
Nondestructive interaction of powerful
electromagnetic waves with Bragg

reflectors

Dissertation
zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und
Naturwissenschaften
Fachbereich Physik

der Universität Hamburg

vorgelegt von

Immo Bahns

Hamburg
2021



Gutachter/innen der Dissertation: Prof. Dr. Jörg Rossbach
Dr. Harald Sinn

Zusammensetzung der Prüfungskommission: Prof. Dr. Jörg Rossbach
Dr. Harald Sinn
Dr. Maurizio Vannoni
Prof. Dr. Roman Schnabel
Prof. Dr. Robin Santra

Vorsitzende/r der Prüfungskommission: Prof. Dr. Roman Schnabel

Datum der Disputation: 02.09.2021

Vorsitzender Fach-Promotionsausschusses PHYSIK: Prof. Dr. Wolfgang Hansen

Leiter des Fachbereichs PHYSIK: Prof. Dr. Michael Potthoff

Dekan der Fakultät MIN: Prof. Dr. Heinrich Graener



"What does it matter? Science has achieved some wonderful things of course,
but I’d far rather be happy than right any day."
“And are you?“
“No. That’s where it all falls down, of course.“
“Pity“, said Arthur. “It sounded like rather a good lifestyle otherwise.“

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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Abstract

The thermoelastic interaction of an X-ray free electron laser (XFEL) with a Bragg reflec-
tor can cause a change of the local lattice constant of the Bragg reflector, which has a
direct influence on the X-ray scattering conditions. Also, thermoelastic effects can excite
macroscopic modes of vibrations, which can effect the angular stability of a reflection. For
very demanding X-ray optical applications, like a cavity based X-ray free electron laser
(CBXFEL), these effects must not exceed a critical amount, which would prohibit stable
reflection conditions. Suitable theoretical models have to be determined to describe the
thermoelastic interaction and must hold the comparison with the results of experimental
data. Therefore, an in-house developed pump-probe setup has been set up, which gives
the possibility to benchmark theoretical simulations with experimental data. A pulsed
UV laser (pump) deposits an energy similar to the heatload expected from a powerful
XFEL photon pulse into a single crystal diamond. A continuous wave (CW) laser (probe)
in combination with an ultrafast photodiode (bandwidth 4.5 GHz) is used to measure the
displacement of the crystal surface with a Michelson interferometer. With a cryogenic
cooler in combination with a heater the initial crystal temperature can be adjusted in
the range of 60 K to 300 K. In this work the dynamical thermoelastic effects caused by a
photon-matter interaction are simulated with a finite element method (FEM) using the
assumptions of continuum mechanics and a local thermodynamic equilibrium. The re-
sults of this work demonstrate that the measured data correspond well to the numerical
solutions carried out with the FEM.

Zusammenfassung

Die thermoelastischeWechselwirkung eines Freie-Elektronen-Röntgenlasers mit einem Bragg-
Spiegel kann die Gitterkonstante des Bragg-Spiegels ändern. Dies hat einen direkten
Einfluss auf die Bedingung für Röntgenbeugung. Des Weiteren können durch thermoe-
lastische Wechselwirkung makroskopische Schwingungsmoden angeregt werden. Dies kann
die Winkelstabilität für die Reflexion beeinflussen. Für einen kavitätsbasierten Freie-
Elektronen-Röntgenlasers gelten anspruchsvolle Stabilitätskriterien, welche durch ther-
moelastische Effekte nicht überschritten werden dürfen. Passende theoretische Formulierun-
gen müssen gefunden werden, um die thermoelastische Wechselwirkung zu beschreiben und
diese theoretischen Formulierungen müssen dem Vergleich mit experimentellen Beobach-
tungen standhalten. Deshalb wurde im Rahmen dieser Arbeit ein Anregungs-Abfrage
(engl. Pump-probe) Experiment durchgeführt, um die Simulationsergebnisse, welche auf
theoretischen Modellen basieren, mit experimentellen Messsignalen zu verifizieren. Im ex-
perimentellen Aufbau deponiert ein gepulster UV Laser (Anregung) eine Energiemenge
in einen einkristallinen Diamanten, welche vergleichbar zur Wärmelast ist, die für einen
Freie-Elektronen-Röntgenlaser mit hoher Leistung erwartet wird. Ein Dauerstrichlaser
(Abfrage) in Kombination mit einer ultraschnellen Fotodiode (Bandbreite 4.5 GHz) wird
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verwendet, um die Verschiebung der Kristalloberfläche mit einemMichelson-Interferometer
zu messen. Mit kryogener Kühlung in Kombination mit einem Heizer kann die Ausgang-
stemperatur des Kristalls auf einen beliebigen Wert im Bereich von 60 K bis 300 K fest-
gelegt werden. In dieser Arbeit wurden die dynamischen thermoelastischen Effekte, welche
durch eine Photonen-Materie Wechselwirkung hervorgerufen wurden, durch Nutzung der
Finite-Elemente-Methode simuliert. Dies geschieht unter der Annahme der Kontinu-
umsmechanik und eines lokalen thermodynamischen Gleichgewichts. Die Ergebnisse dieser
Arbeit zeigen, dass die gemessenen Daten gut mit den numerischen Simulationsdaten
übereinstimmen.
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1. Introduction

Fourth generation X-ray free electron lasers are capable to deliver photon pulses with
energies of a few millijoule and repetition rates in the MHz range [SZG+20] [DAA+20]. In
this context Bragg reflectors with stable reflection conditions are needed for X-ray optical
applications, like an XFEL-oscillator (XFELO) [Zem13], self-seeding setups [ABB+12] and
spectrometers [SBC+19]. Under such conditions the question arises how the thermoelastic
interaction of a high-energy photon pulse can deform the crystal structure of a Bragg
reflector and on which timescales these deformations are reduced to a value that it does
not disturb the reflection conditions of the following photon pulse.

The founding of this PhD project is connected to the development of an XFEL-oscillator
(XFELO). The prior PhD projects of J. Zemella [Zem13] completed in 2013 and C. Maag
[Maa18] completed in 2018 have investigated the possibilities and challenges of construct-
ing an XFELO at the European XFEL facility. To allow a stable operation of an XFELO
the angular misalignment shouldn’t exceed values of about 100 nrad [Zem13] and the strain
in propagation direction of the beam considering backscattering should not exceed values
of about 1× 10−6 [Maa18]. To continue the work of these projects a collaboration of
two PhD projects with separated areas of responsibility were originated. One part is the
simulation of a cavity based X-ray oscillator (CBXFEL) including the calculations of dy-
namical X-ray diffraction at thermally strained crystals, which is investigated in the PhD
project of P. Rauer and will be complete probably in 2021 [Rau21]. The other part is the
experimental investigation of the thermoelastic stability of Bragg reflectors under pulsed
heat load and is the content of this work.
To avoid to be redundant with the prior PhD projects and the collaborating project of

P. Rauer theoretical concepts regarding free electron lasers and dynamical X-ray diffrac-
tion will not be covered in this work. However, to given more detailed information about
the motivation for the experimental investigations of this work a short overview about
the concept of an XFELO will be presented in this introduction. For further informa-
tion the interested reader is referred to the work of J. Zemella, C. Maag and P. Rauer
[Zem13][Maa18][Rau21].
Facilities like the European XFEL can produce electron bunches of several GeV with a

MHz repetition rate. These electron bunches can emit photons in the X-ray wavelength
range when traveling through a periodically changing magnetic field of an undulator.
Choosing suitable spacing and strength of the magnetic field in the undulator a particular
photon energy distribution around a central wavelength will be emitted. Using a long
undulator section radiation generated by spontaneous undulator radiation can be ampli-
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Figure 1.1.: Schematic illustration of an XFELO using Bragg reflectors (L1 and L2) in backscat-
tering orientation [Zem13].

fied. This kind of free electron laser (FEL) is called a SASE (self-amplified spontaneous
emission) FEL. A SASE FEL can achieve excellent transverse coherence. However, due to
the amplification of spontaneous emission, various kinds of modes can be randomly am-
plified. The longitudinal coherence compared to a SASE FEL could be greatly improved
by an XFELO. The basic concept of an XFELO is illustrated in Fig. 1.1. In this case the
first electron bunch (the schematic path of the electrons is marked red in Fig. 1.1) will
also generate photons by spontaneous undulator radiation. However, only a very narrow
bandwidth of the photon radiation will be reflected by the Bragg reflector. With a suit-
able alignment of the lattice orientation of the Bragg reflectors a cavity for photons in the
X-ray range can be constructed. If the round trip time of the generated photon pulses
inside the cavity matches the repetition rate of the electron bunches the reflected photons
can dominate the initiation of the FEL process for the next electron bunch. Over multiply
round trips this causes a strong pulse energy increase of the photon pulses with a very
narrow bandwidth and leads to photon pulses with stable pulse-to-pulse energies of a few
millijoule in saturation. The particular design of an XFELO may vary from the simple
concept illustrated in Fig. 1.1 by containing additional focusing elements and additional
grazing incident mirrors to improve the stabilty of the XFELO regarding tolerances for
vibrations and change of lattice spacing due to thermal expansion. Also the outcoupling
process may vary which is in Fig. 1.1 proposed by using a sufficiently thin crystal (L1)
so that a part of the electromagnetic radiation is transmitted. Different concepts for an
XFELO have been proposed in the past decades [KSR08] [LD18] [LKSF11], but so far
none of them has been constructed. The concept of an XFELO introduced by Kim et al.
[KSR08] proposed a low gain oscillator. This causes that the initial pulse energy inside the
cavity is in the range of a few nanojoule and is increasing continuously over a few hundreds
of pulses until saturation is reached with pulse energies of a few millijoule, which possess
stable pulse-to-pulse energies [Zem13, p. 62]. A strongly related concept to an XFELO
is a cavity based XFEL where a much higher gain is considered, which causes that the
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initial pulse energy is in the range of one microjoule and saturation with pulse energies
of a few millijoule are reached after just a few round trips. Such concept will be denoted
as a cavity based XFEL (CBXFEL) in the following part of this work. The benefit of
a CBXFEL compared to an XFELO is that the stability tolerance is less demanding. A
detailed comparison of both concepts is given in the work of P. Rauer [Rau21]. A recently
funded R&D project at the European XFEL facility is a promising candidate to be the
first commissioned CBXFEL. Simulations carried out by P. Rauer for this R&D project
proposes an initial crystal temperature of 77 K, a repetition rate of 2.25 MHz and photon
pulse energies of a few mJ inside the cavity. It is assumed that at each reflection at a
Bragg reflector, an amount of a few tens of µJ is absorbed and converted into heat inside
the crystal. The beam radius in this context is about 50 µm and the corresponding pen-
etration depth is mostly in the range from a few µm to a few tens of µm. Because of its
outstanding physical properties single crystalline diamond is a common choice for a Bragg
reflector under such extraordinary conditions [SBT17]. In the simulations of P. Rauer the
heat load effects have already been considered by calculating the temperature profile and
corresponding local lattice expansion. However, due to simplicity in this simulation the
mechanical dynamics caused by the rapid thermal expansion have not been included.

The conversion of the absorbed energy into heat may be assumed to take place on the
picosecond time scale [YWW18]. The heating causes a dynamic thermal expansion of the
material and can create mechanical displacement waves which propagate through the crys-
tal. The dynamical thermal expansion for a diamond Bragg reflector under the assump-
tions of a three dimensional continuum theory have already been simulated with numerical
methods considering a temperature range of about 300 K to about 2300 K [YWW18]. Also,
a one-dimensional heat conduction and related strain wave propagation has been investi-
gated experimentally by using a large pump spot size compared to the crystal thickness.
In this experiment an optical pump, X-ray probe experiment has been used to measure
the strain wave propagation in a nitrogen-doped diamond crystal at room temperature
[SMW+12].

To the best knowledge of the author the present work is the first study which covers
an experimental and theoretical investigation of a three-dimensional displacement/strain
wave propagation, cause by pulsed heat load, for a diamond Bragg reflector. Another
novel experimental investigation carried out in this work is the investigation of the impact
of cryogenic cooling on the thermoelastic interaction and connected displacement/strain
wave propagation.

For the experimental setup an optical pump, optical interferometer probe experiment in
a temperature range of 60 K to 300 K has been used. The pump laser is a pulsed UV laser
with a wavelength of 213 nm. The penetration depth for diamond at this wavelength is
about 5 µm, which is on the same order of magnitude as the extinction length for X-rays
reflecting at a diamond Bragg reflector considered for an XFELO concept by J. Zemella
[p. 32][Zem13]. The absorbed energy per pulse of the UV laser is about 35 µJ and the
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beam radius considered for the pump-probe experiment is about 300 µm. The heat load
given for a saturated CBXFEL simulated by P. Rauer [Rau21] is about 45 µJ, the beam
radius is about 50 µm and most of the absorbed energy can be connected to a penetration
depth of roughly 20 µm. Since, the absorbed energy is similar in both cases the pump-
probe experiment gives useful information to understand thermoelastic effects cause by
the absorption of a saturated CBXFEL pulse. Nevertheless, due to the different shape
of the heat load profile given by the penetration depth and beam radius there are also
some important differences, which have been discussed in this work, regarding the reached
maximum temperature value and kind of heat transfer process which may dominate the
thermoelastic interaction.

The dynamic thermal expansion has been simulated in this work under the assumption
of continuum mechanics and a local thermodynamic equilibrium for a radial symmetric
heat load centered in a cylindrical crystal. The propagation of the mechanical waves,
which are introduced by thermal expansion, are described in detail in Section 6 by com-
paring numerical results with simplified analytical solutions. These investigations give a
phenomenological explanation of the development of the three dimensional wave propa-
gation from the nanosecond to microsecond range. The results are in good agreement
with experimental data obtained from the displacement measurement with a Michelson
interferometer.

The experimental setup which has been built up in this work is a promising device
to investigate photon-material interaction and could be used for an X-ray pump optical
probe experiment and/or as a diagnostic tool to observe the stability of Bragg reflectors
regarding fourth generation XFEL facilities. The underlying theory for the interferometer
is presented in Section 2 by considering the propagation of electromagetic waves in the
context of a continuum theory based on Maxwell’s equations. In this section also the
absorption of the pulsed laser is explained by a phenomenological description using Beer’s
law.

In Section 3 the assumptions of continuum mechanics are discussed using the approxi-
mation of small deformations and describing the equation of motion which can be referred
to Newton’s laws. In this section also properties based on the law of thermodynamics and
the empirical Fourier law are introduced. In Section 4 the temperature dependence of the
thermodynamic properties of a single crystal diamond and the validity of the Fourier law
are discussed in the context of solid state physics. In Section 5 the experimental setup
is described in detail and the results of the pump-probe experiment are presented. The
mentioned numerical simulations in Section 6 have been calculated with the finite element
method. The assumptions for these simulations regarding temperature dependent mate-
rial parameters are that a local thermodynamic equilibrium can be assumed at each time
step carried out in the simulation. Further, it is assumed that the heat transport can be
described by the Fourier law.

In Section 6.4 the same theoretical framework as considered for the pump-probe ex-
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periment is used to predict the thermoelastic effects due to the heat load of a saturated
CBXFEL for a diamond Bragg reflector. For the heat load the simulation results carried
out by P. Rauer [Rau21] are used. Under the described assumptions for the thermoelastic
interaction, the FEM simulations predicts a significant impact of these effect on the sta-
bility criteria of a CBXFEL. However, it should be mentioned that the prediction of the
calculated displacement field might possess significant systematic errors because the ini-
tial temperature considered by the simulation of P. Rauer is 77 K and in this temperature
region the assumption of the heat transport by the Fourier law of heat conduction may
already not be valid anymore. In the last two sections the assumed range of validly and
limits of the simulation results under the used assumptions are discussed in detail and an
outlook for further experimental and theoretical work regarding thermoelastic interaction
effects is given.
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2. Propagation of electromagnetic
radiation

The fundamentals of propagation of electromagnetic radiation is explained in detail in
various textbooks [Hec16] [ST19]. Here only the parts which are important for the needs
of this work are briefly summarized.
The propagation of electromagnetic radiation can be described in form of two mutually

coupled vector waves, an electric-field wave and a magnetic-field wave (electromagnetic
optics). Considering a solid material as a continuum, Maxwell’s equations can be used to
calculate the propagation of monochromatic electromagnetic waves in the UV-VIS light
range. It is important to note that though the classical electromagnetic optics describes
a lot of optical phenomena correctly, it does not cover quantum mechanical effects.

Maxwell’s equations In a source free medium where no free electric charges or currents
are present Maxwell’s equations, in differential form can be written as [ST19, p. 153]

∇×H(r, t) = ∂D(r, t)
∂t

(2.1)

∇×E(r, t) = −∂B(r, t)
∂t

∇ ·D(r, t) = 0

∇ ·B(r, t) = 0,

where the electric field E, the magnetic field H, the electric flux densityD and the magnetic
flux density B are vector fields which can be defined in every point of space r and time
t. For the sake of convenience the space r and time t dependency will not be written out
in the following part of this section. The connection of D and E depends on the electric
properties of the medium and is given by

D = ε0E+P, (2.2)

where P is the polarization density and ε0 the electric permittivity of free space. In a
dielectric medium the polarization density is given by the macroscopic sum of the electric
dipole moments induced by E. The relation between B and H is given by

B = µ0H+ µ0M, (2.3)
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where M is the magnetization density and µ0 is the magnetic permeability in free space.
In an approximately linear, nondispersive, homogeneous and isotropic dielectric material
the vectors fields P and E can be assumed to be everywhere in time and space parallel
and proportional, so that

P = ε0χE, (2.4)

where χ is the electrical susceptibility. Inserting Eq. 2.4 into Eq. 2.2 gives

D = εE , where ε = ε0(1 + χ). (2.5)

Here, ε is the electric permittivity of the material. Equivalent considerations for the
magnetic relation gives B = µH, where µ is the magnetic permeability of the material.
However, considering a material like diamond which is transparent for visible light the
ratio µ/µ0 has a value of about 1.5× 10−5 [Hec16, p. 143] and thus the approximation
µ = µ0 may be used. With these assumptions Eq. 2.1 can be rewritten as

∇×B = µ0ε
∂E

∂t
(2.6)

∇×E = −∂B
∂t

∇ ·E = 0

∇ ·B = 0.

It can be derived that E and H satisfy the wave equation [Hec16, p. 98]

∇2E− 1
c2
∂2E

∂t2
= 0 (2.7)

∇2B− 1
c2
∂2B

∂t2
= 0,

where the Laplace operator∇2 is acting on each component of E andB so that both vector
equations Eq. 2.7 are each represented by three scalar equations. In Cartesian coordinates
this yields for the electric field1 E = Exx̂+ Eyŷ+ Ezẑ, with the unit vectors x̂, ŷ, ẑ in
x− y− z direction, the following equations [Hec16, p. 99]:

∂2Ex
∂x2 +

∂2Ex
∂y2 +

∂2Ex
∂z2 −

1
c2
∂2Ex
∂t2

= 0 (2.8)

∂2Ey
∂x2 +

∂2Ey
∂y2 +

∂2Ey
∂z2 −

1
c2
∂2Ey
∂t2

= 0

∂2Ez
∂x2 +

∂2Ez
∂y2 +

∂2Ez
∂z2 −

1
c2
∂2Ez
∂t2

= 0 .

1For B these equations have the same form.
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The speed c of the electromagnetic wave in the material is given by

c =
1
√
εµ0

. (2.9)

The ratio of the speed of the wave in free space c0 to that in the nonmagnetic material is
defined as the refractive index:

n =
c0
c

=
√
ε

ε0
=
√

1 + χ , where c0 =
1

√
ε0µ0

. (2.10)

The quantities ε
ε0

and 1+χ are called the relative permittivity and the dielectric constant,
respectively.

2.1. Monochromatic electromagnetic waves in dielectric
media

For the special case of a monochromatic electromagnetic wave in an optical medium all field
components are harmonic function of time t with the same frequency νf . The function
for the electric field E(r, t) and the magnetic flux density B(r, t) of a monochromatic
electromagnetic wave with a complex amplitude propagating in an optical medium in this
case can be written as [ST19, p. 162]

E(r, t) = <[E(r) exp(jωt)], where ω = 2πνf (2.11)

B(r, t) = <[B(r) exp(jωt)],

where E(r) and B(r) define the complex amplitude vectors for the electric field and
magnetic flux density, respectively. Inserting Eq. 2.11 into Eq. 2.6 gives

∇×B(r) = jωµ0εE(r) (2.12)

∇×E(r) = −jωB(r)

∇ ·E(r) = 0

∇ ·B(r) = 0.

Further, substituting Eq. 2.11 into the wave equation Eq. 2.7 yields the Helmholtz equa-
tions

∇2E(r) + k2E(r) = 0 (2.13)

∇2B(r) + k2B(r) = 0,

where k is given by

k =
ω

c
= ω
√
εµ0 = nk0 , where k0 =

ω

c0
. (2.14)
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In Cartesian coordinates considering the complex amplitude of an electric field E(r) =

Ex(r)x̂+Ey(r)ŷ+Ez(r)ẑ, Eq. 2.13 can be written out as

∂2Ex(r)
∂x2 +

∂2Ex(r)
∂y2 +

∂2Ex(r)
∂z2 + k2Ex(r) = 0 (2.15)

∂2Ey(r)
∂x2 +

∂2Ey(r)
∂y2 +

∂2Ey(r)
∂z2 + k2Ey(r) = 0

∂2Ez(r)
∂x2 +

∂2Ez(r)
∂y2 +

∂2Ez(r)
∂z2 + k2Ez(r) = 0.

2.1.1. Transverse electromagnetric (TEM) plane wave

A monochromatic plane wave can be defined with a wave vector k where the complex
amplitude vectors of Eq. 2.11 are given by [ST19, p. 165]

E(r) = E0 exp(−jk · r) (2.16)

B(r) = B0 exp(−jk · r),

where the complex envelopes E0 andB0 are constant vectors. Provided that the magnitude
of k is k = nk0 the Helmholtz equation Eq. 2.13 is satisfied. Inserting2 Eq. 2.16 into
Eq 2.12 it can be derived that the following conditions for B0 and E0 must hold to satisfy
Maxwell’s equations [ST19, p. 165]:

k×B0 = −ωµ0εE0 (2.17)

k×E0 = ωB0. (2.18)

From Eq. 2.17 it follows that E is perpendicular to k and also to B and Eq. 2.18 shows
that B is perpendicular to k and E. Thus, the electric field E(r), the magnetic flux density
B(r) and the wave vector k are mutually orthogonal, thus the vectors of E and B lie in a
plane normal to the propagation direction k. This defines the propagation of a transverse
electromagnetic (TEM) wave [ST19, p. 165].
The flow of electromagnetic power is defined by the Poynting vector which in this case

can be written as [ST19, p. 155]

S =
1
µ0

E×B. (2.19)

Inserting Eq. 2.11 into Eq. 2.19 it can be derived that the time averaged Poynting vector
〈S〉 is

〈S〉 = <[S] , where S =
1

2µ0
E×B∗. (2.20)

The average in Eq. 2.20 is taken over times, which are long in comparison of an optical

2For a general plane wave X = X0e
j(k·r−ωt) the relation for the divergence ∇ ·X = jk ·X and for the

curl ∇×X = jk×X can be derived in this case.
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cycle. For example, for a laser with wavelength3 of λ = 532 nm this would be4 about 1.8 fs.
Further, another constraint for the time averaging is that it should be short to other times
of interest5. The vector S may be defined as the complex pointing vector and the optical
intensity I is the magnitude of the vector <[S]. By inserting Eq. 2.16 into Eq. 2.20 and
using the relation of Eq. 2.17 the intensity in this case is calculated by

I =
k

2µ0ω
|E0|2 =

cε

2 |E0|2 =
1
2η |E0|2. (2.21)

Here for the relations on the right hand side Eq. 2.14 has been used and η =
√

µ0
ε is the

impedance for a nonmagnetic material [ST19, p. 165]. It should be mentioned that the
introduced plane wave is an idealization which cannot really exist in this form. It is defined
everywhere in space and at all times and has a constant intensity everywhere in space.
These assumptions corresponds to an indefinite power. However, the derived formulae are
useful for the approximations of real laser beams, which are going to be discussed in the
following section.

2.1.2. Gaussian beam

Using the previously defined assumptions for the medium and considering further a plane
wave given as by Eq. 2.16 propagating in z-direction, which is modulated by a scalar
complex envelope A(r) yields

E(r) = E0A(r) exp(−jkz) , where E0 = E0xx̂+E0yŷ+E0zẑ, (2.22)

where the components of E0 are defined in Cartesian coordinates. Assuming that A(r)
varies slowly with respect to z, which causes a change of

∆A(r) = ∂A(r)
∂z

∆z

and considering a distance of a wavelength ∆z = λ it is assumed that

∆A(r)� A(r).

This inequality considering complex values applies to the magnitudes for the real and the
imaginary part separately [ST19, p. 48]. Further, this assumption gives the approximation

∂A(r)
∂z

� kA(r) , where k =
2π
λ

. (2.23)

Also the derivative ∂A(r)
∂z must vary slowly within the distance of one wavelength

3The wavelength λ is connected to the magnitude of the wave vector by λ = 2π/k.
4The calculation done in this case is T = λ/c0 where c0 is the speed of light in free space.
5The rise and fall time of a fast photodiode should be short enough to detect the temporal change of a
time varying signal.
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∂2A(r)
∂z2 � k ∂A(r)∂z which causes the inequation

∂2A(r)
∂z2 ≪ k2A(r) . (2.24)

Inserting Eq. 2.22 into Eq. 2.13 gives the conditions for a paraxial Helmholtz equation.
Neglecting terms with ∂2A(r)

∂z2 this equation becomes:

∂2E0xA(r)
∂x2 +

∂2E0xA(r)
∂y2 − j2k∂E0xA(r)

∂z
= 0 (2.25)

∂2E0yA(r)
∂x2 +

∂2E0yA(r)
∂y2 − j2k∂E0yA(r)

∂z
= 0

∂2E0zA(r)
∂x2 +

∂2E0zA(r)
∂y2 − j2k∂E0zA(r)

∂z
= 0.

A Gaussian beam with the following solution satisfies the paraxial Helmholtz equation of
Eq. 2.25:

E(r) = E0A(r) exp(−jkz) (2.26)

E0 = E0

(
−x̂+

x

z + jzR
ẑ
)

A(r) = jzR
q(z)

exp
(
−jk ρ2

r

2q(z)

)
, where ρ2

r = x2 + y2 and q(z) = z + jzR. (2.27)

Here zR has been chosen to be a constant with a positive real value.

The amplitude and phase of the complex envelope can be separated, by defining the
complex function 1/q(z) in terms of two new real functions R(z) and W (z), such that:

1
q(z)

=
1

z + jzR
=
z − jzR
z2 + z2

R

=
1

z +
z2
R
z

− j

zR + z2
zR

=
1

R(z)
− jλ

πW 2(z)
. (2.28)

which gives the following relation:

W (z) = W0

√
1 +

(
z

zR

)2
, where W0 =

√
λzR
π

and λ =
2π
k

(2.29)

R(z) = z

(
1 +

(
zR
z

)2
)

.

Using the following relation

g =
j

z + jzR
=

zR
z2 + z2

R

+ j
z

z2 + z2
R

(2.30)

|g| = 1√
z2 + z2

R

=
1
zR

W0
W (z)

ζg(z) = arg(g) = atan2
(

z

z2 + z2
R

, zR
z2 + z2

R

)
= arctan

(
z

zR

)
, where zR > 0,
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(a) Intensity (b) beam radius

(c) radius of curvature (d) Gouy effect

Figure 2.1.: Illustration of properties which describe the shape of a Gaussian beam given by Eq. 2.32.
The Intensity profile in (a) has been calculated with Eq. 2.33. With the formulae in
Eq. 2.29 the beam radius shown in (b) and the radius of curvature in (c) have been
calculated. The function for the Gouy effect illustrated in (e) is given by Eq. 2.30.

the prefactor jzR
q(z) of A(r) in Eq. 2.26 can be expressed by

jzR
z + jzR

=
W0
W (z)

exp(jζg(z)). (2.31)

With these definitions the complex envelope A(r) becomes, using cylindrical coordinates
(Appendix A.1)

A(r) = W0
W (z)

exp
(
− ρ2

r

W 2(z)

)
exp

(
−jk ρ2

r

2R(z) + jζg(z)

)
. (2.32)

It can be shown that a monochromatic electromagnetic wave (Eq. 2.11) with a complex
amplitude vector for the electric field E(r) of Eq. 2.26 satisfies the Maxwell’s equations
Eq. 2.12 by considering the paraxial approximation of a spherical wave [ST19, p. 166].
Further, due to the assumptions that A(r) varies only slowly with respect to z, this
paraxial electromagnetic wave can be locally approximated by a TEM plane wave [ST19,
p. 169]. With this assumptions similar to the calculation of Eq. 2.21 the intensity of a
Gaussian beam may be calculated by:

I(ρr, z) = I0

(
W0
W (z)

)2
exp

(
− 2ρ2

r

W (z)2

)
, where I0 =

cε|E0|2

2 . (2.33)

To summarize the previous results, the electric field for a monochromatic Gaussian beam
given by Eq. 2.11, Eq. 2.22, Eq. 2.26 and Eq. 2.32 can be expressed by

E(r, t) = <
[
E0

W0
W (z)

exp
(
− ρ2

r

W 2(z)

)
exp

(
−jk ρ2

r

2R(z) + jζg(z)

)
exp(j(ωt− kz)

]
.

(2.34)
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The derived functions in Eq. 2.32 describes particular properties of a Gaussian beam
[ST19, p.79]. The intensity profile given by Eq. 2.33 yields a Gaussian function in the
transverse plane at any constant z value as illustrated for z = 0 in the first plot of
Fig. 2.1a. In this context it should be mentioned that a normalized6 Gaussian function
centered around the zero position can be defined by f(ρr) = exp

(
− ρ2

r
2σ2
r

)
, where σr is

know as the standard deviation or RMS width. Comparing this definition with Eq. 2.33
shows that W (z) which in context of laser physics is known as the beam radius (or beam
width) is twice the standard derivation. By considering Eq. 2.29 it is seen that W (z) as
illustrated in Fig. 2.1b has a minimum value at W (0) = W0. This location is called the
beam waist, the value W0 is called the waist radius and 2W0 is named the spot size. The
second plot of Fig. 2.1a shows the normalized intensity on the beam axis ρr = 0. The
illustrated intensity is maximum at the position of the beam waist z = 0 and is reduced to
half of the maximum intensity at a position ±zR which is called the Rayleigh range. Given
by Eq. 2.29 the beam radius at this position is W (zR) =

√
2W0, this radius correspond to

an area which is doubled at zR compared to the area at the beam waist. In this context the
range −zR < z < zR is known as the depth-of-focus, which has a value7 of 2zR = 2πW 2

0 /λ

and therefore is directly proportional to the area πW 2
0 and inversely proportional to the

wavelength. As indicated in Fig. 2.1b for large values of z, W (z) increases linear with
z represented by the function W (z) ≈ W0

zR
z which is illustrated by the blue dashed line.

The value8 θd = W0
zR

= λ
πW0

describes that the beam diverges as a cone with half angle θd.
The angular divergence of the beam is 2θd and thus proportional to the wavelength and
inversely proportional to the spot size. Given by Eq. 2.34 the phase of the Gaussian beam
ϕgauss is represented by

ϕgauss = kz +
kρ2

r

2R(z) − ζg(z). (2.35)

The phase shift ζg(z) is called the Gouy effect. This phase retardation is given by Eq. 2.30
and ranges from −π/2 at z = −∞ to π/2 at z = ∞ as illustrated in Fig. 2.1d. An
intuitive explanation for this effect can be derived by considering the transverse spatial
confinement of a Gaussian beam, which due to the uncertainty principle causes a spread in
the transverse momenta and hence a shift in the expectation value of the axial propagation
constant [FW01]. The term kρ2

r
2R(z) in Eq. 2.35 expresses the wavefront bending. Since ζz(z)

and R(z) are slowly varying functions, they can be approximated as constant at points
within the beam radius on each wave front, which gives z + ρ2

r/2R = nλ+ ζλ/2π where
n in an integer. This equation yields a paraboloidal surface with radius of curvature R.
Therefore, R(z) given by Eq. 2.29 and illustrated in Fig. 2.1c determines the radius of
curvature of the wavefront at position z along the beam axis. At z = 0, R(z)) becomes
infinite which represents planar wave front. The minimum value is reached at z = zR to
a value of R(z) = 2zR. For z > zR the radius subsequently increases and for z � zR ,

6Such that the maximum value is one.
7Using the relation of Eq. 2.29.
8Using the relation of Eq. 2.29.
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where R(z) ≈ z the wavefronts are approximately the same as those of spherical waves.

(a) Electric field around the beam waist at z = 0

(b) Electric field around the Rayleigh range z = zR = 2362.1 µm

Figure 2.2.: Intensity calculated with Eq. 2.33 and electric field (at y = 0, t = 0) calculated with
Eq. 2.36 and Eq. 2.34 of a monochromatic Gaussian beam with a wavelength of λ =
532 nm and a waist radius of W0 = 20 µm at (a) in the range of beam waist and in (b)
around the Rayleigh range z = zR = 2362.1 µm. The arrows indicated the direction of
the electric field vectors. Since the electric field in y-direction is zero in this case the
magnitude of the normalized electric field vector is given by

√
E2
x+E2

z
E0

.

It should be mentioned that the validity of the paraxial approximation for a Gaus-
sian beam depends on the beam waist W0 and wavelength λ under consideration, the
assumption is justified down to beam waists 5–10 times the wavelength [VT98]. To give
an illustrative description of this approximation a Gaussian beam with a wavelength of
λ = 532 nm and a waist radius of W0 = 20 µm will now be discussed. Assuming that the
electric field only varies in x and z as discussed before by Eq. 2.26 the complex envelope
E0 is given by

E0 = E0

(
−x̂+

x

z + jzR
ẑ
)

. (2.36)
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Inserting Eq. 2.36 into Eq. 2.34 the electric field can be calculated. Considering the field
at a time t = 0 and at y = 0 a two-dimensional vector plot of the three dimensional time
dependent field as illustrated in Fig. 2.2 can be visualized. It can be seen from this plots
that the z component of the electric field is much smaller than the x component. And
therefore the approximation used for the intensity calculation of Eq. 2.33 introduces only
a small error by neglecting the Ez component in the calculation.

Power of a CW laser The power of a continuous wave (CW) laser can easily be
measured with technical devices like a photodiode or a thermal sensor. Considering a
power measurement9 of a laser with a Gaussian beam profile and a sensor area with the
radius ρr,sen in the transverse plane of the beam, the integral of the right hand side of
Eq. 2.33 in cylinder coordinates gives [ST19, p. 78]

P (z) =
∫ 2π

0

∫ ρr,sen

0
I0

(
W0
W (z)

)2
exp

(
− 2ρ2

r

W (z)2

)
ρrdρrdθ (2.37)

=
I0πW

2
0

2

(
1− exp

(
−

2ρ2
r,sen

W (z)2

))
.

For a sensor size of 1.5 W (z) about 99 % of the power from the laser beam are col-
lected. Therefore if the sensor area is bigger than this value the power is approximately
P =

I0πW 2
0

2 . By knowing the value of P the intensity of Eq. 2.33 may be written as:

I(ρr, z) =
2P

πW (z)2 exp
(
− 2ρ2

r

W (z)2

)
. (2.38)

2.1.3. Polarization of a TEM wave

The previously discussed TEM wave solution for Maxwell’s equation allows also that
the electromagnetic field is polarized in various states [ST19, p. 199]. In the following
discussion it will be assumed that the TEM propagates in z-direction. The electric field
vector of the illustrated Gaussian beam illustrated in Fig. 2.2 has a zero value component
in the y-direction and therefore the three-dimensional vector field can be illustrated in a
two-dimensional plot (Fig. 2.2). Such a polarization state of a TEM wave is called linearly
polarized in x-direction [ST19, p. 200]. However, this is just a special case of a polarized
TEM wave. In general the electric field of a monochromatic TEM wave propagating
in z-direction can have various types of polarization lying in the x-y plane. This may
be expressed by the complex values E0x and E0y of the complex envelope E0 and the
definition of the Jones vector [ST19, p. 203]

J =

 E0x

E0y

 =

 |E0x|ejϕx

|E0y|ejϕy

 , where ϕx = arg(E0x), ϕy = arg(E0y). (2.39)

9Assuming the laser is is aligned in the center of a round shaped sensor
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The amplitudes are defined by the total magnitude of the monochromatic wave |E0|2 =

|E0x|2 + |E0y|2 and the total intensity of the wave considering Eq. 2.21 is

I =
cε

2 |E0|2 =
cε

2 (|E0x|2 + |E0y|2). (2.40)

Interference of Gaussian beams To investigate the interference of Gaussian beams
in the context of this work, the superposition principle for two monochromatic Gaussian
beams, which both propagate in z-direction and have a beam waist with equal waist radii,
at almost same position r in space are considered. However, using the approximation
of the Gaussian beam as a TEM both beams can have arbitrary Jones vectors J1 and
J2. Further, a small difference of the beam waist position in z-direction is allowed, this
distance should be such small that the value of the beam radius at each position of the
beams is still nearly the same. Under such conditions the intensity of the superimposed
beams may be calculated with Eq. 2.33 and the maximum intensity is given by:

I0 =
cε

2 (|E0x1 ±E0x2 |2 + |E0y1 ±E0y2 |
2). (2.41)

Using polar form the terms of Eq. 2.41 can be written as

|E0x1 ±E0x2 |2 = (|E0x1 |ejϕx1 ± |E0x2 |eϕx2 )(|E0x1 |e−jϕx1 ± |E0x2 |e−jϕx2 ) (2.42)

|E0y1 ±E0y2 |
2 = (|E0y1 |e

jϕy1 ± |E0y2 |e
ϕy2 )(|E0y1 |e

−jϕy1 ± |E0y2 |e
−jϕy2 )

and writing out the terms on the right hand side of Eq. 2.42 gives10

|E0x1 ±E0x2 |2 = |E0x1 |2 + |E0x2 |2 ± 2|E0x1 ||E0x2 | cosφx, where φx = ϕx1 −ϕx2 (2.43)

|E0y1 ±E0y2 |
2 = |E0y1 |

2 + |E0y2 |
2 ± 2|E0y1 ||E0y2 | cosφy, where φy = ϕy1 −ϕy2 .

If |E0x1 | = |E0x2 | = |E0| and |E0y1 | = |E0y2 | = 0 the equation for the intensity is reduced
to

I = cε|E0|2(1± cosφx). (2.44)

It should be noted that the intensity for a single wave with |E0x1 | = E0 would be I =
cε
2 |E0|2. Thus the intensity can vary between a value of zero and four times the intensity
of a single beam, depending on the value of phase difference φx. In the approximation
for the calculation of the interference it is also assumed that the effect of the Gouy phase
shift can be neglected. Considering the first terms of a Taylor series the Gouy phase in
Eq. 2.30 is ζg(z) ≈ z/zr . Considering the example of a Gaussian beam with waist radius
W0 = 20 µm and Rayleigh range zR = 2.36 mm as illustrated in Fig. 2.2 the shift in the
range of one wavelength λ = 532 nm is just ζg(λ) = 0.00022. This is corresponding to
a distance of λζg(λ)

2π = 12 pm. This value is much smaller than λ and therefore the Gouy
phase may be neglected and the phase varies in good approximation with φ = 2π∆z

λ .
10Using the relation cosx = 1

2 (e
jx + e−jx).
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Matrix representation of polarization devices Considering a linear system under
the assumption that superposition is valid, optical elements, which modify the polarization
state of a Jones vector Jin to a state Jout can be expressed by a 2× 2 Jones matrix T,
which can be used to describe many different optical elements. The formulae for the optical
elements which are used in the experimental setup of this work will be introduced in the
following sections. The action of cascaded optical systems can be determined by using
matrix multiplication. In this work the convention is used that the positive z-direction is
pointing in the propagation direction of the beam which is given by the wave vector k of a
TEM wave and further the convention is used that the x− y− z axis form a right handed
coordinate system. An illustrated of this convention is illustrated in Fig. 2.3a.

Linear polarizers and polarizing beamsplitter Eq. 2.45 gives the Jones matrix
of a linear polarizer (LP), which is eliminating the y component and transmits a wave
polarized along the x-direction [ST19, p. 205]. The same matrix can be used to describe
a polarizing beamsplitter (PBS), which is oriented in a way that it is transmitting light
polarized in x-direction and a similar matrix for the PBS describes the part of light, which
is reflected and polarized in y-direction:

TLP ,PBST =

 1 0
0 0

 TPBSR =

 0 0
0 1

 . (2.45)

Wave retarders The Jones matrix TR leaves the x component of the incoming Jones
vector unchanged and is delaying the y component by the phase Γ:

TRET =

 1 0
0 e−iΓ

 . (2.46)

The axes which does not retard the wave is called the fast axes (which is in this case
in x-direction). When Γ = π/2 the retarder is called a quarter-wave retarder which can
convert a linear polarized state into circular and vice versa. When Γ = π the retarder is
called a half-wave retarder which can be used to change the plane of linear polarized light
while remaining linear polarization [ST19, p. 206].

Rotation of a Jones matrix For a rotation in the x-y plane around the z-axes the
following rotation matrix can be used [ST19, p. 206]:

R(ΘR) =

 cos ΘR sin ΘR

− sin ΘR cos ΘR

 (2.47)

Considering the convention used in this work as (illustrated in Fig. 2.3a) the rotation
of an optical element which is described by a Jones matrix can be carried out by using
R(ΘR)TR(−ΘR). In this context a rotated half-wave retarder in combination with a
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(a) PBS with half-wave retarder (b) electric field in front of PBS

Figure 2.3.: (a) Sketch of a half-wave retarder in combination with a PBS. (b) Electric field compo-
nents after the half-wave retarder for the case of a linear incoming wave which is linear
polarized in x-direction (in this particular case E0x are E0y have only real values).

PBS can be used to control the amount of an electromagnetic wave which is transmit-
ted/reflected at a PBS. To explain this with an example a Gaussian beam which can be
approximated as a TEM wave and has a sufficient smaller beam diameter than the size of
the PBS is considered. Using the setup illustrated in Fig. 2.3a and considering a TEM wave
linear polarized in x-direction with the Jones vector Jin, which is propagating through a
half-wave plate, the wave after the wave retarder will still be linear polarized. However, the
wave can now also have non-zero field components in y-direction and the amount will de-
pend on the angle ΘR about which the half-wave retarder is rotated. The resulting values
for this case are show in Fig. 2.3b and are calculated with R(ΘR)TREThalfR(−ΘR)Jin,
where TREThalf is the Jones matrix of the half-plate retarder Eq. 2.46. Considering the
Jones matrix of a PBS (Eq. 2.45) the TEM wave will be separated into a transmitted
(x-direction) and a reflected part (y-direction). Since the intensity of the TEM wave is
proportional to the square of the electric field, the PBS in combination with a rotatable
half-wave retarder can be used to reduced the intensity/power of a Gaussian beam to a
desired value by adjusting the angle ΘR.

2.2. Reflectance and absorption of electromagnetic
radiation

The previously discussed propagation of an electromagnetic wave did not cover the reflec-
tion of a wave which may occur when the wave meets the boundary of a new material.
Also, it has not been considered that light may be party absorbed by propagation through
a solid. These topics will now be discussed by assuming that the wavelength λ of a TEM
wave is much bigger than the range of the microscopic structures of a single crystalline ma-
terial. For example, this is a valid assumption for a laser with a wavelength of λ = 532 nm
in comparison to the microscopic dimensions of a single crystal diamond which ranges over
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a few Å.

A phenomenological approach to describe the absorption of light in a linear media can
be carried out by considering the electric susceptibility Eq. 2.4 to be a complex value
[ST19, p.170]

χ = χ′ + jχ′′. (2.48)

For a monochromatic wave as discussed in Section 2.1 the same equation can be used
considering the Eq. 2.48. However, now the wavenumber k (Eq. 2.14) has a complex value

k = ω
√
εµ0 = k0

√
1 + χ = k0

√
1 + χ′ + jχ′′. (2.49)

Expressing k = βk − j 1
2αk in terms of a real and imaginary part yield

k = βk − j
1
2αk = k0

√
1 + χ′ + jχ′′. (2.50)

Considering the propagation of the wave in z-direction it can be seen by considering
Eq. 2.16 and Eq. 2.34 that the electric field now contains the factor

exp(−jkz) = exp(−jβkz) exp(−1
2αkz),

which indicates that for αk > 0 the amplitude of the electric field will decrease while the
wave propagates in z-direction. The intensity of a TEM wave Eq. 2.21 is proportional
to |E0|2 and thus the intensity will decease by a factor exp(−αkz) while propagating in
z-direction. The value of αk is known as the absorption coefficient11 [ST19, p. 171] and
the related value ζ = 1/αk is called the penetration depth. The exponential decay of
the intensity described by these values can also be connected to Beer’s law, which will be
discussed in the next section. The value of βk may be connected to the refractive index
βk = nk0, which defines the phase velocity c = c0/n. Inserting into Eq. 2.50 gives

n− j 1
2
αk
k0

=
√
ε

ε0
=
√

1 + χ′ + jχ′′. (2.51)

This equation relates the complex value of the electric susceptibility to the refractive index
and the absorption coefficient. The impedance Eq. 2.21 can also be connected with the
complex susceptibility

η =

√
µ0
ε

=
η0√

1 + χ
. (2.52)

It should be noted that χ, k, ε and η are complex quantities, whereas αk, βk and n have
real values.

Considering boundary conditions given by Maxwell’s equation it can be derived that

11Also called the attenuation coefficient or extinction coefficent
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the reflection of a TEM wave can be described by the Jones matrix [ST19, p. 210]:

Tr =

 rx 0
0 ry

 . (2.53)

For the special case of a TEM wave reflected12 at normal incident it can be derived that:

ry = −rx =
η2 − η1
η2 + η1

. (2.54)

where η1 is the complex impedance of the medium from which the incident wave is coming
and η2 is the complex impedance of the medium at which boundary the incident wave
is reflected. The reflectance R which describes the ratio between the incoming and the
reflected wave intensity is given in this case by [ST19, p. 210]

R =

(
η2 − η1
η2 + η1

)2
. (2.55)

For materials where the absorption coefficient is nearly zero Eq. 2.55 can be written as

R =

(
n2 − n1
n2 + n1

)2
. (2.56)

It should be mentioned that for the case of an arbitrary incident angle the polarization
state is important for the value of the reflectance/transmission and can be calculated for
dielectric materials by considering Fresnel’s equation. With this knowledge by choosing
materials with suitable impedance optical devices like a PBS (Eq. 2.45) can be designed
for a particular wavelength range. However, the reflectance of an incident wave with an
arbitrary angle will not be discussed further in this work. Addition information to this
topic can be found in textbooks [ST19, chaper 6.2] [Hec16, chaper 4.6].

2.3. Pulsed laser

When electromagnetic radiation is absorbed by a material it can be thought of as an energy
source inside the material. However, although driven by the incident radiation, this source
can develop an own dynamics depending on the electronics and lattice response [Sch10,
p.23]. Considering quantum mechanics, electromagnetic radiation interacts with matter
only in portions of whole quanta. Here the angular frequency ω and intensity I corresponds
to the flux I

}ω of photons of energy }ω, where } is the reduced Planck’s constant. However,
the photon numbers of pulsed lasers are enormous and classical concepts are generally
adequate to describe beam-solid interaction phenomena [AB13, p. 6].
If the repetition rate fR = 1/Tp, with Tp the period time of one pulse to the next one,

of a pulsed laser is known13, the energy per pulse Ep can be computed by measuring the
12Considering the convention for the coordinate system used in this work (as illustrated in Fig. 2.3a)
13This can be measured for example with an oscilloscope in combination with a sufficiently fast photodiode.
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average power Pavg with a thermal sensor and dividing the result by fR. The pulse energy
Ep is the optical power P (t) integrated over time:

Ep =
∫ Tp

0
P (t)dt. (2.57)

The temporal shape of a laser pulse with a pulse length of about 1 ns can be measured
with a sufficiently fast photo diode in combination with an oscilloscope:

P (t) = Ep
U(t)∫ Tm

0 U (t′)dt′
. (2.58)

where U(t) is the temporal signal measured in Volt and Tm is the time span measured with
the oscilloscope. The time span Tm should be sufficiently long to cover the full rise and fall
of the signal in relation to a constant initial value. The division by the integral in Eq. 2.58
is carried out to normalize the function in a way that the formulation of Eq. 2.57 holds. A
laser with a narrow central optical bandwidth and pulse lengths in the nanosecond range
may be considered to be a quasi-CW case. Further, considering a Gaussian beam profile
with intensity I described by Eq. 2.38 is meeting the surface of an absorbing material
under normal incident at position z = 0 and using Beer’s law gives [Sch10, p. 30]

∂Iz(ρr, z, t)
∂z

= −1
ζ
Iz(ρr, z, t). (2.59)

Assuming that the Rayleigh range zR of a Gaussian beam is much larger than the pene-
tration depth ζ or the dimension of the medium in propagation direction, the value of the
beam radius may be approximated as a constant value W (z) = W . Considering Eq. 2.38
and Eq. 2.59 the z dependent intensity inside the medium in this case may be written as

Iz(ρr, z, t) = I0(t, ρr)(1−R) exp(−z/ζ)ΘH(z), (2.60)

where I0(ρr, t) =
2P (t)
πW 2 exp

(
−2ρ2

r

W 2

)
.

Here R is the reflectance of the surface and it is assumed that no reflection inside the
material occurs. It should be noted that the Heaviside step function ΘH(z) has been
used here because Iz(ρr, z, t) has no physical meaning for z < 0. The z depending fluence
considering a single laser pulse (units J/m2) is the time integration of Eq. 2.60:

Fz(ρr, z) =
∫ TR

0
Iz(ρr, z, t)dt =

(1−R)2Ep
πW 2 exp

(
−2ρ2

r

W 2

)
exp(−z/ζ) (2.61)

Considering a material with a cylindrical shape of thickness d and radius R0 and re-
garding ∂Iz(ρr,z,t)

∂z and ∂Fz(ρr,z)
∂z as the power density ΦP (ρr, z, t) and the energy density

ΦE(ρr, z), respectively, the absorbed energy per pulse in the material can be calculated
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by the following spatial and temporal integration:

Eabs =
∫ TR

0

∫ d

0

∫ 2π

0

∫ R0

0
ΦP (ρr, z, t)ρrdρrdθdzdt (2.62)

=
∫ d

0

∫ 2π

0

∫ R0

0
ΦE(ρr, z)ρrdρrdθdz

=
(1−R)2Ep
ζπW 2

∫ d

0

∫ 2π

0

∫ R0

0
exp

(
−2ρ2

r

W 2

)
exp(−z/ζ)ρrdρrdθdz.

What is neglected in this formula is that the penetrating radiation can also be reflected at
the back side of the material z = d and then at the front z = 0 again an so on. However,
this may be considered to be a valid assumption if ζ � d or when the reflectance inside
the material at the boundaries is small.
Solving the integrals in Eq. 2.62 gives:

∫ 2π

0

∫ R0

0
exp

(
−2ρ2

r

W 2

)
ρrdρrdθ =

W 2π

2

(
1− exp

(
−2R2

0
W 2

))
, (2.63)∫ d

0
exp(−z/ζ)dz = ζ(1− exp(−d/ζ)).

2.4. Radiation pressure and remarks on quantum optics

The linear momentum, which is carried by an electromagnetic wave causes a radiation
pressure on objects from which the wave is reflected or absorbed. This can be described
in the context of considering a continuous wave described by Maxwell’s equations [Hec16,
p. 125], as well as considering quantum effects where the electromagnetic wave consist of
photons with discrete energies [Hec16, p. 127]. However, describing the radiation pressure
by classical electromagnetic theory is a quite extensive task and would give no additional
insights for the needs of this work. Also, the quantum theory is in accordance with the
experimental observation of the Compton effect, which cannot be described by the classical
theory of electromagnetism [Hec16, p. 127]. Therefore, in this work an explanation for
the radiation pressure will only be discussed considering a quantum mechanical effect. In
this context special relativity theory describes the relation between mass m, energy E and
momentum p of a particle by [Hec16, p. 127]:

E =
√
(cp)2 + (mc2). (2.64)

A photon has the properties:

m = 0, E = cp = h̄ω and c = λνf where ω = 2πνf . (2.65)

Here h̄ is the reduced Planck’s constant. The linear momentum associated with a photon
in a plane wave with wave vector k can be described by p = h̄k, where the magnitude
|p| = p is given in Eq. 2.65 [ST19, p. 452]. It should be mentioned that a photon can also
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possess an angular momentum. However, this property is not investigated in this work
and will not be discussed further.

Considering time spans which are sufficiently longer than an optical circle the intensity
of a linearly polarized TEM wave can be described by Eq. 2.21. For a TEM wave with a
wave vector direction perpendicular to a plain crystal surface the radiation pressure may
be expressed by:

Pa =
Ia
c

and Pr = 2Ir
c

. (2.66)

where Pa is the radiation pressure due to absorbed photons and Pr the radiation pressure
due to reflected photons. It should be noted that the intensity discussed in the context of
the classical theory must consist of a discrete amount of photons, which may be expressed
as I = Np h̄ω

∆tA , where Np is an integer and describes the amount of photons that cross the
area A in a time span ∆t. However, in cases where Np is a large number, this effect can
be neglected.
Considering quantum optics the fascinating experimental result has been reported that

also interference effects for single photon experiments can be observed. A quite illustrative
introduction to this topic is given by C. Braig et al. [BZKW03]. Following these experi-
mental results it should be clarified that the intuition which may be build on the theory of
Maxwell’s equation, where we may think of electromagnetic radiation as continuous waves
and describe interference as a superposition of waves is misleading. Instead, the underly-
ing concept of the interference has been proven to be a kind of statistical process, which is
in contradiction with observations of our macroscopically observable reality. Nevertheless,
the interference effect which can be explained by quantum optics lead to the same result
which have been derived by Eq. 2.41, considering a laser beam which consist of a enormous
amount of photons.
In the experimental setup which is used in this work, and which will be discussed in detail

in Section 5, electromagnetic radiation emitted by lasers will be used. This laser radiation
may be approximated to be nearly monochromatic and the formulae of Section 2.1 can be
used to describe the laser beam propagation. The fundamental principles of a laser will
not be discussed further in this work. However, for the sake of completeness it should be
mentioned that the underlying concept of a laser is strongly related to quantum mechanical
concepts. For further information the interested reader is refereed to [ST19, Chapter 13
and 14]. The detection of the laser intensity will be carried out with a photodiode in this
work, however a detailed description of this detection principle will not be discussed in
is work, but further information is given by [ST19, Chapter 18]. The underlying process
in a photodiode is also a quantum effect, which describes the excitation of electrons by
photons, resulting in a current/voltage which is measurable with an oscilloscope. However,
this kind of measurement is related to different noise sources, which may also be referred
to a quantum effect [ST19, p. 777]. Since the kind of noise is random the signal to noise
ratio of a periodically repeating signal can be reduced by an averaging process, as it will
be further discussed in Section 5. Also it should be mentioned that the ability of laser
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radiation to generate an interference signal depends on coherence effects, which might
have an impact on an interferometer measurement. However, as measurements presented
in Section 5 will show, these effects may be neglected in good approximation in the context
of this work. An introduction to the quite extended topic of optical coherence can be found
in [ST19, Chapter 11].
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3. Thermoelastic interaction of
electromagnetic radiation with matter

When pulsed powerful electromagnetic radiation passes through a Bragg reflector a part
of the pulse energy will be absorbed by electrons and a part of the absorbed energy will
eventually be converted into heat. It may be assumed that the lattice thermalization
mainly takes place in a time span of tens of picoseconds [YWW18] [RPJG+99] [WW17]
[Maa18] [Rau21].
The rapid heating of the reflector causes thermal expansion. If the reflector is sur-

rounded by vacuum, there is an absence of confinement in the direction normal to the
surface. Therefore, considering Newton’s third law, impulsively generated thermal stress
subsequently drives a traveling compression/expansion wave, which is propagating in-
side the solid and will be reflected at the boundaries [TGMT86] [RPJG+99] [SMW+12]
[YWW18]. The following chapter will provide the theoretical concepts to describe the
propagation of such waves using a continuum theory and the assumptions of a local ther-
modynamic equilibrium.

3.1. Linear elasticity considering continuum mechanics

In this section a solid Bragg Reflector will be regarded as a continuum. A continuum may
be regarded as a medium with a geometric configuration in the Euclidean space which
exhibits continuous macroscopic properties. This assumption is suitable when the length
scale of interest is large compared to the mean atomic distance (≈ 1 Å) [GM18, p. 145].
Further, it is assumed that neighboring atoms remain neighboring under the action of any
loading conditions and no geometric discontinuities1 in the solid are present.

Deformation An arbitrary deformation is illustrated in Fig. 3.1a for a two-dimensional
geometry. Assuming that the initial and deformed shape of this geometry can be described
in the same coordinate system, a mathematically relation which maps each point inside the
geometry from an initial to the deformed shape is needed to describe the deformation of the
geometry. For example choosing an arbitrary point inside the geometry as illustrated in
Fig. 3.1a where the initial position of the point is located at r and after the deformation it
moved to r’. The position change r’ = r+u of the point is described by the displacement
vector u. The displacement vector is defined for every other arbitrary point inside the

1Like cracks which can be regarded as an empty space inside the solid.
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solid and thus the displacement vector field can be used to describe the deformation of the
geometry. Of course this displacement vector field can be time dependent and therefore
the displacement field can be used to describe the spatial and temporal change of a solid.
Is should also be noted that the introduced displacement field includes the description of
translation and rotation of the entire geometry.

Infinitesimal strain tensor The displacement vector u in a three-dimensional space
is given by

u =


u
v
w

 ≡ ui, where i = (1, 2, 3). (3.1)

Considering elastic solids with large deformation as illustrated in Fig. 3.1a for a two
dimensional case, the initial and deformed configurations can be significantly different and
a line segment which was a straight line in the initial shape may now be curved. However,
if a line element, much shorter than the radius of curvature of this curve is considered this
will in good approximation still be a straight line in the deformed configuration. Using this
assumptions the deformation of straight lines for a two-dimensional space is illustrated2 in
Fig. 3.1b. The illustrated change of the position in Fig. 3.1b shows a significant difference
between the initial and the deformed position. Such deformations may be investigated
in context of a finite strain theory [HY12]. However, the magnitude of the maximum
displacements investigated in this work is in the nanometer range. Also, the change of the
displacement considering geometrical scales on the micrometer range is in the picometer
range, which gives the condition ∂ui

∂xj
� 1. Therefore, the approximation of infinitesimal

strain theory can be used and the distinction between initial and deformed configurations
can be dropped. The strain tensor under these circumstances may be expressed as [N+85,
p. 105]:

εij =
1
2
(
u∇+ (u∇)T

)
(3.2)

=


∂u
∂x

1
2

(
∂u
∂y +

∂v
∂x

)
1
2

(
∂u
∂z +

∂w
∂x

)
1
2

(
∂v
∂x +

∂u
∂y

)
∂v
∂y

1
2

(
∂v
∂z +

∂w
∂y

)
1
2

(
∂w
∂x + ∂u

∂z

)
1
2

(
∂w
∂y + ∂v

∂z

)
∂w
∂z

 =


εxx εxy εxz

εyx εyy εyz

εzx εyz εzz

 .

The last two expressions are defined in Cartesian coordinates and for the calculation
Eq. A.8 (Appendix A.1) has been used.
To understand the meaning of the normal and shear strain components in Eq. 3.2 it is

helpful to consider the change of distances in the x-y plane given by the displacements
of u=u(x, y), v=v(x, y) and w=0 as illustrated in Fig. 3.1b, in context of the condition
∂ui
∂xj
� 1. The normal strain in a given direction is defined as the change in length per

2This illustration does not refer directly to Fig. 3.1a. For such an illustration the distance change due to
translation would be much bigger.
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(a) deformation (b) strain

Figure 3.1.: Two-dimensional illustrations of (a) an arbitrary deformation and (b) the shearing
and normal strain components.

unit length of a line which was originally oriented in a given direction. The normal strain
is positive if the length of this line increases and negative if it decreases. Considering
the change of length from the initial configuration ABC (Fig. 3.1b) to the deformed and
translated configuration A′B′C ′, the normal strain in x-direction can be derived by [Sad09,
p. 35]:

A′B′ −AB
AB

=
A′B′ − dx

dx
=
dx

√(
1 + ∂u

∂x

)2
+
(
∂v
∂x

)2
− dx

dx
(3.3)

≈
dx
(
1 + ∂u

∂x

)
− dx

dx
=
∂u
∂x

= εxx.

Consistently with small deformation theory higher-order terms are neglected in the ap-
proximation of Eq. 3.3.

The shear strain is associated with two orthogonal directions and is defined as the
change of the angle between two axes compared to an initial right angle. The sign of
the shear strain depends on the coordinate system. Considering small deformations with
α ≈ tan(α) and β ≈ tan(β) referring to Fig. 3.1b, the strain component is

γxy =
π

2 − θ = α+ β ≈
∂v
∂xdx

dx+ ∂u
∂xdx

+
∂u
∂ydy

dy+ ∂v
∂ydy

≈ ∂v
∂x

+
∂u
∂y
⇒ εxy =

1
2γxy. (3.4)

Again in the approximation higher-order terms in the displacement gradients are neglected.
The definition of the shear strain γxy Eq. 3.4 is called the engineering shear strain. How-
ever, the tensor formalism εxy of Eq. 3.2 is defined by one-half the angular change between
orthogonal axes. Both definitions are commonly used and the factor of 2 is an endless
source of confusion [Bow09, p. 24].

By considering a three-dimensional space all quantities of Eq. 3.2 can be derived with
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similar geometrical considerations like the one in Fig. 3.1b [Sad09, p. 36].

Stress tensor Stress describes the internal forces in a solid. The unit of this quantity
is force per area (N m−2). A state of stress is given inside a solid body when one part
exerts a force on a neighboring part. In a volume element two kinds of forces may occur.
First, body forces, which act throughout the element having a magnitude proportional to
the volume of the element. Secondly, forces exerted on the surface of the element, which
are proportional to the area of the surface of the element. To give an illustrative example
which is related to the context of this work the radiation pressure causes by absorption3

may be regarded as a kind of body force and the radiation pressure (Section 2.4) caused
by reflection at a surface4 may be connected to a surface force.

In Fig. 3.2a the forces on the faces of a unit cube in a homogeneous5 stressed body
are illustrated. The force transmitted across each face may be decomposed into three
components. The indices of the stress tensor σij denote the component of a force exerted
by the material outside the cube upon the material inside in a direction j to a face
of the cube which is perpendicular to direction i. For a homogeneous stress the forces
on a opposite side of the faces illustrated in Fig. 3.2a must have the same magnitude
and opposite direction. The components σxx, σyy and σzz are normal stresses the other
elements of the tensor in Eq. 3.5 are shear stresses. The introduced sign convention
gives a tensile stress for positive values of normal components and negative values give
compressive stresses. The assumed statical equilibrium imposes the conditions σij = σji

to avoid a torque [GM18, p. 147]. This relation continues to hold even when the stress
is inhomogeneously, when the body is not in statical equilibrium, and when body forces
(but not body torques) are present [N+85, p. 87]. Defining the traction vector tni , it can
be proven that the components of stress σij form a second rank tensor [N+85, p. 87]

tnj = σijni where σij =


σxx σxy σxz

σyx σyy σyz

σzx σyz σzz

 . (3.5)

The definition of the traction vector is illustrated in Fig. 3.2b. Selecting a small volume
element with a part of its surface being dA within a stressed body and drawing its unit
outer normal vector n = ni perpendicular to dA, the force transmitted across the area
can be denoted by tn = dFr/dA. The superscript n indicates the surface for which ni is
a unit normal vector and the reaction of the element under equilibrium condition to its
surroundings is a force dFr which acts on dA [HEG09, p. 2]. Choosing a small tetrahedron
volume element as shown in Fig. 3.2 formed by three surfaces parallel to the coordinate
planes and one inclined, the traction vector tn is defined by three components tni along

3Considering a penetration depth sufficiently larger than the size of the element
4Considering an extinction length which is very short compared the dimensions of the element.
5A homogeneous stress is given, if the stress is homogeneous throughout the body, all part are in statical
equilibrium, and no body-forces or body-torques are present [N+85, p. 82]
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(a) Forces on the faces of unit cube in a homoge-
neously stressed solid (b) traction vector

Figure 3.2.: (a) Forces on the faces of a unit cube in a homogeneously stressed solid. (b) Illustration
of the traction vector.

the axes of the coordinate system. Noticing that dAi/dA = ni [Bow09, p. 765] and when
the height of the tetrahedron approaches zero, the balance of the forces acting on the
element along the coordinate axes can be used to determine Eq. 3.5. It can be show that
the definition of traction is even valid for the case of non homogeneous stresses, when
body forces acting and when the body is not in statical equilibrium [N+85, p. 87] [HEG09,
p. 3][N+85, p. 88].

With the previously defined quantities stress, strain and displacement it is possible to
give a suitable descriptions of an arbitrary point inside a solid considering small deforma-
tions. In three dimensions the displacement is given by a vector field, each point has a
vector with three components. The strain at an arbitrary position is described by a tensor
field, which can be calculated considering the infinitesimal changes of the displacement in
each direction. The stress may be considered to be a measure for internal forces and is
also given by a tensor field.

Constitutive law, stress-strain relations For an elastic deformation the strain is
directly proportional to the stress. In this work only small deformations are considered
and a linear elastic relation between stress and strain is assumed to be valid. Generally,
a single crystal specimen is anisotropic. The relation between stress and strain using
Einstein summation convention is [N+85, p. 132]

σij = Cijklεkl (3.6)

εkl = Sklijσij .

The elastic stiffness tensor Cijkl and the compliance tensor Sijkl are fourth-rank tensors
that each have 81 components. The second-rank tensors in Eq. 3.6 are symmetric and
therefore the elastic stiffness must have the following symmetries [Bow09, p. 77] [N+85,
p. 131]:

Cijkl = Cklij = Cjikl = Cijlk. (3.7)
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This reduces the number of material constants to 21. The compliance tensor Sijkl has the
same symmetries as Eq. 3.7. Due to the symmetry of the tensors in Eq. 3.6 the stress-
strain relations can be written in a more compact matrix form. Considering Cartesian
coordinates and using the notation 1 → xx, 2 → yy, 3 → zz, 4 → yz, zy, 5 → zx,xz,
6 → xy, yx (for example: c11 ≡ Cxxxx, c12 ≡ Cxxyy, c66 ≡ Cxyxy) the stiffness matrix C
and compliance matrix S can be written as [Bow09, p. 78][GM18, p. 154][HNK] :

σ = Cε (3.8)

ε = Sσ

C =



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66


S =



s11 s12 s13 s14 s15 s16

s12 s22 s23 s24 s25 s26

s13 s23 s33 s34 s35 s36

s14 s24 s34 s44 s45 s46

s15 s25 s35 s45 s55 s56

s16 s26 s36 s46 s56 s66



σ =



σ1

σ2

σ3

σ4

σ5

σ6


ε =



ε1

ε2

ε3

2ε4
2ε5
2ε6


.

Considering the symmetry of a cubic crystal it can be derived that only three independent6

elastic components exist and by choosing the basis vectors perpendicular to the symmetry
planes as illustrated in Fig. 3.3, Eq. 3.8 can be written as [Bow09, p. 82][HNK]:

S =



s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s44


C =



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44


. (3.9)

It can be derived by using matrix inversion that the components of S and C in this case
are related by [GM18, p. 156]

c44 = 1/s44, c11 − c12 = 1/(s11 − s12), c11 + 2c12 = 1/(s11 + 2s12). (3.10)

6The symmetry of the crystal causes comparing with Eq. 3.8 that c11 = c22 = c33, c44 = c55 = c66,
c12 = c13 = c23 = c21 = c31 = c32 and that the remaining components are zero [GM18, p. 156].



3.1. Linear elasticity considering continuum mechanics 33

Figure 3.3.: Miller indices in a cubic crystal. By convention, the directions [100], [010], and [001]
are the x,y and z Cartesian coordinate axis.

It should be noted when solving a particular problem the orientation of a chosen coordinate
system (x, y, z) relative to the boundaries of a solid (orientation of the lattice planes)
could of course differ from the one chosen for the illustration in Fig. 3.3. In this case a
transformation of the basis vectors can be carried out. However, it is important to notice
that this transformation also changes the matrix components of Eq. 3.9. This elastic
anisotropic effect considering a cubic crystal is discussed in the Appendix A.3.

Considering a single crystalline material elastic anisotropy has to be taken into account.
However, for a polycrystalline material or in context of an approximation for particular
single crystalline materials the elasticity may be considered to be isotropic. To describe
the deformation of an elastic isotropic material it is common to used the following four
technical material parameters [p. 160][GM18]:

• The Young’s modulus E, which describes the relative change of a length ∆L/L in
direction of a stress σ = E∆L/L.

• The Poisson’s ratio ν = −∆D/D
∆L/L , which is a measure for the change of length ∆D/D

perpendicular to a direction of a stress, where the change of length in direction of
the stress is ∆L/L.

• The bulk modulus B gives the relation between a change in volume ∆V and a uniform
stress on all sides of the solid (for example caused by a pressure P which has the
same magnitude directed normal towards all sides of a cube with volume V ):

P = −σ = −B∆V
V

. (3.11)

• The shear modulus gives the relation of shear stress σ and the resulting shear angle
αµ by: σ = µαµ.

These four parameter are not independent of each other, since the following relations can
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be derived [GM18, p. 160]:

1
B

=
3
E
(1− 2ν), µ =

E

2(1 + ν)
. (3.12)

The matrices of Eq. 3.8, σ = Cε and ε = Sσ can be written by using only two of the
technical material parameters. Choosing the Young’s modulus and the Poisson’s ratio
yields [Bow09, p. 70]:

σxx

σyy

σzz

σxy

σyz

σxz


=

E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2





εxx

εyy

εzz

2εxy
2εyz
2εxz


(3.13)



εxx

εyy

εzz

2εxy
2εyz
2εxz


=

1
E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)





σxx

σyy

σzz

σxy

σyz

σxz


.

For the special case of an isotropic material which has a Poisson’s ratio of approximately
zero the elastic tensors are [Bow09, p. 71]

Cijkl =
E

2 (δikδjl + δilδjk) and Sijkl =
1

2E (δikδjl + δilδjk). (3.14)

where δij is the Kronecker delta. The stress-strain relation given by Eq. 3.6 in this case
becomes

σij = Eεij and εij =
1
E
σij . (3.15)

or in matrix form
σ = Eε and ε =

1
E
σ. (3.16)

3.2. Thermodynamics of a solid crystal

A thermodynamic equilibrium occurs when the values of all the state variables, like strain,
stress, temperature, velocity, entropy, and internal energy, are independent of time. Ana-
lyzing the thermoelastic behavior of a crystal and assuming the crystal possessing a center
of symmetry7, the properties temperature T , entropy S, strain εij and stress σij may be
described by reference to a equilibrium state. Starting with the first law of thermodynam-

7No piezo or pyroelectric effects have to be considered for a centrosymmetric structure of a single crystal
diamond [HY07, p. 440] [N+85, p. 173]



3.2. Thermodynamics of a solid crystal 35

ics and considering a unit volume, it is known that if a small amount of heat dQ flows
into the crystal and a small amount of work dW is done on the crystal by external forces,
the increase in the internal energy dU is a perfect differential dU = dW + dQ [N+85,
p. 175]. The work done per unit volume by a small change of the strain dεij is given
by dW = σijdεij [N+85, p. 136]. The second law of thermodynamics states that for a
reversible change, it can be defined that dQ = TdS, where T is the absolute temperature
(measured on the Kelvin scale), which yields

dU = dW + dQ = σijdεij + TdS. (3.17)

In Eq. 3.17 the strain εij and entropy S are independent variables, which means the
stress σij and temperature T are determined when the quantities εij and entropy S are
given. The stress and temperature are called the depended variables in this context [N+85,
p. 174]. If we want the stress and temperature to be the independent variables the function
ΦH = U − σijεij − TS can be used. Differentiation gives dΦH = dU − σijdεij − εijdσij −
SdT − TdS and using Eq. 3.17 yields:

dΦH = −εijdσij − SdT . (3.18)

By the definition of ΦH all quantities are function of σij and T which gives(
∂ΦH

∂σij

)
T

= −εij and
(
∂ΦH

∂T

)
σ

= −S. (3.19)

Differentiating the first equation with respect to T and the second one with respect to σij
gives the Maxwell relation

− ∂2ΦH

∂σij∂T
=

(
∂εij
∂T

)
σ

=

(
∂S

∂σij

)
T

. (3.20)

For a unit volume considering the independent variables σij and T and the depended
variables S and εij it may be written [N+85, p. 174]:

dεij =

(
∂εij
∂σkl

)
T

dσkl +

(
∂εij
∂T

)
σ

dT (3.21)

dS =

(
∂S

∂σkl

)
T

dσkl +

(
∂S

∂T

)
σ

dT .

The relations occurring in Eq. 3.21 have physical meanings which can be connected to
experimental measurable material properties. The elastic compliances tensor measured
under isothermal (T is constant) conditions is

STijkl =

(
∂εij
∂σkl

)
T

. (3.22)
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The thermal expansion coefficient8 is given by

αij =

(
∂εij
∂T

)
σ

. (3.23)

The heat capacity per unit volume measured at constant stress is

Cσ = T

(
∂S

∂T

)
σ

, (3.24)

which quantifies the heat developed when the temperature is changing, but the stress is
held constant. The remaining relation (∂S/∂σkl)T measures the entropy change caused
by an isothermal stress change. Multiplied by T gives the produced heat when the crystal
is isothermally stressed. From Eq. 3.20 it can be seen that this relation is also given by
the thermal expansion coefficient αij = (∂S/∂σkl)T .

If only small stress and temperature changes are considered a linear approximation may
be used and integrating Eq. 3.21 gives

εij = STijklσkl + αij∆T (3.25)

∆S = αijσij + (Cσ/T )∆T ,

where the material properties are assumed to have constant values and the strain εij is
taken to be zero when σkl and ∆T are zero. The temperature rise ∆T = T − T0 may
be referred to an initial temperature rise T0 and for |∆T/T0| � 1 it may be used the
approximation T ≈ T0, where T is the absolute temperature.

The Helmholtz free energy ΦA = U − TS can be used to consider the temperature and
strain as independent variables. Differentiating and using Eq. 3.17 gives

dΦA = σijdεij − SdT . (3.26)

The Maxwell relation in this case yields(
∂S

∂εij

)
T

= −
(
∂σij
∂T

)
ε

. (3.27)

For a unit volume considering the independent variables εij and T and the depended

8There is no need to write ασij in this case, because the alternative coefficient αSij = (∂εij/∂T )S is
meaningless, it would imply that each εij is a function of T and S only, instead of a function of ten
variables [N+85, p. 174].
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variables σij and S it may be written

dσij =

(
∂σij
∂εkl

)
T

dεkl +

(
∂σij
∂T

)
ε

dT (3.28)

dS =

(
∂S

∂εkl

)
T

dεkl +

(
∂S

∂T

)
ε

dT .

The meaning of the relations in this case are the elastic stiffness tensor considering that
the temperature is held constant:

CTijkl =

(
∂σij
∂εkl

)
T

, (3.29)

and the specific heat capacity per unit volume measured at constant strain

Cε = T

(
∂S

∂T

)
ε

. (3.30)

Also, it can be seen by using the Maxwell relation Eq. 3.27 that

βij =

(
∂σij
∂T

)
ε

= −
(
∂S

∂εij

)
T

. (3.31)

Considering again small changes and a linear relation the integration of Eq. 3.28 gives

σij = CTijklεkl + βij∆T (3.32)

∆S = −βijεij + (Cε/T )∆T ,

Considering Eq. 3.22 it can be seen that the relation given by Eq. 3.6 may give different
values for a condition measured at constant temperature compared to a measurement at
constant entropy. The relation between an adiabatically and an isothermally measured
compliances tensor may be obtained by eliminating dT and putting dS = 0 in Eq. 3.21,
which yields:

dεij =

(
∂εij
∂σkl

)
T

dσkl −
(
∂εij
∂T

)
σ

(
∂S

∂σkl

)
T

dσkl

/(
∂S

∂T

)
σ

(S is constant). (3.33)

Dividing by dσkl gives:(
∂εij
∂σkl

)
S

−
(
∂εij
∂σkl0

)
T

= −
(
∂εij
∂T

)
σ

(
∂S

∂σkl

)
T

(
∂T

∂S

)
σ

, (3.34)

which may be written by considering Eq. 3.22, Eq. 3.23, Eq. 3.20 and Eq. 3.24 as:

SSijkl − STijkl = −αijαkl
T

Cσ
. (3.35)
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To investigate the difference between the heat capacity measured at constant entropy
compared to a measurement at constant temperature, elimination of dσkl and considering
dεkl = 0 in Eq. 3.21 can be used to obtain9:

Cε −Cσ = −TαijαklCTklij (3.36)

The introduced material properties are not independent of each other and indeed the three
tensors STijkl, αij and Cσ/T are sufficient to describe all first order thermoelastic effects
[N+85, p. 177]. Assuming that the values on the right hand side of Eq. 3.35 and Eq. 3.36
are sufficiently small the approximation C = Cε − Cσ and Sijkl = SSijkl − STijkl may be
used.
Due to the symmetry of the strain tensor εij = εji, the thermal expansion tensor should

also be symmetric αij = αji, and for a cubic crystal like diamond it is also isotropic
αij = αδij [N+85, p. 107].

For an approximately isotropic elastic crystal where the Poisson’s ratio can be neglected
as expressed by Eq. 3.15 gives in this case by considering Eq. 3.25

εij =
1
E
σij + αδij∆T (3.37)

∆S = αδijσij + (C/T )∆T ,

and for Eq. 3.32:

σij = Eεij + βij∆T (3.38)

∆S = −βijεij + (C/T )∆T , .

Rearranging the first equation in Eq. 3.37 yields εij = (1/E)(σij − βij∆T ), comparing
with Eq. 3.38 it can be seen that for this case the following relation can be obtained

βij = −αδijE, (3.39)

which causes:
σij = E(εij − α∆Tδij), where ∆T = T − T0. (3.40)

Considering the derived equation it may be useful to define different kinds of strain quan-
tities. In the context of this work εelij = εij − α∆Tδij will be called the elastic strain
and εthij = α∆Tδij the thermal strain. Considering Eq. 3.40 the total strain is given by
εij = εelij + εthij .
The relation Eq. 3.40 will mainly be used in the context of this work to investigate

thermoelastic interactions. However, similar relations may also be used for an anisotropic

9Using the relation
(
∂S
∂T

)
ε

−
(
∂S
∂T

)
σ

= −
(

∂S
∂σkl

)
T

(
∂εij

∂T

)
σ

(
∂σkl
∂εij

)
T

, Eq. 3.29, Eq. 3.23, Eq. 3.24,

Eq. 3.30 and Eq. 3.20.
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solid [Bow09, p. 76]:

σij = Cijkl[εkl − αkl∆T ], where εkl = εelkl + εthkl and ∆T = T − T0, (3.41)

εkl = Sklijσij + αkl∆T .

Considering thermal expansion the matrix equations given in Eq. 3.8 may be extended to
σ = C(ε−α∆T ) and ε = Sσ +α∆T and for an isotropic solid with Young’s modulus E
and Poisson’s ration ν it can be written [Bow09, p. 70]:

σxx

σyy

σzz

σxy

σyz

σxz


=

E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2





εxx

εyy

εzz

2εxy
2εyz
2εxz


− Eα∆T

1− 2ν



1
1
1
0
0
0


(3.42)

εxx

εyy

εzz

2εxy
2εyz
2εxz


=

1
E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)





σxx

σyy

σzz

σxy

σyz

σxz


+ α∆T



1
1
1
0
0
0


.

Using index notation Eq. 3.42 can be written as [Bow09, p. 71]:

εij =
1 + ν

E
σij −

ν

E
σkkδij + α∆Tδij (3.43)

σij =
E

1 + ν

(
εij +

ν

1− 2ν εkkδij
)
− Eα∆T

1− 2ν δij (3.44)

Relation of stress-pressure and strain-volume for a crystal with cubic lattice
structure Using Cartesian coordinates and considering a macroscopic crystal in context
of the infinitesimal strain approximation (see Section 3.1) the volume change ∆V of a unit
cube with volume V is given by the dilation δV [GM18, p. 154]:

δV = ∆V /V = εxx + εyy + εzz. (3.45)

If cubic elastic properties are considered, which are given by Eq. 3.9 and the unit cube is
experiencing a pressure P with equal magnitude from all sides so that the stress is given
by σij = −Pδij and causes a deformation with strains εxx = εyy = εzz, the dilation is
1
3δV = εxx = εyy = εzz. As mentioned before (Eq. 3.11) the bulk modulus may be defined
by

B = −P V

∆V
. (3.46)
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Considering the stress-strain relation Eq. 3.8 for a cubic crystal Eq. 3.9 it can be obtained
for this case:

εxx = −P (s11 + 2s12), εyy = −P (s11 + 2s12), εxx = −P (s11 + 2s12) and (3.47)

−P = εxx(c11 + 2c12), −P = εyy(c11 + 2c12), −P = εzz(c11 + 2c12),

which yields considering Eq. 3.46:

B =
1

3(s11 + 2s12)
=

1
3 (c11 + 2c12) (3.48)

For deformations which are isentropic (dS = 0) or at T = 0 (TdS = 0) the first law of
thermodynamics Eq. 3.17 yields in this case:

dU = σiidεii = −P
dV

V
(3.49)

Considering the internal energy Ũ = UV instead of the internal energy per unit volume
and rewriting Eq. 3.49 gives

P = −dŨ
dV

. (3.50)

The bulk modulus10 B which is a measure of how resistant a crystal is to compression
may be defined by:

B = −V ∂P
∂V

(3.51)

Inserting Eq. 3.50 into Eq. 3.51 gives:

B = −V ∂
2Ũ

∂V 2 (3.52)

3.3. Heat conduction

The time dependent deformation of a crystal is connected to a change of the heat content
of the solid and therefore causes a temperature changes. Controversy a temporal changing
temperature field in the crystal causes a dynamic thermal expansion. These coupled effects
are investigated in the context of a thermoelasticity theory [Now13, p. 1].

In the previous section it has been assumed that the thermodynamic properties are
describable by reference to changes which are reversible. However, to investigate heat
conduction and a time dependent thermoelastic problem, irreversible processes consider-
ing the second law of thermodynamics have to be taken into account. Using the laws
of thermodynamics and considering small deformations, the following equation for an
anisotropic solid can be derived, using Cartesian coordinates and the notation presented

10The bulk modulus is related to the parameter compressibility by κ = −(1/V )(∂V /∂P ) by κ = 1/B.
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in Appendix A.1 [Tak79][HEG09, p. 63]:

(λcijT ,j ),i= Tβij ˙εij + cερṪ −Qext where T = T0 + ∆T and βij = αijCijkl, (3.53)

where αij is the thermal expansion tensor, Cijkl elastic stiffness tensor, ρ the mass density,
cε the specific heat capacity per unit mass measured at constant strain and Qext is the
heat produced per unit time and unit volume, which may be connected to the adsorbed
and into heat converted energy, introduced by the electromagnetic radiation of a laser.

A detailed derivation of Eq. 3.53 considering small deformations of an isotropic crystal
can be found in the first chapter of [Now13]. The derivation of this formula will be
summarized in the following part of this section, it is based on a time dependent form
of the energy conservation equation (first law to thermodynamics), which can be used to
derive an expression for a local entropy balance [Now13, p. 5]

∆̇ST = Qext − qhi,i where T = T0 + ∆T . (3.54)

Here ∆̇S is the entropy production per unit volume and unit time. Conductive heat transfer
in a solid can be understood as the heat transfer from places with higher temperature to
places with lower temperature. This kind of process is irreversible and connected with an
entropy production which may be described by Eq. 3.54 [Now13, p. 11]. The heat flux
vector per unit area qhi may be described with the empirical Fourier law

qhi = −λcij∆T ,j . (3.55)

Here λcij is the coefficient of thermal conduction, which may be anisotropic. For an
isotropic case the Fourier law is qhi = −λc∆T ,j , with λc > 0. It can be shown that
the Fourier law satisfies the second law of thermodynamics (Clausius–Duhem inequality)
[Now13, p. 6].

Considering the Helmholtz free energy for a small temperature increases (|∆T/T0| � 1)
and a material with isotropic elastic properties with Poisson’s ratio ν and Young’s modulus
E it can be derived [Now13, p. 10]:

∆S =

(
E

1− 2ν

)
αεii + (cερ/T0)∆T . (3.56)

Inserting Eq. 3.56 into Eq. 3.54 and using the Fourier law Eq. 3.55 yields:

(λcij∆T ,j ),i= T

((
E

1− 2ν

)
α ˙εii +

cερ

T0
˙∆T
)
−Qext where T = T0 + ∆T (3.57)

Noting that one of the assumptions for the derivation of this equation was |∆T/T0| � 1
it is reasonable to linearize the second term on the right-hand side of 3.57 which yields

(λcij∆T ,j ),i=
(

E

1− 2ν

)
Tα ˙εii + cερ ˙∆T −Qext. (3.58)
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3.4. Equation of motion

The equation of motion based on the assumptions of Newtow’s law (F=ma) may be
expressed in Cartesian coordinates by11:

σij,j + Fi = ρüi (3.59)

where Fi are the components of a body force per unit volume and ρ is the mass density.
Writing Eq. 3.59 in matrix from yields [Bow09, p. 49]

∇ ·σ +F = ρü, (3.60)

which may also be written as (see Appendix A.1 Eq. A.11)

∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

+ Fx = ü (3.61)

∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

+ Fy = v̈

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ Fz = ẅ

Considering an elastic isotropic material with Poisson’s ratio ν = 0 expressed by Eq. 3.40
yields:

(Eεij −Eα∆Tδij),j + Fi − ρ
∂2ui
∂t2

= 0 (3.62)

The kinetic energy per unit volume of the solid under the action of surface and body forces
is [HEG09, p. 58]:

K =
1
2ρu̇iu̇i (3.63)

Speed of sound in an elastic isotropic solid Considering the propagation of a dis-
placement wave in an elastic isotropic solid different types of waves, which posses a char-
acteristic propagation speed may be classified and derived from the equation of motion.
Considering a semi-infinite half-space which is initially at rest and experiences a time
varying, spatially uniform pressure in direction normal to the surface it can be derived
that a longitudinal wave (also called P-wave) is propagating with the speed vL through
the solid [Bow09, p. 241]:

vL =

√
E(1− ν)

ρ(1 + ν)(1− 2ν) . (3.64)

Here ρ is the mass density, E is the value of the Young’s modulus and ν the value of the
Poisson’s ratio. For a solid with a Poisson’s ratio of nearly zero ν ≈ 0 Eq. 3.64 may be
written as:

vB =

√
E

ρ
=

√
3B
ρ

, (3.65)

11A derivation is given in Appendix A.2.
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where B is the value to the bulk modulus (Eq. 3.12).

If a solid with semi-infinite half-space is initial in rest and is experiencing and time
varying, spatial uniform anti-plane shear traction it can be derived that a transverse wave
(also called shear wave or S-wave) is propagating with the speed vT through the solid
[Bow09, p. 241]:

vT =

√
E

2(1 + ν)ρ
(3.66)

For the sake of completeness it should also be mentioned that considering a three-dimensional
wave propagation there exist additional types of waves like Rayleigh waves [Bow09, p. 333],
which travel near the surface. However, an analytical expression for such wave types will
not be further discussed in the context of this work.

3.5. Thermoelastic axisymmetric assumption for isotropic
material

In this section an elastic isotropic material, which is experiencing a radial, axial symmetric
heat load will be discussed, by using cylindrical coordinates (Appendix A.1). The displace-
ment in direction θ̂ is assumed to be zero in this case and the displacement vector is given
by u = uρ̂r + wẑ. The benefit of these axisymmetric assumptions is that it reduces a
three-dimensional problem into a two-dimensional problem, which is a great improvement
for the calculation time regarding numerical solutions. Writing the infinitesimal strain
tensor of Eq. 3.2 in cylindrical coordinates12 it can be seen that the only non-zero strain
components for this case are:

ερrρr =
∂u
∂ρr

εθθ =
u
ρr

εzz =
∂w
∂z

ερrz =
1
2

(
∂u
∂z

+
∂w
∂ρr

)
. (3.67)

The normal strains ερrρr and εzz, as well as the shear strain ερrz have similar geometrical
meanings as the strain given by Eq. 3.3 and Eq. 3.4. However, the strain εθθ which
may be referred to a hoop strain was not present in Cartesian coordinates. To give a
phenomenological interpretation for this strain value the illustration in Fig. 3.4 may be
helpful. In can be seen from this visualization that even if u1 = u2, which causes ερrρr = 0,
there is still a strain introduced in the direction θ̂.

The stress-strain relation for an isotropic material can be used without modification in
cylindrical coordinates, as long as the matrices of Cartesian components of the various
tensors are replaced by their equivalent matrices in cylindrical-polar coordinates [Bow09,

12Using Eq. A.9 of Appendix A.1.
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Figure 3.4.: For the Illustrated case the displacement in the radial direction is zero. However, the
hoop strain εθθ =

(ρr+u)dθ
ρrdθ

= u
ρr

is non-zero.

p. 761]. Thus, if an isotropic material is considered, Eq. 3.42 can be rewritten as:
σρrρr

σθθ

σzz

σρrz

 =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 1−2ν

2
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1 −ν −ν 0
−ν 1 −ν 0
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Using index notation and considering a Poisson’s ratio of zero ν = 0 Eq. 3.68 becomes

σij = Eεij −Eα∆Tδij , εij =
1
E
σij + α∆Tδij , where i = (r, θ, z), j = (r, θ, z). (3.69)

Here δij is the Kronecker delta.

Writing out the equation of motion Eq. 3.60 in cylindrical coordinates by (using Eq. A.13
Appendix A.1) and taking only the none zero stress components of Eq. 3.68 into account
yields:

∂σρrρr
∂ρr

+
∂σρrz
∂z

+
1
ρr

(σρrρr − σθθ) + Fρr = ρü (3.70)

∂σρrz
∂ρr

+
∂σzz
∂z

+
1
ρr
σρrz + Fz = ρẅ.

As mentioned before the total strain εij = εelij + εthij may be separated into an elastic
strain εelij and a thermal strain component εthij , which for the case of an elastic isotropic
material with a Poisson’s ratio of zero is given by

εelij =
1
E
σij = εij − α∆Tδij and εthij = α∆Tδij . (3.71)
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Considering an isotropic material where an elastic deformation takes place, the stored
strain energy density defined as the work done per unit volume to deform a material from
a stress free reference state to a loaded state is given by [Bow09, p. 76]

Uel =
1
2σijε

el
ij (3.72)

and for the case of an elastic isotropic material with a Poisson’s ratio of zero this gives

Uel =
E

2 ε
el
ijε

el
ij =

E

2 (εrr − α∆T )2 +
E

2 (εθθ − α∆T )2 +
E

2 (εzz − α∆T )2 +
E

2 ε
2
rz. (3.73)

If heat dissipation is neglected Uel is stored as recoverable strain energy in the solid.
Considering an axisymmetric heat load and assuming the Fourier heat law (Eq. 3.55) to

be valid, the heat transfer in the crystal described by Eq. 3.58 may be written, by assum-
ing that for thermal conductivity only diagonal terms of λcij are non-zero, in cylindrical
coordinates (Eq. A.5 and Eq. A.7 Appendix A.1) as:

1
ρr

∂

∂ρr

(
ρrλρrρr

∂∆T
∂ρr

)
+

∂

∂z

(
λzz

∂∆T
∂z

)
= (3.74)

Tα

(
E

1− 2ν

)
( ˙ερrρr + ˙εθθ + ˙εzz) +Cε ˙∆T −Qext.

To investigate a thermodynamic problem the coupled partial differential equations
Eq. 3.61 and Eq. 3.53 have to be solved (or for an axisymmetric case with elastic isotropic
material Eq. 3.70 and Eq. 3.74). However, depending of the kind of experiment, which is
investigated, cases exist where the effect of the deformation on the temperature field are
such small that they may be neglected. In this case the first term on the right-hand side
of Eq. 3.53 (Eq. 3.74) can be neglected which decouples the equations and allows to first
solve the temperature field and use the solution to solve the displacement field afterwards.

3.6. From classical thermodynamic theory to modern solid
state physics

All thermoelastic formulae derived in the previous sections are based on the assumption
that at least a local thermodynamic equilibrium exists, so that a meaningful local temper-
ature value can be defined for each time step investigated for a thermoelastic problem. It is
one main topic of this work to investigate if these assumptions can be used for a cryogeni-
cally cooled diamond Bragg reflector, by comparing experimental data with simulations
based on the described theory of thermoelasticity.
The first and second law of thermodynamics which have been considered in the previous

section are based on formulae which where historically derived by considering experiments



46 3. Thermoelastic interaction of electromagnetic radiation with matter

in the context of classical physics. In this context the work of James Prescott Joule (1818-
1889) may be mentioned who discovered the relation between work and heat [Mes10, p. 252]
which led to the development of the first law of thermodynamics. The formulation of the
second law maybe refereed to Rudolf Julius Emanuel Clausius (1822-1888) connected to
his restatement of the Carnot-Prozess. He also considered a kinetic theory of gases, which
may be seen as a microscopic explanation for effects described by a thermodynamic theory
[Lau57]. Ludwig Boltzmann (1844-1906) gave a statistical explanation of the second law of
thermodynamics considering kinetic theory of gases. In context of this theory temperature
may be considers as a measure of the average kinetic energy [Mes10, p. 253] of microscopic
particles inside a macroscopic13 volume.
However, these theoretical concepts were developed by Boltzmann before the discovery

of the quantum effects in physics. Historically, the work of Albert Einstein (1879-1955)
regarding the temperature dependent heat capacity may be considered to be a begin-
ning point for a theory describing thermodynamics in the context of a statistical theory
including quantum effects. The result of this work will be introduced in the next section.
Erwin Schrödinger (1887-1961), may be named as one of many contributors for a

quantum-mechanical theory. With the help of the Schrödinger equation a single crys-
talline material consisting of a periodic structure made of atoms14 may be described by
a wave function of a quantum-mechanical system. From a quite modern perceptive ab
initio (from first principles) methods may be considered to be a state of the art theory
for describing thermodynamic properties of a crystal. In context of an ab initio method,
a solution for a Schrödinger equation of crystal system can be calculated. However, it
should be clarified that the historical steps which lead to a modern quantum-mechanical
theory are quite extensive an will not be discussed further in this work.
Also this section should not be interpreted as a complete historical review reading the

development of thermodynamics in context of modern physics. This section is just an
attempt to clarify which underlying concepts are considered in the context of this work
and how the century of their foundation may be historically classified.
As it will be discussed in detail in Section 7 the derivations of thermodynamic proper-

ties15 in the context of solid state physics (Section 4) are very useful to evaluate under
which circumstances the formulae introduced in Section 3 are based on valid assumptions.

13Macroscopic may be connected in this context to a volume which is sufficiently big such that many
particles are inside the volume so that a meaningful average value can be defined.

14Which may be approximated to consist of nuclei and electrons.
15Like the heat capacity, thermal conductivity and thermal expansion coefficient
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4. Material properties of diamond

A Bragg reflector made of single crystalline diamond is investigated in this work. Diamond
is composed of the single element carbon. The microscopic structure of diamond can be
determined directly with the help of transmission electron microscopy [Har18] and is also
observable in the diffraction pattern of X-rays. The knowledge of the micro structure can
be used to develop theoretical concepts that describe the macroscopic material constants
that have been introduced in Section 3.2 in the context of thermodynamics. On the other
hand material constants can be measured with a suitable experimental setup. In the
following section theoretical expressions and measured values available from literature will
be presented and discussed.

Microscopic structure of diamond A diamond crystal consists of carbon atoms. In
this work1 a diamond crystal is considered which consist of a cubic lattice with a basis of
two atoms, which are marked blue and green in Fig. 4.1a to be distinguished. The Bravais
lattices in this case can be defined as face-centered cubic (fcc) and is illustrated in the
middle of Fig. 4.1a, the cubic lattice constant is denoted by a. The blue marked atoms
are located at the lattices points of the Bravais lattice and the green marked atoms are
displaced by a[ 1

4 , 1
4 , 1

4 ]
T from the position of a lattice point. The primitive cell consists of

two atoms and is illustrated on the left of Fig. 4.1a. The primitive basis vectors are given
by

a1 =
a

2


0
1
1

 , a2 =
a

2


1
0
1

 and a3 =
a

2


1
1
0

 (4.1)

The same information about the lattice structure is also contained by a Wigner-Seitz
primitive cell, which is a construction around a single lattice point and confined by an
area which is nearer to this lattice point than any other lattice point [GM18, p. 6]. An
illustration of a Wigner-Seitz primitive cell is given on the right of Fig. 4.1a.

In context of solid state physics it is very useful to define the reciprocal vectors, which
are related to Eq. 4.1 by [GM18, p. 58]:

b1 =
2π
Vc
a2 × a3, b2 =

2π
Vc
a3 × a1, b3 =

2π
Vc
a1 × a2 with Vc = a1 · (a2 × a3), (4.2)

In reciprocal space an analogue construction like the Wigner-Seitz cell in real space can
1It should be mentioned that also a hexagonal diamond structure (lonsdaleite) exist, which will not be
discussed further in this work [GM18, p. 136].
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(a) Crystal structure of diamond (b) First Brillouin zone [SC10]

Figure 4.1.: (a) Microscopic crystal lattice structure of cubic diamond with lattice constant a =
3.566 90(8)Å. On the left a primitive cell is illustrated. In the middle a conventional
unit cell based on a fcc Bravais lattice is shown. On the right a illustration of a
Wigner-Seitz primitive cell is shown. (b) First Brillouin zone with marked symmetry
points [SC10].

be carried out. This construction is called the Brillouin zone [SC10]. In Fig 4.1b the
first Brillouin zone for diamond is shown. The Brillouin zone is a meaningful definition
to describe the phonon dispersion of diamond, which will be discussed in the following
section. A complete visualization of the phonon dispersion of diamond can be achieved
using the standard path in reciprocal space which is marked in Fig 4.1b (For detailed
explanation see [SC10]).
A Bravais lattice can be defined by

R = n1a1 + n2a2 + n3a3, (4.3)

and a reciprocal lattice by
G = hb1 + kb2 + lb3, (4.4)

where n1,n2,n3,h, k and l are integers. The Bravais and the reciprocal lattices are related
by exp(jG ·R) = 1.
The diamond structure is formed by directed covalent bondings. The conventional unit

cells of diamond, with a volume a3 has eight atoms and each atom has four next neighbor
atoms [GM18, p. 31]. The molar mass of carbon is M=12 g mol−1. The lattice constant a
of diamond varies only little with temperature changes. In the range from 50 K to 300 K
it is a = 3.566 90(8)Å [SS10]. The mass density ρ can therefore be calculated by

ρ =
8M
a3NA

≈ 3513 kg/m3. (4.5)

where NA is the Avogadro constant. Due to the small variation of the lattice constant with
the temperature, the value of ρ is assumed as temperature independent for the simulations
carried out in this work. However, it should be noted that natural diamond typically
contains about 1% of the isotope 13C in otherwise pure 12C crystals [PK13, p.203]. Due
to the different molar mass of 13C M13 ≈ 13 g mol−1 the average mass density in this case
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is a little bit higher ρ ≈ 3516 kg/m3.

Synthetic fabrication of single crystalline diamond Beside the rare possibility to
find a natural diamond it is nowadays possible to fabricate single crystalline diamond
synthetically. Two techniques, which are common to fabricate synthetic diamond crystals
are:

High-pressure, high-temperature (HPHT) The basic principle of this technique
is to subject a carbon-containing material to a high temperature (>1800 K) and high
pressure (>5 GPa) environment. This treatment can cause a phase transition of graphite
to diamond. The press systems employs a core reaction cell which contains some seed
crystals beside a carbon source. To reduce the temperatures and pressure values, which
are necessary for the phase transition, a metal solvent is used [PK13, p. 159].

Chemical vapor deposition (CVD) In this process the diamond crystal is grown
on a substrate from a hydrocarbon gas mixture, inside an environment with controlled
temperature and pressure values. For the substrate a HPHT diamond can be used. The
mixture of hydrocarbon is injected into a chamber and heating can be carried out using
for example a micro wave beam [PK13, p. 160]. At temperatures above 1100 K the gas
mixture is ionized into chemically active radicals and a plasma is created, material can
then nucleate on the surface of the substrate.

4.1. Thermomechanical properties

In Section 3 the dynamics of a elastic continuum have been introduced. In contrast to the
continuum view on the material system, now the dynamics of a microscopic view will be
considered. As mentioned before the microscopic structure of single crystalline diamond is
well known. The solid crystal is built of atoms, which consist of electrons and nuclei. The
electrons have the mass m and the charge −e. The nuclei have mass M and charge Ze.
The interaction between these particles is assumed to be purely electromagnetic and the
main contribution for this interaction are Coulomb interactions. Such a system is defined
by the following Hamiltonian [GM18, p. 172] [Höl15, p. 9]:

H = T̂n + T̂e + Vee({r}) + V({r}, {R}) + Vnn({R}) + Ξ(t). (4.6)

In this equation {r} is the position of the electrons and {R} the one of the nuclei. The
first two terms are the kinetic energy operators for nuclei T̂n and electrons T̂e

T̂n = −
∑
k

h̄2

2Mk

∂2

∂R2
k

and T̂e = −
∑
i

h̄2

2m
∂2

∂r2
i

. (4.7)
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The remaining terms of Eq. 4.6 describes the particle-particle interactions. The interelec-
tronic Coulomb potential is given by:

Vee({r}) =
∑
i<j

e2

4πε0|ri − rj |
. (4.8)

The electron-nuclear interaction is expressed by:

V({r}, {R}) = −
∑
i,k

Ze2

4πε0|ri −Rk|
. (4.9)

The Coulomb repulsion of the nuclei among each other is given by:

Vnn({R}) =
∑
k<l

Z2e2

4πε0|Rk −Rl|
. (4.10)

The last term in Eq. 4.6 is a possible time-dependent external vector potential Ξ(t), which
might result from a laser beam.
If relativistic effects and spin can be neglected such a system can be completely described

by a Schrödinger equation

Hψ({r}, {R}, t) = j∂tψ({r}, {R}, t). (4.11)

If the Schrödinger equation Eq. 4.11 for Eq. 4.6 can be solved all the information is
given to describe the macroscopic thermomechanical material parameters of the diamond
crystal. However, for such a high dimensional system a direct solution is not directly
calculable. Nevertheless, for appropriated assumptions there are ways to find solutions
for such problems with methods based on first-principles (ab initio) density functional
theory (DFT). The calculation of such a simulation and the underlying theoretical concepts
and approximation, are extensive and will not be covered in this work. For a detailed
introduction to this topic the interested reader is referred to [RLB19] [Höl15]. In the
following section simpler theoretical models than DFT will be introduced and the solutions
will be compared to DFT calculations available from literature.

Elastic constants The elastic constants of cubic diamond have been measured by vari-
ous experimental methods and have been calculated with different theoretical approaches
[Hes12][KC93] [SWM+12]. For the simulations in this work the following values for the
stiffness tensor are used [CL05]:

c11 = (1043± 5)GPa, c12 = (128± 5)GPa and c44 = (534± 17)GPa. (4.12)

Using Eq. 3.10 gives the values for the compliance tensor

s11 = 0.985 TPa−1, s12 = −0.108 TPa−1 and s44 = 1.873 TPa−1. (4.13)
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(a) E[GPa] (b) µ[GPa] (c) Poisson’s ratio ν (d) Poisson’s ratio ν

Figure 4.2.: Illustration of the elastic properties of SC diamond in various orientations calcu-
lated with the method described in Appendix A.3 (a) values of Young’s modulus
Emean=1125 GPa, Emin=1053 GPa, Emax=1207 GPa (b) values of the shear modulus
µmean= 546 GPa, µmin= 478 GPa, µmax= 578 GPa (c) and (d) values of the Poisson’s
ratio νmean = 0.076, νmin = 0.008, νmax = 0.114.

These values are in good agreement with measured values. However, it should be men-
tioned that the reported values for diamond of different qualities and various experimental
methods show a quite broad variation of about 10% [Hes12].

The measured variation of elastic constants for cubic diamond in the temperature range
60 K to 400 K is less than a percent [SWM+12] and therefore the values of Eq. 4.12 are
considered to be approximately temperature independent in the context of this work.

Substituting the values of Eq. 4.12 in Eq. A.21 (Appendix A.3) to assess the elastic
anisotropy it can be obtained that diamond has a value of Aiso = 1.167 which is near
the isotropic value of Aiso = 1. As described in the Appendix A.3 the variation of the
Young’s modulus Ei, the Poisson’s ratio νij and the shear modulus µi can be calculated in
different orientation of the crystal structure regarding the axis of a Cartesian coordinate
system. Considering the directional dependence which is illustrated in Fig. 4.2 it can be
seen that Young’s modulus and also the shear modulus vary only little with orientation.
The Poisson’s ratio νij differs substantially with orientation. The maximum value is 0.114
and the minimum value is 0.008. However, it should be noted that the maximum of νij is
still quite small.

The bulk modulus calculated with Eq. 3.48 using the values of Eq. 4.12 is:

B =
1
3 (c11 + 2c12) = 433 GPa (4.14)

Considering the diamond crystal to be approximately isotropic and using the mean value
of the Poisson’s ratio νmean = 0.076 and the Young’s modulus Emean = 1125 GPa gives
considering Eq. 3.12

Biso =
Emean

3(1− 2νmean)
= 436 GPa (4.15)

Considering the quite small value of the Poisson’s ratio for diamond an approximation
may be used where the Poisson’s ratio is nearly zero. However, this approximation has a
significant impact on the value of the Bulk modulus, which can be in this case be calculated



52 4. Material properties of diamond

by
Biso,ν=0 =

Emean
3 = 375 GPa (4.16)

Using the approximation of an isotropic material and further assuming a Poisson’s ratio of
zero will introduce a systematical error considering thermoelastic simulations. However,
the benefit is that for an isotropic material the axisymmetric case could be used (Sec-
tion 3.5) and for the case where the Poisson’s ratio is assumed to be zero the stress-strain
is given by the simple relation Eq. 3.15. The verification and limits of these approxi-
mation will be discussed in detail in the Section 6 by comparing simulation results with
experimental data.

Phonon dispersion relation The thermal properties like heat capacity, thermal ex-
pansion and thermal conductivity for an insulating material like diamond may be described
by effects which can be related to lattice vibrations in form of quantized phonon properties
[GM18, p. 213].

In the Section 3 the dynamics of an elastic continuum has been discussed. In contrast
to the continuum view on the material system, now the dynamics of a microscopic view
will be considered. As mentioned before the microscopic structure of single crystalline
diamond is well known. Starting with this knowledge, theories can be developed which
explain the macroscopic measurable material parameter, which have been introduced in
Section 3. Considering the motion of the lattice atoms around their rest position gives a
description for the lattice dynamics. Including quantum effects leads to the definition of
a phonon, which may be considered as a collective excitation of the atomic displacement
in the periodic crystal. This quasiparticle can have different polarizations corresponding
to longitudinal and transverse waves. Further, different phonon modes namely acoustical
and optical modes, can be defined. A detailed introduction to this extensive topic can be
found in various textbooks [GM18], also the PhD theses of P. Rauer [Rau21] and C. Maag
[Maa18], should be mentioned in this context, where the basics of lattice vibrations are
explained in more detail than in this work. The phonon dispersion relation, relates the
wavelength (or wavenumber) to the frequency (energy) of the phonon. The phonon dis-
persion relation can be determined experimentally by investigating inelastic scattering
processes of neutrons and photons with the crystal [GM18, p. 204]. In Fig. 4.3 a com-
parison of experimental data for diamond carried out with inelastic neutron scattering
[WYDC67] and calculations based on an ab initio theory is shown for particular points of
the first Brillouin zone (Fig. 4.1b). The ab initio calculation has been carried out consid-
ering a super cell of 128 atoms by using the code exciting (version: nitrogen) [GKM+14]
the input file for the calculation can be found in the Appendix A.4. With the knowledge
of the phonon dispersion relation a equation for the internal energy Ũ can be formulated
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(a) Phonon dispersion relation (b) density of states

Figure 4.3.: In both figures the phonon frequency in THz is given considering the same range of val-
ues. It should also be mentioned that the considered frequency is given by ω/2π, where
ω is the angular frequency. (a) Phonon dispersion relation of diamond considering the
first Brillouin zone Fig. 4.1b. The measurement result of inelastic neutron scatter-
ing [WYDC67] are illustrated by black dots. The results of an ab initio calculations
(Appendix A.4) are represented by solid lines. The optical modes are marked red and
the acoustics modes are marked magenta. (b) Density of states (DOS) for a diamond
unit cell. The integration over the frequency range results in a value of 3Nr′ = 6
(red area). Beside the DOS calculated from an ab initio calculations, the Debye and
Einstein approximation are shown, considering an Debye temperature of TD = 1861 K
and an Einstein temperature of TD = 1320 K. The integral of the DOS per frequency
gives per definition also a value of 6 (blue area) and the green line of the Einstein
approximation has a value of 6 (which is not illustrate for a better visualization) at the
frequency value of ωE/2π and is zero every else.

by [GM18, p. 221]

〈Ũ〉 = Ũeq +
∑
q,p

1
2 h̄ωqp+

∑
q,p

h̄ωqp〈nqp〉, where 〈nqp〉 =
1

exp
(
h̄ωqp
kBT

)
− 1

and p = 1, 2...3r′.

(4.17)
Here kB is the Boltzmann constant, h̄ reduced Planck’s constant, ω is the angular fre-
quency of a phonon with wave vector q, and p are the possible polarizations given by
the number r′ of atoms in a unit cells. The number of modes in the crystal is given by
3N ′ = 3Nr′, where N is the number of unit cells and N ′ is the amount of the atoms. The
values of the wave vector q can be connected to values of the Brillouin zone, small values
near zero of q correspond to the Γ point of the first Brillouin zone (Fig. 4.1b) and a large
wavelength value. The Bose-Einstein distribution is represented by 〈nqp〉, which takes
into account quantum mechanical effects [GM18, p. 219]. The constant Ũeq represents
the contribution of the static crystal lattice. The second term on the right hand side is
connected to the ground state and the third represents contribution of thermally exited
phonons.

The phonon group velocity is connected to the dispersion relation (Fig. 4.3a) and is
given by [GM18, p. 182]

vg = ∇qω(q). (4.18)
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Considering a macroscopic crystal (consisting of a sufficiently large number of unit cells)
the sum in Eq. 4.17 may be approximated as an integral expression by considering the
phonon density of states (DOS) for the frequency space D(ω) [GM18, p. 222]:

〈Ũ〉 = Ũeq +
∑
p

∫ 1
2 h̄ωDp(ω)dω+

∑
p

∫
h̄ωDp(ω)〈n(ω,T )〉dω, (4.19)

where 〈n(ω,T )〉 = 1
exp

(
h̄ω
kBT

)
− 1

and p = 1, 2...3r′

The integration of the DOS function gives

3N ′ =
∫ ωmax

ωmin

D(ω)dω. (4.20)

Heat capacity From the first law of thermodynamics it follows, that the heat capacity
C̃V measured at constant volume can be defined as [GM18, p. 214]

C̃V ≡
(
∂Q̃

∂T

)
V

=

(
∂Ũ

∂T

)
V

, (4.21)

where Q̃ is an amount of heat and Ũ the internal energy. It should be noted that in
this case the proprieties are not considered per unit volume. However, the heat Q and
internal energy U per unit volume which have been introduced in Section 3.2 are related
by Q̃ = V Q and Ũ = V U .

The heat capacity C̃V used in Eq. 4.21 is also related to the heat capacity measured at
constant strain per unit volume C̃V = CεV and the heat capacity measured per unit mass
cε measured at constant strain is given by:

cε =
C̃V
m

=
C̃V
ρV

=
Cε

ρ
(4.22)

Inserting Eq. 4.17 into Eq. 4.21 gives:

C̃V =

(
∂〈Ũ〉
∂T

)
V

=
∑
q,p

∂

∂T

h̄ωqp

exp
(
h̄ωqp
kBT

)
− 1

(4.23)

Considering an approximation for the low temperature range under the assumption kBT �
h̄ωqp it can be derived that the heat capacity is given by [GM18, p. 224]:

C̃V = V
2π2

5 kB

(
kBT

h̄vs

)3
, cε =

2π2

ρ5 kB
(
kBT

h̄vs

)3
(4.24)

where vs is the mean speed of sound of the three acoustic modes and Eq. 4.22 has been
used to calculate cε.
A phenomenological description of the temperature dependent heat capacity of dia-

mond may be given by the Einstein-approximation. The underlying assumption for this
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approximation is that a crystal which possesses N ′ atoms has 3N ′ number of modes which
all have the same frequency ωE , which is denoted as the Einstein-frequency. For such a
condition the DOS (Eq. 4.20) are given by D(ω) = 3N ′δ(ω − ωD), where δ is the Dirac
delta function (Fig. 4.3b). Inserting Eq. 4.19 into Eq. 4.23 gives in this case:

C̃V ,einstein = 3N ′kB
(
TE
T

)2 exp(TE/T )
(exp(TE/T )− 1)2 , where TE =

h̄ωE
kB

. (4.25)

The Einstein temperature TE characterizes the material specific heat capacity and may
be obtained by comparisons with experimental data. As illustrated in Fig. 4.4 the value
for a diamond crystal is about TE = 1320 K. The number of atoms in a macroscopic
diamond crystal with volume V may be calculated by N ′ = 8V /a3, where a is the lattice
constant. Considering the density given by Eq. 4.5 the mass may be calculated by m =

V ρ =MN ′/Na. Thus, given by Eq 4.22 the specific heat capacity per unit mass is:

cεeinstein = 3kBNkg

(
TE
T

)2 exp(TE/T )
(exp(TE/T )− 1)2 , where Nkg =

NA

M
, (4.26)

where Nkg is the number of atoms per unit mass. Considering T � TE it can be seen that
Eq. 4.26 is approximately 3NkgkB. This result is also know as the Dulong-Petit law and
can be also be derived with classical assumptions (without considering quantum effects)
using the theory of statistical mechanics [GM18, p. 216]. Considering the Dulong-Petit
value for the heat capacity of diamond gives cεDP = 3NkgkB = 2078.6 J kg−1 K. Com-
paring this value with measured values of the heat capacity Fig. 4.4 [DeS53] shows that
this classical approximation gives wrong2 result for diamond because it cannot explain the
strong temperature dependence (even at room temperature) of diamond. Considering suf-
ficiently low temperatures it can be seen that for some high frequency modes the following
inequality has to be considered:

h̄ω � kBT . (4.27)

A classical mode could take any amount of energy kBT from a heat bath. However, taking
into account quantum mechanical effects a mode with frequency ω under the condition
h̄ω � kBT cannot take energy from the heat bath and stays in the ground state. There-
fore, with decreasing temperature some of the modes with higher frequencies will stay in
the ground state, which causes a decreasing heat capacity. Considering Eq. 4.27 an abso-
lute temperature value of 300 K may be related3 to a phonon frequency of 6.25 THz. As it
can be seen from Fig. 4.3 this causes that for diamond most of the modes are in the ground
state even at room temperature, which explains the strong deviation of the Dulong-Petit
law. For high temperature values (sufficiently higher than the Einstein temperature) all
modes can take energy from the heat bath (kBT � h̄ω) and the approximation of the

2However, it should be mentioned that the Dulong-Petit law gives quite accurate values for a heat capacity
at room temperature for many different materials. The strong deviation in the considered case is a
special case due to the special material properties of diamond.

3Calculating the phonon frequency by kBT
h̄2π .
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Figure 4.4.: Heat capacity calculated with an ab initio method (Appendix A.4) compared to measured
data [DeS53]. Also shown are heat capacity values calculated with the Debye approxi-
mation Eq. 4.29 (TD = 1861 K), the Einstein approximation Eq. 4.26 (TE = 1320 K)
and the low temperature approximation Eq. 4.24.

Dulong-Petit law may be used. However, it should be mentioned in this context that for
diamond at temperatures values above about 1800 K graphitization processes have to be
taken into account and for temperature values about 2400 K, diamond will be converted
completely to graphite in the time span of a few minutes [DE72].

The Debye approximation uses similar assumptions like the Einstein approximation.
However, in this case the phonon dispersion is assumed to consist of three acoustic branches
with linear dispersion (ωp = vpq, where p = 1, 2, 3) and the DOS are given by Dp(ω) =
V

2π2
ω2

v3
p
. Inserting Eq. 4.19 into Eq. 4.23 gives in this case [GM18, p. 228]:

CV ,debye = 9N ′kB
(
T

TD

)3 TD/T∫
0

x4ex

(ex − 1)2dx , where TD ≡
h̄ωD
kB

=
h̄vmean
kB

(
6π2N

′

V

)1/3

(4.28)
where ωD is the Debye frequency, and a mean phonon velocity vmean has been considered.
The Debye temperature TD may be obtained from experimental data and has at room
temperature a value of about TD = 1861 K (at T= 300 K) [DeS53]. For TD = 1861 K
and using N ′/V = Naρ/M , thus vmean is 11 144.6 m s−1. For phonon wavelengths λph
which are much bigger than the lattice constant (λph � a) a continuum approximation
may be considered. For such a case the phonon velocity may be connected to the speed
of a longitudinal (Eq. 3.64) and transverse (Eq. 3.66) sound waves [GM18, p. 182] and
vmean may be calculated be by vs = (2vT + vL)/3 = 14 129.20 m s−1, where the mean
Young’s modulus Emean = 1125 GPa and mean Poisson’s ratio νmean = 0.07 have be used
for the calculation. Such an approximation may be used considering low temperatures,
because the only modes which are not in the ground state are in this case phonon modes
with long wavelengths near the Γ-point of the first Brillouin zone. Considering the low
temperatures range it can be obtained from measurements of the heat capacity that the
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Debye temperature in this case is about TD = 2242 K (at T= 60 K) [DeS53], which gives a
mean velocity of vmean = 13 426.19 m s−1, which is close to the continuum speed of sound
value vs.

Following the same arguments as before for the Einstein approximation the heat capacity
per unit mass can be calculated with

cεdebye = 9NkgkB

(
T

TD

)3 TD/T∫
0

x4ex

(ex − 1)2dx , where Nkg =
NA

M
(4.29)

Comparing the values calculated with the ab initio method for the heat capacity with mea-
sured values [DeS53] shows very good agreement (Fig. 4.4). Also the Debye approximation
considering a Debye temperature of TD = 1861 K shows a quite good agreement with the
measurments. Using the Einstein approximation shows clear deviations from the measured
values and cannot explain the low temperature approximation calculated with Eq. 4.24.
However for an Einstein temperature of TE = 1320 K it gives results which describe the
temperature dependence of the diamond heat capacity correctly to some extent.

Comparing the Einstein an Debye approximation it should be clarified that these ap-
proximations were not invented to simplify the calculations which can be carried out by
ab initio methods, but were postulated before such ab initio methods were invented.

Phonon-phonon scattering To describe thermal expansion and thermal conductivity,
scattering processes have to be taken into a account. Without phonon-phonon scattering
processes, phonons inside a crystal would be entirely decoupled and a once excited lattice
vibration would exist forever. Under such conditions a thermal equilibrium could not
appear. The most common phonon-phonon scattering process is a three-phonon process
were either two phonons are converted into a new one, or one phonon is converted into
two new phonons. Considering conservation of energy for this scattering process gives:

h̄ω3 = h̄ω1 + h̄ω2. (4.30)

Further a conservation law for the quasimomentum can be defined:

q3 +G = q1 + q2. (4.31)

The reciprocal lattice vector G has to be chosen in a way that all wave vectors q are inside
the first Brillouin zone. In this context scattering processes with G = 0 are called normal
scattering. For G 6= 0 they are called Umklapp scattering, which regards to a change in
the direction of converted wave vectors.

Higher scattering process involving more than three phonons are also possible but less
likely and therefore may be neglected [GM18, p. 236].
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Figure 4.5.: Change of the linear thermal expansion coefficient α(T ) measured with X-ray diffrac-
tion data [SS10] and fit given by [JS19], which were obtained by taking into account
various result of measured values known from literature.

Thermal expansion coefficient Considering a perfect single crystalline (SC) diamond
the macroscopic structure is built of a periodic arrangement of many unit cells like the
one illustrated in Fig. 4.1a. Therefore the change of the lattice parameter a is directly
connected to the macroscopic property of the thermal expansion coefficient introduced in
Section 3.2 (Eq. 3.23), which may be formulated as:

α(T ) =
1

a(T )

(
∂a(T )

∂T

)
σ

∆T→0−−−−→ αij =

(
∂εij
∂T

)
σ

(4.32)

where α(T ) can be interpreted as an approximated constant value if only small temper-
ature variations ∆T are considered. Measuring the lattice constants of SC diamond at
different temperatures using X-ray diffraction gives the progression of the linear thermal
expansion coefficient which can be fitted to a polynomial function for the temperature
range from near zero Kelvin to room temperature (300 K) [SS10]:

a(T ) = 3.566 82Å+ 2.5× 10−8 Å/K1 T − 5.19× 10−10 Å/K2 T 2 + 4.96× 10−12 Å/K3 T 3

+1.11× 10−16 Å/K4 T 4 + 1.92× 10−16 Å/K5 T 5 − 3.46× 10−19 Å/K6 T 6

(4.33)

Inserting 4.33 into 4.32 the thermal expansion coefficient illustrated in Fig. 4.5 can be
calculated.

Measurements conditions In Section 3.2 it has been mentioned that the heat capacity
measured at constant strain could give a different result compared to a measurement at
constant stress (Eq. 3.36). Taking into account Eq. 4.22 gives:

cε − cσ = −T
ρ
αijαklCijkl (4.34)
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where cσ = Cσ

ρ is the heat capacity per unit mass measured at constant stress. For a
cubic crystal it can be obtained by using αij = αδij , that Eq. 3.9 and Eq. 3.48 results in
αijαklCijkl = 3α2(c11 + 2c12) = 9α2B. Considering that the thermal expansion coefficient
at room temperature is about 1× 10−6 K−1 (Fig. 4.5) and the bulk modulus is 433 GPa
(Eq. 4.14) gives by Eq. 4.34 cε − cσ = 0.332 J K−1 kg−1. This value is much smaller than
the heat capacity value (Fig. 4.4), which is about 534 J K−1 kg−1 for room temperature.
Considering the temperature dependence of the thermal expansion coefficient (Fig. 4.5)
and the heat capacity (Fig. 4.4) it can be obtained that the value of cε − cσ is not only
much smaller at room temperature, but also for any other temperature value. Thus, it
can be assumed in good approximation that cε ≈ cσ and therefore in the following part of
this work the heat capacity per unit mass c will be used without distinguishing between
the values measured at constant strain or constant stress.

As also mentioned in Section 3.2 the elastic properties may give different results mea-
sured at constant temperature compared to a measurement at constant entropy, given by
the relation Eq 3.35:

SSijkl − STijkl = −αijαkl
T

cρ
. (4.35)

Considering again room temperature values gives −α2 T
cρ = 0.000 16 TPa−1 which is much

smaller than the values of the components of the compliance tensor Eq. 4.13. Also in
this case α2 T

cρ is not only much smaller at room temperature, but for any value of the
temperature, considering the temperature dependence of the thermal expansion coefficient
(Fig. 4.5) and the heat capacity (Fig. 4.4). Thus, the difference for the elastic properties
measured at constant strain compared to the ones measured at constant entropy can be
neglected in good approximation.

Grüneisen parameter The volume dependence of the phonon frequencies may be de-
scribed by the Grüneisen parameter, which will be introduced in this section. The thermal
expansion coefficient can only be measured if the crystal is free of stress. From a ther-
modynamic view this means that the derivative of the Helmholtz free energy with respect
to the volume must disappear, which demands that the pressure P must disappear for
all temperatures. Considering thermodynamic relations and the definition of the internal
energy Eq. 4.17, an equation for the pressure can be derived [GM18, p. 239]:

P = −BδV
V
− ∂

∂V

∑
q,p

1
2 h̄ωqp −

∑
q,p

∂ h̄ωqp
∂V

1
exp

(
h̄ωqp
kBT

)
− 1

. (4.36)

In this equation B is the bulk modulus and δV = V −V0 is the change of volume regarding
to an initial volume V0.

The definition of thermal expansion coefficient for a finite volume V and the definition
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for the bulk modulus (Eq. 3.51) gives [GM18, p. 241]

α =
1

3V

(
∂V

∂T

)
P

= − 1
3V

(
∂V

∂P

)
T

(
∂P

∂T

)
V

=
1

3B

(
∂P

∂T

)
V

. (4.37)

Inserting Eq. 4.36 into Eq. 4.37 yields

α = − 1
3B

∑
q,p

(
∂ h̄ωqp
∂V

)
∂

∂T

1
exp

(
h̄ωqp
kBT

)
− 1

. (4.38)

Recalling the definition of Eq. 4.23 and Eq. 4.22 the equation for the specific heat capacity
per volume is

Cε =
∑
q,p

Cεqp , where Cεqp =
h̄ωqp
V

∂

∂T

1
exp

(
h̄ωqp
kBT

)
− 1

. (4.39)

The definition of the Grüneisen parameter is

γqp ≡ −
V

ωqp

∂ωqp
∂V

= −∂(lnωqp)

∂(lnV )
and γ ≡

∑
q,p γqpC

ε
qp∑

q,pC
ε
qp

. (4.40)

With this definition it follows
α =

γCε

3B . (4.41)

Considering again the Debye approximation, the frequencies of the normal modes scale
linearly with ωD and therefore Eq. 4.40 becomes in this case

γqp = −
∂(lnωD)
∂(lnV )

= γ =
3Bα
Cε

. (4.42)

Considering a Debye temperature of TD = 1861 K and a mean Grüneisen parameters
of γ = 0.9 gives acceptable agreement with measured values in the temperature range
from near zero up to 400 K as illustrate in Fig. 4.5. However, this may be considered
just as a rough estimation, which may visualize that there is some similarity between the
function of the heat capacity and the thermal expansion coefficient. A more sophisticated
fitting approach would be to consider the Grüneisen parameter as a mode and temperature
dependent parameter [Par77]. The Grüneisen parameter can also be calculated with an
ab initio method [XWCH91], however this kind of calculation will not be carried out in
this work. Instead a semi-empirical multi-frequency Einstein mode, approximating the
Grüneisen parameters will be introduced to describe the values of the thermal expansion
of diamond by [JS19] [Ree75]

α =
n∑
i=1

Xi

(
TEi
T

)2 exp(TEi/T )
(exp(TEi/T )− 1)2 . (4.43)

It has been obtained by fitting Eq. 4.43 to available experimental data from the literature
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that using the values:

X1 = 0.0096× 10−6 K−1,TE1 = 159.3 K

X2 = 0.2656× 10−6 K−1,TE2 = 548.5 K

X3 = 2.6799× 10−6 K−1,TE3 = 1237.9 K

X4 = 2.3303× 10−6 K−1,TE4 = 2117.8 K

gives good agreement with the experimental data in the temperature range up to 1000 K
[JS19] as illustrated in Fig. 4.5.

Heat transfer Contrary to the thermal properties discussed so far the heat conduc-
tivity is a non-equilibrium property, which is describing the heat flux and is caused by
a temperature gradient. In the previous discussion about the specific heat capacity the
properties 〈Ũ〉 and 〈nqp〉 (Eq. 4.17) were described by assuming a thermal equilibrium,
which is characterized by a fixed temperature. To describe heat conductivity a situation
where the spatial variation of the temperature is small may be considered, so that it can be
assumed to be constant in a particular region. This region must of course be bigger than
the atomic distance in the crystal. However, to set a limit for which spatial dimensions
this approximation is valid is not a trivial task. It depends on the problem under consid-
eration, as well as on the material properties. This statement is going to be discussed in
detail in this section.

In a first approximation it will be assumed that neighboring regions have only a small
temperature difference and each of the neighboring regions is defined by a homogeneous
temperature value and mean amount of phonons 〈nqp〉. Therefore, 〈nqp〉 is now a space
dependent function. To describe thermal conductivity, the heat flux qh as a function of
〈nqp〉 will now be investigated. Considering now a one-dimensional4 heat flux, where an
amount Q̃ of heat is transferred in x-direction during a time span τ across a surface A.
The transferred amount of heat may be determined by [GM18, p. 244]

Q =
Ũ

V
Avxτ = qhxAτ . (4.44)

where vx is the mean velocity of the phonons which transport the energy. This velocity is
given by the group velocity ∂ω/∂qx. In Eq. 4.44 Ũ

V is the energy density inside a considered
cuboid volume given by Avxτ . The heat flux in x-direction qhx is the transferred amount
of heat Q̃ per area A and time τ . Using Eq. 4.17 to describe the internal energy Ũ of the
phonon system, the heat flux becomes:

qhx =
1
V

∑
q,p

h̄ωqp

(1
2 + 〈nqp〉

)
vx,qp , where vx,qp =

∂ωqp
∂qx

. (4.45)

4Here a temperature profile varying only in x-direction but constant in the y − z plane at each position
in x-direction is considered.
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From this equation it follows that considering neighboring parts which are in thermal
equilibrium, the heat flux qhx is zero, because the occupation numbers for positive and
negative wave vectors are equal and due to symmetry of the dispersion relation it follows
that vx(q) = −vx(−q). Therefore, the sum in Eq. 4.45 in equal to zero. A none zero heat
flux exists if the mean phonon number 〈nqp〉 deviates from a reference thermal equilibrium
〈nqp〉0:

qhx =
1
V

∑
q,p

h̄ωq,p (〈nqp〉 − 〈nqp〉0) vx,qp. (4.46)

The spatial change of 〈nqp〉 over time can be connected to two different processes. First,
some phonons can diffuse into another spatial area and second, phonon-phonon scattering
can occur, producing new phonons:

d〈nqp〉
dt

=
d〈nqp〉
dt

∣∣∣∣
diffusion

+
d〈nqp〉
dt

∣∣∣∣
scattering

. (4.47)

This equation is a special case of the Boltzmann transport equation. Using the assumption
that d〈nqp〉

dt = 0 gives an approximately stationary state, where it is assumed that 〈nqp〉
depends on space but not on time. Another approximation may be used by considering
that the temporal change of the phonon occupation number due to scattering can be
described by a mean scattering time τ , which is independent of the phonon energy:

d〈nqp〉
dt

∣∣∣∣
scattering

= −〈nqp〉 − 〈nqp〉0
τ

. (4.48)

The diffusion term is connected to a temperature gradient. In a time span ∆t all phonons
that where localized at x− vx∆t will arrive at position x, which gives

d〈nqp〉
dt

∣∣∣∣
diffusion

= lim
∆t→0

1
∆t

[〈nqp(x− vx∆t)〉 − 〈nqp(x)〉] = −vx
∂〈nqp〉
∂x

= −vx
∂〈nqp〉0
∂T

∂T

∂x
.

(4.49)
The approximation on the right hand side of this equation, where 〈nqp〉 has been replaced
by 〈nqp〉0 is possible if a static situation and local thermal equilibrium is assumed [GM18,
p. 246].

Inserting Eq. 4.49 and Eq. 4.48 into Eq. 4.47 gives an expression for 〈nqp〉 − 〈nqp〉0,
which can be then inserted into Eq. 4.46:

qhx = − 1
V

∑
qp

h̄ωq,pv
2
xτ
∂〈nqp〉0
∂T

∂T

∂x
. (4.50)

For an isotropic solid it can be defined that 〈v2
x〉 = 1

3v
2, because in this case the magnitude

of the phonon velocity is given by v2
x+ v2

y + v2
z = v2 and v2

x = v2
y = v2

z . By using Eq. 4.39,
the Fourier heat law, which has been introduced before as an empirical law (Eq. 3.55) can
be derived:

qhx = λc
∂T

∂x
, where λc =

1
3C

εvl and l = vτ . (4.51)
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From this equation it can be seen that heat capacity and the group velocity have a direct
influence on the thermal conductivity. Therefore, phonons near the edge of the Brillouin
zone or optical phonons have only little impact on the heat transport. It should be noted
that, for the derivation of Eq. 4.51 it has been neglected that the considered properties are
frequency dependent, also that phonons can be defined to be acoustic and optical phonons
and their particular polarization has been ignored.

In Eq. 4.51 also the mean free path l has been introduced, which will be be discussed
in detail in the following part of this section. Considering the temperature dependence of
the thermal conductivity the properties cV and l are expected to have the major influence.
The temperature dependence of cV has already been discussed. For the mean free path,
different scattering processes have to be considered, regarding a diamond crystal with
finite size. If various scattering processes appear independently of each other, a total
scattering rate may be calculated by summation, with the connection of the scattering
rate 1/τi ∝ 1/li [GM18, p. 248]:

1
l
=

1
lph−ph

+
1
lD

+
1
liso

. (4.52)

Phonon-phonon scattering, lph−ph The three phonon-phonon scattering process
has already been introduced in this section. Considering that two phonons are converted
into a new one, it can be expected that this process appear more frequently for higher
phonon densities. Therefore, the scattering probability should be proportional to nph(T )
and lph ∝ 1/nph(T ). For normal scattering processes the total momentum and energy
(Eq. 4.30 and Eq. 4.31) is constant. Therefore, the equilibrium distribution of the phonons
at a temperature T can propagate with a certain drift velocity along the crystal. These
scattering processes do not hinder the thermal conductivity at all. For a finite value of
the heat conductivity not only processes, which have a finite mean free path are necessary,
but also processes like Umklapp scattering needed to cause thermalization. For Umklapp
scattering the momentum G is transferred to the lattice. This momentum transfer leads
to the thermal resistance of the lattice [GM18, p. 248].
Since, the sum of two phonon wave vectors has to be outside of the first Brillouin zone

to generate Umklapp scattering, the Debye approximation may be used to define the mean
energy for such phonons by kBTD/2 [GM18, p. 249]. The occupation probability in this
case is given by 〈n〉 = 1/(exp(TD2T )− 1). For T � TD is can be obtained 〈n〉 ∝ exp(−TD

2T )

and T � TD gives 〈n〉 ∝ T
TD

. This causes for the mean free path lph ∝ exp(TD2T ) for
T � TD and lph ∝ TD

T for T � TD.

Defect scattering, lD Defects inside the crystal and at its boundaries lead to scat-
tering of phonons. The probability of such a scattering process only depends on the density
of defects nD and scattering cross-section σD and is therefore nearly independent of the
surrounding temperature. For the scattering of phonons which have a wavelength λth

much bigger than the diameter of the defect area aD � λth, Rayleigh scattering can be
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considered. The scattering cross-section in this case is

σD ' πa2
D(aDq)

4. (4.53)

The mean free path in this case is related to lD ∝ 1
nDσD

[GM18, p. 249].

Boundary scattering For small solids or cases where all mean free paths in Eq. 4.52
are greater than the characteristic lengths of the solid, a dominant scattering process
may be the diffusive scattering at the boundaries of the solid. However, the scattering of
phonons at boundaries does not need to be diffusive, but can also be specular depending
on the particular structure of the crystal surface. For a perfect smooth surface there
would be no diffuse scattering at all. A surface may be characterized by its variation
from its mean plane (i.e. roughness) and by the distance between two roughness features
(i.e. correlation length). A reduced mean-free-path can be calculated in this context by
considering that, depending on a particular phonon momentum and angle of incidence at
the surface, there exists a probability for the phonon to be scattered inside the solid or at
a boundary [MM16].

Isotope scattering, lD In single crystalline material the isotope concentration can
have a significant impact regarding the phonon scattering. The random distribution of
different isotope masses disturbs the periodicity of a perfect crystal and leads to scattering
processes [GM18, p. 250]. However, a detailed discussion about the effect of the isotope
concentration will not be carried out in this work. For further information about this topic
the interested reader is referred to the work of P. Rauer [Rau21].

Low temperature limit Considering that the mean free path caused by phonon-
phonon scattering increases exponentially in the low temperature range lph ∝ exp(TD2T )

for T � TD, it can be concluded that the mean free path is dominated by defect and
boundary scattering effects. For single crystal materials with low defect concentration the
mean free path can be larger than the spatial dimension of the crystal and the mean free
path is related to scattering effects at the crystal boundaries.

Thermal conductivity Diamond has the highest thermal conductivity of any known
material at temperatures above about 100 K. However, the exact value strongly depends
on the quality of the specimen. Synthetic single crystals which are prepared with car-
bon isotopically enriched in 12C can reach values of 3300 W m−1 K−1 at 300 K and SC
CVD diamond have show values of about 2200 W m−1 K−1 [PK13, p.285]. In Fig. 4.6 the
thermal conductivity calculated with an ab initio method for a diamond with an isotope
concentration of 1.1%13C for two different thicknesses of 100 µm and 150 µm are shown.
The calculation have been carried out by P. Rauer and details about the used method can
be found in his PhD thesis [Rau21]. Also shown in Fig. 4.6 are measurements of a diamond
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Figure 4.6.: Thermal conductivity of SC diamond with an isotope concentration of 1.1%13C. Cal-
culated for a 100 µm and 150 µm thick crystal with an ab initio method by P. Rauer
[Rau21] and measured values by [WKT+93], with a SC diamond crystal of size
1 mm× 2 mm× 4 mm.

crystal with an isotope concentration of 1.1%13C, where a crystal with spatial dimension
in the millimeter range has been investigated [WKT+93]. The illustrated temperature
dependence in Fig. 4.6 may be related to the derived relation of the thermal conductivity
in Eq. 4.51: λc = 1

3C
εvl. As mentioned before the value of the heat capacity and the

phonon mean free path l shows a significant temperature dependence. The increase of the
thermal conductivity at low temperatures can be related to the increase of the value of the
heat capacity. With increasing temperature the reduced mean free path due to phonon-
phonon scattering can be related to the decrease of the value of the thermal conductivity
for higher temperatures.

The heat transfer in diamond in the low temperature range may be connected to a
ballistic heat transport where phonons can propagate through the crystal without being
scattered. Under such condition the heat conductivity which has been derived under the
assumptions of a diffuse heat transport (Eq. 4.49) has no clear defined meaning anymore.
However, considering the failure of the diffuse assumption there will be a temperature
region where the simulations carried out under the assumption of a diffuse heat transport
may still predict useful results. This kind of region will be investigated by the experiments
in this work which will be explained in detail in the next sections.
To get a rough estimation for the value of the mean free path Eq. 4.51 may be considered

to be calculated:
l =

3λc
cρv

. (4.54)

Here the relation of Eq. 4.22 has been used. Considering the mean velocity obtained
from the Debye approximation (11 144.6 m s−1) and using the heat capacity values calcu-
lated with an ab initio method (Fig. 4.4) the mean free path calculated with Eq. 4.54 as
illustrated in Fig. 4.7a can be obtained.
In the measurements of this work only diamond crystals with an isotope concentration
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(a) phonon mean free path (b) thermal conductivity

Figure 4.7.: (a) Mean free path calculated with Eq. 4.54. (b) Measured impact of isotope concen-
tration on the value of the thermal conductivity [WKT+93].

of about 1.1%13C are investigated. However, it should be mentioned that a low isotope
concentration could give a much higher conductivity like the measurements of SC diamond
with a isotope concentration of 0.07%13C [WKT+93] (Fig. 4.7b).

4.2. Optical properties

The optical refractive index at room temperature of diamond has been measured for
various wavelengths [PT64]. Important for the experimental setup used in this work are
wavelength values of λ = 213 nm and λ = 532 nm. For λ = 213 nm a refractive index
of n = 2.7764 and a absorption coefficient of αk = 2008.8 cm−1 (penetration depth of
ζ = 1

αk
= 4.978 µm) has been measured. At λ = 532 nm the absorption coefficient is nearly

zero and the refractive index is n = 2.4250. Considering Eq. 2.51, Eq. 2.52 and Eq. 2.55
of Section 2 the reflectance under normal incidence is R = 0.221 28 for a wavelength
of λ = 213 nm and R = 0.1731 for a wavelength of λ = 532 nm. A measurement of
the temperature dependence of the refractive index in the range 93 K to 713 K for the
wavelengths of 435.8 nm and 546.1 nm is illustrated in Fig. 4.8. The reduction of the
refractive index at these wavelength with decreasing temperature from 123 K to 93 K has
a very small value so that it could not be determined by the measurements [Ram47].

(a) variation of dndT with T (b) T dependent n at λ = 546.1 nm

Figure 4.8.: (a) Change of the refractive index with temperature in the range from 93 K to 713 K at
the wavelengths 435.8 nm and 546.1 nm [Ram47]. (b) Value of the refractive index cal-
culated by numerical integration of the change of the refractive index with temperature.
The value at room temperature is n = 2.4232.
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5. Experimental setup and measurements

To investigate the nondestructive interaction of powerful electromagnetic radiation with
a diamond Bragg reflector an experimental pump-probe setup has been built up. In the
context of this work the intensity change of a continuous wave single frequency laser (i.e.
probe) probes a material interaction, which is initialized by a pulsed laser (i.e. pump).
The effect of the photon-material interaction of the probe with the Bragg reflector in terms
of absorption is assumed to be negligible. As mentioned in the introduction of this work
(Section 1) the pump laser is chosen to imitate the heat load expected of a saturated
XFELO X-ray pulse. The probe is combined with a Michelson interferometer, which
enables a measurement of the displacement in normal direction to the crystal surface.
The experimental setup is explained in detail in the following section and is illustrated in
Fig. 5.5.

Figure 5.1.: Illustration of the wedged angle, here
denoted by α. The laser spots of a
reflected laser beam can be spatially
separated with a wedged crystal. The
refractive index of diamond is de-
noted nc and n0 is the refractive in-
dex of the vacuum.

Diamond crystals For the pump-probe
measurements in this work a single crys-
tal diamond fabricated by Applied Dia-
mond, Inc has been investigated. The crys-
tal has the nominal dimensions 4 mm ×
4 mm× 100 µm, the orientation <100> and
a wedge angle which is about 0.1°, which
corresponds to a thickness variation of
about tan(0.1°)× 4 mm = 7 µm. The man-
ufacturing tolerance for the crystal thick-
ness is ±10 µm. The wedge angle is used to
separate the laser spots that are reflected
at the front side and the back side of the
crystal as illustrated in Fig. 5.1. The crys-
tal was fabricated by a microwave plasma
CVD technique. The manufacturer infor-
mation is that the 13C content of the dia-
mond is about 1.1%.

Crystal holder An illustration of the crystal holder is given in Fig. 5.2. The holder
is made of oxygen-free high thermal conductivity (OFHC) copper. The clamping can be
adjusted with a linear piezo stage (model: SLC1720, company: SmarAct), which moves a
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Figure 5.2.: Illustration of the vacuum chamber and the crystal holder.

block of PolyetherEtherKetone (PEEK). The temperature of the holder is measured with
two PT100 resistors at the bottom and the top of the holder as illustrated in Fig. 5.2. The
resistors are clamped mechanically. The bottom of the holder is made of stainless steel.
Between the steel plate and the copper a kapton heater foil (model: 317-KAPH-1/1-V3,
company: allectra) is placed of size 25 mm x 25 mm.

Cryogenic cooling A single-stage cryogenic pulse tube cooler (model: PTS 8030-HT,
company: TransMIT) is connected to the holder with a OFHC copper strand. The heater
and PT100 sensors of the holder are connected to a PID controller (model: 330, company:
LakeShore), which adjusts the temperature of the holder to the desired temperature value.

Vacuum chamber The vaccuum chamber is illustrated in Fig. 5.2. The pressure in the
chamber is measured with an active wide range vacuum gauge (model: ATMION, company:
VACOM). Two turbopumps (model: HIPACE80, company: PFEIFFER) and (model:
TMU 261, company: PFEIFFER) are used to create a vacuum pressure P<10−6 mbar.

Alignment The alignable axes (x′-y′-z′, x′′-y′′-z′′, φr-φy-φp) of the experimental setup
are illustrated in Fig. 5.2. The vacuum chamber is on top of some positioning stages,
which allows to move the chamber in x′-y′-z′-direction with micrometer precision. Three
additional stages can also be used to tilt the chamber around the roll φr, the jaw φy and
the pitch φp axes. The chamber is design in a way that the intersection point of these
axes meet at the position of the crystal. All motors can be addressed with digital position
values. The pump laser is also on top of the same positioning x′-y′-z′ stages like the
vacuum chamber. It is further possible to align the position of the pump laser relative to
the crystal position in y′′ and z′′-direction mechanically and in x′′-direction with digital
addressing. The probe laser is placed on an optical table with fixed position.



69

Knife edge method Putting an opaque crystal into the holder and moving it step
wise through the beam, while measuring the average power behind the crystal gives data
that can be used to calculate the laser spot size. This technique is called the knife edge
method [ASL+09] and is illustrated in Fig. 5.3c. Assuming the z-direction is parallel to
the direction of the beam propagation, the intensity of a Gaussian beam in Cartesian
coordinates at a fixed position z is given by (see Eq. 2.33) :

I(x, y) = I0 exp(−2[(x− x0)
2 + (y− y0)

2]/W 2), where ρ2
r = x2 + y2, (5.1)

where W is the beam radius at the fixed position z. As illustrated in Fig. 5.3c, moving a
knife which is parallel to the y-axis through the beam in x-direction gives the normalized
transmitted power obtained by the integral:

PN (x, y) =
∫ x
−∞

∫∞
−∞ I(x

′, y′)dy′d′x∫∞
−∞

∫∞
−∞ I(x

′, y′)dy′d′x (5.2)

PN (x) =
1
2

[
1 + erf

(√
2(x− x0)

W

)]
(5.3)

The fitting of Eq. 5.3 can be carried out by using a Python script containing the scipy
module and using scipy.optimize.curve_fit.

Pump laser The pump laser is a pulsed UV laser (model: FQSS 213-50, company:
CryLas), which operates at a wavelength of 213 nm and emits pulses with a repetition
frequency of 20 Hz. The pulse duration is about ≈1.5 ns, the exact temporal profile U(t)
has been measured with an ultrafast photodiode (model: UPD-200-UP, company: AL-
PHALAS) in combination with an oscilloscope (model: WaveMaster 8 Zi-B, company:
Teledyne LeCroy). The variations of the pulse shape and amplitude from pulse to pulse
are less than ±5% and the averaged signal considering a few tens of sweeps is such stable
that the oscilloscope measures a nearly static signal, thus these kind of variations can be
neglected in the context of this work. The temporal profile of the laser is illustrated in
Fig. 5.3b and has been normalized with: U(t)/(

∫ T
0 U (t′)dt′), where T is the time span

illustrated in Fig. 5.3b.
The spot size of the laser has been determined with two different techniques. The first

is to place the screen of a UV converter (model: BSF08R12N, company: DataRay Inc.)
in combination with a beam profiler (model: LBP2-HR-VIS, company: Newport) at the
position1 of the crystal. With this method the shape of the laser beam can determined
as illustrated in Fig. 5.3d. The second method is the knife edge method (Fig. 5.3c). For
the UV laser, diamond is a opaque material, therefore the edge of the diamond crystal
can be used to partly cut the laser spot. Moving the diamond in 5 µm steps through
the beam and measuring the average laser power at each step yields the curve plotted

1For this measurement the holder and the crystal have to be removed from the vacuum chamber.



70 5. Experimental setup and measurements

(a) knife edge measurement (b) pulse form

(c) knife edge method
(d) beam profile

Figure 5.3.: (a) Measurement of beam radius W . (b) Temporal profile of pump laser pulse (c)
Sketch of knife edge method. The y-axis is in direction out of plane in this illustration.
(d) Spatial profile measured with beam profiler.

in Fig. 5.3a. Assuming a Gaussian profile and fitting this curve with Eq. 5.3 gives the
radius W = 300.7 µm. The pulse energy of Ep = (44.6± 5.0) µJ has been measured with
a thermal sensor at the position of the crystal.

Measurements of temperature dependent absorption coefficient As mentioned
in Section 4.2 the value of the absorption coefficient is αk = 2008.8 cm−1 at room temper-
ature. To measure the temperature dependence of αk a photodiode (model: DET10A/M,
company: Thorlabs) is placed behind a SC HPHT crystal to measure the pulse inten-
sity of the UV laser, which has a wavelength of 213 nm. The crystal has a thickness of
(100± 10) µm. The crystal used for these measurements is not the crystal used for the
measurements presented in the following pump-probe experiment. However, it has nearly
the same geometrical shape as the CVD diamond used in the pump-probe experiment. The
13C content of the HPHT diamond crystal might be a bit higher than 1.1%, as reported
by the manufacturer Applied Diamond, Inc.

The photodiode, which is used for the measurements is aligned2 such that the signal
reaches a maximum value. The peak value of the pulse shape (comparable to Fig. 5.3b)
measured with the oscilloscope has a value of about U = 3 V. The temperature of the
holder is reduced step wise and the change of the voltage is measured by noting the peak

2The pump laser radius was larger than the detector size for theses measurements.
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value of an average signal (500 sweeps) of the pulse shape at each temperature3 value. At
the last measurement point the photodiode was realigned and it could be noted that the
diode was still at the position where the signal has been at its maximum.

Ignoring for simplicity that the reflectance may also be temperature dependent the ratio
of the voltage value U0 measured at room temperature and the voltage value, which is
proportional to the intensity (Eq. 2.60) measured at a lower temperature U(T ) may be
referred to:

U(T )

U0
=

exp(−d(T )αk(T ))
exp(−d0αk0)

, (5.4)

where αk0 = 2008.8 cm−1 is the absorption coefficient at room temperature, d0 = 100 µm
the thickness of the diamond crystal and d(T ) the temperature dependent thickness of the
diamond crystal which may be calculated by:

d(T ) = d0 + ∆d(T ), where ∆d(T ) = d0

∫ T

T0
α(T ′)dT ′. (5.5)

Here T0 = 300 K is the room temperature value and α(T ) is the temperature dependent
thermal expansion coefficient. Using Eq. 5.4 , Eq. 5.5 and the values of the fitted func-
tion for the thermal expansion coefficient (Fig. 4.5) the following equation may used to
measured the deviation of the absorption coefficient in relation to the room temperature
value:

αk(T )− αk0 = −
ln
(
U(T )
U0

)
− d0αk0

d(T )
− αk0. (5.6)

As shown in Fig 5.4 the measured divination is much smaller than the room temperature
value αk0 = 2008.8 cm−1 and the corresponding penetration depth ζ = 1/αk may be
considered to be approximately ζ ≈ 1

2012 cm−1 ≈ 5 µm in the temperature range from
60 K to 300 K. For the sake of completeness it should be clarified that the reflectance
change due to temperature change has not been measured in this work. Thus a change
of the of the reflectance could also cause the deviation illustrated in Fig 5.4. Also, it
cannot be excluded that the deviation is higher than illustrated in Fig 5.4 because the
reflectance change might compensate the measured change of the absorption coefficient.
A measurement of the reflectance would also be possible but not with the alignment of the
current experimental setup and thus it has not been carried out in this work. Taking into
account the thickness tolerance of the crystal ∆d0 = 10 µm the following error calculation,
which as been used for the calculation of the error bars in Fig 5.4, may be used:

∆(αk(T )− αk0) =

∣∣∣∣∂αk(T )∂d0
∆d0

∣∣∣∣ =
∣∣∣∣∣∣

ln
(
U(T )
U0

)
d2

0(1 +
∫ T
T0
α(T ′)dT ′)

∆d0

∣∣∣∣∣∣ . (5.7)

3The temperature values are measured at the bottom position of the holder. The temperature difference
to the values measured at the top of the holder is illustrated by the error bars in Fig. 5.4.



72 5. Experimental setup and measurements

Figure 5.4.: Measured temperature dependent absorption coefficient for SC HPHT diamond at a
wavelength of 213 nm.

5.1. Michelson interferometer

To build up a Michelson interferometer a linearly polarized single frequency continuous
wave laser (model: Sapphire SF, company: COHERENT) operating at a wavelength of
532 nm with an output power of P = 150 mW is used. This laser has a linewidth of
∆ν < 1.5 MHz and a M2 of < 1.05. The factor M2 = W0RθdRπ/λ is a numerical measure
describing the deviation of a real laser beam with beam waist radius W0R and angular
divergence θdR = λ/πW0R from the idealized Gaussian beam discussed in Section 2 [ST19,
p. 85]. TheM2 value of the CW laser is near the value of an ideal Gaussian beam (M2 = 1),
thus it may be approximated as an ideal Gaussian beam for a rough calculation considering
focusing optics. In context of paraxial ray optics the q-parameter (Eq. 2.26) of a Gaussian
beam may be used in combination with the ABCD law [ST19, p. 93] to describe the
focusing of the beam by various kinds of lenses. Taking into account the focal length of
the lenses and the distance of the lenses to the beam waist the beam propagation may be
predicted to some extent. The position of the beam radius and the distance of the waist
measured from the output of the laser housing has been specified by the manufacturer
of the CW laser. Using these information, for the needs of this work the focusing and
collimating of the laser beam by various kinds of lenses as sketched in Fig. 5.5 could be
predicted with sufficient accuracy. For the calculations the software Just Another Mode
Matching Tool (JamMt) has been used4. The lenses of the experimental setup illustrated
in Fig. 5.5 are used to collimate and focus the beam in a way that the focal planes lay on
the surface of the diamond crystal and at the detector areas.
At the PBS2 (model: CCM1-PBS25-532, company: THORLABS) (see Fig. 5.5) the

beam is separated into an in x-direction linearly polarized part with magnitude |ET0|,
which is transmitted and an in y-direction linearly polarized part with magnitude |ER0|
which is reflected (see Section 2 Eq. 2.45). The path of the reflected beam propagating in
the direction to the diamond crystal will be called the signal arm of the interferometer in
the following part of this work and the transmitted path which is propagating in direction
of the mirror which is mounted on a piezo will be called the reference arm. The ratio of the

4Using the approximation of an idealized Gaussian beam and considering the focal lengths of the lenses
in context of a thin lens approximation.
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Figure 5.5.: Experimental pump-probe setup used in this work illustrated with the ComponentLi-
brary by Alexander Franzen, which is licensed under a Creative Commons Attribution-
NonCommercial 3.0 Unported License. A detailed description of the experimental setup
is given in Section 5.1.
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(a) quarter-wave retarders (b) polarization state

Figure 5.6.: (a) Illustration of beam path in the signal and reference arm of the interferometer. (b)
Polarization states of in the signal and reference arm, calculated with Jones matrices
introduced in Section 2.

magnitude of the transmitted and reflected electric field (or intensity) can be adjusted by
the half-wave retarder (model: WPH10ME-532, company: THORLABS) HW2 in front of
the PBS2. To understand the purpose of the quarter-wave retarders (model: WPQ10E-532,
company: THORLABS) in the reference and signal arm the illustration in Fig. 5.6 may be
helpful. The reflected beam at the PBS2, which can be associated with the Jones vector
JR1 and which is propagating in direction to the diamond crystal (signal arm) is illustrated
by the blue line in the left plot of Fig. 5.6b, where the amplitude has been normalized such
that the magnitude of the Jones vector is |JR1|/ |ER0| = 1. The Jones vector JR1 is linear
polarized in y-direction. After the quarter-wave retarder which is rotated5 by ΘR = 45◦

the wave is circularly polarized6 but still has a magnitude of |JR2|/ |ER0| = 1, the phase
difference is arg(ER0y2)− arg(ER0x2) = 90◦. After the reflection which can be calculated
with the Jones matrix of Eq. 2.53 and the refractive index of diamond (Section: 4.2)
the magnitude is reduced |JR3|/ |ER0| = 0.4164. Also, the polarization state is now
circular with a phase difference of arg(ER0y3)− arg(ER0x3) = −90◦. Considering the sign
convention7 used in this work the reflected wave is now facing a quarter-wave retarder
rotated by ΘR = −45◦. After propagating through the quarter-wave retarder the wave is
linearly polarized in x-direction having a magnitude of |JR4|/ |ER0| = 0.4164. Due to the
linear polarization in x-direction the wave is now transmitting through the PBS2. It should
be noted that without the quarter-wave retarder the reflected beam would be polarized in
y-direction and thus it would be reflected at the PBS2, resulting in a beam propagation
directed back into the output of the laser housing. The propagation of the beam in the
reference arm can be explained with the same underlying concept (and is illustrated in
right plot of Fig. 5.6b). The quarter-wave retarder causes in this case that the reflected
wave from the mirror after the quarter-wave retarder is polarized in y-direction which

5The used convention for the rotation is described in Section 2.1.3
6For the calculations the Jones matrices described in Section 2.1.3 have been used.
7The sign convention is explained in Section 2.1.3.
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causes a reflection at the PBS2. However, due to the high reflectance of the silver8 mirror
the magnitude after reflection, given by |JR4|/ |ER0| = 0.9916 is significantly higher. To
achieve that the magnitude of the electric field, which is coming from the signal arm is equal
to the one of the reference arm, the half-wave retarder HW2 can be aligned appropriately.
The setup is adjusted in a way that the beam waists coming from each interferometer arm
are equal and the spatial position of the beam shape is nearly the same. For the alignment
the beam profile has been measured at various positions in the experimental setup. The
Jones vectors of the two beams after the PBS2, which are propagating in direction of the
PBS3 (model: PBS12-532 , company: THORLABS) can be denoted by a Jones vector
coming from the signal arm Jsig and a Jones vector coming from the reference arm Jref :

Jsig =

 |E0x1|eiϕx1

0

 Jref =

 0
|E0y2|eiϕy2

 . (5.8)

The half wave retarder HW2 in front of PBS2 is aligned such that: |E0x1| = |E0y2| = |E0|.
It should be mentioned that due to the transparency of diamond at a wavelength of

532 nm the laser is reflected at both the front and back side of the crystal. A crystal with
perfect parallel surfaces would give an overlap of the beam reflected at the front and back
side of the crystal and thus needed to be considered as an additional contribution to Jsig.
However, due to the wedge of the crystal (Fig. 5.1) the undesired reflection can be cut
away by the pinhole after PBS2.
The interference of monochromatic Gaussian beams has been discussed in Section 2.1.3.

The size and position of the laser beams from the signal and reference arm have been
aligned in a way that the beam radii are nearly equal and such that the center of both
beams is nearly at the same position. The maximum intensity for such aligned interfering
Gaussian beams is given by Eq. 2.41. Considering Eq. 2.43 it can be seen that the polariza-
tion states of Eq. 5.8 will not interfere with each other and the intensity is I0 = cε

2 2|E0|2.
However, after the half-wave retarder HW3 (model: WPH05ME-532 , company: THOR-
LABS), which is rotated by angle of ΘR = 22.5◦, the polarization state of Jsig and Jref
are changed to:

Jsig = |E0|eiϕ1 1√
2

 1
−1

 Jref = |E0|eiϕ2 1√
2

 −1
−1

 (5.9)

The values of ϕ1 and ϕ2 can be aligned, by changing the position of the diamond crystal
and the reference mirror, respectively. The PBS3 transmits the in x-direction polarized
part of the beams and reflects the in y-direction polarized part. Thus, by considering
Eq. 2.43 the transmitted intensity becomes I0T = cε

2 |E0|2(1 − cos(ϕ1 − ϕ2)) and the
reflected I0R = cε

2 |E0|2(1 + cos(ϕ1 − ϕ2)). The phase difference φ = ϕ1 − ϕ2 can be

8For the calculation the literature values of the refractive index n = 0.054 and the absorption coefficient
αk = 8.0996× 105 cm−1 have been used [JC72].
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calibrated by changing the path difference ∆d, which could be realized9 for example by
changing the position10 of one interferometer arm while holding the position of the other
constant: φ=4π∆d

λ . The mirror of the reference arm is mounted on a piezo (model: P-
885.11, company: Physik Instrumente). The reflected part of PBS3 is measured with a
photodiode (model: DET10A/M, company: Thorlabs), which is connected to the input of
an analog PID controller (model: SIM960, company: Stanford Research Systems). The
output of the PID controller is connected to the input of a modified11 piezo amplifier
(model: E-617.00F, company: Physik Instrumente), which stabilizes the working point of
the interferometer by controlling the position of the mirror in the reference arm of the
interferometer at a position in the middle between destructive and constructive interfer-
ence, as illustrated in Fig. 5.5. The transmitted part of the PBS3 is collected by a high
speed photoreceiver (model: 1591NF, company: Newport). The high speed photoreceiver
can be used in two different operation modes AC and DC. In DC mode the photoreceiver
measures with the full band width from zero to 4.5 GHz. The AC mode uses a bandwidth
of 10 kHz to 4.5 GHz. The voltage measured in the DC mode with the oscilloscope is
proportional to the intensity of the interfering beams U ∼ I0T . If the interferometer is
aligned correctly the single beam intensity from the signal and reference arm should be
equal. The single beam intensity can be observed by blocking one of the interferometer
arms and measuring the constant voltage value with the oscilloscope (model: WaveMaster
8 Zi-B, company: Teledyne LeCroy) using the DC mode. Setting the working point to be
the zero position, the function of the displacement w (Eq. 3.1) of the reflecting diamond
surface in z-direction gives:

U(w) = 2Us
(

1 + cos
(4πw

λ
− π

2

))
. (5.10)

Here the coordinate system of the crystal deformation has been defined12 so that a positive
displacement in z-direction is given in the direction marked near the crystal in Fig. 5.5.
The intensity of the interfering beams is stabilized with the PID controller at the working
point to a value of U0 ≈ 2Us. Here Us is the value for a single beam, which can be measured
if one of the interferometer arms is blocked. As illustrated in Fig. 5.7 the working point is
localized, at a value which is half of the maximum achievable value. Considering only small
values for w of a few nm the first Taylor series term may be used as an approximation:

U(w) ≈ 2Us +
Us8π
λ

w. (5.11)

9Under the assumtion that the refractive index of the medium through which the beams propagate has
a constant value.

10In the propagation direction of the beam.
11It was recognized that the amplifier produces a high frequency oscillation with time periods of a few

microseconds and an amplitude of a few nanometers. This undesired noise signal could be eliminated
by installing a simple RC low pass to the output of the amplifier.

12With this convention it can be seen that w = −∆d which causes I0T ∼ (1 − cos( 4π∆d
λ − π

2 )) =

(1− cos(−4πw
λ − π

2 )) = (1 + cos( 4πw
λ −

π
2 ))
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(a) range ±λ/4 (b) range ±15 nm

Figure 5.7.: (a) Function of the voltage calculated with Eq. 5.10, which could be measured with the
oscilloscope when the interferometer is stabilized with a PID controller at the working
point U0 ≈ 2Us as a function of the displacement w of the diamond surface. (b) Zoom
of the linear range Eq. 5.11.

If only displacements smaller than a few nanometers are considered then the conversion
factor between the voltage change of the signal measured with the oscilloscope is propor-
tional to the displacement. The conversion factor in this case is given by the second term
on the right hand side of Eq. 5.11.
If the interferometer is not stabilized, a time varying signal as illustrated in Fig. 5.8 is

measured. The main reason for this instability is probably that the vacuum chamber is
standing on a heavy granite block and the interferometer on an optical table, which means
that each interferometer arm has a different damping response to surrounding vibrations.
Also it should be mentioned that the reference arm and a part of the signal arm propagate
through air and local density fluctuations (temperature changes, air draught) may change
the local value of the refractive index of air resulting in a change of the optical path
length of the wave propagation. However, with the help of a PID controller, which is
adjusting the position of the working point, these random variations can be compensated
as illustrated in Fig. 5.8. Regarding these measurements it should be mentioned that the
high speed photoreceiver (model: 1591NF, company: Newport) can output a voltage up to
about 1 V before reaching saturation13, thus there might be a systematic error regarding
voltage value higher than 1000 mV. As show in Fig. 5.8 the intensity of the interfering
beams can vary between a minimum of nearly zero and a maximum which is about four
times the single beam value. This may be considered as a verification of the assumption
that the laser beams can be considered as interfering monochromatic waves. It shows that
the beams have been aligned sufficiently accurate to have a spatial overlap which fulfills
the predicted case discussed in Section 2 (interference of Gaussian beams). It should
be mentioned that in general when the interference of a real laser beam is investigated
temporal and spatial coherence may be considered, because the described intensity range
from zero to four times of the intensity of a single beam for interfering beams could
be reduced due to incoherence effects. An introduction to this topic can be found in
textbooks [ST19, Chapter 11] [Hec16, Chapter 12]. However, for the needs of this work

13For higher output values the response might become non linear.
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Figure 5.8.: Measurement using th DC mode of the high speed photoreceiver. Comparing working
point stabilization to a signal which is measured over the same time range for an
unstabilized condition. The voltage value measured for the single beam intensity in the
illustrated measurement was 374 mV.

the measurement shown in Fig. 5.8 indicate that the interference of the beams can be
considered in good approximation as the interference of nearly perfectly coherent waves.
Considering Fig. 5.5 the use of some of the illustrated components have not been ex-

plained so far. These components do not effect the principle of the interferometer, which
has been discussed in the text above, however for the sake of completeness they will
now be explained. The lenses L1 (model: AC254-080-A, company: Thorlabs), L2 (model:
AC254-060-A, company: Thorlabs) and L3 (model: AC254-125-A, company: Thorlabs)
are used to collimate the beam. The beam radius after L3 of the collimated beam is
about W ≈ 1250 µm. A polarizing beamsplitter PBS1 in combination with a rotatable
half-wave retarder gives control over the intensity, which is transmitted or reflected by the
PBS as described in Section 2.1 Fig.2.3a. The PBS1 (model: CCM1-PBS25-532, company:
THORLABS) in combination with the half-wave retarder HW1 (model: VA5-532, com-
pany: Thorlabs) is used to reduce the laser intensity for a safe alignment procedure. The
lenses L4 and L5 are of the same type (model: AC254-300-A, company: Thorlabs) and
are used to focus the beam. The beam size at the focal spot lying on the surface of the
crystal and the reference mirror is ω0=45.4 µm and has been measured with the knife edge
method14 (Fig. 5.9). The shape of the beam has nearly the same diameter in all directions
in the xy-plane, which has been obtained with a beam profiler at the position of the crystal.
The lenses L6 (model: AC254-100-A, company: Thorlabs) and L7 (model: AC254-040-A,
company: Thorlabs) are used to reduce the size of the beam radius to a collimated beam
with a radius of about 500 µm. The linear polarizers (model: LPVISC100-MP2, company:
Thorlabs) are used to reduce the intensity of the beams to avoid exceeding the maximum
intensity values which have been specified by the manufacturers for the photodiodes. The
lens L8 (model: AC254-400-A, company: Thorlabs) is used to focus the beam onto the

14For the measurement a 100 µm thick silicon crystal has been used.
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Figure 5.9.: Knife edge measurement of probe laser spot.

sensor area of the photodiode. The lens L9 (model: F220FC-532, company: Thorlabs)
is used to focus the beam into the entrance of a multimode fiber (model: M42L02, com-
pany: Thorlabs), which is connected to the photoreceiver. The photoreceiver is directly15

connected to the input of the oscilloscope. The Faraday isolator16 (model: IO-5-532-HP,
company: Thorlabs) is used to avoid back reflection into the laser, which might occur
due to reflections at the surfaces of the lenses and PBSs. Metallic mirrors (model: PF10-
03-P01, company: Thorlabs) are used to change the direction of the beam propagation.
It should be mentioned that the reflection at these mirrors may also influence the polar-
ization state [ST19, p. 210], however these effect is not discussed further in this work,
because even if the beam is elliptically polarized due to a reflection at a metallic mirror at
some point in the setup, the PBS2 would still only transmit the linearly polarized wave in
x-direction and reflect a wave polarized in y-direction. The phase difference thus may be
different as assumed in the discussion above, however the phase difference in this setup can
be aligned arbitrarily by changing the position of the reference mirror (or the position of
the diamond crystal). Thus, the explanations given for the interferometer above are also
valid if the wave at the position HW2 is elliptically polarized. The pump laser passes a
half-wave retarder HWpump before reaching the diamond crystal. The pump laser is partly
reflected at the surface of the half-wave retarder and the reflected beam is propagating in
direction of the sensor area of a photodiode (model: DET10A/M, company: Thorlabs).
This is the only need for the HWpump in this experimental setup. It should be mentioned
that for this purpose also a partly transparent plate could be used. The impact of the
polarization state of the pump laser on the material interaction has not been investigated
further in this work and is assumed to have not a relevant impact on the experiment.

5.2. Pump-probe measurement

In this section the implementation of the pump-probe measurements is described in de-
tail and the data measured with the experimental setup will be presented. A detailed
discussion about the origin of these signals is postponed to Section 6.
15No cable is needed to connect the photoreceiver to the oscilloscope.
16This optical isolator transmit the light only in one direction. For a detailed description of the technical

concept see [ST19, p. 238].
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For all measurements in this section the probe beam is reflected at the back side of the
crystal, regarding to the side where the pump beam enters the crystal. As illustrated in
Fig. 5.5 each pump laser pulse sends a trigger signal to channel 1 of the digital storage os-
cilloscope. The ultrafast photodiode is connected to channel 2 and measures the deviation
from the working point. In addition a DC monitor signal of the photoreceiver is connected
to channel 3. This signal is very helpful when signals in AC mode17 are measured, because
it gives the ability to check if the working point stabilization works. If the working point
stabilization works correctly the DC monitor channel of the oscilloscope shows a constant
signal with the desired value.

The oscilloscope has a bandwidth of 20 GHz. This bandwidth should be sufficiently high
to recognize the complete high frequency content of the signal provided by the photodiode
with frequency bandwidth up to 4.5 GHz. The 4.5 GHz corresponds to a time span of about
222 ps, which may be considered the maximum temporal resolution of the experimental
setup. The maximum displacement value considered in this work is in the range of about
1 nm. Therefore, an approximately linearly connection of the measured signal in mV
and the displacement is given by Eq. 5.11. The trigger signal defines the beginning of a
measurement which is displayed on the screen of the oscilloscope. It is assumed that the
crystal returns to an undisturbed state after a time span of T=50 ms, which is related
to the repetition rate of the pump laser, or in other words, it is assumed that the signal
created by the pump laser pulse has no influence on the following signal introduced by
the next pump pulse. Further it is assumed that the signal is reproducible, which seems
reasonable because the intensity of the pump laser (Fig. 5.3b) is very stable in shape and
amplitude. Further, the beam profile illustrated in Fig. 5.3d is such stable, that no spatial
fluctuations are noticeable on the micrometer range measured with the beam profiler.
The pump-probe experiments have been carried out at different temperature values of the
holder. The crystal is placed in vacuum and therefore no convective heat transport has
to be assumed. Further, neglecting the radiative heat transfer it can be assumed that the
crystal has nearly the same temperature as the value that has been measured with the
PT100 resistors of the holder. The temperature of the holder is measured at two different
points of the holder as illustrated in Fig. 5.2. As shown in Table 5.1 the temperature
values are slightly different at each point and the temperature difference of the two points
may be considered as an estimation for the tolerance of the crystal temperature value.
The values of the spot sizes are shown in Fig 5.9 and Fig 5.3a. The interaction point of
the pump and probe beam is illustrated in Fig. 5.10a. The probe laser is aligned in the
center18 of the pump laser spot.

17If the AC mode of the photoreceiver is used, the stable DC signal, which is given when the working
point stabilization is used, is not measured. Thus, the oscilloscope measures a signal of nearly 0 mV.

18A rough alignment is carried out by observing the position of the laser spot on the crystal with a camera.
Fine alignment is carried out positioning the probe laser to maximizing the signal amplitude. As it will
be discussed the in detail in section 6.3 the maximum measurable displacement value can be expected
to be located at the center position of the pump beam.
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(a) position of laser spots (b) working point stabilized

Figure 5.10.: (a) Locations of the pump/probe laser on the diamond crystal for the measurements
carried out with a SC CVD diamond crystal. (b) Comparison of a signal measured
with blocked pump laser (pump off) to a signal change caused by the absorption of the
pump laser.

Tplot [K] 300 260 220 180 140 100 60
Ttop [K] 300.0 260.0 220.0 179.99 139.19 103.45 60.01
Tbottom [K] 298.5 258.2 217.9 177.63 141.86 106.23 56.83

Table 5.1.: Temperature values measured with PT100 at bottom and top of the holder.

An important value for an oscilloscope measurement is the sampling rate which defines
how much data points (samples) are taken per second. The maximum sampling rate which
can be used by the oscilloscope is 80 GHz (80× 109 samples per second). The sampling rate
should be sufficiently high to cover all the features of interest in a signal, but considering
a finite time span of the measurement it may be useful to reduce the sampling rate to
reduce the amount of collected data. Also it should be noted that an oscilloscope can only
store a limited amount of data in memory, which gives a limitation for the sampling rate
considering measurements of larger time spans. The maximum time span which can be
measured at a given sampling rate is given by the maximum amount of samples which
can be stored by the oscilloscope (measured in points per signal) divided by the sampling
rate. To reduce the noise of the measurements averaging over thousands of sweeps has
been carried out. The averaging process is described in detail in the following part of this
section. However, in this context it should be mentioned that this assumption may be
wrong, when the response of the crystal gives a statistically varying signal for each pump
pulse. If such a signal would have occurred in the measurements presented in this section
it might be averaged out by the averaging process over thousands of sweeps.
Since the amplitude of the pump laser has a stable temporal shape it is useful to use

averaging of many sweeps to reduce the signal to noise ratio of the measurement. The
averaging process will be explained by the following example: Considering a single shot
measurement, the oscilloscope outputs an amount of discrete data points for the measured
amplitude (measured in Volt) and corresponding time steps. The amount of data points
is given by the sampling rate multiplied by the period of the considered time span. For
example considering a time span of 100 ns and a sampling rate of 40 GHz gives 4000 data



82 5. Experimental setup and measurements

points. Since the data points have a constant time stepping value the time between two
following points in the example is 25 ps. For convenience in the following example just
one arbitrary time step (denoted by t̃) and its corresponding voltage value (denoted by
Ũ) from the in total 4000 possibles points will be discussed. Now considering a second
measurement (which may also be denoted by a new sweep), where the same time stepping
is used, but 4000 new voltage points are measured, the voltage value at the arbitrary point
in time for the first sweep may be denoted by Ũ1 and the voltage value for the second
sweep by Ũ2. Further, considering N sweeps the voltage value at the Ñ ’s sweep is ŨÑ and
an averaging voltage value Ũavg can be calculated by:

Average value at 1st sweep: Ũavg1 = Ũ1

Average value at 2nd sweep: Ũavg2 =
Ũ1 + Ũ2

2

Average value at 3rd sweep: Ũavg3 =
Ũ1 + Ũ2 + Ũ3

3 =
Ũ3
3 +

2Ũavg2
3

...

Average value at Nth sweep: ŨavgN =
ŨN
N

+
(N − 1)ŨavgN−1

N

However, this averaging process is not only carried out for one arbitrary data point by the
oscilloscope, but for all 4000 points considering the example. Thus, an averaging of the
measured signal can be carried out by several sweeps to reduce the signal to noise ratio
(provided that the noise which is superimposed the signal is random). The oscilloscope
used in this work can take up to 1000000 sweeps.

5.2.1. Investigation of the connection between measured signal and the
displacement of the crystal surface

Before presenting the measured displacement it has to be investigated if the measured
signal of the oscilloscope can really be directly connected to the displacement of the crystal.
Therefore, three different cases which could affect the signal are discussed in this section.
First a measurement has been carried out to see if the radiation of the pump laser

has a direct impact on the signal. For this purpose the pump laser was activated, while
the probe laser has been turned off. In front of the ultrafast photodiode which measures
the signal an optical longpass filter (model: FEL0400, company: THORLABS) has been
placed, which strongly attenuates wavelengths smaller than 400 nm. By using the longpass
filter19 the signal of the ultrafast photodiode shows a nearly zero value indicating no direct
impact of the pump laser on the measured signal.
Second, the working point stabilization has to be investigated. For this purpose a

measurement has been carried out where pump and probe laser are activated, but the
transmitted radiation after HWpump (Fig. 5.5) in front of the pump laser has been blocked.
19Without the longpass filter a signal of the shape given in Fig. 5.3b can be measured.
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Therefore, no pump laser radiation is reaching the crystal, but a trigger signal is still sent
to the oscilloscope. In this case a constant value located at the working point which is
adjusted by the PID controller is expected. As mentioned before, in the AC mode of the
photodiode the output signal should be a constant value around zero. In Fig. 5.10b such
a measurement is presented which shows a straight line as expected. This measurement
proves that no surrounding noise sources show a noticeable effect to the signal. The
measured time span in this case was 200 ns which corresponds to a frequency of 5 MHz and
is far beyond the frequency range that can be controlled by the working point stabilization.
The bandwidth of the PID controller is specified by the supplier with 100 kHz and the
piezo amplifier shows for frequencies grater 10 kHz a very weak amplification. Therefore,
an effect of the working point stabilization seems unlikely for time spans up to a few µs.

The third type of measurement, which has to be considered is the change of the re-
flectance due to the photon-matter interaction. This gives a change of the intensity of
the signal arm, which then differs from the intensity of reference arm. The blue lines in
Fig. 5.11 show the measurements of the intensity change due to change of the reflectance.
These measurements have been carried out by blocking the reference arm of the interfer-
ometer. The measurements carried out with a blocked reference arm have been compared
to the signal measured with the interferometer setup (Fig. 5.11). Both measurements were
carried out in AC mode of the photodiode. In all measurements a peak at the beginning of
the signal at t = 0 ns is visible, which is connected to a change of the reflectance. For the
reflectance measurements it further can be seen that after this peak a signal with opposite
sign regarding to the zero value t < 0 ns is present which has a much smaller value than
the peak at t = 0 ns and possess oscillations. In Fig. 5.11a it can be seen that the overall
signal measured with the interferometer apart from the peak in the beginning is much
greater than the reflectance signal. However, at low temperatures as shown in Fig. 5.11b
the difference is smaller than compared to the signal measured at room temperature.

The reflectance signal (blue line in Fig. 5.11) can affect the interferometer signal and
the change for the reflectance may be connected to a change of the refractive index and/or
the absorption coefficient (see Eq. 2.55). However, it should be noted that a change of
the reflectance in this case is connected to the assumptions of the Maxwell’s equations
given by Eq. 2.6. These assumptions may be wrong regarding the interpretation of the
measurement. As it will be discussed in Section 7 the change of the reflectance seems
not to have a direct simple connection to a temperature change or a displacement field.
Since the origin of reflectance change signal is unknown it is hard to predict which impact
this kind of signal will have on the interferometer signal. Nevertheless, the reflectance
signal causes, apart from the peak in the beginning of the signal, a significant smaller
voltage change measured by the oscilloscope, which motivates to neglected this effect in
the following presentation of the measurements. However, it should be reminded, that the
reflectance change signal can give a systematic error to the interferometer signal which
could not be predicted in this work.
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(a) CVD T = 300 K (b) CVD T = 60 K

Figure 5.11.: Comparison of signal change due to a reflectance change which can be measured if the
reference arm is blocked and an interferometer signal. The voltage value for single
beam intensity for these measurements was 400 mV. (a) Measurement with a holder
temperature of T = 300 K. (b) Measurement at T = 60 K.

Surprisingly, the amplitude of the peaks, which occur after t = 0, and the following
oscillations are changing the magnitude and also the sign with decreasing temperature.
Also it has been observed that amplitude and sign of the initial peak not only strongly
depend on the temperature but also on the position of the pump laser beam relative
to the probe laser beam. For example at an initial temperature value of 300 K it has
been observed that moving the probe beam about 50 µm in lateral direction away from
the center of the beam gives a peak with similar peak amplitude but an opposite sign.
Moving the probe beam step wise away from the center it has been observed that the
peak periodically changes the sign with distances of about 100 µm and the maximum
reached value is reduced with increasing distance from the center. This effect could be
investigated in detail with the experimental setup presented in this work to understand
its origin and possible use for scientific applications. Investigating this topic in detail may
be an interesting topic for upcoming projects.
Another assumption used to interpret the interferometer signal is that the area over

which the probe beam spot extends has a nearly constant displacement value, thus the
interferometer measurement is directly connected to a particular displacement value on the
surface of the crystal. The validation of this approximation will be discussed in Section 6.3.

5.2.2. Development of displacement after photon-matter interaction

The time span of a few hundred nanoseconds corresponds to a frequency of a few MHz and
is in particular interesting for this work because it represents the repletion rate of modern
X-ray free electron laser facilities like the European XFEL. The heat load which is given
by the absorption of a few tens of microjoules in this pump-probe experiment represents
a similar heatload as expected for a saturated CBXFEL X-ray pulse [Rau21]. In Fig. 5.12
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the displacement after the photon-matter interaction is shown. For these measurements
a sampling rate of 40 GHz has been used. The measurements were taken by using the
AC mode of the photodiode. With the approximations discussed in the previous section
the conversion factor to calculate the displacement is given by Eq. 5.11. The voltage
value measured for a single beam is Us = 400 mV, which gives a conversion factor of
0.0529 nm mV−1. The crystal is assumed to be in rest (displacement is set zero) before
the interaction. The time zero is set to the rise of the peak introduced by the reflectance
change. The different initial temperature values are given by Table 5.1. The negative
overall rise of the displacement observed in all measurements represents that the sample
surface moves in the direction of the pump laser beam. The maximum value of this overall
rise is reduced with decreasing temperature value. In all measurements periodic fringes
are present which are repeated in a time span of about 12.08 ns (frequency 82.78 MHz).
The repetition rate of the fringes does not change noticeable with temperature. This is
visualized by the vertical lines in Fig. 5.12.
The lower limit of the bandwidth of the photodiode in AC mode is 10 kHz which cor-

responds to a time period of 0.1 ms. The measurements with this time range, using a
sampling rate of 10 GHz, have been carried out at the temperature values 300 K, 220 K
and 60 K. The corresponding measured temperature values of the holder are given in
Table 5.1. For a better visualization different zoom levels starting at the time of the
photon-matter interaction are shown in Fig. 5.13. From Fig. 5.13c it can been seen that
nearly the maximum magnitude of the displacement is reached a few hundred nanoseconds
after the startup time, as has been discussed before (Fig. 5.12). As illustrated in Fig. 5.13a
the amplitude of the previously discussed fringes decreases significantly on a time scale
of about 1000 ns. On larger time scales as shown in Fig. 5.13b and Fig. 5.13c it can be
seen that the displacement created in the startup regime is followed by some oscillations
which have all together a peak to peak amplitude in the range of the maximum value in
the startup regime. The amplitude of these oscillations does not decrease noticeably on
the time scale of 0.1 ms. It should be noted that for the sake of a comparable visualization
all the illustrations in Fig 5.13 consider the same displacement range and also the starting
point located at −1000 ns is the same for all of the three plots. To analyze the frequency
components of the time varying signal in Fig. 5.13 a Fourier transformation has been car-
ried out for values20 t > 20 ns. The computation is carried out with a Python script using
the scipy [JOP+ ] module scipy.fft. The amplitude has been scaled by 2/N , were N is
the number of samples. As illustrated in Fig. 5.14a frequency components greater than a
few MHz have a quite small amplitude. In Fig. 5.14b it can be seen that the amplitude
of frequencies smaller than 1 MHz decreases significantly with the initial temperature of
the crystal. Some modes are present at all temperatures that have been investigated,
like the mode at around 0.9 MHz, whereas others are only present at low temperatures
like the one at 0.4 MHz. As indicated by the frequencies around 5 MHz in Fig. 5.14c the

20The choice of 20 ns is taken to exclude the effect of the reflectance peak directly after t = 0
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Figure 5.12.: Interferometer measurements of the time span of a few hundred nanoseconds after
phonon-matter interaction considering a pump-probe experiment at different initial
temperature values for a SC CVD diamond.
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amplitude values in this frequency range have comparable magnitudes for all temperature
values which have been measured. However, the variation of the particular frequency val-
ues of the modes depends even more clearly on the temperature in this frequency range.
The fringes which have been mentioned in the previous discussion about Fig. 5.12 have
frequencies of about 82.78 MHz. This range is shown in Fig. 5.14d. This illustration shows
that there is a significant increase of the amplitude of these fringes at low temperatures.
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(a) first 1000 ns

(b) first 10 000 ns,10 µs

(c) first 100 000 ns, 100 µs ,0.1 ms

Figure 5.13.: Interferometer measurements using the full bandwidth in AC mode of the photodiode,
investigating the CVD diamond sample at different initial temperature values. For
a better visualization different time ranges of the measurement are show. In (a) the
first 1000 ns, in (b) the first 10 000 ns and in (c) the first 100 000 ns or 0.1 ms are
shown.
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(a) full frequency range (b) frequency range smaller than about 1 MHz

(c) frequency range around 5 MHz (d) frequency range of fringes

Figure 5.14.: (a) Full frequency range of the time varying signal in Fig.5.13 with a logarithmic scale
of the frequency. (b) Frequency components smaller than 1 MHz. (c) Values around
5 MHz. (d) Frequency components that correspond to the fringes of Fig.5.12.
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6. Calculation of thermoelastic problems
considering a diamond Bragg reflector

A detailed description about the experimental setup and theoretical concepts which are
used in the context of this work has been given in the previous sections. Before proceeding
it may be good to recall the main topic, which is investigated in this work:

The change of X-ray diffraction conditions by nondestructive deformation of
the crystal lattice spacing introduced by dynamical thermal expansions, which
is created by absorbed energy of pulsed XFEL radiation.

For an experimental investigation of this topic a pump-probe experiment (see Section 5)
has been built up, using an optical UV pump laser. A simulation for this pump-probe
experiment will be presented in Section 6.3. To distinguish the different effects, which are
causing the shape of the measured and simulated signal presented in Section 6.3 it is useful
to investigate simplified cases. These simplified cases describe wave propagation effects
separately which are superimposed in the final observed wave propagation presented in
Section 6.3. In this work different types of thermoelastic introduced wave effects have been
identified, which may be used to interpret the total measured signal. These are namely
a one-dimensional kind of wave propagation (Section 6.1.2), a radial propagating wave
caused by a heat bump effect (Section 6.2.1) and a diffusivity affected wave (Section 6.2.4)
influenced by a rapid rises and fall of a temperature profile. The one-dimensional kind
of wave propagation has already been simulated and measured by several researchers
[TGMT86] [SMW+12]. However, a radial propagating wave caused by a heat bump effect
and the diffusivity affected wave have not been measured and discussed in the current
literature so far to the best knowledge of the author.
A simulation for thermoelastic effects considering the heat load given for a saturated

CBXFEL is presented in Section 6.4. For this simulation an absorbed energy profile sim-
ulated by P. Rauer [Rau21] is used (Fig. 6.35, Section 6.4). The total absorbed energy
per saturated CBXFEL pulse is about 45 µJ. Since, the absorbed energy per pulse of the
UV laser for the pump-probe experiment is about 35 µJ, a similar amount of energy is ad-
sorbed by the crystal. Nevertheless, the radius considered for the pump-probe experiment
is about 300 µm and the penetration depth is 5 µm. Since the beam radius for the satu-
rated CBXFEL pulse is about 50 µm and most of the absorbed energy can be connected
to a penetration depth of roughly 20 µm, there is a significant difference comparing the
shape of the heat load profiles. The shape of the heat load profile has a direct impact
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on the shape of the resulting wave propagation. However, the kind of wave propagation
may still be connected of a superposition of the already, mentioned three types of wave
propagation.

For the simulation of the pump-probe experiment in Section 6.3 as well for the CBXFEL
Section 6.4 the assumption of the Fourier law has been used. As discussed in Section 4 this
assumption is critical at low temperatures and therefore systematic errors may be present.
However, the kind of heat transfer at low temperatures which causes a development of a
thermoelastic generated wave may also depend on the shape of the heat profile, due to the
reached temperature rise and connected mean free path, as it will be discussed in detail
in Section 6.4.
The theoretical principles to investigate the thermoelastic interaction of powerful elec-

tromagnetic fields with a diamond Bragg reflector have been derived in the previous sec-
tions under the assumptions of continuum mechanics and the existence of a local ther-
modynamic equilibrium. Also the diffuse heat transfer (Fourier law) has been considered,
which could be verified in the context of solid state physics under the assumption that the
scales of interest are much larger than the phonon mean free path. The derived equations
will be now shortly summarized.
Considering Cartesian coordinates the coupled PDEs which can be used to describe a

thermoelastic problem are given by Eq. 3.59, Eq. 3.41 and Eq. 3.53

σij,j + Fi = ρüi, where σij = Cijkl[εkl − αkl∆T ] (6.1)

(λcijT ,j ),i= Tβij ˙εij + cρṪ −Qext where T = T0 + ∆T and βij = αijCijkl

The radiation pressure discussed in Section 2.4, which is occurring when a powerful
X-ray pulse is reflected by a Bragg reflector, may be considered as a body force Fi per
unit volume. However, considering this effect it has been shown that the created strain
wave is about two orders of magnitude smaller compared to heat load effects, thus it is
assumed that this effect can be neglected and thus the impact of Fi will not be discussed
further in this work. Additional information about this topic can be found in a proceeding
paper which was publish during this PhD project [BTM+18].
To solve the coupled partial differential equations (Eq. 6.1), initial and boundary con-

ditions have to be defined [Bal89]. Considering a time dependent problem where at t = 0
the solid is at rest and has a homogeneous initial temperature T0, the initial conditions
are:

ui(r, t = 0) = 0, u̇i(r, t = 0) = 0 (6.2)

T (r, t = 0) = T0 (6.3)

Boundary conditions The boundary conditions for Eq. 6.9 are called the kinematic
boundary condition and for Eq. 6.11 the boundary condition are named thermal boundary
conditions in the context of this work.
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Kinematic boundary condition The mechanical boundary conditions can be de-
fined on the surface SM , which is enclosing a three-dimensional solid, with one of the
following equations:

ui|S1M = ûi (6.4)

σijni|S2M = t̂j (6.5)

which defines the traction t̂j and/or displacement ûi at arbitrary points on the boundary
surface of the solid. In cases where the boundary condition Eq. 6.5 is zero, inserting the
definitions of Eq. 6.10 into Eq. 6.5 gives:

Eεijni = Eα∆Tni (6.6)

This shows that in this case Eα∆Tni behaves like a surface force on the boundary [Mur13,
p. 5]

Thermal boundary conditions On the same total surface of the solid as mentioned
for the kinematic boundary condition ST = SM , the thermal boundary conditions can be
partly defined on ST by:

T |S1T = T̂ (6.7)

qhi ni|S2T = q̂hn + ah(TR − TS) (6.8)

where qhi is the heat flux per unit area, ah is a heat transfer coefficient, TS the surface
temperature and TR the constant temperature of a thermal reservoir which is connected
to the surface area S2T .

The derived coupled PDEs Eq. 6.1 in combination with the boundary condition may
be denoted as the strong form, which can be used to describe a thermoelastic problem.
The strong from can be rewritten as an integral expression which is called the weak form.
These weak form is suitable to be solved by numerical methods. To solve the coupled
thermoelastic equation a special weighted residual method, the Galerkin-method may be
used to apply the finite element method (FEM). These are the underlying assumption used
by the software COMSOL multiphysics® which is used to solve thermoelastic problems
in this work. An introduction to this concept is given by an example in Appendix A.6,
where a one-dimensional FEM is discussed in detail. Using this method it is also possible
to take into account temperature dependent material parameters (for further information
see Appendix A.6).

For the simulations carried out in this work an axisymmetric heat load is investigated in
detail and solved with FEM. For these calculations the approximation has been used that
the elastic stiffness tensor is isotropic and temperature independent. Assuming that body
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force effects can be neglected the equation of motion in this case is given by Eq. 3.70:

∂σρrρr
∂ρr

+
∂σρrz
∂z

+
1
ρr

(σρrρr − σθθ) = ρü (6.9)

∂σρrz
∂ρr

+
∂σzz
∂z

+
1
ρr
σρrz = ρẅ.

For the special case of an elastic isotropic solid with a Poisson’s ratio of zero, the stress-
strain relation is given by Eq. 3.69

σρrρr = Eερrρr −Eα∆T , where ερrρr =
∂u
∂ρr

(6.10)

σθθ = Eεθθ −Eα∆T , where εθθ =
u
ρr

σzz = Eεzz −Eα∆T , where εzz =
∂w
∂z

σρrz = Eερrz, where ερrz =
1
2

(
∂u
∂z

+
∂w
∂ρr

)
The equation describing heat transfer Eq. 3.74 for the special case of an elastic isotropic
solid with a Poisson’s ratio of zero is

1
ρr

∂

∂ρr

(
ρrλρrρr

∂∆T
∂ρr

)
+

∂

∂z

(
λzz

∂∆T
∂z

)
= TαE( ˙ερrρr + ˙εθθ + ˙εzz) + cρ ˙∆T −Qext,

(6.11)

where the temperature rise ∆T = T − T0 is referred to an initial temperature rise T0 and
T is the absolute temperature value. In the following section analytical and numerical
solutions for special cases of Eq. 6.9 and Eq. 6.11 will be discussed. As it will be shown in
Section 6.3, these special cases give an insight to the characteristic effects which describe
the wave propagation caused by an axisymmetric heat load for a diamond crystal.

If the material-photon interaction can be described with the previously introduced con-
tinuum assumptions, the calculated displacement field from the thermoelastic simulation
can be used to describe the change of the X-ray diffraction conditions expressed by dynam-
ical diffraction theory of a deformed crystal [Rau21]. If the spatial and temporal profile
of the absorbed1 laser pulse energy and the material parameters of the Bragg reflector
are known, the thermoelastic interaction may be described by solving the partial differ-
ential equations (PDE) Eq. 6.9 and Eq. 6.11. However, finding an analytical solution of
a three-dimensional problem with these equations is not a trivial task. Even if numerical
solutions are used, careful consideration about the simulation parameters are required to
avoid numerical errors and unnecessarily long computation times.

In this work a finite element method (FEM) has been chosen to solve the PDEs, which
describe thermoelasticity. The steps, which lead to the final simulation results carried
out in this work are based on some approximations, which are discussed in the following

1Assuming that all of the absorbed energy is converted into heat and the thermalization can be approxi-
mated as instantaneously.



94 6. Calculation of thermoelastic problems considering a diamond Bragg reflector

section. Before directly describing the assumptions of the applied FEM simulation, it is
useful to consider first simplified problems of the thermoelastic interaction which have a
simple analytical solution. The reproduction of these analytical solutions with the FEM
may be a good starting point to understand which simulation parameters are necessary
to carry out a sufficiently accurate simulation. For the sake of simplicity first problems at
room temperature under the assumption of constant2 material parameters for a diamond
crystal will be discussed:

constant [unit] ρ [kg/m3] E [GPa] α [ K−1] c [ J K−1 kg−1] λc [W m−1 K−1]
value 3513 1125 1E-6 517 2000

Table 6.1.: Material constants of diamond at a temperature of 300 K, where ρ is the mass density
E Young’s modulus, α the linear thermal expansion coefficient, c the specific heat per
unit mass and λc the thermal conductivity

6.1. Analytical solutions

In the following section two analytic solutions are examined. First a solution for a tempera-
ture profile, which is calculated by ignoring the mechanical coupling and heat conductivity.
The second is a one-dimensional strain wave caused by an instantaneous temperature rise.

6.1.1. Initial temperature profile created by absorption of a laser pulse

Recalling Eq. 2.62 it may be assumed for a laser with an ultra-short pulse duration that the
instantaneously absorbed energy Eabs in a cylindrical crystal with radius R0 and thickness
d is given by the integral of the energy density ΦE(ρr, z) over the crystal domain. The
fraction γh (0 < γh < 1) expresses the part of the absorbed energy Eabs, which is converted
into heat

EQ = Eabsγh. (6.12)

Neglecting heat conduction and the time dependent strain fields Eq. 6.11 reduces to

Qext(ρr, z) = cρ
∂T (ρr, z)

∂t
. (6.13)

Integration over time and assuming an instantaneous thermalization, the energy density
ΦQ(ρr, z) can cause an instantaneous temperature rise, which considering a small tem-
perature rise gives the relation

ΦQ(ρr, z) = cρ∆T (ρr, z) (6.14)

2The assumption of nearly constant material parameters is a good approximation if a temperature range
of only a few kelvin is considered.
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The integration of Eq. 6.14 over the crystal domain gives EQ. Thus, considering Eq. 2.62
gives the relation

EQ = γh

∫ d

0

∫ 2π

0

∫ R0

0
ΦE(ρr, z)ρrdρrdθdz =

∫ d

0

∫ 2π

0

∫ R0

0
ΦQ(ρr, z)ρrdρrdθdz (6.15)

=
γh(1−R)2Ep

ζπW 2

∫ d

0

∫ 2π

0

∫ R0

0
exp

(
−2ρ2

r

W 2

)
exp(−z/ζ)ρrdρrdθdz

= cρ

∫ d

0

∫ 2π

0

∫ R0

0
∆T (ρr, z)ρrdρrdθdz,

where Ep is the pulse energy of the laser, R the reflectance considering normal incidence,W
the beam radius and ζ the penetration depth. If the density ρ and specific heat capacity
c are independent3 of the temperature, ΦE(ρr, z) and ∆T must have the same spatial
distribution. Therefore, the temperature rise distribution is given by

∆T (ρr, z) = ∆Tmax exp
(
−2ρ2

r

W 2 −
z

ζ

)
, with ∆Tmax =

γh(1−R)2Ep
ζπW 2cρ

. (6.16)

From Eq. 6.16 the relations Tmax ∝ 1/W 2 and Tmax ∝ 1/ζ can be derived. It should be
noted that Tmax is independent of the material size, given by the values of d and R0 in
this formulation. However, the amount of the absorbed energy depends on the crystal size
and can be calculated by solving the integral of Eq. 6.15. The solution for this integral
has been introduced by Eq. 2.63, which gives:

Eabs = Ep(1−R)
(

1− exp
(
−2R2

0
W 2

))
(1− exp(−d/ζ)). (6.17)

For a crystal with lateral size R0 �W the absorbed energy is

Eabs = Ep(1−R)(1− exp(−d/ζ)). (6.18)

If R0 �W and d� ζ the absorbed energy is

Eabs = Ep(1−R). (6.19)

The temperature profile given by Eq. 6.16 is useful for discussing the validity of a one-
dimensional simplification. This simplification will be explained by an example, consid-
ering an absorption length of ζ = 100 µm, a reflectance of R ≈ 0, a complete conversion
of the absorbed energy into heat γh = 1, a pulse energy of Ep = 100 µJ and a beam
radius of W = 500 µm. Using these values and the material parameters of Table 6.1
gives the temperature profile shown in Fig. 6.1a inside a range which may be associated
with a cylindrical diamond crystal with a radius of R0 = 1000 µm and a thickness of
d = 200 µm. If a pump-probe experiment with a probe laser spot Wp �W is considered,

3Whether these assumptions are valid depends on the material and the considered temperature range.
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(a) ∆T (ρr, z) (b) ∆T (ρr, z) ≈ ∆T (z) (c) ∆T (ρr, z) ≈ ∆T

Figure 6.1.: ∆T calculated with Eq. 6.16 using the values, W = 500 µm, Ep = 100 µJ, ζ = 100 µm
and material parameters of Table 6.1, (a) ∆T (ρr, z) in a cylindrical crystal with R0 =
1000 µm and d = 200 µm. (b) ∆T considering the area covered by a probe beam radius
of Wp ≈ 20 µm. In this case the temperature may be considered only to be a function
of z-direction. (c) Considering an area covered by a probe beam radius of Wp ≈ 20 µm
and a crystal thickness of d = 10 µm. In such case a nearly uniform temperature profile
may be assumed.

the temperature profile may be assumed to be independent of the ρr-direction, which can
be considered as a one-dimensional temperature profile problem where lateral boundary
effect can be neglected. This case is illustrated by Fig. 6.1b, showing the temperature
profile in a small region near the center of the pump beam. This approximation gets more
accurate if W � d. If in addition a thinner crystal of thickness d = 10 µm would be
investigated the temperature profile may be considered to be approximately constant. As
shown in Fig. 6.1c the temperature variation in this range is rather small. In this case the
accuracy of the approximation could be further improved by ζ � d in combination with
W � d.

6.1.2. One-dimensional thermoelastic models for pump-probe
experiments

Thermoelastic models considering propagation of one-dimensional strain waves have been
successfully used by Thomsen et al. [TGMT86] and Stoupin et al. [SMW+12] to verify
their measured signals in pump-probe experiments. For a case of a pump-probe exper-
iment where the pump beam W and a probe beam with size Wp fulfills W � Wp a
one-dimensional approximation of Eq. 6.16 can be used:

∆T (z) = ∆Tmax exp
(
−z
ζ

)
, where ∆Tmax =

2Ep(1−R)γh
W 2πcρζ

(6.20)

With this assumptions and assuming further that Poisson’s ratio can be neglected the
equation Eq. 6.9 and Eq. 6.10 can be written as:

σzz = E
∂w(z, t)
∂z

− αE∆T (z) = E(εzz − εthzz) = Eεezz, (6.21)

ρ
∂2w(z, t)
∂t2

=
∂σzz
∂z

.
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In these formulae E is the Young’s modulus, α the linear thermal expansion coefficient, ρ
the density, εezz the elastic strain and εthzz the thermal strain. Considering a free standing
crystal placed in vacuum, the boundary conditions for Eq. 6.21 are that the stress σzz is
zero at z = 0 and z = d, which causes

∂w(z, t)
∂z

∣∣∣∣
z=0

= εzz(z, t)
∣∣∣∣
z=0

= α∆T (0), ∂w(z, t)
∂z

∣∣∣∣
z=d

= εzz(z, t)
∣∣∣∣
z=d

= α∆T (d). (6.22)

The initial conditions are εzz(z, 0) = ∂w(z,0)
∂z = 0 and ∂w(z,t)

∂t = 0. The analytical solution
for Eq. 6.21 is given by [SMW+12]

εzz(z, t) = α(∆T (z)− 1
2 [F (z − vt) + F (z + vt)]). (6.23)

This solution has only a physical meaning in the range of z = 0 to z = d (the domain

of the solid), v =

√
E

ρ
is the speed of sound for longitudinal waves (see Eq. 3.65). The

function F (x) is F (x) = ∆T (x) in the range 0 < x < d and for values x = z − vt or
x = z + vt outside this range the following iterative function4 may be used to calculate
the propagating strain wave which is reflected at the boundaries located a z = 0 and
z = d:

1 def F(x):
2 n=floor(x/d)
3 if n == 0:
4 return dT(x)
5 elif n < 0:
6 return -F(-x)
7 elif n > 0:
8 return - F(2*d-x)

Here the function in line 4 is given by ∆T (x) (Eq. 6.20).
From Eq. 6.23 it can be seen that the solution for the strain consists of a time indepen-

dent part indicated by the first term and a traveling wave given by the second and third
term, which propagates with the velocity v. Considering Eq. 6.21 it can be seen that the
time independent part is the thermal strain and the traveling wave is connected to the
elastic strain.
By integration of the strain function Eq. 6.23 and considering boundary condition for

the displacement Eq. 6.22, the displacement function may be calculated by:

w(z, t) =
∫ z

0
εzz(z, t)dz (6.24)

with
∫ z

0
∆T (z′)dz′ = −∆Tmaxζ

(
e
− z
ζ − 1

)
and

∫ z

0
∆T (z′ ± vt)dz′ = −∆Tmaxζ

(
e
− z±vt

ζ − 1
)

4Considering the programming language Python and the floor function from the NumPy module.
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this yields :

w(z, t) = α(−ζ∆T (z)− 1
2 [G(z − vt) +G(z + vt)]) (6.25)

Here G(x) is G(x) = −ζ∆T (x) in the range 0 < x < d and to take into account the
reflection at the boundaries (condition Eq. 6.22) the following iterative function may be
used:

1 def G(x):
2 n=floor(x/d)
3 if n == 0:
4 return -zeta*dT(x)
5 elif n < 0:
6 return G(-x)
7 elif n > 0:
8 return G(2*d-x)

Where the function in line 4 is given by −ζ∆T (x) (Eq. 6.20).
Using the values from Table 6.1 gives a speed of sound of v = 17 903 m s−1. Considering

a crystal thickness of d = 100 µm the strain and displacement waves given by Eq. 6.23
and Eq. 6.25 indicates that both values are a periodic functions of time with a repetition
rate of Tp = 2d/v = 11.18 ns. The time span of Tp has been used to illustrate the
strain and displacement wave at various time steps shown in Fig. 6.2 and Fig. 6.3. Two
different temperature profiles have been considered in these figures. The figures (a) have
been calculated with a temperature rise profile ∆T (x) which corresponds to a penetration
depth of ζ = 5 µm and a maximum temperature rise value of Tmax = 1.75 K. In figures
(b) a constant temperature rise ∆T = 1 K has been assumed. It should be mentioned
that a constant temperature rise would need a penetration depth of ζ → ∞, however as
mentioned in the previous section a constant temperature rise is a good approximation for
ζ � d. In case of a constant temperature rise the function F (x) , which is related to the
strain propagation (Eq. 6.23) has a constant value. Integration of strain (Eq. 6.24) gives
a slightly different solution compared to Eq. 6.25:

w(z, t) = α(z∆T − 1
2 [L(z − vt) + L(z + vt)]) (6.26)

Here L(x) is L(x) = x∆T in the range 0 < x < d. And the iteration is given by

1 def L(x):
2 n=floor(x/d)
3 if n == 0:
4 return x*dT
5 elif n < 0:
6 return L(-x)
7 elif n > 0:
8 return L(2*d-x)



6.1. Analytical solutions 99

where the dT in line 4 is the constant temperature rise value ∆T .
In Fig. 6.2 and Fig. 6.3 it can be seen that the assumption of an instantaneous tem-

perature rise causes a kink discontinuity in the displacement field, which causes a jump
discontinuity in the strain field. Theses discontinuities are moving with the speed of sound
v. In Fig. 6.4 the first nanosecond of the wave propagation of Fig. 6.2 and Fig. 6.3 are
illustrated. These illustrations may be a good way to explain the creation of the strain
wave. Now the situation of a constant temperature rise as shown in Fig. 6.4b will be
considered. Given by Eq. 6.21, an initial temperature rise temperature creates a negative
(compressing) thermal stress, which has a value of σzz = −αE∆T (z) at t = 0 due to the
initial condition for the strain to be zero. However, due to the boundaries conditions the
stress must be zero at z = 0 and z = d and this, as explained by Eq. 6.6, gives a force
per area at the boundaries, which has the same magnitude as the stress inside the crystal.
Phenomenologically this represents the assumption that the crystal is surrounded by vac-
uum and so there is no reaction force in is area, which allows the material a free expansion
in the area z < 0 and z > d at both ends of the crystal. It is visualized in Fig. 6.4b that for
t > 0 this gives rise to the development of a negative displacement at z = 0 and a positive
displacement at z = d. At t = 0 an arbitrary element inside the crystal experiences the
same force (stress) from both sides due to the homogeneous temperature rise profile. But
a tiny time step after t=0 the expansion at the boundaries takes away the stress at one
side for an element inside the crystal just beneath the surface. Given by Eq. 6.21 the
elastic strain εezz = εzz − εthzz is proportional to the value of the stress, therefore the green
line in Fig. 6.4b illustrates the spatial and temporal shape of the stress. The temporal
development of the green line in Fig. 6.4b shows that due to the expansions in the direction
of the boundaries a cascade of stress relaxation inside the crystal takes place. This is also
visible by the blue line in Fig. 6.4b and Fig. 6.2b, which shows the propagation of the total
strain. It can be seen that the positive strain, which indicates an expansion initiated at
the surface and given by the solution Eq. 6.23 is propagating with the speed of sound into
the material. This propagation of strain is directed from both boundaries into the crystal.
In Fig. 6.5a the time span is illustrated were the expanding strain wave meet each other.

At t ≈ 2.8 ns it can be seen by the green line that the elements in the middle of the crystal
experience now a positive (tensile) stress5, which increases the magnitude of the displace-
ment. The (tensile) stress is build up with the speed of sound towards the boundaries.
However, caused by the boundary conditions that the stress is zero at z = 0 and z = d the
strain gets reflected as illustrated in Fig. 6.5b at t ≈ 5.6 ns. A phenomenological explana-
tion for the reflection is that when a stress is expanding (pushing) the material in the area
where there is just vacuum, the crystal gives a reaction force, which pulls the material
back into the solid crystal. Directly after the reflection an element just beneath the sur-
face which felt lately a (tensile) stress is relaxed to zero strain by the reaction force of the
boundary and it follows a reverse development of the strain and displacement function,

5As mentioned before the elastic strain εezz is proportional to the stress due to Eq. 6.21.
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which has been described before. When the discontinuity of the strain and displacement
function later reaches the opposite boundary the initial condition εzz = 0 is met again.
After the following reflection then an identical cycle of the wave propagation begins.
The wave propagation in case of the spatial varying temperature rise profile with ζ � d

can be explained similarly to the previously discussed case of a spatial constant tempera-
ture rise. However, a main difference is that at t = 0 the thermal expansion causes a stress
profile which is nearly zero6 at the boundary z = d. This is illustrated in Fig. 6.4a. It
causes that the material is not only expanding into the vacuum area as described before,
but also a compression (negative strain) into the crystal. This is forming a strain pulse
with a width of twice the penetration depth ζ, consisting of a compressed area in front to
the propagation direction and a tensile strain behind as illustrated in Fig. 6.2a.
As described before the strain and displacement are a periodic function in time. If the

displacement is measured at the back side7 of the crystal w(d, t) a periodic function as
shown in Fig. 6.6 can be measured. It should be noted that in the assumptions of this
calculation no damping has been considered which leads to the unphysical result that such
a strain/displacement wave could propagate infinitely long, repeating a periodic signal like
the ones illustrated in Fig. 6.2 and Fig. 6.3.

6The temperature in Eq. 6.20 is exponentially decreasing with z, and for d > ζ the value is very small.
7It should be mentioned that for the presented iteration code it is not possible to calculate the displace-
ment directly at z = d, this would cause an endless loop. However, instead a value slightly smaller
than d like d− 1 pm may be used to carry out a calculation.
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(a) ∆T (z) (b) ∆T=constant

Figure 6.2.: The blue line shows the propagation of the strain εzz calculated with Eq. 6.23 using the
material parameters of Table 6.1. The domain which is considered in all illustrated
plots ranges from z = 0 to z = d = 100 µm. For the simulation show in (a) ζ = 5 µm
and Tmax = 1.75 K was used. In (b) a homogeneous temperature of ∆T = 1 K was
chosen for the calculation.
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(a) ∆T (z) (b) ∆T=constant

Figure 6.3.: The red line shows the propagation of the displacement in picometers using the material
parameters of Table 6.1. The domain which is considered in these plots ranges from
z = 0 to z = d = 100 µm. The simulation in (a) has been calculated by using Eq. 6.25.
Here the penetration depth ζ = 5 µm and Tmax = 1.75 K have been used. In (b) a
homogeneous temperature of ∆T = 1 K was chosen for the calculation with Eq. 6.26.



6.1. Analytical solutions 103

(a) ∆T (z) (b) ∆T=constant

Figure 6.4.: The blue line shows the propagation of the total strain εzz. The orange line is the
thermal strain εthzz = αE∆T (z), which has a time independent value in this case. The
green line is the elastic strain εezz = εzz − εthzz. The displacement in z-direction w is
illustrated by the red line. For the calculations the same equations as described by
Fig. 6.2 and Fig. 6.3 have been used. In (a) the penetration depth ζ = 5 µm and
Tmax = 1.75 K have been used. In (b) a homogeneous temperature of ∆T = 1 K was
chosen.
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(a) time: 2 - 3 ns (b) time: 5 - 6 ns

Figure 6.5.: The blue line shows the propagation of the total strain εzz. The orange line is the
thermal strain εthzz = αE∆T (z), which has a time independent value in this case. The
green line is the elastic strain εezz = εzz − εthzz. For the calculation the same equation as
described by Fig. 6.2b and Fig. 6.3b have been used. The displacement in z-direction
w is illustrated by the red line.(a) Time span in the range from 2 ns to 3 ns. (b) Time
span for reflection in the range from 5 ns to 6 ns.
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(a) ∆T (z) (b) ∆T=constant

Figure 6.6.: Displacement at position z = d calculated for the values mentioned in Fig. 6.2 for (a)
a spatially varying temperature rise ∆T (z) and (b) a spatially constant temperature
rise ∆T .

As given by Eq. 3.63 the kinetic energy per volume in this case yields

K(z, t) = 1
2ρẇ

2(z, t), (6.27)

where the velocity ẇ for the spatially depending temperature rise may be calculated by
the time derivative of Eq. 6.25

ẇ(z, t) = αv
1
2 [M(z − vt)−M(z + vt)]). (6.28)

HereM(x) isM(x) = ∆T (x) (Eq. 6.20) in the range 0 < x < d and the following iterative
function may be used

1 def M(x):
2 n=floor(x/d)
3 if n == 0:
4 return dT(x)
5 elif n < 0:
6 return -M(-x)
7 elif n > 0:
8 return -M(2*d-x)

where in line 4 the function is given by ∆T (x) (Eq. 6.20).
The stored energy density given by Eq. 3.73 in this case is:

Uel(z, t) =
E

2 (εzz − α∆T (z))2. (6.29)

Considering the amount of energy carried by this one-dimensional strain wave the radial
dimension has to be considered. This is kind of problematic because if we want to estimate
the strain energy introduced by a pump laser pulse with a spatial Gaussian distribution
and beam radius W we have to take into account that the introduced temperature profile
also varies with the radial dimension ρr. However, for a very rough approximation here
an area of A = π(W/2)2 in combination with the integration of Eq. 6.27 and Eq. 6.29
over the crystal thickness d in z-direction yields an estimation for the energy of the one-
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dimensional strain wave. The kinetic energy with these approximations can be calculated
by

EK(t) =
Aρ

2

∫ d

0
ẇ2(z, t)dz (6.30)

and the elastic energy with

Eel(t) =
AE

2

∫ d

0
(εzz − α∆T (z))2dz. (6.31)

Assuming ζ � d and considering the temperature profile Eq 6.20 the elastic energy at
t = 0 is8

Eel(0) =
AEα2ζ∆T 2

max

4 (6.32)

Considering R = 0 and γh = 1 the corresponding pulse energy is equal to the absorbed
energy (Eq. 6.19) and the into heat converted energy (Eq. 6.12) Ep = Eabs = EQ and
using Eq. 6.16 it can be derived that

Eel(0)
Ep

=
Eα2

2cρ ∆Tmax(W , ζ,Ep), where ∆Tmax(W , ζ,Ep) =
2Ep

W 2πcρζ
. (6.33)

Using the values of Table 6.1 the material dependent prefactor for diamond at room
temperature is Eα2

2cρ = 3× 10−7 K−1. The energy density Ep
W 2ζ

determines the value of

∆Tmax and therefore the ratio Eel(0)
Ep

, which determines the part of the laser converted
pulse energy into elastic energy . Considering a moderate9 temperature rise it can be seen
that Eel(0) ≪ EQ.
Considering a pump laser pulse with the beam parameters W = 300 µm, ζ = 5 µm,

which is introducing an instantaneous temperature rise of ∆Tmax = 1.75 K the energies
illustrated in Fig. 6.7a for the time of one cycle 2d/v = 11.18 ns can be calculated by
numerical integration. In this case Eq. 6.32 gives Eel(0) = 0.304 pJ which is also visible
by the numerical solution shown in Fig. 6.7a. In Fig. 6.7b the numerical solution for a
case of a constant temperature rise of ∆T = 1 K and a beam radius W = 300 µm has been
considered. It is visualized that in both cases shown in Fig. 6.7 the elastic energy and
kinetic energy are periodically converted into each other and that the maximum elastic
energy is present at t = 0. A graphical explanation for this effect can be seen by considering
the green line in Fig. 6.4b which represents the elastic strain and noting by Eq. 6.31 that
the square of the integral of the elastic strain is proportional of Eel.

When considering an experiment the kind of one-dimensional wave propagation which
has been discussed in this section is of course always connected to a three-dimensional kind
of wave propagation. However, to distinguishes these kinds of waves from other types of
three-dimensional waves, the previously described wave propagation will be called a one-
dimensional wave in the following part of this work.

8Eel(0) = AE
2
∫ d

0 (−α∆T (z))2dz
9It should be noted that the assumption of temperature independent material constants is only valid for
a temperature rise of a few Kelvin.
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(a) ∆T (z) (b) ∆T=constant

Figure 6.7.: Numerical integration of Eq. 6.31 considering a beam radius of W = 300 µm. (a) Spa-
tial dependent temperature profile ∆T (z) with ∆Tmax = 1.75 K and ζ = 5 µm. (b) Con-
stant temperature rise of ∆T = 1 K.

6.2. Solving thermoelastic equations with the finite element
method

The finite element method (FEM) is a numerical method that can be used to solve cou-
pled partial differential equations. For the calculations the software COMSOL multi-
physics® 5.5 is used in this work. The Structural Mechanics Module and the Heat
Transfer Module of this software can be used to solve thermoelastic problems described
by the equations Eq. 6.9 and Eq. 6.11. An example for a simple FEM code is given in
Appendix A.6. The concepts explained by this FEM code are similar to the one used in
COMSOL multiphysics® and may give a good introduction to the underlying concepts of
the particular FEM used by COMSOL multiphysics® which are chosen to solve thermoe-
lastic problems in this work.

Reproducing the one-dimensional solution with the FEM Before investigating
a time dependent three-dimensional thermoelastic problem it should be verified that the
chosen parameters for a FEM simulation can reproduce the analytical solution of the one-
dimensional wave propagation. For this verification Eq. 6.21 is solved with the Coefficient
Form PDE module of COMSOL multiphysics® using quadratic shape functions, a uniform
mesh of 1 µm per element, a uniform time stepping of 10 ps and the generalized alpha
method as time-depend solver. For the beam parameters, ζ = 20 µm and ∆Tmax = 1 K
have been chosen. The crystal thickness d is 100 µm and for the energy calculations a beam
radius of W = 300 µm is assumed. In Fig. 6.8 the comparison of the analytic solution for
the displacement and energies is given. It is noticeable that the numerical errors of the
FEM simulation introduce some kind of damping and also some high frequency oscillations
as illustrated in Fig. 6.8c. However, it may be assumed from this comparison that the
calculated values with the FEM simulation with the chosen parameters give still reliable
information about the thermoelastic problem which has been investigated. It should be
mentioned that with the same simulation parameters but a value of ζ = 5 µm as it has
been used in Fig. 6.3a the numerical errors concerning the oscillation are much clearer
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(a) Elastic and kinetic energy

(b) Zoom for the first 30 ns (c) Zoom for the last 30 ns

(d) Displacement at z = d

Figure 6.8.: Comparison of FEM simulation with analytical solution for a time span of 500 ns using
a uniform mesh of 1 µm and a uniform time stepping of 10 ps, considering a spatial
dependent temperature rise with ∆Tmax = 1 K and ζ = 20 µm. In (a) the elastic and
kinetic energy is shown. A zoom of this plot for the first 30 ns is given in (b) and for
the last 30 ns in (c). In (d) the displacement at z = d is illustrated.
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(a) Elastic and kinetic energy

(b) Zoom for the first 30 ns (c) Zoom for the last 30 ns

(d) Displacement at z = d

Figure 6.9.: Comparison of FEM simulation with analytical solution for a time span of 500 ns using
a uniform mesh of 1 µm and a uniform time stepping of 10 ps, considering a spatial
constant temperature rise of ∆T (z) = 1 K. In (a) the elastic and kinetic energy is
shown. A zoom of this plot for the first 30 ns is given in (b) and for the last 30 ns in
(c). In (d) the displacement at z = d is illustrated.
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present. To keep the simulation time as short as possible but sufficiently accurate to
explain the thermoelastic wave propagation caused by a temperature rise with ζ � d it
is supposed that choosing ζ = 20 µm and d = 100 µm is a good compromise. For the case
of a spatially constant temperature rise of ∆T (z) = 1 K, the FEM simulation using the
same parameters as before shows less numerical errors as illustrated in Fig. 6.9.

6.2.1. Thermoelastic axisymmetric simulations considering a time
independent temperature profile

In this section a three-dimensional thermoelastic problem is investigated considering axial
symmetric10 wave propagation introduced by a time independent axisymmetric tempera-
ture profile given by Eq. 6.16, which has the maximum temperature value in the center of
a cylindrical crystal. In this context, "time independent" means that no heat conduction
is considered, but the temperature profile can occur instantaneously at t = 0 and causes
thereby thermoelastic waves.

Quasi-static As a starting point for this investigation the consideration of a quasi-static
case where no heat conduction is present may be helpful. Such a situation can be consid-
ered approximately for a situation where the development of the temperature rise is built
up sufficiently slow, so that kinetic energy (Eq. 3.63) is small enough to be neglected.
Further, the heat conduction process in this case should be so slow that the tempera-
ture profile can be approximated to be static for a certain time span. Assuming that a
temperature profile given by Eq. 6.16 is time independent will cause a static displace-
ment field in a constrained crystal. To investigate an axisymmetric displacement field a
cylindrical diamond crystal (Fig. 6.10a) with radius R0 = 900 µm, height d = 100 µm as
illustrated in Fig. 6.10a is considered. The chosen kinematic boundary conditions (Eq 6.4
and Eq 6.5) for the crystal surface are as follows: The displacement is zero at positions
for ρr = R0 → ui|S1M = ûi = 0 and that there is no constraining force at positions z = 0
and z = d → σijni|S2M = t̂j = 0. The maximum of the temperature profile is located
at (z = 0 and ρr = 0). The value of the maximum temperature is Tmax = 1 K and the
value for W is 300 µm. For the calculations the elastic material constants of diamond
are approximated to be isotropic with a Poisson’s ratio of ν = 0 and a Young’s modulus
E = 1125 GPa as discussed in Section 4 Fig. 4.2. The stress-strain relation for this prob-
lem is given by Eq. 6.10. Due to the axisymmetry only the cross section domain must
be calculated, which is marked red in Fig. 6.10b. Thus, due to the axisymmetry in this
case a three-dimensional problem can be represented by the solution of a two-dimensional
problem.

Due to the assumption of a time independent temperature profile the time derivative
terms in Eq. 6.9 can neglected. Considering these simplifications equation Eq. 6.9 then
is solved with the FEM in a cylindrical coordinate system using a two-dimensional ax-
10Using the condition mentioned in Section 3.5
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(a) diamond crystal with cylindrical shape (b) cross section

(c) scaled deformation for ∆T (ρr) (d) scaled deformation for ∆T (ρr, z)

Figure 6.10.: (a) Cylindrical crystal shape which is assumed for the FEM simulation. (b) Cross
section of the cylindrical crystal. (c) Deformation scaled by a factor 1500000 caused
by the temperature profile shown in Fig. 6.11a. (d) Deformation scaled by a factor
1500000 caused by the temperature profile shown in Fig. 6.11b.

(a) ∆T (ρr, z)

(b) ∆T (ρr)

Figure 6.11.: In (a) the magnitude of the displacement field calculated for at temperature profile:
∆T (ρr, z) = ∆Tmax exp

(
− 2ρ2

r
W 2 − z

ζ

)
with W = 300 µm, ζ = 20 µm and Tmax = 1 K

is illustrated. The maximum displacement value is 220 pm at (z = 0, ρr = 0). In
(b) a temperature profile ∆T (ρr) = ∆Tmax exp

(
− 2ρ2

r
W 2

)
with Tmax = 1 K which is

constant in z direction has been considered.
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Figure 6.12.: Displacement in z-direction w at the front side z = 0 (solid lines) and the back
side z = d (dashed lines) for a cylindrical diamond crystal with R0 = 1000 µm
experiencing a thermal expansion of a constant temperature profile ∆T (ρr, z) =

∆Tmax exp
(
− 2ρ2

r
W 2 − z

ζ

)
with Tmax = 1 K and various values of d, ζ and W .

isymmetric simulation with quadratic shape functions and a uniform quad mesh with
element size of 1 µm. In Fig. 6.11a the magnitude of the displacement field calculated for
a temperature profile described by Eq. 6.16 with ζ = 20 µm is illustrated. In Fig. 6.11b
a temperature profile which is constant in z-direction has been considered. The direc-
tion of the vector field is illustrated with normalized arrows in both illustrations. The
displacement fields for these temperature profiles look quite different. For the z-direction
dependent temperature profile in Fig. 6.11a it can be seen that the temperature profile
causes a displacement pointing in negative z-direction at the front (z = 0) and at the
back side (z = d) in the center region (around ρr = 0) of the crystal. This is caused by
the constraints of the crystal (fixed constraint at ρr = R0) in combination with a spatial
varying thermal expansion. The thermal expansion causes a thermal stress which results
in a deformation shape illustrated in Fig. 6.10c, where the magnitude of the deformation
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is scaled by a factor of 1500000 for visualization purpose. The maximum value of the
displacement is located at (z = 0, ρr = 0) and has a value of 220 pm. The displacement
field caused by the in z-direction constant temperature profile shows a symmetry regard-
ing the mid line (at z = d/2) of the crystal. At (z = 0, ρr = d) the displacement has a
value of 49.9 pm pointing in positive z-direction and at (z = 0, ρr = 0) the value is also
49.9 pm, but pointing in negative z-direction. However, the maximum magnitude of the
displacement is in this case located at the positions (z = 0, ρr = 190 µm) and (z = d,
ρr = 190 µm) and has a value of 67 pm. The deformation for this temperature profile is
illustrated in Fig. 6.10d and is also scaled by a factor of 1500000.
The kind of deformation, which has been described in this section will be called a heat

bump in the following part of this work.
It should be noted that the heat bump effects illustrated in Fig. 6.11 are rater special

cases. A more general investigation of the heat bump effect is given by the illustrations
in Fig. 6.12, where various combinations of different values for W , ζ and d are shown. To
obtain a better overview only the displacement w in z-direction at the surface z = 0 (solid
lines) and at z = d (dashed lines) are shown. For all FEM11 simulation results shown in
Fig. 6.12 a temperature profile ∆T (ρr, z) = ∆Tmax exp

(
− 2ρ2

r
W 2 − z

ζ

)
with Tmax = 1 K and

a diamond crystal (Table 6.1) with radius R0 = 900 µm have been considered. It can be
seen clearly that the shape of the temperature given by ζ andW , as well the thickness d of
the crystal have a major impact on the resulting shape of deformation. The shape of these
deformations is relevant for the excitation of eigenfrequencies, which will be discussed in
Section 6.2.5.

Instantaneous temperature rise Now a case with an instantaneous temperature rise
will be considered. However, heat conduction is still assumed to be neglected. The material
geometry, parameters and the temperature profiles which are used for the simulations are
the same ones used for the quasi static case. The PDE which has to be solved in this case
is given by Eq. 6.9 and the stress-strain relation by Eq. 6.9. This PDE has been solved
then with the FEM12.
The total kinetic Ekin and elastic energy Eel can be calculated with Eq. 3.73 and Eq. 3.63

by integrating over the crystal domain:

Eel =
∫ d

0

∫ 2π

0

∫ R0

0
Uel(ρr, z, t)ρrdρrdθdz (6.34)

Ekin =
∫ d

0

∫ 2π

0

∫ R0

0
K(ρr, z, t)ρrdρrdθdz.

Considering the terms in Eq. 3.73 and Eq. 3.63 these integrals can be separated into the
sums Eel = Eelzz +Eelρrρr +Eelθθ +Eelρrz and Ekin = Ekinz +Ekinρr , where the separate
11Using quadratic shape functions a uniform quad mesh with an element size of 1 µm.
12Using quadratic shape functions a uniform quad mesh with an element size of 1 µm and the generalized

alpha time solver using a uniform time stepping of 10 ps. The choice for this time stepping is motivated
by the previously discussion about reproducing the one-dimensional solution.
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terms are:

Eelρrρr = πE

∫ d

0

∫ R0

0
(ερrρr (ρr, z, t)− α∆T (ρr, z, t))2ρrdρrdz (6.35)

Eelzz = πE

∫ d

0

∫ R0

0
(εzz(ρr, z, t)− α∆T (ρr, z, t))2ρrdρrdz

Eelθθ = πE

∫ d

0

∫ R0

0
(εθθ(ρr, z, t)− α∆T (ρr, z, t))2ρrdρrdz

Eelρrz = πE

∫ d

0

∫ R0

0
ε2ρrz(ρr, z, t)ρrdρrdz

Ekinz = ρπ

∫ d

0

∫ R0

0
ẇ2(z, t)ρrdρrdz

Ekinρr = ρπ

∫ d

0

∫ R0

0
u̇2(z, t)ρrdρrdz.

With the calculated solution of the FEM simulation for the displacement field the energies
in Eq. 6.35 can be calculated for each time step.

In Fig. 6.13 energies for the z-dependent temperature profile with ζ = 20 µm and
Tmax = 1 K are illustrated. It can be seen from Fig. 6.13b that the energy from the
rough estimation for the energy of the analytic solution has nearly the same value as
Eelzz ,Eelρrρr and Eelθθ at t = 0. However, it is important to notice that each energy com-
ponent Eelzz ,Eelρrρr and Eelθθ has this energy so that the total energy at t = 0 (Fig. 6.13a)
is about three time the value of the analytical estimation where the three-dimensional effect
have been ignored. The periodic exchange of the kinetic and elastic energy in z-direction
(Fig. 6.13b) shows a similar development for the first few nanoseconds compared to the
one-dimensional case (Fig. 6.8a). However, the amplitude of these energy oscillations is
decreasing significantly on time scales of a few hundred nanosecond, which cannot be ex-
plain by the one-dimensional solution, but is an effect connected to the three-dimensional
propagation of the strain wave.

In Fig. 6.13b it can also be seen that the hoop strain Eelθθ is decreasing significantly
in the startup range. This energy seems to be converted mainly into kinetic and elastic
energy in the ρr-direction. Also it should be noted that the elastic energy of Eelρrz is small
in comparison to the other energies. The displacement in z-direction at position (z = d,
ρr = 0) for this simulation is illustrated in Fig. 6.8. The vertical lines in Fig. 6.14a and
Fig. 6.13 mark the period Tz = 2d/v = 11.18 ns of the one-dimensional wave illustrated in
Fig. 6.8d. The first peak in Fig. 6.14a at Tz/2 has nearly the same magnitude and shape
as for the one-dimensional case which is propagating in z-direction. In the next periods a
peak which corresponds to the wave propagating in z-direction is still noticeable; However,
the magnitude is reduced. Also, a rise of a negative displacement is superimposed to the
displacement peak. This displacement development can be connected to the previously
described heat bump. However, in this case the heat bump needs time to develop which
causes a radial strain wave. To investigate the propagation of this radial wave a FEM
simulation with a coarser mesh of an element size of 5 µm and a uniform time stepping
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(a) total elastic and kinetic energy

(b) separated terms of elastic energy

(c) separated terms of kinetic energy

Figure 6.13.: Energies integrated over the crystal domain for (a) the total elastic and kinetic energy,
(b) the separated terms of elastic energy and (c) the separated terms of kinetic energy,
calculated with the FEM for a cylindrical crystal with radius R0 = 900 µm and height
d = 100 µm which is experiencing an instantaneous temperature rise of a temperature
profile ∆T (ρr, z) = ∆Tmax exp

(
− 2ρ2

r
W 2 − z

ζ

)
with ζ = 20 µm and Tmax = 1 K where

no heat conduction is considered.

(a) first 500 ns

(b) first 5 µs

Figure 6.14.: Illustration of the displacement in z-direction at position (z = d ρr = 0), calculated
for the same temperature profile and crystal as described in Fig. 6.13, using FEM
with parameters: (a) fine uniform quad mesh with element size 1 µm and uniform
time stepping 10 ps and (b) coarse uniform quad mesh with element size 5 µm and
uniform time stepping 5 ns.
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of 5 ns has been used. The choice of these simulation parameters is motivated by the
observation that the oscillation in z-direction, which have a significant amount of high
frequency content, become less important for a description of the displacement at point
(z = d, ρr = 0) considering time spans greater than about hundred nanoseconds. The
comparison of the simulation illustrated in Fig. 6.14b shows that the coarse simulation
parameter seem to be accurate enough to describe the development of the displacement
for time scales in the microsecond range. From this illustration it can be seen that there
is no strictly repeated periodical pattern, but a non-periodic oscillation for the illustrated
time span. Theses oscillation are oscillating around the value known from quasi static case
(220 pm, see Fig. 6.11) and have a peak-to-peak value which is roughly about twice this
value (≈ 440 pm).

To illustrate the development of the radial wave, a FEM simulation with the same condi-
tion as described before has been carried out, with the only difference that the radius13 of
the crystal has now a value of R0 = 2000 µm. As illustrated in Fig. 6.15 it can be seen that
the radial wave is build up from the center and is propagating towards the side boundary
of the crystal. Due to the boundary of the crystal in ρr-direction, which is reached after
a time span of about 100 ns to 150 ns this kind of wave will be reflected. However, the
impact on the development of the displacement at the position (ρ0 = 0, z = 0) will be
delayed, because the radial wave needs time to travel back to the center of the crystal.
It should be mention that the radial wave propagation shows a quite different behavior
compared to the one-dimensional wave propagation described in Section 6.1, which gave
a periodic repeating function after reflection at the boundaries. For the case of the radial
wave the temporal development of the displacement field after reflection is quite chaotic
and doses not show simple periodic behavior. In other words for the considered simula-
tion the kind of displacement wave propagation illustrated in Fig. 6.15 is only observed
in the start up range and is not repeated afterwards. In Fig. 6.16 the comparison of the
displacement in z-direction at position (ρ0 = 0, z = d) for the simulation of the cylindrical
crystals with radii R0 are shown. It can be seen that in the startup range the displacement
shows the same development, however after a characteristic dip in the development of the
displacement the further development is completely different. The characteristic dip can
be connected to the arrival of the radial wave which is reflected at the side boundaries.
Another feature which is visualized by Fig. 6.16 is that the maximum value of the dis-
placement which is reached does not only depend on the value of the temperature rise,
but also on the radius of the crystal, which can be explained by considering that the heat
bump effect depends on the crystal radius and the crystal constraints (Fig. 6.12).
In Fig. 6.17 the energies calculated for a temperature profile constant in z-direction with

∆T = 1 K is illustrated. Also in this case the estimation of the one-dimensional solution
(Fig. 6.9) gives a quite accurate value for the elastic energy Eelzz at t = 0. However,

13The larger radius is chosen because the development of the radial wave in the range of the first tens of
nanoseconds in this case can be illustrated without taking into account a major contribution of side
boundary reflection effects.
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Figure 6.15.: Temporal development of the heat bump effect after an instantaneous temperature rise
∆T (ρr, z) = ∆Tmax exp

(
− 2ρ2

r
W 2 − z

ζ

)
with ζ = 20 µm, W = 300 µm and Tmax = 1 K.

Figure 6.16.: Comparison of a FEM simulation using the same parameters as in Fig. 6.14b, except
of the radius R0 of the cylindrical crystal, which is here assumed to be 2000 µm.
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(a) total elastic and kinetic energy

(b) separated terms of elastic energy

(c) separated terms of the kinetic energy

Figure 6.17.: Energies integrated over the crystal domain for (a) the total elastic and kinetic energy,
(b) the separated terms of elastic energy and (c) the separated terms of kinetic energy,
calculated with FEM for a cylindrical crystal with radius R0 = 900 µm and height
d = 100 µm which is experiencing an instantaneous temperature rise of a temperature
profile ∆T (ρr) = ∆Tmax exp

(
− 2ρ2

r
W 2

)
with Tmax = 1 K where no heat conduction is

considered.

also in this case the same energy amount like for Eelzz is present for Eelρrρr and Eelθθ .
Also, like observed before for the z-dependent temperature profile the hoop strain Eelθθ
decreases significantly in the first nanoseconds and the energy is converted into elastic and
kinetic energy in the ρr-direction. The periodic energy exchange for the elastic and kinetic
energy in z-direction is similar like in the one-dimensional case (Fig. 6.9) considering the
first nanoseconds as indicated by the vertical lines indicated in Fig. 6.17. However, in
the first 200 ns the amplitude drops significant and for t greater than about 300 ns there
is a significant change of periodicity noticeable. The vertical markings are also used in
Fig. 6.18, where the displacement at position (ρr = 0, z = d) is illustrated. It can be seen
that for t greater than about 300 ns the oscillation are less periodic and oscillate around
the value of the heat bump at position (ρ0 = 0, z = d) shown in Fig. 6.11b.
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Figure 6.18.: Illustration of the displacement w in z-direction at position (z = d, ρr = 0), which has
been calculated for the same temperature profile and crystal as described in Fig. 6.17,
using FEM simulation with a uniform quad mesh, element size 1 µm and uniform
time stepping 10 ps.

6.2.2. Time dependent temperature profile

In the discussed examples of this section so far an instantaneous temperature rise has been
assumed. Now a finite time span for the temperature rise will be discussed.
Considering Eq. 6.11 in this context the introduced heat per unit time and unit volume

Qext by a pulsed electromagnetic radiation with a Gaussian beam profile may be expressed
by using Eq. 2.62:

Qext = T(t)
(1−R)2Epγh

ζπW 2 exp
(
−2ρ2

r

W 2

)
exp(−z/ζ), (6.36)

The used constants in Eq. 6.36 have the same meaning as described by Eq. 6.15, T(t) is
a function which has the unit s−1 and is normalized so that∫ ∞

0
T(t)dt = 1. (6.37)

The absorbed energy in a time span covering the complete rise and fall time of T(t)
is given by Eq. 6.17. The function T(t) can be interpreted in the context of this work
as the temporal profile of the pump laser pulse under the assumption that the thermal-
ization, which is describing the conversion of the absorbed energy into heat takes place
on timescales much faster than the rise and fall time of the temporal laser pulse profile.
However, for laser pulse durations much shorter than the characteristic time scales of the
thermalization process T(t) may also be used to describe the thermalization process.

A particular choice of T(t) is given by a normalized14 Gaussian function (Fig. 6.19a)

T(t) =
1√

2πτ2
0

exp
(
− (t− 5τ0)2

2τ2
0

)
(6.38)

The full width at half maximum (FWHM) value of the Gaussian function is tp = 2
√

2 ln 2τ0

14In fact the integral function is not exactly
∫∞

0 T(t)dt = 1 because the values at t < 0 are not zero.
However the value at t = 0 is already very small (compared to the maximum value of T(t)) and the
magnitude for value t < 0 decreases exponentially and thus can be neglected.
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(a) Gaussian function
(b) displacement Gaussian pulse

(c) strain Gaussian pulse (d) strain UV laser pulse

Figure 6.19.: (a) Gaussian function with a maximum value located at 5τ0. The FWHM range is
marked by the range between 5τ0 − tp

2 and 5τ0 + tp
2 . (b) Displacement and (c) strain

of a FEM solution for a temporal dependent one-dimensional temperature profile at
time t = 3.5 ns+ 5τ0 . (d) Strain introduced by the temporal profile of the pump laser
illustrated in Fig. 5.3b.

and therefore for a given tp value τ0 can be calculated by τ0 = tp
2
√

2 ln 2 .

Another choice of T(t) which is of particular interest for the needs of this work is given
by the measured temporal profile of the UV laser pulse illustrated in Fig. 5.3b.

For simplicity a one-dimensional problem, which is similar to the previously described
one-dimensional wave propagation expressed by Eq. 6.21 will now be considered to inves-
tigate the effect of a finite temperature rise. Considering a small temperature rise, the
heat capacity c and the density ρ can be approximated to be temperature independent.
For a case where the impact of the temporal changing strain field on temperature and the
heat conduction can be neglected Eq. 6.11 becomes in this case

cρ
∂T

∂t
= Qext, where T = T0 + ∆T . (6.39)

For a pump laser a one-dimensional development of a temperature profile can be considered
by assuming W � ζ. The temperature profile, assuming that all the absorbed energy is
converted into heat (γh = 1), can be expressed by inserting Eq. 6.36 into Eq. 6.39 which
yields by considering W � ζ:

∆T (t, z) = ∆Tmax exp(−z/ζ)
∫ t

0
T(t′)dt′ where ∆Tmax =

2Ep(1−R)γh
W 2πcρζ

. (6.40)

For the UV pulse (Fig. 5.3b) the integral in Eq. 6.40 can be solved numerically and the



6.2. Solving thermoelastic equations with the finite element method 121

(a) Elastic, kinetic and thermal part of the elas-
tic energy

(b) UV pulse duration zoom

(c) Temperature rise

Figure 6.20.: (a) Energies calculated for a case with a beam radius of W = 300 µm a penetration
depth of ζ = 5 µm and a maximum temperature rise ∆Tmax = 1.75 K. The red line
illustrates the thermal part of the elastic energy calculated with Eq. 6.42, the green
line represents the elastic energy, which is given by Eq. 6.31 and the kinetic energy
illustrated by the blue line, is calculated with Eq. 6.30. Several finite time spans
for the temperature profile to built up have been considered and are compared with
analytical and FEM solutions for an instantaneous temperature rise. (b) A zoom for
the elastic and kinetic energy for pulse duration in the nanosecond range, which are
also illustrated in (a). (c) Time span to reach saturation comparing the UV pulse
Fig. 5.3b shape with a Gaussian pulse with similar FWHM value.

integral of the Gaussian function Eq. 6.38 is in good approximation (Fig. 6.19a)
∫ t

0
T(t′)dt′ =

1
2

(
1 + erf

(
t− 5τ0

τ0
√

2

))
. (6.41)

Inserting Eq. 6.40 into Eq. 6.21 gives a partial differential equation which can be solved
with the Coefficient Form PDE module of COMSOL multiphysics® . For the calculation
quadratic shape functions, a uniform mesh of 1 µm per element, a uniform time stepping
of 5 ps and the generalized alpha method for time-dependent solver have been used.

In Fig. 6.19 the calculated displacement (Fig. 6.19b) and strain (Fig. 6.19c) for different
values of tp, considering a temporal Gaussian profile (Fig. 6.19a), are show at the time
t = 3.5 ns + 5τ0. The chosen parameters for ζ = 5 µm and ∆Tmax = 1.75 K are the same
as the ones used to calculate the values of Fig. 6.2a and Fig. 6.3a. The analytic solution
is also illustrated in Fig. 6.19. For tp → 0 the solution of the FEM simulation should give
the same values as the analytic function, but due to numerical errors these values differ.
However, it should be noted that the calculated variable in this FEM simulation is only
the displacement w, and the strain is just the numerical derivation ∂w

∂z of this solution.
Therefore, the deviation of the strain compared to the analytical function shouldn’t be
overvalued.
In Fig. 6.19b it is clearly visible that for tp > 0 the propagating displacement peak is
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reduced. The phenomenological explanation for the wave propagation is nearly the same
as before (see Section 6.1.2), but in this case the temperature rise is build up on timescales
where the wave can propagate a significant distance ∆z = vtp during the time where the
temperature rise is building up. This results that the observed discontinuity occurring
for an instantaneous temperature rise is smeared out for case where the temperature
development needs a finite time. Therefore the amplitude of the traveling displacement and
strain wave will decrease considering a finite time span of the development of a temperature
profile. As illustrated in Fig. 6.19 larger values of tp result in a lower amplitude of the
strain and displacement wave. For values much bigger than one nanosecond the resulting
wave may have a negligible amplitude.
Inserting the numerical integration for the UV laser pulse shape (Fig. 5.3b) solution of

Eq. 6.40 into Eq. 6.21 and by considering ζ = 5 µm and ∆Tmax = 1.75 K, gives by using
the FEM15 the strain illustrated in Fig. 6.19d at time t = 15 ns + τmax. Here, τmax is
the time where the pulse shape in Fig. 5.3b reaches its maximum. By comparing this
solution with the analytical solution and the strain calculated for a temporal Gaussian
pulse at t = 15 ns + 5τ0 with tp = 1400 ps which is approximately the HWHM value for
the UV laser pulse it can been seen that the considered UV laser pulse gives a strain pulse
with slightly lower magnitude than the temporal Gaussian pulse. Also it can be seen that
the strain at z = 0 for the UV laser is slightly smaller. This effect can be explained by
considering the temporal profile of the UV pulse in Fig. 5.3b shown in Fig. 6.19d. Since
heat conduction has been neglected in the considered example the temperature profile
which is final reached is the same in all illustrated case. Therefore the final temperature
rise causes the same static displacement and strain value in Fig. 6.19 at z = 0. However,
for the UV laser this final temperature isn’t reached at the illustrated time step.
The kinetic and elastic energy may be calculated with Eq. 6.30 and Eq. 6.31. Due to

the temperature dependence of the temperature profile it is now also useful to consider
the thermal part of the elastic energy Eth which may be calculated by:

Eth(t) =
AE

2

∫ d

0
(α∆T (z, t))2dz. (6.42)

Considering the area A = π(W/2)2 and a beam radius ofW = 300 µm the energies show in
Fig. 6.20a can be calculated. From these illustrations it can be seen that the time in which
the temperature profile is build up has a strong impact on the magnitude of the elastic and
kinetic energy considering the one-dimensional displacement/strain wave propagation for a
diamond crystal. Also it can be seen that for the chosen FEM simulation parameters quite
strong numerical errors are present when a short rise time or an instantaneous temperature
rise is considered. These errors may be referred to the quite small penetration depth,
because comparing the results to Fig. 6.8 where a larger value for the penetration depth
was used showed less errors. For the case of a pulse duration in the nanosecond range,
15choosing, quadratic shape functions, a uniform mesh of 1 µm per element, a uniform time stepping of

5 ps and the generalized alpha method for time-dependent solver
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which corresponds to the value of the UV laser pulse (Fig. 5.3b) used for the experiments
of this work, a zoom of the elastic and kinetic energy from Fig. 6.20a is shown for better
visualization in Fig. 6.20b.

In the following sections a Gaussian temporal profile with tp = 200 ps and the temporal
profile of the UV laser (Fig. 5.3b) will be discussed further. These temporal profiles are of
particular interest for this work, because the temporal profile of the UV laser will be used
to simulated the pump-probe experiment (Section 6.3) and the Gaussian temporal profile
with tp = 200 ps will be chosen as an assumption for the thermalization time span after
absorption of a femtosecond X-ray photon pulse to simulate the heat load of a saturated
XFELO pulse (Section 6.4).

6.2.3. Temperature dependent material parameters

The temperature dependence of material parameters are know from Section 4 and may be
taken into account by considering that the material parameters in Eq. 6.9 and Eq. 6.11 are
a function of temperature, which causes that the PDEs are now nonlinear. However, in
COMSOL multiphysics® such problems can still be calculated by updating the matrices
which contain material dependent parameter during a time dependent FEM simulation
(see Appendix A.6). Also, non linear changes can be considered by the software using the
Newton-Raphson method.

It should be noted that for the derivation of the thermoelastic PDEs no temperature
dependence of the material parameter was considered. From a physical point of view the
modification of the PDEs with material dependent constants may be regarded as the as-
sumption that all parts of the solid can be assumed to be in a kind of local thermodynamic
equilibrium16 at each numerical time step and the local temperature dependent material
parameter are given by the values introduced in Section 4.

To investigate the effect of a temperature rise, with temperature dependent material
parameters, a good starting point may be to consider a one-dimensional case with a
temperature variation only in z-direction where heat conduction is neglected. Further,
neglecting the coupling of the strain to the temperature Eq. 6.11 becomes:

0 = c(T )ρ
∂T

∂t
−Qext, where T = T0 + ∆T (6.43)

The external heat source may be given by a pump laser with a Gaussian beam profile,
which has a beam radius of W = 300 µm at position z = 0 where it meets the surface
of a diamond crystal under normal incidence. The considered thickness of the crystal
is d = 100 µm. The penetration depth is assumed to be ζ = 5 µm. The pulse energy
after reflection is (1−R)Ep = 2 µJ and is assumed to be converted completely into heat.
The temporal profile of the laser pulse is assumed to be a Gaussian function described
by Eq. 6.38 with FWHM tp = 200 ps. To hold the assumption of a one-dimensional

16So that a meaningful definition of a thermodynamic temperature is given.
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(a) temperature rise at z = 0 (b) temperature rise depending on T0

(c) saturated temperature as function of z (d) strain dependence on initial temperature

(e) displacement in z-direction at z = d (f) velocity in z-direction at z = d

Figure 6.21.: One-dimensional FEM simulation, considering a pump beam with beam radius W =
300 µm, a pulse energy after reflection of (1−R)Ep = 2 µJ, a penetration depth of
ζ = 5 µm and a crystal thickness of d = 100 µm. The temperature dependence of
the heat capacity and thermal expansion coefficient of diamond has been taken into
account. In (a) the temporal development for an initial temperature of T0 = 300 K is
shown. After about t = 0.8 ns the temperature saturates. (b) Temperature rise given
by the saturated temperature minus the initial temperature T0 calculated for different
initial temperatures. (c) Spatial dependence of the saturated temperature for different
initial temperature values T0. (d) Strain εzz for different values of T0 at the time
t = 3.5 ns + 5τ0. (e) Displacement in z-direction at the position z = d. (f) Velocity
ẇ at position z = d.
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temperature profile, only the temperature profile near ρr ≈ 0 is considered. With these
assumptions it follows from Eq. 6.38 and Eq. 2.62 that the external heat source for the
thermoelastic problem is given by

Qext(z, t) = T(t)
2(1−R)Ep
ζπW 2 exp(−z/ζ), (6.44)

where T(t) =
1√

2πτ2
0

exp
(
− (t− 5τ0)2

2τ2
0

)
and tp = 2

√
2 ln 2τ0.

Solving Eq. 6.43 with the FEM17 by using the temperature dependent value18 for c(T )
(Fig. 4.6) gives a dependence of the temperature rise of the initial temperature T0 due to
the temperature dependence to the heat capacity. The temperature rise at position z = 0
is illustrates for an initial temperature of T0 = 300 K in Fig. 6.21a. It can be seen that
the temperature saturates after a time of about t ≈ 4tp. This should be not surprising.
Because no heat conduction is considered, the temporal Gaussian function will cause a
static temperature profile and the time, which it takes for the temperature to build up,
corresponds to the width of the Gaussian function Eq. 6.38. The value of the temperature
rise ∆Trise in the considered problem is given by the subtraction of the initial temperature
T0 from the temperature value at saturation. The value of the maximum ∆Trise at z = 0
is illustrated in Fig. 6.21b for different initial temperatures. In Fig. 6.21c the spatial
dependence of the saturated temperature is shown for different initial temperature values.
The solution of the calculated temperature rise can be used to calculate the displacement

with Eq. 6.9:

E
∂2w
∂2z
−Eαs(T ,T0)

∂∆T
∂z
− ρ∂

2w
∂t2

= 0. (6.45)

Using the FEM19 and taking into account the temperature dependence for the secant
thermal expansion αs(T ,T0) (Fig. 4.5, Appendix A.5) the displacement in z-direction w
has been calculated for different initial temperatures. The strain in z-direction given by
εzz = ∂w

∂z at a time t = 3.5 ns + 5τ0 is illustrated in Fig. 6.21d. It can be seen that the
strain significantly increases for temperatures lower than 150 K, whereas for temperatures
in the range 200 K to 300 K the value is nearly the same. The displacement at position
z = d is illustrated in Fig. 6.21e and shows that for low temperatures there is a decrease
of the displacement noticeable at the peak around 6 ns, followed by rise of a negative
displacement. From Fig. 6.21f it can be seen that the temperature dependence of mate-
rial properties causes a constant velocity ẇ at position z = d after the reflection of the
displacement/strain wave, which has a greater magnitude for low temperature and causes
the negative displacement rise.
17Using quadratic shape functions, a uniform mesh size of 1 µm, a uniform time stepping of 5 ps and the

generalized alpha time solver
18Here the heat capacity calculated with the Debye approximation has been used.
19Using quadratic shape functions, a uniform mesh size of 1 µm, a uniform time stepping of 5 ps and the

generalized alpha time solver
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6.2.4. Thermal conductivity

The initial temperature profile created by an ultrashort laser pulse, where an instantaneous
thermalization has been assumed can be expressed by Eq. 6.16:

∆T (ρr, z) = ∆Tmax exp
(
−2ρ2

r

W 2 −
z

ζ

)
, with ∆Tmax =

γh(1−R)2Ep
ζπW 2cρ

. (6.46)

If the impact of the temporally changing strain field can be neglected and an isotropic
thermal conductivity is considered, the temporal development of the temperature field
may be calculated by solving Eq. 3.58:

(λc(T )T ,i ),i= c(T )ρṪ −Qext, where T = T0 + ∆T (6.47)

If no external heat source is present and only a small temperature rise ∆T is considered, so
that thermal conductivity and heat capacity can be approximated to be nearly constant,
Eq. 6.47 can be expressed as

aT (T0)(T ,i ),i=
∂T

∂t
, where aT =

λc(T0)

ρc(T0)
and T = T0 + ∆T . (6.48)

Here aT is the thermal diffusivity. A phenomenological explanation of aT may be given by
noticing that (T ,i ) is the gradient of a scalar field (temperature) and thus aT is related to
the capability of the material to change a spatial temperature difference in a finite time
span. The values of the thermal diffusivity aT as a function of the initial temperatures T0

for a diamond crystal are illustrated in Fig. 6.22a. For the calculation the temperature
dependent material parameters of [WKT+93] (Fig 4.6, Section 4) have been used.
For a solid with insulating boundaries where an amount of energy EQ from a pulsed laser

is absorbed and converted into heat energy inside the solid, there will be, as determined
by Eq. 6.47, after some time due heat conduction a nearly spatially independent constant
equilibrium temperature rise ∆Teq. However, from Eq. 4.21 it can be seen that the value
of the temperature rise depends on the value of the heat capacity. Considering the spatial
integration of Eq. 4.21 over the volume of the crystal and assuming a constant temperature
rise gives

∆T =
EQ

V ρc(T0)
. (6.49)

For a volume V = πR2
0d of a cylindrical diamond crystal where the radius is assumed to

be R0 = 900 µm and the thickness d = 100 µm, the amount of heat energy of EQ = 2 µJ
causes a temperature rise which depends on the initial temperature T0 as illustrated in
Fig. 6.22b. It can be seen that the equilibrium temperature rise Teq does not exceed values
of one Kelvin, which verifies the approximation to use a constant heat capacity for the
calculation with Eq. 6.49 at each initial temperature value T0.
In Fig. 6.22b also the equilibrium temperature rise Teq for a one-dimensional case is

illustrated, as given by Eq. 6.44. For a one-dimensional temperature rise which only
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(a) diffusivity (b) equilibrium temperature rise

Figure 6.22.: (a) Values of diffusivity aT as a function of the initial temperature T0 for a diamond
crystal. (b) Equilibrium temperature rise of a cylindrical diamond crystal with insu-
lating boundaries (blue line), with thickness d = 100 µm and radius R0 = 900 µm after
absorption of an amount of heat energy EQ = 2 µJ, compared to a one-dimensional
case (orange line) where the amount of heat per area is 2EQ

πW 2 and W = 300 µm.

varies in z-direction a heat energy per area 2EQ
πW 2 (Eq. 6.44) may be used to calculate the

equilibrium temperature rise for a crystal with thickness d by integration of Eq. 4.21 over
the crystal domain in z-direction:

∆T1D =
2EQ

πW 2dρc(T0)
. (6.50)

The values for the one-dimensional scenario in Fig. 6.22b have been calculated by con-
sidering a beam radius of W = 300 µm, a thickness of d = 100 µm and an amount of
heat energy EQ = 2 µJ. However, in this case the assumption of constant heat capacity
becomes critical at low temperature, where the predicted equilibrium value is in the range
of a few Kelvin. Also it has to be mentioned that the consideration of this one-dimensional
scenario is kind of artificial, because it neglects the heat conduction in radial direction.
However, this approximation is useful for the discussion of one-dimensional heat conduc-
tion and resulting displacement/strain waves that will be considered in the following part
of this section.
To investigate the temporal change of a three-dimensional axisymmetric temperature

profile introduced by a pump laser in a cylindrical diamond crystal Eq. 6.11 is solved with
the FEM20, by neglecting the effect of the temporal strain change on the temperature
field. In the simulation a crystal with thickness d = 100 µm and radius R0 = 900 µm
is considered. For the thermal conductivity the values calculated by [Rau21] are used21

(Fig 4.6, Section 4). The pump laser is chosen to have a Gaussian beam profile with
W = 300 µm which is centered in the middle of the crystal. For the temporal profile
a Gaussian function with tp = 200 ps (Eq. 6.38) and the UV laser pulse (Fig. 5.3b) are
considered. The pulse energy after the reflection is assumed to be (1 − R)Ep = 2 µJ
and a complete conversion of the absorbed energy into heat is assumed. The penetration

20Using, quadratic shape functions, a uniform mesh size of 5 µm, a uniform time stepping of 10 ps and the
generalized alpha time solver

21Here λzz is the cross plane value and λρrρr the in plane value shown in Fig 4.6.



128 6. Calculation of thermoelastic problems considering a diamond Bragg reflector

(a) first 100 ns tp = 200 ps (b) first 100 ns tp = UV pulse

(c) temperature rise at T0 = 50 K (d) temperature rise at T0 = 300 K

Figure 6.23.: The temporal development of the temperature rise in a cylindrical crystal with R0 =
900 µm and d = 100 µm at position (z = 0, ρr = 0) introduced by a pump laser
with W = 300 µm, d = 100 µm, EQ = 2 µJ and ζ = 5 µm (Eq. 6.36), depending on
the initial temperature T0 illustrated for the first 100 ns calculated for (a) a temporal
Gaussian profile with tp = 200 ps and (b) for the UV laser pulse shape Fig. 5.3b.
Comparing the impact of the temporal shape (c) at T0 = 50 K and (d) T0 = 300 K.
The green doted line marks the equilibrium temperature rise calculated with Eq. 6.49

depth is ζ = 5 µm. With this assumption the external heat source can be expressed by
Eq. 6.36. Due to the spatial profile of the pump laser the maximum temperature rise
occurs at (z = 0, ρr = 0). The temporal change of the temperature rise at this position
is illustrated in Fig. 6.23. As mentioned before the temperature rise depends, due to the
temperature dependence of the heat capacity on the value of the initial temperature of the
crystal. This is illustrated in Fig. 6.23, for the first 100 ns of the temporal development
of the temperature rise at position at (z = 0, ρr = 0). It should be noted that if no
heat conduction would be assumed the temperature at (z = 0, ρr = 0) would saturate at
the same value as given by the one-dimensional problem in Fig. 6.21b. However, due to
the finite pulse duration and the high thermal conductivity of diamond especially at low
temperatures the temperature cannot be build up to the value of the saturated temperature
rise illustrated in Fig. 6.21b. Due to the longer pulse duration of the UV pulse (Fig. 6.23b)
compared to the Gaussian pulse (Fig. 6.23a) the temperature rise is significantly smaller
for the UV pulse. This means that when considering a temporal finite temperature rise, the
value of the maximum temperature rise not only depends on the temperature dependent
material constants, but also on the finite value of the pulse length and/or on the timescales
on which thermalization takes place. Also, it should be noted that due to the higher value
of the diffusivity at low temperatures (in the range of 50 K) the maximum temperature
rise at position (z = 0, ρr = 0) tends faster to the value of an equilibrium temperature
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rise. This is illustrated for the initial temperature value of 300 K and 50 K in Fig. 6.23c
and Fig. 6.23d, respectively. Considering the development of a heat bump which has
been discussed in Section 6.2.1 it should be realized that a heat bump can only be built
up if there exists a non-equilibrium temperature field. However, if the time scales on
which the heat bump is build up is larger than the time scales which are needed for the
temperature profile to reach a nearly equilibrium state, the displacement magnitude of
the heat bump will decrease. In this context it should be noted for time spans longer than
a few nanoseconds the decrease of the temperature is similar considering the different
pulse duration illustrated in Fig. 6.23c and Fig. 6.23d. This leads to the conclusion that
temporal development of the heat bump effect will be dominated by the diffusivity of the
material and is not sensitive to the exact value to the pulse duration up to values of about
one nanosecond, for a diamond crystal. The effect of the strong diffusivity aT in diamond
has also a significant impact on the one-dimensional strain wave at low temperatures, as
will be shown by the following example. Using the same example as in Section 6.2.3 but
this time considering the effect of thermal conductivity gives, with Eq. 6.11 and Eq. 6.9:

∂

∂z

(
λc
∂T

∂z

)
= cρ

∂T

∂t
−Qext, where T = T0 + ∆T (6.51)

E
∂2w
∂2z
−Eαs

∂∆T
∂z
− ρ∂

2w
∂t2

= 0.

Solving22 Eq. 6.51 with the FEM23 gives the results shown in Fig. 6.24, which can be com-
pared to the FEM solutions illustrated in Fig. 6.21 where heat conduction was neglected.
As illustrated in Fig. 6.24a and already mentioned for the three-dimensional temperature
rise the saturated temperature value (Fig. 6.21b) is not reached due to the finite pulse
duration. After t = 10 ns the temperature rise for T0 = 50 K is reduced to a value near the
equilibrium temperature rise illustrated in Fig 6.22b. The rapid change of the tempera-
ture due to the thermal diffusivity causes a different shape of the strain pulse (Fig. 6.24c)
and also prevents the creation of a significant constant velocity at z = d after reflection
(Fig. 6.24g). For a shorter pulses duration the resulting strain and displacement magni-
tude are significantly higher than for longer pulse duration, which is visible by comparing
Fig. 6.24 for the UV laser and the Gaussian pulse. For the UV laser shape the peak value
of the displacement at z = d significantly increases for low temperatures. Also the calcula-
tion of the thermal (Eq. 6.42), kinetic (Eq. 6.30) and elastic (Eq. 6.31) energies represents
this effect as illustrated in Fig. 6.25. However, it should be noted that even if the energy
values reached for a shorter pulsed duration are significantly higher, compared to a longer
pulse duration, the increases with lowering the initial temperature for the kinetic energy
and elastic energy is higher for the longer pulses duration illustrated in Fig. 6.25. In other
words, the ratio of the kinetic or elastic energy given in Fig. 6.25 obtained by dividing the

22Using the cross plane thermal conductivity for a 100 µm crystal (Fig 4.6, Section 4) and the heat capacity
calculated with the Debye approximation (Fig 4.4, Section 4).

23Using, quadratic shape functions, a uniform mesh size of 1 µm, a uniform time stepping of 5 ps and the
generalized alpha time solver
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(a) tp = 200 ps, ∆T at position z = 0, ρr = 0 (b) UV pulse, ∆T at position z = 0, ρr = 0

(c) tp = 200 ps, strain dependence of T0 (d) UV pulse, strain dependence of T0

(e) tp = 200 ps, displacement in z-direction at z = d (f) UV pulse, displacement in z-direction at z = d

(g) tp = 200 ps, velocity in z-direction at z = d (h) UV pulse, velocity in z-direction at z = d

Figure 6.24.: One-dimensional wave propagation considering a pump beam with beam radius W =
300 µm, a pulse energy after reflection of (1−R)Ep = 2 µJ, a penetration depth of ζ =
5 µm and a crystal thickness of d = 100 µm. Considering thermal conductivity and
comparing a Gaussian temporal profile tp = 200 ps (left side of the illustration) and
the UV laser pulse (Fig. 5.3b) (right side of the illustration).(a) and (b) Temperature
rise ∆T at position (z = 0, ρr = 0) for different initial temperature values T0. (c)
Strain εzz for different values of T0 at the time t = 3.5 ns + 5τ0 and (d) at t =
3.5 ns + 2.175 ns. (e) and (f) Displacement in z-direction at position z = d. (g) and
(h) Velocity ẇ at position z = d.
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Figure 6.25.: Energy development for a one-dimensional wave propagation using the parameters
described in Fig. 6.24. Comparing the effect of a Gaussian temporal profile tp = 200 ps
and the UV laser pulse (Fig. 5.3b). The red line represents the thermal part of the
elastic energy (Eq. 6.42), the blue line the kinetic (Eq. 6.30) and the green line the
elastic (Eq. 6.31) energy.

values for the short pulse by the longer one, considering a particular initial temperature
value, decreases with lowering the initial temperature for the considered case.

6.2.5. Excitation of eigenfrequencies

In this section eigenfrequencies, also synonymously called natural frequencies, are intro-
duced in the context of a vibrating solid.
Suppose a crystal with known geometry and material parameters is forced to be de-

formed into an arbitrary shape which can be described by a displacement field and the
continuum theory introduced in Section 3. If then the forces which cause this deforma-
tion are suddenly released, the following motion of the solid can have a very complicated
shape. These motions may also appear in a non-periodic way. However, there are partic-
ular initial displacement fields which will cause a harmonic and periodic motion with a
corresponding frequency called the eigenfrequency and a periodic shape changing of the
three-dimensional solid called the eigenmode or synonymously mode shape.
The calculation of eigenfrequencies and eigenmodes for a three-dimensional geometry

are carried out with the FEM [Bow09, p. 503] using COMSOL multiphysics® in this work.
However, considering the solution of a simple one-dimensional problem may be helpful to
understand the meaning of eigenfrequencies and eigenmodes. Therefore, again the one-
dimensional equation Eq. 6.21 will be considered. If no temperature profiles are present
Eq. 6.21 becomes

σzz = E
∂w(z, t)
∂z

(6.52)

ρ
∂2w(z, t)
∂t2

=
∂σzz
∂z

.
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This gives a homogeneous wave equation for the displacement

∂2w(z, t)
∂t2

= v2
l

∂2w(z, t)
∂z2 , where vl =

√
E

ρ
, (6.53)

which has to fulfill the boundary conditions σzz = 0 at z = 0 and z = d. Using the ansatz
w(z, t) = <[w̃(z)ej(ωt)] for the displacement, where w̃ is a complex number containing the
information of amplitude and phase and inserting this ansatz into Eq. 6.53 gives

∂2<[w̃(z)]
∂z2 + k2<[w̃(z)] = 0, where k =

ω

vl
. (6.54)

A solution for this equation is <[w̃(z)] = <[wampej(−kz+φW)]. This solution can also
be written as <[w̃(z)] = wamp cos(−kz + φW). To satisfy the boundary conditions this
solution must fulfill ∂<[w̃(z)]∂z

∣∣∣∣
z=0

= 0 and ∂<[w̃(z)]
∂z

∣∣∣∣
z=d

= 0. The derivation of the solution

gives ∂<[w̃(z)]
∂z = wampk sin(−kz + φW). Thus, solutions fulfilling the boundary condition

are given for φW = 0, kn = nπ
d ,n = 0, 1, 2 . . . ,∞. The eigenfrequencies in this case are

given by fn = ωn
2π = nvl

2d and the corresponding eigenmodes are Wn(z) = cos(knz).
Considering again the cylindrical crystal (Fig. 6.10a) with R0, thickness d = 100 µm

and assuming no traction or constraints at the surface of the crystal, it is known from the
one-dimensional solution that the crystal should possess eigenfrequencies at f0 = 0, f1 =

89.51 MHz, f2 = 179.03 MHz and f2 = 268.54 MHz. Indeed, these eigenfrequencies can
be also calculated with the eigenfrequency solver of COMSOL multiphysics® considering
a three-dimensional cylindrical crystal with arbitrary R0. But these eigenmodes have a
rather special shape, they only oscillate in z-direction. However, for a three-dimensional
solid, modes can oscillate in various directions depending on the geometry and boundary
conditions. In this context it should be mentioned that the eigenmodes of the analytical
solution would not be present if there would be a fix constraint at the sides of the crystal
at position ρr = R0.
For this work it is important to investigate which eigenfrequencies may be excited by a

pulsed heat load. In this context it should be noted that the eigenfrequencies and eigen-
modes of the crystal will depend on the kind of constraints, the elastic material parameters
and damping effects. A real crystal may have different elastic properties compared to the
literature values, because of a non-perfect lattice which can contain various kinds of de-
fects. Also, the kind of damping effects due to defects and clamping are often unknown.
Thus, the prediction of the eigenfrequencies and eigenmodes which will be excited in a
real crystal is a challenging task. Nevertheless, an investigation of eigenfrequencies where
damping is neglected and a perfect crystal with ideal clamping and elastic constant is
considered may be a good starting point to understand which kind of eigenmodes could
be excited in a particular frequency range.
To investigate the kind of three-dimensional eigenfrequencies, which exist for a cylin-

drical crystal, a crystal with R0 = 500 µm, d = 100 µm and a fixed constraint at the side
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(a) f1 = 3.12 MHz (b) f2 = 10.56 MHz (c) f3 = 20.32 MHz (d) f4 = 21.82 MHz

Figure 6.26.: first four axisymmetric eigenfrequencies/modes for a cylindrical crystal with radius
R0 = 500 µm and thickness d = 100 µm.

(a) f̃1 = 3.42 MHz (b) f̃2 = 5.87 MHz (c) f̃3 = 5.87 MHz (d) f̃4 = 9.01 MHz

(e) f̃5 = 9.01 MHz (f) f̃6 = 10.12 MHz (g) f̃7 = 11.27 MHz (h) f̃8 = 11.27 MHz

Figure 6.27.: first eight three-dimensional eigenfrequencies/modes for a cylindrical crystal with ra-
dius R0 = 500 µm and thickness d = 100 µm.

surface ρr = R0 is considered. The results for the first four eigenfrequencies calculated
with the FEM24 considering axisymmetric modes are illustrated in Fig. 6.26. It should
be mentioned that for this crystal also none axisymmetric modes exist which can also be
calculated with the FEM. The FEM simulation results for a three-dimensional calculation
are shown in Fig. 6.27. The mode25 given by Fig. 6.27a is related to the mode shown in
Fig. 6.26a and the mode Fig. 6.27f to the mode Fig. 6.26c.
In Section 6.2.1 the temporal development of a displacement field introduced by an

instantaneously temperature rise ∆T (ρr, z) = ∆Tmax exp
(
− 2ρ2

r
W 2 − z

ζ

)
with ζ = 20 µm,

W = 300 µm and Tmax = 1 K (Fig. 6.14b) and an in z-direction constant temperature
profile (Fig. 6.18) inside a cylindrical diamond crystal have been investigated. The crystal
side boundaries were considered to be fixed constraints, the radius was R0 = 900 µm and
thickness was d = 100 µm. The first four eigenmodes of this crystal have a similar shapes
as illustrated in Fig. 6.26. However, the values of the eigenfrequencies are in this case
f1 = 1.0117 MHz, f2 = 3.7308 MHz, f3 = 7.7802 MHz and f4 = 12.122 MHz. Considering
the Fourier transformation26 of displacement in z-direction (Fig. 6.14b) as illustrated in
Fig. 6.28a it can bee seen that the frequencies of the eigenfrequencies are clearly related
to temporal changing displacement. The fourth eigenfrequencies (at 12.122 MHz) has a
24using a uniform quad mesh with 5 µm per element.
25The difference of the eigenfrequency value may be reduced by using a mesh with higher resolution,

however for the three-dimensional simulation in this work tetrahedral elements with size 10 µm are
used to keep the computation time short.

26Carried out with a Python script contain the scipy [JOP+ ] module scipy.fft
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(a) Fourier transformation of Fig. 6.14b (b) Fourier transformation of Fig. 6.18

Figure 6.28.: Fourier transformation of the temporal development of the displacement in z-direction
observed at position (z = d, ρr = 0) for (a) the displacement illustrated in Fig. 6.14b
and (a) the displacement illustrated in Fig. 6.18.

radial shape and is not present in Fig. 6.28a investigated in this case.
For the Fourier transformation of the in z-direction constant temperature profile illus-

trated in (Fig. 6.14b) it can be seen that the frequency with the highest amplitude can
be connected to a mode with a frequency similar to the one known from the analytic
solution. There are also higher frequency components visible in the range from 125 MHz
to 145 MHz. In this range a variety of different modes with quite chaotic shape are present
has is has been obtained by a FEM simulation of the eigenfrequencies.
An topic which has not been investigated in this work is how eigenfrequencies/modes

may be exited by a pulsed heat load with a fixed repetition rate. However, from the inves-
tigations of this work it may already be concluded that not only the repetition rate of heat
load but also, the shape of the heat load profile which may be related to particular beam
radius and a penetration depth may have an important impact of a possible excitation of
eigenmodes.

6.3. Simulation of the pump-probe experiment

It can be seen clearly in (Fig. 5.12, Section 5) that the experimental data show features,
which are familiar from the simulation results of the previous section. The periodic fringes
can be connected to the one-dimensional wave propagating in z-direction (Fig. 6.6a), which
has been discussed in detail in Section 6.1. The rise of the overall displacement value can
be connected to the radial wave propagation (Fig. 6.15), which is caused by the heat
bump effect (see Section 6.2.1). The decrease of the maximum reached overall displace-
ment for lower initial temperatures observed in the measurements can be connected to the
higher diffusivity (Fig. 6.22a, Section 6.2.4) for diamond at lower initial temperatures. The
higher diffusivity causes a reduction of the heat bump effect, because a nearly equilibrium
temperature (see Section 6.2.4) is reached on shorter timescales than the time which is
needed for the heat bump effect to be build up (see Section 6.2.1). The increase of the
displacement magnitude in the frequency range around 80 MHz (Fig. 5.14d, Section 5)
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observed in the measurements can be connected to an increase of the magnitude of the
one-dimensional displacement wave, which is probably caused mainly by the strong diffu-
sivity of diamond at low temperatures (see Fig. 6.24 and Fig. 6.25, Section 6.2.4). The
oscillations in the microsecond range observed in the measurements (Fig. 5.13) can be con-
nected to the radial wave propagation and reflection at the side boundaries (see Fig 6.16,
Section. 6.2.1). The measured frequencies (Fig. 5.14, Section 5) may be connected to the
particular eigenfrequencies of the diamond crystal (see Fig. 6.28a Section 6.2.5). However,
the prediction of the excitation of particular eigenfrequencies is challenging, because it
depends on the clamping conditions and the three-dimensional shape of the crystal as well
as on the spatial and temporal shape of the heat load as discussed in Section 6.2.5.

However, in all FEM simulations carried out in this work the assumption of the Fourier
heat law has been used. From the discussion in Section 4 regarding the thermal conduc-
tivity it is known that this assumption is very critical for low temperatures, where the
mean free path reaches values of a few micrometers. The thermoelastic simulation which is
describing the pump-probe experiment of this work has to take into account temperature
variations in the micrometer range27, therefore the assumptions of the Fourier law may be
expected to fail at low temperatures. This aspect may be investigated by comparing the
simulation results with the experimental data.
For the simulation of the pump-probe experiment the elastic properties of diamond

are approximated to be temperature independent and isotropic with a Poisson’s ratio
of 0.076 and a Young’s modulus of Emean = 1125 GPa as discussed in Section 4. For
the temperature dependent heat capacity c(T ) the values calculated with the ab initio
method are used (Fig. 4.4). The used function for the temperature dependent thermal
expansion coefficient (Eq. 4.43) is given by the fitted values derived by P. Jacobsona
et al. [JS19] (Fig. 4.5) and is used to calculate the secant thermal expansion coefficient
(Appendix A.5). The isotope content is assumed to be 1.1%. Thus, the density is assumed
to be ρ ≈ 3516 kg/m3 (as derived in Section 4). For the temperature dependent thermal
conductivity the values for a 100 µm thick diamond crystal calculated by P. Rauer [Rau21]
are used (Fig. 4.6). Considering Eq. 6.11 the value of the cross plane thermal conductivity
(Fig. 4.6) is represented by λzz and the in-plane value is represented by λρrρr . The
measured pump beam radius W = 300.7 µm (Fig. 5.3a) is approximated by a perfect
Gaussian beam. The pump laser has a wavelength of 213 nm. From Section 4.2 and
Section 5 (Fig. 5.4) it is known that the values for the penetration depth ζ and the
reflectance R in this case are ≈ 5 µm and 0.221 28, respectively. As discussed in Section 5
these values are assumed to be nearly temperature independent. It is assumed that the
absorbed energy of the total pulse energy Ep = 44.6 µJ is converted completely into heat
energy which gives, by considering Eq. 6.19, Eabs = (1 − R)Ep = 34.7 µJ. With the
temporal pulse shape T(t) = U(t)∫ Tm

0 U(t′)dt′
illustrated in Fig. 5.3b and the assumption that

thermalization takes place on much shorter time scales than the rise time of the laser

27Because the penetration is about 5 µm and the crystal thickness is 100 µm
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pulse, the spatial and time dependent heat per unit volume can be expressed by Eq. 2.62:

Qpump(ρr, z, t) = T(t)
2Eabs
ζπW 2 exp

(
−2ρ2

r

W 2

)
exp(−z/ζ) (6.55)

The dimensions of the crystal are 4 mm× 4 mm× 100 µm. However, for the FEM sim-
ulations a cylindrical crystal with radius R0 = 2000 µm is considered. With this sim-
plification and the assumption that the pump laser beam is centered in the center of
the crystal an axisymmetric simulation can be carried out, which significantly28 reduces
the calculation time for the FEM simulation. The thermal boundary conditions for the
surface of the crystal are chosen to be thermal insulating qhi ni|S2T = 0. This choice is
motivated by noticing that, for a single pump laser pulse absorbed by the crystal, only a
small equilibrium temperature rise is expected using Eq. 6.49. For example, considering
T0 = 50 K gives an equilibrium temperature of Teq = 1.5 K and for higher initial temper-
ature values the equilibrium temperature is even smaller. For the mechanical boundary
conditions it is assumed that the displacement is zero at the side boundary of the crys-
tal ρr = R0 → ui|S1M = ûi = 0 (fixed constraint). Furthermore, it is assumed that at
the bottom and top of the crystal (the remaining part of the crystal surface) there is no
traction σijni|S2M = t̂j = 0.

The periodic fringes in Fig. 5.12, Section 5 marked by the vertical lines, can be con-
nected to the propagation of a one-dimensional displacement wave in z-direction (see also
Fig. 6.14a). The measured periodicity is Tp = 12.08 ns. From the analytic solution for
the one-dimensional wave propagation Eq. 6.25 it can be seen that the periodicity of the
fringes Tp is connected to the thickness of the crystal by:

Tp =
2d
v

(6.56)

Using a Young’s modulus E = 1125 GPa and a Poisson’s ratio of E = 0.076, which have
been discussed in Section 4 the longitudinal speed of sound is given by Eq. 3.64:

vL =

√
E(1− ν)

ρ(1 + ν)(1− 2ν) = 18 000.5 m s−1 (6.57)

Inserting the longitudinal speed of sound29 and the measured periodicity into Eq. 6.56
gives a thickness of d = 108.72 µm. This thickness value is used for the cylindrical crystal
in the FEM simulation. It should be noted that the thickness value is inside the tolerance
for the crystal thickness specified by the manufacturer: (100± 10) µm. However, it should

28For a three-dimensional simulation there would be much more degrees of freedom and the global matrix
to solve (Appendix A.6) would contain much more elements.

29It should be mentioned that considering the three-dimensional wave propagation the one-dimensional
wave propagation might only be assumed as a fully decoupled kind of wave propagation for the case
where Poisson’s ratio is zero (see Eq. 3.68 and Eq. 3.70 in context of Eq 6.21). However, since the
Poission’s ratio for diamond is quite small a systematic error which might be introduced by a non zero
Poisson’s ratio is assumed to be small.
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(a) Mesh used FEM simulation (b) Effect of thermoelastic damping

Figure 6.29.: (a) Mesh with increasing element size in z-direction. The mesh has the same distribu-
tion along the complete ρr-direction, of the crystal. However, for better visualization
only the first ≈ 100 µm are shown in the illustration. (b) FEM Simulation consider-
ing the pump-probe experiment at initital temperature T0 = 300 K. For the uncoupled
calculation the effect of the temporal changing strain field has been neglected. For the
coupled simulation the coupled PDEs Eq. 6.11 and 6.9 have been solved simultane-
ously.

also be noted that due to the wedge angle (Fig 5.1) the crystal thickness is not constant and
the assumption of a constant thickness for the FEM simulation will introduce a systematic
error. For the FEM simulation of the pump-probe experiment a uniform quad mesh with
an element size of 5 µm combined with boundary layers at z = 0 with increasing size in
z-direction for the first ≈ 20 µm as illustrated in Fig. 6.29a is used. The finer mesh at the
area near z = 0 is used to resolve the exponential decrease of the heat source, which is
caused by the penetration depth of ζ ≈ 5 µm. However, the created displacement/strain
wave as discussed in Section 6.2.2 (Fig. 6.19d) is smeared out due to the temporal pulse
shape of the UV laser and a quite coarse mesh of 5 µm should be sufficient30 to resolve
the propagation of this wave. For the time solver the generalized alpha solver with a time
stepping of 50 ps is used. The simulation time span of 300 ns, which will be investigated
in detail in the following part of this section may be considered to be the start up regime
for the thermoelastic wave propagation. This time span is of particular interest for the
needs of this work, because as mentioned in Section 1 it corresponds to the repetition rate
of fourth generation XFEL facilities.
For all the simulations presented in Section 6.1 and Section 6.2 the impact of the dis-

placement/strain field on the temperature rise (thermoelastic damping) represented by the
first term on the right hand side of Eq. 6.11 has been neglected, also in all the simulations it
has been assumed that the Poisson’s ratio is zero. Using the Structural Mechanics Module
and the Heat Transfer Module of the software COMSOL multiphysics® 5.5 it is possible
to solve the coupled PDEs Eq. 6.11 and31 Eq. 6.9 for an axisymmetric problem simultane-

30To verify this assumption a simulation using a much finer mesh with 1 µm element size has been carried
out. Investigating the first 40 ns of the simulation show in Fig. 6.30 comparing the solution with the
coarse mesh there was no significant difference noticeable.

31Using the stress-strain relation Eq. 3.68.
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(a) T0 = 60 K (b) T0 = 300 K

Figure 6.30.: Displacement at position (z = d, ρr = 0) for the initial temperature values T0 =
60 K and T0 = 300 K, calculated with FEM simulation considering the pump-probe
experiment described in Section 5.

ously. The results for a simulation, which is taking into account thermoelastic damping ef-
fects, is illustrated by the temporal development of the kinetic energy (Eq. 3.63) integrated
over the crystal domain in Fig. 6.29b, considering an initial temperature of 300 K and the
previously described assumptions for the pump-probe experiment simulation. Comparing
this result with a solution carried out with a simulation where the effect of thermoelastic
damping is neglected, and the PDEs Eq. 3.74 and Eq. 3.70 can be decoupled, it can be
seen that the results show only very small deviations, as indicated by the zoom plot in
Fig. 6.29b. Thus, these kind of effects are assumed to be not important considering the
investigated time span of a few hundreds of nanoseconds. Also it should be noted that
the first term on the right hand side of Eq. 6.11 (or Eq. 3.74), which characterizes the
thermoelastic damping is proportional to the value of the absolute temperature and the
value of the thermal expansion coefficient. Considering that the elastic material properties
(Section 4) are nearly temperature independent for temperatures lower 300 K and that the
thermal expansion coefficient (Fig. 4.5) decreases with decreasing temperature, it seems
reasonable to assume that thermoelastic damping effects at lower temperatures are even
less important compared to cases at room temperature.
Comparing the results simulated for initial temperatures of T0 = 300 K and T0 = 60 K

carried out with a non-zero Poisson’s ratio (ν = 0.076) with the solutions where the
Poisson’s ratio is set to zero, it can be seen that there is a significant difference noticeable
(Fig. 6.30). However, it also can be seen that the features, which can be noticed in the
temporal development of the displacement in z-direction at the position (z = d, ρr = 0)
are very similar in both cases. Therefore it seems reasonable to assume that for the
investigated time span the temporal development of the displacement can be characterized
mainly by effects, which have been investigated in Section 6.2 and Section. 6.1, where the
Poisson’s ratio has been neglected.
In Fig. 6.30 the results for displacement in z-direction at the position (z = d, ρr = 0) for

the initial temperature values of T0 = 60 K and T0 = 300 K are illustrated. These are the
displacement values at an exact point which would need an infinitesimal small radius of
the probe beam to be resolved. However, the probe laser spot of the interferometer has a
finite beam radius of Wprobe ≈ 45.4 µm, thus it has to be considered that the displacement
measured with the probe beam at positions ρr 6= 0 can differ from the values of the
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(a) T0 = 60 K (b) T0 = 300 K

Figure 6.31.: Comparison of the displacement at position (z = d, ρr = 0) with the displacement
averaged over the probe beam size at (a) initial temperature T0 = 60 K and (b) initial
temperature T0 = 300 K.

displacement illustrated in Fig. 6.30. To investigate the impact of this effect an average
value wav for the displacement field w(ρr) at z = d weighted with the intensity profile
Iprobe(ρr) = I0 exp

(
− 2πρ2

r

W 2
probe

)
of the probe laser can be calculated by:

wav =
∫ 2π

0
∫∞

0 w(ρr)Iprobe(ρr)ρrdρdθ∫ 2π
0
∫∞
0 Iprobe(ρr)ρrdρdθ

=

∫∞
0 w(ρr) exp

(
− 2πρ2

r

W 2
probe

)
ρrdρ∫∞

0 exp
(
− 2πρ2

r

W 2
probe

)
ρrdρ

. (6.58)

Using discrete values for the displacement from the FEM solution the integral may be
approximated as a sum

wav =
∑n
i=0 Iprobe(ρri)wi(ρri)ρri∑n

i=0 Iprobe(ρri)ρri
. (6.59)

Since Iprobe(ρr) becomes very small for z > Wprobe it is sufficient to consider a range from
ρr = 0 to ρr = 65 µm in this case. For the summation discrete values with a uniform
spacing of 5 µm have been used. A comparison of the calculated values at (z = d, ρr = 0)
to the averaged displacement wav are shown in Fig. 6.31, which indicates that in the
considered case the displacement at position (z = d, ρr = 0) gives nearly the same values
as the averaged displacement.
The different shape of the crystal in the simulation will give some systematic error, due to

the different kind of constraints at the side boundaries, compared to the real crystal shape
used in the pump-probe experiment. However, the simulation results are in quite good
agreement with the experimental data considering the comparison illustrated Fig. 6.33. It
should be clarified at this point that for the FEM simulations material parameters known
from ab initio calculations and literature values have been used, which means none of the
material properties for the crystal used in the pump-probe experiment have been measured.
Also it should be noted that the Poisson’s ratio is strongly orientation dependent (Fig 4.2)
and has been approximated as a mean value for the simulation. Further, the measured
spot size of the pump beam is not a perfect Gaussian beam (Fig. 5.3d) and the pulses
energy was measured with a quite broad uncertainty Ep = (44.6± 5.0) µJ. Also the wedge
angle which causes a thickness variation of about 7 µm might have an impact on the wave
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(a) ∆T at (z = 0, ρr = 0) (b) Kinetic energy

Figure 6.32.: (a) Maximum temperature rise predicted by the FEM simulation for the pump-probe
measurement. (b) Kinetic energy integrated over the crystal domain considered for
the FEM simulation.

propagation which cannot be taken into account by the axisymmetric FEM simulation.
Under these circumstance one should not expect a perfect agreement of simulation and
experimental data and it has to be admitted that a compensation of different errors cannot
be excluded. However, on the other hand the good agreement of the measurement in
amplitude and shape with the simulation data may be seen as a strong indicator that the
underlying theory and used approximations are describing the pump-probe experiment
with a quite reliable accuracy.

The good agreement of simulation and measurement observable in Fig. 6.33 at low initial
temperature values T0 is very surprising, considering the discussed assumptions for the
Fourier heat law in Section 4. As discussed in Section 4 the energy transport caused by
phonons inside a diamond crystal is characterized by a group velocity (Eq. 4.18) which is
frequency dependent and is related to the dispersion relation (Fig. 4.3). For the derivation
of the thermal conductivity a static situation and local thermal equilibrium has been
assumed (Eq. 4.49). To define a meaningful local thermal equilibrium phonon scattering
has to take place. In this context considering a situation where the scales of interests
are much larger than the mean free path, the Fourier law might be assessed as a valid
assumption and the FEM simulations which are using these assumptions may be expected
to predict reliable results.

The penetration depth ζ ≈ 5 µm which has been considered in the pump-probe experi-
ment may be seen as such a scale of interest for a local thermodynamic equilibrium. At a
temperature of T0 = 300 K the mean free path is about 0.4 µm (see Fig 4.7a), which may
be considered to be sufficient to resolve the dimensions of the penetration depth. However,
it should be reminded that the mean free path is just a mean value (Eq. 4.51), thus the
length scales on which particular phonons of various frequencies scatter may significantly
deviate from this value. For an initial temperature of T0 = 260 K the mean free path is
already 0.7 µm (see Fig 4.7a) and the approximation of a local thermodynamic equilibrium
may become questionable. At temperature values smaller than T0 = 160 K the mean free



6.3. Simulation of the pump-probe experiment 141

path gets larger than 5 µm (see Fig 4.7a), which gives a kind of contradiction to the under-
lying assumption of the Fourier heat law approximation. However, the initial temperature
value is not the only temperature value which has to be discussed. Also the temperature
rise caused by the absorbed and into heat converted energy is important. As discussed in
Section 6.2.4 the temperature rise strongly dependents on the initial temperature value,
due to the temperature dependence of the heat capacity. The temperature rise predicted
by the FEM simulation at position (z = 0, ρr = 0) is illustrated in Fig. 6.32a. Due to
the highest value of the external heat source (Eq. 6.55) at this position the temperature
at (z = 0, ρr = 0) represents a maximum value for the temperature rise inside the crys-
tal. If thermalization takes place sufficiently fast the mean free path in this area may be
significantly reduced compared to the surrounding material area (see Section 4, Fig. 4.7a).

However, considering that for an initial temperature of T0 = 60 K the temperature rise
value is about ∆T = 100 K (Fig. 6.32a), the mean free path is still in the range of a few
micrometer. Thus for this initial temperature values a significant deviation of experiment
and simulation may be expected. Nevertheless, for the case which has been investigated
in this work (Fig. 6.33) such a clear deviation seems to be not present.
Comparing the simulations and measured signals it is also interesting to observe the

kinetic energy integrated over the crystal domain (Fig. 6.32b). It can be seen that the
kinetic energy predicted by the FEM simulation decreases with lowering the temperature,
which may be connected to a smaller heat bump effect at these temperatures caused by a
higher diffusivity. An explanation of this effect may be given as mentioned in Section 6.2.4,
by considering that the time scales which are needed for the heat bump to build up (see
Fig. 6.14a) are shorter than the time scales for the temperature profile to reach a nearly
equilibrium temperature. In this context the amplitude of the radial wave (Fig. 6.15)
caused by the heat bump will also be smaller which may be connected to a lower kinetic
energy inside the crystal.
The constraints for the cylindrical crystal are quite different compared to the measure-

ment conditions for the pump-probe experiment. Nevertheless, some results comparing
a simulation time span of a few microseconds with experimental data may be useful, as
illustrated in Fig. 6.34a, where an initial temperature of 300 K has been considered.

As discussed in Section 6.2.1 the characteristic dip in the development of the displace-
ment can be connected to the time when the propagation of radial waves reaches the
center of the crystal. This characteristic dip is visible in the measurement for the SC
CVD diamond (Fig. 5.12, Section 5) at a time about 230 ns. However, considering the
position of the pump laser on the crystal (Fig. 5.10a) there are side boundaries, which are
partly just one millimeter away from the center of the crystal, thus the characteristic dip
will occur later in the simulations compared to the pump-probe experimental data. This
is also visible considering the comparisons of the experimental data with the simulation
results illustrated32 in Fig 6.33 and Fig 6.34a.

32The illustrated values are the averaged displacement calculated with Eq. 6.59
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Figure 6.33.: Comparison of the axisymmetric FEM simulation represented by the black lines for a
cylindrical crystal with R0 = 2000 µm and d = 108.72 µm with the experimental data
represented by the red lines (Fig. 5.12, Section 5).
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(a) Displacement at position (ρr = 0, z = d)

(b) Kinetic energy

(c) Temperature rise at (ρr = 0, z = 0)

Figure 6.34.: (a) Displacement in z-direction at position (ρr = 0, z = d) comparing the FEM
simulation and measurements for the pump-probe experiment carried out for an initial
temperature of T0 = 300 K. (b) Kinetic energy integrated over the cylindrical crystal
domain calculated with the FEM. (c) Temporal development of the temperature rise
at (ρr = 0, z = 0).

After this characteristic dip some oscillation can be observed for the experimental data
as well as for the simulation. The maximum reached amplitude is similar in both cases.
These oscillations may be connected to the propagation of radial waves (Fig. 6.15) which
are reflected at the boundaries of the crystal. The maximum reached amplitude may be
connected to the heat bump effect. As discussed in Section 6.2.1, Fig. 6.14b after the rise
of the heat bump an oscillation can be observed which contains frequency components
connected to the eigenfrequency values of the crystal (see Section 6.2.5, Fig. 6.28a). In
Fig. 6.14b the oscillation takes place around the value of the heat bump. However, for the
simulation and also for the measurement illustrated in Fig. 6.34a, the oscillation will take
place around the zero position. The reason for the oscillation around the zero position
is that a static heat bump exists only if a spatially varying constant temperature profile
exists. This is not the case for the considered time span of the pump-probe simulation.
Due to the thermal conductivity the spatial varying temperature profile reaches a nearly
equilibrium temperature during the observed time span as illustrated in Fig. 6.34c.
Considering the calculated kinetic energy in Fig. 6.34b it can be seen that the kinetic

energy in the start-up regime has a similar order of magnitude like the present magnitude
after a few microseconds. For the simulation damping effects have been neglected and
thus the mean kinetic energy which is predicted in Fig. 6.34b should not be expected to
be reduced by considering larger time spans. The measurements presented in Fig. 5.13c
are an indicator that such an assumption is indeed a realistic approximation for the time
span in the range of 0.1 ms.

It should be mentioned that the experimental data given in Section 5, Fig. 5.14 may
be compared with eigenfrequencies calculated from a three-dimensional FEM simulation.
However, calculation and evaluation of such a simulation is a quite extensive topic, which
will not be discussed in this work, but may be a topic for further research projects.
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6.4. Simulations of the thermoelastic effects for a diamond
Bragg reflector in a CBXFEL at the European XFEL

As mentioned in Section 1 this PhD project collaborates with the PhD project of P. Rauer.
Parts of his thesis describe the conceptual design of an CBXFEL at the European XFEL
[Rau21]. The simulation results of P. Rauer indicate that in saturation the heat load
caused by the absorbed energy amount for each photon pulse can be approximated as
an axisymmetric spatial distribution ΦE(ρr, z) as illustrated in Fig. 6.35. The crystal
thicknesses of the diamond Bragg reflectors which are planed to be used for the CBXFEL
are d = 150 µm. Integrating ΦE(ρr, z) over the crystal domain gives a pulse energy of
about Eabs = 45 µJ. The pulse duration of an X-ray pulse for the considered CBXFEL
is only a few tens of femtoseconds. Investigating thermoelastic effects the thermalization
time needed for the absorbed photon energy to be converted into heat energy in a dia-
mond Bragg reflector with low defect concentration may be assumed to take place on the
picosecond timescale33. To carry out a simulation, a Gaussian temporal profile given by
Eq. 6.38 with tp = 200 ps has been considered in this work. The value for tp in this case
is not the pulse duration, but may be seen as an assumption for the thermalization time.
Regarding one-dimensional displacement/strain waves it can be seen by considering the
results of Section 6.2.2 Fig. 6.19 that for smaller values of tp the amplitude of a traveling
wave may be slightly higher, whereas for larger values the discontinuity, which would be
present for tp = 0, will be smeared out. However considering 0 < tp < 1 ns the strain and
displacement values are roughly on the same order of magnitude. Therefore, the calculated
solution using a value of tp = 200 ps may be seen as a good assumption for a prediction
of the strain and displacement values regarding thermoelastic effects, causes by the heat
load of a saturated CBXFEL.

(a) ΦE(ρr, z) (b) ΦE at ρr = 0 (c) ΦE at z = 0 and z = d

Figure 6.35.: (a) ΦE(ρr, z) spatial distribution of the absorbed energy per unit volume per saturated
pulse considering simulation result for a case with an initial crystal temperature of
T0 = 77 K [Rau21]. (b) values of ΦE(ρr, z) in the center of the crystal at ρr = 0. (c)
values of ΦE(ρr, z) at the front side z = 0 and back side of the crystal z = d = 150 µm

The repetition rate considered in the simulations of P. Rauer is fR = 2.25 MHz. Thus,
the diamond crystal is experiencing a periodic heat load, which is repeated every 440.44 ns
and the absorbed energy per unit volume and per unit time which is assumed to be

33For further discussion regarrding this assumption see [Rau21].
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completely converted into heat for a single pulse is given by:

QCBXFEL(ρr, z, t) = T(t)ΦE(ρr, z), (6.60)

where T(t) is a temporal Gaussian function (Eq. 6.44). For the simulation nearly the
same temperature dependent material parameters have been considered, as mentioned in
Section 6.3, however for the thermal conductivity the values calculated by P. Rauer for
a 150 µm thick crystal have been considered (see Section 4, Fig. 4.6). For the simulation
thermoelastic damping effects have been neglected and thus the solution of the temper-
ature profile calculated by solving Eq. 3.74 could be calculated without considering the
displacement field inside the crystal. The solution of the temperature profile could then
be used to solve afterwards Eq. 3.70 (using the stress-strain34 relation Eq. 3.68) for an ax-
isymmetric problem. Investigating the heat load of several pulses the previous assumption
that the crystal is thermal isolated is not applicable, because the equilibrium temperature
in this case would increase after each absorbed pulse. The initial temperature considered
by the simulation of P. Rauer is 77 K. To carry out a FEM simulation for a cylindrical
crystal a radius R0 = 1000 µm and a thickness of d = 150 µm is considered and the side
boundaries of the crystal are assumed to have a fixed temperature of T |S1ρr=R0

= 77 K.
Considering the temperature development under such condition it can be seen that the
temporal temperature profile reaches after a setup time of a few pulses a periodic rise
and fall profile from one pulse to another as shown in Fig. 6.36, where the temperature
development at the position (ρr = 0, z = 0) is illustrated.

Figure 6.36.: Temporal development of the temperature rise from an initial temperature T0 = 77 K
at position (ρ0 = 0, z = 0). As indicated by the red dashed line the rise and fall of
the temperature becomes periodically repeating after a setup time of a few pulses.

However, the condition of a boundary with a fixed temperature corresponds to the
assumption of an idealized heat transfer to the holder. Using Eq. 6.8 and considering a
non zero heat transfer coefficient it can be investigated which conditions are necessary to
avoid a temperature increase over several pulses. For a rough estimation of the relevance of
heat transfer effects to the holder a condition may be considered where the complete back
side of the crystal (at z = d) is connected to a heat bath with a temperature of 77 K. The
area of the back side of the crystal is A = 2πR2

0 = 6.3 mm2. In Fig. 6.37 the simulation

34Considering a Poisson’s ratio of 0.076 and a Young’s modulus of Emean = 1125 GPa.
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results for a heat transfer coefficient ah of 100 000 W/(Km2) and 1 000 000 W/(Km2) are
illustrated. These temperature profiles are compared with a case of insulation boundaries
and a case where a fixed temperature value is assumed at the side boundaries (Fig. 6.36).
For better visualization only the temperature rise in the range of 0 K to 50 K is illustrated.
It can be seen that for a heat transfer coefficient ah of 100 000 W/(Km2) the temperature
rise is nearly the same as if thermal insulating boundaries would be considered. Even
for the quite high heat transfer coefficient ah of 1 000 000 W/(Km2) the increase of the
temperature is still significantly higher than for a case where a fixed temperature at the
side boundaries has been considered.

Figure 6.37.: Temperature rise at position (ρ0 = 0, z = 0) for a periodic heat load considering
different thermal boundary conditions.

For the thermal contact to the holder indium foil may be used for better thermal contact
and the holder may be built of OFHC copper. The heat transfer coefficient ah for such
a condition can depend on temperature (of the holder) and the clamping contact. The
heat transfer for such a condition has not been reported in the literature so far to the best
knowledge of the author. However, the heat transfer of OFHC copper to OFHC copper is
in the range of a few thousand W/(Km2) [MBUW12]. This leads to the conclusion that
the heat load of a saturated CBXFEL pulse could be problematic if a diamond crystal
of similar size would be used. However, this kind of problem may be solved by using a
crystal with a sufficient larger volume.
To investigate the displacement field which is present after a time span of 444.44 ns,

caused by a single saturated CBXFEL pulse, a FEM simulation using a triangular mesh
with element size of 1 µm in the range of ρr = 100 µm is used. In the range of ρr = 100 µm
to ρr = 1000 µm element size of the mesh gradually increases to a value of 5 µm.
In contrast to the temperature rise discussed in Section 6.3, Fig. 6.32a, the predicted

temperature rise illustrated in Fig. 6.36 is much higher. It should be noted that the
absorbed energy used for the pump-probe experiment (Section 6.3) is similar to the ab-
sorbed energy of a saturated XFELO pulse. The difference in the temperature rise is
caused by a different spatial distribution of the heat load profile given by the beam radius
and penetration/extinction length. The penetration depth considered in the pump-probe
experiment is 5 µm, thus the scales of interest considering Fig. 6.35 may be assumed to
be significant larger than for the case described in Section 6.3. Under such condition the
previous mentioned assessment that at low temperatures the mean free path is larger,
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(a) Strain in z-direction εzz

(b) ∂w
∂ρr

(c) Displacement in z-direction at (ρ0 = 0, z = d)

Figure 6.38.: Axisymmetric FEM Simulation considering a heat load profile given by Fig. 6.35
with a repetition rate of fR = 2.25 MHz and cylindrical geometry with radius R0 =
1000 µm and thickness d = 150 µm. (a) Strain in z-direction present a t = 444.44 ns
directly before absorption of the next heat load pulse. (b) ∂w

∂ρr
at t = 444.44 ns. (c)

Displacement in z-direction at position (ρ0 = 0, z = d).

everywhere inside the crystal, than the scales of interest would not hold. If thermalization
after absorption occurs sufficiently fast phonon-phonon scattering could take place in the
region (ρr = 0, z = 0) and a local thermal equilibrium exists with temperatures near the
values predicted by Fig. 6.36. The area, where a high energy density is present in Fig. 6.35
may be considered to be a kind of hot area where a quite short mean free path of a few
hundred nanometers may be present shortly after absorption. However, the surrounding
area has a temperature value of about T0 = 77 K where the mean free path is in the
range of a few tens of micrometers (see Fig 4.7a). Nevertheless, since already the result
of the pump-probe experiment has shown quite good agreement with the FEM simula-
tion, where such a hot zone was not present at low temperatures, using the theoretical
framework presented in this work may give reliable result for the CBXFEL simulation.
The values of the strain in z-direction εzz = ∂w

∂z and the spatial derivation of the displace-
ment in z-direction with respect to the radial direction ∂w

∂ρr
are illustrated in Fig. 6.38.

These values, which can be calculated from the numerical solution of the displacement
field, are of particular interest for the stability of a CBXFEL, as it will be discussed
in the following part of this section. In Fig. 6.38 also the displacement at the position
(ρ0 = 0, z = d) is illustrated for the first 444.44 ns. These illustrations may be useful for a
comparison with the simulation of the previous sections. Comparing it to Fig. 6.33 it can
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be seen that an overall rise of the displacement, observed for the pump-probe experiment,
is in Fig. 6.38c not present and that the periodic fringes have a much higher amplitude.
This observation can be referred to the difference of the heat load profiles.

Considering the simulation in Fig. 6.38 it should be noted that the initial conditions
for the simulation is assumed to be an unstrained crystal. This is a quite unrealistic
assumption, because it neglects the previously created strain fields, which will occur dur-
ing the start up regime where the pulse energy increases over several pulses. However,
these simulations are very useful for a first estimation of the relevance for the impact of
thermoelastic effects on the stability criteria of an CBXFEL.

A detailed discussion about the underlying concepts of X-ray scattering is presented in
the PhD thesis of P. Rauer [Rau21]. In the present work now only a short overview about
this topic will be presented.

If an electromagnetic approximately plane wave has a wavelength, which is on the
order of characteristic length scales of a single crystalline material, the plane wave will
be diffracted at the crystal lattice. It can be derived that for each periodically repeating
plane, which can be constructed from a given crystal structure, reciprocal lattice vectors
(Eq. 4.4) can be obtained which are perpendicular to those lattice planes. For the shortest
of those reciprocal lattice vectors the following relation can be obtained [GM18, p. 62]:

|Gmin| =
2π
dL

, (6.61)

where dL is the distance period considering repeating planes of the crystal structure. In
this case (h, k, l) of the lattice vector Gmin = hb1 + kb2 + lb3 gives the values of the
so called Miller indices, which define the considered lattice planes. The Laue equation
relates an incoming plane wave vector k to the diffracted outgoing wave vectors k’ under
consideration of a given three-dimensional crystal structure by [GM18, p. 62]

k’− k = G, (6.62)

which causes that a given set of reciprocal lattice vectors determines the possible diffraction
conditions. For a elastic scattering |k| = |k’| the Laue equation yield:

|G| = 2k sin(ΘB) (6.63)

Using Eq. 6.61 an arbitrary reciprocal lattice vector may be expressed by n multiples of
|Gmin|:

|G| = n|Gmin| = n
2π
dL

(6.64)

Considering the connection of the magnitude of wave vector and wavelength k = 2π/λ

yields by inserting Eq. 6.64 into Eq. 6.63 Bragg’s law:

nλ = 2dL sin(ΘB), where n = 1, 2, 3... (6.65)
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For a crystal with a cubic lattice structure the lattice spacing is given by

dL =
a√

h2 + k2 + l2
, (6.66)

where h, k and l are the Miller indices. Considering the orientation of the crystal lattice
to the coordinate system (see for example Fig. 3.3) and considering orientation of the
incoming plane waves vector k the Ewald sphere may be used to check if a reciprocal lattice
vector fulfills the Laue equation Eq. 6.62. For further information about the Ewald sphere
see [GM18, p. 69]. For a suitable alignment of the crystal lattice relative to the incoming
wave vector backscattering can be realized. In this context backscattering means the wave
vector of the reflected beam points in the opposite direction refereed to the incoming
wave vector. Considering a diamond crystal (Fig. 4.1a) oriented for backscattering with
the miller indices (3, 3, 3) gives with Eq. 6.66 a value for dL, which can be inserted into
Eq. 6.65 to calculated35 the wavelength λ = 1.373Å or a photon energy of E = 9030 eV
(Eq. 2.65) of for a backscattering angle ΘB = 90°.

The discussed theory of X-ray reflection so far predicts a discrete condition (Eq. 6.62).
However, taking into account the density distribution of the atoms in the lattice and the
refraction of the X-ray radiation inside the crystal, a tolerance for reflection condition may
be visualized by a reflectance curve for the Bragg angle ΘB or the connected phonon energy
(Eq. 2.65) which are related by Eq. 6.65. If the crystal geometry and susceptibility values
are known, the dynamical diffraction theory can be used to calculate the reflectance R.
However, not all reciprocal lattice vectors give a non-zero reflectance for a single crystalline
diamond (forbidden reflexes). Further information on the underlying assumptions of the
dynamical diffraction theory can be found in the PhD thesis of P. Rauer [Rau21].

Considering an incoming wave vector with fixed orientation, but variable photon energy
the reflectance curves illustrated in Fig. 6.39a can be calculated, for a crystal aligned for
backscattering of the (3,3,3) reflection. The value Ec is the central photon energy value of
the reflection curve, which is given by the lattices constant at a temperature of 77 K and
the Laue equation (Eq. 6.62). In Fig. 6.39b the reflection curve as a function of the Bragg
angle is illustrated, the angle ΘB,c is the central Bragg angle present at a temperature
of 77 K. However, since the lattice constant of diamond is temperature dependent, a
homogeneous temperature change of the crystal causes a change of the lattice constant
(Eq. 4.33) and therefore changes the lattice spacing (Eq. 6.66) and the reflection conditions
(Eq. 6.62), which causes a shift of the reflectance curve, as illustrated in Fig. 6.39. It
should be mentioned that for the considered case of perfect aligned backscattering multiply
reflectance condition would be satisfied, however tilting the crystal slightly to a non-exact
backscattering condition it can be achieved that the (3,3,3) reflection is the only relevant
reflection the for backscattering condition. The reflectance curves in this case are nearly
the same as for a exact backscattering condition. Under these assumptions the reflection

35The value of the lattice constant in given by a = 3.566 90(8)Å (see Section 4)
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(a) Temperature dependent reflectance as function of the photon energy

(b) Temperature dependent reflectance as function of the Bragg angle

Figure 6.39.: Reflection curve of the (3,3,3) reflex for backscattering (a) as a function of the center
photon energy at a crystal temperature of 77 K (b) as a function of the center Bragg
angle (90°) at a crystal temperature of 77 K. Calculations for the reflections intensity
using dynamical diffraction theory have be carried out by P. Rauer [Rau21]

.

curves illustrated in Fig. 6.39 can be calculated using the dynamical diffraction theory.
Further information about the calculation can be found in the thesis of P. Rauer [Rau21].

Even if the temperature is constant and the crystal is unstrained a rotation of the crystal
can change the reflection condition. The reflectance curve illustrated Fig. 6.39b shows that
in a range of about a few µrad around the central value the reflectance is still near the peak
value. This range is larger than the angular stability criteria for the CBXFEL to ensure a
stable round trip path for the photons inside te cavity. Thus, the angular stability may be
investigated by considering simple concepts known from geometrical optics in this case.

The displacement field which is present after 444.44 ns gives the reflection condition
for the next X-ray pulses. The angular stability regarding thermoelastic effects can be
investigated by using the solution of the FEM simulation (Fig. 6.38). For the axisymmetric
case the variation in ρr-direction of the displacement in z-direction w may be associated
with a radial angular displacement.

α̃a =
∂w
∂ρr

. (6.67)

Assuming that the value α̃a is constant in the crystal thickness direction (z-direction)
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Figure 6.40.: Connection of radial angular displacement with focal length. Illustrated for an arbi-
trary point ρr1 in radial direction.

this radial angular displacement may be associated with an focal length as illustrated in
Fig. 6.40. However, the focal length in this case has not to be a constant value, but can
depend on the radial coordinate ρr. Considering the sign convention used for the crystal
coordinate system36 and the sign convention that converging is denoted by a positive focal
length a kind of focal length is

f(ρr) = −
ρr

2α̃a(ρr)
, (6.68)

where the small angle approximation tan(2α̃a) ≈ 2α̃a has been used. Considering that
the mean extinction length for the X-rays for the planned CBXFEL is in the range of 20 µm
to 40 µm and the beam radius is about 50 µm the region of interest for the radial angular
displacement may be visualized by a zoom of Fig 6.38b as illustrated in Fig. 6.41a. For
the illustration given by Fig. 6.41a it can be seen that the assumption that the relation
α̃a = ∂w

∂ρr
is constant in z-direction is not true for this case. However, to get a rough

estimation for the effect of the angular misalignment which is present by this displacement
field, an average value in z-direction as a function of ρr which is weighted by the mean
extinction length 〈lext〉 may be calculated by

〈α̃a〉(ρr) =
∫
α̃a(z, ρr) exp(z/〈lext〉)dz∫

exp(z/〈lext〉)dz
(6.69)

Using a mean extinction length 〈lext〉 = 30 µm the calculation of Eq. 6.69 is carried out by
approximating the integral by a summation, using solution of the FEM simulation. This
leads to the results shown in Fig. 6.41b, where the corresponding mean focal length for
the mean angular displacement has been calculated by Eq. 6.68. These results show that
the predicted angular displacement caused by thermoelastic effects is very problematic for
a CBXFEL, which has a cavity with length dimension of tens of meters [Rau21].
Using the calculated strain field in z-direction (Fig. 6.38a) a distorted reflection curve

36At the front surface z is zero and positive values are define in the direction as illustrated in Fig. 6.40.
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(a) change of displacement w in z-direction in ρr-
direction (b) mean angular displacement and mean focal length

Figure 6.41.: Investigation of thermoelastic effects on the angular stability. (a) ∂w
∂ρr

at t = 444.44 ns
in the region of interest considering X-ray reflection of a CBXFEL. (b) mean angular
displacement and mean focal length calculated with Eq. 6.68 and Eq. 6.69.

Figure 6.42.: Distortion of the reflection curve as a function of the radial direction, considering the
strain in z-direction given by Fig. 6.38a

which is a function of the radial position can be calculated as illustrated in Fig. 6.42.
Further information about the calculation for Fig. 6.42 can be found in the PhD thesis of
P. Rauer [Rau21]. These calculations show that due to thermoelastic effects the bandwidth
will be much wider compared to an unstrained crystal (blue line in Fig. 6.39a).

The results represented by Fig. 6.41b and Fig. 6.42 are both strong indicators that a
stable operation of a saturated CBXFEL is not possible considering the heat load given
by Fig. 6.35, if the underlying assumption for the thermoelastic simulations are correct.
However, this does not mean that the CBXFEL planned to be built at the European XFEL
will not work at all. Especially in the startup range the pulse energies inside the cavity
are much smaller and the maximum temperature rise predicted by simulations carried out
by P. Rauer [Rau21] are much smaller than 100 K. Under such conditions thermoelastic
heat load effects may become less important.
Also it should be noted that if the gain of the CBXFEL could be reduced the heat

load may be reduced to an amount where a stable operating CBXFEL is possible and
thermoelastic effects do not affect the reflection conditions from one pulse to another.
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7. Discussion and Outlook

One main question regarding this work is: Do dynamical thermoelastic effects have an
impact on the stability of a CBXFEL? To answer this question two different effects should
be investigated. First, which strain values inside the extinction length are present when
an X-ray pulse is reflected? Second, to which degree is the crystal tilted (angular displace-
ment)? These questions are essential for a stable operating CBXFEL.

For a CBXFEL it is desired that the reflection of the X-rays should take place in a
narrow energy bandwidth. The presence of strain inside the extinction length may limit
the bandwidth of the reflection curve (Fig. 6.42) and/or shift the central photon energy
of the Darwin width (Fig. 6.39a). For a cavity with length scales of a few tens of meters,
for a round trip, the angular stability of the Bragg reflector should not exceed the amount
of about 100 nrad. For a larger angular displacements a stable path for a seeding photon
pulse inside the cavity may not be fulfilled [Rau21]. Thermoelastic effects which may have
an impact on this stability criteria have been introduced in the previous sections and will
now be summarized and further discussed.
The angular stability for thermoelastically deformed Bragg reflectors may also be con-

nected to the heat bump effect, which has been discussed in Section 6.2.1. In Fig. 6.12
various combinations of different parameters are illustrated, and show that the heat bump
shape strongly depends on the particular crystal thickness, penetration depth and the
beam radius. The considered shapes in Fig. 6.12 result from a quasi static simulation.
For a dynamic deformation the heat bump needs a finite time to develop as discussed in
Section 6.2.1. For a diamond Bragg reflector this time span can range over a few hun-
dreds of nanoseconds, as shown by the example in Fig. 6.14b. It should be noted that
for the different shapes of the heat bumps presented in Fig. 6.12 for all cases the same
maximum temperature value has been considered. However, for most applications not the
temperature rise may be seen as a fixed parameter, but the pulse energy. With optical
elements (like lenses) the beam radius may be aligned to a desired value. As discussed
in Section 6.1 a smaller beam radius will cause a higher energy density and therefore can
cause a higher temperature rise (Eq. 6.16) and may also cause that more of the absorbed
pulse energy will be converted into elastic energy (Eq. 6.33). Also, it should be noted that
due to the small temperature rise considered for the calculations of Fig. 6.12 the material
parameters may be assumed to be temperature independent. However, for a constant
pulses energy decreasing the spot size would results in a significantly higher temperature
rise compared to larger spot sizes. Therefore, in this case the temperature dependent
material parameters have to be considered.
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If heat conduction is taken into account it has to be considered on which timescales
an initially introduced temperature profile will be converted by a diffusion process into a
nearly equilibrium temperature rise (see Section 6.2.4). The existence of a temperature
difference is important because the rise of the displacement, which can be connected to
the heat bump effect, is only present for a non-uniform temperature profile. Thus, if the
time scales on which a temperature profile reaches a nearly uniform temperature rise is
shorter than the timescale which is needed for the heat bump to develop, the effect of
the displacement rise will be reduced. Considering Fig. 6.23c and Fig. 6.23d it can be
seen that, for the case of an initial temperature of 50 K, a nearly uniform temperature
is reached after a few tens of nanoseconds. This fast decay of the temperature rise can
be refereed to the very high diffusivity1 (Fig. 6.22a) at low temperatures for a diamond
crystal. However, for an initial temperature of 300 K there is after 100 ns still a significant
temperature difference, due to a lower diffusivity compared to an initial temperature of
50 K. Nevertheless, even at T0 = 300 K the diffusivity of diamond is quite high, so that
the static heat bump which would occur if heat conduction would be neglected will never
be reached. This situation might change if diffusivity would be much lower. Such a
condition might exist if the initial temperature is much higher than room temperature
(see Fig. 6.22a) or other Bragg reflector materials with significantly lower diffusivity than
diamond would be considered.
Considering a heat load profile with a spatial Gaussian distribution placed on a thin

crystal sufficiently far away from the side boundaries of the crystal, the development of the
displacement in the center region of the Gaussian profile in the setup range (here about
the fist 200 ns) is nearly independent of the exact lateral crystal geometry. This can be
concluded from the discussion in Section 6.2.1 and the comparison of the measurements
and simulations shown in Fig. 6.33 (at T0 = 300 K). However, this situation changes when
wave reflections from the side boundary have to be taken into account. In this context, it
should be mentioned that the heat bump effect causing the radial wave propagation might
also depend significantly on the particular three-dimensional structure of the crystal and
the kind of boundary constraints. This effect has not been discussed in detail in this
work. However, from the comparison of the pump-probe experiment with the simulation
(Fig. 6.34) it can be seen that displacement development in the range of a few microseconds
are on a similar order of magnitude. The temporal development of the displacement in
Fig. 6.34 may be referred to the propagation and reflection of radial waves (Fig. 6.15),
caused by the temporal development of the heat bump. The resulting displacement field
caused by the reflecting radial waves seems to have in this case a similar order of magnitude,
although the considered geometry and the kinds of constraints are quite different for the
measurement and the simulation. However, it should be pointed out that this observation
of a similar displacement magnitude does not exclude that a strong deviation might exist

1The calculated diffusivity includes the value for the thermal conductivity, which is connected to the
assumptions of the Fourier law. The systematic error which may be introduced by this assumption for
the low temperature range is discussed in the following parts of this section.
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for other kinds of crystal geometries.

The same theoretical framework which has been used to simulated the pump-probe
experiment has also been used to simulate heat load effects for a saturated CBXFEL.
Regarding the angular displacement, which may be connected to the value of ∂w∂ρr illustrated
in Fig. 6.41, it can be seen that the value of the created angular displacement by a
single saturated pulse may already exceed the stability criteria for a CBXFEL. Also the
distortion of the reflection curve is clearly noticeable in Fig. 6.42. However, it should
be noted that the simulation carried out may include significant systematic errors due to
the chosen theoretical framework of this work. The good agreement of the pump-probe
experiment with the simulation presented in this work indicate that the chosen theoretical
framework may be a good choice. However, to exclude that this good agreement is not
only a coincident, due to the considered parameters chosen for the experiment, additional
measurements have to confirm or falsified that this framework is really applicable for low
initial temperatures for various parameters. Changing the pump laser spot size to create
various heat load profiles could be realized quite easily in the existing experimental setup
(Fig: 5.5) and cloud be the next step for upcoming projects to make progress in this
direction.

The approximation to consider the elastic properties of diamond as isotropic, with a
Poisson’s ratio of zero as discussed in Section 4, seems to be a good choice for the qual-
itative investigation of the three-dimensional wave propagation (Fig. 6.30). This is an
important result for the needs of this work, because it enables to connect the discussed
effects in Section 6 and corresponding features in the temporal development of the dis-
placement to the observed experimental data (Section 5). It should be noted that the
verification of these approximations were not obvious, because the mean value of the Pois-
son’s ratio of diamond is still 0.07. The calculated values of the bulk modules (Section 4)
under different approximations show that neglecting the Poisson’s ratio of diamond can
have a significant impact on the elastic properties of the material. This also should be
keep in mind when using this assumption for other Bragg reflector materials which might
have a much larger Poisson’s ratio. The introduced systematic error could have a signif-
icant impact on the kind of wave propagation in this case. The good agreement of the
approximation of diamond to be elastic isotropic may be connected to the small variation
of the Young’ modulus with orientation (see Section 4, Fig. 4.2). However, also in this
case it should be noted that Bragg reflectors made of other materials may not be suitable
for this approximation. In other words, using the isotropic approximation it should always
be noted that even for single crystalline materials with cubic lattice structure the elastic
properties can show significant dependence on the orientation (see Appendix A.3).

For a thermoelastic simulation of a crystal which experiences a pulsed heat load, the
temperature rise profile and the dynamic displacement field are characterized by a quite
different development. This is, because the development of the temperature profile may be
described by a diffusion PDE (Eq. 6.11), and the (Eq. 3.63) development of the dynamic



156 7. Discussion and Outlook

displacement field may be defined by a wave equation type PDE (Eq. 6.9 and Eq. 3.68).
If a crystal with insulating boundaries is considered, more absorbed energy means more

energy inside the crystal. After heat dissipation due to thermal conductivity, taking place
for a sufficiently long time span, there will be an equilibrium temperature rise of the crystal.
This temperature rise will increase for every pulse, so far the heat capacity has a positive
value. After the absorption of several pulses this might lead to a thermal energy value
which eventually might cause a destruction of the crystal structure. However, of course
a pulsed heat load with a constant repetition rate does not always cause a destruction of
the crystal. If parts of the crystal boundary are not isolating, but allow energy transfer to
a heat bath2, via heat flux at the boundaries, and if heat conduction is sufficiently high,
the temperature rise of the crystal due to a pulsed heat load results after some startup
time in a periodic temperature profile. Such a case is illustrated in Fig. 6.36.
For a wave equation (PDE), if no damping effects are considered, once created displace-

ment waves will be reflected at the boundaries and could exist theoretically forever. How-
ever, for a wave propagating in a real crystal various kinds of damping effects [MBUW12]
exist such that the kinetic energy of the displacement wave will final be converted into
thermal energy. For the pump-probe experiment (Section 5) the repetition rate of the
pump laser was 20 Hz, which means that the time span between two consecutive pulses is
50 ms. Considering that the displacement directly before the arrival of a new pulse which
has be measured (Fig. 5.13) is nearly zero may be seen as a strong indicator that the dis-
placement wave created by the previous laser pulse is damped to a value which does not
affect the displacement wave of the following pulse. The measurement for time scales of
100 µs (Fig. 5.13) shows that after this time span the amplitude still has an order of mag-
nitude similar to the displacement reached in the start up range3. For the FEM simulation
presented in Section 6 damping effects could be neglected. The good agreement between
the measurements and the simulation may be seen as a verification for the assumption
that on timescales of a few hundred nanoseconds damping effect may be neglected. Not-
ing that the repetition rate of modern XFEL facilities is in the megahertz range which
corresponds to a time spacing of a few hundred nanoseconds between one X-ray pulse to
the following one, it is clear that the displacement wave created by the previous pulse
can affect the displacement wave created by the following pulse. It should be mentioned
that a pump laser with shorter pulse duration may introduce a strain/displacement wave
with higher frequency components. The damping of high-frequency components has not
been discussed in this work. However, this aspect has been investigated in the PhD the-
sis of C. Maag [Maa18], where frequency components of a one-dimensional strain wave
(Eq. 6.21) and their damping coefficients due to phonon-phonon scattering have been dis-
cussed. Considering a frequency spectrum of such a one-dimensional strain pulse4 the

2Which may be given for example by a crystal holder with nearly constant temperature.
3The start up range in this context denotes the first hundreds of nanoseconds after the absorption of the
pump laser pulse.

4The penetration depth in the considered case by C. Maag [Maa18] is 20 µm.
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highest amplitude is centered around frequency components of 140 MHz, and frequencies
higher than 1 GHz have a quite small amplitude compared to the peak value. The acoustic
attenuation coefficient for frequencies about 1 GHz is smaller than 0.1 cm−1 and for lower
frequencies it is even much smaller [Maa18]. Thus, considering a time span of 1 µs and the
speed of sound (Eq. 6.57), for a diamond crystal, a wave can travel a distance of about
1.8 cm. Therefore, even quite high frequency components experience only a small damp-
ing effect. For lower frequency components the damping effect is even smaller and, as the
measurements of this work have shown, the time for a displacement wave to be damped
might exceed the millisecond range (see Fig. 5.13). Therefore, regarding a repetition rate
in the MHz range, thermoelastic wave effects may stack up and could become problematic.
In this work a Michelson interferometer has been used to investigate the thermoelastic

effects in a pump-probe experiment. The advantage of this method is that a direct mea-
surement of the displacement is possible. Since this is the variable which can be calculated
by the thermoelastic FEM simulation presented in this work, the measured experimen-
tal data are optimal to benchmark simulation results. However, an disadvantage of this
method is that the alignment is quite challenging, because several different optical and
technique components need accurate alignment (see Section 5). For an in-house experi-
mental setup this disadvantages are not so problematic, but using this setup at an XFEL
beam line, where alignment has to be carried out remotely could be quite challenging to
organize.
A quite simple experimental method is the measurement of the reflectance change.

However, as shown by the measurements of this work the interpretation, in terms of
thermoelastic effects, of this measured signals can be challenging. Actually the change of
the reflectance shown in Fig. 5.11 and a related refractive index change seems to be not
directly correlated to the change of the temperature or the displacement. This statement
will now be further discussed.
It should be noted that the probe beam was measuring the signal at the opposite side

regarding to the surface where the pump beam is penetrating into the crystal. Due to
the penetration depth of 5 µm the initial temperature rise at the back side of a crystal
with thickness d = 100 µm is quite small. To give an estimation for this effect, an initial
temperature of T0 = 300 K, the material properties of Table 6.1 and the experimental
pump laser parameters of Section 5 may be considered. Under these assumptions a tem-
perature rise of ∆T (0, d) = 5.5× 10−8 K can be calculated5 (Eq. 6.16). Assuming isolated
boundaries the equilibrium temperature rise which would take place after diffusion in this
case gives ∆Teq = 0.01 K (Eq. 6.49). Noting that the initial temperature rise at position
(z = 0, ρr = d) is smaller than the equilibrium temperature rise, causes, for time spans
where a temperature change due to heat transfer to the holder can be neglected, a mono-
tonic increase of the temperature rise. However, a clear peak with a width similar to the
temporal laser pulse shape (Fig. 5.3) is measured in the range of the first few nanoseconds

5Actually due to the finite pulse duration of the pump laser the temperature rise will be even smaller.
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of the photon-material interaction (Fig. 5.11). To reach a nearly equilibrium temperature
rise, at an initial temperature T0 = 300 K, a time much longer than a few nanoseconds is
necessary (Fig. 6.23d) and the heat transfer to the holder might take place on even much
longer time scales (see Fig. 6.37). Thus considering a crystal with a thermal insulating
boundary at the position where the probe beam is reflected and contact to a cooled holder
near the side boundaries should cause a monotonic increase of the temperature at position
(z = 0, ρr = d) for a time span much longer than a few nanoseconds, followed6 by a
gradual decrease of the temperature rise back to the initial temperature. Therefore, the
measured signal which possesses a rise and fall time in the nanosecond range cannot be
explained with the results of the simulated temperature profile investigated in this work.
This is, because as given by Fig. 4.8 and Eq. 2.56, a monotonic increase of the temperature
should cause a monotonically increasing reflectance signal.
The relation of the displacement or strain to a refractive index change has not been

investigate in this work. However, considering the solution of the thermoelastic interaction
it seems reasonable to conclude that neither the displacement nor related quantities can
explain the observed peak of the reflectance signal in the first few nanoseconds. This is,
because for a penetration depth of 5 µm the value of the displacement and the strain in
the first nanoseconds is nearly zero (Fig. 6.4) at position (z = 0, ρr = d) and the wave
needs a time span of a few nanoseconds to reach the back side of the crystal. However,
the observed oscillations in Fig. 5.11 might be related to the propagation and reflection of
thermoelastic waves.
In addition, as mentioned in Section 5 the measured reflectance change strongly de-

pendents on the initial temperature and the exact position of the probe beam relative to
the center of the pump beam. Also, the offset signal which is following the peak of the
reflectance signal (Fig. 5.11) and the connected sign change seems not to have a direct
simple relation to the temperature or displacement field. Unfortunately, the origin of
this reflectance change could not be explained in context of this work. Additional mea-
surements to investigate this effect in detail might be an inserting topic for a upcoming
research project.
The temperature rise in this work was calculated under the assumption that a local

thermodynamic equilibrium exists for all time steps taken by the time dependent solver
of the FEM simulation. However, the discussion in Section 4 shows that this assumption
might be critical considering heat transfer at low temperatures. The partly ballistic heat
transfer may be taken into account by the Cattaneo equation, as already introduced in
the PhD thesis of C. Maag [Maa18], without considering thermoelastic effects. A detailed
investigation, including the comparison of experimental data with simulation data under
various conditions for a three-dimensional axisymmetric case, may be a very interesting
topic for a further PhD project.
Another interesting question which could not be investigated experimentally in this

6The exact time span for this process will depend on the heat transfer coefficient to the holder as well as
the position of the contact area of the crystal to the holder.
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work is, what are the conditions present for a thermoelastic problem at temperatures
lower than 60 K. The lowest temperature which can be achieved with the cryogenic cooler
of the existing experimental setup is about 60 K (see Section 5), however this cooler could
be replaced by a different cooling system to reach lower temperatures.
The simulation for the CBXFEL (Section 6.4) is a quite artificial case, because due

to thermoelastic effects the predicted saturation heat load (Fig. 6.35a), which has been
calculated by neglecting thermoelastic effects may never be reached. Nevertheless, the
simulation presented in Section 6.4 is an important result because it predicts that ther-
moelastic effects can have a significant impact on the stability of a CBXFEL. It should
be noted that this prediction was not obvious, before the investigations carried out in
this work. However, in this context of course the question arises: What would be a con-
dition for a stable working CBXFEL, considering thermoelastic effects? This question
could not be completely answered in this work. However, the investigations of this work
are very useful to estimate which kind of thermoelastic effects may be important for the
stability of a CBXFEL. Considering the first pulses in the start up range of a CBXFEL
a heat load much smaller than a few microjoule per pulse will be absorbed by the crystal
[Rau21]. Therefore, the heat load effects and the connected wave propagation may be
such small that it can be neglected regarding the stability of a CBXFEL. After the round
trip of a few pulses the absorbed energy will increase and thermoelastic waves may have
an noticeable effect on the stability. However, the simulation of the described startup
range considering thermoelastic effects may not be performed correctly within the theo-
retic framework presented in this work, because only a diffusive kind of heat transfer has
been considered (Section 3). The development of a new theoretical framework including
partly ballistic heat transfer may be a very interesting topic for further research projects.
In this context also the accumulation of thermoelastic waves created by a periodic heat
load may be investigated. However, it should be noted that this topic is a quite challenging
task, because possible excitation of eigenfrequencies (Section 6.2.5) and accumulation of
strain/displacement fields will depend on the three-dimensional geometry and clamping
condition of the crystal, as well as on the shape of the heat load profile, which, consider-
ing a CBXFEL, can also change its shape during the first pulses [Rau21]. Considering a
three-dimensional geometry the axisymmetric assumptions (Section 3.5) used in this work
may be not applicable anymore and computationally more time demanding simulations of
a three-dimensional structure have to be considered.
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8. Conclusion

In this work the thermoelastic effects introduced by the absorption of pulsed powerful
electromagnetic radiation have been investigate, to predict if such effects can be problem-
atic for the stability of Bragg reflectors used in fourth generation XFEL facilities. In this
context the question arises: Do thermoelastic effects have an impact on the stability of a
Bragg reflector regarding a specified tolerance for strain and angular displacement?

The answer to this question has been worked out in the previous sections, by theoretical
and experimental investigations of a thin crystal diamond Bragg reflector under pulsed
heat load. The dimensions of the investigated crystal are a few tens of micrometers in
thickness and lateral size of a few millimeters.
A surprising result of this work is the conclusion that the time scales on which a dis-

placement/strain wave is damped seems not to be an import issue for a periodic heat load
with a MHz repetition rate, if a single crystalline diamond with low defect concentration
is considered. The measurement results as well as the simulations carried out in this work
have shown that the time scales on which strain waves in a diamond crystal are damped
might extent to the millisecond range. The displacement waves regarding the pump-probe
experiment presented in this work seems to experience a damping which can be neglected
considering the time span of a few hundred nanoseconds. This time scale is in the range
of the repetition rate of fourth generation XFELs. Therefore the important question con-
sidering a thin crystal is not how the displacement/strain waves are damped, but rather
how they interact with the following created displacement waves and on which order of
magnitude the accumulated displacement/strain amplitude will be.
To simulate the thermoelastic interaction of a powerful electromagnetic wave with a

Bragg reflector, for the pump-probe experiment presented in this work, the assumption
of a local thermodynamic equilibrium and heat transfer based on the Fourier law seems
to be a quite accurate assumption. This result is quite surprising for lower temperatures,
where the assumptions for the Fourier law may not be fulfilled due to the quite large mean
free path of phonons.
The heat load of the CBXFEL could be reduced by changing the design parameters,

which have been considered in this work. Under such circumstance the thermoelastic
effects causes by the heat load might be secondary. However, it should be noted that
also in this case the displacement created by several absorbed pulses could stack up to a
critical amount for particular combinations of crystal geometries, heat load profiles and
clamping conditions. Therefore a detailed theoretical and experimental investigation of the
interaction of thermoelastic waves created by a pulsed heat load with megahertz repetition
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rate seems to be an important and interesting topic for upcoming research projects.



162 A. Appendix

A. Appendix

A.1. Cartesian coordinates and Cylindrical coordinates

In this work the propagation of electromagnetic waves and thermoelastic deformations in a
three-dimensional Euclidean space are investigated by using Cartesian coordinates (x,y,z)
and cylindrical coordinates (ρr, θ, z), which are defined for 0 ≤ ρr < ∞, −π < θ ≤ π and
∞ < z <∞. The relation to Cartesian coordinates is

x = ρr cos θ, ρr =
√
x2 + y2,

y = ρr sin θ, θ = atan2(y,x),

z = z, z = z.

and the relation of the unit vectors are

ρ̂r = cos θx̂+ sin θŷ, x̂ = cos θρ̂r − sin θθ̂,

θ̂ = − sin θx̂+ cos θŷ, ŷ = sin θρ̂r + cos θθ̂,

ẑ = ẑ, ẑ = ẑ.

Considering a point in cylindrical coordinates (ρr, θ, z) the position is given by r.

r = ρrρ̂r + zẑ (A.1)

It should be noted that the basis vectors ρ̂r in this case is depending on the value of θ.
The del operator in Cartesian coordinates is given by

∇ =
∂

∂x
x̂+

∂

∂y
ŷ+

∂

∂z
ẑ. (A.2)

Since the unit vectors in cylindrical coordinates are depended on the position the del
operator is also different in this case can and it can be derived that it is given by [Mal69,
p. 667]:

∇ =
∂

∂ρr
ρ̂r +

1
ρr

∂

∂θ
θ̂+

∂

∂z
ẑ (A.3)

Considering the gradient of a scalar field f̃ in Cartesian coordinates gives:

∇f̃ =
∂f̃

∂x
x̂+

∂f̃

∂y
ŷ+

∂f̃

∂z
ẑ = f̃ ,i . (A.4)
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The notation (...), i denotes here the partial derivative with respect to the three coordinates
xi, which means for Cartesian coordinates x1 = x, x2 = y and x3 = z.

Considering the gradient of a scalar field f̃ in cylindrical coordinates yields [Mal69,
p. 667]:

∇f̃ =
∂f̃

∂ρr
ρ̂r +

1
ρr

∂f̃

∂θ
θ̂+

∂f̃

∂z
ẑ (A.5)

Considering the divergence in Cartesian coordinates of a vector field ṽ = ṽxx̂+ ṽyŷ+ ṽzẑ
(where i ranges over x, y, z) gives:

∇ · ṽ =
∂ṽx
∂x

+
∂ṽy
∂y

+
∂ṽz
∂z

= ṽi,i =
∂ṽi
∂xi

. (A.6)

The notation (...), i denotes here the partial derivative with respect to the three coordinates
xi, which means for Cartesian coordinates x1 = x, x2 = y and x3 = z.

Considering cylindrical coordinates the divergence of a vector field ṽ = ṽρr ρ̂r + ṽθθ̂ +

ṽzẑ using index notation ṽi (where i ranges over ρr, θ, z) gives [Mal69, p. 667]:

∇ · ṽ =
1
ρr

∂(ρrṽρr)

∂ρr
+

1
ρr

∂ṽθ
∂θ

+
∂ṽz
∂z

. (A.7)

Another possible operation of the del operator on a vector field is ṽ∇ which yields in
Cartesian coordinates:

ṽ∇ =


∂ṽx
∂x

∂ṽx
∂y

∂ṽx
∂z

∂ṽy
∂x

∂ṽy
∂y

∂ṽy
∂z

∂ṽz
∂x

∂ṽz
∂y

∂ṽz
∂z

 . (A.8)

In cylindrical coordinates this expression gives [Mal69, p. 667]

ṽ∇ =


∂ṽρr
∂ρr

1
ρr

∂ṽρr
∂θ −

ṽθ
ρr

∂ṽρr
∂z

∂ṽθ
∂ρr

1
ρr
∂ṽθ
∂θ + ṽρr

ρr
∂ṽθ
∂z

∂ṽz
∂ρr

1
ρr
∂ṽz
∂θ

∂ṽz
∂z

 . (A.9)

For both equations Eq. A.8 and Eq. A.9 the relation (ṽ∇)T = ∇ṽ can be used.

Considering a symmetric second order tensor (which is considered to be time and po-
sition dependent and may be thus considered to be a tensor field) which may be written
for Cartesian coordinates as:

T̃ =


T̃xx T̃xy T̃xz

T̃yx T̃yy T̃yz

T̃zx T̃yz T̃zz

 = Tij . (A.10)
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The del operation on a tensor field on this tensor field gives:

∇ · T̃ = (A.11)(
∂T̃xx
∂x

+
∂T̃yx
∂y

+
∂T̃zx
∂z

)
x̂+

(
∂T̃xy
∂x

+
∂T̃yy
∂y

+
∂T̃yz
∂z

)
ŷ+

(
∂T̃xz
∂x

+
∂T̃yz
∂y

+
∂T̃zz
∂z

)
ẑ

= T̃ij,j =
∂T̃ij
∂xj

where (...), j denotes the partial derivative with respect to the three coordinates xj , which
means for Cartesian coordinates x1 = x, x2 = y and x3 = z.

Considering cylindrical coordinates an a tensor field with second order tensors:

T̃ =


T̃ρrρr T̃ρrθ T̃ρrz

T̃θρr T̃θθ T̃θz

T̃zρr T̃θz T̃zz

 = Tij . (A.12)

the del operation gives in this case [Mal69, p. 667]:

∇ · T̃ =

(
∂T̃ρrρr
∂ρr

+
1
ρr

∂T̃θρr
∂θ

+
∂T̃zρr
∂z

+
1
ρr

(T̃ρrρr − T̃θθ)
)
ρ̂r (A.13)

+

(
∂T̃ρrθ
∂ρr

+
1
ρr

∂T̃θθ
∂θ

+
∂T̃zθ
∂z

+
1
ρr

(T̃ρrθ + T̃θρr )

)
θ̂

+

(
∂T̃ρrz
∂ρr

+
1
ρr

∂T̃θz
∂θ

+
∂T̃zz
∂z

+
T̃ρrz
ρr

)
ẑ

A.2. Equation of motion

Here the derivation of the equation of motion is presented in Cartesian coordinates. We
consider a body acted upon by an arbitrary traction surface force tn and a body force F
per unit volume and assume that the body occupies the volume V , bounded by an exterior
surface A at a time t. The resulting force Ftot acting on the body is [HEG09, p. 4]:

F toti =
∫
A

tni dA+
∫
V

FidV (A.14)

Inserting Eq. 3.5 and using Gauss theorem to transform the surface integral of the traction
forces to the volume integral (

∫
A σjinjdA =

∫
V σij,jdV ) gives:

F toti =
∫
V

(σji,j + Fi)dV (A.15)
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Defining the linear momentum by pi =
∫
V ρu̇idV , where ρ is the mass density and using

Newtons’s law of motion Ftot = ṗ Eq.A.15 becomes:∫
V

ρüidV =
∫
V

(σji,j + Fi)dV (A.16)

Since the volume V is arbitrary, Eq. A.16 reduces to the equation of motion:

σij,j + Fi = ρüi (A.17)

A.3. Anisotropic elasticity of cubic crystal

In case of cubic symmetry it is also possible to give the elastic properties in terms of
orthotropic1 material constants and connect the matrix elements to the engineering quan-
tities of Young’s modulus E, Poisson’s ratio ν, and the shear modulus µ in the axes of
interest (x, y, z) [Bow09, p. 87][N+85, p. 106][HNK]:

C =



1−νyzνzy
EyEz$

νyx+νyzνzy
EyEz$

νzx+νyzνzy
EyEz$

0 0 0
νxy+νxzνzy
ExEz$

1−νzxνxz
ExEz$

νzy+νzxνxy
ExEz$

0 0 0
νxz+νxyνyz
ExEy$

νyz+νxzνyx
ExEy$

1−νxyνyx
ExEy$

0 0 0
0 0 0 µyz 0 0
0 0 0 0 µzx 0
0 0 0 0 0 µxy


(A.18)

S =



1
Ex

−νyx
Ey

−νzx
Ey

0 0 0
−νyx
Ex

1
Ey

−νzy
Ez

0 0 0
−νxz
Ex

−νyz
Ey

1
Ez

0 0 0
0 0 0 1

µyz
0 0

0 0 0 0 1
µzx

0
0 0 0 0 0 1

µxy


where $ =

1− νxyνyx − νyzνzy − νzxνxz − 2νxyνyzνzx
ExEyEz

Here, the generalized Poisson’s ratios are not symmetric but instead satisfy2: νij/Ei = νji/Ej .
This ensures that the stiffness matrix is symmetric. The relation between the matrix ele-

1material has three mutually perpendicular symmetry planes
2No sums convention is used in this case
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ments of Eq. A.18 and Eq. 3.9 is:

Ex = (c11c22c33 + 2c23c12c13 − c11c
2
23 − c22c

2
13 − c33c

2
12)/(c22c33 − c2

23) (A.19)

Ey = (c11c22c33 + 2c23c12c13 − c11c
2
23 − c22c

2
13 − c33c

2
12)/(c11c33 − c2

13)

Ez = (c11c22c33 + 2c23c12c13 − c11c
2
23 − c22c

2
13 − c33c

2
12)/(c11c22 − c2

12)

νyx = (c12c33 − c13c23)/(c11c33 − c2
13), νxy = (c12c33 − c13c23)/(c22c33 − c2

23)

νzx = (c13c22 − c12c23)/(c11c22 − c2
12), νxz = (c22c13 − c12c23)/(c22c33 − c2

23)

νyz = (c11c23 − c12c13)/(c11c33 − c2
13), νzy = (c11c23 − c12c13)/(c11c22 − c2

12)

µyz = c44 µxz = c55 µxy = c66.

For the special case where the basis vectors are perpendicular to the symmetry planes for
a cubic crystal like illustrated in Fig. 3.3 Eq. A.19 reduces to

Ex = Ey = Ez = E = (c2
11 + c12c11 − 2c2

12)/(c11 + c12) (A.20)

νyx = νxy = νzx = νxz = νyz = νzy = ν =
c12

c11 + c12

µyz = µxz = µxy = µ = c44

To carry out a rotating of the crystal system relative to the coordinate system and to
calculate the material properties in the new orientation a transformation can by carried out
[Tin96]. To plot these orientation dependent properties the following Python script may
be used (here only the calculation for the Young’s modulus is shown, but the calculation
for the shear modulus and the Poisson’s ration can be calculated with the same rotation
transformation):

1 import numpy as np
2 from numpy import s i n
3 from numpy import cos
4 import m a t p l o t l i b . pyplot as p l t
5 C_matrix = np . array ( [ [ 1 0 7 9 . , 1 2 4 . , 1 2 4 . , 0 . , 0 . , 0 . ] ,
6 [ 1 2 4 . , 1 0 7 9 . , 1 2 4 . , 0 . , 0 . , 0 . ] ,
7 [ 1 2 4 . , 1 2 4 . , 1 0 7 9 . , 0 . , 0 . , 0 . ] ,
8 [ 0 . , 0 . , 0 . , 5 7 8 . , 0 . , 0 . ] ,
9 [ 0 . , 0 . , 0 . , 0 . , 5 7 8 . , 0 . ] ,

10 [ 0 . , 0 . , 0 . , 0 . , 0 . , 5 7 8 . ] ] )
11 d e f Rot ( a , b , matrix ) :
12 Rot_z = np . array ( [ [ cos ( a ) ∗ ∗ 2 , s i n ( a ) ∗ ∗ 2 , 0 . , 0 . , 0 . , 2∗ s i n ( a )∗ cos ( a ) ] ,
13 [ s i n ( a ) ∗ ∗ 2 , cos ( a ) ∗ ∗ 2 , 0 . , 0 . , 0 . , −2∗ s i n ( a )∗ cos ( a ) ] ,
14 [ 0 . , 0 . , 1 , 0 . , 0 . , 0 . ] ,
15 [ 0 . , 0 . , 0 . , cos ( a ) , s i n ( a ) , 0 . ] ,
16 [ 0 . , 0 . , 0 . , −s i n ( a ) , cos ( a ) , 0 . ] ,
17 [− s i n ( a )∗ cos ( a ) , s i n ( a )∗ cos ( a ) , 0 . , 0 . , 0 . , cos ( a)∗∗2− s i n ( a ) ∗ ∗ 2 ] ] )
18 Rot_x = np . array ( [ [ 1 . , 0 . , 0 . , 0 . , 0 . , 0 . ] ,
19 [ 0 . , cos ( b ) ∗ ∗ 2 , s i n ( b ) ∗ ∗ 2 , −2∗ s i n ( b )∗ cos ( b ) , 0 . , 0 . ] ,
20 [ 0 . , s i n ( b ) ∗ ∗ 2 , cos ( b ) ∗ ∗ 2 , 2∗ s i n ( b )∗ cos ( b ) , 0 . , 0 . ] ,
21 [ 0 . , s i n ( b )∗ cos ( b ) , −s i n ( b )∗ cos ( b ) , cos ( b)∗∗2− s i n ( b ) ∗ ∗ 2 , 0 . , 0 . ] ,
22 [ 0 . , 0 . , 0 . , 0 . , cos ( b ) , s i n ( b ) ] ,
23 [ 0 . , 0 . , 0 . , 0 . , −s i n ( b ) , cos ( b ) ] ] )
24 C_matrix_Rot_x= np . matmul ( Rot_x , np . matmul ( matrix , Rot_x . t r a n s p o s e ( ) ) )
25 C_matrix_new_correct = np . matmul ( Rot_z , np . matmul ( C_matrix_Rot_x , Rot_z . t r a n s p o s e ( ) ) )
26 r e t u r n C_matrix_new_correct
27 d e f E_x( matrix ) :
28 E_x = ( matrix [ 0 , 0 ] ∗ matrix [ 1 , 1 ] ∗ matrix [ 2 , 2 ] + 2 ∗ matrix [ 1 , 2 ] ∗ matrix [ 0 , 1 ] ∗ matrix [0 ,2] −
29 matrix [ 0 , 0 ] ∗ matrix [1 ,2]∗∗2 − matrix [ 1 , 1 ] ∗ matrix [0 ,2]∗∗2 −
30 matrix [ 2 , 2 ] ∗ matrix [ 0 , 1 ] ∗ ∗ 2 ) / ( matrix [ 1 , 1 ] ∗ matrix [2 ,2 ] − matrix [ 1 , 2 ] ∗ ∗ 2 )
31 r e t u r n E_x
32 d e f E_y( matrix ) :
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33 E_y = ( matrix [ 0 , 0 ] ∗ matrix [ 1 , 1 ] ∗ matrix [ 2 , 2 ] + 2∗ matrix [ 1 , 2 ] ∗ matrix [ 0 , 1 ] ∗ matrix [0 ,2 ] −
34 matrix [ 0 , 0 ] ∗ matrix [1 ,2]∗∗2 − matrix [ 1 , 1 ] ∗ matrix [0 ,2]∗∗2 −
35 matrix [ 2 , 2 ] ∗ matrix [ 0 , 1 ] ∗ ∗ 2 ) / ( matrix [ 0 , 0 ] ∗ matrix [2 ,2] − matrix [ 0 , 2 ] ∗ ∗ 2 )
36 r e t u r n E_y
37 d e f E_z( matrix ) :
38 E_z = ( matrix [ 0 , 0 ] ∗ matrix [ 1 , 1 ] ∗ matrix [ 2 , 2 ] + 2∗ matrix [ 1 , 2 ] ∗ matrix [ 0 , 1 ] ∗ matrix [0 ,2 ] −
39 matrix [ 0 , 0 ] ∗ matrix [1 ,2]∗∗2 − matrix [ 1 , 1 ] ∗ matrix [0 ,2]∗∗2 −
40 matrix [ 2 , 2 ] ∗ matrix [ 0 , 1 ] ∗ ∗ 2 ) / ( matrix [ 0 , 0 ] ∗ matrix [1 ,1] − matrix [ 0 , 1 ] ∗ ∗ 2 )
41 r e t u r n E_z
42 f i g = p l t . f i g u r e ( ) ; ax = p l t . s u b p l o t ( 1 1 1 , p r o j e c t i o n =’ polar ’ )
43 gamma_r = np . l i n s p a c e ( 0 , 2∗np . pi , 1 0 0 ) ; phi_r = np . l i n s p a c e ( 0 , 2∗np . pi , 100)
44 i n t e n s i t y =0.06
45 a l l _ v a l u e s=np . array ( [ ] )
46 f o r i i n gamma_r :
47 ax . p l o t ( phi_r , E_x( Rot ( phi_r , i , C_matrix ) ) , c o l o r =’r ’ , alpha=i n t e n s i t y )
48 a l l _ v a l u e s=np . append ( a l l _ v a l u e s , E_x( Rot ( phi_r , i , C_matrix ) ) )
49 f o r i i n gamma_r :
50 ax . p l o t ( phi_r , E_y( Rot ( phi_r , i , C_matrix ) ) , c o l o r =’b ’ , alpha=i n t e n s i t y )
51 a l l _ v a l u e s=np . append ( a l l _ v a l u e s , E_y( Rot ( phi_r , i , C_matrix ) ) )
52 f o r i i n gamma_r :
53 ax . p l o t ( phi_r , E_z( Rot ( phi_r , i , C_matrix ) ) , c o l o r =’g ’ , alpha=i n t e n s i t y )
54 a l l _ v a l u e s=np . append ( a l l _ v a l u e s , E_z( Rot ( phi_r , i , C_matrix ) ) )
55 p l t . show ( )

(a) Coordinate system rotation (b) Young’s modulus E [GPa]

Figure A.1.: Illustration of the elastic properties of SC diamond in various orientations calculated
with the Python script introduced in this section. In (a) rotation to calculate plot
is illustrated. The fist step is to plot the value by step wise rotating the coordinate
system 2π around the z axis. The next step is rotating around the fixed x axis only
a small step (π/50) and then again plot a rotation of 2π around the new z′ axis.
Repeating this process illustrates various possible orientations of the crystal. It should
be notice that the lines are plotted slightly transparent so that darker colors represent
more frequently occurring values. (b) Calculated values of the Young’s modulus for
various orientations Emean=1125 GPa, Emin=1053 GPa, Emax=1207 GPa

Comparing the compliance matrix S for an orthotropic matrix Eq. A.18 and isotropic
material Eq. 3.13, certain similarity are visible. Indeed, for the cubic material it can be
seen by using Eq. A.20 that the matrix elements are identical to the constitutive law for
an isotropic solid if 2µ(1+ν)

E = 2c44
c11−c12

. In this in this context

Aiso =
2c44

c11 − c12
(A.21)

may be used as a measure for the anisotropy for a cubic material, which is Aiso = 1 for
the isotropic case.
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A.4. Input file for ab initio calculation

For the ab initio calculations the following input file for the exciting code (version nitrogen)
has been used. Further information can be found under http://exciting-code.org and
http://exciting-code.org/nitrogen-phonon-properties-diamond.

1 <input>
2 <t i t l e >Diamond : PhononDOS</ t i t l e >
3 <s t r u c t u r e s p e c i e s p a t h ="/home/ u s e r / t u t o r i a l s / e x c i t i n g / s p e c i e s ">
4 <c r y s t a l s c a l e ="6.7468" >
5 <basevect >0.5 0 . 5 0.0 </ basevect >
6 <basevect >0.5 0 . 0 0.5 </ basevect >
7 <basevect >0.0 0 . 5 0.5 </ basevect >
8 </ c r y s t a l >
9 <s p e c i e s s p e c i e s f i l e ="C. xml " rmt ="1.25" >

10 <atom coord ="0.00 0 . 0 0 0 . 0 0 " />
11 <atom coord ="0.25 0 . 2 5 0 . 2 5 " />
12 </s p e c i e s >
13 </s t r u c t u r e >
14 <g r o u n d s t a t e
15 ngr idk ="8 8 8"
16 rgkmax ="7.0"
17 xctype ="GGA_PBE"/>
18 <phonons
19 ngr idq ="4 4 4">
20 <phonondos
21 ngrdos ="100"
22 nwdos ="500"
23 ntemp ="200"
24 nsmdos="2"/>
25 <q p o i n t s e t >
26 <qpoint> 0 . 0 0 . 0 0 . 0 </qpoint>
27 <qpoint> 0 . 5 0 . 5 0 . 0 </qpoint>
28 <qpoint> 0 . 5 0 . 5 0 . 5 </qpoint>
29 </q p o i n t s e t >
30 <phonondispplot>
31 <plot1d>
32 <path s t e p s ="300">
33 <p o i n t coord ="0.000000 0.000000 0 . 0 0 0 0 0 0 " l a b e l ="Gamma"/>
34 <p o i n t coord ="0.500000 0.000000 0 . 5 0 0 0 0 0 " l a b e l ="X"/>
35 <p o i n t coord ="0.500000 0.250000 0 . 7 5 0 0 0 0 " l a b e l ="W"/>
36 <p o i n t coord ="0.375000 0.375000 0 . 7 5 0 0 0 0 " l a b e l ="K"/>
37 <p o i n t coord ="0.000000 0.000000 0 . 0 0 0 0 0 0 " l a b e l ="Gamma"/>
38 <p o i n t coord ="0.500000 0.500000 0 . 5 0 0 0 0 0 " l a b e l ="L"/>
39 <p o i n t coord ="0.625000 0.250000 0 . 6 2 5 0 0 0 " l a b e l ="U"/>
40 <p o i n t coord ="0.500000 0.250000 0 . 7 5 0 0 0 0 " l a b e l ="W"/>
41 <p o i n t coord ="0.500000 0.500000 0 . 5 0 0 0 0 0 " l a b e l ="L"/>
42 <p o i n t coord ="0.375000 0.375000 0 . 7 5 0 0 0 0 " l a b e l ="K"/>
43 </path>
44 </plot1d>
45 </phonondispplot>
46 </phonons>
47 </input>

A.5. Temperature dependent thermal expansion coefficient

In Eq. 3.41 it is stated that a change of temperature causes a thermal strain, which is
related to the stress by the elastic stiffness tensor:

σij = Cijkl[εkl − εthkl ] (A.22)

The thermal expansion presented in Eq. 4.32 may be interpreted as a tangent thermal
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expansion coefficient αt(T ) which describes a infinitesimal length change dL by:

dL

L
= αt(T )dT , (A.23)

where L is the current length under consideration of the absolute temperature. This
infinitesimal length change may be connected to a change of the thermal stain by dεthkl (T ) =
dL
L0

. However, considering a finite temperature rise ∆T referred to a initial temperature T0

an integration has to be carried out to calculate the thermal strain:

εthkl =
∫ T0+∆T

T0
αt(T )dT , (A.24)

Also, it should be noted that Eq. A.24 is connected to the assumption, that the initial
thermal strain is assumed to be zero.

Considering a finite temperature change also a secant thermal coefficient may be used
which may be expressed by

∆L
L0

= αs(T ,T0)∆T , (A.25)

where L0 is the initial length. To calculate the secant thermal coefficient from the values
of the tangent thermal expansion coefficient Eq. A.23 can be integrated yielding:

ln(L0 + ∆L)− ln(L0) = ln
(

1 + ∆L
L0

)
=
∫ T0+∆T

T0
αt(T )dT , (A.26)

which can be rearrange to

∆L
L0

= exp
(∫ T0+∆T

T0
αt(T )dT

)
− 1 (A.27)

Since the integral calculation in Eq. A.27 gives small values, due to small values of the
tangent thermal coefficient (Fig. 4.5) and by considering that the maximum temperature
rise considered in this work is about hundred Kelvin, the approximation

exp
(∫ T0+∆T

T0
αt(T )dT

)
− 1 ≈

∫ T0+∆T

T0
αt(T )dT (A.28)

may be used to calculate the secant thermal expansion coefficient (Eq. A.25):

αs(T ,T0) =

∫ T
T0
αt(T ′)dT ′

T − T0
, where T = T0 + ∆T (A.29)

Considering L’Hospital’s rule for Eq. A.29 it can be derived that at T = T0 → αs(T0,T0) =

αt(T0). In Fig. A.2 an illustration of the functions used in this work for the secant thermal
expansion coefficient is given.
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Figure A.2.: Secant thermal expansion coefficient as a function of temperature T and particular
initial temperature values T0.

Inserting Eq. A.29 into Eq. A.24 gives

εthkl = αs(T ,T0)∆T , (A.30)

A.6. Finite element method (FEM)

To understand the underlying concept of the FEM a one-dimensional example is presented
in this section. The chosen methods for the approximation by shape functions and numeri-
cal integration are the ones also used in the software COMSOL Multiphysics® and similar
concepts can be used to derive a FEM code for a three-dimensional or two-dimensional
axisymmetric formulation. The concepts used in this section are based on the FEM codes
presented by [Bow09, Chapter 8] and [Bal89]. It should be mentioned that in the pre-
sented code in the following section only the displacement is calculated. However, a similar
FEM code can also be used to solve the temperature and displacement simultaneously, for
further information about this topic see [Bal89].

One-dimensional example of solving thermoelastic problems with FEM In this
example the same one-dimensional problem that was formulated by Eq. 6.21 is discussed,
considering to a homogeneous temperature rise ∆T . The strong form PDE of this equation
is:

σzz = E
∂w(z, t)
∂z

− αE∆T , boundary conditions σzz|z=0 = 0,σzz|z=d = 0 (A.31)

ρ
∂2w(z, t)
∂t2

=
∂σzz
∂z

.

The weighted residual method prescribes that the weighted integral value of this residual
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(a) 1D thermoelastic problem (b) quadratic 1-D element

Figure A.3.: (a) sketch of the 1D thermoelastic problem with ∆T = constant (b) Illustration of
shape functions of a quadratic 1-D element calculated with Eq. A.43

should be zero:

d∫
0

Sw(z, t)
[
∂

∂z
σzz − ρ

∂2w(z, t)
∂t2

]
dz = 0 (A.32)

d∫
0

Sw(z, t)
[
∂

∂z

(
E
∂w(z, t)
∂z

− αE∆T
)
− ρ∂

2w(z, t)
∂t2

]
dz = 0, (A.33)

where Sw denotes the weighted functions and the equation inside the square brackets is
called the Residual.

Using integration by parts3 we can write

d∫
0

Sw(z, t)
∂

∂z
σzzdz =

d∫
0

Sw(z, t)
∂

∂z

(
E
∂w(z, t)
∂z

− αE∆T
)
dz (A.34)

= −
d∫

0

(
E
Sw(z, t)
∂z

∂w(z, t)
∂z

− Sw(z, t)
∂z

αE∆T
)
dz + Sw(z, t)σzz|z=d − Sw(z, t)σzz|z=0,

Considering the strong form Eq. A.31 it can be seen that the boundary conditions are ful-
filled by setting the last two terms in Eq. A.32 to zero. These kind of boundary conditions
in context of the FEM are also called natural or Neumann boundary conditions. Inserting
Eq. A.34 into Eq. A.32 yields the so called weak form. And integrating term by term it

3For a three-dimentional problem the Gauss Theorem can be used in this context.
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can be obtained:

d∫
0

E
∂w(z, t)
∂z

∂Sw(z, t)
∂z

dz −
d∫

0

Eα∆T
∂Sw(z, t)

∂z
dz +

d∫
0

ρ
d2w(z, t)
dt2

Sw(z, t)dz = 0. (A.35)

To solve Eq. A.35, the displacement can be discretized, which means that the displace-
ment is calculated at a set of n discrete points called nodes. These nodes are special points
za denoting the position of the unknown displacement wa at this position. For example
the displacement w5 at node five in Fig. A.3a has the coordinate z5 = 20 µm. The index
a is covering all nodes of the domain from 1 to n (in the illustration of Fig. A.3a the total
number of nodes is n=9). The displacement field at an arbitrary point within the crystal
will be specified by interpolating between these nodal values:

w(z, t) =
n∑
a=1

Na(z)wa(t) (A.36)

Here z denotes the coordinates of an arbitrary point in the crystal. The interpolation
functions Na(z) are functions of position only, which must have the property that:

wi(z, t) =
n∑
a=1

Na(zi)wa(t) (A.37)

Here i is an index that covers all nodes from 1 to n and a common approach for a FEM
is to choose:

Na(zi) =

1, a = i

0, a 6= i
(A.38)

Choosing for the weighted functions the same interpolation scheme like for the displace-
ment is known as the Galerkin’s method:

Sw(z, t) =
n∑
a=1

Na(z)Swa(t) (A.39)

Inserting the interpolations Eq. A.36 and Eq. A.39 into the weak form Eq. A.35 gives the
equation:

n∑
a=1

n∑
b=1

 d∫
0

E
∂Nb(z)

∂z
wb
∂Na(z)

∂z
Swadz +

d∫
0

ρNb(z)Na(z)ẅbSwadz

− n∑
a=1

d∫
0

Eα∆T
∂Na(z)

∂z
Swadz = 0,
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which may be written in the following matrix form:

(Kabwb +Mabẅb − Fa)Swa = 0 (A.40)

Kab =

d∫
0

E
∂Na(z)

∂z

∂Nb(z)

∂z
dz

Mab =

d∫
0

ρNa(z)Nb(z)dz

Fa =

d∫
0

Eα∆T
∂Na(z)

∂z
dz

It should be mentioned that the boundary condition in this particular example is that the
traction is zero at z = 0 and z = d for a none zero value there would be an additional
contribution to the last equation in Eq. A.40 at the first and last node. Non trivial
solutions to Eq. A.40 are found by solving

Kabwb +Mabẅb − Fa = 0. (A.41)

Here Kab is the so called stiffness matrix, Fab called the force vector and Mab the mass
matrix. Writing out the matrices gives:

Kab = E



∫ d
0
∂N1(z)
∂z

∂N1(z)
∂z dz

∫ d
0
∂N1(z)
∂z

∂N2(z)
∂z dz . . .

∫ d
0
∂N1(z)
∂z

∂Nn(z)
∂z dz∫ d

0
∂N2(z)
∂z

∂N1(z)
∂z dz

∫ d
0
∂N2(z)
∂z

∂N2(z)
∂z dz . . .

∫ d
0
∂N2(z)
∂z

∂Nn(z)
∂z dz

...
...

...∫ d
0
∂Nn(z)
∂z

∂N2(z)
∂z dz

∫ d
0
∂Nn(z)
∂z

∂N1(z)
∂z dz . . .

∫ d
0
∂Nn(z)
∂z

∂Nn(z)
∂z dz

 (A.42a)

Mab = ρ



∫ d
0 N1(z)N1(z)dz

∫ d
0 N1(z)N2(z)dz . . .

∫ d
0 N1(z)Nn(z)dz∫ d

0 N2(z)N1(z)dz
∫ d

0 N2(z)N2(z)dz . . .
∫ d

0 N2(z)Nn(z)dz
...

...
...∫ d

0 Nn(z)N2(z)dz
∫ d

0 Nn(z)N1(z)dz . . .
∫ d

0 Nn(z)Nn(z)dz

 (A.42b)

Fa = Eα∆T


∫ d

0
∂N1(z)
∂z dz
...∫ d

0
∂Nn(z)
∂z dz

 (A.42c)

The stiffness matrix and the mass matrix are n× n matrices and the force vector has n
components, where n is the total number of nodes. To interpolate and integrate Eq. A.40
various different methods can be used. However, it turns out to be particularly conve-
nient to use a piecewise-Lagrangian interpolation scheme and to evaluate the integrals
numerically using a Gaussian quadrature scheme. Considering a generic quadratic 1-D
element that lies in the region −1 < ξ < 1, as illustrated in Fig. A.3b the corresponding



174 A. Appendix

piecewise-Lagrangian interpolation scheme is given by the following shape functions:

N1(ξ) = −0.5ξ(1− ξ),N2(ξ) = (1− ξ)(1 + ξ),N3(ξ) = 0.5ξ(1 + ξ). (A.43)

The displacements w within the element are then interpolated as

w(ξ) =
ne∑
ae=1

Nae(ξ), wae (A.44)

where ne denotes the number of nodes on the element and wae denotes the value of the
displacement at each node. The actual nodal coordinates do not lie necessarily at –1, +1
and 0, but the function can be mapped to the region of interest by setting

z(ξ) =
ne∑
ae=1

Nae(ξ)zae . (A.45)

By substituting Eq. A.43 into Eq. A.45 it can be found that an uniform spacing (z2 =

(z1 + z3)/2) of the nodes gives a linear mapping:

ze(ξ) =
he
2 ξ +

z1 + z3
2 , ξ(z) =

(
z − z1 + z3

2

) 2
he

, (A.46)

where he = z3 − z1 is the length of the element. Elements that interpolate displace-
ments and position using the same shape functions are called isoparametric elements. The
Jacobian J = |∂z∂ξ | associated with the mapping in this case may be computed as:

∂z

∂ξ
=

∂

∂ξ

ne∑
ae=1

Nae(ξ)zae =
ne∑
ae=1

∂Nae(ξ)

∂ξ
zae (A.47)

The mapping also can be used to calculate the shape function derivatives:

∂Nae(z)

∂z
=
∂Nae(ξ)

∂ξ

∂ξ

∂z
=
∂Nae(ξ)

∂ξ

(
∂z

∂ξ

)−1
(A.48)

To evaluate the integrals numerically a Gaussian quadrature scheme can be used:

1∫
−1

g(ξ) ≈
M∑
I=1

wIg(ξI) (A.49)

Where ξI denotes set of integration points in the region [−1, 1], and wI is a set of integra-
tion weights, which are chosen so as to make the approximation as accurate as possible.
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The values for M = 1, 2 and 3 are:

M = 1 : ξ1 = 0,w1 = 2 (A.50)

M = 2 : ξ1 = −
√

1
3,w1 = 1 ξ2 =

√
1
3,w2 = 1 (A.51)

M = 3 : ξ1 = −
√

3
5,w1 =

√
5
9 ξ2 = 0,w2 =

√
8
9 ξ3 =

√
3
5,w3 =

√
5
9 (A.52)

(A.53)

As illustrated in Fig. A.3a the domain can be sub-divided into a series of elements. The
quadratic 1-D element is bounded by two nodal points (black dots), and also contains
one interior node (blue dots). The chosen interpolation scheme causes that the integral
over the lth element depends only on the shape functions associated with the nodes on
the lth element, the corresponding element matrix depends on the geometry, and material
properties, which in this example are constant values. To derive the matrices of Eq. A.41
all elements matrices have to assembled into a global matrix. For assembling the global
matrices notice that for the first element matrix the connection between global and element
coordinates are z1 = z1e1 and z2 = z2e1 and z3 = z3e1 . For the second element z3 = z1e2

and z4 = z2e2 and z5 = z3e2 and so on up to the lth element.

Considering Eq. A.42a the element matrices for the first element are:

kae1be1 = E


∫ z3e1
z1e1

∂N1(z)
∂z

∂N1(z)
∂z dz

∫ z3e1
z1e1

∂N1(z)
∂z

∂N2(z)
∂z dz

∫ z3e1
z1e1

∂N1(z)
∂z

∂N3(z)
∂z dz∫ z3e1

z1e1

∂N2(z)
∂z

∂N1(z)
∂z dz

∫ z3e1
z1e1

∂N2(z)
∂z

∂N2(z)
∂z dz

∫ z3e1
z1e1

∂N2(z)
∂z

∂N3(z)
∂z dz∫ z3e1

z1e1

∂N3(z)
∂z

∂N1(z)
∂z dz

∫ z3e1
z1e1

∂N3(z)
∂z

∂N2(z)
∂z dz

∫ z3e1
z1e1

∂N3(z)
∂z

∂N3(z)
∂z dz


(A.54a)

mae1be1 = ρ


∫ z3e1
z1e1

N1(z)N1(z)dz
∫ z3e1
z1e1

N1(z)N2(z)dz
∫ z3e1
z1e1

N1(z)N3(z)dz∫ z3e1
z1e1

N2(z)N1(z)dz
∫ z3e1
z1e1

N2(z)N2(z)dz
∫ z3e1
z1e1

N2(z)N3(z)dz∫ z3e1
z1e1

N3(z)N1(z)dz
∫ z3e1
z1e1

N3(z)N2(z)dz
∫ z3e1
z1e1

N3(z)N3(z)dz


(A.54b)

fae1
= Eα∆T


∫ z3e1
z1e1

∂N1(z)
∂z dz∫ z3e1

z1e1

∂N2(z)
∂z dz∫ z3e1

z1e1

∂N3(z)
∂z dz

 (A.54c)

Using the piecewise-Lagrangian interpolation scheme and Gaussian quadrature as previ-
ously described, the calculation of the values can be carried out. To clarify the calculation
process of the components, an example is carried out by calculating the first component
of Eq. A.54a and Eq. A.54b. All other components can be carried out in a similar way.

k1e11e1 =

z3e1∫
z1e1

∂N1(z)

∂z

∂N1(z)

∂z
dz =

1∫
−1

∂N1(z)

∂z

∂N1(z)

∂z
Jdξ (A.55)
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Using Eq. A.47 and Eq. A.48 to calculate the Jacobian and the derivatives of the shape
function gives:

J =

∣∣∣∣∂z∂ξ
∣∣∣∣ = |(ξ − 0.5)z1e − 2ξz2e + (ξ + 0.5)z3e | (A.56a)

∂ξ

∂z
= 1/((ξ − 0.5)z1e − 2ξz2e + (ξ + 0.5)z3e) (A.56b)

∂N1e(z)

∂z
= (ξ − 0.5)∂ξ

∂z
(A.56c)

Using Gaussian quadrature Eq. A.49 and two integration point gives:

k1e11e1 =

1∫
−1

∂N1(z)

∂z

∂N1(z)

∂z
Jdξ =

2∑
I=1

wI

(
ξI − 0.5

(ξI − 0.5)z1e − 2ξIz2e + (ξI + 0.5)z3e

)2
|(ξI − 0.5)z1e − 2ξIz2e + (ξI + 0.5)z3e |

Calculating the element mass matrix leads to

m1e11e1 =

z3e1∫
z1e1

N1(z)N1(z)dξ = ρ

1∫
−1

N1(ξ)N1(ξ)Jdξ = (A.57)

3∑
I=1

wI(0.5ξ2 − 0.5ξ)2|(ξI − 0.5)z1e − 2ξIz2e + (ξI + 0.5)z3e |.

Substitution Eq. A.46 in Eq. A.56 gives

J =
he
2 (A.58)

∂ξ

∂z
=

2
he

, with he = z3 − z1, z3 > z1. (A.59)

and Eq. A.54 becomes:

kae1be1 =
E

3he


7 −8 1
−8 16 −8
1 −8 7

 (A.60a)

mae1be1 =
ρhe
30


4 2 −1
2 16 2
−1 2 4

 (A.60b)

fae1
= Eα∆T


−1
0
1

 (A.60c)
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Time integration The Newmark method may be used for the time integration [Bow09,
p. 493]. In this example it is assumed that the crystal a time t = 0 has the initial conditions
w(z, 0) = 0 and ẇ(0) = 0. The first step is to calculate the acceleration ẅ(t) at t = 0 by
rearranging Eq. A.41:

Mabẅ(0) = −Kabw(0) + Fa (A.61)

The acceleration ẅ(t+ ∆t) for a time step ∆t after t=0 can be calculated by:(
Mab +

β2∆t2

2 Kab

)
ẅ(t+ ∆t) = −Kab

(
w(t) + ∆tw(t) + ∆t2

2 (1− β2)ẅ(t)
)
+ F (t+ ∆t)

(A.62)
with these two acceleration values the displacement and velocity at the time ∆t can be
calculated:

w(t+ ∆t) ≈ w(t) + ∆tẇ(t) + ∆t2

2 [(1− β2)ẅ(t) + β2ẅ(t+ ∆t)] (A.63a)

ẇ(t+ ∆t) ≈ ẇ(t) + ∆t[(1− β1)ẅ(t) + β1ẅ(t+ ∆t)] (A.63b)

Using the values of w(t+ ∆t) and ẇ(t+ ∆t) in Eq. A.61 the successive time steps can be
computed.
The value of β1 and β2 are two adjustable parameters that determine the behavior of

the time integration. If β1 = β2 = 0 the integration scheme is called explicit. In this
case the calculation of Eq. A.62 can be skipped. On the other hand, if β1 = β2 = 1,
the acceleration is estimated only from its value at time t+ ∆t. This is known as a fully
implicit time integration.

Mesh and time stepping parameters for FEM simulation The one-dimensional
model described in Eq. 6.21 can be solved analytically. The analytic solution can be
used to compare the results calculated with a self written FEM code based on the theory
described in this section. The plot in Fig. A.4 compares the FEM simulation with the
analytical solution for a d = 100 µm thick diamond crystal at a time t = 13 ns. For
the simulations the material parameters of Table 6.1 and an initial temperature rise of
∆T = 1 K have been considered. A uniform mesh size of hm = 1 µm between neighboring
nodes and an implicit time integration with β1 = β2 = 0.5 has been used.

Temperature dependent material constants For the presented FEM code an linear
equation system has to be solved for each time step considered in the simulation and the
material parameters in this context are parts of characteristic matrices like the stiffness
matrix for example the (Eq. A.42c) by updating the material constants inside these ma-
trices during the calculation the temperature dependence of the material parameter can
be taken into account.
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Figure A.4.: Displacement and strain for a 100 µm thick diamond crystal calculated with a FEM
simulation for an instantaneously temperature rise ∆T = 1 K at a time t = 13 ns with
uniform mesh size of 1 µm between neighboring nodes and uniform time stepping of
∆t = 10 ps.
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