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Abstract

Teleoperation empowers robotic systems with sophisticated reasoning skills, intuition, and
creativity, offering the possibility of performing complex and dangerous tasks in remote and
unconstructed environments. Leveraging the rapidly developing data-driven human hand pose
estimation algorithms, markerless vision-based teleoperation offers the advantages of detecting
natural human-limb motions and being less invasive. The main contribution of this thesis is
employing markerless vision-based teleoperation using an end-to-end learning scheme for
anthropomorphic hands and integrating it into a dexterous hand-arm teleoperation system.

The end-to-end learning scheme targets the robot space directly and generates robot joint angles
from depth images of the human hand. Considering the domain difference between the human
hand and the robot hand, two end-to-end neural networks, TeachNet and Transteleop, were
designed to exploit the geometrical resemblance from human-robot hand pairs and to learn the
kinematic mappings between them. TeachNet highlights a consistency loss function connecting
the double-stream human-robot learning architecture, while Transteleop develops a multi-output
learning structure based on the image-to-image translation method. Furthermore, two training
sets, including 400K pairwise human-robot depth images and corresponding robot joint angles,
were collected. The difference between them is whether the robot hand has the same viewpoint
as the human hand in the depth images.

Then, we studied how to seamlessly integrate the markerless vision-based hand teleoperation
into a dexterous hand-arm teleoperation system. The robotic arm control was implemented
using an IMU suit and a motion tracking system. Meanwhile, a 3D printed camera holder and a
controlled active vision system were successively built to perceive human finger motions from
an optimal viewpoint and to decouple the human and the robot workspace.

Network evaluation of two proposed neural network models verifies that Transteleop achieves
higher accuracy and lower error than other end-to-end baselines over three quantitative metrics.
Robot experiments were conducted on an anthropomorphic hand installed on a robotic arm
to demonstrate its applicability for different challenging tasks in robotics. These include a
variety of complex manipulation tasks, including grasping, placing, inserting, pushing, sliding,
pouring, handover, and bottle opening. In addition, the proposed markerless vision-based
teleoperation models also accomplish compliant grasping and manipulation skills facilitated
by an adaptive force controller. The experimental results show that the proposed teleoperation
systems are accurate, efficient and robust, and can contribute to solving complex tasks in multiple
applications, e.g., space station, medical surgery, industrial transportation, and daily life, which
are of high need in robotics.
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Kurzfassung

Durch Fernsteuerung von Robotik-Systemen können komplexe Aufgaben in unzugänglichen
oder gefährlichen Umgebungen gelöst werden, die ein intelligentes, kreatives und problem-
orientiertes Vorgehen erfordern. Neue, lernende Algorithmen zur Erkennung der Hand-Pose
sowie markerlose optische Tracking-Systeme ermöglichen dabei die Erkennung menschlicher
Handhabungs- und Bewegungsabläufe in nicht invasiver Form. Der zentrale Beitrag dieser
Arbeit ist ein derartiges markerloses optisches Teleoperations-System, das mithilfe von
Ende-zu-Ende-Methoden trainiert und in ein Hand-Arm-System integriert wurde.

Die Lernmethode zielt dabei direkt auf den Bewegungssraum des Roboters und generiert
passende Winkelstellungen für die Robotergelenke aus Tiefenbildern der menschlichen Hand.
Um die spezifischen Unterschiede zwischen der menschlichen Hand und der Roboterhand zu
berücksichtigen, wurden zwei neuronale Netze, TeachNet und Transteleop, entworfen. Diese
lernen die notwendigen geometrischen Abbildungen vorzunehmen und dabei die Kinematik der
Hände zu berücksichtigen. TeachNet nutzt eine „Consistency Loss“-Funktion, um die Abbildung
vom Menschen auf den Roboter zu lernen, während Transteleop einen Bild-zu-Bild basierten
Ansatz verfolgt. Zusammen mit der vorliegenden Arbeit wurden zwei Trainingsdatensätze
erstellt, die über 400 000 paarweise Zuordnungen von Mensch und Roboter Tiefenbildern
und den zugehörigen Winkelstellungen der Roboterkinematik enthalten. Diese Datensätze
unterscheiden sich darin, dass der Beobachtungspunkt gleich bzw. unterschiedlich ist.

Anschließend untersuchten wir, wie sich die markerlose, optische Hand-Teleoperation nahtlos
in ein Hand-Arm-Teleoperationssystem integrieren lässt. Zur Steuerung des kompletten
Roboterarms wurden Motion-Tracking-Systeme sowie Beschleunigungssensoren genutzt.
Für die Erfassung der Hand- und Fingerpositionen wurde der Sensor auf einem eigens
entworfenen und 3D-gedruckten umschnallbaren Kamerahalter montiert und mithilfe eines
„Active Vision“ Algorithmus angesteuert. Dadurch war es möglich, optimale Aufnahmen von
Hand- und Greifbewegungen zu machen und diese vom Arbeitsraum des Roboters zu entkoppeln.

Ein Vergleich der beiden neuronalen Modelle mit anderen Ansätzen aus der Literatur hat ge-
zeigt, dass speziell Transteleop eine höhere Genauigkeit und weniger Fehler hat als andere
grundlegende Ende-zu-Ende-Ansätze. Dabei wurden drei unterschiedliche Metriken alternativ
zugrunde gelegt. Um zu demonstrieren, dass damit verschiedene, sehr anspruchsvolle Aufgaben
gelöst werden können, wurden verschiedene Experimente mit einer anthropomorphen Hand
an einem Roboterarm durchgeführt. Unter anderem Greifen, Positionieren, Einführen und Ver-
schieben von Objekten sowie Öffnen einer Flasche, Eingießen von Flüssigkeiten und Übergabe
von Objekten. Die vorgestellten Teleoperationsmodelle ermöglichen auch nachgiebige Greif-
und Manipulationsbewegungen, die durch eine adaptive Kraft-basierte Regelung unterstützt
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werden. Die experimentellen Ergebnisse zeigen, dass dieses neuartige System zur Fernsteuerung
anthropomorpher Robotermanipulatoren in Bezug auf Genauigkeit, Effizienz und Stabilität in
der Lage ist, hochkomplexe Aufgaben zu lösen, wie sie beispielsweise in Weltraummissionen,
bei medizinischen Eingriffen, industriellen Transport- und Montageaufgaben sowie beim Einsatz
von Robotern in der Servicerobotik im täglichen Leben anfallen. All diese Szenarien stellen
derzeit die Robotik noch vor große Herausforderungen.
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Chapter 1

Introduction

1.1 Motivation

Throughout the history of robotics, teleoperation is perhaps one of the earliest applications.
Integrating human intelligence, creativity, and cognition into the robotic systems, teleoperation
is able to make fast decisions in remote and unconstructed environments. This characteristic
of teleoperation prompts it to be used widely in hazardous environments threatening human
safety, or remote places consuming a high cost to reaching, or micromanipulation and minimally
invasive surgery requiring force amplification or position scaling, and other highly unconstructed
environments. Typical applications are nuclear research, chemical industry, space station,
disaster rescue, and the medical field [6, 48, 112].

Back to the 1950s, teleoperation research initially began with nuclear application and was used to
handle radioactive materials behind remote shielded walls. In 1993, the first remotely controlled
robot flew to space with the German Spacelab Mission D2. The six-axis robot arm was equipped
with shared autonomy and teleoperated to perform assembling, floating object grasping, and
“Orbital-Replaceable-Unit” connecting tasks with 5-7 s communication latency [W21]. The
ROKVISS (Robotikkomponenten-Verifikation auf der ISS) project has completed over 500
repairing and maintaining tests on satellites by teleoperating a two-joint robot arm from 2005
to 2010 [W19]. The robot is controlled by a sophisticated joystick with force feedback without
significant time delay, see the hardware in Fig. 1.1(a). Therefore, the operator on the ground
feels the force exerted by the robot in space. In 2017, Shark Robotics announced Colossus, a
remote-controlled mobile robot designed to support firefighters [W31]. Later in 2019, Colossus
participated in the challenges for extinguishing the blaze, carrying heavy hoses, and clearing
away debris at Notre Dame Cathedral (see Fig. 1.1(b)).

Moreover, medical surgery implemented by telerobotics and telesurgical systems has been
studied since the 1980s. Fig. 1.1(c) shows one of the most advanced robotic surgical systems,
the da Vinci Surgical System [W36]. The da Vinci surgical system transfers the surgeon’s
hand movements using the sophisticated hand controller to the robot arms. The hand controller
can be moved, rotated while performing the procedure. More than seven million surgical
procedures, e.g., cardiac surgery and colorectal surgery, have been completed by the da
Vinci surgical system all over the world. Since the Coronavirus disease 2019 (COVID-19)
shockingly spread worldwide, the robotic community has sped up to studying the use of
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CHAPTER 1. INTRODUCTION

(a) The Hardware in ROKVISS project (b) The Colossus robot at Notre Dame Cathedral

(c) The da Vinci Surgical System (d) The throat-swabbing robot

Figure 1.1 – (a) The robotic arm and force-feedback joystick used in ROKVISS project. Reprinted
left image: ©DLR, CC BY-NC-ND 3.0. Reprinted right image courtesy of DLR [W17]. (b) The
Colossus robot teleoperated by the firemen helped fight a fire at Notre Dame Cathedral in Paris.
Reprinted image courtesy of Shark robotics [W31]. (c) The main components of the da Vinci Surgical
System: surgeon console, patient cart, and vision cart. The surgeon sits at the console, operating
the teleoperation instruments while observing the patient’s anatomy in a high-resolution 3D vision
system. Reprinted image courtesy of Intuitive Surgical [W36]. (d) A throat swab sampling robot
under shared control has been put into clinical trial to reduce disease transmission in 2019. Reprinted
image courtesy of [W41].

robots in medical applications, e.g., supply chain automation, clinical care, and public
services [89]. Mobile robots and drones have been used to deliver COVID-19 vaccines and
medical samples in many countries. Beyond autonomous tasks in repetitive applications,
the robots have also been teleoperated to perform care delivery either as a medium of
communication or actual care. The robots serve as a mechanism to minimize direct contact
between patients and medical personnel in the hospital or at home. To potentially reduce
disease transmission, shared-control-based swab sampling robots were creatively researched
as well (see Fig. 1.1(d)). Meanwhile, telemedicine or telehealth has quickly risen to eval-
uate, diagnose and even treat patients over the telecommunication infrastructure and using robots.

Shifting to industrial scenarios and daily life, telerobotics also shows enormous potentials
with the development of cloud-based software and 5G networks. A teleoperation startup,
Phantom Auto, develops remote operation software and dedicated equipment that integrates with
unmanned vehicles, from robot-taxis and delivery robots to lift trucks and shunt trucks [W1].
Teleoperation is expanding into transportation and logistics, and some self-driving car companies
rely on remote control technology as part of the transition to fully unmanned transportation. In
addition, remotely-controlled assistive robots can help frail elderly people to perform specific
tasks related to independent living, thereby improving their quality of life [124]. However, the

2



1.2. AIM OF THIS THESIS

tasks mainly are remotely monitoring, care delivering, indoor navigation, but are still far from
daily manipulation tasks, e.g., pouring water, picking clothes from the wardrobe, and putting on
socks.

In general, most work still focuses on controlling mobile robots, robotic arms, and simple
grippers rather than multi-fingered robotic hands. However, two-fingered grippers can only
execute some simple object interactions and manipulation categories, e.g., pick and place,
low-dimensional translational, and rotation. Looking into the future, dexterous robotic hands
provide a prospective base for supplanting human hands in the execution of tedious and
dangerous tasks [69]. Therefore, to endow robotic hands with similar dexterity to human hands,
which can effectively grasp deformable, irregular objects and utilize various tools like wrenches,
screwdrivers, anthropomorphic hands have become a promising solution and have gained much
attention over the past years. However, the teleoperation of an anthropomorphic robotic hand
performing dexterous manipulation faces many challenges, including inaccuracy, customization
for each user, and efficiency issues because of high Degree of Freedom (DoF). Traditional
teleoperation methods for dexterous hand teleoperation often rely on wearable datagloves.
Nevertheless, wearable datagloves need to be customized for a certain size range of the human
hand and may hinder natural human-finger motion. A promising alternative is vision-based
teleoperation, which is cheap, less invasive, and allows to perform natural and comfortable
gestures. Leveraging deep learning innovations in computer vision in recent ten years, this thesis
studies on introducing visual perception into dexterous hand teleoperation for an accurate and
efficient dexterous hand-arm teleoperation system.

1.2 Aim of this Thesis
In this thesis, visual perception for a dexterous hand-arm teleoperation system refers explicitly
to controlling the anthropomorphic hand by vision-based teleoperation and combining this with
an efficient arm teleoperation method for developing an accurate and efficient system.

Vision-based teleoperation methods for dexterous hand compute control commands for the robot
from segmented images of the human hand based on a camera system. The typical vision-based
teleoperation process estimates the 3D hand pose or recognizes the class of hand gestures using
human hand pose estimation algorithms, followed by mapping the locations or the corresponding
poses to the robot. Nevertheless, this method does not consider the physical constraints and joint
limits of the robots in the estimation or recognize phase, so it easily generates poses that the
robot cannot reach. Also, due to illumination changes, self-occlusion, and pose-ambiguity of the
human hand images, the vision-based teleoperation methods face the challenge of inaccuracy.

Therefore, the first aim of this thesis is to develop an accurate end-to-end vision-based
teleoperation method. Taking advantage of deep learning technologies in computer science,
data-driven human hand pose estimation, which places more weight on feature extraction, object
representation, and perceptual processing, is a valuable choice. In addition, an end-to-end
learning scheme directly maps human hand poses to the robotic hand space instead of the
human hand space, considering the robot model in the training process and bypassing the
post-processing. Consequently, how to build a large number pairwise human-robot hand dataset,

3
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1. Markerless vision-based teleoperation 
for robotic hand

3. Verification for 
dexterous hand-arm 
teleoperation system

Dataset generation

2. Real-time control for robotic arm

End-to-end learning model

2. Integration

Figure 1.2 – Aims of this thesis.

that includes pairs of depth images, as well as corresponding joint angles of the robot hand in the
same gesture, is an essential problem that should be solved in order to fulfill the aim.

The second aim is to seamlessly integrate vision-based dexterous hand teleoperation into a whole
hand-arm system. Though a lot of work is investigating robot arm teleoperation, only a few
work considers the connection between arm control and hand behavior [31]. From the software
aspect, the robot arm should move smoothly following the trajectory of the human arm based
on trajectory generation methods. From the hardware aspect on the operator side, the dexterous
hand-arm hand system requires that:

1) the human hand is not covered or occluded by any devices;

2) the narrow field of view of the camera does not limit the workspace of the robot;

3) the camera attempts to capture the human hand from the best perspective.

All the requirements end up with appropriate arm teleoperation methods and a camera system to
move along with the human hand.

Finally, the third goal is to ensure the robustness and stability of the developed teleoperation
system from a practical perspective. Therefore, designing systematic verification is necessary for
software and real-world experiments. In summary, a schematic diagram of the thesis aims is
shown in Fig. 1.2.

Some existing teleoperation systems are customized for specific users or perform specific
manipulation tasks [46]. The long-term vision of this thesis is an integrated robotic hand-arm
teleoperation system, which is open for anyone and has a wide range of manipulation applications
in daily life. Such a system could control the robot to assist daily routines, do chores in the
hospital or at home by doctors or nurses for patients and elderly people, or perform complex
assembly tasks in space exploration by astronauts or scientists.

4



1.3. RESEARCH QUESTIONS

1.3 Research Questions
As discussed in section 1.2, this thesis focuses on three main aims: accurate vision-based
teleoperation for robotic hand, effective hand-arm system integration, and comprehensive system
verification. Pivoting these aims, the following four main research questions were considered
and studied in this thesis:

Q1: Teleoperation Methods for Anthropomorphic Hand: How to employ deep-learning-
based human hand pose estimation methods into robotic hand teleoperation in such a way that
different users can efficiently use the system and all human finger motions of are natural and
unrestricted?

Q2: Teleoperation Methods for Robotic Arm: Which devices are applicable for teleoperating
a robotic arm with multiple degrees of freedom? How to register the human arm motions to the
robot system? How to ensure smooth and real-time arm trajectories?

Q3: Integration of Hand-Arm Teleoperation System: With regard to dexterous manipulation,
the entire teleoperation system is supposed to be accurate, efficient, robust, and user-friendly.
How to seamlessly combine the markerless vision-based robot hand control with the robotic arm
teleoperation? How to extend the perception field of the sensors and perceive human motions
better through improving the sensor installation?

Q4: System Verification: Which evaluation aspects, manipulation tasks, and metrics can be
used to verify the stability of software and hardware in a robotic hand-arm teleoperation system?
Controller wise, how to verify the proposed teleoperation method under both position control
and force control?

1.4 Thesis Structure
The remaining parts of this thesis are organized as follows (illustrated in Fig. 1.3):

• Chapter 2 summarizes the state-of-the-art. Particularly, two topics highly related to this
thesis are reviewed, i.e., the applications of markerless vision-based teleoperation and
neural network design of data-driven 3D human hand pose estimation.

• Chapter 3 describes the collection pipeline of pairwise human-robot hand datasets. Com-
parison of human-robot kinematic structure, selection of the human hand pose dataset,
generation of robotic ground truth by an efficient optimized mapping method are presented
in succession. The pairwise datasets are used for training vision-based neural network
models for robotic hand teleoperation. The related publication is [93].

• Chapter 4 develops an effective end-to-end vision-based teleoperation model, TeachNet
(also published in [93]). The design concept, network structure, and loss functions
are introduced. Then comprehensive network evaluation and imitation experiments are
presented to verify the effectiveness and applicability of the end-to-end learning scheme
in vision-based teleoperation. Finally, some remarks on network limitations and robot
experiments conclude this chapter.
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Figure 1.3 – The structure of this thesis.

• Chapter 5 continues with the other novel design of the end-to-end vision teleoperation
model, Transteleop (published in [91]). The main focus of Transteleop is to adapt the
idea of image-to-image translation for extracting latent pose representations. Except for
baseline comparison, the visualization of synthesized hand images and viewpoint analysis
are investigated as well.

• Chapter 6 elaborates on a hand-arm teleoperation system using Transteleop and a IMU-
based arm control. Teleoperation for a robot arm and integrating the separate hand-arm
control into an integral system are successfully achieved. Verification of this system is
demonstrated in several complex manipulation tasks that go beyond simple pick-and-place
operations (also published in [91]).

• Chapter 7 establishes a novel hand-arm teleoperation system with active vision, which
intends to capture the human hand from the best viewpoint and at an optimal distance.
Regarding the system integration, hardware preparation, software communication, and the
control strategies of the robot arm performing active vision are analyzed. This chapter
ends with various manipulation tasks on real robots, e.g., pouring and fader sliding
(submitted [90]).

• Chapter 8 extends the proposed vision-based teleoperation models to compliant teleop-
eration using an adaptive control strategy. The performance of compliant teleoperation
is validated through multiple simulation and real-world robot experiments (published
in [176], and submitted [174]).

• Chapter 9 conveys the scientific contributions and the conclusion remarks of this thesis.
It also presents the limitations of this thesis and gives an outlook on upcoming future
research.
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Chapter 2

State of the Art

The term teleoperation contains a broad field of techniques and hardware incorporated to
receive and discern reliable decisions harnessing human cognition and creativity, and to achieve
effective robotic manipulation. In contrast to autonomous control or intelligent programming,
where a robot performs a task or motion without further guidance or instruction by the operator,
teleoperation systems require commands from the operator then manipulate the robots to fulfill
the commanded tasks. Robotic teleoperation systems conceptually consist of two sites: the local
and remote sites. The local site, or the operator site, comprises the human teleoperator and
multiple user-level interfaces used to measure or support the human’s movements and display
the real-time status at the remote site. The remote site comprises robots, supporting sensors, and
manipulated objects. Receiving the perception information from sensors and the commands
from the human, the robot then performs the manipulation tasks.

In this chapter, an overview of robotic teleoperation is studied from a user perspective.
Section 2.1 presents user-level interfaces used at the local site and their applicability, including
contacting/wearable interfaces and markerless interfaces. Then, section 2.2 depicts how to map
human motions to the robot by two human-intention estimation methods and the corresponding
mapping methods. Section 2.3 enumerates three control architectures of teleoperation systems
based on how much the robot autonomy is involved in the teleoperation process.

Since this thesis highlights teleoperating an anthropomorphic robotic hand and markerless
vision-based teleoperation is well tailored to this task, data-driven 3D hand pose estimation
approaches used for the vision-based teleoperation are next discussed here. In section 2.4, after
an analysis of the challenges in hand pose estimation, the state-of-the-art hand pose datasets,
input modalities, network architectures, and evaluation metrics are presented.

In summary, this chapter focuses on the state-of-the-art of robotic teleoperation and data-driven
3D hand pose estimation. Fig. 2.1 gives an overview of this chapter.
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Contacting/Wearable interfaces

Markerless interfaces

joint-to-joint mapping

point-to-point mapping

pose mapping

Robotic hand

Robotic arm

Hand pose estimation

Hand pose recognition

Mapping

Direct control Shared control Supervisory control

Figure 2.1 – Overview of state-of-the-art of robotic teleoperation and data-driven 3D hand pose
estimation. The teleoperation system first obtains human intention using specific interfaces at the
local site (contacting/wearable interfaces and markerless interfaces), then employs a suitable mapping
method (hand pose estimation and hand pose recognition) to generate robot commands based on three
control architectures (direct control, shared control and supervisory control). The data-driven hand
pose estimation methods will be investigated extensively because of their teleoperation applications
to dexterous robot hands.

2.1 User-Level Interfaces at the Local Site
In general, the teleoperation interfaces at the local site are used to measure human movements,
generate control commands, or render remote feedback. Based on whether the human body
contacts the interfaces, the local site’s user-level interfaces fall into two main categories: contact-
ing/wearable interfaces and markerless interfaces.

2.1.1 Contacting/Wearable Interfaces in Teleoperation
Robotic teleoperation has usually been implemented through different types of contacting/wear-
able user-level interfaces such as joystick, data glove, Inertial and Magnetic Measurement
Unit (IMU), Electromyography (EMG) signal sensors, Electroencephalography (EEG) devices,
immersive devices, and up-and-coming haptic devices. Unlike other interfaces used to sense
human motions, the haptic devices assist the users in perceiving the tactile feedback from the
robot side [14].

From simple to force-reflection joysticks, they are manipulated by humans and generate
position, velocity, or acceleration commands for robots that have limited motion types, such
as unmanned aerial vehicles and mobile bases [31]. Data gloves based on marker detection,
bending sensors, or other technologies are the traditional input devices for dexterous hand
teleoperation. Marker-based data gloves are assembled with several markers, such as LEDs
(Light-emitting diodes), in a well-designed pattern on them, so that the human motion can be
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recognized and captured by a sophisticated motion capture system [W29]. Motion capture
systems provide accurate tracking data but can be expensive, and the correspondence problem
between markers on the fingers and cameras still needs to be solved. Cerulo et al. [24] controlled
an under-actuated anthropomorphic hand by marker-based hand tracking and motion mapping
from the human hand to the robot hand. The marker-based hand tracking was established
on OptiTrack motion tracking technology [W2] and a dynamic labeling algorithm that is
robust to noise, outliers, and loss of markers. Another typical motion capture data glove is
CyberGlove II [W8], which measures the 22 joint angles of the user’s hand based on resistive
bending sensors. Bernardino et al. [12] teleoperated the Shadow dexterous hand [W34] and
the iCub hand [W38] by the CyberGlove II and recorded robot hand motions when the robots
grasped a series of objects using different precision grasp types. However, the data gloves are
customized for one human hand. Hence teleoperation based on data gloves cannot be easily
generalized between users.

IMU-, EMG-based wearable interfaces are worn on human arms or human bodies and
required for good calibration. IMU-based interfaces are electronic devices consisting of an
accelerometer, gyroscope, and sometimes magnetometer, and these devices measure the angular
velocity and acceleration of human motions [46]. The major disadvantage of IMUs is that the
devices are subject to accumulated errors over time. EMG-based interfaces detect electrical
activities generated by muscle cells, and the recorded signals can be used to analyze the
human movements [135]. However, EMG signals are only from superficial muscles and can
be influenced by electrode placements and the users’ age, healthiness, willingness and body
fat, etc. Due to the limitations of IMU and EMG technologies, these two interfaces are limited
to generating accurate control commands for high-DoF robot hands. In practice, IMU- and
EMG-based devices are convenient to set up and efficient in controlling the manipulators
with multiple degrees of freedom. Fang et al. [46] established a multimodal fusion algorithm
of a self-designed IMU device to deduce the orientations and positions of the human arm
and hand. The robot experiments demonstrated an efficient arm control of the UR5 robot
and the SCHUNK arm but a shallow grasping and releasing task of the Barrett robotic hand.
Zhang et al. [178] presented an intuitive teleoperation system using an EMG armband for
controlling a pre-prosthetic hand and using IMU sensors for operating a UR10 arm. However,
the forearm’s EMG signals are decoded to classify only two hand motions (open and grasp),
so the multi-fingered hand is merely capable of achieving simple grasping tasks. Though
some work employs EMG signals, IMU data, and marker tracking to control a robot hand or
a hand-arm system, the expected dexterous manipulation has not been achieved yet [41]. In
summary, regarding dexterous teleoperation, glove-based interfaces must be customized and
easily obstruct natural joint motions, and IMU-based and EMG-based methods provide less
versatility and dexterity. On the other hand, regarding the teleoperation of a multiple-DoF
robotic arm and low-DoF, wearable interfaces are convenient to implement and efficient.

Teleoperation using Virtual Reality (VR), Mixed Reality (MR), or Augmented Reality (AR)
interfaces has been gaining considerable attention in robotics [159] due to the benefits of
immersive interactions and enhanced perceptual information. The holographic interfaces are
usually head-mounted and equipped with multiple sensors, e.g., cameras, depth sensors, IMU,
and microphones. For that reason, the holographic interfaces usually support hand tracking, eye
tracking, and speech recognition except for 3D environment reconstruction. Zhang et al. [179]
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Figure 2.2 – Hardware components of the tactile telerobot. The human teleoperates two UR10 arms
mounted with each Shadow hand. A BioTac sensor from SynTouch is installed on each finger of both
Shadow hands. The HaptX gloves provide realistic force feedback mapped from the BioTac sensor.
The Vive trackers are used to track human wrist poses [52]. Reprinted Image: ©2018 IEEE.

used a Vive VR headset and two hand controllers with 6D pose tracking to teleoperate a PR2
robot while recording the states or actions of the robot during the execution. Then the collected
data is used to derive a learning policy that automatically reproduces or even generalizes the
demonstrated behaviors. With a Microsoft HoloLens, Krupke et al. [83] introduced an MR-based
human-robot collaboration system where the operator can intuitively see the co-located robot
in its real physical surroundings and visual cues about planned trajectories. Once the human
agrees with the planned trajectories observed from the HoloLens, the robot will autonomously
complete the whole process of a pick-and-place task. Furthermore, there is some work using
haptic interfaces and augmented reality simultaneously in teleoperation applications [60, 32],
providing the user with an immersive perception when remotely controlling the robot system to
carry out contact-rich, dexterous manipulation tasks [73, 72]. In 2019, one of the most advanced
teleoperation systems, the bimanual tactile telerobot (see Fig. 2.2) built by the Shadow Robot
Company [W35], HaptX inc [W7], and SynTouch Inc [W37], showed expressive performances
on several in-hand manipulations tasks, e.g., Rubik cube rotation, and VR applications [52].
Through the use and tests of this telerobot system, the researchers concluded that tactile feedback
or “getting a feel” for a task makes the task more accessible, intuitive, and fluid for the operators.
However, the benefits of haptic feedback by the HaptX glove come with a heightened cost and
additional bulk to the user.
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2.1.2 Markerless Interfaces in Teleoperation

Compared to wearable interfaces, markerless interfaces have the advantages of allowing for
natural, unrestricted body motions and of being less invasive with different teleoperators.
Markerless vision-based teleoperation is suited to dexterous teleoperation, which requires
capturing all the essence of finger motions [80]. Low-cost RGBD cameras are widely used in
most markerless vision-based teleoperation methods.

Classic markerless vision-based teleoperation methods fall into two categories: model- and
appearance-based approaches. Model-based approaches provide continuous object poses, but
they are computationally costly and highly dependent on the availability of a multi-camera
system. [39] computed continuous 3D positions and orientations of thumb and index finger from
segmented images using a camera system. The end-effector position of the experimental robot
arm was mapped by a differential positioning method, and its orientation was in accordance
with the orientation formed by the thumb tip and index fingertip. Conversely, appearance-based
approaches identify a discrete number of hand poses typically included in the training set, and
these approaches are without high computational cost and hardware complexity. Romero [130]
classified human grasp types from a single RGB image by finding similar hand gestures in a large
database with grasp images and estimated the hand pose by the same grasp recognition module.
Then they mapped the human grasps to a discrete set of corresponding robot grasp classes
and implemented grasping experiments on a three-fingered Barrett hand and a five-fingered
ARMAR-IIIb hand.

With the rapid expansion of deep learning methods, leveraging image processing algorithms like
hand pose estimation or object segmentation is becoming a new trend in the robotic community.
In vision-based teleoperation, a lot of research is focused on the visual perception of human
bodies (e.g., human gesture classification or human hand pose estimation) by deep learning
methods, then starts to consider the robot control (e.g., specific motions or kinematic retargeting).
The kinematic retargeting takes the body detection results from visual perception algorithms and
generates the robot commands in joint space [5]. Michel et al. [105] provided a teleoperation
method for a NAO humanoid robot that tracked human body keypoints from markerless
visual observations then calculated the joint angles of the humanoid robot through inverse
kinematics. Antotsiou et al. [5] used a hierarchical hybrid hand pose estimator formulated on
spatial attention deep network and partial Particle Swarm Optimization (PSO) and proposed
a task-oriented retargeting method to achieve the teleoperation of an anthropomorphic hand.
However, all robot experiments were carried out in simulation. Similar to [59], they designed the
HandLocNet neural network to detect the hand in the RGB image and used a network called
HandPoseNet to accurately infer the three-dimensional position of the joints retrieving the full
hand pose. Recently, Handa et al. [63] collected a human hand pose dataset with hand poses
required for dexterous manipulation and trained a PointNet++ inspired hand pose estimation
model on a self-built dataset, which has rich hand postures relevant to dexterous manipulation.
Combining with a fingertip-prioritized kinematic retargeting method, they built a 23-DoF
hand-arm teleoperation system, DexPilot. This system achieved impressive results in dexterous
manipulation, e.g., block stacking, cup insertion, and showed the effectiveness of the markerless
vision-based teleoperation for highly-actuated hand-arm system (see Fig. 2.3). However, in this
setup, the robot workspace was fully determined by the human workspace.
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Figure 2.3 – The teleoperation examples of the DexPilot system. Six RGBD cameras observe the
human hand, and the robot system consists of a KUKA LBR iiwa7 robot and a Wonik Robotics
Allegro hand. This system enables teleoperation across a wide variety of tasks, e.g., pick and place,
cup inserting, concurrent two-cubes-picking, and money extracting [63]. Reprinted Image: ©2020
IEEE.

The methods mentioned above do not consider the physical constraints and joint limits
of the robots in the pose estimation stage, so they are inclined to generate poses that the
robot cannot reach. In addition, these methods strongly depend on the accuracy of the hand
pose estimation or the classification, with time-consuming post-processing. In contrast,
an end-to-end regression model that takes human hand images as inputs and predicts the
robot joint commands is an alternative choice. The end-to-end learning refers to training
rather deep and complex neural networks by applying gradient descent to the system as a
whole [15]. In our case, the end-to-end learning bypasses the intermediate retargeting process
and directly targets the robot system. Therefore, the physical constraints of the robot are
directly considered in the target space. Besides that, the end-to-end model is more intuitive for
novice demonstrators and saves post-processing time in practice. Fang et al. [45] proposed a
human-robot posture-consistent-based end-to-end neural network for teleoperating a 7-DoF
Baxter arm. The network comprises three modules: skeleton point estimation, robot arm posture
estimation, and robot joint angle generation. However, only simulated arm imitation experiments
were demonstrated. Until this thesis, the end-to-end deep learning structure has not been utilized
for a dexterous robot hand with multiple DoFs.

The other popular markerless interface is the microphone. Audio-based teleoperation is the most
intuitive manner and is commonly used in human-robot interaction applications [1]. Natural
language processing algorithms transfer human speeches to specific and discrete robot com-
mands. Usually, these robot commands only cover a small variety of tasks and are employed
on robots with high-level autonomy. Recently, the touchless haptic device STRATOS [W43],
which simulates the sense of touch by turning ultrasound into mid-air haptic textures, has been
released. The ultrasound waves are generated by multiple ultrasound speakers and coincide
in 3D space. With hand pose tracking technologies, the tracked human hand will feel a force
spot positioned by the coincided point. This combined touchless interface is envisioned to be
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used in many applications, such as future kiosks, braille reading, video games, and markerless
robotic teleoperation. Since current ultrasound speakers on STRATOS are displayed on one
plane, employing force on the human hand when the fingers are folded is unsolved. Moreover,
how to achieve point-to-point tactile mapping from the tactile sensors on the robot hand to the
coincided points generated by ultrasound waves is to be studied.

2.2 Human-Robot Motion Mapping
How to map human motions to a robot depends on the user-level interfaces, robot platforms, and
working scenarios. In this section, two issues are discussed: How to obtain human intentions
from the sensory data? Which mapping methods are commonly used to map human intentions to
the control commands? Human pose estimation and human pose recognition are two theoretical
solutions for obtaining human intention. These two methods and the corresponding mapping
methods are introduced in detail in the following two subsections.

2.2.1 Human Pose Estimation
Pose-estimation-based mapping methods receive the real-time human motion from the sensors
and generate continuous kinematic parameters (i.e., position of body keypoints, link orientation,
or joint angles) of the human body. Regarding wearable interfaces, such as data gloves, IMU-,
EMG-based wearable suits, usually, the human body status can be directly read from the sensors.
If users take a camera to capture their body or hand, pose estimation methods in computer vision
are needed to predict real-time poses. The state-of-the-art of data-driven vision-based hand pose
estimation methods are analyzed in section 2.4.

Conventional teleoperation mapping methods are divided into three main categories: joint-
to-joint mapping, point-to-point mapping, and pose mapping. In most cases, however, only
considering one type of mapping method is not enough [25]. For example, point-to-point
mapping for a dexterous robot hand neglects the position and orientation of the phalanges and
does not consider the special mechanical difference between the robot and the human.

Joint-to-joint mapping seeks to map the joint angles of a human body to those of a robot.
The mapping method decreases the effect of the link difference between the human and the
robot, and it is suitable for the cases where the human and the robot have similar kinematic
mechanisms. In terms of teleoperating a robotic hand, joint-to-joint mapping hardly enables the
robot to conduct in-hand manipulation and precision grasping. Kobayashi et al. [78] wore a
CyberGlove II glove to control the thumb and first finger of an anthropomorphic robot hand [79].
Later, they developed a teleoperation method that a target joint of a robot hand was controlled by
multiple human hand joints and corrected the sensor readings of the data glove by the generic
algorithm to reduce the structural difference between the robot and the operator’s finger [78].
Nevertheless, only grasping experiments by the thumb and first finger of an anthropomorphic
robot were presented.

Point-to-point mapping prioritizes the robot positions in the task space and expects the robot
to position the end-effectors at the same location that the human reaches. Regarding a robotic
hand, the end-effectors are the fingertips, so the point-to-point mapping is also called fingertip
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mapping. External devices can calculate the positions of human fingertips, then these positions
are converted to joint angles of the robot by calibration between the human hand and the robot
hand and inverse kinematics. For the multi-fingered hands which have less than five fingers, the
extra human fingers will be directly ignored. The fingertip mapping is suitable for precision
grasps [129]. However, when the length of the robot and the human fingers are not similar,
fingertip mapping easily causes weird finger poses and unsmooth control. An alternative to
fingertip mapping is virtual object mapping. The fingertips on the human hand define a virtual
sphere, whose motion and strain are imposed on the virtual sphere relative to the robotic hand
in the Cartesian space [57]. The virtual object mapping method can also be used to map
synergy from human to robotic hands with dissimilar kinematics [12]. However, it is limited to
manipulation applications using similar grasp types and regular-shaped objects.

Pose mapping tries to interpret the functions of human motion rather than to replicate end-effector
positions or joint angles [161]. In pose mapping, the human poses are usually associated with
predefined robot poses. Since the predefined robot poses are discrete, this mapping method is
widely applied to a task scenario that only needs a few commands. For instance, the robots
conduct repetitive tasks in constructed environments, or the humanoid robots are used for social
human-robot interaction. For robotic hand teleoperation, some work projects human poses
into a low-dimensional space based on human synergies to allow for continuous pose mapping.
Meeker et al. [103] proposed decomposing a hand shape into three basic vectors. They are how
wide the fingers are spread, how big the object can be grasped, and how curled the fingers are.
Under this decomposition principle, they project the human hand poses into this 3D teleoperation
subspace as an intermediary, then remap the teleoperation subsapce into the robot joint space.
However, this method requires that robot and the human to start from the same initial state. In
summary, the pose mapping is suitable for anthropomorphic and non-anthropomorphic robot
hands but has difficulty affecting posture recognition and dexterous manipulation.

2.2.2 Human Pose Recognition

Pose recognition is a classification problem, while pose estimation is a regression problem.
Pose recognition is somehow equivalent to pose mapping if only static and discrete poses are
considered. In pose-recognition-based mapping methods, a classifier is required. The classifier
gradually updates from single input to multiple sensing, from machine learning methods to
Convolutional Neural Networks (CNNs) [38]. Wolf et al. [162] classified sixteen hand gestures
by a multi-class support vector machine classifier. The input of the classifier is EMG and IMU
data acquired from the user’s hand and arm. Simao et al. [140] compared different commonly
used classifiers with proper data dimensionality reduction to achieve accurate gesture recognition
in real unstructured environments. Then the trained model was used to teleoperate a robot arm to
prepare a breakfast meal.

In general, pose recognition is a high-level representation, thus leading to a high-level control
strategy of the robots. On the one hand, pose-recognition-based mapping reduces the risk of
damaging the robot hand and decreases the mapping difficulty. On the other hand, discrete
commands imply that the robot cannot get continuous control. In dexterous robot hand
teleoperation, some researchers design a useful gesture set based on grasp taxonomies or
manipulation synergy to increase the manipulation capacity and generate high-quality robot
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commands. Higashi et al. [65] proposed a functionally divided manipulation synergy method,
which only applies synergy control to the fingers with the function of manipulation instead of to
those that are locking or supporting. In this way, the synergy-based control could generate robot
commands in low dimensions for achieving dexterous manipulation.

The human-robot motion mapping methods mentioned above do not include a robot teleoperated
by interfaces that can directly generate position, velocity, or acceleration commands for the
robots, e.g., control panels, joysticks, or keyboards. Hence, no specific mapping methods are
required here.

2.3 Control Architectures in Teleoperation
Depending on how much robot autonomy is involved in the teleoperation process, the control
architecture of teleoperation is divided into direct control, shared control, and supervisory
control [112]. An illustration of these three control architectures is shown in Fig. 2.4.

Direct control Shared control Supervisory control

Grasp the apple 
Open gripper

Close gripper

Grasp 
success?

Adjust 
end-effector

position

No

Open gripper

Close gripper

Sensory functions
Shared taskspace

Augmented feedback
Autocorrection

Local autonomy
Tele-sensor programming

Action template
Symbolic Planning

World Representation 

Figure 2.4 – Three control architectures in teleoperation. The texts in the blue rectangles are the
typical examples of operator commands in an apple grasping task.

Most teleoperation systems employ direct control, where the operator directly controls the
robot’s motion without any local autonomy. The control commands usually are position,
velocity, or acceleration, depending on the robot’s control mode. The position commands
for most robots could be generated by the mapping methods discussed in section 2.2.
Velocity and acceleration control are attractive when the local master and the remote robot
are fundamentally different kinematically or in their workspace. For example, the human
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(a) EDAN (b) Justin (c) HUG

Figure 2.5 – Different teleoperation control architectures in three robotic systems from DLR. (a)
an assistive robotic system EDAN; (b) a humanoid robot Justin used in household work and space
station (c) a bimanual haptic device HUG for telemanipulating the humanoid robot Justin. Reprinted
images: ©DLR, CC BY-NC-ND 3.0.

controls mobile robots, drones, or underwater robots. Acceleration control is less accurate
than velocity control since regulating a second-order system is harder than a first-order
system by humans. Usually, the velocity or acceleration commands may be proportional to
the input device, e.g., a spring joystick. The direct control is intuitive and guarantees the
safety of the robot system, but the continuous control requires a high workload of the teleoperator.

Unlike direct control, shared control inserts autonomous abilities, e.g., user intention detection,
possible safety guarantees, joint regulation, commands overlay, or autonomous motion correction
into the robot system. The slave can fine-tune its movements in the shared control framework
when the control commands are inaccurate or with large communication delays and limited
bandwidth. Dwivedi et al. [42] telemanipulated a robot arm to execute a whiteboard cleaning
task by shared control framework. The human wrist controlled the robot end-effector’s position,
and a compliance control was used to guarantee that the desired contact force would always be
maintained on the whiteboard surface. In [100], the autonomous obstacles avoidance of the
controlled mobile robots was achieved by artificial potential field developed on EMG signals of
the human arm and force feedback from the mobile platform. The shared control method enables
the human operator to telecontrol the robot motion and enables the robot to avoid obstacles
synchronously. With MR technologies, once the robot intended position is estimated, the users
could visualize the robot trajectories, then the robots move along the accepted trajectory in an
autonomous manner [173]. The robotic assistive system EDAN in Fig. 2.5(a) converts user
commands in a target-oriented manner, effectively reducing the number of coordinates that users
need to control in high-DoF tasks [W16]. A special implementation in shared control is virtual
fixtures. Virtual fixtures are usually virtual fields, barriers, or guidance that are superimposed
into the visual and haptic scene of the users. They provide the users with preknowledge of the
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task system and guide the robot to move along desired paths or through restricted regions. For
instance, an immersive telerobotics system with multimodal virtual fixtures was verified to
improve operator performance in a pick-and-place task, in which have multiple obstacles [82].

Supervisory control requires only high-level commands from the human and allows the robot
more autonomy and intelligence. The remote site continually sends summary information,
working status, or planned motions to the users, and it may close the control loop through
multiple sensors [138]. Supervisory control is quite useful in telerobotic systems with large
time delays of a few seconds or more, e.g., in space, and undersea applications. In this case,
a sophisticated predictive simulation system should be provided to emulate and predict the
remote system, including all sensory perception. Supervisory control requires that the robot has
the knowledge of the objects in the remote environment, the skills of symbolic and geometric
planning, and the ability of self-localization and navigation. The humanoid robot Justin (see
Fig. 2.5(b)) receives highly abstract commands and works under supervisory autonomy in
elderly care and space station scenarios [W20]. To allow Justin to understand the working
environment, researchers added numerous objects and action templates to the object database.
Given the object information, a hybrid framework was utilized to solve the task symbolically and
to find a suitable geometric solution using robot-specific planning modules. Then, an A-star path
planning algorithm was executed based on a 3D map of the indoor scene and particle-filter-based
indoor localization [156].

In addition, these three control strategies are often combined to get the most efficient and stable
control. For example, Tanwani et al. [152] presented a probabilistic formulation to recognize the
teleoperator intentions and subsequently assisted the teleoperator by time-independent shared
control and/or time-dependent supervisory control of the model. In pursuit of telepresence and
excellent task performance, bilateral control can be added into any of the control strategies
mentioned above [112]. A typical bilateral control system additionally requires tactile sensors
sensing the contacting in the remote environment and devices representing force feedback
(e.g., haptic device, audio display) in the local site. Whilst the additional force feedback
promotes operators to make more accurate decisions, the multiple feedback loop and potential
communication delay make the control architecture particularly challenging [10]. For example,
the haptic input system HUG [W18] is designed to teleoperate EDAN or Justin system and
allows for different control strategies. HUG is composed of two DLR robot arms, an optical
tracking system, a pair of data gloves, a head-mounted display, and a multi-layer security
architecture (see Fig. 2.5(c)). A force-torque sensor is integrated at the end-effector of each
robot arm and a haptic device is attached at the human hand. The setup aims to enable the user to
perceive the remote environment with his/her own scenes (visual, audio, haptic) on an immersive
and transparent level.

17



CHAPTER 2. STATE OF THE ART

2.4 Data-driven 3D Human Hand Pose Estimation
Hand pose estimation is a typically essential research topic in vision-based teleoperation, which
is also a well-studied topic in computer vision. Hand pose estimation is to estimate the full DoF
hand poses that target the kinematic parameters (i.e., joint angles, hand position, or orientation)
of the hand skeleton. The vision-based methods take a single image frame or multiple image
frames as inputs, then estimate the high dimensional hand poses. Fig. 2.6 provides a graphical
comparison among three similar fields to hand pose estimation. Hand pose recognition focus on
classifying a set of discrete hand gestures; hand detection aims to locate the hand by a point
on the hand or a bounding box area of the hand; hand segmentation algorithms are used to
segment the human hand from the background, and it always serves as an initial step of hand
pose estimation or recognition.

ROCK

Hand pose estimation Hand pose recognition Hand pose detection Hand pose segmentation

Figure 2.6 – Comparison of hand pose estimation and its similar fields. Adapted from [88].

Compared with human body pose estimation, hand pose estimation investigates human fingers,
which are more likely to be occluded in a local area and are more flexible to construct various
gestures than human bodies. Fig. 2.7 shows the 2D human body keypoints predicted by the state-
of-the-art 2D human pose estimation model Openpose [21] and the 3D pose results calculated
by the 2D keypoints prediction and the filtered depth information from an RGBD camera. The
Openpose model performs well in 2D space, but simply using filtered depth information to
construct 3D skeleton is not precise. Similarly, while 2D hand pose estimation methods estimate
the poses of the hand joints relative to the image coordinate, 3D hand pose estimation is more
challenging and predicts the hand keypoints in a 3D world coordinate. And 3D hand pose
estimation is more piratical in interactive games, animation, VR, and robotics. There are some
challenges that remain in 3D hand pose estimation [43]:

• Self-occlusion. As the human hand is quite flexible, its projection results in a variety of
shapes with a lot of self-occlusions.

• Similar appearance. The five fingers have similar appearances, which causes regression
difficulties in distinguishing them.

• Hand segmentation. When the hand is manipulating an object or multiple hands in the
scene, the hand segmentation and hand pose estimation are intractable.

• Real-time performance. A human hand’s translational and rotational speeds could be up to
5 m/s, and 300 ◦/s. However, the frequency of a standard depth camera is 30-60 Hz. Apart
from that, it is challenging for many algorithms to achieve a 30 FPS estimation speed.
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Figure 2.7 – 2D human pose estimation by Openpose and 3D skeleton estimation calculated by the
2D keypoints and the filtered distance information from an RGBD camera.

Since one algorithm hardly satisfies all challenges simultaneously, researchers always focus on
one particular aspect in hand pose estimation. In this thesis, all discussed methods work under
some restrictive assumptions: only one hand is involved and does not interact with any objects;
the hand is observed from one viewpoint.

Hand pose estimation methods can be categorized into model-based estimation and data-driven
estimation [26]. Model-based methods formulate an optimization problem whose cost function
measures the distance between the observed hands and the hands constructed by a generative
hand model [117]. These methods start from a selected human hand model with initialized
kinematic parameters. Then the hand features (e.g., edges, silhouettes, and optical flow)
are extracted from actual human hand images and the generated hands by feature detection
algorithms, e.g., scale-invariant feature transform [99]. The next step is to measure the
similarity of these two hand features based on a well-defined objective function. At last,
the optimal kinematic parameters of the hand model which fit the hand in the images are
found by optimization algorithms, e.g., PSO [75] and Iterative Closest Point (ICP) [13]. In
a word, model-based methods resolve an optimal problem by hand-crafted initialization and
iterative search. The initialization parameters are typically the solution from the previous frame.
Therefore, model-based methods easily cause pose-drifting issues owing to the accumulated
estimation errors along the running process.

In recent years, data-driven estimation has become dominant with the development of computing
techniques and the rise of deep learning. This thesis focuses on data-driven hand pose estimation
methods using CNN. Data-driven methods learn a direct mapping from the hand images to
the target parameter space by a discriminative classifier or regression model based on multiple
annotated hand poses. Apart from the network architecture, the quantity and diversity of the
training datasets also determine the quality of discriminative models. This is due to the fact
of supervised learning. Even though data-driven methods avoid pose-drifting problems, a new
challenge regarding annotation also arises in this research field. These annotation difficulties
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cause research on synthesized hand datasets and weakly supervised learning in hand pose
estimation [35].

• Annotation difficulties. Supervised learning relies on many labeled datasets, but annotating
human hand poses is a tedious and time-consuming process. To get accurate positions of
human hands, an expensive motion tracking system or a multi-camera system is required,
and sophisticated computation operations are required to annotate the position of the hand
keypoints.

In subsection 2.4.1, several state-of-the-art datasets are listed and compared. Then the following
two subsections introduce data-driven hand pose estimation algorithms from the aspects of input,
network structure, and output. In the end, the evaluation metrics of hand pose estimation are
discussed in subsection 2.4.4.

2.4.1 Human Hand Pose Datasets
Many human hand pose datasets have been proposed for benchmarking hand pose estimation.
The datasets usually provide the depth images or the RGB images of the human hand
and the annotated 3D keypoints of hand joints by multiple subjects. They differ in scale,
annotation methods, annotation accuracy, articulation, viewpoints, and occluded objects. The
benchmark comparison of the existing datasets is listed in Table 2.1. With the development of
technology and research in this field, the hand pose datasets tend to become larger, more precise,
more complex (with different backgrounds, illumination, viewpoints), and generated by full
automation. Apparently, the depth source is more popular than the RGB image as it has the
additional dimension of distance information and has good resistance to color and illumination
change in the scene. The commonly used commercial depth sensors are Microsoft Kinect [W10]
and Intel RealSense camera [W9]. Meantime, the procedure of dataset collection and the
corresponding automatic annotation methods are gradually open-sourced. Moreover, there has
been increasing attention on synthetic datasets because of the application of generative models
such as Generative Adversarial Network (GAN) [61] and the realistic rendering of the simulators.

Dataset source Annotation No. frames No. joints No. subjects Viewpoint Year
Dexter 1 [146] real RGBD manual 2,137 5 1 3rd 2013
MSRA14 [126] real depth manual 2,400 21 6 3rd 2014

ICVL [151] real depth track + refine 17,604 16 10 3rd 2014
NYU [153] real depth track + refine 81,009 36 2 3rd 2014

MSRA15 [148] real depth track + refin 76,375 21 9 3rd 2015
HandNet [158] real depth automatic 212,928 6 10 3rd 2015
Graz16 [114] real depth semi-automatic 2,166 21 6 ego 2016

Simon et al. [141] real RGB manual 15K 21 10 full 2017
BigHand2.2M [172] real depth automatic 2.2M 21 10 full 2017
InterHand2.6M [109] real RGB semi-automatic 2.6M 21 27 3rd 2020

RHP [184] Synth. RGBD synth. 44K 21 20 3rd 2017
Mueller et al. [111] Synth. depth synth. 80K 16 5 full 2019

Table 2.1 – Comparison of existing 3D hand pose estimation datasets
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2.4.2 Input Modality in Hand Pose Estimation
Traditionally, using a depth map to infer hand keypoint positions is the main approach in hand
pose estimation, as a depth map represents a 2.5D surface information embedded in 3D space
and is insensitive to shadow and illumination. The promotion of depth-map-based methods also
benefits from the emergence of cheap commercial depth cameras, e.g., Kinect. A classical work
using depth inputs is DeepPrior [116], which led to the trend of 2D CNN-based methods in hand
pose estimation.

RGB images make the model easily generalized to many implementation scenarios, but
extracting 3D information from a pure 2D input is a highly nonlinear mapping, which causes
difficulty in the learning procedure. The first learning-based system to estimate pose from
single RGB images was proposed by Zimmermann et al. [184]. This system first localized hand
keypoints in the 2D images, then derived the 3D hand poses within a canonical coordinate frame,
and additionally estimated the transformation into the canonical coordinate frame. Although the
system shows almost competitive performance to methods using depth maps, its accuracy is
limited by the lack of large-scale datasets.

Since depth images are intrinsically 3D data, some work converts 2D depth images into 3D
voxel or point clouds in order to overcome the perspective distortion-invariant estimation and
avoid nonlinear mapping. Moon et al. [108] firstly cast the hand pose estimation problem into a
voxel-to-voxel prediction using a 3D CNN called V2V-PoseNet. Ge et al. [55] proposed Hand
PointNet, which takes normalized point clouds as input and regresses the hand keypoints in a
low dimension by the PointNet-based network model [125].

Depth image RGB image Pointclouds Voxel

Figure 2.8 – Common four input modalities in 3D hand pose estimation.

The common four input modalities in hand pose estimation are exampled in Fig. 2.8. Generally,
RGB-based methods perform worse than depth-based methods. Besides, the 3D volumetric
representations outperform the depth map because they better exploit the 3D spatial information.
However, models using 3D inputs take a longer inference time because the network structure
is generally more complex. So far, only algorithms using one modality as the network input
have been reported; ones with multiple modalities have not been discussed yet. Inspired by
multimodal learning, Kazakos et al. [74] proposed a double-stream learning architecture for hand
pose estimation. The two streams took a depth image and an RGB image, respectively, and are
trained in parallel. The separate training features were fused after the last convolutional layer.
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However, the results suggested that the double-stream network performs similarly with a network
trained only with depth images. Later, other work explored the pose-related latent space from
different modalities by Variational Autoencoder (VAE) networks and proved the performance
improvement brought by multiple modalities, e.g., hand skeletons, heatmaps, and segmentation
masks [145, 168]. For example, hand skeletons are an easy and intuitive way of manipulating
data entries [9]. Heatmaps of the 2D hand key points on the RGB images are chosen as an
additional modality to promote convergence of the RGB encoder, since the heatmaps are closely
related to activation areas on the RGB images [168].

Hand Segmentation

The input of most hand pose estimation models is a cropped and clean image or a 3D representa-
tion containing a bare human hand with specific gestures. Therefore, hand segmentation is an
indispensable preprocessing step before the hand pose estimation. To simplify the segmentation
task, there is a lot of work extracting a fixed-size hand cube centered on the mass center in
the depth image, assuming the hand is the closest object to the camera [116]. However, many
research projects developed a hand detector or a per-pixel semantic segmentation model by
machine learning or deep learning methods. Tompson et al. [153] classified each pixel in a
depth image as belonging to a hand or background by training a randomized decision forest
(RDF) model. As object detection and semantic segmentation are popularly implemented on
RGB images, some work uses RGB images to capture the hand region then feeds the obtained
depth images into the training model. Panteleris et al. [119] adapted a hand detector from the
YOLO (You Only Look Once) model [127], which is a state-of-the-art real-time object detector.
Derived from well-known semantic segmentation models such as SegNet [8], [37] and [184]
trained pixel-wise hand segmentation networks on human hand datasets.

2.4.3 Network Structure in 3D Hand Pose Estimation
Regression-based Methods and Detection-based Methods

According to the representation of the output pose, the 3D hand pose estimation methods consist
of regression- and detection-based methods. Regression-based methods directly map the depth
image to the joint locations or the joint angles of a hand model, while detection-based methods
give the probability density map for each joint.

The regression-based method DeepPrior [116] extracted a prior knowledge of hand models by
designing a lower-dimensional bottleneck in the last layer, significantly improving the joint esti-
mation accuracy. A follow-up work is DeepPrior++ [113], which introduced ResNet [64] layers
into the model, conducted data augmentation and better initial hand localization. The DeepPrior
and DeepPrior++ models are comparable baselines in the hand pose estimation field. The
architecture of DeepPrior++ model is shown in Fig. 2.9. Region ensemble network (REN) [62]
is a tree-structured model taking depth images as inputs and consisting of a CNN trunk and five
ensemble branches. The features from five regional branches are concatenated and used to regress
the 3D coordinates of each hand keypoint. In the spirit of ensemble learning to improve the
generalization ability, an anchor-based regression network for hand pose estimation from a single
depth image was proposed in [166]. The densely sampled anchor points were trained towards
a certain joint with different weights from different viewpoints and distances by an anchor
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Figure 2.9 – Network architecture of the DeepPrior++ model. conv means a convolutional layer, FC
denotes a fully-connected layer. N is the number of joints. The numbers in the convolutional layers
are the number of filters and the filter size. The numbers in the FC layers are the number of neurons.
The last layer computes the pose prior in a lower-dimensional space. Adapted from [113].

proposal network. As a result, the joint position is the aggregation of the outputs of all anchor
points. Aside from the novel anchor-to-joint regression, the other highlight in this work is that
the outputs are not the 3D positions of joints but a separate in-plain position and depth estimation.

Early work on detection-based methods firstly detected the joint positions in the 2D plane based
on estimated 2D heatmaps then translated them into 3D space by complex optimization-based
post-processing [153]. With the development of 3D CNNs, one-to-one mapping from a 3D
input (e.g., point clouds) to a 3D output (e.g., 3D heatmap) is possible and allows to more
accurately reconstruct the hand shape. In [56], point-to-point regression directly employed
the 3D point clouds to a stacked hierarchical PointNet and produced point-wise estimations,
i.e., heatmap, and unit vector fields on the 3D point clouds. The point-wise estimation manifests
the proximity and direction of every point in the point clouds to the hand joint. An effective
and powerful detection-based method is V2V-PoseNet [108]. It learns a one-to-one mapping
that uses a 3D voxelized grid and estimates the per-voxel likelihood for each keypoint. Later,
Malik et al. [102] integrated the V2V-PoseNet model into a novel 3D CNN architecture, which
simultaneously estimates two different representations of 3D hand shape and 3D pose from a
voxelized depth map. The two shape representations are voxelized grid and hand surface with
hand mesh topology and number of vertices.

In general, detection-based methods outperform regression-based ones, but detection-based
methods have a poor trade-off between accuracy and efficiency because the networks used for
producing a probability density map for each joint are heavy-weighted. Therefore, most real-time
hand pose estimation methods are regression-based.

Deep Generative Methods

Deep generative models (DGMs) are neural networks which are trained to represent complicated,
high-dimensional probability distributions into low-dimensional hidden layers in a supervised
manner or unsupervised manner [133]. The DGMs are often employed to estimate the likelihood
of each observation and generate new samples from the underlying distribution. The two most
commonly used models are VAE and GAN. Taking advantage of these features of DGMs, some
hand pose estimation work explores latent hand poses through multiple modalities or synthesizes
realistic hand images.
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Figure 2.10 – Schematic diagrams of augmented skeleton space transfer for depth-based hand pose
estimation. (a) indicates the paired training set P and unpaired training set U. (a) also shows that
manipulating skeletons is easier than manipulating depth maps. (b) and (c) show the training and
testing flowcharts. HPDX and HPDY mean the depth hand pose discriminator and the skeleton hand
pose discriminator, respectively [9]. Reprinted image: ©2018 IEEE.

The VAE-based framework developed on multiple modalities has been implemented in
hand pose estimation. Spurr et al. [145] attempted to create a unified latent space for hand
poses from multiple modalities, e.g., RGB images, 2D keypoint detections. They suggested
a VAE-based deep neural network, which jointly optimizes the resulting crossmodal KL
divergence (Kullback–Leibler divergence) and the posterior reconstruction objective across
multiple modalities. However, its alternating training strategy from different modalities causes a
slow convergence speed and tends to fluctuate as data is extracted from multiple modalities.
Then, Yang et al. [168] developed a novel VAE-based framework, which aligns the pose latent
space from individual modalities and leverages other modalities as weak labels to improve
RGB-based hand pose estimation. Instead of training all modalities in one shared latent space,
Yang et al.derived different loss functions for diverse modalities (point clouds and heatmaps)
and presented two different ways to align their associated hand latent spaces. Experiments have
shown that the resulting latent representation allows for high-quality hand pose estimation and
realistic construction of hand point clouds from monocular RGB images.

The GAN-based models usually come together with synthesized datasets. To increase the realism
of synthetic images, Mueller et al. [110] translated synthetic hand images to “real” images by a
novel geometrically consistent GAN trained on unpaired hand images. Here, the GAN-based
model does not participate in the pose estimation part. Baek et al. [9] built new database entries
by synthesizing unseen human hands in the skeleton space because, unlike depth images, hand
skeletons vary slightly with respect to mild variations in viewpoints and shapes. There are three
network modules in this scheme, hand pose estimation (HPE), hand pose generator (HPG), and
hand pose discriminator (HPD). Fig. 2.10 shows the schematic diagrams of this work. The
HPG module reconstructs depth images from the skeleton information. The HPD module is a
GAN-based framework that distinguishes real depth images from those synthesized by the HPG.
The three modules were combined and jointly trained, which enabled the automatic transfer of

24



2.4. DATA-DRIVEN 3D HUMAN HAND POSE ESTIMATION

RNN_T

RNN_I

RNN_M

RNN_R

RNN_L

Palm

Thumb

Index

Middle

Ring

Little

Encoder Regression SubNet

Residual block Global pooling Fully-connected ConcatenationConvolution

Depth Image

3D joints

0f

1f

2f

3f

4f

5f

gJ

gL

RNN-based 

regression block

0J

0L

Figure 2.11 – The overall architecture of the HCRNN model, which is inspired by the spatial
dependencies and sequential constraints between adjacent joints in one finger [170]. Reprinted image:
©2020 IEEE.

the augmented skeletons to depth images by imposing the consistency over existing datasets with
pairwise skeleton and depth images and the self-consistency over unpaired augmented skeletons.

Hierarchical and Structured Methods

There are some network architectures that fully utilize the structural properties of hands,
e.g., a hand has five fingers, the joints in one finger are correlated [62]. Some network models
decomposed the whole hand pose estimation task into several hand-part-related sub-tasks.
Therefore, these models tended to have a wider structure instead of a deeper structure. To
understand the functional importance of different fingers, Zhou et al. [181] presented a hand
branch ensemble (HBE) network, which handles the thumb, the index finger, and other fingers
separately by three branches. The hierarchical CroosInfoNet model [40] made use of a multi-task
information sharing mechanism and divided the hand pose estimation task into a palm pose
estimation sub-task, and a finger pose estimation sub-task. Two sub-tasks were trained in two
branches and a two-branch cross-connection structure was used to enhance the sub-task features
effectively. Yoo et al. [170] proposed a hierarchically structured Recurrent Convolutional Neural
Network (RCNN) (HCRNN) that estimates the 3D position of the palm and joints on five
fingers by six parallel branches (see Fig. 2.11). The HCRNN model is inspired by the spatial
dependencies and sequential constraints between adjacent joints in one finger. Therefore, a
RCNN structure is chosen to handle the sequential features of the joints in a finger.
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The above methods are still common 2D CNNs, which do not consider the input from a spatial
viewpoint. In recent years, several methods have embedded kinematic correlations of human
hands to ensure the spatial validity of the 3D structures based on graph convolution networks
(GCNs) [77], which generalize CNNs to graph-structured data. Formulating the connections
between hand joints as a 3D graph, graph convolution networks could learn the joint dependencies
and further augment the local feature representations. In [18], a spatial-temporal graph on
consecutive skeleton sequences of the human body or human hand was constructed and a
hierarchical GCN-based method was designed to process and consolidate features across scales
effectively. Later, Fang et al. [47] proposed a GCN-based joint graph reasoning module to
incorporate geometric dependencies of hands explicitly. Three different graph structures (skeleton
graph, feature similarity, and parameterized matrix) were used to construct the human hand, and
all structures showed a similar estimation accuracy in tests.

2.4.4 Evaluation Metrics
This subsection describes how to assess whether a human pose estimation method is accurate
or not. Almost all state-of-the-art human pose estimation algorithms are evaluated by two
quantitative evaluation metrics:

1. the average Euclidean distance for all joints between the predicted 3D joint location and
ground truth annotation,

2. the fraction of test samples whose predicted joint errors are below a given maximum
distance from ground truth annotation.

The first metric reflects the average estimation error over all joints, and the second metric
reflects the robustness of the model to outlier joints. The second metric is generally regarded
as challenging, since a single outlier joint deteriorates the entire hand pose. Here, these two
metrics assume that the outputs of the hand pose estimation algorithms are 3D positions of hand
keypoints. If the outputs are the hand joint angles, the evaluation metrics should update to

3. the average joint angle error for all joints between the predicted joint angles and ground
truth annotation,

4. the fraction of test samples whose predicted angle errors are below a given maximum
angle threshold from ground truth annotation.

Further, in some survey works or the HANDS19 Challenge [W27], the models are evaluated by
these two metrics (1 and 2) on several different well-designed test datasets. For instance, the
samples in the test datasets are apportioned whether they have the same hand shape, viewpoints,
or articulations presented in the training dataset. These new metrics provide comprehensive
insights into the robustness of the models.
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2.5 Discussion
This chapter presents the fundamental knowledge and principles required for designing a
dexterous hand-arm teleoperation system through the survey of user-level interfaces, mapping
methods, and control strategies in teleoperation. Teleoperation using wearable/contacting
interfaces dominates in the research field, whereas markerless vision-based methods gradually
show more potential for controlling dexterous robotic hands. With the premise of good real-time
performance, human pose estimation is a good choice to obtain continuous control commands
or human intentions from the sensory data. In terms of the multi-DoF robot arm, controlling
its end-effector so that it moves to the correct position by point-to-point mapping is sufficient
to fulfill most manipulation tasks. Regarding the multi-fingered robot hand, the joint-to-joint
mapping would be a straightforward solution to power grasp, while point-to-point mapping
would be suitable for dexterous manipulation and precision grasps. Therefore, we would
expect the combination of markerless vision-based teleoperation, human pose estimation, and
point-to-point mapping to yield a teleoperation framework that takes the human hand images
as inputs and generates the joint angles commands for the robot. However, there is hardly
any work investigating robot hand pose mapping directly from the images of human hands
in an end-to-end manner. This thesis focuses on filling this gap and designing an end-to-end
vision-based CNN that generates continuous robot poses and provides an efficient teleoperation
experience.

The idea of end-to-end learning for robot teleoperation is highly relevant to human hand pose
estimation, only the outputs are different. An algorithm with a good trade-off between accuracy
and efficiency is appropriate in a teleoperation scenario. Data modality-wise, the depth map
is the most popular modality in hand poses. Methodology-wise, the regression-based neural
networks using 2D CNNs are usually more light-weighted than detection-based neural networks
or 3D CNNs. While some point-wise detection methods are computationally efficient, the
complex post-processing operations degrade the efficiency.

A remaining question of end-to-end learning for robot teleoperation is how to cross the domain
gap between the human hand and the robot hand and how to compensate for the kinematic
difference between them. Therefore, the robot hand pose estimation model should explore the
shared pose features from paired human hands and robot hands. Deep generative methods using
VAEs or GANs could be instructive to design the regression model. This thesis will leverage the
essence of the deep generative methods and design novel human hand pose estimation methods
to extract latent human-robot hand features based on depth inputs. Furthermore, this thesis will
evaluate the proposed methods on multiple evaluation metrics and diverse robot experiments for
more insights.
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Chapter 3

Pairwise Human-Robot Hand Dataset
Generation

In the previous chapter, the state-of-the-art teleoperation devices, mapping methods, and
control strategies were analyzed by category. Compared to a robot arm, teleoperation of
an anthropomorphic robotic hand to perform dexterous manipulation is more challenging.
Fortunately, markerless vision-based teleoperation has been proved to offer advantages for
dexterous teleoperation as it is versatile for different users and less invasive. Most existing
markerless vision-based teleoperation methods contain two steps: human hand pose estimation
followed by post-processing robot control. Instead, an end-to-end vision-based teleoperation
method that takes human hand images as inputs and estimates robot joint commands aims
directly at the robot system. In addition, the one-step end-to-end model is intuitive for novice
demonstrators and saves post-processing time in practice. Therefore, one aim of this thesis is to
design an efficient end-to-end vision-based robot hand pose estimation model, which can be
exploited in dexterous teleoperation.

Training an end-to-end neural network for this task depends on massive human-robot pairings of
images and ground truth. Consequently, this chapter explores an efficient mapping method that
generates the corresponding robot poses from human hand poses, thus collecting synchronized
hand pose data of the human and the robot. In general, the main challenges of hand-robot
mapping stem from the structural discrepancies between the human hand and the robotic hand.
Therefore, it is essential to firstly introduce and compare kinematic models of the human hand
and the robot hand (see section 3.1).

Based upon the fundamental understanding of the human hand and the robot hand, section 3.2
describes the novel criterion of generating human-robot pairing by using labeled human hand
depth images, obtaining the corresponding joint angles of the robot by an optimized kinematic
retargeting method, then recording robot images in simulation. Accordingly, section 3.3
describes and visualizes the BigHand2.2M dataset, which is chosen from the existing human
hand pose datasets. Then section 3.4 elaborates the retargeting methods and how to capture
the depth images of the robot hand. In the end, a technical summary, illustration of angle
distribution, and a few remaining issues about the self-built datasets are discussed in section 3.5.
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3.1 Hand Kinematic Model

3.1.1 Human Hand Kinematic Model
There is numerous work studying human hand kinematics in terms of object grasping [12, 122].
However, the human hand models are not entirely consistent in anatomical research. A typical
hand model defined in [28] is shown in Fig. 3.1(a). The Thumb (TH) comprises three joints
Interphalangeal (IP), Metacarpophalangeal (MCP), and Trapeziometacarpal (TMC) and three
phalanges (distal phalanges, proximal phalanges, and metacarpal). The other four fingers (First
Finger (FF), Middle Finger (MF), Ring Finger (RF), Little Finger (LF)) are characterized by
three joints (Distal Interphalangeal (DIP), Proximal Interphalangeal (PIP), MCP joints), and four
phalanges (the phalanges of the thumb plus the middle ones). The joint movement is considered
either flexion/extension motion or adduction/abduction motion. The TMC joint of the thumb
and the MCP joints of the other four fingers are characterized by two DoFs (flexion/extension
and adduction/abduction). A single DoF (flexion/extension) is designated to the MCP and IP
joints of the thumb and the PIP and DIP joints of the other fingers (Fig. 3.1(b)). In addition, the
Carpometacarpal (CMC) joint expresses the deformation of the palm. For example, when the
hand is grasping an apple, the abduction angle for the MCP joint is defined before the flexion
angle. Moreover, the wrist has two DoFs, pitch and yaw. In total, the hand model consists of 26
DoFs modeled by joints.

However, the CMC joints are usually ignored in the field of vision-based human hand pose
estimation, and a simplified version of the human hand model (Fig. 3.1(c)) is commonly used.
The thumb joints are modeled like those of the other fingers, which have PIP and DIP with a
single DoF and MCP joint with two DoFs. The 22-DoF human model used in this thesis is based
on this simplified version.

3.1.2 Shadow Dexterous Hand
The anthropomorphic robot hand used in this thesis is the motor-driven Shadow dexterous
hand [W34], shown in Fig. 3.2. The Shadow hand is designed to match the mechanism of an
adult hand, and the knuckles are staggered to provide comparable fingertip space to the human
hand. Each finger is the same length and has four joints: the distal, middle, proximal, and
metacarpal joints. The distal and middle joints of four fingers are designed to be coupled together
to reduce the number of actuators. The little finger and the thumb are provided with an extra
joint for modeling the CMC joint and holding objects. Moreover, the wrist has two DoFs, pitch
and yaw. Summed up, the Shadow hand shown in Fig. 3.2(a) has 24 movements but 20 DoFs. In
our setup, there are five Syntouch Biotac tactile sensors [W37] retrofitted at the fingertips of the
Shadow hand. Therefore, the last phalanx of each finger was replaced, and the first joint of each
finger is stiff. Consequently, the Shadow hand with BioTac sensors has 19 movements and 19
DoFs and its kinematic model is visualized in Fig. 3.2(c).

3.1.3 Comparison of Human Hand and Robot Hand
Even though the Shadow hand is the only robot hand on the market to have 24 movements and
20 DoFs and can grasp and manipulate a range of objects flexibly, there is still a big gap to
achieving agility equal to the human hand. First, the skeletal shape and the whole silhouette
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Figure 3.1 – (a) Human hand skeleton and (b) the kinematic chain of the 26-DoF human hand
proposed by [28]. (c) The common 22-DoF human hand model in hand pose estimation.

of the robot hand and the human hand are similar, but the link length and the articulation are
different. Second, the joint ranges also determine the anthropomorphism of the robot hand. The
motion ranges of the human hand model proposed by [28] and the Shadow hand are shown in
Table 3.1. The data are obtained from [W3] and [28]. As joints J1 through J4 of four Shadow
fingers are exactly the same and those of human fingers are similar, only TH, FF, and LF fingers
are investigated. Generally, the human hand joints have wider ranges than those of the robot.
The distinct difference concerns the articulation of the thumb, which is the essential finger for
dexterous manipulation. The first and second joints of the human thumb can still have small
abduction/adduction motion. Apart from the kinematic model and the motion range, note that
the Shadow hand used in this work has fixed J1 (cannot move between 0◦ and 90◦ any more)
for all fingers due to the BioTac sensor. This installation increases the difficulty of accurately
mapping the human hand to the robot hand.
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Figure 3.2 – (a) The 20-DoF motor-driven Shadow dexterous hand with 24 movements. Reprinted
image courtesy of Shadow Robot Company [W34]. (b) The 19-DoF motor-driven Shadow dexterous
hand installed with BioTac sensors on all five fingers. (c) The kinematic chain of the Shadow hand
with BioTac sensor. In this case, joint 1 of each finger is stiff.

Human hand Shadow hand with BioTac

Joint
Flexion/
Extension

Abduction/
adduction Joint

Flexion/
Extension

Abduction/
adduction

THJ4 -30◦ – 30◦ THJ5 -60◦ – 60◦

THJ3 15◦ – 90◦ THJ4 0◦ – 70◦

THJ2 0◦ – 80◦ -5◦-5◦ THJ3 -12◦ – 12◦

THJ2 -30◦ – 30◦

THJ1 -5◦ – 80◦ -5◦-5◦ THJ1 20◦

FFJ5 0◦ – 5◦

FFJ4 -30◦ – 30◦ FFJ4 -20◦ – 20◦

FFJ3 -40◦ – 90◦ FFJ3 -15◦ – 90◦

FFJ2 0◦ – 110◦ FFJ2 0◦ – 90◦

FFJ1 -5◦ – 90◦ FFJ1 20◦

LFJ5 0◦ – 15◦ LFJ5 0◦ – 45◦

LFJ4 -25◦ – 25◦ LFJ4 -20◦ – 20◦

LFJ3 -40◦ – 90◦ LFJ3 -15◦ – 90◦

LFJ2 0◦ – 135◦ LFJ2 0◦ – 90◦

LFJ1 -5◦ – 90◦ LFJ1 20◦

Table 3.1 – Joint ranges of human hand proposed by [28] and Shadow hand with BioTac sensor

32



3.2. DATASET GENERATION PIPELINE

Mapping 

Joint Position Mapping

Joint Direction Mapping

Collision free Goal 

TIP
DIP
PIP
MCP

Simulator

TIP

PIP

MCP
x

Y
z

F

Figure 3.3 – Pipeline for dataset generation. (Top left) The human hand model and its keypoints.
(Bottom left) A depth image of human hand. (Middle) Optimized mapping method from the human
hand to the Shadow hand. (Top right) The Shadow hand with BioTac sensors has 24 joints and
moves with 19 DoFs. (Bottom right) The corresponding RGB and depth images of Shadow gestures
obtained from the simulator. The colored circles denote the joint keypoint positions on the hand, and
the green triangles denote the origin of common reference frame F .

3.2 Dataset Generation Pipeline

End-to-end vision-based teleoperation requires an accurate mapping from the operators’ hand to
the robot. To learn the pose feature of the robot from images of the human hand, we have to
consider how to get a number of human-robot pairings. The human-robot pairings should contain
the pairwise human-robot images, where the robot hand acts the same as the corresponding
human hand, and the robot joint angles. There are several off-the-shelf human hand pose datasets
as summarized in Table 2.1, but there are no existing and open-sourced pairwise human-robot
hand images. Prior work in [147, 139, 136] acquired the master-slave pairings by demanding a
human operator to imitate the robot motion synchronously. The pairing data is costly to collect
like this and typically comes with noisy correspondences. Also, there is no longer an exact
correspondence between the human and the robot because physiological differences make the
imitation non-trivial and subjective to the imitator. In fact, the robot state is more accessible
and is relatively stable compared to the human hand, and there are many existing human hand
datasets. However, operating on a real robot requires a significant time of data collection and
hardware preparation, and has the risk of damaging the robot. An alternative approach is to
record robotic data in a simulation then adapt the representation to a real robot [4].

With the above considerations in mind, this chapter proposes a novel approach of generating
human-robot pairing by using an existing dataset of labeled human hand depth images, ma-
nipulating the robot and recording corresponding joint angles and images in simulation, and
performing extensive evaluations on a physical robot. We achieve dataset generation by using
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the off-the-shelf human hand dataset Big-Hand2.2M Dataset [172] and an optimized mapping
method using the pipeline of Fig. 3.3. With this pipeline, two training datasets containing
400K pairs of human-robot depth images and corresponding robot joint angles were efficiently
collected, respectively.

3.3 Selection of Human Hand Pose Dataset
The choice of the dataset selection touches on one of the aspects of neural network design, which
is suitable input representation. As discussed in the subsection 2.4.2, depth images represent
distance information of object points from the depth camera, but have lost color details of RGB
images and do not contain full 3D information in point clouds or voxelized data. However, color
is not a critical factor in hand pose estimation. Indeed, hand pose estimation methods trained
on 3D inputs slightly outperform those depending on depth images, but 2D CNNs trained on
depth inputs still show notable performance [113]. And depth images are more likely to result in
light-weighted networks than 3D inputs, e.g., voxels and point clouds. Admittedly, the synthetic
data tends to miss the random behaviors because it is purely generated based on the original
dataset’s properties, which are inferred from human assumptions during the data preparatory
steps. To this end, we argued that the real-world depth map representation is more suitable for a
vision-based teleoperation system.

Based on the discussion about different human hand pose datasets in subsection 2.4.1, the
million-scale BigHand2.2M dataset is chosen as our human hand dataset because it contains
2.2 million depth maps and represents a significant advancement in the completeness of hand
data variation and annotation quality. The depth maps in this dataset are accurately annotated
with 3D joint locations with respect to the camera coordinate. The human hand model used in
BigHand2.2M is shown in Fig. 3.1(c). This hand model has a total of 21 joints, which consist
of four joints (TIP, MCP, DIP, and PIP joints) for each finger and a wrist joint. There are 21
keypoints for every hand, including one wrist position and four joint locations of each finger
(see the top left image in Fig. 3.3). The keypoints’ positions are inferred by the predefined
physical constraints of the hand and six 6D magnetic sensors attached to the five fingertips and
the back of the palm. A trakSTAK tracking system [W23] is used to track real-time poses of
the 6D sensors, and an Intel RealSense SR300 depth sensor [W9] is used to record the depth
images of the hands with a resolution of 640 × 480. The example images from the Bighand2.2M
dataset are demonstrated in Fig. 3.4(a) and the joint annotations have high accuracy in 2D pixel
coordinates. However, converting the depth images to point clouds the human hand, we observe
that the 3D annotations are slightly drifting along with the camera viewpoint (see Fig. 3.4(b)).
The possible reasons for this inaccuracy are that the joint positions, except for the fingertip, are
determined by the defined sophisticated constraints and the distortion of the camera.

3.4 Optimized Mapping Method
After determining the human hand dataset, effectively mapping the human hand pose to the
robot pose is the next step. To imitate the human hand pose better, an optimized mapping
method is proposed to integrate position mapping, orientation mapping and properly take into
account possible self-collisions. This method is extended from the bio-ik inverse kinematic
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(a) 2D Depth images (b) 3D annotations

Figure 3.4 – Example data from the BigHand2.2M dataset in 2D depth images (a) and 3D point
clouds (b). The joint annotations are very accurate in 2D pixel coordinates. However, the annotations
in 3D space show some drift along with the camera viewpoint.

solver [131]. The bio-ik inverse kinematic solver is a memetic optimization algorithm that
integrates the genetic algorithm, particle swarm optimization, and gradient methods. It solves
inverse kinematics and motion tasks on robots with arbitrary kinematic trees and provides
great flexibility and control of multiple objectives. Bio-ik takes a user-defined cost function
that includes weighted combinations of several Cartesian- and joint-space goals, such as
position, orientation, touch, and direction goals. The goals provided in bio-ik use a quadratic
or almost-quadratic form rather than a linear form, resulting in better opportunities for
gradient-based exploitation and faster distance computations. Given a weighted set of goals, the
evolutionary solver then converges to an optimal solution. The flexible goal combination allows
the user to specify secondary goals and to guide the search space exploration. For the dataset
generation, the position goal, direction goal, and a self-designed collision goal are used.

The human hand poses are registered to the robot hand poses by a common reference F (see
Fig. 3.3). The common reference frame F is located at the human wrist joint and 34 mm above
the Z-axis of the robot wrist joint. Note that 34 mm is the height from the wrist joint to the base
joint of the thumb. These locations are chosen because they lie at locations of high kinematic
similarity. Since only finger motions are considered, two wrist joints of the Shadow are fixed
and only 17 joint keypoints which are TIP, PIP, and MCP in each finger of the Shadow hand
are calculated. Then position goals and direction goals are implemented by bio-ik. Position
goals try to match the positions of five robot fingertips and five PIP links with the corresponding
human hand positions. The cost function Cpos is defined as the square distance between robot
link positions and goal positions. The scaling factors of Cpos are set to ωpf for fingertips and a
minor weight ωpp for PIP joints.

Cpos = ‖PH − PR‖2, (3.1)

The direction goals try to match a link axis with a goal direction. The axis is transformed by the
link’s current orientation and then the square distance between the axis and the goal direction is
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(a) (b)

Figure 3.5 – (a) The data collection setup in Gazebo with nine simulated Kinect cameras. (b) The
depth images of the Shadow hand from nine viewpoints corresponding to one human gesture in our
dataset.

computed (see equation 3.2). The direction mapping with weight ωd is applied to five proximal
phalanges and the distal phalange of the thumb. In this dataset, ωpf , ωpp, ωd are set as 1, 0.2, 0.2.

Cdirec = ‖LR −G‖2), (3.2)

where PH , PR respectively denote the positions of the human hand link, the robot hand link, and
LR, G are direction vectors of one axis of the robot hand link and the goal direction.

In case bio-ik calculates a self-collision output, a cost function Fcost in 3.3 which measures the
distance between two links was defined.

Ccol = max(0, R_col − ‖PRi − PRj‖2), (3.3)

where PRi, PRj respectively denote the position of link i, link j of the robot hand, R_col is the
minimum collision-free radius between two links.

Taking advantage of bio-ik to determine the robot joint angles Q ∈ R17, the robot executes
movements in Gazebo [W6] simulator and checks self-collision by MoveIt [30]. The virtual
Shadow hand in the Gazebo is based on the Robot Operating System (ROS) package provided
by the Shadow Robot Company. Considering that the BigHand2.2M dataset spans a wide
range of observing viewpoints for the human hand, it is indispensable to increase the diversity
of viewpoints of the robot data. Therefore, visual samples of the robot are collected through
nine simulated depth cameras with different observing positions in Gazebo and record nine
depth images for each pose simultaneously, as shown in Fig. 3.5(a). As an example, Fig. 3.5(b)
presents the depth images of the robot from nine viewpoints. As is evident, the background
darkness, especially some corners of the depth images, is different because in some viewpoints,
the camera can possibly look into infinity and the depth values go to infinity. These infinity pixels
will be filtered out before they are fed into the network training. The example human-robot
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Figure 3.6 – The left image shows the keypoints of a human hand. The four lines with an arrow
represent the vectors from the wrist pointing to the metacarpal joints of the first finger, middle finger,
ring finger, and little finger. The right images illustrate the local hand frame of an example hand.

(a) Dataset1

(b) Dataset2

Figure 3.7 – Examples of paired human-robot depth images at a (a) different (Dataset1) and (b) the
same wrist pose (Dataset2) in our datasets. The left and right images in each pair are the human hand
and the robot hand, respectively.
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pairings are shown in Fig. 3.7(a). In total, 400K pairs of simulated robot depth images and
human hand depth images, with corresponding robot joint angles and poses, are efficiently
collected. In this thesis, we refer to this dataset as “Dataset1”.

Considering that the inconsistent orientation and position of the human-robot wrists admittedly
yield more training challenges for the training process, it would be better to take the images
of the human hand and the robot hand from the same viewpoint and at the same wrist poses.
Therefore, a pairwise human-robot dataset from the same viewpoint is collected instead of
keeping the cameras and the robot at a fixed global pose.

In order to obtain the wrist orientation, we build a local hand frame for each hand. The Z-axis
is the mean of the vectors FF-palm, MF-palm, RF-palm, and LF-palm. The Y-axis is the cross
product of MF-palm and RF-palm. Then we get the X-axis for a right-handed coordinate system.
The vectors FF-palm, MF-palm, RF-palm, and MF-palm represent the vectors from the wrist
pointing to the metacarpal joints of FF, MF, RF, and LF. The visualization of the human hand
frame is shown in Fig. 3.6. Once we have the wrist orientation, we get the transformations
from the camera to the wrist regarding the human hand dataset. Instead of using the planning
method in MoveIt and moving the robot in Gazebo, a depth image generator through an OpenGL
interface is designed. The platform change is caused by the instability and long execution time
in Gazebo. Next, we set up a camera in OpenGL at the same orientation and position with
respect to the robot wrist. Finally, given the transformation between the camera and the robot
wrist, we render the robot model based on the calculated joint angles by bio-ik and capture the
depth images of the robot hand in OpenGL. The pairwise dataset consists of 400K synchronized
human-robot depth images and corresponding robot joint angles. As demonstrated in Fig. 3.7(b),
the robot hands are imitating the human hand and are at similar wrist poses. This dataset is called
“Dataset2” in this thesis.

3.5 Discussion
Beginning from the comparison of the human-robot hand kinematic models, this chapter
highlights an efficient dataset generation pipeline. In this pipeline, the joint configurations of
the robot hand are firstly generated from the keypoints of the human hands by an optimized
mapping method, then the robot hand moves in simulation, finally the robot images and joint
angles are recorded. Two datasets are collected and contain 400K pairs of the human hand depth
images, simulated robot depth images in the same poses, and a corresponding robot joint angle,
respectively. The difference between these two datasets is whether the robot wrist in the depth
images has a similar pose to the human wrist.

Fig. 3.8 illustrates the joint angle distribution of the robot hand in Dataset2. Only six joints
which are crucial to robot movements are analyzed, i.e., THJ5, THJ4, FFJ3, MFJ3, RFJ3,
and LFJ3. We observe that THJ5 and THJ4 have more positions in the middle of their
joint limits, while the other four joints have relatively even angle distribution. In addition,
there are high peaks at the maximum joint limits or the minimum joint limits. The robot
images when these six joints are at the boundary positions are shown in Fig. 3.9. When
the joint values of THJ5 increase and the joint values of THJ4 decrease, the thumb tends to
move closer to the other fingers or the hand center. We assume that the robot fingers tend
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to fold into the center because the human hands are usually smaller than the robot hand.
There are many human finger positions out of the range of the robot workspace. There-
fore the IK solver generates many redundant solutions to compensate for the kinematic difference.

(a) THJ5 (b) THJ4

(c) FFJ3 (d) MFJ3

(e) RFJ3 (f) LFJ3

Figure 3.8 – The angle distribution of THJ5, THJ4, FFJ3, MFJ3, RFJ3, and LFJ3 in Dataset.
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Figure 3.9 – Visualization of robot states when THJ5, THJ4, FFJ3, MFJ3, RFJ3, and LFJ3 are at the
boundary positions. All joints which are not mentioned are at 0 rad, except for all J1 joints.

In the end, the question remains whether a network training on the datasets whose robot informa-
tion is collected in simulation could functionally work on a real robot. On the one hand, even
though the synthetic depth images are easier to adapt than the synthetic RGB images, there is no
noise added into the synthetic depth images to enhance generalization. On the other hand, the
robot model in simulation is perfectly calibrated, while the real robot is bad-calibrated because it
has been used for years. The robot experiments in the following chapters (chapters 4, 6, 7, and 8)
will reflect the practicality of the proposed datasets.
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Chapter 4

TeachNet: Vision-based Teleoperation
System for Anthropomorphic Robot Hand

Once a suitable human-robot hand dataset is available, it is essential to design an efficient
network that could learn the corresponding robot pose feature in human pose space. This chapter
presents Teacher-Student Network (TeachNet), a novel neural network architecture for intuitive
and markerless vision-based teleoperation of dexterous robotic hands.

This chapter starts with a thorough discussion in section 4.1 which motivates the design needs
for an end-to-end network model used in the vision-based teleoperation system. Then the
proposed vision-based teleoperation framework is introduced by visualization.

Next, section 4.2 describes the motivation, detailed structure and loss functions of the end-to-end
network, TeachNet. This particularly covers the discussion of two kinds of consistency losses
and two different aligning layers, which all can be used for designing the aligning mechanism in
TeachNet.

Later, section 4.3 explains the data preprocessing and training details, then provides comprehen-
sive network evaluations through multiple baselines by three metrics. The network evaluation
results verify the superiority of TeachNet, especially regarding the high-precision condition.

Finally, section 4.4 shows the robot experiments by the proposed teleoperation system in
simulation and the real world. This section answers the question raised in chapter 3 of whether
the network models learning from the robot data in simulation could work on a real robot
system. Imitation experiments and grasp tasks conducted by novice users demonstrate that
TeachNet trained on the self-collected dataset is more reliable and faster than the state-of-the-art
vision-based teleoperation method [113].
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ANTHROPOMORPHIC ROBOT HAND

4.1 End-to-end Learning for Vision-based Teleoperation
The markerless vision-based teleoperation system is designed to achieve a user-friendly and
efficient control of the anthropomorphic robot hand. As discussed in section 2.1, unlike
contacting or wearable device-based teleoperation, markerless vision-based teleoperation
offers the advantages of capturing natural human-limb motions and of being less invasive. An
increasing number of researchers have been focusing on data-driven vision-based teleoperation.
This teleoperation method gets the 3D hand pose or recognizes the class of hand gestures using
CNNs, and then maps the locations or the corresponding poses to the robot. The expected
vision-based algorithm seeks to go beyond these methods by the end-to-end deep learning
structure, taking a noisy image of the human hand as input and producing joint angles of the
robot hand as output. The end-to-end vision-based teleoperation can be a natural and intuitive
way to manipulate the remote robot and is user-friendly to the novice teleoperators. Therefore, it
is essential to design an efficient network that could learn the corresponding robot pose feature
in the human pose space.

Designing a supervised learning system in an end-to-end fashion for robot pose learning is
essential to solve the domain gap between the human hand and the robot hand. The mechanical
difference, mapping varied human hands to one specific robot hand, and the potential disturbance
or noise in the human hand images are inevitable. These factors may cause regression challenges
because the input features may not have encountered the target space. The key to bridging
the gap is efficiently exploiting the common pose features between the human hand and the
robot hand. Stanton et al. [147] allocated one feed-forward neural network for each actuator
on the 25 DoF NAO humanoid robot [W32]. Each network only has one hidden layer with
20 neurons. They did not consider the human-robot kinematic relations for training at all.
However, to get better teleoperation performance, the weights of each network then have to be
optimized as closely as possible using particle swarm optimization. Later, with the improvement
in representation learning, there are works focused on discovering the features from raw image
data [11]. Sermanet et al. [136] achieved direct imitation of human pose based on the dedicated
Time-contrastive Network (TCN) structure. The key idea of TCN is to extract the visual
representations using a metric learning loss, where multiple simultaneous viewpoints of the same
observation are attracted in the embedding space, while being repelled from temporal neighbors,
which are often visually similar but functionally different. But the TCN structure was used to
abstract useful representations on the human domain or robot domain individually. Finally, they
only implemented body pose tests on a single-arm humanoid robot with a 7-DoF robot arm and
a 1-DoF lift-and-down torso. We hypothesize that a neural network model that also considers
abstracting kinematic relations between the human and robot domains would be effective.

4.2 Teacher-Student Network: TeachNet
After considering these design requirements, the end-to-end architecture for teleoperating the
Shadow dexterous hand based on a single depth image is proposed, see Fig. 4.1. In this system,
a camera is used to collect a depth image of the hand, and an end-to-end neural network modal
estimates the desired robot joint angles based on the depth image, then joint commands are
executed on the robot to manipulate the objects. However, solving joint regression problems
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TeachNet
 Joint
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Figure 4.1 – The proposed vision-based teleoperation architecture. (Center) TeachNet is trained
offline to predict robot joint angles from depth images of a human hand using our 400k pairwise
human-robot hand dataset. (Left) Depth image of the operator’s hand are captured by a depth camera
then feed to TeachNet. (Right) The joint angles produced by TeachNet are executed on the robot to
imitate the operator’s hand pose.

directly from human images is quite challenging because the robot hand and the human hand
occupy two different domains. Specifically, imagine that there are an image IR of a robotic hand
and an image IH of a human hand, while the robotic hand in the image acts exactly the same as
the human hand. The problem of mapping the human hand image to the corresponding robotic
joint could be formulated as below:

ffeat : IH ∈ R2 → Zpose

fregress : Zpose → Q.
(4.1)

4.2.1 Network Structure of TeachNet
To better process the geometric information in the input depth image and the complex constraints
on joint regression, an encode-decode-style deep neural network was adopted. However, the
human hand and Shadow hand are from different domains, thus it could be difficult for ffeat
to learn an appropriate latent feature Zpose in pose space. In contrast, the mapping from IR to
joint target Q will be more natural as it is exactly a well-defined hand pose estimation problem.
Intuitively, for a paired human and robotic image, their latent pose features Zpose should be
encouraged to be consistent as they represent the same hand pose and will be finally mapped to
the same joint target. Also, based on the observation that the mapping from IR to Q performs
better than IH (these preliminary results can be found in Fig. 4.5(a)), the encoder ffeat of IR
could extract better pose features, which could significantly improve the regression results of the
decoder.

With considerations above, the novel teacher-student network (TeachNet) is proposed to tackle
the vision-based teleoperation problem (4.1) in an end-to-end fashion. The network architecture
is illustrated in Fig. 4.2. TeachNet consists of two branches, the robot branch, which plays
the role of a teacher, and the human branch as a student. TeachNet respectively accepts a
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Figure 4.2 – Architecture of TeachNet neural network. Top: human branch, Bottom: robot branch.
The input depth images IH and IR are fed to the corresponding branch that predicts the robot joint
angels QH , QR. The residual module is a convolutional neural network with a similar architecture as
ResNet [64]. FC denotes a fully-connected layer, BN denotes a batch normalization layer, R denotes
a Rectified Linear Unit.

3X3 conv, 64

7X7 conv, 64 /2

3X3 pool /2

3X3 conv, 128

3X3 conv, 128

3X3 conv, 128 /2

BN, RELU

BN, RELU

BN, RELU

BN, RELU

3X3 conv, 256

3X3 conv, 256

3X3 conv, 256

3X3 conv, 256 /2

3X3 conv, 512

3X3 conv, 512

3X3 conv, 512

3X3 conv, 512 /2

BN, RELU

BN, RELU 

BN, RELU

BN, RELU

BN, RELU

BN, RELU

BN, RELU BN, RELU BN, RELU

Figure 4.3 – Architecture of the encoder module in TeachNet model.
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normalized depth image as the input for the corresponding branch in the training process. The
architecture of each branch contains four components: the encoder module, the embedding
module, the alignment layer, and the regression module. The encoder module contains an initial
convolution layer with 64 filters, Batch Normalization (BN), and 3× 3 max-pooling, following
three residual modules, each with a stride of 3× 3, and with 128, 256, 512 filter (see Fig. 4.3).
Then the embedding module flats the high-level features from the encoder module. As for the
position of the alignment layer, early teaching and late teaching are put forward, respectively.
For the former, the alignment layer is put after the embedding module and before the regression
module, as shown in Fig. 4.2. In the early teaching model, the embedding module generates
a 128 embedding feature by one Fully-connected Layer (FC) layer with batch normalization
followed by a Rectified Linear Unit (ReLU) activation and an another FC layer. And the
regression module contains two sets of FC-BN-BN combination and a final FC layer for the
joint angle outputs Q. In the late teaching model, the embedding module deepens to four sets of
FC-BN-BN combination, the alignment layer is positioned on the last but one layer of the whole
model, and the regression module will only contain one FC layer.

4.2.2 Loss Functions for Robot Joint Regression
We formulate the robot joint learning problem as a supervised learning problem, in which the
network takes a depth image of a random human hand as the input and outputs the corresponding
joint angles of the robot. For each branch, the basic objectives are joint angle loss and an
auxiliary loss.

Joint angle loss. Each branch is supervised with a Mean Squared Error (MSE) loss Lang :

Lang = ‖Q− J‖2, (4.2)

where J is the ground truth joint angles.

Besides the encoder-decoder structure that maps the input depth image to joint prediction, two
latent features ZH and ZR constitute the alignment layer. A consistency loss Lalign between ZH

and ZR is designed to exploit the geometrical resemblance between human hands and the robotic
hand. Therefore, Lalign forces the human branch to be supervised by a pose space shared with
the robot branch. Even though the structure of each branch is similar to some regression-based
3D human hand estimation models, with the consistency loss, TeachNet presents the ability to
learn the kinematic mappings between the slave and the master. To explore the most effective
aligning mechanism, two kinds of consistency losses and two different aligning positions are
formulated:

Hard consistency loss. The most intuitive mechanism for feature alignment would be providing
an extra MSE loss over the latent features of these two branches:

Lalign_h = ‖ZH − ZR‖2. (4.3)

In this case, the complete training objective for each branch is:

Lteach = Lang(QR) (4.4)
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Lstudent = Lang(QH) + α · Lalign_h. (4.5)

where α = 1 for hard consistency loss and α = 0.1 for the soft consistency loss.

Soft consistency loss. Sometimes, (4.3) could distract the network from learning hand pose
representations, especially in the early training stage. Inspired by [155], ZH and ZR are fed
into a discriminator network D [61] to compute a realism score for real and fake pose features.
The model structure of the D is two sets of one FC layer with batch normalization followed by
a ReLU activation and the other FC layer followed by a sigmoid function (see Fig. 4.4). The
feature size of the three FC layers is half the size of the input ZH . The discriminator model D is
trained by the Binary Cross Entropy (BCE) loss between the target and the input probabilities.
We assume ZR is the real pose features and ZH is the fake pose features, therefore we have LD

in equation 4.9. Regarding the human branch, we expect the pose features ZH is realistic enough
to fool the discriminator model D, so the soft consistency loss is basically the negative of this
score:

Lalign_s = log (1−D(ZH)) . (4.6)

sigmoid

Discriminator network D

F
C

B
N R

Figure 4.4 – Architecture of the discriminator network D for soft consistency loss.

Then, the complete training objectives are:

Lteach = Lang(QR) (4.7)

Lstudent = Lang(QH) + α · Lalign_s (4.8)

LD = log (D(ZR)) + log (1−D(ZH)) . (4.9)

where α = 1 for hard consistency loss and α = 0.1 for the soft consistency loss.

In the following, this chapter will refer to early teaching by Lalign_s as Teach Soft-Early, late
teaching by Lalign_s as Teach Soft-Late, early teaching by Lalign_h as Teach Hard-Early, and late
teaching by Lalign_h as Teach Hard-Late.
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4.3 TeachNet Evaluation

4.3.1 Training Details
The input depth images are first preprocessed using erosion followed by dilation to remove noise
on the raw depth images. Then a 250× 250 fixed-size cube around the hand is extracted from
one depth image and projected to 2D space. Afterward, the images are resized to 100 × 100
and normalized to [−1, 1]. Random in-plane [−180◦, 180◦] rotation and random jittering for all
pixels are executed for data augmentation. Compared to keypoints regression, the output joint
angles are invariant to the preprocessing of the input image. The outputs of the network are
mapped to the joint angles by the upper and lower angle ranges, then are used to calculate joint
angle loss. Therefore, the outputs from the network are limited in the range of [0, 1] and the
estimated joint angles are always kept in the joint ranges. The auxiliary physical loss [180],
which enforces the physical constraints and joint limits, is not needed. At training time, the
pairwise human-robot images are fed to the corresponding branch. The minibatch stochastic
gradient descent and Adam optimizer with a learning rate lr = 0.002 and momentum parameters
β1 = 0.5, β2 = 0.999 was used. The learning rate was decayed by 0.5 every 80 epochs. Note that
although there are nine images of Shadow hand (captured from nine viewpoints) corresponding
to one human pose, one view of Shadow images is randomly chosen to feed into the robot branch
during the training process of the TeachNet. At inference time, only the student branch is needed,
namely, TeachNet takes an image of a human hand as input and then outputs the estimated joint
angles Q of the robot hand.

4.3.2 Baselines Comparison
This section examines whether the TeachNet could learn indicative visual representations that
represent the human hand’s kinematic structure. The proposed TeachNet was evaluated on
the paired dataset with the following experiments: 1) To explore the appropriate position of
the alignment layer and the proper align method, the proposed four network structures: Teach
Soft-Early, Teach Soft-Late, Teach Hard-Early, and Teach Hard-Late were compared. 2) To
validate the significance of the alignment layer, an ablation analysis by removing consistency
loss Lalign and separately training the single human branch and the single robot branch was
designed. These two baselines respectively refer as “Humanonly” and “Robotonly”. 3) The
proposed end-to-end method was compared with the data-driven vision-based teleoperation
method that estimates 3D keypoints of the human hand then maps the 3D keypoints to joint
positions of the robot. This baseline refers to as “HandIK” solution. For the HandIK solution,
the DeepPrior++ [113] network was trained on the same dataset. DeepPrior++ was chosen
because its architecture is similar to the single branch of TeachNet, and it was the state-of-the-art
hand pose estimation algorithm at that time. The outputs of DeepPrior++ are 21× 3 human joint
locations. Then these locations are used to acquire the joint angles of the Shadow hand by the
mapping method explained in section 3.4.

There are three evaluation metrics used in this work: 1) the fraction of frames whose
maximum/average joint angle errors are below a threshold; 2) the fraction of frames whose
maximum/average joint distance errors are below a threshold; 3) the average angle error over all
angles.
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Robotonly Humanonly

(a)

(b)

Figure 4.5 – The fraction of input frames whose maximum/average joint (a) angle and (b) distance
error are below a threshold between Teach Hard-Late approach and different baselines on our test
dataset. These show that Teach Hard-Late approach has the best accuracy over all evaluation metrics.

The comparative results, shown in Fig. 4.5 and Fig. 4.6, indicate that the Robotonly method is
the best concerning all evaluation metrics and has the capability of the training “supervisor”.
Meanwhile, the Teach Hard-Late method outperforms the other baselines, which verifies that the
single human branch is enhanced through an additional consistency loss. Especially regarding
the high-precision condition, only the Teach Hard-Late approach shows an average 3.63%
improvement of the accuracy below a maximum joint angle, which is higher than that of the
Humanonly method (Table 4.1). It indicates that the later feature space ffeat of the depth images
contains more useful information than the early feature space and the MSE method displays the
stronger supervision in our case.

The regression-based HandIK method shows the worst performance among the three metrics.
The unsatisfying outcome of the HandIK solution not only proves that TeachNet gives a better
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Max Err. Humanonly Teach Soft-Early Teach Soft-Late
0.1 rad 21.24% 12.31% 12.77%

0.15 rad 45.57% 38.06% 10.37%
0.2 rad 69.08% 63.18% 26.16%

Max Err. Teach Hard-Early Teach Hard-Late Hand IK
0.1 rad 7.40% 24.63% 0.00%

0.15 rad 24.67% 50.11% 0.14%
0.2 rad 45.63% 72.04% 0.62%

Table 4.1 – Accuracy under high-precision conditions
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Figure 4.6 – Comparison of average angle error on the individual joint between the Teach Hard-Late
approach and different baselines on our test dataset.

representation of the hand feature, but also suggests that the HandIK method does not consider
the kinematic structure and the special limitation of the robot. Furthermore, direct joint angle
regression should have decent accuracy on angles since that is the learning objective. The missing
Lphy also gives rise to poor accuracy. Moreover, Fig. 4.6 demonstrates that the angles of THJ2,
THJ4 and THJ5 are harder to be learned. These results are mainly because 1) the fixed distal
joints of the robot in our work affect the accuracy of its second joint and third joint. 2) these
types of joints have a bigger joint range than other joints, especially the base joint of the thumb.
3) there is a big discrepancy between the human thumb and the Shadow thumb.

4.3.3 Loss Analysis

In order to investigate which types of human hand images are more challenging for TeachNet,
we sort out images in the test dataset based on their overall loss Lstudent. Fig. 4.7(a) reveals that
the complexity of the finger poses and the orientation of the human hand both account for the
low accuracy of hand pose estimation. Intriguingly, Fig. 4.7(b) suggests that the complexity of
the finger poses affects the accuracy more severely than the orientation of the human hand.
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(a) 16 human hand images with biggest losses

(b) 16 human hand images with smallest losses

Figure 4.7 – Visualization of the human hand images in the test dataset based on the loss Lstud

sorting. From left to right, upper row to lower row, the losses of the images are gradually become
smaller in (b), and versa vice in (a).

4.4 Robotic Experiments

To verify the reliability and intuitiveness of the proposed TeachNet in actual teleoperation tests,
robotic experiments in simulation and real world were both performed by five adult subjects. The
simulation experiments mainly aim to visualize the imitation ability of TeachNet. Furthermore,
the real robot experiments highlight the convenience and reliability of the proposed vision-based
teleoperation system. The Shadow dexterous hand was controlled under position control mode,
so the position commands from the TeachNet model will directly apply to the robot joints. The
robot was controlled through ROS platform.

For choosing a camera, any depth camera which creates a high-quality 3D depth stream at close
range is suitable. Therefore, the Intel RealSense F200 depth sensor was used. Its horizontal and
vertical depth fields of view are 73◦ and 59◦, respectively. The frame rate of the RealSense F200
is 30 Hz. The effective range of the depth solution from the camera is optimized from 0.2 m
to 1.2 m for indoor applications. Fig. 4.8 shows the depth image of the human hand captured
from different distances. When the hand is getting too close to the camera, some stray points in
the depth image, causing the strap phenomenon in the leftmost image in Fig. 4.8. When the
distance between the hand and the camera is over 80 cm, the information at the finger edge starts
losing details. During the experiments, the poses of the teleoperators’ right hand are limited to
the viewpoint range of [70◦, 120◦] and the distance range of [35 cm, 65 cm] from the camera
(see Fig. 4.11(a)). Since the vision-based teleoperation is susceptible to ambient light, all the
experiments were carried out under a uniform and bright light source as much as possible.
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20 cm 45 cm 80 cm 100 cm

Figure 4.8 – The depth image of the human hand captured from different distances regarding the
RealSense F200 camera.

The simulation experiments and grasping experiments run on the Ubuntu 16.04 system with the
Intel Core i7-4720HQ CPU. The average computation time of the Teach Hard-Late method is
0.1051 s. Later, in-hand-grasp experiments were also tested on a Ubuntu 18.04 system computer
with Intel i9-7900X CPU with 3.30 GHz and 128 G of RAM, and a GeForce GTX 1080 Ti GPU.
Then, the average computation time of the Teach Hard-Late method is 0.015 s.

4.4.1 Simulation Experiments of Gesture Imitation
One user stood in front of the depth sensor and performed the gestures for the numbers 0-9 in
American sign language and also random common gestures in a disordered way, then teleoperated
the virtual Shadow robot in RViz [W33]. Qualitative results of teleoperation by the Teach Hard-
Late method are illustrated in Fig. 4.9. On the one hand, the Shadow hand vividly imitates human
gestures acted by hands of different sizes. These experiments demonstrate that the TeachNet
enables a robot hand to perform continuous, online human hand imitation without explicitly
specifying any joint-level correspondences. Owing to the fact that two wrist joints of the Shadow
hand are fixed, whether or not the depth sensor captures the teleoperator’s wrist will not affect
the regression results. On the other hand, visible errors occurred mainly with the second joint,
the third joint of the fingers, and the base joint of the thumb, probably caused by the special
kinematic structure of the robot hand, occlusions of the human fingers, and the uncertain lighting
conditions.

4.4.2 Grasping Experiments on Real Robot
In the real-robot experiments, the robot was controlled within a proper maximum force for each
joint to ensure the safety of the robot. TeachNet was first validated in grasping tasks. As shown
in Fig. 4.10, the robot hand succeeds in grasping objects with different shapes and different sizes,
using both power grasp and precision grasp. Then the Teach Hard-Late method was compared
with the DeepPrior++ HandIK method by an in-hand grasp and release 1. Five objects (a water
bottle, a small mug, a plastic banana, a cylinder can, and a plastic apple, see Fig. 4.11(b)) were
used for this task. The objects were placed in the slave hand, which was in the open pose one at

1The Teach Hard-Late model was trained on the dataset which is generated based on the Shadow hand model
with BioTac sensors, but during the grasp and release experiments, we implemented the model on a Shadow hand
without BioTac sensors in another lab. In order to keep the same performance of different Shadow hands, the first
joint of each finger is kept still.
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Figure 4.9 – Teleoperation results using the virtual Shadow hand with position control. The first,
third, and fifth rows are depth images of the human hand captured by the Intel RealSense F200 depth
sensor. The second, fourth, and sixth rows are the screenshots of the teleoperated Shadow hand in
RViz.

Figure 4.10 – Screenshots of grasping experiments using TeachNet. The upper and lower rows show
examples of power grasp and precision grasp, respectively.
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(a)

(b)

Figure 4.11 – (a) The human status and (b) objects in the in-hand grasp and release task.

Methods Bottle Mug Banana Can Apple Average
Hand IK (CPU) 44.2 46.3 35.8 25.5 30.2 36.4

Ours (CPU) 23.7 18.8 25.8 19.8 15.6 20.728
Ours (GPU) 6.4 5.62 11.6 9.0 4.3 12.4

Table 4.2 – Average time (s) a novice took to grasp and release an object

a time to facilitate easier grasping with the robotic fingers. The operators are required to grasp
the objects and to release them. The operators had to use power grasp for the water bottle and
the mug, and to use precision grasp for the other three objects. If the user did not complete the
task in four minutes, this trial was considered as failed.

The time to complete an in-hand grasp and release task was used as the metric for usability.
Table 4.2 numerically shows the average time a novice took to grasp an object using each of
the control methods. It clearly indicates that the low accuracy, especially for the thumb, and
the post-processing of the HandIK solution results in a longer time to finish the task. The users
needed to open the thumb first then perform proper grasp action, so the HandIK solution shows
worse performance for the objects with a big diameter. Besides that, grasping the banana took
the longest time on our method because the long and narrowly shaped object needed a more
precise fingertip position. We also observed that the experiment time was significantly reduced
when the tasks were tested on the computer with a better GPU and CPU. Fig 4.12 illustrate four
examples for the real robot experiments.
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(1) (2)

(3) (4)

Figure 4.12 – Teleoperation results using the real-world Shadow hand. In (1)-(4), from left to right
are the RGB images of the human hand, the depth images of the human hand and the robot status. In
some RGB images, the hand is not fully captured because of the misalignment of the infrared camera
and the color camera installed in the F200 depth sensor.

4.5 Discussion

This chapter presents an efficient vision-based teleoperation method for an anthropomorphic
hand, which answers the first Research Question Q1 raised in section 1.3. This method develops
an end-to-end teacher-student network (TeachNet), which finds kinematic mappings between
the anthropomorphic robot hand and the human hand. The network evaluation and the robotic
experiments verify that 1) TeachNet (the Teach Hard-Late method) is capable of modeling poses
and the implicit correspondences between human demonstrators and robot imitators; 2) the
end-to-end method allows novice teleoperators to grasp the in-hand objects faster and more
accurately than the traditional two-step vision-based method; 3) the applicability of the proposed
human-robot dataset to real-world experiments. Regarding the comparison in the fraction of
frames whose maximum/average distance error below a threshold, TeachNet far outperforms the
HandIK method or other stare-of-art hand pose estimation methods [55]. The best hypothesis for
the significant improvement is the different exploration spaces. For human hand pose estimation
methods, even though the keypoint positions are normalized to [0,1] for training, the data
range is much more extensive than the joint angles of the robot hand. Therefore, the narrower
exploration space promotes easier training and a higher accuracy. Code of the TeachNet model
and video of the experiments are available at [W14].

Although the proposed TeachNet performs well in gesture imitation and grasping-and-releasing
tasks, it has some limitations. First, TeachNet requires the position of the operator’s hand
relative to the camera within a proper range, otherwise it has a higher error of occluded joints.
These could result from the simple preprocessing, the imperfect layer design of each branch
in TeachNet, or the consistent supervision on one single layer being insufficient to exploit the
geometrical resemblance. The wide variation in the global orientation of the human hand is
always a training challenge in 3D hand pose estimation. We argue that a proper normalization

54



4.5. DISCUSSION

step of the input images will increase the robustness of the model to variations. Furthermore,
designing a neural network model combining a higher-level representation and deeper regression
would likely lead to more efficient training. Second, TeachNet only demonstrated simplistic
grasping experiments on the real robot, so all experiments were employed by a robot hand with a
fixed wrist and robot base. These limitations constrain the system from performing manipulation
tasks that require arm motion, such as placing a block from one place to another. Accordingly,
extending the teleoperation system to a hand-arm system is studied in the next chapters.
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Chapter 5

Transteleop: Image-to-image Translation
Inspired Robot Hand Pose Learning

The previous chapter presented TeachNet, a simple and effective robot hand pose estimation
model, that finds kinematic mappings from a human hand to a robot hand and geometrical
resemblance between them by a consistency loss. To overcome the remaining inaccuracy
issues, this chapter aims to improve the end-to-end model from four aspects, network backbone,
preprocessing module, layer assignment and loss functions. Inspired by latent pose hand
poses extracted by deep generative models, a novel vision-based hand pose regression network
(Transteleop) is developed using the image-to-image translation method. Transteleop observes
the human hand through a low-cost depth camera and generates not only joint angles but also
depth images of paired robot hand poses.

Section 5.1 presents the motivation of introducing image-to-image translation into the hand
pose estimation task. Then section 5.2 discusses the two design choices of the network
backbone. Consequently, the novel Transteleop model is described in section 5.3. Especially,
two preprocessing modules are compared and discussed in order to learn invariance of the hand
orientation and rotation. Later, section 5.4 first shows an accuracy comparison among several
baselines from three aspects, preprocessing, network structure, and training dataset. Then,
reconstructed hand images from two image-to-image translation inspired models are visualized.
In the end, an analysis regarding the influence of camera viewpoint on the model accuracy is
presented.

5.1 Why image-to-image translation
Recalling from previous chapters, we are dealing with the robot pose learning from human
hand images. Despite the fact that the Teach Hard-Late method shows noticeable accuracy
improvement over traditional methods, TeachNet still fails to find the correct pose of the
robot when processing some complicated poses with self-occlusion. This could result from
the consistent supervision on one single layer being insufficient to exploit the geometrical
resemblance or the imperfect assignment of each branch in TeachNet. On the one hand,
it may be helpful to deepen the convolutional layers or to extend the receptive field for
perceiving the input. On the other hand, it would be great to find a method that can
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Figure 5.1 – Translation results of an image-to-image translation model [70]. Reprinted image:
©2017 IEEE.

thoroughly comprehend the kinematic similarity between the human hand and the robot hand
than align the pose features on a single layer. Humans have a remarkable ability to fulfill
complex tasks by observing others. How do we achieve this ability? Imitation requires
inferring the goal/intention of the other person one is trying to imitate, translating these
goals into one’s own context, mapping the other’s actions to first-person actions, and then
finally using these translated goals and mapped actions to perform low-level control. In
teleoperation, the humans dominate the inference part [137]. For the vision-based teleoperation
method proposed in this thesis, the action mapping has been done in the dataset preparation
part. Then, how does an end-to-end model translate the human goals into the robot’s own context?

Assuming that if a robot could translate the observed scene (such as the human hand) to its
scene (such as the robot hand), the robot would have perceived valuable hidden embeddings
representing the resemblance of pose features between two image domains. Therefore, an
image-to-image translation [70, 182, 121] concept could be used for vision-based teleoperation.
Image-to-image translation, which aims to map a representation of a scene into another, is also
a prevalent research topic widely used in collection style transfer, object transfiguration, and
imitation learning. The key to image-to-image translation is to discover the hidden mapping
features between two representations. Different generative models, such as restricted Boltzmann
machines [23], generative adversarial networks (GANs), autoencoder models [76], and several
variants of these models are widely used for image-to-image translation. Fig. 5.1 shows results of
using conditional adversarial nets to translate an input image into a corresponding output image
on a wide variety of applications [70]. In the robotic field, image-to-image translation methods
have also been employed to map representations from humans to robots. Simith et al. [143]
converted the human demonstration into a video of a robot and generated image instructions
of each task stage by performing pixel-level image translation. They constructed a reward
function for a reinforcement learning algorithm through translated instructions and evaluated
the proposed method in a coffee machine operation task. Sharma et al. [137] decomposed
third-person imitation learning into a goal generation module and an inverse control module.
The goal generation module translated observed goal states from a third-person view to contexts
of the robot by translating changes in the human demonstration images. All the above methods
indicate that image-to-image translation methods are capable of learning latent features between
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Figure 5.2 – Architecture of GAN and Autoencoder model. The block and the arrows with dash lines
in (a) are required in cGAN, which has additional information for conditioning the generated images.

mapping pairings. Hence, it is worthwhile to study the image-to-image translation methods to
extract common pose features between depth images of the human hand and the robot hand.

5.2 Network Backbone Design Choices
Imagine that we have a depth image IR of a robotic hand from a fixed viewpoint and an image
IH of a human hand in random global pose, while the robotic hand in the image acts exactly the
same as the human hand. Even though the bone length, the global pose, and the joint range of
these paired hands are distinct, the pose feature Zpose such as the skeletal shape and the whole
silhouette will reveal the similarity between them. We believe that it would be very favorable to
predict Jhand from the shared pose feature Zpose rather than the bare IH . In order to attain an
instructive feature representation Zpose, we adopt a generative structure that maps from image
IH to image IR and retrieves the pose from the bottleneck layer of this structure as Zpose. This
learning scheme of mapping the human hand image to the corresponding robotic joint Q is
formulated as

ftrans : IH ∈ R2 → Zpose → IR ∈ R2

fjoint : Zpose → Q.
(5.1)

One typical generative structure is conditional GAN. GANs frame the unsupervised generative
problem as a supervised learning problem with two sub-models: the generator model and the
discriminator model. The input of the generator is a random vector from a Gaussian distribution,
and the output is the generated new example. The discriminator model is a common classification
model that tries to classify examples as either real (from the domain) or fake (synthesized). The
two models are trained together in an adversarial way until the discriminator model is fooled
about half the time, meaning the generator model generates plausible examples. GANs have
led to a substantial boost in the quality of image generation due to an adversarial feedback loop.
Conditional GANs (cGAN), in which both the generator and the discriminator are conditioned on
additional inputs, are an important extension to GANs family [107]. The additional inputs could
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be aerial photos in the case of generating images of maps or hand-drawn cats in the generation
of photographs of cats. Fig. 5.2(a) shows the architecture of the (conditional) GAN model.
Alternatively, Autoencoders are known to learn efficient data codings in an unsupervised manner
and is also widely used in image-to-image translation applications. The illustration of a typical
Autoencoder model is shown in Fig. 5.2(b). The special bottleneck layer in an Autoencoder is
imposed to maintain the compressed representation of the original input then fed to the decoder
for reconstruction. Autoencoders are trained by minimizing the reconstruction error, which
measures the input and output differences. Instead of the high realism and low blurriness of
reconstructed images, Autoencoders mainly concentrate on efficiently memorizing the internal
distribution of the input data in a compressed form. What we expect from a functional end-to-end
neural network in a vision-based teleoperation application is learning hidden representations
from the input data rather than from realistic robot images. To this end, we hypothesize that using
an encoder-decoder style image-to-image translation method (Transteleop) for hand features
Hshare extraction is an efficient and suitable choice. The detailed accuracy comparison between
these two backbones is quantified in section 5.4.

5.3 Transteleop
Transteleop is a novel end-to-end neural network, which extracts coherent pose features between
the paired human and robot hand based on image-to-image translation methods, for vision-based
teleoperation. Transteleop takes the depth image of the human hand as input, then estimates the
joint angles of the robot hand, and also generates the reconstructed image of the robot hand.
In the spirit of supervised learning, to enhance the richness of the features extracted from the
image translation structure, a keypoint-based reconstruction loss is designed to focus on the
local reconstruction quality around the keypoints of the hand. The structure of Transtelop is
visualized in Fig. 5.3. Transteleop boils down to five modules: preprocessing module, encoder
module, embedding module, decoder module, and joint module.

5.3.1 Preprocessing Module
One challenge of training Transteleop is that the poses of the human hand in the available
datasets vary considerably in their global orientations. Spatial Transformer Network (STN) [71]
has been applied to the input images for enhancing the geometric invariance of the models in
human hand pose estimation tasks [115]. A spatial transformer is a differentiable module and can
be included into a standard neural network model to provide spatial transformation capabilities,
such as cropping, translation, rotation, scale, and skew. It contains a localization network, a
grid generator, and a sampler, see Fig. 5.4. The localization network is a normal convolutional
network and regresses the transformation parameters p. The dimension of the transformation
parameters depends on the transformation type. For instance, an affine transformation p is 6
dimensional. The grid generator applies a sampling kernel to compute a grid of coordinates
in the input feature map to each corresponding output pixel. Then, the sampler generates the
output image given the grid coordinates and the input image. As the transformation is then
performed on the entire feature map, this allows networks including spatial transformers to
select regions of an image that are most relevant (attention) and transform those regions to a
canonical, expected pose to simplify recognition in the following layers. In a common hand
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Figure 5.3 – Architecture of the Transteleop model. The encoder-embedding-decoder structure is
an image-to-image translation branch, which is fed depth images of a human hand IH and produces
reconstructed depth images of the robot hand IR. The joint module takes the pose embedding from
the encoder-decoder structure and predicts the robot’s joint angles Jhand. The preprocessing module
is a spatial transformer network that explicitly permits the spatial manipulation of input images.

pose estimation application, the 3D positions of the hand keypoints are the regression goal. If
an STN module transforms the input images, the output 3D positions depend on the newly
transformed images. Some solutions such as adding a spatial de-transformation network before
the output layer [27] or estimating the canonical hand pose and the hand orientation by two
parallel networks [184] was proposed. However, these methods have more complex network
structures and make the training more difficult.

Instead of an online training module in Transteleop, another method OBB (Orientated bounding
box)-based point cloud normalization, was firstly utilized in 3D hand pose estimation using
point clouds [55, 56]. Performing Principal Component Analysis (PCA) on the input points,
this method builds a new bounding box frame aligning with the eigenvectors of input points’
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p

Localization net Grid generator

Sampler

Figure 5.4 – Architecture of a spatial transformer module. The input human hand image IH is passed
to a localization network which regresses the transformation parameters p. The regular spatial grid G
over OH is transformed to the sampling grid Tp(G), which is applied to the sampler S, producing
the warped output feature map OH . The combination of the localization network and sampling
mechanism defines a spatial transformer. Adapted from [71].

Original
 images

Rotated images

U

V

Figure 5.5 – Example images by an PCA-based rotation. The first row presents the depth images
in the original UV coordinate with various global poses. The second row presents the sampled and
rotated depth images in the new UV coordinate, of which the hand orientations are consistent. The
last two columns show the special cases that the fingers spread widely in the original U-axis.

covariance matrix, which correspond to eigenvalues from largest to smallest. The input points
are transformed to the new bounding box frame, then are shifted to zero mean and scaled to
unit size. This OBB-based normalization has been proved that it can normalize point clouds
with more consistent orientations and make the network easier to learn the hand articulations
than the normalization without rotation. For a 2D depth map, the OBB-based normalization
can be simplified to a PCA-based rotation, which rotates the 2D hand pixel in a new UV
coordinate. The new V-axis is aligned with the eigenvector of the input pixels’ covariance matrix,
which corresponds to the largest eigenvalue. Then all pixels are transformed into the new UV
coordinate. In case some pixels are rotated out of the image, proper padding is added before
rotation. The rotated images are exampled in Fig. 5.5. The hands in most rotated images have
consistent orientations, but some hands, where the fingers spread widely in the original U-axis,
have a 90◦ orientation difference compared to other rotated images.

In this chapter, both the online STN module and the offline PCA-based rotation methods are
studied (The newly generated images by the STN module are shown in Fig. 5.10 on page 67). As
the outputs QR and IR are invariant to the spatial transformation of the input image, the ground
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truth does not need to be modified. Therefore, the STN module can be added before the encoder
module without any other extra structures. The training results using these two preprocessing
methods are discussed in section 5.4. Note that the depth images fed into these two preprocess
modules have been extracted from the raw depth image as a fixed-size cube around the hand and
are normalized to [−1, 1]. Same as the section 4.3.1, the input depth images are conducted noise
removal as well.

5.3.2 Encoder-embedding-decoder Module

The encoder takes a depth image of a human hand IH from various viewpoints and discovers
the latent feature embedding Zpose between the human hand and the robot hand. We use six
convolutional layers containing four downsampling layers and two residual blocks with the same
output dimension. Thus, given an input image of size 96× 96, the encoder computes an abstract
6× 6× 512 dimensional feature representation ZH .

Similar to [121], we connect the encoder and the decoder through two fully-connected layers
instead of convolutional layers because the pixel areas in IH and IR in our dataset are not
matched. This design results from the fact that a fully-connected layer allows each unit in the
decoder to reason on the entire image content. In contrast, a convolutional layer cannot directly
connect all locations within a feature map. Through the embedding module, we extract the
useful 4092-dimensional feature embedding Zpose from ZH .

The decoder aims to reconstruct a depth image of the robot hand ÎR from a fixed viewpoint from
the latent pose feature Zpose. One fully-connected layer connects the feature from Zpose to robot
feature vector ZR. Four up-convolutional layers with the learned filters and one convolutional
layer for image generation follow.

Unlike common image-to-image translation tasks, the generated image IR should care more
about the accuracy of local features such as the position of fingertips instead of global features
such as image style. This is because the pixels of the joint keypoints possess more information
about the hand pose. Regarding the Shadow hand, as depicted in Fig. 3.3, each finger has three
keypoints. Therefore, we designed a novel keypoint-based reconstruction loss to capture the
overall structure of the hand, and to concentrate on the pixels around the 15 keypoints of the
hand. We regard the eight neighboring pixels of each keypoint as important as these keypoints
themselves. The scaling factor α ∈ [0, 1] (see equation 5.2) of each pixel error is determined by
how close this pixel is to all keypoints, shown in Fig. 5.6.

Di = min ‖Pi −N‖2

αi = 1− Di

Dmax

,
(5.2)

where Pi is the position of i-th pixel in UV coordinate, N is the position array of all keypoints
and their neighboring pixels, D is the minimum distance from each pixel to pixels in N , αi is
the scaling factor of the i-th pixel.
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(a) Dataset1 (b) Dataset2

Figure 5.6 – The example heatmaps of scaling matrix α in dataset1 (the wrist of the robot is always
fixed) and dataset2 (the wrist pose of the robot is as same as the human). The darker color illustrates
how important these pixels are. Examples of paired human-robot depth images at the same wrist pose
in our dataset.

The reconstruction loss Lrecon is an L2 loss that prefers to minimize the mean pixel-wise error
but does not encourage less blurring, defined as:

Lrecon =
1

M

M∑
i=1

αi · (IR,i − ÎR,i)
2, (5.3)

where M is the number of pixels, ÎR is the ground truth of the robot hand image.

5.3.3 Joint Module

The joint module focuses on deducing 19-dimensional joint angles Q from the latent feature
embedding of the decoder. We choose ZR instead of Zpose because ZR has richer features
depicting the pose feature of the robot hand. Three fully-connected layers are employed in the
joint module. The joint module is supervised with a MSE loss Ljoint

Ljoint =
1

N
‖Q− J‖2, (5.4)

where N is the number of joints and J denotes the ground truth joint angles.
Overall, the complete training objective:

Lhand = λrecon · Lrecon + λjoint · Ljoint, (5.5)

where λrecon and λjoint are the scaling factors.
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5.4 Network Experiments

5.4.1 Training Details
To see whether the inconsistent orientation and position of the input and reconstructed images
bring more training challenges, we trained Transteleop on Dataset1 and Dataset2, respectively.
This paired dataset records nine depth images of the robot hand from different viewpoints
simultaneously, corresponding to one human pose. Considering abstract an explicit kinematic
configuration from the robot image, only the robot images taken in front of the robot are used.
The image preprocessing are described in subsection 5.3.1.

The weights of the model are initialized by normal distribution N (0, 0.02). To optimize our
networks, we use minibatch stochastic gradient descent and apply Adam optimizer with a
learning rate lr = 0.002 and momentum parameters β1 = 0.5, β2 = 0.999. The learning rate is
decayed by 0.5 every 80 epochs. We use λrecon = 1, λjoint = 10. At inference time, only the
encoder module and the joint module for joint angle regression are used. The average inference
time is 0.027 s, tested on a computer with Intel i9-7900X CPU with 3.30 GHz and 128 G of
RAM, and a GeForce GTX 1080 Ti GPU.

5.4.2 Baselines Comparison
First, to find the best preprocessing module which learns invariance to the hand orientation and
rotation, the STN- and PCA-based preprocessing modules were compared. These two models
are referred as “TranstelopSTN” and “TransteleopPCA”.

Second, to evaluate whether Transtelop could learn more indicative visual representations, four
baseline models were trained on the paired human-robot dataset, Dataset2.

1) GANteleop: a model that adds a PatchGAN discriminator in Transteleop and an adversarial
loss based on the “pix2pix” framework [70], shown in Fig. 5.7);

2) TeachNet: an end-to-end robot hand pose estimation model with an auxiliary consistency
loss [93];

3) Humanonly: a model that removes the decoder module in Transteleop;

4) Robotonly: a model that removes the decoder module in Transteleop and is fed by the
depth images of the robot hand instead of the human hands.

Then, to find out whether Dataset2 improves posture learning, we also trained a model called
“TransteleopFix” on Dataset1, where the robot wrist is fixed in the robot depth images.
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Human hand image
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real
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Figure 5.7 – Architecture of the GANteleop model. PatchGAN is a type of discriminator for GANs
which only penalizes structure at the scale of local image patches instead of the whole image. The
input of the human hand image is the additional information for training conditional GANs.
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Figure 5.8 – The fraction of frames whose absolute maximum joint angle/distance error is below a
threshold between the Transteleop approach and different baselines on our test dataset. These results
show that the Transteleop model has the best accuracy over all evaluation metrics except for the
Robotonly model.
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Figure 5.9 – Comparison of the absolute average angle error on the individual joint between the
Transteleop approach and different baselines on our test dataset. F means the first finger, L means the
little finger, M means the middle finger, R means the ring finger, T means the thumb. 2, 3, 4, 5 mean
the n-th joint of the finger.

Figure 5.10 – Example images generated by the STN preprocessing module in Transteleop. The
first row presents the original input of the depth images. The second row presents the corresponding
generated images by the STN preprocessing module. The black borders of the second-row image
outputs are generated after the image rotation.

We compared the fraction of frames whose maximum angle and distance error are below
a threshold and the average angle error over all angles, as shown in Fig. 5.8 and Fig. 5.9.
Comparing the Transtelop model with the TransteleopPCA model, there is no significant
improvement resulting from the PCA-based preprocessing. This suggests that the OBB-based
normalization brings a slight appearance normalizing effect to this task but does not significantly
promote the hand pose transform to a canonical pose. To analyze the performance of the
TranstelopSTN model, we also show the intermediate outputs from the STN module in Fig. 5.10.
Note that the black borders of the STN generated outputs are generated after the image rotation.
We surprisedly find that the STN module not only rotates or translates the input images but
also flips all images. Even though the STN generated images have more consistent hand poses,
the TranstelopSTN model only has higher accuracy regarding the high-precision thresholds,
especially when the maximum angle error is lower than 0.16 rad and the maximum distance error
lower than 8 mm. The TranstelopSTN model also performs worse than Transteleop comparing
the average angle error on the individual joint.
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Angle (rad) Transteleop GANteleop TeachNet[93] Humanonly TransteleopFix

Max Err.
<=

0.1 41.15% 12.60% 24.63% 37.51% 39.88%
0.15 66.77% 37.82% 50.11% 61.87% 63.51%
0.2 79.82% 59.10% 72.04% 76.40% 75.92%

0.25 86.98% 73.42% 81.94% 84.06% 84.19%
Ave Err. 0.030 0.063 0.046 0.033 0.0343

Distance (mm) Transteleop GANteleop TeachNet[93] Humanonly TransteleopFix

Max Dis.
Err. <=

4 15.83% 1.21% 9.98% 11.50% 13.50%
6 43.82% 9.78% 27.53% 36.91% 40.77%
8 65.00% 25.26% 46.44% 57.52% 62.56%
10 78.21% 43.31% 61.41% 73.91% 75.99%

Ave Dis. Err. 1.14 2.21 1.47 1.25 1.22

Table 5.1 – Angle/distance accuracy under high-precision conditions and average angle/distance
error

Furthermore, the quantitative results of the angle/distance accuracy under high-precision
thresholds are listed in Table 5.1. The Robotonly model significantly outperforms all other
baselines over all evaluation metrics because of the matched domain. We also note that
the performance of GANteleop is much worse than Transteleop because the discriminator
in GANteleop focuses on pursuing realistic images and weakens the supervision of Ljoint.
Comparing two image-to-image translation based models (Transteleop, TransteleopFix) and
TeachNet, the TeachNet model gets at least 15% lower accuracy below a maximum joint angle
regarding the high-precision condition. We infer that the image translation structure seizes more
valuable pose features than the alignment mechanism between two layers in TeachNet. Except
for the GANteleop model, all other models show at least 10% improvement of the accuracy over
TeachNet in the high-precision condition. It indicates that the deeper network layers play a more
critical role than the supervision of the consistency loss in TeachNet.

Meanwhile, Transteleop shows an average 2.805% improvement of the accuracy compared to
the Humanonly model. This result suggests that the additional reconstruction loss assists in
gaining more indicative pose features. Also, Transteleop performs better than TransteleopFix,
indicating that the new pairwise human-robot dataset with the same wrist orientation enables the
model to learn more indicative shared pose features.

Moreover, the TransteleopPCA model has the lowest absolute average angle error, and all
methods’ absolute average angle error is lower than 0.09 rad. The highest error happens on THJ5
because there is a big discrepancy between the human thumb and the Shadow thumb. For four
fingers, J2 and J3 have higher errors than J4 or J5. The reason is that these two joints are involved
in the most complex finger motions and have wider joint angle ranges than J4. Last but not least,
the fixed distal joints of the robot hand affect the overall accuracy of models as well.
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5.4.3 Reconstructed Images

The examples of the reconstructed images by Transteleop and GANteleop are visualized in
Fig. 5.11. Obviously, the images generated by GANteleop keep more details and are less blurry
than by Transteleop. Nevertheless, the reconstructed images from Transteleop are still akin to
the ground truth images and contain the rough silhouette.

Real
human

Real
robot

Reconstructed
Robot (GAN)

Real
human

Real
robot

Reconstructed
Robot (GAN)

Reconstructed
robot(AE)

Reconstructed
robot(AE)

Figure 5.11 – Reconstructed robot images generated from Transteleop and GANteleop.

5.4.4 Analysis Based on Viewpoint

Since the inaccuracy issues due to the self-occlusion of the fingers result from the camera
viewpoint to a certain extent, the mean error of images from different camera viewpoints was
examined. The test dataset was divided into twelve portions based on the angle between the
camera direction and the Y-axis of the hand. Fig. 5.12(b) exhibits the average absolute angle
error on the individual joint (except for joints LF5, LF4, MF4, RF4, and TH3, which have a
relatively smaller mean error than other joints) tested on the twelve sub-datasets. The mean
errors of all joints manifest a noticeable rise when the viewpoints are in the [75◦, 150◦] range
because of the amount of self-occlusion. Especially, the mean errors of thumb joint 5, which is
one of the essential joints for manipulation, is 0.096 rad in the [165◦, 180◦] range. Surprisingly,
most joints perform well at the [150◦, 180◦] range.
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Figure 5.12 – (a) The absolute average angle error on the individual joint tested on twelve intervals
of viewpoints. (b) β is used to indicate the angle of the camera viewpoint, which is the angle between
the camera direction and the Y-axis of the hand.

To figure out this phenomenon, we analyze the average number of occluded joints for each
sub-dataset, indicating the posture complexity. A joint occlusion is defined by thresholding the
distance between the joint’s depth annotation value and its re-projected depth value. The average
number of the occluded joints out of 19 joints is shown in Table. 5.2. Apparently, there are some
straightforward human hand images with lower posture complexity at [150◦, 180◦] viewpoint
range in our test dataset, therefore the mean error at this range is lower than expected. If we only
focus on the [0◦, 150◦] viewpoint range, this result reveals that it is easier to determine hand
poses in a good camera viewpoint. Therefore, it is beneficial to keep the operating range of the
human hand in the [0◦, 30◦] viewpoint range.

Ori.(◦) 0-15 15-30 30-45 45-60 60-75 75-90
Num 4.43 4.61 4.99 5.44 5.94 6.43

Ori.(◦) 90-105 105-120 120-135 135-150 150-165 165-180
Num 6.38 5.91 5.64 5.32 3.75 3.65

Table 5.2 – The average number of occluded joints out of 19 joints tested on twelve intervals of
viewpoint angle
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5.5 Discussion
This chapter further studies deep-learning-based human hand pose estimation (Research
Question Q1) and presents the preprocessing methods, network structure, training objectives,
and evaluations of a novel robot joint estimation model, Transteleop. Transteleop observes the
human hand through a low-cost depth camera then generates joint angles and depth images
of the paired robot hand through an image-to-image translation process. A keypoint-based
reconstruction loss explores the resemblance in appearance and anatomy between human and
robotic hands and enriches the local features of reconstructed images. The accuracy evaluation
in three metrics confirms that Transteleop learns more indicative visual representations than
other baselines. Therefore, applying Transteleop to the markerless vision-based teleoperation for
the anthropomorphic robot hand will most likely accomplish interesting manipulation tasks. In
the next chapter, combing with a robot arm teleoperation method, Transteleop shows a good
performance in robot hand-arm manipulation applications. Code of the Transteleop model is
available at [W15].

The viewpoint analysis verifies that it is easier to determine hand poses in a good camera
viewpoint. This result suggests that maintaining the human hands captured from the best
viewpoint and at a suitable distance during the experiments will increase the joint accuracy,
thereby fostering more effective dexterous manipulation.
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Chapter 6

Multimodal Hand-Arm Teleoperation
System Based on Vision and IMU

With the end-to-end learning networks (TeachNet and Transteleop) available, the kinematic
mapping from the human hand to the robot hand is learned, and markerless vision-based
teleoperation for the anthropomorphic hand is achieved. The challenge to extending the hand
teleoperation system to a hand-arm system lies in the good design of systematic control. This
chapter describes how to teleoperate the PR2 robot [W5] by the end-to-end model integrated
with an IMU-based arm control system.

Section 6.1 elaborates on the goal, the design and the hardware platform of the hand-arm
teleoperation system. Section 6.2 covers the software usage of the IMU-based device, deals
with how to send the motion data from a Windows system to a Linux system through the ROS
platform, and explicates the control strategies of the robot arm. With a 3D-printed camera holder
described in section 6.3, the teleoperator is not limited to a fixed workspace anymore. Finally,
section 6.4 shows the efficiency and stability of the proposed multimodal teleoperation system
by a variety of complex manipulation tasks that go beyond simple pick-and-place operations.
The experimental video is available at [W12].

6.1 System Description

Our goal is to build a robotic hand-arm teleoperation system in which the teleoperator performs
natural hand motions for a series of hand-arm coordinated manipulation tasks in an unlimited
visual workspace. To set up such a system, the markerless end-to-end vision-based model,
Transteleop, is formulated to teleoperate the anthropomorphic hand. Subsequently, we should
determine a real-time and smooth arm teleoperation method. Based on the survey in section 2.1.1,
IMU-based devices are suitable to achieve accurate control of the robotic arm, and they are
convenient to implement. Therefore, an IMU-based device is chosen to control the arm. Let IH
be the image of a human demonstrating hand poses of manipulation tasks as observed by a depth
camera. In this system, the vision part aims to take advantage of a neural model that takes IH
as inputs and predicts joint angles Θ of the robot hand, while the IMU part intends to map the
absolute motion of the human arm to the robot arm.
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Figure 6.1 – The multimodal teleoperation system is built on the markerless vision-based model,
Transteleop, which predicts the joint angles of an anthropomorphic hand, and an IMU-based arm
control method. Transteleop gains meaningful pose information from depth images of a human hand
IH based on an image-to-image translation structure and predicts the joint angles Jhand of the robot
hand. This multimodal system implements different manipulation tasks such as pick and place, cup
insertion, object pushing, and dual-arm handover tasks on a PR2 robot with a Shadow hand installed
on its right arm.

One requirement of vision-based methods is that the hand of the teleoperator must stay inside the
limited view range of the camera system. This restriction impedes the operator from completing
manipulation tasks that need a wide working area. To achieve a dexterous hand-arm teleoperation
system without workspace constraint, we develop a camera holder to mount the camera on the
arm of a human. In conjunction with the Transteleop method, a camera holder, and IMU-based
arm teleoperation, this multimodal system can not only maintain the natural motion of the human
fingers but also allow for flexible arm motion. Fig. 6.1 illustrates the framework of proposed
method for hand-arm teleoperation. The robot system used in this work is a PR2 robot with a
19-DoF Shadow hand mounted on its right arm. Unlike the 7-DoF left arm of PR2, the right
arm of PR2 only has 5 DoF due to the attached Shadow hand. In addition to that, five Syntouch
Biotac tactile sensors [W37] are retrofitted at the fingertips of the Shadow hand.

6.2 IMU-based Arm Teleoperation Method

We chose the IMU-based Perception Neuron (PN) system as the arm-control device. According
to the manufactures, PN system is one of the most versatile, adaptable motion capture systems in
the world. It is prevalent in body tracking, animation, and VR game interaction [W26]. Each
Neuron sensor in the capture system is an IMU composed of a gyroscope, accelerometer, and
magnetometer. The output rate is 60 Hz or 120 Hz depending on whether the number of active
Neurons is larger than 17. A supporting Hub collects motion data from the Neuron sensors then
sends the data to a computer via USB or wireless connection through any standard 2.4 G wireless
router.
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6.2.1 Axis Neuron Software
The Axis Neuron software used to communicate with Perception Neuron hardware can be
downloaded from [W25] and installed in the Windows system. As we use the ROS platform in
the Ubuntu system to control the robot, the Axis Neuron is therefore installed in a Windows
virtual machine by VMware Workstation 15 Player [W45] in a Linux computer. In our
experiments, we use the PN to control one arm or both arms of the PR2 robot. Hence,
we use the suit’s single-arm mode (3 neurons) or upper-body mode (11 neurons). The
three neurons for single-arm mode are sufficient to capture the motion of the right palm,
right upper arm, and right forearm. In upper-body mode, six neurons are used to capture
motions of two arms, two neurons used for the left and right shoulder, one neuron for the
spine, one neuron for the stomach, and one neuron for the head. The illustration of the
sensor distribution on the human body is shown in Fig. 6.2. In our experiment, we glue
the palm sensor to the back of the human hand instead of wearing a glove in order to keep
the hand markerless in the images. The neurons at stomach and head are not required in our setup.

(a) Single-arm mode (b) Upper-body mode
(c) A human is wearing the upper-
body suit

Figure 6.2 – Illustration of the neuron distribution on the human body in (a) single-arm mode and
(b) upper-body mode. The purple dots indicate the position of the neurons. (c) demonstrates the
upper-body suit when a human is wearing it.

After the human user puts on the motion capture suite and connects it through the Hub to the
Axis Neuron, the user can choose or customize the body dimensions (see “Body Size Manager”
window in Fig. 6.3) and calibrate the suit by following the instructions in the Axis Neuron
manual [W24]. Fig. 6.3 shows the interface of the Axis Neuron in single arm mode. The Axis
Neuron not only receives and processes the motion data but also exports the motion data to
some third-party software by BVH (Biovision hierarchical data) and FBX (Filmbox) formats.
In our experiments, Axis Neuron broadcasts BVH data, which includes the Euler angle and the
displacement of each link, through the Transmission Control Protocol (TCP). The illustration of
data broadcast is shown in Fig. 6.4.

6.2.2 Data Broadcast Through ROS
Consequently, the next crucial question is how to read the BVH data in the Windows virtual
machine then publish it to the Ubuntu host computer. We tackle this cross-system connectivity
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Figure 6.3 – Interface of the Axis Neuron software in single-arm mode. The main “View” window
shows a humanoid robot that performs the same movements as the human. The “Sensor Map”
window illustrates the position of activated sensors. The “Data Visualizer” window plots the real-time
XYZ angles of the right forearm. The “Body Size Manager” window saves the customized body
measurements of the demonstrators.

roscore

Linux host (LAN)Windows virtual machine

socket_node

ROS
messages

Axis Neuron
(192.168.*.*/7001)

Rosserial client

Figure 6.4 – Data broadcast from Axis Neuron to the Linux host machine.

issue using the rosserial ROS package [W4]. Rosserial is a ROS communication protocol that
transmits standard ROS messages based on ROS topics or services among different platforms
over a serial interface. The roserial_server package provides the host-side rosserial connection in
C++ and deals with publishing and subscribing for a connected rosserial-based client [W30].
The client can run on different platforms, such as Windows, various Arduino boards.

On the Linux host, a roscore executable and the socket node from the rosserial package, which
provides an interface to multiple TCP clients, need to be run. A rosserial-enabled client, which
reads the PN BVH data and publishes the motion data as ROS messages, is executed after
installing basic ROS libraries on the Windows virtual machine. To correctly run the client, it is
essential to configure the correct broadcast port of the Axis Neuron and the IP address of the
ROS master. The publish rate of the motion messages is set to 50 Hz. Accordingly, the motion
data is published on the Linux host and can be used for controlling the robot arm. In spite of not
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wearing the whole-body suit, the 6D pose of other unmeasured bodies parts is broadcast with
constant values determined by the body dimension of the demonstrator. The detailed codes and
command lines are presented in [W13].

6.2.3 Arm Tracking

After setting up the hardware and software configuration of the PN system, the Euler angles of the
arm joints are obtained. One final calibration process involves registering the pose movements
of the human arm with the robot system. This is accomplished by matching the human spine
frame to the torso link of the PR2 robot, as shown in Fig. 6.5. The spine link is defined in the PN
software, and the robot torso link is set in the robot Unified Robot Description Format (URDF)
file. We assume the transformation spineTh of the right human palm with respect to the human
spine link is the same as the transformation torsoTr of the wrist of the robot arm in relation to
the torso link of the robot. As the lengths of the human arm and the robot arm are different, we
update torsoTr by the link length of the robot upper arm and forearm. Given the transformation
torsoTr, we compute the joint angles of the robot arm J ik (including two wrist joints of Shadow
hand) by feeding this pose to the bio-ik solver. After this, we set the angular velocity Vt of each
joint by calculating and scaling the feedforward joint difference between the desired joint angles
of the current frame J ik

t and of the previous frame J ik
t−1 and the feedback joint difference between

the desired joint angle of the current frame J ik
t and of the current robot joint state Jrobot

t .

Vn,t = δ1 · (J ik
n,t − J ik

n,t−1) + δ2 · (J ik
n,t − Jrobot

n,t ), (6.1)

where n is the n-th joint of the arm, δ1, δ2 account for the scaling factors of each velocity term.

torso link
wrist link

spine link

palm link

Figure 6.5 – Illustration of the registration between the human right hand and the PR2 right robot
arm. The human spine frame is set to match the torso link of the PR2 robot, and the frame of the
right human palm is registered to the frame of the wrist of the robot arm. The dots on the human
body diagram represent all possible body parts that Perception Neuron can track. The purple ones are
where the Neurons have been activated in this setup, and the pink ones are not.
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6.3 Camera Holder
The expected dexterous hand-arm system requires that the teleoperator works in an unlimited
visual workspace. Paradoxically, the field of view of the depth camera is usually restricted.
The depth sensor used in our experiments is the Intel RealSense SR300, whose horizontal and
vertical depth fields of view is 73◦ and 59◦, respectively. The operating range is from 0.3 m to
2 m. Compared to the Intel RealSense F200 camera used in chapter 4, the SR300 camera is more
advanced and supports shorter exposure time, and allows dynamic motion up to 2m/s based on
a newer 640× 480@30 Hz VGA (video graphics array) depth mode. If the operators implement
teleoperation tasks requiring a wide workspace, the human hand will disappear from the camera’s
view range. We solve this problem with a cheap 3D-printed camera holder (see Fig. 6.6), which
can be mounted on the forearm of the teleoperator by inelastic polyester straps. The installation
of this camera holder is shown in all experimental figures in the following section 6.4. The
camera holder’s weight and length are 248 g, and 35 cm. During the teleportation experiments,
the camera will move along with the forearm. The other side benefit is that the camera holder
facilitates an almost optimal viewpoint to capture human hands.

Intel RealSense SR300 camera

Figure 6.6 – The camera holder is used to mount the camera on the human arm.

6.4 Manipulation Experiments
The multimodal teleoperation system described above was systematically evaluated across four
types of physical tasks that analyze precision and power grasps, prehensile and non-prehensile
manipulation, and dual-arm handover tasks. For the control of the arm, we set δ1 = 0.7, δ2 = 0.1.
The frequency of the arm’s velocity control is 30 Hz. The starting poses of the human arm were
always consistent with the starting pose of the robot arm. Meanwhile, the arms of the robot
always started and ended at almost similar poses over every task. The frequency of the hand’s
trajectory control is set to 30 Hz. One female and two male testers have participated in the
following robotic experiments, and each task was randomly performed by one of them. All
objects used in the experiments are not modeled into the planning scene, so there is no collision
avoidance between these objects and the robot.

1) Pick and place. For this task, we prepared two testing scenarios: pick a Pringles can and place
it in a red bowl on the same table; pick a cube on the table and place it on top of a brick on a
box. The height of the box is 225 mm. The first scenario requires the power grasp skills of the
robot, and the second scenario needs the precision grasp skills of the robot and a wide enough
workspace for the teleoperator.
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Figure 6.7 – The PR2 robot picks a Pringles can and places it in a bowl. The Pringles and the bowl
are set on the same table.

Figure 6.8 – The PR2 robot picks a wooden cube on the table and places it on a rectangular brick on
a box. The height of the box is 225 mm.

Figure 6.9 – The PR2 robot inserts three cups into each other.
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Figure 6.10 – The robot pushes a rectangular brick to a specified pose. The red rectangular on the
table represents the target pose of the brick.

2) Cup Insertion. Three concentric cups are to be inserted into each other in order of size from
smallest to largest. The cups are randomly put on the table. This task examines the abilities of
precision grasp and release.

3) Object pushing. We set a random initial pose of a brick then push the brick into a designated
position. The goal pose is labeled as a red rectangle. The size of the rectangle is as same as the
size of the brick. This task examines the challenges of pushing, sliding, and precision grasping.
During the task, a lots of slight adjustment of the brick pose were conducted when the brick was
close to the goal area.

4) Dual-arm handover. The left robot arm hands a roll of paper or a mustard bottle over to its right
hand. The operator also exploits the PN setup to control the left arm and left gripper of the PR2.
This task tests the coordination ability of the whole teleoperation system. Owing to our system’s
mobility, the human can sit face to face instead of parallel to the robot to better visualize. Fig. 6.11
qualitatively demonstrates this experimental scenario. Notably, in the handover task, the teleoper-
ators needed five complete warm-up trials to adapt to the opposite operating direction of the robot.

Similar to [63], the operators performed a warm-up training phase for each task with five
non-consecutive attempts before the real testing trials. For more manageable tasks such as
pick and place, the operators could complete the task well after three trials. However, for the
handover task, the teleoperator took more trials to adapt to the opposite operating direction of the
arm. Each task was conducted five times by one demonstrator. Fig. 6.7 to Fig. 6.11 qualitatively
demonstrate the experimental results of our hand-arm system.
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(a) The PR2 robot hands over a roll of paper from its left gripper to its right hand.

(b) The PR2 robot hands over a mustard bottle from its left gripper to its right hand.

Figure 6.11 – Screenshots of handover tasks.

pick1 pick2 cup pushing handover
Ave. time (s) 18.5 37.2 25.5 62.0 36.33

Ave. success rate 100% 100% 100% 80% 60%

Table 6.1 – Average completion time and success rate of each task

Table 6.1 numerically shows the average completion time a teleoperator took to finish a task, and
the success rate. The completion time was calculated when the robot started to move until it
went back to the starting pose. The high success rate and short completion time for the two pick
and place tasks, and for the cup insertion task indicate that our system has the ability of precision
and power grasps. Compared to the two pick and place tasks shown in Figs. 6.7 and 6.8, the
cube is smaller than the Pringles can, and the brick is much smaller than the bowl. Therefore,
the robot needed a longer time to precisely grasp the cube and find a correct place to land the
cube. During the pushing task, the robot could quickly push the brick close to the target position
using multiple fingers. Nevertheless, the operators took a long time to deal with the orientation
of the brick in order to make the pushing error lower than 5 mm. The handover task achieved a
relatively low success rate, mainly because of the imprecise control of the left gripper, so the
robot accidentally lost the object during the handover interaction. These results reflect the fact
that the visual-based method is more suitable for multi-finger control than the IMU-based method.
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6.5 Discussion
The chapter presents a multimodal hand-arm teleoperation system that consists of the novel
vision-based hand pose regression network (Transteleop) and an IMU-based arm tracking
method. Regarding the arm tracking, the velocity commands of each arm joint are generated
by calculating and scaling the feedforward joint difference and the feedback joint difference
(Research Question Q2). Moreover, the human-robot arm calibration was achieved by matching
the human spine frame to the torso link of the PR2 robot (Research Question Q2). Therefore,
the human movements on the floor do not matter for the arm control because only the relative
transformation from the human spine to the right wrist was considered. Thanks to a self-designed
camera holder, the integration between the hand and the arm is achieved, making this whole
system mobile and unrestricted to the field of view of the depth camera (Research Question Q3).
In theory, the human can stand or move anywhere inside of the sensing area of the PN system.
Finally, the demonstration of the teleoperation system across three trained human demonstrators
on four tasks, i.e., pick and place, cup inserting, pushing a brick, and dual-arm object handover,
was successfully performed (Research Question Q4). These robotic experiments verify that
Transteleop is an efficient and feasible vision-based teleoperation algorithm, and the IMU-based
arm control was reliably implemented on the PR2 arms.

Although our method performs well in real-world tasks, it still has some limitations. The Neuron
sensors in the PN system should keep away from magnetic field environments, such as metal
tables, computers, or any electrical machines. Since the humans stand near the robot, the IMU
data are prone to drift over time, so the demonstrators have to recalibrate the wearing suit from
time to time. It would be better to find another arm teleoperation method that is insensitive to the
working environment and efficient to use. The 248 g and 35 cm 3D-printed camera holder and the
108 g depth sensor are worn on the human’s forearm, bringing additional physical burden for the
teleoperator. Since the inelastic polyester straps became a bit loose after long time experiments,
sometimes the small rotation of the human forearm could not drive the camera holder to move
along. Moreover, the rotation of the human forearm is not consistent with the rotation of the hand
palm. Therefore, the camera cannot capture the human hand at the best viewpoint all the time,
resulting in hand images with severe self-occlusion. However, the self-occlusion of the fingers
is one of the primary reasons causing inaccuracy issues of the vision-based pose estimation
algorithms, especially when a single and fixed camera provides the visual data. We hypothesize
that a controlled active system would potentially replace the camera holder and solve the extra
burden and inaccuracy problem. The controlled active system can be set up so that a camera
is mounted on the end-effector of a manipulator, and this manipulator automatically tracks the
human hand. One of the primary concerns of vision-based teleoperation is the absence of haptic
feedback because the control loop is only supervised by the user. However, the haptic devices are
usually expensive and have to be worn on the human hand. As a low-cost alternative to haptic
feedback, the visual channels could be implemented to visualize the magnitude of pressure or
force on each fingertip of the Shadow hand [128].
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Chapter 7

Hand-Arm Teleoperation System Based on
Active Vision

Last chapter presents a multimodal hand-arm teleoperation system combined with a vision-based
hand estimation model and an IMU-based arm control method. However, the inaccuracy issues
due to the self-occlusion of the fingers have not been tackled. On average, the mean errors of the
state-of-the-art hand pose estimation algorithms by a single camera are less than 10 mm, but
only when the angle between the camera direction and the human hand is less than 30◦ [171].
The experiment in section 5.4.4 also reveals that it is beneficial to keep the operating range
of the human hand in the [0◦, 30◦] viewpoint range. A well-calibrated multi-camera system
is commonly used to perceive rich information, but it cannot avoid extreme viewpoints for
the target objects and always encounters issues like time synchronization and long processing
time [141]. Another option is to ensure that the camera always captures the human hand from
the best viewpoint and at an optimal distance, capitalizing on the more straightforward pose
estimation owing to the unobstructed fingers. The aim of active vision systems is to manipulate
the viewpoints of the camera and gain the best observation [3]. To thoroughly solve the limited
viewpoint issues in vision-based teleoperation, developing a controlled active vision system at
the local site would be beneficial.

Therefore, this chapter aims to develop a novel vision-based hand-arm teleoperation system
that captures the human hands from the best viewpoint and from a suitable distance. This
teleoperation system consists of the end-to-end hand pose regression network Transteleop and
a controlled active vision system. Section 7.1 investigates the background of active vision in
robotics and how to implement an active system into a hand-arm teleoperation application.
Section 7.2 discusses three potential hardware choices that can be used for hand tracking.
Later, section 7.3 covers the hardware preparation and software communication in the proposed
teleoperation system. Section 7.4 and section 7.5 then explain the control strategies for the robot
arms. A precision analysis is given in the following section 7.6.1. Last but not least, a variety of
complex manipulation tasks, i.e., pick and place, tower building, pouring, sweeping, and moving
or sliding the fader of a MIDI mixer are demonstrated in section 7.6.2 to show the practicality
and stability of the proposed teleoperation system.
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Human wrist pose

Robot hand 
commands

Slave robot arm 
commands

Master robot 
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Arm-mounted 
camera

Human 
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Transteleop

Figure 7.1 – The pipeline of the proposed active-vision-based hand-arm teleoperation system. The
human demonstrator teleoperates the slave hand by the end-to-end hand pose estimation network
Transteleop and controls the slave robot arm by the relative trajectory control based on the operator’s
wrist motions. To solve inaccuracy issues of the hand pose estimation caused by self-occlusion of the
fingers, we introduce the controlled active vision system to obtain the best hand information. The
active vision system consists of a depth camera mounted on a robot arm and a real-time trajectory
generation method. This teleoperation system enables the slave robot to finish different types of
manipulation tasks such as pouring, sweeping, and sliding a fader.

7.1 Active Vision for Teleoperation

Active vision has been widely used in object tracking [169], robotic grasping [2], human-robot
interaction [34], and simultaneous localization and mapping (SLAM) [33]. It aims to select an
optimal image viewpoint by moving the vision sensor to an optimal pose for facilitating the
associated applications. In common active vision systems, the vision sensor is either mounted on
the end effector of a manipulator as a hand-eye system or as a Pan-Tilt robot. Calli et al. [20]
utilized the curvature information from the silhouette of unknown objects to update the robot
pose using active vision for obtaining exemplary grasping configurations. Recently, some work
has optimized the camera viewpoint based on reinforcement learning techniques for grasping
pose generation and robotic pushing tasks [19, 29]. In the human-robot interaction scenario,
active vision usually strengthens the robot’s ability to detect the humans’ presence and interpret
their motion or emotions [16]. Latif et al. [84] proposed the eye-gaze tracking interface TeleGaze
to teleoperate mobile robots based on the visual information from the two Pan-Tilt-Zoom
cameras on the robots. To improve the operational performance and increase the immersive
feeling, Huang et al. [68] established an active vision system based on a Pan-Tilt-Zoom video
camera to track the target in a space robot teleoperation task automatically. Instead of applying
active vision to observe a remote site, we investigate how to build a controlled active vision
setup at the operator site to capture the human hand from favorable viewpoints.
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7.2. DESIGN CHOICES FOR HAND TRACKING

In this chapter, we devise a markerless vision-based hand-arm teleoperation system in conjunction
with the hand pose estimation method Transteleop and a real-time active vision system (see
Fig. 7.1). To coordinate active perception and track the human hand from optimal viewpoints,
we set up an active vision system where a depth camera is mounted on the end-effector of a
robot arm. We will prove the reliability and practicality of the proposed teleoperation system
by network evaluation, trajectory analysis, and non-trivial robot experiments, including pick
and place, tower building, pouring, sweeping, and MIDI mixer fader sliding, across two trained
demonstrators.

7.2 Design Choices for Hand Tracking
The goal for our active vision system is to locate where the human hand is, in other words, the 6D
global pose estimation of the human hand. A precise 6D global hand pose estimation algorithm
would be ideal, but most hand pose estimation methods only discover the 3D position of the
human wrist without orientation. Leap Motion Controller [W42] is a known hand tracking device
that can estimate joints and reconstruct the skeletal model of two hands at the same time. Its field
of view is 140◦ × 120◦, which is larger than typical depth cameras. Nevertheless, when some
joints are obstructed, Leap Motion generates inaccurate pose estimation results. Alternatively,
using some state-of-the-art motion tracking hardware, e.g., marker-based motion tracking system,
could be a better choice. In this section, three motion tracking choices have been tested are
discussed and depicted in Fig. 7.2.

(a)

Position:

Orientation:

Azure 
camera

Apriltag 
cube

(b)

PhaseSpace
system

Wrist board

(c)

Figure 7.2 – Potential hardware choices of arm tracking. (a) The motion data from the PN system is
heavily influenced by the magnetic environment caused by the robot. (b) Apriltag detection fails in
real-time tracking for moving objects. (c) The PhaseSpace tracking system with a wrist board could
be a better choice.

In chapter 6, the PN motion tracking system and the sophisticated human-robot registration show
excellent performance for robot arm teleoperation. Even if existing body estimation algorithms
can obtain the pose of the human spine, it is impossible to get accurate registration between the
human arm and the robot arm. Additionally, in the active vision scenario, the human stands close
to the master robot arm all the time so that the magnetic environment would heavily interfere
with the IMU motion data.

The Azure Kinect camera [W22] provides a human body tracking SDK (Software Development
Kit), which outputs 6D poses of 32 joints of the human body. Despite this body tracking
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algorithm only retaining high accuracy on the joint position estimation, the orientation of the
spine joint is empirically reliable. Thereby, a possible solution is to utilize the human body
tracking SDK with the cheap visual fiducial system AprilTag [118], whose off-the-shelf detection
algorithm computes the accurate 3D position and the orientation of the tags with respect to the
camera. The Apriltag can be made in the shape of a cube consisting of a tag bundle composed of
six different markers on each face. Then, the Azure Kinect camera estimates the pose of the
right human hand based on the AprilTag cube fixed at the back of that human hand. However,
we found that the Apriltag detection only works well on static tags during the testing. Once the
hand is moving, the detection will be interrupted intermittently probably due to the motion blur.

Alternatively, a marker-based motion tracking system can be a smart choice to pursue reliable
and real-time pose detection. The PhaseSpace Impulse X2E motion tracking system [W29],
which is unrivaled in speed, precision, and flexibility, provides up to 960 Hz motion data based
on several linear-detector-based cameras. A marker on the palm is not as easily obscured as a
customized glove with multiple markers when the human hand performs specific gestures. And
a marker on the back of the hand cannot affect the depth images of the fingers.

8   6   4   2
7   5   3   1

6   4   2   
5   3   1

LEDs

LED pins USB pins

Anode 
(VCC pin) GND pin Address

0 (5) 6     3     8    7 0     1     2     3

1(4) 6     3     8    7 4     5     6     7

2(2) 6     3     8    7 8     9    10   11

3(1) 6     3     8    7 12   13   14   15
LEDs

Micro-driver

Micro-driver wiring scheme

Figure 7.3 – Wring scheme of the customized wrist marker. The left photo shows the wrist marker.
The blue and bold numbers are the anodes pins. The combination of one anode and one ground pin
determines the address of one LED, which will be recorded in the session profile.

With the discussion above, we take the hardware combination of the PhaseSpace system and
a wrist marker as the hardware support of the arm tracking method. Therefore a customized
wrist marker with four red LED lights was designed. The shape of the upper layer on this
wrist marker is 6 cm×4 cm rectangular, and the layer close to the hand back is slightly arched.
Four red LED lights are glued to four corners of the marker. The marker ID, marker name,
all LED IDs, positions of four red LED lights were configured and recorded in a YAML file.
Meanwhile, the inherent object origin was implicitly defined. To let the PhaseSpace system
track the wrist marker, the marker should connect to one micro-driver, which will be activated
when the PhaseSpace system is on. Based on the wiring scheme of the micro-driven in shown in
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Fig 7.3, we built the wiring connection of the marker. A session profile, which was saved in the
PhaseSpace server, has to be created to describe the ID of the associated micro-driver, anodes,
addresses and IDs of each LED, and marker name. After all the configuration and hardware
preparation, the connected LEDs will flash in different patterns that the cameras can differentiate.
Then, this marker’s position can be calculated based on all recognized LEDs.

7.3 System Infrastructure
Our goal is to build an agile vision-based teleoperation system in which the teleoperator performs
natural finger motions and unrestricted arm actions for a series of manipulation tasks that can be
performed in an unlimited workspace. The overall hardware setup is shown in Fig. 7.4.

Local site Remote site (PR2 robot)

Visual 
display

Depth 
camera

Tactile sensors

TCP/IP 
connection

Kinect2

Webcam

Wrist marker

Phasespace motion 
tracking system

Deadman switch

remote view1 (webcam) remote view2 (Kinect2)

tactile 
data

5 DoF 
arm

19 DoF 
hand

6 DOF UR5 robot arm

Figure 7.4 – Overall hardware setup of the proposed hand-arm teleoperation system based on hand
pose estimation and active vision.

The local site setup (also see Fig. 7.5) consists of a 6-DoF UR5 collaborative robot arm with a
RealSense SR300 depth sensor, a PhaseSpace motion tracking system, a 3D-printed lightweight
LED wrist marker, two monitors, and two deadman switches. The human teleoperator stands in
front of the UR5 robot and keeps a safe distance, while the UR5 robot arm, which possesses a
certified safety system, is used to track the human’s right hand autonomously. At the remote
site, the slave robot is a PR2 robot with a 19-DoF Shadow robot hand mounted on its 5-DoF
right arm. A Kinect2 RGBD camera mounted on the PR2 head, and a webcam located to the
right of the PR2 observe the robot’s motions from the top and side viewpoints. In our setup, the
human stands in front of the UR5 robot and can only see the PR2 from the visual displays (see
the working environment illustration in Fig. 7.6).

For wrist tracking, the PhaseSpace motion tracking system (320 Hz) estimates the right human
hand’s 6D pose based on the wrist marker pasted to the back of the human hand. The PhaseSpace
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Figure 7.5 – Front view of the hardware at
the local site.
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Figure 7.6 – Illustration of teleoperation
working environment from the top view.

motion tracking system is registered to the robot coordinate system through a well-designed
registration board with predistributed LEDs lights and a printed Apriltag, as shown in the center
of Fig. 7.7. The external camera pose Tc is determined by the Apriltag bundles near the UR5
base Tr. Then the pose of Apriltag on the registration board and the pose of the board Tb are
estimated by the Apriltag detection and the PhaseSpace system, respectively. The pose rTp of
the PhaseSpace system with respect to the robot base can be calculated by:

rTp =r Tc
cTa

aTb
bTp, (7.1)

where aTb is the fixed transfromation from the Apriltag coordinate Oa to the registration board
origin Ob. In terms of the calibration between the linear cameras in the PhaseSpace system and
the pose rTp, the in-the-shelf MasterClinet software and a calibration wand were used. More
implementation details can be find from [W28].

For finger tracking, the SR300 depth sensor is mounted on the end-effector of the robot arm to
capture depth images of the human hand. There is a self-designed camera holder connecting
the depth sensor and the UR5 end-effector (see Fig. 7.8). The holder is designed also to be
suitable for the case where the end-effector is equipped with a gripper. The pose of the SR300
camera is calculated based on the camera holder’s model and the rough relative position between
the holder and the camera. We do not require to calibrate the camera precisely as long as the
camera is guaranteed to capture the human hand all the time. Regarding the feedback, two
monitors are used to visualize the real-time status of the remote site and the depth images of the
human hand. The visual remote site is captured by the Kinect2 camera and a webcam in the
remote side. In addition to the two visual streams of the robot state from the top view and the
right view, real-time force feedback from the robot’s fingertips is also graphically represented
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Oa

Ob

Oc Or

Op

Figure 7.7 – Illustration of how to register the PhaseSpace system to the robot system. The well-
designed registration board with predistributed LEDs lights and a printed Apriltag in the middle of
this figure connects to the external camera and the PhaseSpace system.

Figure 7.8 – Camera holder in active vision system.

by five cylinders, whose height changes along with the magnitude of the force. The fingertip
force reads from the fluid pressure of the BioTac sensor. Regarding the robot emergency
control, a footpedal and a deadman switch are used. The left pedal is used to stop the UR5
robot, the right pedal and the switch activate or deactivate the right PR2 arm and the Shadow hand.

This hardware setup works across three computers under the same local area network, and the
data is communicated between these computers via ROS. The main ROS topics on each computer
and data communication are depicted in Fig. 7.9. PC1 and PC3 belong to the local site, while
PC2 is at the remote site. PC1 and PC2 control the UR5 robot and the PR2 robot, respectively.
There is one ROS master each running at both sites. PC1 publishes the 6D global hand poses,
and PC2 generates real-time trajectory commands for the PR2 right arm based on the global
hand poses. Moreover, PC1 generates the Shadow hand’s joint commands based on the human
hand images, and the Shadow hand imitates human hand gestures at the remote site. PC3 is
used for feedback visualization and to control the SR300 depth camera. To discover the running
ROS masters in the local network and exchange messages, the master_discovery_fkie [W39]
and master_sync_fkie [W40] ROS packages are used in conjunction. The master_discovery_fkie
package connects multiple ROS masters by sending messages to a defined multicast group
and creating echoes when the different ROS masters respond. The master_sync_fkie package
synchronizes the local ROS master to remote ROS masters discovered by the master_discovery
node. Those ROS topics, which are used to communicate among different ROS masters, can be
specified by a ROS parameter called “sync_topics” when running the master_sync node. It is
worth mentioning that these packages require all ROS nodes and services with no duplicate names
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Figure 7.9 – Main ROS nodes on each computer and data communication among three computers.
The colored lines represents the data transfer between two nodes. The types of the transferred data
are listed in the corresponding colored texts. The two robots are running on two independent ROS
masters but communicate via master_discovery_fkie and master_sync_fkie ROS packages.

among all ROS masters. Supported by these two packages, some essential ROS messages, i.e., the
6D human hand pose, the robot hand commands, and the sensing feedback are synchronized on
both sides.

7.4 Controlled Active Vision System
The real-time active vision system allows the camera to capture the right human hand at optimal
viewpoints by involving a moving vision sensor, mounted on the end-effector of the robot arm.
In such a tracking system, three crucial issues should be considered:

1) whether the robot can smoothly follow the human hand in real-time;

2) whether the robot keeps a safe distance from the human;

3) whether the UR5 robot arm can satisfy the required workspace of the manipulation tasks.

Regarding the first issue, the frequency of the PhaseSpace motion tracking system ensures the
fast and reliable identification of the human hand. Then the goal pose of the robot end-effector is
40 cm back along the Y-axis of the hand (see Fig. 3.6), which corresponds to the optimal view
distance for the SR300 camera. Secondly, 30 Hz joint-space trajectory generation is achieved by
the inverse kinematics solver bio-ik [131]. Except for the pose goal, a regularization goal is

90



7.4. CONTROLLED ACTIVE VISION SYSTEM

X
Y

Z

(a)

X
Y

Z

(b)

Figure 7.10 – Visualization of the UR5 workspace and PR2 workspace in our setup from the third-
person viewpoint. The blue, green, yellow, and red spheres indicate that the robot end-effector can
reach that position with more than 50, 20, 10, and equal to 1 orientation(-s).

additionally considered to keep the joint-space solutions close to the current robot state. To
avoid redundant solutions, the Z-axes of the forearm link and the second wrist link are required
to point away from the inverse directions of their initial state. Then the real-time 6D poses of the
end-effector are translated online into joint-space robot commands, which are required to be
as close as possible to the current robot configuration. In Cartesian space, the translation and
angular motions are constrained by velocity and acceleration limits. Besides that, a maximum
velocity constraint in joint space is also employed.

On top of the certified safety system of the UR5, the 40 cm distance between the hand and
end-effector and the trajectory constraints also provide a strong safety guarantee. To avoid rapid
motions caused by instability of the PhaseSpace system or accidental human errors, the position
movements more than 50 cm along any axes or the orientation change over 60◦ around any axes
between two frames are omitted. Besides, a collision object whose volume covers the area of
the human hand is added into the planning scene and updates its pose in real-time. During
the experiments, we will check whether the target poses are in the collision area before every
execution. Moreover, the human can immediately press the deadman’s switch (left foot pedal) to
stop the UR5 robot.

To figure out the overall workspace of the system, we constructed a reachability map of the
UR5 and the right arm of the PR2 by creating grid-poses in the environment, and calculating
valid IK solutions for the poses. In our setup, the UR5 robot is mounted on a wall near a corner
and the PR2 is standing in an unconstrained space. The blue, green, yellow, and red spheres
in Fig. 7.10 represent that the robot end-effector can reach that position with more than 50, 20,
10, and equal to 1 orientation(-s). Note that the UR5 arm can reach a large part of its overall
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workspace in many different orientations (see blue spheres in Fig. 7.10(a)). Compared to the UR5
workspace, apparently, only a few blue spheres scatter in the PR2 workspace due to mechanic
limitations. To utilize most of the PR2 workspace, relative control is implemented for the right
PR2 arm and absolute control for the UR5 robot. Therefore, the right PR2 arm only performs the
incremental motion of the human arm after the demonstrator presses the right foot pedal, and the
UR5 robot will track the human arm motion online. In this way, the human demonstrator can
always move arms into a comfortable motion range. At the end, we summarize the overall usage
of the PhaseSpace system in Fig. 7.11.

Phasespace motion 
tracking system (PC1)

6D global 
hand pose

Absolute poses of 
UR5 end-effector

Incremental poses 
of PR2 right arm 

Absolute pose

Relative pose

Realsense 
Camera (PC3)

7-DoF Joint commands
 of right arm

6-DoF joint commands 
of UR5 arm

filter

UR5 (PC1)

PR2 right arm
(PC2)

Bio-ik based 
motion generation

Figure 7.11 – Overall usage of the PhaseSpace system. PC* in the brackets means which PC this
hardware connects to.

7.5 Slave Robot Motion Generation
As discussed in section 7.4, in view of a fine coordination between two robots and a limited
workspace of the PR2 robot, we employ relative control for the slave robot. Therefore, an initial
registration of the human wrist pose with the slave wrist is not necessary, and the local site does
not constrain the workspace of the slave robot. The slave robot only moves when the human
presses the foot pedal. This foot pedal secures the robot and allows the potential adjustments at
the local site, e.g., possible self-collision of the UR5 robot, close to the workspace boundary of
the UR5 robot.

Similar to the motion of the UR5, given the human wrist pose acquired through the Phasespace
system, plus the regularization goal, the bio-ik solver computes the joint angles of the slave
arm under velocity and acceleration constraints in Cartesian space and the joint space. A minor
difference is that the feedforward and feedback joint angle differences are considered to calculate
the joint velocity in joint space, similar to section 6.2.3.

7.6 Robot Experiments
In this section, we rigorously examine the proposed teleoperation system by precision analysis
of robot trajectories and five elaborate experiments (pick and place, tower building, pouring,
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sweeping, and pushing) that test precision and power grasp, prehensile and non-prehensile
manipulation. In Cartesian space, the maximum linear velocity, angular velocity and linear
acceleration are 0.2 m/s, 2 rad/s and 2.0 m/s2 for both robots. The maximum velocity in the joint
space of the UR5 is 3 rad/s. The velocity limits of five joints on the right PR2 arm are the default
values from the PR2 manual [W5]. The control frequencies of the UR5 robot, the Shadow hand,
and the slave arm are all 30 Hz.

7.6.1 Precision Analysis
To check if the robot could track human hands in real-time, it is essential to evaluate
the precision of this teleoperation system quantitatively. We recorded the end-effector
trajectories of both the UR5 and the PR2 while the right human hand performed specific
motions. Based on the same movements of the human arm, the right PR2 arm was tested
starting from the center and the side of its workspace and with different weights (0.5, 1) of the
regularization goal, respectively. Speaking of which, the weight of the end-effector pose goal is 1.

Fig. 7.12(a) presents the example end-effector trajectories of the UR5 while a human moves
the hand at the local site. Figs. 7.12(b), 7.13(a), 7.13(b) plot the corresponding end-effector
trajectories of the PR2 with different parameters. The starting poses of these three PR2 trajectories
are slightly different because the start of recording time is a bit mismatched. The frame coordinate
of these trajectories is parallel to the base frame of the UR5. The goal wrist positions in both
figures are the smoothed goals after filtering the Cartesian constraints. The plots of current
wrist positions are the real robot trajectories. From Fig. 7.12(a) and Fig. 7.12(c), we can see
that the UR5 follows the human hand well in most cases. During around 3-12 s and 41-43 s,
where the human hand is moving through a sharp corner and the UR5 robot is stretching a bit,
the tracking error is up to 3 cm. The probable reasons are that 1) the regularization goal, which
tries to keep the joint-space solutions as close as possible to the current robot configuration,
in our trajectory generation method and the servo parameter set in the UR5 driver are acting
together to smoothen the trajectory. 2) the closer the robot is to its workspace boundary along
the X-axis, the greater the trajectory error. Luckily, the existing 3 cm position error does not
affect the camera tracking the human hand at all because there is still a 40 cm distance between
the camera and the human hand. When the right PR2 arm starts from the center of its workspace
with regularization weight 0.5, the PR2 arm conducts the motion commands most precisely as
depicted in Fig. 7.12(b) and Fig. 7.12(d). The average L1 tracking error along three axes of the
right PR2 arm is 1.8 cm. With these configurations, the right PR2 arm is capable of following
human motions and conducting most manipulation tasks, such as pick and place or pouring.
When the weight of the regularization goal is equal to the pose goal, the trajectory is smoothed
a lot at the sharp corner around 13-19 s, resulting in almost 10 cm error along the X-axis in
Figs. 7.13(a), 7.13(c). When the right PR2 arm starts at 30 cm along the negative Y-axis from
the workspace center, the robot cannot reach the goals in the top right corner due to mechanical
difficulties, as shown in Figs 7.13(b), 7.13(d). Hence, setting the weight of the regularization
goal to 0.5 and starting the robot from the center area of its workspace are beneficial.
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(a) Example end-effector trajectories of the UR5
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(b) Example end-effector trajectories of the right PR2
arm (middle start, regularization 0.5)
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(c) Camera position error along X, Y, Z axes of the UR5 tracking
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Figure 7.12 – Trajectory analysis of the UR5 and the right PR2 arm. The right PR2 arm starts
from the center of its workspace with regularization weight 0.5. The numbers overlapping on the
trajectories in (a) and (b) mean the corresponding execution time (s).
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(b) PR2 trajectories (side start, regularization 0.5)
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(c) Position error along X, Y, Z axes of the PR2 motion (middle start, regularization 1)

10 20 30 40 50
Time (t)

−0.15

−0.10

−0.05

0.00

0.05

0.10

Er
ro

r (
m

)

error along x axis
error along y axis
error along z axis

(d) Position error along X, Y, Z axes of the PR2 motion (side start, regularization 0.5)

Figure 7.13 – Trajectory analysis of the right PR2 arm when (a) and (c) the weight of the regulariza-
tion goal is 1; (c) and (d) starting from the side of its workspace. The numbers overlapping on the
trajectories in (a) and (c) mean the corresponding execution time (s).
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7.6.2 Manipulation Experiments
To verify the reliability of the teleoperation system, real-world experiments across five types of
physical tasks were performed by a female and a male adult. The operators need to get familiar
with the active tracking system first and then go through a warm-up phase for each task with
ten non-consecutive attempts before the real testing. As a matter of fact, one of the primary
concerns of vision-based teleoperation systems is their lack of haptic feedback. Since the visual
could be a low-cost alternative to haptic feedback, we visualize the pressure values on each
fingertip from the BioTac sensors during the manipulation process as a clue to force feedback.

1) Pick and place. In this experiment, the robot grasped a Pringles can with a radius of 4 cm
then placed it on the top of a blue cylinder with a radius of 2.5 cm. We teleoperated the robot to
grasp the Pringles can from the top and from the right side by power grasp, as shown in Fig. 7.4
and Fig. 7.14(a). Compared to the pick and place task in Chapter 6, the difficulty level in this
chapter is higher because the bottom object has a smaller diameter, thus requiring extremely
stable releasing.

(a) (b)

Figure 7.14 – (a) The PR2 robot picks a Pringles can and places it on the top of a blue cylinder. (b)
The PR2 robot stacks three different objects on top of each other.

Figure 7.15 – Example scenes with the local site, remote site, network input, and the force feedback
in the pick and place task and tower building task.
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2) Tower building. This experiment requires the robot to stack three different objects on top of
each other, see Fig. 7.14(b). The robot used a precision grasp for the small green block and
conducted a power grasp for the irregular ellipsed orange block. Since bigger objects were
required to be placed on top of the smaller cylinder in experiments 1 and 2, these two tasks
strictly inspected the grasping ability and stable object release. The right image in Fig 7.15
shows the scene with the local site, remote site, and the force feedback in the tower building this
task. On the one hand, the force feedback helped the human users to know when the robot was
touching the object. On the other hand, the force feedback reduced the risk of robot damage due
to excessive force.

3) Pouring. In this task, the robot grasped a cup filled with rice, poured the rice into a bowl,
and then placed the empty cup on a box. Fig. 7.16 visualizes the teleoperation process of this
task. The human was supposed to turn the right hand 90◦ clockwise, move along the Y-axis of
the UR5 robot, update the hand pose to a grasping pose, then slowly rotate the right wrist to
assume a pouring pose. To fulfill this task, the UR5 robot was required to track the human hand
simultaneously. Overall, this pouring task mainly examines the stability of the tracking system.

Figure 7.16 – From left to right, three images in the upper row show the PR2 robot grasping a
cup filled with rice and pouring the rice into a bowl, and the images in the lower row visualize the
real-time human status at the local site.

4) Sweeping. The robot grasped the brush and swept three small blocks to a specific place, then
placed the brush on the table. The contact force between the brush and the table surface should be
mild. This task contains the challenges of pushing, sliding, and precision grasping (see Fig. 7.17).

5) Sliding a MIDI mixer fader. Figs. 7.1 and 7.18 illustrate the fader sliding task by the first
finger of the Shadow hand. The width and length of the fade are 0.4 cm and 1 cm. Fig. 7.19
displays the human status in the local site and the top visual scene of the remote site during the
experiments, and the visual haptic feedback of the five robot fingertips. Obviously, in the top
scene, the critical experimental area is easily occluded by the robot hand itself. Therefore, the
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Figure 7.17 – The PR2 robot grasps the brush and sweeps three blocks to the orange block at the
right side of the image.

Figure 7.18 – The PR2 robot slides the mixer fader from left to right using its first finger.

(a) (b)

Figure 7.19 – (a) The human status at the local site in the fader sliding task. (b) shows the top scene
from the Kinect on the head of the PR2 and the visual haptic feedback. The five red cylinders from
left to right qualitatively illustrate the fingertip pressure of the thumb, first finger, middle finger, ring
finger, and little finger.

remote manipulation states are heavily dependent on the side webcam and the haptic feedback.
Besides that, humans hardly control their hands to move along an exact straight line. Hence, the
robot usually cannot slide a fader from left to right in one go. To improve the success rate, we
downscaled the human movements by three times.
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pick tower pouring sweeping fader-1 fader-2 fader-3
Ave. time(s) 52.5 102.8 49.2 75.3 15.5 36.5 85.5

Ave. success rate 90 60 100 100 80 60 10

Table 7.1 – Average completion time and success rate of each task

Table 7.1 numerically shows the average completion time and success rate of all tasks. The
high success rates of the pick and place task, pouring task, and sweeping tasks indicate that our
system is able to perform precision grasps robustly, power grasps, placing, sliding, and robust
tracking. In the tower building task, the human needs to place the objects on a smaller surface
with proper force, and the robot could accidentally ruin the tower. Therefore this task took the
longest time and achieved a relatively low success rate. For the fader sliding task, fader-* means
how many faders the robot continuously slide from left to right. We observe that more fades the
robot continuously slid, the lower success rate we got and the longer time the robot required.
And the time used to find the next fader occupies half of the completion time in the fader sliding
task. The downscaled human finger movements and haptic feedback helped to improve the robot
performance, but the limitation of the visual feedback and the accuracy of the current robot
system are still insufficient for this fine manipulation task.

7.7 Discussion
This chapter presents a robotic arm teleoperation method developed on vi, integration of hand-
arm teleoperation system, and system verification (Research Questions Q2 and Q3). Two trained
human demonstrators successfully performed real-world experiments on five tasks, i.e., pick
and place, tower building, pouring, sweeping, and fader sliding (Research Question Q4). In
conclusion, the robot experiments indicate that the active vision system continuously adjusts
the camera pose to guarantee that the human hand can be captured by the optimal point of
view. Moreover, the most experimental results verify the excellent efficacy of the proposed
dexterous hand-arm teleoperation system. However, during the experiments, even though the
users observed the robot status from the simultaneous display of two camera views (top view and
side view), one view possibly becomes non-informative when the robot hand partially occluded
the object from the top or the side. In this case, visual force feedback is indeed helpful. However,
visual force feedback is less efficient than haptic force feedback, especially when interacting
with soft objects. After a period of experiments, the users are somehow exhausted to focus on
multiple visual displays simultaneously. In summary, the robot-motion feedback is a limitation
of the current vision-based teleoperation system. In the future, improving visual feedback via
immersive devices, autonomously inspecting remote work situations, and using audio channels
as auditory force feedback or workspace boundary alarm will be useful. Furthermore, integrating
adaptive force control strategies into the teleoperation system could achieve safer and more
compliant operation [177]. Until now, all experiments were finished under the position control,
where the position commands from the joint regression models will directly apply to the robot
joints. In other words, the task dynamics in all manipulation experiments were neglected. To
consider the task dynamics and achieve compliant teleoperation, the next chapter integrates an
adaptive control strategy into the current vision-based teleoperation system and demonstrates the
compliant teleoperation on several robotic tasks in simulation and real world.
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Chapter 8

Evaluation Experiments on Compliant
Teleoperation by Adaptive Force Control

We humans can spontaneously adapt our hand pose and force to interact with environments in a
compliant manner during daily manipulation tasks. However, the position control strategy used
in the previous chapters is not suitable for the complex task of acquiring compliant grasping and
manipulation skills of a multi-finger robot. Consequently, if we would like to endow a robot with
human-like skills, one promising solution is to combine adaptive control strategies that allow the
robot to deal with physical and dynamic interactions with the environment compliantly. Thus,
this chapter studies extending the proposed teleoperation models to compliant teleoperation by
combining adaptive control strategies and conducts additional evaluation experiments on the
Shadow hand.

Firstly, section 8.1 depicts the human-in-the-loop learning-control approach for compliant
teleoperation. After a retrospect on grasping and manipulation based on force/torque control in
subsection 8.2.1, the chosen adaptive force controller, which is derived from the computation
model inspired by the human motor learning principles [167], is presented in subsection 8.2.2.
Furthermore, to validate whether compliant teleoperation could yield better performances than
teleopertion under the position control, section 8.3 and 8.4 describe the implementation results
in both simulation and real-world tasks. Since the chosen adaptive force controller is designed
for the robot hand, all experiments are only tested on the Shadow hand. Compared to robot
experiments in previous chapters, the in-hand manipulation task of opening-a-cap is firstly
tested.

8.1 System Overview
A compliant teleoperation system should allow taking an image as the input and output the
desired force commands for the robot hand. The pipeline of the proposed system is shown in
Fig. 8.1. The proposed teleoperation system is a learning-control approach combining a vision-
based teleoperation system with adaptive force control. For the learning part, the end-to-end
model TeachNet developed in chapter 4 is employed to learn the mapping relation between
the human hand pose and the joint angles of the Shadow robot hand. It is worth mentioning
that both TeachNet and Transteleop are qualified to be used in this pipeline. An adaptive force
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Figure 8.1 – The pipeline of compliant teleoperation by adaptive force control. The human demon-
strator guides the robot hand to complete a task through vision-based teleoperation. A camera is used
to track the hand pose during the demonstration. The neural network model TeachNet is used to map
the human hand pose to the robot hand joint angles. Subsequently, a force control strategy is applied
to generate the desired force commands for the robot hand during the demonstration loop.

control strategy that predicts the next-step desired control command based on the desired joint
angles and the current robot states is applied to deal with task dynamics during hand grasping
and manipulation. The force controller used in this chapter is derived from the computation
model inspired by human motor learning principles. The control variables in the controller,
i.e., impedance and feedforward terms, are simultaneously adapted online and combined to
generate the force/torque commands, which are subsequently sent to the robot hand in the joint
space. Even though this force controller does not exploit tactile feedback, the simulation and
real-world experiments show that the manipulation stability with the compliant teleoperation is
better than TeachNet with the existing position control and the fixed-gain-based force control.

8.2 Adaptive Force Control Strategy

8.2.1 Grasping and Manipulation based on Force/Torque Control
It is a significant goal in robotic manipulation research to augment robots with human-like
dexterous and compliant behavior for many tasks in everyday life. In recent years, numerous
attempts have been published towards this goal, but some issues have not been fully addressed
yet, especially concerning grasping and manipulation with a multi-finger robot hand [49, 183,
132].

An impedance-model-based force controller has been used in robotic manipulator control for
some physical interaction tasks [50]. However, its use in controlling multi-fingered robot hands
for grasping and manipulation tasks has not been thoroughly investigated yet. Recent studies
illustrate that force control strategies increase the grasping stability and robustness [44] and
achieve a good grasp stability [144] and in-hand manipulation [87] for the haptic exploration by
a multi-finger robotic hand. In [160], an object-level impedance controller has been developed
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and shown to be effective and robust in robot grasping. Li et al. [86] improved the controller
by dividing the impedance into two parts: one for stable grasping and another for manipulation.
Furthermore, the desired impedance is estimated using supervised learning based on the data
collected from the human demonstration in advance. Pfanne et al. [123] proposed an object-level
impedance controller based on in-hand localization, which improved the ability to avoid contact
slippage through adjusting the desired grasp configurations. Garate et al. [53] proposed regulating
the control of the grasping impedance (stiffness) by regulating both the robot hand pose and the
finger-joint stiffness. By adapting the magnitude and the geometry of the grasp stiffness, the
desired stiffness profile could adapt the hand configuration for stable grasping. With the support
of the Omega3 haptic device, Michel et al. [106] presented an adaptive impedance control with
learned state-varying stiffness for the bilateral teleoperation of contact tasks featuring continuous
interaction with the unknown environment by a 7 DoF KUKA light-weighted robot. However,
these force controllers may not be suitable for a vision-based teleoperation system, where the
controller needs to dynamically and quickly respond to the changes of the human hand pose to
predict the desired force commands. Consequently, the contribution of this work is to explore
the regulation of the impedance (stiffness) and the feedforward term online during the process of
robot grasping or manipulation, which cannot be learned in advance or through exploration.

8.2.2 Methodology

Recently, a biomimetic control strategy inspired by the findings of human motor learning in
the muscle space has been developed and proved to be an effective method for compliant robot
manipulation. Neuroscience has discovered that humans can simultaneously adapt their arm
impedance and feedforward force to minimize motion error and interaction force with external
environments under a specific set of constraints [17]. Based on this principle, a biomimetic
force controller was first proposed in [167] which allowed the robots to deal with both stable
and unstable interactions through the adaptation of the impedance and feedforward term in the
force controller. Li et al. [94] further improved this controller and implemented it to deal with
several physical interaction tasks such as cutting and drilling by a redundant robot manipulator.
However, the biomimetic control strategy has not been utilized for a dexterous robot hand with
multiple DoFs. Here, the biomimetic force controller is extended to enable compliant grasping
and manipulation from human hand teleoperation.

Controller Formulation

Each finger of the robot hand is to be considered controlled independently using an impedance-
based force controller in the joint space [94]. The control input, τc, is composed of three
components the robot dynamics τ0, an impedance term u, and a feedforward force v. Therefore,
we have

τc = τ0 − u− v, (8.1)

where
τ0 = Mq̈e + Cq̇e +G− Γε, (8.2)

with a symmetric positive-definite matrix Γ with minimal eigenvalue. M , C), and G denote
the inertia, the Coriolis and centrifugal forces, and the gravitational force, respectively. q̇e is an
auxiliary variable, q̇e = q̇d − ζe.
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The impedance is determined in a PD (Proportional-Derivative) form,

u = Kse+Kdė, (8.3)

with 
Ks = diag{Ks,1, Ks,2, · · · , Ks,N}
Kd = diag{Kd,1, Kd,2, · · · , Kd,N}

v = {v1, v2, · · · , vN}
, (8.4)

and
e = q − qd, ė = q̇ − q̇d, (8.5)

where Ks ∈ RN×N and Kd ∈ RN×N denote the stiffness and damping matrix, respectively.
e ∈ RN×1 and ė ∈ RN×1 represent the errors of the joint angles and velocities between the
current (q ∈ RN×1 and q̇ ∈ RN×1) and desired (qd ∈ RN×1 and q̇d ∈ RN×1) ones.

Then, all the compliant profiles are parameterized (i.e., Ks, Kd, and v) as [177],

Ks,i = θTk,ig, Kd,i = θTd,ig, vi = θTv,ig, (8.6)

where θk ∈ RN×Ng , θd ∈ RN×Ng , and θv ∈ RN×Ng denote the parameters corresponding to the
compliant profiles, i.e., stiffness, damping and feedforward force, respectively. And g ∈ RNg×1

is the Gaussian basis, and is determined by

[g]ng =
ωn(s)∑Ng

n=1 ωn(s)
, (8.7)

with
ωn(s) = exp(−0.5hn(s− cn)2), (8.8)

where s is the variable that can be calculated by ṡ = −s. Ng is the total number of the Gaussian
models, and cn and hn are the centers and widths of the basis.

Cost Definition

The parameters θk, θd, and θv need to be adapted at each time step based on the desired and
current robot states to generate the desired control force. To do so, the tracking error cost and
interaction dynamics cost are considered.

First, for the minimization of the tracking error, the following cost which is often used in the
robot control domain is defined,

Le =
1

2
εTM(q)ε, (8.9)

where ε is a sliding error, determined by ε = ė+ ζe, and ζ is a positive constant. M(q) ∈ RN×N

is the inertia matrix of the robot dynamics model.

Then, the following cost to deal with the interaction dynamics is formulated,

Lc =
1

2
Φ̃TΘ−1Φ̃, (8.10)
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Online generation of the force control command
Input

The learned optimal TeachNet model fm;
The constant coefficients: Θk, Θd, Θv, and ζ;
The Gaussian basis g.

Begin
Initialize the parameters θk, θd, and θv;
While online teleoperation do

Sense an image of the human hand pose IH ;
Calculate the desired pose of the robot hand;
Get the robot current states;
Calculate the sliding error ε;
Update parameters θk, θd and θv;
Generate the desired force control commands τc
Send the effort commands to the robot joint space.

End
End

Table 8.1 – The force control strategy for robot compliant teleoperation

where

Φ̃ = Φ− Φ∗ = [θ̃Tk ,θ̃Td , θ̃
T
v ]T , (8.11)

with
Φ = [θ̄Tk ,θ̄Td ,θ̄Tv ]T , (8.12)

and

Φ∗(t) =[θ̄∗Tk ,θ̄∗Td ,θ̄∗Tv ]T , (8.13)

where θ∗k(t), θ∗d(t), and θ∗v(t) denote the desired parameters, and (̄.) denotes the row average
vectors of the corresponding parameters. The matrix Θ is determined according to,

Θ = diag(Θk ⊗ I,Θd ⊗ I,Θv ⊗ I), (8.14)

where Θk ∈ RN×N , Θd ∈ RN×N , and Θv ∈ RN×N are symmetric positive-definite matrices
which are manually set in the experiments. I is an identity matrix.

The updating goal is therefore to minimize the overall cost, i.e., min ‖Lc + Le‖. Finally,
let the derivative of the cost equal zero to obtain the following updating laws. For the n-th
(n ∈ [0, · · · , N ]) DoF, there have

θ̇Tk,n = Θk,nεneng, (8.15)

θ̇Td,n = Θd,nεnėng, (8.16)

θ̇Tv,n = Θv,nεng. (8.17)

Table 8.1 summarizes the procedure of the force control strategy.
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8.3 Simulation Experiments
A real-sim setup was established for the simulation experiments. The human demonstrator
adjusted the hand pose to guide the simulated robot hand to complete the task under visual
feedback during each task. This was done using a virtual Shadow motor hand in the Gazebo
simulator with the ODE engine. In our usage, the Shadow robot hand was torque-controlled
under the Teach mode. The simulation environment was run on the Ubuntu 18.04 system with a
CPU Intel Core i5-8500 and an NVIDIA 1050 Ti GPU. Note that while virtual environments
are dominated by physics (e.g., object weights and surface frictions), the absence of force
feedback makes the tasks rather challenging [54], as even slight inaccuracies on joint angles
from TeachNet may result in failed interactions. The experiment video is available at [W11].

Door opening. This task requires the human demonstrator to guide the robot hand to open a
door by pulling the handle in the X-direction. Since the base and the wrist of the Shadow hand
were fixed in our simulation environment, this task can only rely on the fingers’ interaction
with the handle to open the door. The robot can open the door smoothly by teleoperation with
the adaptive force control strategy, as depicted in Figs. 8.2 and 8.3. On the other hand, under
the position mode, the teleoperator can only occasionally open the door and fails to make the
door open as wide as under the force control mode. Fig. 8.3(b) shows the positions of the
contacts between the robot hand and the door handle in the X-Y plane. It is observed that the
contact points are almost evenly distributed along the X-axis under compliant teleoperation, sug-
gesting a stable interaction between the robot hand and the handle during the execution of the task.

Figure 8.2 – The initial and final configurations during the door opening task from the (a) side and
(b) top view, respectively.
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Figure 8.3 – (a) The upper row shows the normalized angle changes of the door with respect to the
world frame, the lower row represents the general trend of the changes of the demonstrated joint
angles from TeachNet. For the sake of better visualization, the door angles are normalized to [0, 1],
and joint angles of the robot are reduced to one dimension using PCA. (b) shows the positions of the
contact points under the position (upper row) and force (lower row) control modes.

Figure 8.4 – Screenshots of the cap turning task. (a), (b) and (c) denote the initial, middle, and final
configurations.

Cap turning. In this task, the robot hand was teleoperated by the human demonstrator to
turn a cap using five fingers. The frame of the cap was fixed in Gazebo, and the cap can
be rotated in the X-Z plane. When screwing a cap, humans usually adapt the motion of
both arm and hand coordinately to complete this task. More importantly, the rotation of
the wrist joint plays a vital role during the turning process. In our teleoperation system,
however, the fixed base and wrist of the Shadow hand made this task more challenging
than usual. The robot hand was guided to make contact with the cap using a proper
configuration and then to adapt the movements of all the fingers to turn the cap. The fingers
can move coordinately and cooperate well with each other to complete the task using the
proposed force control strategy (see Fig. 8.4 as an example). Furthermore, the position distri-
bution of the contact points obtained by the compliant teleoperation is more caplike (see Fig. 8.5).

Mouse touching. To further explore the compliance achieved by the proposed learning-control
approach, the performances of a mouse touching experiment were investigated. As shown
in Fig. 8.6, the robot hand contacts a curved surface by touching a mouse. The experiment
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Figure 8.5 – The positions of the contact points in the X-Z plane during the turning process, under
the (a) position control and (b) adaptive force control modes, respectively.

Figure 8.6 – The screenshots of the touching-a-mouse task. (a), (b) and (c) denote the initial, middle
and final configurations.

mainly focuses on achieving stable contacts with small contact forces between the hand and
the mouse surface. The robot hand is expected to touch the surface of the target object in a
more human-like manner. To evaluate the impact of the adaptive control strategy, the task is
also conducted under three different control strategies: (a) with the adaptive control; (b) with
force control but with a fixed-gain-based impedance controller, which has been often applied in
robotics; and (c) the position control mode. Under each condition, the task is repeated ten times.
Under each condition, the task is repeated ten times. During each test, the contact points and
forces are recorded for evaluation of the performances.

Fig. 8.7 manifests that under the adaptive control mode, the contact points of each local region
are distributed in a more clustered way than that under the position mode, with comparatively
low contact forces. Under the position control mode, there are obvious slippery points with larger
contact forces due to the rigid interaction with the mouse of the robot hand. The fixed-gain-based
control mode obtains a moderate performance with several slippery contact points, although
the contact forces are smaller than the case under the direct position control mode. The contact
forces from these tests under each control condition were collected and used to calculate the
maximum and average forces. The results (see Fig. 8.7(d)) demonstrate significantly lower
average as well as maximum forces with the proposed compliance teleoperation system.
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(a) (b)

(c) (d)

Figure 8.7 – The distribution of the contact points and the contact force during the touching process
under the (a) adaptive force control, (b) fixed-gain based force control, and (c) position control
conditions, respectively. The upper row show the results in the 3D space, and the lower row shows
the corresponding results which are projected to the x− z and y − z planes. (d) shows the max and
average contact forces during the touching phase under the three control conditions.
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8.4 Real Robot Validation

Instead of a motor-driven robot hand, the Shadow hand is a tendon-driven robot. Applying a
force controller to a tendon-driven robot hand is usually more challenging than applying to a
motor-driven robot hand in the joint space due to the highly nonlinear characteristics. So far,
very few results have been reported in the literature. Typically, Deshpande et al. developed a
force-optimized joint controller [36] for the tendon-driven robot ACT Hand and applied it to
control one joint (i.e., the MCP joint) of that hand in several tracking experiments. In [123],
the authors proposed using force control to increase the grasping stability of the tendon-driven
Shadow hand. If perturbations are applied to the grasped object, the joint control force could be
increased straightforwardly, as one example of overcoming the perturbations. In the experiment,
the Shadow hand was controlled under the effort-control mode, i.e., the TEACH mode. The
joint effort measured from the Shadow hand is the difference between the two gauge readings
rather than motor torque. To implement compliant teleoperation, the outputs from the force
controller were mapped to the effort control commands or PWM value in a linear manner,
instead of directly sending the outputs to the joints. The maximum PWM (Pulse Width Modu-
lation) value of each joint was set same for the effort-control mode and the position-control mode.

Grasping. As tested in chapter 4, the robot hand succeeded in grasping objects with different
shapes and sizes, using both power grasp and precision grasp. The dynamical grasp process and
contact force from the tactile sensors on the fingertips are observed to compare the grasping
performance of the adaptive force control with the position control mode. During each grasp,
the human partner held the cup in a very similar pose, and another subject teleoperated the
robot hand to grasp and took over the cup from the human hand (see Fig. 8.8). The same
subject teleoperated the robot hand under two different modes, using a very similar grasp
posture. The task was repeated four times, and the subject kept using as similar as possible
grasp postures for two control modes. The measured contact pressure force in Fig. 8.8 indicates
that under the position control mode, the robot hand tends to rigidly grasp the cup with a
larger contact force (especially for the thumb), resulting in an obvious bump at the touching
stage of the grasp. Under the adaptive force mode, on the other hand, the contact force keeps
more steady along the grasping process. Then, a soft plastic cup was also grasped under
two control modes (see Fig. 8.9). It turns out that under the position mode, the robot hand
gets the cup deformed much more easily after contact than under the adaptive force control mode.

Screw pouring. To illustrate how the force control strategy deals with external disturbances,
a pouring task was then performed. The robot hand was teleoperated to hold a cup, and the
human partner poured a set of screws into the cup, as shown in Fig. 8.10. The total weight
of the screws was about 0.6 Kg. With the increasing weight, the thumb tends to slip slightly.
Once the slip happens, the pose error becomes larger, the force controller correspondingly
increases the command effort automatically to overcome the slip, thus maintaining a stable
holding posture. Fig. 8.11(a) visualizes the joint angles (both measured ones from the Shadow
robot and estimated ones from TeachNet) and the generated command of the fourth joint of the
thumb (i.e., THJ4) during the pouring process. The angle of THJ4 changes obviously when
slippage occurs along the vertical direction of the surface of the cup. The command effort is
adapted correspondingly to overcome the slipping so that the thumb can be stabilized. However,
the control effort profiles stay comparatively low if no slippage happens, see the profiles of the
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(a) (b)

Figure 8.8 – The upper row illustrates the grasping task under (a) position and (b) adaptive force
control modes. The lower row shows the measured contact pressure of the five fingertips from the
tactile sensors while continuously grasping the rigid cup four times.

(a) (b)

Figure 8.9 – Grasping a soft plastic cup under (a) position and (b) adaptive force control modes. The
left depth images are the inputs of the TeachNet model.

Figure 8.10 – Screenshots of the screw pouring task. (a) and (b) show the situation before and after
pouring, respectively. With the increasing weight, the thumb slipped slightly.

fourth joint of the first finger (i.e., FFJ4) as an example in Fig. 8.11(b). These results suggest that
the proposed compliant teleoperation system is able to generate appropriate effort commands to
overcome the external disturbances adaptively.
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(a) (b)

Figure 8.11 – The measured joint angles (real), the estimated joint angles from TeachNet (ref.), and
the joint effort commands of joint (a) THJ4 and (b) FFJ4 in the screw pouring task. Cmd. refers to
the commanded efforts.

(a) (b) (c)

(d) (e) (f)

Figure 8.12 – Screenshots of the cap opening task. (a), (b) and (c) display the initial, middle and
final configurations under the adaptive force mode, respectively. (d)-(f) show several typical rigid
interaction examples under the position mode.

Cap opening. Finally, the task of opening a bottle cap was carried out, requiring great dexterity
and compliance by the robot hand. Only three fingers (i.e., TH, FF, and MF) of the robot
hand were used. To compare the performance of teleoperation under adaptive force control and
position control, only one subject teleoperated the robot in this task. The results demonstrate
that the robot can open the bottle cap under the proposed adaptive force control mode (see
Fig. 8.12(a)-(c)). By contrast, under the position mode, the robot fingers tend to push the bottle
away easily and to interact with the cap quite rigidly (see, Fig. 8.12(d)-(f)), due to their lack of
flexibility and dexterity.
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8.5 Discussion
This chapter describes compliant robotic teleoperation based on the markerless vision-based
teleoperation model, TeachNet, and an adaptive force control strategy (Research Question Q4).
The learning-control approach takes a depth image of the human hand as the input and predicts
the desired force control commands instead of directly outputting the motion control policies.
The force control strategy adapts the compliant profiles (impedance and feedforward) online and
step-by-step in the force controller, based on the pose difference between the human hand and
the robot hand.

The compliant teleoperation has been evaluated in several simulation tasks and real-world
robotic tasks. The results show that it can perform better than the prevalent, state-of-the-art
position control mode for robot-compliant grasping and manipulation. Even though we only
tested the integration of the TeachNet model and the force control strategy, the Transteleop
model can be the other alternative of the hand pose estimation algorithm in this learning-control
system. It is worth mentioning that the robot hand in the simulation environment is motor-driven,
but the real-world Shadow hand is tendon-driven. Despite the differently driven mechanisms, the
compliant teleoperation with the adaptive force controller performs well both in the simulated
and real-world hands.

However, the drawbacks of the vision-based teleoperation, e.g., the absence of tactile feedback,
still exist in this integrated system. We can estimate the interaction force between the robot
hand and its environment from tactile signals collected from the tactile sensors mounted on
the tips of the Shadow motor hand. The estimated force information can then be included in
the control loop as a feedback variable to increase the interaction dexterity. Regarding the
adaptive force control strategy we employed, it is one of the state-of-the-art works in recent years.
But the control strategy needs to be manually set the open parameters, which would affect the
performances. In the future, we may test one adaptive force control strategy that online optimizes
the pre-set open parameters by optimization techniques, e.g., reinforcement learning. The goal is
to further improve the robot’s capability of dexterous manipulation during human-in-the-loop
teleoperation.

113



CHAPTER 8. EVALUATION EXPERIMENTS ON COMPLIANT TELEOPERATION BY ADAPTIVE

FORCE CONTROL

114



Chapter 9

Conclusions and Outlook

In this thesis, two dexterous hand-arm teleoperation systems in which markerless vision-based
teleoperation plays a pivotal role were developed and successfully used for dexterous
manipulation such as grasping, pushing, sliding, and cap opening. In conclusion, the research
questions raised in section 1.3 can be answered as follows:

Q1: Teleoperation Methods for Anthropomorphic Hand: A markerless vision-based
teleoperation method and joint-to-joint mapping were applied to the anthropomorphic robotic
hand. Two CNN-based models which learn the pose features of the robotic hand from the
visual perception of humans were proposed. TeachNet handled the differences in appearance
and anatomy between human and robotic hands with a consistency loss function, while
Transteleop bridged the kinematic disparities between the robot hand and the human hand
by an image-to-image translation process. To train the proposed two end-to-end learning
models, two pairwise human-robot hand datasets that include pairs of depth images in the same
gesture and corresponding joint angles of the robot hand were built. Meanwhile, an efficient
optimized mapping method was designed to match the Cartesian position and the link direc-
tion of the Shadow hand from the human hand pose and properly consider possible self-collisions.

Q2: Teleoperation Methods for Robotic Arm: Using an IMU suit and a motion tracking
system, two robotic arm teleoperation approaches were implemented on the right arm of
the PR2 robot. The arm trajectories were smooth and real-time through proper velocity
and acceleration constraints and trajectory regularization built upon the bio-ik optimization
solver. In the IMU setup, the human-robot registration was accomplished by matching the
human spine link and the robot torso link. In the motion tracking system, only period in-
cremental motions of the human were performed on the robot arm, which is parallel to the human.

Q3: Integration of Hand-Arm Teleoperation System: In this thesis, the remote hand-arm
robot system is a PR2 robot with a Shadow hand mounted on the right arm. The main problem
of combining the vision-based robotic hand control with the robotic arm teleoperation is that a
single camera’s limited field of view restricts the workspace of the human arm and the robot arm.
Thus, a 3D printed camera holder and an active vision system were successively designed to
avoid constraining the robot workspace by the field of view of the depth camera and perceive
better human finger motions.
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Q4: System Verification: The accuracy of the TeachNet and Transteleop models was compared
with other state-of-the-art methods through three commonly used metrics on testing datasets. The
stability and efficiency of the whole hand-arm teleoperation systems were tested over a variety
of complex manipulation tasks, including grasping, placing, inserting, pushing, sliding, pouring,
handover, and bottle opening. The success rate and time cost of the robot experiments were
recorded and analyzed. Furthermore, compliant teleoperation was achieved by a learning-control
approach combining the end-to-end model with an adaptive force controller. The performance of
the learning control approach tested in several simulation and real-world tasks indicates that
compliant teleoperation is more reliable than the current widely-used position control mode
for obtaining compliant grasping and manipulation and shows more potential for the proposed
vision-based teleoperation models.

The major contribution of this work is using an end-to-end learning scheme in markerless
vision-based teleoperation for anthropomorphic hands and generalizing this scheme to dexterous
hand-arm teleoperation systems. The end-to-end learning approach explicitly specifies two
efficient deep neural networks, which exploit the geometrical resemblance between human hands
and the robotic hand and learn the kinematic mappings between them. Combining these hand
control models and the real-time arm control methods, the dexterous hand-arm teleoperation
systems were established to be accurate, efficient, and robust. The schematic conclusion of this
thesis is visualized in Fig. 9.1. While there is still plenty of room for promotion and application
of the teleoperation system to other laboratories, this thesis makes a sound argument that the
proposed systems are taking a concrete step in the right direction.

1. Markerless vision-based 
teleoperation for robotic hand

Position Control + Adaptive force Control

Multimodal hand-arm 
teleoperation 

Active-vision based 
hand-arm teleoperation 

3. Teleoperation System Verification

TeachNet

Transteleop

Efficient pairwise human-robot
dataset Generation

2. Real-time control for robotic arm

IMU Motion Tracking system

2.
 In

te
gr

at
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n

Figure 9.1 – Schematic diagram of thesis conclusion.
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9.1 Limitations
Despite the previous chapters presenting meaningful and promising results, some issues currently
prevent a more user-friendly teleoperation system using the technologies and hardware setup
discussed in this thesis.

The main limitation is robot feedback, including visual feedback and force feedback. In all
teleoperation experiments, visual feedback was achieved by directly observing the remote
scenario (the users stood close to the remote site) or the real-time stream captured by two
cameras. Neither of them provided a comprehensive observation of the operating state. While
the robot hand occludes the object from the viewpoint of the human or the camera, visual
feedback is entirely or partially lost. This imperfect visual observation could be improved
by increasing the number of observing cameras in the remote scene and using virtual reality
technologies to achieve immersive teleoperation.

Visual force feedback has been used to promote better sensing of the contacting condition in
chapter 7 as a cheap and convenient substitute to haptic sensors. However, force feedback in
the visual channel is revealed to be less efficient than haptic force feedback, especially when
interacting with soft objects [128]. To perform more complicated robotic tasks, using tactile
feedback would be helpful. However, how to maintain the natural and uncustomized advantages
of vision-based teleoperation needs to be further studied.

The other limitation from the user’s perspective is the heavy control burden. All experiments
fully harnessed the cognition of humans and employed a direct control strategy for the robot.
Even though direct control is seamless and continuous, it puts all control burden on the users,
which is unacceptable in a long-term teleoperation task.

The hardware complexity determines the users’ adaptation time to the teleoperation system, the
preparation time, and the hardware cost. The 6D global pose of the human hand was obtained
by the IMU device in chapter 6 and the PhaseSpace motion tracking system in chapter 7. If
the same camera could estimate the 6D global pose and hand joints, the hardware setup would
become a lot simpler. However, most hand pose estimation methods are either imprecise or
only discover the 3D position of the human wrist without orientation. Therefore, studying a
deep-learning-based 6D global hand pose estimation algorithm would be an interesting research
topic.

9.2 Future Research
The usability and efficiency of the hand-arm teleoperation system should be further improved
based on the limitation summarized in the last section. Regarding robot feedback in teleoperation,
several possible developments can be studied in the future.

• Elaborate camera installation. The most naive method to improve visual feedback is
by increasing the number of cameras. However, too many visual displays would be a
cumbersome visual burden for the users. One camera installed on the robot wrist could be
a good choice.
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• Immersive perception by virtual reality. Virtual reality promises to view the working
environment in 3D and gains a greater understanding of how the remote site works.
Creating a realistic and natural observation of the remote site without disorienting lag
would be a promising approach [157]. The realistic observation should contain the real-
time robot states, object states, and even contacting conditions.

• Slip detection. Slip detection by the tactile sensors on the robot’s fingertips could help the
robot automatically adjust finger positions or increase joint forces during the manipulation
tasks.

• Haptic fingercap. Instead of haptic gloves, haptic fingercaps are a promising device that
could be used in our vision-based teleoperation system [7]. Building a mapping relation
between the tactile data from Biotac sensors and the vibration sensors of the fingercaps, the
haptic feedback around the fingertip will boost the performance of dexterous manipulation.

• Audio alarm. Using audio channels such as auditory force feedback or a workspace
boundary alarm could also lessen the human visual burden.

The control strategy of the teleoperation can be updated from direct control to shared control,
which combines user commands and remote autonomy. Intention recognition of the users could
be developed for repetitive tasks, such as closing and opening the robot hand, placing the object,
moving to a specific position. Moreover, task autocorrection associated with slip detection, force
estimation, or mixed reality is worth highlighting. For the integration with adaptive force control,
a control strategy considering tactile feedback and online optimizing the pre-set open parameters
would benefit the robot performance.

The 6D hand wrist estimation is similar to 6D object pose estimation with unknown objects
models. Apart from developing algorithms based on existing state-of-the-art object pose
estimation methods [67], under the premise of ensuring real-time performance, an essential
future extension is using multimodal inputs or 3D inputs.

A further improvement could be more dexterous manipulation implementation, such as in-hand
cube rotation and electrical screw-driver operation. Collecting a new human hand dataset with
comprehensive tool-use postures would help. For robot groundtruth generation, a retargeting
method that optimizes the positioning of fingertips (both distance and direction among fingertips)
could be studied [63].

Finally, a crossmodal teleoperation scheme is an important research direction [W44, 66]. For
example, teleoperation by visual and neurophysiological signal fusion. Some work has repre-
sented how to decode user’s intentions from neurophysiological signals using the promising
brain–machine interfaces (BMIs) and translate them into a control signal for the robotic de-
vice [154]. However, the integration between BMI systems and robotics is still at its infancy as
the robotic application only extends to picking and placing by a robot arm. Therefore, combining
vision data and neurophysiological signals such as EEG to teleoperate a dexterous hand will be
an exciting achievement.
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Appendix A

Basics of Convolution Neural Networks

The aim of this chapter is to provide the reader with some basic knowledge and extended
applications of Convolutional Neural Network (CNN). The proposed TeachNet and Transteleop
models in this thesis are built based on CNNs.

A CNN is a type of artificial neural network and is commonly used for image classification,
image segmentation, natural language processing, and data analysis. It also has been applied
to many research fields, e.g., computer science, meteorology, medical systems, and robotics.
Inspired by biological processes, the connectivity pattern between neurons of CNNs is is similar
to the organization of animal cortical neurons. Many CNNs of different structures have been
proposed, and ten well-known networks are listed in chronological order in Fig. A.1.

1998 1999 2011 2012 2013 201820162014 20172015 2019 2020

LeNet-5 AlexNet VGG ResNet
Inception-v3

Inception-v1
CapsuleNet
ResNeXt

EdgeNet DiceNET

Figure A.1 – Time diagram of ten well-known CNN with different architectures [85, 81, 142, 149,
64, 150, 165, 134, 22, 104].

This chapter starts with the foundation of modern CNNs, LeNet-5 ( A.1) and with the Residual
Neural Network (ResNet) which solves the saturated accuracy problem when network depth
increases ( A.2). Afterwards, section A.3 presents several applications of CNNs taking depth
images as inputs and describes how depth images are used in specified tasks. Moreover, CNNs
with end-to-end learning schemes are introduced in section A.4.
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A.1 LeNet-5

LeNet-5 is the foundation of modern CNNs and was proposed by Yann LeCun in 1998 [85].
Initially, it was introduced to recognize hand-written numbers. LeNet-5 has seven layers, as
illustrated in Fig. A.2. Its architecture has become a standard CNN design template: stacks
convolutional layers with activation functions, pooling layers for feature extraction, and ends the
network with one or more fully-connected layers for forming the outputs. Based on the structure
of LeNet-5, the common layers in CNNs are introduced as follows.

Input image
32x32

Conv, 
5X5 kernel, 2 padding:

6@28X28

Average pooling, 
2X2 kernel, 2 stride:

6@14X14

Average pooling, 
2X2 kernel, 2 stride:

16@5X5

Conv, 
5X5 kernel, 0 padding:

16@10X10

Output

Tanh Tanh

Tanh

Tanh

Conv, 
5X5 kernel, 0 padding:

120@1X1

FC 84

FC 10

Sigmoid

Figure A.2 – The architecture of LeNet-5. It has seven layers, three convolutional layers, two average
pooling layers, and two fully-connected layers.

convolutional
kernel

Image in pixel valuesImage Feature map1X0+0X0+0X0+0X1+1X1
+0X1+0X0+0X0+1X0 = 1

Figure A.3 – Convolution operation.
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A.1.1 Convolutional Layer

The convolutional layer is the main building block used in CNN. A convolution is an operation
that applies a filter (a kernel) to an input and results in a map of activations called a feature map.
The filter is a spatial matrix that slides over the entire input data, calculates the dot product with
the sub-region of input data, and gets the output as the matrix of dot products. Similar to animal
cortical neurons, the artificial neurons only respond to a part of the surrounding cells in their
receptive fields.

The procedure of a convolutional operation is illustrated in Fig. A.3. On the one hand, the
weights of one kernel are identical for each pixel in the next layer. This is the “Parameter Sharing”
feature of a convolutional layer. On the other hand, every pixel at the next layer is connected
to pixels in a local area at the current layers, rather than all pixels from the current layer. This
“Sparsity of connections” characteristic of a convolutional layer harnesses the properties of an
image that a group of nearby pixels has better information than grouped distant pixels. These
two characteristics explain why convolutional layers cause fewer parameters than traditional
artificial neural networks. The formulation of a 2D convolution is

F2d(i, j) =
k∑

i=0

k∑
j=0

G(i, j)⊗H(k − i, k − j), (A.1)

where k is the kernel size, usually 3, 5 or 7; G is the image matrix; H is the kernel matrix, and (i,
j) is the matrix position of the output feature map.

How many pixels the filter moves in each step is the stride. By default, the stride is 1. Apparently,
after several convolutional layers, the feature maps get shrunk. The other outcome is that the
corner pixels in the input images only get covered by the filter once, while the middle pixels
get covered multiple times. Therefore, the corner information of the inputs could be lost.
Consequently, padding is introduced before the convolutional process. The padding size means
how many pixels are added to the border of the input image. Usually, the values of the padding
pixels are 0.

The inputs of LeNet-5 are 32 × 32 × 3 RGB images. The first convolutional layer uses six
convolution kernels of 5× 5 with 2 padding pixels and 1 stride. It means that the 32× 32 input
image will be converted into 34× 34, and the filter moves 1 pixel forward in each step. So the
output from the first convolutional layer is 28× 28× 6.

A.1.2 Pooling Layer

The role of a pooling layer is sub-sampling the feature map and getting rid of spatial variance,
which enables the machine to recognize the object robustly. The larger the kernel size, the
larger the receptive field and the smaller the output feature map. The two most common pooling
approaches are max pooling and average pooling. The max/average pooling layer gets the
maximum/average value in its receptive field layer. In LeNet-5, an average pooling layer with
2× 2 kernel follows a convolutional layer. The stride of the pooling is 2, so the 2× 2 receptive
fields are non-overlapping. Then the output from the first pooling layer in LeNet-5 is 14×14×6.
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Figure A.4 – Visualization of the four nonlinear activation functions Sigmoid, Tanh, ReLU, and
Leaky ReLU.

A.1.3 Fully-connected Layer
In LeNet-5, after two convolutional layers and two pooling layers, there are three FCs, which
comply with the data extracted by previous layers to produce the final output. A FC flattens the
multichannel feature maps and connects all inputs from one layer to every activation unit of the
next layer. Furthermore, each connection has its own weight. If one neuron in a FC layer updates,
all values in the next layer will be affected. In contrast, if one neuron in a convolutional layer
updates, it only affects the neighboring neurons within the receptive field of the convolutional
kernel. In addition, the same weights on the kernel are applied to every neuron. Therefore, a
convolutional layer usually has fewer parameters than a fully-connected layer. For example, the
first and second convolutional layers have 156, 1516 parameters, respectively, but the first FC
layer has 10164 parameters.

A.1.4 Nonlinear Activation Function
Non-linear activation functions introduce non-linearity into the network and allow the network
to create complex mappings between high-dimensional inputs and low-dimensional outputs.
Every convolutional layer in LeNet-5 follows a non-linear activation function, the hyperbolic
tangent Tanh. The output layer follows a sigmoid function, whose output is [0, 1]. The common
non-liner activation functions are Sigmoid, Tanh, Rectified Linear Unit (ReLU), and Leaky
ReLU. Their equations and visualization are shown in equation A.2 - equation A.5 and Fig. A.4.

The Sigmoid function is especially suitable for predicting the probability in a two-class clas-
sification task. The Tanh function outputs values in the range of [−1, 1]. One disadvantage of
the Sigmoid and Tanh functions is value saturation. Saturation means that larger values are
clamped to 1, and small ones are clamped to 0 or =1. Further, Sigmoid and Tanh functions are
sensitive to input changes around the input’s midpoint (0.5 or 0). The ReLU function returns
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the same input value directly, or returns 0 if the input is 0.0 or negative. Therefore, ReLU is a
piecewise linear function. ReLU has become the most popular activation function because of the
simple computation, sparse representation of returning 0 values, and piecewise linear behavior.
However, the main limitation of ReLU is that all the negative values become 0 immediately,
which reduces the ability of the model to fit or train data appropriately. A node may output
an activation value of 0.0 during the whole training process, referred to as the “dying ReLU”
phenomenon. The Leaky ReLU aims to solve the dying ReLU issue and relaxes the non-linear
output of the function to allow for small negative values.

A = tanh(x), (A.2)

A =
1

1 + e−x
, (A.3)

A =

{
0 if x < 0
x otherwise

(A.4)

A =

{
0.01x if x < 0

x otherwise
(A.5)

where x is the input unit.

In summary, we conclude the benefits of CNNs:

1) CNNs reduce the number of trainable network parameters because of weight sharing the
convolutional layers and, in turn, help the network to enhance generalization and to avoid
overfitting problems.

2) CNNs effectively extract highly organized and highly reliant features from high-
dimensional data.

3) Large-scale network implementation is much easier with CNNs than with other traditional
artificial neural networks.

4) Moreover, in general, CNNs decrease the need for human effort to develop functionalities
of the complex system.

A.2 Residual Neural Network
From 2012, various CNN architectures have been proposed, and CNN-based algorithms have
been applied to different research fields. From the 7-layer LeNet-5 to the 8-layer AlexNet [81],
the 19-layer VGG [142], and the 27-layer Inception-v1 [149], the main trend of CNNs structure
is becoming deeper. In these neural network models, the first several convolutional layers learn
low-level features of input images, such as edges, dots, and curves. The later convolutional
layers extract high-level features to recognize object types and shapes. Nevertheless, researchers
found that simply stacking convolutional layers brings even worse training results on many
datasets. As the depth of the network increases, the accuracy saturates and then drops rapidly [64].
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Figure A.5 – A building block in (a) a residual neural network and (b) a plain network.

A deep residual neural network (ResNet) was designed to ease the degradation problem. The
critical point of a residual neural network is explicitly reconstructing the layers as learning
residual functions regarding the layer inputs instead of learning unreferenced functions. As
illustrated in Fig. A.5, utilizing a skip connection to jump over two layers and an element-wise
addition formulates operation F (x) + x. Function F (x) can contain two layers or three layers,
and these layers can be FC layers or convolutional layers. Further experiments and comparisons
have proved that residual networks with this identity mapping are easier to optimize and obtain
higher accuracy than plain networks with the same network depth. Note that ResNet utilizes
Batch Normalization after every convolutional layer before the activation operation to stabilize
the learning process and to speed up the learning process. BN is achieved by calculating the mean
and standard deviation of each input variable for each mini-batch and performing standardization
by these statistics.

A.3 Convolution Neural Networks using Depth Images

Unlike RGB images with three channels: red, green, and blue, depth images have only
one channel in which each pixel associates to a distance between the image plane and the
corresponding object in the image. With the popularity of depth sensors, depth images have
become easy to obtain, so neural networks that take depth maps as input are also developing
rapidly in many applications, e.g., human hand pose estimation, image segmentation, and
robotic grasping. Human hand pose estimation based on depth images of a bare hand has been
elaborated in section 2.4. The depth images in human hand pose estimation are cropped and
usually augmented by rotation, translation, and jittering process.

Depth images fed into image segmentation CNNs usually are complete from the observing
scene and augmented by multiplicative gamma noise. Xie et al. [164] developed a two-stage
CNN, UOIS-Net, for unseen object instance segmentation. UOIS-Net first generated object
instance center votes through a depth seeding network and assembled them into rough initial
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Figure A.6 – Architecture of the grasp quality convolutional neural network GQ-CNN [101]. Adapted
image from [101].

masks. Secondly, a region refinement network combining these initial masks and RGB images
produced accurate segmentation masks. This framework outperformed the other state-of-the-art
methods through quantitative and qualitative comparison experiments on 2D and 3D test datasets.

Regarding grasp pose detection, CNNs using depth images mainly focus on how to represent
the grasp candidates by depth images effectively. In 2017, Mahler et al. [101] proposed a grasp
quality convolutional neural network (GQ-CNN) to estimate grasp quality based on depth images
in a Dex-Net 2.0 grasp planner (see Fig. A.6). The input depth images of GQ-CNN are the
depth images centered on the grasp pose center and aligned with the grasp axis orientation. The
top-down grasp proposals are generated by antipodal points on the object boundary based on
force closure. The other input of GQ-CNN is the gripper depth extracted from the scene point
clouds of the observing scene. In over 1,000 physical evaluations, the Dex-Net 2.0 grasp planner
achieved a 99% success rate on a test set of 40 novel objects. Similar to GQ-CNN, Ten Pas et
al. [120] built a grasp detection CNN to score the 6D grasp candidates for unknown objects. The
grasp candidates are represented as three depth images by the geometry of the observed object
surfaces and unobserved volumes within the closing area of the gripper.

A.4 End-to-end Learning
With the development of deep and complex neural networks, end-to-end learning has
become a fashion because it blurs the traditional boundaries between learning machines
and other processing components [58]. End-to-end learning aims to integrate all modules
into one neural network, representing the complex target system and bypassing explicit modeling.

The traditional pipeline of a speech recognition system 1) extracts features from the audio
inputs, then 2) detects the individual phoneme and 3) composites words, and 4) outputs the text
transcripts at the end. An obvious limitation of the traditional method is that each module must
be optimized separately under different criteria. Instead, an end-to-end learning algorithm can
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IEEE.

directly generate the transcripts from the input audios using a sophisticated RCNN. In the hand
pose estimation field, earlier methods usually detected the joint positions on 2D heatmaps, then
got the 3D joint positions by complex optimization-based post-processing [153]. In recent years,
3D pose estimation networks in end-to-end manners have been exponentially increasing. For
example, Xiong et al. [166] proposed a novel anchor-based anchor-to-joint hand pose estimation
network (A2J) in the end-to-end learning fashion. The architecture of A2J is shown in Fig. A.7.
The backbone network is formed on ResNet-50. The 3D hand keypoints are predicted by the
in-plain offset prediction branch and depth estimation branch. The anchor proposal branch
assigns weights to all anchor points, which can be assumed as local regressors towards the joints
from different viewpoints and distances. Regarding robotic grasping, most existing methods
solve the 6-DoF grasping problem for an unseen object by grasp pose generation and grasp pose
detection in two steps. Wu et al. [163] designed an end-to-end grasp proposal network built on a
novel grasp proposal module that defines anchors of grasp centers at a discrete set of regular 3D
grid corners. Moreover, the real-world grasping experiments verified that their dedicated grasp
proposal module outperformed the current state-of-the-art grasping methods. In the imitation
learning field, Finn et al. [51] presented how to fine-tune vision-based policies end-to-end from
one-shot demonstration using model-agnostic meta-learning on several robotic manipulation
tasks.

To summarize, the elegant but somewhat brute-force end-to-end learning directly targets the goal
system, but every enhancement comes with a price. The architectures of end-to-end models are
usually more complicated and have more parameters than single-module networks, resulting in
training difficulties.
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Glossary

AR Augmented Reality

BN Batch Normalization

CMC Carpometacarpal

CNN Convolutional Neural Network

DIP Distal Interphalangeal

DoF Degree of Freedom

EEG Electroencephalography

EMG Electromyography

FC Fully-connected Layer

FF First Finger

GAN Generative Adversarial Network

IMU Inertial and Magnetic Measurement Unit

ICP Iterative Closest Point

IP Interphalangeal
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LF Little Finger

MCP Metacarpophalangeal

MF Middle Finger

MR Mixed Reality

MSE Mean Squared Error

PCA Principal Component Analysis

PIP Proximal Interphalangeal

PN Perception Neuron

PSO Particle Swarm Optimization

RCNN Recurrent Convolutional Neural Network

ReLU Rectified Linear Unit

RF Ring Finger

ROS Robot Operating System

STN Spatial Transformer Network

TCN Time-contrastive Network

TMC Trapeziometacarpal

TH Thumb

URDF Unified Robot Description Format

VAE Variational Autoencoder

VR Virtual Reality
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