kalibrierung, insbesondere der Totzeit- und Pile-Up-Korrektur, die qualitativen

und quantitativen Eigenschaften der finalen Rekonstruktionen eingeschränkt.
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Chapter 1

Introduction

X-ray fluorescence (XRF) tomography is a nondestructive imaging method used to measure

the spatially resolved elemental composition of a sample. Owing to its versatility, it is uni-

versally applied in a broad range of research fields, like plant biology, catalysis and medicine.

In recent years, for example, XRF tomography was successfully used to image changes in el-

emental distribution and speciation in plants as a response to viral infections [MMB+19], the

elemental distribution in seeds [vdESB+19] and fronds [vdEdJS+20] of plants hyperaccumulat-

ing otherwise toxic concentrations of metals, the distribution of metals decreasing the efficiency

of catalysts [GVF+20], the elemental distribution in Langerhans islets, pancreatic regions that

contain insulin producing cells relevant to type 1 diabetes [dSBvM+20], as well as the distribu-

tion of nanoparticles inside glioblastoma models, used to potentially increase the efficiency of

cancer treatments [BBC+20].

However, as a type of emission tomography it suffers from self-absorption effects, which are

caused by the reabsorption of the emitted signal inside the sample. While the self-absorption

effects are often negligible for very small samples or for high energy XRF emission inside low Z

sample matrices, they can have a significant influence on qualitative and quantitative properties

for measurements of larger or strongly absorbing samples.

With the advancement of science allowing for modern X-ray sources that provide increasingly

higher flux and the development of faster stages as well as detectors, X-ray measurements be-

come more and more time efficient. This improved time efficiency may be exploited in multiple

ways, for example by measuring more samples, measuring at higher resolutions or measuring

larger samples. For larger samples, self-absorption will increasingly become a problem. Thus,

it is important to develop a self-absorption correction algorithms that are quantitative and qual-

itative as well as efficient, to keep up with the experimental measurements.

Aim of this thesis is the development of a fully 3D self-absorption correction algorithm for the

qualitative and quantitative reconstruction of XRF tomography datasets. The algorithm will

be based on the tomographic maximum-likelihood expectation-maximization (MLEM) algo-

rithm and focus on parallel computation for performance and eventual online reconstruction of

tomograms during experiments.
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Chapter 2 includes a short overview of basic X-ray theory with a focus on the creation of

synchrotron radiation, absorption in matter and x-ray optics.

Chapter 3 covers the topics of X-ray microscopy and tomography. For X-ray microscopy, the

discussion focuses on absorption and XRF microscopy, continuous scanning as well as dead-

time and pile-up effects. The tomographic part explains the fundamentals of tomographic re-

construction, especially using the MLEM algorithm.

Chapter 4 gives an overview of the general XRF tomography self-absorption problem and the

current state of the science regarding self-absorption correction. Furthermore, the chapter in-

cludes a detailed derivation of the 3D self-absorption corrected MLEM algorithm, information

about its technical implementation as well as numerical simulations to test its performance.

Chapter 5 describes the setup used during the synchrotron experiment, the samples as well as

the measurement parameters.

Chapter 6 discusses the data analysis of the tomographic data, including the preprocessing and

the reconstruction, as well as qualitative and quantitative aspects of the resulting volumes.

Chapter 7 gives a short summary of the achieved results and an outlook of possible future

developments.
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Chapter 2

Theoretical Background

2.1 X-Rays

X-rays are electromagnetic waves with photon energies in the range from a few hundreds eV to

about 100 keV and wavelengths of a few nanometers down to tens of picometers. Due to their

properties, they can be used as probe to gain information about the electronic and geometric

structure of samples not accessible otherwise, for example by using visible light or ultraviolet

radiation.

2.1.1 Synchrotron Radiation

One method of creating X-rays is to utilize synchrotron radiation. Electrons, or alternatively

positrons, are accelerated to relativistic velocities using high frequency voltage and forced onto

circular orbits by magnetic electron optics, for example bending magnets.

Bending Magnet Radiation

Due to the Lorentz force caused by the magnetic field of the bending magnets, the electrons are

radially accelerated in the direction perpendicular to the magnetic field as well as their moving

direction. This acceleration causes the electrons to act as oscillating dipoles and thus to emit

dipole radiation, which is linear polarized in the plane of the electron orbit with additional

circular components out of plane. As the electrons move at highly relativistic velocities, the

toroidal emission pattern of oscillating dipoles in the reference frame of the moving electron

resembles a narrow forward cone with a half angle of θc in the laboratory frame [Att99]:

θc ≃
1

2γ
, for γ ≫ 1 (2.1)

with γ being the Lorentz factor:

γ =
1

√

1− v2

c2

(2.2)

3



where v is the velocity of the electrons and c the speed of light. This bending magnet radiation

exhibits a broad energy spectrum with a critical energy Ec of:

Ec =
3eh̄Bγ2

2m
(2.3)

where e is the elementary charge, B the magnetic flux density of the magnetic field and m the

mass of accelerated charged particle. Per definition, the critical energy Ec is the energy at which

half of the emitted power is radiated at lower and the other half at higher energies.

Insertion Devices

The concept of bending magnet radiation can be expanded on by utilizing arrays of magnets

creating a series of antiparallel magnetic fields. These insertion devices, depending on their

properties either called undulators or wigglers, force electrons on a sinusoidal path, causing

them to emit dipole radiation over longer distances than it would be the case for single bending

magnets. Their properties are mainly defined by the undulator parameter K [Att99]:

K =
eB0λu

2πmc
(2.4)

where B0 is the amplitude of the periodic magnetic field and λu the period of the magnetic

structure. Usually, the period of the magnet structure is a constant parameter of the insertion

device, while the amplitude of the magnetic field can be modified by changing the size of the

vertical gap between the magnetic poles.

For small magnetic amplitudes and short magnet periods the undulator parameter will be K ≤ 1,

in which case the insertion device is called an undulator. In this case the amplitude of the oscil-

lating electron beam is smaller than the natural opening angle 2θc of the forward radiation cone

emitted by each of the electrons (eq. 2.1). This allows the emitted radiation from each electron

to overlap coherently, causing the generation of harmonic radiation with small bandwidths as

described by the undulator equation:

λn =
λu

2γ2n

(

1+
K2

2
+ γ2θ 2

o

)

(2.5)

where λn is the wavelength generated by the n-th harmonic of the undulator and θo the observa-

tion angle from the central undulator axis. It has to be noted that the odd and even harmonics do

have different radiation patterns, with the odd harmonics radiating mainly on the central axis. In

contrast, the even harmonics are only observable off-axis as they are generated by oscillations

parallel to the electron beam moving direction.

As the wavelength of the emitted radiation is dependent on its angle from the central axis, the

concept of a central radiation cone defined by its bandwidth λ/∆λ =N is introduced, where N is

the number of undulator periods. In this case, it can be calculated that the opening angle of the

central cone θcen is narrowed down by a factor of about 1/
√

N compared to the bending magnet

case:

4



θcen =

√

1+K2/2

γ
√

N
≈ 1

γ
√

N
, for small K (2.6)

Overall, the advantages of undulator radiation over bending magnet radiation are thus an in-

creased photon flux, a smaller spectral bandwidth as well as a narrowed radiation cone.

On the other hand, if the magnetic strength of an insertion device is high enough that the un-

dulator parameter K > 1, the amplitude of the oscillating electron beam will exceed the size of

the natural radiation cone and the insertion device is called a wiggler. In this case, the emitted

radiation cones of each electron do not overlap coherently but incoherently instead. This still

leads to an increase in photon flux by a factor of 2N compared to the bending magnet case, but

also causes the spectrum of the wiggler to resemble the broad spectrum of a bending magnet

and increases the horizontal width of the total radiation cone by about a factor of K.

5



2.2 Interaction of X-Rays with Matter

The interactions of X-rays with matter include effects like absorption, scattering and refraction.

This work will limit its focus on the description of X-ray absorption and, in extension, of X-ray

fluorescence.

2.2.1 X-Ray Absorption

X-ray photons may be absorbed in matter by interacting with the bound electrons of its atoms.

If the photon energy is high enough, this interaction may induce the emission of formerly bound

electrons into the continuum, leading to electron vacancies in the atomic shell.

On a macroscopic level, the transmitted intensity I of a beam with an initial intensity I0 after

propagating a distance d through a homogeneous sample can be calculated by the Beer-Lambert

law [ANM11]:

I = I0 · e−τabs(E) = I0 · e−µabs(E)·d (2.7)

where τabs(E) is the energy dependent optical depth of the sample and µabs(E) the energy de-

pendent linear absorption coefficient. For inhomogeneous samples, the optical depth is instead

calculated as the integral over the absorption coefficient along the beam path:

τabs(E) =

d
∫

0

µabs(E,x)dx (2.8)

Assuming the sample consists of j different types of atoms with volume mass densities ρ3D, j

and energy dependent absorption cross sections σabs, j(E), the linear absorption coefficient can

be expressed as:

µabs(E) = ∑
j

NA

M j

ρ3D, jσabs, j(E) (2.9)

where NA is the Avogadro constant and M j the molar mass of atom type j. Combining the

equation for the optical depth with equation 2.9 then leads to a description of the optical depth

dependent on the area mass density ρ2D = ρ3D ·d in the plane intersected by the beam:

τabs(E) = d ∑
j

NA

M j

ρ3D, jσabs, j(E) = ∑
j

NA

M j

ρ2D, jσabs, j(E) (2.10)

The energy dependent absorption coefficients for Ti, Fe and Zn are plotted in figure 2.1. It can

be seen that the absorption coefficients generally decrease with higher X-ray energies, except at

certain specific energies at which they increase with a strong rise. These energies are equivalent

to the binding energies EB of the electrons in the atoms and called absorption edges. If the

energy of the incident X-rays is equivalent to the energy of an absorption edge, the X-rays are

absorbed resonantly. The resonant absorption is explained by Fermi’s Golden Rule, which states

6



Figure 2.1: Log10-log10 plot of the energy dependent absorption coefficient for Ti, Fe and Zn in

the energy range between 0.1 keV and 100 keV.

that during the absorption process the transition rate W between the initial bound state |i⟩ and

the final continuum state | f ⟩ is proportional to the absolute squared of the scaled overlap of the

two states [ANM11]. This overlap has a maximum for excitation energies equal to the electron

binding energies. If the excitation energy is increased further, the overlap, the transition rate,

and therefore in extension also the absorption cross section, decrease.

Furthermore, as can be seen in figure 2.1, the change of the energy dependent absorption coeffi-

cients between the absorption edges can be approximated by linear functions in the log10-log10

plot. Empirically, this behavior can be described by Leroux’s scaling law [Ler61]:

µabs(E) ∝ Eγ (2.11)

where γ is an empirical scaling parameter. The exact value of the scaling parameter changes

depending on the element in question and the considered region of energy in relation to the

absorption edges of the element, but typically lies in the range −3≤ γ ≤−2.7.

2.2.2 X-Ray Fluorescence

The absorption of an X-ray photon and the following emission of a core electron creates a va-

cancy in a core energy level of atomic shell. This vacancy can be filled by an electron from a

higher energetic level, as long as the transition into the vacant energy level is quantum mechan-

ically allowed [Att99]. During the transition, the electron releases an energy ∆E equivalent to

the difference between its former higher and new lower energetic level. There are two main

pathways this energy may be released.

7



Figure 2.2: Example transitions between electronic energy levels and their corresponding XRF

emission lines (following [T+09]).

For one, the energy can be directly emitted as a photon with an energy h̄ω = ∆E in a radiative

process known as X-ray fluorescence (XRF). This emission is isotropic and thus covers the full

solid angle of 4π . Depending on the initial and the final energy level of the electron that is filling

the vacancy, the nomenclature of the transition and, in extension, of the corresponding emis-

sion line changes. Figure 2.2 shows a selection of allowed transitions between electronic levels

and their naming in Siegbahn notation. Alternatively, the transitions may be named directly

using the involved electronic levels (IUPAC notation). In cases in which multiple lines can-

not be energetically resolved, the resulting combined line is named after their lowest common

denominator. A combination of the Kα1 and Kα2 line, for example, would be a Kα line.

As a consequence of the multitude of electronic transitions, the emitted XRF radiation usually

encompasses an array of different energies unique to the type of absorbing atom. Each possible

transition gives rise to a separate emission line, potentially leading to complex XRF spectra.

Alternatively, the released energy can lead to the emission of an electron from a higher energy

level, as long as it is higher or equal than the binding energy of this electron Eb ≤ ∆E. This

non-radiative process is called Auger emission and the emitted electron an Auger electron.

Following the conservation of energy, the kinetic energy of the Auger electron can then be

calculated as E = ∆E−Eb.

As Auger emission is a competing process to X-ray fluorescence, it has to be considered in the

planning of XRF experiments. As a general tendency, Auger emission is favored in atoms with

low atomic number Z. With increasing Z, the relative yield of both processes shifts towards

X-ray fluorescence [Att99].

8



2.3 Optical Elements for X-Rays

As the interaction of X-rays with matter differs from those of visible light, most elements uti-

lized in classical optics cannot or can only be used in limits to modify X-rays. It is therefore

important to develop and use special optical elements for X-ray experiments. Two of the optical

elements suited for the manipulation of X-ray radiation are the double crystal monochromator

and the Kirkpatrick-Baez mirrors.

2.3.1 Double Crystal Monochromator

A double crystal monochromator is an optical element that utilizes the diffraction of X-rays at

a crystal lattice to monochromatize polychromatic X-ray beams.

If an X-ray beam interacts with the lattice of a crystal, it is scattered by the different atoms of

the lattice. Assuming an elastic process, the scattered X-rays are able to interfere with each

other. Because of the periodicity of the crystal lattice, this interference is destructive, except in

cases in which the Bragg condition is met [Att99]:

nλ = 2d sinθ (2.12)

where n is an arbitrary positive integer, λ the wavelength of the X-rays, d the distance between

the planes of the periodic crystal lattice and θ the incident angle of the X-rays. Thus, it is possi-

ble to monochromatize an X-ray beam by tuning its incident angle on a crystal monochromator

in such a way that only the desired wavelength is diffracted.

However, real crystal monochromators are not perfect and flawed crystal structures as well as

surfaces may lead to the diffraction of wavelengths other than the desired one. These effects

may be amplified by the high heat load caused by an intense X-ray beam, leading to thermal

distortion of the crystal and further reducing its performance [ANM11]. In addition, the process

of diffraction changes the direction of the X-ray beam as a function of the incident angle, which

may be inconvenient depending on the experimental setup.

To mitigate these drawbacks, a combination of multiple crystal monochromators may be used

instead of just a single one. The Bragg condition has to be met for all of the separate crystal

monochromators. In this way, each subsequent crystal further suppresses the undesired wave-

lengths diffracted by the crystals before.

Figure 2.3 a) shows a schematic overview of the beam path through a double crystal monochro-

mator. Both crystal are aligned in such a way that the Bragg condition is met for the X-ray

beam with wavelength λ . Furthermore, due to the parallel geometry of the crystals, the exiting

beam is parallel to the incident beam. This allows to utilize the double crystal monochromator

at different X-ray energies without changing the direction of the beam.

9



Figure 2.3: Schematic overview of the beam path in a) a double crystal monochromator and b)

a single KB-mirror.

2.3.2 Kirkpatrick-Baez Mirrors

A Kirkpatrick-Baez (KB) mirror system is an optical element consisting of two elliptically

curved mirrors used to focus X-ray beams. As each of these mirrors only focuses in one di-

rection (fig. 2.3 b), the two mirrors are usually placed orthogonal to each other to allow for

horizontal as well vertical focusing.

One of the main principles of a KB-mirror is the total external reflection of X-rays. The com-

plex refractive index of a homogeneous medium for electromagnetic waves with an angular

frequency of ω is given by [Att99]:

n(ω) = 1−δ + iβ (2.13)

where the real part 1−δ is defined by the scattering properties of the medium and the imaginary

part iβ by its absorption properties. By calculating the real part of the refractive index, it can

be shown that 0 < δ ≪ 1 inside the energy range occupied by X-rays and therefore ℜ{n}< 1.

Thus, for X-rays the refractive index of the vacuum is larger than the refractive index of other

media, allowing for total external reflection. Utilizing Snell’s law, the critical angle for total

external reflection θc can be calculated using:

θc =
√

2δ (2.14)

10



Each X-ray wave coming from vacuum and grazing a medium with an incident angle smaller

than θc is nearly completely reflected by the surface of the medium. KB-mirrors, utilizing this

effect, therefore tend to have a higher flux efficiency as other X-ray focusing optics, for example

compound refractive lenses or Fresnel zone plates.

Another advantage of KB-mirrors over other focusing optics is their achromaticity. The angle

of reflection is independent of the X-ray energy. As long as the incident angle of the reflected

radiation is smaller than the critical angle, the influence of varying energy on the focusing is

negligible. Experiments that require frequent X-ray energy changes can thus be performed

without adjusting the experimental geometry between measurements.

The critical angle is dependent on the real part of the refractive index (eq. 2.14) and thus on the

energy of the incident X-rays. It can be shown that the critical angle has a general tendency to

decrease for higher energies. This can be exploited for higher order suppression. Assuming an

X-ray source emitting multiple harmonics of increasing energy, for example an undulator, the

KB-mirrors can be tilted in such a way that the critical angle is larger than the incident angle for

the lower harmonics but smaller for the higher harmonics. In that case, total external reflection

only applies to the lower harmonics, while the higher harmonics are suppressed. However, this

can also be a disadvantage if the geometry of the KB-mirrors is fixed, as it would introduce a

maximum cut-off energy above which the usage of the KB-mirrors is not feasible anymore.
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Chapter 3

Experimental Methods

3.1 X-Ray Microscopy

X-ray microscopy (XRM) encompasses different experimental techniques of imaging samples

using X-rays as a probe. Owing to the penetrative properties of X-rays, XRM is more suited

to investigate the inner structures and properties of samples compared to optical or electron

microscopy. Measurements may be performed using either full-field or scanning methods, de-

pending on the requirements of the employed imaging modalities.

3.1.1 Principles of Scanning XRM

The basic principle of scanning XRM is the movement of a sample through a small, often fo-

cused, X-ray beam to achieve spatially resolved information on the properties of this sample. In

some cases, especially if a sample is difficult to move, the X-ray beam may be scanned over the

stationary sample instead. Modalities of scanning XRM include, for example, X-ray absorp-

tion, X-ray fluorescence, wide- and small-angle X-ray scattering, as well as coherent diffractive

imaging. In comparison to full-field XRM, the spatially resolved modalities of scanning XRM

cover a wider range. However, considering the time requirements of moving samples through

the beam, scanning XRM measurements are usually slower than full-field XRM measurements,

necessitating the development of fast scanning methods.

X-Ray Absorption Microscopy

Scanning transmission X-ray microscopy (STXM) is used to measure the spatially resolved

projected optical depth τ of a sample. The transmission of an X-ray beam through the sample

is measured by a detector placed directly downstream of or behind the sample.

Normalization of the transmitted intensity I to the incident intensity I0 can be performed by

either using the intensity data of an additional detector upstream of the sample or, if possible,

by using the transmitted intensity measured by the downstream detector in regions with no

sample in the beam. The former case requires the correct calibration of both detectors to each
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other, while in the latter case fluctuations of the incident beam may be missed in regions where

the sample is in the beam. To mitigate these drawbacks, both methods may be combined by

first qualitatively normalizing the transmission data to uncalibrated incident intensity data of

an upstream detector, followed by a quantitative normalization to the non-sample transmitted

intensity data of the downstream detector.

After the measurement and normalization, the optical depth τ is calculated from the intensity

ratio I/I0 using the Beer-Lambert law (eq. 2.7).

X-Ray Fluorescence Microscopy

Scanning XRF microscopy is used to measure the spatially resolved elemental composition of

a sample. As the XRF signal is emitted isotropically, the placement of the spectrally resolved

XRF detector in relation to the sample is variable. However, there are some considerations that

have to be made. To collect as much XRF signal as possible, the detector should be close to

the sample. For horizontally polarized synchrotron radiation, placing the detector perpendic-

ular to the X-ray beam reduces the influence of elastic and inelastic X-ray scattering on the

spectra [PPK+14]. However, depending on the sample size and geometry, this may not be

ideal. Especially for extended 2D samples, detectors placed perpendicular to the X-ray beam

and close to the sample may interfere with the scanning geometry. For this reason, some detec-

tors operate in “backscattering” geometry, sacrificing the reduction in scatter signal for larger

scanning ranges at small sample-detector distances.

Independent of the placement of the detector, the result of a scanning XRF microscopy measure-

ment will be a full XRF spectrum for every position of the scan. Depending of the composition

of the sample, these spectra may consist of a variety of overlapping XRF emission lines. For

this reason, the spectra have to be fitted to extract meaningful elemental information. Depend-

ing on the objective of the measurements, the fitted data may then be normalized and calibrated

further. The final results are spatially resolved maps, showing the element specific distributions

in the scanned regions of the sample.

3.1.2 Continuous Motion Scanning

Compared to full-field microscopy methods, scanning microscopy methods can be slow and

time consuming. This is especially a problem if experimental time is limited. Modern scanning

schemes, for example continuous motion or fly-scanning, can be employed to mitigate this

problem.

A common scanning scheme for scanning X-ray microscopy is the step-scan. In this scheme,

the scanning motors move the sample to a predetermined position and stop. Following that, the

measurement is performed and the sample is moved to the next position. Therefore, the time

spent at every scan point is made up of three separate times: First, the overhead time to the

scanning stages require to accelerate, move to the requested position and to decelerate. Second,

the time td it takes for the detectors to be ready for the exposure and finally the exposure time te
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itself. The fraction of time wstep not used for the exposure for step-scans can then be defined

as [DNC+15]:

wstep =
to + td

te + to + td
(3.1)

In the case of fly-scanning the stages are moved continuously, without stopping at certain posi-

tions. Thus, the detectors are exposed while the sample is moving, effectively eliminating the

overhead time to. Acceleration and deceleration is only required in the turning points at the

edges of the scanned area. As the time spent at the turning points is usually only a small part

of the entire scanning time, the fraction of time w f ly not used for the exposure during fly-scans

can be calculated as:

wfly =
td

te + td
(3.2)

Assuming fast measurements with piezo-scanners as sample stages and an 1D XRF detector,

realistic values would be in the order of to = 10 ms, td = 100 ns and te = 2.75 ms. Using these

values, the fraction of time not spent on exposure is wstep = 0.784 for step-scans and w f ly =

3.67 ·10−5 for fly-scans. As can be seen, more than three fourths of the total required time for

the step-scan is made up of movement overhead, while the total required time for the fly-scan

is only slightly larger than the sum of all exposures would be. In this specific case, the fly-scan

would be more than four times faster than the step-scan.

However, there are disadvantages to the fly-scanning approach. As the stages are moving con-

stantly, data acquisition is more challenging. For example, the scanning stages need encoders

to correctly correlate the time of exposure with their location in space. Furthermore, as the

measurements are not taken at predetermined points but over certain distances, the spatial res-

olution along the scanning direction may be worse than it would be for step-scans. Also, with

the measured points not being on a prefect grid, interpolation is required to sort the measured

data into images, further worsening the resolution.

3.1.3 Deadtime and Pile-Up

Two additional effects important to consider for XRM measurements, especially for quantitative

XRF measurements at high input count rates (ICR), are the detector deadtime losses and pulse

pile-up. These effects lead to a reduction of the measured output count rates (OCR) compared

to the ICR as well as artifact peaks in the XRF spectra.

Deadtime

After an event is detected inside a detector, the associated electronics require a certain amount

of time to analyze the event and prepare the detector for the measurement of the next event.

This time is called the deadtime of the detector and, in most cases, all events that occur inside

the detector during this time are discarded. Thus, the deadtime leads to a reduction of measured
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Figure 3.1: XRF spectra of a Mn-foil measured at an excitation energy of 7 keV, plotted for

different input count rates. Each detector channel has a width of about 0.01 keV. The region

between channel 500-700 mainly contains the Mn-K peaks. All peaks above channel 700 are

caused by pulse pile-up.

count rate compared to the expected count rate. As deadtime losses can skew the results of

quantitative measurements towards lower values, it is of importance to characterize the deadtime

and correct for the resulting losses.

Figure 3.1 shows three XRF spectra measured using a Mn-foil. Focusing on the area of the Mn-

K peaks between detector channel 500-700 illustrates the influence of deadtime losses on the

quantitativity of the measurement. From assuming Gaussian shaped peaks with fixed FWHM

and an amount of detected XRF photons which, in the ideal case, should be proportional to the

ICR, it would follow that the heights of the measured peaks should also be proportional to the

ICR. However, comparing the peak heights in the data, it is apparent that the increase of peak

height reduces with higher ICR.

There are two idealized theories to describe the influence of deadtime on the OCR. The first,

type I, assumes a nonparalyzable deadtime model, while the second, type II, assumes a paral-

izable deadtime model [UP18]. Both of these models assume a Poisson distributed input at the

detector.

In the nonparalyzable deadtime model every event inside the detector starts a deadtime τN dur-

ing which all other occurring events are ignored. The duration of this deadtime is constant and

after it expires events are recognized normally again. Mathematically, the effect of a nonpara-

lyzable deadtime on the OCR can be described by equation 3.3 [UP18]:

OCR

ICR
= 1−OCR · τN ⇔ ICR =

OCR

1−OCR · τN

⇔ OCR =
ICR

1+ ICR · τN

(3.3)
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Evaluating equation 3.3 in the high ICR limit leads to the OCR approaching a value of 1/τN .

Thus, the maximum OCR in the nonparalyzable model is a constant value.

In the paralyzable deadtime model every event inside the detector starts a deadtime τP. How-

ever, in contrast to the nonparalyzing case, every event occurring during this deadtime is not

only ignored, but also extends the current deadtime by an additional τP. Only after the entire

deadtime passes are events recognized again. Equation 3.4 describes this effect mathemati-

cally [UP18]:

OCR = ICR · e−ICR·τP (3.4)

The high ICR limit of equation 3.4 approaches 0. In the paralyzable model it is possible to

completely paralyze the detector, meaning that no events are detected.

Real systems rarely can be sufficiently described using only one of the idealized models as their

response usually lies in between the two cases. Combining the nonparalyzable (eq. 3.3) and the

paralyzable deadtime model (eq. 3.4) leads to a hybrid deadtime model [UP18]:

OCR =
ICR · e−ICR·τP

1+ ICR · τN

(3.5)

which improves the description of the cases that do not fall under one of the idealized models.

Pile-Up

Pulse pile-up occurs when two or more photons get detected in a smaller time frame than the

time resolution of the detector system τT . They cannot be resolved as independent events any-

more and get detected as an event at an energy which is equal to the sum of energies of the

individual events.

The effect of pulse pile-up on XRF spectra can be seen in figure 3.1. With an excitation energy

of 7 keV, there should not be any peaks in the spectra above channel 700. However, the pile-up

gives rise to multiple additional peak-regions: A 2-event pile-up region between channel 1000

and 1300, a 3-event pile-up region between channel 1600 and 1900 and for higher ICR even a

4-event pile-up region between channel 2200 and 2500.

The most simple model to describe pile-up assumes that the 2-event pile-up peak is the main

component of all pile-up peaks, which is the case at lower ICR. Assuming Poisson distributed

events, the ratio of the 2-event pile-up peaks S2 and the single-event peaks S1 can be described

by equation 3.6 [BFG+19]:

S2

S1
=

PP(2,τT · ICR)

1− e−ICR·τT
≈ ICR · τT

2
(3.6)

where PP(N,M) describes the Poisson probability to measure N events during the normalized

mean M = ICR · τT , calculated following equation 3.7:
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PP(N,M) = MN · e
−M

N!
(3.7)

and the right side of equation 3.6 follows from a first order approximation of the series expan-

sion of the exponential function.

Combined Theory

Combining the equation for the hybrid deadtime model (eq. 3.5) and the equation defining the

decrease of the intensity of the single-event peaks from the pulse pile-up model (eq. 3.6) leads

to a model which describes the effect of deadtime and pile-up simultaneously [BFG+19]:

OCR =
ICR ·

((

e−ICR·τP
)

+
(

1− e−ICR·τT
))

1+ ICR · τN

(3.8)

However, as the pile-up model was derived with the assumption that the 2-event pile-up peak is

the main component of all pile-up peaks, this equation may only be correct at lower ICR and

become physically inaccurate at higher ICR.
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3.2 X-Ray Tomography

X-Ray Tomography is a nondestructive, multi-modal imaging technique which uses multiple

1D projections of a physical property of a sample measured from different angular directions

to reconstruct a 2D slice, or distribution, of this property. By measuring 2D projections of the

sample and combining the resulting 2D slices, a 3D volume of the sample can be created.

3.2.1 Radon Transform

Mathematically, the tomographic measurement of recording multiple 1- or 2-dimensional pro-

jections of a sample property from different angular directions can be modeled by the Radon

transform. The Radon transform describes the interaction of a beam with a sample as it passes

through it and as such may vary for different measurement modes. While more simple mea-

surement modes, such as absorption tomography, may be sufficiently described using only the

distribution of one single physical parameter inside the sample, the Radon transforms describ-

ing more complex measurement modes, like emission tomography, may also require to include

additional information about the sample, for example to describe the absorption of the emit-

ted signal before it is detected. The following discussion of the Radon transform assumes the

simple case of parallel beam absorption tomography.

The starting point for the Radon transform is a 2D image function f (x,y) describing the distri-

bution of a physical property, for example the optical depth as described in equation 2.10, inside

the sample. Assuming the x-y-coordinate system of the image function is rotated by an angle φ

into the t-s-coordinate system:





t

s



=





cosφ sinφ

−sinφ cosφ









x

y



 (3.9)

the projection Pφ(s) along the t-axis (fig. 3.2 a) can be described by the integral Radon trans-

form [KS88]:

Pφ(s) =

∞
∫

−∞

f (t,s)dt (3.10)

In most real-world cases, the values of the image function are not defined continuously but

limited to discrete values, for example the pixel positions of an image. For those cases, the

integral of the Radon transform changes into a sum:

Pφ(s) = ∑
t

f (t,s) (3.11)

It has to be noted that the calculation of this discrete Radon transform requires interpolation if

the t-s-coordinates correspond to interpixel x-y-coordinates.

The combination of multiple projections measured from different angular directions φi into a
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Figure 3.2: a) Projection Pφ(s) of the image function f (x,y) along the t-axis rotated against the

x-axis by an angle φ as calculated by equation 3.10 (following [KS88]). b) Slice f (top) and

corresponding sinogram g (bottom) calculated using algorithm 3.1 and assuming 360 evenly

spaced 1◦ angular steps. The i-coordinate of the sinogram indicates the index of the i-th angular

direction φi.

new, single image is called the sinogram g:

g(s, i) = Pφi
(s) (3.12)

The pseudo-code algorithm describing a Radon transform in x-direction is shown in algo-

rithm 3.1. Contrary to the Radon transform as given in equation 3.11, here the image function

itself, and not the coordinate system, is rotated using bilinear interpolation. As a result, all

projections are calculated along the fixed x-axis instead of along the variable t-axis.

Figure 3.2 b) shows a Shepp-Logan phantom as an example slice and the resulting sinogram

using algorithm 3.1. The angles chosen for the Radon transform cover the full 360◦ in 1◦

steps. It has to be noted that the sinogram in the depicted case shows a symmetry around the

y-coordinate of the center of rotation r:

g(y− r, i) = g(r− y, i′), for φi′ = φi +180◦ (3.13)

and thus it would be sufficient to only measure up to an angle of 180◦ without any loss of infor-
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Algorithm 3.1: Radon Transform

Data: Slice f , list of angles φi

Result: Sinogram g

Assume projection along x-axis;

for all angles φi do

Rotate original slice f by an angle φi into fφi
;

for all y-coordinates of fφi
do

Fill the sinogram with sum along x: g(y, i) = ∑x fφi
(x,y);

end for

end for

return g

mation. This is usually the case for absorption tomography, but not for emission tomography

where the symmetry may be broken by, for example, self-absorption effects.

3.2.2 Inverse Radon Transform

Inverting the Radon transform, or using the data stored inside a sinogram to reconstruct a 2D

tomographic slice, is a problem mostly limited by the sparsity of the projection data, caused by

the fact that only a finite number of projections can be measured.

Over the years, different methods for tomographic reconstruction have been developed, with

many of them being optimized for certain experimental parameters, geometries or measurement

modalities. One of the most commonly known methods for tomographic reconstruction is the

filtered backprojection algorithm, which is partially based on the backprojection algorithm.

Backprojection

Basic idea of the backprojection (BP) algorithm is to approximate the tomogram by “smear-

ing” the projections over the image space of the slice. Mathematically, this operation can be

described using the integral [Bru02]:

fBP(x,y) =

π
∫

0

g(s,φ)dφ (3.14)

where the upper limit of the integral is being chosen as π and not 2π as a consequence of the

symmetry of the sinogram (see eq. 3.13). For discrete cases, the backprojection can be described

using the sum:

fBP(x,y) =
1

nφ
∑

i

g(s, i) (3.15)

with nφ being the number of angles of the sinogram. Similar to as it is the case for the discrete

Radon transform, the discrete backprojection requires interpolation for x- and y-coordinates that

would correspond to interpixel s-coordinates.
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Algorithm 3.2 shows a pseudo-code implementation for the BP algorithm. To be consistent with

the Radon transform as described in algorithm 3.1, it is again assumed that the image function,

and not the coordinate system, is rotated with the projections being measured along the fixed

x-axis.

Algorithm 3.2: Backprojection

Data: Sinogram g, list of angles φi

Result: Backprojected slice fBP

Assume projection along x-axis;

Initialize zero-value slice: fBP = 0 for all x,y;

for all angles φi do

for all y-coordinates of g do

Backproject the sinogram onto rotated slice: fφi
(x,y) = g(y, i);

end for

Rotate fφi
by an angle −φi into f ;

Add to slice: fBP← fBP + f ;

end for

Divide by the number of angles: fBP← fBP/nφ ;

return fBP

Depending on the implementation of the BP algorithm, the values of the reconstructed slice

may differ. For example, the backprojection can also be implemented as “unfiltered” filtered

backprojection (compare eq. 3.18 and 3.19), in which case a constant calibration factor CBP may

be included in the algorithm depending on the exact implementation of the filters and (inverse)

Fourier transform.

Figure 3.3 a) shows the backprojection of the sinogram from figure 3.2. Comparing the recon-

struction with the original slice, it can be seen that the BP reconstruction differs from the ground

truth in quality as well as quantity. This is due to the fact that the backprojection does not cal-

culate the inverse of the Radon transform but only an approximation. The “smearing” operation

of the backprojection attributes projection data equally to every pixel along the corresponding

beam, even if they are not contributing to the projection, which causes the reconstruction to be

blurry and its values to differ from the original data. It does, however, reconstruct the general

shape of the image function.

Filtered Backprojection

Compared to conventional backprojection, the filtered backprojection (FBP) algorithm is a more

commonly used algorithm for tomographic reconstruction as it remedies most of its disadvan-

tages. A detailed derivation of the FBP can be found in [KS88].

Basis of the FBP is the Fourier-Slice-Theorem, which declares that the 1D Fourier transform

of a projection of an image function Sφ(w) measured under an angle φ is equivalent to a slice

through the 2D Fourier transform of the image function F(u,v):
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Figure 3.3: Reconstruction of the sinogram depicted in figure 3.2 using a) backprojection and

b) filtered backprojection. The filter used for the FBP reconstruction is a Hann-filter.

Sφ(w) = F(wsinφ,−wcosφ) (3.16)

Measuring projections and calculating their Fourier transform is therefore equivalent to sam-

pling the 2D Fourier space of the complete image function. Assuming full sampling, f (x,y)

can then be calculated using the inverse 2D Fourier transform of F(u,v):

f (x,y) =

∞
∫

−∞

∞
∫

−∞

F(u,v)e− j2π(ux+vy)dudv (3.17)

However, as realistically only a finite amount of projections can be measured in finite time,

full sampling of the Fourier space is unachievable. For this reason, it would be necessary to

interpolate missing points, which may not be practical in some cases.

Alternatively, instead of interpolating the missing points in Fourier space, it is possible to

achieve similar results by applying a ramp-filter |w| to the projections in Fourier space:

Qφ(s) =

∞
∫

−∞

Sφ(w)|w|e j2πwsdw (3.18)

where Qφ(s) is the filtered projection. As the projections sample lines in Fourier space, the

sampled points are more dense at the center of the Fourier space and get sparser with increasing

distance from it. This effect is counteracted by the ramp-filter by increasing the contribution of

points the further they are away from the center of Fourier space. Alternatively, as the ramp-

filter especially enhances high frequencies and tends to amplify noise in the data, other filters

like the Shepp-Logan-, the cosine- or the Hann-filter may be used.

The filtered projections Qφ(s) are then backprojected to ultimately create the reconstruction of

the tomogram:

fFBP(x,y) =

π
∫

0

Qφ(s)dφ (3.19)
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Combining both the filter and the backprojection step is called filtered backprojection.

Figure 3.3 b) shows the filtered backprojection of the sinogram from figure 3.2 using the Hann-

filter. Compared to the reconstruction by conventional backprojection, the FBP is closer to the

original slice and an improvement in both a qualitative as well as quantitative sense.

3.2.3 MLEM Algorithm

Another method to calculate the inverse Radon transform is the MLEM (Maximum-Likelihood

Expectation-Maximization) algorithm. MLEM is an iterative algorithm which assumes that

the measurements show Poisson probabilistic characteristics. It aims to calculate the inverse

Radon transform by finding the reconstruction which is most likely to lead to the measured

sinogram [SV82].

Mathematical Derivation

A simplified mathematical derivation of the MLEM algorithm can be found in [Bru02]. If f̄ j is

the mean number of events occurring in pixel j and ai j is the probability that an event in pixel j

gets detected in a bin i, then the mean number of events ḡi detected in bin i can be calculated as

the sum of the mean number of detected events ai j f̄ j in each pixel j:

ḡi =
m

∑
j=1

ai j f̄ j (3.20)

For probability values ai j = 1 if the pixel j is in the path of the probing beam and ai j = 0 if

it is not, equation 3.20 can be seen as being equivalent to the discrete Radon transform as it is

defined in equation 3.11.

As the MLEM algorithm assumes that the number of detected events is a Poisson variable, the

probability P(k) of measuring a value k can be modeled by a Poisson distribution:

P(k) =
λ k

k!
e−λ (3.21)

where λ is the expected value of the measurement. With k = gi being the number of detected

events in bin i and a mean number of detected events λ = ḡi (eq. 3.20), the probability to

measure a vector g with a given event map f̄ , also called the likelihood-function L( f̄ ), can then

be calculated by forming the product of all individual probabilities given in equation 3.21:

L( f̄ ) = P(g| f̄ ) =
n

∏
i=1

P(gi) =
n

∏
i=1

ḡ
gi

i

gi!
e−ḡi (3.22)

To maximize the expectation, usually the logarithm of the likelihood-function l( f ) = ln(L( f ))

is considered. Applying the natural logarithm to equation 3.22 and using logarithm rules leads

to:
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l( f̄ ) = ln(L( f̄ )) =
n

∑
i=1

(−ḡi +giln(ḡi)− ln(gi!)) (3.23)

or, after inserting equation 3.20 into equation 3.23:

l( f̄ ) =
n

∑
i=1

(

−
m

∑
j=1

ai j f̄ j +giln

(

m

∑
j=1

ai j f̄ j

)

− ln(gi!)

)

(3.24)

The probability to measure g is the highest if l( f̄ ) is maximal. It can be shown that the logarithm

of the likelihood-function has only one global maximum [Kau87] and to find this maximum,

the derivative of l( f̄ ) has to be calculated:

∂ l( f̄ )

∂ f̄ j

=−
n

∑
i=1

ai j +
n

∑
i=1

gi

∑m
j′=1 ai j′ f̄ j′

ai j = 0 (3.25)

Multiplying equation 3.25 with f̄ j and rearranging finally leads to:

f̄ j =
f̄ j

∑n
i=1 ai j

n

∑
i=1

gi

∑m
j′=1 ai j′ f̄ j′

ai j (3.26)

which is the fundamental iterative equation of the MLEM algorithm:

f̄
(k+1)
j =

f̄
(k)
j

∑n
i=1 ai j

n

∑
i=1

gi

∑m
j′=1 ai j′ f̄

(k)
j′

ai j (3.27)

where k indicates the k-th iteration.

A pseudo-code implementation of the MLEM algorithm for tomographic reconstruction is

shown in algorithm 3.3. Essentially, this algorithm compares the sinogram of the current guess

of the reconstruction to the measured sinogram and uses a normalized backprojection of this

comparison to update the reconstruction.

Logically, the way the MLEM algorithm reconstructs tomograms can be understood by focusing

on the backprojection of the sinogram ratio. Assuming the ideal case of the simulated sinogram

being identical to the measured sinogram, then their ratio will have a value of one in every pixel.

Backprojecting a sinogram which consists of one-values will result in a slice with one-values

inside the reconstructed sample area. Thus, there will be no change during the multiplicative

update. If the simulated sinogram has lower values than the measured sinogram, their ratio and

its backprojection will consist of values greater than one. This will lead to an increase during

the update and in that way to an increase of values in the simulated sinogram, bringing the

simulated closer to the measured data. The inverse applies if the simulated sinogram has higher

values than the measured sinogram.
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Algorithm 3.3: Tomographic MLEM

Data: Measured sinogram g, number of iterations nk

Result: Reconstructed slice f

Initialize the slice with a first guess, e.g. with a backprojection: f (0) = BP(g);
k = 0;

while k < nk do

Radon transform to simulate a sinogram: gsim = R( f (k));
Divide measured and simulated sinograms: rg = g⊘gsim;

Backproject into a slice: fratio = BP(rg);
if calibration in backprojection CBP ̸= 1 then

Normalize to BP-calibration: fratio← fratio/CBP;

end if

Update by multiplication: f (k+1) = f (k)⊙ fratio ;

k← k+1;

end while

return f = f (nk)

Advantages and Disadvantages

Main advantages of MLEM in comparison to FBP are the improved signal-to-noise ratio, espe-

cially in empty regions outside of the reconstructed sample, as well as the reduction of artifacts

caused by insufficient angular sampling. In addition, assuming positive data, which is usually

the case for emission tomography like XRF tomography, the multiplicative ansatz of MLEM

ensures non-negativity of the reconstructed results. This is not the case for FBP, where nonphys-

ical negative values are not explicitly excluded and often occur as part of the noise or around

reconstruction artifacts. Also, the iterative nature of the MLEM algorithm allows the change of

the tomographic model between iterations without restarting the entire reconstruction process,

which is of importance in cases in which the tomographic model is not only dependent on the

sinogram and reconstructed slice but also on other external parameters (e.g. the absorption of

X-rays inside the sample).

The most apparent disadvantage of the MLEM algorithm is the fact that it is an iterative algo-

rithm and reconstructions thus require an amount of time approximately linear to the amount

of iterations to complete. Compared to one-step algorithms, like for example FBP, these recon-

structions are slower and, depending on the required number of iterations, can be very time-

consuming. For this reason, advanced computational hardware and efficient implementation of

the algorithm are a necessity. Another common disadvantage of MLEM in specific, and of many

iterative tomographic reconstruction algorithms in general, is the amplification of noise in the

reconstruction for high numbers of iterations, which makes it difficult to define exit conditions

for the iterative process. These effects, however, can be mitigated by reducing the number of

iterations as well as by using filters or Bayesian penalizing priors between the iterations. Fur-

thermore, some artifacts caused by inconsistencies in the tomographic model, like for example

signal outside of the reconstructed field-of-view, tend to become worse with advancing recon-
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struction, which makes the use of MLEM unsuitable for special tomographic cases like limited

field-of-view tomography.

Figure 3.4 shows reconstructions of the sinogram displayed in figure 3.2 b) using FBP, 100

iterations and 300 iterations of MLEM as well as a line plot through all three reconstructions

and through the ground truth. Poisson noise assuming a maximum value of 10000 counts was

applied to the sinogram before reconstruction to simulate a measurement process. It can be

seen that the FBP reconstruction, in contrast to the MLEM reconstructions, shows negative

values and increased noise in areas without sample. For areas with sample, the noise of the

FBP reconstruction and the 100 iteration MLEM reconstruction are on a similar level, with the

MLEM reconstruction having a slightly worse resolution as evident from the transition from

sample to the empty area inside the sample. The 300 iteration MLEM reconstruction has a

similar resolution than the FBP reconstruction, but a higher noise level than the FBP as well

as the 100 iteration MLEM reconstruction. It has to be noted that both MLEM reconstructions

exhibit an artifact which presents itself as increased intensity inside the inner-sample empty

area.

Reconstruction of Non-Poisson Data

The MLEM algorithm is derived assuming that the measured data exhibits a Poisson character-

istic, which is the case for XRF and uncorrected transmission data. However, the reconstruction

of absorption tomograms requires calculating the logarithm of the normalized transmission and

thus skews the Poisson characteristic of the data.

While there are MLEM algorithms especially adapted to account for the specifics of absorption

tomography, they are mathematically more complex, rely on assumptions and lack exact ana-

lytical solutions [LC84]. For those reasons, using the conventional MLEM algorithm is usually

preferred, even if the statistic of the tomographic data does not follow an ideal Poisson distribu-

tion. This may lead to worse convergence and noise reduction during the reconstruction. How-

ever, the basic idea of MLEM of updating the reconstruction by comparing the measured and a

simulated sinogram does not change and especially for high count rate data with good signal-

to-noise ratio the negative influences caused by the deviation from the ideal model should be

negligible.

In fact, if the aim of an experiment is to compare XRF and absorption tomograms, the variations

caused by reconstructing the absorption tomogram using a different algorithm with different

reconstruction characteristics may exceed the inaccuracies in the MLEM algorithm introduced

by the non-Poisson characteristics of the absorption data.

OSL-MLEM

There are multiple methods to mitigate the effect of higher noise for many iterations of the

MLEM algorithm. One method would be to apply filters, for example a smoothing filter, be-

tween the iterations. Another method would be the utilization of a priori information of the sam-
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Figure 3.4: Tomographic reconstruction of the phantom using a) FBP with a Hann-filter,

b) MLEM with 100 iterations and c) MLEM with 300 iteration. Poisson noise was applied to

the sinogram assuming a maximum value of 10000 counts. The vertical green line in a) marks

the position of the line profiles plotted in d).

ple by introducing a Bayesian prior, a weighted penalty term, into the reconstruction [ARA97].

Often, the prior is chosen in such a way that it penalizes local roughness and thus reduces the

noise in the reconstruction.

A short mathematical derivation of this penalized MLEM algorithm using a Gibbs prior is pre-

sented in [Bru02]. Compared to equation 3.27, the final penalized MLEM algorithm introduces

an additional term to the normalization part of the equation:

f̄
(k+1)
j =

f̄
(k)
j

∑n
i=1 ai j +β ′ ∂

∂ f j
U( f̄

(k)
j )

n

∑
i=1

gi

∑m
j′=1 ai j′ f̄

(k)
j′

ai j (3.28)

where β ′ is the weight of the prior and U is an energy function of f̄ . Rearranging leads to:
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Figure 3.5: Tomographic reconstructions of the phantom using a) 100 iterations of MLEM,

b) 100 iterations of MLEM-MRP, c) 100 iterations of MLEM-FMH, d) 300 iterations of MLEM,

e) 300 iterations of MLEM-MRP and f) 300 iterations of MLEM-FMH. Poisson noise assuming

a maximum value of 100 counts was applied to the sinogram before reconstruction and a weight

of β = 0.3 was used for the OSL methods. All images are scaled to their respective maxima.

f̄
(k+1)
j =

f̄
MLEM(k+1)
j

1+β ∂
∂ f j

U( f̄
(k)
j )

(3.29)

β =
β ′

∑n
i=1 ai j

(3.30)

with f̄
MLEM(k+1)
j being the result of an iteration of the conventional MLEM algorithm and β

being the modified weight of the prior. From equation 3.29 it becomes clear that for the pe-

nalized MLEM the result of the (k+ 1)-th iteration gets modified by a term depending on the

result of the k-th iteration. For this reason, these algorithms are also called one step late (OSL)

algorithms.

A possible prior is the median-root-prior (MRP), which favors locally monotonous structures

and penalizes isolated noise spikes [AR97]:

(

∂

∂ f j

U( f̄
(k)
j )

)

MRP

=
f̄
(k)
j −med( f̄

(k)
j )

med( f̄
(k)
j )

(3.31)

where med( f̄
(k)
j ) is the median of all values of f̄ (k) that are located in a 3×3 area around pixel j.
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Figure 3.5 b) and e) show the MRP reconstruction of a noisy version of the sinogram from

figure 3.2 after 100 and 300 iterations, respectively. The Poisson noise was applied assuming

a maximum value of the sinogram of 100 counts and the modified weight of the prior was set

to β = 0.3. Compared to the reconstructions using conventional MLEM, shown in figure 3.5 a)

and d), the noise levels of the MRP reconstructions are lower and the quantitative values closer

to the ground truth. Furthermore, in contrast to for example smoothing filters, MRP preserves

the edges inside the reconstruction. However, it can also be seen that the MRP algorithm creates

artificially sharp edges and plateau-like structures. This is caused by the fact that MRP assumes

monotonic, locally homogeneous sample regions and thus handles and penalizes small, non-

monotonic details like noise.

An alternative to MRP is the finite-impulse-response median hybrid (FMH), which uses the

median of multiple directional weighted averages instead of median of all values inside a certain

region [AR02]:

(

∂

∂ f j

U( f̄
(k)
j )

)

FMH

=
f̄
(k)
j − f mh( f̄

(k)
j )

f mh( f̄
(k)
j )

(3.32)

where f mh( f̄
(k)
j ) is the FIR median of the area around pixel j. An example implementation

of a 3× 3 FIR median is described in [AR02] and uses five directional weighted averages:

The central value (weight: 4), the horizontal or vertical nearest neighbors (weight:
√

2) and

the central value as well as the second neighbors (weight: 1) and the central value for both

diagonals.

As can be seen from figure 3.5 c) and f), which shows the FMH reconstruction of the already

described sinogram using 100 and 300 iterations, respectively, the FMH reconstruction main-

tains the quantitative accuracy and noise suppression of MRP without the artificial edges and

plateau-like structures. However, the downside of FMH is a weaker edge preservation and thus

increased blurring of the reconstruction.

Table 3.1 shows the normalized mean absolute error of the reconstruction for different imple-

mentations of the MLEM algorithm and different strength pf Poisson noise calculated against

the noiseless ground truth. The normalized mean absolute error (NMAE) of two positive

datasets x and y is defined as:

NMAE(x,y) =
∑i |xi− yi|

∑i yi

(3.33)

Comparing the values given in table 3.1, it can be seen that the error of the reconstructions for

conventional MLEM increases with the amount of iterations and the strength of the Poisson

noise. This effect is reduced for OSL-MLEM reconstructions in such a way that the error

even decreases with higher iterations for some versions of the FMH reconstructions. In those

cases, the reconstructions are advanced with less noise but at the cost of smaller details and

resolution. Thus, OSL-MLEM, and especially FMH, may be used during the earlier iterations

of the algorithm to let the reconstruction develop with less noise influence and then turned off
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Table 3.1: Nomalized mean absolute errors (eq. 3.33) of reconstructions calculated against the

noiseless ground truth for different amounts of iterations and strengths of Poisson noise.

NMAE(recon., truth) Poisson 10000 Poisson 1000 Poisson 100 Poisson 10

MLEM 100 0.0536 0.1139 0.3146 0.8543

MLEM 300 0.0665 0.1955 0.5629 1.2194

MRP 100 0.0405 0.0622 0.1270 0.2988

MRP 300 0.0288 0.0610 0.1405 0.3412

FMH 100 0.0720 0.0843 0.1354 0.3222

FMH 300 0.0637 0.0773 0.1329 0.3305

during the later iterations to allow for higher resolution.
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Chapter 4

X-Ray Fluorescence Self-Absorption

Correction

4.1 XRF Self-Absorption

The accurate description and correction of X-ray fluorescence self-absorption effects is impor-

tant to obtain qualitative as well as quantitative results from XRF measurements.

4.1.1 Self-Absorption Effects

Figure 4.1 shows the basic setup of an XRF tomography experiment. While propagating through

the sample, the focused primary beam is absorbed and excites the isotropic emission of XRF

signal, which is then measured by a spectrally resolved XRF detector. Behind the sample,

another detector measures the total amount of transmitted beam. During the experiment, the

sample is translated and rotated to allow for the measurement of spatially resolved data.

Depending on the size and the elemental composition of a sample, tomographic measurements

may suffer from self-absorption effects. These effects are often negligible for very small sam-

ples with sizes in the low or submicron range and for elements with high energy XRF emission

lines inside low-Z, low absorption sample matrices. However, as the flux of X-ray sources and

the speed of sample stages and X-ray detectors increases, scanning tomography measurements

become more time efficient. This allows for the scanning of bigger samples without additional

expenditure of time, in which case the correct description and correction of self-absorption

effects becomes increasingly important.

There are two main effects that have to be considered for the description of the self-absorption

problem: The absorption of the primary beam in the sample before it excites the emission of

XRF signal and the absorption of the emitted XRF signal in the sample before it is detected by

the XRF detector.

The primary beam absorption volume is accessible by reconstructing the absorption tomogram

at the primary beam energy using the transmission data measured behind the sample. With this

data, the fraction of the primary beam reaching each voxel of the tomographic volume can be

31



Figure 4.1: Schematic overview of the measurement geometry of an XRF tomography experi-

ment. The primary X-ray beam is absorbed inside the sample and excites the emission of XRF

signal. Transmission of the primary beam and spectrum of the XRF signal are measured by a

PIPS diode behind the sample and an XRF detector, respectively.

easily determined by calculating the sum of the optical depths from the edge of the volume to

the voxel and inserting this sum into the Beer-Lambert law (eq. 2.7).

Contrarily, the absorption of the XRF signal inside the sample is not as easily accessible. This

has two main reasons: On one hand, the XRF signal is emitted isotropically, meaning the trans-

mission of the XRF signal has to be calculated along all paths to the detector for all voxel of

the volume. Depending on the chosen reconstruction parameters, this operation can be very

computationally expensive. On the other hand, and more important, the absorption volumes at

the XRF line energies are usually unknown as they are often not measured separately for time

reasons. It is therefore necessary to find alternative methods to calculate these volumes.

Apart from the absorption of the primary beam and the absorption of the main XRF signal,

additional self-absorption effects, like for example higher order XRF, do exist. However, as

their calculation tend to be very computationally expensive in relation to their influence on the

self-absorption problem, they are usually omitted in self-absorption correction algorithms.

4.1.2 State of the Science

Over the years, the importance of correcting XRF tomograms for self-absorption effects to

obtain qualitatively and quantitatively accurate results led to the development of many different

algorithms.

For example, in 2001 Schroer [Sch01] developed a self-absorption correction algorithm using

the conjugate gradient method to optimize a non-linear least-squares problem to sequentially

calculate the attenuation coefficients of elements and thus their mass density distributions. How-

ever, Schroer’s algorithm uses a scaling law to calculate the energy dependence of absorption
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coefficients, which only holds true far from any absorption edges. If the absorption edge of

another element is present between the absorption edge and the fluorescence energy of an ele-

ment, both of these elements need to be reconstructed simultaneously [SBG+02]. Furthermore,

although in principle extendable into 3D, the algorithm was only demonstrated in 2D. This

limitation is shared by most studies on self-absorption correction algorithms and is most likely

caused by a lack of computational resources.

In 2006 La Rivière et al. [RBV+06] used an iterative penalized-likelihood algorithm to correct

for self-absorption effects and also an extended scaling law to include empirically fitted analytic

expressions for the energy dependence of the X-ray attenuation coefficients (see eq. 2.11). As

their algorithm explicitly models the Poisson counting statistics of the XRF detection process,

it produces fitting results even in the low-count regime. However, they assumed the absence of

additional absorption edges between the absorption edge and the emission line of an element,

with the suggestion that this problem may be solved by reconstructing elements simultaneously.

Another difficulty is the need to determine appropriate smoothing parameters for the penalized-

likelihood algorithm.

Yang et al. [YDD+14] proposed an algorithm based on AC-OSEM, a variation of MLEM, in

2014. Their algorithm further extends the scaling law to calculate fluorescence attenuation

maps, but assumes a trace-element approximation with low elemental concentrations and a

known low-Z background. Thus their algorithm is mostly suited for biological and biomedical

samples.

A refined scaling law for L-shell XRF was proposed in 2015 by Long et al. [LYQ+15]. Using

an algorithm based on MLEM, their focus was the reconstruction and absorption-correction of

high-Z elemental data.

In 2017 Di et al. [DCH+17] extended the idea of self-absorption correction by including the

joint reconstruction of XRF and absorption data by alternatively maximizing a Poisson like-

lihood objective. Their algorithm also uses tabulated values to calculate the XRF absorption

instead of a scaling law.

Later the same year, Huang et al. [HLR17] proposed an iterative absorption correction algo-

rithm utilizing the asymmetry of the measured self-absorption sinograms. However, this ap-

proach is only viable if there is visible asymmetry in the sinograms, which may not be the case

for all measurement geometries, for example for XRF data measured with an XRF detector in

backscattering geometry. Furthermore, as Yang et al., they assumed a trace-element approxi-

mation.

A year later, in 2018, Vigano et al. [VS18] established a more general description of the for-

ward model and reconstruction algorithm. However, they did not deal with the problem of the

unknown XRF absorption.

Recently, in 2020, Gao et al. [GLD+20] improved the forward model by introducing experi-

mental parameters and sped up the algorithm by implementing it on a GPU. In contrast to the

algorithms described before, this allows them to correct for self-absorption in full 3D instead of

relying on approximations that only consider 2D geometries.
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4.2 Self-Absorption Correction Algorithm

Compared to the algorithms mentioned above, this MLEM-based algorithm tries to improve the

self-absorption corrected reconstruction of XRF tomographic datasets in multiple ways. For

one, the algorithm is fully calculated in 3D, taking into account both the sample and XRF de-

tector geometry. Additionally, it does not use scaling laws to calculate the energy dependent

absorption of measured elements, but uses tabulated values. A scaling law is only used to de-

scribe the energy dependency of the background consisting of unmeasured elements and only

if its composition cannot be approximated sufficiently. This is done to be able to correctly de-

scribe cases where the absorption edge of one element lies between the absorption edge and

fluorescence line of another. As a consequence, however, the elements cannot be reconstructed

sequentially, but have to be reconstructed simultaneously, which increases the number of pa-

rameters for the algorithm and may complicate the reconstruction.

Corrections for higher order effects are not included in the algorithm for computational reasons

but the scattering of X-rays inside the sample is approximated by using the angle-independent

total attenuation cross section σatt instead of the photoabsorption cross section σabs to calculate

absorption from density data. Furthermore, the algorithm assumes that the amount of emitted

XRF for a constant incident X-ray flux scales linear with elemental densities inside a voxel,

thus ignoring any subvoxel or nonlinear absorption effects.

The algorithm itself consists of four main parts: The initial calculations at the beginning of

the reconstruction, which are only performed once, the self-absorption Radon transform, which

defines the self-absorption model, the self-absorption MLEM algorithm, which deals with the

qualitative aspects of the reconstructions by ensuring their consistency to the measured sino-

grams, and the consistency refinement loop, which deals with the quantitative aspects of the

reconstructions including the data calibration and ensuring their consistency to the measured

absorption tomogram. A schematic overview of the algorithm is given in figure 4.2.

4.2.1 Initial Calculations

The initial calculations are performed once at the beginning of the algorithm and include steps

like the processing of the primary energy absorption volume, the calculation of detector direc-

tions, initial reconstruction of the elemental tomograms and, if necessary, the calculation of

background factors.

Absorption Volume

The measured absorption tomogram τmeas
0 at primary beam energy E0 is reconstructed sepa-

rately from the self-absorption correction algorithm. While the method of reconstruction may

vary, it should have similar resolution and artifact characteristics as MLEM to make it easier to

compare the XRF and absorption tomography datasets.
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Figure 4.2: Schematic overview of the tomographic self-absorption correction algorithm.

After the absorption tomogram is loaded by the algorithm, its minimum value is set to zero to

assure non-negativity. This is done by cutting off all negative values and setting them to zero.

If a priori knowledge about the shape of the sample is available, it may be possible to define a

support for the absorption volume and separate non-empty from empty regions. Thus, the over-

all influence of noise and/or reconstruction artifacts inside empty regions on the algorithm could

be reduced. The most simple method of defining a support is using an attenuation threshold Tatt

below which the values of the absorption volume are set to zero:

τmeas
0 ←







τmeas
0 , τmeas

0 ≥ Tatt

0, τmeas
0 < Tatt

(4.1)

It is important to note that the support is only applied to the absorption volume, and not the

elemental volumes, to prevent accidentally setting trace elements not visible in the absorption

volume to zero.

The initial XRF absorption volumes τ
(0)
L at energies EL for all reconstructed lines L are set

to τmeas
0 . As the absorption generally increases with decreasing energy, this usually underesti-

mates the absorption of the XRF signal. However, this is preferable to overestimating the XRF

absorption, which could lead to artifacts in the reconstruction.
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Initial Reconstructions

The initial values of the elemental reconstruction f
(0)
L for XRF emission line L is determined by

calculating the backprojections of the corresponding measured sinograms gmeas
L :

f
(0)
L = BP(gmeas

L ) (4.2)

To assure non-negativity of the reconstructed data, all negative values in the measured sino-

grams, should they exist, are set to zero beforehand.

As the backprojections of the measured sinograms may not be ideal initial values, there is also

an optional possibility to apply some iterations of conventional MLEM to the initial reconstruc-

tions. Depending on the exact nature of the measured sinograms and the chosen reconstruction

paramaters, this may speed-up the convergence of the algorithm and reduce artifacts.

Detector Directions

Basis for the calculation of the detector directions is a 2D detector matrix, which is loaded as

binary image-file. It is assumed that the detector image x-axis is parallel to the sample z-axis

and the detector image y-axis parallel to the sample xy-plane, with sample axes as defined in

figure 4.1. Furthermore, it is assumed that the normal passing through the center of the detector

image intersects the primary beam at the x-center of the sample volume, which is constant as

the sample is scanned only in y- and z-direction. Thus, the detector is placed on a circle in the

plane of the primary beam with the sample-detector distance sdet > 0 as radius and an angle δdet

from the x-axis (fig. 4.3).

Assuming the distance from the center of the detector (cdet,x,cdet,y) to a detector pixel j is

defined by a vector w⃗ j in the detector image plane:

w⃗ j =





w j,x

w j,y



=





ddet(xdet, j− cdet,x)

ddet(ydet, j− cdet,y)



 (4.3)

where xdet, j and ydet, j are the pixel coordinates of detector element j and ddet is pixel size of the

detector image.

Then the distance s j between the x-center of sample volume and the y-component of detector

pixel w⃗ j can be calculated as:

s j =
√

w2
j,y + s2

det (4.4)

The angle α j between sdet and s j is defined as:

α j = ∠DCE j = arctan

(

w j,y

sdet

)

(4.5)

where point D is the center of the detector and point C the x-center of the sample volume. Point

E j is defined by the detector x-center and the y-component of detector pixel w⃗ j.
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Figure 4.3: Example geometry for the calculation of the detector direction towards a single

detector element using an XRF detector placed at an angle of δdet = 90◦.

The angle β j can then be calculated as the sum of detector angle δdet and angle α j:

β j = ∠XCE j = δdet +α j (4.6)

where X is an arbitrary point with identical y- and z-coordinates but a higher x-coordinate than

point C.

From the above calculations it then follows that the non-normalized detector directions p⃗ j are

defined as:

p⃗ j =











p j,x

p j,y

p j,z











=











s j · cos(β j)

s j · sin(β j)

w j,x











(4.7)

As these directions are neither normalized nor account for any deviation of the voxel posi-

tion from the x-center of the sample volume, they have to be further adapted during the self-

absorption Radon transform.

Background Factors

If elements with absorption edges above the primary beam energy E0 or below the energy of the

lowest measured XRF line are present, a background consisting of the absorption of all those

unmeasured elements has to be included into the algorithm and its energy dependent scaling

factors have to be calculated. One common example would be the low-Z element background

in biological samples. If the composition of the background is known or approximation is

possible, the energy dependent background scaling factors BL can be calculated as the ratio of
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the attenuation cross sections σatt,BG of the background material at the XRF line energy EL and

at the primary beam energy E0:

BL =
σatt,BG(EL)

σatt,BG(E0)
(4.8)

Alternatively, as the elements making up the background per definition have no absorption

edges inside the for the absorption correction relevant energy range, the energy dependence of

the background can also be calculated using the scaling law defined in equation 2.11:

BL =

(

EL

E0

)γ

(4.9)

with the empirical scaling parameter γ , which usually has a value of −3≤ γ ≤−2.7.

Utilizing the background scaling factor BL, the background absorption volume at an XRF line

energy τBG,L can then be calculated from the background absorption volume at the primary

beam energy τBG,0:

τBG,L = BL · τBG,0 (4.10)

4.2.2 Self-Absorption Radon Transform

The self-absorption Radon transform calculates self-absorption sinograms for a given volume

and self-absorption model. In the current implementation it consists of three steps: The cal-

culation of the primary beam transmission volumes at every angle, the calculation of the XRF

radiation transmission volumes at every angle and, using the results of the first two steps, the

calculation of the self-absorption sinogram.

Primary Beam Transmission

In the first step of the primary beam transmission calculation, the optical depth absorption vol-

ume τmeas
0 at primary energy E0 is rotated around the z-axis by an angle φi into τmeas

0,φi
. Assuming

that the x-axis is the primary beam direction, the following step is the calculation of the sum

of optical depths s0,φi
along the x-axis starting from the edge of the rotated absorption volume

(x = 0) to every voxel:

s0,φi
(x,y,z) =

x

∑
x′=0

τmeas
0,φi

(x′,y,z) (4.11)

After that, the Beer-Lambert law (eq. 2.7) can be used to calculate the primary beam transmis-

sion volume t0,φi
for angle φi:

t0,φi
(x,y,z) = e−sτ,φi

(x,y,z) (4.12)

A pseudo-code implementation of the primary beam transmission calculation is shown in algo-
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rithm 4.1. Equation 4.11 can easily be implemented as cumulative sum to reduce the amount of

necessary computational steps.

Algorithm 4.1: Primary Beam Transmission

Data: Rotated primary beam absorption volume τmeas
0,φi

Result: Primary beam transmission volume t0,φi

Calculation at an angle φi;

Define x-axis as primary beam direction and τ = τmeas
0,φi

;

for all voxel v⃗ = (0,vy ∈ N0,vz ∈ N0) in volume τ do

Define start position: u⃗ = v⃗;

Initialize cumulative absorption sum: s0 = 0;

while position u⃗ exists in volume τ do

Increase cumulative absorption sum: s0← s0 +(τ )⃗u;

Calculate transmission to current position: (t )⃗u = e−s0;

Advance x-component of position: ux← ux +1;

end while

end for

return t0,φi
← t

A simulated example slice of a primary beam transmission volume is shown in figure 4.4 b). The

corresponding elemental slice is shown in figure 4.4 a) and is itself part of a 3D Fe-phantom (see

fig. 4.8 a). It can be seen that the fraction of the primary beam reaching each voxel decreases

along the x-axis as the primary beam is absorbed by the sample.

As the primary beam transmission volumes only depend on the measured absorption volume,

they, in theory, have to be calculated just once at the beginning of the self-absorption correction

algorithm. However, storing a full volume for every angle of the tomogram may cause memory

issues during real-world applications and necessitate different solutions.

XRF Radiation Transmission

The XRF transmission volume t
(k)
L,φi

at iteration k for an XRF line L under an angle φi is cal-

culated by determining the average transmission at energy EL along all detector directions for

every voxel v⃗ = (x,y,z) of the rotated XRF absorption volume. For the following description,

it is assumed that the optical depth absorption volume τ
(k)
L at the XRF line energy and subse-

quently its rotated versions τ
(k)
L,φi

are known.

As the original detector directions p j are calculated from the x-center cx of the sample volume,

they first have to be modified to account for the location of the considered voxel. To this end, the

x-components of the detector directions p j,x are modified using the x-component of the voxel

position vx in relation to the x-center of the sample volume:

p⃗v⃗
j =











p j,x−d(vx− cx)

p j,y

p j,z











(4.13)
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Figure 4.4: Self absorption effects at a single angle. a) shows the density of a central slice of

an Fe-phantom in g/cm3, with the x-direction being the X-ray beam direction and the detector

being placed in negative y-direction. b) shows the fraction of the primary beam reaching each

voxel of the central slice and c) the fraction of the emitted XRF signal per voxel leaving the

sample. d) shows a 3D rendering of the full volume corresponding to c), minus a cutout at high

x- and z-coordinates for visualization. e) is the product of b) and c) and illustrates the combined

effect of primary beam and XRF absorption. f), the product of a) and e), is a measure for the

effectively detected density and used to construct a line of the sinogram. The 3D rendering was

created in Drishti [Lim12].
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with d being the voxel size of the sample volume. Thus, the x-components of the detector

directions are decreased if the x-component of the voxel position is larger than the x-center of the

sample volume and increased if it is smaller. The y- and z-components of the detector directions

stay unchanged, as only the sample is scanned along those directions, while the position of the

primary beam and detector are fixed.

The length of the detector direction p⃗⃗v
j as calculated in equation 4.13 is equal to the distance

between the x-component of the voxel position placed on the primary beam and the detector

pixel j. To be able to to calculate the sum along the detector directions on the scale of the

sample volume, they have to be normalized to unit vector length:

p̂v⃗
j =

p⃗⃗v
j

∥ p⃗⃗v
j∥

(4.14)

The sums of optical depths along the direction to detector element j are then calculated starting

with half the value of the initial voxel v⃗ followed by values from different coordinates, which

are calculated by adding steps of p̂⃗v
j to v⃗ until the edge the the volume is reached:

sL,φi, j(x,y,z) =
1

2
τ
(k)
L,φi

(x,y,z)+
nmax

∑
n=0

τ
(k)
L,φi

(NN (⃗v+np̂v⃗
j)) (4.15)

where nmax is the amount of steps p̂⃗v
j from starting voxel v⃗ necessary to reach the edge of the

volume and NN (⃗u) is the 3D nearest-neighbor interpolation, which is used for efficiency and

simplicity:

NN (⃗u) = (⌊ux +0.5⌋,⌊uy +0.5⌋,⌊uz +0.5⌋) (4.16)

Following that, the Beer-Lambert law (eq. 2.7) is used to calculate the transmission volume

corresponding to the detector direction:

tL,φi, j(x,y,z) = e−sL,φi, j
(x,y,z) (4.17)

Finally, the average of the transmission volumes for all detector directions has to be calculated:

tL,φi
(x,y,z) =

1

n j
∑

j

tL,φi, j(x,y,z) (4.18)

Algorithm 4.2 shows a pseudo-code implementation of the XRF transmission calculation.

Figure 4.4 c) shows a simulated example slice of an XRF transmission volume calculated with

an XRF detector placed at an angle of 270◦. Its values display the fraction of emitted XRF

radiation that reaches the detector for each voxel. Compared to the slice of the primary beam

transmission shown in figure 4.4 b), it can be seen that the shadowing effect caused by the XRF

absorption in the sample is not limited to a single direction, which is a consequence of the XRF

detector being a 2D object. This effect can be seen more clearly in the 3D rendering of the

XRF transmission volume shown in figure 4.4 d), as even slices above and below the sample
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Algorithm 4.2: XRF Radiation Transmission

Data: Rotated XRF absorption volume τ
(k)
L,φi

, n j detector directions p⃗ j, voxel size d

Result: XRF transmission volume t
(k)
L,φi

Calculation at iteration k for XRF line L under an angle φi;

Define x-axis as primary beam direction and τ = τ
(k)
L,φi

;

Calculate center of volume with nx voxel in x-direction: cx = ⌊nx/2⌋;
for all voxel v⃗ = (vx ∈ N0,vy ∈ N0,vz ∈ N0) in volume τ do

Modify x-components of detector directions: p j,x← p j,x−d(vx− cx);
Normalize detector directions: p̂ j = p⃗ j/∥ p⃗ j∥;
for all detector directions p̂ j do

Define start position: u⃗ = v⃗;

Initialize absorption sum: sL = (τ )⃗u/2;

Update position: u⃗← u⃗+ p̂ j;

while position u⃗ exists in volume τ do

Find nearest-neighbor: NN (⃗u) = (⌊ux +0.5⌋,⌊uy +0.5⌋,⌊uz +0.5⌋);
Add nearest-neighbor value to absorption sum: sL← sL +(τ)NN (⃗u);

Update position: u⃗← u⃗+ p̂ j;

end while

Calculate transmission for detector direction: (t )⃗v, j = e−sL ;

end for

Average transmission of all detector directions: (t )⃗v =
1
n j

∑ j(t )⃗v, j;

end for

return t
(k)
L,φi
← t

are influenced by the self-absorption effect.

There are two special cases of XRF transmission calculation that should be mentioned. The first

one is the small-sample approximation, which can be applied if the sample is small compared

to the XRF detector. Mathematically, this condition is fulfilled if the maximum change to the

x-component of the detector direction as calculated in equation 4.13 is much smaller than the

maximum y-component for the detector pixel as calculated in equation 4.3: d(vx,max− cx)≪
ddet(ydet,max−cdet,y). In this case it is sufficient to use the detector directions as determined dur-

ing the initial calculations and to skip the voxel-dependent modification of their x-components.

As a consequence, the detector directions can be fully calculated and normalized in advance,

which reduces the number of operations that have to be performed during the XRF transmission

calculation.

The second case is the single-slice approximation, which has to be used if only a single slice in-

stead of a full volume is measured. In this case it is assumed that the sample is homogeneous in

z-direction. To maintain the correct path length of the emitted XRF signal through the sample,

the z-components of the detector directions are set to zero after normalization (eq. 4.14). Oth-

erwise, the single-slice approximation follows the conventional XRF transmission calculation

algorithm.
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Sinogram Calculation

After the primary beam transmission and XRF transmission volumes for XRF emission line L

have been determined, the sinogram calculation has to be modified to account for the self-

absorption effects. This is done by first calculating the product of primary beam and XRF

transmission for every voxel at an specific angle (fig. 4.4 e) and then applying these factors to

the rotated image function fL,φi
(x,y,z) (fig. 4.4 f). The values of the modified image functions

are then a measure for the part of the original values effectively detected by the XRF detector.

Finally, the values of the modified rotated image functions are projected along the x-axis to

create the sinograms:

gL(y, i,z) = ∑
x

t0,φi
(x,y,z) · tL,φi

(x,y,z) · fL,φi
(x,y,z) (4.19)

The pseudo-code implementation of the modified sinogram calculation is shown in al-

gorithm 4.3. Its general structure follows the one of the Radon transform as defined in

algorithm 3.1, but it additionally accounts for the change of the tomographic model in the

self-absorption case by incorporating the primary beam and XRF absorption volumes.

Algorithm 4.3: Sinogram Calculation

Data: Intensity volume f
(k)
L , primary beam absorption volume τmeas

0 , XRF absorption

volume τ
(k)
L , list of angles φi

Result: Simulated sinograms g
(k)
L

Calculation at iteration k for XRF line L;

Assume projection along x-axis with a length of nx elements;

Assume rotation around z-axis;

Define f = f
(k)
L , τ0 = τmeas

0 and τL = τ
(k)
L ;

for all angles φi do

Rotate f , τ0 and τL by an angle φi into fφi
, τ0,φi

and τL,φi
;

Alg. 4.1: Calculate primary beam transmission volume t0,φi
;

Alg. 4.2: Calculate XRF transmission volume tL,φi
;

Multiply intensity and transmission volumes: fSA,φi
= t0,φi

⊙ tL,φi
⊙ fφi

;

for all voxel v⃗ = (0,vy ∈ N0,vz ∈ N0) in volume fSA,φi
do

Fill the sinogram with sum along x: (g)vy,i,vz
= ∑

nx−1
x=0 ( fSA,φi

)x,vy,vz
;

end for

end for

return g
(k)
L ← g

Figure 4.5 shows the sinograms resulting from calculating the conventional and the self-

absorption Radon transform of the phantom and with the measurement geometry as defined in

figure 4.4. There are two main differences between conventional and self-absorption sinogram.

First, the self-absorption sinogram is lacking the symmetry of the conventional sinogram,

as its values show the tendency to decrease the more they are shadowed by the parts of

the sample facing the detector. In performing self-absorption influenced XRF tomography
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Figure 4.5: a) Conventional Radon transform and b) self-absorption Radon transform of the

central slice of the Fe-phantom using the density values and geometry shown in figure 4.4. The

values are given as integral density.

experiments it is therefore advisable to measure the full 360◦ angular range instead of just

the 180◦ angular range that would be sufficient for symmetric sinograms. Second, the values

of the self-absorption sinogram are always lower than those of the conventional sinogram.

This is especially important to note as it is sometimes tried to correct self-absorption effects

by combining the measurements from multiple XRF detectors placed at different angles,

which may mitigate some of their qualitative and quantitative consequences but cannot replace

performing a dedicated self-absorption correction.

4.2.3 Self-Absorption MLEM Algorithm

The self-absorption MLEM algorithm uses the self-absorption Radon transform and, in ex-

tension, the given self-absorption model to find the most likely reconstruction to a measured

sinogram by ensuring that reconstruction and sinogram are consistent. As this section focuses

on the derivation of the self-absorption MLEM algorithm, it is assumed that the primary beam

absorption volume τmeas
0 as well as the XRF absorption volume τ

(k)
L are known a priori. For

most real-world cases however, the XRF absorption volume is unknown and has to be calculated

separately at the beginning of every iteration of the MLEM algorithm.

As shown in the previous section covering the self-absorption radon transform, especially in

equation 4.19, the mean number of events including self-absorption effects f̄SA,i j in pixel j

depending on a related bin i can be described as:

f̄SA,i j = t0,i j · tL,i j · f̄ j (4.20)

where t0,i j is the fraction of the primary beam reaching the pixel, tL,i j the fraction of the emitted

XRF photons leaving the sample and f̄ j the mean number of events without self-absorption

effects.
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Inserted into equation 3.20, the mean number of events ḡSA,i detected in bin i can then be

calculated as:

ḡSA,i =
m

∑
j=1

ai j f̄SA,i j (4.21)

with ai j being the probability that an event in pixel j gets detected in bin i.

Assuming there are no additional effects breaking the Poisson characteristic of the measure-

ment, for example higher-order XRF effects, the further derivation of the self-absorption MLEM

algorithm follows the derivation of the conventional MLEM algorithm as described in equa-

tion 3.21 to equation 3.26. Consistent with [LYQ+15], the iterative equation for the self-

absorption MLEM algorithm then results in:

f̄
(k+1)
j =

f̄
(k)
j

∑n
i=1 ai j

n

∑
i=1

gSA,i

∑m
j′=1 ai j′ f̄

(k)
SA,i j′

ai j (4.22)

with the corresponding pseudo-code implementation shown in algorithm 4.4.

Algorithm 4.4: Tomographic Self-Absorption MLEM

Data: Measured sinogram gmeas
L , number of iterations nk

Result: Self-absorption corrected reconstructed slice f
(nk)
L

Calculation for XRF line L;

Assume τmeas
0 and τ

(k)
L are known;

Initialize the slice with a first guess, e.g. with a backprojection: f
(0)
L = BP(gmeas

L );
k = 0;

while k < nk do

Alg. 4.3: Simulate self-absorption sinogram g
(k)
L ;

Divide measured and simulated sinograms: rg = gmeas
L ⊘g

(k)
L ;

Backproject into a slice: fratio = BP(rg);

Update by multiplication: f
(k+1)
L = f

(k)
L ⊙ fratio ;

k← k+1;

end while

return f
(nk)
L

The same logical description that applies to the conventional MLEM algorithm also applies to

the self-absorption MLEM algorithm. If the values of the simulated sinograms are too low,

then update will increase the values of the reconstructed slices and vice versa. However, it is

important to note that, if the XRF absorption volume is unknown and has to be recalculated

every iteration, the model to calculate the simulated sinograms will also change every iteration.

Therefore, the change in the simulated sinograms is not only dependent on the change of the re-

constructed slices anymore, but also on the change of the model. This increases the complexity

of the algorithm and may slow its convergence.

Figure 4.6 shows MLEM reconstructions of the central slice of the Fe-phantom for different
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Figure 4.6: Tomographic reconstructions of the central slice of the Fe-phantom a) without

self-absorption effects, b) with uncorrected self-absorption effects and c) with corrected self-

absorption effects. The values at the color bars are given as densities in g/cm3 and all recon-

struction were performed using an initial 100 iterations of MLEM-FMH with β = 0.3 followed

by 200 iterations of MLEM. The vertical green line in a) marks the position of the line profiles

plotted in d).

cases as well as a line profile through every reconstruction. a) is the MLEM reconstruction

of the sinogram shown in figure 4.5 a) and illustrates the case of no self-absorption effects for

comparison. b) and c) are reconstructions of the self-absorption sinogram shown in figure 4.5 b)

with conventional and self-absorption MLEM, respectively. As can be seen, the uncorrected

reconstruction suffers from a generally lower reconstructed density as well as from shadowing

of inner parts of the sample. In contrast, the corrected reconstruction does not suffer from these

effects. Except for a slight increase in noise, as visible in the plot of the line profiles, its density

levels are consistently similar to those of the reconstruction without self-absorption effect.
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4.2.4 Consistency Refinement Loop

The consistency refinement loop serves three important purposes: Given an experimental cali-

bration, it ensures that the reconstructed XRF volumes are consistent with the measured absorp-

tion volume. Furthermore, it calculates and updates the background absorption, if applicable.

Finally, it updates the XRF absorption volumes, which are input into the self-absorption model.

Density Calibration

Before the reconstructed XRF volumes can be used to simulate an absorption tomogram their

values have to be converted from intensities given in counts to area mass densities given

in g/cm2. To calculate the area mass density distribution ρ
(k)
2D,L for an XRF line L from the

k-th iteration intensity volume f
(k)
L the calibration factor Pcal,L is used:

ρ
(k)
2D,L = Pcal,L · f

(k)
L (4.23)

These calibration factors are either directly measured at the experiment using calibration foils

or theoretically calculated using experimental parameters (e.g. eq. 6.7).

If there are multiple reconstructed lines for an element Z, the final area mass density distribu-

tion of this element is calculated by averaging the individual density distributions of all lines

belonging to this element:

ρ
(k)
2D,Z =

1

nZ

nZ

∑
L=1

ρ
(k)
2D,L (4.24)

where nZ is the amount of reconstructed lines for the element Z.

Assuming that all reconstruction and calibration parameters are correct, the density calibration

for all lines of an element should lead to a singular elemental area mass density distribution.

Thus, the error between the reconstruction of a single line calculated against the average of

all lines, NMAE(ρ2D,L,ρ2D,Z) as defined in equation 3.33, can be used to monitor the process

and quality of the reconstruction. However, this calculation will be less accurate in presence of

noise, as the increase in noise with higher iterations will invariably increase the calculated error.

The subsequent calculations of the consistency refinement loop assume the densities of all el-

ements are given as area mass density distributions ρ2D,Z . For the final results however, these

area mass densities may be converted into volume mass density distributions ρ3D,Z to better

represent the 3-dimensional nature of tomography by dividing them by the voxel size in the

direction parallel to the beam direction d∥:

ρ3D,Z =
ρ2D,Z

d∥
(4.25)

In contrast to the actual voxel sizes in the plane intersected by beam, d⊣,x and d⊣,y, which are

defined by the beam size, d∥ is only defined by the step size of the measurement and therefore

accessible without further experiments.
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Density Constraints

In some cases, especially if the self-absorption correction algorithm is used with background,

it may be beneficial for the reconstruction to include a priori information about the elemental

distribution inside the sample, for example by applying a support.

If a low absorption region of the sample is known to contain background but none of the recon-

structed elements, an absorption threshold TL can be used to define a support for the elemental

density distributions:

ρ
(k)
2D,Z ←







ρ
(k)
2D,Z, τmeas

att ≥ TL

λL ·ρ(k)
2D,Z, τmeas

att < TL

(4.26)

The limiting factor λL is used to prevent the elemental densities from being limiting too strongly

which may cause the background to grow too fast and cause artifacts in the reconstruction.

Absorption Normalization

Following the density calculations, the XRF tomography data is adjusted to the absorption to-

mography data to improve the consistency of both datasets.

In the first step, assuming the absence of any background, the elemental area mass density

distributions ρ
(k)
2D,Z are used to simulate the absorption volume τ

(k)
0 at the primary beam energy.

From equation 2.10 it follows that:

τ
(k)
0 = ∑

Z

NA

MZ

ρ
(k)
2D,Zσatt,Z(E0) (4.27)

where k is the number of the current iteration, NA the Avogadro constant, MZ the molar mass

and σatt,Z(E0) the attenuation cross section of element Z at the primary beam energy E0.

After that, the ratio volume r
(k)
0 between the measured absorption volume τmeas

0 and the simu-

lated absorption volume is calculated:

r
(k)
0 = τmeas

0 ⊘ τ
(k)
0 (4.28)

The ratio is then multiplied with the elemental area density distributions to calculate scaled

elemental area density distributions ρ̂
(k)
2D,Z:

ρ̂
(k)
2D,Z = ρ

(k)
2D,Z⊙ r

(k)
0 (4.29)

so that the scaled elemental area density distributions are consistent with the measured absorp-

tion volume and equation 4.30 is fulfilled:

τmeas
0 = ∑

Z

NA

MZ

ρ̂
(k)
2D,Zσatt,Z(E0) (4.30)

It has to be noted that the normalization to the measured absorption values is only performed
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on the calculated elemental area mass density distributions for the purpose of updating the ab-

sorption volumes at the XRF emission line energies and therefore to update the self-absorption

Radon model. The intensity volumes of the MLEM algorithm itself are not scaled to isolate the

tomographic reconstructions and prevent elemental cross-talk.

Background Calculation

If an absorption background is used, its initial values are calculated by taking the difference be-

tween the measured and the simulated absorption volumes, as long as the simulated absorption

is smaller than the measured one:

τ
(0)
BG,0 =







τmeas
0 − τ

(0)
0 , τmeas

0 − τ
(0)
0 > 0

ε, τmeas
0 − τ

(0)
0 ≤ 0

(4.31)

where ε > 0 is a small positive real number close to zero. The usage of ε is required to prevent

parts of the background absorption volume being stuck at zero-values, as the method of updating

the background follows a multiplicative ansatz. Furthermore, as the background now accounts

for situations where the simulated absorption is smaller than the measured one, the ratio volume

used to scale the density distributions (eq. 4.28) has to be adjusted accordingly:

r
(0)
0 =







1, τmeas
0 − τ

(0)
0 ≥ 0

τmeas
0 ⊘ τ

(0)
0 , τmeas

0 − τ
(0)
0 < 0

(4.32)

meaning that the elemental density distributions will be limited to be consistent with the mea-

sured absorption if their simulated absorption exceeds the measured one and be kept constant

otherwise. It has to be noted that this change to the absorption volume ratio is only performed

during the first iteration the background is calculated in but not during following iterations.

As the recalculation of the background every iteration could lead to strong changes in the self-

absorption model and thus possibly to oscillating behavior of the self-absorption correction

algorithm, the background is kept persistent and treated equally to the density distributions

during subsequent iterations. To this mean, equation 4.27 is modified to include the background

of the previous iteration:

τ
(k)
0 = ∑

Z

NA

MZ

ρ
(k)
2D,Zσatt,Z(E0)+ τ

(k−1)
BG,0 (4.33)

After calculating the ratio of the measured and simulated absorption volumes, the background

absorption volume is then updated using a variation of equation 4.29:

τ
(k)
BG,0 = τ

(k−1)
BG,0 ⊙ r

(k)
0 (4.34)

This background refining is slower to act to changes in the self-absorption model compared to

complete recalculation of the background and thus stabilizes the algorithm.
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Background Constraints

In general, it can be assumed that the background is limited by the self-consistency of the

algorithm. As the background, per definition, lacks absorption edges in the relevant energy

range, its absorption increase in the direction of lower energies can be fully approximated using

a scaling law (eq. 4.9). In contrast, the absorption increase of all relevant elements in the

direction of lower energies is reduced by crossing their absorption edges. An overestimated

background therefore leads to comparatively increased simulated absorption of the emitted XRF

signals and thus to less intensity in the simulated sinograms. Low-intensity simulated sinograms

inserted into the MLEM algorithm then lead to an increase in the intensity volumes and density

distributions, which in turn reduces the background.

However, this explanation does not consider the artifacts that can be caused by an overestimated

or incorrectly distributed background. For example, if the background is overestimated but

the increase in the intensity volumes is not large enough to cause a sufficient reduction of the

background, the values of the intensity volumes continue to increase. However, because of

the influence of the self-absorption effects on the symmetry of the sinograms, this increase is

not uniform but mostly located towards the edge of the reconstructed sample. Meanwhile, the

intensity values towards the center of the sample increase less or even decrease. This may lead to

the accumulation of background signal in the center of the sample, worsening the reconstruction

artifacts in a positive feedback loop. In the worst case, this creates a “black hole artifact”

where the reconstructed intensity volumes only consist of a bright, high-value halo at the edge

of the reconstructed sample area, while the entire inner part of the sample is assumed to be

background. It is therefore important to constrain the background in those cases in which it

may be overestimated too strongly.

One method of constraining the background is to introduce a background slope for early iter-

ations. This method is especially useful if low elemental density distributions during the early

steps of the algorithm are causing a temporarily overestimated background. To apply the slope,

all values of the background are multiplied with a sloping factor:

τ
(k)
BG,0← τ

(k)
BG,0

k

λsl p

, as long as k ≤ λsl p (4.35)

where λsl p ∈ N1 defines the sloping strength.

Alternatively, if the background problems are of a more permanent nature, for example caused

by an incorrect calibration, it may be beneficial to analyze the reconstruction artifacts caused

by the overestimated background and to continuously limit the background based on how the

artifacts develop during the reconstruction process. As a strongly overestimated background

causes strong, localized increases of values in the simulated sinograms and thus also in the

backprojection of the simulated sinograms, a simple way of limiting the background can be

based on the comparison of the higher values of both the backprojection of the simulated and

the measured sinogram. In the current implementation this is done by determining the slice-

wise averages of all values higher than 90% of the slice maximum value and calculating the
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ratios λ
(k)
L,z of these values for the backprojection of the measured and simulated sinograms. The

ratios are then weighted to the sum of counts in the corresponding measured sinograms and

averaged for all slices to reduce the influence of noise:

λ
(k)
L =

∑x,y,z λ
(k)
L,z ·gmeas

L (x,y,z)

∑x,y,z gmeas
L (x,y,z)

(4.36)

A smaller λ
(k)
L may be an indication that background artifacts are present in the reconstructed

volume of line L. To calculate the background limiting factor λ
(k)
BG , the minimum of all λ

(k)
L is

used:

λ
(k)
BG =

minL(λ
(k)
L )

λtrg

(4.37)

where λtrg is a target value close to 1 that determines the sensitivity of the background limiting.

The limiting factor is then used to modify the ratio volume for the update of the background in

equation 4.34 to have a maximum value of 1 as long as the background limiting factor is smaller

than 1:

r
(k)
0 ←







1, λ
(k)
BG < 1 and r

(k)
0 > 1

r
(k)
0 , else

, only for eq. 4.34 (4.38)

This modification to the update step ensures that the background does not grow if there are

indications of background artifacts.

Additionally, this form of background constraint allows the implementation of an adaptive cal-

ibration for the elemental data. If the limiting factor is consistently smaller than λtrg and the

majority of the values of the ratio volume are larger than 1, there is a high possibility of incon-

sistencies in the elemental calibration. In this case, a persistent adaptive calibration factor C
(k)
ad pt

with an initial value of C
(0)
ada = 1 may be introduced. The calibration factor is updated using the

average of all nonzero values of the unlimited ratio volume:

C
(k)
ada←C

(k−1)
ada

∑x,y,z r
(k)
0

nr ̸=0

(4.39)

where nr ̸=0 is the amount of nonzero elements of r
(k)
0 and with the additional limitation that the

adaptive calibration factor is not allowed to increase if λ
(k)
BG > λtrg and not allowed to decrease

if λ
(k)
BG < λtrg. The limitation ensures that the adaptive calibration will not prevent the back-

ground from growing as long as the possibility of background artifacts is low. In the subsequent

iteration, the updated adaptive calibration factor is used to modify the elemental calibration

factors as used in equation 4.23:

ρ
(k)
2D,L =C

(k−1)
ada ·Pcal,L · f

(k)
L (4.40)
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As the combination of scaled elemental area density distributions and constrained background

volumes is not consistent with the measured primary beam absorption tomogram anymore, the

elemental area density distributions have to be rescaled to account for the lower background:

ρ̂
(k)
2D,Z ← ρ̂

(k)
2D,Z⊙

((

τmeas
0 − τ

(k)
BG,0

)

⊘ τ
(k)
0

)

(4.41)

These methods of constraining the background mitigate or prevent background artifacts, lead

to qualitative improvement of the reconstructions and, in most cases, assure that the algorithm

reaches a stables equilibrium. However, as the constraining of the background interferes with

the main part of the self-absorption correction algorithm and potentially also with the elemental

calibration, it has to be noted that the quantitativity of the reconstructions may suffer, even if an

equilibrium is reached.

Absorption Estimation

After assuring that the calculated density distributions are consistent with the measured absorp-

tion volume, they are used to calculate the XRF absorption volumes for every emission line:

τ
(k)
L = ∑

Z

NA

MZ

ρ̂
(k)
2D,Zσatt,Z(EL) (4.42)

or alternatively, if an additional background is used:

τ
(k)
L = ∑

Z

NA

MZ

ρ̂
(k)
2D,Zσatt,Z(EL)+ τ

(k)
BG,L (4.43)

where the background absorption volume at the XRF line energy τ
(k)
BG,L is calculated as defined

in equation 4.10.

The XRF absorption volumes are then used as updated inputs for the self-absorption Radon

transform inside of the self-absorption MLEM algorithm 4.4.
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4.3 Technical Implementation

The tomographic self-absorption correction algorithm is implemented in C++ with the most crit-

ical and time-consuming functions also implemented in CUDA. Most of the custom functions of

the algorithm are written with a focus on parallelization, either on CPU or GPU. This leads to an

increase in computational speed and allows to correct for self-absorption using the full 3D mea-

surement geometry. To decrease the dependency on third-party code, the algorithm only relies

on a small amount of external packages. As it would be inconvenient to have to recompile the

code for every change of parameters, a config-file based approach using an additional text-file

was chosen. The most recent version of the self-absorption correction algorithm code can be

found in the DESY Gitlab under: https://gitlab.desy.de/fs-petra/software/mlemsa

(access restrictions may apply).

4.3.1 Dependencies

Most of the self-absorption correction algorithm code is implemented using the C++ standard

library. Additional third-party code dependencies are OpenCV to be able to load and save

.tif image files, xraylib [SBG+11] which includes tabulated values for the energies of XRF

emission lines and attenuation cross sections, among others, as well as OpenMP and CUDA for

the parallelization of CPU and GPU calculations, respectively.

4.3.2 Arrays

All 3D volumes and sinogram stacks utilized during the self-absorption correction algorithm

are implemented as 1D dynamic arrays with their values depending on x-, y- and z-coordinates

being accessed by using custom indexing. For one, this assures that all values of an array

are saved close together in memory, increasing the chance that subsequent requested variables

during loops are located in the cache of the processor and speeding up the calculation time.

Furthermore, functions working on 1D arrays are easily translated into CUDA kernels, which

simplifies the change from CPU to GPU parallelized code. Using 1D dynamic arrays in C++

also requires to manually control the memory management, which has advantages especially

for memory expensive algorithm, but also creates the danger of memory leaks.

Regarding the arrays in the self-absorption correction algorithm, it is also important to specif-

ically mention the topic of the primary beam transmission volumes t0,φi
. While it theoretically

would be sufficient to calculate them just once at the beginning of the algorithm, saving a full

volume for every angle of the tomographic measurement can quickly lead to memory prob-

lems. This is especially the case for limited GPU VRAM and even more so if the transfer rates

between system RAM and VRAM are slow. For this reason, the current implementation only

allocates one volume for the primary beam transmission, which is overwritten when the volume

for the next angle is calculated. As the amount of operations necessary to calculate the primary

beam transmission volumes is low compared to the amount needed to calculate the XRF trans-
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mission volumes, this only slightly slows down the algorithm while it at the same time allows

for full calculation on the GPU without memory problems.

4.3.3 Downscaling

The computationally most expensive part of the self-absorption correction algorithm is the cal-

culation of the XRF transmission volumes (alg. 4.2), caused by the amount of sums that have to

be calculated along the detector directions.

For example, using realistic values, a sample with a volume of 3003 voxel, 361 recorded tomog-

raphy angles and 64 detector directions would require the calculation of about 6.24 ·1011 sums.

Assuming that 6 XRF lines are reconstructed using 300 iterations of the self-absorption cor-

rection algorithm, the amount of sums that have to be calculated increases to about 1.12 ·1015.

Even on modern computational architecture and with parallelization, these calculations can take

up to multiple weeks. This is a significant amount of time, especially if shared computational

resources are used.

As it would be difficult and expensive to upscale the computational resources, the most simple

way to speed up the calculation is to downscale the problem. For this reason, there is the

possibility to downscale the XRF absorption volumes τ by a factor n ∈ N1 into τDSn before

calculating the XRF transmission volumes. The downscaling is performed by calculating the

averages of n×n regions inside the full volume:

τDSn(x,y,z) =
1

n2

n−1

∑
z′=0

n−1

∑
y′=0

n−1

∑
x′=0

τ(nx+ x′,ny+ y′,nz+ z′) (4.44)

Here, the sums are only divided by n2 instead of n3 to account for the effective elongation of the

normalized detector direction vectors p̂ by a factor n in the downscaled coordinate system. For

edge cases in which the amount of remaining voxel in one or more directions is smaller than n,

the upper limits of the sums as well as the normalization factor are modified accordingly.

After rotation, the downscaled absorption volumes are used as input for algorithm 4.2 which

results in downscaled versions of the XRF transmission volumes tDSn. These volumes are then

upscaled again to the full size using trilinear interpolation, so that they can be used in the

subsequent steps of the algorithm.

The influence of downscaling on the transmission volume is illustrated in figure 4.7, using the

sample and slice previously shown in figure 4.4. Comparing the slices for different downscale

factors, it can be seen that, while the quantitative values stay on a similar level, the resolution

decreases with increased downscaling. This behavior is a consequence of the averaging nature

of the downscaling and has to be considered, especially for strongly inhomogeneous samples,

as it may introduce additional inconsistencies into the self-absorption correction algorithm and

decrease computational accuracy. For this reason, downscaling should only be used during the

earlier iterations of the algorithm, while the final iterations should be performed without.

In theory, the maximum speedup due to downscaling approaches a factor of n4. The reduced
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Figure 4.7: Central slice of the transmission volume of the Fe-phantom under one angle for

multiple downscale factors.

number of voxel accounts for a factor of n3, while the reduced number of additions per detec-

tor direction accounts for up to an additional factor of n, depending on the number of addition

operations compared to the number of operations for the calculation of the final exponential

function. However, the final speedup per iteration is further limited by the overhead of all stan-

dard operations of the self-absorption correction algorithm as well as the additional overhead

caused by the scaling operations. The exact speedup is also dependent on reconstruction pa-

rameters like the dimensions of the volume or the number of angles as well as computational

parameters like the transfer rate from system to GPU memory.

Table 4.1 includes example speedup values per iteration for a dataset consisting of six

3003 voxel tomographic volumes measured from 361 angles and using 64 detector directions.

The reconstructions were calculated on a machine with an Intel Xeon Silver 4114 CPU, an
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NVIDIA Tesla P100 GPU and 768 GB of RAM.

Table 4.1: Performance speedup achieved by downscaling

Downscale Factor n Time per Iteration tn [s] Relative Speedup tn/t1 logn(tn/t1)

1 7418.1 1.0 -

2 534.8 13.87 3.79

3 152.2 48.72 3.54

4 86.3 85.96 3.21

It can be seen that downscaling significantly reduces the required computation time per iteration,

from over 2 h without downscaling down to under 1.5 min using a downscale factor of n = 4.

However, by calculating the logarithm of the relative speedup tn/t1 to base n, which would be

equal to the exponent x when describing the speedup as nx, it can also be seen that increased

downscale factors lead to diminishing gains as the influence of overhead caused by the other

operations of the algorithm increases. Therefore, it has to be noted that downscaling is only

feasible up to a certain point, after which the decreased gain in speedup does not justify the

decrease in computational accuracy anymore.

Finally, an additional advantage of downscaling is that faster earlier iterations make it easier to

detect and solve problems that occur during the reconstruction.

4.3.4 Config-File

The config-file is a text file that defines parameters and flags for the self-absorption correction

algorithm. Its purpose is to reduce the use of hard-coded values and thus the necessity for

recompilation in case algorithm parameters have to be changed.

At the start of the algorithm, custom reader functions scan the given config-file for the necessary

values and throw errors if they are not found or of the wrong type. If no config-file is given the

algorithm creates an example config-file before exiting, which can then be adapted to the current

tomographic problem.

A more detailed description of the parameters and flags defined in the config-file is given in the

supplement.
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4.4 Numerical Simulations

The performance of the tomography self-absorption correction algorithm was evaluated by nu-

merical simulations. To account for different real-world experimental cases, four test samples

were simulated: A single-element iron sample, a single-element iron sample including an un-

known silicon oxide background, a multi-element iron, titanium and zinc sample as well as a

multi-element iron, titanium and zinc sample including an unknown silicon oxide background.

4.4.1 Phantoms

The four test samples can be defined as a linear combination of four 3D phantoms, which are

shown in figure 4.8. All phantoms were created inside 3003 voxel volumes and their values

normalized to occupy a range from 0 to 1. Furthermore, a sphere with a radius of 145 pixel was

introduced as external boundary to limit the size of the phantoms and to introduce additional

structural variety.

Phantom a) is a 3-dimensional version of the Shepp-Logan phantom and is used as Fe-phantom.

As variations of phantom a), phantoms b) and c) were created by downscaling the 3D Shepp-

Logan phantom by a factor of 2 or 4 and repeating them in a 23 or 43 grid. They are used as

Ti- and Zn-phantom, respectively. Finally, phantom d) consists of concentric spherical shells

with the n-th shell having an inner sphere radius of r = 10n pixel and an outer sphere radius of

R = 10n+5 pixel. It is used to simulate the SiO2 background

4.4.2 Simulation Parameters

The simulations of the self-absorption tomography experiments were performed assuming a

primary beam energy of 18 keV, a scanning step size of 1µm, resulting in total sizes of the

phantom volumes of 300µm along all axes, and 361 measured angles, starting from 0◦ and

going up to 360◦ in 1◦ steps. A 9× 9 binary matrix was used to define a 2D 4-element XRF

detector, with each element consisting of 16 sub-elements:

Detector Matrix =

1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1

(4.45)

resulting in a total of 64 detector directions that have to be considered. Additional detector

parameters were a detector pixel size of 1 mm, a sample-detector distance of 1 cm and and a

detector angle of 270◦. No small-sample approximation was used for the calculation of the

XRF transmission volumes.

Before the simulation, the values of the phantoms were scaled in such a way that their maximum

values were equal to half of the volume mass density of their corresponding element, or in case

57



Figure 4.8: 3D renderings of the different phantoms used for the numerical simulations. As-

signed elements are a) Fe, b) Ti, c) Zn and d) SiO2 background. There are cutouts at high x- and

z-coordinates in the renderings of a) and d) for visualization. The 3D renderings were created

in Drishti [Lim12].

of SiO2 of their corresponding compound, at room temperature for the single element cases and

equal to a quarter for the multi-element cases.

The resulting self-absorption sinograms for Fe, Ti and Zn were simulated for both the Kα and

the Kβ line and created in two batches: First, a noiseless version to simulate the ideal case

performance, to monitor the reconstruction progress without the interference of noise and to be

sensitive to small reconstruction problems and artifacts. Furthermore, noiseless sinograms are

useful to check for unexpected behavior of the algorithm caused by zero-values, which rarely

occur in noisy data.

The second batch of the simulated self-absorption sinograms was additionally modified to in-
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clude Poisson noise to be able to simulate real-world performance. Each stack of sinograms

was modified separately to include a unique noise distribution, with the Poisson noise applied

assuming that the maximum value in the entire sinogram stack is equivalent to 10000 counts.

For both batches, the simulated primary beam absorption volumes were kept free of noise.

However, to stay consistent with the further treatment of the elemental data, the simulated

primary beam absorption volumes were first Radon transformed into sinograms followed by

300 iterations of tomographic reconstruction using the conventional MLEM algorithm, of which

the first 100 iterations were modified to include a FMH Bayesian prior (eq. 3.31) with a weight

of β = 0.3.

4.4.3 Tomographic Reconstruction

The tomographic reconstructions of the simulated self-absorption sinograms utilize the recon-

structed primary beam absorption volumes and the parameters as defined in the simulation step.

No a priori information about the XRF absorption volumes or the spatial distribution of the

background was used.

The reconstructions of all datasets were performed using 300 iterations of the tomographic self-

absorption correction algorithm. To analyze the influence of downscaling on the accuracy of

the reconstructions, the XRF transmission volumes were calculated using a downscale factor

of 4 for the first 160 iterations, followed by 90 iterations using a downscale factor of 3, 40 itera-

tions using a downscale factor of 2 and finally 10 iterations without downscaling. Furthermore,

during the first 100 iterations the MLEM part of the algorithm was modified to include a FMH

Bayesian prior (eq. 3.31) with a weight of β = 0.3 to determine the influence of OSL methods

on the self-absorption correction.

As reconstruction artifacts inside the primary beam absorption volumes caused problems for

the single-element cases simulated with background, those were additionally reconstructed with

density limiting as implemented in equation 4.26 using a limiting factor of λL = 0.5.

Single Element (+Background)

The single-element cases include the simulations for the Fe-phantom without and with back-

ground, without and with noise and for the background cases also without and with density

constraints. For each case, the full self-absorption corrected reconstructions required about

11.4 hours in computation time.

Figure 4.9 shows the logarithmic percentual normalized mean absolute errors (eq. 3.33) calcu-

lated for the mass density volume of the Fe-Kα line against the average of the mass density

volumes of Fe-Kα and -Kβ line depending on the iteration of the algorithm. Lower values

indicate smaller errors between Kα and Kβ reconstruction and thus improved self-absorption

correction.

For the “no background, no noise” case (light blue), the effects of downscaling on the error of

the reconstruction are clearly visible. It can be seen that the NMAE decreases with the amount
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Figure 4.9: Logarithmic (log10) percentual normalized mean absolute errors (eq. 3.33) at dif-

ferent iterations for the single-element Fe simulations. Calculated is the error of the Kα line

reconstruction compared against the average of all line reconstructions.

of iterations, with the decrease eventually tapering off. Following the reduction of the down-

scale factor at iterations 160, 250 and 290, it is possible to observe immediate improvements

in the self-absorption correction as indicated by drops in the NMAE. This confirms the impor-

tance of performing the final iterations of the self-absorption correction algorithm without any

downscaling. On the other hand, the FMH prior used during the first 100 iterations does not

seem to have a big influence on the error of the reconstruction for this case, most likely because

the Fe-phantom is homogeneous for big parts of the volume.

The error for the “background, no noise” case (light green) differs significantly from the “no

background” case. As the background represents an additional unknown parameter during the

reconstruction, the error in general is larger. Additionally, the FMH prior now has a visible

influence on the error, indicated by a flattening curve before iteration 100. This is most likely

caused by the averaging effect of FMH, which prevents the background from fully develop-

ing. After iteration 100, the error improves for a few iterations before it increases again. This

increase in error is significant enough to overshadow the effects of reduced downscaling and

caused by reconstruction artifacts in the absorption tomograms. These artifacts manifest them-

selves as excess intensity in otherwise empty regions inside the sample, which is incorrectly

attributed to the Fe absorption instead of the background during the self-absorption correction

algorithm. Defining and using a limiting constraint for the Fe density volumes during the re-

construction (orange line) mitigates this problem, as evident by a significant improvement of

the NMAE.

All “noise” cases show similar behavior in their error development, mainly influenced by the
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noise amplifying characteristics of the MLEM algorithm for increased numbers of iteration. As

before, the error for the “no background” case (dark blue) is overall lower than those for the

“background” cases (dark green, dark red). During the first 100 iterations of the reconstruction,

the FMH prior limits the increase of noise and causes the error to approach an equilibrium.

However, as soon as the FMH prior is deactivated, the noise, and with it the error, starts to

grow continuously and strongly enough to mask the effects of all other changes applied during

the reconstruction. Thus, the “noise” cases are not suited to analyze the finer changes in the

self-absorption correction.

Figure 4.10 illustrates the results of the self-absorption correction reconstruction for the “back-

ground, noise” cases using the central slice of the tomographic volume. Reconstructions for the

“no background, noise” case can be found in supplementary figure S1. Comparing the values of

the Fe ground truth as shown in a) with the corrected reconstructions in c) and d) and also con-

sidering the uncorrected reconstruction in b), it becomes evident that, although the influence of

noise significantly increases the error of the reconstruction, the self-absorption correction still

improves the qualitative and quantitative properties of the reconstruction.

Furthermore, comparing the corrected reconstructions of the Fe without and with density limit-

ing in c) and d) as well as the results for the background in f) and g) illustrates the nature of the

reconstruction artifacts responsible for the increase in error in the “background” cases without

limited constraints. Absorption signal supposed to be allocated to the background is instead

allocated to the Fe reconstruction during earlier iterations of the algorithm and causes persistent

artifacts. This effect can be mitigated using a priori knowledge of the sample and limiting the

Fe density volumes in regions where no Fe is present.

The result for the background with density constraints itself is in good agreement with the

ground truth in regions where no Fe is present or where the Fe densities are constrained. How-

ever, as the reconstruction of background is not supported by a measured sinogram, incon-

sistencies in the Fe density volume are transferred into the background where they manifest

themselves as “imprint artifacts”. This is most likely one of the causes of the higher NMAE for

“background” cases in general.

Table 4.2 shows the final normalized mean absolute errors of the reconstructed Fe density and

background volumes calculated against their noiseless ground truths.

Table 4.2: Normalized mean absolute errors (eq. 3.33) of the reconstructed single-element sim-

ulations calculated against their noiseless ground truths.

NMAE(recon., truth) Fe Background

No Background 0.0027 -

Background 0.0313 0.2977

Background (lim.) 0.0115 0.1996

No Background, Noise 0.0357 -

Background, Noise 0.0531 0.5485

Background (lim.), Noise 0.0540 0.5355
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Figure 4.10: a) Ground truth and b) uncorrected (Kα) reconstruction for the noisy single-

element Fe simulation with background. c) and d) are the corrected reconstructions without and

with density constraints, respectively. For comparability reasons ground truth and corrected re-

construction are on an identical scale, while the uncorrected reconstruction is scaled separately

for visibility. The e) ground truth, f) result without and g) result with density constraints for the

background are on an identical scale as well. All values given in g/cm3.

As it was the case for the NMAE during the reconstruction, the final NMAE for the “no back-

ground, no noise” case is the lowest one of all cases. The errors for the “background, no noise”

cases are comparatively higher, but can be improved by using density constraints. As inconsis-

tencies in the Fe reconstruction are transferred into the background, the NMAE for the back-

ground results are higher than for the Fe density volumes. For the “noise” cases the NMAE

is dominated by the noise, masking the influence of the density constraints and background

inconsistencies on the error.
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Multiple Elements (+Background)

The multi-element cases include the simulations for the combination of Ti-, Fe- and Zn-phantom

without and with background as well as without and with noise. In contrast to the reconstruction

of the single-element cases, no density constraints were needed for the multi-element recon-

structions, as the increased spatial coverage of elements decreased the effective size of empty

regions inside the sample and thus the influence of reconstruction artifacts in the primary beam

absorption volumes. For each case, the full self-absorption corrected reconstructions required

about 34.2 hours in computation time.

Figure 4.11 shows the development of the logarithmic percentual normalized mean absolute

errors depending on the iteration calculated for the mass density volumes of the Ti-, Fe- and

Zn-Kα lines against the average mass density volumes of all lines belonging to each respective

element. As the error curves for the multi-element “noise” cases follow an identical pattern as

those for the single-element cases, approaching an equilibrium while the FMH prior is active

and steadily increasing after, they are not shown to improve the clarity of the plot (see supp.

fig. S2).

As it was the case for the single-element reconstructions, the reduction in downscaling factor at

iteration 160, 250 and 290 causes a drop in the error corresponding to an improvement in self-

absorption correction, while the FMH prior applied up to iteration 100 mainly has an influence

on the “background” cases.

There are two properties of the error plot that have to be considered especially: The general

difference in error between elements as well as the difference in error between the “no back-

ground” and “background” cases. Towards the later iterations, it can be seen that the error for

the Zn reconstruction is larger than the error for the Ti reconstruction, which in turn is larger

than the error for the Fe reconstruction. This is most likely caused by the choice of phantoms.

The Fe-phantom consist of relatively coarse structures and homogeneous areas with less pos-

sibilities for inconsistencies to develop, while the Ti- and even more so the Zn-phantom show

finer structures and more variation, allowing for increased differences and error between the

Kα- and Kβ -reconstructions.

The difference in error between the “no background” and “background” cases depending on

the element can be explained by considering the influence of inconsistencies in the background

on the self-absorption correction of the element. As the absorption of the background approx-

imately scales with a scaling law (eq. 4.9), lower energy XRF emission lines are influenced

stronger by the background than higher energy XRF emission lines. Inconsistencies in the

background therefore lead to a large difference in error between the “no background” and

“background” case for the Ti reconstruction, which is reduced for the Fe reconstruction and

even more for the Zn reconstruction, which is the least influenced by the background.

Figure 4.12 shows the results of the self-absorption correction reconstruction for the “back-

ground, noise” case for all elements and the background. Reconstructions for the “no back-

ground, noise” case can be found in supplementary figure S3. Strong self-absorption artifacts
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Figure 4.11: Logarithmic (log10) percentual normalized mean absolute errors (eq. 3.33) at dif-

ferent iterations for the noiseless multi-element simulations. Calculated is the error of the Kα
line reconstruction of an element compared against the average of all line reconstructions of the

element.

are visible in the uncorrected elemental reconstructions, manifesting themselves as decreased

densities towards the center of the reconstructions, “imprints” of other elements in regions of

high self-absorption as well as intensity outside of the sample area, especially for the Zn recon-

struction. These artifacts, qualitative and quantitative, are almost completely mitigated in the

corrected reconstructions. The remaining main cause of differences between corrected recon-

structions and ground truths is the applied Poisson noise.

As it was the case for the single-element reconstruction, the background shows “imprint arti-

facts” caused by inconsistencies as well as noise in the elemental reconstructions and leading

to further inconsistencies in the algorithm.

In Table 4.3 the final normalized mean absolute errors of the reconstructed elemental den-

sity distributions and background volumes calculated against their noiseless ground truths are

shown.

Table 4.3: Normalized mean absolute errors (eq. 3.33) of the reconstructed multi-element sim-

ulations calculated against their noiseless ground truths.

NMAE(recon., truth) Ti Fe Zn Background

No Background 0.0109 0.0051 0.0210 -

Background 0.0187 0.0075 0.0218 0.4795

No Background, Noise 0.0605 0.0438 0.0618 -

Background, Noise 0.0982 0.0547 0.0660 0.9616
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Figure 4.12: Ground truth, uncorrected (Kα) and corrected reconstruction of a)-c) Fe, d)-f) Ti

and g)-i) Zn for the noisy multi-element simulation with background. For comparability rea-

sons ground truth and corrected reconstruction are on an identical scale, while the uncorrected

reconstruction is scaled separately for visibility. The j) ground truth and k) result for the back-

ground are on an identical scale as well. All values given in g/cm3.
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For the noiseless cases, the overall error of the Fe reconstruction is the lowest, followed by the

error of the Ti and then the error of the Zn reconstruction. This is consistent with the general

behavior of the NMAE during the iterations. It has to be mentioned that the complexity of

the self-absorption correction increases as more elements are considered for the multi-element

cases, leading to larger errors in the Fe reconstruction compared to the single-element cases

(see tab. 4.2).

For the cases with added noise, the NMAE increase significantly as the errors caused by the

noise exceed any errors caused by other inconsistencies in the self-absorption correction algo-

rithm. Furthermore, the NMAE of the Ti reconstruction increases relative to the NMAE of the

Zn reconstruction and even surpasses it in the “background, noise” case. This is caused by the

higher influence of inconsistencies caused by the noise and inconsistencies in the background

on the self-absorption calculations for the lower energy Ti-Kα emission line.

The NMAE of the resulting background volumes for the “background” cases are higher than

the NMAE of the elemental reconstructions as the background volumes are not additionally

constrained by measured sinograms and therefore accumulate inconsistencies in the elemental

reconstructions.
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Chapter 5

Synchrotron Experiments

5.1 Setup

All experiments were performed at beamline P06 of the PETRA III synchrotron storage ring at

DESY in Hamburg, Germany. P06 is a hard X-ray beamline specialized for X-ray microscopy

and imaging techniques, like for example X-ray fluorescence (XRF) microscopy, scanning

transmission X-ray microscopy (STXM) and X-ray ptychography. To facilitate high resolution

measurements, the beamline provides focus sizes in the range from micro- to nanometers.

5.1.1 PETRA III Beamline P06

Beamline P06 (fig 5.1 a) consists of three main parts: An undulator that acts as insertion device,

an optics hutch to modify the X-ray beam and an experimental hutch, in which the experiments

are performed. The experimental hutch is further divided into a Micro- and a Nanoprobe. In

addition, a part of the beamline close to the experimental hutch is reserved for experimental

control. At different positions along the entire length of the beamline, multiple beam position

monitors and retractable screens are used to observe the X-ray beam and monitor its quality

while it is modified by different optical elements. Starting from the insertion device up to the

experimental hutch, the beam path is in vacuum to reduce attenuation by air molecules.

Insertion Device

The insertion device located at the beginning of P06 is a 2 m U32 spectroscopy undulator with a

magnet period of λU = 31.4 mm and a maximum undulator parameter of Kmax = 2.7 [SBF+10].

It generates linearly polarized X-rays and has its first harmonic at an energy of 2.4 keV. The

source size and the beam divergence of the undulator at 12 keV are about 36× 6µm2
σ and

28×4µrad2
σ, respectively.

To narrow down and shape the size of the X-ray beam before it enters the optics hutch, a

vertical high-power slit (PS1) and one in both vertical and horizontal direction (PS2) are placed

downstream of the undulator [SBD+16].
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Figure 5.1: Schematic overview of a) the beamline P06 without insertion device, b) the P06

optics hutch and c) the P06 Microprobe. Rendered images courtesy of Hendrik Lindemann.
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Optics Hutch

The entrance of the optics hutch is located 31.5 m downstream of the insertion device and its

length measures 11.8 m. It contains multiple optical elements to modify the X-ray beam param-

eters to the specifications required by the experiment. A schematic plan of the optics hutch is

shown in figure 5.1 b).

Two different types of monochromators are available to monochromatize the X-ray beam: A

multilayer monochromator (MLM) and a silicon double crystal monochromator (DCM). The

DCM is further divided into two parts, with the first being a pair of Si 111 crystals usable in

the energy range from 3 keV to 50 keV and the second being a high-stability Si 111 channel-cut

crystal usable in the range from 6 keV to 18 keV. To ensure a constant 22 mm vertical offset

and a less complicated alignment of the beamline, the Si 111 crystals are placed in a fixed-exit

geometry.

On the other hand, the MLM consists of two flat mirrors, with one coated with PdB4 and the

other with NiC. It is usable in the energy range from 10 keV to 100 keV and offers increased

photon flux in exchange for a worse energy bandwidth.

Downstream of the monochromators, two flat HO-mirrors can be used for higher-harmonics

rejection. To enable a variety of cut-off energies with multiple incidence angles, different areas

of the mirrors are coated with one of the three materials platinum, chromium or silicon. For

example, assuming an incidence angle of 2.5 mrad, the cut-off energies of the HO-mirrors are

30 keV for the platinum, 20 keV for the chromium and 12 keV for the silicon.

Placed close to the exit of the optics hutch are horizontal and vertical slits to further confine

the beam as well as profocusing sections containing 1D nanofocusing lenses (NFLs) and 2D

compound refractive lenses (CRLs). These lenses may either be used to prefocus the beam

and increase the photon flux at the experiment or, for methods that require high coherence, to

defocus the beam.

Microprobe

The Microprobe is the first of the two parts of the experimental hutch and shown in 5.1 c). Its

entrance is located 86 m downstream of the insertion device.

Placed at the beginning of the Microprobe is a beam diagnostics section consisting of a quadrant

beam position monitor (QBPM) and a retractable screen. Located a small distance downstream

of the beam diagnostics is a fast shutter as well as an absorber unit. The absorber unit contains

sheets of Al and Si in varying thickness to attenuate the X-ray beam if necessary. An evacuated

flight tube assures minimal air absorption of the beam up to the experiment.

One of the possible optical elements of P06 used to focus the X-ray beam is a KB-mirror system.

A slit system at the entrance of the KB-system assures an ideal beam size for the aperture of the

KB-mirrors, while an ion chamber measures the incident flux for normalization purposes. The

KB-mirrors themselves are a pair of Rh-coated Si mirrors with fixed elliptical shapes. They are

placed inside a containment box flushed with N2 to prevent degradation caused by the X-ray
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beam, for example carbon deposition. With an incident angle of 2.5 mrad, the KB-mirrors have

a working distance of 200 mm and a cut-off energy of 23 keV [Fal15]. To use other focusing

optics, for example CRLs, the KB-mirror system can be moved to the side and out of the beam.

Downstream of the KB-mirror system is an open space to assemble the sample tower consist-

ing of scanning stages and sample mounts as required for the experiments. A movable table

provides room to mount multiple different detector systems.

Finally, the Microprobe exits into the Nanoprobe, which contains a nanofocusing X-ray micro-

scope used to measure samples too small for the larger foci of the Microprobe optics.

5.1.2 P06 Tomography Setup

One of the possible configurations of the sample tower is the P06 tomography setup as shown

in figure 5.2. For stability reasons and to dampen vibrations, the entire setup is placed on top of

a heavy granite block.

A sample hexapod (Newport HXP200S-MECA) with a minimum incremental motion of

0.15µm acts as base of the setup and allows for coarse translation and tilting of the sample. On

top, an air-bearing rotation stage (PiMicos UPR-270 Air) rotates the sample, which is essential

for tomography experiments. The rotation stages has an angular accuracy of 0.97 arcsec, which

is equivalent to about 4.7µrad. Centering stages (Huber 5101.07 Linear Stage) in x- and

y-direction and with an accuracy of 6µm are used to align the sample to the center-of-rotation.

Finally, piezo scanners in x- and y-direction (Aerotech QNP60XY-500) as well as in z-direction

(Aerotech QNP60Z-500) allow for fine translation of the sample with resolutions <1 nm and

fast scanning. Depending on the size and shape of the sample, special sample mounts may be

required for the sample to reach the height of the X-ray beam.

5.1.3 Detectors

For STXM and XRF tomography experiments, two types of detectors are essential: A detector

downstream of the sample to measure the transmission of the primary beam through the sample

as well as spectrally resolved detectors to detect the emitted XRF signal.

At P06, STXM measurements are usually performed using a Canberra PD300-500CB Passi-

vated Implanted Planar Silicon (PIPS) diode. The X-rays hitting the diode are absorbed and

excite electron-hole pairs in the diode material. As the diode is connected to a voltage, this

causes an electric current to flow. On the condition that the diode is used in its linear range, this

current is proportional to the amount of excited electron-hole pairs, which is itself proportional

to the X-ray intensity. Connected to the PIPS diode is a Keithley picoammeter to accurately

measure the electric current at the diode. Variable gain settings allow to cover a large range

of electric currents and thus X-ray intensities. As STXM is a relative measurement mode, it

is not necessary to quantitatively determine the intensity of the X-ray beam and thus the exact

calibration of the diode is of less importance than it would be, for example, for XRF detectors.

70



Figure 5.2: Rendering of the P06 tomography setup, including KB-mirror system. Rendered

image courtesy of Vanessa Galbierz.

Among others, the XRF detectors used at P06 include two Hitachi Vortex-EM silicon drift de-

tectors (SDD). For both Vortex detectors, the detector material is a silicon crystal with a nominal

active area of 50 mm2 and a nominal thickness of 350µm. Beryllium windows with a thickness

of 12.5µm secure the vacuum inside the detectors and protect the silicon crystals from envi-

ronmental influences. An SDD consists of concentric rings of p+ silicon and a small central n+

signal anode on an n-type silicon chip, designed to generate an electric field gradient [PPK+14].

This electric field causes the electrons created by X-rays to drift to the anode, where the result-

ing electric current is converted into a voltage signal using field-effect transistors. The increase

in voltage signal is proportional to the energy of the X-rays.

To analyze the voltage signal of an SDD and create energy dependent XRF spectra, pulse pro-

cessors are used. At P06, these are Xspress3 pulse processors developed by Quantum Detectors.
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The Xspress3 pulse processor features output rates of more than 3.4 Mcps and deadtimes below

100 ns per event. Furthermore, the system automatically optimizes internal parameters like the

shaping or peaking times depending on the measured sample. However, as the exact method of

optimization is a company secret, this also complicates the correction of deadtime and pile-up

effects by preventing the use of an accurate model.
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5.2 Experiment

The performed experiment consists of tomographic STXM and XRF measurements of a mi-

crometeorite sample as well as XRF measurements of elemental calibration foils. The measure-

ments were conducted by Dennis Brückner, with the aid of Dr. Stijn Van Malderen (formerly

Ghent University) and Dr. Ir. Jan Garrevoet (DESY).

5.2.1 Samples

Each year, around 30000 tons of extraterrestrial material enter Earth’s atmosphere, with about

5% of it reaching the surface of the planet, while the remaining mass is lost due to processes like

melting and evaporation [PRdAK18]. Most of this material comes in form of micrometeorites,

extraterrestrial dust particles with sizes reaching from about 10µm up to 2 mm [FC15]. The

properties of a micrometeorite, like shape and elemental composition, are dependent on the

nature of its parent body, the type of process leading to its creation as well as the conditions

during its deceleration in Earth’s atmosphere. Investigating the properties of micrometeorites

can thus lead to information about the physics and chemistry of extraterrestrial objects.

Found in a sedimentary record from the Atacama Desert and provided by Dr. Jenny Feige

(TU Berlin), the micrometeorite examined during this experiment is approximately spherical in

shape and has a size of about 150µm. Using the system established by Genge et al. [GEGT08],

it can be classified as a melted micrometeorite, specifically as a silicate-type cosmic spherule

with the barred olivine subtype. Barred olivine micrometeorites are defined by parallel growths

of skeletal olivine, (Mg+2, Fe+2)2SiO4, inside a glassy mesostasis. Other elements of interest

may include, for example, Al, Ca, Ti, Cr, Mn, Ni as well as Sr [PRdAK18].

During XRF tomography, the high elemental concentrations in micrometeorites can lead to

strong self-absorption effects. Furthermore, the part of the absorption caused by the low-Z

glassy background is large enough to not be negligible for the purpose of self-absorption cor-

rection, yet small enough that it would not be feasible to assume a trace-element approximation

for all other elements. This increases the necessity for accurate experimental calibration to be

able to correctly separate elemental signal from background. Therefore, micrometeorites can

be considered as challenging samples for any XRF tomography experiment and self-absorption

correction algorithm.

5.2.2 Measurements

All measurements were performed at a primary beam energy of 18 keV with the DCM as

monochromator. Edge measurements using a gold cross determined the full width at half max-

imum (FWHM) size of the KB focus to be ca. 400 nm in horizontal and ca. 350 nm in vertical

direction. An ion chamber located upstream of the KB mirrors was used to detect intensity

fluctuations in the primary beam. XRF detection was performed using a dual Vortex setup,

with one detector placed at 90◦ relative to the primary beam direction and the other at 270◦
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Figure 5.3: a) Overview image of the experiment at P06. b) Closer view of the sample mount

with the micrometeorite sample. c) Normalized transmission image of the micrometeorite mea-

sured under an angle of 0◦ and cropped to a size of 340×340 pixel (z× y).

(fig. 5.3 a). Both detectors were covered with a 13µm polyimide window glued onto a 6 mm

diameter collimator and the air paths between sample and detectors measured 30 mm. The sam-

ple was mounted economically and sustainably on a toothpick stabilized with clay, using nail

polish remover as glue (fig. 5.3 b). A PIPS diode was placed 450 mm downstream of the sample

to measure transmission data (fig. 5.3 c).

The tomographic sample measurement was performed in fly-scanning mode using an initial grid

of 340×380 (z×y) positions per projection with 500 nm effective step size and 2.75 ms effective

dwell time per scan point. For the tomogram, 362 angles were recorded in two 181 angle

batches, with the first batch covering the angular range from 0◦ to 180◦ and the second batch

from 180.5◦ to 360.5◦, using 1◦ angular steps for both batches. In total, the required time

to measure the complete tomogram amounted to about 39.1 hours. To limit the amount of

XRF photons to be consistent with the specifications of the Vortex detector and Xspress3 pulse

processor, the incident primary beam was attenuated to 50% of its initial flux.

The elemental calibration of the experiment was determined by measuring Fe, Ni, Cr and Cu

calibration foils. To stay consistent with the tomographic measurement, the foils were measured

in fly-scanning mode and the dwell time of the calibration measurements was kept at 2.75 ms.

However, the step size was increased to 1µm to cover a larger foil area and to be able to obtain

an improved average value for the calibration factor. All foils were measured under two angles,

±45◦ from normal incidence, with each angle being rotated towards one of the Vortex detectors.
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Chapter 6

Experimental Results

6.1 Data Processing

The data processing preceding the tomographic reconstruction can be divided into three steps:

First the fitting of the XRF spectra, followed by the deadtime and pile-up correction and finally

the sorting of the data into an image. Furthermore, it is necessary to calculate the calibration

factors from the measurements of the calibration foils.

6.1.1 XRF Fitting

The fitting of the XRF spectra was performed using the PyMca toolkit developed at the Eu-

ropean Synchrotron Radiation Facility [SPC+07]. First, the graphical interface of the toolkit

was used to identify the main elements of the sample in the sum spectrum of an entire projec-

tion. Following that, fit parameters, for example the detector energy calibration and resolution,

were determined from a subset of these spectra. This allows for an improved description of the

characteristics of the single spectra. Finally, each single spectrum was individually fitted using

a custom script based on the PyMca fitting methods, which was developed by Dr. Stijn Van

Malderen and is maintained by Dr. Ir. Jan Garrevoet. As the counting statistics in the single

spectra were low, it was not possible to fit Kα and Kβ lines separately without introducing

strong noise into the data. Therefore, the single spectra were fitted assuming a fixed Kα:Kβ

intensity ratio.

Figure 6.1 shows the logarithmic sum spectrum of the first tomographic projection for detector 0

up to an energy of 25 keV. Written above the peaks are the possible elements or combinations

of elements they could be made up of. It can be seen that the spectrum is mainly dominated by

the high intensity Fe-signal with smaller contributions from the Mn- and Ni-signals. These high

intensity signals cause an extended pile-up area in the region around 13 keV, thus complicating

the creation of a suitable fit by possibly masking other lower intensity elemental signals. This

is especially the case because the description of pile-up in PyMca is lacking, as the formation

of pile-up is highly dependent on the utilized detector and detector electronics.

Another important feature of the spectrum are the escape peaks. They are caused by exciting
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Figure 6.1: Sum spectrum of the first tomographic projection for detector 0 with possible ele-

ments or elemental combinations written above their corresponding peaks. The counts are given

as log10 to improve the visibility of the low intensity peaks.

X-ray fluorescence of the detector material, which may then escape the detector. This leads to

peaks with a measured energy which is effectively lowered by the energy of the escaped XRF

photon. For silicon Kα XRF this energy amounts to about 1.74 keV. In contrast to the correction

of the deadtime losses and pile-up peaks, which may require sophisticated models, escape peaks

are accounted for by adding their integral density to their corresponding main XRF emission

peak.

6.1.2 Deadtime and Pile-Up Correction

To calculate the parameters for the deadtime and pile-up corrections, a Mn-foil was measured.

The measurements, conducted by Dennis Brückner and Dr. Gerald Falkenberg (DESY), were

performed at a primary beam energy of 7 keV by scanning the slits upstream of the sample and

varying the detector-sample distance. Three example spectra of these measurements are plotted

in figure 3.1. An ion chamber between slits and sample was used to quantify the photon flux

of the incident beam I0 and data points falling inside the non-linear regions of the ion chamber

were discarded.

After integration of the spectra, the measurements for the different detector distances were com-

bined by rescaling their respective I0-values to a common scale to define the relation between

the detected count rate and the incident photon flux OCR(I0). Fitting the low-intensity region of

this dataset, in which the relation between OCR and ICR should be close to linear, with a linear

function then allows to recalibrate the I0-axis into an ICR-axis to define the relation between

input and output count rates OCR(ICR).
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Figure 6.2: Plot and fit (eq. 3.8) of the OCR over ICR data that was recorded using Mn-foils.

The fit parameters for both detectors can be found in supplementary table S1.

Figure 6.2 shows the resulting OCR over ICR plots for both detectors fitted with the deadtime

and pile-up model described in equation 3.8. It can be seen that the fit is consistent with the

data. However, as the model only considers 2-event pile-up but the experimental data shows

even higher order pile-up (compare fig. 6.1), the exact physical meanings of the fit parameters

are lost. The fit parameters are then used to create a lookup table correlating OCR to ICR.

There are two different methods to correct for deadtime effects: The first one is to apply the cor-

rection factor calculated from the lookup table to every bin of the unfitted spectra. Alternatively,

as the correction is multiplicative, it is also possible to first fit the spectra and then apply the cor-

rection factor to the fitted value of each peak. This second methods requires less computational

operations as well as memory space and was therefore used for the data processing.

To correct the effects of the pile-up, the inverse pile-up loss λpu ≥ 1 depending on the ICR was

calculated by comparing the sum of the areas of the different n-event pile-up regions Ipu,n in the

Mn-spectra to the area of the single-event region Ipu,1:

λpu(ICR) =
∑n nIpu,n(ICR)

Ipu,1(ICR)
(6.1)

The resulting inverse pile-up loss shows approximately a linear dependency on the ICR (see

supp. fig. S4) with a slope of mpu:

λpu = mpu · ICR+1 (6.2)

After determining the slope describing the linear dependency (see supp. tab. S1), the pile-up

correction was applied to the fitted value of each peak similar to the deadtime correction.
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6.1.3 Sorting

As the experimental X-ray fluorescence data was recorded in fly-scanning mode, it had to be

sorted into an image grid using the encoder positions of the scanning stages. This sorting was

performed using a custom script developed by Dr. Stijn Van Malderen and maintained by Dr.

Ir. Jan Garrevoet. Interpolation was performed using the nearest-neighbor scheme, to be able

to detect and correct missing points for the rare cases in which the XRF fitting failed because

of low counting statistics.

The normalization to the incident photon flux I0 was performed by dividing the sorted XRF

images with the values measured by the ion chamber upstream of the KB-mirror system. To

maintain consistency between the XRF and the I0 dataset, the ion chamber data was sorted into

images utilizing the same parameters that were used for the sorting of the X-ray fluorescence

data beforehand.

Figure 6.3 shows images of the normalized count rate for different elemental Kα lines mea-

sured using Vortex detector 0. Self-absorption effects are visible as shadowing towards lower

y-coordinates, which is consistent with the placement of detector 0 at high y-coordinates.

6.1.4 Calibration

To quantify the measured data and correct for self-absorption effects, accurate elemental cali-

bration is required. There are three parts that have to be considered to calculate the calibration:

The amount of emitted XRF photons from the sample including self-absorption effects, the

attenuation of the XRF photons along the path to the detector as well as the fraction of XRF

photons that are absorbed in the detector material.

Figure 6.4 shows the energy-dependent efficiency of an XRF detector system:

Efficiency =
Photons absorbed in the detector

Photons emitted by the sample
(6.3)

calculated using the parameters for the Vortex detector and experimental geometry as described

in the experimental chapter. The plotted efficiency does not include any deadtime effects. It

can be seen that the transmitted fraction of XRF photons along the path to the detector is small

at low energies, but increases at higher energies as the absorption decreases. Conversely, the

fraction of XRF photons absorbed in the detector material is high at low energies, but decreases

at higher energies as some photons begin to pass through the detector without being absorbed.

In total, both of these effects result in an efficiency function with a maximum around an energy

of 8.3 keV, falling off towards lower as well as higher energies.

While the efficiency of the detectors was calculated analytically, the amount of emitted XRF

photons from the sample was determined by measuring elemental calibration foils (supp.

tab. S2). It was assumed that the foils are thin enough that any self-absorption effects are

negligible. After the foil measurements, the calibration data was fitted, corrected for deadtime

and pile-up as well as sorted into images in the same way as the micrometeorite data.
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Figure 6.3: XRF projection for a) Cr, b) Mn, c) Fe, d) Ni, e) As as well as f) Sr using Vortex

detector 0 and recorded under 0◦. The given values are the corrected measured counts normal-

ized to the incident photon flux (note the factor of 10−3).

Figure 6.4: Energy-dependent detection efficiency of a 350µm Si Vortex-EM XRF detector.

The red line shows the efficiency of the photoionization in the detector material, while the

green line shows the transmission through the absorber material between detector and sample

(12µm Be, 13µm Kapton and 30 mm air). The black line shows the resulting combined effi-

ciency.
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The normalized count rate R̂L,d of XRF line L measured at the detector can be calculated as the

ratio of the count rate RL,d measured at the detector and the incident count rate R0 measured at

ion chamber:

R̂L,d =
RL,d

R0
=

IL,d

I0
(6.4)

or alternatively, with the dwell time being constant between the two datasets, as the ratio of the

intensity IL,d measured at the detector and the intensity I0 measured at the ion chamber.

Using the transmission values Tm for the different materials m along the path to the detector as

well as the value for the photoionization attenuation Ad inside the detector material, all at line

energy EL, the normalized count rate R̂L,s at the sample position can be calculated as:

R̂L,s =
R̂L,d

∏m Tm(EL) ·Ad(EL)
(6.5)

In cases in which L consists of the sum of multiple lines, for example if the Kα line cannot be

energetically resolved into the Kα1 and Kα2 line, the energy for the most intense line is used in

the calculations.

Following that, the normalized count rates at the sample position are divided by the given area

mass densities ρ2D,Z of their corresponding elemental calibration foils, where Z indicates the

element. It is important to mention that the tilt of ±45◦, under which the calibration foils were

measured, leads to an increase of the projected area mass densities by a factor of
√

2. This ratio

is then proportional to the X-ray fluorescence production cross-section σxr f ,L for line L at the

primary beam energy E0:

R̂L,s

ρ2D,Z
=Ccal ·

NA

ML

σxr f ,L(E0) (6.6)

with Ccal being an experiment specific calibration constant, NA the Avogadro constant and ML

the molar mass of the element that emits line L.

Performing linear fits using the values calculated from the calibration foil measurements (supp.

tab. S3) allows to determine the calibration constants as Cdet0
cal ≈ 5.753 for detector 0 and Cdet2

cal ≈
5.423 for detector 2.

Using this calibration constant, the calibration factor Pcal,L for any XRF line L can then be

determined by calculating the ratio of the normalized count rate at the sample position and the

area mass density for the line, propagating the ratio back to the detector and inverting it:

Pcal,L =
ρ2D,Z

R̂L,d
=

(

Ccal ·
NA

ML

σxr f ,L(E0) ·∏
m

Tm(EL) ·Ad(EL)

)−1

(6.7)

Finally, these calibration factors are used in equation 4.23 of the tomographic self-absorption

correction algorithm.
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6.2 Tomographic Reconstruction

Reconstructing the tomographic dataset consists of two subsequent steps: First, the data has to

be aligned to correct for any motion artifacts during the experimental measurements. Second,

the tomographic reconstruction has to be performed considering the experimental parameters

determined before.

6.2.1 Data Alignment

Before the tomograms were reconstructed, the projections had to be aligned and the rotation

axis had to be defined. The absorption signal was used for the data alignment, as it usually

has a superior signal-to-noise ratio compared to the XRF signals, is mostly independent from

specific elemental distributions and does not suffer from self-absorption effects. After that, all

determined correction factors were applied to the remaining XRF datasets.

To allow for sub-pixel correction, the projections were scaled up by a factor of two before

the alignment procedure. Bilinear interpolation was used to avoid negative values. After the

alignment and before the tomographic reconstruction, the projections were downscaled again to

their initial size.

The first alignment step is the vertical alignment in z-direction. This was done by calculating the

sums in horizontal y-direction for every projection and then minimizing the cross-correlation

between the resulting line profiles. Figure 6.5 a) shows the line profiles for every projection

before and after aligning by cross-correlation. While the maximum vertical difference for the

unaligned case amounts to about 20 scaled pixel or 5µm, this difference is reduced to a low

single-digit pixel value after the alignment.

The second, and more complicated, alignment step is the horizontal alignment in y-direction.

There are different methods for horizontal alignment, for example by calculating and aligning

the center-of-mass of all projections [GSDH+11] or by assuring that the angular trajectory

of different markers in the projections follow sine-functions [CCC+14]. Here, the horizontal

alignment was performed using the concept of tomographic consistency. This concept is based

on the idea that the Radon transform of a reconstructed tomographic slice should be identical

to the initial sinogram. First, one of the measured absorption sinograms was reconstructed

into a tomographic slice using filtered backprojection and after that immediately projected back

into a simulated sinogram. Following that, the different angular projections of the measured

sinogram were aligned to those of the simulated sinogram by minimizing their cross-correlation.

These two steps were performed iteratively, until convergence. The results of the horizontal

alignment are shown in figure 6.5 b). It can be seen that the unaligned reconstruction suffers

from misalignment artifacts in form of blurry structures, which is not the case for the aligned

reconstruction. While tomographic consistency is a logical concept and the data from a single,

well aligned sinogram is sufficient to correct all other sinograms of the tomogram, there are

also disadvantages. For one, shifting the sinogram may also move the rotation axis in the
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Figure 6.5: a) Vertical alignment: Horizontal integrals of the absorption projections before (top)

and after (bottom) alignment. b) Horizontal alignment: FBP reconstruction of an absorption

sinogram before (left) and after (right) alignment.

reconstruction, which may be undesirable if the measurements where performed using a specific

experimental geometry. It is therefore important that the center-of-rotation for the tomographic

consistency alignment is chosen to be as close as possible to the to the center-of-rotation of the

measured sinograms. Furthermore, reconstruction artifacts and noise may negatively influence

the alignment process, meaning it is important that the sinograms and slices used for alignment

should be as free from artifacts and noise as possible.

After the projections were aligned in vertical as well as horizontal direction, absorption sino-

grams at different horizontal positions were reconstructed to check for a tilted rotation axis.

Especially for bigger samples and small pixel sizes, the influence of a tilted rotation axis has

to be considered. Fitting the height-dependent center-of-rotation using a linear or quadratic

function allows to approximate a correction for a slightly tilted rotation axis.
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Finally, all correction parameters determined by the alignment of the absorption signal were

also applied to the datasets of the different XRF signals, resulting in aligned XRF sinograms.

6.2.2 MLEM Reconstruction

All tomographic reconstructions of the micrometeorite data were performed using the MLEM

algorithm. While the conventional MLEM algorithm was sufficient for the reconstruction of the

absorption tomogram, the XRF tomograms had to be reconstructed using the self-absorption

corrected MLEM algorithm.

The absorption tomogram was reconstructed using 300 iterations of the conventional MLEM

algorithm. During the first 100 iterations, a FMH prior (eq. 3.31) with a weight of β = 0.3

was applied to the reconstruction. While not required, considering the high signal-to-noise ra-

tio of the absorption signal, the prior was applied to keep the reconstruction parameters of the

absorption tomogram as consistent as possible with the reconstruction parameters of the XRF

tomograms. Of the 362 recorded angles, 360 angles were used for the tomographic recon-

structions, with the last angle of each of the two batches removed to avoid duplicate angular

directions. The final reconstructed volume has a size of 360× 360× 341 voxel in x-, y- and

z-direction, respectively. Figure 6.6 shows two example slices of the reconstructed absorption

volume as well as a 3D rendering. Although not elementally resolved, the characteristic parallel

growths of the barred olivine micrometeorite are clearly visible. Using line profile analysis the

resolution of the absorption volume was determined to be at least 2.56µm FWHM or better (see

supp. fig. S5).

The Kα line XRF tomograms of Cr, Mn, Fe, Ni, As and Sr were reconstructed using 300 iter-

ations of the self-absorption corrected MLEM algorithm. All elemental calibration factors are

listed in supplementary table S4. A downscaling factor of 4 was used for the first 160 iterations,

followed by 90 iterations with a downscaling factor of 3, 40 iterations with a downscaling factor

of 2 and the final 10 iterations without downscaling. Furthermore, a FMH prior with a weight

of β = 0.3 was applied during the first 100 iterations to mitigate the influence of noise in the

XRF data. The primary beam energy was set to be 18 keV, in accordance with the experimental

parameter, and the absorption threshold (eq. 4.1) was set to Tatt = 2 · 10−4 to define a support

for the reconstruction. Geometrically, the detector angle was defined as 90◦ for detector 0 and

270◦ for detector 2, with a sample-detector distance of 3 cm for both detectors. The shape of

both Vortex detectors, including the 6 mm diameter collimators, was approximated using a 9×9

detector matrix with a detector pixel size of 0.75 mm:

Detector Matrix =

0 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0 0

(6.8)

resulting in a total of 69 detector directions that had to be considered during the reconstruction.
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Figure 6.6: MLEM reconstruction of the primary beam absorption tomogram for slices a) z =
170 and b) z = 170, with the values given as dimensionless optical depth (note the factor

of 10−3). c) 3D rendering of the primary beam absorption volume with a cutout at high x-

and z-coordinates for visualization. The 3D rendering was created in Drishti [Lim12].

Considering that the micrometeorite partially consists of low-Z elements, which are not covered

by the reconstructed elements, it was necessary to perform the reconstruction using a back-

ground. To simulate the glassy mesostasis of the barred olivine micrometeorite, the compound

of the background was defined as SiO2. The olivine may also contain a considerable amount

of Mg. However, as Mg is close to Si in the periodic table, the difference between the energy

dependent behaviors of their absorption coefficients is negligible.

Performing the reconstructions with an unconstrained background led to strong background

artifacts in the elemental distributions, especially the Cr distribution. Even an activated back-

ground sloping for the first 5 iterations did not prevent the artifacts from occurring, implying

a deeper problem with the calibration of the XRF data. For this reason, the background was

limited using an empirical target value of λtrg = 1.025 (eq. 4.37). In combination with adaptive

calibration (eq. 4.40), this caused the reconstruction algorithm to converge into a stable solution.

The final adaptive calibration factors were Cdet0
ada ≈ 1.396 for detector 0 and Cdet2

ada ≈ 1.340 for

detector 2. There are three obvious possible causes that could explain these large adaptive cal-

ibration factors. For one, the elemental calibration determined using the calibration foils could

be incorrect. However, as the elemental calibration was measured during the same experiment

as the micrometeorite data, it is unlikely that it would cause such big inconsistencies. A more

likely cause would be incorrect deadtime and pile-up corrections. As a consequence of the high
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elemental concentrations in the micrometeorite, especially of the Fe, the measurements show

strong deadtime and pile-up effects (see fig. 6.1). In this high count rate regime, even small

inconsistencies in the correction model can have significant influence on the corrected count

values. Considering that the deadtime and pile-up characterization of the Vortex detectors was

performed as a separate experiment weeks after the micrometeorite experiment, it cannot be

excluded that minor changes to the setup in the time between could have introduced such in-

consistencies. Additionally, during the experiment the sensitivity of the ion chamber made it

challenging to measure at very low count rates. However, the data points at low count rates

are important for the linear fit that correlates OCR to ICR. If the linear fit is performed on data

points already suffering from deadtime as well as pile-up effects, the calculated slope will be

smaller than expected and OCR values will be correlated to too low ICR values, leading to

only a partial correction. Furthermore, it is unknown what kind of influence the difference in

primary beam energy or the choice of a Mn-foil as test sample may have had on the black-

box optimizations performed by the Xspress3 pulse processors. Finally, as a consequence of

the attempt to correct the first two possible causes, the adaptive calibration factors could have

also been increased by an overaggressive background limiting. This shows the importance of

correct detector characterization and elemental calibration, as the results of the self-absorption

corrected tomographic reconstruction algorithm will only be as quantitative as the calibration

of the input data.

For detector 0, the calculations were performed on a machine with an Intel Xeon E5-2640

v4 CPU, an NVIDIA Tesla P100 GPU and 512 GB of RAM and for detector 2 on a machine

with an Intel Xeon Silver 4114 CPU, an NVIDIA Tesla P100 GPU and 768 GB of RAM. The

average computation time for the entire self-absorption corrected reconstruction process was

approximately 72.9 hours per detector. About 44.5 hours of that time (≈ 61%) was spent to

calculate the last 10 iterations without downscaling.

As a comparison, the XRF tomograms were also reconstructed without self-absorption cor-

rection. The parameters were identical to those used for the reconstruction of the absorption

tomogram.
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6.3 Volume Analysis

There are different methods to analyze the qualitative and quantitative properties of the self-

absorption correction algorithm.

Table 6.1 shows the total elemental masses in the uncorrected and corrected reconstructed vol-

umes for both detectors. For the calculation of the total mass, it was assumed that the voxel are

cubic with a side length of 500 nm. Furthermore, the uncorrected values were calculated using

only the basic elemental calibration, while the calculation of the corrected values also includes

the adaptive calibration.

Table 6.1: Total elemental mass in the reconstructed volumes.

Element mUncorr.,det0 [ng] mUncorr.,det2 [ng] mCorr.,det0 [ng] mCorr.,det2 [ng]

Cr 6.814 8.305 35.40 41.71

Mn 10.41 11.29 42.69 43.38

Fe 395.9 402.4 1504 1486

Ni 15.17 15.93 112.5 111.4

As 0.3194 0.2859 0.8876 0.7598

Sr 0.2066 0.2105 0.4888 0.4583

It can be seen that the relative increase in total mass caused by the self-absorption correction

has a tendency to increase with lower emission line energy. This is due to the increased self-

absorption of the XRF radiation at lower energies, especially in the low-Z background. The

exception to this tendency is the Ni reconstruction, with an average increase in total mass by a

factor of 7.2. As a considerable fraction of the micrometeorite sample consists of Fe and the Ni-

Kα emission line is located only slightly above the Fe-K absorption edge in energy, the Ni-Kα

line is strongly absorbed by the Fe. In fact, the self-absorption of the Ni-Kα line caused by the

Fe even surpasses the self-absorption of the Cr-Kα line, which is the lowest energy emission

line reconstructed and only shows an average increase in total mass by a factor of 5.1.

The relative mass differences between the corrected reconstructions for both detectors can be

used to judge the quantitative properties of the self-absorption correction algorithm and possible

inconsistencies in the XRF data calibration. An average relative percent difference (RPD) of

16.4% for the corrected Cr volumes indicates inconsistencies in the background calculation. For

the Mn, Fe and Ni volumes, the average RPD values are all below 2.0%, which is small enough

to be considered consistent. However, the average RPD values for the As and Sr volumes are

15.5% and 6.4%, respectively. On one hand, as the As and Sr XRF radiation is less influenced

by the self-absorption effects compared to the other elements, this could be an indication for

general inconsistencies in the data calibration. These inconsistencies were already suspected to

be present because of the large adaptive calibration factors. On the other hand, the As and Sr

XRF signals are smaller than those of the other reconstructed elements by at least an order of

magnitude, making it more challenging to extract quantitative results. On average, the RPD for

all reconstructed elements is about 7.0%.
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Four of the six reconstructed elements were chosen for the qualitative and quantitative analysis

of their tomographic slices. Cr was chosen as the element with the lowest energy reconstructed

emission line, making it suited to analyze the effects of background errors. Fe was chosen as

one of the main elements in the micrometeorite. Ni was chosen as the element suffering the

most from self-absorption effects. Finally, As was chosen as an element suffering less from

self-absorption effects, but still having a structured distribution. On the other hand, the Mn-

distribution very closely follows the Fe-distribution, making a separate analysis unnecessary.

Sr is mostly located on the outside of the micrometeorite and even in the toothpick sample

mount, creating the notion that it may be a terrestrial contamination. Lacking any structured

distribution inside the micrometeorite, it was also excluded from the slice analysis. As it was

the case for the calculation of the total masses, the density values in the uncorrected slices are

based only on the basic elemental calibration, while density values in the corrected slices also

factor in the results of the adaptive calibration.

Figure 6.7 shows tomographic slices of Cr, Fe, Ni and As for the uncorrected Kα reconstruction

of detector 0 as well as for the corrected reconstructions of both detectors. The slices correlate

to a height of z = 170, which is equivalent to the center of the reconstructed volume and approx-

imately to the center of the micrometeorite (compare fig. 6.6 a). They are therefore examples

of the high self-absorption case.

The Cr and especially the Ni reconstruction suffer most from self-absorption, as is indicated by

the strong shadowing effects towards the center of the sample in the uncorrected reconstructions.

For the Cr the XRF signal originating in the center is difficult to distinguish from noise and for

the Ni it is essentially fully absorbed. This causes problems with the self-absorption correction,

as the algorithm does not create new data but only enhances the data that is already existing. As

a consequence, the self-absorption correction amplifies the noise in the center of the sample for

Cr and Ni, which introduces additional inconsistencies. The effect of these inconsistencies is

especially apparent for the Ni in the finer structures on the edge of the sample. While they are

clearly visible and defined in the uncorrected reconstruction, they are obscured by artifacts in the

corrected reconstructions. It is therefore important to consider the limitations of self-absorption

correction before deciding to measure a sample.

Another noticeable feature of the corrected reconstructions, especially for detector 0, is the

increased elemental density in the center of the sample compared to the edge. This strongly

indicates inconsistencies in the deadtime and pile-up correction. Considering that the relative

influence of these corrections increases with the measured count rate, insufficient corrections on

data suffering from self-absorption effects could create the notion of a weaker self-absorption

than it is in reality. Basically, the high count areas of the measurements are insufficiently cor-

rected, while the low count areas mostly stay the same. As a consequence, the measured values

in regions suffering from high self-absorption are too large relative to those in regions with less

self-absorption. In combination with the fact that the self-absorption algorithm scales the ele-

mental density distributions to be consistent with the primary beam absorption volume for the

purpose of determining the XRF absorption volumes (eq. 4.29) and the usage of adaptive cali-
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Figure 6.7: Uncorrected (Kα) reconstruction for detector 0 and corrected reconstructions for

detector 0 and 2 for a)-c) Cr, d)-f) Fe, g)-i) Ni as well as j)-l) As. The height of the slice is

z = 170 and all values are given in g/cm3 (note the factor of 10−3 for Cr, Ni and As). For better

comparability, the corrected slices of both detectors are displayed on an identical scale.
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Figure 6.8: Background, ratio applied to the density volumes (see eq. 4.29) and ratio applied

to the density volumes after background limiting (see eq. 4.41) for a)-c) detector 0 as well as

d)-e) detector 2. The height of the slice is z = 170 and the values of the background are given as

dimensionless optical depth (note the factor of 10−3). For better comparability, the backgrounds

as well as the ratios of both detectors are displayed on identical scales.

bration, this leads to a relative overcorrection of the densities in the center of the sample. It also

leads to artifacts in the background, as can be seen in figure 6.8 a) and d). As the background

is defined as the part of the primary beam absorption not covered by the simulated absorption

of the reconstructed elements, an overcorrection of elemental densities automatically leads to

an underestimated background. Figure 6.8 b) and e) show the ratios applied to the elemental

density distributions (eq. 4.29) and backgrounds (eq. 4.34) during the final iteration. It can be

seen that the densities in the center of the elemental data is strongly overestimated, consistently

reducing the background in those regions and causing artifacts. The reason that this effect is

stronger for detector 0 is most likely a consequence of its weaker deadtime correction (see

fig. 6.2).

Figure 6.9 shows the tomographic slices correlating to a height of z = 260. This height is

equivalent to the upper region of the micrometeorite, where the diameter of the sample is smaller

than in the center (compare fig. 6.6 b). These slices are therefore examples of the medium to

low self-absorption case.

Compared to the high self-absorption case discussed above, the shadowing effects towards the

center of the sample are weaker. XRF signal originating in the center can reach the XRF detec-

tors without being fully absorbed, which mitigates the problem of the algorithm just amplifying
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Figure 6.9: Uncorrected (Kα) reconstruction for detector 0 and corrected reconstructions for

detector 0 and 2 for a)-c) Cr, d)-f) Fe, g)-i) Ni as well as j)-l) As. The height of the slice is

z = 260 and all values are given in g/cm3 (note the factor of 10−3 for Cr, Ni and As). For better

comparability, the corrected slices of both detectors are displayed on an identical scale.
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noise. In the center of both the corrected Cr and the corrected Ni reconstructions, structures are

visible that are identical for both detectors and therefore most likely real. As the amount of in-

consistencies caused by falsely intensified noise is decreased, there are also less reconstruction

artifacts overall.

Furthermore, the reduced self-absorption is beneficial in regards to the overcorrection of ele-

mental densities in the center of the sample caused by incorrect deadtime and pile-up correc-

tions. With less self-absorption, the relative differences in measured count rates are on average

smaller, meaning that the relative inconsistencies caused by the deadtime and pile-up correc-

tions will also be smaller.

Apart from the problems caused by low XRF signals and incorrect calibrations, the self-

absorption correction worked as expected. It increased the overall density values, reduced

self-absorption artifacts, especially the shadowing towards the center of the sample, and

corrected the elemental XRF data to be mostly consistent with the STXM data.

Figure 6.10 shows 3D renderings of the Cr, Fe, Ni and As density distributions using the results

from detector 2. As already discussed above, for Cr and Ni the values in the center of the sample

are defined by amplified noise. Further towards the edge of the sample, the influence of this

noise is reduced, leading to more truthful elemental distributions. The Fe and As distributions

are mostly unaffected by these problems.

As a main element in the micrometeorite, the Fe distribution is closely correlated to the struc-

tures visible in the absorption tomogram (compare fig. 6.6), exhibiting the characteristic parallel

growths of olivine. There also seems to be a large quantity of Fe, most likely in form of mag-

netite crystals (Fe3O4), in the glassy mesostasis [FC15]. The hot-spots in the Cr distribution

are mainly correlated to the magnetite crystals, possibly in the form of chromite (FeCr2O4).

Conversely, the Ni distribution seems to be anticorrelated to the regions including magnetite

crystals, indicating that it is incorporated into the olivine. A special feature of the Ni distribu-

tion is a region of high Ni density, depicted in the lower right of the Ni distribution shown in

figure 6.10. This region is most likely the remnant of an FeNi metal bead, which occasionally

form in micrometeorites [GEGT08]. These beads are sometimes ejected during the decelera-

tion of the micrometeorite in Earth’s atmosphere. It has to be mentioned, however, that an exact

analysis of the Cr and Ni distributions is not possible due to the noise and artifacts introduced

by uncorrectable self-absorption effects and inconsistencies in the experimental calibration. As

is mainly located at the edge of the sample. Assuming the micrometeorite was spinning while

entering the atmosphere, this may possibly be a consequence of centrifugal forces separating

the heavy As atoms from the other, lighter atoms and moving them towards the outer parts of

the micrometeorite.

The exact interpretation of the elemental distributions in the micrometeorite will be left to the

learned astrophysicist.
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Figure 6.10: 3D renderings of the self-absorption corrected micrometeorite reconstructions for

Cr, Fe, Ni and As, measured by detector 2. Darker colors equal higher mass densities. A cutout

at high x- and z-coordinates was applied for visualization. Created in Drishti [Lim12].
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Chapter 7

Conclusion & Outlook

In conclusion, the 3D self-absorption corrected algorithm for the MLEM reconstruction of XRF

tomograms fulfills its purpose. The numerical simulations show that it corrects self-absorption

artifacts qualitatively as well as quantitatively for single and multiple elements, even in the

presence of Poisson noise and an unmeasured low-Z element absorption background. However,

synchrotron measurements of a barred olivine micrometeorite sample also show that the results

of the self-absorption correction algorithm are highly dependent on the experimental calibration

of the data. Especially inconsistencies in the deadtime and pile-up corrections limit the quality

of the reconstructions, as they cannot be corrected by the adaptive calibration of the algorithm.

Future experiments therefore have to be performed in such a way to reduce deadtime and pile-

up losses as much as possible. This can be achieved, for example, by limiting the overall flux of

the X-ray beam, if the elemental concentrations in the sample allow it, or by using large solid

angle, multi-element XRF detectors in place of the small, single-element Vortex detectors.

There are multiple possible improvements to consider for the self-absorption correction algo-

rithm. The most important one would be an improved description of the XRF detector, the

absorption effects between sample and detector as well as the elemental calibration factors. In

the current implementation, the elemental calibration factors are calculated using the direct path

from the center of the sample volume to the center of the detector. This, however, does not take

into account possible path length differences for non-center positions either in the sample vol-

ume or the plane of the detector. In case of small detectors the direct path approximation is

sufficient. For example, using the sample and detector geometry of the micrometeorite experi-

ment, the maximum path length difference compared to the 30 mm direct path would be about

0.16 mm or 0.53%. Larger detectors, however, would require elemental calibration factors de-

pendent on the location of the voxel in the sample volume and dependent on the position on

the XRF detector, complicating and slowing down the self-absorption correction calculations.

Another possible improvement would be the usage of trilinear instead of nearest-neighbor inter-

polation in the calculation of the XRF transmission volumes (eq. 4.15). This could potentially

increase the accuracy, but also decrease the performance of the algorithm. Less related to the

self-absorption correction itself and more to the underlying MLEM algorithm would be the idea
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to vary the amount of iterations the Bayesian prior is applied to the reconstruction for each XRF

line. Elements with a high signal-to-noise ratio could be reconstructed with only a few iter-

ations of prior applied, focusing on increased resolution, while elements suffering from noise

could be reconstructed with more iterations of prior applied, benefiting from its noise reducing

properties. Finally, it could be beneficial to improve the current, relatively rudimentary imple-

mentation of background limiting. For example, detecting an overestimated background should

be possible using histogram analysis of the measured and simulated sinograms.

In future, the algorithm could be used for pseudo self-absorption corrected spectral tomography.

Occasionally, the XRF lines of trace elements may lack the necessary statistics to be fitted cor-

rectly in the projection data, especially if the measurements suffer from strong self-absorption

effects. Assuming the trace elements have a negligible influence on the total absorption inside

the sample, it should be possible to use the self-absorption corrected MLEM algorithm to ap-

proximate to quantitative distribution of all other elements. These distributions could then be

used to reconstruct a self-absorption corrected tomographic volume for every bin of the XRF

spectra. Due to the dose fractionation effect [dJRJ14], the statistics for trace the elements should

be improved in the reconstructed voxel compared to the projected pixel.
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Supplement

Config Parameters

name [unit], type

description.

[example (simulated multi-element phantom with background)]

nthreads [#], int

Maximum number of CPU threads for OpenMP calculations.

[nthreads = 40]

inputabs [-], string

Absolute or relative path to the slices of the absorption tomogram. Naming convention for the

absorption slices is ’[z]_Absorption.tif’.

[inputabs = ’./mlem/Absorption/’]

inputsin [-], string

Absolute or relative path to the elemental sinogram directories. Naming convention for the

elemental directories and sinograms is ’[element]/[z]_[element].tif’.

[inputabs = ’./sinograms/’]

outputdir [-], string

Absolute or relative path to the output directory. Will be created if it does not exist already.

[outputdir = ’./mlemsa/’]

xydim [#], int

Number of voxel in x- and y-direction / tranlational positions in the sinograms. Location of the

axis of rotation: ⌊xydim/2⌋
[xydim = 300]

zdim [#], int

Number of voxel in z-direction / number of slices.

[zdim = 300]

pixelsize [cm], float

Pixel/voxel size of the measured data in cm.

[pixelsize = 1e-4]
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bigsample [-], bool

If false: Small-sample approximation will be used for the calculation of the XRF radiation

transmission volumes.

[bigsample = true]

premlem [-], bool

If true: Enables the use of conventional MLEM iterations before the self-absorption corrected

MLEM reconstruction.

[premlem = false]

preiters [#], int

Number of pre-MLEM iterations.

[preiters = 10]

nsect [#], int

Number of sections of the self-absorption corrected algorithm. Each section is defined by an

amount of iterations and a downscale factor.

[nsect = 4]

iters [#], array of ints

Amount of iterations for each section of the algorithm.

[iters = (160, 90, 40, 10)]

scalefluo [-], bool

If true: Enables downscaling for the calculation of the XRF transmission volumes.

[scalefluo = true]

fluoscale [-], array of ints

Downscale factor for each section of the algorithm.

[fluoscale = (4, 3, 2, 1)]

applymrp [-], bool

If true: Enables Bayesian priors for MLEM reconstruction.

[applymrp = true]

usefmh [-], bool

If true: Uses FMH Bayesian prior. If false: Uses MRP Bayesian prior.

[usefmh = true]

mrpbeta [-], float

Weight β of the Bayesian prior (eq. 3.29).

[mrpbeta = 0.3]

mrpiter [#], int

Maximum iteration until which the Bayesian prior is apllied.

[mrpiter = 100]
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mrpperi [#], int

The Bayesian prior will be applied every mrpperi iterations.

[mrpiter = 1]

preenergy [keV], float

Primary beam energy in keV.

[preenergy = 18.0]

prethresh [-], float

Attenuation threshold Tatt (eq. 4.1). Only used if Tatt > 0.

[prethresh = 0.0]

nelem [#], int

Number of reconstructed elements.

[nelem = 3]

elements [-], list of strings

List of reconstructed elements.

[elements = (’Ti’, ’Fe’, ’Zn’)]

nline [#], int

Number of reconstructed XRF lines.

[nline = 6]

lines [-], list of strings

List of reconstructed XRF lines.

[lines = (’Ti-Ka’, ’Ti-Kb’, ’Fe-Ka’, ’Fe-Kb’, ’Zn-Ka’, ’Zn-Kb’)]

rhos [-], list of floats

List of calibration factors Pcal,L (eq. 6.7) in the same order as the list of lines.

[rhos = (0.331897, 2.42399, 0.11441, 0.835312, 0.0560234, 0.405986)]

denthresh [-], float

Absorption threshold TL for density constraints (eq. 4.26). Only used if TL ≥ Tatt .

[denthresh = 0.0]

denlimit [-], float

Limit λL for density constraints (eq. 4.26).

[denlimit = 0.0]

anglefile [-], string

Absolute or relative path to the list of tomographic angles.

[anglefile = ’./angles_nsort.txt’]

nangles [#], int

Number of tomographic angles. Has to be consistent with the number of angles in the anglefile.

[nangles = 361]
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detfile [-], string

Absolute or relative path to the binary detetctor image file.

[detfile = ’./detector.tif’]

absmode [◦], float

Detector angle δdet from the x-axis in ◦ (fig. 4.3).

[absmode = 270]

detdimx [#], int

Number of detector pixel in xdet-direction.

[detdimx = 9]

detdimy [#], int

Number of detector pixel in ydet-direction.

[detdimy = 9]

detpxsize [cm], float

Detector pixel size ddet in cm (eq. 4.3).

[detpxsize = 1e-1]

distance [cm], float

Sample-detector distance sdet in cm (fig. 4.3).

[distance = 1.0]

usebackground [-], bool

If true: Uses background for self-absorption correction.

[usebackground = true]

bgcompound [-], string

Defines the compund of the background.

[bgcompound = ’SiO2’]

scalinglaw [-], float

If background is used, but compund is empty (”): Defines paramwter γ for the backgound

scaling law (eq. 4.9).

[scalinglaw = -2.85]

bgslope [#], int

Strength λsl p for background sloping (eq. 4.35). Only used if λsl p > 0.

[bgslope = 0]

limitbg [-], bool

If true: Uses background limiting.

[limitbg = false]

limtrg [-], float

Target value λtrg for background limiting (eq. 4.37).

[limtrg = 1.025]
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limiter [-], int

Maximum iteration until which the background will be limited.

[limiter = 300]

adaptcal [-], bool

If true and background is limited: Use adapative calibration.

[adaptcal = true]

savesteps [#], int

Iteration period intermediate results are saved. Deactivated if 0.

[savesteps = 10]

saveheight [-], int

z-height for the saving of intermediate results.

[saveheight = 93]

savelines [-], bool

If true: Additionally saves reconstructed lines, instead of just the elements.

[savelines = false]

savesimsins [-], bool

If true: Additionally saves simulated sinograms.

[savesimsins = false]

savefluoabs [-], bool

If true: Additionally saves XRF absorption volumes.

[savefluoabs = false]

Note about the coordinate system and loading in data: The x-axis is defined by the beam direc-

tion and the z-axis is defined by the axis of rotation as well as the direction of the rotation. Then

the y-axis follows from the right-handedness of the coordinate system. Loading in slices from

top to bottom, e.g. slice 0 equals high z-values, is possible, as long as x- and y-direction are

correctly defined. However, in that case the detector image also has to be flipped in z-direction.
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Numerical Simulations

Figure S1: a) Ground truth, b) uncorrected (Kα) and c) corrected reconstruction for the noisy

single-element Fe simulation without background. For comparability reasons ground truth and

corrected reconstruction are on an identical scale, while the uncorrected reconstruction is scaled

separately for visibility. All values given in g/cm3.

Figure S2: Logarithmic (log10) percentual normalized mean absolute errors (eq. 3.33) at dif-

ferent iterations for the noisy multi-element simulations. Calculated is the error of the Kα line

reconstruction of an element compared against the average of all line reconstructions of the el-

ement.
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Figure S3: Ground truth, uncorrected (Kα) and corrected reconstruction of a)-c) Fe, d)-f) Ti and

g)-i) Zn for the noisy multi-element simulation without background. For comparability reasons

ground truth and corrected reconstruction are on an identical scale, while the uncorrected re-

construction is scaled separately for visibility. All values given in g/cm3.
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Deadtime and Pile-Up Correction

Table S1: Parameters for the deadtime fits in figure 6.2 as well as for the pile-up fits in supple-

mental figure S4.

Detector τP [s] τN [s] τT [s] mpu [s]

Channel 0 1.7512·10−7 2.8565·10−7 1.7628·10−7 1.0111·10−7

Channel 2 4.0437·10−7 5.9493·10−7 2.7398·10−7 8.5582·10−8

Figure S4: Plot and fit (eq. 6.2) of the λpu over ICR data that was recorded using Mn-foils. The

fit parameter for both detectors can be found in supplementary table S1.

Calibration Factors

Table S2: Calibration foils. Tilt of 45◦ already included in area mass density.

Element ρ2D [g/cm2] NAσxrf,Kα(E0)/MZ [cm2/g]

Cr 62.51·10−6 6.154

Fe 77.78·10−6 9.434

Ni 70.71·10−6 13.94

Cu 67.74·10−6 15.76
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Table S3: Intermediate values for the calculation of the experimental calibration constant.

Line R̂det0
Kα,d R̂det0

Kα,s/ρ2D [cm2/g] R̂det2
Kα,d R̂det2

Kα,s/ρ2D [cm2/g]

Cr-Kα 1.735·10−3 32.66 1.618·10−3 30.45

Fe-Kα 4.224·10−3 59.93 3.997·10−3 56.71

Ni-Kα 5.197·10−3 78.34 4.902·10−3 73.89

Cu-Kα 5.766·10−3 90.01 5.431·10−3 84.78

Table S4: Elemental calibration factors Pcal,L used for the self-absorption corrected tomographic

reconstruction of the micrometeorite data.

Line Channel 0 Channel 2

Cr-Kα 3.323·10−2 3.525·10−2

Mn-Kα 2.622·10−2 2.782·10−2

Fe-Kα 2.033·10−2 2.157·10−2

Ni-Kα 1.330·10−2 1.410·10−2

As-Kα 7.556·10−3 8.016·10−3

Sr-Kα 6.814·10−3 7.228·10−3

Resolution

Fit function for line profile:

f (x) = y0 +Aerf

(

(x− xc)

σ

)

(S.1)

Figure S5: Plot and fit (supp. eq. S.1) of an absorption volume line profile (green line in inset).

The fit parameters can be found in supplementary table S5.
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Table S5: Parameters for the fit in supplementary figure S5.

Parameter Value Error

Range [1.5, 6.5] -

R2 0.9964 -

y0 0.5035 0.000265

A 0.4803 0.000286

xc 3.831 0.00129

σ 1.086 0.00246

Info 1: The values of σ and xc are given in microns.

Info 2: FWHM = 2
√

2ln2σ
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