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1 Synopsis / Synopse

1.1 Introduction

Academia is paradoxically in both a golden age and a dark age. Never before has

the presses for publications been running so rapidly [1, 2, 3]. Yet whilst the increase

of research may initially seem ideal, this influx of scholarly capital has several down-

sides. Foremost, reproducibility is already an underserved and struggling aspect of

academia [4, 5, 6, 7, 3, 8, 9, 10]. Coupled with big-data projects requiring state-of-

the-art systems to super computers, some papers are untenable for such undertakings.

Additionally, researchers already pressed under the “publish or perish” system can

not keep pace with the outcoming novel developments [4]. Such may lead to duplic-

ity, while nevertheless circumventing reproducibility studies [9]. Further, researchers

unable to stay atop of the increase of relevant papers may result in their own work

failing to incorporate and benefit from others contributions. Worse still is that those

researchers with needed and novel developments may be totally overlooked amidst

the deluge of other relevant or topical papers. While academia may never before have

been so well funded and fueled, mere publication may be insu�cient for relevancy

[10]. Thus a greater importance of a manuscript’s contents is how immediately and

e↵ortlessly such contributions can be accessed, used, and/or otherwise incorporated

into one’s own work. In other words the accessibility and reusability of a novel devel-

opment may carry more weight than the impact-factor of the journal it was published

in.
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1 Synopsis / Synopse

Consider a novel algorithm that is published along side its invocation in a reposi-

tory. If the reader of said paper desired to try and reproduce the paper’s results or

apply the algorithm to their own work, they must navigate to the third-party site,

download the requisite files, do any set-up / installations required (as well as those

for dependencies), all before even getting to attempt running or using the algorithm.

This process, whilst seemingly mundane to an software developer, can be riddled

with unseen encumbrances especially for someone who is less versed in IT. Does the

user have proper rights to download and install the algorithm? Is the user’s sys-

tem compatible with the provided implementation of the algorithm? Is the author’s

implementation of the algorithm integratable with the researcher’s pipeline? For ex-

ample, is the algorithm implemented in a proprietary language such as MatLab or in

a more niche language like C#, whereas the researcher might use a more common-

place programming language like Python. Does the user’s system have the requisite

specifications to utilize the algorithm? For example, does the algorithm make heavy

use (16+ Gbs) of RAM or does it require a powerful GPU? All of these factors and

more are at play when considering incorporating novel research findings into one’s

own work.

A putative solution for the reader is author dependent. Rather than solely supply-

ing an implementation of their work a user-friendly, well documented, fully feature

progressive web application (PWA) can be deployed alongside the manuscript. By

having the author additionally undertake the e↵orts to develop their contributions

into a web application, many of the aforementioned hurdles of merely testing said

contributions are removed for the reader. Foremost, a deployed PWA exists on the

internet. While browsers such as Safari, Opera, Firefox, Chrome, etc may render

aspects of the site di↵erently, the PWA is generally browser agnostic. Further, web

browsers are not tied a computer’s operating system, thereby making deployed web-

sites ideal for accessibility. For the same reason PWAs are not barred regarding

device type (desktop, laptop, tablet, phone), as they can be accessed via said devices

12



1.1 Introduction

internet browser [11]. Thus a web application immediately reduces the barrier to

entry for accessibility to an author’s work. Additionally, by having the author un-

dertake responsibility for deploying their contributions in the form of an application,

system requirements (e.g. a powerful GPU) can be handled by the author not the

reader. Further still, administrative rights for downloading and installing third-party

software are rendered moot as the deployed website is accessible to everyone via an

internet connect and a browser. Therefore, if an author wishes to increase the ease of

access to and reuse of their work an PWA alongside the manuscript and implemen-

tation can increase awareness and adoption of their contributions. Not to mention,

it allows for an author to increase their work’s impact by leveraging search engine

optimization (SEO).

Unfortunately website development is a non trivial undertaking for the uninitiated.

Technically, one could produce and deploy a static website built solely o↵ of HTML.

However HTML alone is insu�cient for interactivity and the requisite features for al-

lowing a user to upload / specify input and utilize a novel algorithm or tool. For such

capabilities JaveScript (JS) is required which, if placed between an HTML script tag

may work, still leaves the computational needs on the client rather than the devel-

oper. In such instances a backend is required to handle computationally demanding

requests, that the results of which are returned to the client’s frontend. Already, the

list of things for the author to both learn and do to increase their paper’s relevancy is

ballooning. Thus need for the capacity of boilerplate applications capable of handling

novel algorithms and tools is readily apparent and addressed in the methods section

1.2.

So far emphasis has been given to (1) the need for and value of increased acces-

sibility to academia as a whole, (2) the putative solution to this need via PWAs,

and (3) the costs from the viewpoint of the researchers who may choose to employ

(2) it may be worthwhile to stress the value of (2) via the benefits to some who

might use them. Foremost with the increase of broadband access (spurred in part

13



1 Synopsis / Synopse

for economic reasons), mobile access to the internet also rises [12, 13, 14, 15]. While

easy to overlook, there are many scenarios in which access to a desktop computer or

server rack is utterly impractical. “Bulk” in general is unfavored, which may drive

the adoption of wearable devices and increase in tablet devices. Therefore the de-

velopment of a PWA, accessible via phone or tablet, would allow for individuals like

medical doctors to utilize state-of-the-art software whilst tending to patients. While

the centralization of computing resources is not a novel concept - most universities

have some shared system(s) - not everyone is comfortable (or OS-dependent able) to

secure shell connect to utilize these resources fully. Programming, although certainly

useful, is not a requisite skill for many biologists.

Along this line of reasoning, the advent of the bioinformatician itself is testament to

(1) the increasing complexity of biological experimentation understanding of which

is needed to correct for bias, (2) the rapid expansion of artificial intelligence and

layman-obtuse statistical techniques, and (3) the need for individuals to straddle

two disciplines to further scientific research. For example, Single-Cell sequencing

continues to both improve and increase in popularity, leading to large and complex

datasets [16, 17, 18, 19, 20]. For such high-dimensional data, computationally expen-

sive dimensional reduction techniques such as t-SNE have become both favored and

utilized in post-stream analysis [21, 22, 23, 24, 25, 26, 27, 28]. Consequentially it may

become the case where one’s academic independence for the analysis, visualization,

and exploration their own data is untenable. Thus the encapsulation of bioinfomatic

analyses, tools, pipelines, etc into PWAs that anyone can leverage may also usher in

new insights via the restoration of researcher independence to freely query their own

work.
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1.2 Methods

1.2 Methods

1.2.1 Libraries and Packages

An overview of libraries and packages utilized in the development of tools, appli-

cations, and novel methods can be found in table 1.1. Given both their reuse and

number, two examples (frxt and d3sm) are highlighted in sections 1.2.1.1 and 1.2.1.2

respectively.

1.2.1.1 FRXT and vFRXT

A recurrent problem faced when developing a bioinformatic tool, be it an integrative

platform or a hyper specific suite, is competing with user expectations for ease of use.

If a tool returns a non-singular result, suddenly both search and filter functionality are

expected and required. Compared to search engines like Google, seemingly everything

is more convoluted. Part of what makes Google’s search engine extremely intuitive is

its ”free text” input; in other words, users simply type what they wish to know as they

wish to know it. While recreating Google’s success for each and every application

developed is beyond most research teams’ means, the necessity of reusable, plug-and-

play search and filter functionality has not gone unnoticed. To capitalizes on such

a need companies (e.g. Algolia, Searchify, Elastic, Yext, Hawksearch, Clerk.io, etc)

o↵ering search engines for niche databases or web assets have abound. To this end a

typescripted library for free text search and filtering (FRXT) and a Vue component-

based library o↵ering accessibility thereof (vFRXT) were developed.

FRXT focuses on a few key features, namely:

1. su�ciently-free user input from which logical filters might be extracted,

2. the application of conjunctive normal form (CNF) logical filtering of specified

user requests, and

3. multisort (also known as TimSort) of SQL like data provided in the JSON

15



1 Synopsis / Synopse

Name Language Applications Purpose
frxt TypeScript EXT free text search and filter functionality for

SQL-esque data.
vfrxt TypeScript EXT Reusable Vue components for frxt func-

tionality.
v-focal JaveScript BED.AI,

EXT
Focus user attention towards regions of the
web application.

apoll JavaScript KNIT, SEA,
BED.AI

polling an API until results received.

d3sm JavaScript Oasis2.0,
SEA, EXT

extension of d3 utilizing closures for plot
types.

tagahead JavaScript SEA typeahead selection for multiple tags.
ankr JavaScript EXT (re)-positioning of overlay elements that

snap into place.
vue-ankr JavaScript EXT Vue wrapper of of ankr functionality.
sfo Python BED.AI, sc-

GANs
Extension of the File Observer from the
Sacred library.

neumf Python EXT Neural Network based matrix factoriza-
tion.

mag Python BED.AI,
KNIT, EXT

Magazine of utilities for machine learning
across the NumPy, SciKit Learn, SciPy,
and TensorFlow including multilabel met-
rics, network architectures, weight pruning
and more.

ntai Python BED.AI,
EXT

Extracting, encoding, and decoding
FASTA sequences into tensors.

sil Python BED.AI,
KNIT, EXT

Shared memory status indicator for paral-
lel processing.

lrng Cython BED.AI Labeled range manager for comparing
BED files.

parpar Python BED.AI,
EXT

Parallel parser for large files.

bedpy Python BED.AI,
EXT

Classes corresponding to reading and ma-
nipulating BED files and entries thereof.

ksp Python KNIT lightweight k-shortest paths package.
cnf Python EXT Conjunctive Normal Form filtering func-

tionality..
fio Python BED.AI,

EXT
Feature input / output augmentation for
TensorFlow serving API.

GRAND Python EXT Graphs as Nested Dictionaries data type
coupled with graph drawing functionality.

Table 1.1: Analytical, visual, user interaction / experience, and utility libraries and
packages developed for and used in the contents of this cumulative thesis
and external projects. Applications external to this dissertation are collec-
tively refereed to as EXT. Analytical: sfo, neumf, mag, ntai, bedpy, ksp,
cnf, and GRAND. Visual: d3sm, mag, and GRAND. User interaction /

experience: vfrxt, v-focal, tagahead, and vue-ankr. Utility: frxt, apoll,
ankr, ntai, sil, lrng, parpar, cnf, and fio.
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1.2 Methods

format.

What does it mean for user input to be su�ciently-free? If reproducing Google’s

success on many, much smaller applications is untenable, then a su�ciently-free user

inquiry is a user’s input with a set of restraints. For FRXT the constraint is posed

in the form of the user specifying following in order:

1. logic (optional, defaults to logical and),

2. field (the property to search upon),

3. function (optional, defaults to the identity function),

4. conditional (the comparison to be made for the value of the property in a

database’s record and user’s request), and

5. value (what to compare the value of a record’s property to, to see if it should

be returned).

Provided text satisfying this constraint, it is su�cient to determine a logical filter,

e.g. “the adjusted p-value is less than 0.005.”

When chained together these logical filters provide users full access to any query

they may wish to ask e.g. “the adjusted p-value is less than 0.005 or log2 fold change

is greater than 10 and replicates is equal to five.”

Naturally, such syntax is verbose. Therefore FRXT allows for logical filters to be

entered all at once or in succession. Additionally, FRXT is based on text tokenization.

Therefore phrases like “greater than or equal to” can be also entered as � and still be

acknowledged. The tokenization, known functions which are applicable (e.g. length

of a property should its value be a list), etc are all configurable. Consequentially,

once familiar with this paradigm, logically expressive yet user friendly search and

filter functionality becomes readily available. Coupling the results of FRXT with

data visualization greatly facilitates understanding of visually noisy charts (see figure

1.1).
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1 Synopsis / Synopse

Figure 1.1: vFRXT used in conjunction with data visualization. Left: t-SNE of single
cell experiment where cells are colored by cluster identification. Bottom:
vFRXT search and filter functionality with the logical filter “(and) cluster
is less than 2”

The vFRXT library wraps the FRXT functionality into a Vue component library

for easy integration into web applications. Although every component is separate,

practically the most prominently used component is the records table which contains

all of the FRXT library’s functionality. The basic table of figure 1.2 is produced with

the following code from listing 1.1.

Listing 1.1: Single File Component file for the table in figure 1.2. A logical complete

search engine is provided with minimal configuration.

<body>

<records−table : j s on=” j son ”>

</ records−table>

</body>

<script>

const j son = {

// . . .

18



1.2 Methods

(a) vFRXT raw user input

(b) vFRXT logical filters

(c) TimSort

Figure 1.2: Example of vFRXT handling user input.
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1 Synopsis / Synopse

}

</ script>

While having reliable, free, logically complete, plug-and-play search and filter func-

tionality is readily applicable, care should be noted when concerning the data FRXT

can search on i.e. “SQL-esque.” SQL is a database language for relational database

tables and a constraint of SQL is that each record (row in the table) has a unique

identifier and that each property / field in a record (column of the table) exists in

each row. SQL is strict in that the data types of a field in a record can be are limited

(e.g. char, smallint, decafloat, blob, etc). While JSON is a valid data type for SQL,

and an array of JSON objects can be a valid SQL constructed type, FRXT is not a

database language. Rather, it relies on the premise that the input data is similar to

that of a SQL record table. Of note is that FRXT is often used client side. Therefore

the passing of large JSON objects to client for FRXT to then sort and filter upon

may be undesirable.

1.2.1.2 d3sm

Data Driven Documents (D3) - available at https://d3js.org/ - is a lightweight JavaScript,

closure based library for bringing data to life. As the specifics of interactivity can

change vastly from project to project, even if the underlying data is similar, it is

not uncommon for such visualization code to be more “one-o↵.” d3sm (https://-

sumneuron.gitlab.io/d3sm) provides some of the fundamental chart types such as

bar, box-and-whisker, violin, scatter, etc (see figure 1.3). Additionally d3sm cov-

ers some niche charts like UpSet plots (see figure 1.4). All charts have “baked-in’

functionality such as tooltips, opacity changes, etc (see figure 1.5).

d3sm is not a high level library. Rather it is intermediary, providing reusable

building blocks. This middleware level of functionality is apparent in listing 1.2,

where a general chart object is set up. Thereafter, various chart components are filled

in to build the desired chart e.g. axes, a legend, the lasso widget, etc. This approach
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1.2 Methods

(a) A box-and-whisker chart produced
by d3sm.

(b) An interactive scatter chart pro-
duced by d3sm with dynamic axes
and lasso selection configured.

Figure 1.3: Example of d3sm core chart types.

Figure 1.4: Example of one of d3sm’s more niche chart types: an UpSet chart. The
circular indicator grid assists in navigating this reinterpretation of the
venn diagram. Vertically there is one circle per set, and those marked
with a darker color specify the exclusive region for the intersection of sets
e.g. one marked circle are unique elements to a set while all marked circles
are the elements shared by all sets. The bar chart above the indicator
grid reveals the cardinality of the specified venn diagram region. The bar
chart left of the indicator grid specifies the cardinality of a given set.

balances reuse with highly niche nature of interactive visualizations, therefore it is

included in both SEA (section 1.3.1.3) and Oasis2.0 (section 1.3.1.4).

Listing 1.2: Code that produces the resizable scatter chart in figure 1.3.

f unc t i on s c a t t e rP l o t ( s e l e c t i o n ) {

var data , namespace , chart , xAxis , yAxis ,

dataSe lect , legend , l a s so , lassoWidget

// de f i n e s e t t e r s / g e t t e r s

p l o t . data = func t i on ( ){ re turn arguments . l ength ? ( data = , p lo t ) : data ; } ;

// . . .

f unc t i on p lo t ( ) {
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(a) A violin plot produced
by d3sm using kernel
smoothing for the den-
sity and points are jit-
tered within the domain.

(b) Tooltips are automati-
cally produced both for
the points inside a violin
as well as for the violin it-
self.

(c) Scrolling over the interac-
tive region reveals more
of the plot to help en-
sure that the entire chart
can fit within the moni-
tor without being shrunk
to unusable proportions.

Figure 1.5: Example of d3sm baked in features for a simple violin plot

// s e t s e l e c t i o n s , data and s c a l e s

var s e l e c t i o n s = d3sm . u t i l s . misc . setupStandardChartContainers (

s e l e c t i o n , namespace , . . .

) ,

currentKeys , xScale , yScale , rSca le , currentData

// con f i gu r e chart , axes , l egend and l a s s o

chart = d3sm . char t s . s c a t t e r ( c ha r t S e l e c t i o n )

// . setOptionOne ( . . . ) . setOptionTwo ( . . . ) . . .

chart ( )

yAxis = d3sm . ax i s ( yAx i sSe l e c t i on ) // . setOptionOne ( . . . ) . . .

yAxis ( )

xAxis = d3sm . ax i s ( xAx i sSe l e c t i on ) // . setOptionOne ( . . . ) . . .

xAxis ( )

legend = d3sm . l egends . numeric ( l e g endSe l e c t ) / / . setOptionOne ( . . . ) . . .

l egend ( )

l a s s o = d3sm . aux . l a s s o ( )

// . setOptionOne ( . . . ) . . .

l a s s o ( )

}

re turn p lo t

}

1.2.2 Reusable Schema

As stated in the introduction, development of a reusable template PWA for novel

algorithms and tools are a vested interest for researchers. To that end a generalized

deployment schema was produced. For the algorithm / tool in question, a trained

TensorFlow model was selected, but is readily swappable according to the developer’s
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needs. The selection of a trained TensorFlow model is motivated by the facts that

1. TensorFlow is widely popular neural network library, thus this schema is ready-

made for users thereof 2. State-of-the-art neural networks for biological purposes

are hindered by accessibility (e.g. the user’s computer limitations, the user’s IT

knowledge for downloading and running a trained model) 3. Such tools may become

cornerstones in other and / or larger pipelines for which a production solution is

needed. Indeed, this schema was promptly applied to both SCADEN (section 1.3.1.2)

and BED.AI (section 4.1).

This generalized deployment schema has three core constituent parts:

1. the frontend: what the user interacts with,

2. the tool: what is being published, and

3. the backend: middleware for scheduling and routing frontend requests to the

tool and the results from the tool back to the frontend.

1.2.2.1 Frontend

Frontend, or the client side of the application, is comprised generally of three main

languages HTML (the content), Cascading Style Sheets (aka CSS, the style), and JS

(the interactivity). While still feasible to produce a frontend using only these three

programming languages without a single dependency, due to browser-dependent ren-

dering of CSS and varying supported features, at the very least CSS frameworks

like Bootstrap, Tailwind, Burma, are employed to ensure consistency. Many of these

frameworks (e.g. Bootstrap) have extended to include small amounts of JavaScript

as well for some ready made components (e.g. expansion panels). This terminology,

components, are now used to describe self-contained aspects of the frontend. For

example a button might be a component which contains the HTML (button tag), the

CSS for styling the button, and the JS for what happens when the user clicks the but-

ton. While all of the code (HTML, CSS, JS) for such a button could exist sprawled
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across a large HTML file, the practice of developing components as standalone parts

of the frontend was formalized in 2013 when React was first released. Since then,

component-based web development dominates the frontend landscape with alterna-

tive frameworks such as Angular, Svelte, and Vue learning from their predecessors’

shortcomings. As both development and testing of components is easier to do, just as

Bootstrap CSS frameworks exists, now too are component-based libraries built on top

of them readily found. Collectively, component-based frameworks and their optional

styled-component libraries make frontend development decidedly more streamlined

than before. Further still, frameworks built atop these component-based frameworks

such as Nextjs and Nuxtjs make deployment of component-based websites signifi-

cantly easier. For example, applications built with Nuxtjs can be PWA compliant

out of the box. To this end the frontend component of this reusable schema is a

NGINX deployed Vue application powered by Nuxtjs making use of the Vuetify - a

Material Design based - component library.

1.2.2.2 Backend

A core requisite met by decoupling the frontend from the backend is allowing the

developer to deploy on a system capable of meeting their users’ needs. What func-

tionally is needed is a scheduler that accepts user requests, enqueues them, and has

them processed by the tool before returning the results to the user. Such requirements

describe a task-based API. Task-based APIs have a several of benefits, including:

1. tasks can be enqueued from a light backend hosted by a provider, while the

tasks themselves are run elsewhere,

2. allows for easy scaling by increasing workers,

3. tasks get around timeout issues (for larger / longer processess),

4. tasks allow for hooks to be added (before queued, queued, etc), and

5. allows submitted task to be immediately checked for proper input.
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For these reasons the backend component of this schema is a lightweight Flask API

with a queuing system provided by Redis to ensure tasks are properly submitted.

1.2.2.3 Tool

As aforementioned this schema is setup around a trained TensorFlow neural network.

However, the task-based API is capable of accepting any function, thereby making

this schema readily adaptable to the author’s needs.

Together these three aspects of the schema - frontend, backend, and tool - are dock-

erized for easier deployment and scaling. Since the frontend is built on a component-

based library, as an author continues to develop their own custom components to

suite their tastes, they are readily transferable to another application.

1.3 Results

1.3.1 Interactive Web Applications

1.3.1.1 KNIT

Understanding gene regulation networks, how one gene’s expression impacts an-

other’s, is a prominent field of research for bioinformaticians due to its complexity.

Foremost it demands the requisite knowledge of graph theory. Additionally, due to

the number of genes, analytical tools and methods thereof require care for handling

very large graphs [29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. Even with improvements

in modern computing, less than stellar consideration of memory allocation can eas-

ily overwhelm anything short of a computing cluster. Further still, making sense

of secondary, tertiary, quaternary interactions can quickly become overbearing. To

such ends an entire field of graph theory, graph drawing, exists for attempting to

provide visual clarity to large graphs which may contain hundreds if not tens of

thousands of vertices. While many creative and novel graph drawing layouts exists

to help turn “hairball’ graphs (graphs so large and dense practically no information
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can be extracted from it visually) into something manageable, even learning to intu-

itively understand such layouts (e.g. BioFabric) can be a trying process in its own

right [39]. Even relatively simple graphs, layout depending, can be hard to parse.

In light of such di�culties some researchers have shifted focus towards the develop-

ment of interactive web applications for the use of understanding regulation networks

[40, 41, 29, 30, 31]. Some of these tools, like GeneMANIA and Pathway Commons,

are based o↵ the integrative cPath-2 gene regulation database (see table 1.2 for a list

of its constitute databases). Other tools, such as STRING and STITCH may make

use of some of the same underlying database of cPath, but generally follow the same

paradigm; namely, a user provides a set of genes and the application, often with a

hairball graph, returns the gene regulation network between any two genes in the

provided set. As knowledge of regulatory pathways increases, such tools may become

more convoluted for parsing how one gene of interest is regulated in relation to a set

of others.

Therefore the web application Knock-In / Knock-Out Network Interaction Tools

(KNIT), available at http://knit.ims.bio/ was developed. During development sil

was utilized midst preprocessing, whilst ksp and mag assist with API requests on the

backend and apoll is utilized on the client (see table 1.1 for an overview of libraries

and packages). Like GeneMANIA and Pathway Commons, KNIT leverages the cPath

database as its foundation for constructing the composite graph for the given user

query [29, 30, 31, 32, 33, 34, 35]. Unlike these tools, however, KNIT utilizes Yen’s k -

best paths algorithm to identify which pathways to return [36]. The cost for traversal

along the edges are proportional to publications found within the cPath integrative

database supporting it [33, 34]. This allows users to specify their gene of interest,

a set of genes they would like to know regulation pathways relating to the gene of

interest, and the number of pathways to return. Additionally, unlike the majority

of gene regulatory network tools, KNIT utilizes a hierarchical layered graph layout.

While visually less dense than other layout algorithms, hierarchical layered drawings
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Source Date collected Version Pathways Interactions
ChEBI Ontology 01-Jun-2017 152
UniProtKB/Swiss-Prot 07-Jun-2017
UniChem 19-Jun-2017
Reactome 23-Jun-2017 61 16771 42349
PID 27-Jul-2015 final 14707 10526
PhosphoSite 15-Jun-2017 29007 16168
HumanCyc 2016 20 6669 5029
HPRD PSI-MI 13-Apr-2010 9 39826 9542
PANTHER Pathways 04-Jul-2016 3.4.1 5736 7850
DIP 05-Feb-2017 9025 4968
BioGRID 25-May-2017 3.4.149 394749 789498
IntAct 03-Jun-2017 247237 611820
IntAct Complex 03-Jun-2017 0 2515
BIND 15-Dec-2010 35451 72508
CORUM 17-Feb-2012 0 4401
MSigDB Sep-2016 5.2 131239 13455
MiRTarBase 15-Sep-2015 6.1 337227 17395
DrugBank 01-Apr-2017 5.0.6 19555 16427
Recon X: Reconstruction of the Human Genome 2013 2.02 10816 8324
Toxicogenomics Database 06-Jun-2017 06-Jun-2017 release 602966 73712
KEGG Jul-2011 3566 3349
Small Molecule Pathway Database 05-Jun-2016 2.0 4948 4958
INOH 22-Mar-2011 4.0 5433 17134
NetPath Dec-2011 6351 3275
WikiPathways 29-Sep-2015 9756 9561

Table 1.2: Overview of sources from Pathway Commons (v9). Adapted from Pathway
Commons data-sources.

are useful for seeing information flow (see figure 1.6).

1.3.1.2 SCADEN

The Single-cell Assisted Deconvolutional Network (SCADEN) - available at https://-

scaden.ims.bio/ - is demonstrative of the increased access a web application can

provide for a novel method (1.7). Depending on operating system, system rights, fa-

miliarity with package managers / installation, etc one may find the well documented

SCADEN package (https://scaden.readthedocs.io) overwhelming. However, the terse

and dry documentation which may deter researchers from utilizing the method is

negated via immediate access to SCADEN via the PWA (see figure 1.8), developed

with the reusable schema outlined in section 1.2.2.

Without the need for a GPU, understanding of deep neural networks or any in-

stallations, SCADEN allows users to generate gene expression profiles to deconvolve

changes in gene expression from cell type [42]. As with most neural networks, SCA-

27

http://www.ebi.ac.uk/chebi/
http://www.uniprot.org
http://www.ebi.ac.uk/unichem/
http://www.reactome.org
http://pid.nci.nih.gov/
http://www.phosphosite.org
http://www.humancyc.org%20
http://www.hprd.org
http://www.pantherdb.org
http://dip.doe-mbi.ucla.edu
http://thebiogrid.org/
http://www.ebi.ac.uk/intact/
http://www.ebi.ac.uk/intact/
http://bond.unleashedinformatics.com/
http://mips.helmholtz-muenchen.de/genre/proj/corum/
http://software.broadinstitute.org/gsea/msigdb/
http://mirtarbase.mbc.nctu.edu.tw/
http://www.drugbank.ca/
http://humanmetabolism.org/
http://ctdbase.org/
http://www.genome.jp/kegg/
http://smpdb.ca
http://inoh.hgc.jp
http://www.netpath.org
http://www.wikipathways.org
http://www.pathwaycommons.org/archives/PC2/v9/datasources.txt
http://www.pathwaycommons.org/archives/PC2/v9/datasources.txt
https://scaden.ims.bio/
https://scaden.ims.bio/
https://scaden.readthedocs.io/en/latest/usage.html


1 Synopsis / Synopse

(a) STRING (b) STITCH (c) Pathway Commons

(d) GeneMania (e) KNIT

Figure 1.6: Visual output of KNIT, STRING, STITCH, GeneMANIA, and Pathway
Commons provided the gene of interest, KLF5, and a gene list (Pparg1,
Pparg2, Lpl, Cd36, and Dgat2).

DEN depends heavily on domain data which can be hard to find - tissue depend-

ing. However, SCADEN outperforms other deconvolution methods like MuSiC and

CIBERSORTx [43, 44]. One of the largest drawbacks to SCADEN is the hardware
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requirements, which are otherwise mitigated with the PWA.

(a) 135 Artificial bulk sam-
ples are generated by
subsampling random cells
from a scRNA - seq
datasets 136 and merging
their expression profiles.

(b) Model training and
parameter optimization
on 137 simulated tissue
RNA - seq data by
comparing cell fraction
predictions to ground -
truth cell 138 composi-
tion

(c) Cell deconvolution of real
tissue RNA - seq data us-
ing SCADEN.

Figure 1.7: Overview of training data generation and cell type deconvolution with
SCADEN.

1.3.1.3 SEA

The small RNA Expression Atlas (SEA) is a large scale integrative platform in com-

bination with Oasis 2.0 [21, 45]. sRNA sequencing datasets from the public domain,

via Oasis 2.0, underwent a standardized analysis pipeline to facilitate cross dataset

comparisons. Yet merely standardizing and storing these datasets leaves much to be

Figure 1.8: Example of the user friendly, no setup or installation required SCADEN
forum powered by a component-based web application
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Figure 1.9: Interactive, filterable visual components of the SEA platform. SEA pro-
vides users a convenient an engaging way to search and browse datasets.

desired. With over 4000 samples across more than 350 datasets finding which ones

to compare and inspecting them for outliers is a nontrivial task. To facilitate ease of

use, SEA’s search engine expresses complex behavior depending on the entities en-

tered and combinations thereof e.g. if an ontology is specified or not. Further, results

returned by SEA is not merely a list of datasets; rather SEA provides interactive

visual insights into the datasets to help guide users (see figure 1.9). These insights

include less readily supported but vital chart types like UpSet [46]. Additionally,

SEA o↵ers users the ability to select datasets from their search results and readily

compare them as in the case of figure 1.10. The extensive functionality of SEA is

supported by the apoll, d3sm, and tagahead packages (table 1.1).

1.3.1.4 Oasis2.0

Given the prominence of sRNA in disease (due to dysregulation), analysis thereof is

highly relevant [47]. To this end Oasis 2.0 (the second major release of the Oasis

suite) was developed to assist researchers in the processing of deep sequencing data

e.g. sRNA detection, classification, etc. Oasis 2.0 promotes an improved classification

module. As the classification module was previously based on Random Forest (RF),
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Figure 1.10: SEA Overlap Visual Analyses. Leftmost table: overview of the sRNA
and tissue datasets that were searched and selected. Rightmost table:
entities (here sRNA) that pass the specified the given filter parameters.
Visual component: the UpSet plot for the corresponding venn diagram
of the specified sets of elements.

improvements stem from feature pruning as well as better sampling [48]. Additionally,

model evaluation metrics were made easier to evaluate via interactive and responsive

charts. These charts laid the foundation for d3sm, which is an abstraction of these

d3 powered scripts for improved reusability (see table 1.1).

1.3.2 Data Analysis Projects

Interactive progressive web applications are readily applicable to novel methods, al-

gorithms, and tools. Not all publications are either as substantial as a novel method-

ology or yield insights from which an application can be built around. For example,

many biology papers involve analysis of tissue samples of two or more conditions.

These projects, which leverage analytical tools (such as those deployed as a PWA),

are also fundamental to academia. This thesis includes two such projects. The first is

related to COVID-19’s scope of invasive behavior and the second assists in analyzing

single cell data when few samples exists. A third unpublished project emphasizing

how a new tool can become a web application is featured in section 4.1.
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Figure 1.11: Oasis 2.0 classification output feature importance (cross validated pre-
diction error) of random forest models. Random forests are trained by
incrementally adding features according to their gini ranking.
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1.3.2.1 COVID-19

It is well known that viruses are quite capable of traversing the blood-brain barrier

and entering the brain. Inflammation of the central nervous system (CNS) is a

serious condition. Additionally viral loads in the CNS during pregnancy has been

linked to psychological disorders in children. With the ongoing pandemic of COVID-

19 the question as to whether or not it also had the same penetrative capabilities was

raised. Assessment of postmortem brain samples indicated that COVID-19 indeed

can pass through the blood-brain barrier and be associated with CNS inflammation.

Utilizing the scGANs and known marker genes, cell type clusters were annotated.

The results of which suggest that neurons, glial and endothelial cells may contribute

to COVID-19 infection.

1.3.2.2 scGANs

It is not uncommon for biological experiments to be sparse on samples. The reasons

for this varies from ethics to funding. Nonetheless it is self explanatory how an

increase of samples, be it a specific underserved sample type or in general, is beneficial.

State-of-the-art machine learning techniques like variational autoencoders (VAE) and

generative adversarial neural networks (GANs) have had record success at augmenting

datasets. Given the ready application of in silico data augmentation, it is worthwhile

to produce a proof-of-concept example. To this end GANs were applied to single

cell data and demonstrated reliable results (scGANs). These results were deemed

viable via four-fold authentication. Further, the GANs can be conditions (cscGANs)

to produce specific cell types as needed.

1.4 Discussion

All of the developed methods, tools and applications - Oasis2.0, SEA, SCADEN,

KNIT, BED.AI, scGANs - have similar pre-existing methodologies. Given the ex-
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panse of domains in-depth comparisons to said methods and applications are left to

their corresponding papers. Briefly, however, the novelty spans all aspects of the

application development process (new method inclusive) and generally encompasses

methodological improvement and breadth of features.

Naturally, the largest contrary point to the development of PWAs for novel software

is that the author(s) of such software must not only invest the time into learning the

requisite web development skills but also then devote a non-negligible portion of their

research hours to a non-research based task. Whilst a large undertaking upfront,

with the increasing support for component-based development producing PWAs has

a lower barrier to entry than ever before. Additionally, the more components an

author develops for their PWA, the more can be reused in subsequent applications.

Thus progress web applications can become progressively easier to make. It may seem

that aside from the time invested towards learning how to make and developing these

applications, PWAs have purely upside for the author. However, with deployment

the author also takes on the responsibility of fees and maintenance for having the

site hosted. Further, the momentary advantages of having developed a PWA may be

quickly dismissed should a publisher choose to support applications.

At the moment most journals, while accepting of web applications, have made little

headway in the integration of interactive elements to their online platforms. There

are several journals, e.g. Distill.pub, that have made an active e↵ort in promoting

online-only interactive articles. These articles, while a↵ording authors greater flex-

ibility, are still limited in comparison to deployment of one’s own application. In

the future, journals may take a more active approach in promoting research accessi-

bility. However, as many journals still require payment to read a publication, such

a future seems far o↵. In conclusion, encapsulating one’s novel software inside of a

PWA (alongside the publication and standalone repository when applicable) not only

promotes accessibility but may improve reuseability and impact of one’s research.
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t-sne space addresses batch e↵ects in single-cell classification. Machine Learning

2021, pages 1–20, 8 2021.

[28] Dmitry Kobak and Philipp Berens. The art of using t-sne for single-cell tran-

scriptomics. Nature Communications 2019 10:1, 10:1–14, 11 2019.

[29] Khalid Zuberi, Max Franz, Harold Rodriguez, Jason Montojo, Christian Tannus

Lopes, Gary D. Bader, and Quaid Morris. GeneMANIA Prediction Server 2013

Update. Nucleic Acids Research, 41(W1):W115–W122, jul 2013.

[30] Jason Montojo, Khalid Zuberi, Harold Rodriguez, Gary D Bader, and Quaid

Morris. GeneMANIA: Fast gene network construction and function prediction

for Cytoscape. F1000Research, 3:153, 2014.

[31] Sara Mostafavi, Debajyoti Ray, David Warde-Farley, Chris Grouios, and Quaid

Morris. GeneMANIA: a real-time multiple association network integration al-

gorithm for predicting gene function. Genome biology, 9 Suppl 1(Suppl 1):S4,

2008.

[32] James Vlasblom, Khalid Zuberi, Harold Rodriguez, Roland Arnold, Alla Gagari-

nova, Viktor Deineko, Ashwani Kumar, Elisa Leung, Kamran Rizzolo, Bahram

Samanfar, Luke Chang, Sadhna Phanse, Ashkan Golshani, Jack F. Greenblatt,

Walid A. Houry, Andrew Emili, Quaid Morris, Gary Bader, and Mohan Babu.

Novel function discovery with GeneMANIA: a new integrated resource for gene

function prediction in Escherichia coli. Bioinformatics, 31(3):306–310, feb 2015.

[33] Ethan G Cerami, Gary D Bader, Benjamin E Gross, and Chris Sander. cPath:

open source software for collecting, storing, and querying biological pathways.

BMC Bioinformatics, 7(1):497, dec 2006.

38



2 Bibliography

[34] Ethan G Cerami, Gary D Bader, Benjamin E Gross, and Chris Sander. cPath:

open source software for collecting, storing, and querying biological pathways.

BMC Bioinformatics, 7(1):497, nov 2006.

[35] E. G. Cerami, B. E. Gross, E. Demir, I. Rodchenkov, O. Babur, N. Anwar,

N. Schultz, G. D. Bader, and C. Sander. Pathway Commons, a web resource for

biological pathway data. Nucleic Acids Research, 39(Database):D685–D690, jan

2011.

[36] J. Y. Yen. Finding the K Shortest Loopless Paths in a Network. Management

Science, 17(11), 1971.

[37] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for Visual Un-

derstanding of Hierarchical System Structures. Transactions on Systems, Man,

and cybernetics, 11(2):109–125, 1981.

[38] Christian Bachmaier. A radial adaptation of the Sugiyama framework for vi-

sualizing hierarchical information. In IEEE Transactions on Visualization and

Computer Graphics, 2007.

[39] William JR Longabaugh. Combing the hairball with biofabric: a new approach

for visualization of large networks. BMC Bioinformatics 2012 13:1, 13:1–16, 10

2012.

[40] Michael Kuhn, Christian von Mering, Monica Campillos, Lars Juhl Jensen, and

Peer Bork. STITCH: interaction networks of chemicals and proteins. Nucleic

acids research, 36(Database issue):D684–8, jan 2008.

[41] Damian Szklarczyk, Andrea Franceschini, Stefan Wyder, Kristo↵er Forslund,

Davide Heller, Jaime Huerta-Cepas, Milan Simonovic, Alexander Roth, Alberto

Santos, Kalliopi P Tsafou, Michael Kuhn, Peer Bork, Lars J Jensen, and Chris-

tian von Mering. STRING v10: protein-protein interaction networks, integrated

39



2 Bibliography

over the tree of life. Nucleic acids research, 43(Database issue):D447–52, jan

2015.

[42] Alexandre Kuhn, Doris Thu, Henry J Waldvogel, Richard L M Faull, and Ruth

Luthi-Carter. Population-specific expression analysis (psea) reveals molecular

changes in diseased brain. Nature Methods 2011 8:11, 8:945–947, 10 2011.

[43] Xuran Wang, Jihwan Park, Katalin Susztak, Nancy R. Zhang, and Mingyao

Li. Bulk tissue cell type deconvolution with multi-subject single-cell expression

reference. Nature Communications 2019 10:1, 10:1–9, 1 2019.
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Abstract

Summary: KNIT is a web application that provides a hierarchical, directed graph on how a set of genes is connected
to a particular gene of interest. Its primary aim is to aid researchers in discerning direct from indirect effects that a
gene might have on the expression of other genes and molecular pathways, a very common problem in omics ana-
lysis. As such, KNIT provides deep contextual information for experiments where gene or protein expression might
be changed, such as gene knock-out and overexpression experiments.
Availability and implementation: KNIT is publicly available at http://knit.ims.bio. It is implemented with Django and
Nuxtjs, with all major browsers supported.
Contact: sumner.magruder@zmnh.uni-hamburg.de or sbonn@uke.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A common method to understand the functional role of a gene is by
altering its expression status and measuring the subsequent molecu-
lar changes of the cell. Alterations in gene expression have been
functionally grouped into gene deletion, expression attenuation or
gene over-expression using various Molecular Biology methods.
Subsequent measurements of molecular changes are usually
obtained using omics technologies, such as next generation sequenc-
ing in the case of gene expression.

While these studies present molecular changes with unprece-
dented depth they tend to lack information on which functional
changes are directly caused by the gene of interest, and which
ones are compensatory or indirect changes to sustain cell homeo-
stasis. Therefore, differentially expressed genes (DEGs) in a gene
deletion study are not necessarily a direct consequence of initial
perturbation of the system. Identifying which of these down-
stream effects are relevant to the primary gene of interest
(e.g. the gene which was deleted, over-expressed, etc.) can be
cumbersome.

To contextualize a set of genes in relation to the primary gene of
interest, gene-gene network tools like GeneMANIA, Pathway
Commons, STRING and STITCH may be leveraged (Cerami et al.,
2006, 2011; Kuhn et al., 2008; Mostafavi et al., 2008; Szklarczyk
et al., 2015). However, these tools do not provide a query matching
the paradigm, as they search for connections between the set of all
requested genes rather than querying for pathways to or from the
primary gene from or to the rest of the genes in the set. In conjunc-
tion with the use of force-based graph layouts, visualizing the direc-
tional relationship from a primary gene of interest to a set of genes
becomes convoluted.

Here, we present KNIT, a web application that provides visual
and query-able information on how a set of genes is connected to a
particular gene of interest. KNIT uses hierarchical, directed layouts
to provide visual cues of potentially direct effects, aiding researchers
in defining the true molecular function of a gene of interest. In add-
ition, KNIT supports enrichment analysis of a given graph, guiding
the formulation of hypotheses on the underlying biology. While
KNIT was designed with the gene knock-in (KI) and knock-out
(KO) paradigm in mind, KNIT clearly generalizes to any explora-
tory question between a gene of interest and set of genes.

2 Materials and methods

KNIT facilitates the exploration of the directional relationship be-
tween a gene of interest (e.g. KI or KO) and the entries in a gene list
(e.g. DEGs) by constructing a composite graph from the human data
collected via cPath, which is made accessible by Pathway Commons
and through metadata from NCBI (Cerami et al., 2006, 2011). As
the goal of KNIT is the identification of targeted relationships be-
tween a gene of interest and another set of genes, KNIT constructs a
composite graph by utilizing the k-shortest paths to and from the
gene of interest and each entry in the gene list, where k is set by the
user. As querying for the pathways may be computationally expen-
sive, each pathway request (source, target, k) is conducted asyn-
chronously on the backend, allowing users to see their composite
graph develop in real time. In case the user supplies gene expression
fold change information or P-values for the gene set genes, KNIT
will incorporate this information in the resultant graph (Fig. 1).
While individual connections are valid, as they are retrieved from an
established database (Pathway Commons), not every sequence of
connections in the graph is a pathway, as KNIT displays aggregated
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information from various sources. Pathway information can, how-
ever, be retrieved from provided metadata. Therefore, KNIT should
be understood as a simple-to-use tool for hypothesis formulation
and defining the focus in follow up research.

2.1 Path-finding
Path-finding is non-trivial and depends on various preferences such
as the length of the path or the cost to travel the path, as highlighted
in Madkour et al. (2017) for shortest-path algorithms and Pascoal
et al. (2006) for k-shortest-path algorithms. In addition, viewing the
singular ‘best’ path between two entities in an interaction network
provides an incomplete image of how these two entities interact.
Therefore KNIT computes the k-best paths utilizing Yen’s algorithm
(Yen, 1971), which utilizes Dijstkra’s algorithm for shortest-path
finding. Currently, KNIT weights arcs in the graph proportionally
to the number of publications supporting the arc.

2.2 Web application
KNIT’s architecture consists of a single page Nuxt.js application
and a singular module Django application. A Node.js server pro-
vides the frontend, while Nginx serves the backend. Non-blocking
asynchronous requests to build the composite graph for each source-
target pair and for the composite graph’s metadata are sent from the

frontend via the axios.js library to the backend, allowing for scal-
ability (Supplementary Fig. S1). The k-shortest paths for each
source—target pair are calculated by the backend and as this data is
returned to the frontend, the graph is rendered utilizing vis.js. An
overview of this architecture can be seen in the Supplementary
Materials. Once all queried paths are found, the meta information
for the resultant sub-graph is requested. Four main types of meta in-
formation are provided: (i) data sources: origin of evidence for the
composite graph together with a brief overview of the sources, (ii)
interaction types: summary of the interaction information between
entities of the sub-graph, as well as the relative percentage of publi-
cations that support that interaction type, (iii) pathways: known
pathways of edges of the returned sub-graph are a part of and (iv)
publications: list of the supporting publications. In addition, KNIT
provides a feature for interactive computation of enrichment. The
user can select meta-information which will update the graph. As an
edge may have multiple sources of evidence which support it, the
edge will only be removed from the graph if every supporting evi-
dence is deselected.

3 Usage and case study

KNIT has a rich online documentation, explaining its basic func-
tionality and how to interpret analysis results. In addition, KNIT
supports batch upload of data, which makes it easy to query a list of
e.g. 50 differentially expressed genes with P-value and fold change
information. To exemplify KNIT’s salient features we used cardio-
myocyte data to compare analysis results for KNIT, STRING,
STITCH, Genemania and Pathway Commons using default settings
(Cerami et al., 2006, 2011; Kuhn et al., 2008; Mostafavi et al.,
2008; Szklarczyk et al., 2015) (Fig. 1, Supplementary Fig. S2). More
specifically, the data by Pol et al. (2019) highlights the effect of car-
diomyocyte KLF5 signaling (black star in Fig. 1) on white adipose
tissue using a murine Klf5 knocked-out model. The Klf5 knock-out
resulted in increased weight of the mice and increased mRNA levels
of genes involved in the adipocyte lipid metabolism: Pparg1,
Pparg2, Lpl, Cd36 and Dgat2 (Fig. 1, red and blue circles). As can
be seen in Figure 1 and Supplementary Figures S2 and S3, KNIT
shows clearly which genes might be directly affected by the Klf5 KO
and which are not, while visualizing positive and negative interac-
tions, the interaction type and all relevant meta-information inter-
actively. Additional validation is provided in Supplementary
Materials and in Supplementary Table S1.

4 Conclusion

KNIT provides users an intuitive GUI to readily find interactions to
their primary gene of interest along with associated meta-data.
Further KNIT interactive exploration aids researchers in framing the
relationship between the conditions of their experiment and the
results. KNIT is the first web application that allows to query a tar-
get gene and a gene set of interest for potential directed signaling,
supporting researchers in differentiating direct from indirect
interactions.
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Neuropathology of patients with COVID-19 in Germany: 
a post-mortem case series
Jakob Matschke, Marc Lütgehetmann, Christian Hagel, Jan P Sperhake, Ann Sophie Schröder, Carolin Edler, Herbert Mushumba, Antonia Fitzek, 
Lena Allweiss, Maura Dandri, Matthias Dottermusch, Axel Heinemann, Susanne Pfefferle, Marius Schwabenland, Daniel Sumner Magruder, 
Stefan Bonn, Marco Prinz, Christian Gerloff, Klaus Püschel, Susanne Krasemann, Martin Aepfelbacher, Markus Glatzel

Summary
Background Prominent clinical symptoms of COVID-19 include CNS manifestations. However, it is unclear whether 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, gains access to the 
CNS and whether it causes neuropathological changes. We investigated the brain tissue of patients who died from 
COVID-19 for glial responses, inflammatory changes, and the presence of SARS-CoV-2 in the CNS.

Methods In this post-mortem case series, we investigated the neuropathological features in the brains of patients who 
died between March 13 and April 24, 2020, in Hamburg, Germany. Inclusion criteria comprised a positive test for 
SARS-CoV-2 by quantitative RT-PCR (qRT-PCR) and availability of adequate samples. We did a neuropathological 
workup including histological staining and immunohistochemical staining for activated astrocytes, activated 
microglia, and cytotoxic T lymphocytes in the olfactory bulb, basal ganglia, brainstem, and cerebellum. Additionally, 
we investigated the presence and localisation of SARS-CoV-2 by qRT-PCR and by immunohistochemistry in selected 
patients and brain regions.

Findings 43 patients were included in our study. Patients died in hospitals, nursing homes, or at home, and were 
aged between 51 years and 94 years (median 76 years [IQR 70–86]). We detected fresh territorial ischaemic lesions in 
six (14%) patients. 37 (86%) patients had astrogliosis in all assessed regions. Activation of microglia and infiltra tion 
by cytotoxic T lymphocytes was most pronounced in the brainstem and cerebellum, and meningeal cyto-
toxic T lymphocyte infiltration was seen in 34 (79%) patients. SARS-CoV-2 could be detected in the brains of 21 (53%) 
of 40 examined patients, with SARS-CoV-2 viral proteins found in cranial nerves originating from the lower 
brainstem and in isolated cells of the brainstem. The presence of SARS-CoV-2 in the CNS was not associated with 
the severity of neuropathological changes.

Interpretation In general, neuropathological changes in patients with COVID-19 seem to be mild, with pronounced 
neuroinflammatory changes in the brainstem being the most common finding. There was no evidence for CNS damage 
directly caused by SARS-CoV-2. The generalisability of these findings needs to be validated in future studies as the 
number of cases and availability of clinical data were low and no age-matched and sex-matched controls were included.

Funding German Research Foundation, Federal State of Hamburg, EU (eRARE), German Center for Infection 
Research (DZIF).

Copyright ©2020 Elsevier Ltd. All rights reserved.
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Introduction
COVID-19, the disease caused by severe acute respira tory 
syndrome coronavirus 2 (SARS-CoV-2), has evolved into 
a global pandemic since the first recorded cases in 
December, 2019. Although SARS-CoV-2 primarily targets 
the respi ratory tract,1 other organ systems such as the renal 
and cardiovascular systems are also affected.2,3 Additionally, 
neurological symptoms are common in COVID-19 and 
include anosmia and ageusia, non-specific symptoms such 
as dizziness and headache, and severe conditions such 
as ischaemic stroke, hae morrhagic encephalopathy, and 
posterior reversible encephalopathy syndrome with epi-
leptic seizures.4–7 Further  more, clinical data and labora tory 
investigations suggest that encephalitis,8–10 menin gitis,9,10 
poly neuritis cranialis, and Guillain-Barré and Miller Fisher 
syn dromes11–13 might also be associated with COVID-19. 

Why SARS-CoV-2 infection leads to neurological symp-
toms, and whether and how the virus gains access to the 
CNS are not well understood. The two main competing 
hypo theses are based on neurotropism and direct invasion 
of SARS-CoV-2 into the CNS, and indirect mechanisms 
mediated by the cytokine storm induced by systemic 
SARS-CoV-2 infection.

In-depth neuropathological assessment can elucidate 
if and how SARS-CoV-2 gains access to or damages 
the brain.14 However, only a few reports of the neuro-
pathological findings of patients with COVID-19 have been 
published. Two case reports showed no gross CNS abnor-
malities at autopsy,15 and two case series docu mented no 
signs of encephalitis or CNS vasculitis.16,17 Additionally, loss 
of white matter and axonal injury were described in 
one case report,18 while massive intracranial hae morrhage 
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and pan-encephalitis were described in a case series,19 and 
one case series reported only the detection of SARS-CoV-2 
in the brain.20

The current study aimed to investigate the neuro-
pathological features of COVID-19, including glial res-
ponse, inflammatory changes, and the presence and 
distribution of SARS-CoV-2 in the brain of patients who 
died from COVID-19.

Methods
Study design and participants
Consecutive patients who had died following a diagnosis 
of SARS-CoV-2 infection were autopsied at the Institute 
of Legal Medicine, University Medical Center of 
Hamburg-Eppendorf (Hamburg, Germany) between 
March 13 and April 24, 2020, upon order issued by the 
Hamburg public health authorities in accordance with 
section 25(4) of the German Infection Protection Act. 
Organisation of autopsies and adequate collection of 
samples were logistically challenging as this time period 
coincided with the peak incidence of COVID-19 in 
Hamburg. Inclusion criteria for this study were a con-
firmed diagnosis of SARS-CoV-2 infection, with SARS-
CoV-2 RNA detected by quantitative RT-PCR (qRT-PCR) 
analysis of pharyngeal swabs, and the avail ability of 
sufficient high-quality brain tissue samples. Clinical 
presen tation and neuroradio logical findings did not form 
part of the inclusion criteria.

The study was approved by the local ethics committee 
of the Hamburg Chamber of Physicians (approval 
num  ber PV7311) and the study is in line with the 
Declaration of Helsinki.

Procedures
We assessed patients’ clinical data, including pre-existing 
medical conditions, medical course before death, and 
ante-mortem diagnostic findings. Where logistically 
feasible, before fixation, specimens were taken from 
23 brains for cryopreservation to allow investigation of the 
presence of SARS-CoV-2 in non-fixed tissue. All brains 
were fixed in buffered 4% formaldehyde, examined 
macro scopically, and underwent routine neuropathological 
workup.

Single-cell gene expression analysis
Human brain single-cell transcriptome data taken from 
Darmanis and colleagues’ study21 were processed and 
analysed with use of the methods des cribed by Marouf 
and colleagues.22 In brief, cell-type clus ters were annotated 
using known marker genes as reported previously.21 Mean 
cell type-specific RNA levels of angiotensin-converting 
enzyme 2 (ACE2), cathepsin L (CTSL), transmembrane 
serine protease 2 (TMPRSS2), transmembrane serine 
protease 4 (TMPRSS4), neuropilin 1 (NRP1), and two pore 
segment channel 2 (TPCN2) were normalised per gene 
(cell type-specific expression divided by the sum of gene 
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Research in context

Evidence before this study
We searched PubMed for studies focusing on the 
neuropathology of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infection, published in German 
or English, until Aug 2, 2020. Search terms included 
“COVID-19” OR “SARS-CoV-2” AND “neuropathology” OR 
“neurodegeneration” OR “encephalitis” OR “central nervous 
system” OR “brain”. Studies examining the neuropathology of 
COVID-19 in animal models were also considered. The literature 
gave a heterogeneous picture regarding the neuropathological 
presentation of COVID-19. Two studies described no signs 
of encephalitis or nervous system vasculitis, and mainly reactive 
changes unrelated to SARS-CoV-2 infection, whereas other 
studies show pan-encephalitis, cerebral haemorrhage, and 
areas of necrosis with loss of white matter and axonal injury 
attributed to SARS-CoV-2 infection. All studies were subject to 
sampling bias and small patient numbers, and most examined 
brains originated from patients who died in hospital under 
intensive care unit treatment, which can itself lead to 
neuropathological alterations independently of 
SARS-CoV-2 infection.

Added value of this study
To our knowledge this study represents the world’s largest case 
series of brain autopsies from patients with COVID-19 to date. 

We included 43 patients who died under intensive care unit 
treatment, in regular hospital wards, in nursing homes, or in 
their own homes, ranging in age from 51 years to 94 years. 
Fresh ischaemic lesions were found in the brains of six patients, 
and almost all patients showed astrocytic reactions in all 
assessed brain regions. Neuroimmune activation was observed 
in all examined brains, with prominent involvement of the 
brainstem and neuroimmune reaction, in line with involvement 
of the adaptive and innate immune systems. The presence of 
SARS-CoV-2 did not seem to be associated with the severity of 
neuroimmune activation. Neuroimmune activation was also 
observed in patients who died from COVID-19 at home or in 
nursing homes.

Implications of all the available evidence
The emerging evidence, including the current study, shows that 
neuropathological alterations in the brains of patients who die 
from COVID-19 are relatively mild, although the virus is able to 
gain access to the brain. The neuropathological alterations are 
most likely to be immune-mediated, and there does not seem 
to be fulminant virus-induced encephalitis nor direct evidence 
for SARS-CoV-2-caused CNS damage. Further studies are 
needed to define how SARS-CoV-2 gains access to the brain, 
to define the neuroimmune activation, and to describe the 
distribution of SARS-CoV-2 in the brain.
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expression across cell types), and were subsequently 
plotted as a heatmap.

Histological and immunohistochemical evaluations
Formalin-fixed paraffin-embedded tissue (FFPE) samples 
from the olfactory bulb, superior frontal gyrus, basal 
ganglia including the putamen, upper and lower medulla 
oblongata, and cerebellar hemisphere were processed and 
stained with haematoxylin and eosin using standard lab-
oratory procedures. Immunohistochemical staining was 
also done with a Ventana Benchmark XT Autostainer 
(Ventana, Tucson, AZ, USA), in accordance with the manu-
facturer’s recommendations, using antibodies against 
human glial fibrillary acidic protein (GFAP; clone 6F2; Dako, 
Glostrup, Denmark; dilution 1:200), HLA-DR (mouse anti-
HLA-DP, DQ, DR antibody, clone CR3/43; Dako; 1:200), 
transmem brane protein 119 (TMEM119; catalogue num ber 
ab185333; Abcam, Cambridge, UK; 1:250), ionized calcium-
binding adaptor mole cule 1 (IBA1; clone EPR16588; Abcam, 
Cambridge; 1:1000), CD68 (clone PG-M1; Dako; 1:200), 
and CD8 (clone SP239; Spring Bioscience, Pleasanton, 
USA; 1:100). Double-immunolabelling for IBA1 and CD8 
was done sequen tially with Permanent Red (Monosan 
Permanent AP-Red Kit; Monosan, Uden, Netherlands) as 
chromogen. 

Slides were examined by experienced neuro pathol-
ogists (JM, CH, and MG). At least two neuropathol-
ogists, masked to patients’ clinical findings, assessed each 
slide, and disagreements were resolved by consensus. 
Slides were screened at low magnification and areas with 
the most pronounced changes (ie, strongest staining) 
were used for quantification, and were electronically 
scanned at high magnifica tion (×40) as high-resolution 
images (1900 × 1200 pixels) with a NanoZoomer 2.0-HT 
(Hamamatsu Photonics, Hamamatsu, Japan). 

The degree of astrogliosis and microgliosis was classi-
fied as none, slight, moderate, or severe, using a three-
tiered semi-quantitative approach (appendix p 3), based 
on GFAP as an astrocyte marker and HLA-DR as a 
marker of activated microglia. CD68 was used to judge 
phagocytic activity, and IBA1 as an additional marker for 
microglia activity. 

For semi-quanti tative assessment of cytotoxic T lym-
pho  cyte infiltration, cells with positive CD8 staining were 
counted per high-power field (HPF) of 0·5 mm². 
Infiltration was categorised as none, mild (one to nine 
cells per HPF), moderate (ten to 49 cells per HPF), or 
severe (≥50 cells per HPF; appendix p 3).

qRT-PCR analysis of SARS-CoV-2
qRT-PCR was used to quantify SARS-CoV-2 presence in 
specimens with enough high-quality material available. 
RNA was isolated from frozen or paraffin-embedded tissue 
samples. Frozen tissue was ground with a Precellys 24 
tissue homogeniser (Bertin, Rockville, USA) using 2 mL 
tubes pre-filled with ceramic beads (Precellys Lysing Kit; 
Bertin) and 1 mL RNAse-free and DNAse-free PCR-grade 

water. 200 µL of the tissue homogenate was transferred 
to a MagNA Pure 96 instrument (Roche, Mannheim, 
Germany), and automated nucleic acid extrac tion was 
done accord ing to the manufacturer’s recommen dation 
with whole process control (RNA Process Control Kit; 
Roche), with a final elution volume of 100 μL. Slides of 
paraffin-embedded tissue were deparaffinised and RNA 
was extracted with the Maxwell 16 LEV RNA FFPE 
Purification Kit and a Maxwell RNA extraction system 
(Promega, Fitchburg, USA).

PCR and virus quantification were done as previously 
described.20 In brief, an assay targeting the E gene of 
SARS-CoV-223 was used for the amplification and detec-
tion of SARS-CoV-2 RNA. A cycle threshold value 
for the target was determined with use of the second 
derivative maximum method.24 For quantification, stan-
dard in-vitro trans cribed RNA of the E gene of SARS-CoV-2 
was used (catalogue number 001K-03884; European Virus 
Archive, Charité, Berlin, Germany). The linear range of 
the assay is between 1 × 10³ and 1 × 10⁹ copies per mL. To 
normalise for input, quantitative β-globin PCR was done 
with a commercial TaqMan primer kit (cata logue number 
Hs00758889_s1; Thermo Fisher Scientific, Waltham, MA, 
USA), and the amount of DNA was normal ised with use 
of a KAPA Human Genomic DNA  Quantification and 
QC DNA Standard (catalogue number 07960638001; 
KAPA Biosystems, Cape Town, South Africa).

Immunohistochemical detection of SARS-CoV-2 spike 
protein and nucleoprotein
Antibodies for detecting SARS-CoV-2 in FFPE tissues were 
first validated on SARS-CoV-2-infected (Hamburg isolate) 
and non-infected Vero cells that were processed to 
FFPE blocks (appendix p 2). In specimens with sufficient 
high-quality tissue, we tested for the pre sence of the virus 
with immunohisto chemistry using antibodies against viral 
nucleocapsid protein (catalogue numbers 40143-R001 
[dilution 1:5000] and 40143-T62 [dilution 1:1000]; Sino 
Biological, Eschborn, Germany) and spike protein (clone 
1A9, catalogue num ber GTX632604; GeneTex, Irvine, USA; 
dilution 1:300).25 Immunohistochemical stai ning was done 
with a Ventana Benchmark XT Autostainer. All slides were 
examined by two experienced morp hologists (SK and MG), 
and any disagreements were resolved by consensus.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.

Results
From the 110 patients with diagnosed or suspected 
SARS-CoV-2 infection who were autopsied between 
March 13 and April 24, 2020, 43 (39%) with a positive 
qRT-PCR test for SARS-CoV-2 and adequate samples 

See Online for appendix
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Sex Age, 
years

Place of death Post-
mortem 
interval, 
days

Cause of death Comorbidities Brain 
weight, g

Brain 
oedema

Brain 
atrophy

Arteriosclerosis Macroscopic findings

Case 1 Female 87 Nursing home 0 Pneumonia COPD, dementia, IHD, 
renal insufficiency

1215 None Mild Moderate None

Case 2 Female 85 Hospital ward 0 Pneumonia Atrial fibrillation, 
cardiac insufficiency, 
IHD, myelofibrosis, 
renal insufficiency

1240 None Mild Moderate Fresh infarction 
in territory of PCA

Case 3 Male 88 Hospital ward 5 Pneumonia Emphysema, IHD, 
renal insufficiency

1490 Moderate None Moderate Fresh infarction 
in territory of MCA

Case 4 Male 75 ICU 4 Pulmonary arterial 
embolism, 
pneumonia

Atrial fibrillation, 
emphysema, hypertension, 
renal insufficiency

1475 Mild None Moderate Fresh infarction 
in territory of PCA

Case 5 Female 86 Nursing home 0 Pneumonia COPD, dementia, IHD 1250 None Mild Severe Fresh infarction 
in territory of PCA

Case 6 Male 90 Nursing home 2 Pneumonia Atrial fibrillation, dementia, 
diabetes, history of stroke

1015 None Moderate Severe Old infarctions 
in territory of PCA

Case 7 Male 90 Hospital ward 3 Emphysema with 
respiratory 
decompensation

Cardiac insufficiency, COPD 1440 None Mild Moderate None

Case 8 Male 77 Hospital ward 2 Pneumonia Aortic aneurysm, atrial 
flutter, cardiac hypertrophy, 
emphysema, renal 
insufficiency

1590 Moderate None Moderate None

Case 9 Male 76 ICU 3 Pulmonary arterial 
embolism, 
respiratory tract 
infection

Cardiac insufficiency, COPD 1460 Mild None Moderate None

Case 10 Male 76 ICU 3 Sepsis, aortic valve 
endocarditis, 
pneumonia

AML, cardiomyopathy, 
thyroid cancer

1270 None Mild Mild None

Case 11 Male 70 Hospital ward 1 Pneumonia 
(aspiration)

Cardiac insufficiency, COPD, 
IHD, Parkinson’s disease

1430 Mild None Severe None

Case 12 Male 93 Hospital ward 3 Pneumonia Diabetes, hypertension 1400 Mild None Moderate None

Case 13 Male 66 Emergency 
room

2 Pneumonia Diabetes, IHD 1450 Mild None Severe None

Case 14 Female 54 Hospital ward 1 Pneumonia Trisomy 21, epilepsy 950 None Severe Mild Grey matter 
heterotopia

Case 15 Male 82 Hospital ward 1 Pneumonia Diabetes, IHD, 
Parkinson’s disease

1170 None Mild Moderate Old infarctions 
in territory of PCA

Case 16 Male 86 Nursing home 2 Sepsis, pneumonia Emphysema, epilepsy, 
hypoxic brain damage, 
IHD, renal insufficiency

1210 None Mild Moderate None

Case 17 Female 87 Home 1 Pneumonia Cardiac insufficiency, COPD 1180 None Mild Severe None

Case 18 Female 70 ICU 3 Pneumonia Cardiac insufficiency 1150 None Mild Moderate None

Case 19 Female 75 ICU 4 Pneumonia Cardiac arrythmia, IHD 1210 None Mild Severe None

Case 20 Male 93 Hospital ward 2 Pneumonia Atrial fibrillation, cardiac 
insufficiency, diabetes, 
IHD, obstructive sleep 
apnoea syndrome

1000 None Moderate Moderate Old cerebellar 
infarction

Case 21 Female 82 Hospital ward 4 Purulent 
bronchitis

COPD, history of 
pulmonary embolism, 
renal insufficiency

1080 None Moderate Moderate None

Case 22 Male 63 ICU 1 Pulmonary arterial 
embolism, 
pneumonia

Cardiac insufficiency 1435 Mild None Mild Fresh infarction 
in territory of ACA

Case 23 Male 84 Hospital ward 5 Pneumonia, septic 
encephalopathy

Diabetes, history of stroke, 
hypertension, IHD, 
ulcerative colitis

1350 Mild None Severe None

(Table continues on next page)
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available were included in this study. The autopsy findings, 
excluding any neuropathological anal ysis, of 37 (86%) 
of these patients were previously rep orted in a separate 
report of the first 80 consecutive individuals who died 
of SARS-CoV-2 infection in Hamburg, Germany.26 The 

remaining six (14%) cases have not been previously 
reported. 40 (93%) patients had adequate samples for the 
detection of SARS-CoV-2 by immuno histochemistry, and 
27 patients (63%) had samples available for the detection of 
SARS-CoV-2 by qRT-PCR. Data on SARS-CoV-2 RNA in 

Sex Age, 
years

Place of death Post-
mortem 
interval, 
days

Cause of death Comorbidities Brain 
weight, g

Brain 
oedema

Brain 
atrophy

Arteriosclerosis Macroscopic findings

(Continued from previous page)

Case 24 Male 71 ICU 2 Pulmonary arterial 
embolism, 
pneumonia

Cardiac insufficiency, 
diabetes, lung granuloma

1665 Moderate None Mild None

Case 25 Male 75 Nursing home 3 Sudden cardiac 
death

Parkinson’s disease 1110 Mild None Moderate None

Case 26 Male 52 Home 1 Pulmonary arterial 
embolism, 
pneumonia

Cardiac insufficiency 1520 Moderate None Severe None

Case 27 Male 85 ICU 2 Pneumonia COPD, aortic valve 
replacement, 
hypertension, IHD

1400 Mild None Moderate None

Case 28 Female 75 Home 2 Pulmonary arterial 
embolism

Hypertension, IHD 1095 None Moderate Moderate None

Case 29 Male 59 Hospital ward 12 Pneumonia Cardiomyopathy 1575 Moderate None Mild None

Case 30 Male 85 Hospital ward 15 Pneumonia Atrial fibrillation, COPD, 
hypothyroidism, lung 
cancer, renal insufficiency

1540 Moderate None Moderate Cerebellar metastasis 
of non-small cell 
lung cancer

Case 31 Female 76 Hospital ward 2 Pneumonia Breast cancer, hypertension 1180 None Mild Moderate None

Case 32 Male 73 Home 9 Sudden cardiac 
death

Cardiomyopathy, 
emphysema, IHD

1430 Mild None Severe None

Case 33 Male 70 ICU 9 Pneumonia Dementia, IHD, 
hypertension

1370 None None Moderate None

Case 34 Female 90 Nursing home 3 Pneumonia Cardiomyopathy, dementia, 
emphysema, renal 
insufficiency

1090 None Severe Moderate None

Case 35 Female 94 Hospital ward 2 Sepsis Atrial fibrillation, cardiac 
insufficiency, dementia, 
history of stroke, IHD, 
renal insufficiency

1220 Mild Mild Moderate Old infarction 
in territory of PCA

Case 36 Female 87 Hospital ward 3 Sepsis, pneumonia Colon cancer, emphysema, 
paranoid schizophrenia

1310 None None Mild None

Case 37 Female 54 ICU 1 Pneumonia Mild cardiomyopathy 1470 Mild None Mild None

Case 38 Female 79 Hospital ward 5 Pneumonia COPD, myelodysplastic 
syndrome, IHD

1290 None Mild Mild None

Case 39 Male 51 Home 8 Pneumonia Liver cirrhosis 1255 Mild Mild Mild None

Case 40 Male 85 Hospital ward 3 Pneumonia Atrial fibrillation, cardiac 
insufficiency, dysphagia, 
emphysema, hypertension, 
IHD

1290 Mild None Moderate None

Case 41 Male 56 Hospital ward 3 Pneumonia Cardiac insufficiency, 
COPD, diabetes, IHD, 
renal insufficiency

1230 Mild None Mild Old infarctions in 
territory of PCA and 
lenticulostriate arteries

Case 42 Male 76 ICU 3 Aortic valve 
endocarditis, 
pneumonia

AML, cardiomyopathy, 
thyroid cancer

1270 Mild None Mild None

Case 43 Female 59 ICU 1 Pneumonia Multiple myeloma 1220 Mild None Mild Fresh infarction in 
territory of MCA

COPD=chronic obstructive pulmonary disease. IHD=ischaemic heart disease. PCA=posterior cerebral artery. MCA=middle cerebral artery. ICU=intensive care unit. AML=acute myeloid leukaemia. ACA=anterior 
cerebral artery.

Table: Summary of cases and brain autopsy findings
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the brain tissue from 22 of these cases have been reported 
previously.20

The median age of the 43 patients was 76 years 
(IQR 70–86; range 51–94), 16 (37%) patients were women 
and 27 (63%) were men. 40 (93%) had relevant pre-existing 
chronic medical conditions (mainly cardiorespiratory 
problems), and 13 (30%) had pre-existing neurological 
diseases, such as neuro degener ative disease or epilepsy 
(table). 11 patients (26%) died outside of a hospital (five at 
home and six in a nursing facility) and 32 (74%) died 
in a hospital. 12 (28%) patients who died in hospital were 
treated in intensive care units (ICUs). Cause of death was 

mainly attributed to the respiratory system, with viral 
pneu monia as the under lying condition in most cases 
(table).

The mean post-mortem interval was 3·3 days (SD 3·1) 
after two patients with extremely long post-mortem 
intervals of 12 days and 14 days were excluded as outliers 
(table). The mean weight of the unfixed brains was 1302 g 
(SD 171; median 1270 g [1195–1438]; range 950–1665; 
table) with 23 patients (53%) showing signs of mild to 
moderate brain oedema, commonly seen as unspecific 
agonal changes. Arteriosclerosis of the basal vessels was 
mild in 12 (28%) patients, moderate in 22 (51%), and 

Figure 1: Common neuropathological findings in the brains of patients who died from COVID-19
An overview of each brain region with haematoxylin and eosin staining is shown in the first column. Immunohistochemical staining for the astrocytic marker GFAP 
showed variable degrees of reactive astrogliosis. Immunohistochemical staining for the microglia marker HLA-DR showed reactive activation of the microglia with 
occasional microglial nodules in the medulla oblongata and cerebellum (green arrows). Staining for the cytotoxic T lymphocyte marker CD8 (brown) revealed 
perivascular and parenchymal infiltration with CD8-positive cells. GFAP=glial fibrillary acidic protein. 
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severe in nine (21%; table). 13 brains (30%) showed gross 
macroscopic abnormalities (fresh territorial ischaemic 
lesions in six patients, older territorial ischaemic lesions 
in five patients, grey matter heterotopia in one patient 
with trisomy 21, and cerebellar metastasis of a non-small 
cell lung carcinoma in one patient; table).

There was no evidence of cerebral bleeding or small-
vessel throm boses. We found rare instances (two cases) of 
neuronophagy, and no acute necrotising lesions. Six (14%) 
patients had fresh ischaemic infarctions: three in the 
territory of the posterior cerebral artery, two in the territory 
of the anterior cerebral artery, and one in the territory of 
the middle cerebral artery, which were most likely due 

to thromboembolic events. A highly variable degree of 
astrogliosis was seen in all patients, with 37 patients (86%) 
showing astrogliosis in all assessed regions. Diffuse acti-
va tion of microglia, with occasional microglial nodules, 
was pronounced in the brainstem and cerebellum. Addi-
tionally, we found distinct positive staining for HLA-DR in 
subpial and subependymal regions, a pattern not com-
monly observed in classic encephalitis. Parenchymal and 
perivascular microglia expressed the lysosomal marker 
CD68 while retaining the microglia core marker TMEM119 
on their surfaces (figures 1, 2; appendix p 5).

To assess which cell types in the CNS might be prone 
to SARS-CoV-2 infection, we did an in-silico analysis 

Figure 2: Concomitant activation of the adaptive and innate immune systems in the brain of one patient (case 2) who died from COVID-19
Representative images of double-chromogenic immunohistochemical labelling for IBA1 (brown) and CD8 (pink), as well as immunohistochemical staining for 
CD68 (brown), and TMEM119 (brown) at different CNS interfaces in the upper medulla oblongata. Counterstaining was done with haematoxylin (blue). Scale bars 
represent 100 µm (10 µm in the inset images). Arrows indicate CD8-positive T cells.
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of publicly available datasets. The analysis focused on 
cell-specific expression within the cerebral cortex of genes 
that have been shown to contribute to viral entry into the 
cell27 and viral persistence,25 including ACE2, TMPRSS2, 
TPCN2, TMPRSS4, NRP1, and CTSL. Our analysis showed 
that these genes are expressed in neurons, glial cells, 
and endothelial cells, suggesting their possible capacity 
to support SARS-CoV-2 infection. Expression of ACE2 
was highest in oligodendrocytes, while TMPRSS2 and 
TMPRSS4 were highest in neurons, CTSL was highest in 
microglia, and TPCN2 was highest in astrocytes (figure 3).

Cytotoxic T lymphocytes could be seen in small amounts 
(up to 49 cells per HPF) in the frontal cortex and basal 
ganglia, but their presence was more pronounced in the 
brainstem, where they were mostly concentrated in 
perivascular regions but were also observed in the paren-
chyma as clusters in close vicinity to IBA-1-positive 
microglia (figures 1, 4). Infiltration of the meningeal com-
partments by cytotoxic T lymphocytes was seen in 34 (79%) 
patients (moderate in six patients and mild in 28 patients; 
table, figure 4), with an enrichment of IBA-1-postive, 
CD68-positive, and TMEM119-negative peri vascu lar and 
meningeal macrophages (figure 2). The olfactory bulb 
showed a high degree of astrogliosis and micro gliosis, 
but only minor infiltration by cytotoxic T lymphocytes 
(figures 1, 4).

SARS-CoV-2 RNA was detected by qRT-PCR in cryo-
preserved frontal lobe tissue from nine (39%) of 23 patients 
with available samples, and in FFPE medulla oblongata 
tissue from four (50%) of eight patients with available 
samples. In total, SARS-CoV-2 was found in the brain 
tissues of 13 (48%) of 27 patients who had at least one avail-
able sample (four patients had both types of sample 
available; figure 4). A median 4700 copies of SARS-CoV-2 
RNA were detected (IQR 1350–29 400; range <1000 to 
1·62 × 10⁵) among these 13 cases.

Samples from 40 (93%) patients underwent immuno-
histochemical staining for SARS-CoV-2 spike and 

nucleocapsid proteins. SARS-CoV-2-positive struc tures 
(cells and nerve fibres) were found scattered throughout 
the brain tissue. In eight (61%) of the 13 cases for which 
SARS-CoV-2 was detected in the brain by qRT-PCR, at least 
one SARS-CoV-2 protein could be detected (both spike and 
nucleocapsid in four cases, spike alone in three cases, and 
nucleocapsid alone in one case). Notably, in eight patients 
who were untested or tested nega tive on qRT-PCR analysis 
of SARS-CoV-2 RNA in the brain tissues, viral proteins 
were detectable by immuno histo chemistry in the medulla 
oblongata (spike and nucleocapsid in one case, nucleo-
capsid alone in one case, and spike alone in six cases; 
figure 4). In the 16 (40%) cases positive for SARS-CoV-2 
proteins on immuno histochemistry, spike protein was 
detected much more frequently (14 [88%] cases) than 
nucleocapsid pro tein (seven [44%] cases). By immuno -
histochemistry, SARS-CoV-2 could be mapped to isolated 
cells within the medulla oblongata and in the cranial 
nerves (either the glossopharyngeal or vagal nerves) 
originating from the brainstem (figure 5, appendix p 4). 
Overall, SARS-CoV-2 RNA or proteins were detected in the 
brain tissues of 21 (53%) of the 40 investigated patients, 
with eight (20%) patients having both SARS-CoV-2 RNA 
and protein detected (figure 4).

Cases 2, 16, 21, and 41 showed more brainstem inflam-
mation (in terms of infiltration by cytotoxic CD8-positive 
T cells or activation of microglia) than all others (figure 4). 
Among these four cases, viral proteins were detected in 
the brain of one patient (case 2) and viral RNA in the 
brains of two patients (cases 2 and 21), and none died 
under ICU treatment.

Discussion
To our knowledge, this is the most comprehensive report 
of neuropathological findings of patients who died from 
COVID-19. In this post-mortem case series, we observed 
substantial yet highly variable degrees of astrogliosis in 
all assessed regions. Astrocytes are key regulators of 
homoeostasis, responding to stimuli through upregulation 
of GFAP and astroglial hyper trophy.28 Because astrogliosis 
occurs in a variety of pre-existing medical conditions, 
and because critical illness also contributes to astrogliosis, 
a causal connection to SARS-CoV-2 cannot be drawn 
at present.

Activation of microglia and infiltration of cytotoxic 
T lympho cytes were mostly confined to the brainstem and 
cerebellum, with little involvement of the frontal lobe, in 
line with clinical findings pointing to an involv ement of 
the brainstem.5 The staining pattern of activated microglia 
with occasional microglial nodules is reminiscent of 
mild viral and autoimmune encephalitides.29 We observed 
cytotoxic T lymphocytes in close vicinity to IBA-1-positive 
microglia, suggesting that these glial cells activate lympho-
cytes and potentially induce T-cell stimulation.30 Microglia 
strongly expressed the lysosomal marker CD68, indicating 
their increased phagocytic activity. Notably, highly activated 
phago cyting microglia retained the microglial core marker 

Figure 3: In-silico analysis of the distribution of genes relevant to severe 
acute respiratory syndrome coronavirus 2 in the CNS
Human temporal lobe cell type-specific expression of TMPRSS2, TMPRSS4, CTSL, 
TPCN2, NRP1, and ACE2. The heatmap shows the per-gene normalised mean 
expression across cell types (expression sums to 1 across the cell types). 
OPC=oligodendrocyte precursor cell.
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TMEM119 on their surfaces. Anosmia has been linked 
to COVID-19,5 and might be related to the pronounced 
astrogliosis and microgliosis in the olfactory bulb observed 
in this study.

Clinically, nuchal rigidity has been identified in patients 
with COVID-19 as a possible sign of SARS-CoV-2-associated 
meningitis.10 We found mostly mild meningeal infil-
trates consisting of cytotoxic T lymphocytes, most likely 

Figure 4: Neuropathological findings and SARS-CoV-2 viral loads in studied patients (n=43)
Cases are arranged from left to right on the basis of the presence and quantity of SARS-CoV-2 in the brain. F=female. FFPE=formalin-fixed paraffin-embedded. HPF=high-power field. 
IHC=immunohistochemistry. M=male. P=parenchymal. PV=perivascular. qPCR=quantitative PCR. SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. *Values shown for positive cases 
represent number of copies of SARS-CoV-2 RNA (× 10³/mL); detection was done in the frontal lobe in cryopreserved specimens and in the upper medulla oblongata in FFPE specimens.
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indicative of non-specific meningeal reaction rather than 
viral meningitis. 

CNS involvement with destructive lesions has been docu-
mented in cases of SARS-CoV infection.31,32 Additionally, 
influenza A virus infects the CNS in some patients with a 
severe disease course. In these patients, acute subarachnoid 
haemorrhage and acute necrotising encephalopathy with 
multifocal brain lesions have been observed,29 and such 
findings have also been reported in one patient with 
COVID-19.4 Pan-encephalitis and intra cranial haemor-
rhage19 in addition to myelin loss has been described in 
patients with COVID-19.18 In our cohort, we did not find 
evidence of myelin loss, cerebral bleeding, or acute necro-
tising lesions, congruent with previous findings.16 Whether 
the absence of these pathologies was due to the small 
number of patients in our study or because they are 
not caused by SARS-CoV-2 remains an open question. 
Intracranial haemorrhagic lesions can also occur as a result 
of necessary treatments in ICUs, such as extracorporeal 
membrane oxygen ation.33 Some patients with COVID-19 
present with neurological symp toms indicative of cerebral 
isch aemia, and, in patients younger than 50 years of age, 
large-vessel stroke has been proposed to constitute a 
presenting feature.7 We observed signs of fresh terri torial 
ischaemic lesions in six (16%) patients, of whom four were 
older than the average age of our sample and two were 
younger (63 years and 59 years). Thus, patients with stroke 
were not dis proportionately younger among our cases. 
Morpho logi cally, the isch aemic lesions followed a vascular 
pattern and presumably were of thromboembolic origin. 
These data are in line with pre viously published data show-
ing thromboembolic events in a proportion of patients with 
COVID-19.2

SARS-CoV-2 was detected by qRT-PCR or immuno-
staining in the brains of 21 (53%) of all tested patients. 
Further more, immunohistochemical analysis revealed 
viral proteins in the cranial nerves (either glosso pharyn-
geal or vagal) originating from the lower medulla oblongata 
and in single cells within the medulla oblon gata. Although 
qRT-PCR might lack sensitivity, and immuno staining 
for viral proteins is prone to artifacts, our findings are 
consistent with those of previous studies of SARS-CoV, in 

which viral proteins could be seen in single cells in the 
brains of some patients who died following infection with 
the virus.31 Thus, effects of SARS-CoV-2 on the brainstem 
could be correlates of, or contribute to, unusually rapidly 
deter iorating respiratory function, as has been observed 
in some patients with COVID-19 given non-invasive 
ventilation.34

The presence of SARS-CoV-2 RNA and proteins in the 
brains of patients with COVID-19 in this study is in line 
with the hypothesis that SARS-CoV-2 can infiltrate the 
CNS.14 However, the presence of SARS-CoV-2 was not 
associated with the severity of neuropathological changes. 
Thus, CNS damage and neurological symptoms might 
be due to additional factors such as cytokine storm, 
neuroimmune stimulation, and systemic SARS-CoV-2 
infection, rather than by direct CNS damage caused by 
the virus. We saw a surprisingly uniform presentation of 
neuro pathological findings (ie, activation of microglia, 
infiltra tion with CD8-positive T cells) in our patients, 
irres pec tive of the clinical severity of COVID-19 in each 
case. Notably, the neuropathological presentation in 
patients who died in a domestic setting or in a nursing 
home did not differ from that in patients who died in hos-
pital wards or ICUs. 

The main limitation of our study is its descriptive nature 
and the absence of age-matched and sex-matched controls. 
Our study cohort was assembled during the peak of the 
SARS-CoV-2 pandemic and, for logistic reasons, simul-
taneous collection of case controls was not feasible, and it 
was not possible to use historical controls because of 
differences in sampling protocols. Thus, the proposed 
mechanisms of viral entry, viral replication, and putative 
pathophysiological princi ples underlying tissue damage 
must be interpreted in this context. Furthermore, we 
assessed only a small number of post-mortem specimens, 
and the selected regions might not be fully representative 
of the whole brain. Sample preservation could have 
influenced the analyses. Additionally, due to the hetero-
geneity of the places of death of studied patients, no 
systematically validated clinical data (eg, systematically 
documented neurological information) were available, and 
establishing conclusive clinicopathological correlations 
was not possible.

In summary, our results show that SARS-CoV-2 RNA 
and proteins can be detected in the CNS. The brain shows 
mild neuropathological changes with pronounced neuro-
inflammation in the brainstem being the most common 
finding. However, the presence of SARS-CoV-2 in the 
CNS was not associated with the severity of neuro-
pathological changes.16,17 Careful neuropathological inter-
preta tion will be essential to disentangle which changes 
are attributable to SARS-CoV-2. All such changes must be 
mapped against neuropathological changes caused by 
pre-existing medical conditions often present in patients 
with COVID-19, as well as neuro pathological changes 
caused by invasive treatments that are used in severe 
cases of COVID-19.35

Figure 5: Distribution of SARS-CoV-2 within the CNS
Representative images of viral protein-positive cells (green arrows) in the medulla oblongata detected by 
anti-nucleocapsid protein antibody (A) or anti-spike protein antibody (B). (C) SARS-CoV-2 nucleoprotein 
(brown staining) could also be detected in subsets of cranial nerves originating from the lower brainstem. 
SARS-CoV-2=severe acute respiratory syndrome coronavirus 2.

A B C

50 µm



Articles

www.thelancet.com/neurology   Vol 19   November 2020 929

Contributors
JM, CH, and MG designed the study. MG and JM wrote the manuscript. 
JM, ML, JPS, ASS, CE, LA, MDa, AH, AF, SP, SB, HM, KP, SK, MA, 
MP, MS, and MG performed experiments and collected or analysed the 
data. ML, LA, MDa, SK, and MA analysed the presence and distribution 
of the virus. JM, CH, SK, MP, MS, and MG performed morphological 
analyses. DSM and SB performed in single-cell gene expression analysis. 
All authors discussed the results. JM, SK, MDo, MP, MS, and 
MG created the figures. MG and CG reviewed and discussed 
clinicopathological interpretations. All authors read, edited, and 
approved the manuscript.

Declaration of interests
MDa reports grants from the German Center for Infection Research 
during the conduct of the study and grants from the German Research 
Foundation outside the submitted work. All other authors declare no 
competing interests.

Data sharing
Data collected for the study and data from sample analyses will be made 
available upon reasonable request to the corresponding author.

Acknowledgments
We thank Ulrike Rumpf, Claudia Oye Attah, and Kristin Hartmann 
(Institute of Neuropathology, University Medical Center Hamburg-
Eppendorf, Hamburg, Germany) for technical help. MG was supported 
by the German Research Foundation (SFB877). ML, MDa, LA, and 
MG were supported by Hamburg state research funding 
(Landesforschungsförderung; “mechanisms of cell-communication 
during infection”). DSM and SB were supported by eRARE Maxomod 
and the German Research Foundation (SFB1286).

References
1 Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper 

respiratory specimens of infected patients. N Engl J Med 2020; 
382: 1177–79.

2 Wichmann D, Sperhake JP, Lutgehetmann M, et al. Autopsy 
findings and venous thromboembolism in patients with 
COVID-19: a prospective cohort study. Ann Intern Med 2020; 
173: 268–77.

3 Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection 
and endotheliitis in COVID-19. Lancet 2020; 395: 1417–18.

4 Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. 
COVID-19-associated acute hemorrhagic necrotizing 
encephalopathy: CT and MRI features. Radiology 2020; 296: 201187.

5 Mao L, Jin H, Wang M, et al. Neurologic manifestations of 
hospitalized patients with coronavirus disease 2019 in Wuhan, 
China. JAMA Neurol 2020; 77: 683–90.

6 Helms J, Kremer S, Merdji H, et al. Neurologic features in severe 
SARS-CoV-2 infection. N Engl J Med 2020; 382: 2268–70.

7 Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a 
presenting feature of COVID-19 in the young. N Engl J Med 2020; 
382: e60.

8 Huang YH, Jiang D, Huang JT. SARS-CoV-2 detected in 
cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. 
Brain Behav Immun 2020; 87: 149.

9 Bernard-Valnet R, Pizzarotti B, Anichini A, et al. Two patients with 
acute meningo-encephalitis concomitant to SARS-CoV-2 infection. 
Eur J Neurol 2020; 27: e43–44.

10 Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/
encephalitis associated with SARS-coronavirus-2. Int J Infect Dis 
2020; 94: 55–58.

11 Gutierrez-Ortiz C, Mendez A, Rodrigo-Rey S, et al. Miller Fisher 
syndrome and polyneuritis cranialis in COVID-19. Neurology 2020; 
95: e601–05.

12 Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome 
associated with SARS-CoV-2 infection: causality or coincidence? 
Lancet Neurol 2020; 19: 383–84.

13 Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré syndrome 
associated with SARS-CoV-2. N Engl J Med 2020; 382: 2574–76.

14 De Felice FG, Tovar-Moll F, Moll J, Munoz DP, Ferreira ST. Severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the 
central nervous system. Trends Neurosci 2020; 43: 355–57.

15 Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. 
COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol 2020; 
153: 725–33.

16 Solomon IH, Normandin E, Bhattacharyya S, et al. 
Neuropathological features of COVID-19. N Engl J Med 2020; 
published online June 12. https://doi.org/10.1056/nejmc2019373.

17 Schaller T, Hirschbuhl K, Burkhardt K, et al. Postmortem 
examination of patients with COVID-19. JAMA 2020; 323: 2518.

18 Reichard RR, Kashani KB, Boire NA, Constantopoulos E, Guo Y, 
Lucchinetti CF. Neuropathology of COVID-19: a spectrum of 
vascular and acute disseminated encephalomyelitis (ADEM)-like 
pathology. Acta Neuropathol 2020; 140: 1–6.

19 von Weyhern CH, Kaufmann I, Neff F, Kremer M. Early evidence 
of pronounced brain involvement in fatal COVID-19 outcomes. 
Lancet 2020; 395: e109.

20 Puelles VG, Lutgehetmann M, Lindenmeyer MT, et al. Multiorgan 
and renal tropism of SARS-CoV-2. N Engl J Med 2020; 383: 590–92.

21 Darmanis S, Sloan SA, Zhang Y, et al. A survey of human brain 
transcriptome diversity at the single cell level. 
Proc Natl Acad Sci USA 2015; 112: 7285–90.

22 Marouf M, Machart P, Bansal V, et al. Realistic in silico generation 
and augmentation of single-cell RNA-seq data using generative 
adversarial networks. Nat Commun 2020; 11: 166.

23 Pfefferle S, Reucher S, Norz D, Lutgehetmann M. Evaluation 
of a quantitative RT-PCR assay for the detection of the emerging 
coronavirus SARS-CoV-2 using a high throughput system. 
Euro Surveill 2020; 25: 2000152.

24 Tichopad A, Dilger M, Schwarz G, Pfaffl MW. Standardized 
determination of real-time PCR efficiency from a single reaction 
set-up. Nucleic Acids Res 2003; 31: e122.

25 Rockx B, Kuiken T, Herfst S, et al. Comparative pathogenesis 
of COVID-19, MERS, and SARS in a nonhuman primate model. 
Science 2020; 368: 1012–15.

26 Edler C, Schroder AS, Aepfelbacher M, et al. Dying with 
SARS-CoV-2 infection—an autopsy study of the first consecutive 
80 cases in Hamburg, Germany. Int J Legal Med 2020; 134: 1275–84. 

27 Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell 
entry depends on ACE2 and TMPRSS2 and is blocked by a clinically 
proven protease inhibitor. Cell 2020; 181: 271–80.e8.

28 Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes 
in healthy and diseased brain. Brain Pathol 2017; 27: 629–44.

29 Ludlow M, Kortekaas J, Herden C, et al. Neurotropic virus 
infections as the cause of immediate and delayed neuropathology. 
Acta Neuropathol 2016; 131: 159–84.

30 Tröscher AR, Wimmer I, Quemada-Garrido L, et al. Microglial 
nodules provide the environment for pathogenic T cells in human 
encephalitis. Acta Neuropathol 2019; 137: 619–35.

31 Gu J, Gong E, Zhang B, et al. Multiple organ infection and 
the pathogenesis of SARS. J Exp Med 2005; 202: 415–24.

32 Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, 
Talbot PJ. Human coronaviruses: viral and cellular factors involved 
in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 
194: 145–58.

33 Le Guennec L, Cholet C, Huang F, et al. Ischemic and hemorrhagic 
brain injury during venoarterial-extracorporeal membrane 
oxygenation. Ann Intensive Care 2018; 8: 129.

34 Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential 
of SARS-CoV2 may play a role in the respiratory failure of 
COVID-19 patients. J Med Virol 2020; 92: 552–55.

35 Glatzel M. Neuropathology of COVID-19: where are the 
neuropathologists? Brain Pathol 2020; 30: 729.



3.3 SCADEN, 2020

3.3 SCADEN, 2020

61



Menden et al., Sci. Adv. 2020; 6 : eaba2619     22 July 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 12

S Y S T E M S  B I O L O G Y

Deep learning–based cell composition analysis 
from tissue expression profiles
Kevin Menden1*, Mohamed Marouf2, Sergio Oller2, Anupriya Dalmia1,  
Daniel Sumner Magruder2,3, Karin Kloiber2, Peter Heutink1, Stefan Bonn1,2*

We present Scaden, a deep neural network for cell deconvolution that uses gene expression information to infer 
the cellular composition of tissues. Scaden is trained on single-cell RNA sequencing (RNA-seq) data to engineer 
discriminative features that confer robustness to bias and noise, making complex data preprocessing and feature 
selection unnecessary. We demonstrate that Scaden outperforms existing deconvolution algorithms in both pre-
cision and robustness. A single trained network reliably deconvolves bulk RNA-seq and microarray, human and 
mouse tissue expression data and leverages the combined information of multiple datasets. Because of this sta-
bility and flexibility, we surmise that deep learning will become an algorithmic mainstay for cell deconvolution of 
various data types. Scaden’s software package and web application are easy to use on new as well as diverse 
existing expression datasets available in public resources, deepening the molecular and cellular understanding 
of developmental and disease processes.

INTRODUCTION
The analysis of tissue-specific gene expression using next-generation 
sequencing [RNA sequencing (RNA-seq)] is a centerpiece of the mo-
lecular characterization of biological and medical processes (1). A 
well-known limitation of tissue-based RNA-seq is that it typically 
measures average gene expression across many molecularly diverse 
cell types that can have distinct cellular states (2). A change in gene 
expression between two conditions can therefore be attributed to a 
change in the cellular composition of the tissue or a change in gene 
expression in a specific cell population, or a mixture of the two. To 
deconvolve the cell type composition from a change in gene expres-
sion is especially important in systems with cellular proliferation 
(e.g., cancer) or cellular death (e.g., neuronal loss in neurodegenera-
tive diseases) due to systematic cell population differences between 
experimental groups (3).

To account for this problem, several computational cell decon-
volution methods have been proposed during the last years (4, 5). 
These algorithms use gene expression profiles (GEPs) of cell type–
specifically expressed genes to estimate cellular fractions using linear 
regression to detect, interpret, and possibly correct for systematic 
differences in cellular abundance between samples (4). While the 
best-performing linear regression algorithms for deconvolution seem 
to be variations of support vector regression (6–10), the selection of 
an optimal GEP is a field of active research (10, 11). It has been re-
cently shown that the design of the GEP is the most important factor 
in most deconvolution methods, as results from different algorithms 
strongly correlate given the same GEP (11).

In theory, an optimal GEP should contain a set of genes that are 
predominantly expressed within each cell population of a complex 
sample (12). They should be stably expressed across experimental 
conditions, for example, across health and disease, and resilient to 
experimental noise and bias. However, bias is typically inherent to 
biomedical data and is imparted, for instance, by intersubject vari-
ability, variations across species, different data acquisition methods, 

different experimenters, or different data types. The negative im-
pact of bias on deconvolution performance can be partly improved 
by using large, heterogeneous GEP matrices (11). It is therefore ex-
pected that recent advancement in cell deconvolution relied almost 
exclusively on sophisticated algorithms to normalize the data and 
engineer optimal GEPs (10).

While GEP-based approaches lay the foundational basis of mod-
ern cell deconvolution algorithms, we hypothesize that deep neural 
networks (DNNs) could create optimal features for cell deconvolu-
tion, without relying on the complex generation of GEPs. DNNs such 
as multilayer perceptrons are universal function approximators that 
achieve state-of-the-art performance on classification and regression 
tasks. Whereas this feature is of little importance for strictly linear 
input data, it makes DNNs superior to linear regression algorithms 
as soon as data deviate from ideal linearity. This means, for instance, 
that as soon as data are noisy or biased and classical linear regres-
sion algorithms may falter, the hidden layer nodes of the DNN learn 
to represent higher-order latent representations of cell types that do 
not depend on input noise and bias. We theorize, therefore, that by 
using gene expression information as network input, hidden layer 
nodes of the DNN would represent higher-order latent representa-
tions of cell types that are robust to input noise and technical bias.

An obvious limitation of DNNs is the requirement for large train-
ing data to avoid overfitting of the machine learning model. While 
ground-truth information on tissue RNA-seq cell composition is 
scarce, one can use single-cell RNA-seq (scRNA-seq) data to obtain 
large numbers of in silico tissue datasets of predefined cell compo-
sition (7–9, 13–15). We do this by subsampling and subsequently 
merging cells from scRNA-seq datasets, this approach being limited 
only by the availability of tissue-specific scRNA-seq data. It is to be 
noted that scRNA-seq data suffer from biases, such as dropout, to 
which RNA-seq data are not subject (16). While this complicates the 
use of scRNA-seq data for GEP design (8), we surmise that latent 
network nodes could represent features that are robust to these biases.

On the basis of these assumptions, we developed a single cell– 
assisted deconvolutional DNN (Scaden) that uses simulated bulk 
RNA-seq samples for training and predicts cell type proportions for 
input expression samples of cell mixtures. Scaden is available as down-
loadable software package and web application (https://scaden.ims.bio). 
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Scaden is trained on publicly available scRNA-seq and RNA-seq 
data, does not rely on specific GEP matrices, and automatically in-
fers informative features. Last, we show that Scaden deconvolves 
expression data into cell types with higher precision and robustness 
than existing methods that rely on GEP matrices.

RESULTS
Scaden overview, model selection, and training
In this part, we focus on the design and optimization of Scaden by 
training, validation, and testing on in silico data. Note that the gen-
eration of in silico data is a strictly linear mathematical operation. 
Our aim in this context, to corroborate Scaden’s basic functionality, 
is to show that Scaden’s performance compares with (but not nec-
essarily exceeds) that of state-of-the-art algorithms.

The basic architecture of Scaden is a DNN that takes gene counts 
of RNA-seq data as input and outputs predicted cell fractions (Fig. 1). 
To optimize the performance of the DNN, it is trained on data that 
contain both the gene expression and the real cell type fraction infor-
mation (Fig. 1B). The network then adjusts its weights to minimize 
the error between the predicted cell fractions and the real cell fractions 
(Fig. 1C). We restricted feature selection to the removal of “uninform-
ative” genes that have either zero expression or an expression vari-
ance below 0.1, leaving ~10,000 genes for training. In our hands, this 
feature selection step decreases training time and memory usage.

For the model selection and training, we made use of the large 
numbers of artificial bulk RNA-seq datasets with defined composi-
tion that can be generated in silico from published scRNA-seq and 
RNA-seq datasets (simulated tissues; Fig. 1A and tables S1 and S2). 
The only constraint is that the scRNA-seq and RNA-seq data must 
come from the same tissue as the bulk data subject to deconvolution.

To find the optimal DNN architecture for cell deconvolution, we 
generated bulk peripheral blood mononuclear cell (PBMC) RNA-seq 
data from four publicly available scRNA-seq datasets (tables S1 and 
S3). We performed leave-one-dataset-out cross-validation, training 
Scaden on mixtures of synthetic datasets from three scRNA-seq 
datasets and evaluating the performance on simulated tissue from a 
fourth scRNA-seq dataset.

We used the root mean square error (RMSE), Pearson’s correla-
tion coefficient (r), the slope and intercept of the regression fitted 
for ground-truth and predicted cell fractions, and Lin’s concordance 
correlation coefficient (CCC) (17) to assess algorithmic performance. 
The CCC is a measure sensitive not only to scatter but also to devi-
ations from linearity (slope and intercept). Within the main text, we 
report on CCC and RMSE values only; other metrics can be found 
in the Supplementary Materials.

The final Scaden model is an ensemble of the three best- 
performing models (table S4), and the final cell type composition 
estimates are the averaged predictions of all three ensemble models 
(Fig. 1 and fig. S1). Using an ensemble of models increased the de-
convolution performance as compared to single best models (table 
S6). Details of the model and hyperparameters are given in table S5. 
We also evaluated the effect of the size of the training dataset on 
Scaden deconvolution performance, repeating leave-one-dataset-out 
cross-validation on PBMC data with training dataset sizes from 150 
up to 15,000 samples (fig. S2). The increase in CCC value starts to 
level off from about 1500 simulated samples for this dataset but con-
tinues to increase slowly with sample size. We specifically addressed 
the question to what degree the DNN, trained on simulated sam-

ples, tends to overfit, failing to generalize to real bulk RNA-seq data. 
To understand after how many steps a model trained on in silico 
data overfits on real RNA-seq data, we trained Scaden on simulated 
data from an ascites scRNA-seq dataset (table S1; 6000 samples) and 
evaluated the loss function on a corresponding annotated RNA-seq 
dataset (18) (table S2; three samples) as a function of the number of 
steps (fig. S3). All models converged after approximately 5000 steps 
and slightly overfit when trained for longer. On the basis of this re-
sult, we opted for an early-stop approach after 5000 steps for evalu-
ation on real bulk RNA-seq data.

We then compared Scaden to four state-of-the-art GEP-based cell 
deconvolution algorithms, CIBERSORT (CS) (6), CIBERSORTx (CSx) (7), 
Multi-subject Single Cell deconvolution (MuSiC) (8), and Cell Popula-
tion Mapping (CPM) (9). While CS relies on hand-curated GEP matrices, 
CSx, MuSiC, and CPM can generate GEPs using scRNA-seq data as input.

To get an initial estimate of Scaden’s deconvolution fidelity, we 
trained the model on 24,000 simulated PBMC RNA-seq samples from 
three datasets and tested its performance in comparison to CS, CSx, 

Fig. 1. Overview of training data generation and cell type deconvolution with 
Scaden. (A) Artificial bulk samples are generated by subsampling random cells 
from an scRNA-seq dataset and merging their expression profiles. (B) Model train-
ing and parameter optimization on simulated tissue RNA-seq data by comparing 
cell fraction predictions to ground-truth cell composition. (C) Cell deconvolution of 
real tissue RNA-seq data using Scaden.
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MuSiC, and CPM on a fourth dataset of 500 samples each (e.g., train-
ing on data6k, data8k, and donorA and evaluation on donorC). We 
used corresponding scRNA-seq datasets for the construction of GEPs 
as input for CSx and MuSiC, and CPM. For CS, we used the PBMC- 
optimized LM22 GEP matrix (6), which was developed by the CS 
authors for the deconvolution of human PBMC data.

For two of four test datasets (donorA and donorC), Scaden ob-
tained the highest CCC and lowest RMSE, followed by CSx, MuSiC, 
CS, and CPM (fig. S4 and table S7). CSx and MuSiC obtained the 
highest CCC values for the data8k and data6k datasets, respectively. 
Scaden obtained the highest average CCC and lowest RMSE (0.88 and 
0.08, respectively), followed by MuSiC (0.85 and 0.10), CSx (0.83 and 
0.11), CS (0.63 and 0.15), and CPM (0 and 0.20; fig. S4). As expected, 
all algorithms that use scRNA-seq data as reference performed well, 
with the notable exception of CPM. We want to mention that CPM 
focuses on the reconstruction of continuous spectra of cellular states, 
while it incorporates cell deconvolution as an additional feature. We 
therefore report CPM’s deconvolution performance in the Supple-
mentary Materials from here on. On average, Scaden also obtained 
the highest correlation and the best intercept and slope values on 
simulated PBMC data (table S7). A closer inspection on a per–cell 
type basis (Fig. 2A) revealed that Scaden yields consistently higher 
CCC values and lower RMSEs when compared to the other algorithms.

A specific feature of the MuSiC algorithm is that it preferentially 
weighs genes according to low intersubject and intracell cluster vari-
ability for its GEP, which increases deconvolution robustness when 
high-expression heterogeneity is observed between human partici-
pants, for example (8). To understand whether Scaden can use mul-
tisubject information to increase its deconvolution performance, we 
trained Scaden, CSx, and MuSiC on scRNA-seq pancreas data from 
several participants (19) and assessed the performance on a separate sim-
ulated pancreas RNA-seq dataset (20). To allow for direct compari-
son, we chose the same pancreas training and test datasets that were 
used in the original MuSiC publication (table S1). To enable Scaden 
to leverage the heterogeneity of multisubject data, training data were 
generated separately for every participant in the dataset (see Methods). 
CSx cannot profit from multisubject data but performed well on the 
artificial PBMC datasets and was therefore included in the compar-
ison. The best average performance (across cell types) is achieved by 
Scaden (CCC = 0.98), closely followed by MuSiC (CCC = 0.93), while 
CSx does not perform as well (CCC = 0.75; Fig. 2B and table S8). On a 
per–cell type basis, Scaden’s predictions are clearly superior to the 
other two algorithms for all cell types. This provides strong evidence that 
Scaden, by separating training data generation for each participant, 
can learn intersubject heterogeneity and outperform specialized multi-
subject algorithms such as MuSiC on the cell type deconvolution task.

In addition, we wanted to test how the best-performing decon-
volution algorithms Scaden, MuSiC, and CSx behave when unknown 
cell content is part of the mixture. To test this, all cells falling into 
the “Unknown” category were removed from the training or refer-
ence PBMC datasets but added to the simulated mixture samples at 
fixed percentages (5, 10, 20, and 30%; see Methods). Scaden obtains 
the highest CCC for all tested percentages of unknown cell content 
(fig. S5 and table S9). The general deconvolution performance de-
clines linearly with increasing percentage of unknown content for 
all tested algorithms, indicating that Scaden, MuSiC, and CSx have 
a similar robustness against unknown mixture content.

We next compared the runtime and memory footprint of Scaden 
and MuSiC on an Intel Xeon six-core central processing unit (CPU) 

to the runtime of the CSx web application. Scaden is the only algo-
rithm that requires the generation of in silico training data, which 
takes 13 min for 2000 samples with a peak memory usage of 8 GB. 
Similar values were obtained for the human brain data. Next, we 
used the PBMC data to benchmark the runtime and memory con-
sumption of the deconvolution task. For Scaden, model training took 
~11 min and cell fraction prediction ~8 s for 500 samples, using less 
than 1-GB memory. We used the web application of CSx with batch 
correction to deconvolve the 500 PBMC samples in 35 min. MuSiC 
took only 2 min and 15 s to deconvolve all 500 samples, with the mem-
ory usage peaking at 4.5 GB. As Scaden can take advantage of a graphics 
processing unit (GPU), we additionally compared training duration 
on an AMD Ryzen 5 2600 CPU and GeForce RTX 2600 GPU on the 
same machine. Training on the CPU took 9 min and 39 s, while it 
took only 3 min and 2 s on the GPU, corresponding to a roughly 
three times shorter runtime for Scaden if a GPU is available.

Robust deconvolution of bulk expression data
The true use case of cell deconvolution algorithms is the cell fraction 
estimation of tissue RNA-seq data. In particular for noisy and bi-
ased bulk RNA-seq data, we hypothesize that Scaden’s latent feature 

Fig. 2. Performance comparison of deconvolution algorithms on simulated 
tissue data. (A) Boxplots of the cell type prediction CCC and RMSE for four simulated 
PBMC datasets. Tables S14 and S16 contain information on the five (six for CS) cell 
types used. (B) Scatterplots for four pancreas cell types of ground-truth (x axis) and 
predicted values (y axis) for Scaden, CSx, and MuSiC on artificial pancreas data (20). 
Numbers inside the plotting area and in parenthesis signify CCC values.
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representations might help it to more robustly predict cell fractions as 
compared to GEP-based algorithms.

We therefore assessed the performance of Scaden, CS, CSx, and 
MuSiC to deconvolve two publicly available human PBMC bulk 
RNA-seq datasets, for which curated GEP matrices and RNA-seq 
data with associated ground-truth cell type compositions from flow 
cytometry are available (see the “Data availability” section). We will 
refer to these datasets that consists of 12 samples each as PBMC1 
(21) and PBMC2 (10) (table S2). Both datasets have similar cell type 
compositions across samples, with CD4 and CD8 T cells making up 
the biggest fractions. Deconvolution for all methods was performed 
as described in the previous section, with the difference that data from 
all four PBMC scRNA-seq datasets were now deployed for Scaden 
training. Results are given in Fig. 3 (A to C) and tables S10 and S11.

On the PBMC1 dataset and using all cell types, Scaden obtained 
the highest CCC and lowest RMSE (0.56 and 0.13), while CSx (0.55 

and 0.16) and CS (0.43 and 0.15) performed well yet notably worse 
than Scaden (Fig. 3A and tables S10 and S11). CPM (0 and 0.18) and 
MuSiC (−0.19 and 0.32) both failed to deconvolve the cell fractions 
of the PBMC1 data. Scaden also obtained the best CCC and RMSE 
(0.68 and 0.08) on the PBMC2 dataset, while CS (0.58 and 0.10) and 
CSx (0.42 and 0.13) obtained good deconvolution results. Similar to 
the PBMC1 data deconvolution results, CPM (−0.16 and 0.11) and 
MuSiC (−0.13 and 0.30) did not perform well on the PBMC2 deconvo-
lution task. In addition to CCC and RMSE metrics, Scaden achieves 
the best correlation, intercept, and slope on both PBMC datasets 
(tables S10 and S11).

In particular, Scaden outperforms classical algorithms on a per–
cell type basis (Fig. 3, B and C). These results show weaker correla-
tions and a strong dependence on the cell type. A closer examination 
of the metrics in table S11 and fig. S6 shows that the largest varia-
tions are found in the slope and intercept.

Fig. 3. Comparison of deconvolution algorithms on PBMC tissue RNA-seq data. (A) Per–cell type scatterplots of ground-truth (x axis) and predicted values (y axis) for 
Scaden, CS, CSx, and MuSiC on real PBMC1 and PBMC2 cell fractions. Numbers inside the plotting area signify CCC values. For Scaden, the CCC using only scRNA-seq 
training data is shown in parenthesis, and the CCC using mixed scRNA-seq and RNA-seq training data is shown without parentheses. (B) Boxplots of RMSE values for real 
PBMC1 and PBMC2 data. (C) CCC values for real PBMC1 and PBMC2 data.
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We further evaluated how good the Scaden ensemble performs 
compared to the best single DNN model (M512, 512 nodes input 
layer). While the M512 model shows good deconvolution perform-
ance on the PBMC1 (CCC, 0.57) and PBMC2 (CCC, 0.68) datasets, 
the ensemble model achieves the best average cross-validation per-
formance (table S6). We therefore opted to use the ensemble method 
to reduce interdataset performance variation observed with M512 
and other single models.

An additional algorithmic feature of Scaden is that it seamlessly 
integrates increasing amounts of training data, which can be of dif-
ferent types, such as a combination of simulated tissue and real tis-
sue data with cell fraction information. In theory, even limited real 
tissue training data could make Scaden robust to data type bias and 
consequently improve Scaden’s deconvolution performance on real 
tissue data. We therefore trained Scaden on a mix of simulated PBMC 
and real PBMC2 (12 samples) data and evaluated its performance 
on real PBMC1 data (Fig. 3, A and B, fig. S6, and tables S10 and S11). 
While the training contained very little (~2%) real data, Scaden’s 
CCC increased from 0.56 to 0.72, and the RMSE decreased from 
0.13 to 0.10. We observed similar performance increases when Scaden 
was trained on simulated PBMC and real PBMC1 data and evaluated 
on real PBMC2 data (Fig. 3, A and B, fig. S6, and tables S10 and 
S11). Next, we wanted to investigate how a Scaden model trained on 
only few real samples compares to the models trained on simulated 
or simulated and real data. While a Scaden model trained on only 
bulk PBMC1 samples (n = 12) deconvolves PBMC2 data with a CCC 
of 0.62, it does not reach the CCC of models trained on simulated 
data (CCC of 0.68) or on simulated and bulk data (CCC of 0.86). 
We would also not advise training models on so few training sam-
ples, as these models are usually overfit.

This further validates that Scaden reliably deconvolves tissue 
RNA-seq data into the constituent cell fractions and that very accu-

rate deconvolution results can be obtained if reference and target 
datasets are from the same experiment.

We next wanted to test how the algorithm performs on postmortem 
human brain tissue of a subsample from the Religious Orders Study 
and Memory and Aging Project (ROSMAP) study (22), for which 
ground-truth cell composition information was recently measured 
by immunohistochemistry (41 samples with all cell types given) (23). 
The data provided by this study consist of bulk RNA-seq data from 
the dorsolateral prefrontal cortex and pose a special challenge due 
to the complexity of its cell type composition, which is further com-
plicated by the fact that the data originate from brains of healthy 
individuals as well as patients with Alzheimer’s disease (AD) at various 
stages of neuronal loss. As reference datasets, we used the scRNA-
seq dataset provided by Darmanis et al. (24) from the anterior tem-
poral lobe of living patients and the Lake dataset that isolates nuclei 
of neurons from two (visual and frontal) cortical regions from a 
postmortem brain and subjects them to RNA-seq (25). From these, 
we generated 2000 training samples (Darmanis) and 4000 samples 
(two regions from the Lake dataset).

Figure 4A shows the deconvolution results for all three algorithms 
with the Darmanis (scRNA-seq) reference dataset. Scaden achieves 
the highest CCC value (0.92) followed by MuSiC (0.87) and CSx (0.81; 
table S12). Compared to Scaden, MuSiC and CSx overestimate neural 
percentages, leading to higher RMSE values of 0.09 and 0.12, re-
spectively (Scaden, 0.06). Notably, all methods showed a lower CCC 
on the per–cell type level (Fig. 3B), demonstrating that some per–
cell type correlations are poor, either in slope, intercept, variance, or 
a combination of them. This emphasizes the need for a cell type–
specific inspection of results and highlights that, depending on the 
dataset, cell type–specific deconvolution results can be far from perfect.

In addition to comparing the predictive power of Scaden, CSx, 
and MuSiC on human brain tissue with different reference datasets, 

Fig. 4. Deconvolution performance comparison on brain tissue RNA-seq data. (A) Prediction of human brain cell fractions of the ROSMAP dataset using the Darmanis 
dataset as a reference: scatterplots of ground-truth (x axis) and predicted values (y axis) for Scaden, CSx, and MuSiC of data. CCC values are shown as inserts. (B) Per–cell 
type CCC values for ROSMAP using the Darmanis data as a reference. (C) Neuronal content determined by Scaden trained on mouse brain data and evaluated on the Braak 
stage of the ROSMAP study.
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we also tested how the choice of reference datasets affected Scaden’s 
deconvolution results. Notably, all methods substantially drop in per-
formance when the Lake single-nucleus RNA-seq dataset is used as 
a reference as we had presumed (fig. S7A). We want to emphasize 
that Scaden, in contrast to CSx and MuSiC, has the possibility to 
simultaneously use both datasets as reference, whereas for CSx and 
MuSiC, the user has to choose one of the two, unaware of which will 
give the correct results.

We found that the performance of Scaden was almost unaffected 
when the Lake dataset was added to the Darmanis training samples 
(CCC = 0.90, RMSE = 0.06; fig. S7A and table S12). These results 
show that cell deconvolution with Scaden is robust to training data 
bias (Darmanis single-cell versus Lake single-nucleus data). An add-
ed benefit of Scaden is that it allows for the inclusion and mixing of 
different scRNA-seq experiments in the training dataset, further in-
creasing its robustness (fig. S7A). Last, when calculating the CCC val-
ues on a per-sample basis, Scaden achieves the best scores for most 
samples (fig. S7B).

In a next step, we wanted to assess whether Scaden’s deconvolu-
tion performance was robust across species by trying to predict the 
cell fractions of the ROSMAP study (22) with a Scaden model trained 
on in silico data from five mouse brain scRNA-seq datasets (table S1). 
Intriguingly, Scaden was able to achieve a CCC value of 0.83 and an 
RMSE of 0.079, showing that Scaden can reliably deconvolve RNA-seq 
data across related species.

The ROSMAP study also contains information on the Braak stages 
(26) corresponding to 390 human postmortem prefrontal cortex sam-
ples, which correlate with the severity and progression stage of AD 
and the degree of neuronal loss. We used the Scaden model trained 
on artificial data generated from five mouse brain scRNA-seq datasets 
to predict neuronal cell fractions of this larger human dataset. Over-
all, Scaden’s cell fraction predictions capture the increased neuronal 
loss with increasing Braak stage (Fig. 4C). The largest drop in neural 
percentage is observed at stage 5, when the neurodegeneration typi-
cally reaches the prefrontal cortex of the brain.

Given the robustness with which Scaden predicts tissue RNA-seq 
cell fractions using scRNA-seq training data, even across species, we 
next wanted to investigate whether an scRNA-seq–trained Scaden 
model can also deconvolve other data types. To this end, we mea-
sured the deconvolution performance on a bulk PBMC microarray 
dataset (20 samples) (6) of a Scaden model trained on scRNA-seq 
and RNA-seq PBMC data (see above). We compared Scaden to CS 
using the microarray-derived LM22 matrix. CS achieved a slightly 
higher CCC and slightly lower total RMSE (0.72 and 0.11) than Scaden 
(0.71 and 0.13), while Scaden obtained the highest average CCC (0.50) 
compared to CS (0.39; fig. S8 and table S13). Notably, in this scenario, 
Scaden was trained entirely on simulated scRNA-seq and RNA-seq 
data, while CS’s LM22 GEP was optimized on PBMC microarray data.

Overall, we provide strong evidence that Scaden robustly decon-
volves tissue data across tissues, species, and even data types.

DISCUSSION
Scaden is a novel deep learning–based cell deconvolution algorithm 
that, in many instances, compares favorably in both prediction ro-
bustness and accuracy to existing deconvolution algorithms that rely 
on GEP design and linear regression. We believe that Scaden’s per-
formance relies to a large degree on the inherent feature engineer-
ing of the DNN. The network does not only select features (genes) 

for regression but also creates new features that are optimal for the 
regression task in the nodes of the hidden layers. These hidden fea-
tures are nonlinear combinations of the input features (gene expres-
sion), which makes it notoriously difficult to explain how a DNN 
works (27). It is important to highlight that this feature creation is 
fundamentally different from all other existing cell deconvolution 
algorithms, which rely on heuristics that select a defined subset of 
genes as features for linear regression.

Another advantage of this inherent feature engineering is that 
Scaden can be trained to be robust to input noise and bias (e.g., batch 
effects). Noise and bias are all prevalent in experimental data, be-
cause of different sample quality, sample processing, experimenters, 
and instrumentation, for example. If the network is trained on dif-
ferent datasets of the same tissue, however, then it learns to create 
hidden features that are robust to noise and bias, such as batch ef-
fects. This robustness is pivotal in real-world cell deconvolution use 
cases, where the bulk RNA data for deconvolution and the training 
data (and therefore the network and GEP) contain different noise 
and biases. In this study, we tested Scaden with training data from 
scRNA-seq datasets generated with a variety of different protocols 
and could not identify a specific protocol that is not suitable. While 
especially recent cell deconvolution algorithms include batch correc-
tion heuristics before GEP construction, Scaden optimizes its hidden 
features automatically when trained on data from various batches. 
Potential protocol-specific biases can therefore be alleviated when 
employing training data from multiple protocols.

The robustness to noise and bias, which might be due to hidden 
feature generation, is especially evident in Scaden’s ability to decon-
volve across data types. A network trained on in silico bulk RNA-seq 
data can seamlessly deconvolve microarray data of the same tissue. 
This is quite noteworthy, as microarray data are known to have a 
reduced dynamic range and several hybridization-based biases com-
pared to RNA-seq data. In other words, Scaden can deconvolve bulk 
data of types that it has never been trained on, even in the face of 
strong data type bias. This raises the possibility that Scaden trained 
on scRNA-seq data might reliably deconvolve other bulk omics data 
as well, such as proteomic and metabolomic data. This assumption 
is strengthened by the fact that Scaden, trained on scRNA-seq data, 
attains state-of-the-art performance on the deconvolution of bulk 
RNA-seq data, two data types with very distinct biases (16).

As highlighted in the introduction, a drawback for many DNNs 
is the large amount of training data required to obtain robust per-
formance. Here, we used scRNA-seq data to create in silico bulk 
RNA-seq data of predefined type (target tissue) with known com-
position, across datasets. This immediately highlights Scaden’s biggest 
limitation, the dependency on scRNA-seq data of the target tissue. 
In this study, we have shown that Scaden, trained solely on simulated 
data from scRNA-seq datasets, can outperform GEP-based decon-
volution algorithms. We did observe, however, that the addition of 
labeled RNA-seq samples to the training data did substantially im-
prove deconvolution performance in the case of PBMC data. We 
therefore believe that efforts to increase the similarity between sim-
ulated training data and the target bulk RNA-seq data could increase 
Scaden’s performance further. Mixtures of in silico bulk RNA-seq 
data and publically available RNA-seq data, of purified cell types, 
for example, could further increase the deconvolution performance 
of Scaden. Furthermore, domain adaptation methods can be used 
to improve performance of models that are trained on data (here, 
scRNA-seq data) that are similar to the target data (here, RNA-seq 
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data) (28). In future versions, Scaden’s simple multilayer perceptron 
architecture could leverage domain adaptation to further stabilize 
and improve its cell deconvolution performance.

Scaden uses an ensemble approach by averaging the predictions 
of three different models to increase performance and improve gen-
eralization. Increasing the number of models per ensemble would 
allow for the estimation of the prediction uncertainty. While not im-
plemented in this study, this could be an interesting extension to 
Scaden’s ensemble architecture.

Recent cell deconvolution algorithms have used cell fraction es-
timates to infer cell type–specific gene expression from bulk RNA-seq 
data. It is straightforward to use Scaden’s cell fraction estimates to 
infer per-group (3) and per-sample (7) cell type–specific gene ex-
pression using simple regression or non-negative matrix factoriza-
tion, respectively. We would like to add a note of caution, however, 
as the error of cell fraction estimates, which can be quite large, is 
propagated into the gene expression calculations and will affect any 
downstream statistical analysis.

While Scaden achieves good performance on the samples and tis-
sues used in this study, it is important to keep in mind that cell type 
similarity, sample heterogeneity, and complexity, as well as experi-
mental noise and bias, can severely limit deconvolution accuracy. 
Furthermore, Scaden is currently not attempting to model cell size 
differences in its algorithm, which might be useful to consider for 
the interpretation of prediction results.

In summary, the deconvolution performance, robustness to noise 
and bias, and the flexibility to learn from large numbers of in silico 
datasets, across data types (scRNA-seq and RNA-seq mixtures) and 
potentially even tissues, make us believe that DNN-based architectures 
will become an algorithmic mainstay of cell type deconvolution.

METHODS
Datasets and preprocessing
scRNA-seq datasets
The following human PBMC scRNA-seq datasets were downloaded 
from the 10X Genomics data download page: 6k PBMCs from a 
Healthy Donor, 8k PBMCs from a Healthy Donor, Frozen PBMCs 
(Donor A), and Frozen PBMCs (Donor C) (29). Throughout this 
paper, these datasets are referred to with the handles data6k, data8k, 
donorA, and donorC, respectively. It was not intended to incorpo-
rate as many datasets as possible. Instead, these four datasets were 
chosen with the goal to dispose of a set of samples with consistent 
cell types and gene expression. This limited our choice to datasets that 
displayed clearly identifiable cell types for the majority of cells. The 
Ascites scRNA-seq dataset was downloaded from https://figshare.
com as provided by Schelker et al. (18). Pancreas and mouse brain 
datasets were downloaded from the scRNA-seq dataset collection of 
the Hemberg laboratory (https://hemberg-lab.github.io/scRNA.seq.
datasets/). The human brain datasets from Darmanis et al. (24) and 
Lake et al. (25) where downloaded from Gene Expression Omnibus 
(GEO) with accession numbers GSE67835 and GSE97930, respec-
tively. A table listing all datasets including references to the original 
publications can be found in table S1.
scRNA-seq preprocessing and analysis
All datasets were processed using the Python package Scanpy (v. 1.2.2) 
(30) following the Scanpy’s reimplementation of the popular Seurat’s 
clustering workflow. First, the corresponding cell-gene matrices were 
filtered for cells with less than 500 detected genes and genes expressed 

in less than five cells. The resulting count matrix for each dataset 
was filtered for outliers with high or low numbers of counts. Gene 
expression was normalized to library size using the Scanpy function 
“normalize_per_cell.” The normalized matrix of all filtered cells and 
genes was saved for the subsequent data generation step.

The following processing and analysis steps had the sole purpose 
of assigning cell type labels to every cell. All cells were clustered using 
the louvain clustering implementation of the Scanpy package. The 
louvain clustering resolution was chosen for each dataset, using the 
lowest possible resolution value (low-resolution values lead to less 
clusters) for which the calculated clusters appropriately separated the 
cell types. The top 1000 highly variable genes were used for cluster-
ing, which were calculated using Scanpy’s “filter_genes_dispersion” 
function with parameters min_mean = 0.0125, max_mean = 3, and 
min_disp = 0.5. Principal components analysis was used for dimen-
sionality reduction.

To identify cell types, marker genes were investigated for all cell types 
in question. For PBMC datasets, useful marker genes were adopted 
from public resources such as the Seurat tutorial for 2700 PBMCs 
(31). Briefly, interleukin-7 receptor (IL7R) was taken as marker for 
CD4 T cells, LYZ for monocytes, MS4A1 for B cells, GNLY for nat-
ural killer cells, FCER1A for dendritic cells, and CD8A and CCL5 as 
markers for CD8 T cells. For all other scRNA-seq datasets, marker 
genes and expected cell types were inferred from the original publi-
cation of the dataset. For instance, to annotate cell types of the mouse 
brain dataset from Zeisel et al. (32), we used the same marker genes 
as Zeisel and colleagues. We did not use the same cell type labels 
from the original publications because a main objective was to as-
sure that cell type labeling is consistent between all datasets of a cer-
tain tissue.

Cell type annotation was performed manually across all the clus-
ters for each dataset, such that all cells belonging to the same cluster 
were labeled with the same cell type. The cell type identity of each 
cluster was chosen by crossing the cluster’s highly differentially ex-
pressed genes with the curated cell type’s marker genes. Clusters that 
could not be clearly identified with a cell type were grouped into the 
“Unknown” category.
Tissue datasets for benchmarking
To assess the deconvolution performance on real tissue expression 
data, we used datasets for which the corresponding cell fractions 
were measured and published. The first dataset is the PBMC1 data-
set, which was obtained from Zimmermann et al. (21). The sec-
ond dataset, PBMC2, was downloaded from GEO with accession 
code GSE107011 (10). This dataset contains both RNA-seq pro-
files of immune cells (S4 cohort) and from bulk individuals (S13 
cohort). As we were interested in the bulk profiles, we only used 
12 samples from the S13 cohort from these data. Flow cytometry 
fractions were collected from the Monaco et al. publication (10).

In addition to the above mentioned two PBMC datasets, we used 
Ascites RNA-seq data. This dataset was provided by the authors, and 
cell type fractions for this dataset were taken from the supplemen-
tary materials of the publication (18).

For the evaluation on pancreas data, artificial bulk RNA-seq sam-
ples created from the scRNA-seq dataset of Xin et al. (20) were used. 
This dataset was downloaded from the resources of the MuSiC publica-
tion (8). The artificial bulk RNA-seq samples used for evaluation were 
then created using the “bulk_construct” function of the MuSiC tool.

To assess how Scaden and the GEP algorithms deal with the pres-
ence of unknown cell types, we generated PBMC bulk RNA samples 
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from the four scRNA-seq datasets (6000 each). The undefined amount 
of unknown cells that was generated by this approach was removed 
to be replaced by defined amounts of 5, 10, 20, and 30% of unknown 
cells, respectively. Cell fractions of all four samples were predicted with 
Scaden trained on the other three.

Performance on these samples was then assessed to test robustness 
against unseen cell types in the bulk mixture. Scaden was trained on 
samples from all datasets but the test dataset, while CSx and MuSiC 
used data8k as a reference.

The microarray dataset GSE65133 was downloaded from GEO, and 
cell type fractions were taken from the original CS publication (6).

Last, we wanted to get insights into neurodegenerative cell frac-
tion changes in the brain. While it is known that neurodegenerative 
diseases like AD are accompanied by a gradual loss of brain neurons, 
stage-specific cell type shifts are still hard to come by. Here, we use 
the ROSMAP study cortical RNA-seq dataset along with the corre-
sponding clinical metadata, to infer cell type composition over six 
clinically relevant stages of neurodegeneration (22). Furthermore, 
to assess deconvolution accuracy on postmortem human brain tis-
sue, we used 41 samples from the ROSMAP, for which cell compo-
sition information from immunohistochemistry (23) was recently 
released and for which fractions for all cell types were reported. The 
ROSMAP RNA-seq data were downloaded from www.synapse.org/. 
The cell composition values were provided by the authors of the 
study (23).
RNA-seq preprocessing and analysis
For the RNA-seq datasets analyzed in this study, we did not apply 
any additional processing steps but used the obtained count or ex-
pression tables directly as downloaded for all datasets except the 
ROSMAP dataset. For the latter, we generated count tables from raw 
FastQ files using Salmon (33) and the GRCh38 reference genome. 
FastQ files from the ROSMAP study were downloaded from Synapse 
(www.synapse.org).

Simulation of bulk RNA-seq samples from scRNA-seq data
Scaden’s DNN requires large amounts of training RNA-seq samples 
with known cell fractions. This explains why the generation of artificial 
bulk RNA-seq data is one of the key elements of the Scaden workflow.

To generate the training data, preprocessed scRNA-seq datasets 
were used (see the “Datasets and preprocessing” section), compris-
ing the gene expression matrix and the cell type labels. Artificial 
RNA-seq samples were simulated by subsampling cells from indi-
vidual scRNA-seq datasets; cells from different datasets were not 
merged into samples to preserve within-subject relationships. Data-
sets generated from multiple participants were split according to 
participant, and each subsampling was constrained to cells from one 
participant to capture the cross-subject heterogeneity and keep subject- 
specific gene dependencies.

The exact subsampling procedure is described in the following. 
First, for every simulated sample, random fractions were created for 
all different cell types within each scRNA-seq dataset using the ran-
dom module of the Python package NumPy. Briefly, a random num-
ber was chosen from a uniform distribution between 0 and 1 using 
the NumPy function “random.rand()” for each cell type, and then 
this number was divided by the sum of all random numbers created 
to ensure the constraint of all fractions adding up to 1

   f  c   =    r  c   �  �  C  all      r  c   
    

where rc is the random number created for cell type c and Call is the 
set of all cell types. Here, fc is the calculated random fraction for cell 
type c. Then, each fraction was multiplied with the total number of 
cells selected for each sample, yielding the number of cells to choose 
for a specific cell type

   N  c   =  f  c   *  N  total    

where Nc is the number of cells to select for the cell type c, and Ntotal 
is the total number of cells contributing to one simulated RNA-seq 
sample (500, in this study). Next, Nc cells were randomly sampled 
from the scRNA-seq gene expression matrix for each cell type c. After-
ward, the randomly selected single-cell expression profiles for 
every cell type are then aggregated by summing their expression val-
ues, to yield the artificial bulk expression profile for this sample.

Using the above-described approach, cell compositions that are 
strongly biased toward a certain cell type or are missing specific cell 
types are rare among the generated training samples. To account for 
this and to simulate cell compositions with a heavy bias to and the 
absence of certain cell types, a variation of the subsampling proce-
dure was used to generate samples with sparse compositions, which 
we refer to as sparse samples. Before generating the random frac-
tions for all cell types, a random number of cell types was selected to 
be absent from the sample, with the requirement of at least one cell 
type constituting the sample. After these leave-out cell types were 
chosen, random fractions were created and samples generated as de-
scribed above. The average cell type proportions of the training dataset 
generated as described above are equal for all cell types. This allows 
for unbiased deconvolution as the true cell composition of a given 
tissue is not known beforehand. Using different sampling distribu-
tions (e.g., Gaussian and Uniform) or excluding sparse samples did 
not change Scaden’s deconvolution performance notably on the 
simulated PBMC datasets. This shows that Scaden is relatively ro-
bust to training data generated by different sampling procedures.

Using this procedure, we generated 32,000 samples for the hu-
man PBMC training dataset, 14,000 samples for the human pancreas 
training dataset, 6000 samples for human brain, and 30,000 samples 
for the mouse brain training dataset (table S3).

Artificial bulk RNA-seq datasets were stored in “h5ad” format 
using the Anndata package (30), which allows to store the samples 
together with their corresponding cell type ratios while also keeping 
information about the scRNA-seq dataset of origin for each sample. 
This allowed to access samples from specific datasets, which is use-
ful for cross-validation.

Scaden overview
The following section contains an overview of the input data pre-
processing, the Scaden model, model selection, and how Scaden pre-
dictions are generated.
Input data preprocessing
The data preprocessing step is aimed to make the input data more 
suitable for machine learning algorithms. To achieve this, an opti-
mal preprocessing procedure should transform any input data from 
the simulated samples or from the bulk RNA-seq to the same fea-
ture scale. Before any scaling procedure can be applied, it must be 
ensured that both the training data and the bulk RNA-seq data sub-
ject to prediction share the same features. Therefore, before scaling, 
both datasets are limited to contain features (genes) that are avail-
able in both datasets. In addition, uninformative genes that have 
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either zero expression or an expression variance below 0.1 were re-
moved, leaving ~10,000 genes for model training and inference. The 
two-step processing procedure used for Scaden is described in the 
following:

First, to account for heteroscedasticity, a feature inherent to 
RNA-seq data, the data were transformed into logarithmic space by 
adding a pseudocount of 1 and then taking the Logarithm (base 2).

Second, every sample was scaled to the range [0,1] using the 
MinMaxScaler() class from the Sklearn preprocessing module. Per- 
sample scaling, unlike per-feature scaling that is more common in 
machine learning, assures that intergene relative expression pat-
terns in every sample are preserved. This is important, as our hy-
pothesis was that a neural network could learn the deconvolution 
from these intergene expression patterns

   x  scaled,i   = ( x  i   − min( X  i   ) ) / (max( X  i   ) − min( X  i   ) )  

where xscaled, i is the log2 expression value of gene x in sample i, Xi is 
the vector of log2 expression values for all genes of sample i, min(Xi) 
is the minimum gene expression of vector Xi, and max(Xi) is the 
maximum gene expression of vector Xi.

Note that all training datasets are stored as expression values and 
are only processed as described above. In the deployment use case, 
the simulated training data should contain the same features as in 
the bulk RNA-seq sample that shall be deconvolved.
Model selection
The goal of model selection was to find an architecture and hyper-
parameters that robustly deconvolve simulated tissue RNA-seq data 
and, more importantly, real bulk RNA-seq data. Because of the very 
limited availability of bulk RNA-seq datasets with known cell frac-
tions, model selection was mainly optimized on the simulated PBMC 
datasets. To capture interexperimental variation, we used leave-one- 
dataset-out cross-validation for model optimization: A model was 
trained on simulated data from all but one dataset, and performance 
was tested on simulated samples from the left-out dataset. This al-
lows to simulate batch effects between datasets and helps to test the 
generalizability of the model. In the process of model selection and 
(hyper-) parameter optimization, performed on PBMC and Ascites 
datasets, we found three models with different architectures and 
dropout rates but comparable performance. To address overfitting 
in individual models, we decided to use a combination of models, 
expecting this to serve as another means of regularization. We did 
not test multiple combinations but rather used an informed choice 
with varying layer sizes and dropout regularization, with the goal to 
increase model diversity. We observed that the average of an en-
semble of models generalized better to the test sets than individual 
models. Model training and prediction is done separately for each 
model, with the prediction averaging step combining all model pre-
dictions (fig. S1 and tables S4 and S6). We provide a list of all tested 
parameters in the Supplementary Materials (table S5).
Final Scaden model
The Scaden model learns cell type deconvolution through supervised 
training on datasets of simulated bulk RNA-seq samples simulated 
with scRNA-seq data. To account for model biases and to improve 
performance, Scaden consists of an ensemble of three DNNs with 
varying architectures and degrees of dropout regularization. All 
models of the ensemble use four layers of varying sizes between 32 
and 1024 nodes, with dropout regularization implemented in two of 
the three ensemble models. The exact layer sizes and dropout rates 

are listed in table S4. The rectified linear unit is used as activation 
function in every internal layer. We used a Softmax function to pre-
dict cell fractions, as we did not see any improvements in using a linear 
output function with consecutive non-negativity correction and sum- 
to-one scaling. Python (v. 3.6.6) and the TensorFlow library (v. 1.10.0) 
were used for implementation of Scaden. A complete list of all software 
used for the implementation of Scaden is provided in table S15.
Training and prediction
After the preprocessing of the data, a Scaden ensemble can be trained 
on simulated tissue RNA-seq data or mixtures of simulated and real 
tissue RNA-seq data. Parameters are optimized using Adam with a 
learning rate of 0.0001 and a batch size of 128. We used an L1 loss 
as optimization objective

  L1( y  i  ,    ̂  y    i   ) = ∣  y  i   −  ̂   y  i    ∣  

where yi is the vector of ground-truth fractions of sample i and   ̂   y  i     is 
the vector of predicted fractions of sample i. Each of the three en-
semble models is trained independently for 5000 steps. This “early 
stopping” serves to avoid domain overfitting on the simulated tis-
sue data, which would decrease the model performance on the real 
tissue RNA-seq data. We observed that training for more steps lead 
to an average performance decrease on real tissue RNA-seq data. To 
perform deconvolution with Scaden, a bulk RNA-seq sample is fed 
into a trained Scaden ensemble, and three independent predictions 
for the cell type fractions of this sample are generated by the trained 
DNNs. These three predictions are then averaged per cell type to yield 
the final cell type composition for the input bulk RNA-seq sample

   ̂   y  c    =    ̂   y c  1   +  ̂   y c  2    +  ̂   y c  3   � 3    

where   ̂   y  c     is the final predicted fraction for cell type c and   ̂   y c  i     is the pre-
dicted fraction for cell type c of model i.
Scaden requirements
Currently, a disadvantage of the Scaden algorithm is the necessity to 
train a new model for deconvolution if no perfect overlap in the fea-
ture space exists. This constraint limits the usefulness of pretrained 
models. Once trained, however, the prediction runtime scales linearly 
with sample numbers and is usually in the order of seconds, making 
Scaden a useful tool if deconvolution is to be performed on very large 
datasets. While the requirements are dataset dependent, the Scaden 
demo was profiled to require a peak of 3.2 GB of random-access 
memory (RAM) during the DNN training process, so a computer 
with 8 GB of RAM should be able to run it smoothly. In our tests 
with an Intel(R) Xeon(R) CPU E5-1630 workstation, the demo could 
run in 22 min, spending most of the CPU time in the DNN training 
process. The most prominent and obvious issue of Scaden is the dif-
ference between simulated scRNA-seq data used for training and 
the bulk RNA-seq data subject to inference. While Scaden is able to 
transfer the learned deconvolution between the two data types and 
achieves state-of-the-art performance, we hypothesize that efforts to 
improve this translatability could improve Scaden’s prediction ac-
curacy even further. Algorithmic improvements are therefore likely 
to address this issue and are planned for future releases.

Algorithm comparison
We used several performance measures to compare Scaden to four 
existing cell deconvolution algorithms, CS with LM22 GEP, CSx, 
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MuSiC, and CPM. To compare the performance of the five decon-
volution algorithms, we measured the RMSE, Lin’s CCC, Pearson 
product moment correlation coefficient r, and R2 values, comparing 
real and predicted cell fractions estimates. In addition, to identify 
systematic prediction errors and biases, slope and intercept for the 
regression lines were calculated. These metrics are defined as follows

  RMSE(y,   ̂  y   ) =  √ 
_

 avg  (y −   ̂  y  )   2     

  r(y,   ̂  y   ) =   cov(y,   ̂  y  ) �  s  y    s    ̂  y        

   R   2 (y,   ̂  y   ) = r  (y,   ̂  y  )   2   

  slope(y,   ̂  y   ) =   Dy � D  ̂  y      

  CCC(y,   ̂  y   ) =   
2r  s  y    s    ̂  y      �����������  

  s  y     2  +   s    ̂  y       2  + ( m  x   −  m    ̂  y    )
    

where y are the ground-truth fractions,    ̂  y    are the prediction fractions, 
sx is the SD of x,  cov(y,   ̂  y  )  is the covariance of y and    ̂  y   , and   m  y  ,  m    ̂  y      are 
the mean of the predicted and ground-truth fractions, respectively.

All metrics were calculated for all data points of a dataset and sep-
arately for all data points of a specific cell type. For the latter approach, 
we then averaged the resulting values to recover single values. While 
the metrics calculated on all data points might be sufficient, we deem 
that the cell type–specific deconvolution might, in many instances, be 
of even greater interest. It is noteworthy in this context that cell type–
specific deconvolution performance can be quite weak, depending on 
the dataset. This is true for all tested deconvolution algorithms, while 
Scaden achieves best performance.
CIBERSORT
CS is a cell convolution algorithm based on specialized GEPs and sup-
port vector regression. Cell composition estimations were obtained 
using the CS web application (https://cibersort.stanford.edu/). For all 
deconvolutions with CS, we used the LM22 GEP, which was generated 
by the CS authors from 22 leukocyte subsets profiled on the HGU133A 
microarray platform.

Because the LM22 GEP matrix contains cell types at a finer gran-
ularity than what was used for this study, predicted fractions of sub-
cell types were added together. For cell grouping, we used the mapping 
of subcell types to broader types given by figure 6 from Monaco et al. 
(10). We provide a table with the exact mappings used here in the 
Supplementary Materials (table S13). The deconvolution was per-
formed using 500 permutations with quantile normalization disabled 
for all datasets but GSE65133 (Microarray), as is recommended for 
RNA-seq data. We used default settings for all other CS parameters.
CIBERSORTx
CSx is a recent variant of CS that can generate GEP matrices from 
scRNA-seq data and use these for deconvolution. For additional de-
convolution robustness, it applies batch normalization to the data. All 
signature matrices were created by uploading the labeled scRNA-seq 
expression matrices and using the default options. Quantile normal-
ization was disabled. For deconvolution on simulated data, no batch 
normalization was used. For all bulk RNA-seq datasets, the S-Mode 
batch normalization was chosen. All PBMC datasets were decon-
volved using a GEP matrix generated from the data6k dataset (for 
simulated samples from data6k, a donorA GEP matrix was chosen).

MuSiC
MuSiC is a deconvolution algorithm that uses multisubject scRNA-
seq datasets as GEP matrices in an attempt to include heterogeneity 
in the matrices to improve generalization. While MuSiC tries to ad-
dress similar issues of previous deconvolution algorithms by using 
scRNA-seq data, the approach is very different. For deconvolution, 
MuSiC applies a sophisticated GEP-based deconvolution algorithm 
that uses weighted non-negative least-squares regression with an iter-
ative estimation procedure that imposes more weight on informa-
tive genes and less weight on noninformative genes.

The MuSiC R package contains functionality to generate the nec-
essary GEP matrix given an scRNA-seq dataset and cell type labels. 
To generate MuSiC deconvolution predictions on PBMC datasets, 
we used the data8k scRNA-seq dataset as reference data for MuSiC 
and follow the tutorial provided by the authors to perform the decon-
volution. For deconvolution of artificial samples generated from the 
data8k dataset, we provided MuSiC with the data6k dataset as a refer-
ence instead.

MuSiC was developed with a focus on multisubject scRNA-seq 
datasets, in which the algorithm tries to take advantage from the added 
heterogeneity that these datasets contain, by calculating a measure 
of cross-subject consistency for marker genes. To assess how Scaden 
performs on multisubject datasets compared to MuSiC, we evaluated 
both methods on artificial bulk RNA-seq samples from human pancreas. 
We used the bulk_construct function from MuSiC to combine the 
cells from all 18 participants contained in the scRNA-seq dataset 
from Xin et al. (20) to generate artificial bulk samples for evaluation. 
Next, as a multisubject reference dataset, we used the pancreas 
scRNA-seq dataset from Segerstolpe et al. (19), which contains single- 
cell expression data from 10 different participants, 4 of which with 
type 2 diabetes. For Scaden, the Segerstolpe scRNA-seq dataset was 
split by participants, and training datasets were generated for each 
participant, yielding in total 10,000 samples. For MuSiC, a pro-
cessed version of this dataset was downloaded from the resources 
provided by the MuSiC authors (8) and used as an input reference 
dataset for the MuSiC deconvolution. Deconvolution was then per-
formed according to the MuSiC tutorial, and performance was 
compared according to the above-defined metrics.
Cell Population Mapping
CPM is a deconvolution algorithm that uses single-cell expression 
profiles to identify a so-called “cell population map” from bulk RNA-
seq data (9). In CPM, the cell population map is defined as compo-
sition of cells over a cell-state space, where a cell state is defined as a 
current phenotype of a single cell. Contrary to other deconvolution 
methods, CPM tries to estimate the abundance of all cell states and 
types for a given bulk mixture, instead of only deconvolving the cell 
types. As input, CPM requires an scRNA-seq dataset and a low- 
dimensional embedding of all cells in this dataset, which represents 
the cell-state map. As CPM estimates abundances of both cell states 
and types, it can be used for cell type deconvolution by summing up 
all estimated fractions for all cell states of a given cell type, a method 
that is implemented in the scBio R package, which contains the CPM 
method. To perform deconvolution with CPM, we used the data6k 
PBMC scRNA-seq dataset as an input reference for all PBMC sam-
ples. For samples simulated from the data6k dataset, we used the data8k 
dataset as a reference. According to the CPM paper, a dimension 
reduction method can be used to obtain the cell-state space. We 
therefore used Uniform Manifold Approximation and Projection 
(UMAP), a dimension reduction method widely used for scRNA-seq 
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data, to generate the cell-state space mapping for the input scRNA-seq 
data. Deconvolution was then performed using the CPM function of 
the scBio package with an scRNA-seq dataset and accompanying 
UMAP embedding as input.

Code and software availability
The source code for Scaden is available at https://github.com/
KevinMenden/scaden. Documentation is published at https://scaden.
readthedocs.io. Code to generate the figures along with the training 
datasets used in this study is published at figshare: https://figshare.
com/projects/Scaden/62834. The Scaden web application can be ac-
cessed at https://scaden.ims.bio.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/30/eaba2619/DC1
View/request a protocol for this paper from Bio-protocol.
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ABSTRACT

We present the Small RNA Expression Atlas (SEA-
web), a web application that allows for the interac-
tive querying, visualization and analysis of known
and novel small RNAs across 10 organisms. It con-
tains sRNA and pathogen expression information
for over 4200 published samples with standardized
search terms and ontologies. In addition, SEAweb al-
lows for the interactive visualization and re-analysis
of 879 differential expression and 514 classification
comparisons. SEAweb’s user model enables sRNA
researchers to compare and re-analyze user-specific
and published datasets, highlighting common and
distinct sRNA expression patterns. We provide evi-
dence for SEAweb’s fidelity by (i) generating a set
of 591 tissue specific miRNAs across 29 tissues, (ii)
finding known and novel bacterial and viral infec-
tions across diseases and (iii) determining a Parkin-
son’s disease-specific blood biomarker signature us-
ing novel data. We believe that SEAweb’s simple se-
mantic search interface, the flexible interactive re-
ports and the user model with rich analysis capabili-
ties will enable researchers to better understand the

potential function and diagnostic value of sRNAs or
pathogens across tissues, diseases and organisms.

INTRODUCTION

Small RNAs (sRNAs) are a class of short, non-coding
RNAs with important biological functions in nearly all
aspects of organismal development in health and disease.
Especially in diagnostic and therapeutic research, sRNAs
such as miRNAs and piRNAs received recent attention (1).
The increasing number of deep sequencing sRNA studies
(sRNA-seq) is re!ecting the importance of sRNAs in bio-
logical processes as well as disease diagnosis and therapy.
In addition, recent evidence highlights the pivotal roles of
viral and bacterial-derived sRNAs in the pathogenesis of
infectious diseases, across the animal and plant kingdoms
(2–4). Viral sRNAs play vital roles in the viral replication,
persistence, the immune escape and host cell transformation
(2,3). Many DNA and RNA viruses encode various classes
of small RNAs, which associate with host RNAs and pro-
teins and affect their stability and function. The introduc-
tion of sRNA deep sequencing (sRNA-seq) allowed for the
quantitative analysis of sRNAs of a speci"c organism, but
its generic nature also enables the simultaneous detection
of microbial and viral reads. sRNA-seq data therefore nat-
urally lends itself for the analysis of host-pathogen inter-
actions, which has been recently exempli"ed for RNA-seq
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data (5). Using the vast amount of publicly available sRNA-
seq data in repositories such as Sequence Read Archive
(SRA) (6) and Gene Expression Omnibus (7) enables the
unbiased charting of viral and bacterial infections across
tissues, diseases, species, age and sex. This would not only
highlight novel causal or comorbid relationships between
diseases and infections, it could also shed mechanistic in-
sights onto how the infectious agent interacts with and
modi"es the host cell. To harvest the true potential of ex-
isting data, it is important to allow for querying, visual-
ization and analysis of sRNA-seq data across organisms,
tissues, cell types and disease states. This would allow re-
searchers, for example, to search for disease-speci"c sRNA
or pathogenic biomarker signatures across all disease enti-
ties investigated. Data integration and interoperability re-
quire (i) a streamlined analysis work!ow to reduce analysis
bias between experiments (ii) also necessitates standardized
annotation using ontologies to search and retrieve relevant
samples and (iii) !exible and interactive visualization of the
data.

To date, several web-based sRNA-seq expression pro"le
databases are available that differ in their level of informa-
tion, portfolio, performance and user-friendliness. Recent
additions to sRNA web based databases include miRmine
(8), provides expression of a single or multiple miRNAs for
a speci"c tissue, cell-line or disease. Results are displayed in
multiple interactive, graphical and downloadable formats.
miratlas (9) allows for searching miRNA expression pro-
"les as well as sRNA-seq experiments and provides infor-
mation on the miRNA modi"cation analysis. YM500v3
(10) provides interactive web reports on sRNA expression
pro"les, novel miRNA expression pro"les, miRNA modi"-
cation analysis, sRNA differential expression and miRNA
gene targets. SPAR (11) is a user-friendly web server for the
analysis, annotation and visualization of sRNA-seq data.
It provides expression pro"les of 10 different types of sR-
NAs across different tissues and cell types of human (hg19,
hg38) and mouse (mm10). Currently, SPAR is the only
tool that allows users to compare their input experimen-
tal data against the reference datasets from ENCODE (12)
and DASHR (13). Moreover, it supports different genome
versions of an organism. DASHR2 (14) supports sRNA
expression pro"les across different genome versions of the
same species across tissues and cell types and supports 10
types of sRNAs. Results are provided in an interactive man-
ner, such as sncRNA locus sorting and "ltering by bio-
logical features. All annotation and expression information
are downloadable and accessible as UCSC genome browser
tracks.

Although many good web platforms for the sRNA-seq
data exist, some important aspects for storing and search-
ing have yet to be integrated. For example, no current web
application allows for the ontology based search of sRNA-
seq experiments. Current tools lack an important associ-
ation of miRNAs with disease. miRNA disease associa-
tions are provided by HMDD (15), but it does not pro-
vide miRNA expression information. Except for YM500v3,
current tools do not provide miRNAs and gene targets. Of
note YM500v3 is only limited to cancer miRNome stud-
ies. Also, there is currently no web application that allows
for the identi"cation of biomarkers of disease via machine-

learning. The above mentioned web platforms do not pro-
vide expression of novel miRNAs in known disease state or
tissues, including the structure and probability of the novel
miRNA prediction. To our knowledge no other data repos-
itory provides pathogenic signatures from sRNA-seq data
including their differential expression in healthy and dis-
eased condition. Except for SPAR, current sRNA-seq web
services do not allow for the user data upload. At last, in
current tools users can only search for the results that are
stored in the database, there is no option for the users to
reanalyze data with the samples of their choice. This fea-
ture would greatly facilitate researchers to perform differen-
tial expression between male and female of an experiment
or to compare old aged patients (samples) with young ones
in the same group. In the end, these functionalities should
be paired with a !exible and interactive visualization of the
sRNA-seq data supporting more species and cross study
comparisons.

In order to address the above mentioned limitations, we
hereby present the small-RNA Expression Atlas (SEAweb),
a web application that allows for querying, visualization
and analysis of over 4200 published sRNA-seq expression
samples. SEAweb automatically downloads and re-analyzes
published data using Oasis 2 (16), semantically annotates
relevant meta-information using standardized terms (the
annotations are later checked and corrected manually),
synchronizes sRNA information with other databases, al-
lows for the querying of terms across ontological graphs
and presents quality curated sRNA expression informa-
tion as interactive web reports. In addition, SEAweb stores
sRNA differential expression, sRNA based classi"cation,
pathogenic sRNA signatures from bacteria and viruses and
pathogen differential expression. Gene targets and disease
associations for miRNAs are also incorporated into SEA-
web.

One of the most useful features of SEAweb is to en-
able users to upload their analysis results of differential ex-
pression and classi"cation from Oasis 2. This allow users
to compare their data to over 4200 experimental samples
across different conditions. Using SEAweb’s interactive vi-
sualizations, users can upload their data into their own
workspace, select the published datasets to compare to,
and de"ne if differential expression or classi"cation results
should be compared. SEAweb also provides users with an
option to perform on the !y analysis such as overlapping
differentially expressed (DE) sRNAs or pathogens across
different studies or the most important features (sRNAs)
identi"ed with classi"cation. At last, SEAweb enables end
users to re-submit samples from interactive plots for differ-
ential expression or classi"cation, this helps users to choose
samples of their choice from an experiment. It currently
supports 10 organisms (Table 1) and is continuously up-
dated with novel published sRNA-seq datasets and rele-
vant sRNA information from various online resources. A
detailed comparison of SEAweb to other existing sRNA ex-
pression databases (Table 2) highlights that SEAweb is su-
perior in terms of supported organism, ontological annota-
tions, diseases, tissues, sRNA based classi"cation, pathogen
k-mer DE, known miRNA disease associations, user spe-
ci"c experimental data upload, cross study comparisons
and re-analysis with selected samples. SEAweb contains
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Table 1. Supported SEAweb organisms and their corresponding genome versions

Organism genome-version genome-date
Bos taurus UMD3.1 2009-11
Caenorhabditis elegans WBcel235 2012-12
Danio rerio GRCz10 2014-09
Drosophila melanogaster BDGP6 2014-07
Mus musculus GRCm38 2012-01
Gallus gallus Galgal4 2011-11
Rattus norvegicus Rnor 6.0 2014-07
Homo sapiens GRCh38 2013-12
Sus scrofa Sscrofa10.2 2011-08
Anopheles gambiae AgamP4 2006-02

Table 2. Comparison of sRNA expression databases

Feature SEAweb miRmine1 DASHR22 miratlas3 YM500v34 SPAR5

Organisms 10 1 1 2 1 2
sRNA types 5 1 10 1 5 10
Samples >4200 304 802 461 >8000* 365$

Novel miRNAs + +
Ontology search# +
sRNA DE + +
sRNA classi"cation +
Pathogen k-mer expression +
Pathogen k-mer DE +
miRNA targets + +
miRNA disease associations +
User data upload + +
Cross study comparisons + +
Re-analysis with selected samples +
Dataset search + + +
Genome versions + +
Modi"cation analysis + +
Tissue speci"city + +

This table includes recent sRNA expression databases and a list of features we deem relevant.
*Supports mainly cancer-related datasets.
#Use of ontological graphs for the annotation and querying of samples.
$Number of datasets based on 2(14) (information about number of samples cannot be obtained).
1(8), 2(14), 3(9), 4(10), 5(11). For number of samples per organism, see Supplementary Material Table S5.

over 4200 samples in its database, which is considerably less
than YM500v3, which hosts over 8000 cancer samples. It
is to be noted, however, that the YM500v3 database only
supports cancer datasets and no other disease types (Table
2). Additionally, SEAweb also stores in-house data (for a
month) from the end users to enable comparison with the
data in SEA.

MATERIALS AND METHODS

User data

In case users want to upload their in-house data for com-
paring it to all the available data in SEAweb, they need to
create an account. User-DB, stores their account informa-
tion as well as sRNA-seq data uploaded by the users. More-
over, user uploaded data is shown only from their respective
account and is not available to other users. Users have the
option to include their data in the SEAweb for a limited time
(30 days). We do not provide users to include their data in
the SEAweb permanently or publicly for several reasons: (i)
these data are unpublished and we can run into data protec-
tion issues. (ii) The ontological annotations of these data by
the end users might not be consistent with ours and hence
not comparable. (iii) Users might not want to provide infor-
mation about their experiments such as tissue or disease etc.
(iv) End users might not be able trust the system, if anyone
could add any quality of data. Data that are added by us fol-
lows a manual curation for quality checks. With these mea-

sures, we encourage users to upload their data (temporar-
ily), without any data protection issues.

sRNA tissue speci!city

To compute tissue speci"city indices (TSI) for human sR-
NAs we calculated median of reads per million (RPM) ex-
pression per dataset and tissue. sRNAs with a median RPM
expression of at least three were considered in all the tis-
sue speci"city analysis. Moreover, sRNAs which had no
expression in any tissue and tissues with no sRNAs ex-
pression were excluded from the TSI analysis. Healthy and
diseased samples were mixed for tissues within the same
dataset (Figure 2; Supplementary Figure S3 and Table S1).
To remove potential biases introduced by diseased samples
we also calculated TSI for non-diseased samples only (Sup-
plementary Figures S2-3, Tables S1 and 4). These analy-
ses were performed for two sets of sRNAs, miRNAs (Fig-
ure 2; Supplementary Figure S2 and Table S1) and all non-
miRNA sRNAs including piRNA, snoRNA, snRNA and
rRNA in SEAweb (Supplementary Figures S3-4 and Table
S4). Shannon entropy from BioQC R package was used
to calculate TSI for each miRNA across tissues. In the
end, 1522 miRNAs across 64 datasets were considered for
miRNA tissue speci"city in healthy and diseased mixed
samples, 1365 miRNAs across 43 datasets were consid-
ered for miRNA tissue speci"city in non-diseased samples,
4300 sRNAs (piRNA, snoRNA, snRNA and rRNA) across
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64 datasets were considered for sRNA tissue speci"city
in healthy and diseased mixed samples, and 1672 sRNAs
(piRNA, snoRNA, snRNA and rRNA) across 43 datasets
were considered for sRNA tissue speci"city in non-diseased
samples (Supplementary Tables S1 and 4).

Novel miRNA gene targets

miRDB (17) was used to obtain targets of the novel miR-
NAs. We restricted the analysis to highly probable gene tar-
gets having a score of 70 or more.

Text mining pipeline

To extract miRNA–gene targets, a dedicated text mining
pipeline that reads unstructured text data and outputs struc-
tured data that includes the detected and normalized genes
and miRNAs as well as the relations between them. Named
entity recognition software ProMiner (18) and MiRNADe-
tector (19) are used to detect and normalize genes and miR-
NAs, respectively. Both detectors are incorporated in the
BELIEF text mining pipeline (20) that contains machine
learning models to detect speci"c relations from the com-
plete Medline abstracts.

Gene enrichment analysis

Gene enrichment analysis was performed using webgestalt
R package version 0.3.0.

In-house Parkinson’s disease data

Isolation of total RNA from peripheral blood sample. Pe-
ripheral blood samples were collected into PAXgene Blood
RNA tube (PreAnalytiX) from consenting patients and
healthy controls, the tubes were gently inverted for multi-
ple times, incubated for 20–24 h under room temperature
and stored under −80◦C until processing. Total RNA was
isolated using the PAXgene Blood RNA kit (PreAnalytiX)
according to the manufacturer’s protocol. The purity and
concentration of isolated RNA were measured with Nan-
oDrop™ 2000 spectrophotometer (Thermo Fisher Scien-
ti"c). The RNA integrity was determined by Agilent RNA
6000 Nanochip (Agilent Technologies) using the 2100 Bio-
analyzer (Agilent Technologies).

Small RNA library preparation. Small RNA libraries were
prepared using 1 !g high-quality RNA following the proto-
col of Illumina TrueSeq small RNA library kit (Illumina).
In brief, 3′adapter was denatured for 2 min under 70◦C, and
ligated to the RNA with T4 RNA Ligase 2 deletion mutant
for 1 h at 28◦C. Then the reaction was stopped with stop
solution for 15 min under 28◦C. Subsequently, 5′ adapter
was denatured for 2 min at 70◦C, then added to the RNA
with adenosine triphosphate and T4 DNA ligase for 1 h
under 28◦C. After adaptors ligation, the RNA was reverse
transcribed to complement DNA (cDNA) by using Super-
Script II Reverse Transcriptase (Thermo Fisher Scienti"c)
and dNTPs for 1 h at 50◦C. Then, the cDNA was indexed
and ampli"ed with polymerase chain reaction (PCR) mix
and primers supplied in the kit for 12 cycles (denaturing

at 98◦C for 30 s, annealing at 60◦C for 30 s, extension at
72◦C for 15 s, with a "nal extension at 72◦C for 10 min).
Ampli"ed and indexed cDNAs were then pooled together,
mixed with DNA loading dye and loaded on a 5% Tris-
borate-EDTA (TBE) acrylamide gels (Bio-Rad). After 57
min electrophoresis under 145 V, the gel was stained with
Midori Green for 5 min and viewed under the UV tran-
silluminator, fragments between Illumina’s custom ladder
145 and 160 bp were cut out for library preparation. The
gel was centrifuged at 20 000 × g for 2 min through a Gel
Breaker tube (Bio-Cat). Then cDNA was eluted from the
homogenized gel by adding 300 !l UltraPure water and
shaking under 800 × rpm for 2 h. Then the gel was trans-
ferred on a 5 um "lter tube (Bio-Cat) and centrifuged for
10 s under 600 × g and the gel debris was separated. Af-
terward, 2 !l Glycoblue, 30 !l of 3M sodium acetate and
975 !l 100% ethanol (pre-chilled under −20◦C) were added
and well mixed to the sample, following an immediate cen-
trifuge at 20 000 × g for 20 min under 4◦C. After remove
and discard the supernatant, the pellet was washed with 500
!l 70% pre-chilled ethanol. The supernatant was discarded
after sample being centrifuged at 20 000 × g for 2 min un-
der room temperature, and the pellet was dried in a 37◦C
heat block for 10 min with open lid. At last, the pellet was
resuspended in 10 !l 10 mM Tris–HCL (pH 8.5) and the
sample quality was checked using Agilent High Sensitivity
DNA chip (Agilent Technologies) using the 2100 Bioana-
lyzer (Agilent Technologies). All high quality libraries were
then sequenced on Illumina HiSeq 2000 Sequencer.

Classi!cation feature pruning

We used Oasis 2 to identify Parkinson’s disease (PD)
biomarker using 47 PD and 53 frequency-matched healthy
controls. For classi"cation analysis, we used all small RNAs
(n = 49 965) in Oasis 2. The random forest (RF) classi"er in
Oasis 2 selected these 18 sRNAs by "ltering for informative
features while removing the non-informative ones. In brief,
The RF selects part of the features for the construction of
each tree (mtry parameter, which is by default equal to

√
n

where n is total number of features). If there is a big num-
ber of non-informative features (‘noise’), many trees can be
build based on noise only and therefore affect the classi"ca-
tion quality. The way to avoid trees built of noise is feature
pruning. The idea is to arrange the variables based on their
importance in the full model and then remove less impor-
tant variables one-by-one, calculating model performance
at each step. At the end, the subset of variables with the best
performance are considered as important features. We used
cross-validation-based backward selection, implemented in
the R caret package with 10-fold cross-validation, repeated
10 times at each step for the performance calculation.

SYSTEM DESIGN

SEAweb stores sRNA expression information, sRNA dif-
ferential expression, sRNA-based classi"cation, pathogenic
sRNA signatures from bacteria and viruses, pathogen dif-
ferential expression, miRNA gene targets and disease as-
sociation as well as deep and standardized metadata on
the samples, analysis work!ows and databases used. Meta-
data information is normalized using ontologies to allow
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for standardized search and retrieval across ontological hi-
erarchies (section ‘Semantic data layer’ and Supplementary
Material). The following sections will detail the system de-
sign of SEAweb (Figure 1).

Acquisition and analysis of sRNA datasets

SEAweb acquires raw published sRNA-seq datasets and
their primary annotation from Gene Expression Omnibus
(GEO) and NCBI’s Sequence Reads Archive (SRA) repos-
itory (Supplementary Material). Novel datasets are down-
loaded and stored in SEAweb’s raw data repository while
corresponding annotations are stored in SEAweb’s anno-
tation database and are manually curated. In order to re-
trieve relevant samples for downloading, we optimized our
search queries to look for the datasets that have, (i) Experi-
ment type as non-coding RNA pro"ling by high throughput
sequencing, (ii) Sequencing platform as Illumina, (iii) Tis-
sue, cell type, disease or cell line information and (iv) is one
of the 10 organisms that SEAweb supports at the moment
(Table 1). Raw data are downloaded and subsequently pro-
cessed automatically by SEAweb’s sRNA analysis work!ow
using Oasis 2.0 (http://oasis.ims.bio/) (Supplementary Ma-
terial). Subsequently, sRNA counts of high-quality samples
are stored in the sRNA expression database. For all the ex-
periments with samples from different conditions such as
disease, tissue, cell line or cell type; sRNA differential ex-
pression and classi"cation was performed within the ex-
periment using Oasis 2. All possible comparisons for an
experiment were taken into account such as healthy ver-
sus disease stage 1, healthy versus disease stage 2, disease
stage 1 versus disease stage 2 as explained in Supplementary
Section 3.4. Additionally, differential expression analysis of
detected pathogens was performed using DESeq2 package
(21). In order to reduce bias that could be introduced into
the data by using different analysis routines, every sample in
SEAweb has been analyzed by identical analysis work!ows
using identical databases and genome versions. Moreover,
SEAweb stores analysis work!ow parameters used to ana-
lyze the samples such as adapter sequence, genome, num-
ber of mismatches, minimum and maximum read lengths
along with the versioning information about the software
and databases used for the analysis. In case of changes in
databases or analysis routines, we completely re-analyze all
SEAweb’ data for consistency.

Additionally, sample annotations are processed automat-
ically with SEAweb’s annotation work!ow. Processed "les
and annotations are subsequently semi-automatically cu-
rated (Supplementary Sections 2.3 and 3).

Data storage

Once the raw sequencing data is analyzed, the next step is
to store the analysis results to the database for downstream
analysis and querying. Most metadata is quite different be-
tween experiments. Some experiments may have informa-
tion such as disease, tissue, cell line, gender, age of patient
while others may completely lack this. Due to this sparse
nature of the biological experimental data, we opted to use
NoSQL database management systems such as MongoDB
and Neo4J for hierarchical (connected) normalized data. A

multi-database management system architecture was used
to store different types of data:

In brief, Expression-DB is created to save sRNA expres-
sion pro"les, sRNA differential expression, sRNA based
classi"cation as well as pathogen detection and pathogen
differential expression. This database stores the identi"-
cation and description of the experiment (dataset), infor-
mation about dataset processing (pipeline information and
parameters), information about samples. Association-DB
is used to store genomic coordinates for sRNAs, miRNA
gene targets and miRNA diseases association. It contains
information about sRNA’s and gene’s chromosomal loca-
tions, miRNA target genes and miRNA disease associa-
tions. Chromosomal coordinates were obtained from miR-
Base version 21 (22), ensemble version 84 (23) and piRNA
bank (24), miRNA gene targets were obtained from mir-
TarBase version 7.0 (25) as well as from BELIEF text
mining pipeline (20) (‘Materials and Methods’ section),
miRNA disease associations were obtained from HMDD
database version 2.0 (15). In order to support the aggrega-
tion and comparison of these different types of data we nor-
malized the identi"ers across databases. To enable search
by ontological terms, Annotation-DB is created using the
Neo4J database management system. Neo4J is a graph
database, representing elements as graph nodes or vertices.
Annotation-DB (supplementary Figure S1) stores the fol-
lowing three node types: (i) Experiments (datasets), this
type of node stores information about the experiment such
as description of the experiment, reference to database, ex-
perimental design and any global level information, which
is common among all the samples. (ii) Sample node type
is used to store information about individual sample, such
as description of a sample, reference to database, sample-
speci"c processing parameters. (iii) Annotation term node
type stores annotation term information of samples such
as organism, disease, tissue, cell type, cell line, age, gender,
condition (treated\untreated) and extracted molecule for
sequencing etc. We normalize organism with the NCBI tax-
onomy ontology (26), tissue with the BRENDA tissue on-
tology (27), disease with the human disease ontology (28),
cell type with the cell ontology (29) and cell line with the
cell line ontology (30) or experimental factor ontology (31)
(Table 3). If the annotation term is normalized, it stores on-
tology reference (term identi"er and preferred level). The
nodes are connected if they have a relation (dataset/sample,
sample/term and term/term) (supplementary Figure S1).
To allow for fast ontological search, all parents of a term
in the ontology are also stored in the database and con-
nected with their corresponding annotation terms (section
‘Semantic data layer’ and Supplementary Material). User-
DB stores in-house sRNA-seq data (differential expression
and classi"cation from Oasis) uploaded by the users. This
database allows users to compare their own data to the huge
and diverse sRNA-seq published data. User uploaded data
are deleted after 30 days.

In addition, SEAweb contains information about the
GEO series accession (GSE) and sample accession (GSM)
identi"ers along with the sample identi"er from the SRA
database (SRR) in the Annotation-DB together with the an-
notations and in the Expression-DB together with expres-
sion pro"les, differential expression and classi"cation anal-
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Figure 1. SEAweb system architecture. SEAweb system was developed using the modular system design approach (model-view-controller). The system has
a presentation layer for user interface and visualization of search results. Presentation layer is followed by a business layer which transform complex user
queries and distribute particular requests to the data access layer REST API services. There is a semantic data layer, to store and access primary and derived
data together with annotations and links to secondary data. Annotation-DB stores metadata for experiments, samples, corresponding ontological terms
as well as relations between dataset/sample, sample/term and term/term. Association-DB contains information about sRNAs and genes chromosomal
locations, miRNA target genes and miRNA disease associations. Expression-DB stores sRNA expression pro"les, sRNA differential expression; sRNA
based classi"cation as well as pathogen detection and pathogen differential expression. It also store details about dataset processing pipeline and parameters.
Oasis-DB was used to store novel predicted miRNA information. User DB contains in-house data uploaded by the end users from Oasis 2 pipeline. Semantic
data integration layer integrates primary and secondary data into the mentioned databases. Microservices were implemented in order to achieve strong
encapsulation and well-de"ned interfaces via REST APIs.

ysis. We optimize search and retrieval times by indexing for
the most common queries and most relevant terms.

Semantic data layer

Given the diversity of the biological data, users of the SEA-
web system are given a possibility to interpret data inde-
pendently using common terminologies. In order to enable
users to browse data autonomously using common well-
structured terminology, a standardized semantic layer for
data retrieval is developed (Figure 1). It includes semantic
annotations of data and semantic search, linking data with

semantic lookup platform (OLS), as well as storing primary
and derived data together with provenance information and
references to secondary data.

One of the most important aspects of semantic layer are
ontology-based data annotations. They enable interoper-
ability of the data, as well as using of standard terminolo-
gies for data retrieval. It is important to standardize anno-
tations using ontologies and semantic mappings (32). On-
tologies de"ne not only standard classes, but also the re-
lations between terms, which enables semantic search by
term hierarchies, for example, by parent terms. In SEA-
web, we connect (normalize) annotations with ontologies in
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Table 3. SEAweb keys and used ontologies (as of June 2019)

Key Ontology(s) # Annotations # Terms
Organism NCBI Taxonomy 4235 126
Tissue BRENDA tissue/enzyme source 3021 190
Disease Human Disease Ontology 1951 287
Cell type Cell Ontology 732 304
Cell line Cell Line Ontology 663 132

Experimental Factor Ontology 134 76

a semi-automatic way, i.e. "rst automatically extract possi-
ble annotation terms from GEO descriptions and normal-
ize them, and later curate annotations manually (Supple-
mentary Section 3). The Ontologies and the number of nor-
malized terms in SEAweb are listed in Table 3. To enable
the search across ontological hierarchies we integrated data
with the relevant ontologies into the graph database Neo4J
(supplementary Figure S1).

Ontology Lookup Service (OLS) is a service which al-
lows to extract relevant terms from ontologies together with
term information. SEAweb uses OLS for annotation nor-
malization and accesses ontologies via the OLS REST inter-
face, which supports complex and compound queries and
query auto-completion (33). Details about annotation crite-
ria, processing and group annotation are described in Sup-
plementary Section 3.2.

Another aspect of the semantic layer is storing of the pri-
mary and the derived data together with provenance infor-
mation. For SEAweb, primary data are FASTQ "les, re-
trieved from the NCBI SRR database. This data are not
stored after Oasis analysis, only provenance data about
source and analysis details is saved. So for SEAweb, pri-
mary data are sRNA counts. Based on those counts, DE
and classi"cation results are obtained and are also saved
to allow data interpretation. From derived data, the prove-
nance information allows to retrieve raw counts and check
how those results are obtained.

Querying and visualization

Application programming interfaces (APIs) are developed
to access data in SEAweb databases (Supplementary Sec-
tion 3.5). The APIs help to use the multi-database sys-
tem components independently as well as in combina-
tion. In brief, we extend the SEAweb backend applica-
tion with RESTful web services, such as Annotation-
API, Association-API, Expression-API, User-Expression-
API, Predicted miRNA-API to access Annotation-DB,
Association-DB, Expression-DB, User-Expression-DB and
Oasis-DB, respectively. Additionally the SEAweb busi-
ness logic API is created in order to combine all those
APIs and make necessary data transformations between
frontend and other APIs. As a result, the user can
make queries to answer biological questions like; what is
the expression of hsa-miR-488-5p across all human tis-
sues? Is hsa-miR-488-5p expressed higher in adenocarci-
nomas as compared to other cancer types? Is a particu-
lar sRNA/pathogen DE in Alzheimer’s disease? What are
common DE sRNAs/pathogens or potential sRNA based
biomarkers in a particular disease or tissue? What is the ex-
pression of a novel miRNA for known disease states? All
API calls are described in Supplementary Section 3.5.

Table 4. SEAweb browser compatibility

Browser Version
Chrome 61.0.3163.100, 62.0.3202.62
Mozilla Firefox 55.0.3, 56.0 (64-bit), 57.0 (64-bit)
Chromium 62.0.3202.75
Safari 11.0.1
Internet explorer 11

Browsers that are used to test SEAweb functionalities.

In addition, users can browse and query all datasets us-
ing the browse link. A three-panel browse function (Supple-
mentary Figure S8) facilitates searching for speci"c small
RNAs (miRNA, piRNA, snoRNA, snRNA and rRNA),
annotation terms (organism, tissue, cell type, cell line and
disease), and pathogens (bacteria or viruses). By selecting
single or several terms from the three panel browse function
the user can make arbitrarily speci"c searches in SEAweb.
For example, the user can click on a small RNA and cancer
to see its expression pro"les in the cancer datasets.

In brief, the SEAweb system is developed using the modu-
lar system design approach (Figure 1). We build micro ser-
vices to achieve strong encapsulation and well-de"ned in-
terfaces via REST APIs. An object oriented programming
approach is used to build the SEAweb application using the
spring framework and Java 8. The SEAweb user interface
(UI) is developed in Django framework version 2.0, HTML
version 5, D3 and CSS 3. SEAweb visualizes the results de-
pending on the user query, such as a violin plot for the ex-
pression of sRNAs or pathogens. Upset plots are shown for
the overlap of sRNAs or pathogens (based on DE or classi-
"cation) across experiments. SEAweb enables the download
of search results in the form of CSV "les. The functionality
is tested on all major browsers (Table 4).

SEAweb usage

SEAweb is a publicly available data repository and a web
server and users can use it without an account or login. In
case users want to upload and compare their own data to
the data in SEAweb they need to create an account. Users
have an option to sign in with their google account or they
can register in the SEAweb system directly with a valid email
address, choosing a username and password for their ac-
count. We have created User-DB to store their account in-
formation as well as sRNA-seq data uploaded by the users.
Moreover, user-uploaded data are only accessible from the
user’s account. Users have the option to include their data
in SEAweb for 30 days. For the data protection, security,
and storage space reasons, we currently do not allow users
to add data permanently to SEAweb (‘Materials and Meth-
ods’ section).
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APPLICATION OF SEA

In this section, we describe a few examples that illustrate
how SEAweb can be employed to answer biological ques-
tions and to uncover unappreciated properties of sRNA
data integration with interactive result visualization. First,
we took advantage of the diverse and massive sRNA-seq
data in SEAweb to present the most comprehensive set of
tissue speci"c miRNAs till date. Second, we utilized the
pathogenic reads in sRNA-seq to "nd their association to
diseases. At last, we show a use case of SEAweb by compar-
ing an in-house PD sRNA-ome to other neurodegenerative
diseases sRNA expression pro"les available in SEAweb.

sRNA tissue speci!city

Several studies have shown tissue speci"city for miRNAs.
Recently, Ludwig et al., (34) analyzed several human tis-
sue biopsies of different organs from two individuals to de-
"ne the distribution of miRNAs using tissue speci"city in-
dex (TSI) and found several groups of miRNAs with tissue-
speci"c expression. Similarly, Lee et al., (35) provides the
expression of 201 miRNAs across nine human tissues to
"nd tissue speci"city of miRNAs. miRNAs whose expres-
sion is 20-fold or higher in a certain tissue compared with
the mean of all the other tissues were characterized as tissue
speci"c. According to Lee et al., skeletal muscle, brain, heart
and pancreas are the tissues expressing the most speci"c
miRNAs. Moreover, Guo et al., (36) manually extracted
116 tissue-speci"c miRNAs across 12 human tissues. We
used Shannon entropy to calculate TSI for each human
miRNA across all the human tissues available in SEAweb
(‘Materials and Methods’ section). In order to calculate tis-
sue speci"city, we mixed healthy and diseased human sam-
ples (where available) within an experiment (Figure 2 and
Supplementary Table S1). We used very stringent criteria:
miRNAs with Shannon entropy score more than 0.8 were
considered as tissue speci"c and ≤0.2 were considered as
ubiquitous miRNAs (Figure 2 and Supplementary Table
S1). We were able to provide by far the most comprehen-
sive set of 591 distinct tissue-speci"c miRNAs across 29 tis-
sues; blood plasma, skin, blood serum, liver, bone marrow,
serum, testis, blood, semen, prefrontal cortex, peripheral
blood, colon, brain, cornea, breast, renal cortex, bladder,
embryo, placenta, lung, tongue, tonsil, skeletal muscle, kid-
ney, lymph node, heart, muscle, thyroid gland and neocortex
(Figure 2 and Supplementary Table S1). In order to com-
pare the TSI for miRNAs in SEAweb with the existing "nd-
ings, we merged the list of miRNAs from the above studies
and retained all the 12 tissues. Out of 12 tissues, we did not
have sequencing data for four of them: thymus, pancreas,
spleen and bone.

We were able to detect two out of the three heart spe-
ci"c miRNAs (miR-1 and miR-302d) from Lee et al.,
study, and 6 out of 10 heart speci"c miRNAs (hsa-miR-1-
5p, hsa-miR-208a-3p, hsa-miR-208b-5p, hsa-miR-208b-3p,
hsa-miR-302d-3p, hsa-miR-133b, hsa-miR-302a-3p, hsa-
miR-302a-5p, hsa-miR-302b-3p) from the manually cu-
rated list of Guo et al. miR-208 is obtained from an old
annotation, because the latest release of miRBase has more
speci"c annotation like miR-208a-3p, miR-208b-3/5p. In-

terestingly we were able to "nd the whole family of miR-208
as heart speci"c. We were not able to detect miR-126, miR-
302c, miR-367, hsa-miR-133a-5p in heart. Of note, none of
these three is heart speci"c in the Lee et al., study.

Muscle and brain were the only two tissues covered by
all the three above mentioned studies. In muscle, we were
able to detect two out of the three muscle speci"c miRNAs
(miR-133b, miR-1-3p) from Ludwig et al., three out of four
(miR-95 was not found to be muscle speci"c) from Lee et al.,
and 4 out of 10 for Guo et al., compilation. We were not able
to detect miR-206, miR-133a, miR-134, miR-193a, miR-95
and miR-128a. Note that from the same study miR-134 is
mentioned as muscle as well as testis speci"c and miR-128a
as muscle as well as brain speci"c. Moreover miR-95 is the
only miRNA that is muscle speci"c in all of the three studies.

Another tissue covered by all of the three studies is the
brain. In total 30 miRNAs were known to be brain speci"c,
only 1 out of 30 (miR-7) is common among all the three
studies and only three in two studies (miR-124, miR-9, miR-
218) one of which is in the curated list. In our study, we
found 26 miRNAs to be brain speci"c but none from the
known ones.

Tissue with the most number (n = 43) of known spe-
ci"c miRNA was placenta provided by Guo et al. Interest-
ingly, miRNAs associated with placenta were mostly evolu-
tionary related. We were able to detect these evolutionary
related miRNAs to be placenta speci"c as well. In short,
we detected 517a/b/c, 518a/b/c/d/e/f, 519a/b/c/d/e,
520a/d/e/f/g (not detecting 520b/c/h). Moreover we were
also able to detect miR-371, miR-372, miR-512, miR-522,
miR-523, miR-524, miR-525, miR-526b and miR-527. Out
of 43, we detected 35 and did not detected miR-377, miR-
526a, miR-184, miR-154, miR-381, miR-503, miR-450 and
miR-136. We detected only 2 (miR-513c-5p, miR-202-3p)
out of 15 for testes. There were two tissues, lung and liver;
mentioned only in one study Guo et al., we could not de-
tect the only miRNA miR-126 for lung. Interestingly this
miRNA is also mentioned as heart speci"c in the same
study. We also did not "nd the four liver speci"c miR-
NAs miR-122, miR-483, miR-92a, miR-192; two (miR-483,
miR-92a) of which are shown as bone speci"c in the same
study. In kidney we could not detect any miRNA out of eight
kidney speci"c in Guo et al. Of note Lee et al., also found
only one miRNA miR-204 to be kidney speci"c and does
not have any evidence for the rest of the seven miRNAs. In
brief, there is no signi"cant consensus on the tissue speci"c
miRNAs in the previous studies. However, our work still
aligns reasonably well to their "ndings.

To understand if disease samples might affect the tissue
speci"city calculations we also performed a tissue speci-
"city analysis using only non-disease samples (Supplemen-
tary Figure S2, 4, Table S1 and 4). Using only non-disease
samples we found three additional tissue speci"c miRNAs,
hsa-miR-503-3p in placenta, hsa-miR-1-3p and hsa-miR-
133a-5p in muscle and heart. Overall, our miRNA tissue
predictions, mixed as well as non-disease only, were consis-
tent with published information on tissue-speci"c miRNA
expression (34–36). As Ludwig et al., used only two indi-
vidual’s tissues, Lee et al., also performed own experiments
in a control (same laboratory, same protocols) environment
and used different statistical methods compared to ours, we
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Figure 2. Tissue speci"c miRNAs. The heatmaps show the scaled expression (0-1) of (A) tissue speci"c or (B) ubiquitous miRNAs across all the tissues.
(A) Tissue speci"c miRNAs. miRNA expression across all the tissues with TSI > 0.8 (n = 591). (B) Ubiquitous miRNAs. miRNA expression across all the
tissues with TSI ≤ 0.2 (n = 20). miRNA names are omitted for simplicity. A complete list of tissue speci"c and ubiquitous miRNAs with their Shannon
entropy score can be found in Supplementary Table S1. These calculations are based on healthy and disease samples within an experiment (‘Materials and
Methods’ section).

were still able to get a reasonable overlap with tissue-speci"c
miRNAs considering diverse (different laboratories, differ-
ent protocols) and massive data. Therefore, we think that
this work provides the most comprehensive set of tissue-
speci"c miRNAs till date (n = 591 miRNAs) (Supplemen-
tary Table S1). In order to explore the tissue speci"city of
other types of sRNAs in SEAweb such as piRNA, snoRNA,
snRNA and rRNA, we repeated the above analysis with ex-
actly the same set of samples once for the healthy and dis-
eased mixed and once for the non-diseased samples (Sup-
plementary Figures S3, 4 and Table S4). We found 3445
out of 4300 ("ltered for minimum reads, see ‘Materials and
Methods’ section) sRNAs to be tissue speci"c and only 73
to be ubiquitous in the healthy and disease mixed samples
(Supplementary Figure 3 and Table S4). In the non-diseased
samples, we found 1005 sRNAs to be speci"c and 45 to be
ubiquitously expressed across tissues (Supplementary Fig-
ure S3 and Table S4).

Known and novel bacterial or viral infections

We have validated our approach of pathogen detection
in Oasis 2 (16) using sRNA datasets with de"ned viral
or bacterial infections. Overall, the prediction of bacte-
rial (Mycobacterium abscessus) and viral (HIV, HHV4,
HHV5, Gallid herpesvirus 2) infections resulted in high F-

scores, recall and precision, especially when the top "ve
predicted pathogen species are reported. However, the cur-
rent work additionally involves differential expression anal-
ysis of pathogens and therefore we validated our approach
of pathogen differential regulation using seven datasets
with known infection status. The samples in these datasets
are known to be infected with seven bacterial pathogens
and three viral pathogens. Of note, we focused on within-
dataset comparison in order to avoid technical confounders
(Supplementary Table S2). For each sample, k-mer counts
were calculated for all infectious species present in Kraken
database (4336 viral and 2784 bacterial/archaeal genomes)
and differential abundance analysis was carried out for
those species that have at least three counts (baseMean) in a
particular comparison. As expected, in all comparisons the
known pathogen represented the best hit (i.e. smallest ad-
justed P-value) except Vaccinia virus (Figure 3A). However,
Vaccinia virus has the highest log2 fold change as expected
within the dataset (GSE54235) comparison. It is worthy
to note that Chlamydia trachomatis detection is based on
sRNA-seq performed on conjunctival tissue from children
with follicular trachoma and children with healthy conjunc-
tivae, indicating a good performance of our pathogen detec-
tion pipeline from tissues.

Next, we aimed to "nd novel associations of pathogens
with disease. We took all the comparisons, which has
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Figure 3. Known and Novel bacterial or viral infections. (A) Known associations. Pathogen detection using seven datasets known to be infected with seven
bacterial and three viral pathogens. Bar represents pathogen log2-fold difference between the uninfected and infected state (Supplementary Table S2).
Number on top of the bar denotes rank of the pathogen compared to all the other DE pathogens within the comparison (i.e. smallest adjusted P-value).
(B) Novel associations. Heatmap shows log2-fold difference of pathogens signi"cantly upregulated in disease as compared to healthy (fold change > 1 and
padj < 0.1) (Supplementary Table S2). Comparisons that have less than six pathogens signi"cantly DE are selected for speci"city. Details about dataset,
comparison groups, log2fold and padj for both (A and B) are provided in (Supplementary Table S2).

‘healthy’ and at least a disease state annotation (Supplemen-
tary Table S2). In order to achieve more speci"city we took
only comparisons that have less than six pathogens signif-
icantly upregulated in disease as compared to healthy (FC
> 1 and padj < 0.1). There were a total of eight compar-
isons but we removed ‘GSE69837’ as this was a known case
(Chlamydia trachomatis already shown in Figure 3A). It
was interesting to "nd viruses and bacteria signi"cantly up-
regulated in sRNA-seq data in certain disease compared to
healthy patients (Figure 3B). Some of the most interesting
cases are highlighted in this section below.

Mycobacterium marinum in patients with ileal Crohn’s dis-
ease. In the original study, expression of microRNAs in
mucosae of patients with a normal pouch after colectomy
for intractable ulcerative colitis was compared to several
control cohorts, among them was a cohort of patients with
Crohn’s disease (CD) of the terminal ileum (37). CD pa-
tients were previously not exposed to immunosuppression.
Compared to patients with non-in!amed ileal pouch, pa-
tients with ileal CD showed an increased mucosal expres-
sion of Mycobacterium marinum. The bacterial genus My-
cobacterium causes diverse diseases in humans, of which
Tuberculosis is the most serious with around one-quarter
of the world population latently infected and ∼1.6 million
deaths in 2017 on a global scale. M. marinum is a non-
tuberculous (also termed ‘atypical’) Mycobacterium species,

which is ubiquitously abundant in aquatic environments
(38). Infection of humans is well known, but it is consid-
ered a rare event. It typically occurs after exposure to con-
taminated water or infected marine animals, and it is more
common in immunosuppressed individuals. The most com-
monly affected organ is the skin, in more severe cases in-
volvement of muscles, bones or joints is reported (38). Op-
portunistic infection with M. marinum in CD is recognized
in those patients receiving anti-tumor necrosis factor ther-
apy (e.g. in!iximab) (39). However, to the best of our knowl-
edge, enteric super-infection with M. marinum has not been
reported in the literature so far. Interestingly, due to the re-
semblance of the granulomatous intestinal in!ammation in
CD with enteric infection caused by other Mycobacteria, it
has been hypothesized that Mycobacterial infection is in-
volved in the pathogenesis of CD, with much focus on My-
cobacterium avium paratuberculosis (40). However, the aeti-
ological signi"cance of this pathogen in CD remains uncer-
tain. Hence, the gut mucosal prevalence of M. marinum and
its potential pathophysiologic signi"cance in patients with
CD should be further explored.

Methanosphaera stadtmanae in patients with schizophrenia.
We detected an overabundance of Methanosphaera stadt-
manae in neurons derived from induced pluripotent stem
cells (iPSC) of patients with schizophrenia, compared to
healthy controls. M. stadtmanae is an Archaeal microor-
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ganism which is frequently detected in the healthy human
gut microbiota (41). It is involved in intestinal methano-
genesis and associated fermentative dynamics. M. stadt-
manae is recognized by the innate immune system, therefore
it can induce in!ammatory cytokine responses and could
have diverse immunomodulatory functions (42). Interest-
ingly, M. stadtmanae was found with an increased preva-
lence in faecal samples of patients with in!ammatory bowel
diseases (IBD) Crohn’s disease (CD) and ulcerative coli-
tis with antigen-speci"c IgG-responses (43). Immune sys-
tem processes have been proposed to be involved in the
pathogenesis of schizophrenia (44). Regarding the immune-
genetic basis of schizophrenia, genome-wide pleiotropy has
been reported between schizophrenia and CD as well as an
increased prevalence of schizophrenia in patients with IBD
(45). Therefore, the potential immunogenic importance of
M. stadtmanae in schizophrenia should be investigated.

Chimpanzee herpesvirus in Lewy body dementia. We de-
tected an increased abundance of a viral pathogen identi-
"ed as chimpanzee herpesvirus (ChHV) in the cerebral cor-
tex of patients with lewy body dementia (LBD) compared to
non-demented controls (46). ChHV is an alphaherpesvirus
closely related to human herpes simplex virus type 2 (HSV-
2) (47). LBD is a neurodegenerative disorder, which under-
lies 4.2% of all dementia cases, second only to Alzheimer’s
dementia (AD) (48). The aetiology of LBD is obscure, but
growing evidence points toward neuro in!ammation as a
key pathophysiologic factor, analogous to the pathogenesis
of AD (49). In AD it is assumed that multiple pathogens
infecting the brain are key triggers of neural dysfunctional
protein accumulation and neuro in!ammation in geneti-
cally vulnerable individuals (50). Among the pathogens de-
tected in brains of AD patients, multiple lines of evidence
point at herpes simplex virus type 1 (HSV-1) and HSV-2 as
two of the main drivers of AD neurodegeneration (50,51).
Given the close phylogenetic relationship between ChHV
and HSV-2, ChHV might play a role in in!ammatory neu-
rodegenerative processes in LBD similar to the other her-
pesviruses in AD. Therefore, the association detected in the
present study should be further elaborated.

Analyzing in-house data and comparing with SEAweb data

One of the key features available in SEAweb is uploading the
in-house data and comparing it with the already integrated
data. Mostly, researchers use different analysis pipelines
to carry out differential expression or classi"cation, which
makes it very hard to compare the results with the publicly
available data. Therefore, we require a database with inter-
active visualizations that has all the publicly available data
analyzed using the same pipeline with same parameters. For
SEAweb, we have analyzed and integrated all the data us-
ing Oasis 2 pipeline. We expect that comparing the in-house
data with the data in SEAweb will yield disease-speci"c sig-
natures, in this case a sRNA or group of sRNAs. Note that
uploading to SEAweb requires the output of Oasis 2 (Sup-
plementary Material).

In order to test this feature, we uploaded in-house sRNA-
seq data from well characterized 47 PD and 53 frequency-
matched healthy controls, which is a baseline data from the

longitudinal de novo Parkinson disease (DeNoPa) cohort
(Supplementary Table S3) and available as ‘demo user data’
in SEAweb. SEAweb gives us a unique opportunity to iden-
tify PD-speci"c biomarkers associated with early-stage PD
that can eventually help us in early diagnosis, therefore, bet-
ter treatment of the disease. Below we describe the differen-
tial expression and classi"cation results from PD data and
an approach in order to identify PD-speci"c biomarkers
that do not overlap with other neurodegenerative diseases.

We found four signi"cantly DE miRNAs with adjusted
P-value < 0.1. Out of these, two are upregulated in PD (hsa-
miR-502-3p and hsa-miR-532-5p) and two are downreg-
ulated in PD (hsa-miR-30d-5p and hsa-miR-22-5p) (Sup-
plementary Table S3). Next, we overlapped these four
DE miRNAs with all the neurodegenerative disease-related
datasets integrated in SEAweb. We focused on nine com-
parisons (from "ve datasets) in which one of the condi-
tions is a healthy state and the other is a diseased condi-
tion (Alzheimer’s disease (AD), LBD, tangle-predominant
dementia, Huntington’s disease (HD), Frontotemporal de-
mentia or Hippocampal sclerosis of aging). Out of the two
upregulated miRNAs in PD, one (hsa-miR-502-3p) is up-
regulated in Alzheimer’s disease and one (hsa-miR-532-5p)
is upregulated in both Alzheimer’s and Huntington’s dis-
ease (Figure 4A). In contrast, none of the downregulated
miRNAs in PD were found to be signi"cantly down in
any of these nine comparisons. Interestingly, it has been
shown that the expression of miR-22 is downregulated in
a 6-hydroxydopamine-induced cell model of PD using RT-
PCR (52). Moreover, Margis et al., found that hsa-miR-
22 has reduced expression in the blood of de novo PD pa-
tients (53). Furthermore, family members of hsa-miR-30d-
5p are known to be deregulated in PD (54) and putatively
target the PD-related gene, LRRK2 (PARK8) (55). These
results con"rms, the potential role of hsa-miR-30d-5p and
hsa-miR-22-5p in PD. To explore the mechanism by which
these two miRNA are involved in PD, we performed gene
ontology (GO) analysis of the validated and predicted tar-
gets using webgestalt (56). The top ten terms ranked accord-
ing to FDR adjusted P-value are shown in the (Figure 4B).
The top signi"cant hit (FDR < 0.1) is axon development.
Recent publications (57–59) have suggested the role of mas-
sive and unmyelinated axonal arbor in PD. In substantia
nigra pars compacta (SNc), the axonal arbor of dopamine
neurons is very large as compared to other neuronal types.
This leads to the hypothesis that these dopamine neurons
have selective and exceptional vulnerability in PD, and have
a higher energy demand that may play a crucial role in cell
death (57).

To obtain a unique PD biomarker we explored the classi-
"cation results integrated in SEAweb. PD and healthy were
classi"ed with an AUC of 0.89 (Figure 4D). Interestingly,
the classi"er used only 18 sRNAs (‘Materials and Meth-
ods’ section) to separate the two states (Supplementary Ta-
ble S3 and Figure S5). Moreover, only two sRNAs hsa-miR-
30d-5p (downregulated in PD) and hsa-miR-502-3p (upreg-
ulated in PD) are DE between healthy and PD out of the 18
sRNAs identi"ed by the classi"er (Supplementary Figure
S6). We overlapped these 18 sRNAs with the classi"cation
results from other neurodegenerative diseases integrated in
SEAweb (Figure 4C). There are only three sRNA that are
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Figure 4. In-house de novo Parkinson disease (DeNoPa). (A) sRNA DE Overlap. Overlap of upregulated sRNAs between in-house denopa (blue), AD
(purple) and HD (orange). Overall nine neurodegenerative disease comparisons were considered and overlap was found with these two datasets. (B) GO
terms. Top 10 GO terms associated with the target genes of the two downregulated sRNAs. (C) sRNA classi"cation Overlap. Overlap of classi"cation
features (sRNAs) between in-house denopa (blue), AD (two datasets) (purple) and HD (orange). (D) DeNoPa classi"cation. Receiver-operating char-
acteristic (ROC) curve showing true- and false-positive rates for DeNoPa disease prediction based on sRNA expression pro"le using 18 sRNAs in full
model (blue) and 16 unique (not found in other neurodegenerative diseases) sRNAs (red). (E) PD associated genes. Network of PD associated genes and
13 known miRNAs from the classi"cation. (F) GO terms for novel miRNAs. GO terms associated with the target genes of the three novel miRNAs from
the classi"cation.
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also found in AD or HD but they have opposite change of
expression. This suggests the speci"city of these sRNAs to
PD as compared to other neurodegenerative diseases. Fur-
thermore, to "lter out sRNAs known to be associated with
other neurodegenerative diseases, we used the association
database of sRNA-disease association available in SEAweb.
The results showed that hsa-miR-342-3p has been associ-
ated with other neurodegenerative diseases (60,61). Next,
we also "ltered out sRNAs if the base mean read count is
less than "ve and also, hsa-miR-502-3p that was found to
be upregulated in AD (Figure 4A). Then we run a random
forest classi"er using the normalized counts for the remain-
ing 15 sRNAs and hsa-miR-22-5p that is downregulated in
our data. (Figure 4D) shows that using 16 sRNAs to classify
PD and controls, yielded 85% area under the curve (AUC)
with 83% recall and 77% of precision. Furthermore, to "nd
the relevance of the 13 known miRNAs (out of 16 sRNAs)
in PD, we obtained their target genes from SEAweb (only
10 miRNAs out of 13 have targets supported by strong ev-
idence) and overlapped with the targets genes of PD asso-
ciated miRNAs in SEAweb. Interestingly, these 10 known
miRNAs targets 96 genes, which are known to be associ-
ated with PD (Figure 4E and Supplementary Table S3). The
list includes TP53 (62) that contributes to the apoptotic de-
terioration taking place in PD, PTEN (63) that has been
linked to PD via DNA damage and DNA repair machinery,
SMAD1 (64) is an important regulator required for neurite
growth, EZH2 (65) is a lysine methyltransferase component
of polycomb repressive complex 2 that has been associated
with PD and BCL2 (66) is required for proper development
of the dopaminergic system and has been implicated in the
pathogenesis of PD. To gain further insights into the three
novel predicted miRNAs (out of 16 sRNAs) used to classify
PD and controls, we performed gene enrichment analysis on
their target genes using webgestalt (67). The novel miRNAs
were p-hsa-miR-113, p-hsa-miR-247 and p-hsa-miR-235-
1/2/3 (Supplementary Material). We used miRDB (17) to
get target genes for the mature sequences of these predicted
miRNAs (‘Materials and Methods’ section). Interestingly
the GO terms for these miRNAs were neuron differentia-
tion, generation of neurons, neurogenesis and regulation of
intracellular signal transduction (Figure 4F). All these pro-
cesses are highly related to PD, and hence we think these
novel miRNAs should further be explored and validated in
the laboratory. Predicted structure of these miRNAs can be
found in Supplementary Material.

All together, these results make a strong case in favor of
using SEAweb in order to retrieve disease-speci"c biomark-
ers.

CONCLUSION

SEAweb is designed for the biological or medical end-user
that is interested to de"ne where and when a sRNA of in-
terest is expressed. Prototypical questions that can be ad-
dressed with SEAweb are: What is the expression of hsa-
miR-488-5p across all human tissues? Is hsa-miR-488-5p
expressed higher in adenocarcinomas as compared to other
cancer types? Is the tissue-speci"c expression of hsa-miR-
488-5p conserved in mice? Its unique selling points are the

deep and standardized annotation of meta-information, the
re-analysis of published data with Oasis 2 to reduce analy-
sis bias, a user-friendly search interface that supports com-
plex queries and the fast and interactive visualization of
analysis results across 10 organisms (Table 1) and vari-
ous sRNA-species. SEAweb also contains information on
the expression of currently 769 high-quality predicted miR-
NAs, across organisms and tissues.

In addition, SEAweb also stores sRNA differential ex-
pression, sRNA based classi"cation, pathogenic sRNA sig-
natures from bacteria and viruses and pathogen differential
expression. Furthermore, SEAweb can be used to search
gene targets or diseases associated with a miRNA. More-
over, SEAweb allows end users to upload their analysis re-
sults of differential expression and classi"cation from Oasis
2. This will allow users to compare their data to over 4200
experimental samples across different conditions. SEAweb
also provides users with an option to perform on the
!y analysis such as overlapping DE sRNAs or pathogens
across different studies or the most important features (sR-
NAs) identi"ed with classi"cation. SEAweb enables end
users to re-submit samples from interactive plots for dif-
ferential expression or classi"cation, this will help users to
choose samples of their choice from an experiment (Supple-
mentary Figure S7).

Moreover, SEAweb is continuously growing and aims to
eventually encompass all sRNA-seq datasets across all or-
ganisms deposited in GEO and other repositories. In order
to keep SEAweb up to-date with the current small RNA se-
quencing data or the data that will be published to GEO
in the future, we have written programs that automatically
search GEO and SRA databases every two weeks (consis-
tent with the GEO update cycle). These programs down-
load raw fastq "les, submit these to Oasis 2, and assign re-
sponsibility to another program for the semi-automated an-
notation for tissue, cell line, cell type and other meta-data
available. In case the system cannot fully annotate all "elds,
automatic annotation is followed by manual curation using
a front-end curation system. Currently manual annotation
QA is the rate-limiting step, which is why we actively de-
velop deep learning-based annotation prediction routines
for future versions of SEAweb (68). Genome versions will
be updated with every major release of SEAweb. SEAweb
will be backward compatible in the future by allowing users
to choose previous genome versions and annotations.

A detailed comparison of SEAweb to other existing
sRNA expression databases highlights that SEAweb is su-
perior in terms of supported organism, annotations, dis-
eases, tissues, sRNA based classi"cation, pathogen k-mer
DE, known miRNA disease associations, user speci"c ex-
perimental data upload, cross study comparisons and re-
analysis with selected samples (Table 2).

As far as we are aware, SEAweb is the only sRNA-seq
database that supports ontology-based queries, supporting
single or combined searches for "ve prede"ned keys (or-
ganism, tissue, disease, cell type and cell line) across all
datasets. However, the SEAweb database system contains
additional (meta)-information including age, gender, devel-
opmental stage, genotype as well as technical experimen-
tal details such as the sequencing instrument and proto-
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col details (e.g. library kit, RNA extraction procedure). We
plan to normalize most of this additional information in fu-
ture versions of SEAweb. This will allow users, for example,
to query and analyze sRNA expression effects that are in-
troduced by library kit or sequencing platform differences
(both of these features can introduce large biases in the de-
tection and expression of sRNAs). Other future develop-
ments will include information on sRNA editing, modi"ca-
tions and mutation events.

In summary, SEAweb supports interactive result visual-
ization on all levels, from querying and displaying of sRNA
expression information to the mapping and quality infor-
mation for each of the over 4200 samples. SEAweb is a fast,
!exible, and fully interactive web application for the inves-
tigation of sRNA and pathogen expression across cell lines,
tissues, diseases, organisms and sRNA-species. As such,
SEAweb should be a valuable addition to the landscape of
sRNA expression databases.

Additionally, we presented the most comprehensive set
of tissue speci"c miRNAs till date. We were able to pro-
vide by far the most complete set of 591 distinct tissue spe-
ci"c miRNAs across 30 tissues. To our knowledge this is by
far the most comprehensive analysis (set) of tissue-speci"c
miRNAs.

In the current work, we also found pathogen signatures
from sRNA-seq data. We found signatures of pathogens
in severe diseases like dementia. In brief, we found dif-
ferential regulation of M. marinum in patients with ileal
crohn’s disease, methanosphaera stadtmanae in patients
with schizophrenia and chimpanzee herpesvirus in LBD.

From our in-house PD data, we were able to "nd poten-
tial biomarkers based on differential expression and classi-
"cation for the early detection of PD. The top term for the
GO analysis of the two downregulated miRNAs is axon de-
velopment, suggesting their role in PD. Moreover, gene tar-
gets of the sRNAs for the top important features (potential
biomarkers) for PD using classi"cation were overlapping
with the targets of the known PD miRNAs. Additionally,
GO analysis for the targets of the three novel miRNAs are
neuron differentiation, generation of neurons, neurogenesis
and regulation of intracellular signal transduction (Figure
4F). We think these novel miRNAs should be further ex-
plored and validated in the laboratory.

At last, researchers have used massive sRNA data from
SEAweb for other tasks, for example, it enables to use deep
learning for data augmentation problem such as predicting
sex and tissue based on sRNA expression pro"les (68). As
such, SEAweb should be a valuable addition to the land-
scape of sRNA-seq web applications.

DATA AVAILABILITY

SEAweb is implemented in Java, J2EE, spring, Django,
html5, css3, JavaScript, Bootstrap, Vue.js, D3, mongodb
and neo4j. It is freely available at http://sea.ims.bio/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Realistic in silico generation and augmentation
of single-cell RNA-seq data using generative
adversarial networks
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A fundamental problem in biomedical research is the low number of observations available,

mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Aug-

menting few real observations with generated in silico samples could lead to more robust

analysis results and a higher reproducibility rate. Here, we propose the use of conditional

single-cell generative adversarial neural networks (cscGAN) for the realistic generation of

single-cell RNA-seq data. cscGAN learns non-linear gene–gene dependencies from complex,

multiple cell type samples and uses this information to generate realistic cells of defined

types. Augmenting sparse cell populations with cscGAN generated cells improves down-

stream analyses such as the detection of marker genes, the robustness and reliability of

classifiers, the assessment of novel analysis algorithms, and might reduce the number of

animal experiments and costs in consequence. cscGAN outperforms existing methods for

single-cell RNA-seq data generation in quality and hold great promise for the realistic gen-

eration and augmentation of other biomedical data types.
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B iological systems are usually highly complex, as intracellular
and intercellular communication, for example, are orche-
strated via the non-linear interplay of tens to hundreds of

thousands of different molecules1. Recent technical advances have
enabled scientists to scrutinize these complex interactions, mea-
suring the expression of thousands of genes at the same time, for
instance2. Unfortunately, this complexity often becomes a major
hurdle as the number of observations can be relatively small, due
to economical or ethical considerations or simply because the
number of available patient samples is low. Next to technically
induced measurement biases, this problem of too few observa-
tions, in the face of many parameters, might be one of the most
prominent bottlenecks in biomedical research1. Thus, a small
sample size might not reflect the population well, an imbalance
that can decrease the reproducibility of experimental results3.

While the number of biological samples might be limited,
realistic in silico generation of observations could accommodate
for this unfavorable situation. In practice, in silico generation has
seen success in computer vision when used for data augmenta-
tion, whereby in silico-generated samples are used alongside the
original ones to artificially increase the number of observations4.
In this manuscript, we focus on augmenting real with newly
generated samples, in their original high-dimensional gene space,
and whose distribution mimics the original data distribution.
While classically, data modeling relies on a thorough under-
standing of the priors on invariants underlying the production of
such data, current methods of choice for photorealistic image
generation rely on deep learning-based generative adversarial
networks (GANs)5–8 and variational autoencoders (VAEs)9,10.

GANs involve a generator that outputs realistic in silico-
generated samples. This is achieved with a neural network that
learns to transform a simple, low-dimensional distribution into a
high-dimensional distribution that is virtually indistinguishable
from the real training distribution (Supplementary Fig. 1).
While data augmentation has been a recent success story in

various fields of computer science, the development and usage of
GANs and VAEs for omics data augmentation has yet to be
investigated. As a proof of concept that realistic in silico gen-
eration could potentially be applied to biomedical omics data, we
focus on the generation of single-cell RNA (scRNA) sequencing
data using GANs. scRNA sequencing has made it possible to
evaluate genome-wide gene expression of thousands to millions
of cells in a single experiment11. This detailed information across
genes and cells opens the door to a much deeper understanding of
cell type heterogeneity in a tissue, cell differentiation, and cell
type-specific disease etiology.
In this manuscript, we establish how a single-cell GAN

(scGAN) can be leveraged to generate realistic scRNA-seq data.
We further demonstrate that our scGAN can use conditioning
(cscGAN) to produce specific cell types or subpopulations, on-
demand. Finally, we show how our models can successfully
augment sparse cell populations to improve the quality and
robustness of downstream classification. To the best of our
knowledge, this constitutes the first attempt to apply these
groundbreaking methods for the augmentation of sequencing
data.

Results
Realistic generation of scRNA-seq data using an scGAN. Given
the great success of GANs in producing photorealistic images, we
hypothesize that similar approaches could be used to generate
realistic scRNA-seq data (i.e. matrices where each row corre-
sponds to a cell and each column to the expression level of a
gene). In this work “realistic” is referring to the generation of data
that mimics the distribution of the real data, in their original

space, without merely replicating them. To distinguish experi-
mental scRNA-seq data from data produced by GANs we will use
the terms “real” and “generated” cells, respectively.

To build and evaluate different GAN models for scRNA-seq
data generation we used a peripheral blood mononuclear cell
(PBMC) scRNA-seq dataset with 68,579 cells12 (Supplementary
Table 1, Methods). The PBMC dataset contains many distinct
immune cell types, which yield clear clusters that can be assigned
their cell type identity with marker genes (genes specifically
expressed in a cluster). The aforementioned features of the
PBMC dataset make it ideal for the evaluation of our scGAN
performance.
Since it is notoriously difficult to evaluate the quality of

generative models13,14 we used four evaluation criteria inspired
by single-cell data analysis: t-SNE, marker gene correlation,
maximum mean discrepancy (MMD), and classification perfor-
mance (see Methods for evaluation details). These metrics are
used as quantitative and qualitative measures to assess the
synthesized cells. Based on these criteria, the best performing
single-cell GAN (scGAN) model was a GAN minimizing the
Wasserstein distance15, relying on two fully connected neural
networks with batch normalization (Supplementary Fig. 1). We
found that the quality of the generated cells greatly improved
when the training cells were scaled to exhibit a constant total
count of 20,000 reads per cell. In addition to this preprocessing
step, we added a custom library-size normalization (LSN)
function to our scGAN’s generator so that it explicitly outputs
generated cells with a total read count equal to that of the training
data (20,000 reads per cell) (Supplementary Fig. 1). Our LSN
function greatly improved training speed and stability and gave
rise to the best performing models based on the aforementioned
metrics. Further details of the model selection and (hyper)-
parameter optimization can be found in the Methods section.
For a qualitative assessment of the results, we used t-SNE16,17

to obtain a two-dimensional representation of generated and real
cells from the test set (Fig. 1a–c, Supplementary Fig. 2). The
scGAN generates cells that represent every cluster of the data it
was trained on and the expression patterns of marker genes are
accurately learned by scGAN (Supplementary Fig. 3).
Furthermore, the scGAN is able to model intergene depen-

dencies and correlations, which are a hallmark of biological gene-
regulatory networks18. To prove this point we computed the
correlation and distribution of the counts of cluster-specific
marker genes (Fig. 1d) and 100 highly variable genes between
generated and real cells (Supplementary Fig. 4). We then used
SCENIC19 to understand if scGAN learns regulons, the functional
units of gene-regulatory networks consisting of a transcription
factor (TF) and its downstream regulated genes. scGAN trained
on all cell clusters of the Zeisel dataset20 (see Methods) faithfully
represent regulons of real test cells, as exemplified for the Dlx1
regulon in Supplementary Fig. 4G–J, suggesting that the scGAN
learns dependencies between genes beyond pairwise correlations.
To show that the scGAN generates realistic cells, we trained a

Random Forest (RF) classifier21 to distinguish between real and
generated data. The hypothesis is that a classifier should have a
(close to) chance-level performance when the generated and real
data are highly similar. Indeed the RF classifier only reaches 0.65
area under the curve (AUC) when discriminating between the
real cells and the scGAN-generated data (blue curve in Fig. 1e)
and 0.52 AUC when tasked to distinguish real from real data
(positive control).
Finally, we compared the results of our scGAN model to two

state-of-the-art scRNA-seq simulations tools, Splatter22 and
SUGAR23 (see Methods for details). While Splatter models some
marginal distribution of the read counts well (Supplementary
Fig. 5), it struggles to learn the joint distribution of these counts,
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as observed in t-SNE visualizations with one homogeneous
cluster instead of the different subpopulations of cells of the real
data, a lack of cluster-specific gene dependencies, and a high
MMD score (129.52) (Supplementary Table 2, Supplementary
Fig. 4). SUGAR, on the other hand, generates cells that overlap
with every cluster of the data it was trained on in t-SNE
visualizations and accurately reflects cluster-specific gene depen-
dencies (Supplementary Fig. 6). SUGAR’s MMD (59.45) and
AUC (0.98), however, are significantly higher than the MMD
(0.87) and AUC (0.65) of the scGAN and the MMD (0.03) and
AUC (0.52) of the real data (Supplementary Table 2, Supple-
mentary Fig. 6). It is worth noting that SUGAR can be used,
like here, to generate cells that reflect the original distribution
of the data. It was, however, originally designed and optimized to
specifically sample cells belonging to regions of the
original dataset that have a low density, which is a different task
than what is covered by this manuscript. While SUGAR’s
performance might improve with the adaptive noise covariance
estimation, the runtime and memory consumption for this
estimation proved to be prohibitive (see Supplementary Fig. 6F–I
and Methods).
The results from the t-SNE visualization, marker gene

correlation, MMD, and classification corroborate that the scGAN
generates realistic data from complex distributions, outperform-
ing existing methods for in silico scRNA-seq data generation. The
realistic modeling of scRNA-seq data entails that our scGAN does
not denoise nor impute gene expression information, while they
potentially could24. Nevertheless, an scGAN that has been trained
on imputed data using MAGIC25 generates realistic imputed
scRNA-seq data (Supplementary Fig. 7). Of note, the fidelity with
which the scGAN models scRNA-seq data seems to be stable
across several tested dimensionality reduction algorithms (Sup-
plementary Fig. 8).

Realistic modeling across tissues, organisms, and data size. We
next wanted to assess how faithful the scGAN learns very large,
more complex data of different tissues and organisms. We
therefore trained the scGAN on the currently largest published
scRNA-seq dataset consisting of 1.3 million mouse brain cells and
measured both the time and performance of the model with
respect to the number of cells used (Supplementary Table 1,
Supplementary Fig. 9). Qualitative assessment using t-SNE
visualization shows that the scGAN generates cells that repre-
sent every cluster of the data it was trained on. The expression
patterns of marker genes are accurately learned (Supplementary
Fig. 9).
The actual time required to train an scGAN depends on the

data size and complexity and on the computer architecture used,
necessitating at least one high-performance GPU card. However,
it should be noted that scGAN uses batch training so that its
memory consumption does not depend on the number of cells
and its runtime scales linearly, at worst, with it.
Our results demonstrate that the scGAN performs consistently

well on scRNA-seq datasets from different organisms, tissues, and
with varying complexity and size, learning realistic representa-
tions of millions of cells.

Conditional generation of specific cell types. scRNA-seq in
silico data generation reaches its full potential when specific cells
of interest could be generated on demand, which is not directly
possible with the scGAN model. This conditional generation of
cell types could be used to increase the number of a sparse,
specific population of cells that might represent only a small
fraction of the total cells sequenced.
While specific cell types of interest can be obtained by scGAN

cell generation followed by clustering and cell selection, we
developed and evaluated various conditional scGAN (cscGAN)
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architectures that can directly generate cell types of interest.
Common to all these models is that the cscGAN learns to
generate cells of specific types while being trained on the
complete multiple cell type dataset. The cell type information is
then associated to the genes’ expression values of each cell
during the training. These tags can then be used to generate
scRNA-seq data of a specific type, in our case of a specific cluster
of PBMCs. The best performing cscGAN model utilized a
projection discriminator26, along with Conditional Batch Nor-
malization27 and an LSN function in the generator. Again, model
architecture selection and optimization details can be found in
the Methods.
Model performance was assessed on the PBMC dataset using t-

SNE, marker gene correlation, and classification. The cscGAN
learns the complete distribution of clusters of the PBMC data
(Fig. 2) and can conditionally represent each of the ten clusters on
demand. The t-SNE results for the conditional generation of
cluster 2 and cluster 6 cells are shown in Fig. 2a–c and Fig. 2d–f,
respectively. Figure 2a–c highlights the real (red, panels a and b)
and generated (blue, panels a and c) cells for cluster 2, while the

real cells of all other clusters are shown in gray. The cscGAN
generates cells that are overlapping with the real cluster of interest
in the t-SNE visualizations. In addition, the cscGAN also
accurately captures inter- and intra-cluster gene–gene dependen-
cies as visualized in the marker gene correlation plots in
Supplementary Fig. 10. The assumption that the cscGAN
generates conditional cells that are very similar to the real cells
of the cluster of interest is substantiated in the final classification
task. An RF classifier reaches an AUC between 0.62 (cluster 2,
Fig. 2g) and 0.55 (cluster 6, Fig. 2h) when trying to distinguish
cluster-specific cscGAN-generated cells from real cells, a value
that is reasonably close to the perfect situation of random
classification (AUC of 0.5) (Supplementary Table 4). The MMD
distances between cscGAN generated and real cells is 0.286
(cluster 2, Fig. 2g) and 0.238 (cluster 6, Fig. 2h) while distances
between real and real cells (positive control) were 0.037 and
0.129, respectively (Supplementary Table 3).
It is interesting to observe that the cscGAN and scGAN

generate cells of very similar quality, as an RF classifier reaches
an AUC of 0.61 (MMD of 0.674) to distinguish between
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cscGAN-generated and real cells and an AUC of 0.65 (MMD
of 0.547) for scGAN-generated and real cells (differences not
significant).
The results of this section demonstrate that the cscGAN can

generate high-quality scRNA-seq data for specific clusters or cell
types of interest, while rivaling the overall representational power
of the scGAN. Importantly, the fidelity with which the cscGAN
models scRNA-seq data seems to be independent of the tested
Louvain and K-means clustering algorithms (Supplementary
Fig. 11, Supplementary Table 5).

Improved classification of sparse cells using augmented data.
We now investigate how we can use the conditional generation of
cells to improve the quality and robustness of downstream clas-
sification of rare cell populations. The underlying hypotheses are
two-fold. (i) A few cells of a specific cluster might not represent
the cell population of that cluster well, potentially degrading the
quality and robustness of downstream classification. (ii) This
degradation might be mitigated by augmenting the rare popula-
tion with cells generated by the cscGAN. The base assumption is
that the cscGAN might be able to learn good representations for
small clusters by using gene expression and correlation infor-
mation from the whole dataset.
To test the two parts of our hypothesis, we first artificially

reduce the number of cells of the PBMC cluster 2 (down-
sampling) and observe how it affects the ability of an RF model to
accurately distinguish cells from cluster 2 from cells of other
clusters. In addition, we train the cscGANs on the same
downsampled datasets, generate cells from cluster 2 to augment
the downsampled population, retrain an RF with this augmented
dataset, and measure the gain in their ability to correctly classify
the different populations.
More specifically, cluster 2 comprises 15,008 cells and

constitutes the second largest population in the PBMC dataset.
Such a large number of cells makes it possible to obtain
statistically sound classification results. By deliberately holding
out large portions of this population, we can basically quantify
how the results would be affected if that population was
arbitrarily small. We produce eight alternate versions of the
PBMC dataset, obtained by downsampling the cluster 2
population (keeping 50%, 25%, 10%, 5%, 3%, 2%, 1%, and 0.5%
of the initial population) (Supplementary Fig. 12, Supplementary
Table 6). We then proceed to train RF classifiers (for each of those
eight downsampled datasets) (Supplementary Fig. 13A), on 70%
of the total amount of cells and kept aside 30% to test the
performance of the classifier (Supplementary Fig. 13B). The red
line in Fig. 3a and Supplementary Fig. 14 very clearly illustrates
how the performance of the RF classifier, measured through the
F1 score, gradually decreases from 0.95 to 0.45 while the
downsampling rate goes from 50% to 0.5%. To see if we could
mitigate this deterioration, we tested two ways of augmenting our
alternate datasets. First, we used a naïve method, which we call
upsampling, where we simply enlarged the cluster 2 population
by duplicating the cells that were left after the downsampling
procedure (Supplementary Fig. 13A). The orange line in Fig. 3a
shows that this naive strategy actually mitigates the effect of the
downsampling, albeit only to a minor extent (F1 score of 0.6
obtained for a downsampling rate of 0.5%). It is important to note
that adding noise (e.g. standard Gaussian) to the upsampled
cluster 2 cells usually deteriorated the classification performance
(data not shown).
In order to understand whether in silico-generated cluster 2

cells could improve the RF performance, we next trained the
cscGANs on the eight downsampled datasets (Supplementary
Fig. 13C). We then proceeded to augment the cluster 2

population with the cells generated by the cscGAN (Supplemen-
tary Fig. 13A). Figure 3c shows that using as little as 2%
(301 cells) of the real cluster 2 data for training the cscGAN
suffices to generate cells that overlap with real test cells. When
less cells are used the t-SNE overlap of cluster 2 training cells and
generated cells slightly decreases (Fig. 3d, Supplementary Fig. 15).
These results strongly suggest that the cluster-specific expression
and gene dependencies are learned by the cscGAN, even when
very few cells are available. In line with this assumption, the blue
curves in Fig. 3a and Supplementary Fig. 14 show that
augmenting the cluster 2 population with cluster 2 cells generated
by the cscGAN almost completely mitigates the effect of the
downsampling (F1 score of 0.93 obtained for a downsampling
rate of 0.5%). We obtained similar results with RFs that have been
optimized for the number of trees and features per tree
(Supplementary Fig. 14D), showing that augmentation robustly
increases classification performance across RF hyper-parameter
space. Interestingly, the RF improves with increasing numbers of
generated cells used for the classifiers’ training (Supplementary
Fig. 16).
Two conclusions can be obtained from these results. First the

obvious, few cluster-specific cells do not represent the population
well. Second, the usage of cscGAN-generated scRNA-seq data can
mitigate this effect and increases the performance of downstream
applications like classification when limited samples of a specific
cluster are available.

Improved trajectory analysis using augmented data. The pre-
vious results highlight the ability of the cscGAN to specifically
generate cells corresponding to different types or clusters. Such
discrete states, however, are not sufficient to capture intermediate
and transitional cellular states of an organism. Erythrocytes, for
example, are derived in the red bone marrow from pluripotent
stem cells that give rise to all types of blood cells. This differ-
entiation process contains transitional cellular states that can be
visualized (Supplementary Fig. 17A–C) using a pseudo-time
analysis of bone marrow scRNA-seq data28 (see Supplementary
Table 1, Methods). The outcome of pseudo-time analyses, how-
ever, depends heavily on how well the variety of continuous states
of erythrocytes is represented in the data. To highlight this
property, we manually downsampled a subpopulation of ery-
throcytes in the bone marrow dataset. We can observe in Sup-
plementary Fig. 17D–F that such downsampling directly affects
the structure of the graph inferred by the pseudo-time analysis.
To show that the scGAN can reliably model populations that

exist in continuous cellular states, we trained it on the
downsampled bone marrow dataset. We then replaced the cells
that were re-moved from the original data with handpicked
scGAN-generated cells that belonged to the same subpopulation
of erythrocytes. Adding the cells generated by scGAN allows to
restore the original structure of the graph (Supplementary
Fig. 17G–I). These results suggest that scGANs are able to model
discrete and continuous cellular states and cell trajectories.

cscGAN learns and translates gene-regulatory syntax. The
fidelity with which the (c)scGAN creates cells of very sparse
populations is striking and it is tempting to speculate if the model
actually learns and translates gene-regulatory information from
abundant cell clusters to sparse ones.
We trained scGANs on decreasing amounts of cluster 2 cells

(keeping 50%, 25%, 10%, 5%, 3%, 2%, 1%, 0.5%, 0.2%, and 0.1%
of the initial population) and compared scGAN-generated cluster
2 cells to real test cluster 2 cells. In addition, we trained cscGANs
on the same number of cluster 2 cells and all other clusters (see
also previous section). We then compared scGAN (trained only
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on cluster 2) and cscGAN (trained on all clusters) generated
cluster 2 cells to real test cluster 2 cells using RF classification and
t-SNE visualization. The underlying hypothesis is that if the
cscGAN can learn and translate general rules of gene regulation
from abundant to sparse cell populations, it should provide more
realistic cells for sparse clusters than a scGAN that was only
trained on the latter.
We first assessed model fidelity by the ability of an RF classifier

to distinguish scGAN and cscGAN-generated cluster 2 cells from
real test cluster 2 cells. While the scGAN trained on a large
number of cluster 2 cells generates more realistic cluster 2 cells
than a cscGAN trained on all cell clusters, the cscGAN generates
realistic cells of much wider variety than the scGAN when only
few cluster 2 training cells are available (Supplementary Fig. 18).
While the cscGAN seems to leverage gene-regulatory information
from the more abundant clusters to compensate for the missing
cluster 2 observations, the scGAN seems to re-create the few
cluster 2 cells it has learned from, failing to generalize to unseen
cluster 2 test cells (Supplementary Fig. 18C, D).
These results suggest that (c)scGAN can learn fundamental

gene-regulatory rules that are valid across the observed cells
(clusters and types). The (c)scGAN seems to learn those rules
from the cells of large clusters and might apply them when
generating cells of very small cell clusters.

Discussion
This work shows how cscGAN can be used to generate realistic
scRNA-seq representations of complex scRNA-seq data with
multiple distinct cell types and millions of cells. cscGAN out-
performs current methods in the realistic generation of scRNA-
seq data and scales sublinearly in the number of cells. Most
importantly, we provide compelling evidence that generating in

silico scRNA-seq data improves downstream applications, espe-
cially when sparse and underrepresented cell populations are
augmented by the cscGAN-generated cells. We specifically show
how the classification of cell types can be improved when the
available data are augmented with in silico-generated cells, lead-
ing to classifiers that rival the predictive power of those trained on
real data of similar size.
It may be surprising or even suspicious that our cscGAN is able

to learn to generate cells coming from very small subpopulations
(e.g. 16 cells) so well. We speculate that although cells from a
specific type may have very specific functions, or exhibit highly
singular patterns in the expression of several marker genes, they
also share a lot of similarities with the cells from other types,
especially with those that share common precursors. In other
words, the cscGAN is not only learning the expression patterns of
a specific subpopulation from the (potentially very few) cells of
that population, but also from the (potentially very numerous)
cells from other populations. This hypothesis actually aligns with
the architecture of the cscGAN. In the generator, the only para-
meters that are cluster specific are those learned in the Condi-
tional Batch Normalization layers (BLN). On the other hand, all
the parameters of each of the Fully Connected (FC) layers are
shared across all the different cell types.
While focusing on the task of cell type classification in this

manuscript, many other applications will most probably gain
from data augmentation, including—but not limited to—clus-
tering itself, cell type detection, and data denoising. Indeed, a
recent manuscript used Wasserstein GANs (WGAN) to denoise
scRNA-seq data24. For this purpose, the (low-dimensional)
representation obtained at the output of the single hidden layer of
a critic network was used. These lower-dimensional representa-
tions keep cell type-determining factors while they discard noisy
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information such as batch effects. In general, GAN models allow
for the simulation of cell development or differentiation through
simple arithmetic operations applied in the latent space repre-
sentation of the GAN, operations for which our conditional
cscGAN is especially suited.
Throughout this manuscript, we solely focused on using cell

types as a side information to condition the generation on. It is
worth mentioning that any other kind of side information (par-
titioning of the sample) could equally be used. For instance, a
cscGAN could be conditioned and trained on a combination of
case and control samples. While many other choices could lead to
interesting applications, we leave this avenue of research for
future work.
It is tempting to speculate how well the scRNA-seq data gen-

eration using cscGAN can be applied to other biomedical
domains and data types. It is easy to envision, for example, how
cscGAN variants could generate realistic (small) RNA-seq or
proteomic data. Moreover, cscGAN variants might successfully
generate whole genomes with predefined features such as disease
state, ethnicity, and sex, building virtual patient cohorts for rare
diseases, for example. In biomedical imaging, in silico image
generation could improve object detection, disease classification,
and prognosis, leading to increased robustness and better gen-
eralization of the experimental results, extending clinical
application.
We hypothesize that data augmentation might be especially

useful when dealing with human data, which is notoriously het-
erogeneous due to genetic and environmental variation. Data
generation and augmentation might be most valuable when
working with rare diseases or when samples with a specified
ethnicity or sex, for example, are simply lacking.
Lastly we would like to emphasize that the generation of rea-

listic in silico data has far reaching implications beyond enhan-
cing downstream applications. In silico data generation can
decrease human and animal experimentation with a concomitant
reduction in experimental costs, addressing important ethical and
financial questions.

Methods
Datasets and preprocessing. PBMC: We trained and evaluated all models using a
published human dataset of 68,579 PBMCs (healthy donor A)12. The dataset was
chosen as it contains several clearly defined cell populations and is of reasonable
size. In other words, it is a relatively large and complex scRNA-seq dataset with
very good annotation, ideal for the learning and evaluation of generative models.

The cells were sequenced on Illumina NextSeq 500 High Output with ~20,000
reads per cell. The cell barcodes were filtered as in ref. 12 and the filtered gene
matrix is publicly available on the 10x Genomics website.

In all our experiments, we removed genes that are expressed in less than three
cells in the gene matrix, yielding 17,789 genes. We also discarded cells that have
less than 10 genes expressed. This, however, did not change the total number of
cells. Finally, the cells were normalized for the library size by first dividing UMI
counts by the total UMI counts in each cell and then multiplied by 20,000. See
Supplementary Table 1 for an outlook of this dataset.

Brain Large: In addition to the PBMC dataset we trained and evaluated our best
performing scGAN model on the currently largest available scRNA-seq dataset of
~1.3 million mouse brain cells (10x Genomics). The dataset was chosen to prove
that the model performance scales to millions of scRNA-seq cells, even when the
organism, tissue, and the sample complexity varies. The sequenced cells are from
the cortex, hippocampus, and the subventricular zone of two E18 mice.

The barcodes filtered matrix of gene by cell expression values is available on the
10x Genomics website. After removing genes that are expressed in less than three
cells, we obtained a gene matrix of 22,788 genes. We also discarded cells that have
less than 10 genes expressed, which did not affect the overall number of cells. The
cells were normalized for the library size as described in the PBMC section.

Brain Small: We also examined the performance of the generative models
proposed in this manuscript on a subset of the Brain Large dataset provided by 10x
Genomics, which consists of 20,000 cells. The preprocessing of the Brain Small
dataset was identical to that of the Brain Large dataset, yielding a matrix of 17,970
genes by 20,000 cells (Supplementary Table 1).

Bone Marrow: In order to understand the ability of the scGAN to learn the
distribution from imputed cells we used a mouse bone marrow cell dataset
(GSE72857)29. The cells were collected using a plate-based MARS-seq protocol in

order to identify myeloid progenitor subpopulations. The sparsity and the
heterogeneity of cells in this dataset makes it suitable for imputation. Data
preprocessing was performed as described above, yielding a matrix of 12,443 genes
by 2,730 cells (Supplementary Table 1). Processed bone marrow cells were either
used directly for scGAN modeling or after imputation using MAGIC (see section
Expression imputation with MAGIC).

Zeisel: Finally, we trained scGANs on somatosensory cortex (S1) and
hippocampal CA1 cells (GSE60361)20, which consists of 3,005 high-quality single
cells (including neurons, glia, and endothelial cells). After preprocessing we
obtained a matrix of 18,738 genes by 3,005 cells (Supplementary Table 1).

Clustering: Throughout this manuscript we use the Cell Ranger workflow for
the scRNA-seq secondary analysis12. First, the cells were normalized by UMI
counts. Then, we took the natural logarithm of the UMI counts. Afterwards, each
gene was normalized such that the mean expression value for each gene is 0, and
the standard deviation is 1. The top 1000 highly variable genes were selected based
on their ranked normalized dispersion. PCA was applied on the selected 1000
genes. In order to identify cell clusters, we used Louvain clustering30 on the first 50
principal components of the PCA. This replaced the k-means clustering used in
Cell Ranger R analysis workflow, as the Scanpy31 tutorial on clustering the PBMC
dataset advises. The number of clusters were controlled by the resolution parameter
of scanpy.api.tl.louvain. The higher resolution made it possible to find more and
smaller clusters.

For the PBMC and the Brain Large dataset we used a resolution of 0.15 which
produced 10 and 13 clusters, respectively. The Brain Small dataset was clustered
using a resolution of 0.1 which gives 8 clusters.

To understand if the selection of different clustering algorithms might affect the
fidelity with which the cscGAN models scRNA-seq data, we compared the results
obtained with Louvain clustering compare to that of K-means clustering on the
PBMC dataset. We used the scikit-learn package32 to apply the clustering on the
first 50 principal components extracted as mentioned above. The K-means scikit-
learn function default parameters were used for the clustering except for the
number of centroids to generate in the data, which was set to 10 (the number of
clusters previously obtained with the Louvain algorithm). This produces 10 clusters
(Supplementary Fig. 11). The results obtained are very similar to those with the
Louvain clustering in terms of the ability of an RF classifier to discriminate between
real cells and cscGAN-generated cells (Supplementary Table 5).

Definition of marker genes: In several experiments we investigated the
expression levels and correlation of genes. For this purpose, a group of 10 marker
genes was defined by taking the five most highly upregulated genes for the largest
two clusters in the dataset (clusters 1 and 2 for the PBMC dataset). Significant
upregulation was estimated using the logarithm of the Louvain-clustered cells with
the scanpy.api.tl.rank_genes_groups function with its default parameters (Scanpy
1.2.2)31.

Model description. scGAN: In this section, we outline the model used for the
scGAN by defining the loss function it optimizes, the optimization process, and key
elements of the model architecture. GANs typically involve two Artificial Neural
Networks: a generator, which, given some input random noise, trains to output
realistic samples, and a critic that trains to spot the differences between real cells
and the ones that the generator produces (Supplementary Fig. 1). An adversarial
training procedure allows for those entities to compete against each other in a
mutually beneficial way. Formally, GANs minimize a divergence between the
distributions of the real samples and of the generated ones. Different divergences
are used giving rise to different GAN variants. While original GANs5 minimize the
so-called Jensen–Shannon divergence, they suffer from known pitfalls making their
optimization notoriously difficult to achieve33. For instance, they are known to be
prone to mode collapse, where the generated samples are realistic albeit only
representing a fraction of the variety of the samples it was trained on (i.e. only a few
but not all modes of the distribution of the real samples is learned). On the other
hand, WGANs15,34 use a Wasserstein distance, with compelling theoretical and
empirical arguments. In our hands, WGANs showed no evidence of mode collapse
and showed stable and robust training with respect to hyper-parameter optimi-
zation. On a side note, early attempts to train an original GAN on scRNA-seq data
never yielded convergence, while an out-of-the-box implantation of a WGAN did.
This does not imply that it is impossible to successfully train an original GAN on
such data.

Let us denote by Pr and Ps the distributions of the real and of the generated cells
respectively. The Wasserstein distance between them, also known as the Earth
Mover distance, is defined as follows:

W Pr; Psð Þ ¼ inf γ2Π Pr ;Psð ÞE x;yð Þ$γ x % yj jj j; ð1Þ

where x and y are random variables and ∏(Pr, Ps) is the set of all joint distributions
γ(x, y) whose marginals are Pr and Ps, respectively. Those distributions represent all
the ways (called transport plans) you can move masses from x to y in order to
transform Pr into Ps. The Wasserstein distance is then the cost of the optimal
transport plan.

However, in this formulation, finding a generator that will generate cells coming
from a distribution Ps such that it minimizes the Wasserstein distance with the
distribution of the real cells is intractable.
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Fortunately, we can use a more amenable, equivalent formulation for the
Wasserstein distance, given by the Kantorovich–Rubinstein duality:

W Pr; Psð Þ ¼ sup fj jj jL&1Ex$Pr
f xð Þ %Ex$Ps

f xð Þ; ð2Þ

where ||f||L ≤ 1 is the set of 1-Lipschitz functions with values in R. The solution to
this problem is approximated by training a Neural Network that we previously
referred to as the critic network, and whose function will be denoted by fc.

The input of the generator are realizations of a multivariate noise whose
distribution is denoted by Pn. As it is common in the literature, we use a centered
Gaussian distribution with unit diagonal covariance (i.e. a multivariate white
noise). The dimension of the used Gaussian distribution defines the size of the
latent space of the GAN. The dimension of that latent space should reflect the
intrinsic dimension of the scRNA-seq expression data we are learning from, and is
expected to be significantly smaller than their apparent dimension (i.e. the total
number of genes).

If we denote by fg the function learned by our generator network, the
optimization problem solved by the scGAN is identical to that of a Wasserstein
GAN:

minf gmax f cj jj jL&1Ex$Pr
f c xð Þ %Ex$f g Pnð Þf c xð Þ: ð3Þ

The enforcement of the Lipschitz constraint is implemented using the gradient
penalty term proposed by Gulrajani et al.34.

Hence, training an scGAN model involves solving a so-called minmax problem.
As no analytical solution to this problem can be found, we recourse to numerical
optimization schemes. We essentially follow the same recipe as most of the GAN
literature5,33, with an alternated scheme between maximizing the critic loss (for five
iterations) and minimizing the generator loss (for one iteration). For both the
minimization and the maximization, we use a recent algorithm called AMSGrad35,
which addresses some shortcomings of the widely used Adam algorithm36, leading
to a more stable training and convergence to more suitable saddle points. The
AMSGrad exponential decay parameter beta1 was set to 0.5 and beta2 to 0.9.

Regarding the architecture of our critic and generator networks, which is
summarized in Supplementary Fig. 1, most of the existing literature on images
prescribes the use of convolutional neural networks (CNN). In natural images,
spatially close pixels exhibit stronger and more intricate inter-dependencies. Also,
the spatial translation of an object in an image usually does not change its meaning.
CNNs have been designed to leverage those two properties. However, neither of
these properties hold for scRNA-seq data, for which the ordering of the genes is
mostly arbitrary and fixed for all cells. In other words, there is no reason to believe
that CNNs are adequate, which is why scGAN uses FC layers. We obtained the best
results using an MLP with FC layers of 256, 512, and 1024 neurons for the
generator and an MLP with FC layers of 1024, 512, 256 for the critic
(Supplementary Fig. 1B, C). At the outermost layer of the critic network, following
the recommendation from Arjovsky and Bottou33, we do not use any activation
function. For every other layer of both the critic and the generator networks, we use
a Rectified Linear Unit (ReLU) as an activation function.

Naturally, the optimal parameters in each layer of the artificial neural network
highly depends on the parameters in the previous and subsequent layers. Those
parameters, however, change during the training for each layer, shifting the
distribution of subsequent layer’s inputs slowing down the training process. In
order to reduce this effect and to speed up the training process, it is common to use
Normalization layers such as Batch Normalization37 for each training mini-batch.
We found that the best results were obtained when using Batch Normalization at
each layer of the generator. Finally, as mentioned in the Datasets and preprocessing
section, each real sample used for training has been normalized for library size. We
now introduce a custom LSN layer that enforces the scGAN to explicitly generate
cells with a fixed library size (Supplementary Fig. 1B).

LSN layer: A prominent property of scRNA-seq is the variable range of the
genes expression levels across all cells. Most importantly, scRNA-seq data are
highly heterogeneous even for cells within the same cell subpopulation. In the field
of Machine Learning, training on such data is made easier with the usage of input
normalization. Normalizing input yields similarly ranged feature values that
stabilize the gradients. scRNA-seq normalization methods that are used include
LSN, where the total number of reads per cell is exactly 20,000 (see also Datasets
and preprocessing).

We found that training the scGAN on library-size normalized scRNA-seq data
helps the training and enhances the quality of the generated cells in terms of our
evaluation criteria (model selection method). Providing library-size normalized
cells for training of the scGAN implies that the generated cells should have the
same property. Ideally, the model will learn this property inherently. In practice, to
speed up the training procedure and make training smoother, we added the
aforementioned LSN layer at the output of the generator (Supplementary Fig. 1B).
Our LSN Layer rescales its inputs (x) to have a fixed, total read count (φ) per cell:

yrelu ¼ ReLU xW þ bð Þ; ð4Þ

youtput ¼
φP

i yrelu
! "

i

yrelu; ð5Þ

where W and b are its weights and biases, and (yrelu)i denotes the ith component of
the yrelu vector.

cscGAN: Our cscGAN leverages conditional information about each cell type, or
subpopulation, to enable the further generation of type-specific cells. The
integration of such side information in a generative process is known as
conditioning. Over the last few years, several extensions to GANs have been
proposed to allow for such conditioning26,38,39. It is worth mentioning that each of
those extensions are available regardless of the type of GAN at hand.

We explore two conditioning techniques, auxiliary classifiers (ACGAN)39 and
projection-based conditioning (PCGAN)26. The former adds a classification loss
term in the objective. The latter implements an inner product of class labels at the
critic’s output. While we also report results obtained with the ACGAN (see
Supplementary Table 4), the best results were obtained while conditioning through
projection.

In practice, the PCGAN deviates from the scGAN previously described by (i)
multiple critic output layers, one per cell type and (ii) the use of Conditional
BNL27, whereby the learned singular scaling and shifting factors of the BNL are
replaced with one per cell type.

As described in Section 2 and 3 of ref. 26, the success of the projection strategy
relies on the hypothesis that the conditional distributions (with respect to the label)
of the data at hand are simpler, which helps stabilizing the training of the GAN.
When it comes to scRNA-seq data, it is likely that this hypothesis holds as the
distribution of the gene expression levels should be simpler within specific cell
types or subpopulations.

Model selection and evaluation. Evaluating the performance of generative
models is no trivial task13,14. We designed several metrics to assess the quality of
our generated cells at different levels of granularity. We will now describe in detail
how those metrics were obtained. They can be grouped into two categories: the
metrics we used for model selection (in order to tune the hyper-parameters of our
GANs) and the metrics we introduced in the Results section.

Metrics used for model selection. As described in the previous section, defining
our (c)scGAN model entails carefully tuning several hyper-parameters. We hereby
recall the most influential ones: (i) the number and size of layers in the Neural
Networks, (ii) the use of an LSN layer, and (iii) the use of a Batch Normalization in
our generator network.

For each of our models, before starting the training, we randomly pick 3000
cells from our training data and use them as a reference to measure how it
performs. We therefore refer to those 3,000 cells as “real test cells”.

To optimize those hyper-parameters, we trained various models and evaluated
their performance through a few measures, computed during the training
procedure: (a) the distance between the mean expression levels of generated cells
and real test cells, (b) the mean sparsity of the generated cells, and (c) the
intersection between the most highly variable genes between the generated cells and
the real test cells.

First, we compute the mean expression value for each gene in the real test cells.
During the training procedure, we also compute the mean expression value for
each gene in a set of 3,000 generated cells. The discrepancy is then obtained after
computing the Euclidean distance between the mean expression values of the real
and the generated cells.

scRNA-seq data typically contains a lot of genes with 0 read counts per cell,
which we also use to estimate the similarity of generated and real cells. Naturally,
similar sparsity values for real and test cells indicate good model performance
whereas big differences indicate bad performance.

Finally, using the Scanpy31 package, we estimate the 1000 most highly variable
genes from the real data. During the training, we also estimate what are the 1,000
most highly variable genes from a sample of 3,000 generated cells. We use the size
of the intersection between those two sets of 1,000 highly variable genes as a
measurement of the quality of the generation.

Gene expression and correlation. To highlight the performance of our models,
we used violin plots of the expression of several marker genes along with heatmaps
displaying the correlation between those same marker genes as expressed among all
clusters, or among specific clusters.

To produce those plots, we used the expression levels of cells (either test real, or
generated by scGAN, cscGAN) in a logarithmic scale. For the heatmaps we
compute the Pearson product–moment correlation coefficients.

t-SNE plots. To visualize generated and real cells within same t-SNE plot they are
embedded simultaneously. In brief, we are trying to assess how realistic the gen-
erated cells are. Thus our reference point is the real data itself. The delineation of
what constitutes noise and what constitutes biologically relevant signal should be
driven by the real data only. Hence we project the generated cells on the first 50
principal components that were computed from the real cells in the Cell Ranger
pipeline12 (see also Datasets and preprocessing). From this low-dimensional
representation, we compute the t-SNE embedding.

To show that the results we obtained were not an artifact of using a Principal
Components Analysis, we also reported (Supplementary Fig. 8) the results (t-SNE
plots and classification results) obtained while using the first 50 components of
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ZIFA40 (Zero-Inflated Factor Analysis), computed on both the real and generated
cells, as an alternate dimensionality reduction method.

Classification of real versus generated cells. Building on the 50-dimensional
representation of the cells (t-SNE plots section), we trained classifiers to distinguish
between real test cells and generated cells. Using this lower-dimensional repre-
sentation is motivated by the fact that it captures most of the biologically relevant
information while discarding most of the noise, which is known to be high in
scRNA-seq data. Moreover, it is statistically more sound to use a dimensionality
reduction technique prior to classifying data when the number of observations is in
the same order of magnitude as the number of variables, as is the case with the
datasets we worked with. As mentioned in the Results section, we trained RF
classifiers with 1000 trees and a Gini impurity quality metric of the decision split
using the scikit-learn package32. The maximum depth of the classifier is set so that
the nodes are expanded until all leaves are pure or until all leaves contain less than
two samples. The maximum number of features used is the square root of the
number of genes.

In order to produce Fig. 1e, which highlights the ability to separate real from
generated cells, irrespective of which cluster they are coming from, we used the
whole real test set along with generated cells. On the other hand, Fig. 2g, h is cluster
specific (cluster 2 and cluster 5 respectively). We trained the RFs using only the
cells from those specific clusters. To prevent bias due to class imbalance, each
model was trained using an equal number of real test cells and generated cells.

We used a five-fold cross-validation procedure to estimate how each classifier
generalizes. To assess this generalization performance, we plotted the Receiver
Operating Characteristic (ROC) curves obtained for each fold, along with the
average of all the ROC curves. We also display the AUC in each of those cases.
Supplementary Tables 4 and 5 report more extensive results.

MMD distance. Computing robust distances over empirical distributions is a
difficult issue in high dimension. However, a recent framework called kernel two-
sample test41 was proposed as a statistical test to assess whether two samples are
coming from the same distribution. It relies on the computation of a distance called
MMD. In a nutshell, it compares the first-order moments (means) of the two
samples, in a reproducing kernel Hilbert space. As a consequence, the choice of the
kernel is of paramount importance.

Following the recommendations from Shaham et al.42, which uses a deep neural
network to minimize the MMD distance between different scRNA-seq data
replicates for batch effect removal, we used a kernel that is the sum of three
Gaussian kernels:

k x; yð Þ ¼
X

i

exp % kx % yk2

σ2i

# $
;

where σi’s are chosen to be m
2 , m, 2m and m is the median of the average distance

between a point to its nearest 25 neighbors.
For the sake of consistency with the other measures we proposed (t-SNE plots,

RF classification), we proceeded to compute the MMD distances between samples
using their 50 PCs representation found with the Cell Ranger pipeline (as described
in the “Dataset and preprocessing” part).

We used the MMD implementation from SHOGUN43, an efficient kernel-based
machine learning package.

Downsampling. To assess the impact of cluster size on the ability of the cscGAN to
model the cluster we artificially reduced the number of cells of the relatively large
PBMC cluster 2. We call this approach “downsampling” throughout the
manuscript.

Eight different percentages {50%, 25%, 10%, 5%, 3%, 2%, 1%, 0.5%} of cluster 2
cells were sampled using a random seed and a uniform sampling distribution over
all the cluster 2 cells (Supplementary Table 5). We sampled nested subsets (for each
seed, the smaller percentage samples are a complete subset of the larger ones). In
order to accurately estimate the generalization error across the different
experiments and to avoid potential downsampling artifacts, we conducted all our
experiments using five different random seeds. For the classification of cell
subpopulations (see next paragraph) we report the average F1 score as well as the
five individual F1 score values for the different seeds.

Classification of cell subpopulations. To investigate the use of the proposed
cscGAN model for data augmentation, we examined the performance of cell
subpopulation classification before and after augmenting the real cells with gen-
erated cells. For this purpose, and as described in the previous paragraph and the
Results section, we produced alternate datasets with sub-sampled cluster 2 popu-
lations (Supplementary Fig. 12).

For simplicity, we focus in this section on the experiment where cluster 2 cells
were downsampled to 10% using five different random seeds (Supplementary
Fig. 13). We advise to use Supplementary Fig. 13 as an accompanying visual guide
to this text description.

Using the previously introduced 50-dimensional PC representation of the cells,
three RF models were trained to distinguish cluster 2 cells from all other cell

populations (RF downsampled, RF upsampled, and RF augmented)
(Supplementary Fig. 13A). In the training data for all the three classifiers, 70% of
the cells from all the clusters except cluster 2 (i.e. 37,500 cells) were used (light blue
boxes in Supplementary Fig. 13A).

RF downsampled: For the first RF classifier, we used 10% of cluster 2 cells (1502
cells) and 70% other cells (37,500 cells) to train the RF model. We refer to this
dataset as the “RF downsampled” set in Supplementary Fig. 13A. This dataset was
also used to train the cscGAN model, which is used later to generate in silico cluster
2 cells (Supplementary Fig. 13C). It is important to note that RF classifiers for “RF
downsampled” datasets always use weights that account for the cluster-size
imbalance. The reason for this is that RFs are sensitive to unbalanced classes,
leading to classifiers that always predict the much larger class, thereby optimizing
the classification error44.

RF upsampled: For the second RF classifier, we uniformly sampled with
replacement 5,000 cells from the 1,502 cluster 2 cells (10%). We added those 5,000
(copied) cells to the original 1,502 cells. This dataset is referred to as “RF
upsampled” in Supplementary Fig. 13A. The rationale for this upsampling is that
RF multinomial classifiers are sensitive to the class frequencies in the training data.
The upsampling was conducted only for cluster 2 cells as a baseline to which the
augmentation is compared. As the augmented and upsampled datasets remain
unbalanced, we adjusted the class weights during the training to be inversely
proportional to the class frequencies, as outlined in the previous paragraph (RF
downsampled).

As a side note, we also conducted experiments where we added standard
Gaussian noise to the upsampled cells, which always reduced the performance of
the RF classifier and are therefore not shown.

RF augmented: Finally, the third classifier training data “RF augmented”
consists of 10% cluster 2 cells as well as 5,000 cluster 2 cells generated using the
10% cscGAN model as shown in Supplementary Fig. 9C. The 10% cscGAN model
was trained on 10% cluster 2 cells as well as all other cells (53,571 cells,
Supplementary Fig. 13C).

The RF classifiers were trained using the same parameters as described in the
Classification of real versus generated cells methods section, using 1,000 trees and
Gini impurity. The only difference is that here the class weights during the training
are adjusted inversely proportional to the class frequencies, as already mentioned
above. The scikit-learn package32 was used to conduct all experiments to classify
cell subpopulations.

Test cells: The test cells used to evaluate the classifiers consisted of 30% of the
data from all the clusters. Since we are testing the cscGAN’s ability to augment
different percentages of real cluster 2 cells, we made sure that the 30% of cluster 2
cells used in the test set were selected from the cells which were not seen by any
trained cscGAN model (Supplementary Fig. 13B).

To prove that the downsampling limits the ability to classify and that
augmenting the dataset mitigates this effect, all three RF classifiers were trained to
classify cluster 2 cells versus all other subpopulations. The F1 score of each
classifier is calculated and presented in different colors (Fig. 3a).

Furthermore, in order to understand how augmentation helps to separate close
clusters, we trained the same three RF classifiers after removing all clusters except
cluster 2 and 1 from the corresponding training data. We repeated this procedure
for cluster 2 and 5, and cluster 2 and 3. We chose those clusters in particular
because their highly differentially expressed genes are also highly expressed in 2
meaning that separating them from cluster 2 is more difficult (Fig. 1a–c). In a
similar way, F1 scores for classification of cluster 2 versus 1 (Supplementary
Fig. 14A), cluster 2 versus 3 (Supplementary Fig. 14B), and cluster 2 versus 5
(Supplementary Fig. 14C) are calculated and reported.

As mentioned above, we repeated this procedure for different downsampling
levels of cluster 2 cells and for five different sampling seeds for each level
(Supplementary Table 5).

When training the RF classifier with the augmented dataset, the number of cells
used in the augmentation was set to 5,000 cells. This, however, does not necessarily
mean that 5,000 cells is the optimal number of cells to be added. The increase in the
F1 score due to augmenting the data with generated cells depends on two factors:
(i) the number of real cells in the original subpopulation and (ii) the number of
cells used for augmentation. To highlight the impact of the number of generated
cells used for data augmentation, we trained the previously mentioned RF
classifiers using different numbers of generated cells (from 100 to 12,000) while
keeping the number of other cells constant (Supplementary Fig. 16).

Splatter comparison. In addition to what has been previously introduced in the
Results section, we also compared the performance of the scGAN to Splatter22,
using the metrics described in their manuscript. Briefly, Splatter simulation is based
on a gamma-Poisson hierarchical model, where the mean expression of each gene
is simulated from a gamma distribution and cell counts from a Poisson distribu-
tion. We noticed that Splatter uses the Shapiro–Wilk test to evaluate the library-
size distribution, which limits the number of input cells to 5,000. Therefore, we
slightly modified the code that allows Splatter to take more than 5,000 cells
as input.

While scGAN learns from and generates library-size normalized cells, Splatter is
not suited for that task. For the sake of fairness, we used the Splatter package on the
non-normalized PBMC training dataset. We then generated (non-normalized)
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cells, which we normalized, so that they could be compared to the cells generated
by scGAN. Following ref. 22, we used the following evaluation metrics: distribution
of the mean expression, of the variance, of the library sizes and ratio of zero read
counts in the gene matrix. The results were computed using the Splatter package
and are reported in Supplementary Fig. 5.

We observe that the results obtained by Splatter are marginally better than or
identical to these of scGAN (Supplementary Fig. 5). The results from those
measures suggest that both Splatter and scGAN constitute almost perfect
simulations. However, Splatter simulates virtual genes. While those genes share
some characteristics with the real genes Splatter infers its parameters from, there is
no one-to-one correspondence between any virtual gene simulated in Splatter-
generated cells and the real genes. We therefore did not compare Splatter-
simulated cells with real cells, as we did to evaluate the quality of (c)scGAN-
generated cells. This also prohibits the use of Splatter for data-augmentation
purposes.

This being said, we also would like to pinpoint that while the (c)scGAN is able
to capture the gene–gene dependencies expressed in the real data (Fig. 1d,
Supplementary Fig. 10), this does not hold for Splatter, for which the virtual genes
are mostly independent from each other. To prove this point, we extract the 100
most highly variable genes from the real cells, the cells generated by Splatter, and
the cells generated by the scGAN. We then proceed to compute the Pearson
correlation coefficients between each pair within those 100 genes (Supplementary
Fig. 4). It reveals that while those most highly variable genes in the real cells or
those generated by the scGAN exhibit some strong correlations, highly variable
genes are mostly independent from each other in the cells generated by Splatter.
These results are surprising given that the graphical model used in Splatter is
expressive enough to accommodate for complex dependencies between genes. It is
likely that it is the inference algorithm that is failing at capturing the gene–gene
dependencies in the PBMC dataset, while a manual selection of the parameters of
Splatter can allow to simulate cells with some gene–gene dependencies.

SUGAR comparison. Another generative model of high-dimensional data that
could be used to generate scRNA-seq data is SUGAR (Synthesis Using Geome-
trically Aligned Random-walks).

Both scGAN and SUGAR share the assumption that the training data lie on a
low-dimensional manifold which is the case of single-cell data23. The scGAN uses a
random variable Z with a fixed distribution P(z) and passes it through a neural
network based parametric function (the generator) (θ)z→ x. The output of this
parametric function Pθ is then learned using an Earth mover distance to be closer
to the real distribution Pr. SUGAR, on the other hand, uses a Gaussian kernel to
construct the diffused geometry around each data point and then, using a sparsity-
based measure, new points are sampled to even out the sparsity along the manifold.

In order to compare the quality of scGAN-generated cells with SUGAR-
generated cells, we run SUGAR on a group of training cells from the PBMC dataset
using the publicly available MATLAB implementation (https://github.com/
KrishnaswamyLab/SUGAR). The training cells were the same cells used to train an
scGAN model and were preprocessed as described in Datasets section PBMC.

SUGAR could generate points to explicitly balance the density over the learnt
manifold by assuming that there are sparse regions and then generating points to
equalize the estimated sparse areas on the learnt manifold. However such an
equalization produces cells that, by design, do not follow the original distribution of
the real cells. Therefore, we turned off the density equalization option when we
generated cells using SUGAR to ensure that the generated cells compare favorably
to the real ones in terms of distribution. For the same reason, we also turned off the
imputation step. Finally, using the adaptive noise covariance estimation option of
SUGAR resulted in scalability issues (Supplementary Fig. 6F–I, training and
generating cells on a reduced 3,000 cells × 2,000 genes dataset required 1.3
Terabytes of RAM and computed for over 36 h), precluding the use of this option
on the PBMC dataset. Following SUGAR co-author suggestions, we fixed the noise
covariance matrix to be the identity matrix in order to allow SUGAR to generate
cells in the original genes space using the available MATLAB version. The
generated cells using SUGAR contained some negative values which we replaced
with zeros to comply with our analysis workflow (logarithmic transformation using
Cell Ranger). For the visualization of the SUGAR-generated cells, we used t-SNE to
obtain a two-dimensional visualization of the generated and the real cells
(Supplementary Fig. 6A–C). We also computed the MMD statistic obtained from
the comparison of real (test) data with the generated data using both SUGAR
(59.45) and scGAN (0.872) as described in the MMD methods (Supplementary
Table 3). It is worth noting that while the Gaussian noise, added to the real cells, is
the crux of how SUGAR generates novel cells. It, however, also may be the reason
why the samples produced by SUGAR do not follow the original distribution of the
data as closely as those produced by scGAN.

To investigate whether the gene–gene dependencies were kept in the SUGAR-
generated data we computed the Pearson correlation coefficients of the cluster-
specific marker genes (Supplementary Fig. 6D).

Lastly, we trained an RF classifier to distinguish between the real and the
SUGAR-generated cells. We conjectured that RF classifier should have close to
chance-level performance in the task of distinguishing the generated data from the
real data. The RF classifier reaches 0.98 AUC when discriminating between the real
and generated cells (blue curve in Supplementary Fig. 6E).

Expression imputation with MAGIC. An important aspect of using an scGAN for
generating realistic cells is its fidelity in learning the distribution of the input data
regardless of the preprocessing which is applied. Imputation of scRNA-seq data is
used to denoise the data, to reduce the amount of drop-outs, and consequently to
more accurately recover the gene–gene interactions. For this reason, we investi-
gated the ability of an scGAN to generate realistic imputed cells when real imputed
cells are used in the training.

We used MAGIC25 to impute the scGAN training data, a method developed to
impute missing values and to restore the structure of the scRNA-seq data.

The Mouse Bone Marrow dataset was used in this analysis after applying the
basic filtering and the LSN we applied in all our experiments (refer to Datasets
Supplementary Table 1, preprocessing section). The preprocessed cells are then
imputed using the open source MAGIC implementation. In accordance with the
MAGIC tutorial all genes were used with four diffusion steps. Afterwards, we
trained an scGAN models for 100k steps on both imputed and non-imputed data.
Both models were used to generate cells which we used to plot the gene–gene
relationships of three genes in the form of scatter plots. To evaluate imputation
fidelity we used the three genes that were used in the MAGIC online tutorial
(Ifitm1, a stem cell marker, Klf1, an erythroid marker, and Mpo, a myeloid
marker).

Regulon detection using SCENIC. We used SCENIC19 to evaluate whether
scGANs model active regulons in the Zeisel RNA-seq dataset. This dataset was
used by the authors of SCENIC to show cross-species Dlx1 regulon activity. We
selected the top 50 target genes with highest weight for each TF and subsequently
found significantly over-represented TF-binding motifs in the set of genes. Mod-
ules with enriched TF-binding motifs were kept and defined as active regulons. We
then trained an scGAN model on the Zeisel dataset and used it to generate 10,000
library-size normalized cells. The Dlx1 regulon was then found in the real dataset
(realDlx1) as well as in the generated one (genDlx1). In addition, we used AUCell
to calculate the regulon binarized activity of the realDlx1 regulon in the cells of the
generated dataset and the genDlx1 regulon in real cells. Reciprocal activity of
realDlx1 and genDlx1 regulons are visualized using t-SNE on real and generated
data (Supplementary Fig. 4).

Pseudo-time analysis with PAGA. In this analysis we investigate the ability and
the fidelity of the scGAN model to generate scRNA-seq data corresponding to
continuous cell states. For this purpose, we used PAGA pseudo-time topology-
preserving embedding with partition-based graph abstraction. While clustering
enables understanding the biological signals within cell populations, trajectory
analysis using pseudo-time and graph embeddings allows for the interpretation of
continuous phenotypes and processes such as development and disease progres-
sion28. We chose an scRNA-seq hematopoiesis dataset (bone marrow dataset) that
contains many intermediate and transition states to investigate the performance of
such trajectory analysis29.

In order to examine the ability of scGAN models to learn the manifold the data
lie on, we performed a pseudo-time analysis as described in the official git
repository of the hematopoiesis scRNA-seq data [https://github.com/theislab/
paga]. The cells were first preprocessed using the Zheng preprocessing pipeline.
Afterwards the force-directed single-cell graph was built using 20 PCA
components45,46. The graph is then de-noised and rebuilt using PAGA-
initialization as described in the official tutorial of PAGA. Supplementary
Figure 17A–C shows the graph of the bone marrow scRNA-seq data. Scanpy
pseudo-time analysis was used to infer the progression of cells through geodesic
distance along the graph47.

In the next step, we downsampled a specific transient cell state represented by
cells grouped in node 4 of the PAGA graph (Supplementary Fig. 17C–F). The
original fourth Louvain group population of 150 cells was downsampled to 13 cells.
The downsampled scRNA-seq data (the training data) were then used to train an
scGAN model without providing any prior information about the cells’ states or
clusters. After training, the model was used to generate cells that we compared to
the original dataset. After investigating the force-directed single-cell graph of the
generated cells combined with original cells, we noticed that the generated cells
were covering all cellular states of the original scRNA-seq data (Supplementary
Fig. 17C–F).

These results motivated us to investigate the fidelity of the scGAN to learn the
downsampled cellular state of transient state 4. Therefore, we searched within the
generated cells for cells that are close to the sparse area created by the
downsampling process. A group of 137 generated cells were found and added to the
downsampled scRNA-seq data. We refer to this combined group of generated and
downsampled cells as augmented cells. Our assumption is that the generated cells
recover the lost biological signal represented by the downsampled transient state.
To prove this assumption, we plotted the force-directed single-cell graph of the
augmented data and compared it with the one built from the downsampled data.
The cells’ graph embeddings were recomputed using PAGA-initialization so that
the cells are structured in a meaningful topology-preserving layout that reflects the
real cell–cell interconnections and the paths of single cells. Data augmentation of
the downsampled cells re-established the developmental trajectories that were
observed in the real data and lost in the downsampled data, as shown in
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Supplementary Fig. 17. Of note, the scGAN was trained with reduced neuron
numbers to accommodate for the small size of the dataset.

Software, packages, and hardware used. For the sake of reproducibility, here is a
list of the version of all the packages we used: Tensorflow v1.8, Scanpy v1.2.2,
Anndata v0.6.5, Pandas v0.22.0, Numpy v1.14.3, Scipy v1.1.0, Scikit-learn v0.19.1,
R v3.5.0 (2018-04-23), loomR v0.2.0, SHOGUN v6.1.3, SingleCellexperiment
v1.2.0, Splatter v1.4.0, SUGAR v0.0, MAGIC v1.3.0, SCENIC v0.1.7, GENIE3
v1.0.0, Rcistarget v0.99.0, AUCell v0.99.5, RcisTarget.mm9.motifDatabases.20k
v0.1.1, ZIFA v0.1. Regarding hardware, all (c)scGAN models were trained on a
single-GPU of an NVIDIA DGX-1 server (Tesla V100 GPUs).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets used and analyzed during the current study are available on the 10x
Genomics dataset repository at https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/fresh_68k_pbmc_donor_a for PBMC, at https://
support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons for
Brain small and Brain large, and in the Gene Expression Omnibus repository, at https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72857 for Bone Marrow, and https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60361 for Zeisel.

Code availability
Our (c)scGAN Tensorflow48 implementation can be found on https://github.com/imsb-
uke/scGAN, including documentation for the training of the (c)scGAN models. As
mentioned before, we used Scanpy31 to conduct most of the data analysis. We also
compared our results to those of Splatter22, and adapted the code they provided on
Github (https://github.com/Oshlack/splatter).
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Abstract

Background: Small RNA molecules play important roles in many biological processes and their dysregulation or
dysfunction can cause disease. The current method of choice for genome-wide sRNA expression profiling is deep
sequencing.

Results: Here we present Oasis 2, which is a new main release of the Oasis web application for the detection,
differential expression, and classification of small RNAs in deep sequencing data. Compared to its predecessor Oasis,
Oasis 2 features a novel and speed-optimized sRNA detection module that supports the identification of small RNAs
in any organism with higher accuracy. Next to the improved detection of small RNAs in a target organism, the
software now also recognizes potential cross-species miRNAs and viral and bacterial sRNAs in infected samples. In
addition, novel miRNAs can now be queried and visualized interactively, providing essential information for over
700 high-quality miRNA predictions across 14 organisms. Robust biomarker signatures can now be obtained using
the novel enhanced classification module.

Conclusions: Oasis 2 enables biologists and medical researchers to rapidly analyze and query small RNA deep
sequencing data with improved precision, recall, and speed, in an interactive and user-friendly environment.

Availability and Implementation: Oasis 2 is implemented in Java, J2EE, mysql, Python, R, PHP and JavaScript. It is
freely available at https://oasis.dzne.de

Background
Small RNAs (sRNAs) are a class of short, non-coding
RNAs with important biological functions in nearly all
aspects of organismal development in health and disease.
Especially in diagnostic and therapeutic research sRNAs,
such as miRNAs and piRNAs, received recent attention
[18]. The current method of choice for the quantifica-
tion of the genome-wide sRNA expression landscape is
deep sequencing (sRNA-seq).
To date several local as well as server-based sRNA-seq

analysis workflows are available that differ in their analysis
portfolio, performance, and user-friendliness. Analysis
workflows that need to be installed by the end-user
comprise, for example, sRNA workbench [1] for the

quantification and identification of differentially expressed
sRNAs and CAP-miRSeq [16] for the quantification of
known and novel miRNAs including variant calling and
subsequent differential expression analysis. While
workflows that are installed on a local machine offer
greater data security and may provide greater flexibility,
they require installation, availability of servers, software
and hardware maintenance as well as regular updates.
Recent additions to sRNA analysis web applications in-

clude omiRas [11], supporting quantification, differential
expression and interactive network visualization; mir-
Tools 2.0 [20] that allows for differential expression and
gene ontology analysis of detected sRNAs; MAGI, an
all-in-one workflow with detailed interactive web reports
[8]; Chimira that allows for the detection of miRNA
edits and modifications [17]; sRNAtoolbox [15] performs
expression profiling of sRNA-seq data, differential ex-
pression as well as target gene prediction and
visualization of analysis results; and Oasis [2], which
supports the detection and annotation of known and
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novel sRNAs, multivariate differential expression ana-
lysis, biomarker detection, and job automation via an ad-
vanced programming interface (API). Here we present
Oasis 2, an improved major release of the Oasis web ap-
plication with many new and enhanced features for Biolo-
gists and Bioinformaticians (Table 1).
At the heart of Oasis 2 lies the new sRNA detec-

tion workflow that is faster and identifies more
sRNAs with higher precision. In addition, Oasis 2
now supports sRNA-seq analyses for any organism,
detects potential cross-species miRNAs, and reports
viral and bacterial infections in samples with high
precision and recall. Oasis 2 predicts and stores
novel miRNAs in Oasis-DB and allows users to
search and extract information for over 700 predicted
high-quality miRNAs across 14 organisms. Oasis 2
classification module is improved with the use of bal-
anced sampling and feature pruning methods that en-
ables robust biomarker detection. Like its predecessor
Oasis, Oasis 2’s differential expression module sup-
ports multiple group comparisons (e.g. control vs.
treatment 1 vs. treatment 2) and differential expres-
sion using co-variates such as age, gender, and medi-
cation. The differential expression and classification
modules report various quality metrics including
known and predicted targets of miRNAs in a down-
loadable, interactive web report. This web report al-
lows for the subsequent functional enrichment
analysis of miRNAs using GeneMania (interactome
and GO analysis) [21], g:Profiler (GO, pathway-Kegg,
Reactome) [13], STRING (protein-protein interaction
network) [4], STITCH (chemical-protein interaction
network) [9], and DAVID (enrichment analysis based
on many biological databases) [6]. Oasis 2 is also at

the heart of the sRNA Expression Atlas (SEA,
https://sea.dzne.de), a web application for the interactive
querying, visualization, and analysis for over 2000 pub-
lished sRNA samples. Lastly Oasis 2 features many new
analysis and visualization options such as support for
adapter trimmed data, options to trim additional barcodes,
and interactive plots for sRNA detection and classification
output. It has no restrictions on the size or number of sam-
ples and has no limits on the analyses per user.

Implementation
The following paragraphs will describe the technical de-
tails of Oasis 2’s novel sRNA detection, database, and
classification modules. Additional information can be
found in the supplementary material.

sRNA detection
One of the key differences between Oasis 2 and its pre-
decessor is the fully revised detection of known and
novel sRNAs. The new detection workflow increases the
alignment speed, is more accurate, and supports the
analysis of any model and non-model organism (Fig. 1,
Additional file 1). While Oasis detected sRNAs using a
single genome alignment step, Oasis 2 is based upon a
four-tiered alignment strategy. Users can upload (un)-
compressed data that originates from one of the 14 dif-
ferent organisms provided in Oasis 2 and the data will
be aligned to the (i) target organism’s (TO) transcripts,
(ii) TO’s genome, (iii) pathogen genomes, and (iv) non-
target organism’s (NTO) miRNA transcripts in succes-
sion (Fig. 1). In the TO Transcript alignment (step 1),
reads are aligned to TO transcripts in Oasis-DB, a data-
base that contains transcript information of miRNAs
and other sRNA species (snRNA, snoRNA, rRNA and

Table 1 sRNA-seq web application comparison
Feature Oasis 2 Oasis omiRas mirTools 2.0 MAGI Chimira sRNAtoolbox

FASTQ compression ✓ ✓ ✓ ✓

miRNA prediction ✓ ✓ ✓ ✓ ✓ ✓

miRNA modifications and edits ✓ ✓

Novel miRNA database ✓

Infection and cross-species analysis ✓ ✓

Non-model organism ✓ ✓

Differential expression ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multivariate differential expression ✓ ✓ ✓

Classification ✓ ✓

Novel miRNA target prediction ✓ ✓ ✓ ✓ ✓

Pathway/GO analysis ✓ ✓ ✓ ✓ ✓ ✓

Batch job submission (API) ✓ ✓

Genome browser ✓

Of note, this comparison does not include all available sRNA analysis web applications. It only considers the most recent web applications that we deemed most
competitive and we do not compare to standalone software solutions that have to be locally installed
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piRNAs) from miRBase, piRNAbank, Ensembl, predicted
novel miRNAs, and sRNA families. In this step reads of
length 15–19 nucleotides are aligned with no mis-
matches whereas reads of length 20–32 nucleotides are
mapped allowing for 1 mismatch (Step 2 in Fig. 1). In
the TO Genome alignment (step 2), reads that do not
align to TO transcripts are subsequently aligned to the
reference genome allowing for 1 mismatch and no more
than five potential genomic target regions to predict
novel, high-quality miRNAs (Additional file 1 section 1.2

‘Alignment and counting’). Predicted novel miRNAs are
then added to Oasis-DB as described in section 2.2 ‘De-
tection and storage of novel miRNAs’. In the Pathogen
Genome detection (step 3), reads that could not be
aligned to the TO transcriptome or TO genome are used
to identify pathogenic sRNA signatures from bacteria
and viruses, supplying information on potentially in-
fected samples (Fig.2 & Additional file 1). To this end,
we indexed Oasis Pathogen-Genome-DB that consists of
4336 viral and 2784 bacterial/archaeal genomes with

Fig. 1 Detection of sRNAs in Oasis 2: The web application allows for the upload of raw or compressed FASTQ files to Oasis 2’s sRNA detection
module. After pre-processing (adapter/barcode trimming and length filtering), reads are first aligned to target organism (TO) transcripts that are stored
in Oasis-DB (Step 1), including known miRNAs, piRNAs, snoRNAs, snRNAs, rRNAs, and high-stringency predicted miRNAs and their families. Unmapped
reads of Step1 are subsequently aligned to the TO’s genome (Step 2) to predict and subsequently store novel miRNAs in Oasis-DB. Unmapped reads
from step 2 are mapped to bacterial, archaeal, and viral genomes using Kraken (Step 3) to detect potential pathogenic infections or contaminations.
Finally, reads that could not be aligned in steps 1–3 are aligned to all non-target organism (NTO) miRNAs in miRBase (Step 4) to detect potentially
orthologous or cross-species miRNAs. In case the user’s data does not correspond to one of the 14 supplied organisms, Oasis 2 aligns the reads only
to NTO miRNAs (Step 4), supporting the detection of miRNA expression in any organism

Rahman et al. BMC Bioinformatics  (2018) 19:54 Page 3 of 10



Kraken [19] using a k-mer length of 18. In the Non-TO
miRNA alignment (step 4), reads that could not be aligned
to TO transcripts, the TO genome or pathogen genomes
are aligned without any mismatches to all NTO tran-
scripts of miRBase to detect potential orthologous or
cross-species miRNAs. In cases where the data does not
belong to one of the 14 supported genomes available in
Oasis 2, reads can be aligned to all known and novel pre-
dicted miRNAs and miRNA families stored in Oasis-DB
(Additional file 1).
In addition to the new alignment strategy, the sRNA

detection module also supports data with already
trimmed adapters. It also has an option for barcode re-
moval, which is required for the analysis of libraries gen-
erated with e.g. the NEXTflex kit. In the case of barcode
removal, Oasis 2 first discards the 3′ adapter sequence
(in case the adapter is not already trimmed), and then
removes an additional N (user defined, default is 0)
bases from the adapter-clipped reads.

Detection and storage of novel miRNAs
Another major improvement of Oasis 2 is the ability to
query and visualize detailed information for over 700
high-quality predicted miRNAs across 14 organisms
(Fig. 1, Additional file 1: Figure S1). Oasis-DB comprises
information on all MiRDeep2 [5] predicted miRNAs that
pass stringent selection criteria during the sRNA

detection step of Oasis 2 (2.1 & Additional file 1), in-
cluding the miRNA ID, organism, chromosomal loca-
tion, precursor and mature sequences, structure, read
counts, prediction scores, and detailed information on
the software and its versions used to predict the miRNA.
To assure that Oasis-DB contains only high-quality
miRNA entries, novel predicted miRNAs have to pass
the three criteria. The log-odds score assigned to the
hairpin by miRDeep2 (miRDeep2-score) should be
greater than 10, the predicted miRNA hairpin should
not have sequence similarity to reference tRNAs or
rRNAs, and the estimated randfold p-value of the ex-
cised potential miRNA hairpin should be equal to or
lower than 0.05.
Novel predicted miRNAs are added to Oasis-DB using

the standard nomenclature (Additional file 1 section 1.4
‘Oasis-DB miRNA insertion and naming’).
In addition to novel miRNAs, Oasis-DB also stores in-

formation on all other sRNAs and sRNA families (Addito-
nal file 1). To provide access to Oasis-DB we created a
novel web frontend, the Oasis 2 ‘Search’ module, which al-
lows users to query miRNAs by mature/precursor ID or
sequence, and the organism they come from. Information
on high-confidence novel miRNAs is also shared with
SEA, a web application that provides expression informa-
tion of known and novel miRNAs for over 2000 samples
(https://sea.dzne.de).

Fig. 2 Pathogen detection performance: To assess the performance of ‘pathogen detection module’, sRNA datasets with defined viral or bacterial
infections were analyzed and the F-score (a), recall (b), and precision (c) of the pathogen predictions were measured for the top 10 reported
organisms. Overall, the prediction of bacterial (M. abscessus) and viral (HIV, HHV4, HHV5, Gallid_herpesvirus_2) infections resulted in high F-scores,
recall, and precision, especially when the top 5 predicted pathogen species are reported. In consequence, Oasis 2 currently reports the top five
predicted pathogen species based on their read counts

Rahman et al. BMC Bioinformatics  (2018) 19:54 Page 4 of 10



Classification and differential expression
To allow for enhanced sRNA-based biomarker detection
several profound changes to the Oasis 2 classification
module were made, resulting in more robust biomarker
detection with increased accuracy (Additional file 1: Fig-
ure S2 , Additional file 1 section ‘Oasis 2 classification
module’). To increase the performance of the Random
Forest-based (RF) classification module we first imple-
mented balanced sampling (Additional file 1), making sure
RF predictions would not be biased in the case of uneven
class distribution. Since RFs can perform poorly on data
that contains few informative and many non-informative
features, the classification module was augmented with a
feature pruning routine (Additional file 1), reporting pre-
diction performance for the full and best RF models. In
addition to providing information on model accuracy
using the out-of-bag (OOB) error, Oasis 2 now also pro-
vides model performance information based on cross-
validation. All classification results can be explored in inter-
active web reports, allowing for a detailed quality and per-
formance analysis of the predicted biomarkers.
Moreover, we have improved the quality of output plots

in the DE module and updated the DESeq2 version for
the analysis of differential sRNA expression. Further de-
tails about DE module can be found in Additional file 1
section 1.5 ‘Oasis 2 differential expression module’ and
Additional file 1: Table S3.

Technologies and compatibility
Oasis 2 is implemented in Java, J2EE, mysql, Python, R,
PHP and JavaScript. For the usage JavaScript should be
enabled in the browser. Oasis 2 functionality was tested
on all major browsers (Table 2). It has no restrictions on
the size or number of samples and has no limits on the
analyses per user. Potential user-specific problems can
arise when i) an institution or university has upload
limits, ii) proxy settings that would interrupt or prohibit
long uploads, or iii) JavaScript is disabled or blocked.
Oasis 2 is freely available at (https://oasis.dzne.de).

Results
We compared the set of analysis options and the analysis
speed of Oasis 2 to six state-of-the-art sRNA analysis
web applications, including Oasis, omiRas, mirTools 2.0,

MAGI, Chimira and sRNAtoolbox, and found that it
compares favorably in the number of analysis options
(Table 1) and the analysis speed (Table 3). When tested
on four publically available datasets, Oasis 2 detected 19
out of 27 (70%) differentially expressed (DE) genes that
were previously validated (true positives) and did not de-
tect 4/4 (100%) miRNAs that showed a significant DE in
deep sequencing but could not be validated with qPCR
(false positives), highlighting both the sensitivity and
specificity of Oasis 2. Finally, we compared the perform-
ance of the novel classification module to the one imple-
mented in Oasis, showing that prediction accuracy as
well as robustness are increased.

Detection and differential expression of sRNAs
To estimate if the novel sRNA detection workflow of
Oasis 2 identifies and quantifies sRNAs correctly we ana-
lyzed four published datasets containing validated sRNA
changes using Oasis 2 with default settings. Of note, none
of the above-mentioned publications looked into the DE
of other small RNA classes (snRNA, snoRNA and rRNA
and piRNAs), so the analyses were restricted to miRNAs.

Alzheimer disease data
We started by analyzing an Alzheimer disease (AD)
sRNA dataset that consists of 48 Alzheimer and 22 con-
trol samples [10] using Oasis 2 and default settings. The
original publication uses a Wilcoxon-Mann-Whitney test
detecting 125 known DE miRNAs. Oasis 2 detected 103
DE miRNAs using an adjusted p-value < 0.1, of which
62(60%) overlapped with the original analysis. The over-
lap of 60% seems reasonable, given the different statis-
tical approaches and miRBase versions used for the
detection and DE analysis of the miRNAs. In the original
publication 8/10 known miRNAs were validated to be
differentially expressed in the same direction, whereas
two miRNAs (hsa-miR-1285-5p and hsa-miR-26a-5p)
were not validated in the same direction (instead of up-
regulation they showed downregulation in qPCR). Inter-
estingly these two miRNAs were not detected to be
differentially expressed by Oasis 2. On the other hand
Oasis 2 was able to detect 3/3 upregulated miRNAs
(hsa-let-7d-3p, hsa-miR-5010-3p and hsa-miR-151a-3p),
3/5 downregulated miRNAs (hsa-miR-532-5p, hsa-miR-
26b-5p and hsa-let-7f-5p), and it did not detect two
downregulated miRNAs (hsa-miR-103a-3p, hsa-miR-
107). In summary, Oasis 2 was able to detect 6/8 (75%)
validated differentially expressed known miRNAs and
not detecting 2/2 false positives from the original study.
Unfortunately, two novel miRNAs validated in the ori-
ginal study are not added to miRBase yet, therefore we
were not able to compare to them.

Table 2 Oasis 2 browser compatibility
Browser Version

Chrome 61.0.3163.100, 62.0.3202.62

Mozilla Firefox 55.0.3, 56.0 (64-bit), 57.0 (64-bit)

Chromium 62.0.3202.75

Safari 11.0.1

Internet explorer 11

Browsers that are used to test Oasis 2 functionalities
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Psoriasis data
Oasis 2’s performance was next assessed using a set of
10 Psoriasis and 10 control samples [7]. The original
publication uses a hypergeometric test to assess differen-
tial expression (Pearson’s chi-square test) that is followed
by a Bonferroni multiple-testing correction.
In accordance with the analyses performed in the ori-

ginal publication, we only considered non-redundant
pre-miRNAs. Oasis 2 found 195 DE miRNAs (166 non-
redundant known pre-miRNAs) (adjusted p-value < 0.1)
whereas the original publication contains only 98 DE
miRNAs (70 non-redundant known pre-miRNAs). Of
the 70 DE pre-miRNAs in the original study, 51
(72.85%) could also be found in the list of Oasis 2 DE
miRNAs (Table 4). In addition, 5/8 (62.5%) experimen-
tally validated DE miRNAs (miR-21, miR-31,,, miR-944,
miR-135band miR-675) were detected by Oasis 2, not
identifying validated miRNAs miR-124, miR-431 and
miR-219-2-3p that show high expression variation in the
original publication. Furthermore, Oasis 2 identified 2/3
(67%) predicted novel DE miRNAs (hsa-miR-203b and
hsa-miR-3613) while missing hsa-miR-4490 (miRBase
v21). In addition, Oasis 2 did not detect the false positive
miR-431* (1/1, 100%) that was predicted to be DE in the
original Psoriasis study [7] but could not be validated by
qPCR. In summary, Oasis 2 was able to detect 7/11

(64%) validated differentially expressed known and novel
miRNAs and did not detect the only available false posi-
tive miRNA from the original study.
Of note, Oasis 2’ PCA analysis highlights a potentially

mis-annotated Psoriasis sample and another outlier sam-
ple (Fig. 3A). Removal of these two samples (Fig. 3B) in-
creased the number of significantly (adjusted p-value <
0.1) DE miRNAs from 195 to 256 cases. We would like
to emphasize that this data was already analyzed in two
publications and to our knowledge this is the first time
that these ‘problematic’ samples were detected, providing
strong evidence for the utility of Oasis 2’ QC plots.

Renal cancer data
In this work 11 renal cancer and 11 remission samples
[12] were analyzed. This is longitudinal data from 11 pa-
tients and as such paired but we were unable to extract
the pairing information from the GEO database annota-
tions. Therefore the data was analyzed with Oasis 2 in
un-paired mode and compared to the published, paired
analysis with edgeR [14]. Despite of these technical is-
sues the two analyses showed high overlap. Oasis 2
found 150 DE miRNAs (adjusted p-value < 0.1) whereas
the original publication lists only 70 DE miRNAs. Of
these 70 DE miRNAs 53 (76%) could also be found in
the significant Oasis 2 miRNAs (Table 4). Of note, with

Table 3 Runtime comparison of different sRNA-seq web applications
Demo Dataset Oasis 2 (total) 1 Oasis (total)1 MAGI

(total)
Chimira
(total)

omiRas mirTools7 2.0 sRNAtoolbox

AD
(287 GB)4

8 h31m50s 12h29m12s NA2 NA4 NA5 NA NA

Psoriasis
(48 GB)

1h35m17s 5h49m4s 48h3 3h3m12s NA6 NA NA

Renal Cancer
(9 GB)

31m43s 1h8m41s 8h3 47m11s 9h31m NA NA

1Run time estimate includes the data compression and decompression, the sRNA Detection, DE Analysis, and Classification. 2 We could not get MAGI to upload all
AD files. Most probably it has a problem with the quality or format of one of the files. 3 These values were obtained from the MAGI website. 4 Chimira does not
support the analysis of more than 25 files at a time, which prohibited us from getting runtime estimates for the AD dataset. 5 omiRas did not finish uploading
files, which prohibited us from getting runtime estimates for the AD dataset. 6 omiRas http uploading error. 7 We cannot compare the runtime of mirTools 2.0 as
maximum file size to upload is limited to 30 Mb. The sRNAtoolbox web application has been non-functional since 30/05/2017, which prohibited any runtime
comparison (http://bioinfo2.ugr.es:8080/srnatoolbox/quick-start/)

Table 4 Overlap of differentially expressed sRNAs using three datasets
Statistic1 Overlap2 Validated overlap3 FP overlap4

AD Wilcoxon-Mann-Whitney 60% 75%(6/8)5 0% (0/2)

Psoriasis Pearson’s chi-squared 73% 64% (7/11) 0% (0/1)

Renal Cancer edgeR [14] 76% 80% (4/5) NA

Schizophrenia DESeq2 (Dejian et al., 2015) 41% 67%(2/3) 0% (0/1)
1Oasis 2 uses a negative binomial distribution as basis for its statistical evaluation of the differential expression. A very similar approach is taken by the edgeR
package that has been used in the Renal Cancer study. The Psoriasis data was analyzed using a Pearson’s chi-squared test and the AD dataset was analyzed using
the non-parametric Wilcoxon-Mann-Whitney test. Schizophrenia dataset used the same approach like Oasis 2. 2Overlap of differentially expressed miRNAs compar-
ing Oasis 2’s results to published data. The percentage is calculated in reference to the shorter DE list. 3Overlap of differentially expressed miRNAs that have been
validated independently in addition to the sRNA-seq experiment. 4False positive (FP) differentially expressed miRNAs detected by Oasis 2. 5Only known validated
DE miRNAs are considered
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the exception of miR-122 all the validated miRNAs from
the original work were detected using Oasis 2 (miR-21-
5p, miR-210-3p, miR-199, miR-532-3p).

Schizophrenia and schizoaffective disorder data
In this experiment induced pluripotent stem cells were
used to study neuropsychiatric disorders associated with
22q11.2 microdeletions [3]. Controls and patients with
22q11.2 microdeletions diagnosed with a psychotic dis-
order were compared (9 controls and 7 patients). Oasis
2 found 34 DE miRNAs (adjusted p-value < 0.1) whereas
the original publication identified 45 DE miRNAs. Of
these 45 DE miRNAs 14 (41%) were also detected as dif-
ferentially expressed by Oasis 2 (Table 4). In the original

publication four miRNAs were validated by qPCR, two
significantly up-regulated (miR-23a-5p and miR-146b-
3p), one significantly down-regulated (miR-185-5p), and
a miRNA that showed no difference in expression (miR-
767-5p). Oasis 2 was able to confirm 2/3 (67%) validated
differentially expressed miRNAs (miR-23a-5p and miR-
185-5p) and did not confirm 1/1 (100%) false positive
miRNAs miR-767-5p.
Overall, Oasis 2 detected 19/27 (70%) independently

validated DE miRNAs in the published datasets despite
of the different statistical approaches and miRBase ver-
sions used (Table 4). Detailed analysis results are access-
ible in Oasis 2’s ‘Demo Data’ webpage. Our results
provide strong evidence that Oasis 2 provides biologic-
ally meaningful results to the end user.

Fig. 3 Oasis 2′ (QC) outlier detection: To assess the QC of Oasis 2 and its biological relevance, sRNA Psoriasis data (demo dataset) was analyzed. PCA
sample distances of psoriasis (green) and control (blue) is shown. (a) PCA of psoriasis and control samples showing a potentially mis-annotated
(SRR330866_PP) and an outlier sample (SRR330860_PP). (b) PCA of psoriasis and control samples without misclassified/outlier samples. Removal of
these two samples increased the number of significantly (adjusted p-value < 0.1) DE miRNAs from 195 to 256 cases and increased the AUC from 0.9 to
1 in the classification module, providing strong evidence for the utility of Oasis 2’ QC plots
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Pathogen detection and sample classification
To assess the performance of the pathogen detection we
analyzed 5 datasets with known viral or bacterial infec-
tions (Additional file 1: Table S6). We calculated the pre-
cision, recall, and F-score for the detection of the
particular pathogen strain in the dataset while consider-
ing only the top ranking, first two, three, and up to the
first ten reported species (Fig. 2). Species were ordered
based on the number of read counts. In general, the viral
or bacterial species and strains were detected with high
precision and recall, reaching F-scores of ~ 0.8 when the
top five viral and bacterial species were considered. In
consequence, Oasis 2 currently reports the top five bac-
terial, archaeal, and viral species found, allowing for the
detection of potential infective agents or the discovery of
experimental sample contaminations.
To benchmark the improved classification routine, we

compared the performance of the old Oasis classification
module (unbalanced sampling with all variables) to the
new Oasis 2 classification module using balanced sam-
pling and feature optimization using three demo datasets
(see Detection and Differential Expression of sRNAs and
Additional file 1: Figure S2). From a theoretical perspec-
tive, balanced sampling should increase prediction ac-
curacy only in the case of class imbalances. In
consequence, the novel classification module enhances
the AUC for the imbalanced AD (22 controls, 48 pa-
tients) demo dataset by 2% (old AUC 0.95, new AUC
0.97), while it marginally changes classification perform-
ance for the balanced Psoriasis (10 control and 10 Psor-
iasis samples) (old AUC 0.90, new AUC 0.91) and Renal
carcinoma (11 control and 11 cancer samples) (new and
old AUC 1.00) data. Feature pruning should be crucial
when a dataset contains a lot of uninformative features
and very few informative features. To this end we have
taken an unpublished dataset (6 controls, 6 treatments)
that contains at least one feature that perfectly separates
the two classes but otherwise contains mostly unin-
formative features. Whereas the old classification mod-
ule reaches an AUC of 0 on this dataset, the new
module reaches an AUC of 0.833.
Moreover, we also compared the accuracy of the new

Oasis 2 classification module on the AD dataset to the
published accuracy in the original manuscript [10]. Un-
fortunately, we were unable to obtain the primary output
of the SVM and could not follow the post-processing
steps of the machine learning results as performed in
the original publication (e.g. removal of miRNAs that
also occur in other diseases). In brief, the original publi-
cation provides a biomarker signature of 12 miRNAs (10
annotated and two novel) that reaches an average accur-
acy of 80%. The Oasis 2 classification reaches an accuracy
of ~ 87% (AUC of 0.97) using 320 features (no preprocess-
ing for other diseases) and has an out-of-bag error of ~

10%. Two miRNAs in the original paper list (has-miR-
151a-3p, hsa-let-7f-5p) were also found in the top 10
features (miRNAs) obtained with Oasis 2 classification.
The classification analysis of the three demo datasets

(see 3.1) yielded stable and robust biomarker predictions
that further corroborated the quality of the enhanced
classification module.

Runtime estimates
We next estimated the runtime of Oasis 2 using the
above-mentioned AD, Psoriasis, and Renal cancer data-
sets and compared the results to runtime estimates for
omiRas, mirTools 2.0, MAGI, Chimira and sRNAtool-
box, five recently developed web applications for the
analysis of sRNA-seq data (Table 3, Additional file 1:
Table S7). Performances of the sRNA Detection, DE
Analysis, and Classification modules were measured on
the Oasis 2 server. For benchmarking the Oasis 2 run-
time we compared it to the runtime estimates of the
above-mentioned web applications by submitting the
AD, Psoriasis, and Renal Cancer datasets to the respect-
ive services (Table 3). Of note, runtime estimates for
MAGI were taken from the MAGI webpage, which we
assume constitutes a ‘best case scenario’ in favor of
MAGI (low server analysis load). In addition, we could
not compare to mirTools 2.0 as the maximum upload
file size is limited to 30 Mb. Furthermore, the sRNAtool-
box web application was also not accessible during the
period of testing and writing this manuscript.
Overall, Oasis 2 is significantly faster than MAGI, Chi-

mira, and omiRas. For the smallest dataset (Renal Cancer)
Oasis 2 was ~ 1.5 times faster than Chimira, ~ 15 times
faster than MAGI, and ~ 18 times faster than omiRas.
While the runtime differences between Oasis 2 and Chi-
mira were rather small when only few samples were ana-
lyzed, Oasis 2 was ~ 2 times faster than Chimira, ~ 30
times faster than MAGI for the 48 Gb Psoriasis dataset.
Unfortunately, we were unable to estimate the runtime of
omiRas for the Renal Cancer dataset since it did not finish
file upload. Oasis 2 analyzed the largest dataset (AD, 287
Gb) in 8 h31m50s while none of the other tools men-
tioned above supported the analysis of the AD samples. In
summary, Oasis 2 is the fastest of the state-of-the-art web
applications we could compare to and has no restrictions
on the sample number or size.

Conclusions
Oasis 2 is fast, reliable, and offers several unique features
that make it a valuable addition to the ever-growing num-
ber of sRNA-seq analysis applications. Especially the ana-
lysis support for all organisms, the detection and storage
of novel miRNAs, the differential expression and classifi-
cation modules, and the interactive results visualization
supporting GO and pathway enrichment analyses enable
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biologists and medical researchers to quickly analyze,
visualize, and scrutinize their data. Oasis 2 also offers rich
per experiment and per sample quality control, which
might be one of the most important steps in the initial
data analysis. The utility of a good quality control is exem-
plified in the analysis of the Psoriasis dataset, which seems
to contain a mis-labelled (SRR330866_PP) and an outlier
(SRR330860_PP) sample (Fig. 3). The removal of the out-
lier and mis-labelled samples in the Psoriasis dataset in-
creased the number of significantly DE miRNAs from 195
to 256 cases and increased the classification accuracy for
the same dataset from AUC of 0.9 to 1. We would like to
emphasize that this data was already analyzed in two pub-
lications and to our knowledge this is the first time that
these ‘problematic’ samples were detected, providing
strong evidence for the utility of Oasis 2’ QC plots. Add-
itionally the modular structure of Oasis 2 (sRNA detec-
tion, DE and classification) makes this task even easier, as
the user can run only DE (without outliers) rather than
going through the sRNA detection step again. In addition
Oasis 2 provides PDF and video tutorials that explain its
usage and details on how to interpret its results. Future
developments will include the detection of small RNA
editing, modification, and mutation events as well as more
detailed reports on bacterial and viral infections and
contaminations.

Additional file

Additional file 1: Oasis2-Suppl-Material.docx: This file contains
supplementary material and figures as well. (DOCX 125 kb)
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4.1 BED.AI

4.1.1 Introduction

The “central dogma” of biology is that DNA undergoes transcription on the antisense

strand (3’ to 5’) and then the mRNA is translated into protein. Therefore, the sense

strand (5’ to 3’) shares the same sequence as mRNA where thymine is replaced with

uracil. As DNA is complementary, when speaking of a gene in general the sense

of its nucleotide sequence is seemingly inconsequential; given just the index and

chromosome of a sequence, however, for the bioinformatician knowing which strand

can yield vastly di↵erent results. Furthermore, with 6.4 billion basepairs storing the

raw genomic sequences as strings of text is excessively ine�cient. For these reasons

and in support of the University of California Santa Cruz (UCSC) Genome Browser,

the Browser Extensible Data (BED) file format was developed.

BED is a versatile file format that follows a tab separated value (TSV) structure;

BED’s versatility stems from the number of columns (and sub-sequentially tabs sep-

arating the columns). At minimum BED requires the first three columns (BED3).

However another common variant is BED6, which includes the strand’s direction.

Note that the genome is not specified in the format; however it could be included in

the optional header line’s description field. A key benefit of the BED file format is

that by specifying only the chromosome, start, and stop position many sequences can

be stored in a single file in a compressed form rather than all of the raw sequences.
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chr7 127471196 127472363 Pos1 0 +
chr7 127472363 127473530 Pos2 0 +
chr7 127473530 127474697 Pos3 0 +
chr7 127474697 127475864 Pos4 0 +
chr7 127475864 127477031 Neg1 0 -
chr7 127477031 127478198 Neg2 0 -
chr7 127478198 127479365 Neg3 0 -
chr7 127479365 127480532 Pos5 0 +
chr7 127480532 127481699 Neg4 0 -

Table 4.1: Example of a BED file.

column meaning

chrom name of chromosome
chromStart starting position of feature
chromEnd ending position of feature

name name of feature
score s 2 [0, 1000], greyness of feature

strand s 2 {.,+, -}
thickStart where to draw bold
thickStop where to end boldness
itemRgb color of feature

blockCount number of blocks (exons) in feature
blockSizes csv of block sizes
blockStarts csv of block start positions

Table 4.2: The BED file format’s column names and meanings.

The raw sequences can be looked up later with a supporting tool such as the Quinlan

Lab’s BEDTools. An overview of the BED file format and its columns meanings are

outlined in table 4.2. An example of the BED6 file format can be found below (table

4.1):

When recovering the nucleotides sequences specified in a BED file, the raw nu-

cleotides sequences are often returned in the FASTA file format. While many are

accustomed to the standard nucleic acid codes A, C, T, G, and U, the FASTA file

supports ambiguity up to and including any nucleic acid (N) or a gap of unknown

length (-). A full breakdown of the FASTA file format can be found in table 4.3.

In addition to the character codes for nucleic acids, capitalization matters for the

FASTA file format. The character “N” (any nucleic acid) can be thought of as hard

masking, however a soft masking exists with lower case letters. Tandem repeats,

sequences of one or more nucleotides repeated directly adjacent to one another, e.g.

“attcg attcg attcg”, are represented with lower case letters. The UCSC uses both

Tandom Random Finder and RepeatMasker, the latter of which masks up 56% of the

human genome.
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Nucleic Acid Code Meaning Mnemonic

A A Adenine
C C Cytosine
G G Guanine
T T Thymine
U U Uracil
R A or G puRine
Y C, T or U pYrimidines
K G, T or U bases which are Ketones
M A or C bases with aMino groups
S C or G Strong interaction
W A, T or U Weak interaction
B not A (i.e. C, G, T or U) B comes after A
D not C (i.e. A, G, T or U) D comes after C
H not G (i.e., A, C, T or U) H comes after G
V neither T nor U (i.e. A, C or G) V comes after U
N A C G T U Nucleic acid
- gap of indeterminate length

Table 4.3: FASTA nucleotide encoding

This cursory overview of BED and FASTA files is requisite for discussing how a

sequence of nucleotides might be encoded for a machine learning algorithm. An option

is one-hot encoding, whereby the sequence is represented as a matrix. Each element

(column) represents a nucleotide and each channel (row) represents an indicator e.g.

“A” or ‘T.” If uracil is replaced with thymine to be DNA / mRNA agnostic then one

could encode an FASTA sequence of n nucleotides in a 4 ⇥ n matrix, where four are

rows A, C, T and G. If the FASTA sequence includes a character like “B,” then that

column could be represented either as [0, 1, 1, 1] or [0, 0.33, 0.33, 0.33] whereby the

former is multilabeling and the latter is soft labeling of the encoded data. Additional

information can be tacked on to this encoding by the addition of rows e.g. a row to

specify whether or not the nucleotide belongs to a tandem repeat or a row to specify

whether or not the nucleotide belongs to the sense or antisense strand. See table 4.4

for an example of how FASTA characters might be encoded.

Given a FASTA sequence each nucleotide can belong to a suite of feature classes

of biological relevance e.g. exon, intron, cpg-island, promoter, binding site, cleavage

site, etc. Just as a FASTA sequence can be encoded as a matrix, each nucleotide

(column) can be labeled to a class (row). For example, a matrix demonstrating the

labeling of a sequence containing a exons (row 1), an intron (row 2), and an “other”

class (row 3) can be found in table 4.5.
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FASTA Character
Channel A C G T U R Y K M S W B D H V N -

A 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0
C 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0
T 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0
G 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a c g t u r y k m s w b d h v n -
A 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0
C 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0
T 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0
G 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0
R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 4.4: FASTA encoding matrix when tandem repeats are included as a channel
(“R”). Uracil (U) is excluded as a channel.

Nuleotide Label
Channel 0 1 2 3 4 5 6 7 8 9
(1) Exon 0 1 1 1 0 0 1 1 1 1
(2) Intron 0 0 0 0 1 1 1 1 0 0
(3) Other 1 0 0 0 0 0 0 0 0 0

Table 4.5: How a FASTA sequence containing two exons and an intron might be
encoded as a matrix.

With a matrix encoding for both the FASTA sequence (e.g. table 4.4) and its

sequence features (e.g. table 4.5) one can utilize artificial intelligence to predict the

“ground truth” (the labeled sequence features). An example of which can be found

in figure 4.1.

While on the topic of how to evaluate a predicted label matrix to the ground truth

may appear straight forward, multilabel metrics are more complicated. Additionally,

how does one take into account not just the per-nucleotide error but sequence error

as a whole? If a tuple of just the start and stop indices of a sequence from such a

matrix can represent the local sequence (similar to BED3 columns’ two and three),

then figure 4.2 shows how minor errors in nucleotide prediction can balloon into major

sequence prediction errors.

Notice that while for channel one (exons) two sequence are preserved, both exons

are truncated and the latter has no direct alignment (a prediction index that matches

an index of the exon channel in the true objects). As for channel two (introns) a single

intron is split into two smaller introns. Here both introns have a direct alignment;

however, while it is clear this is incorrect on a multitude of levels what is the error?
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Figure 4.1: The demonstration label matrix from table 4.5, showing how a model
might predict this multilabel problem and how a binary mask can clarify
the results.

Figure 4.2: The sequence objects from masked label matrix of figure 4.1 demonstrat-
ing how a model seemingly slight errors can greatly a↵ect sequence anno-
tation.
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Figure 4.3: Distribution of two DNA sequence features (exon and intron) length. The
vast majority of exons and introns are in the hundreds of nucleotides
length; however, macro exon and introns exist well beyond the truncated
x-axis.

Is it the average of the errors for each sequence objects? if there where three true

introns and seven predicted ones, is alignment of the predicted intron to the start,

stop, or center of mass of the sequence? What if a predicted intron is evenly split

between two true introns in terms of alignment? What is the error when no object

is predicted when at least one (if not many) are expected?

These issues are compounded when factoring in the complexity of the sequence

feature domain. For example, DNA sequence features start at the micro - two nu-

cleotides - to the “macro” - hundreds of thousands of nucleotides. Figure 4.3 shows

the heavy tail the length distribution some sequence features (exons and introns) can

have. Further, when sequence features are encoded in a matrix and their dimensions

are reduced - via t-SNE - distinct feature classes may appear ambiguous due to the

encoding (figure 4.4 [23, 22]).

The importance of identifying and understanding these sequence features is readily

apparent. Consider exons, which are the protein-coding regions of genes; as such,

mutations therein can have notable e↵ect on the gene’s encoded protein’s function.

Even a single nucleotide polymorphism (SNP) can manifest as sickle cell disease.
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Figure 4.4: t-SNE of exons and introns with length in the range of 50 to 250 nu-
cleotides. While some introns appear to stand out, the vast majority of
exons and introns appear homogeneous.

Further, the proportion of gene isoforms or the use of particular exons in the protein

product is implicit in diseases such as Timothy syndrome, cardiomyopathy and cancer

[49, 50, 51, 52]. Given that 95% to 100% of genes partake in alternative splicing -

the modular use of exons - to modify their protein product, with some genes having

more than 38, 000 isoforms, it is relevant to know and keep track of their constituent

exons [53, 54, 55].

Interestingly, RNA sequencing (RNA-seq) data, which allows for the analysis of

both di↵erentially expressed exons (DEEs) and di↵erentially expressed genes (DEGs)

in specific contexts, is not fully utilized. As the technology for RNA-seq becomes

cheaper, there number of RNA-seq studies continues to rise with more than 27, 000

studies by 2015. Despite both analyses being possible from the same data, the ratio

of DEE to DEG studies is about 0.23% (from a National Center for Biotechnology

Information, NCBI, search), demonstrating the lack of attention in elucidating the

role of exons in pathologies. The preferential choice of DEG to DEE analyses may

stem from a lack of annotations to facilitate downstream analysis.

In late 2017 almost an order of magnitude (from ⇠ 160 to 1, 399) of mutually

exclusive exons (MXEs), of which 47% are novel, unannotated exons were reported
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[56]. Further, these MXEs are significantly enriched in pathogenic, disease-causing

mutations. This work indicates that there may be many more unannotated exons in

the human reference genome (hg38). A conservative 10% increase would result in a

novel exon for almost every gene [57].

Although e↵orts to predict various attributes about (specific) exons, e.g. exon-

intron structure, epigenetic signatures, splicing patterns, etc have been made, current

exon identification / prediction methods are done in the context of gene (structure)

prediction thereby requiring prior knowledge of the gene [58, 59, 60, 61, 62, 63, 64, 65,

66, 67]. Hence they do not necessarily lend themselves towards novel identification

or generalization to non-exonal features. Thus it is of interest to create a model for

sequence feature identification ab initio so that it can be adapted to any genome and

any feature of interest.

Neural networks have been shown to produce state-of-the-art results in semantic

segmentation, whereby an image’s pixels are relegated to their constitute objects

[68, 69, 70, 71, 72, 73, 74, 75]. As eluded to earlier with the matrix representation

of a FASTA sequence, FASTA sequences can equivalently be perceived as a wide

binary image. Thus, one could apply semantic segmentation to a binary image of a

FASTA sequence with the aim of predicting and identifying the sequence features of

interest. Herein we present BED.AI, a residual CNN with inception for the semantic

segmentation of FASTA sequences to predict sequence features (namely, exons and

introns).

4.1.2 Methods

4.1.2.1 Data Acquisition

Human Genome The human reference genome from December 2013 (GRCh38/hg38)

was downloaded from the USCS Genome Browser by navigating to the “Downloads”

dropdown, clicking “Genome Data”, then under “Sequence and Annotation Down-

loads” clicking “Human”, moving to the section “Human genome” and clicking “Full
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field value
clade Mammal
genome Human
assembly Dec. 2013 (GRCh38/hg38)
output format BED - browser extensible data
file type returned gzip compressed
genome genome

Table 4.6: Values to extract exonic regions.

dataset” under Dec. 2013 (GRCh38/hg38) and downloading the file “hg38.fa.gz”. In

addition, the corresponding chromosome sizes were also retrieved at the same location

by downloading the file “hg38.chrom.sizes”.

Exonic Regions A BED file of the known exonic regions was retrieved as follows:

1. Navigate to the USCS Genome Browser home page. 2. From the navigation

bar click “Tools.” 3. From the drop-down click “Table Browser.” 4. Selecting

the following fields with the corresponding values: 5. Set “group” to “Genes and

Gene Predictions.” 6. Set “track” to “All GENCODE V28.” 7. Set “table”

to “Comprehensive (wgEncodeGencodeCompV28).” 8. Set “output file” to “en-

code gencode comp v28 exons.bed.” 9. Click the button “get output.” 10. Under

“create one BED record per” select “Exons.” 11. Ensure that there will be “plus 0

bases at each end.” 12. Click the button “get BED.”

Intronic Regions A BED file of the known intronic regions was retrieved as follows:

1. Navigate to the USCS Genome Browser home page. 2. From the navigation

bar click “Tools.” 3. From the drop-down click “Table Browser.” 4. Selecting the

following fields with the corresponding values: 5. Set “group” to “Genes and Gene

Predictions.” 6. Set “track” to “All GENCODE V28.” 7. Set “table” to “Compre-

hensive (wgEncodeGencodeCompV28).” 8. Set “output file” to “encode gencode -

comp v28 introns.bed.” 9. Click the button “get output.” 10. Under “create one

BED record per” select “Introns.” 11. Ensure that there will be “plus 0 bases at

each end.” 12. Click the button “get BED.”
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field value
clade Mammal
genome Human
assembly Dec. 2013 (GRCh38/hg38)
output format BED - browser extensible data
file type returned gzip compressed
genome genome

Table 4.7: Values to extract intronic regions.

Genome 96 For evaluation the evaluation set from the “Evaluation of gene structure

prediction programs” by M. Burset and R. Guigó is used. The 570 sequences are first

downloaded from http://genome.crg.es/datasets/genomics96/seqs/DNASequences.-

fasta, and then encoded and labeled using the same processing techniques as described

above.

4.1.2.2 Data Transformation

After the data was collected from USCS data browser (see sections 4.1.2.1, 4.1.2.1,

and 4.1.2.1), the BED files were shared by chromosome and strand using the ParPar

python package. Then each of these subfiles were filtered using the bedpy python

package for those that lie on chromosomes 1 through 22. Utilizing the python package

lrng the overlapping regions of similar sequence features (e.g. exon overlapping with

exon) were combined to produce a smaller reference file.

With the known “classed” regions, a third BED file was produced correspond-

ing to the nucleotides which are neither exonic or intronic (the complement of the

nucleotides in the union of the prior two files). These regions are referred to as “non-

class.” There were only a few non-class regions per chromosome and their length

were far greater than that of the classed regions. Therefore each non-class region

was segmented into non-overlapping chunks of random length between 450 and 1,000

nucleotides. In addition to the non-class segmented BED file, a BED file of random

300 nucleotide sequences was also produced. As the model architecture uses a fixed

window size, each sequence is padded on both sides by the window length; subse-
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quently these sequences are partitioned into training, validation and test files. Per

each BED file 650,000 regions were selected, from which each sequence was designated

as training, validation, and test sets at 70%, 20%, and 10% ratios respectively i.e.

195,000 randomly selected sequences or padded exons, introns, and “other” comprise

the test set.

With the data filtered, padded, and partitioned, the sequences are then prepared

for TensorFlow 2.0. First the FASTA sequences are extracted from the genome using

bedtools. Then each FASTA sequence is embedded as a tensor using the python

package ntai. As the BED sequences were padded, using the reference file each FASTA

sequence is labeled. Thereafter the labels are also converted to tensors. Finally,

using the fio python package all sequence features are combined and converted into

TFRecords.

These steps are illustrated in supplementary figures 4.11 a and 4.11 b.

4.1.2.3 Model Output

For sequences longer than the window size of the model, their output can be compiled

as follows. First a step size, k, is determined (by default we use 25). Then overlapping

regions of the sequence are feeding into the model for every k nucleotides. The

predictions, per nucleotide, are averaged to create a merged prediction for each of the

subsequences. Thereafter a binary mask is set where every value at or above m are

set to 1 (by default we used 0.5. Given a gap tolerance, g, disjoint segments in the

output with a distance less than or equal to g nucleotides are merged. By default we

used g = 0. With the features extracted from the output, the post-processed tensors

are converted to a BED file. These steps are visualized in supplementary figures

4.13 a through 4.13 b.
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Figure 4.5: BED.AI model architecture

(a) Branch types

(b) BED.AI Inception Towers

4.1.2.4 Architecture

BED.AI’s employees an inception residual CNN, where the inception kernels are 3,

25, and 75. The architecture is inspired from ademxapp as used in “Wider or Deeper:

Revisiting the ResNet Model for Visual Recognition” by Zifeng Wu, Chunhua Shen,

and Anton van den Hengel [74].

4.1.2.5 Training and Evaluation

The model was trained using a DGX-1 for 300 epochs with a batch size of 256

sequences. Since the sequences were extended to include the neighboring ±window-

sized number of nucleotides, per batch a random window-sized subsegment of the

sequence is used. Of the total 1,950,000 preprocessed sequences, 1,365,000 were used

for training, 390,000 for validation and 195,000 for evaluation.

4.1.2.6 Web Application

Details and a demonstration of BED.AI is available for use at http://bedai.ims.bio/

(see figure 4.7). This lightweight web application allows users quick reference to a

cursory summary of what BED.AI is; where the source code for it can be found; links

to step-by-step documented tutorials regarding the code; quick links to where and
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how the source data was obtained; as well as an interactive demonstration of the

input and output specifications in relation to hg38. The application was developed

utilizing v-focal, apoll, sfo, mag, ntai, sil, lrng, parpar, bedpy, and the fio packages

(see table 1.1).

Production of BED.AI’s web application was facilitated by isolating its individual

components and dockerizing them. Specifically three core containers are in use. First,

there is the container for the trained model based on TensorFlow’s production serving

API which receives the input tensors and returns the output. Second a lightweight

Flask application is deployed to handle the interplay from the client’s input request

and the TensorFlow containers output via a Redis queuing schema. Third, the client

side web application is built using a modern component-based library: specifically

Vue. The client side application polls the Flask container for results until they are

given to allow for the user to be notified as results come in (in the case of batched

input). An overview of this three tiered system can be found in figure 4.8 and in

more detail at section 1.2.2.

4.1.3 Results

Evaluation of BED.AI takes place over two datasets. The first is a dataset of verte-

brate genes described by Burset & Guigo in Genomics 1996 [76]. It is often used in

comparison between HMM gene structure models. The later comprises the test set of

sequences extracted from hg38. Table 4.8 describes the multilabel facets of the test

set.

For model comparison both the HMM-based models GenScan and HMMGene are

utilized [77, 78]. Comparatively, especially when parameter size is factored into

account, BED.AI has lackluster results at best for sequence identification on the

Genome96 dataset (see table 4.9). Yet, without expertise curated parameters, curi-

ously outperforms at the nucleotide level. The seeming paradox of performance is

well encapsulated in figure 4.10. As mentioned in the introduction, a single nucleotide
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Multilabel Metric Value
Carnality 1.0215
Density 0.3405
Diversity 7

Table 4.8: The multilabel metrics of the hg38 test dataset. Label cardinality is the
average number of labels per nucleotide. Label density reflects the average
of the total labels in a sequence divided by the total number of labels.
Note that diversity is 7 rather than 8 (23) as the label ”other” is exclusive.
Collectively these metrics reflect that the multi label case occurs; however
such occurrences is rare. Part of this rarity is inflated due to the exclusive
label class “other.”

break in classification - metric depending - can decimate a model’s performance score.

As the go-to sequence metric is exon accuracy which has a definition dependent on

the number of correctly predicted exons, models emphasizing at nucleotide accuracy

su↵er. Especially, when directly compared to HMMs that emphasize state changes

(e.g. exon to intron).

Dataset Model Subset Acc NT Acc ESn ESp Exon Acc
Genome96 GenScan - 92 78 81 80
Genome96 HMMGene - 92 81 83 82
Genome96 BED.AI 89.1 93 0.64 0.29 0.47

HG38 BED.AI 77.8 86.2 22.73 7.97 15.35

Table 4.9: Core metrics of two HMM based models and BED.AI. Exon Specificity
(ESp) and Exon Sensitivity (ESn) are defined as the true number of cor-
rectly predicted exons divided by the number of predicted exons or anno-
tated exons respectively. Exon Accuracy is the average of ESp and ESn.
The Subset Accuracy is the percentage of labels where all labels were pre-
dicted correctly. Given the fundamental nature of the models and input
space of the HG38 dataset, metrics could not be calculated for GenScan
and HMMGene for HG38. Interestingly, while BED.AI flounders extremely
well on the Genome96 dataset, it nevertheless holds the highest nucleotide
based accuracy.

Despite this disadvantage, when utilizing the larger and multilabel hg38 test set,

exon accuracy (as defined above) improves significantly, suggesting while poor at

identifying slice sites, BED.AI still has strong recognition of sequence features. Fur-

thermore, BED.AI looks at nucleotides in the generalized context i.e. if a nucleotide

is ever an exon or an intron, whereas HMM models are trained on specific sequences
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not accounting for alternate splicing.

When shifting the discussion to multi-label metrics such as hamming loss, macro

and micro metrics BED.AI performs quite well (table 4.11). Furthermore, despite

length imbalance in the sequence features (reflected somewhat in the channel specific

evaluation), BED.AI nevertheless has noteworthy accuracy (table 4.10). Factoring in

the variance in sequence feature length (e.g. micro to macro exons) and BED.AI’s

small sight (300 nucleotides) achieving over 25% perfect retention of exons in the

hg38 is above expectation (table 4.12). This holds especially as longer sequences are

but the dynamic average of nucleotide predictions.

Macro Micro Exon Intron Other
Accuracy 0.862 0.862 0.938 0.806 0.842
Precision 0.513 0.794 0.563 0.976 0.0
Recall 0.495 0.8 0.613 0.814 0.06

F1 Score 0.492 0.797 0.587 0.888 0.0

Table 4.10: Channel level evaluation of BED.AI on the hg38 test set. Despite length
imbalances in sequence features, BED.AI still yields respectable accuracy
across classes (i.e. channels).

4.1.4 Discussion

BED.AI’s results are both promising and peculiar. Traditional gene labeling solutions

based o↵ of HMMs rely on high-level expert curated knowledge to function. To

this end, BED.AI matches and surpasses these model’s annotation e↵orts at the

nucleotide specific scale. However, it becomes readily apparent that state-of-the-art

Metric Value
Hamming Loss 0.138
Subset Accuracy 0.778

Accuracy 0.794
Precision 0.804
Recall 0.8

Table 4.11: Label level metrics. Arguably most relevant are the hamming loss (frac-
tion of wrong labels to total labels) and subset accuracy (percent of sam-
ples with all labels correct).
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% Perfect Exon Intron Other
25.7 27.0 0.0

Table 4.12: Sequence retention. BED.AI manages to perfectly identify 25.7 % of the
exons in the test set.

nucleotide specific recognition, even if obtained ab initio, is insu�cient in its own

right for sequence level parsing. Given the multi-label nature of BED.AI, metrics

for various HMMs and BED.AI are not directly comparable. Regardless, it is clear

that in relation to exon specificity and sensitivity BED.AI drops to laughably poor

performance. This extreme dichotomy of lacking hand curated features yet achieving

better nucleotide awareness, while also failing to string together into exonic longer

sequences poses the question of what, if anything, might such a tool have use for.

Such a question may better be posed in regards to what BED.AI is not suited for.

Although designed to aid in sequence annotation, BED.AI’s prowess seemingly does

not lie at the incorporation of many nucleotides into sequence features. Rather,

BED.AI’s use as a tool may specifically be as a framework for training multi-labeled

sequence-feature nucleotide based models for which hand curated knowledge is not

so easily available or integrated. In short, BED.AI may serve best as a module in

a larger model e.g. as a nucleotide labeler in an HMM trained at higher feature

identification. While the results are not as desired, it raises interesting questions for

future work in regards to how one might modify the architecture of the network and

training regime to produce a tool that works as well as it does on nucleotides as it

does on sequences composed from them.

4.1.5 Supplementary Material

Listing 4.1: Interactive notebook for training a BED.AI model available at

https://gitlab.com/SumNeuron/bedai.

bai = BEDAI( c on f i g={

. . .
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})

model = bai . make model ( )

model . compile (

opt imize r=t f . keras . op t im i z e r s .Adam(0 . 0 001 ) ,

l o s s=mu l t i l a b e l l o s s ,

met r i c s =[

’ accuracy ’ ,

Mult iLabelMacroRecal l ( f r om l o g i t s=Fal se ) ,

Mul t iLabe lMacroSens i t iv i ty ( f r om l o g i t s=Fal se ) ,

Mu l t iLabe lMacroSpec i f i c i ty ( f r om l o g i t s=Fal se ) ,

]

)

r e s = model . f i t (

t r a i n d s . r epeat ( ) ,

epochs=300 ,

s t ep s pe r epoch=FILE SPEC [ ’ n t r a i n ’ ] // ba t ch s i z e ,

v a l i d a t i on da t a=va l i d d s ,

v a l i d a t i o n s t e p s=FILE SPEC [ ’ n va l i d ’ ] // ba t ch s i z e ,

)
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(a) BED.AI web application input specification. Users can quickly specify the
sequence region that is converted to the BED file format.

(b) BED.AI web application output. Users can quickly see the sequence region
they specified from the training data as labeled by the model versus the
known annotations.

Figure 4.7: Demonstration of BEDAI web application.
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Figure 4.8: BED.AI Web Application architecture. An nginx server supports the vue
based client side code that both submits user input and polls for results
from the Flask and Redis based task scheduling container. This task based
API submits tasks from the queue to the TensorFlow model container for
convenient and scale-able deployment.

(a) Overview of BED.AI’s dockerized web deployment as found at the domain
http://bedai.ims.bio/.

Figure 4.10: The gene HUMATPGG, > 15, 000 base pairs, from the Genome96
dataset as evaluated by striding over with BED.AI.

135

http://bedai.ims.bio/


4 Unpublished

Figure 4.11: Data transformation pipeline. First the BED files of sequence features
and filtered to the regions of the genome one wishes to use. Then over-
lapping regions of of the same sequence feature type are consolidated.
With a condensed reference file the “other” class of regions can be deter-
mined (a). The sequences to be used are padded on both sides equal to
the window size of the model. Then the extended sequences’ FASTAs are
extracted from the genome. Finally the FASTAs and their corresponding
labels are embedded as tensors (b).

(a) Data Transformation Part 1: calculating the labels of the nucleotides.

(b) Data Transformation Part 2: padding, extracting and embedding the sequences.
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Figure 4.13: Model Output: a high level overview of the model’s transformation of
the data (a). Longer sequences are also possible by striding over the
input (b).

(a) Data Output Part 1: a high level look at the model. Convolutions are applied over
the input channels to upscale the feature space and then downscale it back to the
label dimension. From which the labels can be extracted.

(b) Model Output Part 2: for longer sequences, the input is striated over to produce a
batch of predicted labels. These labels are then merged via a per-nucleotide average.
Then a binary mask is applied. After which gap smoothing may be applied before
converting the predicted labels to a BED file.
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5.1 Abstract

Drastic rise in publications and biomedical data repositories leave modern researchers with

the core problem that it is not feasible to consume and understand all available data.

Coupled with increasing technical complexity, researchers may thus seek avenues to promote

both the accessibility and the impact of their contributions.

Progressive web applications (PWAs) may serve researchers in increasing, prolonging, and

promoting the relevancy of their work; however producing them introduces a non-research

related time constraint, which I herein address via a boilerplate setup for converting aca-

demic contributions into PWAs. As a seemingly universal medium, PWAs make otherwise

desktop or specialize software accessible even for use in classrooms (e.g. KNIT, SEA). Fur-

ther, I’ve made research with expensive hardware requirements (like GPUs) accessible at

one’s fingertips (e.g. SCADEN, BED.AI). As the focus is facilitating research not app pro-

duction, the development of novel tools and techniques - which may latter be encapsulated

in PWAs - was also fundamental for this dissertation (e.g. KNIT, SEA, scGANs, etc).

Development of PWAs provide a convenient but time-intensive solution for interfacing

with complex, technical, or otherwise cost prohibitive research; however, boilerplate setups

lowering time and e↵ort required to manufacture PWAs may result in an influx thereof

equally diminishing their value i.e. PWAs could no longer abate publication accessibility

and relevancy. Given COVID-19 and a rise in online education, PWAs may also provide

a promising avenue to increase scientific literacy via interaction in classrooms. This thesis

demonstrates both the need of novel bioinformatic tools (SCADEN, BED.AI, KNIT, SEA,

OASIS) in their own right and their increased accessibility when coupled with PWAs.
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5.2 Zusammenfassung

Mit dem drastischen Anstieg an Publikationen und biomedizinischen Daten stehen Forscher

heutzutage vor dem Kernproblem, dass es nicht mg̈lich ist, alle verfügbaren Daten zu nutzen

und zu verstehen. In Verbindung mit der zunehmenden technischen Komplexität suchen

Forscher daher nach Wegen, um sowohl die Zugänglichkeit als auch die Wirkung ihrer

Beiträge zu fördern.

Progressive Web-Anwendungen (PWAs) können Forschern dabei helfen, die Relevanz

ihrer Arbeit zu erhöhen, zu verlängern und zu fördern.Deren Implementierung stellt jedoch

einen erhöhten, nicht forschungsbezogenen zeitlichen Aufwand dar, weswegen ich auf ein

Boilerplate-Setup ausweiche, mit Hilfe dessen akademische Beiträge in PWAs umgewandelt

werden. Als scheinbar universelles Medium machen PWAs Desktop- oder Spezialsoftware

auch für den Einsatz im Klassen-zimmer zugänglich (z.B. KNIT, SEA). Darüber hinaus

habe ich wissenschaftliches Arbeiten mit teuren Hardwareanforderungen (wie GPUs) auf

Knopfdruck zugänglich gemacht (z.B. SCADEN, BED.AI). Da der Fokus auf der Zugänglich-

machung der Forschung und nicht der App-Herstellung liegt, war auch die Entwicklung

neuartiger Tools und Techniken — die in PWAs gekapselt sein können — von grundlegen-

der Bedeutung für diese Dissertation (z.B. KNIT, SEA, scGANs, etc.).

Die Entwicklung von PWAs bietet eine bequeme, aber zeitintensive Lösung für die Verar-

beitung mit komplexer, technischer oder anderweitig kostenintensiver Forschung. Boilerplate-

Setups, die den Zeit- und Arbeitsaufwand für die Herstellung von PWAs verringern, können

jedoch dazu führen, dass die zunehmende Nutzung von PWAs deren Nutzen schmälert, d.h.

PWAs können die Zugänglichkeit und Relevanz von Verö↵entlichungen nicht mehr ver-

ringern. Angesichts von COVID-19 und einer Zunahme der Online-Bildung können PWAs

auch eine vielversprechende Möglichkeit bieten, die wissenschaftliche Kompetenz durch In-

teraktion im Klassenzimmer zu verbessern. Diese Dissertation zeigt sowohl den Bedarf an

neuartigen bioinformatischer Software (SCADEN, BED.AI, KNIT, SEA, OASIS) als auch

ihre verbesserte Zugänglichkeit in Verbindung mit PWAs.
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6 Clarification of Contributions

KNIT research and development of the tool, its application, the underlying libraries

and packages, and collaborative data preprocessing.

Neuropathy collaborative in-silico analysis requisite for and the production of figure

3.

SCADEN development of the underlying libraries and packages and production of

the application.

SEA development of the underlying libraries and packages for visualization and col-

laborative production of the application.

scGANs collaborative research, development, and testing of the non-conditional (sc-

GAN) model.

Oasis development of the visualization elements and collaborative research and de-

velopment of the classification module.

BED.AI the research and development of the model, its production, and its applica-

tion.
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