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Prof. Dr. Jochen Liske

Vorsitzender der Promotionsausschusses:

Prof. Dr. Wolfgang Hansen

Dekan der Fakultät für Mathematik,

Informatik und Naturwissenschaften:

Prof. Dr. Heinrich Graener



© 2021 Julien Manshanden

Dieses Werk ist lizenziert unter einer

Creative Commons Namensnennung 4.0 International Lizenz:

http://creativecommons.org/licenses/by/4.0/





Zusammenfassung

Experimentalle Beobachtungen von ausgedehnten Luftschauern haben ein Defizit des
Myonengehalt im Vergleich zu theoretischen Simulationen aufgedeckt. Dies erschwert
die genaue Bestimmung der Massenzusammensetzung ultra-hoch-energetischer kos-
mischer Strahlung. Wir untersuchen das Potential der Formation dichter Quark-
Gluon Materiezuständen (sogenannte Feuerbälle) für die Auflösung dieses Myonen-
defizits, welche wir mit Daten des Pierre Auger Observatoriums über die Tiefe des
Schauermaximums und die Zahl der Myonen auf dem Erdboden quantifizieren. Wir
verwenden ein phänomenologisches Feuerballmodell, das die Formation eines Plas-
mas nachbildet und den Strange-Quark Gehalt im Vergleich zu aktuellen Standard-
modellvorhersagen anreichert. Durch die Implementierung dieses Modells in beste-
hende Luftschauersimulationssoftware sehen wir, dass die Daten über die longitudi-
nale Entwicklung der elektromagnetischen Schauerkomponente der Formation eines
Plasmas widersprechen. Stattdessen beschränken wir das Feuerballmodell darauf,
dass es ausschließlich eine Strangeness-Anreicherung der hadronischen Wechselwir-
kungen des Standardmodells darstellt. Für bestimmte Formen der Wahrscheinlich-
keit der Feuerball-Formation, ermöglicht dies eine konsistente Interpretation der Da-
ten hinsichtlich der Massenzusammensetzung der kosmischen Strahlung. Diese er-
sten Untersuchungen ergänzen wir mit einer analytischen Methode, die auf dem
Heitler-Matthews Modell basiert. Hierdurch finden wir explizite Reihen von Feuer-
ballparametern, die das Myonendefizit lösen. Einschränkungen basierend auf Daten
über Schauer-zu-Schauer Schwankungen der Myonenzahl erfordern eine Strangeness-
Anreicherung auch bei niedrigeren Energien. Bei Tevatron und LHC Energien quanti-
fizieren wir dies als eine O(3−8)% Steigerung des durchschnittlichen, in hadronischen
Teilchen gehenden, Energieanteils im Vergleich zu Vorhersagen aktueller Modelle
über die hadronische Wechselwirkung. Die direkte Interpretation der makroskopi-
schen Auger Daten in Hinblick auf eine mikroskopische Wechselwirkungseigenschaft
motiviert zu Experimenten der Vorwärtsphysik mit Beschleunigern der jetzigen Ge-
neration.



Abstract

Experimental observations of extensive air showers have revealed a deficit of the
muon content in their theoretical simulations. This hampers a precise determination
of the ultra-high-energy cosmic ray mass composition. We investigate the potential
of producing states of dense quark-gluon matter (so-called fireballs) to resolve this
muon deficit, which we quantify with data from the Pierre Auger Observatory on
the depth of the shower maximum and the number of muons at ground. We adopt a
phenomenological fireball model that mimics the formation of a plasma and enhances
the strange quark content with respect to current Standard Model predictions. When
implementing this model into existing air shower simulation software we find that the
formation of a plasma is in tension with data on the electromagnetic longitudinal
shower development. Instead, we restrict the fireball model to only enhance the
strangeness of Standard Model hadronic interactions. Then for specific forms of the
fireball-production probability we obtain a consistent interpretation of the data in
terms of the cosmic ray mass composition. Complementing these initial studies with
an analytic approach based on the Heitler-Matthews model we find explicit sets of
fireball parameters that resolve the muon deficit. Constraints from data on shower-
to-shower fluctuations of the muon number require strangeness enhancements also
at lower energies. At Tevatron and LHC energies we quantify this as an O(3− 8)%
increase of the average fraction of energy going into hadronic particles compared to
predictions from current hadronic interaction models. This direct interpretation of
macroscopic Auger data in terms of a microscopic interaction property motivates
forward physics experiments at current-generation accelerators.
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1 | Introduction

Microscopic particles – invisible to the naked eye – continuously bombard the Earth from outer
space. Fortunately for life on Earth, we are well-shielded by the atmosphere. This shielding
effect actually gave rise to their discovery in the first place: by taking electroscopes on balloon
rides several kilometers up into the sky, it was shown in the early 20th century that the intensity
of the radiation increases with altitude. This led to the inevitable conclusion that these rays
are of cosmic origin, i.e., they are cosmic rays (CRs). Just like the arrival of CRs, the quest to
unravel their nature continues to this day.

Nowadays we know that CRs are ionized nuclei that span a very wide range in energy, with
the most energetic ones detected so far having energies up to a few 1020 eV. For physicists, such
macroscopic energies within microscopic particles are very intriguing. To provide a reference,
1020 eV corresponds to 16 Joules, which is sufficient to accelerate from rest a typical association
football of 430 grams to 8.6 m/s (!) – meaning that an inconveniently timed CR could score a
goal and make you lose the championship. To also put this in a physics perspective; the most
energetically human-accelerated particles are proton beams of 6.5 TeV1, which is almost 8 orders
of magnitude lower than the most energetic observed CRs.

There is no need to worry about CRs ruining your football game because of the shielding of
the atmosphere, but also because the highest-energetic CRs are extremely rare: at 1020 eV on
average only 1 particle arrives at Earth per square kilometer per century. This is a reflection of
their very steep spectrum: for every order of magnitude higher in energy, there are 100 times
fewer particles. Below 1015 eV the rates are still high enough for CRs to be detected onboard of
space stations or satellites, but above 1015 eV one is forced to revert to ground-based experiments
covering large areas to compensate for the low flux.

While the shielding of the atmosphere prevents the primary CR particles to reach the Earth’s
surface, their energies are large enough to leave observable physical imprints in the atmosphere.
Upon the arrival of CRs at Earth they undergo hadronic interactions with atmospheric nuclei,
which involves the production of many so-called secondary particles. These keep interacting and
thereby induce a cascade of particles known as extensive air showers (EASs). It is these EASs
that can be observed from the ground with a variety of techniques.

The properties of the original CR can then be inferred from the reconstruction of such EASs,
which requires a solid understanding of the relevant particle physics processes. This includes
regions of phase space inaccessible to current accelerators. In particular, the first interaction of
ultra-high-energy cosmic rays (UHECRs, E > 1018 eV and reaching a few 1020 eV) with atmo-
spheric particles attain center of mass energies exceeding 450 TeV, which significantly surpasses
the 13 TeV achieved at the Large Hadron Collider (LHC). Furthermore, most relevant for EASs

11 TeV = 1012 eV

1



CHAPTER 1. INTRODUCTION

are very forward interactions, which are generally not probed at collider2 experiments. From this
perspective, the study of UHECR-induced EASs constitutes a complementary particle physics
laboratory. Simultaneously, the very existence of UHECRs gives rise to a plethora of intrigu-
ing questions regarding the responsible astrophysical processes and sources. This underlines the
interdisciplinary nature of astroparticle physics in general, and CR physics in particular.

Detailed inferences of CR properties such as their energy spectrum, nuclear mass composition,
and arrival direction are invaluable for testing astrophysical models on their origin, acceleration,
and propagation. In particular, determining whether the composition at the highest energies
tends to be light (i.e., proton) or heavy (i.e., iron) has the potential of ruling out many of
such models [1]. Traditionally, the mass composition is inferred from EASs using the observable
Xmax, which is the depth in the atmosphere where the shower development reaches its maximum.
While proven to be a very powerful mass indicator, Xmax is typically measured with fluorescence
telescopes that are limited by a 15% duty cycle. More statistics can be obtained from ground
arrays measuring the footprint of these EASs with a 100% duty cycle. In this footprint, the
number of muons Nµ constitutes a complementary mass indicator, which also appears [2] to
have a potentially larger mass separation power on a shower-by-shower basis [1].

The interpretation of data on these observables in terms of the nuclear mass A of the CR
primary follows from comparisons to EAS Monte Carlo simulations. These simulations encode
our understanding of the physics of air showers, including the relevant hadronic interactions.
Due to the random nature of EASs, it is difficult to relate the observables to specific masses
on a shower-by-shower basis. Therefore, current efforts focus on the interpretation of the first
two statistical moments – averages 〈.〉 and fluctuations σ(.) – of Xmax and Nµ, with each being
a unique mass indicator. It turns out that both moments of Xmax [3, 4] and, more recently,
the fluctuations of the muon number [5] allow for a consistent composition interpretation of the
data. In contrast, measurements of the average muon number significantly exceed predictions
from simulations assuming the Xmax-inferred composition [1, 6]. This tension between theory
and experiment is known as the muon deficit, i.e., there is a deficit of muons in simulations.

Several resolutions of the muon deficit have been proposed, ranging from the introduction
of exotic new physics to small adjustments to current hadronic interaction models. All current
proposals have in common that there is some effect suppressing the energy loss to the electro-
magnetic component of the EAS such that there is sufficient energy available to produce the
observed number of muons at ground. As will be reviewed later in the thesis, the proposals differ
in the origin of this suppression: string percolation [7], restoration of the chiral symmetry [8],
production of a fireball state [9], presence of a core-corona effect [10], or a more conventional
type of quark-gluon plasma [11, 12, 13]. Which, if any, of these proposals can solve the muon
deficit is currently unclear.

Combining the muonic measurements from a variety of CR experiments, it was shown that
the deficit starts at around 10 PeV CR primary energy [6]. This corresponds to 8 TeV in
the center of mass frame of the first interaction3, and could therefore be probed at current
collider experiments [1]. In fact, the ALICE collaboration reported on an enhanced production
of multi-strange hadrons in high-multiplicity proton-proton collisions at

√
s = 7 TeV [14]. Such

2Collider experiments refer to accelerator experiments where two beams are accelerated and collided. This in
contrast to fixed-target experiments with only one energetic beam in the laboratory frame.

3Whereas [6] reports on a 10 PeV offset, [1] states it starts at 40 PeV. The latter corresponds through
√
s ≈√

2Emp to 8 TeV in the center of mass frame.

2



CHAPTER 1. INTRODUCTION

a strangeness enhancement is also proposed in the fireball model [9], which could therefore be
taken as a hint that this fireball scenario constitutes a viable solution to the muon deficit [12].

With a detailed study of the effect of fireballs on UHECR-induced EASs, this thesis intends
to assess that option. Particular emphasis will be put on high-level data of the reconstructed
Xmax and Nµ from air showers detected at the Pierre Auger Observatory, allowing for direct
comparisons between theory and experiment. A complete exploration of the fireball parameter
space in light of the muon deficit would either help exclude such exotic explanations, or give rise
to concrete predictions for future forward-physics experiments.

In Chapter 2 follows a general introduction to CR-physics and EASs. Experimental data
used in this thesis comes from the Pierre Auger Observatory, which is described in Chapter 3
along with its main scientific results. Chapter 4 reviews the relevant hadronic interaction models
and simulation software. The muon deficit as well as the fireball model are then discussed in
Chapter 5.

The remaining chapters contain the results of the three studies performed for this thesis. The
first study, in Chapter 6, considers the general compatibility of Rµ- and Xmax-data within the
fireball model for a fraction of its parameter space. The second study, in Chapter 7, extends
the parameter space and provides a systematic investigation of the impact of a fireball on the
EAS observables. The last study consists of two parts: Chapter 8 derives a fireball-extended
analytical framework – inspired by the Heitler-Matthews model – to predict the muon number,
which is then used in Chapter 9 to find fireball parameters that would allow for a consistent
interpretation of the data in terms of the CR mass composition, and therefore solve the muon
deficit.

3





2 | Cosmic Rays

The physics of cosmic rays has been an active field of research for over a century. With in 1912
the first convincing evidence of the existence of invisible radiation originating from outer space
[15], the field of cosmic ray physics preludes and even contributed to the birth of particle physics
[16]. Despite this long history there are still various open questions about the CR properties
and origin. Coupling this with humanity’s natural fascination for the cosmos provides both a
historical and a practical case for the modern study of cosmic rays.

This chapter introduces the field by first providing a brief history of cosmic ray physics in
Sec. 2.1. Then, the modern subfields along with some open problems are outlined in Sec. 2.2.
Closing with an introduction to the phenomenon of extensive air showers in Sec. 2.3 we intend
to provide a sufficient background for the thesis.

2.1 A Brief History of Cosmic Ray Physics

Despite the successes of the theory of electromagnetism – developed in the 18th and 19th century
– one of the original observations made by C.A. de Coulomb in 1785 remained unexplained until
the discovery of radioactivity by H. Becquerel in 1896 [16, 17]. This observation considered the
spontaneous discharge of an electroscope, which first led to the conclusion that the air inside the
isolated chamber was contaminated with conducting dust particles. Experiments in 1900 and
1901 by H. Geitel and J. Elster [18, 19] as well as C.T.R. Wilson [20] showed that the air itself
possesses some conductivity, which was subsequently attributed to the ionization of air from
radioactivity in the surrounding environment [16, 21]. Following experiments did not provide
much clarity on the precise origin of the radioactivity, with in general the Earth’s crust being
the assumed source [21, 22, 23].

Putting this assumption to the test, T. Wulf took in 1910 his improved electrometer to the
top of the Eiffel Tower and found an insufficient decrease of the ionization rate with respect to
the ground if the Earth’s crust was indeed responsible [16, 23, 24]. Around the same time, similar
observations were made by A. Gockel from his three hot-air balloon flights above Switzerland
up to a 4500 m height [16, 25, 26], and by D. Pacini from his measurements on the Tyrrhenian
sea [23, 27, 28]. These observations indicated the presence of an additional atmospheric or
extra-terrestrial component of the observed penetrating radiation.

The first convincing evidence for an extra-terrestrial origin is attributed to the seven balloon
flights conducted by V.F. Hess in 1912 [15, 16, 23]. The measurements of the last (and most
successful) flight – along with Hess himself – are shown in Fig. 2.1: after a slight initial decrease,
there is a clear increase of the ionization rate with altitude. These results were subsequently
confirmed and extended by W. Kolhörster in 1913 and 1914 with balloon flights of up to 9300 m

5



CHAPTER 2. COSMIC RAYS

Figure 2.1: Left: V.F. Hess in 1912 before one of his balloon flights. Credits: VF Hess Society, Schloss
Pöllau/Austria. Right: Measurements of the ionization rate as a function of altitude from Hess’ seventh
balloon flight in 1912 (left graph) and Kolhörster’s confirmation flights in 1913 and 1914 (right graph).
Figure from [29], reproduced with permission.

in altitude [30, 31], as also shown in Fig. 2.1. Despite the convincing evidence, it took another
decade for a general consensus to be reached on the existence of these cosmic rays [16, 21].

The precise nature of these rays was still a mystery, with gamma rays (photons) – the most
penetrating radiation known at the time – the main candidate [16, 21, 32]. During a series of
voyages between Java and Amsterdam in 1927 and 1928, J. Clay observed a dependence of the
ionization rate on geomagnetic latitude [33]. On top of their own coincidence measurements
in 1929, W. Bothe and W. Kolhörster interpreted Clay’s observations as further indications for
a charged particle nature of cosmic rays due to deflections in Earth’s magnetic field [32, 34].
Follow-up expeditions by Clay [35], A.H. Compton [36] and a world-wide collaborative effort [37]
confirmed this picture [32].

Given that cosmic rays are charged particles deflected in Earth’s magnetic field, B.B. Rossi
realized in 1930 that an asymmetry in flux from the east and west would reveal the dominant
charge [38, 39]. Three years later this effect was indeed observed by L. Alvarez and Compton
[40], T.H. Johnson [41], and subsequently also by Rossi himself together with S. de Benedetti
[42]. These measurements surprisingly indicated cosmic rays to be mostly positively charged,
in contrast to the widespread assumption that they were electrons [38]. It, however, took until
the early 1940s for proof of a predominantly proton composition (at energies of 109 − 1012 eV)
[43], and later also evidence for a subdominant fraction of heavier nuclei [38, 44]. Nowadays
we understand cosmic rays to be the nuclei of ionized atoms, with their precise composition a
current topic of research [45].

It is interesting to note that around the same time observations of cosmic rays with cloud
chambers led C.D. Anderson to the discovery of the positron in 1932 [46] and the muon (together
with S. Neddermeyer) in 1936 [47]. The use of cosmic rays to study subatomic particles continued
until the first man-made accelerators in the 1950s [48]. Interestingly, with the detection of ultra-
high energy cosmic rays modern cosmic-ray physics can again contribute to the field of particle
physics (see, e.g., [49]).

The coincidence method of coupling multiple Geiger-Müller counters and looking at simul-

6



CHAPTER 2. COSMIC RAYS

taneous signals – pioneered by Bothe in 1929 [50] and upgraded the following year by Rossi
[51] – was an efficient technique to filter out background radiation in the laboratory and detect
mostly cosmic rays. A subsequent shielding with up to 1 meter of lead, led Rossi in 1933 [52] to
his transition curve. This curve showed that the coincidence rate first increased with absorber
thickness before falling again, implying that cosmic rays produced showers of particles in lead
[53]. The same phenomenon should also occur in air, as suggested by K. Schmeiser and Bothe in
1938 [54], which they subsequently measured to have sizes up to 40 cm. Similar measurements
came independently from Kolhörster’s group [55], and it turns out that Rossi had observed co-
incidences between distant detectors already in 1934 [56], but he was unable to follow up on it
[53]. Nevertheless, the final discovery of extensive air showers is attributed to P.V. Auger and
his group in 1939 for not only measuring shower sizes of up to 300 m, but also for estimating
the total energy of the primary particles to be O(1015) eV [53, 57] – many orders of magnitude
above what was previously thought possible [58].

Since the discovery of extensive air showers their study has been used to infer properties of the
primary CRs initiating such showers. Technological advances continually enabled the extension of
the CR energy spectrum; from the initial high energies (> 1015 eV) towards ultra-high energies
(> 1018 eV) and beyond. Further important properties include their mass composition and
the arrival directions. Each property gives rise to a unique subfield of study, in addition to the
subfield about their astrophysical interpretations. Ending the historical narrative here, we review
the modern status of cosmic ray physics, the various subfields and some open problems in the
next section.

2.2 Modern Subfields and Open Problems

A first subdivision of cosmic ray physics can be made according to the energies of the cosmic
nuclei arriving at Earth. The corresponding energy spectrum JLIS(Ekin)1, i.e., the number of
particles per unit energy, area, time and solid angle as a function of their (kinetic) energy Ekin

is shown in Fig. 2.2.
The CR spectrum covers an astonishing 11(!) orders of magnitude in energy. Notice that

it is the further multiplication by the energy to some power (2.6 in this case) that allows the
vertical axis in this figure to span only a few orders of magnitude. This trick helps visualizing
important spectral features. Simultaneously, it also implies that the differential flux itself falls by
approximately 3 (for Ekin > 106 GeV) orders of magnitude for every order of magnitude higher
in energy. This makes higher-energetic cosmic rays rarer: while at 1 TeV a particle arrives each
second in a square meter, at a few tens of PeV this becomes one per year for the same area,
and at the end of the spectrum, around 100 EeV, we need to wait a century for a single particle
to strike within one square kilometer2. In turn, the detection of these cosmic rays require ever
larger experiments, such that at some point it is no longer feasible to build them in space. This
marks the end of the experiments indicated by filled markers in Fig. 2.2 at a few 105 GeV3.

Fortunately, above energies of around 106 GeV, the EAS imprints left in the air and onto

1The subscript LIS refers to the local interstellar medium, implying that the relevant data (. 10 GeV) has
been corrected to account for the solar modulation due to solar activity [59].

2A brief reminder: 1 GeV = 109 eV, 1 TeV = 1012 eV, 1 PeV = 1015 eV, 1 EeV = 1018 eV.
3With in the case of the ground-based H.E.S.S., this is because Cherenkov radiation from EASs becomes too

bright compared to the Cherenkov radiation from the primary CR [62].

7



CHAPTER 2. COSMIC RAYS

100 101 102 103 104 105 106 107 108 109 1010 1011

Ekin/GeV
101

102

103

104

J L
IS

/(G
eV

m
2

ss
r)

1
×

(E
ki

n/G
eV

)2.
6

p He O* Fe* total

ACE-CRIS
HEAO

PAMELA
AMS-02

Spacelab-2
CREAM

H.E.S.S.

ARGO-YBJ
TUNKA
IceCube
KG
TA
Auger

Figure 2.2: The energy spectrum of primary cosmic rays at Earth. Data is shown from both direct
(solid markers) and indirect (open markers) experiments, along with corresponding global spline fits
(lines). The nuclear masses (p: proton, He: helium, O: oxygen, and Fe: iron) are indicated by the colors,
with black the all-particle spectrum. In the case of oxygen and iron the higher lines correspond to the
mass groups lithium-neon and sodium-nickel, respectively. Figure from [60], which was updated from
[61], reproduced with permission. See references therein for the experiments.

the ground are sufficiently large to be observed from the Earth’s surface, as has been done
by the experiments indicated by open markers. This, however, brings along an additional set
of challenges. For example, both the nuclear mass and the energy of the cosmic rays can no
longer be determined directly, but need to be inferred from characteristics of the induced EAS.
While fluorescence telescopes enable calorimetric measurements of the energy deposit in the
atmosphere, inferences of the primary mass rely on detailed particle physics models extrapolated
beyond the phase-space accessible to accelerators [60]. Consequently, the mass measurements
beyond 106 GeV are susceptive to larger uncertainties, with the bands in Fig. 2.2 corresponding
to one standard deviation around the combined fit and the error bars from individual experiments
suppressed for clarity.

In the following we will only consider high-energy CRs (E > 106 GeV), and then mostly
focus on the ultra-high-energy ones (E > 109 GeV)4. Research related to lower-energetic CRs
constitute its own field with associated open problems, but a description of these is beyond the
scope of this thesis.

Measurements of both the mass composition and the spectral features are invaluable for

4At these energies the contribution of the rest mass to the total energy is negligible. Then with the kinetic
energy approximately equal to the total energy we can drop the subscript.
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testing astrophysical models: they contain information on the production, propagation and source
distribution of CRs [60]. In particular, there are several famous features in the spectrum of high-
energy CRs. The so-called ‘knee’ is a softening of the all-particle spectrum at around 106.6 GeV.
A ‘second knee’ – i.e., a further softening of the all-particle spectrum – occurs at around 108 GeV.
Then there is a hardening, known as the ‘ankle’ at around 109.7 GeV, before a strong suppression
of the spectrum starts at around 1010.7 GeV [60, 63].

Understanding CRs to be charged nuclei produced and accelerated in galactic and extra-
galactic sources, their production as well as their propagation to Earth are strongly influenced
by the magnetic fields encountered along the way. In fact, the gyroradius rg (also known as the
Larmor radius) quantifies the deflection of charged particles in uniform magnetic fields [60]:

rg = 1.1
1

Z

(
E

109 GeV

)(
B

µG

)−1

kpc , (2.1)

where we assumed the CR to be relativistic; with in particular the velocity component perpen-
dicular to the magnetic field to be relativistic: v⊥ ≈ c. The gyroradius corresponds to the radius
of the circular trajectory of the CR, and is proportional to its rigidity R ≡ E/Z (i.e., energy per
charge) and inversely proportional to the magnetic field strength B.

This length scale is very useful to get a qualitative understanding of the magnetic effects on
CRs. For example, for CRs to be magnetically confined within an astrophysical object of size L,
a minimal requirement is that the gyroradius is smaller than the object: rg ≤ L [60]. Inverting
this, we find the maximum energy of CRs that can be confined within a source with a specified
size and magnetic field strength:

E ≤ Emax = 9.2 · 108 Z

(
L

kpc

)(
B

µG

)
GeV . (2.2)

This is known as the Hillas criterion, and constitutes a rather optimistic upper limit on the CR
energy since it does not consider the CR production. Taking into account the shock acceleration
mechanism gives the more restrictive Lagage-Cesarsky limit [64], which contains another factor
β = vsh/c from the velocity of the shock [65]. Only for relativistic shocks does this relax to
the Hillas criterion. A deviation from the Bohm limit – where the CR diffusion coefficient is
well-approximated by the gyroradius – as well as energy-loss processes could introduce further
suppression factors to this maximum energy [65, 66].

Nevertheless, this criterion provides a helpful assessment of potential CR sources, as is visu-
alized in the famous Hillas plot shown in Fig. 2.3. Source classes above and to the right of the
Hillas criterion (diagonal lines, corresponding to Emax = 1020 eV) are plausible candidates for
these CRs. In particular, it can be seen that supernovae (SNe, brown), normal galaxies (lila)
and Wolf-Rayet stars (gray) are not able to accelerate CRs to these energies, while the rest of
the sources can [66]. One can continue such assessments by further requiring that these sources
are luminous enough to reproduce the observed CR spectrum, see, e.g., Ref. [66] and references
therein.

Returning to the features of the CR spectrum, their interpretations follow from considerations
regarding both their acceleration and propagation. The knee at 106.6 GeV corresponds to a
gyroradius of several parsecs for protons in typical galactic magnetic fields (B ∼ O(µG)). This
can be interpreted in terms of a propagation origin since the largest modes of the turbulent
magnetic fields are of the some order of magnitude, implying that diffusion throughout the
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Figure 2.3: Hillas plot of UHECR source candidates. The colored geometric shapes represent the ranges
in size (x-axis) and magnetic field strength (y-axis) of the indicated source classes. The diagonal lines
are the Hillas bounds (Eq. 2.2, but with an additional factor β = vsh/c) for the acceleration of 1011

GeV proton (Z=1, red) and iron (Z=26, blue) CRs, accelerated in non-relativistic (β = 0.01, dashed)
and ultra-relativistic (β = 1, solid) shocks. Sources above and to the right of these lines satisfy the
Hillas bound and thus are plausible candidates. Figure from [66], reproduced with permission. See this
reference for more information on the source classes.

galactic disk becomes inefficient and thereby losing CRs from our galaxy that subsequently do
not reach Earth [66]. An alternative explanation could be the violation of the implicit assumption
that galactic sources can accelerate CRs up to the knee in the first place. In fact, supernova
remnants (L ≈ 10 pc, B ∼ O(µG), βsh ≈ 0.01) naively accelerate protons only up to the
TeV-scale, but with sufficient magnetic field enhancements, the PeV-scale may be reached [66].
Despite the precise origin, it is interesting to note that the two knee features differ by a factor 25,
indicating that the first knee might correspond to protons whereas the second knee is a reflection
of iron nuclei (which contains 26 protons) [60]. Such a rigidity dependence follows directly from
Eq. 2.2 and is also visible in the composition inferences of Fig. 2.2.

As it becomes harder to theoretically explain the acceleration of CRs up to the ankle with
only galactic sources, a transition to extragalactic sources is expected between the knees and
the ankle [65]. Also for the ankle itself there are various plausible explanations, with the most
natural interpreting it as an effect due to photodisintegration of CR nuclei directly in the source
environment [60, 67]. Only the highest energy nuclei can directly escape this environment, giving
rise to a hard spectrum at Earth. The secondary nuclei from the photodisintegration then make
up the lower-energetic soft spectrum, which together form the ankle.
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While long-hypothesized, a strong suppression at the end of the spectrum is now firmly
established [66, 68, 69]. The original hypothesis followed from expected interactions with photons
of the cosmic microwave background (CMB). In particular, the production of pions5 with typical
CMB photons requires CR protons to have energies exceeding 3.4 ·1010 GeV [60, 65]. Combining
this with the photon number density, the relevant cross-section and the typical energy loss per
interaction of O(20%) [65], one finds attenuation lengths – i.e., the distance over which the
CR energy decreases by a factor e – of approximately 15 Mpc [60]. This constitutes a horizon
beyond which sources cannot be responsible for the highest-energetic CRs observed on Earth.
Given that sources are homogeneously distributed on cosmological scales, this mechanism induces
a natural suppression to the CR flux, known as the Greisen-Zatsepin-Kuzmin (GZK) effect [70,
71]. Alternatively, the explanation for the observed suppression could again originate from a
natural maximum energy that CRs can be accelerated to by their sources [66]. Looking at Fig.
2.3, this does not seem unreasonable.

Beyond measurements of the spectrum and composition, also arrival directions can provide
valuable information on the CR origin. While magnetic fields deflect CR-trajectories and gen-
erally induce random walks and thus diffusive propagation, at sufficiently high rigidities the
gyroradius (Eq. 2.1) becomes large enough such that over O(100) Mpc distances the deflection is
only several degrees [66]. Such ballistic trajectories could then point directly back to the sources
if the sources themselves are sufficiently close to Earth. Interactions with the CMB and the
extragalactic background light (EBL) limit the distances to these sources to roughly the same
value [66], below which the universe is also known to be inhomogeneous [72]. From these effects
an anisotropic CR-sky can be expected at the highest energies. In fact, the Pierre Auger Collab-
oration found a dipole anisotropy above 8 · 109 GeV. This dipole points away from the galactic
plane and thus implies an extragalactic origin of these CRs [73]. While anisotropies on smaller
angular scales are not yet statistically significant enough to claim their detection, interesting
levels of significance were found from correlations of CR arrival directions with the locations of
in particular starburst galaxies (SBGs) and active galactic nuclei (AGNs) [66, 74].

This interplay of detection on Earth and astrophysical interpretations in terms of both accel-
eration and propagation is typical for high-energy CR physics. With the main driving question
of where CRs originate, each of these components can be regarded as subdisciplines due to their
spatial separation: acceleration at the sources, propagation in the source environment and to
Earth, and detection on Earth. Some open problems regarding the acceleration and propagation
– e.g., the inconclusive interpretations of spectral features – were discussed above. A detailed
and extensive listing of open problems in these subdisciplines is beyond the scope of this thesis,
and the reader is referred to Ref. [66].

The detection on Earth mainly concerns the interpretation of observed EASs and the corre-
sponding reconstruction of the properties of the primary CR. This involves the continuous de-
velopment of experimental techniques to extract more information from EASs, and of hadronic
interaction models to provide a better understanding of the EAS phenomenon itself. One in-
triguing open problem here is the so-called muon deficit, which leads to contradicting indications
of the CR mass composition. A more elaborate discussion will follow in Sec. 5, whereas the
phenomenon of EASs – due to its relevance for the thesis – is introduced in the next section.

5While the pair-production – i.e., the production of electron-positron pairs – threshold is lower due to the
lighter electron mass, the CR suppression through this channel is not as significant: a CR loses only 0.1% of its
energy per produced pair, with a comparable cross-section [65, 70].
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2.3 Extensive Air Showers

Upon arrival of CRs at Earth they interact with the atmosphere. This involves many physical
processes, but at a certain height the CR undergoes a hadronic interaction with the nucleus of
an atom of an air molecule such as nitrogen. This is known as the first interaction and the
associated center of mass energy

√
sCR−air is given by

√
sCR−air ≈

√
2mairE ≈ 164

(
mair

14.4 mp

)1/2( E

1018 eV

)1/2

TeV , (2.3)

which for UHECRs exceeds energies attainable at collider experiments of O(10 TeV). Here the
mass of an air nucleus mair is approximated as 14.4 times the proton mass (80% nitrogen and
20% oxygen). Collisions with single air nucleons (e.g., from a proton CR primary) still results
in energies exceeding 164/

√
14.4 ≈ 43 TeV for UHECRs.

The first interaction occurs high up in the atmosphere, at a height varying typically between
15 and 35 km [75], ultimately determined by the associated interaction length. This length
depends on both the cross section of the interaction and the (number) density of air nuclei.
Interestingly, the dependence on the cross section enables the study of EASs to measure this
quantity at the aforementioned energies unavailable to collider experiments [75], with, e.g., the
Pierre Auger Collaboration reporting the particle-production proton-air cross section at

√
s = 57

TeV [76].
The secondary particles produced in the first interaction continue propagating down through

the atmosphere and at some point decay or interact with further air nuclei, thereby triggering
a cascade of particles known as an air shower. At this point it should be clear that these
are stochastic processes, and that even for the same initial conditions the development in the
atmosphere fluctuates from shower to shower.

Since the type of particle determines the interactions in which it can partake, an air shower
is readily divided into components. The hadronic component – consisting of long-lived hadrons
– forms the back-bone of the shower and feeds both the muonic and the electromagnetic (EM)
component; mainly through the decay of charged and neutral pions, respectively [75]. The decay
of muons provides a further channel connecting the muonic to the EM component, but due to
the limited reactions in the reversed directions, the three components (hadronic, muonic, and
EM) can be regarded as separate. Together, these components provide an intuitive picture of
the dynamics of an air shower, which will be further outlined in the discussions of the Heitler
and Heitler-Matthews models in Secs. 2.3.1 and 2.3.2.

Since the interaction length depends on the density of air ρair rather than the height h, it
is convention to use the slant depth X when referring to the longitudinal development of an air
shower:

X ≡
∫ ∞
h

ρair ds , (2.4)

which is is simply the air density integrated along the shower axis, typically expressed in g/cm2.
The atmospheric depth traversed to reach the Earth’s surface depends on the inclination of the
shower (quantified by the zenith angle θ) as well as the height of the surface compared to sea
level. For example, vertical showers (θ = 0◦) reach the Pierre Auger Observatory – located at
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a mean altitude of 1400m – after traversing approximately 875 g/cm2 [77]. Taking into account
the curvature of Earth, this can increase by a factor 40 for horizontal showers (θ = 90◦) [78].

In the initial stage of an air shower, the production of particles dominates over their losses to
the environment. Therefore, the shower increases in size until this relationship is reversed. The
depth in the atmosphere where the shower reaches its maximum size Nmax is known as Xmax,
and turns out to be a very valuable mass indicator – i.e., an observable that provides a measure
of the atomic mass of the primary CR.

This can be understood from the so-called superposition principle: motivated by a negligible
nuclear binding energy of the primary CR with mass A and energy E, its resulting air shower can
be represented as a superposition of A proton-induced showers each with energy E/A [45, 65, 75].
Since air showers initiated by lower-energetic CRs traverse, on average, a smaller depth to develop
to their maximum size, the superposition principle implies that heavier nuclei tend to have smaller
Xmax values. A further implication is that the shower-to-shower fluctuations σ(Xmax) of heavier
nuclei are statistically suppressed. Note that beyond the first two statistical moments of Xmax,
also its complete distribution provides information on the CR mass composition [4].

While the superposition principle ignores the fact that due to their larger cross section, heav-
ier CRs interact higher up in the atmosphere, also not all nucleons partake in this first interaction.
From detailed Glauber calculations [79] it turns out that the average interaction length of these
nucleons correspond to the one for protons, which is known as the semi-superposition theorem
[45]. Therefore, the naive superposition principle can still be applied to obtain the mass de-
pendence of average observables, but some caution is required for dealing with shower-to-shower
fluctuations due to a common depth of the first interaction [45].

Further valuable composition information can be obtained from studying the sizes of various
shower components at specific depths, with the depth corresponding to the ground level Xground

of particular interest. For UHECRs the area of this footprint can be O(10) km2 [80], giving
rise to the name extensive air showers. As the shower develops and the hadronic and muonic
components feed the EM component, EM particles become the most abundant. Therefore, Xmax

is determined by where this component reaches its maximum size Ne,max. While Ne,max is
independent of the CR mass, the size of this component is strongly attenuated on its further
development to the ground. Thereby, the depths Xmax and Xground respectively introduce a
mass and an inclination dependence to the EM size on the ground Ne. Given a sufficient depth
to attenuate, smaller EM footprints can thus be expected from showers induced by heavier CRs
[45, 75, 81].

This relationship is inverted when considering the muonic footprint. Muons mainly originate
from the decay of charged pions and kaons towards the end of the hadronic cascade [75]. Since
this cascade takes longer to develop from higher-energetic CRs, more energy is lost to the EM
component, leaving less for the production of muons. This gives rise to a less than linear scaling of
the muon number with CR energy. With a subsequent application of the superposition principle,
this deviation from linearity introduces the aforementioned mass dependence [45, 75, 81]. The
attenuation of the muonic component, and therefore the correlation with Xmax, plays only a
minor role [81].

Beyond Xmax and the shower sizes, mass sensitive observables include the steepness of the
lateral distribution function (i.e., the decrease in particle density as a function of the distance
from the shower core), the muon production depth, and the inclination dependence of a signal
rise-time asymmetry in opposite regions of a detector array [45]. These observables are rather
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involved and not of direct relevance to the thesis. Instead, we will focus mainly on the muon
number at ground Nµ andXmax, whose main features are well-reproduced by the so-called Heitler
and Heitler-Matthews analytic models of air showers. It is worthwhile to highlight these models
in the following subsections.

2.3.1 Heitler Model: Electromagnetic Showers

The original Heitler model [82, 83] considers the development of purely EM air showers. The
development of these showers rely on two branching processes: Bremsstrahlung (i.e. the emis-
sion of a photon from an electron or positron), and pair production (i.e. the production of an
electron-positron pair from a photon). It turns out that in air these processes occur on simi-
lar atmospheric depth scales, quantified by the splitting length (i.e., depth) λe = X0 · ln 2 over
which electrons and positrons lose half their energy to Bremsstrahlung. Here the radiation length
(depth) X0 ≈ 37 g/cm2 corresponds to an e-fold decrease in energy due to Bremsstrahlung, but
also to a 7/9 probability of pair production from photons [60]. The translation of the latter6 to
an average depth for pair production to take place 〈X〉pair, shows that the splitting length neatly
captures both processes; λe/〈X〉pair = ln 2 · ln(9/2) ≈ 1.04. Assuming the radiated energy from
Bremsstrahlung after a splitting length to be carried away by a single photon, and a democratic
pair production in which both electron and positron receive half the energy of the photon, the
Heitler model combines electrons, positrons and photons into a single EM particle that splits
into two after each of these splitting lengths [81, 84].

Figure 2.4: Schematic visualization of electromagnetic (a, left) and hadronic (b, right) air showers in
the Heitler [82, 83] and Heitler-Matthews [84] models, respectively. Figure from [75], reproduced with
permission.

Repeating this process, the primary particle with energy E0
7 has split into N = 2n particles

6This follows from defining a differential probability of pair production;
〈X〉pair =

∫∞
0
X
dPpair

dX
dX =

∫∞
0
X − ln(1−7/9)

X0
(1− 7/9)X/X0 dX = X0/ ln(9/2).

7When discussing air showers here and in Chapters 8 and 9 we will use the subscript 0 to denote the energy
of the CR primary initiating the shower, and leave E without subscript available for secondaries in the shower.
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after propagating n splitting lengths, each with an energy E0/N . The resulting air shower is
visualized in the left panel of Fig. 2.4. Once the energies of the secondary particles fall below a
critical energy Ee.m.

c ≈ 85 MeV [81, 84] – where ionization losses start to dominate – the number
of particles stops growing, giving rise to the shower maximum:

Nmax =
E0

Ee.m.
c

, Xmax = λe · nc = X0 · ln
(

E0

Ee.m.
c

)
, (2.5)

where the critical generation nc followed from equating Nmax to the number of particles at
generation n, and the factor ln 2 dropped out by substituting in the radiation length X0.

Despite the simplifications, the energy dependence of the shower maximum – Nmax ∝ E0

and Xmax ∝ ln(E0) – are reproduced8 by experiments and detailed Monte Carlo simulations
[84]. This shows that an analytic treatment of EASs can lead to a deeper understanding of these
complex phenomena.

2.3.2 Heitler-Matthews Model: Hadronic Showers

The EM model of air showers was extended to include a hadronic component, now known as the
Heitler-Matthews model [84]. Instead of considering a single type of EM particle, the shower
consists of charged and neutral pions, with the latter promptly decaying into two photons induc-
ing EM cascades, as illustrated in the right panel of Fig. 2.4. The charged pions keep interacting
with air, producing lower-energetic charged and neutral pions at a 2:1 ratio, until their decay
length becomes shorter than their interaction length and subsequently decay into muons that
propagate relatively unaffected to the ground.

While this model explicitly deals with pions only, it can be generalized to capture the more
abstract energy flow between the three shower components. Instead of fixing the ratio of EM to
hadronic energy per interaction – as originally done by Matthews [84] – one can leave it variable
[81] to be determined by detailed Monte Carlo simulations. This could then implicitly take into
account that the hadronic component consists of more types of particles than only charged pions.

The energy remaining in the hadronic component after n interactions (hereafter called gen-
erations) is then simply Ehad,n = E0 · rn, with r defined as the fraction of energy remaining in
the hadronic component after a single generation. Thus for pure pionic showers (r = 2/3) over
90% of the energy is transferred to the EM component within 6 generations [75], highlighting its
dominant contribution to Xmax.

To follow the particle numbers it is necessary to define a (total) multiplicity nmult of an inter-
action, and how the energy is distributed among the secondaries. In the Heitler-Matthews model
the multiplicity is assumed constant and the energy evenly distributed. While the multiplicity
is expected to have only a small energy dependence (nmult ∝ E1/5 for pp collisions [84]) and
thus seems a fair assumption, an equal division of energy contradicts the known leading particle
effects of hadronic interactions in air showers [81].

Nevertheless, under these assumptions the Heitler-Matthews model enables a calculation of
the number of muons on the ground. Since the energy is evenly distributed over all particles, r
not only corresponds to the fraction of energy remaining in the hadronic component, but also to
the fraction of the multiplicity producing hadronic particles. Therefore, the number of hadronic

8Due to the lack of intrinsic fluctuations in this model, these quantities can be assumed to correspond to the
averages in simulations and experiment.
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particles after n generations is simply Nhad,n = (rnmult)
n. A division of the aforementioned

hadronic energy gives Ehad,n/Nhad,n = E0/(nmult)
n, the energy of each hadronic particle. These

decay to muons once their energies fall below the critical energy Ec – corresponding to the energy
at which the decay length becomes shorter than the interaction length, analogous to Ee.m.

c defined
in the previous section. For pure pionic air showers this is typically Eπc ≈ 20 GeV [84], but for
generalized hadronic showers we keep it variable and drop the superscript9.

The generation at which the energy of the hadronic particles reach the critical energy is
known as the critical generation nc:

nc = log(E0/Ec)/ log(nmult) . (2.6)

From their decay, the number of hadronic particles at this generation equals the number of muons
Nµ propagating to the ground

Nµ = Nhad,nc = (rnmult)
nc =

(
E0

Ec

)β
, (2.7)

where

β ≡ log(rnmult)/ log(nmult) (2.8)

quantifies the energy dependence.
Since this derivation relied on the unphysical assumption of evenly distributed energy among

secondaries, Matthews [84] further extended the model to include inelasticities of hadronic inter-
actions. He assumed a leading hadronic particle to carry away a fraction of the primary energy,
and the remainder to be divided between the two components according to the r-parameter.
This implicitly increases the fraction of energy kept in the hadronic component, and thereby
enhances the muon number10.

Alternatively, one could fix the energy fraction remaining in the hadronic component to r,
and take the energy of the leading hadronic particle directly from that component. Now the
only difference with respect to the standard Heitler-Matthews model is an uneven distribution of
energy among hadronic secondaries, with the leading particle requiring more generations to reach
the critical energy. This allows for more energy to be lost to the EM component, which turns
out not to be compensated for by the fewer generations of the remaining particles. Accordingly,
the muon number in such a scenario would be suppressed. This effect would be weaker if one
furthermore relaxes the assumption of the leading particles to always be hadronic, as, e.g.,
considered in [85].

It is therefore not trivial how a consistent inelasticity-treatment influences the muon number.
However, from the inelasticity-extension of Matthews, he found that these considerations do not
significantly change the general shape of Eq. 2.7, but only affects the index β of the power-law
(Eq. 2.8). Leading particle effects can thus likely be absorbed into the parameters r and/or
nmult, with their effective values fixed by comparisons with detailed Monte Carlo simulations
[84]. Typical values obtained for β are then in the range 0.88-0.92 [45, 86].

9Our Ec thus corresponds to an effective value for the entire hadronic component, whereas in principle each
type of hadron has its own critical energy. However, not all hadrons (predominantly) decay to muons, making
such a division non-trivial.

10Technically, the energy-dependence parameter β (Eq 2.8) is enhanced, indicating a steeper increase of the
muon number with energy.
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For the computation of the shower maximum it suffices to only consider the EM component,
whose energy budget Ee.m. implies [81]:

Nmax ≈ Nmax,e =
Ee.m.

Ee.m.
c

=
E0

Ee.m.
c

−Nµ
Ec
Ee.m.
c

, (2.9)

inheriting a weak dependence on the muon number. However, this assumes that all EM particles
reach the critical energy at the same depth, but from the right panel of Fig. 2.4 it is clear that
the EM subshowers are initiated at different depths and therefore do not all contribute to Nmax.

This also complicates the computation of Xmax. One could consider only the subshower
from the first interaction since it feeds the most energy into the EM component, and showers
initiated by subsequent generations reach their maximum size in shallower depths. Then with
λine the interaction length of the first (inelastic) interaction, and nmult the total multiplicity, the
application of Eq. 2.5 results in [45, 75]:

Xmax = λine +X0 ln

(
E0

2nmultEe.m.c

)
, (2.10)

where the factor 2 reflects the fact that neutral pions produce two photons in their decay. This
again assumed an even distribution of energy among secondaries. A leading particle would carry
the shower maximum deeper into the atmosphere [45, 81], and the same effect can be expected
from taking into account the EM subshowers of later generations. These considerations are
beyond the analytic Heitler-Matthews model.

Finally, applying the superposition principle to Eqs. 2.7 and 2.10 explicitly show their mass
and energy dependencies as discussed in Sec. 2.3:

Nµ ∝ A1−βEβ0 , Xmax ∼ c+D ln(E0/A) , (2.11)

with A the atomic mass of the primary CR, and c and D the appropriate11 constants [45].

11Here D ≡ dXmax/d lnE0 is the elongation rate and includes the energy dependence of λine. The constant
term of λine is absorbed into c along with the multiplicity and critical energy.
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3 | The Pierre Auger Observatory

The Pierre Auger Observatory1 is the world’s largest observatory for the detection of UHECRs,
in terms of both surface area and exposure [77]. Located on the Pampa Amarilla plain at the foot
of the Andes mountains, in the Mendoza province of western Argentina, it observes the southern
sky with an area of approximately 3000 km2 (see Fig. 3.1) – comparable to that of the country
Luxembourg. The observatory has been taking data since 2004, and was ultimately completed
in 2008 [77], resulting in an exposure2 exceeding 60,000 km2 sr yr [69]. This enabled the Pierre
Auger Observatory to make invaluable contributions to our understanding of UHECRs, with
in particular the extension of the all-particle spectrum to above 1020 eV, measurements of the
composition at these energies and the discovery of a large-scale dipole anisotropy above 8 · 1018

eV [87]. A continuation of this scientific endeavor is ensured by the ongoing upgrade, dubbed
AugerPrime [88, 89], extending the lifetime of the observatory to beyond 2030 [90].

Named after the discoverer of EASs, the Pierre Auger Observatory is built to analyze these
phenomena by simultaneous measurements from a variety of detectors. Since data from the
observatory – also referred to as ‘Auger data’ – constitute the main experimental reference for
the work in this thesis, it is worthwhile to describe in some detail the various detector components
in Sec. 3.1, and highlight the main scientific results in Sec. 3.2.

3.1 Detectors

Originally, the Pierre Auger Observatory was built as a hybrid observatory, consisting of a
surface array of 1600 water Cherenkov detectors (WCDs) and four sites with each 6 fluorescence
telescopes to provide measurements of respectively the lateral (i.e., footprint) and longitudinal
profile of EASs [90]. The WCDs are placed in a triangular grid with 1.5 km spacing, and are
collectively known as the surface detector (SD). From the border of this array, the sites with
fluorescence telescopes overlook the SD and collectively make up the fluorescence detector (FD).
This setup is visualized in the right panel of Fig. 3.1.

An EAS that is simultaneously detected by both the SD and the FD is known as a hybrid
event. Such events provide valuable information for the energy-calibration of the SD – which
produces a much larger data set – and allow for more precise determinations of the arrival
direction [77]. The basic principle of a hybrid detection is visualized in Fig. 3.2, with example
longitudinal and lateral profiles in the right panels.

1For the interested reader, see also the official website: https://www.auger.org.
2For showers arriving at zenith angles θ ≤ 60◦. The exposure exceeds 90,000 km2 sr yr when extending this

to θ ≤ 80◦ [87].
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Figure 3.1: Left: Map of Argentina with the location of the Pierre Auger Observatory – near the town
Malargüe in the Province of Mendoza – indicated by the yellow circle and corresponding arrow. Right:
Map of the observatory itself with each black dot representing a WCD of the SD, and the blue lines
representing the field of views of the telescopes making up the FD. Further indicated are HEAT, AERA,
AMIGA, BLS, XLF and CLF, see text. Figures from [91], reproduced with permission.
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Figure 3.2: Hybrid measurement of an EAS at the Pierre Auger Observatory (left). The FD and SD
provide measurements of the longitudinal (top right) and lateral (bottom right) profile, respectively. The
panels do not correspond to the same event. Figures from [91] (left; author made the background white,
provided under the same license), [92] (top right), and [77] (bottom right), reproduced with permission.

20



CHAPTER 3. THE PIERRE AUGER OBSERVATORY

Throughout the years, further detectors were developed and added to the observatory to
extend the sensitive energy range to lower values, and to enable a better reconstruction of EASs
by obtaining additional independent measurements. In the following we will briefly describe the
SD and FD, as well as point out the newer detectors and ongoing improvements.

3.1.1 Surface Detector

The WCDs of the SD consist of sealed cylindrical tanks with a 3.6 m diameter and 1.2 m height,
filled with 12,000 litres of ultra-purified water [77]. Upon the traversal of charged relativistic
particles – such as electrons, positrons and muons – through the tank, their velocities could exceed
the speed of light in water and thereby produce Cherenkov radiation. This radiation produces
signals in the three downward-facing photomultiplier tubes (PMTs) mounted at the top of the
inside of the tank [90], see Fig. 3.3. Measured in units of the Cherenkov light produced by a
muon traversing the tank vertically through the middle (vertical equivalent muon; VEM), a set
of local triggers need to be overcome for the WCD to be considered activated. Further triggers
associated with the neighboring WCDs then determine the detection of a coherent signal, and
whether it can be attributed to an EAS [90].

Water

PMTs

Tyvec liner

Polyethylene tank

Battery
box

Solar 
     panel electronics

box

communication
antenna

GPS
antenna

Water

PMT

Darvic box

Steel tank

Lead shield

Figure 3.3: Photograph and schematic of a WCD of the SD. The tank is filled with ultra-purified water,
inducing Cherenkov radiation from relativistic particles that is observed by the three PMTs. The WCD
on the photo is already upgraded to include an SSD (the horizontally mounted panel), see Sec. 3.1.3.
Photo and schematic from [91] and [53], respectively. Reproduced with permission.

For the required processing and communication of the signals, each WCD contains an elec-
tronic system powered by a solar panel, a radio antenna and a GPS receiver [90]. The obtained
timing information enables the reconstruction of the location where the shower core intersects
the SD array, along with the associated arrival direction. With the timing precision of 10 ns, the
Pierre Auger Observatory has an angular resolution on the sky better than 1◦ [90]. With the
location of the shower core, the distance can be computed from each WCD to this axis, resulting
in a lateral profile as shown in the bottom-right panel of Fig. 3.2 [77]. The interpolated signal at
1000 m from the core, S(1000), quantifies the size of the shower and thereby constitutes an im-
portant energy estimator. By first correcting for the zenith-angle-dependent attenuation – with
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the so-called Constant Intensity Cut method – the energy follows from a power-law dependence
on the shower size, based on a calibration with hybrid events [69, 80].

The energy-range the SD is sensitive to is determined by the sparsity of the array and its
area. At the high-energy end of the spectrum (at a few 1020 eV [87]) the flux becomes too low
to obtain sufficient statistics with a 3000 km2 array. This is rather costly to enhance. On the
contrary, at the low-energy end of the spectrum (around 2.5 ·1018 eV [90]) the footprints of EASs
become too small to be sufficiently sampled by an array with 1.5 km spacing. Therefore, the
sensitivity of the SD was extended to lower energies (around 1017 eV [93]) by placing a relatively
low number of additional WCDs to construct a smaller 750-m-array (SD-750) [90]. This array
is colloquially known as the ‘infill array’ and is located near the Coihueco FD site, see Fig. 3.1.
Note that due to the larger flux, the resulting area is adequate to obtain sufficient statistics. An
even denser 433-m-array (SD-433) was recently installed, further enhancing the sensitivity down
by half an order of magnitude [90].

3.1.2 Fluorescence Detector

The telescope building of each of the four FD sites is situated on a small elevation with respect
to the SD. This allows for an obstacle-free view over the array. The buildings are subdivided
into six bays, each containing one fluorescence telescope. See, e.g., the photograph of the Los
Morados FD site in Fig. 3.4. In this setup, each telescope has a field of view of 30◦ × 30◦ in
azimuth by elevation [92], as can be further understood from Figs. 3.1 and 3.2.

The passage of an air shower through the atmosphere induces the excitation of nitrogen
molecules, which subsequently radiate away this excess energy in the near ultra-violet wavelength
band. This fluorescence light from sufficiently energetic and nearby air showers developing within
the field of view can be observed at the FD sites. The light then passes through a UV filter, and
is concentrated by a segmented 13 m2 mirror onto a camera consisting of 22 × 20 = 440 PMTs
[92], see the schematic in Fig. 3.4.

Figure 3.4: Left: Photograph of the Los Morados FD site with open shutters. Four out of six telescope
bays are visible, along with the communications tower. Right: a schematic cross-section of one of these
bays. Fluorescence light comes in from the left, passes through the UV filter, and is concentrated by the
segmented mirrors onto the camera. Photo and schematic from [91] and [92], respectively. Reproduced
with permission.
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Through this excitation process, the air shower deposits around 90% of its energy in the
atmosphere and thereby enables a calorimetric measurement of the energy of the primary CR
[92]. The associated longitudinal profile of differential energy-deposit – see, e.g., the top-right
panel of Fig. 3.2 – is reconstructed from the fluorescence yield based on information from an
extensive atmospheric monitoring program [77, 90]. This program includes the operation of the
central (CLF) and extreme (XLF) laser facilities as well as the balloon launching station (BLS),
which are indicated in Fig. 3.1.

The obtained longitudinal profile is fitted with a Gaisser-Hillas function [77, 94]:

fGH(X) =

(
dE

dX

)
max

(
X −X0

Xmax −X0

)(Xmax−X0)/λ

exp

(
Xmax −X

λ

)
, (3.1)

providing direct access to the shower maximum Xmax, and the integral of this function gives
the aforementioned calorimetric energy measurement. The latter needs to be corrected for the
invisible energy; approximately 10 − 15% of the primary energy is carried into the ground by
neutrinos and high energy muons [95].

Unfortunately, these direct measurements can only be made on clear, moonless nights due
to the faint nature of the emitted fluorescence light. This results in an FD duty cycle of around
15%, constituting a significant reduction in statistics compared to the 100% duty cycle of the
SD [77]. This further emphasizes the importance of hybrid events, which enable a data-driven
interpretation of the larger SD data set.

Air showers induced by CRs with energies below ∼ 1018 eV produce insufficient fluorescence
light to be detected by the FD [96]. However, relativistic particles in these showers produce air-
Cherenkov radiation which can be detected with much the same technique, only that these lower-
energetic showers develop higher up in the atmosphere [90]. For this reason, three additional
fluorescence telescopes were installed with a hydraulic tilting system to shift the field of view
upward by 29◦ [77]. These are known as the High Elevation Auger Telescopes (HEAT), and are
located near the Coihueco FD site, see Fig. 3.1. Here, together with SD-750 and SD-433, they
could potentially provide hybrid measurements at lower energies. With HEAT-data only the CR
energy-spectrum was measured down to 1016.5 eV [96].

3.1.3 Other Detectors and AugerPrime

In addition to the SD and the FD along with their extensions (SD-750, SD-433, and HEAT),
there are several more detectors (being) installed as part of the AugerPrime upgrade [88, 89].

The main component of this upgrade is the placement of a (3.8× 1.3) m2 surface scintillator
detector (SSD) on top of each WCD [89], as visible in the photograph of Fig. 3.3. In contrast
to the WCD, these flat detectors have identical responses to passing muons and EM particles.
These two shower components can thus be distinguished by combining information from the
WCDs and the SSDs [90]. One would then no longer need to rely on attenuation arguments of
the EM component. This is particularly important in light of the muon deficit (see Chapter 5).

A further contribution to improving our understanding of the muonic component will come
from the Underground Muon Detector (UMD), which consist of three 10 m2 scintillator detectors
– similar to the SSD [90] – buried 2.3 m underground next to each of the WCDs of the SD-750
[97]. Together, these form the Auger Muons and Infill for the Ground Array (AMIGA), indicated
in Fig. 3.1. Corresponding to a 540 g/cm2 depth, the overburden of the ground absorbs most of
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the EM component and will enable the direct detection of muons with energies exceeding 1 GeV
[90]. In fact, the prototype of the UMD already provided first measurements [98] of the muonic
component from air showers with energies between 2 · 1017 eV and 2 · 1018 eV, which confirm the
existence of the muon deficit.

The charged-particle front of EASs induces characteristic radio waves, which could provide
another independent detection method for these showers. A prototype array of radio antennas
– the Auger Engineering Radio Array (AERA) [99], see Fig. 3.1 – showed promising results for
this technique, which is found to be particularly suitable for the detection of very inclined air
showers due to the enlarged radio footprint [100]. Consequently, each of the WCDs in the large
1500-m-array will be equipped with a radio antenna [90, 101].

Finally, the AugerPrime upgrade includes more tweaks to the existing detectors, with in
particular a fourth PMT for the WCDs, enhanced electronics and an extended duty cycle of the
FD [90].

3.2 Scientific Results

The science case of the Pierre Auger Observatory is very broad. The main objective of studying
UHECRs through their energy spectrum, nuclear composition, and arrival directions is comple-
mented by 1) an extension to energies below 1018 eV, 2) multi-messenger studies [102] through
the air showers produced by photons [103] and neutrinos3 [107], 3) constraints on the hypothet-
ical violation of Lorentz invariance [108], 4) measurements of hadronic interaction properties at
the highest energies [76, 109], and 5) observations of geophysical phenomena such as ELVES
[110]. In this section we will limit ourselves to the spectrum, composition and arrival directions
of CRs, whereas the remainder of the thesis will be concerned with the relationship between the
composition interpretation of Auger data and hadronic interactions in air showers.

3.2.1 Energy Spectrum

The all-particle energy-spectrum of CRs measured by the Pierre Auger Observatory is shown
in Fig. 3.5. This follows from a variety of energy-reconstruction methods (left panel), which
were touched upon in the previous section: the integrated energy-deposit measured by the FD –
after correcting for the invisible energy – enable hybrid events (blue) to provide the calibration
of the shower-sizes measured by the SD (black and red) and the SD-750 (gray) [111]. Air-
Cherenkov emission enables a similar FD measurement of lower-energetic showers with HEAT
and the Coihueco FD site (green) [96].

The combination of these spectra (right panel) show four statistically significant features.
In addition to precision measurements of the second knee (at 1017 eV), ankle (at 5 · 1018 eV),
and suppression (at 5 · 1019 eV) discussed in Sec. 2.2, the Pierre Auger Collaboration recently
discovered [69] a steepening around 1019 eV. This feature does not possess a significant (celestial)
declination dependence and is therefore unlikely a result of a local proton-emitting source that
by its proximity contributes significantly to the observed spectrum [63]. Instead, the features
above the ankle could reflect subsequently larger masses dominating the spectrum with increasing
energy, with the one around 1019 eV corresponding to the transition from helium to the carbon-
nitrogen-oxygen group. These two components could arise from sources accelerating a mixture of

3Also as a follow-up for blazar [104] and gravitational wave [105, 106] events.
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Figure 3.5: The all-particle CR energy-spectrum as measured at the Pierre Auger Observatory with the
various techniques (left) and their combined result (right). Figures from [87], reproduced with permission.

nuclei to a rigidity-dependent maximum energy, but also from the photodisintegration of heavy
nuclei at the source or on their propagation to Earth [63].

3.2.2 Mass Composition

As discussed in Sec. 2.3, the main indicator for the mass composition is the shower maximum
Xmax. This is directly measured with the FD (see Sec. 3.1.2), but a complete shower reconstruc-
tion necessitates a simultaneous detection with the SD [112]. Based on 47, 863 hybrid events,
Fig. 3.6 shows the first two statistical moments of the energy-dependent Xmax-distributions.

The subsequent derivation of the CR mass composition follows from comparisons to Monte
Carlo simulations of EASs. The results of these simulations depend on the used hadronic interac-
tion models, which will be introduced in Chapter 4. In particular, the choice of the high-energy
hadronic interaction model has a notable effect on the Xmax-prediction, corresponding to the
various lines in Fig. 3.6. The proximity of the data to these proton (red) or iron (blue) lines
indicate how light or heavy the composition is, respectively.

Independent of the specific model, 〈Xmax〉-data indicates the composition to get lighter until
a minimum at around 2·1018 eV, and getting heavier again at the highest energies [113]. A similar
behavior follows from σ(Xmax)-data, but the asymmetry around the aforementioned minimum
indicates a mixed composition at lower energies – resulting in larger fluctuations – and a pure
composition towards the higher energies.

A precise interpretation of this data can be made after a conversion to the statistical moments
of lnA – i.e., the natural logarithm of the atomic mass – under the assumption of a particular
high-energy hadronic interaction model [3]. Then it becomes clear that at the highest energies
the average composition inferred with QGSJetII-04 is too light to accommodate the observed
small σ(Xmax), corresponding to a tension between 〈Xmax〉 and σ(Xmax) [113]. The other models
allow for a consistent interpretation over the entire energy range.

Nevertheless, the indications for heavier compositions with increasing energy agrees with the
astrophysical picture associated to the energy spectrum. In fact, a combined fit of the energy
spectrum and the mass composition inferred from Xmax above the ankle provides direct support
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Figure 3.6: Energy dependence of the average (left) and fluctuations (right) of the shower maximum
Xmax as inferred from hybrid events detected at the Pierre Auger Observatory. A comparison with Monte
Carlo simulations (lines) – based on the high-energy hadronic interaction models (line-types) – reveals
the CR mass composition relative to a pure proton (red) or iron (blue) composition. Figures from [113],
reproduced with permission.

for sources with hard injection spectra of heavy nuclei and a relatively low rigidity-dependent
maximum energy [114].

As mentioned in Sec. 2.3, the CR mass can be independently inferred from EAS-information
other than direct observations of Xmax. For example, the correlation in hybrid events between
Xmax, from the FD, and the size of the ground signal, from the SD, is a measure of the spread of
lnA. The Pierre Auger Collaboration found a negative correlation around the ankle, providing
evidence for a heavy (A > 4) and mixed composition [115].

Further mass inferences were performed using the time profiles of signals in the WCDs [116],
and an inclination-dependent rise-time asymmetry of opposite regions of the SD [117]. Also the
mass-sensitive depth at which most of the muons are produced – the muon production depthXµ

max

– was reconstructed from SD-data [118]. Each of these methods suffer to varying degrees from
model-inconsistencies related to the muon deficit (see Chapter 5) and thereby lose explanatory
power regarding the mass composition. Only through a calibration with hybrid events was the
time-profile analysis able to extend Xmax measurements to higher energies, revealing that the
rise to heavier compositions seems to stop around 5 · 1019 eV [116].

More muon-related measurements will be discussed in Chapter 5.

3.2.3 Arrival Directions

The study of CR arrival directions provides additional and potentially more direct information
regarding their origin. At low energies, this idea of CR astronomy is challenged as magnetic
deflections induce a random, diffusive propagation. Consequently, a potential correlation of the
CR arrival directions with their sources is washed out, giving rise to a nearly isotropic sky [72,
119]. Only towards higher energies may one hope to retrieve such correlations due to smaller
magnetic deflections and limits on source distances from interaction with the CMB and EBL (the
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GZK-horizon) [60, 66], as mentioned in Sec. 2.2. Nevertheless, statistical analyses of large CR
data sets – as obtained at the Pierre Auger Observatory – are able to probe potential anisotropies,
and correlations with known objects.

Indeed, with over 30, 000 events covering 85% of the sky, the Pierre Auger Collaboration
discovered a 6% dipole anisotropy in the arrival directions of CRs with energies exceeding 8 ·1018

eV [73], as visualized in the upper panel of Fig. 3.7. With the dipole pointing 125◦ away from the
galactic center – towards (α, δ) = (−24◦, 100◦)4 – this observation gives a strong indication that
CRs at these energies are of extragalactic origin. Extensions to these results found the dipole
amplitude increasing with CR energy [120], and setting upper limits on the dipole amplitude at
lower energies [121], as shown in the lower panel of Fig. 3.7.
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Figure 3.7: Top: Dipole anisotropy of CR arrival directions above 8 EeV as measured at the Pierre
Auger Observatory, in equatorial coordinates. The gap at the north pole is due to the location of the
Observatory, and the galactic plane (center) is indicated by the dashed line (star). Figure from [122],
reproduced with permission. Bottom: Measurements (error bars) of the dipole amplitude (left) and phase
(right) at various energies from the experiments indicated in the legend. Insignificant measurements of the
dipole amplitude are complemented by 99% C.L. upper limits (horizontal lines with downward arrows).
Figure from [121], c© AAS. Reproduced with permission.

4These are equatorial coordinates, with α the right ascension, and δ the declination.
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Various effects may contribute to a dipole anisotropy from extragalactic CRs [73]. Their
arrival directions may be susceptible to the Compton-Getting effect [123]; a consequence of
the peculiar motion of the Earth [60]. It could also be a direct reflection of an anisotropic
distribution of the extragalactic sources themselves, which can in particular be expected at the
highest energies again due to the GZK-horizon combined with the local inhomogeneous matter
distribution [72]. A third contribution could arise from dominant sources whose CRs are strongly
effected by turbulent extragalactic magnetic fields [72].

While the extension to lower energies are not yet statistically significant, it is interesting to
note that the dipole direction seems to shift towards the galactic center at these lower energies,
see the bottom right panel of Fig. 3.7. This could indicate that below 1 EeV the anisotropy may
be of predominantly galactic origin [121], arising, e.g., from the escape of galactic CRs from the
galaxy [72].

On smaller angular scales – i.e., at higher multipoles – the Pierre Auger Observatory did
not observe significant deviations from isotropy above 4 EeV [124]. Further studies looking for
an excess flux in localized regions of the sky and for potential correlations between the arrival
directions themselves – varying both the minimum energy of CRs in the data set and the angular
size or separation (depending on the study) – are also compatible with an isotropic sky [125].

Finally, the Pierre Auger Collaboration looked for correlations of CR arrival directions with
celestial structures; the galactic plane and center, and the supergalactic plane [125], and known
astrophysical objects; flux-limited galaxies, AGNs, and SBGs [74, 125]. While none of these
studies found a statistically significant correlation, it is interesting to note that compared to
isotropy there are 4.5σ and 3.9σ indications for SBGs and the AGN Centaurus A, respectively
[126].
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4 | Hadronic Interaction Models
and Shower Simulations

The interpretation of Auger data – in particular in terms of the CR mass composition – relies
on the accurate modelling of EASs. To this end, dedicated software packages were developed
to simulate all relevant physical processes, of which hadronic interactions play a prominent role.
Details of these interactions are captured in the so-called hadronic interaction models. Due to
their application to UHECR-induced EASs, these models require an extrapolation to a region of
phase-space inaccessible to collider experiments, with an associated large theoretical uncertainty
[1, 75, 127]. In fact, the origin of the muon deficit (see Chapter 5) is likely to be found in the
inaccuracy of these models.

Hadronic interactions and their modelling for EASs will be described in Sec. 4.1. Then a
description of the various shower-simulation software packages follows in Sec. 4.2, all of which
were extensively used for this thesis.

4.1 Hadronic Interactions

The term hadronic interactions refers to interactions between hadrons – which is the collective
name for baryons (p, n, Λ, ...) and mesons (π, K, ρ, ...) – through the strong force. This is the
strongest known force and is responsible for confining quarks into their hadronic bound states
and, residually, the binding of nucleons (protons and neutrons) into nuclei [128]. The theory of
the strong force is well-established as that of quantum chromodynamics (QCD), regulating the
interactions between quarks and gluons based on color charges [129]. In contrast to the sim-
ilar theory of quantum electrodynamics (QED) – describing EM interactions between charged
particles mediated by photons – the mediating particles of QCD (i.e., gluons) carry the associ-
ated (i.e., color) charge [128, 129]. This has profound consequences for the behavior of strong
interactions at various energy scales.

The corresponding gluon-gluon self-interactions give rise to a running coupling constant
αS(q2) that decreases with increasing scale of the transferred momentum |q2| [129], with q the
four-momentum of the exchanged gluon. Consequently, in the limit of very-high momentum
transfers1 the QCD coupling strength vanishes, allowing the treatment of quarks as free parti-
cles; a property that is known as asymptotic freedom. In the opposite limit of small momen-
tum transfer, the large coupling strength leads to the confinement of quarks and gluons within

1Note that by Heisenberg’s uncertainty principle a high momentum transfer corresponds to probing small
distance scales, providing an intuitive justification for why the substructure of hadrons (i.e., quarks and gluons)
can be probed in such interactions.
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hadrons. This running of the coupling constant divides QCD-calculations into two regimes. Pro-
cesses with large momentum transfers (so-called hard processes) have sufficiently small coupling
strengths – αS ∼ 0.1 for |q| > 100 GeV [129] – such that interactions between individual partons
(i.e., the quarks and gluons inside the hadrons) can be computed with perturbation theory. This
technique breaks down for processes with small momentum transfers (so-called soft processes)
due to the large coupling strength, and one subsequently relies on phenomenological modelling.

Which of these processes are most relevant depends on the experiment and its science goals.
For instance, hadron-collider experiments such as those at the LHC mainly probe the nature of
QCD through hard processes, computed perturbatively. These can be isolated by only considering
the rare interactions that produced jets of secondaries above some minimum transverse momen-
tum pT [75, 130] (i.e., the momentum component perpendicular to the beam), which is a proxy for
the momentum transfer |q| between the partons [128]. The associated soft processes before and
after the hard parton scattering are factorized out into previously measured parton distribution
and fragmentation functions, whose |q|2-evolution is determined by the QCD-derived Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP [131]) equations [132]. Further phenomenological mod-
els capture the subsequent hadronization and decays of unstable particles for the formation of
jets.

For EAS experiments these hard interactions are considered too rare to significantly con-
tribute to the evolution of air showers. Instead, one relies on the accurate modelling of the
most frequently and energetically produced secondaries, which disappear down the beam pipe in
collider experiments. These secondaries have high (pseudo)rapidity2(η) y, and, in case of low pT,
require a thorough treatment of the relevant soft processes. To this end, dedicated high-energy
hadronic interaction models are developed and tuned to collider-data to provide a theoretically
justified extrapolation to the center of mass energies and kinematic regimes relevant for EASs.

4.1.1 High-Energy Hadronic Interaction Models

Common to the various state-of-the-art high-energy hadronic interaction models – QGSJetII-
04, EPOS-LHC, and Sibyll-2.3d – is the application of Gribov-Regge Field Theory (GRFT
[133]) [1, 75]. This theory introduces a quasi-particle known as the Pomeron, which corresponds
to multi-gluon ladder diagrams, to simultaneously describe hard and soft processes [75, 130]. In
this way, hard interactions can be retrieved by appropriately cutting Pomerons [130].

Complementary to base-GRFT, necessary considerations include that towards higher ener-
gies, multiple partons of the same hadron can interact independently, and that the growth of the
partonic density eventually saturates the number of independent partons [75]. Also diffractive
collisions are relevant for air showers, in which there is an exchange of color while the projectile
and/or target disintegrates, or the transferred momentum produces particles [1]. Further rele-
vant is the treatment of nuclear effects, since CRs can be heavier than proton and the shower
develops based on collisions with air nuclei such as nitrogen and oxygen. The final production
of secondaries is often based on string fragmentation, in which the parton kinetic energy is con-
verted into the ‘string’ color-field connecting them, which then somehow hadronizes [1, 75]. The
models differ in how they handle these effects, as described in the following.

2The rapidity y = 1/2 ln((E + pz)/(E − pz)) quantifies the contribution of the jet momentum along the beam
direction pz to the total jet energy E. Differences in rapidity are invariant under Lorentz boosts along this
direction, which is particularly useful due to the unknown boost of the interacting partons w.r.t. the laboratory
frame. For a negligible jet mass the rapidity reduces to the pseudorapidity η ≡ − ln(tan θ/2) [129].
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QGSJetII-04

QGSJetII-04 [134] was originally based on the Quark-Gluon Strings model [75]. It is an upgrade
of the previous version QGSJetII-03 [135], and now better accommodates LHC data at

√
s = 7

TeV [127]. The main difference with the other models is the implementation of an enhanced
Pomeron scheme to take into account nonlinear saturation effects [130, 75]. This leaves few free
parameters, giving this model a high predictive power.

For the generalization to nuclear collisions the GRFT approach is extended to allow simulta-
neous Pomeron exchanges between different nucleons [134]. The fragmentation of strings is based
on a generalized Field-Feynman model [134, 136], tuned to proton-proton data [1]. Diffractive
collisions in which the transferred momentum is small are treated in the Good-Walker [137]
formalism [1, 130].

EPOS-LHC

EPOS-LHC [138] contains a microscopic treatment of the Pomeron coupling to individual par-
tons, going beyond that on the broader hadron scale, such that an algorithm can be implemented
for the consistent energy sharing between partons [75, 130]. With an updated flow parametriza-
tion, this model follows from EPOS 1.99 [139] and is in very good agreement with LHC data up
to
√
s = 7 TeV [138]. In fact, the EPOS models are also applied to heavy ion collisions, making

them the most widely tested EAS-relevant models [75]. The correspondingly required flexibility
is obtained through various parametrizations [75], with in particular nonlinear effects taken into
account with a parametrized Pomeron amplitude [1].

The string fragmentation procedure follows the area law [140], tuned to electron-positron
data, but unique to this model is that further collective effects are considered [1]. This enables a
core-corona treatment [138], as will be described in Sec. 5.2. Diffractive collisions in EPOS-LHC
are handled with special diffractive Pomerons [1].

Sibyll-2.3c/d

Sibyll is based on the dual parton model [141], involving the description of so-called minijets
[142]. The upgrade from version 2.1 [143] to 2.3 [144] concerned various improvements and
new fits to accommodate LHC data, including the application of the Good-Walker formalism
of diffraction also to interactions with nuclei and the implementation of potential excitations of
hadron remnants [145]. Subsequent adjustments available in Sibyll-2.3c [146, 147] and Sibyll-
2.3d [142] respectively correct for an undesired violation of Feynman scaling in the fragmentation
region, and an unintended enhancement of the charged to neutral pion ratio.

From Sibyll-2.1 onwards, parton saturation effects are taken into account by making the
minimum pT – denoting the transition from soft to hard processes – energy-dependent [143,
147]. The hadronization follows from an application of the Lund string fragmentation algorithm
[148], as tuned to proton-proton data [1]. Interactions with a nuclear target are described with
Glauber theory [149]. Based on the assumption that the nuclear profile can be decomposed
into that of independent nucleons, this theory provides a quantum-mechanical description of
the geometry of an interaction with appropriate integrals over the nucleon positions and the
impact parameter [150]. The negligible binding energy of a projectile nucleus allows the use of
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the simpler semi-superposition theorem [79], which does provide an accurate description of the
projectile fragmentation in air showers [142].

4.1.2 Low-Energy Hadronic Interaction Models

At sufficiently low center-of-mass energies resonance and annihilation processes become impor-
tant [151, 152]. These are not adequately treated in the aforementioned high-energy hadronic
interaction models, and thus, for the simulation of EASs, it is necessary to further adopt a
low-energy hadronic interaction model [1, 75]. This transition is typically fixed at a projectile
energy of 80 GeV per nucleon, corresponding to

√
s ≈ 12 GeV. Such low energies are particularly

relevant for the final stages of the shower, which also happens to contain most of the interac-
tions and accordingly produce most of the muons [153, 154, 155]. Simultaneously, these energies
(and the relevant rapidity regions) are accessible to man-made fixed-target experiments. From
the frequently used low-energy models GHEISHA [156], FLUKA [157], and UrQMD, only the
latter two provide a satisfying agreement to fixed-target data obtained so far [158, 159, 160]. We
opted for the last one, which is described below.

UrQMD

UrQMD3 [161, 162] was originally developed for the modelling of heavy ion collisions. It there-
fore considers the collision of nuclei with laboratory energies per nucleon ranging from less than
100 MeV to more than 200 GeV [161], corresponding to what was relevant for the experiments
planned and running at the time of the model’s conception in 1998 [161]. This lends itself
well as a low-energy hadronic interaction model for EAS simulations [163], and version 1.3 was
subsequently implemented into Corsika (see Sec. 4.2.1).

The model applies relativistic transport theory to propagate collections of hadrons and com-
pute their interactions – including resonances and annihilations – based on the relevant cross-
sections. These are obtained from phenomenological fits to cross-section measurements or ex-
trapolations by applying theoretical concepts such as the additive quark model [164] or detailed
balance [161, 162]. At collision energies above

√
s ≈ 2 GeV per nucleon, the partonic substruc-

ture of hadrons is incorporated with a string-excitation and -fragmentation scheme. Further
QCD effects of colour transparency and opacity are also taken into account [161, 162].

4.2 Air Shower Simulation Software

A variety of software packages were developed related to the simulation of EASs. This includes
full 3D Monte Carlo simulations in Corsika and Aires [165]; and faster 1D solutions to cascade
equations in Conex, MCEq [166], and Seneca [167]. For this thesis we used the former of each
group, and additionally studied individual hadronic interactions through CRMC. The used codes
are described below.

3UrQMD is an acronym for Ultra-relativistic Quantum Molecular Dynamics.
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4.2.1 Corsika

Corsika4 [151] was first developed as the detector simulation software for the KASCADE ex-
periment [168]. The addition of many features and updated hadronic interaction models led it
to the most complete software for air shower simulations [1].

The basic principle is the geometric computation of the interaction coordinates, based on the
flight direction of the particle as well as the atmospheric profile and the relevant cross-section.
For unstable particles, the decay length determines whether the next interaction point is actually
reached. The propagation of charged particles between two interaction points is further affected
by the energy loss due to ionization, and by the deflection due to multiple scattering and the
Earth’s magnetic field. At the interaction points secondary particles are produced as dictated by
external hadronic interaction models (see Sec. 4.1). Produced high-energy muons feed the EM
component also through Bremsstrahlung and pair production, whose Monte Carlo simulation is
based on [169]. The propagation of EM particles can be delegated to the external EGS4 model
[170], or computed analytically with Nishimura-Kamata-Greisen theory [171, 172]. The EAS is
then made up from an appropriate repetition of interaction points and the various propagation
processes until the kinetic energy of the tracked particles fall below some type-dependent cut-off
[151]. Since each process contains a random component, Corsika implements the Monte Carlo
technique to sample realistic and representative air showers

The program is steered with input files, in which it is necessary to specify the CR energy,
mass, and arrival direction. Also environmental parameters need to be specified such as the
atmospheric profile, Earth’s magnetic field, the height of the observation level and the minimum
energy of the particles that need to be tracked. This framework is complemented by a range of
options to suit particular science cases. For example, the CoREAS and Cherenkov options
respectively compute the radio and Cherenkov emission from the air shower; with the Neutrino
option the produced neutrinos are explicitly tracked; and the Stackin option allows one to
produce the first interaction externally. With regard to the computing time and the disk space it
is further useful to enable the Thinning option, which under certain conditions disregards some
of the secondary particles while giving the remaining ones an appropriate weight; the Conex
option which delegates a part of the shower to Conex to be computed in 1D by solving cascade
equations (see Sec. 4.2.2); and the AugerHit option in case of the Auger experiment, which
saves only particles that hit the Auger WCDs [151].

To keep Corsika equipped for the challenges and demands of modern shower physics ex-
periments, a new version – dubbed Corsika 8 [173] – is being build from the ground up. This
immense effort is necessary due to inherent limitations in the design of the current Corsika,
which originate from historic technological constraints and unforeseen applications. For instance,
the propagation medium is fixed to a particular density-parametrization of air; both the medium-
type (including transitions) should be made flexible and more properties (temperature, humidity,
etc.) specifiable. Additionally, processes initiated by the main cascade should be able to couple
back to it and influence its further development. In general, a more modular, object-oriented
design is expected to make Corsika 8 a worthy successor of the present version, and it could
also become the most complete and comprehensive shower software available [173].

4Corsika is an acronym for COsmic Ray SImulations for KAscade.
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4.2.2 Conex

Conex [174] is a program in which cascade equations are solved numerically. With respect to
the full 3D treatment in Corsika, this enables a faster simulation of the longitudinal profile –
both in terms of the number of particles and the energy deposit. To still capture the random
nature of EASs, Conex relies on a hybrid approach where the initial stages of the shower
are simulated with a 3D Monte Carlo, and then below some energy threshold fed into cascade
equations. These equations describe the evolution with depth X of the energy spectra ha(E,X)
of the various hadronic5 particle species a [174, 175]:

∂ha
∂X

= − ha
ρair

[
1

λa
+

ma

Eτac

]
+
∂(βion

a ha)

∂E
+
∑
b

∫ Emax

E

hb
ρair

[
Ib→a
λb

+
Db→amb

E′τbc

]
dE′ + Shad

a ,

(4.1)

where we suppressed the depth and energy dependencies of the individual parameters.
Without going into much detail, this equation can be readily understood. The first term

with the square brackets denotes the loss of particles of species a due to interactions and decays,
quantified by inverse factors of the respective depth scales. Here the mean free path λa =
mair/(ρairσa) follows from the air density ρair(X) and mass mair as well as the interaction cross-
section with air σa(E). The decay length is determined by the time-dilated life-time γτa =
Ea/maτa, with the particle travelling at the speed of light c. The next term captures the energy-
loss due to ionization, with βion

a (E) = −dEa/dX the ionization rate. Then the sum and integral
cover all other particles of species b with energy E < E′ < Emax that can produce particles of
species a with energy E, either through interactions Ib→a(E′, E) or decays Db→a(E

′, E). This
couples the cascade equations of the various species within the hadronic component. The last
term is known as the source term and feeds these hadronic cascade equations from the initial
Monte Carlo, and from the EM component through photonuclear interactions and muon pair
production. The evolution of the EM component is described through a similar set of equations,
but then with b running only over the other EM particles and the source term coupling them to
the hadronic component [174].

Solving these coupled equations involves the discretization of both depth and energy, where
for each step in depth first all hadronic and then all EM species evolve. Eventually this program
returns the energy spectrum for each species as a function of depth, which suffices for the 1D study
of the longitudinal profile of EASs. To further retrieve information on the lateral profile, Conex
has been implemented into Corsika [176], where in the final stages of the air shower the obtained
spectra are propagated to the ground in Corsika with the 3D Monte Carlo technique. The
corresponding trade-off between precision and computation time is then parametrized through a
set of energy thresholds.

4.2.3 CRMC

CRMC6 [177] provides a useful interface to the various hadronic interaction models, including
those described in Sec. 4.1. It therefore does not simulate air showers directly, but can be used

5a also denotes muons, which are thus sort of included in the hadronic component.
6CRMC is an acronym for Cosmic Ray Monte Carlo.
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to analyze individual interactions with arbitrary energy and with any particle types that are
defined in the models themselves. This is facilitated by the use of the HepMC [178] format to
store the event information. An additionally useful feature is that the decay of specified particle
species can be disabled, and then treated externally.
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5 | The Muon Deficit and
the Fireball Model

The muon deficit (or puzzle, problem, excess, etc.) refers to an open problem in the interpretation
of EAS-data from a variety of CR-experiments [75, 6, 1]. More precisely, the muonic component
as inferred from ground-reaching particles indicates a significantly heavier CR mass composition
than the EM component does. As the reconstruction of the muonic component relies on the
accurate modelling of the complete air shower – and in its extension on all hadronic interactions
– this is typically assumed to correspond to a deficit of muons in the simulations. Various
models were proposed to resolve this inconsistency, one of which is the so-called fireball model.
The investigation of the potential of this model is the main topic of this thesis, for which we will
set the stage in this chapter.

First, the experimental evidence for the muon deficit is reviewed in Sec. 5.1. Then, in Sec. 5.2
follows a general discussion on how the muon deficit can be resolved, putting particular emphasis
on the fireball and the related core-corona model. Finally, Sec. 5.3 provides a description of how
the fireball is phenomenologically modelled for this thesis.

5.1 Experimental Evidence for the Muon Deficit

The Pierre Auger Collaboration performed several analyses directly related to the muonic com-
ponent. These studies are complicated by the need to separate the EM and muonic signals
registered by the WCDs. One effective method is to consider only inclined showers (i.e., showers
with a large zenith angle, typically θ ≥ 60◦), in which most of the EM component is absorbed
by the atmosphere and the remaining signal can be largely attributed to the hadronic cascade
[179].

The subsequent reconstruction of the distribution of muon production depths – as briefly
mentioned in Sec. 3.2.2 – follows from measuring a time delay in the WCD signal due to muons
being produced close to the shower axis and only afterwards bending off towards the WCD.
Later signals then correspond to muons produced deeper into the atmosphere. The maximum of
this distribution Xµ

max is correlated with that of the EM component Xmax due to a common first
interaction, but it further depends on the evolution of the hadronic cascade down to intermediate
energies. This makes 〈Xµ

max〉 an independent mass indicator, which was found to favor a heavier
mass composition than 〈Xmax〉 does [118].

A further investigation of the density profile at ground provided direct evidence for the
associated muon deficit [180]. The muon number in inclined air showers (62◦ < θ < 82◦, 〈θ〉 =
67◦) was reconstructed by fitting the sampled WCD-signal to a reference profile multiplied by a
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normalization factor [181]. The assumed universality in terms of energy and mass dependence
of the shape of this profile – corresponding to a simulation of a 1019 eV proton shower with
QGSJetII-03 – was shown [182, 183] to hold for showers with θ > 60◦ and E > 1018 eV.
Correcting the normalization factor for the introduced model bias gave the rescaled muon number
Rµ. This enables a direct comparison of the data with Monte Carlo predictions, where for, e.g.,
θ = 67◦ the value Rµ = 1 corresponds to 1.455 · 107 muons with energy above 0.3 GeV arriving
at 1425 m above sea level. The measured Rµ values were found to exceed iron predictions, and a
simultaneous comparison with model predictions of 〈Xmax〉- and 〈lnRµ〉-data at 1019 eV showed
a muon deficit in simulations between 30% and 80% [180].

The significance of this deficit was limited by the inability to distinguish it from a systematic
shift in the absolute energy scale [5, 109]. Exploiting the zenith-angle dependence of the hadronic
and EM contributions to the S(1000) signal, a subsequent analysis disentangled these components
in an event by event ‘top-down’ reconstruction [184]. The longitudinal profiles of a set of hybrid
events with 0◦ < θ < 60◦ were first reproduced by repeated simulations, from which then
the S(1000) components could be retrieved. Introducing rescaling factors in the fitting of the
S(1000) signals showed that the energy scale should not be altered whereas the hadronic (and
thus muonic) component at the ground in simulations of E ≈ 1019 eV showers need to be
enhanced by a factor 1.3− 1.6, depending on the hadronic interaction model [109].

The same picture is confirmed also at lower energies with the prototype of the UMD [98].
As mentioned in Sec. 3.1.3, the underground location of this detector enabled the separation of
the muonic component, and the co-located SD-750 provided the required energy measurement.
Comparing the reconstructed muon density again along with 〈Xmax〉-data to simulations shows
a muon deficit of 40% to 50% at E = 1017.5 and E = 1018 eV [98].

The recently obtained sufficient statistics also enabled the computation of shower-to-shower
fluctuations of Rµ [5], which interestingly does indicate a composition compatible with the one
inferred from Xmax-data.

For this thesis we consider the muon deficit as obtained in the study of inclined air showers,
updated with data shown at the International Cosmic Ray Conference (ICRC) in 2019 [87]. A
compilation of the relevant data on Xmax and Rµ is shown in Fig. 5.1, alongside with model
predictions for proton, nitrogen and iron CRs as colored bands. The boundaries of these bands
correspond to the extremes of the predictions using the models QGSJetII-04, EPOS-LHC, and
Sibyll-2.3c, and thereby the bands indicate the theoretical uncertainty. With both moments
of both observables uniquely dependent on the CR mass composition, they can be viewed as
independent mass indicators. Then the muon deficit follows from inferring the composition from
〈Rµ〉 and comparing it to any of the others, most notably with that from 〈Xmax〉. Likewise, a
resolution needs to only enhance the model predictions of 〈Rµ〉, while leaving σ(Rµ)/〈Rµ〉 and
both moments of Xmax unaffected.

A more explicit depiction of the size of the muon deficit is shown in Fig. 5.2, comparing
the model predictions with the simultaneous measurement of 〈lnRµ〉 and 〈Xmax〉 at E = 1019

eV and θ = 67◦. The reason for using the natural logarithm instead of Rµ itself is that in
the Heitler-Matthews model both 〈lnRµ〉 and 〈Xmax〉 scale linearly with 〈lnA〉 (see Eq. 2.11),
causing straight lines in this figure for the model predictions [185, 186]. The data point is
clearly in tension with the models, independent of the chosen composition. Only Sibyll-2.3c
appears to be able to agree with this data within the systematic uncertainties [186]. It should be
noticed, however, that the tension could be significant when also considering other energies or
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when regarding the slope of the energy evolution. This can be investigated by, e.g., combining
measurements from multiple experiments.
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Figure 5.1: Energy evolution of the first two moments of the Rµ (top) and Xmax (bottom) distributions
as measured at the Pierre Auger Observatory and reported at the ICRC in 2019 [87], with statistical (bars)
and systematic (brackets) uncertainties. The bands show the predictions from Monte Carlo simulations
of EASs for various primary nuclei: proton (red), nitrogen (green), and iron (blue). The boundaries of the
bands correspond to the extremes of predictions using the three high-energy hadronic interaction models
QGSJetII-04, EPOS-LHC, and Sibyll-2.3c. Thereby, the width of the bands provide an indication
of the theoretical uncertainty.

39



CHAPTER 5. THE MUON DEFICIT AND THE FIREBALL MODEL

680 700 720 740 760 780 800 820
Xmax  / g cm 2

0.0

0.2

0.4

0.6

0.8

1.0

ln
R

E = 1019 eV, = 67

Fe

N

p

Auger
SIBYLL-2.3c
EPOS-LHC
QGSJETII-04

Figure 5.2: Average muon content 〈lnRµ〉 and shower maximum 〈Xmax〉 for E = 1019 eV, θ = 67◦ EASs
as measured at the Pierre Auger Observatory (black dot with systematic uncertainty) [180], along with the
corresponding predictions from the high-energy hadronic interaction models Sibyll-2.3c, EPOS-LHC
and QGSJetII-04 for iron (Fe), nitrogen (N) and proton (p) CR primary nuclei.

5.1.1 Combining Measurements from Multiple Experiments

First indications of a muon deficit can be traced back to HiRes/MIA collaboration, finding [187]
inconsistencies for air showers between 1017 and 1018 eV [188]. In the following years more
experiments confirmed this finding, while others found no significant excess. Combining and
comparing the various measurements in a meta-analysis requires the use of common hadronic
interaction models and defining a common energy scale. The use of common models involves
a reinterpretation of old experimental results with the post-LHC hadronic interaction models
discussed in Sec. 4.1. A common energy scale is obtained by matching the observed energy
spectra in a cross-calibration procedure. These tasks were picked up by the inter-experimental
Working group on Hadronic Interaction and Shower Physics (WHISP) [6, 189, 190].

The comparison of the various muon-size observables x (e.g., Nµ) is facilitated by introducing
the z-scale [6, 98, 191], defined as

z =
〈lnx〉 − 〈lnx〉p
〈lnx〉Fe − 〈lnx〉p

, (5.1)

where the subscripts p (proton) and Fe (iron) indicate the model prediction for the respective CR
primary mass, while no subscript corresponds to the observed data. The main advantage of this
variable is that particular (energy-)dependencies and biases of the muon content are removed,
and thus simply represents the proximity to pure proton (z = 0) and iron (z = 1) simulations [6].
This provides a framework for a collective assessment of the muon deficit as long as the different
muonic observables x from the various experiments reflect the same physical processes.

It furthermore relies on a common mass dependence of z, which follows from x assumed to
scale with some power of A as in the Heitler-Matthews model (see Eq. 2.11). From this point
of view the z-scale is nothing more than a rescaled mass interpretation. In fact, applying the
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Heitler-Matthews mass dependence to Eq. 5.1 gives zmass = 〈lnA〉/ ln 56, which can be used to
put the mass interpretation of the longitudinal development of the EM component (e.g., with
Xmax) in the same framework. Its subsequent subtraction from the muonic z-values is a measure
of the muon deficit: ∆z = z − zmass.

The energy dependence of the observed muon deficit ∆z for QGSJetII-04 and EPOS-LHC
is shown in Fig. 5.3, which is based on data from the Pierre Auger Observatory (inclined showers
analysis [180] in red and UMD analysis [98] in green), the IceCube Neutrino Observatory [192],
the Yakutsk EAS Array (see Ref. in [6]), NEVOD-DECOR [193], SUGAR [194], and AGASA
[195]. The reference mass interpretation zmass from the EM component is based on the Global
Spline Fit (GSF) model [61], corresponding to the colored lines of Fig. 2.2. This is in good
agreement with the expectation from Xmax measurements, indicated by the gray band.
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Figure 5.3: Energy dependence of the muon deficit ∆z for QGSJetII-04 (left) and EPOS-LHC
(right) from a meta-analysis of multiple experiments, see text. The error bars include both systematic
and statistical uncertainties. The inset shows the slope and its significance of a logarithmic fit through
the data points. Figures from [190], reproduced with permission.

The combined muon deficit is quantified by fitting the logarithmic parametrization ∆z =
a+ b log10(E/10 PeV) and assessing the significance of a non-zero slope b. The results are shown
in the inset plots as a function of the assumed systematic correlation between the data points
of the individual experiments. Note also that the offset seems to start already around 1016 eV
[6, 190]. With the significance of a non-zero slope always exceeding 8σ [6], the muon deficit can
be regarded to arise from a real physical effect that is insufficiently captured in the hadronic
interaction models.

5.2 Resolving the Muon Deficit

In general there are two approaches to resolve this established mismatch between theory and
experiment. One way is to come up with a theoretically-motivated concrete model and test its
impact on air showers. This is also the general method employed for the development of the
high-energy hadronic interaction models. A different option is to apply a more phenomenological
approach by parametrizing hadronic interaction properties and subsequently inferring which
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adjustments are necessary to reproduce the observations. The latter could be particularly useful
for guiding the model-building and providing indications of poorly-understood physics that could
be explored at future collider experiments.

A first step of the phenomenological approach [81] involved changing the cross-section, mul-
tiplicity, elasticity, or π0-fraction of individual interactions by a factor f(E) that increases (or
decreases) logarithmically with the projectile energy E above E = 1015 eV. The resulting effects
on the average and fluctuations ofNµ andXmax are shown in Fig. 5.4 for 1019.5 eV proton showers
simulated in Conex with Sibyll-2.1 [1]. Despite the specific hadronic interaction model, these
effects can be interpreted as general shower features. Note that whereas the x-axis represents
the adjustment factor evaluated at the LHC energy (

√
sLHC = 13 TeV⇔ ELHC = 8.45 ·1016 eV),

the adjustment is applied – in varying magnitude – at all projectile energies exceeding 1015 eV.
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Figure 5.4: Impact on air shower observables of ad-hoc adjustments to hadronic interaction properties
with an energy-dependent factor f(E), as studied in [81] and refitted in [1]. On the x-axis f(E) is
evaluated at a nucleon-nucleon center of mass energy of 13 TeV. With respect to the observables in
Fig. 5.1 here the top-left panel depicts the percentual change of the average muon number (note that
Rµ ∝ Nµ), and the bottom-left panel the absolute change in the depth of the shower maximum. Figure
from [1], reproduced with permission.

This figure contains very rich information on the connection between the microscopic scale of
hadronic interactions and the macroscopic scale of air shower observables. For instance, the (to-
tal) cross-section – quantifying the likelihood of an interaction – mainly affects Xmax by altering
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the depth of the first interaction and the subsequent rate of air shower development. Enhance-
ments to the elasticity – defined as the fraction of energy carried away by the most energetic
secondary – appears to effectively skip interactions and thereby slow the shower development,
while also significantly impacting the relative muon fluctuations. In addition to these undesirable
effects, both of these properties seem to play a negligible role for the average muon number.

In contrast, both the multiplicity – i.e., the total number of secondaries in a collision –
and the π0-fraction – i.e., the fraction of produced pions that are neutral, typically 1/3 due to
isospin symmetry – have a strong impact on the average muon number. This comes from their
influence on the fraction of energy lost to the EM component throughout the shower, with the
multiplicity determining the number of generations to reach the critical energy and thus the
number of times energy can be lost, and the π0-fraction quantifying the fraction that is lost at
each generation through the decay π0 → γγ. Simultaneously, the multiplicity has the undesired
effect of modifying 〈Xmax〉 by speeding up or slowing down the shower development. Only the π0-
fraction provides an opportunity to increase the average muon number while having a negligible
effect on the other observables. Consequently, there is a general consensus that the muon deficit
can be resolved by appropriately decreasing the π0-fraction, or, in its extension, increasing the
hadronic energy fraction r1. This can be readily understood from the Heitler-Matthews model
(see Eqs. 2.7–2.8), where increasing r keeps more energy in the hadronic component, increases
β, and produces more muons.

It is interesting to note that keeping more energy in the hadronic component also reduces the
energy deposited into the atmosphere by the EM component. An associated underestimation of
the primary CR energy – based on the integrated longitudinal profile measured by the FD – has
already been taken into account by considering the observed muon numbers [95].

Of course, a satisfying resolution requires a more explicit model explaining this decreasing
π0-fraction / increasing hadronic energy fraction on a microscopic level. This couples back to the
first approach of coming up with theoretically-motivated models. Such models can be divided
into two categories: those that revert to rather exotic scenarios, proposed to occur in the first
(few) interaction(s) and thereby evading collider constraints, and those that incorporate so far
neglected (soft) processes in the hadronic interaction models, which could manifest itself over a
broad range of energies.

The boundary between new exotic physics and overlooked standard-model physics is not
always clear, but a phenomenological distinction can be made in terms of where in the shower the
necessary adjustments are made. The corresponding extremes are a large O(30-60)% adjustment
(based on the ‘top-down’ analysis [109], see Sec. 5.1) in only the first interaction, or equal
adjustments in all generations that accumulate throughout the shower and thus can be rather
small. To illustrate this accumulative effect, consider 6 generations each with a 7% enhancement
of the hadronic energy fraction. The resulting muon number then increases by a factor 1.076 =
1.5, which is sufficient to resolve the muon deficit.

An example of recent improvements to the hadronic interaction models is the enhancement of
baryon-pair and leading ρ0 production [142]. Supported by data from O(100) GeV fixed-target
and multi-TeV collider experiments, both changes leave less energy available for pion (and thus
π0) production and consequently significantly enhance the muon number. As is evident from
the previous section, this did not suffice for resolving the muon deficit, but it does imply that

1Remember from Sec. 2.3.2 that the hadronic energy fraction r is defined as the fraction of the projectile
energy that remains in the hadronic component after an interaction.
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much can be won by further testing and developing the current generation of hadronic interaction
models [142, 196].

As listed in the introduction, there are various rather exotic proposals to suppress the neu-
tral pion production. In the string percolation model [7] color strings between the beam and
target could overlap and fuse. This increases the string tension and thereby reduces the mass
suppression of producing heavier quarks. Another proposal [8] considers the restoration of chiral
symmetry in the central region of an interaction. This creates an effective barrier for light mesons
to escape the region and thus are not produced until the symmetry is broken again. Further
proposals include the production of a fireball state [9], the presence of a core-corona effect [10],
and a more conventional type of quark-gluon plasma [11, 12, 13]. Interestingly, also the violation
of Lorentz invariance at the highest energy has been proposed [197] to extend the lifetime of
neutral pions making them interact rather than decay more frequently in the early stages of the
shower.

A detailed description of each proposal is beyond the scope of this thesis, and thus in the
following we restrict ourselves to a comprehensive description of the fireball and core-corona
models.

The strange fireball is a state of deconfined quark matter hypothesized to form when the
energy density in a nuclear collision exceeds 1 GeV/fm3, which could be attained in the first
few interactions of UHECR-induced EASs [9]. After creation, the fireball is a plasma of up and
down quarks and gluons in chemical equilibrium, but with a high baryochemical potential. In the
subsequent explosive expansion the high baryochemical potential suppresses the fragmentation
of gluons into light (up and down) quark-antiquark pairs, and thus they predominantly fragment
into pairs of strange quarks and antiquarks. The hadronization process then gives rise to a
significantly enhanced production of strange baryons and mesons with respect to a standard
model collision, which is associated with an indirect suppression of (neutral) pion production [9].

Similar effects arise in the core-corona model, but then a plasma state of quarks and gluons
is only formed in the densest, most central region of the interaction known as the core [198]. Its
subsequent statistical hadronization also induces an enhanced production of strange and other
massive particles [11], with the associated π0-suppression, and thus plays the role of a fireball.
The remainder of the event is known as the corona and hadronizes through string fragmentation
as is conventional in the hadronic interaction models [10]. Such a hybrid state is notably different
from the fireball model due to its implied continuous transition from a pure corona to a pure
core type of event. The core-corona model was implemented into EPOS and an initial study [10]
showed that it has the potential to resolve the muon deficit.

It is interesting to note that a state of quark-gluon plasma seems to be a real phenomenon
[199]. In particular, the proposed strangeness-enhancements have been observed by the ALICE
collaboration at mid rapidities [14]. They observe a specific correlation between the production
of strange particles and the charged-particle multiplicity in a variety of events, independent of
the system-size (from proton-proton to proton-lead and lead-lead) and nucleon-nucleon center of
mass energy (2-13 TeV)2, which is not adequately described by the current hadronic interaction
models [12]. This independence seems to imply the production of a universal final state [14], e.g.
a quark-gluon plasma, and the fact that also small systems (proton-proton) are affected paves a
way for its copious production in EASs [10]. Nevertheless, further experiments are required to
validate that this enhancement also appears in the for EAS relevant forward phase-space [1].

2Of course, larger systems at higher energies are more likely to produce events with a large multiplicity.

44



CHAPTER 5. THE MUON DEFICIT AND THE FIREBALL MODEL

5.3 A Phenomenological Fireball Model

In the remainder of this thesis we study the impact of producing fireballs in UHECR-induced
EASs, and its resolving potential for the muon deficit. For this it is necessary to adopt an
explicit description of the strange fireball model in terms of the produced secondary particles
and its initiation conditions. Due to the lack of a detailed theoretical model we take the following
phenomenological approach.

The mimicking of a fireball state is achieved through the procedure described in Ref. [200],
which consists of two stages. First, the nuclear secondaries from a Standard Model (SM) in-
teraction collide in situ with air particles, effectively increasing the multiplicity with respect to
the SM. This process stops when certain conditions are met. Then in the list of secondaries all
pions and kaons are exchanged conserving charge, total energy and the direction of momentum,
effectively enhancing the strangeness of the entire interaction. Note that the effective increase
in multiplicity allows the following strangeness-enhancement to have a larger effect.

The first stage of repeatedly colliding secondary nuclei reflects the production of a plasma
from the entire nuclear projectile. The subsequent hadronization of this plasma is then assumed
to be represented3 by the disintegrated nuclear fragments from these repeated in situ collisions.
With individual nucleons technically also being nuclei (of hydrogen), we include them (and other
baryons) in this procedure. This requires an additional condition to stop the repeated collisions,
for which we define a minimum fraction fstop ≡ Estop/Eproj of the projectile energy Eproj that
needs to be carried away by a secondary nucleus or baryon for it to be eligible for a further
collision. Physically, this could be interpreted as setting a lower limit on the multiplicity nmult

of a fireball interaction. In fact, if all secondaries were nuclei, it would imply that the process is
only stopped if

Epp = Eproj/nmult ≤ fstop · Eproj =⇒ nmult ≥ 1/fstop , (5.2)

with Epp the energy per particle, and an equality in the case that the energy is equally divided
over all particles (as, e.g., in the Heitler-Matthews model). This parameter therefore indirectly
(and non-trivially) enhances the multiplicity of fireball interactions w.r.t. the SM case.

Note that fstop = 1 corresponds to no bound at all and therefore does not alter the multi-
plicity. With this setting one actually skips the stage of repeated collisions and the fireball does
not contain a plasma. Technically, one may not consider this a fireball, but we will stick to this
term even for that setting. The predictive power of the fireball model then solely comes down
to the second stage of exchanging pion and kaon secondaries. Whether this corresponds to the
strangeness enhancement associated with a true fireball is beyond the scope of this thesis.

With the procedure in place that mimics a fireball interaction, we need to specify the condi-
tions for it to be initiated. From the proposal [9] we know that the energy density of a collision
needs to exceed 1 GeV/fm3. For a direct implementation in the modelling of air showers it is
convenient to convert this condition into one on the energy of the projectile. Since – for a fixed
projectile energy – head-on collisions attain a higher energy density than peripheral collisions,
this conversion needs to take into account the impact parameter. Treating the impact parameter
as being probabilistic in nature, a fixed energy density threshold becomes a threshold based on

3Note that a true fireball would emit isotropically in its rest frame, which is boosted with respect to the rest
frame of the atmosphere. It is not trivial how this compares to our assumed representation.
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an (projectile) energy-dependent probability. The net effect is that a fireball interaction becomes
gradually more likely at higher energies.

The exact form of this energy-dependent probabilistic threshold depends on the distribution
of impact parameters among all collisions, the influence of the impact parameter onto the attained
energy density, and our value of the energy-density threshold for fireball creation. To encompass
our ignorance on the former two topics, we parametrize the energy-dependent probability as

pn(E) =


0 if E < Emin,(

log(E/Emin)

log(Emax/Emin)

)n
if Emin < E < Emax,

1 if E > Emax,

(5.3)

with Emin and Emax the minimum and maximum energy of the growing probability, respectively,
and n some power specifying the rate of growth4. This parametrization arose from wanting a
linearly increasing probability on a logarithmic energy-scale, which is the case for n = 1. Then for
any n > 1, we have d2pn/d log(E)2 > 0. This implies that the increase in probability of initiating
a fireball interaction speeds up (convex behaviour) with increasing energy. For 0 < n < 1, giving
d2pn/d log(E)2 < 0, this increase slows down (concave behaviour). Whether a convex or a
concave behaviour is more physical is not trivial, as well as the question whether the probability
should eventually reach 1 at all. Nevertheless, this parametrization is expected to have sufficient
freedom to test the general behaviour of fireball interactions in EASs.

1015 1016 1017 1018 1019 1020

Energy [eV]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Emax = 1017 eV
Emax = 1018 eV
Emax = 1019 eV
Emax = 1020 eV

Figure 5.5: Various realizations of the parametrized (Eq. 5.3) probability of initiating a fireball as a
function of the projectile energy. The minimum energy Emin = 1015 eV is fixed whereas the maximum
energy Emax is set to 1017 eV (blue), 1018 eV (orange), 1019 eV (green), and 1020 eV (red). The n-
parameter is set to 1 (triple-dot dashed), 2 (double-dot dashed), 4 (dot dashed), 8 (dashed), and 1000
(solid).

A visualization of this parametrization is shown in Fig. 5.5. The set of chosen parameters
corresponds to the sampling used in Chapters 6 and 7.

4Note that the n-parameter could also be expressed in terms of, e.g., E50 = Emin(Emax/Emin)
n√0.5, the energy

where half of the interactions create fireballs.
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Interestingly, both limiting cases of n reduce the probability function to a threshold at a
single energy:

lim
n→∞

pn(E) = H(E − Emax) and lim
n→0+

pn(E) = H(E − Emin), (5.4)

with H(x) the Heaviside step function. This implies that by relaxing n from these limits one can
study the effect of an energy-density threshold rather than a single energy threshold. Another
advantage to such limiting behaviour is that it allows one to gradually implement the fireball
mechanism. This can be done by selecting an Emax above and an Emin below the highest
energies reached by cosmic rays. Consequently, the fireball mechanism can be implemented by
slowly decreasing n from ‘infinity’ to smaller values.
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6 | Compatibility between Rµ and
Xmax in the Fireball Model

As an initial study we implement the fireball model into Conex simulations and quantify the
size of the muon deficit. A subsequent variation of the fireball parameters could provide insight
into the resolving potential of this model, with in particular clarifications of whether this effect is
sufficient and does not introduce new tensions. To this end we first outline in Sec. 6.1 a general
procedure to quantify the size of the muon deficit. The results from the fireball-implemented air
shower simulations are then shown and discussed in Sec. 6.2.

6.1 Quantifying the Size of the Muon Deficit

Since the muon deficit reflects an inconsistency of the mass interpretation of various observables,
it is convenient to define a common framework in which these observables can be compared.
For this we generalize the z-scale of Sec. 5.1.1 (Eq. 5.1) by using any observable x instead of
only the logarithm of the muon content observable. Accordingly, a different z-scale parameter is
obtained:

zx =
x− xp

xFe − xp
, (6.1)

with no subscript referring to the data, and the subscripts p and Fe referring to model predictions
for proton and iron showers, respectively.

This generalized z-scale makes sense for any observable that provides a unique measure of
the mass composition. Since the standard deviations of both the Xmax and Rµ distributions are
independent mass probes, also these observables can be used to compute zx values. At the same
time, the subscript x stresses the fact that you cannot directly compare these generalized zx
values from different observables to each other: one first needs to align their mass dependencies
through the following calibration procedure.

6.1.1 Calibration of zx

The essence of the calibration is to convert zx-values – computed from data on different ob-
servables – to a new common variable such that they all have the same mass dependence. For
this new variable, it is convenient to use zmass ≡ 〈lnA〉/ ln 56. We thus need to find the val-
ues of 〈lnA〉 that, within the physical model, reproduce the zx computed from data (i.e., infer
the mass composition). Note that if the observable already scales linearly with 〈lnA〉 such a
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calibration procedure will be redundant. This would be the case for 〈lnRµ〉 and 〈Xmax〉 in the
Heitler-Matthews model (see Sec. 2.3.2). However, these scaling relations may not be valid
when implementing new physics such as the fireball model. This underlines the necessity for us
to perform some kind of calibration.

The same simulations that obtain model predictions for xFe and xp can provide the complete
mass dependence of x within the model, under the assumption of a pure composition in data. A
mixed composition introduces a potential degeneracy in terms of the 〈lnA〉-inference, but – as
studied in Appendix A.1 – its effect seems to negligible for the current analysis. We thus need to
simply simulate x for intermediate masses (i.e., between proton and iron), use these to compute
simulated zx-values replacing x from data in Eq. 6.1 with simulations at various masses, and
interpolate its mass dependence. A simultaneous interpolation in energy is necessary to obtain
the model predictions at the same energy as the data, both for the computation of zx from
data and for inferring its mass dependence. These interpolations give rise to a function zmodel

x =
g(lnA,E) capturing the model prediction of zx. The remainder of the mass interpretation follows
from numerically solving the equation g(lnA,Edata) = zx, with zx computed from data. Then
for the assumed pure composition we have zmass = 〈lnA〉/ ln 56 = lnA/ ln 56, completing the
calibration.

For the sampling of the particular model predictions (described in Sec. 6.2) we simulate
1000 showers for each combination of CR energies ECR ∈ {1, 2, 5, 10, 20, 50, 100} EeV and nuclei
∈ {p,He,N, Si,Fe}.

It is important to consider what happens to zx-values that correspond to a mass outside of the
sampled proton-iron range. In such a scenario, one usually refers to the model as incompatible
with the data, as in the case of the muon deficit. However, for the current study we would like to
know how incompatible the model is, such that we know whether a new physical model provides
a step in the right direction. To do so, we linearly extrapolate the 〈lnA〉 dependence of g beyond
the proton-iron limits.

6.1.2 Test Statistic ∆

With the procedure of calibration in place, the data from different observables can now be com-
pared directly. Since the muon deficit mainly manifests itself through the difference between
the composition interpretation from 〈Xmax〉- and 〈lnRµ〉-data, we will first focus on these ob-
servables. The data comes from the Pierre Auger Observatory as presented at the ICRC 2019,
which is shown in Fig. 5.1. Both their raw computed zx-values and the corresponding calibration
for the three hadronic interaction models in the Standard Model (i.e., without an implemented
fireball) are shown in Fig. 6.1.

The tension between these observables can be quantified by considering their difference in
terms of their combined uncertainty. To this end we define a test statistic ∆ as

∆ =
1

n

n∑
i=1

(
z
〈lnRµ〉
mass (Ei)− z〈Xmax〉

mass (Ei)

δz
〈lnRµ〉
mass (Ei)

)2

, (6.2)

where i runs over the data points of 〈lnRµ〉. The notation zxmass(Ei) represents the value of zmass

corresponding to observable x evaluated at energy Ei. Similarly for δzxmass(Ei), which represents
the uncertainty on zmass corresponding to observable x evaluated at energy Ei.
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Figure 6.1: Uncalibrated (left) and calibrated (right) z-parameters from 〈Xmax〉 (gray circles) and
〈lnRµ〉 (black triangles) in the Standard Model scenario for the three hadronic interaction models:
a) QGSJetII-04 (top), b) EPOS-LHC (middle), c) Sibyll-2.3c (bottom). Both statistical (vertical
bars) and systematic (brackets) uncertainties are indicated. Also shown are the quadratic fit of 〈Xmax〉
(gray line) used for the computation of the test statistic ∆ (inset top right), as well as reference values
of z in the pure proton (red line) and pure iron (blue line) cases. In the calibrated plots, values in the
hatched region are obtained through linear extrapolation and the orange band represents the effect of a
mixed composition.
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Since we choose i to run over the data points of 〈lnRµ〉, we need to evaluate z〈Xmax〉
mass (Ei)

at different energies than their data points. To do so, we fit a polynomial of 2nd degree to the
zmass-values corresponding to 〈Xmax〉, which can then be evaluated at the energies of the data
points of 〈lnRµ〉. At the same time we neglect any uncertainty on z〈Xmax〉

mass , which can be justified
by them being relatively small. This allows us to focus on the error on z

〈lnRµ〉
mass . We compute

this δz〈lnRµ〉mass as the quadratic sum of the corresponding statistical and systematic uncertainties.
Uncertainties on zx follow from standard error propagation from uncertainties on the data x,
while not assigning uncertainties to the model predictions xFe and xp.

The test statistic ∆ can be interpreted as the squared difference between 〈lnA〉 inferred from
the muon content and 〈lnA〉 inferred from the longitudinal development of the shower in terms
of the uncertainty on the 〈lnA〉 inferred from muons, averaged over the energy bins for which
we have this muon data. Thus, higher values of ∆ imply the presence of a larger muon deficit,
whereas smaller values imply that the muon deficit is less significant.

From Fig. 6.1 it can be clearly seen that the muon deficit is most prominent for the hadronic
interaction model QGSJetII-04, with ∆ = 6.75. EPOS-LHC follows with ∆ = 4.36 and
Sibyll-2.3c seems to be almost consistent within systematic uncertainties with ∆ = 2.16.

Note that the effect of the calibration is minimal in Fig. 6.1 because the simulations show a
near linear dependence of these observables on 〈lnA〉, in accordance with the Heitler-Matthews
model.

6.2 Fireball Simulations and the Effect on the Muon Deficit

To study the effect of the fireball model on the muon deficit we implement its phenomenological
description of Sec. 5.3 into the subroutines of the Conex module of Corsika. This constitutes a
change to the interface of the shower modelling of Conex with the hadronic interaction models.
Depending on the fireball probability parametrized in Eq. 5.3, a high-level procedure is acti-
vated that triggers repeated in situ collisions regulated by the parameter fstop and a subsequent
swapping of pions and kaons. Since the probability already contains three parameters (Emin,
Emax, and n) we fix in this analysis fstop = 0.01 under the supposition that it only affects the
size of the fireball. Furthermore we also fix Emin = 1015 eV. While maybe not expecting fireballs
to be produced down to this energy, the corresponding probability could be made negligible by
increasing n. The following phase-space exploration is done by sampling n ∈ {1, 2, 4, 8, 1000},
where n = 1000 mimics a step function, and Emax ∈ {1017, 1018, 1019, 1020} eV. These sampled
energy-dependent fireball-initiating probabilities are visualized in Fig. 5.5. Advantageous to this
sampling is that with Emax = 1020 eV and n = 1000, one (almost) has the Standard Model case,
since fireballs are only initiated above energies attainable by most showers (with E < 1020 eV).

For each of these fireball scenarios, we simulated a total of 7× 5× 3× 1000 = 105, 000 EASs.
The factors 7 and 5 represent the aforementioned energy and mass sampling for quantifying
the muon deficit, respectively, and the 1000 showers are expected to provide sufficient statistics
for the computation of the statistical moments. The factor 3 reflects the remaining freedom of
choosing the high-energy hadronic interaction model: QGSJetII-04, EPOS-LHC, and Sibyll-
2.3c. We use UrQMD as the low-energy hadronic interaction model. For the sake of reasonable
simulation times, we use the Conex-option of applying cascade equations throughout the entire
shower. This method can be justified by the fact that we are only interested in the longitudinal
development (number of muons at the ground and depth where the number of particles peak),
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which is known to be accurately calculated with cascade equations. On top of this, we use a
thinning factor of 10−6 to further reduce CPU time. Finally, all showers were simulated with a
zenith angle of θ = 67◦ to allow a direct comparison to available muon data of the Pierre Auger
Observatory [180].

Contours of the resulting ∆-values, as computed from Eq. 6.2, are shown in Fig. 6.2. Towards
the top-right of each plot (Emax = 1020 eV, n = 103), one approaches the corresponding standard
model scenario. For each of the three interaction models, this is also the region with the highest
tension, implying that the implementation of the fireball model generally reduces the tension
between 〈lnRµ〉 and 〈Xmax〉. Regarding the plots in Fig. 6.1, this translates to a faster decrease
of zmass-values related to 〈lnRµ〉 than those related to 〈Xmax〉. In turn, this can be interpreted
as the increase in muon number, following the implementation of a fireball scenario, to be more
significant than the corresponding speed-up of the longitudinal development.
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Figure 6.2: Contours of the tension ∆ between the observed muon content 〈lnRµ〉 and longitudinal
development 〈Xmax〉 as interpreted in various fireball scenarios. The scenarios are varied through the
parameters Emax and n of the fireball-initiation threshold (Eq. 5.3). The panels correspond to the
high-energy hadronic interaction models QGSJetII-04 (left), EPOS-LHC (middle) and Sibyll-2.3c
(right). The checkered region indicates fireball scenarios for which some of the zmass interpretation of
〈Xmax〉 becomes negative and is thus excluded.

In fact, for some parameters ∆ even falls below 1, implying the average tension to be within
one standard deviation. However, one needs to be careful interpreting these plots since the
composition in a fireball scenario should remain plausible. For example, the checkered region in
Fig. 6.2 indicates where some values of the zmass inferred from 〈Xmax〉 fall below zero. This would
imply a composition lighter than proton, and thus most likely exclude such a fireball scenario.
Similarly, it could happen that values of zmass inferred from 〈lnRµ〉 become negative. To get a
better impression of the detailed fireball behavior, the zmass-plots corresponding to each corner
of the panels in Fig. 6.2 are given in Appendix B.1.

Using the checkered region to exclude unphysical scenarios, one can get to tensions as low
as ∆ = 2.41 for QGSJetII-04, ∆ = 0.32 for EPOS-LHC, and ∆ = 0.21 for Sibyll-2.3c.
These values should be regarded as rather optimistic since possible negative values of zmass
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corresponding to 〈lnRµ〉 have not been taken into account. On top of this, the fireball interactions
have not yet been subjected to LHC constraints, which could restrict the allowed phase-space of
the fireball-initiation threshold.

In addition to the average muon content, the fireball model likely affects fluctuations of the
muon number. To verify this behavior and its impact, a similar test statistic ∆σ has been
defined to capture the tension between the relative muon fluctuations σ(Rµ)/〈Rµ〉 and 〈Xmax〉.
Its definition is as in Eq. 6.2, with the role of 〈lnRµ〉 replaced by σ(Rµ)/〈Rµ〉. The subsequently
obtained contours are shown in Fig. 6.3.
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Figure 6.3: Same as Fig. 6.2, but then for the tension ∆σ between the observed relative muon fluctua-
tions σ(Rµ)/〈Rµ〉 and longitudinal development 〈Xmax〉 as interpreted in various fireball scenarios.

Regarding only the region that is not checkered, one finds most tension to be in the top right,
again implying that the implementation of a fireball scenario leads to a reduction in tension.
However, this time it is important to note that in the Standard Model case data on muon
fluctuations already suggested lower masses than data on 〈Xmax〉 (see Fig. 5.1). Consequently,
better agreement is reached when lowering the 〈Xmax〉 mass interpretation. Nevertheless, also
here it is important to be wary of potential negative zmass-values, both due to and before the
implementation of a fireball scenario. A better understanding can be obtained from zmass-plots
corresponding to the corners of Fig. 6.3, which can be found in Appendix B.2.

While any fireball scenario seems to shift things into the right direction, no complete agree-
ment appears to be possible within the varied phase-space. Therefore, the need of a stronger
effect remains necessary, potentially by also varying fstop. Nevertheless, this study suggests that
the phenomenological fireball model has sufficient predictive power to induce nontrivial effects
in air showers, which could in turn be used to put constraints on the fireball model itself.
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7 | Impact of the Fireball Model on
Individual Observables

Whereas the previous analysis gave insight in the general compatibility of various settings of the
fireball model with observations from the Pierre Auger Observatory, it fails to distinguish the two
ways to obtain better agreements. Ideally, better agreement is obtained by making predictions
that are closer to the data. However, better agreement can also be obtained by making the
data interpretation less precise. From the figures in Appendix B.1 it can be seen that while
the values of zmass are getting closer to each other when implementing the fireball model, most
of the reduction in ∆ seems to come from a significant increase of the systematic uncertainty
on the muon-inferred zmass. The latter behaviour can be traced back to the error propagation
through Eq. 6.1: no errors are assigned to the theory predictions of xp and xFe, therefore the
error on zx is simply δzx = δx/(xFe − xp), with δx the error on the data. From this it is evident
that the uncertainties on zmass increase when the difference between iron and proton predictions
gets smaller, or equivalently: when the observables get less sensitive to the CR mass. This is a
general feature of any composition-independent model, including the fireball model, that intends
to increase the muon number.

Another flaw of the previous analysis is the heavy dependence on the extrapolation to likely
unphysical masses, outside of the proton-iron mass range. Combining this with the fact that no
complete agreement with the data was found, it is worth analyzing the impact of the fireball
model on the observables in a more systematic framework. This could help identifying the
shortcomings of the fireball model, and see whether such shortcomings are inherent features or
could potentially be corrected for with a detailed QCD description. At the same time it is an
interesting question whether the previously-fixed fstop-parameter could open up a parameter
space allowing for a resolution of the muon deficit.

Altogether, this section provides a systematic analysis of the impact of the fireball model
on the individual observables, and extends the phase-space to include variations of fstop. The
general method for this study is described in Sec. 7.1 and its application follows in Sec. 7.2.

7.1 Step-wise Constraining the Fireball Model

A priori, any model could potentially resolve the muon deficit. Only once a model is compared
to the data, one could say something about the compatibility. Such a comparison could be done
in multiple steps, where one gradually introduces additional data requirements of the model and
see when the agreement breaks down. This systematic approach will be used throughout this
analysis.
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The first step requires the model to produce moments of observables that encompass the data,
at a fixed energy. To verify whether this requirement is met, it suffices to calculate the extreme
values the moments could attain by allowing variations in the composition, at a fixed energy and
within the model. Subsequently, the data should lie between these extremes. The extremes of
the average observables 〈Xmax〉 and 〈Rµ〉 correspond to pure compositions of proton and iron
nuclei. The extremes of the (relative) fluctuations σ(Xmax) and σ(Rµ)/〈Rµ〉 are less trivial to
compute as they could correspond to mixed compositions. Their computation is nevertheless
possible and is described in Appendix A.2.

The second step requires the mass interpretation of both moments of both observables to be
consistent. In principle, one could try to infer a single composition from each of the moments
and compare the results. However, the composition that could reproduce the observable is likely
degenerate. Therefore, it is more convenient to keep the composition implicit and instead map
the moments to each other through the model interpretation. Due to the degeneracy of the
composition such a mapping would provide a range of other moments that are compatible. A
subsequent comparison of each moment with the mapped range of moments checks a potential
consistency. In practice, only the mappings from an average to its fluctuations and the other
average are feasible. Therefore, this procedure consists of two stages: 1) whether 〈Xmax〉 is
simultaneously consistent with σ(Xmax) and 〈Rµ〉, and 2) whether 〈Rµ〉 is simultaneously con-
sistent with σ(Rµ)/〈Rµ〉 and 〈Xmax〉. This still covers both moments of the two observables and
therefore provides a complete consistency check. We would like to stress that these mappings
originate purely from adequately combining the observable distributions of the individual nuclei
making up the composition. More detail on how these mappings are obtained can be found in
Appendix A.3.

The third step requires the first two phases to simultaneously hold for multiple energies. For
this analysis, the first two phases will first be checked for an energy of 10 EeV. This could be
repeated for energies of 5 and 20 EeV, but that is beyond the scope of the current study. At
these energies there is sufficient muon data, see, e.g., Fig. 5.1.

A fourth and final step could focus on the energy dependence of the moments. Since data
at different energies are subject to the same physical world, they are not completely unrelated.
In fact, the energy evolution of the observables are a combination of the energy evolution of the
composition and the energy evolution of the EAS particle physics. In principle, neither of which
is random; both should have physical models underneath. Therefore, more information could
be extracted when focusing on, e.g., the slope of the muon deficit, as was used to quantify its
significance (see Sec. 5.1.1 ). Such a constraint on the fireball model is also beyond the scope of
this analysis.

7.2 Results and Discussion

To impose each of the aforementioned constraints, one first needs to obtain the model predictions
through adequate EAS simulations. The set of simulations performed for this analysis is very sim-
ilar to the one used in the previous analysis, see Sec. 6.2. The sampling of the fireball-initiation
threshold through Emin = 1015 eV, Emax ∈ {1017, 1018, 1019, 1020} eV and n ∈ {1, 2, 4, 8, 1000}
is kept the same. An important difference with respect to previous simulations is that fstop is
no longer fixed to 0.01, but sampled from {1, 0.1, 0.01, 0.001} instead. To compensate for the
increase in the number of required simulations, we fixed the energy of the primary CR to 10 EeV.
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A further difference is that the atmospheric parameters has been revised. Instead of fixing
the atmosphere to a yearly average, we used monthly specific settings from within Corsika.
For each winter month (southern hemisphere; April-September) we simulate 105 showers and for
each summer month (October-March) we simulate 70 showers, giving a total of 1050 showers per
setting. This way there is a 3:2 ratio of showers from winter to summer months, which reflects
the fact that at the Pierre Auger Observatory there is more hybrid observation time during the
winter months [77]. This change had, however, little impact on the observables of interest.

Finally, for this analysis both Corsika and Conex were updated, from versions 7.70 and
6.4 to versions 7.74 and 7.5, respectively. This also includes the updated hadronic interaction
model Sibyll-2.3d.

7.2.1 Range of Predictions

The impact of a fireball on the prediction of observables from proton and iron showers are shown
in Figs. 7.1 (fstop = 1), 7.2 (fstop = 0.1), 7.3 (fstop = 0.01), and 7.4 (fstop = 0.001). Also shown
in the case of σ(Rµ)/〈Rµ〉 and σ(Xmax) are maximal values of the observables when allowing
mixed compositions, indicating the range of observables the model can predict. The computation
of these extremes is described in Appendix A.2. In each of these figures, 20 fireball-initiation
settings are shown in combination with the three hadronic interaction models. The energy of
the primary CR as well as fstop are fixed for each figure, as indicated in the top left. The x-
axis on top specifies the 4 settings of the Emax-parameter, with the light-shaded background
color-coded according to Fig. 5.5. The x-axis on the bottom specifies the 5 settings of the
n-parameter, repeating for each Emax-value. As before, we retrieve the Standard Model scenario
by setting Emax = 1020 eV and n = 103, i.e., all the way on the left of each plot. A subsequent
evaluation of the impact of a particular fireball model follows from its comparison to the left-
most points. The y-axes indicate the observables and their fluctuations as in Fig. 5.1. The black
horizontal lines are measurements from the Pierre Auger Observatory, with the bands indicating
systematic (light-gray) and statistical (dark-gray) uncertainties. Imposing the first constraint,
one thus needs the model predictions to encompass these horizontal lines, for both moments of
both observables.

Starting with the case of fstop = 1 in Fig. 7.1, we see that the implementation of any
fireball scenario only affects the muon number and their fluctuations; both 〈Xmax〉 and σ(Xmax)
remain unaffected. Such behavior is expected in the fstop = 1 case since the stage of repeated
collisions is skipped, removing the artificial development of the shower. Thus, a fireball here
simply corresponds to swapping pions and kaons of the secondaries of a SM interaction, which
affects the muon number. The muon number increases strongly with both threshold parameters
and causes the data to fall within the prediction range for any Emax with n = 1, and even for
all n with Emax = 1017 eV. If one includes the systematic error on the data, already a modest
fireball threshold is sufficient to have the muon number fall within the range of predictions.
Note that for some threshold settings the difference between proton and iron predictions get
significantly smaller, underlining the fact that a fireball model makes the muon number less
sensitive to the composition. The largest predictions of σ(Rµ)/〈Rµ〉 decrease to ∼0.1, which
would likely enforce a proton-dominated composition interpretation. Nevertheless, the range
of predictions on muon fluctuations remain compatible with the data. Therefore, only with
the aforementioned threshold settings that sufficiently increase the muon number one could
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potentially find a consistent composition.
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Figure 7.1: Impact of various settings of the fireball model with fstop = 1 on the ranges of 〈Rµ〉 (top-
left), σ(Rµ)/〈Rµ〉 (top-right), 〈Xmax〉 (bottom-left) and σ(Xmax) (bottom-right) from 10 EeV cosmic-ray
extensive air showers. Varied on the x-axis are the fireball-initiation threshold parameters Emax (top
axis, background color-coding corresponding to Fig. 5.5) and n (bottom axis), while Emin = 1015 eV
is fixed. The settings on the far left, Emax = 1020 eV and n = 103, correspond to the Standard Model
scenario (i.e., no fireball). For each scenario, the high-energy hadronic interaction models QGSJetII-04
(squares), EPOS-LHC (circles), and Sibyll-2.3d (triangles) are used in combination with a pure proton
(red) and iron (blue) composition. Mixed compositions that maximize the fluctuations are indicated in
purple. Data from the Pierre Auger Observatory from ICRC 2019 [201] are shown by black horizontal
lines, with systematic (light gray) and statistical (dark gray) errors as bands.

Decreasing to fstop = 0.1 introduces the stage of repeated collisions and thus affects the
shower development, as can be seen from the moments of Xmax in Fig. 7.2. Similarly to the
previous discussion of σ(Rµ)/〈Rµ〉, now 〈Xmax〉 seems to enforce a proton-dominated composition
inference. At the same time, σ(Xmax) decreases a bit, but not sufficient to draw the same
conclusions. This decrease of fstop seems to have little effect on the muon number and its
fluctuations.

A further decrease to fstop = 0.01 extends the aforementioned behavior. In particular, one
can clearly see a splitting of proton and mixed composition predictions of σ(Xmax). This implies
that while proton fluctuations seem to go down, there is also a more pronounced separation of the
Xmax distributions expected from proton and iron induced EASs. Therefore, mixed compositions
could result in even larger fluctuations. At the same time, the range of σ(Xmax) predictions
increases only slightly, and could thus still accommodate the data. Another feature seen for the
case fstop = 0.01 is that implementing the fireball model seems to have a much larger effect on the
proton predictions of the average muon number than on the corresponding iron predictions. This
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Figure 7.2: Same as Fig. 7.1, but then for fstop = 0.1.

shows a clear decrease in sensitivity of the average muon observable to the mass composition.
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Figure 7.3: Same as Fig. 7.1, but then for fstop = 0.01.
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Finally, the case of fstop = 0.001 shows little difference to the previous case, probably indi-
cating a sub-dominance of lower-energetic nuclei to the observables of interest. Only the splitting
of proton and mixed composition predictions of σ(Xmax) is more pronounced.
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Figure 7.4: Same as Fig. 7.1, but then for fstop = 0.001.

7.2.2 Cross-Interpretation in terms of Composition

Following the procedure from Appendix A.3 data on 〈Rµ〉 and 〈Xmax〉 can be mapped to the other
moments through the model predictions, and in this way provide a cross-interpretation in terms
of the mass composition. Such mappings are shown in Figs. 7.5 (fstop = 1), 7.6 (fstop = 0.1), 7.7
(fstop = 0.01), and 7.8 (fstop = 0.001) for the different cases of fstop. Here the green data points
show which values of 〈Rµ〉 · (10EeV/E) and σ(Xmax) correspond to the observed 〈Xmax〉-data
when assuming a particular model. The corresponding error bars take into account a possible
degeneracy due to the composition. For example, in Fig. 7.5 the green data with error bars
in the bottom-right plot show the range of σ(Xmax) values that correspond to the 〈Xmax〉-data
value of the black horizontal line in the plot on the bottom-left. Likewise, the orange data points
provide a mapping from 〈Rµ〉 · (10EeV/E) to 〈Xmax〉 and σ(Rµ)/〈Rµ〉. Note that in the orange
case not for every fireball scenario a point could be calculated. This is due to the observed 〈Rµ〉
data line lying outside of the proton-iron range, thus making a composition inference impossible.
However, such an inference could be possible when including the uncertainty on the data. The
corresponding mappings of the uncertainties are indicated by the vertical light-gray bands. These
bands are open if the uncertainties on the data stretches beyond the proton-iron range, and closed
(i.e., ends with a gray bracket) if the end of the uncertainty falls within this range.

Starting again with the case of fstop = 1 in Fig. 7.5, we find that many fireball-initiation
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threshold settings could provide a complete agreement within the total uncertainty on the data.
However, looking at the actual data points, only the cases of (Emax = 1018 eV, n = 1) and
(Emax = 1017 eV, n = 4) with both EPOS-LHC and Sibyll-2.3d as well as (Emax = 1017 eV,
n = 2) with QGSJetII-04 show a perfect agreement between 〈Xmax〉 and 〈Rµ〉. Additionally,
these points seem also to be compatible with the relative fluctuations on the muon number, while
fluctuations on Xmax seem to always allow a mixture that reproduces the observed average. This
agreement shows the strength of the fireball model, but one should realize that the muon deficit
is observed over a range of energies and not just at 10 EeV. On top of this, the compatibility of
these fireball-initiation thresholds with other measurements should be verified.
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Figure 7.5: Impact of various settings of the fireball model with fstop = 1 on the compatibility of data on
〈Xmax〉 (green) or 〈Rµ〉 (orange) with data on 〈Rµ〉 (top-left), σ(Rµ)/〈Rµ〉 (top-right), 〈Xmax〉 (bottom-
left) and σ(Xmax) (bottom-right) from 10 EeV cosmic-ray extensive air showers. Varied on the x-axis
are the fireball-initiation threshold parameters Emax (top axis, background color-coding corresponding to
Fig. 5.5) and n (bottom axis), while Emin = 1015 eV is fixed. The settings on the far left, Emax = 1020

eV and n = 103, correspond to the Standard Model scenario (i.e., no fireball). For each scenario, the used
high-energy hadronic interaction models are QGSJetII-04 (squares), EPOS-LHC (circles), and Sibyll-
2.3d (triangles). The error bars indicate the allowed variation due to composition mixtures. Effects of
uncertainties on the data are indicated by the vertical light-gray bands with dark-gray bracketing ends.
Open ends indicate uncertainties to extend beyond the proton-iron range. Data from the Pierre Auger
Observatory from ICRC 2019 [201] are shown by black horizontal lines, with systematic (light gray) and
statistical (dark gray) errors as bands.

The previously found perfect agreement is lost when decreasing fstop to 0.1 in Fig. 7.6. In
fact, one finds that it is no longer possible to simultaneously reconcile σ(Xmax)-data with 〈Xmax〉-
data and solve the muon deficit. A further decrease to fstop = 0.01 in Fig. 7.7 only worsens
this behavior, making 〈Xmax〉-data infer lighter compositions than data on their fluctuations do.
Lastly, for the case fstop = 0.001 as shown in Fig. 7.8, also no agreement can be found between
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the average and fluctuations on Xmax, despite sufficiently increasing the muon number for a
larger range of fireball-threshold settings.
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Figure 7.6: Same as Fig. 7.5, but then for fstop = 0.1.
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Figure 7.7: Same as Fig. 7.5, but then for fstop = 0.01.
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Figure 7.8: Same as Fig. 7.5, but then for fstop = 0.001.

In general, the introduction of the stage of repeated in situ collisions seems to be counter-
productive for obtaining a complete consistency between the observables. Such a conclusion
could be drawn based on the following two observations. First, breaking up particles further
through repeated collisions barely increases the muon number, therefore implying that the dom-
inant contribution comes from swapping the highest-energetic pions for kaons. This intuitively
makes sense as it corresponds to suppressing the largest energy loss to the EM component. Sec-
ond, the decrease in 〈Xmax〉 predictions, originating from the artificial acceleration of the shower
development, appears to require compositions too light to be compatible with σ(Xmax)-data.

These observations do not exclude a light variant of the fireball model where one turns off the
stage of repeated collisions by setting fstop = 1. In fact, we found the fireball model to enable
a consistent composition interpretation for the specific set of parameters summarized in Table
7.1. Therefore, in the remainder of this thesis we will only consider the fireball model without
the formation of a plasma and only a strangeness enhancement. In essence, the resolution comes
from the flexibility of the energy-dependent fireball-initiation threshold. It remains to be seen
whether this also works for showers from 5 and 20 EeV CRs.

Table 7.1: Settings of the fireball model allowing for a consistent composition interpretation of data
from the Pierre Auger Observatory on both moments of Xmax and Rµ at 10 EeV.

log10(Emin/eV) log10(Emax/eV) n fstop

QGSJetII-04 15 17 2 1.0

EPOS-LHC
15 18 1 1.0
15 17 4 1.0

Sibyll-2.3d
15 18 1 1.0
15 17 4 1.0
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8 | Extending the Heitler-Matthews
Model of the Muon Number

Instead of repeating the previous analysis at different energies, it may be worthwhile to analyti-
cally investigate the effect of the fireball model on the muon number. This may provide a deeper
insight into the physics of air showers and constitute an independent confirmation of the re-
sults from Monte Carlo simulations. We will take an approach inspired by the Heitler-Matthews
model, and the framework developed in this chapter will be used in Chapter 9. Following the
implementation of the general effect of the fireball model in Sec. 8.1, we continue extending the
Heitler-Matthews model by introducing an energy-dependent multiplicity in Sec. 8.2.

8.1 Muon Number in a Fireball-Extended Heitler Model

Exchanging pions for kaons and vice-versa – as suggested for the implementation of a phenomeno-
logical fireball model in Sec. 5.3 – affects the fraction of the energy that remains in the hadronic
component. In the Heitler-Matthews model, this fraction r is taken to be a constant through-
out the shower, which together with the multiplicity nmult determines the exponent β (see Sec.
2.3.2). One way of implementing the fireball model1 into this Heitler-Matthews framework is to
allow some interactions in the shower to have a different r-value. To this end we define rfb as the
fraction of energy remaining in the hadronic component after a fireball interaction, in contrast
to the analogous definition of rSM for a Standard Model interaction.

This hybrid r-value approach to change the flow of energy in a shower can be implemented
into an air shower by defining an effective r-value,

reff(E) ≡ [1− p(E)] rSM + p(E) rfb, (8.1)

which depends on the energy E of the projectile in the interaction, and p(E) is given by Eq. 5.3.
Splitting a single interaction into a Standard Model (corona) and a ‘fireball’ (core) component
is an important feature of the core-corona model (see Sec. 5.2). While the fireball model itself
does not predict such a splitting, in the limit of many showers p(E) could be interpreted as the
statistical fraction of many interactions rather than the physical fraction of a single interaction,
justifying the above definition with p(E) from Eq. 5.3. In fact, for the statistical moments of
the muon number such a limit of many showers is essential. In some sense, we therefore follow
the probabilistic nature of a shower rather than one of its realizations.

1Note that we no longer consider the formation of a plasma, as was excluded in Sec. 7.2.2.
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In the Heitler-Matthews model, log r can be interpreted as the infinitesimal change in the
logarithm of the fraction of particles in the hadronic component with generation k2: log r =
d log(Nhad/Ntot)/dk.3 Generalizing this idea that r captures this generational rate of energy
remaining in the hadronic component, one can integrate log r over all generations to obtain the
logarithm of the fraction of particles that is left in the hadronic component at the end of the
shower. A subsequent exponentiation and a multiplication by the total number of particles,
Ntot = E0/Ec, gives the muon number as:

Nµ =

(
E0

Ec

)
exp

[∫ kc

0
log r dk

]
, (8.2)

where the potential k-dependence of r has been kept implicit. For a constant r-value as in the
Standard Model case (r = rSM), we retrieve the Heitler-Matthews model. For an energy- (and
thus generation-) dependent r-value as in Eq. 8.1, the integral captures the change in r-value as
fireball interactions become less likely at later generations.

We assume – in accordance with the Heitler-Matthews model – that in each interaction the
energy of the projectile is equally divided over its secondaries. Consequently, the generation k
is directly related to the energy of the particles at this generation. Substituting in Eq. 8.1 and
making a change of variables to the energy of the particles at generation k gives

Nµ =

(
E0

Ec

)
exp

[
−
∫ logE0

logEc

log {rSM + p(E) (rfb − rSM)} dk

d logE
d logE

]
, (8.3)

where dk/d logE is completely determined by the energy-evolution of the multiplicity. In
the Heitler-Matthews model the multiplicity is assumed to be constant, giving dk/d logE =
−1/ log(nmult).4 This assumption may be too crude for our purposes, but for now we will stick
to a constant multiplicity.

With p(E) given by Eq. 5.3 and a constant multiplicity, the integral in Eq. 8.3 can be solved
analytically in terms of the hypergeometric function, as shown in Appendix D.1.

8.1.1 The Effect of Discrete Interactions

So far, we glossed over the fact that r is not defined as the infinitesimal change with generations,
but rather as a constant factor for a single generation. Therefore, log r in the integral of Eq.
8.2 becomes a step-function, plateauing for each generation. Not taking this into account would
underestimate the effect of the fireball: since the height of the plateau is determined by the
interaction, and thus the beginning of the generation, the fireball seeps down to lower energies.

A visualization of this effect is shown in the left plot of Fig. 8.1. The solid black line visualizes
(the logarithm of) Eq. 8.1 for a particular set of fireball parameters: n = 2, Emin = 1015 and
Emax = 1017 eV. Choosing a constant multiplicity of 10, a single generation corresponds to one
order of magnitude in energy. The subsequent evolution of r(E) in showers from 1019 eV and

2To avoid confusion with the fireball parameter n, here we use k (kc) to denote the (critical) generation (cf.
Sec. 2.3.2).

3Recall that at generation k the number of particles in the hadronic component is given by Nhad = (rnmult)
k,

and the total number of particles is given by Ntot = nkmult. See Appendix C for a complete list of symbols used
in this Chapter.

4Note that analogous to Eq. 2.6, one has k = log(E0/E)/ log(nmult) when shower particles have energy E ≥ Ec.
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Figure 8.1: Visualization of the effect of discrete interactions on the hybrid-r approach for implementing
a fireball model. Fireball settings are fixed to n = 2, Emin = 1015 eV, and Emax = 1017 eV. The latter
two are represented by the left and right vertical gray dotted lines, respectively. The multiplicity is fixed
to 10. Left: the energy evolution of the hadronic energy fraction r in the fireball model for a continuous
energy loss (black solid), and two showers (1019 eV, blue dotted; 1018.5 eV, orange dotted) with discrete
interactions. Right: muon fraction Nµ/Ntot as a function of the primary energy E0 without (purple) and
with (green and red) discrete interactions. The red curve arises from a discreteness correction ∆disc to
the purple curve. Also shown with dash-dotted lines are the Standard Model case (black) and a pure
fireball above Emax (gray) without discreteness correction.

1018.5 eV CRs are indicated by the blue and orange dotted lines, respectively. Note in particular
the aforementioned step-function behavior. The integral of Eq. 8.2 should correspond to the
area that is enclosed by such a step-function, and the vertical lines at the primary energy and
the critical energy ∼ 1011 eV. This area is negative and has a smaller absolute value than the
one bound by the continuous black line, and thus corresponds to a larger muon number.

By increasing the primary energy of the CR, the step-functions shift in a way reminiscent
of an escalator. The exact area bound by the escalator region alone (1014 − 1017 eV in the left
plot of Fig. 8.1) oscillates as the primary energy increases, with a period of 1 generation. This
translates itself to the rather unphysical behavior of the green curve in the right plot of Fig.
8.1. This oscillatory effect gets more extreme for a step-function threshold (e.g., n→∞ in Eq.
5.3) or a large multiplicity, and can be attributed to relying too much on the assumption of an
equal division of energy of the secondaries. Such oscillatory behavior would likely be smoothed
out when the secondaries of the first interaction vary in energy, each inducing independent
subshowers. Therefore, a more physical approximation would be to correct the integral of the
continuous black curve in the left plot – leading to a muon number prediction shown by the
purple curve in the right plot – by some constant factor above Emax (right vertical gray dotted
line). A reasonable average behavior is given by half a generation of extra fireballs, corresponding
to a shift of 1

2 log(rfb/rSM). To generalize this correction factor to energies below Emax, a simple

67



CHAPTER 8. EXTENDING THE HEITLER-MATTHEWS MODEL

multiplication by p(E = E0) suffices:

∆disc ≡
1

2
log(rfb/rSM) p(E0). (8.4)

Adding this to the continuous (purple) curve in the right plot of Fig. 8.1 results into the corrected
version (red curve).

8.1.2 Resulting Muon Number

Substituting the integration results of Appendix D.1 in Eq. 8.3 and applying the correction of
Eq. 8.4, we get for the muon number Nµ as function of primary energy E0

Nµ =

(
E0

Ec

)β
×



1, if E0 ≤ Emin,(
E0

Emin

)δ(E0)

, if Emin ≤ E0 ≤ Emax,(
Emax

Emin

)δ(Emax)( E0

Emax

)γ
, if E0 ≥ Emax,

(8.5)

where the exponents are given by

β ≡ log(rSMnmult)

log(nmult)
, (8.6)

γ ≡ log(rfb/rSM)

log(nmult)
, (8.7)

δ(E) ≡ 1

log(nmult)

[
log {rSM + p(E)(rfb − rSM)} − log rSM

+
n

n+ 1

(
1− rfb

rSM

)
p(E) 2F1

(
1, 1 +

1

n
; 2 +

1

n
;

(
1− rfb

rSM

)
p(E)

)]
+

1

2

log(rfb/rSM)

log(Emax/Emin)
p(E)

n−1
n ,

(8.8)

with p(E) the probability of initiating a fireball given in Eq. 5.3, and 2F1(a, b; c;x) the hyperge-
ometric function. Note that the last term in δ(E) originates from the correction ∆disc given by
Eq. 8.4.

The muon number thus has the energy dependence of the Heitler-Matthews model for CRs
below the minimum energy Emin, with exponent β. Then there is a transition region where the
exponent itself β + δ(E) increases with energy. For CRs above the maximum energy Emax the
exponent becomes constant again at β+ γ. The remaining parameter n determines how fast the
exponent is increased towards its eventual constant value, which also affects the normalization
of the muon number above Emax. See Fig. 8.2 for a visualization of Eq. 8.5 for various values of
n. The rather jumpy behavior around Emax is – due to the discreteness of interactions – a direct
reflection of the energy-dependent fireball-initiation probability. Interestingly, the definition of
γ explicitly shows that if the fireball keeps more energy in the hadronic component rfb > rSM,
the muon number is larger w.r.t. the SM case due to γ > 0.
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Figure 8.2: Muon number Nµ in the Fireball-extended Heitler-Matthews model as a function of CR
energy E0. The Standard Model case (gray solid line) has a constant power-law with exponent β as in
Eq. 2.7. In contrast, the fireball case (dashed lines) transitions between Emin = 1015 eV and Emax = 1017

eV (vertical grey dotted lines) to a larger power-law exponent β + γ as in Eq. 8.5. Various values for
the fireball parameter n are shown: 1 (blue), 2 (orange), 4 (green), 8 (red), and 1000 (purple). The
underlying parameters were estimated as nmult = 25, rSM = 0.75, rfb = 0.9, and Ec = 1011 eV.

8.2 Introducing an Energy-Dependent Multiplicity

One of the vital assumptions for the derivations of Eqs. 2.7 and 8.5 in the previous sections
is that the multiplicity is constant throughout the shower. In reality, as we will also see in
Sec. 9.1.2, this is clearly not the case, and in fact is randomly taken from an energy-dependent
distribution of multiplicities. To take these complications into account, we develop in this section
a formalism for dealing with an energy-dependent multiplicity, extending on the previous results.

Under our assumption of an equal division of energy over the secondaries, the energy per
particle of each following generation is given by

Ek+1 = Ek/nmult(Ek) . (8.9)

Expressing the energy level Ek of generation k in terms of the primary energy E0 would involve
recursive use of this equation. However, only for integer values of k does one reach E0 exactly,
for other values one would need to use an appropriate interpolation. After this interpolation, one
can obtain dk/d logEk, where we usually suppress the subscript. A subsequent calculation of the
muon number follows from Eq. 8.3 and potentially the correction of Eq. 8.4. For the interpolation
itself it is necessary to have an explicit expression for the energy-dependent multiplicity. In the
following we consider a power-law dependence in Sec. 8.2.1 and a generalization to arbitrary
curves in Sec. 8.2.2.
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8.2.1 Power-law Dependence

We adopt the following parametrization of a power-law energy-dependent multiplicity:

nmult(E) = nscale

(
E

Escale

)b
, (8.10)

with parameters nscale, Escale, and b5. Applying the recursion relation, we find

logEk = (1− b)k logE0 +
[
1− (1− b)k

](
logEscale −

1

b
log nscale

)
, (8.11)

which can be implicitly interpolated by allowing k to take non-integer values. Note that this is
only valid for b < 1. For b ≥ 1 the multiplicity reaches 1 within one generation, stopping the
shower evolution before the recursion relation can be used. Inverting Eq. 8.11 gives

k(E,E0) =
1

log(1− b) log

 log
(
n

1/b
scaleE/Escale

)
log
(
n

1/b
scaleE0/Escale

)
 , (8.12)

where the subscript k has been suppressed. Correspondingly, we find

dk

d logE
=

1

log(1− b)
1

log
(
n

1/b
scaleE/Escale

) , (8.13)

which can be used in the integral of Eq. 8.3.

Standard Model

Recall that in the Standard Model r = rSM is constant throughout the shower. This renders
the integrals of Eqs. 8.2 and 8.3 irrelevant/trivial, and we can simply evaluate Eq. 2.7 with
an updated kc. The generation at which the critical energy is reached follows from Eq. 8.12 at
k(Ec, E0) ≡ kc(E0). Consequently, we find for the muon number in the Standard Model:

Nµ =

(
E0

Ec

) log
(
n

1/b
scaleEc/Escale

)
log
(
n

1/b
scaleE0/Escale

)


log rSM
log(1−b)

. (8.14)

Note that the second factor represents the fraction of the total number of particles that remains
in the hadronic component till E = Ec and thus produces muons.

Fireball Model

Combining the power-law energy-dependent multiplicity with our previous fireball extension to
the Heitler-Matthews model in Sec. 8.1 does require the evaluation of the integral in Eq. 8.3.
The difference w.r.t. the derivation in Sec. 8.1 is that dk/d logE (given by Eq. 8.13) is no longer

5The degeneracy between nscale and Escale allows for a convenient interpretation and explicitly enforces appro-
priate units. If preferred, either parameter could be set to 1.
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independent of the energy and thus cannot be taken out of the integral. To obtain the muon
number we need to evaluate

Nµ =

(
E0

Ec

)
exp

 −1

log(1− b)

∫ logE0

logEc

log {rSM + p(E) (rfb − rSM)}
log
(
n

1/b
scaleE/Escale

) d logE + ∆disc

 , (8.15)

with p(E) again given by Eq. 5.3, and ∆disc from Eq. 8.4 taking into account discrete interactions.
Unfortunately, the integral cannot be solved analytically. Instead, one can approximate this
integral very accurately by replacing the arithmetic average of r by a geometric average. This
approach is outlined in Appendix D.2. Consequently, the muon number in the fireball model is
given by:

Nµ =

(
E0

Ec

)[
xc
x0

]c1
×



1, if E0 ≤ Emin,(
E0

Emin

)δ′(E0)

, if Emin ≤ E0 ≤ Emax,(
Emax

Emin

)δ′(Emax) [xmax

x0

]c2
, if E0 ≥ Emax,

(8.16)

where we defined

c1 ≡
log rSM

log(1− b) , (8.17)

c2 ≡
log(rfb/rSM)

log(1− b) , (8.18)

xi ≡ log
(
n

1/b
scaleEi/Escale

)
, i ∈ {c, 0,min,max}, (8.19)

δ′(E) ≡ − p(E)

n+ 1

c2

xmin
2F1

(
1, 1 + n; 2 + n;

− log(E/Emin)

xmin

)
+

1

2

log(rfb/rSM)

log(Emax/Emin)
p(E)

n−1
n ,

(8.20)

for compactness and readability.

8.2.2 Generalized Dependence

For a more complicated energy dependence of the multiplicity, the application of the recursion
relation (Eq. 8.9) might not allow for an analytic interpolation of k. Instead, a general energy-
dependent multiplicity n(E) can be approximated by piece-wise power-law multiplicities. The
muon number – or rather the number of hadronic particles – for such power-law multiplicities
were derived in the previous section and depend on the primary as well as the critical energy.
These power-law multiplicities can be attached by multiplying the hadronic particle numbers
with an appropriate choice of the primary and critical energies. Attaching m power-laws we find
the muon number to be given by

Nµ =
m−1∏
i=0

Nhad(Ei, Ei+1) =
m−1∏
i=0

(
Ei
Ei+1

)
exp

[
−
∫ logEi

logEi+1

log r

(
dk

d logE

)
i

d logE

]
(8.21)
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where the number of hadronic particles produced within a given generation Nhad follows from Eq.
8.3. The subscript i of dk/d logE emphasizes the piece-wise power-law behavior, and dk/d logE
is given by Eq. 8.13 with parameters bi, nscale,i, and Escale,i. These parameters need to be well-
chosen such that the power-laws are connected and approach n(E). Choosing Escale,i = Ei+1,
we thus need nscale,i = n(Ei+1) ≡ ni+1 and bi = log(ni/ni+1)/ log(Ei/Ei+1).

Furthermore, due to the boundary conditions of E0 being the primary energy and Em = Ec
the critical energy, we can evaluate the product and obtain

Nµ =

(
E0

Ec

)
exp

[
−
∫ logE0

logEc

log r

(
dk

d logE

)
i,m

d logE

]
, (8.22)

where the sum of integrals was combined into a single integral by adding a second subscript m
such that(

dk

d logE

)
i,m

≡
(

dk

d logE

)
i

=
1

log(1− bi)
1

log
(
n

1/bi
i+1E/Ei+1

) , if Ei+1 ≤ E ≤ Ei, (8.23)

where i ∈ {1, ...,m − 1}. In the limit of m → ∞ the second log term loses its explicit energy
dependence since the range of E gets smaller and thus also closer to Ei+1. At the same time, bi
converges to the derivative d log n/d logE directly from its definition:

lim
m→∞

bi = lim
m→∞

log(ni/ni+1)

log(Ei/Ei+1)
= lim

∆ logE→0

log n(exp[logEi])− log n(exp[logEi −∆ logE])

∆ logE

=
d log n(E)

d logE
(8.24)

where the change of limit comes from ∆ logE ≡ logEi − logEi+1 going to zero as we keep
dividing the energy range into more and thus smaller pieces.

In its full glory, the muon number for an arbitrary energy-dependent multiplicity is thus given
by

Nµ =

(
E0

Ec

)
exp

−∫ logE0

logEc

log r

log
(

1− d logn(E)
d logE

) d log n(E)

d logE

1

log n(E)
d logE

 , (8.25)

which only works as long as the multiplicity does not increase too fast with energy (i.e., as long
as d log(n(E))/d logE < 1), as was also required in the power-law case.

Analytic solutions to this integral are likely to be restricted to a small set of energy-dependent
multiplicity parametrizations, as for example the constant and the power-law ones described
before. Nevertheless, the generality of this equation can be useful to better approximate more
complicated energy dependencies numerically.
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9 | Parameter Inference and Auger
Data Interpretation

For the application of the framework developed in Chapter 8 to the muon deficit in Auger data
it is necessary to obtain (effective) values of the free parameters. Some of these parameters are
related to those from individual interactions, which can be inferred from hadronic interaction
models. Such parameters are studied with CRMC in Sec. 9.1. Then, in Sec. 9.2 we investigate
the subsequent propagation of interaction-level parameters to shower-level muonic observables
through the Heitler-Matthews framework. Finally, the obtained analytic treatment enables a
complete interpretation of Auger data in terms of the requirements of the fireball production
probability, as shown in Sec. 9.3.

9.1 Particle Interaction Parameters from CRMC

The interaction-level parameters that the muon numbers of the previous chapter depend on
are the hadronic energy fraction r and the multiplicity nmult. Since these parameters vary from
interaction to interaction they induce distributions – even for a fixed projectile, target and center
of mass energy of the collision. In this section we explore these distributions as predicted by the
current hadronic interaction models.

To this end we used CRMC to perform sets of Monte Carlo simulations, each involving
104 collisions. We consider the hadronic interaction models QGSJetII-04, EPOS-LHC, and
Sibyll-2.3c. For the particles initiating the collisions we choose a set of energetic projectiles
{π+, p} and stationary targets {p,14N} representative of the hadronic particle content of extensive
air showers. We vary the energy of these projectiles from 102 GeV to 1011 GeV.

9.1.1 Hadronic Energy Fraction

The hadronic energy fraction r is defined as the fraction of energy that remains in the hadronic
component after an interaction. The distinction between the fireball rfb and the Standard Model
rSM case comes from the selection of particles that are counted towards the hadronic and EM
components. In the Standard Model we count the set {e±, γ, π0} towards the EM component,
leaving the rest of the particles in the hadronic component. For the fireball model we swap pions
for kaons and therefore count K0

L/S towards the EM component, while neutral pions are counted
towards the hadronic component. Since neutral pions carry more energy than neutral kaons, this
should lead to rfb > rSM and thus to an increase in the muon number w.r.t. the Standard Model.
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Figure 9.1: Averages of the hadronic energy fraction r ≡ Ehad/Eproj as a function of projectile energy in
the standard (closed circles) and fireball (open circles) model, with the three hadronic interaction models
QGSJetII-04 (left), EPOS-LHC (middle), and Sibyll-2.3c (right). The projectile-target combinations
are indicated in the top legend and each average is obtained from 104 Monte Carlo collisions in CRMC.
Further averaging over the different collision types and projectile energies with equal weights give the
black horizontal lines, of which the values are summarized in the inset legends and Table 9.1.

The averages of the resulting rSM and rfb distributions from 104 collisions per setting are
shown in Fig. 9.1. For each projectile-target combination, these averages seem to be roughly
constant with energy1. Therefore, by simply averaging over the projectile-target combinations
and energies, we obtain rough estimates for 〈rSM〉 and 〈rfb〉 that are valid throughout the entire
shower, as summarized in the legends and in Table 9.1. These imply that fireball interactions
keep approximately 10-15% more energy in the hadronic component.

Table 9.1: Fraction of energy in hadronic secondaries from Standard Model rSM and fireball rfb collisions,
averaged over the {π+, p}×{p,14N} projectile-target combinations and 102−1011 GeV projectile energies,
based on 104 CRMC Monte Carlo collisions per setting.

QGSJetII-04 EPOS-LHC Sibyll-2.3c
〈rSM〉 0.781 0.788 0.803
〈rfb〉 0.937 0.930 0.921

Variations around these average hadronic energy fractions could induce fluctuations in the
muon number and potentially also affect the average of the muon number. In fact, there are
significant variations of rSM and rfb on the interaction level, see, e.g., the left plot of Fig. 9.2 for
their distributions from a 1019 eV projectile. However, it should be noted that these fluctuations
get averaged on the shower level due to the many interactions it contains. This effect is illustrated
in the right plot of Fig. 9.2.

The effective r-value throughout a shower of n generations is a geometric mean of the values
1The small energy dependence does contain interesting hadronic physics, with the decrease in QGSJetII-04

and EPOS-LHC due to a rising inelasticity, and the opposite in Sibyll-2.3c due to its forward scaling. The
lower values from pion projectiles can be attributed to producing more pionic (and thus π0) secondaries.
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from each generation: rsh = (Πn
i=1ri)

1/n, where ri is the averaged hadronic energy fraction at
generation i. This ri is averaged by the number of particles in that generation, each taking a
random value from a distribution like the one in the left plot of Fig. 9.2. Consequently, the
fluctuations of ri are suppressed by a factor of 1/

√
Ni, with Ni the number of particles at that

generation. Therefore, the geometric averaging suppresses fluctuations from the first interaction,
and reff tends towards 〈rSM〉 or 〈rfb〉 from Table 9.1 as the number of generations increases.
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Figure 9.2: Left: distribution of the hadronic energy fraction r ≡ Ehad/Eproj for 1019 eV projectiles in
the Standard Model (closed circles) and fireball model (open circles) using EPOS-LHC. The projectile-
target combinations are indicated in the legend and their averages are indicated by the gray (solid line,
Standard Model) and white (dashed line, fireball model) filled histograms, with the overlapping area light-
gray. Vertical lines indicate the average of these histograms. Right: shower-to-shower fluctuations of the
effective r-value as a function of the number of generations that the shower has, in the Standard Model
(closed circles, solid line) and fireball model (open circles, dashed line). The error bars are computed
with a simple Monte Carlo simulation based on the distributions of r-values from individual collisions.

The shower-to-shower fluctuations of reff in the right plot of Fig. 9.2 was obtained with a
simplified Monte Carlo simulation. The exact influence of these fluctuations on the muon number
(both average and fluctuations) is rather complicated and will be investigated in Sec. 9.2.

9.1.2 Multiplicity

The multiplicity nmult is defined as the total number of secondary particles – both EM and
hadronic, and of all energies – that are produced in an interaction. For fixed parameters of
an interaction, the multiplicity can vary and therefore forms a distribution. For example, Fig.
9.3 shows multiplicity distributions from collisions of 1019 eV charged pion and proton pro-
jectiles with stationary proton and nitrogen targets, for the three hadronic interaction models
QGSJetII-04, EPOS-LHC, and Sibyll-2.3c.

By eye, the multiplicity distributions can be roughly approximated by lognormal probability
density functions (pdfs) with the same average and (sample) variance2. Such a rough approx-

2The actual distributions originate from the geometry of the collision, with central collisions giving rise to
larger multiplicities.
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imation can be justified by restricting our interest to an averaged behavior from the different
projectile-target combinations. This holds similarly well at other energies and can therefore pro-
vide a useful tool to parametrize and interpolate the probabilities in both projectile energy and
multiplicity.
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Figure 9.3: Multiplicity distributions from CRMC of 1019 eV projectiles colliding with stationary tar-
gets, for the three hadronic interaction models QGSJetII-04 (left), EPOS-LHC (middle), and Sibyll-
2.3c (right). The projectile-target combinations are indicated in the legend and the Monte Carlo data set
consists of 104 collisions per setting. Also shown are average multiplicities 〈nmult〉 (vertical dotted lines,
legends), and lognormal probability density functions (solid lines) with average and (sample) variance
equal to that of the simulated data.

The lognormal distribution is usually parametrized in terms of the mean µ and standard
deviation s of the associated normal distribution

Lognormal(x;µ, s) =
1

xs
√

2π
exp

(
− [log(x)− µ]2

2s2

)
(9.1)

The first two moments of the lognormal distribution are then given by 〈x〉 = exp(µ+ s2/2) and
σ2(x) = [exp(s2)− 1] exp(2µ+ s2), respectively. Inverting these equations we find

s2 = log

(
σ2(x)

〈x〉2 + 1

)
, µ = log

(
〈x〉2√

σ(x)2 + 〈x〉2

)
. (9.2)

It should be noted that the multiplicity cannot physically fall below one. Therefore, the mul-
tiplicity is distributed as Lognormal(nmult − 1;µ, s), with µ and s given by Eq. 9.2 where
x = nmult − 1.
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Table 9.2: Fit parameters of power law fits to the energy dependence of the average and standard devi-
ation of the multiplicity for the hadronic interaction models QGSJetII-04, EPOS-LHC, and Sibyll-
2.3c. The fitted points are the average of the four projectile-target combinations, i.e., the black dots of
Fig. 9.4. The parameters a and b correspond to a power law of the form a(E/GeV)b.

QGSJetII-04 EPOS-LHC Sibyll-2.3c
parameter: a(E/GeV)b a b a b a b

〈nmult〉 5.69 0.193 7.70 0.166 6.74 0.173
σ(nmult) 2.80 0.233 2.93 0.205 2.92 0.211
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Figure 9.4: Energy dependence of the average multiplicities 〈nmult〉 (top) and their standard deviations
σ(nmult) (bottom) from collisions of the projectile-target combinations given in the legend. The points
are obtained with 104 CRMC simulations per setting using the EPOS-LHC hadronic interaction model.
The additional black points are the arithmetic mean of the projectile-target combinations at that energy.

The energy dependence of the average and standard deviation of the multiplicity distributions
are both well-described by power laws, see, e.g., Fig 9.4 for the case of EPOS-LHC. To approx-
imate an average behavior of the collisions of different particle types, we simply take arithmetic
means of the moments. The fit parameters from fits to the resulting power laws (through the
black points) for each of the hadronic interaction models are summarized in Table 9.2. Combin-
ing these power laws with our previous observation of lognormally distributed multiplicities, we
can interpolate the multiplicity distributions to intermediate projectile energies. This gives

pdf(nmult;Eproj) =
1

nmult − 1

1√
2π log(y2)

exp

(
− 1

2 log(y2)

[
log

(
nmult − 1

〈nmult〉 − 1
y

)]2
)
, (9.3)

where we defined y2 ≡ σ2(nmult)/(〈nmult〉 − 1)2 + 1 for convenience, and kept the energy depen-
dence of σ(nmult) and 〈nmult〉 implicit.
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9.1.3 Correlations

At this point it is important to investigate potential correlations between the hadronic energy
fraction and the multiplicity. This becomes a crucial check if one intents to treat these pa-
rameters independently. To give an impression of their interdependence, Fig. 9.5 shows the
two-dimensional distributions for the Standard Model (top) and fireball cases (bottom) for 1019

eV projectiles within each of the hadronic interaction models. In line with the averaging over
projectile-target combinations of the previous sections, these plots contain data from each of the
projectile-target combinations: {π+, p}× {p,14N}, with in total thus 4 · 104 events. To guide the
eyes, the red points show the average in each horizontal or vertical bin.
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Figure 9.5: Two-dimensional distribution of events based on their multiplicity and hadronic energy
fraction in the Standard Model (top) and fireball (bottom) scenarios, using the hadronic interaction
models QGSJetII-04 (left), EPOS-LHC (middle), and Sibyll-2.3c (right). The red points show bin-
wise averages of the multiplicity (vertical line) and hadronic energy fraction (horizontal line). The events
were simulated with CRMC with 104 events per plot.

Note that the shape itself (without color) does not necessarily indicate a correlation. In
particular, if the horizontal line of vertical averages (i.e., the average hadronic energy fraction
in each multiplicity bin) was exactly flat, there would likely be no correlation. However, when
looking at the color distribution, there is a clear peak in the top left – at low multiplicity and high
hadronic energy fraction. This also translates to the bin-wise average hadronic energy fraction
increasing at low multiplicities, i.e., the horizontal red points bend upwards on the left.

The source of this peak at low multiplicities and high energy fractions is non-trivial and
originates from details of the hadronic interaction models. A reasonable hypothesis is that a
significant fraction of these events can be attributed to target diffraction dissociation, similar to
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the pile-up at α1 = 1 in Fig. 2 of [202]. In these events the high-energetic projectile remains
intact while only losing a very small fraction of its energy to breaking up (dissociating) the
atmospheric nucleus (target) [203]. Consequently, most of the energy is trivially kept in the
hadronic component, while only inducing small multiplicities.

Note that this origin would also imply a large elasticity. Such events may therefore not be
very relevant for the muon number: with a large elasticity the hadronic component does not
evolve further due to not dividing much energy over the secondaries.

For a simple chi-squared test of independence between the hadronic energy fraction and the
multiplicity we bin these variables and use the test statistic χ2 =

∑
i,j(Oi,j − Ei,j)2/Ei,j . Here

the sum runs over all bins and the observed frequency of events in a bin Oi,j is expected to
be close to the expected frequency Ei,j = Npipj in the case of independence between the two
variables. The probabilities pi =

∑
j Oi,j/N and pj =

∑
iOi,j/N are obtained from the data

set itself by ignoring one of the variables, and N denotes the total number of events (104 in our
case). Using 20 bins for each variable gives (20− 1)2 = 361 degrees of freedom. Taking a size of
0.05, the independence hypothesis can already be rejected at χ2 > 406.3. We find χ2 to always
be a factor few greater than 1000 and therefore, for all models and energies, the dependence
between the hadronic energy fraction and multiplicity is statistically very significant.

Note that the statistical significance is not a measure for the strength of the correlation.
To get an impression of how strong the two are correlated, we compute Pearson’s correlation
coefficient

ρr,nmult
=
〈 (r − 〈r〉)(nmult − 〈nmult〉) 〉

σ(r)σ(nmult)
, (9.4)

which ranges from +1 to −1, and 0 implies no linear correlation. The resulting values as a
function of energy, for each of the models and projectile-target combinations are shown in Fig.
9.6.
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Figure 9.6: Pearson’s correlation coefficient (Eq. 9.4) for the linear correlation between the hadronic
energy fraction and the multiplicity. The correlation is computed as a function of the projectile energy for
each of the three hadronic interaction models: QGSJetII-04 (left), EPOS-LHC (middle), and Sibyll-
2.3c (right). The various lines represent the projectile-target combinations (colors, see legend), and the
fireball (dotted lines, open circles) versus Standard Model (solid line, closed circles) scenarios. The black
lines represent the correlation coefficient when including each of the projectile-target combinations in
equal ratios.
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While the detailed dependence of the correlation coefficient can be attributed to the under-
lying hadronic interaction models, some general observations can be made. First, notice that
the coefficient is always negative, implying that larger hadronic energy fractions are correlated
with lower multiplicities. This is in line with the previous observation of a peak in the top
left of Fig. 9.5. Second, interactions from pion projectiles have smaller (absolute) correlations
than those from proton projectiles. Third, also the fireball model exhibit fewer correlations than
the Standard Model, which can be traced back to the bulk of fireball interactions having larger
hadronic energy fractions and are therefore closer to this aforementioned peak. Fourth, the cor-
relations seem to decrease with energy. This is especially evident for Sibyll-2.3c. Fifth, the
combined correlations are roughly between −0.1 and −0.2. Whether correlations of this size
need to be taken into account is not trivial and will therefore be determined through a posteriori
cross-checks of the muon number with EAS simulations.

9.2 Propagating Intrinsic Fluctuations to the Muon Number

The propagation of the distributions obtained in the previous section to the muon number is
not trivial. In particular, if one intends to use Eqs. 8.5 or 8.16, a careful distinction must be
made between the hadronic energy fraction and the multiplicity at the interaction level on the
one hand and these at the shower level on the other hand. For example, as also touched upon in
Sec. 9.1.1, the many interactions within a shower suppresses variations of r at later generations.
Taking this into account turns out to be possible for the average and fluctuations of the muon
number, as will be outlined in this section.

9.2.1 Average Muon Number 〈Nµ〉
In a generational picture of air showers where all particles have the same energy, and thus are
in sync, the muon number is given by

Nµ = (nmult,sh rsh)kc = Ntot(rsh)kc , (9.5)

analogous to Eq 2.7, where the subscripts ‘sh’ remind us that these are effective constants
throughout the shower. Here nmult,sh is the effective constant multiplicity such that in kc gen-
erations one obtains the total number of particles Ntot = E0/Ec. Associated is an rsh, the
effective constant energy fraction kept in the hadronic component per generation, such that in
kc generations the muon number is obtained. The critical number of generations kc itself can be
determined through knowledge on the energy-evolution of the generational multiplicity:

• For a constant multiplicity nmult, kc is given by Eq. 2.6 and we simply have nmult,sh = nmult.

• For a power-law multiplicity, kc is given by Eq. 8.12 with E = Ec.

• For an even more complicated multiplicity, kc can be computed from the integral of Eq.
8.25 when taking out log r.

Note that these multiplicities are effective multiplicities for an entire generation.
In real air showers the multiplicity can vary from interaction to interaction, which would

– even under the assumption of an equal division of projectile energy over its secondaries –
introduce different energy levels within a shower. Since this contradicts the generational picture
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of air showers, we require the multiplicity to be the same for an entire generation. To still
incorporate the effect of many particles, each individually interacting and inducing a unique
multiplicity, we take the average of those multiplicities to represent the multiplicity of that
generation. This effectively corresponds to an artificial redistribution of energy from particles
produced in low multiplicity interactions to particles produced in high multiplicity interactions
such that the sub-showers remain in sync.

From Eq. 9.5 it follows that the muon number can be obtained from appropriately multiplying
energy losses to the EM component. Taking this idea further, the muon number is proportional
to a product of hadronic energy fractions per generation i until the critical generation kc:

Nµ = Ntot

kc∏
i=1

ri . (9.6)

Here each ri represents the fraction of energy that remains in the hadronic component after
each generation, which in turn is an average of the hadronic energy fractions from the individual
interactions in that generation. If we were to assume that the multiplicity and hadronic energy
fraction of an interaction are independent parameters, then we can first average over variations
in the hadronic energy fraction (denoted by 〈·〉r) and then over variations in the multiplicity
(denoted by 〈·〉n) of individual interactions. Consequently, the average muon number would be
given by

〈Nµ〉 = Ntot〈
kc∏
i=1

ri〉 = Ntot〈〈
kc∏
i=1

ri〉r〉n = Ntot〈
kc∏
i=1

〈ri〉r〉n. (9.7)

In the first step we were able to pullNtot = E0/Ec out of the averaging because this is constrained
by the primary and critical energy. In the second step we assumed independence between the
hadronic energy fraction and the multiplicity of an interaction. In the third step we assumed
that the effective hadronic energy fraction of a generation is independent of that of the other
generations. This last assumption is in line with the idea of having independent sub-showers.

From the relative energy-independence of the average hadronic energy fraction shown in Fig.
9.1, and the clear power-law energy dependence of the average multiplicity shown in Fig. 9.4, it
could be expected that these parameters are independent. However, as shown in Sec. 9.1.3, there
is a statistically significant dependence. An impression of the size of this dependence is shown
through the linear correlation coefficient in Fig. 9.6. Since the origin of this dependence might
be due to quasi-elastic collisions – which do not significantly contribute to the development of
the shower – it is not trivial how much the average muon number would be affected. Therefore,
we will stick with the assumption of independence for simplicity, and subsequently verify our
results with Monte Carlo simulations of air showers.

Turning our attention back to Eq. 9.7, we need to average over variations in the effective
hadronic energy fraction ri of a generation i, quantified by the energy E of the particles in
that generation. At this generation, there are a total of E0/E interactions, of which a fraction
p(E) are fireball interactions and the remainder are Standard Model interactions. The hadronic
energy fraction from each of these interactions are drawn from their respective distributions, e.g.,
as shown in the left plot of Fig. 9.2 for E = 1019 eV. The effective hadronic energy fraction ri
is then simply the average of the drawn hadronic energy fractions. A subsequent averaging over
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many realizations (i.e., showers) converges 〈ri〉r to a linear combination of the averages of the
fireball and Standard Model distributions:

〈ri〉r = [1− p(E)]〈rSM〉+ p(E)〈rfb〉 . (9.8)

In principle, the fireball and Standard Model distributions of the hadronic energy fraction can
vary as a function of energy, but for simplicity we neglect this effect. Therefore, the complete
energy dependence of 〈ri〉r comes from the fireball-initiation probability p(E) given in Eq. 5.3.

Notice in particular the similarity to reff of Eq. 8.1. Therefore, the subsequent appropriate
multiplication of these hadronic energy fractions to obtain the muon number follows the same
procedure as outlined in Secs. 8.1 and 8.2. Thus, the average muon number when only averaging
over variations in the hadronic energy fraction is given by Eqs. 8.5 or 8.16 with the hadronic
energy fractions substituted by their respective averages, rSM = 〈rSM〉 and rfb = 〈rfb〉, with the
values summarized in Table 9.1.
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Figure 9.7: Interaction- (left) and shower-level (right, E0 = 1019 eV) multiplicity distributions as
a function of energy for EPOS-LHC. Both distributions are given by Eq. 9.3, but the multiplicity
fluctuations at the shower-level are suppressed by the square root of the number of particles

√
N =√

E0/E. The black line represents the power-law of the average multiplicity, with the black points from
CRMC simulations, see Fig 9.4. The broken power-laws (green dashed lines) indicate our approximation
of splitting off the first interaction.

Now we still need to average over variations in the multiplicity of the individual interactions.
To do so, we can make use of our interpolated energy-dependent multiplicity distribution given
by Eq. 9.3. This distribution is visualized in the left plot of Fig. 9.7. For each projectile energy
the probability density of the lognormal distribution is shown along the vertical axis. Since
the computation of the muon number relies on the multiplicities of the generations rather than
of the individual interactions, we need to average these random multiplicities over the number
of particles in each generation. The corresponding distribution of the effective multiplicity of
a generation as a function of the energy of the particles in that generation E follows from
dividing the standard deviation by the square root of the number of particles in that generation√
N =

√
E0/E, where the latter follows from an equal division of energy over the secondaries.
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The right plot of Fig 9.7 shows this energy-dependent effective multiplicity distribution for air
showers induced by a E0 = 1019 eV CR.

To average over these variations in the multiplicity, we could in principle use the muon number
for a generalized energy-dependent multiplicity (Eq. 8.25) and subsequently find an appropriate
weighing based on our lognormal distributions. This is, however, rather complicated; both in the
exact meaning of such a multiplicity evolution and in the evaluation of two-dimensional integrals
(i.e., over the shower evolution and over effective multiplicities) at each CR energy. Instead, an
easier method would be to approximate the multiplicity variations only to manifest itself in the
first interaction, as indicated by the broken power laws (green dashed lines) in Fig. 9.7. Since the
most likely multiplicities are around O(102), the second generation will already have sufficient
particles to average out fluctuations of the multiplicity.

We can therefore split out the first interaction in the calculation of the muon number,

N ′µ(E0) = r1n1 ·Nµ(E0/n1), (9.9)

and average over the multiplicity of the first interaction n1,

〈Nµ〉 = r1

∫
n1 ·Nµ(E0/n1) pdf(n1;E0) dn1. (9.10)

Here r1 = [1 − p(E0)]〈rSM〉 + p(E0)〈rfb〉 is the effective hadronic energy fraction of the first
interaction, pdf(n1;E0) is the lognormal multiplicity distribution of the first interaction (Eq.
9.3), and Nµ is the muon number computed with a power-law multiplicity function (Eq. 8.16).

The resulting average muon number as a function of primary energy is shown in Fig. 9.8
(dot-dashed lines) for the EPOS-LHC hadronic interaction model. Further shown are the muon
numbers corresponding to the black power-law of Fig. 9.7 (dashed lines), and results from fireball-
implemented Conex simulations with proton primaries (error bars). In these simulations, the
interface of Conex to the hadronic interaction models are adjusted in such a way that with the
fireball probability (Eq. 5.3) the output of the hadronic interaction model is processed through
a swapping-procedure where pions are exchanged for kaons and vice versa, see Sec. 5.3.

The multiplicity averaging of Eq. 9.10 seems to increase the muon number around Emax

for n ≥ 4, while creating a dip at higher energies for all n. Both features find their origin
in the discretization effect discussed in Sec. 8.1.1. This effect takes into account that real air
showers have discrete interactions, implying that the fireball-enhanced effective r-value remains
at a constant level (and therefore a higher level w.r.t. a continuous treatment) until the end of
a generation.

The general behavior of this effect can be best understood with a step-function fireball thresh-
old as is well-approximated by the case of n = 1000. At E0 = Emax the entire first generation
suddenly produces fireballs, with an associated abrupt increase in the muon number. Further
increasing the primary energy does not introduce another generation of fireballs and therefore
simply follows the Standard Model power-law energy dependence, giving rise to the Z-shaped
curve. Only after an entire generation do we again see an increase from the fireball effect due
to secondaries inducing fireballs. This time, the abruptness is smoothed out by a distribution
of multiplicities and thus secondary energies, causing the smooth dip feature. Only beyond this
dip feature does the energy dependence of the muon number converge to the fireball power-law.
As we reduce n, fireballs were already present at lower energies and thus in later generations,
damping the aforementioned effect.
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Figure 9.8: The average muon number 〈Nµ〉 as a function of the cosmic-ray energy E0 from an average
over the multiplicity (dot-dashed lines; Eq. 9.10), using the average multiplicity parameters (light dashed
lines; Eq. 8.16), and from fireball-implemented Conex simulations (error bars), for various values of n.
Also shown is the Heitler-Matthews or Standard Model limit using the average multiplicity parameters
(gray line). The minimum and maximum energy were set to Emin = 1015 eV and Emax = 1019 eV,
respectively (vertical dotted lines). The hadronic interaction model EPOS-LHC was used for both the
Conex simulations (2100 showers per point) and the parameters obtained from CRMC (see Sec. 9.1).
The critical energy Ec is set to 220 GeV.

As concluded in Sec. 8.1.1, such an effect seems to be rather unphysical as it relies too much
on the equal division of energy among the secondaries. A comparison with Conex simulations at
Emax supports this conclusion: the indistinguishability of scenarios with n ≥ 4 is not reproduced.
This indistinguishability would be expected from a discrete first interaction in combination with
an equal division of energy among the secondaries, because with typical multiplicities around
O(102 − 103) the first interaction would skip the fireball evolution up to Emax. Instead, interac-
tions in real air showers are known to exhibit highly elastic behavior, causing the leading particles
of the first few interactions to traverse the energy-levels that distinguish the various values of n.

A genuine effect of our averaging over the multiplicity seems to be a constant offset to lower
muon numbers. This bias seems to be of a systematic nature as it introduces the same offset for
each n, and could therefore be compensated for by a global normalization through the critical
energy Ec. Furthermore, this effect is rather small and should be safe to ignore for our purposes.
We will thus ignore the effect of multiplicity fluctuations on the average muon number, and
thereby promote Eq. 8.16 to the average muon number.

Comparing this average muon number to the Conex simulations shows a clear disagreement.
Note that the normalization can be tuned with the critical energy Ec, which in Fig. 9.8 is set
to 220 GeV. Despite the disagreement, some general behavior is reproduced by Eq. 8.16 (light
dashed lines): a smaller n gives rise to larger muon numbers, the average muon number per
energy falls with energy, and there is a discontinuity at Emax.

The use of our CRMC-inferred parameters thus clearly does not reproduce the Conex sim-
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ulations. In particular, the spacing of the dashed lines between the various n values is too small
- which is determined by the multiplicity. But more importantly, the slopes of the power-laws
below and above Emax are too shallow - which are determined by 〈rSM〉 and 〈rfb〉, respectively,
given the previously constrained multiplicity3. Perhaps we overestimated the effective hadronic
energy fraction – in both the fireball and Standard Model cases – due to our rather strict defi-
nition of the EM component, or more likely due to the inability of the Heitler-Matthews model
to incorporate leading-particle effects (see also the discussion in Sec. 2.3.2). Instead of going
back to our CRMC simulations and a posteriori tune the EM definition to match the Conex
simulations while hoping the role of the elasticity to be subdominant, it may be interesting to
see what (if any) parameters can reproduce the Conex simulations.
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Figure 9.9: Simultaneous fit of Eq. 8.16 (solid lines) to fireball-extended Conex simulations (error
bars), for various values of n (colors) and Emax: 1017 eV (top left), 1018 eV (top right), 1019 eV (bottom
left), 1020 eV (bottom right). The parameter Emin is fixed to 1015 eV. The Conex simulations (2100
showers per point) correspond to proton primaries and used the EPOS-LHC hadronic interaction model.
The global fit parameters are summarized in Table 9.3. For reference, also the Standard Model case is
shown (gray line), and the evaluation of Eq. 8.16 with the average parameters obtained from CRMC
(light dashed lines, same as in Fig. 9.8).

3The ratio of (one minus) the slopes is in fact independent of the multiplicity and still disagrees; (1−βmax)/(1−
βmin) = log rfb/ log rSM, with β = d logNµ/d logE0 applied to Eq. 8.5 or 8.16 and evaluated below Emin and
above Emax as indicated by the subscripts.
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To this end, we fitted Eq. 8.16 to the Conex points, with the following 5 fit parameters:
rSM, rfb, nscale (setting Escale = 1 GeV), b, and Ec. The results are shown in Fig. 9.9 for EPOS-
LHC and in Appendix E.1 for QGSJetII-04 and Sibyll-2.3d. These fits were performed
simultaneously for the different Emax ∈ {1017, 1018, 1019, 1020} eV and n ∈ {1, 2, 4, 8, 1000} values
while fixing Emin = 1015 eV, such that we have one set of fit parameters for all curves in Fig.
9.9. The fit parameters are summarized in Table 9.3.

Table 9.3: Fit parameters of Eq. 8.16 to fireball-extended Conex simulations for the three
hadronic interaction models. The fits are simultaneous to simulations with various values of Emax ∈
{1017, 1018, 1019, 1020} eV and n ∈ {1, 2, 4, 8, 1000}, see, e.g., Fig. 9.9.

rSM rfb nscale b Ec [GeV]
QGSJetII-04 0.5094 0.7201 968.1 8.682 · 10−2 136.0
EPOS-LHC 0.5496 0.7644 3819 2.580 · 10−3 153.5
Sibyll-2.3d 0.5648 0.7359 3233 3.915 · 10−5 151.1

By eye, the fit seems to work very well, with only Conex points sufficiently above Emax

showing some deviation from the fit. This is most prominent for Emax = 1017 eV (top left),
where the Conex points for the various n-values seem to converge at 1020 eV. This could imply
that the average muon number will be independent of the precise introduction of fireballs at low
energies. At this point, however, it is not clear whether this is a physical effect or an artifact
from the simulation method.

The fits work similarly well with the same sets of parameters when comparing to Conex
simulations for Emin = 1014 and 1016 eV, indicating that an interpolation works for each of the
three fireball parameters Emin, Emax, and n.

While using the CRMC-derived parameters did not work out, the fit shows that a physically
motivated interpolation can be made and that proper scaling relations were derived. This could
prove useful in a further analysis involving Auger data.

9.2.2 Relative Fluctuations of the Muon Number σ(Nµ)/〈Nµ〉

The presence of fireball interactions would also affect the relative fluctuations of the muon num-
ber. In the generational picture of air showers – where each generation is independent of the
next – a similar argument as for Eq. 9.7 can be made for fluctuations:

var(Nµ) = var

(
Ntot

kc∏
i=1

ri

)
= N2

tot

kc∏
i=1

[
σ2(ri) + 〈ri〉2

]
−N2

tot

kc∏
i=1

〈ri〉2 , (9.11)

where σ2(ri) and 〈ri〉 are the variance and average of the hadronic energy fraction of generation i,
respectively. The second step purely follows from the independence of generations, given a fixed
number of generations kc. To be able to treat it as a fixed number of generations, we furthermore
implicitly assumed independence between the hadronic energy fraction and the multiplicity, such
that one can first take into account fluctuations from the hadronic energy fraction. At the
moment we ignore the subsequent effect of fluctuations from the multiplicity.

Taking the square root and dividing by the average muon number as given by Eq. 9.7 we get
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the relative fluctuations of the muon number as

σ(Nµ)

〈Nµ〉
=

√√√√ kc∏
i=1

[(
σ(ri)

〈ri〉

)2

+ 1

]
− 1 . (9.12)

If one now sticks to the assumption of an equal division of energy over the secondaries, the
hadronic energy fraction fluctuations σ(ri) at generation i is suppressed by the square root of
the number of particles at that generation

√
Ni =

√
E0/Ei. This explicitly shows that the first

few interactions dominate the fluctuations in the muon number.
Motivated by the simulations performed for Sec. 9.1.1 it seems reasonable to approximate

the distribution of hadronic energy fractions of individual interactions to be independent of
the projectile energy, for both the fireball and the Standard Model case. Then the only energy
dependence originates from the probability p(E) of producing a fireball. This implies an effective
hadronic energy fraction as in Eq. 8.1 for individual interactions induced by a projectile with
energy E. Consequently, from the properties of the variance and average we have

σ2(reff)

〈reff〉2
=

(1− p) σ2(rSM) + p σ2(rfb) + p(1− p) [〈rfb〉 − 〈rSM〉]2

[(1− p) 〈rSM〉+ p 〈rfb〉]2
, (9.13)

where we suppressed the E in p ≡ p(E) for readability.
Plugging this back into Eq. 9.12 and using the energy-dependent fireball probability of

Eq. 5.3, we obtain an analytic model for the relative muon fluctuations. At low energies these
fluctuations are approximately constant at a plateau corresponding to SM interactions, and at
high energies – where the first few interactions produce only fireballs – a second (lower) plateau
is reached. Since the later interactions only provide consecutively smaller corrections, one can –
as a first approximation – only take into account the first interaction, see the blue line in Fig.
9.10. From a comparison with EPOS-LHC Conex simulations this seems a good approximation
for n = 1, but the associated step for n = 1000 is too abrupt. Including later generations
provides an overall increase to the relative fluctuations and introduces additional step features
for n = 1000, see the green line in Fig. 9.10. The size of this correction is determined by the
suppression from the assumed (effective) multiplicity, taken to be nmult = 5 for this visualization.
The additional step features have the potential of reproducing the observed energy dependence
above Emax = 1018 eV, but the abrupt nature of these steps – which is a consequence of the
discrete product – seems rather unphysical.

Instead, one can attempt to make the generations continuous, as done for the average muon
number in Sec. 8.1. Physically, this could take into account the inelasticity of interactions in real
air showers by letting particles directly below the primary energy contribute to the observable.
Taking the logarithm of the product in Eq. 9.12 and promoting the obtained sum to an integral
gives:

σ(Nµ)

〈Nµ〉
=

√√√√exp

[∫ kc

0
log

(
1 +

(
σ(reff)

〈reff〉

)2 E

E0

)
dk + ∆corr

]
− 1 . (9.14)

Here we expressed the moments of the generational hadronic energy fractions ri in terms of
those of the effective ones for the individual collisions reff by including the particle suppression
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Figure 9.10: Comparison between EPOS-LHC Conex simulations (black points) and various analytical
models (legend; see text) for the relative fluctuations of the muon number. Both plots correspond to a
fireball scenario with Emin = 1015 eV and Emax = 1018 eV, but they differ in n: 1 (left) and 1000 (right).
Parameters used for the model lines are: 〈rSM〉 = 0.7; 〈rfb〉 = 0.8; σ2(rSM) = 0.02; σ2(rfb) = 0.01;
nmult = 5; b = 0.2; nscale = 0.5; Escale = 109 eV.

term 1/N = E/E0. Furthermore, we defined a correction factor ∆corr to take into account the
difference between the sum and the integral, which is necessary given the discrete nature of
interactions. The value that this factor takes is not trivial, but inspired by the discussion of
Sec. 8.1.1 we take it as half a generation and thus as half the integrand evaluated at the first
interaction

∆corr =
1

2
· log

[
1 +

(
σ(reff)

〈reff〉

)2
]
, (9.15)

where the ratio of moments given by Eq. 9.13 is evaluated at E = E0.
To solve the integral we need to perform a change of variables such that we can integrate

over the energy of the shower particles, as was also done in Secs. 8.1 and 8.2. The Jacobian
depends on the multiplicity, with dk/d logE = −1/ log(nmult) for a constant multiplicity and Eq.
8.13 for a power-law multiplicity. Evaluating these integrals numerically, we obtain the relative
fluctuations shown by the dashed lines in Fig. 9.10. In both cases, a smooth energy dependence
above Emax = 1018 eV is obtained. Interestingly, for the power-law case (PL; red-dashed) with
n = 1000, also below Emax = 1018 eV an energy dependence is introduced. The latter seems to
accurately reproduce the behavior of the simulations.

Sticking to the power-law multiplicity case and leaving the parameters {〈rSM〉, 〈rfb〉, σ(rSM),
σ(rfb), b, nscale} free to vary, we fitted this model to the relative fluctuations from EPOS-LHC
Conex simulations for the region of phase-space where Emin = 1015 eV, Emax ∈ {1017, 1018, 1019,
1020} eV, and n ∈ {1, 2, 4, 8, 1000}. The results are shown in Fig. 9.11.

At this point it is worth noting that the general behavior of the fireball model is to decrease the
relative muon fluctuations. This is not per se a trivial result, but can be understood within our
analytic model. From Eq. 9.12 we see that the relative muon fluctuations is a direct reflection
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Figure 9.11: Simultaneous fit of Eq. 9.14 with a power-law multiplicity (solid lines) to fireball-extended
EPOS-LHC Conex simulations (error bars), for Emin = 1015 eV, and various values of Emax (colors) and
n: 1 (top left), 2 (top center), 4 (top right), 8 (bottom left), 1000 (bottom right). The fit parameters are:
〈rSM〉 = 0.7458, 〈rfb〉 = 0.9294, σ2(rSM) = 0.02506, σ2(rfb) = 0.01698, b = 0.3413, nscale = 0.07897, with
Escale = 1 GeV.

of the relative fluctuations of the hadronic energy fraction of the first interaction σ(r1)/〈r1〉,
with later generation being suppressed. Then a decrease can be expected since the fireball model
enhances 〈r1〉, while not necessarily enhancing σ(r1). In fact, one might even expect a suppression
of σ(r1) since r is bounded from above by unity and 〈r1〉 already exceeds 0.5 in the Standard
Model.

While the overall behavior of the fit in Fig. 9.11 seems to reproduce the simulations, it
consistently underestimates the fluctuations at low energies. This could indicate that the energy
dependence for the pure Standard Model case (e.g., below Emax for n = 1000) does not completely
arise from the introduction of the power-law multiplicity. Instead, it seems necessary to introduce
a (logarithmic) energy dependence of the fluctuations and/or average of the hadronic energy
fractions rSM and rfb. Looking at Fig. 9.1, this is not unheard of, but will strongly depend on
the hadronic interaction model.

Extending our fit by parametrizing the variances in Eq. 9.13 with a logarithmic energy
dependence – i.e., σ2 = α− β log10(E/GeV) – the agreement with Conex simulations improves
significantly, as shown in Fig. 9.12. For later reference we also included data from Auger. The
other hadronic interaction models QGSJetII-04 and Sibyll-2.3d allow for a similarly good fit
for different sets of parameters, see Appendix E.1. The three sets of parameters are summarized
in Table 9.4. While these parameters were fitted for a fixed Emin = 1015 eV, the agreement with
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Conex simulations for Emin = 1014 eV and 1016 eV is still very good, indicating that the fit
constitutes an interpolation for each of the fireball parameters Emin, Emax, and n.
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Figure 9.12: Same as Fig. 9.11, but the variances of the hadronic energy fractions in the Standard
Model σ2(rSM) and fireball model σ2(rfb) were parametrized with a logarithmic energy dependence:
σ2 = α − β log10(E/GeV). This propagates to the relative muon number through consecutively Eqs.
9.13 and 9.14. For later reference also Auger data is shown (black error bars). The fit parameters are
summarized in Table 9.4.

Table 9.4: Fit parameters for an accurate description – i.e., agreeing with Conex simulations – of the
relative muon fluctuations using Eqs. 9.13, 9.14, and 9.15. Note that these are not completely consistent
with the parameters of Table 9.3. This could have many causes due to the various simplifications w.r.t.
real air showers. Maybe by including the two further energy dependencies of 〈rSM〉 and 〈rfb〉 – in both the
model for σ(Nµ)/〈Nµ〉 and in that for 〈Nµ〉 – a better consistency of the common parameters could be
obtained. The variances of the hadronic energy fractions are parametrized as σ2 = α− β log10(E/GeV).

〈rSM〉 〈rfb〉
σ2(rSM) σ2(rfb)

b nscaleα β α β

QGSJetII-04 0.6691 0.8404 0.09998 0.001962 0.07428 0.001398 0.001836 51.29
EPOS-LHC 0.5035 0.6433 0.06214 0.001142 0.04279 0.0007186 0.1897 2722
Sibyll-2.3d 0.5314 0.6584 0.06633 0.001171 0.05268 0.0008971 0.1772 2429
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9.3 Interpretation of Auger Data

So far we only considered proton-induced EASs. For the interpretation of Auger data it is neces-
sary to implement a mass dependence, such that one can take into account the composition that
is folded within the data. Furthermore, if one assumes the currently derived composition from
Xmax-data to be correct, the fireball model is not allowed to significantly affect the predictions
for Xmax. These two remaining obstacles will be discussed in Sec. 9.3.1 – with in particular a
confirmation of the latter from numerical simulations – before a proper interpretation of Auger
data can be made in Sec. 9.3.2.

9.3.1 Mass Dependence and Effect on Xmax

In the Heitler-Matthews model the mass dependence of the (average) muon number is obtained
by invoking the superposition principle, which states that a CR with A nucleons produces A
times the number of muons as a proton CR A times lower in energy:

Nµ(E0, A) = A ·Nµ(E0/A, 1) . (9.16)

As mentioned in Sec. 2.3, this principle only holds on average due to a nontrivial alignment of
cross sections and the number of wounded nucleons. The production of a plasma in a real fireball
likely breaks this alignment, but whether that is also the case when only swapping pions and
kaons is not trivial.

The mass dependence of fireball showers initiated by 10 EeV CRs is shown in Fig. 9.13.
The error bars represent EPOS-LHC Conex simulations, while the solid lines follow from the
application of the superposition principle to Eq. 8.16 with the EPOS-LHC parameters of Table
9.3.
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Figure 9.13: CR mass dependence A of the average muon number 〈Rµ〉 of 10 EeV CR air showers
for various fireball settings: Emin = 1015 eV, Emax (plots), and n (colours). The error bars correspond
to EPOS-LHC Conex simulations. Using Eq. 8.16 – with the parameters of Table 9.3 – for proton
primaries, the solid lines follow from an application of the superposition principle (Eq. 9.16) and the
dashed lines from a corrected version of the superposition principle (Eq. 9.17).

The purple line (n = 1000) in the rightmost plot (Emax = 1020 eV) – for these fireball
parameters a 10 EeV CR shower contains no fireballs – shows that the superposition principle
is accurate in the Standard Model case. The other solid lines in the same plot as well as
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all lines in the leftmost plot also show a reasonable agreement with the Conex simulations.
Only the central two plots exhibit some significant deviation from a simple application of the
superposition principle, with in particular the sharp drop of the solid purple line for Emax = 1019

eV not reproduced by the Conex simulations.
The sharp drop is expected from the superposition principle since E0/A falls below Emax =

1019 eV for any A exceeding one and therefore abruptly stops producing fireballs for nuclei
larger than proton. However, for the current implementation of the fireball model in Conex
simulations we assume that the total energy of the CR nucleus rather than that of the individual
nucleons is decisive for activating a fireball.4 Therefore, the simulations also produce fireballs
in the first interaction for CRs heavier than proton. In such a first interaction, a fraction s of
the CR nucleons remains intact after scattering off the atmospheric nucleus (so-called spectator
nucleons), while the remainder 1 − s undergo an inelastic scattering and – due to the fireball –
has its fraction of pions and kaons swapped. The unscathed scattered nucleons can be expected
to comply with the superposition principle, but the inelastically scattered nucleons obtain an
additional fireball-enhancement of the muon number.

The size of this fireball-enhancement depends on the difference between the fireball probability
of the complete nucleus p(E0) and that of the individual nucleons p(E0/A), i.e., enhancing the
fireball probability by ∆p ≡ p(E0)− p(E0/A). Associated with this probability is then a factor
(rfb/rSM)∆p/2 for the muon number5, where the square root originates from the necessity to take
into account the elasticity of the first interaction by only affecting half a generation. This is
similar to what has been done in Sec. 8.1.1 to take into account discrete interactions. In fact,
this correction factor mathematically corresponds to revising ∆disc (Eq. 8.4) to be taken at the
energy of the nucleus rather than the nucleons.

The fraction s of spectator nucleons grows with the size of the CR nucleus. A detailed
calculation would involve the Glauber model, but we found a good agreement with EPOS-LHC
Conex simulations when taking s = 1− 1/

√
A, i.e., the number of wounded nucleons scaling as√

A.
Putting everything together we obtain a correction factor to the superposition principle,

giving:

Nµ(E0, A) = A ·Nµ(E0/A, 1)
[
1− 1/

√
A+ 1/

√
A · (rfb/rSM)∆p/2

]
(9.17)

The effect of this correction factor is shown by the dashed lines in Fig. 9.13, which resolves the
aforementioned disagreements in the central two plots. While the same factor also significantly
improves the agreement for the other hadronic interaction models QGSJetII-04 and Sibyll-
2.3d, as shown in Appendix E.2, the enhancement for Emax = 1018 eV seems insufficient. Taking
this into account is beyond the scope of this study and the question remains whether the fireball
treatment of the Conex simulations themselves is more physical than a simple application of
the (extended) superposition principle. Therefore we stick to this mass dependence extension to
Eq. 8.16 to predict the average muon number for a given set of fireball parameters.

The mass dependence of the relative fluctuations of the muon number is rather complicated
even in the Standard Model case [204], and we therefore do not attempt to extend this formalism

4Whether this assumption holds depends on the details of the fireball model.
5Technically the appropriate factor would be of the form exp[log(rSM + p(E0)(rfb − rSM))/2 − log(rSM +

p(E0/A)(rfb − rSM))/2], but due to the range of p(E) this can be well approximated by geometric averaging as
shown in App. D.2, Fig. D.2.1.
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for the fireball model.
Regarding the effect of the fireball model on Xmax, Fig. 9.14 shows it to be negligible for both

moments 〈Xmax〉 and σ(Xmax) and each of the hadronic interaction models. Differences between
the various fireball settings translate to at most a few grams difference in the moments, but these
could also be caused by a finite set of Monte Carlo simulations and the presence of outliers. In
particular, the σ(Xmax) of iron-induced showers for EPOS-LHC shows some variations among
the fireball models, but not sufficient to significantly change the average over all fireball settings.
Therefore it seems safe to conclude that Xmax can be modeled with Standard Model simulations
and thereby determine the mass composition that the muon number needs to adhere to.
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Figure 9.14: The effect of the fireball model on the moments of Xmax; 〈Xmax〉 (top row) and σ(Xmax)
(bottom row), for the three hadronic interaction models QGSJetII-04 (left), EPOS-LHC (middle),
Sibyll-2.3d (right) based on Conex simulations. The individual fireball settings (Emin = 1015 eV;
Emax ∈ {1017, 1018, 1019, 1020} eV; n ∈ {1, 2, 4, 8, 1000}) are indicated by the gray dotted lines, and
the average of all correspond to the red (proton) and blue (iron) solid lines.

9.3.2 Constraints on the Fireball Model

The obtained analytic model for 〈Rµ〉(E0, A;Emin, Emax, n), can be used to look for fireball
parameters that provide a consistent interpretation of Auger data on 〈Xmax〉 and 〈Rµ〉 in terms of
the CR mass composition. Since 〈Xmax〉 is unaffected by the fireball model, its mass composition
can be inferred with the Standard Model. Subsequently, this puts a requirement on the amount
the model predictions for 〈Rµ〉 needs to change, and thus constrains the fireball parameters.

The composition interpretation of 〈Xmax〉-data is shown in the left plot of Fig. 9.15 for
EPOS-LHC 6. Here, for each of the masses, the energy dependence of the 〈Xmax〉 model pre-

6Equivalent Figs. for the hadronic interaction models QGSJetII-04 and Sibyll-2.3d are shown in Appendix
E.3
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diction is very well approximated by a power law. This allows for a direct interpolation to the
energies corresponding to the Auger data points. The analogous interpolation of 〈Rµ〉 to these
energies follows from our analytic model, as shown in the right plots of Fig. 9.15. Then requir-
ing 〈Xmax〉data =

∑
i fi〈Xmax〉i we can obtain a corresponding 〈Rµ〉〈Xmax〉data =

∑
i fi〈Rµ〉i by

implicitly solving for the composition fractions fi with i ∈ {p,He,N, Si,Fe}.
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Figure 9.15: Indications of the UHECR composition from Auger data on 〈Xmax〉 (left) and 〈Rµ〉 (center
and right) for EPOS-LHC. The fireball model (solid lines) has no effect on 〈Xmax〉, data on which (black
error bars) can thus be interpreted within the Standard Model (dotted lines). In the two right plots a
direct comparison with 〈Rµ〉-data (black error bars) follows from mapping 〈Xmax〉-data to 〈Rµ〉 within
the Standard Model (light gray error bars) and two fireball scenarios (dark gray error bars): Emin = 1013

eV, Emax = 1021 eV and n = 1 (center), and Emin = 1015 eV, Emax = 1017 eV and n = 1000 (right). The
line colors correspond to various nuclei: proton (red), helium (orange), nitrogen (green), silicon (cyan),
and iron (blue).

Due to the degeneracy of these sums with regard to the precise composition a range of
〈Rµ〉〈Xmax〉data values can be obtained, corresponding to various mixed compositions. The lin-
earity of the sums assures that the extremes of this range is composed of at most two fractions,
which significantly simplifies its calculation. The resulting interpretation of 〈Xmax〉-data in
terms of 〈Rµ〉 are indicated by the (light) gray data points in the right two plots of Fig. 9.15,
corresponding to particular settings of the fireball (standard) model. Notice in particular the
range-behavior7 for the fireball in the rightmost plot.

A direct comparison with the average muon data 〈Rµ〉 quantifies the degree of consistency
between these independent mass observables. Various settings of the fireball model provide a
perfect agreement, where one can distinguish between two extremes: either the fireball effect kicks
in at low energies ECR ∼ O(1013 eV) which gradually increases the muon number throughout
the entire shower (middle panel of Fig. 9.15), or the fireball effect is abruptly activated at
ECR = 1017 eV and occurs only in the first few interactions (right panel of Fig. 9.15). Both
scenarios accurately reproduce Auger muon data above ECR & 4 ·1018 eV of highly inclined EAS
events.

Note that in the abrupt threshold scenario the model predictions for the individual masses
jump at specific energies: at E0 = Emax where the fireball is activated for protons and larger
nuclei can partly undergo the fireball effect (see Eq. 9.17), and at E0 = A · Emax where the

7i.e., that a range of 〈Rµ〉-values correspond to the same 〈Xmax〉-value due to degeneracies in the composition.
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individual nucleons have sufficient energies to produce fireballs.
To quantify the agreement provided by particular fireball settings we define the chi-squared

statistic

χ2(Emin, Emax, n) ≡
6∑
i=1

(〈Rµ〉〈Xmax〉data(Ei;Emin, Emax, n)− 〈Rµ〉data,i

δ〈Rµ〉data,i

)2

, (9.18)

where the sum is over the six muon data points and the interpolation of 〈Rµ〉〈Xmax〉data(Ei;Emin, Emax, n)
to the corresponding energies follows from a linear interpolation in logE. The uncertainty on
〈Xmax〉-data is neglected and that on the muon data is taken to be the quadratic sum of the
systematic and statistical uncertainties:

δ〈Rµ〉data,i =
√
δ〈Rµ〉2syst,i + δ〈Rµ〉2stat,i . (9.19)

Dividing 〈Rµ〉 by the CR primary energy E0 as seen in Fig. 9.15 would be cancelled out by the
uncertainties in the computation of χ2 through Eq. 9.18, and is therefore unnecessary.

For the exploration of the fireball parameter space we fix n ∈ {1, 2, 4, 8, 1000} and vary
1012 ≤ Emin/eV ≤ 1018 and 1016 ≤ Emax/eV ≤ 1022. Contour plots of the resulting χ2 for
EPOS-LHC are shown in Fig. 9.16, with the stars corresponding to the settings of Fig. 9.15.
The equivalent plots for QGSJetII-04 and Sibyll-2.3d are left to Appendix E.3 since the
conclusions are the same.

At every n we find a line of (Emin, Emax)-combinations that minimize the chi-squared to
approximately χ2

min ≈ 0.4, indicating a very good agreement. Increasing n beyond 1 – i.e.,
a faster than logarithmic increase with energy of the probability to initiate a fireball – forces
the minimum χ2 to correspond to lower Emax values, with at n = 1000 the minimum χ2 fixed
to Emax = 1017 eV, independent of Emin. This is a direct consequence of the requirement to
reproduce the elevated plateau of muon numbers seen in Auger data (see Fig. 9.15) and thus to
deviate from the Standard Model at sufficiently low energies.

From Fig. 9.16 it becomes apparent that the average muon data only provides a single
constraint on the fireball parameters. A further constraint comes from the relative fluctuations
of the muon number, for which we developed a theoretical model in Sec. 9.2.2. Here we in
particular noticed that the introduction of a fireball decreases the relative fluctuations. This
could potentially give rise to problems with the current consistency between σ(Rµ)/〈Rµ〉- and
〈Xmax〉-data [5], and thus shift the muon problem to its fluctuations.

While in Sec. 9.2.2 we were able to obtain σ(Nµ)/〈Nµ〉-predictions for proton primaries, an
extension to heavier nuclei is not trivial and beyond the scope of this study. To still incorporate
the constraints provided by data on the relative muon fluctuations we require the proton pre-
dictions to not fall more than one sigma below Auger data. This can be interpreted as a rather
strict requirement since we know from 〈Xmax〉-data that the composition is in fact heavier than
proton at these energies, and thus would correspondingly imply even lower fluctuations.

From Fig. 9.12 we see that our requirement on the fluctuations translates to a lower limit on
Emax. Using the theoretical model (Eqs. 9.13, 9.14, and 9.15 and Table 9.4) to interpolate the
proton fluctuation predictions, we obtain these lower limits on Emax for each data point and as
a function of Emin and n. The bounds are indicated by lines in Fig. 9.16, where the number of
dots j = i− 1 between the dashes identifies the ith Auger data point on the relative fluctuation
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Figure 9.16: Fireball parameter-space exploration of the compatibility of the composition interpretation
of Auger data on 〈Xmax〉 and 〈Rµ〉 as quantified by the test statistic χ2 (Eq. 9.18) for EPOS-LHC.
A lower χ2 implies a better compatibility. The inset stars correspond to the central (cyan) and right
(purple) plots in Fig. 9.15. The black lines are lower limits on Emax required by data on the muon
fluctuations.

in Fig. 9.12. Fireball settings to the left of these lines can be assumed to be excluded by Auger
data on the relative muon fluctuations.

Interestingly, this excludes a large fraction of the fireball phase-space that resolves the ten-
sion between 〈Xmax〉 and 〈Rµ〉. In particular, rather abrupt changes in the hadronic energy
fraction (e.g., n = 1000, purple star) are excluded, but not a gradual introduction of the fireball
effect (e.g., n = 1, cyan star). This is in line with the conclusions drawn in [5] that the muon
enhancement cannot originate solely from the first (few) interactions and needs to accumulate
throughout the shower. Note that this inversely requires an effect to start at low energies in
order to accumulate a sufficient deviation from the Standard Model.

Taking the data on muon fluctuations to exclude any values of n other than unity, we explicitly
solve for the (Emin, Emax)-combinations8 that minimize χ2 and thus resolve the muon deficit.
The resulting optimal fireball parameters for each of the hadronic interaction models are shown
in the left plot of Fig. 9.17. The range of Emax is purposefully chosen to start at 1018 eV to
mostly comply with the fluctuation constraints, with settings up to Emax = 1020 eV still being

8Note that for some of the combinations Emin falls below Ec. This violates the assumption made
in Appendix D.2 for the derivation of Eq. 8.16. To make sure that the fireball enhancement
stops at the end of the shower, we need the additional factor (Ec/Emin)

ω, with ω = p(Ec)/(n +
1) c2/xmin 2F1 (1, 1 + n; 2 + n;− log(Ec/Emin)/xmin).
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debatable. Differences between the EPOS-LHC and Sibyll-2.3d hadronic interaction models
seem to be negligible, while QGSJetII-04 consistently requires a larger fireball effect at lower
energies. The latter is to compensate for the lower muon numbers predicted by the QGSJetII-04
hadronic interaction model.

1020 1023 1026 1029

Emax [eV]

107

109

1011

1013

1015

E m
in

 [e
V]

QGSJetII-04
EPOS-LHC
SIBYLL-2.3d

1020 1023 1026 1029

Emax [eV]

0.0

0.2

0.4

0.6

0.8

1.0

Fi
re

ba
ll 

pr
ob

ab
ilit

y 
p(

E
*) E * = ELHC

E * = ETev

1020 1023 1026 1029

Emax [eV]

1.00

1.05

1.10

1.15

1.20

1.25

1.30

r e
ff(

E
*)

/r S
M

Figure 9.17: Left: Fireball settings resolving the muon deficit without violating constraints from the
muon fluctuations (i.e., Emax & 1019 eV). Center and right: Conversion of these fireball settings to the
fireball-initiation probability (center, Eq. 5.3) and effective enhancement of the hadronic energy fraction
(right, Eq. 8.1) at LHC (blue, ELHC ≈ 1017 eV) and Tevatron (orange, ETev ≈ 1015 eV) energies.

An equally good resolution of the muon deficit is possible by continuously extending the
range over which the fireball becomes more likely and thus making its introduction more gradual.
This does not necessarily imply that deviations of the hadronic energy fraction from its Standard
Model value can be made arbitrarily small since the number of generations in an EAS is limited by
the multiplicity and the critical energy. Therefore it is worthwhile to convert these (Emin, Emax)-
combinations to explicit fireball probabilities (Eq. 5.3) at some relevant energies.

In the central plot of Fig. 9.17 we do so for LHC (
√
sLHC = 13 TeV ⇔ ELHC = 8.45 · 1016

eV) and Tevatron (
√
sTev = 2 TeV ⇔ ETev = 2 · 1015 eV) energies, where collider experiments

might be able to put constraints. A further conversion (Eq. 8.1) to the corresponding effective
increase in the hadronic energy fraction with respect to the Standard Model is shown in the right
plot of Fig. 9.17. Both plots show a similar behavior, with only the latter conversion breaking
the degeneracy between EPOS-LHC and Sibyll-2.3d.

Only for the lowest allowed values of Emax may fireball effects be invisible at the Tevatron.
For all larger Emax values – more compatible with the fluctuations – the effect is always visible:
it first increases and subsequently flattens off to an O(10− 15)% increase in the hadronic energy
fraction, depending on the hadronic interaction model. At LHC energies an even larger effect
can be expected of O(15 − 20)%. Interestingly, such large effects on the hadronic are expected
for all Emax values and thus for all viable resolutions of the muon deficit. For QGSJetII-04 the
enhancement may even be up to 25% for the lowest allowed Emax values.

It should be noted that these results follow directly from fits of our analytical model to Conex
EAS simulations. Therefore, it is plausible that some of the parameters attain rather extreme
values by compensating for simplifications9 w.r.t. real EASs. For example, the multiplicities
listed in Table 9.3 are nearly constant at O(few 1000), which implies that O(2− 3) generations

9e.g., the inability to capture inelasticity, which likely also prevented the use of CRMC simulations directly;
see the discussion around Fig. 9.8.
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are already sufficient to reach the critical energy. This likely gives an artificial enhancement of the
aforementioned required sizes of the fireball effect. To compensate for this, one can take, e.g., the
third or fourth root of reff(E∗)/rSM – such that the number of generations is increased by a factor
3 or 4. Consequently, more realistic resolutions of the muon deficit follow from enhancements of
the hadronic energy fraction (w.r.t. its SM-value) that lie in the range O(3 − 8)% at Tevatron
and LHC energies.

Discussion

These results show that Auger data indicates that we do not completely understand the for
EASs relevant particle physics at energies accessible to the current generation of colliders. This
motivates further accelerator experiments, in particular those that can probe an effective r-value.

We found here that the strangeness enhancement resulting from a swapping of pions and kaons
– as applied for the mimicking of the fireball – is sufficient to resolve the muon deficit. Therefore,
it would be particularly interesting to see if the strangeness signatures found by the ALICE
experiment can also be observed at forward rapidities. One contribution to investigating this
could come from the planned Forward Physics Facility [205] by providing (indirect) measurements
of the pion to kaon ratio.

A more direct constraint on r, independent of the strangeness, comes from the LHCf mea-
surements of the neutral pion yield [206, 207]. In particular, the integrated energy-weighted
Feynman-x (xF) distribution constitutes a proxy for the energy lost to the EM component, 1−r.
The required O(3 − 8)% increase of r translates into a sizable O(10 − 25)% decrease of 1 − r
under the assumption of r ≈ 3/4. Whereas it may be that such a difference would have already
been apparent with the current LHCf measurements, the integral of this distribution seems to
be dominated by secondaries with low xF. Their detection is limited by the size of the detector,
with no measurements for xF < 0.25. Any estimation of 1− r would rely on an extrapolation. In
light of our results, it would thus be important to quantify the associated theoretical uncertainty.

Note that simultaneously looking for strangeness enhancements and studying the neutral
pion yield could mediate such inherent phase-space limitations of particle detectors.

In addition to, and potentially more important than, these phase-space considerations is
the fact that air shower interactions are not directly represented by proton-proton collisions.
Therefore, the required increase of the hadronic energy fraction may only manifest itself when
studying collisions of the appropriate beams. Current proposals [208] for future runs of the LHC
focus on oxygen beams as an intermediate-mass nucleus to represent interactions with air (see
also the discussion in [1]). Ideally, one would go even further and also include charged pion
beams to better understand their contribution to the hadronic cascade. Nevertheless, studies of
the strangeness and neutral pion production with upcoming p−O and O −O runs at the LHC
are sure to shed light on the muon deficit.
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Experimental observations of the number of muons in air showers that reach the ground revealed
a corresponding deficit in simulations. A solution to the open problem of interpreting this muon
deficit would enable a precise determination of the UHECR mass composition, and thereby have
profound consequences for illuminating the origin of UHECRs. In this thesis we set out to explore
the potential of the fireball model to appropriately alter current air shower predictions, with a
particular focus on reproducing Xmax- and Rµ-data from the Pierre Auger Observatory.

With the implementation of a phenomenological fireball model in existing EAS simulation
software, our initial study (Chapter 6) showed that this model generally reduces the tension
of the muon deficit, but the explored phase-space did not provide an immediate resolution.
A subsequent systematic analysis (Chapter 7) of the effect of the fireball model on individual
observables from 10 EeV showers revealed that the production of a plasma, as mimicked by
repeated in situ collisions, has an undesirable effect on the longitudinal development. A pure
strangeness enhancement, however, enables a consistent mass interpretation of Auger data for
specific forms of the fireball-production probability. This result confirmed that the muon deficit
can only be resolved with small adjustments over a wide range of energies whose effect on the
air shower accumulates over multiple generations.

For a complete interpretation of Auger data, in terms of the required energy-dependent
strangeness enhancements, we developed an analytic framework (Chapter 8) inspired by the
Heitler-Matthews model for muons. This provided a deeper insight into the effect of vary-
ing the various fireball parameters on the resulting muon number and enabled more flexibility
w.r.t. Monte Carlo simulations. While feeding the analytic framework directly with the relevant
hadronic interaction model predictions using CRMC did not reproduce fireball-extended Conex
simulations – most likely due to the inability of the framework to incorporate inelasticity – it did
provide a useful interpolation (Chapter 9). The subsequent application to Auger data found that
a fireball that solely enhances the strangeness is capable of resolving the muon deficit. Simulta-
neous constraints from shower-to-shower fluctuations of the muon number requires the effect to
occur already at lower energies. At Tevatron and LHC energies we estimated it more generally
as a required O(3 − 8)% increase of the average energy fraction going into hadronic particles.
This result constitutes a direct interpretation of Auger data in terms of the hadronic energy
flow, which could serve as a guidance for accelerator experiments. In particular, this motivates
forward physics experiments during the proposed LHC run with oxygen beams.

More precise predictions for collider experiments could be obtained by extending the last
analysis with the inclusion of data at lower energies from the Auger Underground Muon Detector
[98]. In this regard, also including data from other CR experiments can be beneficial – as done
in [6] – but this suffers from the difficulty of cross-calibrations and common energy scales. From
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a more experimental side, a reduction of systematic and statistical uncertainties on respectively
the average and the relative fluctuations of the muon number would be an enormous help.

Whereas our initial Ansatz of the production of a new plasma fireball state is disfavored
by its large impact on Xmax, the associated strangeness enhancement constitutes a promising
solution to the muon deficit. This is a concrete prediction of the remainder (i.e., without plasma
formation) of the fireball model and is also motivated by ALICE measurements [14].

Alternative contributions to a resolution of the muon deficit may come from a generally
improved understanding of the soft QCD regime. This is illustrated by past inclusions of leading
ρ0 and baryon-pair production in high-energy hadronic interaction models [142, 196], and it is
indicated by a recent study [209] finding inconsistencies at low energies between state-of-the-art
hadronic interaction models.

Therefore, it would be interesting to also test the prediction of strangeness enhancements
with air shower observations beyond the number of muons at ground. In particular, the larger
critical energy of kaons compared to pions would likely give rise to a harder energy spectrum
of the muons at ground and a shallower muon production depth. While such spectra have not
yet been measured, a shallower muon production depth would in fact be advantageous given the
current tension with data from the Pierre Auger Observatory. A detailed theoretical study of the
influence of strangeness enhancements on these observables – maybe also by further extending
the Heitler-Matthews model to include separate pionic and kaonic components – could outline
further tests from the astroparticle side. By providing the corresponding measurements, the
Pierre Auger Observatory is in an ideal position to aid in pinpointing the origin of the muon
deficit.

This synergy between cosmic ray observatories and collider experiments connected through
the theory of air showers and hadronic interactions promises concrete advances in our under-
standing of the fundamental nature of matter as well as the origin of cosmic rays.
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A | Effects of Mixed Compositions

There is no clear mapping from the moments of observables to the fractions making up the
composition. In fact, compositions that could reproduce the moments of observables are likely
degenerate and therefore not very insightful. Still, the effect of a mixed composition should be
taken into account, especially if one intends to interpret the moments of the observables in terms
of the CR composition. This appendix consists of three sections where related mappings and
projections are discussed, all arising purely from adequately combining composition fractions.
The advantage of these mappings is that the compositions are kept implicit, and a subsequent
interpretation is only done by comparing moments of observables to one another. For clarity,
the following questions are answered in each of the sections, allowing the composition fractions
to vary:

A.1) What are the extreme values of 〈lnA〉 when fixing one of the moments?

A.2) What are the extreme values of σ(Xmax) and σ(Rµ)/〈Rµ〉?

A.3) What are the ranges of values σ(Xmax) and 〈Rµ〉 can attain when fixing 〈Xmax〉? And
what are the ranges of values σ(Rµ)/〈Rµ〉 and 〈Xmax〉 can attain when fixing 〈Rµ〉?

A.1 Effect of a Mixed Composition on the Calibration

The effect of a mixed composition on the calibration procedure discussed in Sec. 6.1.1 can be
studied by fixing the observable under consideration x(fi) to the data xdata, while letting the
fractions of nuclei fi making up the composition vary. By varying these fractions, the value
of 〈lnA〉 =

∑
i fi lnAi and thus zmass could be changed. Through this mechanism we aim to

quantify the range of 〈lnA〉 (and thus zmass) values that reproduce the data.
Additional constraints on fi arise from the facts that the fractions need to sum to unity and

that it is unphysical to have negative fractions. Restricting ourselves to compositions build from
nuclei from proton up to iron, including all mass numbers inbetween, we therefore have the set
of constraints given by:

x(fi) = xdata,

56∑
i=1

fi = 1, fi ≥ 0 ∀ i ∈ {1, ..., 56}. (A.1.1)

The effect of a mixed composition can be quantified by finding the extreme values of 〈lnA〉 subject
to these constraints. In the case of the average of an observable, the first constraint becomes
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APPENDIX A. EFFECTS OF MIXED COMPOSITIONS

∑
i fi〈O〉i = 〈O〉data

1, making this optimization problem a linear programming problem.
Note that in the case of a strictly linear dependence of the observable on lnA, the constraint

of reproducing the data becomes 〈O〉data =
∑

i fi〈O〉i =
∑

i fi(a·lnAi+b) = a〈lnA〉+b, implying
that 〈lnA〉 is fixed as well. Therefore, different compositions that reproduce 〈O〉data will have
the same 〈lnA〉, making this optimization problem irrelevant for that particular case.

Before attempting to solve this linear programming problem, notice that there will only be
solutions when 〈O〉data lies between the most extreme values of 〈O〉i. This underlines that a mixed
composition analysis only makes sense for data that is within the proton to iron range. Given
that this condition is satisfied, one can subdivide the components of a mixed composition into
two groups: one group where the expected observables are larger than the data, 〈O〉i > 〈O〉data,
and another group where they are smaller, 〈O〉i < 〈O〉data.2 To reproduce 〈O〉data, one therefore
needs to compensate a component from one group by components from the other group. In this
way, any combination of the components of the two groups could reproduce the data if they
appear in a certain ratio.

Generalizing this principle, any mixed composition that reproduces the data can be build
from a superposition of such two-component combinations. Associated to each two-component
combination is a specific contribution to the average mass 〈lnA〉 of the composition. To then
obtain the extremes of 〈lnA〉, one simple only takes the two-component combination with either
the smallest or the largest specific mass contribution. This observation implies that the extremes
of 〈lnA〉 correspond to compositions with only two components.

Consequently, these extremes can be found by computing the 〈lnA〉 of all possible two-
component combinations that reproduce the observable. The minimum and maximum of these
values will be guaranteed to be equal to the minimum and maximum of a mixed composition
where all components are allowed to vary. Finding 〈lnA〉 for a possible two-combination follows
from solving the same set of constraints, reduced to two components i and j:

fi〈O〉i + fj〈O〉j = 〈O〉data

fi + fj = 1

}
=⇒ fi =

〈O〉data − 〈O〉j
〈O〉i − 〈O〉j

and fj =
〈O〉data − 〈O〉i
〈O〉j − 〈O〉i

(A.1.2)

with then the average mass given by 〈lnA〉 = fi lnAi + fj lnAj .
In principle one only needs to calculate this for the combinations that contain one component

of each of the groups: one component with 〈O〉i > 〈O〉data and one component with 〈O〉i <
〈O〉data. If 〈O〉k < 〈O〉data < 〈O〉k+1, this would correspond to (56−k)·k combinations. However,
for practical purposes it is easier to compute 〈lnA〉 for all combinations, which corresponds to(

56
2

)
= 1540 combinations, and simply verify that the computed fractions are non-negative.
The effect of a mixed composition on the calibration of z〈Xmax〉 and z〈lnRµ〉 are represented as

orange bands in the right plots of Fig. 6.1, corresponding to the Standard Model. These bands
can only be computed for 0 < zmass < 1 and are small as expected from the Heitler-Matthews
model. Also for the various fireball model scenarios shown in Appendix B the bands are and
within the corresponding systematic uncertainties, implying that it is safe to neglect the effect
of a mixed composition in the analysis of Sec. 6.2. Apparently, the constraint of reproducing
the data is strong enough to not allow much variation in 〈lnA〉.

1The average of a mixed composition can be decomposed as a weighted sum of the averages of pure composi-
tions: 〈O〉 =

∫
O p(O) dO =

∫
O

∑
i fipi(O) dO =

∑
i fi

∫
O pi(O) dO =

∑
i fi〈O〉i.

2The practically impossible case of 〈O〉i = 〈O〉data would be part of both groups, but it does not further affect
the analysis.
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Unfortunately, in the case of the standard deviation of an observable, this procedure be-
comes significantly more complicated. Instead of being able to replace the first constraint in Eq.
A.1.1 by a linear combination of pure composition observables, we are left with

∑
i fi〈O2〉i −

(
∑

j fj〈O〉j)2 = σ2
data. This results in cross-terms that significantly complicate the optimization

problem and is therefore beyond the scope of this study.

A.2 Extreme Values of σ(Xmax) and σ(Rµ)/〈Rµ〉
The computations of extreme values of the second moments are a bit more involved than the
previous discussion since one needs to deal with the aforementioned cross-terms. Instead of a
linear programming problem, one is thus left with a quadratic programming problem. A suitable
way to solve such a problem is by computing the points satisfying the Karush-Kuhn-Tucker
conditions (KKT) [210, 211]:

∇L = ∇f(x∗) +
l∑

j=1

λj∇hj(x∗) +
m∑
i=1

µi∇gi(x∗) = 0

gi(x
∗) ≤ 0 ∀i and hj(x

∗) = 0 ∀j

µi ≥ 0 ∀i

m∑
i=1

µigi(x
∗) = 0

The first condition requires stationarity of the solution x∗ that minimizes the function f .
The constructed Lagrangian L is shifted by the equality hj and inequality gi constraints, with
corresponding multipliers λj and µi. The second condition requires the solution to be primal
feasible, i.e. the solution should satisfy the equality and inequality constraints as required by the
problem. Notice that these conditions extend the method of Lagrange multipliers by additionally
allowing inequality constraints. New are the third and fourth conditions which remove some of
the freedom on the Lagrange multipliers µi, such that the solution lies on the correct side of the
inequality constraints. If one wants to maximize f instead, one needs to flip the sign before the
µi-term in the first condition. Equivalently, one could also change the third condition to µi ≤ 0.

In our problem we want to find the extreme values of σ(Xmax) and σ(Rµ)/〈Rµ〉, which for
convenience we will both denote as the observable O. This optimization problem is subject to
the natural constraints on the composition fractions {fi} of completeness (

∑
i fi = 1) and non-

negativity (fi ≥ 0). Translating the first KKT condition to our problem we find that the optimal
value of the observable O satisfies

∂fiL = ∂fiO − µi + λ = 0 ∀i,

where we can require µi ≥ 0 ∀i to minimize O, or µi ≤ 0 ∀i to maximize O. Conveniently, this
condition allows one to directly solve for the values of µi: µi = ∂fiO + λ, for each composition
component i. Due to the strict positivity of the observables of interest, finding the extremes can
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be simplified by finding the extremes of their squares. In practice, we thus want to minimize and
maximize σ2(Xmax) and σ2(Rµ)/〈Rµ〉2. The corresponding derivatives are given by

∂fiσ
2(Xmax) = ∂fi

 n∑
j=1

fj〈X2
max〉j −

( n∑
j=1

fj〈Xmax〉j
)2
 = 〈X2

max〉i − 2〈Xmax〉i〈Xmax〉,

and

∂fi
[
σ2(Rµ)/〈Rµ〉2

]
= ∂fi

[
〈R2

µ〉/〈Rµ〉2 − 1
]

=
1

〈Rµ〉2
(
〈R2

µ〉i − 2〈R2
µ〉
〈Rµ〉i
〈Rµ〉

)
,

which can be substituted into the first condition to retrieve µi.
Now for our situation the fourth KKT condition implies that

∑n
i=1 µifi = 0, which with the

obtained µi allows us to eliminate λ in both optimization problems:

0 =
n∑
i=1

µifi =
n∑
i=1

fi
[
〈X2

max〉i − 2〈Xmax〉i〈Xmax〉+ λ
]

= 〈X2
max〉 − 2〈Xmax〉2 + λ

=⇒ λ = 2〈Xmax〉2 − 〈X2
max〉,

and

0 =
n∑
i=1

µifi =
n∑
i=1

fi

[
1

〈Rµ〉2
(
〈R2

µ〉i − 2〈R2
µ〉
〈Rµ〉i
〈Rµ〉

)
+ λ

]
= −

〈R2
µ〉

〈Rµ〉2
+ λ

=⇒ λ =
〈R2

µ〉
〈Rµ〉2

.

Consequently the µi are given by

µi = 〈X2
max〉i − 〈X2

max〉 − 2〈Xmax〉
(
〈Xmax〉i − 〈Xmax〉

)
,

and

µi =
1

〈Rµ〉2

[
〈R2

µ〉i +
〈R2

µ〉
〈Rµ〉

(
〈Rµ〉 − 2〈Rµ〉i

)]
.

Notice that their dependence on the composition fractions {fi} are only through the averages
〈O〉 =

∑n
i=1 fi〈O〉i and the average of squares 〈O2〉 =

∑n
i=1 fi〈O2〉i, where O ∈ {Xmax, Rµ}.

Therefore, there are only two more or less free parameters in µi, instead of the n fractions of
which the composition is composed.

Now to make further progress, realize that the third KKT condition in combination with the
inequality constraints on the fractions require each individual term of the fourth KKT condition∑

i µifi = 0 to vanish. These additional conditions, µifi = 0 ∀i, allow us to distinguish cases;
either fi = 0 and µi 6= 0, or fi 6= 0 and µi = 0, indicating whether the component contributes to
the composition. Since the previously identified µi have only 2 free parameters, inconsistencies
are likely to arise if there are more than 2 components with µi = 0. Therefore, the extremes of
the observables correspond to compositions with at most 2 non-zero components fi.
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The remaining calculation of the extremes of observables consists of computing the set of µi
for each combination with one or two non-zero components. The number of non-zero components
determines how averages can be expressed in terms of those corresponding to the components.
In the case of 1 non-zero component fj , we find that the average and average square will be
equal to the corresponding value of this component, i.e., 〈O〉 = 〈O〉j and 〈O2〉 = 〈O2〉j . In the
case of 2 non-zero components fj and fk, we know µj = 0 = µk. These two equations allow us
to express the average and average square of the observables in terms of their components:

〈Xmax〉 =
1

2

〈X2
max〉k − 〈X2

max〉j
〈Xmax〉k − 〈Xmax〉j

,

〈X2
max〉 =

1

2

(
〈X2

max〉j + 〈X2
max〉k

)
− 〈Xmax〉

[
〈Xmax〉j + 〈Xmax〉k − 2〈Xmax〉

]
,

with 〈Xmax〉 substituted appropriately in the latter, and

〈R2
µ〉

〈Rµ〉
=

1

2

〈R2
µ〉k − 〈R2

µ〉j
〈Rµ〉k − 〈Rµ〉j

,

〈Rµ〉 =
2〈Rµ〉j〈R2

µ〉k − 2〈Rµ〉k〈R2
µ〉j

〈R2
µ〉k − 〈R2

µ〉j
.

These equation allow for direct computations of the sets of µi for each combination of one
and two non-zero components. Each set of µi for which µi ≥ 0 ∀i, in the case of minimization, or
µi ≤ 0 ∀i, in the case of maximization, are potential composition combinations for the extreme
of the observable. A subsequent verification of the non-negativity of fj and fk in the case of
two non-zero components, through e.g., fj = 〈O〉−〈O〉k

〈O〉j−〈O〉k and fk = 1 − fj , confirms whether the
potential extremes are indeed KKT points. The minimum and maximum values of these KKT
points are assured to be the smallest and largest values of the observables that can be attained
by varying the composition.

A.3 Mapping Average Observables to Fluctuations and other Av-
erages

Consistency of the composition interpretation from different observables can be implicitly checked
by mapping the data on these observables to one another. These mappings would be based on
the physical models (i.e., hadronic interactions as well as the fireball) used in the simulations of
EASs. Since the different observables depend differently on the underlying composition, mapping
data on one observable to another observable inevitably results in a set of data points, i.e., the
mapping is not one-to-one. A subsequent comparison of this set of mapped data points with the
data point on the observable itself implicitly shows whether the composition interpretation of
the two observables could potentially be consistent.

To make this reasoning more explicit, suppose we have data on both 〈Xmax〉 and 〈Rµ〉. For
a subsequent interpretation one needs to sample these observables with EAS simulations for
different CR masses, giving the sets {〈Xmax〉i} and {〈Rµ〉i} with, e.g., i ∈ {p,He,N, Si,Fe}. A
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consistent composition requires a single set of {fi} to simultaneously reproduce the data on both
observables: 〈Xmax〉data =

∑
i fi〈Xmax〉i and 〈Rµ〉data =

∑
i fi〈Rµ〉i. Instead of explicitly solving

these fi, one can fix one of these observables to the data point and compute how much the other
observable is allowed to vary by changing the composition and see whether there is an overlap
with the data point.

Since we are dealing with averages in this example, that computation follows the exact same
lines as the one described in Appendix A.1: 1) compute fi and fj as in Eq. A.1.2 for any
combination of i and j, 2) take only the non-negative fractions, 3) compute the corresponding
values of the observable that is being mapped to, 4) find the minimum and maximum of these
values. The obtained extremes confine the range of mapped values that correspond to the fixed
data point.

While this method relies on the linearity of the observable on the composition, it is also
possible to map to the second moments of the same observable. For example, when fixing 〈Xmax〉
to the data, σ(Xmax) = [〈X2

max〉− 〈Xmax〉2data]1/2 will have its extremes at the same composition
that makes 〈X2

max〉 reach its extremes. Fortunately, the latter is also a linear combination of the
underlying composition, 〈X2

max〉 =
∑

i fi〈X2
max〉i, and therefore can be computed in the same way

as before. The same argument holds for mapping 〈Rµ〉data to σ(Rµ)/〈Rµ〉 = [〈R2
µ〉/〈Rµ〉2data −

1]1/2. In total we can thus map 〈Xmax〉data to 〈Rµ〉 and σ(Xmax), and 〈Rµ〉data to 〈Xmax〉 and
σ(Rµ)/〈Rµ〉 as shown in Figs. 7.5, 7.6, 7.7 and 7.8.
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B | Additional Figures of zmass in
the Fireball Model

This appendix contains additional plots of zmass, intended to give an impression of the impact
of a fireball on the mass interpretation of EAS observables. Plots are shown for settings of the
fireball-initiation threshold corresponding to the corners of Fig. 6.2 and Fig. 6.3. The fireball-
scenarios with settings Emax = 1020 eV and n = 103 (top-right plot in the following figures) is
close to the Standard Model version. Subsequently, the effect of lowering Emax can be seen by
going to the left and the effect of decreasing n can be seen by going down. There are three figures
per section, each corresponding to a different hadronic interaction model.
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B.1 Effect on Tension between 〈lnRµ〉 and 〈Xmax〉
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Figure B.1.1: Effect on the zmass-parameters inferred from 〈Xmax〉 (gray circles) and 〈lnRµ〉 (black
triangles) in fireball scenarios with different initiation threshold parameters: Emax = 1017 eV (left col-
umn), Emax = 1020 eV (right column), n = 103 (top row), n = 1 (bottom row). The underlying hadronic
interaction model is QGSJetII-04. Both statistical (vertical bars) and systematic (brackets) errors
are indicated. Also shown are the quadratic fit of 〈Xmax〉 (gray line) used for the computation of the test
statistic ∆ (inset top left), as well as reference values of z in the pure proton (red line) and pure iron
(blue line) cases. Values in the hatched region are obtained through linear extrapolation and the orange
band represents the allowed variation due to possible composition mixtures.
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Figure B.1.2: Same as Fig. B.1.1, but then for EPOS-LHC.
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Figure B.1.3: Same as Fig. B.1.1, but then for Sibyll-2.3c.
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B.2 Effect on Tension between σ(Rµ)/〈Rµ〉 and 〈Xmax〉
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Figure B.2.1: Effect on the zmass-parameters inferred from 〈Xmax〉 (gray circles) and σ(Rµ)/〈Rµ〉
(black diamonds) in fireball scenarios with different initiation threshold parameters: Emax = 1017 eV
(left column), Emax = 1020 eV (right column), n = 103 (top row), n = 1 (bottom row). The underlying
hadronic interaction model is QGSJetII-04. Both statistical (vertical bars) and systematic (brackets)
errors are indicated. Also shown are the quadratic fit of 〈Xmax〉 (gray line) used for the computation of
the test statistic ∆σ (inset top left), as well as reference values of z in the pure proton (red line) and
pure iron (blue line) cases. Values in the hatched region are obtained through linear extrapolation and
the orange band represents the allowed variation due to possible composition mixtures.
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Figure B.2.2: Same as Fig. B.2.1, but then for EPOS-LHC.
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Figure B.2.3: Same as Fig. B.2.1, but then for Sibyll-2.3c.
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C | List of Symbols for Chapter 8

Here we provide a list of symbols – along with their descriptions – that were used in the derivations
of Chapter 8.

Nµ muon number: the number of muons arriving at the ground. Technically, we use this
to be equivalent to the number of muons at the ‘end’ of the shower. Where the end is
defined in terms of the critical energy.

Nhad number of hadronic particles: the number of hadronic particles in the shower. These
particles are assumed to produce muons in a one-to-one ratio at the end of the shower,
i.e., one hadronic particle produces one muon.

E0 primary energy: the energy of the primary cosmic ray that produces an air shower at the
top of the atmosphere.

Ec critical energy: the energy below which the shower stops. This is analogous to the critical
energy of electrons Ee.m.c ∼ 85 MeV and pions Eπc ∼ 20 − 30 GeV from [81], and can be
defined as the energy at which the decay length and interaction length are equal. In our
model the critical energy takes on the role of a hard threshold below which all hadronic
particles decay to muons.

E energy: usually denotes the energy per particle within a shower. Under our assumptions of
an equal division of energy over the secondaries and a fixed multiplicity at each generation,
this becomes a direct measure of how far the shower has evolved.

k generation: the number of interactions that occurred since the first interaction of the
primary cosmic ray. Under our assumptions of an equal division of energy over the
secondaries and a fixed multiplicity at each generation, this becomes a direct measure of
how far the shower has evolved. The critical generation kc is then the generation at which
the energy per particle reaches the critical energy, ending the shower evolution.

nmult multiplicity: the total number of secondaries produced by an interaction. Note that this
includes both hadronic and electromagnetic particles, with a further multiplication by r
to obtain the multiplicity of only the hadronic particles.

nscale scale of power-law multiplicity: the multiplicity at the energy scale Escale, defined as in
Eq. 8.10. This parameter is degenerate with Escale.
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Escale scale of power-law multiplicity: the energy scale at which the multiplicity is nscale, defined
as in Eq. 8.10. This parameter is degenerate with nscale.

b slope of power-law multiplicity: the logarithmic change of the multiplicity with logarithmic
energy, defined as in Eq. 8.10.

Eproj projectile energy: the energy of the projectile in the reference frame of the target. This is
equivalent to the energy of the cosmic ray when considering its interaction with stationary
air particles.

r hadronic energy fraction: the fraction of the projectile energy (or particles, due to an
equal division of energy) that remains in the hadronic component after an interaction.
Common subscripts are rSM and rfb, indicating the fraction in the Standard Model and
fireball cases, respectively.

reff(E) effective hadronic energy fraction: average of the hadronic energy fraction of Standard
Model rSM and fireball rfb interactions according to the fireball-initiation probability p(E),
see Eq. 8.1. This average quantifies the fraction of energy that is kept in the hadronic
component at the generation parametrized by E, taking into account that a fraction of
the generation produces fireballs.

p(E) fireball-initiation probability: probability of initiating a fireball interaction as parametrized
in Eq. 5.3. This probability quantifies the effect that not always the total energy of the
collision is available for the production of a fireball state, and therefore the energy-density
requirement to produce a fireball may not always be satisfied. At a specific projectile
energy thus only a fraction p(E) of the interactions produce fireballs.

Emin minimum energy for producing fireballs: if the projectile energy is below this energy, no
fireballs are produced. Parameter of p(E) in Eq. 5.3.

Emax maximum energy for producing fireballs: if the projectile energy above this energy, all
interactions produce a fireball. Parameter of p(E) in Eq. 5.3.

n energy dependence of fireball probability: determines how fast the probability of produc-
ing fireballs increases with increasing projectile energy; n = 1 is logarithmic, n → ∞
approaches a step-function at Emax. Parameter of p(E) in Eq. 5.3.

∆disc discreteness correction factor: factor taking into account that fireball interactions pro-
duced at higher energies will seep its effect of keeping more energy in the hadronic
component deeper into the shower by on average half a generation. This is of order
exp(∆disc) ∼

√
rfb/rSM ∼ 1.1 and thus has a 10% effect on the muon number. See Sec.

8.1.1.
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D | Derivation of Nµ in the Fireball-
Extended Heitler-Matthews Model

D.1 Fireball Nµ for a Constant Multiplicity

The muon number of Eq. 8.3 requires to solve an integral. For a constant multiplicity we have
dk/d logE = −1/ log(nmult). This reduces the integral I to

log

(
Nµ

E0/Ec

)
≡ I =

1

log nmult

∫ logE0

logEc

log {rSM + p(E) (rfb − rSM)} d logE, (D.1.1)

where p(E) is given by Eq. 5.3. Assuming the last stages of the shower to follow Standard Model
physics, we have Ec < Emin. For E0 there remain three regimes: E0 ≤ Emin, Emin ≤ E0 ≤ Emax,
and E0 ≥ Emax. In the first case the integrand becomes independent of energy and we get

I = log(E0/Ec)
log rSM

log nmult
, if E0 ≤ Emin, (D.1.2)

in accordance with the Heitler model. For the other two cases the integrand is energy dependent
only between Emin and Emax.

The contribution to the integral from that range is of the form

I ′(E′) ≡ 1

log nmult

∫ logE′

logEmin

log

{
rSM +

(
log(E/Emin)

log(Emax/Emin)

)n
(rfb − rSM)

}
d logE,

where E′ will be evaluated at E0 or Emax depending on the regime. Making the substitution
x = log(E/Emin)/ log(Emax/Emin), we get

I ′ =
log(Emax/Emin)

log nmult

∫ x′

0
log {rSM + xn(rfb − rSM)} dx.

Integrating by parts gives

I ′ =
log(Emax/Emin)

log nmult

[
x′ log

{
rSM + x′n(rfb − rSM)

}
− n

∫ x′

0

xn(rfb − rSM)

rSM + xn(rfb − rSM)
dx

]
.

Making the substitution u = (1− rfb/rSM)xn in the latter integral gives

n

∫ x′

0

xn(rfb − rSM)

rSM + xn(rfb − rSM)
dx = −

(
1− rfb

rSM

)−1/n ∫ u′

0

u1/n

1− udu.
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The final integral can be expressed in terms of the incomplete beta function B(x; a, b) or the
hypergeometric function 2F1(a, b; c;x) [212]:∫ u′

0

u1/n

1− udu = B

(
u′; 1 +

1

n
, 0

)
=

n

n+ 1
(u′)1+1/n

2F1

(
1, 1 +

1

n
; 2 +

1

n
;u′
)
. (D.1.3)

Putting this all together, we can express the integral I ′ in terms of the hypergeometric function
as

I ′(E′) =
log(E′/Emin)

log nmult

[
log
{
rSM + p(E′)(rfb − rSM)

}
+

n

n+ 1

(
1− rfb

rSM

)
p(E′) 2F1

(
1, 1 +

1

n
; 2 +

1

n
;

(
1− rfb

rSM

)
p(E′)

)]
,

(D.1.4)

where p(E′) = (log(E′/Emin)/ log(Emax/Emin))n.
For the remaining cases the original integral I of Eq. D.1.1 thus becomes

I = log(Emin/Ec)
log rSM

log nmult
+


I ′(E0), if Emin ≤ E0 ≤ Emax,

I ′(Emax) + log(E0/Emax)
log rfb

log nmult
, if E0 ≥ Emax,

(D.1.5)

with I ′(E′) given by Eq. D.1.4. A subsequent exponentiation and multiplication by E0/Ec
completes the description of the muon number.1

D.2 Fireball Nµ for a Power-law Multiplicity

The muon number given by Eq. 8.15 depends on the integral

I ≡ −1

log(1− b)

∫ logE0

logEc

log {rSM + p(E) (rfb − rSM)}
log
(
n

1/b
scaleE/Escale

) d logE, (D.2.1)

which cannot be solved analytically. By adding the integral

ε ≡ −1

log(1− b)

∫ logE0

logEc

log rSM + p(E) log(rfb/rSM)− log {rSM + p(E) (rfb − rSM)}
log
(
n

1/b
scaleE/Escale

) d logE,

(D.2.2)

we effectively use a geometric rather than an arithmetic average to obtain an effective r:

I + ε =
−1

log(1− b)

∫ logE0

logEc

log rSM + p(E) log(rfb/rSM)

log
(
n

1/b
scaleE/Escale

) d logE. (D.2.3)

This integral does have an analytic solution, as outlined below.
1Of course, the effect of discrete interactions still needs to be taken into account following Sec. 8.1.1.
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First note that p(E) introduces three regimes for E0, while assuming Ec < Emin. For E0 ≤
Emin the integral reduces to the Standard Model case, giving

I + ε =
log rSM

log(1− b) log

 log
(
n

1/b
scaleEc/Escale

)
log
(
n

1/b
scaleE0/Escale

)
 , if E0 ≤ Emin. (D.2.4)

Note that a subsequent exponentiation and a multiplication by E0/Ec gives Eq. 8.14.
For the remaining two cases we need to take into account the energy-dependent part of p(E)

between Emin and Emax. Over this range we have an integral of the form

I ′(E′) ≡
∫ logE′

logEmin

(
log(E/Emin)

log(Emax/Emin)

)n d logE

log
(
n

1/b
scaleE/Escale

) .
With the consecutive substitutions x = log

(
n

1/b
scaleE/Escale

)
and u = (xmin − x)/xmin we get

I ′ · (log(Emax/Emin))n =

∫ x′

xmin

(x− xmin)n
dx

x
= −(−xmin)n

∫ u′

0

un

1− udu .

The last integral has the same form as in Eq. D.1.3 and can thus be expressed in terms of the
hypergeometric function 2F1(a, b; c;x). Expressing everything back in terms of the energy we
find

I ′(E′) =
p(E′)

1 + n

log(E′/Emin)

log
(
n

1/b
scaleEmin/Escale

) 2F1

1, 1 + n; 2 + n;
− log(E′/Emin)

log
(
n

1/b
scaleEmin/Escale

)
 ,

(D.2.5)

where p(E′) = (log(E′/Emin)/ log(Emax/Emin))n.
The resulting expressions for I + ε (Eq. D.2.3) for the remaining cases are then given by

I + ε =
log rSM

log(1− b) log

 log
(
n

1/b
scaleEc/Escale

)
log
(
n

1/b
scaleE0/Escale

)
− log(rfb/rSM)

log(1− b) I ′(E0), if Emin ≤ E0 ≤ Emax,

(D.2.6)

and

I + ε =
log rSM

log(1− b) log

 log
(
n

1/b
scaleEc/Escale

)
log
(
n

1/b
scaleEmax/Escale

)
− log(rfb/rSM)

log(1− b) I ′(Emax)

+
log(rfb)

log(1− b) log

 log
(
n

1/b
scaleEmax/Escale

)
log
(
n

1/b
scaleE0/Escale

)
 , if E0 ≥ Emax.

(D.2.7)

Now if we can show that ε (Eq. D.2.2) is sufficiently small, we can use I + ε to accurately
approximate the muon number. First notice that due to p(E) the integrand of ε is zero outside the
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range Emin ≤ E ≤ Emax. Therefore, ε is only non-zero for E0 > Emin, and has a constant value
above E0 > Emax. This effectively reduces the integration limits. Sticking to the non-trivial case
of E0 > Emin, the integral of Eq. D.2.2 goes from logEmin to logE′, where E′ = min(E0, Emax).

To constrain the remaining ε, notice that a definite integral is bounded:

F =

∫ b

a
f(x)dx −→ min(f(x)) ≤ F

b− a ≤ max(f(x)),

where the extremes min and max are over the range of the integral. Defining

g(E) ≡ rSM + p(E)(rfb − rSM)

rSM(rfb/rSM)p(E)
, (D.2.8)

and rewriting the denominator in terms of the multiplicity we find ε to be bounded by

min

[
log(g(E))

log(nmult(E))

]
≤ log(1− b)

−b
ε

log(E′/Emin)
≤ max

[
log(g(E))

log(nmult(E))

]
.

As pointed out in Sec. 8.2.1, we are restricted to b < 1 because otherwise the multiplicity falls
below 1 within a single generation. For all allowed values the factor − log(1 − b)/b becomes a
positive constant.

Since log(nmult(E)) > 0, the lower bound is trivially zero since log(g(Emin)) = 0. The upper
bound is less trivial and depends on E′ as well as the precise multiplicity parameters. However,
due to the inequality of arithmetic and geometric means, we know that g(E) ≥ 1 and thus
log(g(E)) ≥ 0. Consequently, we know that the upper bound is smaller than the ratio of the
maximum of the nominator and the minimum of the denominator. By furthermore extending
and fixing the range over which the extremes of these functions are taken to Emin ≤ E ≤ Emax,
we can again enclose the upper bound from above.

This less stringent constraint thus becomes:

0 ≤ ε ≤ −b
log(1− b) log(E′/Emin)

max[ log(g(E)) ]

min[ log(nmult(E)) ]

For a power-law multiplicity, min[ log(nmult(E)) ] becomes either log(nmult(Emin)) or log(nmult(Emax)),
depending on the sign of b. The maximum of g can be obtained by simply taking the derivative
and equating to zero. This gives

max[ log(g(E)) ] = log

(
rfb − rSM

log(rfb/rSM)

)
+
rSM log rfb − rfb log rSM

rfb − rSM
− 1 (D.2.9)

Interestingly, the peak of log(g(E)) is independent of the specific fireball-initiation parameters
in p(E) (Eq. 5.3). A visualization of this fact as well as a comparison between the two effective
r-values is shown in Fig D.2.1.

For realistic values of b, the multiplicity, and Emax/Emin, the corresponding factor in the
bound on ε will be of order 1. Then the bound itself will be roughly equal to max[ log(g(E)) ]
as given in Eq. D.2.9. For rSM = 0.75 and rfb = 0.9 we thus get 0 ≤ ε ≤ 0.004.

The muon number of Eq. 8.15 is now given by

Nµ · exp(ε) =

(
E0

Ec

)
exp(I + ε+ ∆disc) (D.2.10)
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Figure D.2.1: Effect of approximating the arithmetically averaged effective r-value (Eq. 8.1; solid
lines) by the geometric average (rSM(rfb/rSM)p(E); dotted lines), for various values of n. The logarithmic
difference, defined as log(g(E)) (Eq. D.2.8; dot-dashed lines) are small and has a maximum independent
of p(E).

of which the right-hand side can be expressed explicitly in terms E0 using Eqs. D.2.4, D.2.6,
D.2.7 and 8.4, see Eq. 8.16.

From the bound on epsilon, we know that 1 ≤ exp(ε) ≤ 1.004. Ignoring this factor means
that our approximation overestimates the muon number by (much) less than 1 percent. For the
current study this is more than acceptable.
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E | Additional Figures of Fireball-
Heitler-Matthews Fits

For clarity we restricted the discussion and plots of Secs. 9.2 and Sec. 9.3 to the EPOS-LHC
hadronic interaction model. The conclusions drawn in the main text still hold for the other
hadronic models QGSJetII-04 and Sibyll-2.3d, for which the corresponding figures are shown
in this appendix.

E.1 Fireball-Heitler-Matthews Fits of 〈Nµ〉 and σ(Nµ)/〈Nµ〉
This appendix contains the QGSJetII-04 and Sibyll-2.3d versions of Figs. 9.9 and 9.12,
whereas the fit parameters were included in Tables 9.3 and 9.4, respectively.

141



APPENDIX E. ADDITIONAL FIGURES OF FIREBALL-HEITLER-MATTHEWS FITS
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Figure E.1.1: Same as Fig. 9.9 but for the QGSJetII-04 hadronic interaction model. The fit param-
eters are given in Table 9.3.
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Figure E.1.2: Same as Fig. 9.9 but for the Sibyll-2.3d hadronic interaction model. The fit parameters
are given in Table 9.3.
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Figure E.1.3: Same as Fig. 9.12 but for the QGSJetII-04 hadronic interaction model. The fit
parameters are given in Table 9.4.
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Figure E.1.4: Same as Fig. 9.12 but for the Sibyll-2.3d hadronic interaction model. The fit parameters
are given in Table 9.4.
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E.2 Fireball Mass Dependence of 〈Rµ〉
This appendix contains the QGSJetII-04 and Sibyll-2.3d versions of Figs. 9.13.
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Figure E.2.1: Same as Fig. 9.13 but for the QGSJetII-04 hadronic interaction model.
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Figure E.2.2: Same as Fig. 9.13 but for the Sibyll-2.3d hadronic interaction model.
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E.3 Fireball Interpretation of Auger Data

This appendix contains the QGSJetII-04 and Sibyll-2.3d versions of Figs. 9.15 and 9.16.
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Figure E.3.1: Same as Fig. 9.15 but for the QGSJetII-04 hadronic interaction model.
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Figure E.3.2: Same as Fig. 9.15 but for the Sibyll-2.3d hadronic interaction model.
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Figure E.3.3: Same as Fig. 9.16 but for the QGSJetII-04 hadronic interaction model.
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Figure E.3.4: Same as Fig. 9.16 but for the Sibyll-2.3d hadronic interaction model.
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