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Elimu haina mwisho
Education never ends.

— Swahili proverb





A B S T R A C T

The overarching topic of this thesis is the study of different types of symmetries
in physical systems that are described by a discrete model, a prominent example
being condensed matter systems in the tight-binding approximation.

In the first chapter of this thesis, we focus on one-dimensional tight-binding
chains that feature local symmetries, that is, symmetries of a part of the system. We
employ two different pathways for the treatment of such locally symmetric chains.
The first pathway is a recently introduced framework which unveils the impact of
local symmetries through certain current-like correlators, the so-called non-local
currents. The framework is experimentally verified by measuring these non-local
currents in a system of so-called evanescently coupled optical waveguides. The
second pathway is a framework of locally symmetric resonators, which we develop
in the context of binary tight-binding chains. In these chains, the next-neighbor
coupling is constant, while the on-site potentials may take two different values.
In particular, we investigate the cases where the on-site potential binary values
are ordered according to the Fibonacci, Thue-Morse, and Rudin-Shapiro sequence.
Among others, our framework explains the finding that, for low coupling strength,
the eigenstates of these chains feature locally symmetric localization patterns.

The second chapter deals with the phenomenon of compact localized states
(CLSs). Such states are eigenstates of a discrete system, e.g., a tight-binding model,
which have compact support. That is, they have non-vanishing elements only on
a (usually small) part of the system. This extreme kind of localization is caused
by destructive interference, which is in turn allowed for by a suitable interplay of
coupling strengths and the geometry of the system. In many cases, the systems
supporting compact localization have been found to feature local symmetries, and
we investigate the connection between these two phenomena in more detail. By
applying insights from graph theory, we find that certain classes of local symmetries
can indeed be systematically linked to compact localization. We further use these
insights to derive a powerful construction principle to equip tight-binding systems
with CLSs. In particular, this principle allows to equip each unit cell of a lattice
with a CLS at the same energy. This leads to macroscopic degeneracy and thus a
completely flat band. Our principle allows to tune the position of this flat band
without changing the remaining bands of the lattice. Apart from developing this
construction principle and applying it to tight-binding lattices, we further show
that local symmetry induced compact localization is also possible in long range
interacting systems of coupled dipole scatterers, which we analyze in terms of the
so-called dyadic Green’s matrix.

In the third chapter, we investigate different methods of transferring a CLS
across a tight-binding system. The first of these methods is optimal control theory,
where the Hamiltonian is changed in an optimized, time-dependent manner to
allow for the high-fidelity transfer of CLSs. For the second method, we modify
the principles of so-called perfect state transfer and pretty good state transfer to
enable the transfer of CLSs. These principles have originally been developed for
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the faithful transfer of excitations of a single site across a system. In particular,
by fine-tuning the underlying static Hamiltonian, these two methods achieve the
transfer of the state by pure time-evolution. Unfortunately, direct application of
these methods to our aim of transferring CLSs is not possible, since our CLSs
are not single-site excitations, but anti-symmetric excitations of a dimer, that is,
two-site excitations. However, we show that one can easily modify a Hamiltonian
featuring perfect or pretty good state transfer of single-site excitations such that
the high-fidelity transfer of CLSs is possible.

In the fourth chapter of this thesis, the focus lies on the concept of latent symme-
tries. A Hamiltonian features a latent symmetry if a suitable dimensional reduction—
the so-called isospectral reduction—of this Hamiltonian features a symmetry. We
provide methods for the construction of systems with such latent symmetries.
We further link non-abelian latent symmetries to spectral degeneracies of the un-
derlying Hamiltonian. Moreover, we use a special class of latent symmetries for
the construction of compact localized states and flat bands. Lastly, we unite the
two topics of this thesis by showing that there is a profound connection between
local and latent symmetries. Namely, a latent symmetry is nothing else but a local
symmetry not only in the original Hamiltonian matrix, but also in all of its matrix
powers.
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Z U S A M M E N FA S S U N G

Das übergreifende Thema dieser Arbeit ist die Untersuchung verschiedener Ar-
ten von Symmetrien in physikalischen Systemen die durch ein diskretes Modell
beschrieben werden, beispielsweise im Rahmen der tight-tinding-Approximation.

Im ersten Kapitel dieser Arbeit konzentrieren wir uns auf eindimensionale
tight-binding Ketten, welche lokale Symmetrien aufweisen. Unter einer „lokalen
Symmetrie“ meinen wir hierbei eine Symmetrie eines Subsystems, das heißt, eine
Symmetrie, die üblicherweise nur in einem Teil des Systems gültig ist. Wir ver-
wenden zwei verschiedene Methoden zur Behandlung solcher lokal symmetrischer
Ketten: Erstens ein kürzlich eingeführtes Framework, welches die Auswirkungen
lokaler Symmetrien durch bestimmte stromähnliche Korrelatoren, die sogenannten
nichtlokalen Ströme, aufdeckt. Dieses Framework wird experimentell verifiziert,
indem die nichtlokalen Ströme in einem System von sog. evaneszent gekoppelten
optischen Wellenleitern gemessen werden. Unsere zweite Methode ist ein Fra-
mework von lokal symmetrischen Resonatoren, das wir im Zusammenhang mit
binären tight-binding Ketten entwickeln. In diesen Ketten ist die Kopplung der
nächsten Nachbarn konstant, während die on-site Potentiale zwei verschiedene
Werte annehmen können. Insbesondere untersuchen wir die Fälle, in denen die
binären Werte der on-site Potentiale gemäß der Fibonacci-, Thue-Morse- und Rudin-
Shapiro-Sequenz angeordnet sind. Unser Framework erklärt unter anderem, dass
die Eigenzustände dieser Ketten bei geringer Kopplungsstärke lokal symmetrische
Lokalisierungsmuster aufweisen.

Das zweite Kapitel befasst sich mit dem Phänomen der kompakten lokalisierten
Zustände (KLZ). Solche Zustände sind Eigenzustände eines diskreten Systems, z. B.
eines tight-binding Modells, die einen kompakten Träger haben. Das heißt, sie sind
nur in einem (üblicherweise kleinen) Teil des Systems nichtverschwindend. Diese
extreme Art der Lokalisierung wird durch destruktive Interferenz verursacht, die
wiederum durch ein geeignetes Zusammenspiel von Kopplungsstärken und der
Geometrie des Systems ermöglicht wird. In vielen Fällen hat sich gezeigt, dass Sys-
teme, die eine kompakte Lokalisierung unterstützen, lokale Symmetrien aufweisen,
und wir untersuchen den Zusammenhang zwischen diesen beiden Phänomenen
genauer. Durch die Anwendung von Erkenntnissen aus der Graphentheorie stellen
wir fest, dass bestimmte Klassen lokaler Symmetrien tatsächlich systematisch mit
kompakter Lokalisierung in Verbindung gebracht werden können. Aus diesen
Erkenntnissen leiten wir ein mächtiges Konstruktionsprinzip ab, mit dem sich
tight-binding Systeme mit KLZ ausstatten lassen. Dieses Prinzip ermöglicht es
insbesondere, jede Einheitszelle eines Kristalls mit einem KLZ mit derselben Ener-
gie auszustatten. Dies führt zu makroskopischer Entartung und damit zu einem
völlig flachen Band. Unser Prinzip erlaubt es, die Position dieses flachen Bandes zu
tunen, ohne die übrigen Bänder des Kristalls zu verändern. Neben der Entwicklung
dieses Konstruktionsprinzips und seiner Anwendung auf tight-binding Systeme
zeigen wir außerdem, dass eine durch lokale Symmetrie induzierte kompakte Lo-
kalisierung auch in langreichweitig wechselwirkenden Systemen mit gekoppelten
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Dipolstreuern möglich ist, welche wir mittels der sog. dyadischen Green-Matrix
untersuchen.

Im dritten Kapitel untersuchen wir verschiedene Methoden, um einen KLZ in
einem tight-binding System zu transferieren. Die erste dieser Methoden ist die
optimale Steuerung, bei der der Hamiltonian in einer optimierten, zeitabhängigen
Weise verändert wird, um den perfekten Transfer eines KLZ zu ermöglichen. Bei
der zweiten Methode bauen wir auf zwei Techniken des Zustandstransfers auf, na-
mentlich, auf dem perfekten Zustandstransfer (englisch: perfect state transfer) und
dem ziemlich guten (englisch: pretty good state transfer) Zustandstransfer. Beide
Techniken wurden ursprünglich für den (fast) perfekten Transfer von single-site
Anregungen eines tight-binding Systems entwickelt. Durch Tuning des zugrun-
deliegenden zeitunabhängigen Hamiltonians erreichen diese beiden Techniken
insbesondere die Übertragung des Zustands durch reine Zeitentwicklung. Leider
ist eine direkte Anwendung dieser Techniken auf unser Ziel des Transfers von
KLZs nicht möglich, da unsere KLZs keine single-site Anregungen sind, sondern
antisymmetrische Anregungen eines Dimers, d. h. eine Anregung von zwei Sites.
Wir zeigen jedoch, dass ein Hamiltonian, der den perfekten oder ziemlich guten
Transfer von single-site Anregungen erlaubt, leicht so modifiziert werden kann,
dass der Transfer von KLZ mit hoher Fidelität möglich ist.

Der Fokus des vierten Kapitels dieser Arbeit liegt auf sogenannten “latenten
Symmetrien”. Ein Hamiltonian besitzt eine latente Symmetrie wenn eine bestimmte
Art von Dimensionsreduktion, nämlich die sogenannte Isospektralreduktion, dieses
Hamitonians eine Symmetrie besitzt. Wir entwickeln Methoden für die Konstruk-
tion von latent symmetrischen Systemen. Außerdem stellen wir eine Verbindung
zwischen nichtabelschen latenten Symmetrien und spektralen Entartungen des
zugrundeliegenden Hamiltonians her. Zuletzt vereinigen wir die beiden Themen
dieser Arbeit, indem wir zeigen, dass eine latente Symmetrie nichts anderes als
eine lokale Symmetrie in jeder Matrix-Power des Hamiltonians ist.
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Part I

I N T R O D U C T I O N





1
L O C A L S Y M M E T R I E S I N O N E - D I M E N S I O N A L S Y S T E M S

In this first chapter of the thesis, we will first introduce the concept of local
symmetries in Section 1.1. Afterwards, in Sections 1.2 and 1.3, we will discuss
our works [MR1, MR2] that focus on local symmetries in systems that can be

described by a one-dimensional tight-binding model.

1.1 local symmetries

Symmetry, that is, the invariance of a system under certain transformations—such
as rotations and reflections, for example—, plays a major role in all areas of physics.
Noether’s theorem is a prominent example highlighting both the relevance and
usefulness of symmetries. Stating that there corresponds a conserved quantity to
every1 continuous symmetry of a physical system [1], Noether’s theorem gives a
symmetry-based explanation of fundamental conservation laws of energy as well
as linear and angular momentum.

In quantum mechanics, many models feature an abundance of symmetries,
thereby significantly simplifying their treatment while simultaneously leading to
a better understanding of the underlying physics. The treatment of the hydrogen
atom, for example, greatly profits from its spherical symmetry, since it can be used
to derive an analytical solution of the three-dimensional Schrödinger equation.
But apart from this computational advantage, the spherical symmetry can also be
used to derive selection rules for electronic transitions, thereby explaining why
only some of those are observed in spectroscopic experiments. Such interplay of
symmetry, easier computation and selection rules is not limited to the hydrogen
atom, but on the contrary lies at the heart of chemistry, with many molecules
being highly symmetric [2–5]. Another example for the power of symmetries to
greatly simplify a problem is the field of solid state physics. Here, the translational
symmetry of a crystal leads to Bloch waves, that is, plane waves modulated by
a function that has the same periodicity as the underlying crystal lattice. Before
we continue, we want to mention one last and particularly important aspect of
symmetries, namely, its study in terms of group theory [6]. Besides providing a
beautiful method for describing symmetries, group theory in particular allows to
explain how spectral degeneracies of the underlying operator describing a physical
system (such as the Hamiltonian) are linked to its symmetries [6, 7].

An important aspect of the above examples is that their symmetry is global, that
is, the underlying symmetry is valid everywhere in space. The rotational symmetry
of the hydrogen atom, for example, is assumed to hold everywhere, and crystals
are assumed to be infinitely extended. But in reality, such idealized symmetries are
never met: The hydrogen atom is certainly not isolated, and thus the rotational sym-
metry of the problem will be broken at some points in space, and any real crystal

1 To be precise, Noether’s theorem only makes statements about systems that can be described by a
Lagrangian.
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4 local symmetries in one-dimensional systems

is necessarily finite. The symmetries are thus local, that is, they only hold in certain
parts of space. Fortunately, the deviations from global symmetry are in many cases
only small, so that the locality of symmetries does not pose so much of a problem.
For example, in a finite crystal, an electron within the bulk of this crystal does not
‘feel’ the effects of broken translational symmetry at the crystal’s boundaries, so
that many results derived by means of symmetry (such as the band structure) are
still approximately valid. Sometimes, however, this perturbative ansatz is not useful
any more, be it because the perturbation of global symmetries is too big or simply
because there is no identifiable global symmetry to be broken in the first place.
Examples for this class range from glasses and partially disordered systems [8] to
quasicrystals (which feature a long range order but no translational symmetry) to
so-called order-disorder structures where layers of different symmetries are stacked
onto each other [9–11]. A system may also be designed to be locally symmetric,
with examples ranging from multilayered photonic devices [12–19] over quantum
semiconductor superlattices [20] and acoustic waveguides [21] to magnonic systems
[22]. Given this broad range of examples, the question arises what effects the local
symmetries may have on the properties of the system (such as its eigenstates). This
question represents the overarching topic of this dissertation and will be treated in
different ways throughout this and the following chapters. Before we continue, let
us first give a brief overview of what has been done in this respect so far.

1.1.1 Analyzing the impact of local symmetries through non-local currents

Contrary to their broad occurrence, local symmetries do not seem to have been
treated systematically for a long time. There are a few notable exceptions to this.
Firstly, local symmetry have been used in the study of molecular vibrations [23, 24],
but unfortunately this idea does not seem to have spread further in the chemistry
community. Another noteworthy approach, also in the context of chemistry, is the
analysis of the electronic structure of molecules in terms of their local symmetries
[25, 26]. The last exception comes from the field of X-Ray scattering, where local
symmetries of the scatterers were used to make predictions about cross-correlations
of scattering intensities [8, 27–29].

To the best of our knowledge, the first systematic approach to study the impact
of local symmetries in a general fashion and in a broad range of systems was
introduced in 2013 through a framework of so-called non-local currents [30]. Since
this framework provides a first insight into the analysis of local symmetries, and
also since it was the basis of our work [MR1] further below, we will discuss it now
in more detail. In its simplest form, the framework can be developed in terms of
the one-dimensional Helmholtz equation2

A′′(x) + U(x)A(x) = 0. (1.1)

This equation describes a number of interesting wave systems. For example, for
an electromagnetic wave of frequency ω propagating in a medium with refractive
index n, we have U(x) = ω2n2(x)/c2 (c denoting the speed of light) and A(x)

2 We note that this general formulation through the Helmholtz equation was only introduced in the
third work on non-local currents [31]; the first two works dealt with the special cases of quantum
[30] and electromagnetic [32] scattering.



1.1 local symmetries 5

describes the complex amplitude of the electric field. For a matter wave U(x) =

(2m/h̄2)
(

E−V(x)
)

, and A(x) describes the wavefunction of a particle with mass

m and energy E moving in a potential V(x).

(a)

(b)

(c)

(d)

Figure 1.1: Visualization of different symmetry classes of a one-dimensional potential U(x).
From top to bottom: (a) Global reflection (Π, left) and translation (T, right)
symmetry. (b) Nongapped local symmetries. (c) Gapped local symmetries. (d)
Complete local symmetries (see text for details). Reprinted figure with permis-
sion from P. A. Kalozoumis et al., “Invariants of broken discrete symmetries,”
Phys. Rev. Lett. 113, 050403 (2014). Copyright (2014) by the American Physical
Society.

The potential term U(x) may feature reflection and translation symmetries, with
the underlying symmetry transformation being described by

F : x → x = F(x) = σx + ρ

with a reflection about the point α described by σ = −1, ρ = 2α, and a translation
by L described by σ = 1, ρ = L. In Fig. 1.1, we showcase different types of
these symmetries. (a) shows the case of global reflection (Π) and translation (T)
symmetries, that is, the domain D of symmetry comprises the whole space. (b) to
(d) then show different variations of local symmetries. In (b), these are nongapped3,
while they are gapped in (c). (d) shows a “completely locally symmetric” system,
that is, a system which is entirely composed of locally symmetric units. As can be
seen from these very different cases, already in the simple case of one-dimensional
systems, the world of local symmetries is a vast one.

Let us now introduce non-local currents by evaluating Eq. (1.1) at points x and x
and constructing the difference

A∗(x)A′′(x)− A(x)A′′∗(x) = A∗(x)A(x)
(

U(x)−U(x)
)

:= 2iQ′(x) (1.2)

3 To be precise, a local symmetry is nongapped if D ∪D is connected, where D denotes the domain of
local symmetry, and D = F(D) denotes its image. Thus, a reflection symmetry is nongapped if the
center α of reflection lies within the domain D of local symmetry.

https://doi.org/10.1103/PhysRevLett.113.050403
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with ∗ denoting the complex conjugate, and where we assumed real-valuedness of
the potential U(x). If there is a local symmetry, then U(x) = U(x) for all x within
the corresponding local symmetry domain D. As a result, we have Q′(x) = 0 so
that

Q =
1
2i

[
σA∗(x)A′(x)− A(x)A′∗(x)

]
(1.3)

is constant throughout the domain D. We note that A′(x) = dA(x)/dx|x=x, and σ

distinguishes between the Qs for translation (σ = 1) and reflection (σ = −1). The
complex quantity Q is called a non-local current (NLC), since (i) it contains wave
amplitudes at two points x, x and (ii) it becomes the quantum probability current

j =
1
2i

[
A∗(x)A′(x)− A(x)A′∗(x)

]

when setting x = x.
After the initial work on NLCs in 2013, the theory has been further developed

in a series of papers and, along the way, applied to numerous physical setups.
Shortly after their introduction in [30], NLCs were used to classify so-called perfect
transmission resonances through the value that an alternating sum of different
scaled NLCs takes [32]. NLCs were further used to generalize the classical Bloch
and parity theorems—which make statements about waves in globally translational
or reflection symmetric systems, respectively—to the case of local translation and
reflection symmetries [31]. The results of [31] were generalized even more in [33],
where also a central tool in one-dimensional scattering, the transfer matrix, was
expressed through NLCs.

While the above works treated NLCs only within the special context of the
one-dimensional time-independent Helmholtz Eq. (1.1), the theory has meanwhile
been generalized in several regards. In [34], it was applied to scattering off locally
symmetric potential landscapes in two dimensions. The generalization of the
theory to local symmetries in systems that are driven in time was performed in
[35]. In [MR10, 36], NLCs were developed for one- and two-dimensional discrete
eigenvalue problems, which arise, for example, in tight-binding models. The theory
was further generalized in [37] to interacting particles by harnessing the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [38–43]. Interestingly, non-local
currents can be derived from a variational principle that is based on a “super
Lagrangian” obtained by combining two separate Lagrangians [44]. Moreover,
NLCs were also applied as an order-parameter [45, 46] in so-called PT -symmetric
non-hermitian quantum mechanics which was introduced in two seminal papers
by Carl Bender [47, 48] (for more information on PT -symmetric systems, see, e.g.,
the recent review articles [49, 50]).

So far, NLCs have been measured experimentally in two different setups [MR1,
51]. In [51], scattering through acoustic waveguides was performed. Local symme-
tries were here induced by placing scatterers in a locally-symmetric manner into
the waveguides. Interestingly, the NLCs can be shown to keep their constancy even
in the presence of losses, which is an important factor in acoustical experiments.
The second experiment, [MR1], was performed in an optical setup of evanescently
coupled waveguides and will be discussed in detail in the next section.
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1.2 outline : observation of local symmetry in a photonic system

Figure 1.2: The femtosecond laser writing technique and an example waveguide array.
Inset: Microscopic image of the end of such an array. Reprinted with permission
from [52] © The Optical Society.

In [MR1], NLCs are measured in a photonic system. Before we come to the details
of this work, we briefly introduce the experimental platform, namely, so-called
optical waveguide arrays, and embed it in a broader context.

An example of an optical waveguide array is depicted in Fig. 1.2. Such arrays
can be produced by different methods [53, 54], with examples including etching
in semiconductors [55], inducing light in a photorefractive material [56], or using
arrays of optical fibers [57], to name just a few. In the experiment performed in
[MR1], evanescently coupled waveguide arrays are produced by “writing” them
into fused silica glass by means of a femtosecond laser [58]. During this procedure—
illustrated in Fig. 1.2—the laser light in the focal region partly destroys the glass.
This leads to a local increase in density and the refractive index (more details
about this process are given in the tutorial [58]); a waveguide is created by moving
the focal region along the desired path. This process can be repeated at different
locations of the bulk glass so that arrays of waveguides with a near-arbitrary
geometry can be produced.

Optical waveguide arrays are interesting from several perspectives. First and
foremost, they may play a role in future all-optical networking and highly minia-
turized photonics [59–64] (see also [65] and references therein), and may even be
used to implement all-optical logical gates [66]. Besides these obvious applications,
optical waveguide arrays are also of fundamental interest since they enable the em-
ulation of quantum mechanical phenomena in a highly controlled manner. This is
made possible by the striking similarity between the two-dimensional Schrödinger
equation

ih̄
∂

∂t
Ψ(x, y, t) = −

( h̄2

2m

[ ∂2

∂x2 +
∂2

∂y2

]
−V(x, y, t)

)
Ψ(x, y, t) (1.4)
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for a particle with mass m within a potential V(x, y, t), and the optical paraxial
Helmholtz equation for light traveling along the z-axis,

iλ̄
∂

∂z
E(x, y, z) = −

( λ̄2

2n0

[ ∂2

∂x2 +
∂2

∂y2

]
+ ∆n(x, y, z)

)
E(x, y, z) (1.5)

where E denotes the electrical field envelope, λ̄ = λ/(2π) the reduced wavelength,
∆n = n0 − n(x, y, z) the refractive index change with n0 being the refractive index
of the bulk material [58]. In other words, the role of time in the 2-dimensional
Schrödinger Eq. (1.4) is played by the z-axis in Eq. (1.5). In a suitably designed
waveguide array, Eq. (1.5) may be converted to a tight-binding equation by applying
coupled-mode theory [67], and in the past years this has been used to emulate
several phenomena from condensed matter physics. Among these phenomena are
Bloch-oscillations [68–70], Anderson localization [71, 72], topological insulators
[73–77], and quasicrystals [78, 79]. Optical waveguide arrays were also used to
implement concepts such as supersymmetry [80], flat bands [64, 81], artificial gauge
fields [82], Dirac dynamics [83] or PT -symmetric systems [84, 85]. For further
information on coupled optical waveguide arrays, we refer the reader to, e.g., the
review articles [54, 86, 87].

Figure 1.3: An example setup comprised of six waveguides, with C1, C2, and C3 denoting
the next-neighbor couplings, which are assumed to be pairwise different from
each other, that is, they fulfill Ci 6= Cj for i 6= j. The setup is thus locally
symmetric, with two local reflection symmetry domains indicated above the
waveguides. Source: Adapted figure from [MR1].

Now that the foundations for our work [MR1] are set, we can describe it in
more detail. Its main content is the measurement of NLCs in the context of one-
dimensional arrays of coupled waveguides. The propagation of light in this system
is described by the discrete Schrödinger equation

− ih̄
∂ψm(z)

∂z
= Cm,m−1ψm−1(z) + Cm,m+1ψm+1(z) (1.6)

where ψm(z) denotes the light field in the m-th waveguide at position z, and Cn,m

describes the coupling between the adjacent waveguides n, m.
Let us now link Eq. (1.6) to the concept of local symmetries. Since we have so

far—as in Fig. 1.1—concentrated on continuous systems, we first need to define
what exactly we mean by a local symmetry in the context of a discrete setup. This
poses no difficulty:

A local symmetry is a symmetry of a subsystem. That is, when isolating this subsystem
from the remainder of the setup, it features a symmetry.
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An example for a simple waveguide setup with local symmetries is depicted in
Fig. 1.3. Here, the subsystem consisting of the three left waveguides is locally
symmetric, since it features a reflection symmetry when one decouples it from the
remaining three waveguides. Similarly, the subsystem consisting of the three right
waveguides is locally reflection symmetric as well.

We note that Eq. (1.6) is discrete, while the NLCs were originally developed in the
context of the one-dimensional Helmholtz equation Eq. (1.1), which is continuous.
However, the adaptation of the formalism of NLCs to discrete models is possible,
and was done in detail in [MR10, 36].

In order to measure the NLCs, both modulus and phase of the light field ψm(z)
need to be determined. The measurement of the modulus is the easier one; we
achieve it by employing a fluorescence method. That is, the waveguides are fabri-
cated such that a small fraction of the light propagating in a waveguide is converted
into omnidirectional light. The resulting intensity pattern varies between different
waveguides and along the z-direction, and thus allows to measure the modulus
|ψm(z)| of the light field in each waveguide. This technique, however, is unable to
recover the phase of the light field. For the measurement of this phase, we initially
(that is, at z = 0) excite only a single site, that is, we shine light only in a single
waveguide. As a result, at any position z, the phase difference of the light field on
two neighboring waveguides is equal to π/2. Moreover, along a waveguide the
phase only changes at points where the light field vanishes, with the phase change
at these points being equal to π. Since these zero-crossing points can be obtained
from the intensity measurement, we can thus obtain both modulus and phase of
the light field ψm(z) for arbitrary z and in each waveguide m, and thus also the
NLCs.

Besides the measurement of NLCs, a main point of our work [MR1] is to demon-
strate their practical value for the distinction between locally symmetric and asym-
metric setups. The idea behind this principle is as follows: Given an eigenstate
~Ψ = (Ψ1, . . . , ΨN)

T of an unknown setup with N waveguides, the presence of local
symmetries could be easily detected, since the corresponding non-local current
is then spatially constant in a local symmetry domain4 D. Unfortunately, this
idea cannot directly be employed to the experimental setup in [MR1], since it is
difficult to excite an eigenstate of the discrete Schrödinger equation describing the
waveguide array. Instead, in the experiment only a single site is excited at z = 0,
that is, ~φ(0) = ∑i ci~Ψ(i) is a superposition of eigenstates. For such a superposition
the NLCs are in general not constant throughout a local symmetry domain. To cir-
cumvent this problem, we employ a non-local continuity equation which has been
developed in [36], and which allows to distinguish between globally symmetric,
locally symmetric, and asymmetric waveguide arrays through measurements of
NLCs.

4 Of course, one would need to define this domain first. For example, for a local reflection symmetry
one would need to define the center of reflection and the size of the domain. It follows that, in order
to check whether the setup features any local symmetry, one would have to test all possible local
symmetry domains and evaluate the NLCs in them.
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1.3 outline : local symmetry theory of resonator structures for

the real-space control of edge states in binary aperiodic

chains

In the above work [MR1], the focus lied on the experimental measurement of NLCs.
In our second work [MR2], we move away from that specific topic of non-local
currents, though still focus on local symmetries in one-dimensional systems. In
particular, we investigate setups described by the N-site tight-binding Hamiltonian

Ĥ =
N

∑
i=1

vi |i〉 〈i|+ h
N−1

∑
i=1

(
|i〉 〈i + 1|+ |i + 1〉 〈i|

)
(1.7)

where |n〉 is a single-site excitation of the site n, vi denotes the on-site potential
of the i-th site, and with h denoting the next-neighbor coupling which is constant
throughout the system. With the coupling being constant, the choice of on-site
potentials clearly determines the character of the system. For example, when these
potentials are arranged periodically, Eq. (1.7) describes a finite crystal. In [MR2],
however, our focus does not lie at all on periodic systems. Instead, we explore the
realm of so-called deterministic aperiodic setups. A prime example of such systems
are quasicrystals.

Figure 1.4: The Penrose tiling is a quasicrystalline pattern, as it is aperiodic, but features
long range order. Source: Own modification of [88].

A quasicrystal is an aperiodic, but long range ordered arrangement of atoms
such that its X-Ray diffraction pattern is—just as for conventional, translational
invariant crystals—composed of Bragg peaks [12]. This turns out to be a very
peculiar property, and in fact quasicrystals have long been deemed impossible
[89]. It was only in 1984 that they were discovered by Shechtman et al. [90], for
which he was rewarded with the 2011 Nobel prize in chemistry. An example for a
quasicrystalline pattern is shown in Fig. 1.4.

Besides their very existence, which was indeed heavily disputed in the beginning
(see, e.g., [89, 91, 92]), quasicrystals are also interesting due to a number of peculiar
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properties. For one, many quasicrystalline alloys have a much (sometimes orders
of magnitudes) lower electric conductivity than the metals they are composed of
[93]. Due to this and other anomalies regarding the electric conductivity [94], it
was suggested that quasicrystals fill a gap between metals and superconductors.
Quasicrystals may further feature low friction, high hardness, difficult wetting of the
surface, and corrosion resistance, most combinations of which are technologically
interesting [79, 93]. They may further be brittle, which allows to produce ultra-fine
chemically homogeneous powders that can be used in catalysis [93, 95, 96].

So far, more than one hundred quasicrystalline intermetallic systems have been
found [97]. Quasicrystalline order, however, is not limited to metals, and indeed
was found in fluid substrates and phyllotaxis [98] as well as soft matter (see [99,
100] and references therein). Moreover, quasicrystals were realized with cold atoms
[101], and in the last years several more such realizations have been proposed
[102–104].

When trying to understand and simulate the properties of quasicrystals (and
other aperiodic systems), the absence of translational symmetry poses a serious
problem. Namely, the powerful Bloch theorem—which is the standard tool for
tight-binding computations of conventional, periodic crystals and which enables
band structure calculations—cannot be applied to quasicrystals or other aperiodic
systems. The good side of this problem, however, is that the quest for deriving
efficient methods for simulating the (electronic) properties of aperiodic systems
provides a fruitful playground for interdisciplinary research. This ranges from the
application of topological methods such as K-theory and C∗ algebras [105, 106] to
tools such as spatial point pattern analysis and spectral graph theory [107]. Indeed,
especially the latter work [107] acted as a trigger for our own research involving
graph theory that we will discuss in Chapter 4.

Perhaps the prime model (sometimes also called the “fruit fly of quasiper-
odic studies” [108]) of a one-dimensional quasicrystal is the so-called Fibonacci
quasicrystal [93, 109]. It can be described by the tight-binding Hamiltonian of
Eq. (1.7) as follows: In a first step, the on-site potential v is constrained to be
binary, that is, it may take only two different values, vA and vB. Depending on
the sequence of A’s and B’s, Eq. (1.7) may then describe different systems. The
sequence ABABABAB . . . , for example, would correspond to a crystal. For a Fi-
bonacci quasicrystal, the A’s and B’s are arranged according to the Fibonacci word,
that is,

ABAABABAAB . . . . (1.8)

This word is constructed by repeatedly applying the inflation rule A→ AB, B→ A,
starting with the first Fibonacci word S1 = A. The first six words are thus

S1 = A

S2 = AB

S3 = ABA

S4 = ABAAB

S5 = ABAABABA

S6 = ABAABABAABAAB .
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A Fibonacci quasicrystal may be either infinite or finite. The latter case can, for
example, be modeled by taking only the N-th generation Fibonacci word. That is,
by taking a one-dimensional chain of length lN , with the on-site potentials arranged
according to the N-th Fibonacci word SN , with lN denoting the length of this word.
For concreteness, a third-generation Fibonacci quasicrystal would thus be modeled
by the Hamiltonian

Ĥ = vA |1〉 〈1|+ vB |2〉 〈2|+ vA |3〉 〈3|+ h
2

∑
i=1

(
|i〉 〈i + 1|+ |i + 1〉 〈i|

)
. (1.9)

Figure 1.5: Representative images showing the wave function amplitude of (a) an extended
Bloch state, (b) an exponentially localized state, and (c) a critical state. Source:
[110].

The treatment of the eigenstates of the Hamiltonian Eq. (1.7) with vA, vB ordered
in a Fibonacci manner, has a long tradition. For weak coupling, this Hamiltonian
can be treated perturbatively5, and a common method for the investigation of its

5 Here, the unperturbed Hamiltonian would refer to one where the sites are not coupled at all to each
other.
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spectral properties is the so-called renormalization group method. This method
was first used for this purpose by Niu and Nori in [111]. By employing perturbation
theory up to the first few orders, it achieves a recurrent decimation of the original
chain into smaller and smaller chains, each of which are again of Fibonacci nature.
This method, which is exact in the limit of weak coupling h, is especially well
suited for the treatment of infinite chains, and has been used to show that the
eigenvalue spectrum of an infinite Fibonacci chain is self-similar. The eigenstates
of a Fibonacci chain also behave in an interesting way: While the Bloch states of a
perfect crystal follow its translational symmetry, and are thus completely extended
across the crystal, the eigenstates of a sufficiently strongly disordered crystal can be
exponentially localized [72]; this is the famous Anderson localization6. The eigenstates
of a Fibonacci chain, however, are neither Bloch-like nor exponentially localized;
they are dubbed7 critical [110]. Figure 1.5 shows a graphical comparison of these
three classes of eigenstates.

In a certain sense, the Fibonacci quasicrystal thus resides in-between the two ex-
tremes of perfectly periodic systems on the one side, and of completely disordered
systems on the other side. It turns out that the space between these two extremes is
vast, with the Fibonacci quasicrystal being just one out of many different possibili-
ties. In photonics, this vast world of aperiodic order has been analyzed extensively
in the past years; an overview over the field can be found in the book [118] and
the review articles [12, 17, 119]. In particular, it was found that aperiodic photonic
systems—manufactured, for example, in the form of dielectric multilayers or ape-
riodic photonic crystals (see [119] and references therein)—may have fascinating
and technologically highly relevant properties such as anomalous transport [120]
or fractal transmission spectra [121]. Apart from photonics, aperiodically ordered
structures may also be implemented—in the form of superlattices manufactured,
e.g., by molecular beam epitaxy [122, 123]—in electronics. In this context, aperiodic
structures were proposed as devices for electronic filtering [124–126] or as tools for
the enhancement of the Seebeck effect [127].

Besides the Fibonacci quasicrystal introduced above, another relevant one-
dimensional aperiodic system is the Thue-Morse chain, where the on-site potentials
vA, vB are ordered by the sequence

ABBABAABBAAB . . . (1.10)

which can be constructed8 by the inflation rule A → AB, B → BA. Compared to
the infinite Fibonacci chain, the eigenstates of the infinite Thue-Morse chain have
been found to be more extended [128].

A common feature of both the Fibonacci and the Thue-Morse chain is the
occurrence of quasi-bands, that is, clusters of eigenvalues [129]. Moreover, when
investigating the case of finite chains, both of them may feature eigenstates which
are spatially localized on one or both edges of the chain, and which energetically

6 The exciting field of Anderson localization is not at all the focus of this thesis, but the interested
reader may find the reviews and books [112–117] on this topic useful.

7 A deeper review of the nature of eigenstates and a discussion of the term “critical” can be found in
[110].

8 We note that this inflation rule is only slightly different from the inflation rule A→ AB, B→ A of
the Fibonacci quasicrystal.
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lie in-between the quasi-bands; we call these gap-edge9 states. The emergence of
states that are localized on the edge is a well-known phenomenon in finite periodic
systems10. They are here also known as surface states [130], and their appearance
depends on where exactly in the unit cell the edge is placed, that is, where exactly
in the unit cell the system is cut off [131]. In an aperiodic system, however, there
are no unit cells, and this poses the question of how the emergence of edge states
might be explained.

Our work [MR2]—which was further motivated by the fact that binary aperiodic
chains are full of local symmetries [132]—takes a first step into answering this
question. In this work, we develop a framework which explains, in a unifying
way, the emergence of quasi bands and gap-edge states in finite aperiodic chains
by introducing the concept of local resonators. A local resonator is a—usually
symmetric—substructure which can confine a wave for sufficiently low coupling
strength h. A very simple example is the symmetric three-site resonator BAB, with
A playing the role of the “resonator cavity” while the two outer B-sites play the
role of the “resonator walls”. This distinction into the cavity itself and the resonator
walls can be emphasized by putting vertical bars between these functional units,
yielding B|A|B.

When an eigenstate Ψ of the chain is localized on a local resonator11, then it
locally (closely) resembles an eigenmode φ of this resonator substructure. As a
consequence, the energy E of the eigenstate Ψ has to be approximately equal to the
energy of φ, that is, to the energy of the corresponding eigenmode of this resonator
[133]. A common characteristic of the three classes of deterministic aperiodic chains
that we investigated is that most resonators occur many times within a chain.
A simple example would be the resonator B|AA|B, which occurs already three
times in the sixth-generation Fibonacci chain ABAABABAABAAB. In such a case
of a repeated resonator, any eigenstate that localizes on one of these identical
resonators is energetically allowed also to localize on the others12. Moreover, there
may be more than one eigenstate that is localized on these resonators. By the above
reasoning, the energy of all of these eigenstates lie closely together. As a result, a
quasi band emerges.

In the resonator picture, the emergence of gap-edge states can be easily under-
stood, with the line of argument here being as follows. To start, we note that the
resonators lying at the edge of the chain are structurally different from those within
its bulk, the difference being that one of the two “resonator walls” that a bulk
resonator possesses are absent in an edge-resonator. For example, in a Fibonacci
chain ABAABABA . . . , the left-most resonator is |A|B, representing a truncated
version of the resonator B|A|B occurring within the bulk of the chain. Now, since
they structurally differ from other resonators of the chain, edge resonators usually
have an energy spectrum that has no overlap with that of other resonators. Thus,

9 We note that these gap-edge states are not necessarily topologically protected edge states; the investiga-
tion of such topological states by our local resonator method explained below would be an interesting
topic of future research.

10 These can be obtained by cutting a finite piece out of an infinitely extended crystal.
11 In the sense of having a high amplitude on this resonator while having lowing amplitudes in the

immediate environment left and right of this resonator.
12 Moreover, if two non-identical resonators R1 and R2 in the chain share some eigenenergies, then an

eigenstate of the chain may simultaneously localize on both of them.
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an eigenmode of such an edge resonators lies energetically not within a quasi band,
but in a gap between two of them13. Thus, an eigenstate whose energy matches
that of an edge-resonator usually finds no energetically suitable resonators within
the bulk of the chain, and thus is localized on the edge. In other words, this eigen-
state is a gap-edge state. However, if a subset or even all energy levels of an edge
resonator match that of bulk-resonators, the number of gap-edge states is reduced
or even vanishes. We demonstrate the validity of this logic in finite Fibonacci and
Thue-Morse chains by applying suitable modifications of the edge-resonators that
reduce the number of gap-edge states. In particular, we demonstrate the case of an
edge-modified Fibonacci chain which does not possess any gap-edge states at all.

On a technical side, we show that the principles behind our local resonator
framework can be justified through higher-order degenerate perturbation theory
[134]. From this perturbation-theoretical viewpoint, the framework is expected to
be applicable for sufficiently small coupling strength h, and the finite Fibonacci and
Thue-Morse chains that we investigated confirm this reasoning. Interestingly, for
these chains, the predictions of the framework—in particular, the predicted removal
of gap-edge states through energy matching—seem to remain correct even in the
case of intermediate coupling strength h. To further investigate this observation, we
also apply our framework to a chain whose binary on-site potentials are modulated
by the so-called Rudin-Shapiro [135] sequence. Compared to the case of Fibonacci
and Thue Morse, the Rudin-Shapiro sequence much more resembles a random
chain14. It thus possesses many more different resonator types, and perhaps as the
result of this, our framework is applicable to the Rudin-Shapiro chain only at low
coupling strength.

As written above, binary chains are imbued by local symmetries, and our de-
veloped local resonator framework thus marks an important connection between
the locally symmetric structure of these chains and their energy spectra. Apart
from this spectral viewpoint, we have also observed that—in the weak coupling
regime—most eigenstates of the Fibonacci, Thue-Morse, and Rudin-Shapiro chain
are indeed highly locally symmetric in the sense that the amplitude distribution
of these eigenstates follows the local symmetries of the underlying potential land-
scape (that is, the sequence of A’s and B’s). By relying on higher-order degenerate
perturbation theory, we give a mathematical justification for this finding. Moreover,
by explicitly analyzing the first few orders, we make several statements on the
exact nature of this connection between the local symmetries of eigenstates and
that of the potential landscape.

13 In principle it may also lie above the last or below the first quasi band, but these cases do not appear
in the systems that we investigated.

14 To be precise, the Fourier spectrum of the Rudin-Shapiro is absolutely continuous, and it shares this
trait with a completely random sequence. On the other hand, the Fourier spectra of the Fibonacci
and Thue-Morse sequence are point-like and singular continuous, respectively. More information on
this spectral classification of aperiodic sequences can be found, for example, in [12].





2
C O M PA C T L O C A L I Z E D S TAT E S A N D F L AT B A N D S

At the end of the last chapter, we took a glance at the fascinating intercon-
nection of local symmetries, aperiodic order, and localization properties.
This chapter is dedicated to another interesting effect which is tightly

connected to both local symmetries and localization, namely, the phenomenon of
so-called compact localized states (CLSs).

In the following, we will first introduce the concept of CLSs and review some
of their fascinating properties. We will then outline [MR3] that connects local
symmetries to CLSs, and [MR4] which investigates CLSs in systems of dipolar
nanoparticles.

2.1 compact localization

Figure 2.1: Different tight-binding systems, with circles corresponding to sites. All circles
have the same on-site potential of zero. The sites are connected by solid lines
that correspond to couplings with a strength of unity. (a) A symmetric dimer
defect leads to compact localization in an infinitely extended chain, with the
compact localized state being an anti-symmetric excitation of the two dimer
sites. (b) A one-dimensional lattice built from regularly placed dimers features
macroscopic degeneracy, so that a flat band (see the band structure plot of
E(k) on the right-hand side, with E and k denoting the energy and crystal
momentum, respectively) emerges.

In layman’s terms, a CLS could be best characterized as a “perfectly localized”
eigenstate of a physical system (modeled, for instance, by a tight-binding model).
Mathematically speaking, a CLS is an eigenstate with a compact support, that is, it
vanishes everywhere outside of a (usually small) portion of the system. Although—
as we shall see later on—such states can exist in a broad range of systems, it is
easiest to introduce them by means of a tight-binding setup described by

Ĥ = ∑
i

vi |i〉 〈i|+ ∑
<i,j>

hi,j |i〉 〈j| , (2.1)
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where the sum goes over neighboring—that is, connected—sites, and with all
quantities as in Eq. (1.7). For simplicity, let us now assume that all on-site potentials
vanish, vi = 0, and also that all couplings are of identical strength h. In such a
very simple model, compact localization is introduced solely through a suitable
geometry, and an example for such a geometry is depicted in Fig. 2.1 (a). Here, a
defect consisting of two sites—a dimer—is placed within a one-dimensional chain.
Since all couplings have the same strength, this dimer is coupled symmetrically
to its two adjacent sites. In this setup, a CLS is then simply an anti-symmetric
excitation of the two dimer sites, with vanishing amplitude on all other sites.
Indeed, this excitation of only two sites has compact support, and it is also an
eigenstate of the underlying Hamiltonian Ĥ, thereby fulfilling the conditions for
being a CLS. We note that, since it is an eigenstate, up to a phase exp(−iECLSt/h̄)
(with ECLS denoting the CLS’ energy), this excitation will not change in time.
This implies, in particular, that it will stay localized on the very same two sites
forever. The reason for this counter intuitive behavior—normally, one would expect
an excitation in a small part of a system to “leak out” over time—is caused by
destructive interference: The sum of the tunneling/leaking amplitudes of the CLS
to either of the two neighboring sites vanishes.

We stress that compact localization is fundamentally different from the disorder-
induced Anderson localization mentioned in Chapter 1, since CLSs can exist even
in perfectly periodic systems, as we shall discuss in Section 2.2.

Owing to their general nature and since they essentially only depend on destruc-
tive interference, CLSs1 have been realized in a large variety of systems. Among
others, these include evanescently coupled waveguides [64, 136, 137], terahertz
spoof plasmons [138, 139], tailored atomic structures on substrates [140, 141], or
cold atom setups [142–145]. Apart from these experiments, theoretical studies
and/or proposals exist for many other platforms, including metamaterials [146],
optomechanical systems [147], photonic crystals [148], electrical circuits [149, 150],
setups of electromagnetic scatterers [MR4], and Rydberg systems [151, 152].

For several reasons, the completely localized nature of CLSs renders them quite
interesting. For one, CLSs may be used for data transmission avoiding crosstalk in
highly miniaturized optical waveguide systems, where the light modes of individual
fibers couple to each other [61–64]. On another level, a particularly interesting
feature of CLSs is their robustness against perturbations: Since they vanish exactly
outside their localization domain D, it can be easily shown that they are not affected
at all by any changes to the system outside of D [MR5]. For our introductory
example of Fig. 2.1, one could couple an arbitrarily large system to either end of the
one-dimensional chain, but the dimer-CLS would not be affected at all. As we shall
see in Chapter 3, this robustness renders them ideal candidates for the storage of
information, with a qubit being a prime example. Lastly, CLSs may also be used to
realize so-called bound states in a scattering continuum [153], as was demonstrated,
e.g., with evanescently coupled waveguides [154, 155].

1 Sometimes in the context of flat bands which we will discuss below.
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2.2 flat bands

Apart from the above mentioned properties, CLSs are also relevant due to a closely
related phenomenon, namely, perfectly flat bands. That is, energy bands of tight-
binding lattices that fulfill E(k) = constant for all wave vectors k. In such a flat
band, the group velocity ∇kE(k) vanishes, so that transport is strongly suppressed.
An intuitive picture of how compact localized states are related to flat bands is
shown in Fig. 2.1 (b): When each unit cell of a lattice features a CLS at identical
energy ECLS, then the lattice Hamiltonian will have a macroscopic degeneracy at
this very energy. Thus, a flat band emerges. On the other hand, if a lattice possesses
a flat band at energy E, one could superpose the corresponding highly degenerate
Bloch states to obtain a set of CLSs [156]. This means that one can consider a CLS
as an “extreme limit of the Wannier function whose amplitude is finite only in a bounded
region in real space, and completely vanishes outside of it” [156].

Flat bands are interesting for several reasons. Firstly, since the density of states at
the flat band energy diverges, any disorder or non-linear effects may qualitatively
change the transport properties (see for example [81, 157] and references therein).
Other interesting effects can emerge when one includes interactions: Firstly, fer-
romagnetism can emerge2 in several lattices whose single-electron Hamiltonian
features a flat band [159] (for reviews on this area, see, e.g., [158, 160]). Secondly, if
one considers the case of flat bands formed for non-interacting particles, then even
arbitrarily weak interactions between them may act non-perturbatively. This can
lead to boson pair formation [161–163] and phases such as the Haldane insulator
[164] or Wigner crystals [165]. Interestingly, it has been shown that dispersive (that
is, non-flat) bands of a system without interactions can be made completely flat by
introducing interactions [166].

Figure 2.2: (a) The Lieb lattice [with its three-site unit cell marked by a dotted line] hosts
CLSs that are localized on a plaquette of four sites. One of these CLSs is depicted.
(b) The band structure of the Lieb lattice features a Dirac cone and a flat band.

Historically, perhaps the first notion of flat bands and, as he called the corre-
sponding eigenstates, “strictly localized states” were made by Sutherland in 1986

2 A very basic explanation can be given in terms of Stoner’s criterion, which states that the Bose-
Hubbard model may feature ferromagnetism when UDF > 1, where U is the interaction strength,
and DF denotes the density of states at the Fermi level [158]. Since a flat band features an infinite
density of states, we see that flat band systems may easily fulfill Stoner’s criterion.
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for a dice lattice [167]. Further works on systems with flat bands soon followed
within the scope of ferromagnetism [159, 168–170]. Among these was also a seminal
paper by Lieb in 1989 [171] in which he analyzed the Hubbard model and showed
that a certain bipartite lattice features ferromagnetism at half filling. Today, this
lattice is simply called the “Lieb lattice”. Due to its simple structure, and probably
also due to the fact that its band structure features a Dirac cone [64, 172] [see
Fig. 2.2 (b)], it soon became quite popular. In fact, most of the above mentioned
experiments on CLSs and flat bands realized a Lieb lattice [64, 139–141, 144, 145,
173]. The Lieb lattice is furthermore also of importance, as the CuO2 planes in high-
temperature cuprate superconductors possess a Lieb lattice structure, and it has
been conjectured that flat bands might play a role in their high critical temperature
[81, 174–178].

2.2.1 Flat band generators

As indicated above, every flat band is in fact caused by the presence of CLSs [156].
CLSs, in turn, are caused by the generic phenomenon of destructive interference,
which can be realized in a large variety of lattices. It should therefore not surprise
that, over the years, a number of very different methods for designing tight-binding
lattices featuring CLSs and flat bands have been suggested. These include graph-
theoretical tools [MR8, 169], the use of symmetry principles such as chirality [179]
and local symmetry [MR3], fractal structures [180, 181], repetition of oligomers
[182] and of mini-arrays [183], the use of Fano resonances [184], or so-called
Origami rules [185]. Each of these construction principles harnesses a particular
concept (such as symmetry) for the creation of CLSs and flat bands. While being
very intuitive, none of them allows for the construction of all possible flat band
lattices. Flat band generators, on the other hand, aim on constructing a very large
class of flat band systems by relying on much more general (but less intuitive)
overarching principles such as the solution of inverse eigenvalue problems [186].
The development of such generators for arbitrary lattices is still an ongoing topic of
research. So far, a universal flat band generator capable of constructing all possible
hermitian one-dimensional lattices with a single flat band has been presented [186,
187]. In very recent works, this generator was generalized to two-dimensional
lattices [188] and to non-hermitian systems [189].

In the next section, we will continue the treatment of CLS-generating mechanisms
by discussing our own contribution to this problem.

2.3 outline : compact localized states and flat bands from local

symmetry partitioning

As written above, compact localization and flat bands are induced by destructive
interference, which in turn depends on a suitable interplay between the geometry of
the underlying tight-binding system and its coupling parameters. Interestingly, and
relating to the topic of this thesis, many flat band lattices feature local symmetries
[184]. This observation led us to the question of whether a connection between
local symmetries and CLSs (which, in a lattice, induce flat bands) can be made.
In [MR3], we treat tight-binding systems and partly answer this question in the
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Figure 2.3: Left: Structure of the chain and one of the many CLSs hosted by this chain.
Right: band structure of the chain. (a) The diamond chain. It is invariant under
the operation P that permutes two sites within a dimer. (b) A modified diamond
chain. It is now no longer invariant under the operation P, but nevertheless
features CLSs which can be explained by the non-equitable partition theorem
(nEPT).

affirmative by applying and generalizing a recently developed tool from graph
theory. This tool is the so-called equitable partition theorem (EPT) [190–192], and it
relies on what we call commuting local symmetries that we will explain now. To this
end, let us look at Fig. 2.3 (a), which shows again the so-called diamond chain we
already encountered in Fig. 2.1 (b). As can be easily seen, the dimer-subsystem D
that consists of the blue and red site is locally symmetric: If we isolate it from the
remainder of the lattice, it is invariant under the reflection operation P [indicated
by arrows in Fig. 2.3 (a)]. What makes this symmetry P special is the following.
Even when we do not disconnect the dimer from the remainder of the lattice, the
symmetry P remains unbroken. That is, the lattice is invariant under the operation
that performs a local reflection on the single dimer D, while acting as the identity
(that is, not doing any operation at all) on the remaining sites. In other words, the
Hamiltonian describing the lattice commutes with the local reflection symmetry
P. As a result of this commuting local symmetry, the eigenstates of the underlying
Hamiltonian can be chosen to have definite parity with respect to the local reflection
operation P, with the negative parity eigenstate corresponding to the depicted CLS.
Now, since each unit cell features such a commuting local symmetry, there exists
one such CLS per unit cell, and since all these CLSs have the same eigenenergy,
this explains the chain’s flat band.

At this point, we note that the lattice shown in Fig. 2.3 (a) also features a global re-
flection symmetry, corresponding to the case where P is simultaneously performed
in each unit cell. While this symmetry would indeed lead to the emergence of
negative parity eigenstates which vanish on the sites lying on the axis of reflection,
these states are not necessarily compactly localized. That is, they do not necessarily
“live” only on a small number of unit cells. Thus, this global reflection symmetry
acting on all unit cells cannot explain the emergence of compact localization, and
thus can also not explain the flat band of this lattice.
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In summary, we have seen above that the commuting local reflection symmetry
P leads to the formation of CLSs in the diamond lattice of Fig. 2.3 (a). The EPT
allows to formalize this observation through a simple algorithm for constructing
the corresponding CLSs. Importantly, the EPT is not limited to a simple reflection
symmetry as in Fig. 2.3 (a), but on the contrary can be applied to any commuting
local symmetry that corresponds to a permutation of sites (in the example above,
P corresponds to the permutation of the two dimer sites). Thus, the EPT can be
applied to cases that are much more complex than the one of Fig. 2.3 (a). An
important aspect of the EPT is that it allows to decompose the original Hamiltonian
Ĥ into smaller Hamiltonians Ĥi, whose collective eigenvalue spectrum3 equals the
eigenvalue spectrum of H.

Apart from the EPT, which can be used for local symmetries that commute with
the underlying Hamiltonian, we further apply recent insights from graph theory
[193] to generalize the EPT. We call this generalized version the non-equitable
partition theorem (nEPT) The nEPT can be applied when the system features a
local non-commuting permutation symmetry, provided that this symmetry fulfills
two conditions. Namely, the subsystems that are permuted with each other by
the symmetry operation must (i) not be coupled to each other and (ii) must be
coupled to the remainder of the setup in a certain asymmetric, scaled manner. An
example of a non-commuting local symmetry that fulfills the criteria (i) and (ii) is
depicted in Fig. 2.3 (b). Here, the same symmetric dimer as in (a) is connected to the
remainder of the chain, though now in an asymmetric manner: The upper dimer-
site is connected via couplings of strength h, while the lower one is connected via
couplings of strength 2h. As a result of this asymmetry, the local reflection operation
P (which permutes the two dimer sites) does not commute with the underlying
Hamiltonian4. However, the dimer still features a CLS, whose amplitudes +2 and
−1 are now asymmetric. Again, and just as the EPT does for commuting local
symmetries, the nEPT provides a simple algorithm for the construction of such
CLSs and also provides a local symmetry induced decomposition of the underlying
Hamiltonian. We stress that the examples shown in Fig. 2.3 are just the simplest
possible ones, and both the EPT and the nEPT can be applied to much more
complex systems as well. On the other hand, we emphasize that not all flat band
systems can be related to local symmetries that can be described by the (n)EPT. An
example of such a system is the Lieb lattice depicted in Fig. 2.2.

Apart from using the (n)EPT to systematically understand the origin of CLSs in
a range of different systems, we also use the underlying (non-)commuting local
symmetries to generate systems featuring CLSs and flat bands. In particular, we
provide a method to equip a lattice with a single CLS by dimerizing a site in

3 To be precise, if we denote the eigenvalues (including multiplicities) of Ĥ by the multiset σ(Ĥ),
then σ(Ĥ) = σ(Ĥ1) + . . . + σ(Ĥn) where + denotes the multiset sum and n denotes the number of
smaller Hamiltonians into which Ĥ is decomposed.

4 An intuitive way to see this is as follows: Think of the two sites within the dimer as masses, each of
them attached to the remainder of the lattice via two different springs (corresponding to the couplings
of strength h and 2h). The reflection operation P corresponds to exchanging the two masses, but the
respective springs stay attached to them during this exchange. Therefore, after the exchange, the
upper spring corresponds to a coupling of 2h (instead of h before the exchange). In summary, the
system looks different before and after the exchange, and thus it is not invariant under the operation
P.
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only one of the lattice’s unit cells. Though this dimerization breaks the lattice’s
translational invariance, we show that one can fine-tune the coupling and on-site
parameter values of the dimer such that (i) one can define a band structure even in
this aperiodic lattice and (ii) the dimerization does not alter the band structure of
the system. That is, the band structure is the same before and after the dimerization,
but the system additionally features a dimer-CLS whose energy can be freely tuned.
In particular it may energetically lie within a dispersive band with its spatially
extended Bloch states. In this case, the CLS represents a so-called bound state in
the continuum. Such states were originally proposed in a seminal paper by von
Neumann and Wigner in 1929 in the context of quantum mechanics [153], and
since then have been realized in a number of different wave systems. Two excellent
reviews which also emphasize the numerous applications of bound states in the
continuum are [154, 194].

2.4 outline : compact localized states of open scattering media : a

graph decomposition approach for an ab initio design

In the introduction to this chapter, we wrote that compact localization and flat
bands can be easily understood in terms of tight-binding systems. Naturally, these
feature short-range interactions, that is, a given site is often only coupled to its next-
neighbors or next-nearest-neighbors. Destructive interference and CLSs, however,
can in principle occur even in systems with long range coupling, as we demonstrate
in [MR4]. In this work, we consider electromagnetic scattering of a setup of N
identical scatterers. We assume these to be much smaller than the wavelength of the
incoming radiation, so that each scatterer can be described by a point-like dipole
characterized by a Breit-Wigner resonance at frequency ω0 and resonant width
Γ0. To analyze the properties of this open system, we rely on the so-called dyadic
Green’s matrix (GM). The GM describes the electromagnetic coupling between the
dipoles. For N such dipoles, the GM is of dimension 3N, and its 3× 3 blocks Gij
are given by

Gij = i
(
δij + G̃ij

)
(2.2)

with the indices i, j ∈ 1, . . . , N corresponding to the N scatterers, and with

G̃ij =
3
2
(
1− δij

) eik0rij

ik0rij

{[
U− r̂ij ⊗ r̂ij

]

−
(

U− 3r̂ij ⊗ r̂ij

) [ 1
(k0rij)2 +

1
ik0rij

]} (2.3)

where δi,j is the Kronecker delta and ⊗ denotes the dyadic (sometimes called outer)
product5. k0 is the wave vector of light, U is the 3×3 identity matrix, r̂ij is the

5 The dyadic product a⊗ b of two 3-dimensional vectors is given by the square 3× 3 matrix

a⊗ b =




axbx axby axbz

aybx ayby aybz

azbx azby azbz


 ,

with the subscripts x, y, z denoting the components of the two vectors a and b.
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unit vector pointing from the i-th and j-th scatterer, with rij denoting the distance
between these two scatterers. The eigenvectors of G describe the quasi modes—that
is, scattering resonances [195, 196]—of the setup, with their normalized frequency
ωn and decay rate Γn, respectively, given by

<[Λn] = (ω0 −ωn)/Γ0 (2.4)

=[Λn] = Γn/Γ0 (2.5)

where Λn is the complex eigenvalue of the n-th quasi mode, and < and = denoting
the real and imaginary part, respectively.
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Figure 2.4: (a) Bottom right: A planar setup of four scatterers which is reflection symmetric
about the dotted line. Due to this symmetry, the setup features a CLS that has
zero amplitudes on the scatterers 1 and 2 which lie on the dotted line. Upper left:
A graphical depiction of the GM describing the setup. Each line corresponds
to a non-vanishing matrix element, with loops (small rings connecting a vertex
to itself) representing diagonal matrix elements. Since the GM describes the
coupling of dipoles through a vectorial electromagnetic field, each scatterer cor-
responds to three vertices x, y, z. Thus, for N scatterers, the GM has dimension
3N. (b) The reflection symmetry of the setup in the bottom right of (a) leads to
a local reflection symmetry (indicated by black arrows) in the GM; see text for
details.

To help the reader drawing a connection between the GM and the tight-binding
models treated so far, in Fig. 2.4 (a) we graphically depict the structure of the GM of
a simple setup of N = 4 scatterers. In a tight-binding language, each circle/vertex
could be interpreted as one “site”. We note that, since each scatterer has three
degrees of freedom (corresponding to field components along the three coordinate
axes), the GM is of size 3N × 3N, and there are thus three sites for each dipole.
Each line in Fig. 2.4 (a) corresponds to a non-vanishing matrix element of the
complex-valued symmetric (and thus non-hermitian) matrix G, and as one can see,
each scatterer is coupled to all others6. This statement holds also for larger systems:

6 Though not all degrees of freedom—that is, dipole components—of one scatterer are connected to all
degrees of freedom of any other scatterer.
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Two dipoles i 6= j are always coupled to each other through the GM, even if they
are placed far away from each other. We thus see that the GM describes a discrete,
long range coupled system. Since this coupling is of electromagnetic nature, we are
dealing with a wave phenomenon which allows for destructive interference. In this
respect, we define a CLS as an eigenvector of the GM which “lives” (that is, has
non-vanishing entries) only on some of the dipoles. In other words, a CLS describes a
perfectly localized quasi mode—that is, scattering resonance—of the scatterer array.
We note though that, contrary to eigenstates of a closed system, this quasi mode is
leaky and thus has a finite life time determined by its decay rate ΓCLS.

Let us now briefly comment more on the GM method. Compared to full electro-
magnetic computations, which especially in three dimensions can be prohibitively
expensive [197], an analysis of the system by diagonalizing the GM is much less
demanding in terms of computational effort. On the other hand, and since it takes
into account all scattering orders [107], the GM is a very good approximation
for scattering from arrays of dielectric or metallic particles whose size is much
smaller than the wavelength [198]. Moreover, the fact that the GM does not take
into account the specific properties of materials makes it an ideal candidate to
investigate the impact of the geometry of the setup on its scattering properties.
For this reason, and connecting to Section 1.3, the Green’s matrix method was
used to analyze a number of aperiodically ordered scatterer arrangements [MR11,
107, 199–201]. Moreover, the GM is also an excellent tool for the study of random
systems such as atomic clouds [202, 203] or disordered photonic crystals formed by
ultra cold atoms [204–206]. We note that the GM can also be extended to incorporate
the effects of electric [207] or magnetic [208] fields, or to incorporate higher-order
multipolar resonances beyond the simple electric dipole framework by means of the
so-called electric and magnetic coupled dipole approximation, where each particle
is characterized by an electric and a magnetic dipole [209–211]. We refer the reader
interested in more details about the GM method to the works [107, 212].

Let us now briefly discuss the realization of a CLS as proposed in our work [MR4].
Here, we arrange the scatterers in a plane [an example of such an arrangement is
shown in Fig. 2.4 (a)] such that the setup is reflection symmetric with respect to
a line that lies in this plane. For the simplest kind of CLS, we then let all but two
scatterers lie on this line, with the remaining two scatterers being symmetrically
displaced from it. Figure 2.4 (a) shows such a setup for a total number of N = 4
scatterers, with scatterers 3 and 4 being the displaced ones and with the axis of
reflection depicted by a dashed line. As can be easily shown, the global reflection
symmetry of the scatterer arrangement corresponds to a local reflection symmetry
in the corresponding Green’s matrix. In Fig. 2.4 (b), this reflection symmetry is
indicated by two black arrows. It consists of exchanging the z-degrees of freedom
of the dipoles 3 and 4, while acting as the identity on all other degrees of freedom.
This local reflection symmetry commutes with the GM, and thus we can apply the
equitable partition theorem which we have used previously in [MR3]. In particular,
this theorem predicts the presence of a CLS which vanishes on all scatterers lying
on the reflection axis. The theorem further allows to derive analytical expressions
for the CLS’ eigenvalue which then, by Eqs. (2.4) and (2.5), give the CLS’ resonance
frequency ωCLS as well as its decay rate ΓCLS. Importantly, and due to the reflection
symmetry of the setup, ωCLS and ΓCLS are completely independent of how (for
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example, in a periodic or random manner) the scatterers on the reflection line are
placed.

Having demonstrated compact localization in a long range coupling system, we
end our work [MR4] with an analysis of the CLS decay rate ΓCLS. In particular,
we investigate the impact of changing the separation d between the two displaced
scatterers while keeping the reflection symmetry. It is found that ΓCLS becomes
smaller for small d. In particular, ΓCLS vanishes for the (unrealistic) case where
d = 0, that is, where both scatterers are placed onto each other. In this case, the
CLS would thus have an infinite lifetime and would resemble a bound state in the
scattering continuum.



3
Q UA N T U M S TAT E T R A N S F E R

In the previous chapter, we have introduced the topic of compact localized states
and investigated the role of local symmetries for this phenomenon. CLSs and
local symmetries will also be the focus of this chapter, though we will now be

interested in harnessing the favorable properties of compact localization. To this
end, let us first recapitulate these properties. A defining property of CLSs is their
compact (and usually small) domain of localization, which in the extreme case of a
dimer CLS comprises only two sites. Compared to other, more extended, states, the
preparation of such a CLS is therefore easier in that only a small number of sites
have to be excited. Now, since a CLS is an eigenstate of the underlying Hamiltonian
Ĥ, such an excitation will be stable in time, that is, it will stay localized forever
provided that Ĥ does not change in time. But even if Ĥ is time-dependent, a CLS is
most likely not affected: Thanks to the favorable properties of compact localization,
a CLS is only affected by changes of the Hamiltonian that take place within its
domain of localization.

From the above, it is clear that CLSs are ideal candidates for the stable storage
of an excitation pattern within a small part of a given system. This ability is
of relevance1 in the field of quantum information, where the excitation pattern
would correspond to a qubit2 in a quantum computer. In any quantum-computing
application, however, the ability to store information is not sufficient; it also needs
to be transferred across the device. Although we will not dive into the vast field of
quantum computing, we will nevertheless use it as a motivation to explore different
mechanisms for the transfer of CLSs. Moreover, we will use this field also as an
inspiration by taking several state transfer techniques that were developed in the
context of quantum computing and apply them in a slightly modified form to the
transfer of CLSs.

In the following, we will first give a brief introduction to the two concepts of
so-called perfect and pretty good state transfer. We will then present our first work
[MR5] that adapts the concept of perfect state transfer (PST) to CLSs. The second
work [MR6] deals with the more realistic scenario of pretty good state transfer
(PGST) and relies on the more advanced concept of so-called latent symmetries,
which will be the subject of Chapter 4. In order to allow for an easy comprehension
of the material, we will outline this second work [MR6] only after the corresponding
foundations are laid, and thus postpone its outline to Chapter 4.

1 There could be other applications of this as well. In a spring-mass system, for example, it could be
of interest to store energy in localized excitations (oscillations) of a very small number of masses
without exciting the remainder of the system.

2 There are different methods for encoding a qubit into CLSs, but the most intuitive would be to use
two orthogonal CLSs |Ψ1〉 and |Ψ2〉 such that a qubit α |0〉+ β |1〉 could be realized as

α |Ψ1〉+ β |Ψ2〉 .

27
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3.1 perfect and pretty good transfer

In 2003, Sougato Bose proposed to use spin chains as channels for the transfer of
qubits [213]. In Fig. 3.1 (a), we visualize such a spin chain for the special case of
N = 4 chains.

Figure 3.1: (a) A spin chain consisting of N = 4 spins that connects Alice to Bob (see text for
details). The springs represent the couplings between the spins, as expressed in
the Hamiltonian Eq. (3.5). (b) In the single-excitation subspace, the Heisenberg
Hamiltonian describing the spin chain can be written as a tridiagonal, four-
dimensional matrix H1. This matrix can be represented graphically by a chain
of four sites, with loops corresponding to on-site potentials (diagonal matrix
elements). (c) Perfect transfer of a qubit from Alice to Bob would, in this picture,
correspond to the perfect transfer of a single-site excitation from the left end of
the chain to the right end.

Each of the two communication parties Alice and Bob are positioned on one end
of the chain, and Bose’s proposal was as follows. Alice wants to send a qubit

α |0〉+ β |1〉 (3.1)

to Bob. To do so, she encodes the qubit into the spin chain connecting the two
parties through the following procedure. At the very beginning, the spin chain is
prepared in the state |↓ . . . ↓〉 where all spins point downwards. By changing the
state of the first spin to be

α |↓〉+ β |↑〉 (3.2)

Alice then prepares3 the state

|Ψ(t = 0)〉 = |I〉 = α |↓ . . . ↓〉+ β |↑↓ . . . ↓〉 , (3.3)

3 For completeness, we note that Bose proposed a slightly different protocol. Namely, instead of
changing the state of the first spin of the chain, Alice exchanges it with a suitably prepared spin. The
resulting state of the chain is, again, Eq. (3.3).
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so that her qubit is effectively encoded in the spin chain. The two parties then wait
for a suitable time, during which the state Eq. (3.3) propagates by simple time
evolution governed by the time-independent Hamiltonian Ĥ of the spin chain4.
Ideally, there exists a time t = tPST at which the state of the chain would read

|Ψ(t = tPST)〉 = |F〉 = α |↓ . . . ↓〉+ β |↓↓ . . . ↓↑〉 . (3.4)

In this case the reduced density matrices ρ(t = 0) = Tr2,...,N |Ψ(0)〉 〈Ψ(0)| and
ρ(t = tPST) = Tr1,...,N−1 |Ψ(tPST)〉 〈Ψ(tPST)|, obtained from the initial (final) state
by tracing out the states of spins 2, . . . , N (1, . . . , N − 1), would be equal. In other
words, the qubit would be perfectly transferred from Alice to Bob.

Let us assume now that the spin chain is formed by N spins and is described by
the Heisenberg Hamiltonian

Ĥ = − ∑
<i,j>

Ji,j~σ
i ·~σj −

N

∑
i=1

Bi σi
z , (3.5)

where the first sum goes over neighboring spins, with Ji,j denoting the coupling
between the i-th and j-th spin, and with Bi denoting a local static magnetic field
acting on the i-th spin. ~σi = (σi

x, σi
y, σi

z) denotes the vector formed by the Pauli
matrices that act on the i-th spin. As can easily be shown, this Hamiltonian com-
mutes with the operator ∑N

i=1 σi
z. Thus, the total spin is a conserved quantity. As a

consequence, the state |Ψ(t)〉 stays in the single-excitation subspace spanned by
the states

|↑↓↓ . . . ↓〉 , |↓↑↓ . . . ↓〉 , . . . , |↓↓↓ . . . ↑↓〉 , |↓↓↓ . . . ↓↑〉 , (3.6)

in which exactly one spin points up and all others point down. In this basis, the
restriction of the Hamiltonian Ĥ to the single-excitation subspace can be written as
an N-dimensional tridiagonal matrix

H1 =




D1 −2J1,2 0 . . . 0

−2J1,2 D2 −2J2,3
. . .

...

0 −2J2,3
. . . . . . 0

...
. . . . . . DN−1 −2JN−1,N

0 . . . 0 −2JN−1,N DN




(3.7)

with the diagonal entries Di = −∑N−1
j=1 Jj,j+1 + 2(Ji,i−1 + Ji,i+1 − Bi) + ∑N

j=1 Bj and
with J1,0 = JN,N+1 = 0.

Before we continue, let us link the above spin system to the tight-binding models
encountered in Chapters 1 and 2. To this end, we note that the tridiagonal matrix of
Eq. (3.7) could also correspond to a tight-binding chain consisting of N sites, with
the i-th site having an on-site potential Di, and with neighboring sites i, j coupled
by the coupling −2Ji,j. In Fig. 3.1 (b), we depict this chain for the case of N = 4. We
note that this relation between spin systems in the single-excitation subspace and
tight-binding models is not limited to one dimension, but on the contrary holds for
arbitrary geometries and can, in particular, also be generalized to the case where
the spin system is modeled by the XX-Hamiltonian [213, 214].

4 Such as the Heisenberg Hamiltonian Eq. (3.5) which we will write down below.
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In the above tight-binding picture, the perfect transfer of Alice’s qubit corre-
sponds to the perfect transfer of an excitation of the first site of H1 to the last site of
this Hamiltonian; this principle is visualized in Fig. 3.1 (c). The main idea behind
our work [MR5] is then to replace the single-site excitations by symmetric dimers
and to allow for perfect transfer of the corresponding CLSs living on these dimers.
In the following, and in particular when outlining [MR5, MR6], we will use the
terms “site” and “spin” interchangeably.

A central finding of Bose was that an unmodulated Heisenberg chain, that is, one
where all couplings are equal and with constant magnetic fields Bi = B, is—except
for very short chains—not suitable for perfect transfer of qubits. Indeed, defining
the transfer fidelity as

f (t) = |〈Ψ(t)|F〉|2 = |〈I|exp(iĤt)|F〉|2 (3.8)

[setting h̄ = 1 and using Eqs. (3.3) to (3.5)], Bose investigated chains of lengths N ≤
80 and demonstrated that the maximum value of f (t) in a reasonable time interval
is rather small even for intermediate chain lengths, though still outperforming a
classical channel. Soon after5, however, it was shown that a modulated chain—that
is, one where the couplings and magnetic fields are fine-tuned—achieves a fidelity
of unity, corresponding to PST [214].

There are several points that make PST appealing. The first point is that, in
principle, PST works over arbitrarily long distances. The second point is its sim-
plicity: Only a static tuning of couplings and local magnetic fields is necessary,
but not a dynamical control. Moreover, PST can in principle be realized on many
different platforms [216], such as in spin chains using liquid magnetic resonance
[217], systems of superconducting qubits [218], and coupled photonic waveguides
[219, 220]. In this respect, we note that PST is not limited to one-dimensional chains,
but can indeed also be realized in higher-dimensional spin networks by fine-tuning
the network-geometry and/or the couplings and local magnetic fields (see, e.g.,
[216, 221]).

The proposed use of spin chains for the transmission of qubits, and especially
the concept of PST, triggered a large amount of subsequent research, overviews on
specific aspects of which can be found in [216, 222–224]. In particular, the impact
of imperfections such as noise [225] or next-nearest-neighbor couplings [226–228]
have been investigated, and alternative schemes such as the use of homogeneous
chains with control only over the couplings to the first and the last site have been
proposed [229–231]. In the context of this thesis, we are mainly interested in a
particular generalization of PST, namely, the concept of PGST.

The motivation for PGST is the following. Although PST is a powerful concept,
it turned out to be highly restrictive6 in the sense that the class of Hamiltonians
supporting PST is rather small [232]. On the other hand, the defining property

5 We note that the concept of PST was also independently developed in the context of coupled harmonic
systems [215].

6 For example, in order to feature PST from site u to v, all eigenstates of a Hamiltonian must have
definite parity with respect to these two sites. While this is easy to achieve, e.g., by making the system
reflection symmetric, a further necessary condition for PST is that the eigenvalues {λi} corresponding
to positive parity eigenstates must fulfill

λi − λj

λk − λl
∈ Q (3.9)
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of PST, namely, a fidelity of unity, is also unnecessarily strict. Indeed, even in a
PST-Hamiltonian, inevitable imperfections of an experimental realization will lead
to non-perfect transfer.

PGST, which is sometimes also called “almost perfect state transfer” [233], is
defined as follows [234]: Instead of demanding that the fidelity f (t) is equal to
unity at a specific time, PGST only demands that it becomes arbitrarily close to
unity. Specifically, for every ε > 0 there is a time tε such that F(tε) > 1− ε. It is
clear that PST is a special case of PGST, and thus the latter is a generalization of the
former. In the past years, several construction principles for PGST-Hamiltonians
have been proposed, many of which build upon results from number theory [233,
235, 236] or graph theory [236–240]. We remark that this strong connection between
quantum state transfer and graph theory was one of the reasons for our closer
investigation of the latter; the corresponding results will be the topic of Chapter 4.

In his original work [213], Bose assumed that the first and last spin of the chain
could be detached. Thus, the storage of the initial or final state prior to and after
the transfer would be done by simply decoupling the corresponding spin from
the chain. However, such a decoupling is an idealized scenario, and the question
arises whether alternative means of storage could be pursued. Although there are
indeed some works proposing such alternative means, for instance storing the qubit
within the chain itself [222] or within a defect [230], most research on quantum
state transfer concentrates only on the transfer part itself7. In light of this, and
especially in view of the large body of literature on the two schemes of PST/PGST,
we wondered whether they could easily be equipped with storage capabilities in the
form of CLSs. This is indeed the case, as we have shown in our works [MR5, MR6].
In the following, we will outline the first of these two, [MR5]. As explained above,
we postpone the outline of [MR6] to Chapter 4. In both [MR5] and [MR6], our aim
is to explore interesting combinations of the concepts of PST/PGST and CLSs. Thus,
we will exclusively concentrate on generic tight-binding models, assuming that a
complete control over on-site potential and coupling values is possible. Due to the
mapping from the Heisenberg and XX-model in the single-excitation subspace to
tight-binding models, our results are readily applicable to these systems as well.

We further note that we have chosen the two techniques of PST and PGST mainly
because of their simplicity. For completeness, let us also note that the literature on
quantum information offers several alternative schemes that achieve high-fidelity
transfer of qubits, including topologically protected edge states [245, 246], flying
qubits [247], or optimal control methods [248–250]. An overview over state transfer
on spin networks is given in the book [216].

3.2 outline : quantum network transfer and storage with compact

localized states induced by local symmetries

In [MR5], we explore different methods for the high-fidelity transfer of CLSs in
tight-binding models. In particular, we provide a method of adapting the perfect
state transfer technique of single site excitations to the transfer of CLSs. Figure 3.2

for all i, j, k, l and λk 6= λl [232]. This condition is rather difficult to fulfill.
7 In the greater context of quantum information as a whole, however, there is of course a large body of

literature on quantum state storage, see e.g., the reviews [241–243] and the thesis [244].
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Figure 3.2: A visualization of how to equip a PST Hamiltonian with CLSs. (a) shows the
original Hamiltonian that supports PST between two sites. In this specific exam-
ple, the Hamiltonian is a one-dimensional chain and supports PST between the
two outermost sites u and v. (b) By dimerizing these two sites and subsequently
rescaling the corresponding couplings by dividing them by

√
2, perfect transfer

of CLSs can be achieved (see text for details). Source: A modified figure from
[MR5].

graphically depicts this method. The starting point is a Hamiltonian that supports
PST of single site excitations between two sites u and v. This Hamiltonian could in
principle be quite complicated, but to show the underlying principle, in Fig. 3.2
(a) we depict the simple case of a one-dimensional chain. Here, u and v denote the
sites on both ends of the chain. Let us now denote the perfect transfer time of this
chain by tF. In other words, if we perform a single-site excitation on the site u at
time t = 0, then at time t = tF this excitation will be completely transferred to the
site v.

In order to equip this chain with a CLS, we symmetrically dimerize the two sites
u and v and also rescale the couplings connecting u, v to the remainder of the chain;
see Fig. 3.2 (b). To initiate the amplitude transfer, we perform a flip of the relative
phase between the two dimer sites on which the CLS |I〉 is localized. As we show,
the resulting state |L〉 is then transferred across the chain with a fidelity of unity. The
time at which this fidelity is reached is the same as in the original PST-Hamiltonian.
Thus, at time t = tF, the state |L〉 has been perfectly transferred to the state |R〉.
At this time, another phase flip is performed, thereby transforming the symmetric
dimer excitation |R〉 to the anti-symmetric CLS |F〉. As we mathematically prove,
this scheme can be applied to a broad class of PST-Hamiltonians, and thus allows
for the perfect transfer and storage of CLSs by minimally modifying the Hamiltonians
employed so far for the perfect transfer of single site excitations.

Apart from equipping PST-Hamiltonians with CLSs, another focus of our work
[MR5] was the introduction of what we call the decorated Lieb lattice (DLL). This
lattice is depicted in Fig. 3.3 (a); it is obtained from the classical Lieb lattice by
replacing the two outer sites of each unit cell by a symmetric dimer. Each unit
cell is thus locally symmetric and possesses two dimers, each of which can host
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Figure 3.3: (a) The DLL, which is obtained from the Lieb lattice (lower left inset) by dimer-
izing the orange marked sites. Each unit cell (encircled by a dashed line) of the
DLL features two dimers, each of which can host a CLS. The transfer of these
CLSs is achieved via “dimer jumps”. (b) shows the principle behind these dimer
jumps (see text for details). (c) visualizes the capability of the DLL to simultane-
ously perform storage and transfer of individual CLSs. Source: Compilation of
slightly modified figures from [MR5].

a CLS. The main idea behind the DLL is to harness this large number of dimer
CLSs such that this lattice becomes a combined CLS storage/transfer unit. To this
end, we divide the process of CLS-transfer into smaller steps, and use these dimers
as intermediate storage units for the storage of CLSs between different transfer
phases.

The transfer process itself is done in terms of a “dimer jump”, which is schemat-
ically visualized in Fig. 3.3 (a). At the beginning of the process, a CLS is stored
on one of the dimers and shall be transferred further across the lattice. In a first
step, a five-site star-subsystem is decoupled from the remainder of the setup. This
subsystem consists of the dimer on which the CLS is currently residing as well as
the next dimer along its transfer path. By harnessing one of two different methods
that we shall discuss below, the CLS is then transferred within this star to the
opposite dimer and stored on it. Afterwards, the star is coupled back to the lattice.
The process can then start anew, thus allowing the transfer of CLSs over arbitrarily
long distances in the lattice.

Due to the modular character of the CLS transfer in the DLL, the storage of a CLS
in one of the dimers is possible at any intermediate step within a transfer process.
The lattice may further host more than one CLS at the same time, and these may
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Figure 3.4: Three different routes for the CLS-transfer within the star subsystem of Fig. 3.3.
In (a), the transfer is done by flipping the phase on one of the two dimer sites
on which the CLS resides. This flip is done at t = 0, and as the resulting
state is no longer an eigenstate, it propagates. At t = Tf = 2π, the state has
completely tunneled to the other dimer (here, the right one), and by performing
another phase flip at this time, the state becomes a CLS again. Instead of
applying a phase flip to the state, one could also flip the sign of the two upper
couplings in the star subsystem. This principle is shown in (b). Lastly, the
CLS can also be transferred through optimal control in form of the CRAB
method by continuously modulating the four coupling strengths J1, . . . , J4 of
the star-subsystem in time. This principle is shown in (c). The inset shows the
time-dependence of these four coupling during transfer. Source: Combination
of different, slightly modified figures from [MR5].

also be stored and transferred individually, the only requirement being that the
paths of two different CLSs do not cross simultaneously both in space and in time.
Figure 3.3 (c) visualizes this highly parallelized combined CLS storage/transfer
capability within the DLL.

On a technical side, we employ two different methods for the CLS-transfer within
the isolated star-subsystem. The first method is based on the above scheme of
perfect transfer of CLSs, and is visualized in Fig. 3.4 (a). Instead of applying a
phase flip to the states |I〉 and |R〉, we show that perfect CLS-transfer could also
be achieved by instantaneously flipping the sign of two of the couplings in the
star-subsystem; see Fig. 3.4 (b). Interestingly, if this flip is not done instantaneously,
the transfer fidelity decreases only slightly below unity8.

8 To be precise, if the flip is realized in terms of a linear ramp, then even if this ramp takes up one
quarter of the overall transfer time of 2π, the fidelity is still above 0.998.
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Our second method of achieving CLS-transfer within the star-subsystem is to
vary some of the system’s parameters—in our case, the coupling strengths—in an
optimized, time-dependent manner. To this end, we optimize the time-dependent
coupling strengths by means of optimal control9 in form of the chopped random-
basis (CRAB) method [253, 254]. For the transfer of a CLS within the star-subsystem,
we yield close to perfect fidelities of approximately 1− 10−12. An example of this
scheme, together with the time-dependency of the couplings, is shown in Fig. 3.3
(c).

Another central part of our work is an analysis of the performance of the DLL
under various perturbations and imperfections. For the static part of storing CLSs,
we analyze the impact of disorder of both on-site potentials and coupling strengths
on the storage fidelity of the decorated Lieb lattice. For the dynamic part of
CLS transfer, we analyze a variety of different perturbations, including static and
dynamical disorder and the impact of non-perfect decoupling of the star-subsystem
during the dimer-jumps. Overall, we find that our proposed CLS storage and
transfer scheme is remarkably robust.

9 For an introduction to this field, see, e.g., the reviews [251, 252].





4
G R A P H T H E O RY A N D L AT E N T S Y M M E T R I E S

So far, we analyzed the impact of local symmetries in various setups such as
tight-binding setups of different geometries and arrays of dipolar nanoparti-
cles. What all of these have in common is their discrete character. In particular,

and as we will explicate below, they could be described through the matrix eigen-
value problem H~Ψ = E~Ψ. Such matrix-eigenvalue problems, however, are also
subject of study in the mathematical field of graph theory. And as we shall see in
this highly interdisciplinary chapter, graph theory gives us the opportunity to see
our physical setups from a completely different viewpoint, leading to interesting
insights and new perspectives.

In the following, we will first give a short introduction to the mathematical
field of graph and network theory in Section 4.1. We shall explain the dualism
between graphs and square matrices, and use this dualism to build a bridge to the
field of spectral graph theory that also deals with the matrix eigenvalue problem.
Once we entered the realm of spectral graph theory, we will see in Section 4.2 that
the powers of a matrix describing a physical system can be a valuable source of
knowledge about this system. Specifically, we will show that in certain cases, these
matrix powers allow to make detailed predictions about the system’s eigenvectors.
Moreover, we will further be able to interpret these powers in a very appealing
manner through the concept of walks, which are related to quantum interference.
Following this, we will explore the recently developed graph-theoretical concept of
so-called latent symmetries in Section 4.3, and outline our own contributions to
this field in Sections 4.4 to 4.7.

4.1 graphs

Before we come to applications of graph-theoretical concepts to physics, let us
quickly give an introduction to graphs and networks. Due to the vastness of the
field of graph theory and network analysis, we will focus on some highlights that
are important in the context of this thesis; we refer the reader interested in learning
more about this field to the reviews [257–259] as well as to the books [260–263].

Mathematically speaking, a graph is a set of vertices interconnected by edges.
To fill this rather abstract notion with life, we depict a simple example graph in
Fig. 4.1 (a). This graph depicts marriages between 16 wealthy families of 15-th
century Florence. Each family corresponds to a vertex, while edges connecting
different vertices depict at least one marriage between them. The edges of a graph
may also be directed, as shown in Fig. 4.1 (b), where a so-called food web (“who
eats whom”) is represented. Moreover, edges may also have a weight, as shown in
Fig. 4.1 (c), where the road transportation network of some of the major cities in
central and southern Germany is shown, with the edge-weights corresponding to
the distance between two cities.

37
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Figure 4.1: Some example graphs. (a) An unweighted graph showing marriage relations
between 16 families in Florence of the 15-th century, data from [255]. (b) A
directed graph showing a food web, data from [256]. (c) A weighted graph
showing the travel distance between several major cities in central and southern
Germany.

In a similar manner, graphs can represent a plethora of different structures, such
as neural networks, power grids, citation networks, genetic regulatory networks,
the internet, and many more [260]. The analysis of these networks, which can be
larger than a billion vertices, is a highly interdisciplinary task, with contributions
coming from fields as diverse as pure mathematics, sociology [264], chemistry
[265], biology [266], computer science [267], or statistical physics [259, 268]. Besides
providing an interesting playground for the applications of methods from statistical
physics, there is also another important reason for why graph theory is interesting
from a physics perspective: Recently, several important NP-complete algorithms
from graph theory have been shown to be solvable through adiabatic computation
with Ising Hamiltonians [269].

There were two major motivating factors for us to dive into graph theory. Firstly,
the fact that locally symmetric substructures—an example of a graph containing
some of these is shown in Fig. 4.2—are ubiquitous in real-world networks [270–
275]. Secondly, the fact that there is a one-to-one correspondence between square
matrices and graphs. That is, any square N×N matrix can be drawn as an N-vertex
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Figure 4.2: An example graph with many local symmetries, indicated by colored vertices.

graph, and vice versa (we will explicate this correspondence in a second). Now,
since any linear operator—including, in particular, Hamiltonians—can be written
as a matrix by going to a specific basis1, it follows from the above that they can be
drawn as a graph. Thus, graph theory is applicable to a large number of physical
systems. Examples of such systems are, of course, the tight-binding networks
treated throughout this thesis, but also the dipole-scatterer setups described in
Section 2.4, and—for example, by choosing a basis of Fock states—also systems of
interacting indistinguishable particles [151, 276].

Let us now demonstrate and explain the correspondence between matrices and
graphs in more detail. In Fig. 4.3, an example of this correspondence is shown for
the case of N = 4, with each non-vanishing matrix element depicted by an edge.
We emphasize that in the above correspondence, it does not matter how exactly
the graph is drawn, that is, the vertices of the graph can be placed arbitrarily.
What matters is only the topology, that is, which vertex is connected to which, and
how strongly. Thus, the two graphs shown in Fig. 4.3 (a) and (c) both correspond
to the same matrix H which is depicted in Fig. 4.3 (b). We note that, since most
parts of this thesis are focused on tight-binding models, we will continue to use
its terminology, and in particular will continue to call the diagonal elements of
the matrix H describing a graph “on-site potentials”. Thus, we see that the three
sites (or, in graph-theoretical nomenclature, vertices) 1, 2, and 3 in Fig. 4.3 have
vanishing on-site potential, while the fourth site has an on-site potential of v.

1 For example, if our tight-binding Hamiltonian operator of Eq. (2.1),

Ĥ = ∑
i

vi |i〉 〈i|+ ∑
<i,j>

hi,j |i〉 〈j| , (4.1)

describes a setup of N sites, then we can write it as the N × N matrix H by choosing the basis of
single site-excitations. In this basis, the matrix element Hi,j of H is given by vi if i = j, hi,j if i 6= j and
i, j are coupled, and zero otherwise.
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Figure 4.3: (a) A weighted, directed four-vertex graph and (b) the corresponding 4× 4
matrix. Each non-vanishing element Hi,j of this matrix is depicted in (a) by a
line connecting the two vertices (or, in a physical language, sites) i, j. (c) The
same graph as in (a), but with a different placement of vertices. (d) To not
overload a graph, the usual convention is that all lines without an explicitly
printed weight have a weight of unity. Thus, the depicted graph is equal to that
in (a) and (c).

The correspondence between graphs and matrices is very powerful, as it repre-
sents a bridge between physics and graph theory. This bridge is made even more
obvious through the field of “spectral graph theory”, which analyzes graphs in
terms of their eigenvalues and eigenvectors2. Specifically, spectral graph theory
analyzes graphs through their corresponding eigenvalue problem

H ~Ψ = E~Ψ , (4.2)

with the matrix H describing the underlying graph and with ~Ψ denoting an
eigenvector with eigenvalue E. In many cases, H is hermitian, and we thus see that
Eq. (4.2) treated in spectral graph theory is nothing else but the eigenvalue problem
that occurs when solving the discrete time-independent Schrödinger equation.
Now, since the viewpoints of physics and mathematics usually differ, the common
grounds of Eq. (4.2) represent a big chance for fruitful interdisciplinary work.

Before we dive into the exciting world of spectral graph theory, let us make
some important remarks. In the following, we will make extensive use of the
correspondence between matrices and graphs. In particular, in all figures shown in
the following Sections 4.2 and 4.3, we will implicitly link each depicted graph to a

2 A relevant question in that field is, for example, under which circumstances a graph is uniquely
characterized by its eigenvalue spectrum [277]. Another important question in spectral graph theory
is how eigenvalues and eigenvectors can be used as spectral measures to classify a graph [260]. Well-
known examples of such measures are the so-called eigenvector centrality [264], the Katz centrality
[278], as well as the Google PageRank algorithm [279, 280]. For an introduction to the field of spectral
graph theory, see, for example, [260, 281, 282].
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matrix H in the exact same way as was shown in Fig. 4.3. In order to not overload
these graphs, we will use the convention that, unless explicitly stated, each line
has a weight of unity; see Fig. 4.3 (d). Moreover, we will use the terms “graph”,
“discrete model”, “matrix”, and “Hamiltonian” interchangeably, and we will also
not differentiate between a “site” or a “vertex”. In particular, when speaking of a
graph-theoretical result, we imply that it can also be applied to discrete models
such as tight-binding Hamiltonians. We also note that, unless otherwise mentioned,
all results in the following are valid for real-symmetric matrices.

4.2 cospectrality : the symmetry of walks

Figure 4.4: A collection of different graphs. As in Fig. 4.3 (d), all sites without a loop have
vanishing on-site potential, and all lines without a printed edge weight have
a weight of unity. (a) A graph that features a reflection symmetry. Due to this
reflection symmetry, all eigenvectors have definite parity on the two red sites u
and v. (b) A graph H without any reflection symmetry. However, irrespective
of this lack of symmetry, since the two red sites u and v are cospectral, all
eigenvectors have definite parity on them (see text for details). (c) and (d) show
the Hamiltonians H \ u and H \ v, respectively, with H denoting the Hamiltonian
describing (b). (e) The result of performing the isospectral reduction over the
graph H of (b) for the choice of S = {u, v}. As this isospectral reduction is
reflection symmetric, u and v are latently (reflection) symmetric.

Having mentioned some aspects of graph theory and its applications, let us
now dive deeper by introducing the intriguing concept of cospectral vertices [283–
285] which also represents the main subject of our works [MR6–MR8]. Vertex
cospectrality can be related to a number of different properties of a graph, but
perhaps the most interesting one is that of parity. That is, for a graph described by
a real-symmetric matrix H that has no degenerate eigenvalues3, two of its vertices
u and v are cospectral if and only if all eigenvectors have definite parity on u and v
[285].

3 The statement can also be generalized to the case of degenerate eigenvalues; see [285, 286].



42 graph theory and latent symmetries

What makes cospectrality interesting is that it comes in different flavors, namely,
obvious and non-obvious ones. In Fig. 4.4 (a), an example for the former class
is depicted. The system shown here consists of six sites and features a reflection
symmetry. Due to this reflection symmetry, it is clear that the eigenvectors of this
system will have definite parity on the two red sites u and v. Thus, u and v are
cospectral. While this case is trivial, the situation is completely different for the
system shown in Fig. 4.4 (b). Once again, all eigenvectors of the system have definite
parity on the two red sites u and v, and these two sites are thus cospectral. However,
now there is no reflection symmetry explaining this parity.

Examples like that of Fig. 4.4 (b) formed our core motivation for diving into
the world of cospectral vertices, and before we explore this phenomenon in more
detail, let us first comment on the origin of the term “cospectrality”. To this end,
we will need the so-called vertex deleted subgraphs H \ u and H \ v, obtained
from the graph H by removing the site u or v, respectively. For convenience, and
to demonstrate the principle, we depict these two graphs in Fig. 4.4 (c) and (d),
respectively, with H describing the system shown in Fig. 4.4 (b). Equipped with
this terminology, we can now define cospectrality. Namely, two vertices u, v are
said to be cospectral when the corresponding vertex deleted subgraphs H \ u and
H \ v have the same eigenvalue spectrum [285]. In other words, H \ u and H \ v
are cospectral, and this is the reason for calling u and v “cospectral vertices”. At this
point, let us emphasize that vertex cospectrality includes the conventional case of
reflection-symmetric sites. That is, when two sites u, v are mapped onto each other
by a reflection symmetry of the underlying graph H, then they are also cospectral.
This is especially clear in Fig. 4.4 (a), as in this case the two subgraphs H \ u and
H \ v are identical.

Historically, the study of cospectral vertices was started by Schwenk in 1973

in his study of graphs that share the same eigenvalue spectrum [283]. In that
work, Schwenk also provided a method for the construction of a specific class of
cospectral graphs. Other methods for the construction of cospectral graphs include
graph products [287] or the so-called Godsil-McKay switching [284]; an overview
over these and other methods is given in [288]. Cospectral vertices are also used
in chemical graph theory, were they are known as “isospectral vertices” [289–291].
Moreover, they have been used in control theory [292–294] and in quantum state
transfer. Indeed, and connecting to Chapter 3, it was found that cospectrality of
two sites u, v is in fact a necessary condition for perfect or pretty good state transfer
between them [285].

A central finding that emerged during the above systematic studies of cospectral-
ity is that it can be connected to relations in the matrix powers of the underlying
Hamiltonian [285]. Namely, the cospectrality of two vertices u and v is equivalent
to (

Hk
)

u,u
=
(

Hk
)

v,v
∀ k ≥ 1 . (4.3)
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Figure 4.5: A simple example graph (a) and the interpretation of its matrix powers H1 [(b)],
H2 [(c)], and H3 [(d)] in terms of walks (see text for details). Taken from [MR6].

From this equation, we see that cospectral sites can be searched4 for by analyz-
ing the matrix powers of the underlying Hamiltonian H. For us, this relation
between matrix powers and cospectral vertices—and thus, spectral properties of the
Hamiltonian—was rather surprising. For this reason, we investigated the matrix
powers of Hamiltonians with cospectral sites in more detail in our work [MR7].
Indeed, we found that a systematic analysis of these matrix powers leads to deep
insights, and in particular can be used to make detailed predictions about the
structure of the system’s eigenvectors; we shall explicate this further in Section 4.5.

Having seen that cospectrality is related to matrix powers, let us now enrich our
viewpoint even further by noting that the powers of an arbitrary quadratic matrix
H can be interpreted in terms of so-called walks5. A walk between two vertices
i, j (which can be identical) of a graph is nothing but a series of steps along its
edges. Mathematically, one can describe it as an alternating sequence of vertices
and edges, with each edge connecting its precursor vertex to its successor. In the
example graph depicted in Fig. 4.5 (a), a walk of length—that is, the number of

4 In practice, this search can be made much easier by the Cayley-Hamilton theorem [295, 296]. For
a hermitian N × N matrix H, it follows from this theorem that any power Hk with k ≥ N can be
expressed as a polynomial in H0, . . . , HN−1. It thus follows that Eq. (4.3) is fulfilled for all k provided
that it is fulfilled for k = 1, . . . , N− 1. In other words, one can search for cospectral sites by evaluating
only the matrix powers H1, . . . , HN−1.

5 We note that this interpretation of matrix powers in terms of walks is basic knowledge in graph
theory [260], but unfortunately is not yet widely known in physics.
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traversed edges—2 from vertex 1 to vertex 3 would be (V1, e1,2, V2, e2,3, V3), where
Vi denotes the i-th vertex and ek,l denotes the edge between vertices Vk and Vl . Now,
in order to connect the matrix powers of H to walks, we need to assign a weight to
each walk by multiplying the weights of the individual edges used by this walk.
For the example walk above the edges used are e1,2 and e2,3, and since the weight of
the edge ek,l is given by the matrix element Hk,l , the walk (V1, e1,2, V2, e2,3, V3) thus
has a weight of 2 · 1 = 2. Walks can then be connected to matrix powers by noting
that the matrix element

(
Hk)

i,j is given by taking all walks of lengths k from vertex
i to vertex j and adding up their respective weights; examples for this statement
are shown in Fig. 4.5. Before we continue, we note that walks are highly related to
the concept of quantum interference, as has recently been elaborated in the review
[297]. Personally, we are convinced that the walk-interpretation will lead to many
new perspectives on physical systems.

With the above, and after several steps, we have derived a first insight to cospec-
tral vertices. Namely, by applying the above interpretation to Eq. (4.3), we see that
u and v are cospectral if and only if the cumulative weight of closed walks from u
to itself is the same as those of closed walks from v to itself. In the following, we
will relate cospectrality to yet another graph theoretical concept, namely, that of
“latent symmetries”.

4.3 latent symmetries

Before we introduce latent symmetries, let us say a few words regarding the envi-
ronment of complex network analysis in which these symmetries have been first
discovered. Such networks may be enormously large, with the graphs represent-
ing these networks having vertex numbers exceeding a billion, which naturally
makes their analysis difficult. To face this difficulty, in 2011 Webb and Bunimovich
developed the so-called isospectral reduction [298, 299]. Roughly speaking, the
isospectral reduction reduces the dimension of a graph while keeping its eigenvalue
spectrum. This allows to get rid of some unnecessary details, thereby allowing
an easier recognition of some key properties of the graph, while at the same time
keeping precious information about its eigenvalue spectrum. So far, the isospectral
reduction has proven to be a versatile tool for different problems, including eigen-
value approximations [300], the creation of stability preserving transformations of
networks [298, 301, 302], the study of pseudo-spectra of graphs and matrices [303],
and the study of the survival probabilities in open dynamical systems [304].

The isospectral reduction is equivalent to an effective Hamiltonian obtained
through subsystem partitioning [MR9, 305], and is defined as

RS(E) = HSS + HSS
(
E− HSS

)−1 HSS. (4.4)

In this equation, the two sets of sites S and its complement (that is, all other sites)
S denote a decomposition of the system/graph. The matrices HSS and HSS then
denote the sub-Hamiltonians which describe the corresponding isolated subsystems
comprised only of S or S, respectively. HSS and HSS describe the coupling between
these two subsystems.
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We note that the isospectral reduction is a function of the energy parameter E,
which can be used to define a generalized eigenvalue problem

Det (RS(E)− EI) = 0 (4.5)

with Det denoting the determinant, and I denoting the identity matrix. The solu-
tions to this equation are the generalized eigenvalues of RS(E). As perhaps can
be expected from the statement that the isospectral reduction is equivalent to an
effective Hamiltonian, each of these generalized eigenvalues of RS(E) is also an
eigenvalue of the original Hamiltonian H. In many cases, the eigenvalue spectra of
H and RS(E) coincide, and this motivates calling RS(E) an “isospectral” reduction.

We are now equipped with the necessary ingredients for the introduction of
latent symmetries. Formally, a latent symmetry is defined as a symmetry of the isospectral
reduction of a graph [306]. This being said, let us now bring life into this definition by
applying it to a simple example. In Fig. 4.4 (e), we perform the isospectral reduction
of the graph H shown in Fig. 4.4 (b) over the two red sites S = {u, v}. As one can
see, the reduction over these two sites is reflection symmetric, and the original
Hamiltonian H thus features a latent (reflection) symmetry.

In the above example, the two latently symmetric sites u and v were exactly the
ones that are cospectral, and this is no coincidence. Indeed, as was proven in [307],
for a real-symmetric matrix H, two sites are latently symmetric if and only if they
are cospectral. Thus, we have now yet another explanation for cospectrality by
relating it to a symmetry of the isospectral reduction of a Hamiltonian.

Figure 4.6: (a) A ten-site Hamiltonian H. All solid lines correspond to couplings of strength
1, while the dashed lines correspond to couplings whose strength depend on the
parameters h1, h2, and h3. Since there are no loops connecting any site to itself,
all ten on-site potentials are set to zero. (b) Shows the isospectral reduction of H
over S = {u, v, w}. For any choice of the hi, this reduction is highly symmetric.

We note that the concept of latent symmetries is, by no means, limited to reduc-
tions over only two sites or to reflection symmetries. An example for this statement
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is shown in Fig. 4.6. In (a), a simple ten-site Hamiltonian is depicted. Here, the
isospectral reduction of this Hamiltonian over the three red sites S = {u, v, w}
features a threefold rotational symmetry as well as three reflection symmetries6.
These six symmetries—three rotations and three reflections—form the dihedral
group D3. Thus, the Hamiltonian features a latent D3 symmetry.

Overall, and especially since the study of latent symmetries and cospectral sites
is a relatively young field, there are still many open questions and problems. In the
following, we will discuss our own research on this topic, which is driven by the
desire to understand the interplay of symmetries of a system and the behavior of
its eigenstates and eigenvalues.

4.4 outline : designing pretty good state transfer via isospectral

reductions

Our work [MR6] connects the two topics of state transfer and cospectrality, and
was our starting point for a further exploration of the latter topic. Here, we achieve
two things. Our first achievement is the generalization of some of the results of
our work [MR5] on PST to PGST. Namely, we show that also PGST-Hamiltonians
can be equipped with CLSs, and that these can also be pretty well transferred. The
underlying principle is completely analogous to the scheme presented in [MR5].
That is, starting from a tight-binding Hamiltonian that supports PGST of single-site
excitations of sites u and v, we first dimerize these two sites. Then, by applying
two control pulses before and after the transfer, pretty good transfer of dimer-CLSs
is possible. Our second achievement is the employment of latent symmetries for
the design of Hamiltonians that feature PGST.

In order to feature PGST, a Hamiltonian needs to fulfill two conditions. Firstly,
all eigenstates must have definite parity on the two sites u and v between which
the transfer should take place, and thus these must be cospectral. As we have
seen above, such a parity can be trivially induced by a reflection symmetry of the
system, but also by a latent symmetry of u and v. Secondly, the eigenvalues of the
Hamiltonian need to fulfill certain conditions7. Although these conditions are not
as demanding as that of PST-Hamiltonians—see, for instance, Eq. (3.9)—they are
also of number-theoretical nature. As a result, if one would want to fulfill these
conditions by tuning the eigenvalues of the setup, one would need knowledge
about the exact—that is, with an infinite precision—eigenvalue spectrum. In our
work, we build upon recent results from graph theory [286] which show that
these conditions can be fulfilled through an alternative pathway for which such
knowledge of the exact eigenvalues is not necessary. Instead, a PGST-Hamiltonian
can be designed by starting from a Hamiltonian with cospectral sites u and v, and
subsequently tuning different properties of the polynomials8 P± that are related

6 The three axes of reflection are obtained by drawing a line from any of the three vertices to the center
of the corresponding opposite edge.

7 Although not complicated, these conditions are rather technical, and stating them here would give
no deeper insights. They can be found, e.g., in Theorem 2 of [308].

8 For example, these polynomials need to fulfill

Tr(P+)
deg(P+)

6= Tr(P−)
deg(P−)
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to the eigenstates having negative and positive parity on these two sites. More
specifically, if {λ+

i }, {λ−j } are the eigenvalues corresponding to eigenstates with
positive or negative parity on u and v, respectively, then these polynomials are
equal to

P+(x) = ∏
i
(x− λ+

i ) =
n+

∑
i=0

aixi (4.6)

P−(x) = ∏
j
(x− λ−j ) =

n−

∑
i=0

bixi , (4.7)

where n± denote the respective degree of the polynomials.
In our work, we first generate a database comprising millions of tight-binding

network geometries where (i) all on-site potentials vanish, (ii) all non-vanishing
couplings have an identical strength of unity, and (iii) there is at least one pair of
cospectral sites u and v. Out of this database, one may pick an arbitrary Hamil-
tonian to start with. We then use the fact that, whenever two sites u and v are
cospectral, they are also latently symmetric. The isospectral reduction over these
two sites is thus reflection symmetric. As we show, this symmetry allows to harness
the equitable partition theorem9 that we discussed in Section 2.3 to extract the poly-
nomials P±. We then device an algorithm for the construction of setups featuring
PGST. The algorithm is based on the fact that, once the polynomials P± are known,
the properties relevant for PGST can be controlled by tuning the coupling strengths
and on-site potentials of the underlying tight-binding network. Importantly, this
tuning needs to be done such that the cospectrality of u and v is kept. While we
indeed identify a class of such modifications, this class is rather small. The quest
for more such modifications then led to our next work [MR7] that we will discuss
next.

4.5 outline : cospectrality preserving graph modifications and

eigenvector properties via walk equivalence of vertices

As we have seen in Section 4.2, the equivalence of cospectrality to relations of
diagonal elements of Hk gives a new viewpoint on matrix powers and their analysis.
In our work [MR7], we further extend this viewpoint by showing that also the
off-diagonal matrix elements of Hk can be an important source of knowledge.

Our work is motivated by the following question: Given a Hamiltonian H with
cospectral sites u and v, which changes can be made to H without breaking the
cospectrality? An important example of a change is to couple the graph to an
additional site c. We find that one can give both necessary and sufficient conditions
for when such an addition preserves the cospectrality of u and v by means of what
we call walk multiplets. In the simplest case, a multipletM is a set of sites such that

∑
i∈M

(
Hk
)

u,i
= ∑

i∈M

(
Hk
)

v,i
∀ k ≥ 1 . (4.8)

where Tr(P) and deg(P) denote the sum of roots and the degree of the polynomial P, respectively.
9 We note that the equitable partition theorem can also be applied to other types of latent symmetries,

as was recently shown in [309].
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As we argued in Section 4.2, the matrix powers of H can be interpreted in terms of
walks. Thus, we see from Eq. (4.8) that the cumulative sums of weights of walks
from the multiplet to u and to v are equal; we say that u and v are “walk equivalent”
for the multipletM.

Given a multipletM and a Hamiltonian H with cospectral sites u, v, we prove
that one can connect a new site c homogeneously to all sites ofM without breaking
the cospectrality of u and v. We then further generalize the concept of multiplets by
augmenting the sums in Eq. (4.8) with more degrees of freedom (such as individual
weights γi for each summand on both sides of Eq. (4.8)), and use this generalization
to prove two central results: Firstly, that the addition of a single site c preserves
the cospectrality of u, v if and only if c is connected to a multiplet. Secondly, that
two multiplets can be interconnected without breaking cospectrality. For both of
these statements, the interconnection needs to be done in a certain way—that is,
the coupling strengths need to fulfill certain relations—that can be derived, again,
from the matrix powers of the underlying Hamiltonian. We use these findings to
present a novel method for the construction of cospectral graphs, which represents
an important topic in spectral graph theory.

Apart from their relevance in finding cospectrality-preserving modifications, we
find that multiplets are also a very valuable source of knowledge about the system’s
eigenvectors. In the simplest case—the sites u and v are cospectral in a Hamiltonian
H which has only non-degenerate eigenvalues, and we have a multiplet as defined
in Eq. (4.8)—we find that each negative-parity eigenstate10 φ fulfills

∑
i∈M

φi = 0 . (4.9)

That is, the sum of its components on the multiplet-sites vanishes. This statement
can be extended to the case of degenerate eigenvalues and also to the case where
the sums in Eq. (4.8) are equipped with more degrees of freedom [such as indi-
vidual weights γi for each summand]. Moreover, depending on the multiplet, also
statements about the eigenstates having positive parity on u and v can be made.

4.6 outline : flat bands by latent symmetry

Figure 4.7: The system of Fig. 2.1 (a), now with the two dimer sites marked by u and v.

In [MR8], we employ the results of [MR7] for the construction of compact local-
ized states and flat bands. The core idea of this work is to use a close connection
between destructive interference and matrix powers. To demonstrate this connec-
tion, let us again look at the example system of Fig. 2.1 (a) which we have replicated
for convenience in Fig. 4.7. In Chapter 2, we found that the depicted state is an

10 That is, each eigenstate having negative parity on u and v.
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eigenstate of the underlying Hamiltonian H, and that the tunneling amplitudes
to nearby sites cancel each other. Let us now view this problem from another
angle and evaluate the time-evolution of this state |ΨCLS〉 = |u〉 − |v〉, with |u〉, |v〉
denoting the single-site excitations u and v, respectively. With the Hamiltonian
being time-independent, we obtain (setting h̄ = 1)

|ΨCLS(t)〉 = e−iHt(|u〉 − |v〉) =
∞

∑
k=0

(−it)k Hk

k!
(|u〉 − |v〉) . (4.10)

If we then analyze the overlap 〈w|ΨCLS(t)〉 of this state with any white site w
of the system [see Fig. 4.7], we know from the above argument of destructive
interference11 that this overlap vanishes. Thus

〈w|ΨCLS(t)〉 =
∞

∑
k=0

(−it)k

k!

(
〈w|Hk|u〉 − 〈w|Hk|v〉

)
= 0 . (4.11)

As can easily be seen by multiplying these expressions out,

〈w|Hk|u〉 =
(

Hk
)

w,u

〈w|Hk|v〉 =
(

Hk
)

w,v

denote matrix elements of Hk. Now, since 〈w|ΨCLS(t)〉 = 0 for all t, and since the
power series in Eq. (4.11) is convergent, it follows that

(
Hk
)

w,u
=
(

Hk
)

w,v
∀ k ≥ 1 . (4.12)

In other words, we have derived an expression that connects the compact support
of our CLS |u〉 − |v〉 to relations between matrix elements of Hk for all k ≥ 1.
Comparing Eq. (4.12) to the definition of multiplets, Eq. (4.8), we see that w
represents a multiplet consisting of a single site, that is, a singlet.

The above two observations—w is a singlet, and the negative parity eigenstate
vanishes on it—are directly related to each other. Indeed, if we have a Hamiltonian
in which the sites u and v are cospectral—as is the case12 in our simple example of
Fig. 4.7—we see from Eq. (4.9) that each eigenstate |φ〉 with negative parity on u, v
vanishes on a singlet w, that is,

〈w|φ〉 = 0 . (4.13)

In [MR8], we use Eq. (4.13) to construct CLSs and flat bands. More precisely, we
start by designing a single unit cell whose Hamiltonian H features two cospectral
sites u and v. We then form a lattice by periodically replicating this unit cell and
interconnecting neighboring cells. Using theorems from [MR7], these connections
are done in a “singlet”-manner. That is, they are done such that for each unit cell,
the cospectrality of its sites u and v is kept, and also such that the sites in all other
unit cells become singlets. From the above, each unit cell then features at least one
CLS, and thus one or more flat bands emerge.

11 Or, alternatively, from the statement that |ΨCLS〉 is an eigenstate of the Hamiltonian.
12 We remind the reader that if two sites are reflection symmetric, then they are automatically latently

symmetric and thus also cospectral.
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4.7 outline : latent symmetry induced degeneracies

The symmetries of a Hamiltonian can be conveniently described by the mathe-
matical instrument of group theory [6]. A central result of this treatment is that a
Hamiltonian which features a non-abelian symmetry group necessarily has degen-
erate eigenvalues. Given the importance of this result, it was an interesting question
whether it can be applied to non-abelian latent symmetries as well. In [MR9], we an-
swer this question in the affirmative by generalizing the group-theoretical methods
to the treatment of latent symmetries. We then use this result for the treatment of a
real-symmetric Hamiltonian with an abelian n-fold rotational symmetry. Since it is
real-symmetric, the Hamiltonian also features a time-reversal symmetry, and it is a
classical result that the combination of this symmetry with the abelian rotational
symmetry leads to degenerate eigenvalues when n > 2 [310]. By proving that
such a real Hamiltonian with an n-fold rotation symmetry always features a latent
dihedral symmetry Dn of order n, we give another explanation for this classical
result: Since Dn is non-abelian for n > 2, this group necessarily leads to degenerate
eigenvalues.

We continue by presenting a construction method for Hamiltonians that feature
non-abelian latent symmetries while not featuring any geometrical13 symmetry.
An example of such a Hamiltonian is depicted in Fig. 4.6 (a): For any choice of
hi, this graph features a non-abelian latent symmetry—which becomes visible
when reducing over the three sites S = {u, v, w}—, but it features no geometrical
symmetry when h1h2 6= 0 and h1 6= h2.

The fact that latent symmetries are usually hidden from direct observation but
nevertheless can induce degeneracies leads to an interesting question: Could it be
that—in systems in which either there is no obvious symmetry or the symmetry
group is not sufficiently large to explain the degeneracies—several degeneracies
which until now are believed to be “accidental” [7, 311] are, in fact, caused by latent
symmetries? The exploration of this question will pose an exciting challenge in the
near future.

We conclude the description of our work [MR9] by stating what I personally
consider its most important result. Namely, the relation between the two concepts
of local and latent symmetries, which is expressed by

[RS(H, E), M] = 0 ⇔
[(

Hk
)

SS
, M
]
= 0 ∀ k . (4.14)

Here, M is a matrix describing the symmetry of the isospectral reduction; in the
simplest case, it would be a 2× 2 matrix describing a reflection symmetry of two
sites u, v. Now, since a symmetry M of the isospectral reduction is equivalent to
a latent symmetry M of the original Hamiltonian, we see that the above equation
states the following: A latent symmetry M of a set of sites S is equivalent to a local
symmetry M of the Hamiltonian in all matrix powers14.

13 By “geometrical symmetry” we here mean the invariance of a graph under geometric operations such
as (local) reflections, inversions, rotations, and combinations thereof. More specifically, we mean a
permutation symmetry of the underlying matrix H, that is, the commutation of H with a permutation
matrix.

14 We remark that, to see whether a Hamiltonian features a latent symmetry, one might thus either
(i) look for local symmetries in H itself and in all matrix powers Hk, or (ii) investigate the isospectral
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With respect to this result, there are two things that we would like to note.
Firstly, it shows once again that the matrix powers of a Hamiltonian are a very
valuable source of information. Secondly, we started this thesis with the topic of
local symmetries, and with Eq. (4.14) we also end with it. The viewpoints on the
problem, however, have changed completely. In Chapter 6, we shall comment more
on the significance of Eq. (4.14) and the many possible routes for future research
that it opens.

reduction of H. In both cases, whether a given Hamiltonian H features a latent symmetry or not is
usually not clear when investigating only H.
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Observation of Local Symmetry in a Photonic System

Nora Schmitt, Steffen Weimann, Christian V. Morfonios, Malte Röntgen,
Matthias Heinrich, Peter Schmelcher, and Alexander Szameit*

The concept of local symmetry has been shown to be a powerful tool in
predicting and designing complex transport phenomena in stationary
scattering off aperiodic media, in terms of symmetry-adapted nonlocal
currents. For time-evolving wavepackets, the spatiotemporal correlations
caused by local symmetries are more challenging to reveal. A recent
formalism-based nonlocal continuity equation shows how local symmetries
are encoded into the dynamics of light propagation in discrete waveguide
arrays governed by a Schrödinger equation. However, the experimental
demonstration is elusive so far. Representative examples of locally symmetric,
globally symmetric, and fully nonsymmetric configurations are fabricated in fs
laser-written photonic arrays and their dynamics are probed. The approach
allows to distinguish all three types of structures.

1. Introduction

Symmetry forms one of the cornerstones of describing and study-
ing any physical system. This originates in the connection of sym-
metry operations to associated conserved quantities (see below),
which simplify the theoretical treatment of the system. How-
ever, whereas the scenario of perfect global symmetries is only
valid in an idealized, special class of systems without any im-
perfection or symmetry breaking and thus notoriously elusive,
local symmetries[1]—sometimes also referred to as hidden[2] or
internal[3] symmetries—abound in nature. These configurations
are characterized by internal spatial limitation as illustrated in
Figure 1. The resulting new class of systems is more general
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than quasicrystals,[4,5] which can always
be seen as the projection of a periodic lat-
tice in higher dimensions, whereas the
only condition for local symmetry is the
existence of at least one spatial domain
equipped with symmetry.[1] Prominent
examples include not only quasicrystals
but also macromolecules[6–8] and addi-
tionally systemswhere the global symme-
try is broken because of defects or (par-
tial) disorder.[9,10] Moreover, local symme-
tries appear in artificial structures, for ex-
ample, acoustic waveguides[11,12] or tai-
lored photonic multilayer systems,[13,14]

where they may lead to the occurrence of
perfect transmission resonances.[15]

Invariance with respect to a symmetry
transformation is a fundamental concept

in physics, which is closely related to the formulation of conserva-
tion laws. For continuous transformations, E. Noether stated al-
ready in 1918 that, to every differentiable symmetry of the action
of a physical system, there is a corresponding conservation law.[16]

Famous examples aremomentum conservation due to the invari-
ance of physical systems with respect to spatial translation, or
energy conservation due to invariance with respect to time trans-
lation. Symmetry-induced conservation laws of discrete transfor-
mations can usually be described by means of the commutation
of the corresponding operators with theHamiltonian. As a conse-
quence, reflection symmetry imposes definite parity, finite trans-
lation symmetry imposes Bloch momentum on the eigenstates
of the Hamiltonian, characterizing the overall dynamics.
The Hamiltonian of a locally symmetric scenario does, in

general, not commute with the local symmetry operation, even
though the potential remains invariant under the respective
transformation. Thus, the usual rules of symmetry-induced
eigenvalues (e.g., parity and Bloch momenta) of common
eigenstates do not apply. Therefore, tracking the influence of
local symmetry on a system’s behavior becomes challenging.
A promising approach to decode the presence of underlying
local symmetries from a system’s state is given within a rec-
ently developed framework of symmetry-adapted, “nonlocal
currents.”[1,10,17–19] In the case of stationary states, these currents
are constant within any local symmetry domain and provide an
amplitude mapping between symmetry-related points.[10,18] This
generalizes the usual Bloch and parity theorems to local symme-
try. Local symmetry domains are in general not unambiguously
defined butmay be chosen freely from amultitude of different ac-
curate descriptions of the same system. For a general wavepacket,
the nonlocal currents vary in space and time. Their translational
invariance in 1D stationary states, however, indicate that their
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Figure 1. Possible gradations of symmetry of a continuous potential (left)
and discrete sites (right). The positions of the symmetry axes are indicated
by dashed lines. a) Global inversion symmetry with a single overall symme-
try domainD (red). b) Locally symmetric system covered by two symmetry
domains D1 (red) and D2 (blue). c) Fully nonsymmetric configuration.

general, time-dependent form may originate from a type of
current-density continuity, in similarity to the case of the usual
quantum probability current. The additional ingredient is here
the local symmetry transformation in space, combined with the
derivation of a conserved current. Indeed, the nonlocal currents
have been shown to obey a generalized, (local) symmetry-adapted
continuity equation,[19] readily applicable to discrete models gov-
erned by a Schrödinger equation. However, the fact that this ap-
proach requires access to the full spatiotemporal information of
the complex-valued wave function has thus far prevented any ex-
perimental demonstration. Given the extraordinary success of
evanescently coupled photonic waveguide arrays in emulating
dynamical discrete quantum systems of various kinds in recent
years, they represent an ideal experimental platform to tackle the
challenge of uncovering the spatiotemporal correlations caused
by local symmetries.

2. Experimental Section

In this work, we distinguish locally symmetric structures with
respect to a certain symmetry from both fully nonsymmetric sys-
tems and globally symmetric structures bymeans of the nonlocal
continuity formalism. To address this challenge experimentally,
we employ the femtosecond laser direct writing technique[20] to
fabricate representative examples of locally symmetric, globally
symmetric, and fully nonsymmetric photonic lattices in fused
silica glass wafers. For a first experimental demonstration and
a proof of principle, a minimal system size of six to seven sites is
chosen to decode underlying local symmetries from the generic
state evolution in simple configurations. The symmetries were
incorporated in the structures by appropriately tuning the waveg-
uide separations and thus the coupling between adjacent sites in
line with the desired distribution (see Figure 2 [insets top left]
and Appendix). The refractive index increase was chosen to be

Figure 2. Measured fluorescence intensity patterns after single-waveguide
excitation. a) Globally symmetric array, probed via single-site excitation of
the seventh waveguide (marked yellow). The waveguide separations and
couplings c1, c2, c3 exhibit inversion symmetry. b) Locally symmetric array,
probed via single-site excitation of the first waveguide. It can be divided
into two domains D1 and D2 with inversion-symmetric configurations of
the couplings c1 and c2. c) Nonsymmetric array containing five different
couplings c1, c2, c3, c4, c5, probed via single site excitation of the second
waveguide. In each case, the inset on the top left illustrates the lattice
geometries with highly exaggerated differences in spacings.

the same for all waveguides to achieve a system with equal on-
site potential in order to preserve the phase relation of 𝜋∕2 be-
tween adjacent waveguides (see Appendix), which is crucial for
retrieving the full wave function from intensity-only fluorescence
measurements of the light propagation in our waveguide arrays.
The corresponding systemdynamics over a propagation length of
70 mm was probed via coherent single-site excitation at 633 nm.
As we see in Figure 2, the intensity patterns of the generic light
propagation show no direct evidence for the presence or absence
of local symmetries in the underlying array. In the following, we
will show how a formalism of nonlocal currents can be used to
decode the presence of symmetries from the propagating wave.
The complex wave function was extracted from the experimen-

tally observed intensity pattern in accordance with the 𝜋∕2 phase
jump between adjacent sites and inferring zero crossings at ev-
ery minimum close to zero (see Appendix). The assumption was
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Figure 3. Relation between fit wave function 𝜓 , local symmetry transfor-
mation ŜD and transformed wave function �̄� of domain D2 of the locally
symmetric configuration. a) Evolution of the fit wave function in the entire
system, with the phase 𝜑 encoded using the given colors. It consists of
components𝜓1−6 with a characteristic phase difference ofΔ𝜑 = −𝜋∕2 be-
tween adjacent sites. b) Symmetry transformed wave function �̄� , obtained
by the local symmetry transformation ŜD2

acting on the wave function in

domain D2—naturally, ŜD2
acts trivially on the sites 1–3 in domain D1.

justified by tight-binding simulations of the state evolution in
our waveguide arrays with the experimentally determined cou-
plings. Thereafter, the wave function was fitted with a high-order
polynomial in order to allow the calculation ofmeaningful deriva-
tives. The resulting evolution of the wave function𝜓 in the locally
symmetric system is exemplarily shown in Figure 3a.

3. Theory

To reveal the encoding of local symmetries in the state evolution,
the discrete local current-density continuity[21] for an arbitrary
state |𝜓⟩ is generalized, taking a local symmetry transformation
into account.[19] Applying a transformation ŜD on any quantity—
sites or states—is denoted by a bar above the symbol, for example,
ŜD |𝜓⟩ = |�̄�⟩, which is illustrated in Figure 3b. The transforma-
tions may be represented by matrices (see insets in Figure 4) that
interchange the amplitudes of symmetry related sites when they
act on a quantity represented by a vector.
The local overall discrete probability density 𝜌D distributed

over the sites n in domain D is given by the expectation value
of the local density operator �̂�n = |n⟩ ⟨n|.

𝜌D =
∑
n∈D

⟨𝜓 |n⟩ ⟨n|𝜓⟩ = ∑
n∈D

𝜓∗
n𝜓n = ⟨𝜓D|𝜓D⟩ (1)

In the symmetry-adapted formulation, the local density operator
�̂�n = |n⟩ ⟨n| at each site n is replaced by |n⟩ ⟨n̄|. The total non-
local charge ΣD is calculated by taking the scalar product of the
wave function and the symmetry-transformed wave function in
the respective domain.[19]

ΣD :=
∑
n∈D

⟨𝜓 |n⟩ ⟨n̄|𝜓⟩ = ∑
n∈D

𝜓∗
n𝜓n̄ = ⟨𝜓D|�̄�D⟩ (2)

“Nonlocal” refers to the influence of nonadjacent but
symmetry-related sites on the respective quantity. Note that the
only difference between Equations (1) and (2) is given by the
symmetry transformation, denoted by a bar above the symbols.
Figure 3 illustrates how the local symmetry transformation ŜD2
acts on the wave function in domain D2 of the locally symmet-
ric system.
The discrete local probability current jn,m between sites n and

m is given by [21]

jn,m = −i
(
𝜓∗
n cn,m𝜓m − 𝜓∗

mc
∗
n,m𝜓n

)
(3)

where cn,m is the coupling between the adjacent sites n and m =
n ± 1. In the generalized case, the local current jn,m is replaced by
the nonlocal (symmetry adapted) current qn,m

[19]:

qn,m = −i
(
𝜓∗
n cn̄,m̄𝜓m̄ − 𝜓∗

mc
∗
n,m𝜓n̄

)
(4)

Again, the only modification from Equations (3) to (4) are the
symmetry transformed sites n̄ and m̄. For arrangements without
on-site asymmetry in the refractive index distribution, a simple
continuity equation relates the nonlocal chargeΣD to the nonlocal
boundary current q𝜕D, which is “flowing out of” each symmetry
domain[19] ([a,… , b] ∈ D):

𝜕zΣD = qa,a−1 + qb,b+1 = q𝜕D (5)

where 𝜕z is the derivative in propagation direction. Note that, in
forming the boundary current elements of D, qa,a−1 and qb,b+1,
the neighboring outer sites a − 1 and b + 1 are by convention also
mapped by the local mirror operation corresponding to D, that
is, a − 1 = b + 1 and b + 1 = a − 1. Also, the term “flows out of”
should not obscure the fact that q does not describe a real flow
of density between sites like in the usual current j, but rather a
quantity adapted to local symmetry, with the breaking of symme-
try (here at the boundary of D) acting as a source or sink for the
symmetry-adapted current q. We will now use the above nonlocal
continuity equation to distinguish local from global or no sym-
metry in the waveguide array.
The nonlocal boundary current vanishes identically for an even

number of sites in one domain of our specific tight-binding
Schrödinger system with equal on-site potential and single-site
excitation (see Appendix). However, equal on-site potential and
initial single-site excitation lead to a well defined phase relation
of 𝜋∕2 between adjacent sites, which is a necessary condition to
retrieve the full wave function from intensity-only fluorescence
measurements. Thus, we investigate only domains with an odd
number of sites (indices from a to b) to allow for a distinction be-
tween global and local symmetry. For global and local symmetry,
the boundary currents q𝜕D are given by (see Appendix):

q𝜕D = ±2
(
cb,b+1|𝜓a||𝜓b+1| ∓ ca,a−1|𝜓b||𝜓a−1|

)
(6)

Due to the fact that the symmetry domain extends over
the entire system for all globally inversion symmetric systems,
there is inherently no coupling across domain boundaries. Since
then cb,b+1 = ca,a−1 = 0 by definition, the nonlocal boundary cur-
rent vanishes identically for global symmetry. Nevertheless, the
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Figure 4. Measurement-based nonlocal continuity equations. a) Global inversion symmetry. The assumed symmetry transformation is given by an an-
tidiagonal matrix (top left). As the nonlocal boundary currents are vanishing, the derivative of the nonlocal charge 𝜕zΣD along the propagation (solid
blue) is compared to the expected value of zero (dashed black). b) In case of no symmetry, there are no valid symmetry transformations. Any transfor-
mation can be chosen and shown to violate the continuity equation because 𝜕zΣD (solid blue) and the nonlocal boundary current q𝜕D (dotted orange)
deviate. c) Local symmetry: q𝜕D (dotted orange) is nearly equal to 𝜕zΣD (solid blue), as predicted (dashed black) by the continuity equation. The results
shown are taken from the measurements in domain D1 of the locally symmetric structure. d) Same as (c), but for domain D2 of our locally symmetric
arrangement. Because of measurement-induced deviations, the first fewmillimeters of propagation, where light is coupled into the structure, are shaded
in gray in (a)–(c). In (d), light is coupled into the other domain of the structure; thus there is no shaded part.

continuity equation is still fulfilled, leading to a vanishing deriva-
tive of the nonlocal charge.
In contrast to the locally and globally symmetric configura-

tions, the fully nonsymmetric system by definition is entirely
devoid of symmetry domains. Any arbitrary transformation can
be chosen and proven not to be a (local) symmetry transforma-
tion by showing a violation of the continuity equation. As a result,
globally symmetric, locally symmetric, and fully nonsymmetric
configurations may be distinguished by means of the different
forms of their corresponding nonlocal continuity equation:

Global symmetry: 𝜕zΣD = q𝜕D = 0

Local symmetry: 𝜕zΣD = q𝜕D

No symmetry: 𝜕zΣD ≠ q𝜕D

(7)

4. Results

To evaluate the continuity equation in the three different experi-
mental configurations, the nonlocal charges, their derivatives and
the nonlocal currents were subsequently calculated from the fit
wave function, symmetry transformation and couplings.

In case of global symmetry, the symmetry operation may be
described by the antidiagonal matrix shown on the top left of
Figure 4a. Because q𝜕D is identically zero, it is sufficient to
calculate the derivative of the nonlocal charge 𝜕zΣD from the ex-
perimental data and compare the result to the expected value of
zero. Our experiments and calculations show that the nonlocal
continuity equation is fulfilled and indeed vanishing for the glob-
ally symmetric configuration (Figure 4a). In fact, the deviation
of 𝜕zΣD from zero for global symmetry may serve as a measure
of the validity of our method to retrieve the wave function. Note
that the substantial deviations during the first few millimeters of
propagation are an artefact of themeasurementmethod. In order
to observe the intensity propagation pattern, we employed a fluo-
rescencemethod that converts a small fraction of the propagating
light into omnidirectional light. Although light was injected into
the respective waveguide by focusing a laser beam down to an ap-
propriate spot size, the nonunity overlap between focal spot and
mode field results in the presence of stray background light that
propagates through the sample and may likewise excite fluores-
cence whenever it traverses a waveguide, and thereby distort the
observed pattern. Since this systematic perturbation rapidly dis-
sipates, the subsequent evolution and the 𝜕z

∑
D extracted from

it coincides remarkably well with the expected behavior. In the
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further evolution, 𝜕zΣD is remarkably close to the expected value
of zero.
The locally symmetric system is divided into two inversion

symmetric domains—each containing three sites (see Figure 2b).
In Figure 4, the nonlocal current and derivative of the nonlocal
charge extracted from the experiment are shown for domain D1
(c) and D2 (d), with corresponding antidiagonal blocks in the the
used transformation matrix SD1,2 (see top left insets). Apart from
the first few millimeters, the components of the nonlocal conti-
nuity equation for the locally symmetric system are in good agree-
ment with the theoretical value as well as with each other. In the
second symmetry domain of the locally symmetric system, the ex-
trema of the experimentally determined derivative of the nonlocal
charge 𝜕zΣD appear slightly displaced and exaggerated compared
to the extracted nonlocal boundary current q𝜕D and the theoreti-
cal value. We attribute this feature to the method of flipping the
extracted wave function amplitude around zero, whichmay exag-
gerate the slope of the zero transitions, as well as to the naturally
much higher sensitivity of the derivative to small perturbations.
Considering the overall evolution measured, though, our results
provide clear evidence that the nonlocal continuity equation is
fulfilled in both local symmetry domains.
To demonstrate the violation of the nonlocal continuity equa-

tion in the fully nonsymmetric system, an exemplary inversion
operation of the first five sites (Figure 4b, top left) is used. The
experimentally observed evolution of the nonlocal boundary cur-
rent q𝜕D deviates drastically overall from the evolution of the
derivative of the nonlocal charge 𝜕zΣD. To explicitly prove that
the system is fully nonsymmetric, one would need to show a vio-
lation of the continuity equation for all possible transformations.
This was done for all possible inversion symmetries with an odd
number of sites (see Appendix).

5. Conclusions

In conclusion, we investigated three arrangements with
different gradations of symmetry—global, local, and fully
nonsymmetric—in laser-written waveguide arrays, employing
the nonlocal continuity approach. We thereby decoded the
presence of local symmetries in the Hamiltonian from the
generic dynamics of wavepackets in a discrete system. We were
able to verify the nonlocal continuity equation and to distin-
guish the three different classes of symmetry by means of their
characteristic version of the nonlocal continuity equation.
More generally, based on a novel generalized framework of

nonlocal continuity equations, in the present manuscript, we
provide the very first experimental evidence of how local sym-
metries are encoded into the dynamical evolution of a generic
wavefunction—although they are hidden from “direct” observa-

tion. Already this is an unprecedented achievement in approach-
ing the fundamental problem of local symmetries and, while not
providing a direct technological application at this early stage, it
represents the first step in a completely newdirection of future re-
search: Namely, to harness the knowledge of the hidden encoding
of local symmetries in the dynamical evolution in order to under-
stand and in turn manipulate it within a large variety of (discrete
or, as an extension, continuous) wave-mechanical systems. As
an example, an interesting setup where local symmetries are
inherently present is the random dimer model and its extended
versions.[22] A combination of the nonlocal continuity framework
and the spatiotemporal correlations revealed in the wavepacket
evolution with, for example, localization measures in (partially)
disordered systems yields an exciting direction of future research
beyond the fundamental demonstration of the present work.
Finally, while here demonstrated for the case of inversion

symmetry in 1D, the same formalism can be readily applied to
other symmetry transformations and extended to higher dimen-
sions. The subject offers various possibilities for further exper-
iments, for example, the engineering of perfect transmission
resonances[15] or Floquet states in periodically driven setups,[19,23]

as well as locally symmetric non-Hermitian systems.[19,24] Our re-
sults constitute the first step in investigating local symmetries in
photonic systems and harnessing them to shape the flow of light.

Appendix A: System Geometries

The globally inversion symmetric system consists of seven
waveguides (see Figure A1) that are symmetric about the fourth
waveguide. Three different separations d1−3 and thus three differ-
ent couplings c1−3 are present in the array. The geometry chosen
for the locally inversion symmetric system is shown in Figure A2.
The configuration consists of six waveguides (sites), which can be
divided into two symmetry domains both containing threewaveg-
uides. The nonsymmetric system is designed such that it cannot
be divided into connected symmetry domains at all, except for
trivial domains containing only two sites (i.e., a single coupling),
which can always be defined in any system. The geometry of the
arrangement is presented in Figure A3. Overall, it contains seven
waveguides separated by five different distances between 17 and
21 µm, constructed to maximize the difference in separation be-
tween three neighboring sites.
The three experimental setups have been fabricated, adjusting

the separation between the waveguides to the desired symme-
try. To avoid the phase modulations that go along with detuning
in the systems, the writing speed was kept constant during the
inscription within each array. For characterization purposes, di-
rectional couplers with the same separationswerewritten directly
next to the arrays. As the laser parametersmay be assumed to stay
constant during the inscription of the entire system, the couplers

Figure A1. Sketch of the globally inversion symmetric waveguide array. It consists of seven identical waveguides with three different distances d1−3
between them. In the center, the separation is larger than on both outer parts. The different distances lead to different couplings c1−3, which are weak
in the center and stronger at the edges.
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Figure A2. Sketch of the locally inversion symmetric waveguide array. It consists of two symmetry domains, each containing three waveguides. In the
entire system, there are only two different separations (couplings) d1,2 (c1,2). Within each domain, the waveguide separation is constant.

Figure A3. Sketch of the nonsymmetric waveguide array. It consists of seven waveguides and cannot be divided into nontrivial symmetry domains. Five
different separations between adjacent waveguides lead to five different couplings.

directly exhibit the couplings present in the array under investi-
gation.

Appendix B: Wave Function Evolution for Constant
Onsite Potential upon Single-Site Excitation

We here provide a proof of the 𝜋∕2 phase difference between
the time-dependent wavefunction amplitude on adjacent sites
for a tight-binding chain with constant onsite potential and arbi-
trary couplings, upon excitation of a single site. It is well known
that this system possesses the so-called chiral (also referred to
as particle-hole) symmetry.[25] In particular, for zero onsite po-
tential, the energy spectrum is symmetric around E = 0, that
is, for each eigenenergy E𝜈 , −E𝜈 is also an eigenenergy. Fur-
ther, the amplitudes of the corresponding (real) eigenfunctions
𝜙𝜈 at site n = 1,… , N are related as 𝜙−𝜈

n = (−1)n𝜙𝜈n, where the
eigenstates are labeled by 𝜈 = −N∕2,… ,−1, 1,… , N∕2 {𝜈 = −(N
− 1)∕2,… ,−1, 0, 1,… , (N − 1)∕2} for even {odd} number of
sites N. Note that, for odd N, there is a “zero” mode with E0 = 0
and eigenstate amplitude vanishing on even sites, 𝜙02m = 0 with
m = 1,… , (N − 1)∕2.
Upon a unit excitation |s⟩ on site s, so that ⟨n|s⟩ = 𝛿ns, the time-

dependent wavefunction at site n is expanded over the eigen-
modes as

𝜓n(t) = ⟨n|𝜓(t)⟩ = ⟨n|e−iHt|s⟩ (B1)

=
M∑

±𝜈=1
⟨n|e−iE𝜈 t|𝜙𝜈⟩ ⟨𝜙𝜈|s⟩ {+ ⟨n|e−iE0t|𝜙0⟩ ⟨𝜙0|s⟩} (B2)

=
M∑
𝜈=1

[e−iE𝜈 t + (−1)n+seiE𝜈 t]𝜙𝜈n𝜙
𝜈
s {+𝜙0n𝜙

0
s } (B3)

where M = N
2
{N−1

2
} for even {odd} N and the term {+⋯} is

added only for oddN. In the last step, the properties of the ampli-
tudes due to chiral symmetry, stated above, are taken into account
(for zero onsite potential). This yields a real amplitude

𝜓n(t) =
M∑
𝜈=1

2 cos(E𝜈 t)𝜙
𝜈
n𝜙

𝜈
s {+𝜙0n𝜙

0
s } ∈ ℝ (B4)

for even n + s (that is, n and s both even or both odd), and an
imaginary amplitude

𝜓n(t) = −
M∑
𝜈=1

2i sin(E𝜈 t)𝜙
𝜈
n𝜙

𝜈
s ∈ iℝ (B5)

for odd n + s (that is, n or s even and the other odd). Thus, for a
given input site s, the amplitudes on any adjacent sites n, n + 1
will have phase difference 𝜋∕2,

𝜓n+1(t)
𝜓n(t)

= ±i
|𝜓n+1(t)|
|𝜓n(t)| = e±

𝜋
2
|𝜓n+1(t)|
|𝜓n(t)| (B6)

Clearly, this remains true also for a nonzero constant onsite po-
tential V , for which the above wavefunction 𝜓n(t) is simply mul-
tiplied by an overall dynamical phase e−iVt.
Naturally, in the experiment, slight deviations from the as-

sumed tight-binding model with constant onsite potential are
present and affect the amplitudes as well as the phases of the
wave function. However, due to the high precision and repro-
ducibility of the waveguide fabrication process,[20] these detun-
ings between the propagation constants of the individual sites
are so small that they are hardly recognizable in the overall ex-
perimental evolution.

Appendix C: Wave Function Retrieval from
Intensity Distribution

In order to extract the generally complex amplitudes from the in-
tensity distribution along the propagation, one can use the fact
that the phase difference between adjacent sites is given by −𝜋∕2
for an initial single-site excitation, as long as the assumed theo-
retical model with the applied approximations is valid. Along the
propagation, the phase at any site is only changing by 𝜋, which
corresponds to a change from positive to negative values or vice
versa. This zero crossing along the propagation only occurs at
zero intensity. In the investigated systems, every zero in intensity
is assumed to be zero crossing in amplitude, which is justified by
tight binding simulations. They confirm that in the particular sys-
tems, the amplitudes do not only touch but indeed cross zero. In

Laser Photonics Rev. 2020, 14, 1900222 1900222 (6 of 9) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

5.0 observation of local symmetry in a photonic system 61



www.advancedsciencenews.com www.lpr-journal.org

Figure C1. Example of the retrieval of the full fit wave function from the absolute amplitude at site two of the locally symmetric system. a) The minima
close to zero of the absolute value of the amplitude along the propagation are found. They are indicated by a red cross. b) The amplitude is flipped
at these minima and fit with an eighth-order polynomial. A comparison to a tight binding simulation of the system using the MATLAB ode45 solver is
given.

the experiment, there is an offset to the intensity. To extract the
zero crossings, all minima close to zero are taken into account.
The amplitudes are flipped at everyminimumclose to zero (ex-

emplarily shown in Figure C1). Then the data is fit with a high-
order polynomial, because the derivative, which is needed for the
continuity equations, can be more easily obtained from a smooth
function than from the raw data. Finally, the known initial con-
dition in phase is applied to the fit function at one centimeter of
propagation, where there is already a significant amplitude value
in each waveguide but still no zero crossing expected to happen.
The resulting fit wave function for all sites of the locally symmet-
ric system can be seen in Figure 3a.

Appendix D: Nonlocal Boundary Current

In a domain that exhibits inversion symmetry in our 1D tight-
binding Schrödinger systemwith equal on-site potential that con-
sists ofN sites (indices from a to b in any larger array), the bound-
ary currents are given by

q𝜕D = qa,a−1 + qb,b+1 = − i
(
𝜓∗
a ca,a−1𝜓a−1 − 𝜓

∗
a−1c

∗
a,a−1𝜓ā

)

− i
(
𝜓∗
b cb,b+1𝜓b+1 − 𝜓

∗
b+1c

∗
b,b+1𝜓b̄

)

= − i
(
𝜓∗
a cb,b+1𝜓b+1 − 𝜓∗

b+1c
∗
a,a−1𝜓b

)

− i
(
𝜓∗
b ca,a−1𝜓a−1 − 𝜓∗

b+1c
∗
b,b+1𝜓a

)

(D1)

Assuming real couplings cn,m = c∗n,m:

q𝜕D = −i
(
cb,b+1(𝜓

∗
a𝜓b+1 − 𝜓∗

b+1𝜓a) − ca,a−1(𝜓
∗
a−1𝜓b − 𝜓∗

b𝜓a−1)
)
(D2)

Depending on the phase difference between the site amplitudes
(that is always 𝜋

2
between neighboring sites), there are two differ-

ent possibilities as follows.

D.1. Odd Number of Sites

For an odd number of sites in one symmetry domain, the phase
difference between 𝜓a−1 and 𝜓b and also the phase difference be-
tween 𝜓a and 𝜓b+1 is always an odd multiple of 𝜋

2
, leading to

𝜓∗
a−1𝜓b = |𝜓b||𝜓a−1|ei

2z−1
2 𝜋 z ∈ ℤ (D3)

𝜓a−1𝜓
∗
b = (𝜓∗

a−1𝜓b)
∗ = |𝜓b||𝜓a−1|e−i

2z−1
2 𝜋 (D4)

As a result, equation D2 reduces to

q𝜕D = − icb,b+1(|𝜓a||𝜓b+1|(ei
2z−1
2 𝜋 − e−i

2z−1
2 𝜋))

− ica,a−1(|𝜓b||𝜓a−1|(ei
2y−1
2 𝜋 − e−i

2y−1
2 𝜋))

= 2cb,b+1
(
|𝜓a||𝜓b+1| sin

(2z − 1
2

𝜋
))

− 2ca,a−1

(
|𝜓b||𝜓a−1|

(
sin

(
2y − 1
2

𝜋
)))

= ± 2
(
cb,b+1

(|𝜓a||𝜓b+1|
)
∓ ca,a−1

(|𝜓b||𝜓a−1|
))

with sign(s) depending on z, y ∈ ℤ

(D5)

D.2. Even Number of Sites

For an even number of sites in one symmetry domain, the phase
difference between 𝜓a−1 and 𝜓b and also the phase difference be-
tween 𝜓a and 𝜓b+1 is always an even multiple of 𝜋

2
, leading to
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𝜓∗
a−1𝜓b = |𝜓b||𝜓a−1|eiz𝜋 z ∈ ℤ (D6)

𝜓a−1𝜓
∗
b = (𝜓∗

a−1𝜓b)
∗ = |𝜓b||𝜓a−1|e−iz𝜋 (D7)

As a result, equation D2 reduces to

q𝜕D = −icb,b+1(|𝜓a||𝜓b+1|(eiz𝜋 − e−iz𝜋))

−ica,a−1(|𝜓b||𝜓a−1|(eiy𝜋 − e−iy𝜋))

= 2
(
cb,b+1

(|𝜓a||𝜓b+1| sin (z𝜋)
)

− ca,a−1
(|𝜓b||𝜓a−1|(sin (y𝜋))

))
= 0, z,… y ∈ ℤ (D8)

Appendix E: Nonsymmetric System

To explicitly prove that the system is fully nonsymmetric, we
show in Figure E1 the violation of the continuity equation for all

Figure E1. Measurement-based q𝜕D and 𝜕zΣD for an assumed inversion symmetry of the nine possible different domains with an odd number of sites.
Applied transformations given by inset matrices.
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domains with an odd number of sites by comparing themeasure-
ment based quantities q𝜕D and 𝜕zΣD for an assumed inversion
symmetry.
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We propose a real-space approach explaining and controlling the occurrence of edge-localized gap states
between the spectral quasibands of binary tight binding chains with deterministic aperiodic long-range order. The
framework is applied to the Fibonacci, Thue-Morse, and Rudin-Shapiro chains, representing different structural
classes. Our approach is based on an analysis of the eigenstates at weak intersite coupling, where they are
shown to generically localize on locally reflection-symmetric substructures, which we call local resonators. A
perturbation theoretical treatment demonstrates the local symmetries of the eigenstates. Depending on the degree
of spatial complexity of the chain, the proposed local resonator picture can be used to predict the occurrence of
gap-edge states even for stronger couplings. Moreover, we connect the localization behavior of a given eigenstate
to its energy, thus providing a quantitative connection between the real-space structure of the chain and its
eigenvalue spectrum. This allows for a deeper understanding, based on local symmetries, of how the energy
spectra of binary chains are formed. The insights gained allow for a systematic analysis of aperiodic binary
chains and offers a pathway to control structurally induced edge states.

DOI: 10.1103/PhysRevB.99.214201

I. INTRODUCTION

Aperiodic systems with deterministic long-range order
have long been a subject of intense study, in the endeavor
to systematically bridge the gap between crystalline period-
icity and complete disorder [1]. While providing a powerful
concept in theoretically modeling the transition to disorder,
aperiodic order has become an established property of matter
as well. A cornerstone of this was the actual observation of
“quasicrystals”—nonperiodic but space-filling structures sur-
passing the crystallographic restriction theorem—by Shecht-
man [2]. In nature quasiperiodicity occurs, e.g., in macro-
scopic constellations such as phyllotaxis [1,3]. Aperiodically
ordered systems even play an important role in material
science and technology [1,4]. Owing to their long-range order,
they can display interesting physical properties such as a low
electrical and thermal conductance [1,5], low friction [5,6],
and high hardness [6]. Specific quasicrystalline systems have
been shown to enhance solar cells [7], serve as a catalyst [8]
and could allow for superconductivity [9,10].

A general characteristic of aperiodic lattices is the cluster-
ing of Hamiltonian eigenvalues into so-called “quasibands”
resembling Bloch bands of periodic systems [11]. The corre-
sponding eigenstates generally neither extend homogeneously
across the system like Bloch states in regular crystals, nor
do they decay exponentially like in disordered systems, and
are therefore dubbed “critical” [1,12–15]. In specific cases,

*mroentge@physnet.uni-hamburg.de

quasibands have been shown to originate from the localiza-
tion of different eigenstates on similar repeated substructures
in the system, yielding similar eigenenergies [16–20]. The
formation of quasibands typically becomes less distinct with
increasing spatial complexity, which in turn can be classi-
fied by the structure’s spatial Fourier transform—accordingly
altering from pointlike to singular continuous to absolutely
continuous [1,21–23]. The Fourier spectrum can further be
connected to the system’s integrated density of states by the
“gap labeling theorem” [24–28], which assigns characteristic
integers to the gaps between quasibands.

As ordered lattice systems are truncated in space into
finite setups, they may support the occurrence of eigenstates
localized along their edges, energetically lying within spec-
tral gaps. In periodic systems, such edge states (or “surface
states” [29]) may or may not appear depending on how
the underlying translation symmetry is broken by the lattice
truncation, that is, where in the unit cell the system is cut
off [30]. In various types of periodic setups, edge states can
also be given a topological origin in terms of nontrivially
valued invariants (winding numbers) assigned to the neighbor-
ing Bloch bands [31]. This has boosted an intensive research
activity in the field of topological insulators [32–34] and the
quest for interesting novel materials and applications [35],
including, e.g., robust lasing via topological edge states in
periodic photonic lattices [36].

Edge states may also be present between quasibands in
aperiodic systems, as has been shown for binary 1D sys-
tems [37–41] and recently demonstrated for 2D photonic
quasiperiodic tilings [18]. Notably, also here a topological

2469-9950/2019/99(21)/214201(24) 214201-1 ©2019 American Physical Society
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character can be assigned to the edge states in correspondence
to the system’s bulk properties. Indeed, a position-space based
topological invariant, the so-called Bott index [42], can be
applied to aperiodically structured [18] or even amorphous
systems [43]. Moreover, for 1D quasiperiodic systems, the
winding of edge state eigenvalues across spectral gaps coin-
cide with the gap labels mentioned above [24,44–46], which
have recently also been measured in scattering [47] and
diffraction [48] experiments. Remarkably, edge modes occur
also as scattering resonances in open systems with different
types of deterministic aperiodic order incorporating long-
range couplings between lattice constituents, as demonstrated
very recently in terms of the eigenmodes of full vectorial
Green matrices [49].

The ubiquitous presence of edge states in aperiodic sys-
tems indicates that it derives primarily from the underlying ge-
ometrical structure and not from model-specific assumptions.
Departing from periodicity, however, there is no translation
symmetry whose breaking (at the boundary) would provide
a mechanism for edge state formation. On the other hand,
aperiodic systems are imbued with local symmetries, that is,
different spatially symmetric substructures are simultaneously
present in the composite system which possesses many differ-
ent domains of local symmetries. Indeed, local “patterns” are
known to occur repeatedly in deterministic aperiodic systems,
as expressed by Conway’s theorem [50]. In the specific case
of 1D binary lattices, local reflection symmetry is abundantly
present and follows, at each scale, a spatial distribution closely
linked to the underlying aperiodic potential sequence [51].
The encoding of such local symmetries into generic wave
excitations have recently been described within a theoreti-
cal framework of symmetry-adapted nonlocal currents [52],
which obey generalized continuity equations [52–55] and
whose stationary form allows for a generalization of the parity
and Bloch theorems to locally restricted symmetries [56] as
well as a classification of perfect transmission [57]. In the
context of finite, aperiodically ordered setups, an appealing
question is whether a real-space picture for the formation—
and thereby control—of edge states can be brought into
connection with local symmetries.

In the present work, we propose an intuitive real-space pic-
ture of the formation of quasibands and edge states in binary
aperiodic tight-binding chains. The approach is based on the
analysis of eigenstate profiles in the limit of weak intersite
coupling. In this regime, eigenstates generically fragment,
i.e., have non-negligible amplitudes only on a small number
of sites, as we show by means of a perturbation theoretical
treatment. The amplitudes on these fragments are in almost
all cases locally symmetric and can be identified as local
resonator modes (LRM), i.e., eigenmodes of local resonators
embedded into the full chain. Here, a resonator denotes a
substructure that can confine, at certain energies, the wave
function within its interior. The LRMs can be used to classify
states, and those belonging to quasibands are composed of
repeated LRMs hosted by resonators within the bulk, while
edge states are composed of unique LRMs occurring on the
edge. We further investigate the reasons for the formation of
quasibands by linking the energy ε of a state to that of its
constituting LRMs, where the energy of an LRM is defined
as its energy in the corresponding isolated resonator. From

this finding, we see that the multiple occurrence of identical
resonator structures automatically leads to the formation of
quasibands by their capability of hosting identical (and thus
degenerate) LRMs. We further use this energetical insight
to move a given edge state into a quasiband by perform-
ing tailored changes to the corresponding resonators on the
edge. The inference of those properties to moderate intersite
coupling depends on the type of aperiodic order used in
the model. We here apply the approach to the prominent
representatives of three main classes of structural complexity:
Fibonacci, Thue-Morse, and Rudin-Shapiro chains, featuring
pointlike, singular continuous, and purely singular spatial
Fourier spectra, respectively.

The paper is organized as follows. In Sec. II, we introduce
our setup and show examples of quasibands and edge states
in Fibonacci chains. We then develop our approach to edge
states based on locally symmetric resonators and apply it
to Fibonacci chains in Sec. III, to Thue-Morse chains in
Sec. IV A and to Rudin-Shapiro chains in Sec. IV B. In Sec. V,
we comment on the generality of our framework and on
the connection to related work. We conclude our paper and
give an outlook in Sec. VI. A perturbative treatment demon-
strating the localization onto reflection-symmetric resonators
is provided in the Appendix, together with further technical
details including proofs of major statements, complementary
explanations, and further comments.

II. PROTOTYPE QUASIPERIODIC ORDER:
THE TIGHT-BINDING FIBONACCI CHAIN

We consider a finite one-dimensional chain of N sites with
real next-neighbor hoppings hm,n described by the Hamilto-
nian

H =
∑

n

vn|n〉〈n| +
∑

|m−n|=1

hm,n|m〉〈n|, (1)

where vn is the onsite potential of site n. In the basis of single-
site excitations |n〉, the above Hamiltonian H can be written
as a tridiagonal matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1 h1,2 0 . . . 0

h1,2 v2 h2,3
. . .

...

0 h2,3
. . .

. . . 0
...

. . .
. . .

. . . hN−1,N

0 . . . 0 hN−1,N vN ,

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Such a tight-binding chain is used in a plethora of in-
teresting model systems, examples including the Aubry-
Andre [58] model relevant in the study of localization [59]
and the Su-Schrieffer-Heeger model, a simple prototypical
chain supporting a topological phase [60]. It also effectively
describes one-dimensional arrays of evanescently coupled
waveguides [61,62]. We here fix the hoppings to a uniform
value h and restrict the onsite elements to be “binary,” that is,
the sites are of two possible types A and B, and the vn take on
corresponding values vA and vB, with the contrast defined as

c =
∣∣∣∣vA − vB

h

∣∣∣∣. (3)
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Without loss of generality we will set vA ≡ 0 and vB ≡ v

throughout, having a single control parameter c = |v/h| for
a given chain.

In the following, we will investigate the spatial profiles
of the eigenvectors |φν〉 = ∑

n φν
n |n〉 of H in relation to their

eigenvalues εν , given by

H |φν〉 = εν |φν〉, (4)

for chains with aperiodic order. Note that H represents a
generic finite tight-binding chain; the choice h < 0 corre-
sponds, e.g., to the kinetic energy of electrons on a lattice
with onsite potential vn, while h > 0 (made here) can be used
to model the coupling of photonic waveguides [61,62] with
propagation constants vn. Our analysis remains qualitatively
unaffected by this choice.

We start by presenting the eigenstates and spectral prop-
erties of a finite binary chain following the Fibonacci se-
quence [22], a prototypical case of quasiperiodic order. This
will serve as an initial point motivating the development of a
local resonator approach at high contrast in the next section.
Starting with A, the sequence is constructed by repeatedly
applying the inflation rule A → AB, B → A, resulting in F =
ABAABABAAB . . . This sequence is then mapped onto the
onsite elements vn of the tight-binding chain. The spectrum
and eigenvectors of this chain are shown in Fig. 1 for a
moderate contrast of c = 1.5 and N = 144 sites. Despite
the lack of periodicity, the eigenvalues cluster into so-called
quasibands, owing to the long-range order present in the
Fibonacci chain [63], and the spectrum attains a self-similar
structure of quasibands and gaps in the N → ∞ limit. For
presentation reasons, we have here chosen N large enough
to anticipate this spectral feature, though small enough to
visually discern the spatial characteristics of the eigenmodes.

The quasibands are occupied by bulk eigenmodes that ex-
tend along the interior of the chain. Those are known as “criti-
cal states,” with a spatial profile lying between the exponential
decay of modes in a randomly disordered chain and uniformly
extending Bloch eigenmodes in periodic chains[13–15]. Such
modes have recently been shown to consist of locally res-
onating patterns (i.e., characteristic sequences of amplitudes)
which occur on repeating segments of a quasiperiodic struc-
tures and are characteristic for a given quasiband [17,19,64].
This is particularly visible for the bulk modes of the upper-
most quasiband in Fig. 1. A close inspection reveals that the
bulk mode profiles tend to localize into locally reflection-
symmetric peaks (see black subregions of high amplitude for
a given mode). Those in turn follow the distribution of local
symmetry axes (or centers of “palindromes” [65]) which are
hierarchically present in the Fibonacci chain [51], as seen by
comparison with the bar plot on the top. Each bar shows the
maximal size Sn of a continuous domain of reflection sym-
metry centered at position n, where n can refer here to sites
(n = 1, 2, . . . ) or to links between sites (n = 1.5, 2.5, . . . ).
For instance, as the first few characters of F are

6 sites︷ ︸︸ ︷
ABAABA︸︷︷︸

3 sites

BAAB,

we have S3.5 = 6 and S5 = 3.

20 40 60 80 100 120 1400

max

0

FIG. 1. (Bottom) Eigenstate map of a N = 144-site Fibonacci
chain at contrast c = |v/h| = 1.5 (hopping h = 0.1): each horizontal
stripe shows

√|φν
n | at sites n for an eigenstate φν (ν = 1, 2, . . . , N).

The greyscale map is chosen such that it is possible to simultaneously
observe the spatial features of edge as well as those of bulk states.
Superimposed are the eigenvalues εν (orange circles) in arbitrary
units, with indicated origin ε = 0. Edge modes are distinguishable
as partially white stripes, with the most pronounced ones indicated
by black horizontal bars on the left. (Middle) Potential vn represented
by a stripe with white (black) boxes for vn = vA = 0 (vn = vB = v).
(Top) Distribution of local reflection symmerty domains, represented
by maximal domain size Sn centered at position n, as explained in the
text.

214201-3

5.0 local symmetry theory of resonator structures 67



M. RÖNTGEN et al. PHYSICAL REVIEW B 99, 214201 (2019)

20 40 60 80 100 120 140

FIG. 2. Spectrum in arbitrary units (orange) of a N = 144-site
Fibonacci chain for varying phason ϕ in Eq. (5) between the values
(chosen for presentation reasons) ϕ1 = 2.4097 and ϕ2 = 5.5513 for
contrast c = 1.5, superimposed on the variation of the onsite poten-
tial vn (vA: white, vB: light gray). Dark gray circles indicate local flips
AB ↔ BA in the chain. The inset shows a magnified view on one
representative flip. All together, there are 71 such flips between ϕ1

and ϕ2. The flips indicated by green circles create/annihilate (when
close to the edge) or energetically shift (when further from the edge)
the gap state in the purple box.

Within the gaps between quasibands there may appear
spectrally isolated modes, reminiscent of gap modes localized
on defects within a periodic lattice [66,67]. For the example
given in Fig. 1, i.e., an unperturbed but finite Fibonacci chain,
the gap modes are known [37,68,69] to be localized at the
edges, decaying exponentially into the bulk.

The control of edge states by local changes in the under-
lying potential sequence is a central aspect of this work. Our
approach is that, due to their localization, the occurrence and
spectral position of edge states can be influenced by local
modifications on the corresponding edge of the aperiodic lat-
tice. We demonstrate the feasibility of this approach in Fig. 2
by using the following representation [47] of the Fibonacci
potential sequence:

vn = vA + vB

2
+ vA − vB

2
signχn = v

2
(1 − signχn), (5)

χn(ϕ) = cos(2πτn + ϕ + πτ ) − cos(πτ ), (6)

where τ = 2/(1 + √
5) is the inverse golden mean and the

integer site index n runs from 1 to N . By continuously
varying the so-called “phason” ϕ, localized flips AB ↔ BA are
induced at discrete values of ϕ, forming a two-dimensional
pattern in the (n, ϕ) plane, see Fig. 2. The finite chain of
length N constitutes a different segment (or “factor”) of the
infinite Fibonacci sequence after each flip [47]. This allows
to investigate different Fibonacci-like configurations while
maintaining a constant length N . In Fig. 2, we visualize
the effect of these flips on the energy spectrum, shown in
orange. As one can see, the gap states in the purple rectangle,
which are localized on the right edge (not shown here), are
influenced only by flips acting on this edge, marked by green
circles. From bottom to top, the green flips (i) create the edge
state (ii) and (iii) modify its energy and (iv) finally annihilate
it. Note that in general for processes of type (ii) and (iii), the
energetical change accompanying the change of the edge is
stronger for a flip near to the edge than for a flip more distant
to the edge.

The occurrence of such edge-localized gap states in a
finite 1D quasiperiodic potential was recently very elegantly
described within a scattering setting [47,48] in a continuous
system as a consequence of a resonance condition when
varying the phason ϕ. At the same time, the connection of the
winding of ϕ to invariant integers labeling the spectral gaps
of the quasiperiodic structure through the so-called “gap la-
beling” theorem [70], renders the nature of the 1D edge states
topological [46]. On the other hand, the flip-induced edge state
creation/annihilation demonstrated in Fig. 2 suggests that
their origin could also be explained by viewing chain edges as
a generalized type of “defects” to the quasiperiodic long-range
order. In the following, we will develop this idea in terms of
the prototype Fibonacci chain. Our aim is to provide a simple
and unifying real-space picture for the appearance of edge
states in the energy gaps of nonperiodic structures. Contrary
to topological methods, as employed for one-dimensional sys-
tems in general e.g., in Refs. [24,44–48,71–75], our approach
does not rely on topology, but aims at connecting the real-
space structure of deterministic aperiodic binary chains and
their local symmetries to their quasibands and edge states.

III. EDGE MODES FROM TRUNCATED LOCAL
RESONATORS

The analysis of eigenstates at high contrast c [see Eq. (3)]
is at the heart of our approach, revealing structural infor-
mation that would remain hidden at lower contrast. Once
this information is retrieved, we leverage it to develop a
generic framework for the understanding and manipulation of
quasibands and edge states in binary tight-binding chains.

In the following, we will focus on a Fibonacci chain,
choosing a relatively small size for easier treatment and visu-
alization. The slight modifications needed for the treatment of
longer chains are commented on in Appendix E. We split the
presentation into three subsections, covering the concept of
fragmentation (Sec. III A), local resonator modes (Sec. III B),
the structural control of edge states (Sec. III C), and the
behavior at low contrast (Sec. III D).

A. Eigenstate fragmentation from degenerate
perturbation theory

Our starting point is an analysis of eigenstates at high
contrast. Those are shown in Fig. 3(a) for a 9th generation
Fibonacci chain (N = 55 sites) with relatively high contrast
c = 6. We see that each eigenstate is pinned to a small number
of sites where it has non-negligible amplitude, practically
vanishing on the remaining sites. This is quite different from
the states at low contrast (like in Fig. 1) which are smeared out
along the whole chain. An impression of how the transition
between those two regimes takes place is given in Fig. 3(b),
showing the amplitudes of a bulk (φ55) and edge (φ21) state
for varying contrast. When increasing the contrast, the spatial
profile of the bulk state becomes gradually fragmented: the
amplitudes on A sites become suppressed, and a characteristic
remnant of the initial distribution appears on a subset of B
sites. Fragmentation with increasing contrast c also occurs for
the edge state, with the difference that here the amplitudes
on B sites become suppressed, and that there is only a single
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min max0
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10-10
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FIG. 3. (a) Eigenstate map, potential, and local symmerty distri-
bution (bottom to top) like in Fig. 1 but for an N = 55-site Fibonacci
chain of contrast c = 6, and with density |φν

n |2 color-coded by the
signs of φν

n shown in the eigenstate map. Horizontal lines separate
the eigenstates into groups according to quasibands and gap states,
with corresponding characteristic local resonator modes (LRMs)
visualized on the right. The green box indicates the correspondence
of the state φ53 to the LRM A|BAB|A (see text). The three edge modes
of the setup are marked by colored circles. (b) Amplitudes of states
φ55 (extended in the bulk) and φ21 (localized at the left edge) for
different contrast values. (c) Absolute values of amplitudes of the
three edge states φ13, φ21, and φ22 with corresponding localization
lengths 0.37, 0.43, and 0.49, obtained by fitting a line (orange) to
local maxima (orange dots) on a logarithmic scale.

fragment remaining; in the present case the A site on the left
edge.

The fragmentation at high contrast can be understood by
means of a quantitative perturbation-theoretical treatment pro-
vided in Appendix C, applying to generic binary tight-binding
chains. In the following, we outline the main steps of this
analysis. In order to apply perturbation theory, the Hamil-
tonian is written as H0 + h · HI , where H0 solely contains

the diagonal part of H , i.e., isolated sites, while HI has 1’s
only on the first sub- and superdiagonal. For convenience, we
then rescale H ′ = H/v = H ′

0 + 1/c · HI , changing only the
energies εν → εν/v, but leaving all eigenstates unaffected.
For large contrast c, HI then acts as perturbation to H0, and
we can expand an eigenstate |φ〉(i) (1 � i � N ) of H ∈ RN×N

as well as its energy ε (i) as

|φ(i)〉 = |φ(i)〉0 + λ|φ(i)〉1 + λ2|φ(i)〉2 + . . . , (7)

ε (i) = ε
(i)
0 + λε

(i)
1 + λ2ε

(i)
2 + . . . , (8)

which, inserted into the Schrödinger equation, yields the
perturbation series. Due to the binary nature of H0, the only
two eigenvalues of H0, 0 and 1, are highly degenerate. In
particular, before any higher-order state correction can be
computed, the so-called “correct zeroth-order states” [76,77]

|φ(i)〉0 = lim
λ→0

|φ(i)〉 (9)

must be found. Although these are superpositions of the
known eigenstates of H0, the corresponding expansion co-
efficients are in general unknown at the beginning of the
treatment [76,77]. In degenerate perturbation theory [76,77],
the correct zeroth-order states can be found by diagonalizing a
series of recursively [77] defined matrices H1,H2, . . . More
precisely, the matrices Hn are constructed from the pertur-
bation series up to nth order by demanding that the correct
zeroth-order states fulfill certain consistency requirements.
One then has to solve

0〈φ(i)|Hn|φ( j)〉0 = δi, jε
(i)
n , ∀ i, j ∈ gn (10)

up to the order n in which all degeneracies are lifted, where
|φ(gn )〉 is the set of states which are degenerate up to nth order.
Now, contrary to simple examples where the degeneracy is
resolved in first order (where H1 is simply given by HI ), the
degeneracies of binary chains are usually completely resolved
only in higher orders. As a result, the procedure of obtaining
the correct zeroth-order states is rather complex [76,77].

In Appendix C, we explicitly follow this procedure of find-
ing the correct zeroth-order states up to third order and inves-
tigate the first-order state corrections as well. This procedure
provides a high degree of understanding of how binary chains,
their local symmetries, the fragmentation of eigenstates as
well as their symmetries are connected. In particular, it is
shown that each |φ(i)〉0 (1 � i � N ), with N being the length
of the chain, has nonvanishing amplitudes either only on either
A-sites or only on B sites (see statement 2 of Appendix C).
Thus we can assign each |φ(i)〉0 a type T ∈ {A, B}, depending
on the sites on which it has nonvanishing amplitudes. The
spatial distribution of the nonvanishing amplitudes can be
further specified by introducing the concept of maximally
extended blocks of potentials of the same kind (MEBPS). An
example for such MEBPS are

1

A B
1

2

AA B
1

1

A B
1

3

AAA

where MEBPS of type A (B) are marked by over (under)
brackets, with respective length denoted by integers. An
important conclusion of the analysis is that a given correct
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zeroth-order state |φ(i)〉0 of type T can have nonvanishing
amplitude on MEBPS of type T and of individual length
l1, l2, . . . , ln only if there exist integers 1 � k j � l j, 1 � j �
n such that (see statement 2 of Appendix C)

k1

l1 + 1
= k2

l2 + 1
= · · · = kn

ln + 1
.

As one can easily show, for l j � 6, this is possible only if all
l j are identical or if all l j are odd. As a consequence, for the
Fibonacci setup, where l j � 2, any |φ(i)〉0 can simultaneously
have nonvanishing amplitudes only on MEBPS of length 1 or
of length 2, but not on both. As a result, any state |φ(i)〉0 has
vanishing amplitudes on a large number of sites, ultimately
leading to its fragmentation. A closer evaluation reveals that
this fragmentation usually persists under inclusion of the
first-order state corrections |φ(i)〉1: if |φ(i)〉0 has nonvanish-
ing amplitudes only on A (B) sites, then |φ(i)〉1 will have
nonvanishing amplitudes only on a small number of B (A)
sites. As, at high contrast, |φ(i)〉 ≈ |φ(i)〉0 + |φ(i)〉1, our per-
turbation theoretical treatment thus explains the origin of the
fragmentation of eigenstates in binary tight-binding chains in
a rigorous quantitative way. Compared to the renormalization
group approach which has been used [68,78–81] to explain
the fractal nature of the spectrum of the Fibonacci chain and
which needs to be tailored to the system of interest, we stress
that our perturbation theoretical approach is much broader and
can be used to treat all binary chains where fragmentation oc-
curs. We demonstrate this generality by further analyzing the
spatial details of those fragmented states and connecting them
to the local symmetries of the chain and their environment
(neighboring sites) in Appendix C (see statements 3 and 4 as
well as following text).

B. Local resonator modes and local symmetry

Relying on the above perturbation theoretical results, we
now promote an intuitive picture for the cause of fragmen-
tation, where a chain is viewed as a collection of local res-
onators. The eigenvalues of this chain are then approximately
given by the union of the eigenvalues of the individual res-
onators. As a consequence, each eigenvector of the full chain
with energy ε then has very small amplitude on resonators
whose energy differs strongly from ε. A local resonator is here
a discrete substructure which, at high contrast, confines the
wavefunction within its interior for a certain eigenenergy. The
simplest case consists of a three-site structure B|A|B, where
the vertical lines demarcate the resonator “cavity” (the inner
part A) from its “walls” (the outer parts B). The resonator
character of this particular substructure is analyzed in more
detail in Appendix A. Two such resonators can be combined to
form a double resonator B|ABA|B, formed by overlapping one
wall of each B|A|B. Note that, for a substructure to function
as a local resonator, either (i) the resonator wall and its next-
neighboring site in the cavity must be of different type or (ii)
the resonator wall must coincide with one of the edges of the
chain (|X or X |, with X = A, B).

We now link the resonator concept to the eigenstate frag-
mentation seen in Fig. 3(a). As an example, each fragment of
φ55 [indicated by orange rectangles in Fig. 3(b)] is localized
on the B’s of the local resonator A|BAB|A. We denote this fact

as A|BAB|A, which represents an eigenmode of the isolated
resonator A|BAB|A and which we will call a local resonator
mode (LRM). The overlines here indicate sites with equally
signed and relatively much higher amplitude than nonover-
lined sites; see Appendix A. At high contrast, the state φ55

can thus be seen as a collection of identical, nonoverlapping
LRMs A|BAB|A (one on each fragment) with negligible am-
plitudes on the parts in between. In the same manner, each
eigenstate shown in Fig. 3(a) is composed of identical LRMs.
In particular, we notice that all states in a given quasiband
are characterized by the same resonator mode, different from
that of other quasibands. This is shown on the right side of
the figure, where LRMs are depicted schematically. Here,
overlines and underlines in an LRM such as A|BAB|A denote
amplitudes of opposite sign. Contrary to the bulk states of
quasibands, edge states feature unique resonator modes which
are not repeated elsewhere in the chain, with the underlying
resonators located at (one of) the chain edges. We thereby
distinguish these two types of LRMs as bulk and edge LRMs
(b-LRMs and e-LRMs, respectively).

The fact that each quasiband is characterized by a single
resonator mode can be understood as follows. If a given eigen-
state |φ〉 of energy ε is composed of K nonoverlapping LRMs
such that |φ〉 has very low amplitude on the next-neighboring
sites of the corresponding resonators, then each of the energies
εk=1,2,...,K of those LRMs (that is, their eigenenergies in the
isolated underlying local resonator) must fulfill εk ≈ ε. This
statement is proven rigorously in Appendix D. Now, applying
the perturbative treatment of Appendix C to the chain of Fig. 3
shows that for any two LRMs to be energetically nearly degen-
erate they must be identical. Thus each quasiband—having
quasidegenerate modes at high contrast—is characterized by
a single LRM.

A similar reasoning explains why bulk states of quasibands
are more spatially extended compared to edge states lying
in spectral gaps. Indeed, due to the quasiperiodicity of the
Fibonacci chain, any local resonator (that is, a binary sub-
structure) in the bulk occurs repeatedly (though not periodi-
cally) along the chain—specifically, at spacings smaller than
double its size. This is a general result known as Conway’s
theorem [50]. Thus a b-LRM hosted by a given local resonator
will also be correspondingly repeated along the chain. If the
b-LRM has energy εk , then a state with energy ε ≈ εk is
allowed to simultaneously occupy all copies of this b-LRM,
and is accordingly spatially extended. Edge states, on the other
hand, consisting of e-LRMs at high contrast, correspond to
local resonators induced by the presence of an edge, which
breaks the quasiperiodicity. Due to this truncation at the edge
[e.g., of the type · · · | · · · X | with X = A, B at the right edge,
compare Fig. 3(a)], the e-LRM generally does not match the
energy of any b-LRM, and therefore cannot occupy multiple
local resonators in the bulk: The eigenstate is confined to the
edge, lying energetically isolated in a gap. This is visualized
by the marked edge states in Fig. 3(a).

A remarkable observation in Fig. 3(a) is that each local
resonator hosting a b-LRM is reflection symmetric, such that
all isolated b-LRMs have definite parity; see schematic on
the right. This means that, at high contrast, the fragments
(occupied local resonators) of quasiband eigenstates feature,
to a very good approximation, local parity with respect to
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local reflection symmetries of the chain. The positions and
sizes of all such local symmetries are shown in the top panel
of Fig. 3(a). An example is given by the state φ53 which
is locally symmetric around, e. g., the position n = 48, and
corresponds to the b-LRM A|BAB|A, as indicated by the
green boxes. This behavior is predicted by the degenerate-
perturbative treatment of Appendix C. There, we rigorously
show that each |φ(i)〉0 is locally parity symmetric individually
on each MEBPS (see statement 1 of Appendix C), which
itself is by definition a locally symmetric structure. While an
MEBPS usually comprises only a few sites, we explicitly give
examples for cases where |φ(i)〉0 is locally symmetric also
in larger domains. One of this examples explains the local
symmetry of LRMs such as A|BAB|A (see statement 3 of
Appendix C). Overall, the perturbation theoretical treatment
demonstrates the crucial role of local reflection symmetries in
the eigenstate localization profiles of binary aperiodic chains.
A promising direction of research would thus be to treat this
class of systems within the recently developed theoretical
framework of local symmetries [52,53,56].

C. Structural control of edge states

Having understood the real-space mechanism for the for-
mation of edge-localized gap states in Fibonacci chains, we
can now utilize this insight to systematically manipulate these
states. In particular, let us show how structural modifications
at the edges of a Fibonacci chain can selectively “annihilate”
a given edge mode. Note that whether or not one considers
a particular state localized (near or on) the edge to lie in an
energetical gap is obviously a question of the scale under
consideration. This is due to the fact that any finite chain
naturally has a discrete spectrum, for which, strictly speaking,
no continuous energy-bands are defined. In the remainder of
this work, we will solely consider states as gap-edge ones
provided that, at a contrast of c = 6, they lie in a clearly
visible energetical gap. This simplifies our treatment, and in
Appendix E, we comment on the extensions of this simplifi-
cation.

For definiteness, we consider the edge state φ21 (orange
circle) of the chain in Fig. 4(a) which simply focuses on states
ν = 13 to 22 of Fig. 3(a). This state corresponds to the e-LRM
|A|B [see the right side of Fig. 3(a)] and is exponentially
localized, as shown in Fig. 3(c). The underlying resonator
|A|B is a left-truncated version of the resonator B|A|B, which
hosts the b-LRM B|A|B characterizing the quasiband below
(states 14 to 20). Now, as shown in Fig. 4(b), if we complete
the resonator |A|B into B|A|B by attaching a B site to the left
end of the chain, then the edge can accommodate the b-LRM
B|A|B instead of the e-LRM |A|B. Consequently, the edge
mode is replaced by a bulk mode of the quasiband. In other
words, the edge state is “absorbed” into a quasiband by
converting the e-LRM of the former to the b-LRM of the
latter through a structural modification at the edge. This
intuitive procedure can be applied similarly for the other two
pronounced edge states (green and purple circles) in Fig. 4(a),
by completing the corresponding edge local resonator into a
bulk one. Thus, the selective control of a specific edge state is
possible.

20
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FIG. 4. Selective annihilation of edge states of the Fibonacci
chain in Fig. 3(a); see text for details. (a) Original chain and excerpt
of the state map (states 13–22), with edge states marked by colored
circles. (b) Annihilation of left edge state (orange) by attaching a B
site to the left of the chain. (c) Complete annihilation of edge states
by removing (adding) an A (B) site on the left (right) end of the chain.
Color coding of each subfigure is as in Fig. 3.

Let us note, however, that in most cases such a selective
annihilation of one edge state leads to the creation of one (or
more) other edge state(s) located elsewhere in the spectrum, as
a result of the edge modification. For example, the left edge of
the modified chain in Fig. 4(b) features the resonator |BAB|A,
which is a truncated version of A|BAB|A hosting the b-LRM
A|BAB|A, thus yielding a new gap-edge state (not shown).

Interestingly, in special cases this issue can be overcome
by exploiting the local symmetry of bulk resonators, as we
now explain using the example shown in Fig. 4(c). Here, an
A site is attached to the right edge, which formerly hosted the
e-LRMs B|ABA| and B|ABA| [cf. Fig. 4(a)], corresponding to
the edge states φ13 (green) and φ22 (purple), respectively. In
the modified chain, the right edge features a local resonator
B|AA|. The key point now is that this resonator supports two
LRMs, B|AA| and B|AA|, which are degenerate to the b-LRMs
B|AABAA|B and B|AABAA|B, respectively, due to the reflec-
tion symmetry of the underlying resonator B|AABAA|B. This
symmetry-induced degeneracy is shown rigorously in Ap-
pendix B. As a result of their degeneracy, the respective e- and
b-LRMs can combine linearly to compose quasiband states, as
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seen in Fig. 4(c); see states in first and third quasiband from
bottom with marked edge resonators. The same procedure
can be performed on the left edge by removing an A site
from it, leaving the edge resonator |B|A hosting |B|A which
is degenerate to A|BAB|A [see state in top quasiband with
orange marked left edge resonator in Fig. 4(c)]. Note that both
(right and left) edge modifications above are consistent with
the Fibonacci order: The resulting chain is simply obtained
from the former one by a single-site shift to the right along
the infinite Fibonacci chain. We thus have a case of finite
Fibonacci chain with no edge-localized gap states.

From the above it is clear that edge states in binary
quasiperiodic chains can now be rigorously understood and
manipulated within the framework of local resonators. Struc-
tural creation and annihilation represents a first fundamental
step in edge state control. Indeed, once an edge state is
established, its energetic position within a gap can further be
tuned by allowing for nonbinary (freely varying) potentials at
the edges, while leaving the quasibands intact.

D. Behavior at low contrast

The local understanding and controllability of edge states
at high contrast levels raises the question if these properties
are retained also at lower contrast. To address this, in Fig. 5(a),
we show the eigenvalue spectrum of the original Fibonacci
chain studied previously [Fig. 3(a)] for varying contrast c. As
we see, gap states (localization on edges not shown here) are
clearly distinguished for all contrast levels. Figure 5(b) shows
the spectrum of the modified Fibonacci chain of Fig. 4(c)—
where all edge states were annihilated at high contrast—
for the same contrast values. Also here the structure of the
spectrum is retained with varying c. In particular, a real-space
analysis (not shown here) confirms that all quasiband states
in the modified chain remain extended in the bulk for varying
c. The effect of lowering the contrast is merely a reduction
in the fragmentation of the eigenstate profiles which become
more smeared out into regions between the LRMs defined at
high contrast.

This finding indicates that the mechanism of edge state
formation via truncated local resonators based on an analysis
at high contrast remains valid also for lower contrast, though
“hidden” due to the spatial smearing of the states. In other
words, the contrast parameter can be used as an intermediate
tool to manipulate edge states in binary aperiodic model
chains: It is first ramped up to reveal the eigenstate structure
in terms of LRMs subject to modifications, and then ramped
down again with the bulk/edge state separation retained.

IV. APPLICATION TO NONQUASIPERIODIC CHAINS

Featuring a pointlike spatial Fourier spectrum (rendering
it, by definition, a quasicrystal [1,21]), the Fibonacci chain
studied above represents the class of lowest structural com-
plexity when departing from periodicity towards disorder, as
mentioned in Sec. I. The question naturally arises whether
the local resonator framework developed in Sec. III, distin-
guishing edge from bulk states via LMRs, applies also to
other classes of aperiodic chains. In the following, we will
demonstrate the generality of our approach by applying it to
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FIG. 5. Eigenvalue spectrum for different values of the contrast
c (a) for the original Fibonacci chain of Fig. 3(a), with the three gap
modes indicated by horizontal stripes, and (b) for the modified chain
of Fig. 4(c). The ellipses highlight the removal of gap modes by the
modification, for all contrast levels.

cases of qualitatively different structural character, the Thue-
Morse and Rudin-Shapiro chains. We thereby essentially go
through the same analysis steps as in Sec. III—identification
of LRMs, edge state control, and low contrast behavior—and
assess the particularities of each structural case.

A. Singular continuous Fourier spectrum: Thue-Morse chain

A well-studied case of aperiodic order which is not
quasiperiodic is the Thue-Morse sequence [1], produced
by the inflation rule A → AB, B → BA yielding T =
ABBABAABBAAB · · · . Its Fourier spectrum is singular con-
tinuous, and from this viewpoint it is considered [82] closer to
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FIG. 6. Like in Fig. 1 but for a N = 144-site Thue-Morse chain.

the disorder limit (with absolutely continuous spectrum [83])
than quasiperiodic order (with pointlike spectrum). On the
other hand, a subset of eigenstates of the Thue-Morse chain
strongly resemble those of periodic chains [84]. The eigen-
states of a N = 144-site Thue-Morse chain [85] are shown
in Fig. 6. Indeed, while some bulk states are more strongly
localized into subdomains than in the Fibonacci chain for
equal contrast c = 1.5 (compare to Fig. 1), others are more
extended along the chain. As we see in Fig. 6, in spite of the
quasiband structure being more fragmented, there occur well
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FIG. 7. (a) Like in Fig. 3 (a) but for a N = 55-site Thue-Morse
chain, with three edge states marked by colored circles. (b) Absolute
values of amplitudes of the three edge states φ9, φ19, and φ28 with
localization lengths 0.61, 0.61, and 0.6, obtained by fitting a line
(orange) to local maxima (orange dots) on a logarithmic scale.
(c) Absorpion of the two right edge states into quasibands (green and
purple rectangles) and creation of a new right edge state (blue circle,
lying between quasibands as indicated by × in (a)) by attaching a B
site to the right chain end, as explained in the text. Color coding of
subfigures (a) and (c) is as in Fig. 3.

distinguishable states within gaps which are localized on one
of the chain edges.

Local resonator modes. Like in Sec. III, we consider a
smaller chain of N = 55 sites to visually facilitate the de-
tailed spatial analysis. Its eigenstates are shown in Fig. 7(a)
for contrast c = 6, together with the distribution of local
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reflection symmetries in the chain (top). As we see, the bulk
state profiles are fragmented in a well-defined manner for
different quasibands: Like in the Fibonacci case, each bulk
state is composed of copies of a b-LRM characterizing the
corresponding quasiband, as indicated schematically on the
right of the figure. In contrast, the three occurring prominent
edge states (marked by colored circles) consist of nonrepeated
e-LRMs at one of the chain ends. Like before, the local res-
onators underlying the e-LRMs can be identified as truncated
local resonators underlying the b-LRMs. This demonstrates
that our LRM-based framework for the formation of edge
states applies also for this class of aperiodic order. Notably,
also here the b-LRMs have definite local parity under reflec-
tion, and are present in the eigenstates following the local
symmetry axes shown in the bar plot [top of Fig. 7(a)]. This is
indeed predicted by the perturbation theory of Appendix C.
We thus see that also for the Thue-Morse chain its local
symmetries essentially provide the regions of localization of
the eigenstate fragments at high contrast.

Edge state control. The original Thue-Morse chain con-
tained three edge states, which were exponentially local-
ized [86] as shown in Fig. 7(b). Edge states in Thue-Morse
chains were also demonstrated very recently in terms of
the eigenmodes of full vectorial Green matrices [49], albeit
localized according to a power-law. Now, following the same
principle as in the Fibonacci case, Fig. 7(c) shows how two
edge states [marked by green and orange circles in Fig. 7(a)]
are annihilated by attaching a B site to the right end of the
original chain. Indeed, those edge states were localized on the
truncated resonator B|AA| which is completed to B|AA|B and
can thus host the b-LRMs B|AA|B and B|AA|B, so that the
edge states are “absorbed” into the corresponding quasibands.
However, the right edge of the modified chain now features a
new edge state (marked by blue circle) with resonator mode
A|B [its previous absence is indicated by a × in Fig. 7(a)]. It
lies, energetically, in the gap just below the quasiband with b-
LRM A|B|A. Note that, as expected from our real-space local
resonator picture, the left edge state (orange circle) remains
unaffected by the present modification on the right edge of
the chain, since it is localized on the opposite edge.

Contrast variation. Finally, we investigate how edge states
and quasibands behave for lower contrast in the Thue-Morse
chain. Figure 8(a) shows the spectrum of the chain of Fig. 7(a)
for varying contrast, starting from c = 3. As we see, the three
edge modes in the spectral gaps are clearly visible also at
lower contrast levels. The spectrum of the modified chain
(with right-attached B site) for varying c is shown in Fig. 8(b).
As is highlighted by the black circle and the ellipse, the two
former edge states are absorbed into the neighboring quasi-
bands [as shown in Fig. 7(a)] for all considered contrast levels.
Also, the left edge state as well as the modification-induced
right edge state [orange and blue in Fig. 7(c), respectively]
remain in their gaps as the contrast is varied. Overall therefore,
the impact of the modifications persists at lower contrast
levels.

B. Absolutely continuous Fourier spectrum:
Rudin-Shapiro chain

Taking a step towards higher structural complexity, we
finally investigate the case of a Rudin-Shapiro chain in

2 1 0 1 2 3 4

10

20

30

40

50

5

2 1 0 1 2 3 4

10

20

30

40

50

5

FIG. 8. Eigenvalue spectrum for different values of the contrast
c (a) for the original Thue-Morse chain of Fig. 7(a), with gap modes
indicated by horizontal stripes, and (b) for the modified chain of
Fig. 7(c). The black circle and the ellipse highlight the removal of
selected gap modes by the modification, for all contrast levels.

terms of our local resonator framework. The Rudin-Shapiro
sequence [87] R is obtained by the inflation rule AA →
AAAB, AB → AABA, BA → BBAB, BB → BBBA, yielding
R = AAABAABAAAABBBAB · · · for an initial seed AA. Its
Fourier spectrum is absolutely continuous, a property shared
with completely disordered chains [83]. Further, there are in-
dications that the tight-binding Rudin-Shapiro chain has both
exponentially and weaker-than-exponentially localized eigen-
states [13,88–90], while even extended ones have been shown
to exist at low contrast. The different character of the Rudin-
Shapiro states compared to the Fibonacci or Thue-Morse
chain can be anticipated from the eigenstate map shown in
Fig. 9. As we see, at this low contrast (c = 1.5), there is now
no clear distinction between bulk and edge states. Moreover,
no clear energetic clustering into well-defined quasibands is
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FIG. 9. Like in Fig. 1 but for a N = 144-site Rudin-Shapiro chain.

present. Note also that the distribution of local reflection
symmetries along the chain (see top of figure) is much less
structured than in the Fibonacci or Thue-Morse chains (cf.
top of Figs. 1 and 6), with overall smaller symmetry domains
present. At the same time, there is clustering of symmetry
axes with gaps in between, caused by the occurrence of larger
contiguous blocks of single type (up to four A or B sites in a
row) along the sequence. In the following, we show that there
is still a strong link of the eigenstates and spectral features
of the Rudin-Shapiro to the presence of locally symmetric
resonators.

Local resonator modes. For the high-contrast analysis, we
consider a Rudin-Shapiro chain of N = 87 sites. The size
is now chosen slightly larger in order to better reflect the
structural properties of the Rudin-Shapiro sequence. Indeed,
in accordance with its higher complexity, a given substruc-
ture will here repeat at relatively larger distances along the
sequence. It may thus occur only once in a too short chain,
thereby obscuring its long-range order. Figure 10(a) shows
the eigenstate map of the considered chain at contrast c = 6.
We see that also here the eigenstates fragment onto locally
symmetric substructures, and are again composed of b-LRMs
corresponding to clustered eigenvalue quasibands, as shown
on the right. The difference is now that there are many more
different identified b-LRMs compared to the Fibonacci and
Thue-Morse chains. This is because the increased number of
contiguous block sizes allows for a higher diversity of local
resonator substructures, with larger resonators additionally
hosting a larger number of different LRMs each. In turn, there
is a higher possibility that different b-LRMs have (nearly)
the same energy, since the different resonators may have
partially overlapping individual eigenspectra. Therefore, it
may now more easily occur that different LRMs participate
in the same eigenstate (to which they are quasidegenerate;
see Appendix D). An example of this are the states indicated
by the green ellipse in Fig. 10(a): each of them consists of a
A|B|A on the left and two A|BBB|A on the right, consecutively
overlapping by one A site. The emergence of such modes
is explained in detail by means of perturbation theory in
Appendix C. Further, edge states appear which localize on
corresponding e-LRMs. Those are now, however, energeti-
cally not as clearly distinct from the clustered eigenvalues
of quasibands as in the Fibonacci and Thue-Morse cases.
For example, the states marked by blue circles are localized
on the left edge, but are composed of the e-LRMs (from
top to bottom) |AAA|B, |AAA|B, |AAA|B, which are nearly
degenerate to the b-LRMs of the corresponding quasibands
(see the right side of figure). Nevertheless, there are also
well-distinguished edge states lying in gaps (though close to
gap edges) marked by purple circles.

Edge state control. Contrary to the Fibonacci and Thue-
Morse cases, the edge states are not exactly exponentially
localized, but have different localization lengths in different
sections, as shown [86] in Fig. 10(c). The amplitude of state
φ31, though overall decaying, even rises again at around
n ≈ 20 and ≈70. Unaffected by this different localization
behavior compared to the previously treated examples, we
now manipulate the two states marked by purple color which
are localized on the right edge. These localize on the truncated
resonator B|AA|, and their energy is different from the energy
of states localized on the complete resonator B|AA|B which
occurs twice in the bulk. In (b), we add a B on the right
edge of the chain, completing this resonator. Due to this
completion, the two former gap-edge states move into the
respective energy cluster (or quasiband).

Contrast variation. In Fig. 11(a), we investigate the eigen-
values of the Rudin-Shapiro chain of Fig. 10(a) for varying
contrast. Compared to the case of the Fibonacci chain pre-
sented in Fig. 5 or the Thue-Morse chain presented in Fig. 8,
the energetic clusters form only at high contrast values. This
already indicates that modifications to the chain done at high
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FIG. 10. (a) N = 87 site binary chain corresponding to a trun-
cated Rudin-Shapiro sequence at contrast c = |v/h| = 6 (hopping
h = 0.1). To the right, the grouping of eigenstates into resonator
modes as explained in the text is shown. To simplify the figure,
resonator modes are only shown explicitly if they are shared by at
least two states. The two states marked by a green ellipse localize on
nonlocally symmetric structures. The two states marked by orange
ellipses are examples for states with different resonator modes but
nearly equal energy, as explained in the text. (b) The result of an
extension of the chain by adding a B to the right. Due to this
modification, the resonator A|BB| on the right edge is completed, and
the purple marked states in (a) are energetically shifted towards the
corresponding states localizing on the A|BB|A resonator located near
the right edge. Color coding of subfigures (a) and (b) is as in Fig. 3.
(c) Absolute values of amplitudes of the edge states φ9, φ14, φ31, φ38,
and φ45.

contrast can not directly be traced to energetic changes at low
contrast as was the case for the Fibonacci and Thue-Morse
chain. This can also be seen for the two edge states marked
by horizontal lines in Fig. 11(a). At high contrast, these are
caused by a truncated resonator B|AA| on the right edge. In
Fig. 10(b), we have completed this resonator, causing the two
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FIG. 11. (a) Evolution of the eigenvalue spectrum of the Rudin-
Shapiro chain shown in Fig. 10(a) for various values of the con-
trast c. The two gap states φ14,38 are denoted by horizontal lines.
(b) Same as (a), but now for the modified Rudin-Shapiro chain
shown in Fig. 10(b). For high contrast of c = 6, the two gap states
are removed. However, they reappear, though at slightly different
positions, already at a contrast c = 3, as shown in the insets.

edge states to move (at high contrast) closer to the nearest
eigenvalue cluster. As can be seen in Fig. 11(b), this manip-
ulation is only effective at high contrast. For low contrast,
the eigenvalue structure is nearly unchanged compared to the
original chain shown in Fig. 11(a).

In conclusion, we have applied our local-symmetry based
resonator strategy to the Thue-Morse and the Rudin-Shapiro
chain. The results show that our approach can be used to
explain and control gap-edge states of the Thue-Morse chain.
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At high contrast, the gap-edge states of the Rudin-Shapiro
chain are likewise explained. However, our approach can not
be used to make qualitative predictions at low contrast.

V. APPLICABILITY AND RELATION
TO OTHER APPROACHES

Let us briefly comment on the limitations of applicability
of the developed framework and its connection to similar
approaches in the literature. The presented methodology es-
sentially relies on the fragmentation of eigenstates at high
contrast and can thus only be applied onto chains featuring
such a behavior of eigenstates. A perturbation theoretical
treatment of binary tight-binding chains which serves as basis
for our methodology, see Appendix C, indicates that at high
contrast the fragmentation of eigenstates is indeed the generic
case. However, the necessary conditions for this behavior
still need to be determined in order to clarify the range of
applicability.

The connection between local resonators and quasi-
bands in quasiperiodic setups has been commented on in
Refs. [18,20,37]. For the Thue-Morse sequence, a similar
analysis has been achieved in Ref. [84]. However, to the best
of our knowledge, there is no systematic framework bringing
together the three concepts of LRMs, quasibands and edge
states into a unified context. An approach related to ours is
the renormalization group flow analysis. For the tight-binding
chains, this method aims at understanding the energetic be-
havior of a chain through a series of size reductions [68].
At each step, the size of the system is decreased, and the
behavior of the decreased one is linked to the bigger one by
a renormalization procedure, usually done in terms of pertur-
bation theory. The renormalization group flow is a powerful
method, and has been successfully used to explain the fractal
nature of the Fibonacci spectrum [68,78–81]. However, it
needs to be tailored to the system of interest, and as stated in
Ref. [81], finding an appropriate renormalization group flow
for a general quasiperiodic chain is not easy. This stands in
contrast to the very general method proposed in this work,
which was shown to be applicable to a broad range of different
setups.

VI. CONCLUSIONS AND OUTLOOK

We have presented a systematic approach to the analysis
of aperiodic binary tight-binding chains regarded as a com-
bination of different resonatorlike subsystems rather than a
single bulk unit. For low intersite coupling, each eigenstate
is seen to be composed of spatially nonoverlapping local
resonator modes of these resonator structures. This viewpoint,
supported by a rigorous perturbation theoretical treatment,
allows for an intuitive explanation of the emergence of both
quasibands and gap-edge states in such chains. We demon-
strate the power of our approach by applying it to Fibonacci,
Thue-Morse, and Rudin-Shapiro chains and show how gap-
edge states occurring in these chains can be manipulated.

A repeating motif in our analysis of eigenstates at high con-
trast is the fact that most resonator modes share the local sym-
metries of the underlying systems. This strong impact of local
symmetries is remarkable, especially as it is hidden at lower

contrast levels by a substantial background in the eigenstate
profiles. In this work, we have given an explanation for this
finding at high contrast, and we believe that the study of local
symmetries in complex setups is a very promising field with
rich perspectives and potential applications. The recently es-
tablished framework of local symmetries [52,53,56,57,91,92]
provides dedicated tools for this purpose, and extensions of
it are of immediate relevance. In this line, our work may
enable the local-symmetry assisted design of novel optical
devices that support desired quasiband structures and strongly
localized edge states at prescribed energies, offering exciting
opportunities to control light-matter coupling in complex
aperiodic environments.
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APPENDIX A: DISCRETE RESONATORS

The aim of this Appendix is to justify viewing substruc-
tures embedded in a larger binary aperiodic lattice as local
resonators. To this end, we investigate the behavior of the
simplest case of such a structure, BAB, in more detail. Its
Hamiltonian is

H =
⎛
⎝vB h 0

h vA h
0 h vB

⎞
⎠, (A1)

with the (unnormalized) eigenstates

φ1 =
⎛
⎝−1

0
1

⎞
⎠, φ2,3 =

⎛
⎜⎝

1
−δ±√

8+δ2

2

1

⎞
⎟⎠. (A2)

where δ = (vA − vB)/h, with c = |δ|. For high contrast c,
φ3 ≈ (1,−δ, 1)T localizes on the central site. The idea now
is to view BAB at high contrast as a resonator, where the site
A effectively plays the role of a cavity, while the outer sites B
play the role of cavity walls. The resemblance to a resonator
becomes clearer for a larger structure with more modes be-
tween the resonator walls, like the structure in Fig. 12. As one
can see, all but two eigenstates extend nearly exclusively on
the internal A sites, and the wavelike character of these states
is well recognizable. Two states exclusively localize on the
outer two B sites. The setup thus acts as an extended cavity
consisting of 14 A sites, with two B sites playing the role of the
cavity walls. The smaller structure BAB is of the same nature,
albeit with a cavity of only a single site A. Notationally, we
will divide the actual cavity and the cavity walls of a resonator
by a vertical line, writing, e.g., B|A . . . A|B. Similarly, we
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FIG. 12. All 16 eigenstates of the chain (depicted above)
BA . . . B with 14 A sites at a contrast of c = 20. All but the eigenstates
in the last row localize on the A sites.

also view the “inverse” structure A|B . . . B|A as a resonator
with resonator modes of higher energy, assuming vB  vA.
Moreover, closely neighboring resonators of the form

B|A|B|A|B, B|AA|B|AA|B, . . . (A3)

can be seen as coupled resonators. To indicate the composite
character of such resonators, we omit the inner vertical lines,
i.e., B|ABA|B, B|AABAA|B, . . .

APPENDIX B: SYMMETRY ARGUMENT FOR THE
ABSENCE OF EDGE STATES

Here we explain the absence of edge states in Fig. 4(c) us-
ing the concept of local symmetry. The underlying symmetry
concept is very general and not limited to the Fibonacci chain,
as we demonstrate in the last paragraph of this Appendix. Let
us denote an arbitrary sequence of A’s and B’s by X , its reverse
ordered counterpart by X −1, and by Y a single site A or B.
Then

σ ([X ]) ⊂ σ ([X −1Y X ]), (B1)

where σ denotes the eigenvalue spectrum and [X ] the tridi-
agonal Hamiltonian representing X . In words, the eigenvalue
spectrum of a resonator [X ] is completely contained in that
of the reflection-symmetric resonator [X −1Y X ]. For exam-
ple, if X = AB and Y = B, then X −1 = BA and σ ([AB]) ⊂
σ ([BABAB]).

To prove the above statement, we note that the Hamiltonian
[X −1Y X ] reads

H =
⎛
⎝[X −1] C 0

CT [Y ] D
0 DT [X ]

⎞
⎠, (B2)

where [X −1], [X ] ∈ Rm×m. The matrices C =
(0, . . . , 0, h)T ∈ Rm×1 and D = (h, 0, . . . , 0) ∈ R1×m

connect the central site [Y ] to [X ] and [X −1], respectively.
Now, using the “equitable partition theorem” from Ref. [93],
we can transform H by a similarity transform into a
block-diagonal form

H ′ =

⎛
⎜⎝

[X −1]
√

2C 0
√

2CT [Y ] 0

0 0 [X ]

⎞
⎟⎠. (B3)

The similarity transform conserves σ , and since H ′ is block-
diagonal, we have

σ (H ) = σ (H ′) ⇒ σ ([X ]) ⊂ σ (H ) = σ ([X −1Y X ]) (B4)

which proves Eq. (B1). Moreover, again using the equitable
partition theorem, one can show that the eigenvalues of [X ]
belong to eigenstates of [X −1Y X ] with negative parity with
respect to the central site Y .

Let us now apply the above statement to Fig. 4(c). Here,
for each resonator mode at the edge, there exists one resonator
mode within the bulk possessing a similar energy:

ε(|B|A) ≈ ε(A|BAB|A), (B5)

ε(A|BB|) ≈ ε(A|BBABB|A), (B6)

ε(A|BB|) ≈ ε(A|BBABB|A), (B7)

where ε(R) denotes the energy of the resonator mode R. In
the limit of high contrast, where the resonators present in
Eqs. (B5) to (B7) are disconnected from the remainder of the
system, the approximations become equalities, and the edge
state eigenenergies are thus “absorbed” into the corresponding
quasiband.

In a similar manner, the energetic near-equivalence of
resonator modes

ε(|AAA|B) ≈ ε(B|AAABAAA|B),

ε(|AAA|B) ≈ ε(B|AAABAAA|B),

ε(|AAA|B) ≈ ε(B|AAABAAA|B)

at high contrast as occurring in Fig. 10(a) can be explained.

APPENDIX C: PERTURBATION
THEORETICAL TREATMENT

In this section, we give an explanation for the fragmenta-
tion of eigenstates at high contrast in terms of a perturbation
theoretical analysis. This will also show why the dominant
entries of the eigenstates are in almost all cases obeying local
symmetries. Before we start, we note that a degenerate pertur-
bation theoretical treatment of binary chains has been done in
the past to retrieve its eigenenergies [94]. The main focus in
the following, however, lies on the behavior of eigenstates.

To apply perturbation theory, we write the Hamiltonian
Eq. (2) as

H = H0 + λHI ∈ RN×N , (C1)
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where H0 solely contains the diagonal part of H , i.e., isolated
sites, while HI connects them, i.e., contains the off-diagonal
elements of H . By means of λ, an eigenstate |φ〉(i), 1 � i � N
of H as well as its energy ε (i) are expanded as

|φ(i)〉 = |φ(i)〉0 + λ|φ(i)〉1 + λ2|φ(i)〉2 + . . . (C2)

ε (i) = ε
(i)
0 + λε

(i)
1 + λ2ε

(i)
2 + . . . . (C3)

Inserting Eqs. (C2) and (C3) into the Schrödinger equation
H |φ(i)〉 = ε (i)|φ(i)〉 yields the perturbation series which is
assumed to converge and thus solved order by order in λ.

At zeroth order, the perturbation series reduces to the
eigenvalue equation for the unperturbed H0. Since it is binary,
the N eigenstates of H0 are highly degenerate and form two
groups, satisfying

H0|ψ (α)〉 = vA|ψ (α)〉, 1 � α � gA

H0|ψ (β )〉 = vB|ψ (β )〉, gA + 1 � β � gA + gB = N

where gA,B denote the number of sites with potential A, B,
respectively. The so-called “correct” zeroth-order states which
fulfill

|φ(g)〉0 = lim
λ→0

|φ(g)〉, g = {α, β} (C4)

and which occur in Eq. (C2) and thus also in the perturbation
series are linear superpositions of the |ψ (g)〉. In the following,
we will always denote the two sets {α, β} by g and simple call
the |φ(g)〉0 the zeroth-order states.

At the start of the perturbation theoretical treatment, the
|ψ (i)〉, 1 � i � N are known, but the |φ(i)〉0 are usually not,
and the |φ(i)〉1,2,... can not be directly be determined. However,
it can be shown [76] that already the knowledge of the |ψ (i)〉
is sufficient to obtain a series of particular solutions to the
1, 2, . . . , nth order perturbation equation, yielding the energy
corrections ε

(i)
1 , . . . , ε (i)

n as a byproduct. Provided that the
degeneracy of a given state |φ( j)〉, 1 � j � N is lifted at
kth order, then the corresponding correct-zeroth order state
|φ( j)〉0 can be obtained by diagonalizing a R| j′|×| j′| matrix
which can be derived from the (k − 1)th order perturbation
equation [76]. Here, | j′| is the number of states |φ( j′ )〉 which
are degenerate with |φ( j)〉 up to order k − 1. Then, at order
k + 1, . . . , k + l , the state correction |φ( j)〉1, . . . , |φ( j)〉l can
be obtained. Note that for the problem at hand, all degen-
eracies are guaranteed to be lifted at a finite order, since
the eigenvalues of tridiagonal matrices with strictly nonva-
nishing sub- and superdiagonals (such as the one here) are
distinct [95] (i.e., nondegenerate). Though all degeneracies
will eventually be lifted, the order at which this happens is
in general different for different states. In many textbooks, all
degeneracies are resolved already at first order, and the zeroth-
order states |φ(i)〉0 are the ones that diagonalize the matrix
〈ψ (i)|HI |ψ (i)〉 in the corresponding degenerate subspace. This
results in simple expressions for the higher-order corrections
for both the states and the energy. For our binary H0, however,
degeneracies are usually resolved only at very high order,
and the process becomes complex. For Fibonacci chains, all
degeneracies are resolved at fourth order for generation g = 7,
at fifth order for g = 8, at sixth order for g = 10 but only in
eight order for g = 12.
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FIG. 13. (a) (Top) Distribution of axes of local symmetry do-
mains and potential sequence, which is identical to that in Fig. 3(a),
i.e., corresponds to a ninth generation Fibonacci chain. (Bottom) At
each site, the map shows the difference between the full eigenstate
|φ (i)〉 and the sum of the zeroth-order state and the first-order cor-
rection at a contrast of c = 6. (b) Detailed view on these differences
for the uppermost state. The sign of amplitudes is color coded, red
for positive and blue for negative values. (c) The amplitudes of the
eigenstate |φ (55)〉. Note that this particular state does not contain any
negative amplitudes. (d) The amplitudes of the zeroth-order state
|φ (55)〉0. (e) The amplitudes of the zeroth-order state |φ (55)〉0 plus that
of the first-order state correction |φ (55)〉1 (not normalized).

In the following, we will first show the feasibility of de-
generate perturbation theory by means of the Fibonacci chain,
showing that for high contrast already the zeroth-order states
are sufficient to explain the fragmentation of states. Next,
we will show the process of determining the zeroth-order
states in the first three orders, allowing for an intuitive picture
of the emergence of fragmentation and locally symmetric
amplitudes. We have numerically observed convergence of
the perturbation series if the contrast is larger than roughly
5, depending on the exact chain.

1. Application onto the Fibonacci chain

Figure 13 demonstrates the applicability of degenerate
perturbation theory to a ninth generation Fibonacci chain [the
same as shown in Fig. 3(a)] at a contrast c=6. In subfigure (a),
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at each site the difference

δ(i) = |φ(i)〉 − (|φ(i)〉0 + |φ(i)〉1

)
, 1 � i � N = 55

is shown. Note that the differences δ(i) are rather small, and
in Fig. 13(b), a detailed picture is given for the uppermost
state |φ(55)〉. In Figs. 13(c) and 13(d), the full state |φ(55)〉
and |φ(55)〉0 + |φ(55)〉1 are shown, respectively. As one can
see, already the zeroth-order state matches the fragmentation
behavior of the full state quite well, up to the two double
resonator modes A|BAB|A on the left half of the chain. In
Fig. 13(e), we include the first-order correction |φ(55)〉1. As
one can see, the resulting state |φ(55)〉0 + |φ(55)〉1 is very close
to the full state |φ(55)〉 shown in Fig. 13(c). Although we have
here only shown the 55-th state (i.e., uppermost) state in detail,
the behavior for all other states is similar. This shows that
already the first-order state corrections yield very good results.

If one goes to even higher contrast, already the zeroth-
order states |φ(i)〉0 are sufficient to get a full picture of the
fragmentation of a given state. This is demonstrated in Fig. 14
for a comparatively very high contrast of c = 20. Subfigure
(a) shows the difference |φ(i)〉 − |φ(i)〉0 at each site. The
subfigures (b) and (c) show the complete state |φ(55)〉 and the
zeroth-order state |φ(55)〉0, for which the main features (the
resonator modes) are visible very well. Again, this behavior is
the same for all other states, indicating that already the zeroth-
order states give a good representation of the localization
patterns occurring in the full state. Before we explicitly show
the computations for the first three orders in degenerate per-
turbation theory, let us comment on the connection between
the symmetry of the underlying potential sequence and that
of the non-negligible amplitudes of a given eigenstate by
means of Fig. 14(c). As can be seen, the zeroth-order state is
locally parity symmetric individually within the two domains
S1,2. However, as a whole this state |φ(55)〉0 is not locally
reflection symmetric with respect to an axis denoted by α. As
we will outline in the following, the reason for this is that
the environment of the two domains S1,2 is different, where
environment includes not only next-neighboring sites but also
the ones located further away (we will explain the notion of
“further away” in more detail below). In Fig. 14(d), we change
the environment of the right domain such that it matches that
of the first domain up to the first five neighbors. As a result, the
zeroth-order state is now symmetric with respect to a reflec-
tion through the axis α. In the following, we will investigate
the connection between local symmetries of the underlying
chain and that of the zeroth-order states in more detail. Finally,
we will investigate the first-order state corrections and their
relation to the fragmentation of eigenstates.

2. Emergence of localization patterns and their
locally symmetric character

We will now show the procedure of finding the zeroth-
order states, as can be found e.g. in Refs. [76,96]. Since
this procedure is quite technical, to help the reader we have
visualized the process in a concise form in Fig. 15 for the
easily traceable case of H0 = diag(B, B, A, A, B, A, A).
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FIG. 14. (a) Same as in Fig. 13(a), but now at a contrast c = 15
and without the first-order correction |φ (i)〉1. (b) The uppermost
eigenstate |φ (55)〉. (c) The zeroth-order state |φ (55)〉0. Within S1,2 the
state is locally symmetric with respect to a reflection at the respective
centers of these domains (indicated by dotted lines). However, the
state is asymmetric with respect to a reflection through the axis α.
(d) The environment of S1,2 has been made symmetric by adding
the sites ABAA on the right-hand side. As a result, the zeroth-order
state |φ (55)〉0 (and also, albeit only approximately, the corresponding
complete state, though not shown here) is locally symmetric with
respect to a reflection through α.
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FIG. 15. Visualization of the process of finding the zeroth-order states for H0 = diag(B, B, A, A, B, A, A).
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As stated above, |φ(g)〉0 can in general not be determined
before its degeneracy is not completely lifted. At higher
orders, the states |φ(g)〉 degenerate at zeroth order may split
into subsets |φ(g1 )〉, |φ(g2 )〉, . . . which are degenerate up to
first order, each of which can subsequently split into subsets of
states |φ(g1,1 )〉, |φ(g1,2 )〉, . . . , |φ(g2,1 )〉, |φ(g2,2 )〉, . . . , which are
degenerate up to second order, and so on. The determination
of the zeroth-order states can be done by means of recursively
defined auxiliary states [76,96]

|φ(g)〉0,0 = |ψ (g)〉, (C5)

|φ(g[k])〉0,1 =
∑

1�l�|g|
b(G)(k)

l |φ(g[l])〉0,0, (C6)

|φ(gi[k])〉0,2 =
∑

1�l�|gi|
b(Gi )(k)

l |φ(gi[l])〉0,1, (C7)

|φ(gi, j [k])〉0,3 =
∑

1�l�|gi, j |
b

(Gi, j )(k)
l |φ(gi, j [l])〉0,2 (C8)

... (C9)

appearing on the left-hand side of the above equations, where
g[k] denotes the kth element of the set g and k can run
from 1 to the number of elements |g| within the set. The
index G is equal to A if g ∈ α and equal to B if g ∈ β. Each
expansion coefficient b(S)(k)

l is the lth component of the vector
|b(S)(k)〉, S ∈ {G, Gi, Gi, j, . . . } defined as

V (G)
1 |b(G)(k)〉 = ε

(g[k])
1 |b(G)(k)〉,

V (Gi )
2 |b(Gi )(k)〉 = ε

(gi[k])
2 |b(Gi )(k)〉,

V
(Gi, j )

3 |b(Gi, j )(k)〉 = ε
(gi, j [k])
3 |b(Gi, j )(k)〉,

...

where the matrices V (G)
1 ,V (Gi )

2 , . . . are obtained by a recursive
process [76,96]. Explicitly, for the first three orders they are(

V (G)
1

)
k, j = 0,0〈φ(g[k])|HI |φ(g[ j])〉0,0,(

V (Gi )
2

)
k, j = 0,1〈φ(gi[k])|HI R

(g)HI |φ(gi[ j])〉0,1,(
V

(Gi, j )
3

)
k,l = 0,2〈φ(gi, j [k])|U (gi )|φ(gi, j [l])〉0,2,

where

U (gi ) = HI R
(g)HI R

(g)HI + HI R
(g)HI R

(gi )HI R
(g)HI

with HI = HI − ε
(gi )
1 and

R(g) =
∑
k /∈g

|ψ (k)〉〈ψ (k)|
ε

(g)
0 − ε

(k)
0

,

R(gi ) =
∑
k∈g j

j �=i

|φ(k)〉0,1 0,1〈φ(k)|
ε

(gi )
1 − ε

(k)
1

.

The above recursive process does the following: At the
start, we have |φ(g)〉0,0 = |ψ (g)〉. These are then superposed
according to Eq. (C6), obtaining |φ(g)〉0,1. Within each degen-
erate subspace gi, these are again superposed according to
Eq. (C7), obtaining |φ(gi )〉0,2. Again, within each degenerate
subspace gi, j , these are superposed according to Eq. (C8),
obtaining |φ(gi, j )〉0,3, and so on. Provided that the degeneracy

of a given state |φ(k)〉, 1 � k � N is solved at nth order, the
degenerate subspace for this state at orders l > n contains
only one state, so that naturally |φ(k)〉0,l = |φ(k)〉0,n and [76]
|φ(k)〉0 = |φ(k)〉0,n.

In the following, we will prove that the |φ(i)〉0, 1 � i � N
simultaneously localize on one or more maximally extended
blocks of potentials of the same kind (MEBPS) (statement
1) and determine on which such blocks a given state can
simultaneously localize (statement 2). Each MEBPS is the
cavity of a resonator, thus giving reason for the localization of
states on resonators. Statement 1 also shows that the |φ(i)〉0 are
locally parity symmetric individually on each MEBPS, and
statements 3 and 4 further deal with longer-range symmetries
of the zeroth-order states. Out of the many possible choices of
|ψ (i)〉 (due to its high degeneracy), in the following, we chose
them such that |ψ (α[k])〉 [|ψ (β[k])〉] is solely localized on the
kth site with potential A [B] (counted from the left).

Statement 1. Each state |φ(i)〉0, 1 � i � N simultaneously
localizes on one or more maximally extended blocks A . . . A or
B . . . B of potentials of the same kind (MEBPS) and is locally
parity symmetric on each of these blocks.

Proof. The proof is done in three steps. Firstly, we show
that V (G)

1 , G ∈ {A, B} is block-diagonal, where each block is
related to exactly one MEBPS. Secondly, we show that the
eigenvectors |b(G)(k)〉, 1 � k � |g| of V (G)

1 are locally parity
symmetric and subsequently the |φ(g)〉0,1 are locally symmet-
ric on each MEBPS. Thirdly, we show that any higher-order
states |φ(g)〉0,n with n > 1 show this local symmetry as well,
and thus the zeroth-order states |φ(g)〉0 are locally symmetric
as well.

We start by proving the following. For the case that HI

contains only next-neighbor couplings (as is the case here)
the V (G)

1 become block-diagonal, i.e., can be written as

V (G)
1 =

⎛
⎜⎝D(G)

1
. . .

D(G)
nG

⎞
⎟⎠, (C10)

where nG denote the number of blocks occuring in V (G)
1 and

each block

D(G)
i =

⎛
⎜⎜⎜⎜⎝

0 h

h
. . .

. . .
. . .

. . . h
h 0

⎞
⎟⎟⎟⎟⎠, 1 � i � nG (C11)

is a tridiagonal Toeplitz matrix. To prove that V (G)
1 is of the

above form, we note that by the definition of V (G)
1 and HI ,

two states |ψ ( j)〉, |ψ (k)〉, 1 � j, k � N are coupled to each
other by any of the two matrices V (G)

1 provided that (i) the
single sites on which they localize are direct neighbors and
(ii) they have the same zeroth-order energy, i.e., they must
be localized on states with identical on-site potential. If (i)
and (ii) are fulfilled for |ψ ( j)〉, |ψ (k)〉, j �= k with j, k ∈ g and
g[l] = j1, g[m] = j2, then the corresponding matrix element
(V (G)

1 )l,m = h due to the definition of these states. As a result,
for each MEBPS A . . . A [B . . . B] containing n sites, there is
one tridiagonal n × n block of the form Eq. (C11) present in
V (A) [V (B)].
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We now show that the |φ(g)〉0,1 are locally parity symmetric
on each MEBPS. To this end, we use the fact that the eigen-
vectors of the block-diagonal matrix V (G) are

|b(G)(k)〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

{w1,G}
0d2,G

0d3,G

...
0dnG ,G

⎞
⎟⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎝

0d1,G

{w2,G}
0d3,G

...
0dnG ,G

⎞
⎟⎟⎟⎟⎟⎠, . . . ,

⎛
⎜⎜⎜⎜⎝

0d1,G

0d2,G

0d3,G

...
{wnG,G}

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

with 1 � k � |g| and where 0di,G is the di,G × 1 vector with
identical zero entries and {wi,G} denotes the set of di,G

eigenvectors of D(G)
i ∈ Rdi,G×di,G . All vectors in a given set

{wi,G} have nonvanishing components only on one maximally
extended block of potentials of the same kind and are parity-
symmetric with respect to a reflection through the center of
this block. The latter is due to the fact that the D(G)

i are real
and bisymmetric, and the eigenstates of such matrices have
definite parity [97] (in the case of degeneracies, the eigenvec-
tors can be chosen accordingly). A matrix is bisymmetric if it
is symmetric both around the main and the antidiagonal. Since
we have ordered the state |ψ (g[k])〉, 1 � k � |g| such that it
has nonvanishing amplitude on the k-th site with potential G,
one can easily show that each of the |φ(g)〉0,1 has definite parity
on each MEBPS.

For second-order degenerate perturbation theory, the states
|φ(gi )〉0,1, which are degenerate up to first order, are super-
posed to obtain |φ(gi )〉0,2. Now, since all states in a given
set {w j,g}, 1 � j � nG have distinct eigenvalues, the states
|φ(gi )〉0,1 are constructed such that for each set gi there is
at most one state possessing nonvanishing amplitudes on
any given MEBPS. Thus, |φ(gi )〉0,2, . . . will keep the local
parity symmetry, and it is trivial to show that the zeroth-order
states |φ(g)〉0 are locally parity symmetric on each MEBPS
as well. �

Due to its maximal extension, each MEBPS is directly
neighbored either by potentials of the other kind on one or on
both sides, with the former being the case if the MEBPS forms
one edge of the chain. Thus the |φ(g)〉0 are seen to localize on
resonators. We now show that a given state |φ(i)〉0, 1 � i �
N can only simultaneously localize on resonators fulfilling
certain conditions.

Statement 2. A given zeroth-order state |φ(i)〉0, 1 � i � N
can simultaneously localize on a set of MEBPS with individ-
ual lengths l1, l2, . . . , ln only if the following conditions are
met. (i) All the MEBPS must have potentials of the same kind.
(ii) There exist integers 1 � k j � l j, 1 � j � n such that

k1

l1 + 1
= k2

l2 + 1
= · · · = kn

ln + 1
. (C12)

Proof. By definition, the zeroth-order state |φ(i)〉0 is
formed by superpositions of a subset of the states |φ(g j )〉0,1,
with i ∈ g j . Thus, a necessary condition to allow for the local-
ization on multiple MEBPS {Mi} is that among |φ(g j )〉0,1, for
each Mi there is one state localized on it. By definition, the set
|φ(g j )〉0,1 contains states with pairwise identical zeroth-order

ε
(g j )
0 and pairwise identical first-order energy corrections ε

(g j )
1 .

The zeroth-order energies are identical if all the MEBPS have
the same potential. To see when there is an equality of the

first-order energies, we use the fact that the first-order energy
corrections ε

(g)
1 can be given analytically. The block matrix

D(G)
i ∈ Rli×li occurring in V (G)

1 is of tridiagonal Toeplitz form,
and its eigenvalues are thus [98] given by

λ
D(G)

i
k = 2|h| cos

(
πk

li + 1

)
, k = 1, . . . , li. (C13)

Thus two blocks D(G)
1 , D(G)

2 with size l1, l2 only share common
eigenvalues provided that the integer-equation

k1

l1 + 1
= k2

l2 + 1
(C14)

is fulfilled for some 1 � k1 � l1 and 1 � k2 � l2. General-
izing the above to the case of n blocks with corresponding
length l1, . . . , ln directly yields Eq. (C12). �

For many combinations of l1 �= l2 (especially for small
l1,2), Eq. (C14) can not be fulfilled, with the prominent excep-
tion of l1,2 both being odd numbers. In this case, there exist
states |φ(i)〉0,1 which localize on two resonators of different
kind, and usually this behavior is kept also for |φ(i)〉0 as
well as the corresponding complete states |φ(i)〉. This is the
explanation for the emergence of the two states in Fig. 10(a),
which are marked by green ellipse.

We now show how the local symmetries of the zeroth-order
states can be explained by means of that of the underlying
potential sequence. Due do the complexity of binary tight-
binding chains, we only show two explicit cases, but stress
that the process can easily be applied to any given chain.

Statement 3. If H0 contains one or more of the substructures

[. . . ]AA BAB
S1

AA[. . . ] (C15)

or

[. . . ]AA BAB
S1

A (C16)

(where [. . . ] denotes a possibly larger extension of the chain)
then all zeroth-order states |φ(β )〉0 respect the local symmetry
S1 on each of these structures.

Proof. We label the sites of the substructure AABABAA
from left (s1) to right [s7 for Eq. (C15) and s6 for Eq. (C16)],
where the small s indicates a possible embedding of the
corresponding substructure into a greater system. Among the
N states |φ(i)〉0,1, 1 � i � N of this system, all but the two
states |φ( jk )〉0,1, 1 � k � 2 with 1 � jk � N, j1 �= j2 have
vanishing amplitudes on both of the sites s3 and s5. Moreover,
|φ( j1 )〉0,1 has nonvanishing amplitude only on site s3, while
|φ( j2 )〉0,1 has nonvanishing amplitude only on site s5. We
denote the set |φ(g1 )〉 to contain all states which are degenerate
with |φ( jk )〉 up to first order. As can be shown, V (G1 )

2 (just as
V (G)

1 ) is block-diagonal, and only states that are degenerate up
to first order and which are localized on MEBPS which are
separated by exactly one site are coupled to each other. Thus,
the two states |φ( j1 )〉0,1, |φ( j2 )〉0,1, j1, j2 ∈ g1 are not coupled
to the other |φ(g1 )〉0,1 by means of V (g1 )

2 , but only to each other.
If g1[1] = j1 and g1[2] = j2, then the submatrix

(
V (G1 )

2

)
l,m = h2

vB − vA

(
2 1
1 2

)
, 1 � l, m � 2 (C17)
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which is real-valued and bisymetric. Its eigenvectors are thus
parity-symmetric. As can be easily shown, thus |φ( jk )〉0,2
are parity symmetric within S1, i.e., respect this domain of
local symmetry. The matrix in Eq. (C17) has nondegenerate
eigenvalues referring to ε

( jk )
2 , and thus the two states |φ( jk )〉

are no longer degenerate to each other at second order. Since
|φ( jk )〉0,1 are the only ones out of the |φ(β )〉0,1 with nonva-
nishing amplitudes within S1, one can easily show that all
zeroth-order states |φ(β )〉0 must respect S1. �

The above is of relevance for the first and third quasiband
from top in Fig. 3(a). By means of another example, we
indicate the importance of the environment of a domain S such
that the zeroth-order states respect it.

Statement 4. If the right edge of H0 is given by

[. . . ]BAAB ABA
S1

(C18)

(where [. . . ] denotes a possibly larger extension of the chain)
then the zeroth-order states |φ(α)〉0 do not respect the local
symmetry S1. However, if the right edge of H0 is given by

[. . . ]BAAB ABA
S1

B (C19)

then all zeroth-order states |φ(α)〉0 respect the local sym-
metry S1.

Proof. We label the sites of the substructure BAABABA
from left (s1) to right [s7 for the first and s8 for the sec-
ond statement]. Among the N states |φ(i)〉0,1, 1 � i � N of
there system, all but the two states |φ( jk )〉0,1, 1 � k � 2 with
1 � jk � N, j1 �= j2 have vanishing amplitudes on both of
the sites s5 and s7. Moreover, |φ( j1 )〉0,1 has nonvanishing
amplitude only on site s5, while |φ( j2 )〉0,1 has nonvanishing
amplitude only on site s7. We denote the set |φ(g1 )〉 to contain
all states which are degenerate with |φ( jk )〉 up to first order.
Again, due to the block-diagonal character of V (g1 )

2 , the two
states |φ( j1 )〉0,1, |φ( j2 )〉0,1, j1, j2 ∈ g1 are not coupled to the
other |φ(g1 )〉0,1 by means of V (G1 )

2 , but only to each other. If
g1[1] = j1 and g1[2] = j2, then the submatrices(

V (G1 )
2

)
l,m

= h2

vB − vA

(
2 1
1 1

)
, 1 � l, m � 2 (C20)

for [. . . ]BAABABA and(
V (G1 )

2

)
l,m

= h2

vB − vA

(
2 1
1 2

)
, 1 � l, m � 2 (C21)

for [. . . ]BAABABAB. Both Eqs. (C20) and (C21) are real-
valued, but the former is not bisymmetric, while the latter
is. As can be easily shown, for the first case, the |φ( jk )〉0,2
are also not parity symmetric within S1, i.e., do not respect
this domain of local symmetry. The matrix in Eq. (C20) has
nondegenerate eigenvalues referring to ε

( jk )
2 , and thus the two

states |φ( jk )〉 are no longer degenerate to each other at second
order. Since |φ( jk )〉0,1 are the only ones out of the |φ(α)〉0,1
with nonvanishing amplitudes within S1, one can easily show
that no zeroth-order state |φ(α)〉0 respects S1. For the second
case, the line of argumentation essentially is the same with
the difference that, due to the bisymmetry of Eq. (C21), the
|φ( jk )〉0,2 are parity symmetric within S1, and thus all |φ(α)〉0
respect S1. �

The reason for the nonbisymmetry of Eq. (C20) is the
different environment of s5 and s7. In this particular case, the
environment is made up by the next-neighboring sites, but for
higher orders it comprises many more sites left and right to
the given domain. The fact that |φ(55)〉0 in Fig. 14(c) is not
locally symmetric with respect to a reflection through α is due
to the fact that the environment of S1,2 is not symmetric with
respect to a reflection through α in a sufficiently large radius,
while in Fig. 14(d) it is, so that |φ(55)〉0 is locally symmetric
with respect to a reflection through α.

3. First-order state corrections and eigenstate fragmentation

In the above, we have seen how the correct zeroth-order
states are related to the local symmetries of the underlying
potential. In particular, we have argued that each of the |φ(i)〉0
is fragmented, since it has nonvanishing amplitudes only on
one kind of site. We have further seen that, already at contrast
c = 6, |φ(i)〉0 + |φ(i)〉1 ≈ |φ(i)〉. In the following, we show
that, in general, the |φ(i)〉0 + |φ(i)〉1 are fragmented as well.

Contrary to the nondegenerate case, where the first-order
state corrections are given by

|φ(i)〉1 =
∑
j �=i

|φ( j)〉0 0〈φ( j)|
ε

(i)
0 − ε

( j)
0

HI |φ(i)〉0,

the corresponding expression in degenerate perturbation the-
ory depends on the order in which the degeneracy of |φ(i)〉
is completely resolved. A full, recursive expression for |φ(i)〉1
can be found in Ref. [77]. In this context, we only need the
easily provable fact that

〈ψ (ḡ[ j])|φ(g[k])〉1 = 〈ψ (ḡ[ j])|HI |φ(g[k])〉0

ε
(g[k])
0 − ε

(ḡ[ j])
0

, (C22)

where ḡ denotes the set of sites which are not elements of g.
In other words, if |φ(i)〉0 “lives” on, say, sites with potential
A, then |φ(i)〉1 will have nonvanishing amplitudes only on
directly neighboring B sites, but not on those further away.
As a result, if |φ(i)〉0 has nonvanishing amplitudes on a small
number of sites (which we have observed for Fibonacci, Thue-
Morse, and Rudin-Shapiro chains), then |φ(i)〉0 + |φ(i)〉1 is
fragmented.

APPENDIX D: DISCRETE ENERGY-LOCALIZATION
THEOREM AND APPROXIMATION OF EIGENVALUES

BY SUB-HAMILTONIANS

We here extend a theorem of Ref. [99], connecting the
localization of a state to its eigenenergy, to discrete Hamil-
tonians.

Theorem. The following equation holds

‖|φ〉‖∂D

‖|φ〉‖D
� min

εk

|ε − εk|
|h| , (D1)

where |φ〉 is an eigenvector of H with energy ε and εk are
eigenvalues of H restricted to the domain D which is a simply
connected subdomain of the whole system. ‖|φ〉‖D is the norm
of |φ〉 on D and ‖|φ〉‖∂D the norm of |φ〉 on next-neighbors
of D.

Proof. If D contains ND sites, define the ND × ND matrix
HD constructed from the corresponding matrix elements of the
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complete Hamiltonian H . In other words, HD is the restriction
of H onto D. Similarly, we further define |i〉 as the ND × 1
vector constructed from the full eigenvector |φ〉 by taking the
interior elements of D. If we now let HD act on |i〉, one can
easily show that

HD|i〉 = ε|i〉 − h|∂φ〉, (D2)

where ε is the eigenvalue of the complete state |φ〉. Here,
h denotes the next-neighboring hopping of H [as defined
in Eq. (2)] and |∂φ〉 denotes a ND × 1 vector with zeros
everywhere but on the first and last entry. These two nonva-
nishing entries are constructed by taking the corresponding
two elements of |φ〉 within ∂D̄. If ND = 1, then we define the
only entry of |∂φ〉 as the sum of the two amplitudes of |φ〉
within ∂D̄.

To make the notation introduced above more explicit, let us
assume that

H =

⎛
⎜⎝

v1 h 0 0
h v2 h 0
0 h v3 h
0 0 h v4

⎞
⎟⎠, |φ〉 =

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠. (D3)

If D would denote the central two sites, then |i〉 = (b, c)T and
|∂φ〉 = (a, d )T .

Equation (D2) can be interpreted as follows:. Provided that
|φ〉 is identically zero on the next-neighboring sites of D,
|i〉 would be an eigenstate to HD. However, |φ〉 usually has
nonvanishing amplitudes on sites neighboring to D, and thus
|∂φ〉 �= 0. Thus this correction must be included in Eq. (D2).

We now proceed with our proof of Eq. (D1). Multiplying
from the left with 〈φk|, i.e., the kth eigenstate of HD, we get

h · 〈φk|∂φ〉 = (ε − εk ) · 〈φk|i〉. (D4)

Multiplying this expression by its complex conjugate, sum-
ming over k and taking the square root of the result, we get

|h|
(∑

k

|〈φk|∂φ〉|2
)1/2

=
(∑

k

(ε − εk )2 · |〈φk|i〉|2
)1/2

.

(D5)

Since the |φk〉 are a complete orthonormal basis set, the left-
hand side can be simplified by using the definition of the
norm, getting

|h|
(∑

k

|〈φk|∂φ〉|2
)1/2

= |h|‖|φ〉‖∂D. (D6)

The sum on the right-hand side can be estimated as∑
k

(ε − εk )2 · ‖〈φk|i〉‖2 � min
εk

(ε − εk )2 ·
∑

k′
‖〈φk′ |i〉‖2.

(D7)

Again, due to the definition of the norm, we can thus write
Eq. (D5) as

|h|‖|φ〉‖∂D � min
εk

|ε − εk|‖|φ〉‖D (D8)

which directly yields Eq. (D1). �
Roughly speaking, the theorem states the following. As-

sume that an eigenstate |φ〉 has a high integrated density on

min max0
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FIG. 16. (a) Shown is the third quasiband from top for the ninth
generation Fibonacci chain at contrast c = 3. (b) The three minor
quasibands and their respective LRMs. (c) The third quasiband from
top for a L = 55 sites truncated Thue-Morse chain at contrast c = 3.
(d) The two minor quasibands as well as the gap-edge state and their
respective LRMs.

some domain D, with low amplitudes on the next-neighboring
sites left and right of the domain. Then, the energy ε of this
eigenstate is approximately equal to the energy of one of
the eigenstates |φk〉 of the local Hamiltonian HD. If D is a
resonator and |φ〉 represents an LRM of HD within D and
suitably small amplitudes on next-neighboring sites of D, then
ε ≈ εi, where εi is the energy of the LRM.

APPENDIX E: COMMENTS ON THE APPLICATION
TO LONGER CHAINS

We now comment on how the treatment of longer chains
or the investigation of the subband structure can be pursued.
To this end, the core element of our approach, the analysis
of states in terms of their constituting LRMs needs to be
slightly changed by extending the class of resonators taken
into account. The process of finding the constituting LRMs
of a given state |φ〉 with energy ε is then as follows. Starting
from a domain D exclusively containing sites with very high
amplitudes, one forms a simply connected domain D′ by the
union of D and its surrounding sites (not limited to next neigh-
bors) such that |φ〉 has very low amplitude on next-neighbors
of D′. Then [guaranteed by Eq. (D1)], one eigenstate of the
Hamiltonian HD′ has nearly the same energy ε ≈ εi and is
(up to normalization), within D′, nearly equal to |φ〉 and thus
forms an LRM. As the maximum deviation between εi and
ε is bounded by means of Eq. (D1) and generally becomes
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smaller for larger D′, its size should thus be chosen large
enough to achieve the accuracy needed for an explanation of
the subquasibands and gap-edge states present but as small
as possible in order not to lose the local character of the
treatment. If the LRM obtained by the above process does not
explain all fragments of |φ〉, then one needs to repeat it for
each of the remaining fragments until all constituting LRMs
of |φ〉 are found.

We now exemplify in Fig. 16 some possible results of such
a deeper analysis. Subfigure (a) shows the third quasiband
from top of the ninth generation Fibonacci chain [the one
shown in Fig. 3(a)], but now at a lower contrast of c = 3. At
this contrast, the energetical substructure of the band becomes
apparent, denoted by the two dashed lines in Fig. 16(b). There

are three minor quasibands, comprising the three uppermost,
the two central and the three lowermost eigenstates within this
quasiband. The above process then yields the LRMs shown
on the right-hand side of this subfigure. Another example
is demonstrated in Figs. 16(c) and 16(d), showing the third
quasiband from top for a truncated L = 55 site Thue-Morse
chain [as shown in Fig. 7(a)] at contrast c = 3. Here, the main
quasiband features the resonator mode A|BB|A, but again
features a substructure as shown in subfigure (d). Each minor
quasibands is made up of two nearly degenerate LRMs, with
the underlying resonators having resonator walls each con-
sisting of two sites. The state in-between these minor bands
consists of the edge-LRM ¦A|BB|AB, where the ¦ indicates the
edge of the chain.
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We propose a framework for the connection between local symmetries of discrete Hamiltonians and the
design of compact localized states. Such compact localized states are used for the creation of tunable, local
symmetry-induced bound states in an energy continuum and flat energy bands for periodically repeated local
symmetries in one- and two-dimensional lattices. The framework is based on very recent theorems in graph
theory which are here employed to obtain a block partitioning of the Hamiltonian induced by the symmetry of a
given system under local site permutations. The diagonalization of the Hamiltonian is thereby reduced to finding
the eigenspectra of smaller matrices, with eigenvectors automatically divided into compact localized and extended
states. We distinguish between local symmetry operations which commute with the Hamiltonian, and those which
do not commute due to an asymmetric coupling to the surrounding sites. While valuable as a computational tool
for versatile discrete systems with locally symmetric structures, the approach provides in particular a unified,
intuitive, and efficient route to the flexible design of compact localized states at desired energies.

DOI: 10.1103/PhysRevB.97.035161

I. INTRODUCTION

Compact localized states [1,2], i.e., wave excitations that
strictly vanish outside a finite subpart of a system, are caused
by destructive interference in the presence of local spatial sym-
metries [1]. Contrary to the case of Anderson localization [3],
where exponentially localized states are caused by disorder,
compact localized states (CLSs) typically occur in perfectly
ordered systems [1]. They were early deduced from symmetry
principles in bipartite lattices [4], and studied more recently in,
e.g., frustrated hopping models [5] as well as magnonic [6] and
interacting [7] systems. A possible application of CLSs lies
in information transmission [8–10] and directly stems from
their compactness: Being an eigenstate of the Hamiltonian,
a CLS does not spread out spatially during evolution, while
it is much less challenging to excite than a regular extended
eigenstate. For example, CLSs are ideal candidates for the
transmission of information along photonic waveguide arrays
avoiding “crosstalk” between waveguides [11]. Further, CLSs
essentially enable the appearance of isolated bound states
within a scattering continuum [12–14]. Such states were, e.g.,
realized recently as a symmetry-induced topological eigenstate
subspace of coupled-chain setups [15]. On a computational
level, CLSs induced by symmetries may also be used as a
symmetry-adapted basis for numerical computations [16]. In
periodic lattice systems, macroscopically degenerate CLSs
lead to the occurrence of flat, i.e., dispersionless, energy bands
[17]. Flat bands are studied in different contexts, including
the quantum Hall effect in topologically nontrivial lattices
[18–21], induced metal-insulator transitions [22,23], and non-
Hermitian quantum mechanics [24,25].

Different approaches have been suggested to design systems
featuring CLSs and flat bands. They are based on strate-
gies such as so-called origami rules [26], the repetition of
mini-arrays [27], working on bipartite Hamiltonians [28],

detangling the lattice into Fano lattices [1], or even more
general approaches, such as band engineering [29] or generator
principles [2]. Most of these works are based on the presence of
different kinds of local symmetries, i.e., on the invariance of a
subset of matrix elements under a site permutation. In general,
local symmetries of the underlying Hamiltonian are indirectly
encoded into its eigenstates, as has been demonstrated recently
in various contexts [30–38]. However, not every locally sym-
metric system features CLSs, and a systematic framework
linking a theory of local symmetries to the formation and
control of both CLSs and the resulting flat bands is still missing.

In the present work, we take a step in this direction
by applying very recent graph theoretical results to generic
single-particle discrete Hamiltonians. The resulting unifying
framework connects two types of local symmetries to the
occurrence of CLSs, flat bands, and bound states in the
continuum. Complementing many of the above CLS design
strategies, this framework uniquely pairs a high degree of
control with an in-depth understanding of the impact of local
symmetries. Technically, we apply and generalize two recently
published theorems [16,39–41] to general Hamiltonian matri-
ces. These theorems, which we refer to as the equitable and
nonequitable partition theorems, quantify the effect of certain
local symmetries of the Hamiltonian matrix H underlying
a given discrete system. Specifically, the equitable partition
theorem (EPT) applies to locally acting symmetry transforma-
tions which commute with H , while the nonequitable partition
theorem (nEPT) applies to a subclass of transformations that
do not commute with H . In essence, the theorems assert a
symmetry-induced decomposition of H into a direct sum (i.e.,
block-diagonal form) of smaller matrices, whose spectrum
and eigenvectors thereby determine those of H . In particular,
the eigenvectors of submatrices corresponding to symmetric
subsystems of the complete setup uniquely provide all existing
CLSs of H together with their eigenenergies. The remaining
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submatrix is analogously connected to extended eigenstates
(non-CLSs) of H .

In the context of periodic lattices, the presence of lo-
cal symmetries is thus shown to automatically enforce the
presence of flat bands, while the (n)EPT can be used to
control both the flat and dispersive bands of the system. The
approach can be seen as complementary to the general and
powerful design principle of Refs. [1,2] based on elementwise
conditions on the underlying eigenvalue equation, in that it
solely relies on generalized symmetry concepts. Moreover, the
methodology can be used to reduce the computational effort of
diagonalisation by exploiting local symmetries present in the
Hamiltonian.

We apply the framework to the design of both flat bands
and symmetry-induced bound states in the continuum. It
should be emphasized that the approach allows for the design
of symmetry-induced flat bands at prescribed energies in
arbitrary dimensions. Moreover, since it is solely based on the
symmetries of a complex-valued square matrix, the framework
is applicable to a broad range of physical problems, treated by,
e.g., multichannel scattering theory or dyadic Green functions
[42–44]. We thus believe that this work may inspire the
exploration of the effect of local symmetries in the broader
research community.

The paper is structured as follows. Sec. II introduces the
concept and description of local symmetries and subsequently
states the EPT and nEPT in terms of simple example setups.
In Sec. III we demonstrate the methodology in the design of
bound states in the continuum and flat band lattices. Sec. IV
contains our conclusions.

II. LOCAL SYMMETRIES AND EQUITABLE PARTITIONS

The setting we will operate on is the eigenvalue problem

Hφ = Eφ (1)

of a Hamiltonian matrix H modeling a (lattice) system of sites
n with elements

Hmn =
⎧⎨
⎩

vn, m = n,

hm,n �= 0, n ∈ N (m),
0 else,

(2)

where N (n) denotes a set of neighboring sites connected to site
n via a nonvanishing hopping. H is graphically represented
by a (weighted) graph with vertices connected by edges for
corresponding nonzero hoppings, as in Fig. 1. Throughout,
we will use different vertex sizes and coloring to indicate
different values of the onsite potential of the represented
Hamiltonian. The considered model can be seen as a general-
ized tight-binding network, with more than just next-neighbor
hopping being allowed. Such a model is extensively used to
describe single-electron phenomena, such as localization in
lattice systems [5,45]. It also effectively describes, for instance,
arrays of evanescently coupled photonic waveguides, in terms
of which both flat bands [11,46,47] and bound states in the
continuum [48,49] have been studied.

(a) (b)

2 3

1

FIG. 1. (a) The Hamiltonian of a three-site system is represented
by a graph with connected vertices, with vertex sizes (and colors)
indicating different onsite potential values. The system is symmetric
under the permutation of sites 2 and 3, or globally symmetric under a
left-right flip. In (b) the system is extended by attaching an arbitrary
subsystem (grey) to site 1 (which is fixed under the permutation),
so that the original global symmetry becomes a commutative local
symmetry. Independently of the parameters of the attached subsystem,
the eigenvalue v − h corresponding to a compact localized eigenstate
on the two sites 2, 3 is always present in the Hamiltonian spectrum.

A. Commutative local symmetries

To introduce the concept of local symmetry, let us first
consider the three-site system depicted in Fig. 1(a). Its Hamil-
tonian H is invariant under permutation of sites 2 and 3,
which represents a global left-right flip of the system. Since
the corresponding permutation matrix Π squares to unity
(Π2 = I ) and commutes with H , their common eigenvectors
will have definite parity under this permutation. The spectrum
σ (H ) = {E1,E2,E3} of H is given by E1 = v − h and E2,3 =
1
2 [v + v′ + h ±

√
8h′2 + (h + v − v′)2 ]. The corresponding

(unnormalized) eigenvectors are φ1 = [0,1,−1]� and φ2,3 =
[a±,1,1]� (with a± depending on all system parameters),
which indeed are of odd and even parity under Π , respectively.

Let us now connect an arbitrary subsystem to site 1, still
leaving the resulting composite system symmetric under the
site permutation 2 ↔ 3, as shown in the example of Fig. 1(b).
The corresponding permutation matrix Π now has the di-
mension of the enlarged system, but performs the left-right
flip only locally on subsystem {1,2,3}, leaving site 1 and the
added subsystem identical, or fixed under Π . Since this local
permutation commutes with the Hamiltonian, ΠH = HΠ , we
say that the system possesses a commutative local symmetry.

With Π2 = I , the composite system eigenvectors again
possess a definite parity under Π . In particular, any eigenvector
with odd parity will have zero amplitude on all sites fixed
under Π (since φn = −φn for those sites), that is, the state
is compactly localized on the symmetric subsystem. Conse-
quently, also the eigenvalues of these odd parity states are left
unaltered by variations of the parameters (onsite and hopping
elements) in the fixed subsystem. In the example of Fig. 1,
the same eigenvalue E1 = v − h (of the odd parity eigenstate)
will always be present in σ (H ), irrespectively of the fixed
subsystem connected to site 1. The corresponding eigenstate
is localized only on sites 2 and 3 with opposite sign.

The above symmetry considerations, explaining the per-
sistence of compact localized eigenstates of odd parity in
the presence of commutative local symmetries, are formal-
ized within graph theory by the so-called equitable partition
theorem (EPT) [50], which also provides the eigenvalues of
associated even parity eigenvectors. The term “equitable”
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FIG. 2. Left: Graphically represented Hamiltonian H (with
uniform hoppings h and onsite elements indicated by different vertex
sizes and coloring) of a system with local symmetry under mutual
exchange of (a) two subparts T0, T1, (b) three subparts T0, T1,
T2, and (c) two interconnected subparts T0, T1 (indicated by gray
background). Right: Using the equitable partition theorem (EPT), the
Hamiltonian matrix H is transformed (⇒) into a direct sum (⊕) of
the graphically represented matrices RH and Bj ; Eqs. (16) and (21).
In (a) and (b) there is no connection between the Ti , and only the
divisor matrix RH has altered hoppings [dotted lines;

√
2h in (a) and√

3h in (b)] compared to H . In (c), the intraconnections between T0

and T1 lead to altered onsite and hopping elements in both RH and
Bj .

denotes a partitioning of the vertices of a graph into nonover-
lapping classes such that for distinct classes Ai,Aj all vertices
belonging to Ai have the same number of adjacent vertices
belonging to class Aj . Although this concept is limited to
unweighted graphs, which can be represented by very specific
matrices such as the adjacency or Laplacian matrix, the above
definition of equitable partitions has recently been extended to
general complex square matrices [39,51] including the model
Hamiltonians considered here. In this generalization, a matrix
is “equitably partitionable” if it can be partitioned into blocks
of constant row sum. For instance, in Fig. 1(a) this is the case
as

H =
⎡
⎣ v′ h′ h′

h′ v h

h′ h v

⎤
⎦ (3)

with row sums v′,2h′,h′,v + h.
Before stating the EPT, let us introduce the employed

nomenclature through a suitable example. Consider the Hamil-
tonian graphically represented on the left-hand side of Fig. 2(a).
The structure possesses a commutative local symmetry which
can be visualized as a local flip of the sites {1,3} and {4,6}
around the axis running through the sites 7 − 2 − 5 − 10. By
“local” we mean that only the sites {1,3,4,6} are flipped, while
all other sites are unaffected. This commutative local symmetry

can be expressed by the commutation of the Hamiltonian with
the permutation matrix

ΠS =
⎡
⎣J3 0 0

0 J3 0
0 0 I3

⎤
⎦ ≡ J3 ⊕ J3 ⊕ I3, (4)

IN and JN being the N -dimensional identity and exchange
(antidiagonal, reverse identity) matrix, where ⊕ denotes direct
sum (i.e., block-diagonal concatenation). This symmetry op-
eration on H , or automorphism of its graph, can be described
as a simultaneous permutation

S : 1 �→ 3, 3 �→ 1, 4 �→ 6, 6 �→ 4, (5)

with all other sites being unaffected. This permutation S :
{1, . . . ,10} → {1, . . . ,10} is commonly written in the so-
called cyclic notation

S = (2)(5)(7)(8)(9)(10)(1,3)(4,6). (6)

Each tuple within parentheses in Eq. (6) is called an orbit.
Orbits are classified by their size, i.e., by the number of sites
they comprise. Orbits of size 1 are called trivial. Note that since
permutations are bijective, orbits are always nonoverlapping.

In accordance with the above, we will call a permutation
S : {1, . . . ,N} → {1, . . . ,N} satisfying

Hi,j = HS(i),S(j ) ∀ i,j ⇔ [H,ΠS ] = 0 (7)

a commutative local symmetry of H , with S acting nontrivially
on a subset of the system’s sites, and ΠS being the matrix
representation of S . If S is a commutative local symmetry
and all of its nontrivial orbits are of uniform size k, then we
call it a basic commutative local symmetry of order k. In the
present example, S given in Eq. (6) is a basic commutative
local symmetry of H of order 2 with two nontrivial and six
trivial orbits. It is clear from Eq. (7) that, in order to be a
commutative local symmetry, a given permutation must leave
the connections between sites invariant. For example, for H in
Fig. 2(a), the permutation

S = (1)(2)(3)(4)(6)(7)(9)(10)(5,8) (8)

is not a commutative local symmetry: While indeed v8 = v5,
S breaks the connection, e.g., between sites 7 (which is fixed
under S) and 8, hS(8),S(7) = 0 �= h8,7, thus violating Eq. (7).

If H is represented graphically, commutative local sym-
metries of order 2 can be seen as the invariance of the
Hamiltonian under a local flip of a subsystem about an axis
(which depends on how H is depicted graphically), represented
by a corresponding local permutation matrix ΠS . While this
procedure aids in the graphical identification of commutative
local symmetries, the notion of orbits is more powerful as it
makes the description more compact in the case of increased
local symmetry. For example, in Fig. 2(b) all of the following
are commutative local symmetries of H of order 2:

Sa = (7)(8)(9)(10)(2)(5)(4,6)(1,3),

Sb = (7)(8)(9)(10)(3)(6)(4,5)(1,2), (9)

Sc = (7)(8)(9)(10)(1)(4)(5,6)(2,3),

each one corresponding to a local flip of a symmetric subsys-
tem. Those different local symmetries of order 2 can now be
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unified into a single one of order 3,

S = (7)(8)(9)(10)(4,5,6)(1,2,3), (10)

i.e., by the simultaneous cyclic permutations 1 �→ 2 �→ 3 �→ 1
and 4 �→ 5 �→ 6 �→ 4, exploiting the full local symmetry of
the system at once. For the purpose of the EPT, S is preferably
chosen to be of highest possible order.

There is a fundamental connection between a basic com-
mutative local symmetry S of order k and the structure of H :
If it exists, then the sites of the system can be reordered [40]
by a suitable permutation P such that H is transformed into

H̃ = P −1HP =

⎡
⎢⎢⎢⎢⎢⎢⎣

F G G . . . G

G† C0 C1 . . . Ck−1

G† Ck−1 C0
. . .

...
...

...
. . .

. . . C1

G† C1 . . . Ck−1 C0

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

with k copies of the block C0 on its diagonal and Ci ∈ Cl×l ,
where l is the number of nontrivial orbits of S . For a Hermitian
Hamiltonian H = H † the relation Ci = C

†
k−i holds. A general

procedure to transform H to H̃ for a given basic commutative
local symmetry S of order k, with f trivial and l nontrivial
orbits, is as follows:

(i) Collect all f sites fixed by S into the subset F of the set
N of all sites.

(ii) Construct a set T0 of size l by picking one arbitrary site
from each one of the l nontrivial orbits of S .

(iii) Construct the setsTi = S iT0, i = 1, . . . ,k − 1, by the
i-fold application of S ontoT0 (noting thatTk = SkT0 = T0).

(iv) Construct H̃ in the form of Eq. (11) using

F = HF,F, G = HF,T0 , Ci = HT0,Ti
, (12)

where HA,B denotes all elements Hmn with m ∈ A, n ∈ B.
As an example, for the system in Fig. 2(a) we could choose

T0 = {1,4}, so that T1 = {3,6}, and get

C0 =
[

v1 h1,4

h4,1 v4

]
, C1 =

[
0 0
0 0

]
, (13)

where C1 vanishes since there are no interconnections between
T0 and T1. The other matrices are given as

F =

⎡
⎢⎢⎢⎢⎢⎣

v2 h2,5 0 h2,8 0 0
h5,2 v5 h5,7 0 0 0

0 h7,5 v7 0 h7,9 h7,10

h8,2 0 0 v8 h8,9 h8,10

0 0 h9,7 h9,8 v9 0
0 0 h10,7 h10,8 0 v10

⎤
⎥⎥⎥⎥⎥⎦,

G =

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 0

h7,1 0
0 0
0 0
0 h10,4

⎤
⎥⎥⎥⎥⎥⎦. (14)

Note that F constitutes the Hamiltonian of the isolated fixed
subsystem F, the matrix (k = 2)

C =

⎡
⎢⎢⎢⎢⎣

C0 C1 . . . Ck−1

Ck−1 C0
. . .

...
...

. . .
. . . C1

C1 . . . Ck−1 C0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎣

v1 h1,4 0 0
h4,1 v4 0 0

0 0 v1 h1,4

0 0 h4,1 v4

⎤
⎥⎦ (15)

represents the isolated symmetric subsystem S = N \ F
(which in this case are two uncoupled symmetric blocks), while
G couples the subsystems F and S. Thus, H̃ in Eq. (11) can be
seen as a symmetry-adapted restructuring of the Hamiltonian.

We can now, following Refs. [39,40], state the following:
Equitable partition theorem. Let H ∈ CN×N have a commuta-
tive local symmetry S of order k with l nontrivial and f trivial
orbits. Then the following properties hold:

P1 There exists an invertible, nonunitary matrix M such
that

H ′ = M−1HM = R ⊕
k−1⊕
j=1

Bj =

⎡
⎢⎢⎢⎢⎣

R 0 . . . 0

0 B1
. . .

...
...

. . .
. . . 0

0 . . . 0 Bk−1

⎤
⎥⎥⎥⎥⎦

(16)

where

R =
[

F k · G

G† B0

]
, Bj =

k−1∑
m=0

ωjmCm, (17)

with ω = e2πi/k and the matrices F,G,Cm as defined in
Eq. (12).

P2 The spectrum σ (H ) is given by

σ (H ) = σ (H ′) = σ (R) ∪ σ (B1) ∪ · · · ∪ σ (Bk−1) (18)

(regarding the hermiticity of R, see the remark below).
P3 The N = f + kl eigenstates of the index-reordered

matrix H̃ defined in Eq. (11) are given by

φν =

⎡
⎢⎢⎢⎢⎣

wν

vν

vν

...
vν

⎤
⎥⎥⎥⎥⎦, φf +ml+r =

⎡
⎢⎢⎢⎢⎣

0f

um,r

ωmum,r

...
ω(k−1)mum,r

⎤
⎥⎥⎥⎥⎦ (19)

for ν ∈ [1,f + l] and m ∈ [1,k − 1],r ∈ [1,l], where R[wν

vν
] =

λν[wν

vν
] with wν ∈ Cf ×1, vν ∈ Cl×1, and Bmum,r = λm,r um,r .

The vectors φf +ml+r are thereby compact localized on S.
P4 The first f + l eigenvectors of H are symmetric under

S , while the remaining (k − 1)l eigenvectors are both compact
localized and not symmetric under S . Specifically, defining the
index-reordered permutation matrix Π̃S = P −1ΠSP with P

defined from Eq. (11), we have Π̃Sφν = φν for ν ∈ [1,f + l],
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FIG. 3. (a1) Eigenvectors φν of the Hamiltonian matrix H , with index ν ordered according to Eq. (19) in the EPT, (a2) their corresponding
eigenvalues {Eν}, and (a3) eigenvectors of the matrices RH and Bj (j = 1,2), for the system of Fig. 2(a), depicted on the left, with indicated
onsite elements and homogeneous hoppings hmn = 1. (b1)–(b3) Similarly, but for the system of Fig. 2(b). The norm |φν

n | of each real eigenstate
at each site n is plotted in black (red) for φν

n > 0 (φν
n < 0). The sites comprising the locally symmetric part of H are indicated by corresponding

light and dark blue background. The eigenvectors of RH and Bj , which share eigenvalues Eν with H , are spatially plotted following the
site-indexing of H with gray background for sites they are not defined on. Note that the CLSs [ν = 9,10 in (a1) and ν = 7,8,9,10 in (b1)] are
constructed from the components of Bj eigenvectors at the same energy [with pairwise degeneracy for ν = 7,9 and 8,10 in (b1)], and that the
remaining eigenstates are symmetric within the locally symmetric part.

while the remaining compact S-localized eigenvectors trans-
form as

Π̃S

⎡
⎢⎢⎢⎢⎣

0f

um,r

ωmum,r

...
ω(k−1)mum,r

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0f

ω(k−1)mum,r

um,r

...
ω(k−2)mum,r

⎤
⎥⎥⎥⎥⎥⎦. (20)

Remark. The generally non-Hermitian “divisor” matrix R

defined in Eq. (17) is isospectral to the similar Hermitian matrix

RH =
[

F
√

k · G√
k · G† B0

]
= KRK−1 (21)

with eigenvectors [ wν

vν/
√

k
], where K = If ⊕ √

k · Il . Thus,
properties P2 and P3 of the EPT hold if we replace R by RH

and vν by vν/
√

k; we shall do so in the remainder of this work.
We see that, in essence, the EPT uses the symmetries

described by S to acquire partial information from H ,
namely its spectral composition and corresponding eigenvector
localization, without diagonalizing it. This information could
indeed alternatively be obtained by considering the system’s
symmetry under local flip operations (represented by involu-
tory matrices Π ), as explained above. In particular, however,
the EPT provides all eigenvalues and eigenvectors of H in
terms of those of the symmetry-adapted matrices R and Bj ,

i.e., not only those of the “decoupled” CLSs. Since R and
Bj are of reduced dimension, the EPT may additionally offer
a computational advantage in diagonalizing Hamiltonians of
extended systems with commutative local symmetries.

To give a concrete impression of the EPT, we consider
again the Hamiltonian H in Fig. 2(a), which is transformed
to the direct sum of matrices RH and B1 according to Eq. (16).
Recall that the similarity transformation involved preserves the
spectrum of H , while the final block-diagonal form ensures
property P2 in the EPT. The eigenvectors of H , RH, and
B1 of Fig. 2(a) are shown in Figs. 3(a1)–3(a3) together with
their eigenvalues. As predicted by the EPT (here with f = 6,
k = 2, and l = 2), there are two (antisymmetric) CLSs of H

(states ν = 9,10) localized on the sites {1,3,4,6} that form
a commutative local symmetry under the permutation S of
Eq. (6), while all other eigenstates are extended and symmetric
under S . In particular, the CLSs are constructed from the
components of the eigenvectors of B1 in Fig. 3(a3).

The matrices C0,C1 and F,G, used in this example to con-
struct the matrices R and Bj of the transformed Hamiltonian
H ′ in Eq. (16), are given in Eqs. (13) and (14), respectively, for
the choice T0 = {1,4} as initial orbit sites. Note that the choice
of T0 generally affects the matrices G,B1, . . . ,Bk−1 (but not
B0), though does not change the resulting decomposition of
the spectrum and the eigenvectors of the Hamiltonian. In the
present example, the sites in each orbit are disconnected, so
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that C1 vanishes and

B0 = B1 = C0 =
[

v1 h1,4

h4,1 v4

]
(22)

from Eq. (17) becomes the single submatrix corresponding to
the two CLSs.

The EPT works in a completely similar form for the example
in fig. 2(b): There are now 2 orbits of size k = 3, leading to (k −
1)l = 4 (pairwise degenerate) CLSs, as seen in Figs. 3(b1)–
3(b2). Note that any two degenerate real CLS eigenvectors
can be linearly combined to either be antisymmetric under one
of the (partial) local symmetry transformations in Eq. (9), or
to be of the complex form in Eq. (19). Also in this example
there are no intra-orbit connections, and so we have B0 = B1 =
B2 = C0.

In contrast, the system shown in Fig. 2(c) is invariant under
the permutation S = (1)(2,3)(4,5) but has intraconnected or-
bits (or interconnected local symmetry units T0 and T1), since
h2,3,h2,5,h4,3 �= 0. In such a case the matrices Bj differ; here
we have (with the choice T0 = {2,4})

R = [v1], B0
1

=
[

v2 h2,4

h4,2 v4

]
±

[
h2,3 h2,5

h4,3 h4,5

]
. (23)

Notably, the B0 and B1 here are given by adding and subtracting
the intra-orbit connection, respectively. In Sec. III A we will
use this property to tailor periodic systems featuring bound
states in the continuum.

B. Noncommutative local symmetries

So far we have considered the case of local symmetries
which, although localized within a part of a composite system,
are represented by a permutation matrix ΠS that commutes
with the system Hamiltonian H . We now show, partially
following the procedure in Ref. [41], how the merits of the
EPT can be extended to cases where a symmetric subsystem
is asymmetrically coupled to the rest of the system under the
given site permutation. Since ΠS then does not commute with
H , we call the underlying permutation S a noncommutative
local symmetry. In the following, we will impose two further
restrictions on S .

Specifically, consider a Hamiltonian H which can be index-
reordered, in analogy to Eq. (11), into the form

H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

F γ ∗
1 G γ ∗

2 G . . . γ ∗
k G

γ1G
† C0 0 . . . 0

γ2G
† 0 C0

. . .
...

...
...

. . .
. . . 0

γkG
† 0 . . . 0 C0

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

with generally complex parameters γ1, . . . ,γk . As in Eq. (11),
the k copies of C0 ∈ Cl×l correspond to the same local
symmetry units under permutation S , the matrix F ∈ Cn×n

corresponds to sites fixed by S , while G ∈ Cn×l connects fixed
to local symmetry sites. Now, however, (i) the local symmetry
units are not interconnected (i.e., Cj>0 = 0), and (ii) while
each of them is geometrically coupled to the fixed part F in the
same manner, the coupling strength for each unit is weighted
by a factor γi . Thus, if γi �= γj for some i �= j , the coupling
of S (denoting the locally symmetric subsytems as a whole)

1

FIG. 4. Graphically represented example Hamiltonian H of the
form in Eq. (24) with a restricted noncommutative (local) symmetry
under the exchange of subparts T0 and T1, and its partitioning into
matrices R and C0 according to the nEPT with ξ = γ 2

1 + γ 2
2 .

to F (denoting the fixed subsystem) is asymmetric, and S
is no longer a commutative local symmetry of H . A simple
example is given by the system in Fig. 4; also by Fig. 2(a)
if, e.g., only h1,7 and h4,10 were multiplied by a factor γ , or
similarly in Fig. 2(b)—though not in Fig. 2(c), where there is
local symmetry unit interconnection.

In the following, we will call noncommutative local sym-
metries fulfilling the above restrictions (i) and (ii) restricted
noncommutative ones. For such local symmetries the EPT can
be modified, along the lines of Ref. [41], to the following:

Nonequitable partition theorem. Let H̃ ∈ CN×N be of the
form in Eq. (24), with F ∈ Cf ×f , k copies of C0 ∈ Cl×l , and
S̃ a restricted noncommutative local symmetry of H̃ . Then the
following properties hold:

P1 The eigenvalue spectrum of H̃ is given by σ (H̃ ) =
σ (H ′) = σ (R) ∪ σk−1(C0), where H ′ is a similarity transform
of H̃ and is given by

H ′ = R ⊕
k−1⊕
m=1

C0, R =
[

F
√

ξ · G√
ξ · G† C0

]
(25)

with ξ = ∑k
j=1 γ 2

j and σi(R) denoting i copies of σ (R) (i.e.,
i-fold degeneracy of those eigenvalues).

P2 The N = f + kl eigenstates of H̃ are given by

φν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

wν

γ1√
ξ
vν

γ2√
ξ
vν

...
γk√
ξ
vν

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, φf +ml+r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0f

γ1

γ1
u0,r

γ2

γ1
u0,r

...
γm

γ1
u0,r

−
∑m

i=1 γ 2
i

γ1γm+1
u0,r

0l

...

0l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭(k − 1) − m

(26)

for ν ∈ [1,f + l], m ∈ [1,k − 1], and r ∈ [1,l], where
R[wν

vν
] = λν[wν

vν
] with wν ∈ Cf ×1, vν ∈ Cl×1, and C0um,r =

λ0,r um,r .
The naming of the theorem was chosen to reflect the fact

that, for unequal γi , the matrix (24) cannot generally be
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partitioned into blocks with blockwise constant row sum; that
is, the matrix is “nonequitably” partitionable according to the
definition above in Sec. II A. The theorem is proven in Ref. [41]
for real H̃ , but is generalized here in a straightforward manner
to complex H̃ and γj ; see the Appendix. This may allow
for the possibility to include appropriately applied external
magnetic fields in the present symmetry-adapted construction
of CLSs (via Peierls phase factors in the hopping elements
[28]), or to include parametric gain and loss (via complex onsite
elements [24]).

It should here be mentioned that there exists a large class of
local symmetries which are neither commutative nor restricted
noncommutative. Also, the restrictions for the nonequitable
partition theorem (nEPT) to apply are indeed relatively strong.
However, the nEPT may still provide larger flexibility than
the EPT (requiring exact commutative local symmetry) in de-
signing CLSs for systems with non-intraconnected symmetric
subparts.

Comparing the nEPT with the EPT, some similarities but
also subtle differences become evident. Both the nEPT and
the EPT block-diagonalize the Hamiltonian, and in both cases
the eigenstates are decomposed into two classes: extended
states generally occupying all sites of the system, and CLSs
localized on S (the sites of the symmetric subsystems, non-
trivially affected by the permutation S). However, the detailed
properties of eigenstates in each class are different for the EPT
and nEPT. Extended eigenstates [the φν∈[1,f +l] in Eqs. (19)
and (26)] are symmetric under the action of S for the EPT,
while this holds only for equal γi for the nEPT (in which case
S becomes commutative and the EPT applies). Also, CLSs
[the φf +ml+r in Eqs. (19) and (26)] determined by the nEPT
are more compactly localized, on only a subset of S, as the
k − 1 − m vectors 0l in Eq. (26) indicate.

III. COMPACT LOCALIZED EIGENSTATES
IN LATTICE SYSTEMS

Having presented and analyzed the (n)EPT and its implica-
tions for the eigenspectra and eigenstates of discrete models
with (restricted non)commutative local symmetries, in the
following we demonstrate concrete applications to compact
state design in extended lattice systems.

A. Engineering bound states in the continuum

The band structure of a periodic lattice provides energetic
continua for extended (Bloch) eigenstates respecting the un-
derlying discrete translational symmetry. In this section we
will demonstrate how certain perturbations, which destroy
the periodic character of the lattice, may nevertheless leave
the band structure of the system unchanged. Key to this are
tailored local perturbations of one or more unit cells, which
can be described by local symmetries and thereby induce the
occurrence of CLSs.

Let us consider the system depicted in Fig. 5(a): a tight-
binding periodic chain (with vn = v and hn,n±1 = h) perturbed
locally by replacing a lattice site with a dimer of onsite energy
v1 and intrahopping h2, in turn connected to the chain by
hoppings h1. For generic defect parameters, the Bloch states of
the unperturbed chain are no longer eigenstates of the system,

(a)

(b)

(c)

a
b

FIG. 5. (a) Periodic lattice system locally perturbed by a symmet-
ric dimer defect with indicated onsite and hopping elements (top). The
corresponding Hamiltonian can be transformed (bottom) via the EPT
into the direct product of the divisor matrix R, corresponding to a gen-
erally perturbed linear chain, and the 1 × 1 matrix B1 corresponding
to a CLS on the defect with energy ECLS = v1 − h2. For the special
case of h1 = h/

√
2 and h2 = v − v1, the spectrum σ (H ) consists

of the unperturbed chain band structure with an additional tunable
bound state energy ECLS. (b) The same chain with an additional,
different, locally symmetric perturbation next to the first one, which
can be treated by an iterative decomposition. The first decomposition
(⇒) reveals the occurrence of two CLEs at energies v1 − h2,v2 − h4.
The second decomposition ( ∗⇒) applies if v2 + h4 = v,

√
2h3 = h5.

For parameters tuned so that
√

2h1 = h, v1 + h2 = v,
√

2h5 = h, the
spectrum of the perturbed system again consists of the unperturbed
chain band structure and three CLS energies v1 − h2,v2 − h4,v. (c)
Band structure of the unperturbed chain (blue line), present in the
spectra of the tuned locally symmetric systems of (a) and (b), together
with indicated corresponding CLS eigenenergies. Different onsite and
hopping elements are depicted with different sizes and colors.

and defect modes with exponential decay into the left and
right semi-infinite chains arise. This may change, however,
if the defect forms a commutative local symmetry, as we
now demonstrate. In this case, the EPT provides a symmetry-
adapted partitioning of the Hamiltonian into the matrices R

and B1, as shown graphically in Fig. 5(a). The divisor matrix R

corresponds to a linear chain with a single-site defect of energy
v1 + h2, connected by hoppings

√
2h1, while B1 corresponds

to a single CLS, localized only on the dimer, with energy
ECLS = v1 − h2, as indicated in Fig. 5(c) [52]. Following this
partitioning, the spectrum is given by σ (H ) = σ (R) ∪ σ (B1).

As we see, also in the partitioned representation a defect
is generally retained in the chain, which would lead to,
e.g., backscattering of incident waves lying energetically in
the unperturbed continuum. Note, however, that the defect
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parameters can be tuned so as to effectively recover those of
the unperturbed chain: Setting h1 = h/

√
2 and h2 = v − v1

indeed makes R coincide with the unperturbed Hamiltonian.
Thus, despite the presence of the defect, the spectrum in
this case consists of the band structure of the unperturbed
chain, augmented by the energy of the CLS. Moreover, by
simultaneously tuning v1 and h2 such that h2 = v − v1, the
CLS can be moved in energy into the band of the chain, so
that it becomes “bound state in the continuum” [12,13]. In
the present case, this state does not interact with the extended
continuum states due to eigenvector orthogonality, and thus the
defect is effectively invisible for an incident wave (i.e., causes
no backscattering).

Such a “renormalization” of defects into unperturbed chain
sites was recently shown to explain the absence of localization
[53], though for the special case of one dimension and zero
intradimer coupling h2. Following the above paradigm, the
EPT can be used to easily generalize the approach to pertur-
bations of various complexity and connectivity as well as to
higher dimensions. The key for such a generalization is to have
a perturbation that renders the divisor matrix R identical to
the unperturbed Hamiltonian. Note that this can be done even
for different kinds of perturbations, as shown in Fig. 5(b).
Here, an iterative decomposition is possible, provided that
v2 + h4 = v,

√
2h3 = h5. If, additionally,

√
2h1 = h, v1 +

h2 = v,
√

2h5 = h [indicated by an asterisk in Fig. 5(b)],
then the original band structure of the unperturbed chain
is recovered, together with three additional bound states at
energies v1 − h2,v2 − h4,v, as shown in Fig. 5(c).

CLSs tailored as above to be “invisible” to a host lattice can
clearly be inserted in multiple positions in the lattice without
affecting the unperturbed band structure. Notably, the same
could be done for restricted noncommutative local symmetry
defects using the nEPT, as long as its conditions are met. This
concept of tailoring R is thereby neither limited by the number
of dimensions nor by the number of perturbed unit cells, and
thus applies to quite generic extended lattice models. As an
application, CLSs could be distributed along a given aperiodic
or even random sequence, to then study their interaction with
continuum states by gradually breaking the local symmetry of
the defects.

B. Using symmetries to design flat bands

The above engineering of bound states in an unperturbed
continuum via the (n)EPT relies on making the divisor matrixR

coincide with the unperturbed lattice Hamiltonian by tuning the
defect parameters. To obtain a band structure for generic defect
parameters, however, the defects need to be placed periodically
as well. Then, since the corresponding CLSs vanish on the
sites (fixed under the local symmetry S) connected to adjacent
lattice cells, their energy will also be independent of the
Bloch momentum. Consequently, a flat band will form at
each CLS eigenenergy. An example for this is the well-known
one-dimensional diamond ladder lattice [1] which can be
constructed by periodically repeating the perturbed unit cell
in Fig. 5(a) and which features global chiral symmetry [28];
similarly, cross-stitch and one-dimensional pyrochlore lattices
[1] can be treated with the present local symmetry approach.

We now show how the (n)EPT can be used to design
lattices in arbitrary dimensions hosting a prescribed number

(c2)

1 2

3 4

5 6

7

(c1)

(a2)

(b2)

(a1)

(b1)

FIG. 6. (a1) Unit cell (indicated by dotted rectangle) of a periodic
setup, with a local symmetry under the permutation S: 1 ↔ 3, 2 ↔
4 leading to CLSs at two energies E1,E2, and (a2) corresponding
band structure with flat bands at E1,E2. (b1)–(b2) As in (a1)–(a2)
but with the same unit cell connected in parallel via two sites to each
neighboring cell. (c1)–(c2) As in (a1)–(a2) but with the same unit cell
augmented by three sites and connected into a 2D lattice. While the
dispersive bands are different in each case, the flat bands remain at
E1,2 since the symmetric subsystem remains unchanged. In the lower
part of (a1), the EPT decomposition (⇒) of the system’s Hamiltonian
into that of a modified lattice and (⊕) N → ∞ copies of isolated
dimers (with eigenenergies E1,2) is visualized. Arrowed lines indicate
complex-valued hoppings and dashed lines modified real hoppings.
For an asymmetry parameter γ �= 1 [indicated in (a1)] and vanishing
intraconnections (hmn = 0; m,n = 1,2,3,4), the nEPT applies (see
text).

of flat bands at desired energies. Consider a lattice like the
one in Fig. 6(a1), featuring a commutative local symmetry for
γ = 1 in each unit cell under the permutation S: 1 ↔ 3, 2 ↔ 4
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(leaving all other sites fixed). Then, by the EPT there are
(k − 1)l = 2 CLSs localized on the sites S = {1,2,3,4} within
the unit cell, with k and l being the uniform size and number of
nontrivial orbits of S , respectively. Two flat bands thus form at
the CLS energies E1,2, as shown in Fig. 6(a2) [52]. Specifically,
E1,2 are the eigenvalues of the matrix

B1 =
[

v1 h1,2

h2,1 v2

]
−

[
h1,3 h1,4

h2,3 h2,4

]
, (27)

of Eq. (17), and thus depend only on the elements within the
subpart S of the unit cell. Note here that, for H to be Hermitian
and S-symmetric, h1,3 and h2,4 need to be real, while h2,3 =
h4,1 may as well be complex (indicated by arrows).

In complete analogy, flat bands form in the presence of
restricted noncommutative local symmetries in the unit cell
following the conditions of the nEPT. Specifically, for γ �= 1 in
Fig. 6(a1), but with vanishing local symmetry intraconnection
(h1,3,h2,4,h2,3,h4,1 = 0), we obtain two flat bands (not shown)
at the CLS eigenvalues of the matrix

C0 =
[

v1 h1,2

h2,1 v2

]
(28)

defined in Eq. (12). Note that those are independent of the
asymmetry factor γ .

Figure 6(b1) shows a lattice where the same unit cell as
before is connected “in parallel” (via two connections) to each
neighboring unit cell, instead of “serially” as in Fig. 6(a1).
Again, the unit cell’s CLSs lead to two tunable flat bands at
energies given by the eigenvalues of Eq. (27), as shown in
Fig. 6(b2).

In the two-dimensional (2D) example of Fig. 6(c1), the unit
cell differs from that of Fig. 6(a1) in that it contains three
additional sites, though still containing the same locally sym-
metric unit. The CLS eigenenergies are also here independent
of the Bloch momentum, now in both directions of translational
invariance, and 2D corresponding bands thus arise. Note that
their position is the same as in Figs. 6(a) and 6(b), since the
underlying symmetric substructure is not changed.

Concluding the above, we have shown that a lattice auto-
matically features one or more symmetry-induced flat bands
if (i) the unit cell possesses a commutative or restricted
noncommutative local symmetry and (ii) this symmetry is
unbroken when isolated unit cells are connected to form the
lattice. Note that this approach to flat bands can be related
to the common description of symmetry via the point group
of the unit cell, whose action leaves at least one point fixed.
Indeed, the discreteness of the considered model Hamiltonian
maps each point group element to a site permutation. This
constitutes then a global symmetry of the isolated unit cell, and
thus a special case of condition (i) above. In turn, condition (ii)
is fulfilled provided that the unit cells are connected through
sites located at the point group’s fixed points. This link of the
proposed approach to point groups may aid the description and
design of symmetry-induced flat bands in more complex lattice
systems.

Having seen how local symmetries lead to (k − 1)l flat
bands [k being the number of copies of C0 ∈ Cl×l defined in
Eqs. (11) and (24)], let us now look at the remaining bands.
Note that these are usually completely dispersive, but could

contain flat bands as well that are induced by other means than
the above (restricted non)commutative local symmetries. In
any case, all of these remaining bands are entirely determined
by the divisor matrix R which is explicitly represented graph-
ically in Fig. 6(a1) (between ⇓ and ⊕). Thus, these remaining
bands can be directly obtained by diagonalizing the matrix
R which represents a strictly periodic system. Note that the
partition into matrices R and Bj (by the EPT) or C0 (by the
nEPT) allows for an effective design process in which the
symmetry-induced flat bands and the remaining band structure
can be designed separately.

It is clear that the present approach to design flat bands using
the EPT or nEPT applies to the class of lattices containing
commutative or restricted noncommutative local symmetries.
Thus, it does not cover other cases of lattices with other classes
of local symmetries, which may also host flat bands generated
by the very general method developed in Ref. [2]. The essence
of the present approach is that, instead of generating flat
bands from conditions imposed on the site-resolved eigenvalue
problem (1), it is based on unified and intuitive symmetry
principles forcing the occurrence of CLSs. We thus view
it as a complementary method which lends an insightful
understanding to already existing methods.

IV. CONCLUSIONS

We have shown how two very recent results from graph
theory can be used to analyze discrete Hamiltonians with
local symmetries. The resulting framework demonstrates the
impact of two types of local symmetries on the eigenstates
of a Hamiltonian H , including the formation of so-called
compact localized states (CLSs). These two types of local
symmetries are described by site permutations which either
leave all (commutative local symmetries) or some (restricted
noncommutative local symmetries) matrix elements of H

invariant. More specifically, the restricted noncommutative
local symmetries are such that the symmetric subsystems are
(i) not interconnected and (ii) asymmetrically coupled to the
remaining part of the system.

The essence of the framework is a symmetry-adapted
partition of H into smaller matrices R and Bi whose collec-
tive eigenvalue spectrum is equal to that of the original H .
Depending on the exact character of the local symmetry, H is
assured to have one or more compact localized eigenstates
which are localized on the symmetric subsystem S. Their
energies are given by the spectra of the matrices Bi . All other
eigenstates of H are not localized on S, with their energy
given by the spectrum of R. In short, the framework provides
the total eigenvalue spectrum as well as eigenvectors of the
Hamiltonian in terms of symmetry-adapted submatrices, which
are in turn more efficiently computed and better controllable
by parametric tuning.

We apply this novel framework to tight binding systems and
explicitly design flat bands at tailored energies in lattices of
one and two dimensions, with the generalization to arbitrary
dimensions being straightforward. Moreover, we use the
methodology to demonstrate the occurrence of bound states in
the energy continuum of a periodic chain perturbed by one or
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more symmetric defects. For both flat bands and bound states
in the continuum, our results give an intuitive understanding
of the impact of local symmetries, paired with a high degree of
control over the respective energies. We believe that the present
framework may serve as a complement to existing methods
in the design of CLSs and flat bands, by offering a unifying,
intuitive, and efficient way to connect them to local
symmetries.
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APPENDIX: PROOF OF THE nEPT

We here prove property P2 of the nEPT. To this end, we need to show that the vectors

xj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

wj

γ1√
ξ
vj

γ2√
ξ
vj

...
γk√
ξ
vj

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, ym,r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0f

γ1

γ1
u0,r

γ2

γ1
u0,r

...
γm

γ1
u0,r

−
∑m

i=1 γ 2
i

γ1γm+1
u0,r

0l

...

0l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1)

with j ∈ [1,f + l],m ∈ [1,k − 1],r ∈ [1, l], are linearly independent eigenvectors of the Hamiltonian H ′ given in Eq. (25).
Since [wj

vj
] is the j th eigenvector of the divisor matrix R [given in Eq. (25)] with eigenvalue λj , i.e.,[

F
√

ξ · G√
ξ · G† C0

][
wj

vj

]
=

[
Fwj + √

ξ · Gvj√
ξ · G†wj + C0vj

]
= λj

[
wj

vj

]
,

applying H ′ on xj yields

H ′xj = H

⎡
⎢⎢⎢⎢⎣

wj

γ1√
ξ
vj

...
γk√
ξ
vj

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Fwj +
∑k

i=1 |γi |2√
ξ

Gvj

γ1G
†wj + γ1√

ξ
C0vj

...

γkG
†wj + γk√

ξ
C0vj

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Fwj + √
ξ · Gvj

γ1G
†wj + γ1√

ξ
C0vj

...

γkG
†wj + γk√

ξ
C0vj

⎤
⎥⎥⎥⎥⎥⎦ = λj

⎡
⎢⎢⎢⎢⎣

wj

γ1√
ξ
vj

...
γk√
ξ
vj

⎤
⎥⎥⎥⎥⎦ = λj xj . (A2)

Thus, {xj } are eigenvectors of H ′. If we choose the set of eigenvectors {[wj
vj

]} such that they are pairwise linearly independent
(which can always be done), then this is also the case for the set {xj }. To see this, let us assume that there exists an xi and constants
{αj } such that xi is given by a superposition of {xj } with j �= i, i.e.,

xi =
∑
j �=i

αj xj . (A3)

Then, from the definition of xi , it would hold that[
wi
γ1√
ξ
vi

]
=

∑
j �=i

αj

[
wj
γ1√
ξ
vj

]
⇒

[
wi

vi

]
=

∑
j �=i

αj

[
wj

vj

]
, (A4)

which is not true since the [wj

vj
] are pairwise linearly independent. Thus, the xj are pairwise linearly independent eigenvectors of

H ′.
Further, since C0u0,r = λ0,r u0,r by definition, application of H ′ on ym,r yields

H ′

⎡
⎢⎢⎣

0f

a1u0,r

...
aku0,r

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C00f

a1C0u0,r

...
akC0u0,r

⎤
⎥⎥⎦ = λ0,r

⎡
⎢⎢⎣

0f

a1u0,r

...
aku0,r

⎤
⎥⎥⎦ (A5)
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for any a1, . . . ,ak ∈ C. Thus, the ym,r are eigenvectors of H ′. As is easily shown, they are also pairwise orthogonal, both for the
same and for different u0,r .

Having shown that both sets { ym,r},{xj } are eigenvectors of H ′, we need to show that they form a linearly independent set.
Evaluating the scalar product of xj and ym=i,r for arbitrary i and r gives

xj · yi,r =
(∑i

p=1 γ 2
p

γ1
√

ξ
− γi+1√

ξ

∑i
p=1 γ 2

p

γ1γi+1

)
vj · u0,r = 0, (A6)

where the last equality stems from the cancellation of the two summands in parentheses. Note that H ′ ∈ CN×N has N = f + kl

linearly independent eigenstates. Since R ∈ Cn+l and since { ym,r} contains (k − 1)l orthogonal eigenstates, we have thus proved
that the eigenstates of H ′ are given by {xj },{ ym,r}.
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We study the compact localized scattering resonances
of periodic and aperiodic chains of dipolar nanopar-
ticles by combining the powerful Equitable Partition
Theorem (EPT) of graph theory with the spectral dyadic
Green’s matrix formalism for the engineering of em-
bedded quasi-modes in non-Hermitian open scattering
systems in three spatial dimensions. We provide ana-
lytical and numerical design of the spectral properties
of compact localized states in electromagnetically cou-
pled chains and establish a connection with the dis-
tinctive behavior of Bound States in the Continuum.
Our results extend the concept of compact localization
to the scattering resonances of open systems with arbi-
trary aperiodic order beyond tight-binding models, and
are relevant for the eff cient design of novel photonic
and plasmonic metamaterial architectures for enhanced
light-matter interaction. © 2018 Optical Society of America

http://dx.doi.org/10.1364/OL.44.000375

The engineering of spatially localized wave excitations in com-
plex scattering media is a fundamental problem that arises in
many different contexts of optics and quantum mechanics. In
particular, careful design of the symmetry properties of scatter-
ing potentials enables the creation of Compact Localized States
(CLS), which are resonant electronic or photonic modes spatially
localized over a compact subset of lattice sites [1–7]. These pe-
culiar modes have received signif cant attention due to their
importance for the design of dispersion-less f at bands (FB) in
the spectrum of periodic lattices within the tight-binding model
[1–7]. Moreover, symmetry arguments also play a key role in
the manipulation of embedded eigenstates, which are eigen-
modes of open large-scale structures with inf nite lifetime and
diverging quality factors appearing in the radiation continuum
[8–17]. In fact, the symmetries of periodic structures, tradition-
ally described by their space groups properties, determine the
behavior of such peculiar eigenstates, also referred to as Bound

States in the Continuum (BIC) [8–17]. Symmetry-induced pho-
tonic eigenstates have recently attracted a signif cant attention
in the nano-optics and metamaterials communities due to the
many potential applications to ultra-compact and eff cient solid-
state lasers [18], optical sensors [19], and narrowband f lters [20].
However, the predictive design of photonic CLS and BICs is
currently limited to either the approximate tight-binding approx-
imation or the use of intensive full-vector numerical simulations
of large-scale photonic structures [3, 4].

In this letter, we propose a more general framework that cap-
tures in three-spatial dimensions the effects of local symmetries
in the electromagnetic response of large chains of dipolar scatter-
ing nanoparticles with arbitrary geometry, enabling the eff cient
design of CLS and embedded eigenstates in photonic systems.
Such local symmetries have been treated within a theory of non-
local currents and were recently shown to induce a class of CLS
in tight-binding networks [6, 21–24]. The proposed approach is
based on the combination of the rigorous Green’s matrix mul-
tiple scattering technique and recently established theorems in
graph theory here employed to obtain a block partitioning of the
dyadic Green’s matrix induced by the symmetry properties of
a given system under local site permutations. The diagonaliza-
tion of the Green’s matrix is reduced to f nding the eigenspectra
of smaller matrices, with eigenvectors naturally divided into
compact localized and extended states. While valuable as a com-
putational tool for arbitrary symmetric discrete open-scattering
media, the proposed approach provides a unif ed, intuitive, and
eff cient method for the design of the energy spectra of CLS in
both periodic and non-periodic arrays of nanostructures.

Our work applies the powerful Equitable Partition Theorem
(EPT) of graph theory to the analysis of the dyadic Green’s ma-
trix formalism for the spectral engineering of embedded quasi-
modes in non-Hermitian open scattering systems in three spatial
dimensions. Moreover, by analyzing the spectral properties of
the dyadic Green’s matrix we discover a fundamental similarity
between CLS quasi-modes (vanishing waves outside a f nite sub-
set of the system due to destructive interference [1–4, 6]) and the
distinctive behavior of photonic BICs, which is achieved in the

Note: This is the final accepted version of the manuscript. Unfortunately, a permission for a reprint of the published version was not given by the Optical
Society of America. This article has been published in Opt. Lett. 44, 375-378 (2019).
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limit of photonic systems of infinite optical density. Indeed, for
infinite optical density, the analyzed structures support distinc-
tive resonances with diverging normalized quality factors Q/Q0
when bound states are gradually decoupled from the continuum.
Remarkably, we demonstrate that the vertical mirror symmetry
(y-axis mirror) of our system is responsible for the formation of
embedded eigenstates regardless of the translational invariance
(periodicity) of the system. Indeed, we show that exactly the
same Q/Q0 behavior can be obtained by randomly modulating
the inter-particle positions along the horizontal x-axis by intro-
ducing a white noise structural perturbation in the system. Our
work demonstrates that the EPT can be successfully applied to
the Green’s matrix formalism providing a novel and powerful
theoretical tool for the analytical investigation of the spectra
of embedded quasi-modes based only on local symmetry argu-
ments, beyond the conventional tight-binding approach [6]. Our
findings are relevant for the efficient design of novel photonic
and metamaterials architectures that support scattering reso-
nances with engineered compact localization and BIC behavior
leading to enhanced light-matter interactions.

The Green’s matrix method is a major theoretical tool that
accounts for all the scattering orders, such that multiple scat-
tering processes are treated exactly as long as the particles are
much smaller than the wavelength. In this limit, each scatterer is
characterized by a Breit-Wigner resonance at frequency ω0 and a
resonant width Γ0. The quasi-modes of arbitrary open-scattering
systems are provided by the eigenvectors of the Green’s matrix←→
G which, for N vector dipoles, is a 3N × 3N matrix with com-

ponents [25]:
Gnm = i

(
δnm + G̃nm

)
(1)

G̃nm has the form:

G̃nm =
3
2
(1− δnm)

eik0rnm

ik0rnm

{[
U− r̂nm r̂nm

]

−
(

U− 3r̂nm r̂nm

) [ 1
(k0rnm)2 +

1
ik0rnm

]} (2)

where k0 is the wavevector of light, the integer indexes n, m ∈
(1, · · · , N) refer to different particles, U is the 3×3 identity ma-
trix, r̂nm is the unit vector position from the n-th and m-th scat-
terer while rnm identifies its magnitude. This formalism has
been extensively used for the study of wave transport and local-
ization phenomena in open multiple scattering media [25–30].
Because the matrix (1) is non-Hermitian, its 3N eigenvalues Λp
are complex and they completely describe the scattering res-
onances of the system under study [26]. Specifically, the real
and the imaginary parts of Λp are related to the normalized
scattering frequency and normalized decay rates, respectively
[25, 26]:

<[Λp] = (ω0 −ωp)/Γ0 (3)

=[Λp] = Γp/Γ0 (4)

The Green’s matrix formalism is particularly suitable to study
embedded eigenstates whenever each scattering particle is cou-
pled to every other particle due to long-range electromagnetic
interactions. Therefore, it is suitable to extend the traditional con-
cept of embedded states [8, 9] to the multiple scattering regime.
While the method is limited to vector scattering dipoles, it very-
well captures the fundamental multiple scattering physics of
large-scale coupled systems without the prohibitive costs as-
sociated to traditional numerical techniques that are typically

x y

z
1

2

3

4

4

21

3

(a) (b)

x y

z
1

2

3

4

4

21

3

xx

zz

yy yy

xx

zz

xx yy zz

xx yy zz

xx

zz

yy yy

xx

zz

xx yy zz

xx yy zz

== ==

Fig. 1. (a) Graph representation of G for a four-scatterer planar
configuration in the xy-plane (see inset). Each line represents
a non-vanishing matrix element of G. Due to Eq.(5), the graph
splits into two disconnected subgraphs (black and red lines)
for planar arrangements of scatterers. If, as in (b), the scatter-
ers are placed symmetrically about the x-axis (dotted line), the
graph features the local symmetry Gz,z

m,4 = Gz,z
m,3(m = 1, 2).

For generic planar configurations, as in (a), there is no local
symmetry within the red subgraph.

employed for the design of similar electromagnetic structures
[11–14, 31].

Originally developed in graph theory [32], the EPT exploits
a permutation symmetry φ of a square matrix M to decom-
pose it into smaller matrices Bi, the eigenvalues of which col-
lectively give those of M. The corresponding eigenvectors of
M can likewise be constructed from the eigenvectors of Bi and
can be shown to share the symmetries of M. Interestingly, if
σ : {1, . . . , k} → {1, . . . , k} acts as the identity operator on a sub-
set S ⊂ {1, . . . , k}, then M ∈ Ck×k is guaranteed to host at least
one CLS whose amplitudes vanish on S [33]. We now apply the
EPT to planar configurations that are symmetric with respect to
the x-axis (see Fig.1 (c)). For generic planar configuration,

Ga,z
nm = Gz,a

nm = 0 ∀ n, m; a ∈ {x, y} (5)

where Ga,b
nm, with a, b ∈ {x, y, z}, describes the b-component of

the electric field at the position of the scatterer n due to a dipole
m oscillating along the a-axis. If, additionally, the scatterers are
placed symmetrically with respect to the x-axis,

Gz,z
nm = Gz,z

mn = Gz,z
nm = Gz,z

mn ∀ n ∈ S , m /∈ S (6)

where m denotes the symmetry-mapped counterpart of m and
S identifies the scatterers which are positioned on the sym-
metry axis. Eq.(6) is equivalent to a local permutation sym-
metry σ of G which pairwise permutes the matrix elements
Gz,z

nm ↔ Gz,z
nm, Gz,z

mn ↔ Gz,z
mn, ∀n ∈ S , m /∈ S and acts as the

identity on all others. This allows to apply the EPT, which pre-
dicts that G hosts C = (N − |S|)/2 CLS, where |S| denotes the
number of scatterers on the symmetry axis. The correspond-
ing eigenvalues {ΛCLS} are obtained by diagonalizing a small
matrix B1 ∈ CC×C. For C = 1

ΛCLS = Gz,z
mm − Gz,z

mm =

[
i− 3

2
eik0R

k0R

(
1− 1

ik0R
− 1

(k0R)2

)]

(7)
with m being either of the two scatterers not lying on the symme-
try axis and R = rmm being the distance to its mirrored counter-
part. In terms of the optical density ρλ (keeping R = 2/ρ), where
ρ is the linear density across the x-axis and λ is the optical wave-
length, the normalized decay rate ΓCLS/Γ0 = =[ΛCLS]→ 0 for
ρλ→ ∞, corresponding to the case of embedded bound states
in the scattering continuum.
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In the following, we apply our theory to the simplest possi-
ble structure that supports compact localization due to y-mirror
symmetry. Indeed, it is also very well-known that symmetry-
protected BICs can be formed in a system with reflection or rota-
tional symmetry and that their coupling with the extended states
is forbidden as long as the symmetry is preserved [13]. Our test
geometry, sketched in Fig. 2 (a), closely resembles the one ana-
lyzed in Ref.[15] and it is characterized by a periodic array of 500
scattering nanoparticles distributed along the x-direction with
two additional scatterers located symmetrically above and below
the array. Although we present results on a system composed
by N = 502 scatterers, the proposed ab-initio design method
is valid for any value of N provided that the symmetry with
respect to the x-axis is preserved. Fig. 2 highlights the main
concept behind this work, i.e. the possibility to analytically pre-
dict the spectrum of CLS quasi-modes by using the EPT on the
dyadic Green’s matrix (1). In order to immediately identify the
CLS resonance in the complex scattering plane of the Green’s
matrix we computed the Mode Spatial Extent (MSE) parameter
for all the modes in the spectrum. This parameter characterizes
the spatial extent of a photonic mode Ψp and it is defined as

MSEp=
[
∑N

t=1 |Ψp(rt)|2
]2

/
[
∑N

t=1 |Ψp(rt)|4
]
[25, 34]. Panels (b-d)

show the CLS spectrum from Eq. (7 ) (see black-dotted lines)
obtained via the EPT Green’s matrix decomposition. We also
show the CLS spectrum obtained by numerical diagonalization
of the Green’s matrix, perfectly matching the analytical result.
Moreover, panels (b-c) show the detuned normalized frequency

Fig. 2. The simple benchmark structure, composed by 502 vec-
tor electric dipoles, is shown in panel (a). Panels (b-c) show
the detuned normalized frequency and the normalized decay
rates as function of ρλ corresponding to the Green’s matrix
eigenvalue with the lowest MSE value (named min), respec-
tively. Panel (d) shows how the min complex eigenvalue orga-
nizes itself for each considered optical density value. Insets:
enlarged view of these trends for low optical density values.
The black horizontal lines in the inset of Fig. 2 (b-c) identify
the ωmin=ω0 and Γmin=Γ0 point, respectively. Panel (e) dis-
plays the real part of the quasi-mode corresponding to the min
eigenvalue as a function of the scatterer site number and ρλ.

and the normalized decay rates corresponding to the Green’s
matrix eigenvalue with the lowest MSE (referred to as “the min
eigenvalue") as function of the parameter ρλ, which corresponds
to the optical density of the system (i.e., the number of scattering
particles per unit wavelength). The insets display an enlarged
view of these trends that feature a fast oscillatory behavior for
small values of the optical density (ρλ<2). These oscillations of
the min eigenvalue around the Breit-Wigner resonance are typi-
cal of proximity resonances. Indeed, exactly the same behavior
can be observed in a system composed of only two scatterers
separated by a distance d [26]. The complex scattering plane
associated to two electric point dipoles for different distances d
is also characterized by two spiral arms associated to the excita-
tion of p-wave and s-wave scattering resonances, respectively.
In the limit d→ ∞ they meet at the isolated point characterized
by ω=ω0, Γ=Γ0 [26]. To completely clarify the nature of these
oscillations we report in panel (d) the normalized decay rate
of the min eigenvalue as a function of its normalized detuned
frequency. The typical spiral features of proximity resonances
are clearly visible in the inset of Fig. 2(d), demonstrating that in
the limit of very low optical density CLS quasi-modes appear as
isolated single scattering resonances in the Green’s matrix spec-
trum. In order to confirm that the min eigenvalue corresponds
to a CLS quasi-mode, we have evaluated the spatial distribution
of its corresponding eigenvector as a function of ρλ. Its real part
is reported in panel (e). As expected, this eigenvector is non-zero
only on the sites of the chain corresponding to the position of
the scatterers A and B, as shown in Fig. 2. This mode is therefore
a CLS supported only on the two particles at the center of the
chain, with reference to Fig. 2 (a). Our analysis demonstrates
that the eigenvalue of the Green’s matrix with the lowest MSE
corresponds to a CLS quasi-mode.

In order to investigate the link between CL quasi-modes and
BIC states, we have also analyzed the behavior of the normal-
ized quality factor Q/Q0 = 1/=[Λn] of the min eigenvalue as a
function of the vertical relative position of the scatterers A and
B normalized with respect to the optical wavelength (d̂y). The
results of this analysis are reported in Fig. 3 (a-b) for a periodic
and a randomly perturbed alignment of scatterers on the x-axis,
respectively. The results of Fig. 3 are obtained by fixing the opti-
cal density equal to 50 and they demonstrate a rapid decrease of
the leakage radiation of the minimally extended mode when the
y-mirror symmetry of the system is progressively restored. This
symmetric condition is identified by the black-dotted lines of
Fig. 3 (a-b) while the positive and negative values of d̂y refer to
the position of the scatterers A and B, respectively. Specifically,
the quantity Q/Q0 shows a monotonically increasing behav-
ior when the state is gradually decoupled from the continuum,
and it diverges in the limit of infinite optical density similarly
to what is reported in Ref. [12] for BICs in a photonic crystal
slab. In order to demonstrate that this behavior is produced
only from the symmetry about the x-axis, we perturbed the par-
ticle positions along the x-axis by adding white-noise positional
fluctuations[35]. The inter-particle separation fluctuates around
the unperturbed distance with relative amplitude 0.5. Interest-
ingly, we obtained exactly the same Q/Q0 behavior also in the
disorder configuration (as reported in Fig. 3(b) for 50 differ-
ent realizations of the disordered chains), thus demonstrating
that the symmetry about the x-axis is solely responsible for the
formation of the CLS states with distinctive BIC behavior. Repre-
sentative spatial distributions of the Green’s matrix eigenvectors
corresponding to the lowest MSE values are also reported on
the right side of Fig. 3(a-b). The typical CLS spatial profile is
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Fig. 3. Panel (a-b) display the normalized Q-factor as a func-
tion of position of the scatterers A and B normalized with re-
spect to the optical wavelength, for the periodic and disorder
configuration, respectively. These data are obtained by fixing
ρλ=50. The trend of panel (b) is characterized by 50 different
disorder realizations. Representative spatial distribution of
the Green’s matrix eigenvector, corresponding to the lowest
MSE value, are shown for different d̂y values for both configu-
rations.

supported only by the central two sites only when the mirror
symmetry condition is reached in both configurations. Progres-
sively breaking the symmetry about the x-axis in our system
produces a gradual coupling of the CLS to the continuum states,
resulting in radiative losses.

Our work extends the concept of compact localized states
to open electromagnetic scattering systems and fully demon-
strates the potential of the EPT graph decomposition theorem
applied to the dyadic Green’s matrix method for the study of the
localization properties and the spectra of symmetric collectively
coupled electromagnetic structures. While valuable as a compu-
tational framework for arbitrary discrete open-scattering media,
the proposed approach provides a unified, intuitive, and effi-
cient method for designing the spectra of CLS and BICs in both
periodic and non-periodic arrays of resonant nanostructures.
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We propose modulation protocols designed to generate, store, and transfer compact localized states in a
quantum network. Induced by parameter tuning or local reflection symmetries, such states vanish outside
selected domains of the complete system and are therefore ideal for information storage. Their creation and
transfer is here achieved either via amplitude phase flips or via optimal temporal control of intersite
couplings. We apply the concept to a decorated, locally symmetric Lieb lattice where one sublattice is
dimerized, and also demonstrate it for more complex setups. The approach allows for a flexible storage
and transfer of states along independent paths in lattices supporting flat energetic bands. We further
demonstrate a method to equip any network featuring static perfect state transfer of single-site excitations
with compact localized states, thus increasing the storage ability of these networks. We show that these
compact localized states can likewise be perfectly transferred through the corresponding network by
suitable, time-dependent modifications. The generic network and protocols proposed can be utilized in
various physical setups such as atomic or molecular spin lattices, photonic waveguide arrays, and acoustic
setups.
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Introduction.—The storage and transfer of information in
quantum systems is a task of great importance for the
realization of quantum computers and simulators. Storage
of a quantum state implies that it is effectively decoupled
from surrounding building blocks of a system and, thus, is
not affected by its environment. In contrast, transfer of a
state requires a successive interaction with its environment
leading to its directed propagation. We here propose a
quantum state that can be easily prepared and robustly
stored and present protocols that transfer it through a
quantum network. We thereby merge key ingredients of
three different fields of research: (i) compact localized
states in flatband lattices [1–14], (ii) perfect state transfer
(PST) [15–23], and (iii) optimal control theory [24–28].
A compact localized state (CLS) is a Hamiltonian eigen-

state defined by its strictly vanishing amplitudes outside a
spatial subdomain of the system. This compact localization
originates from destructive interference caused by the right
combination of lattice geometry and Hamiltonian matrix
elements. Such a combination is possible in a broad range of
physical systems [2], and CLSs have been realized in, e.g.,
photonic waveguide arrays [3,6,8,13], ultracold atomic
ensembles [4,5], and optomechanical setups [11]. Though
typically residing in “flat” energy bands of periodic lattices
withmacroscopic degeneracy [3–6,8,12–14], CLSs can exist
in nonperiodic setups just as well.
By their defining property, CLSs are ideally suited for

storage: Because of their compactness, they can be stored

using only a very small number of physical sites and,
being Hamiltonian eigenstates, they can in principle be
stored for an infinite amount of time. Moreover, their
compactness protects CLSs against a wide range of
imperfections. In particular, CLSs remain unaffected
by changes of the Hamiltonian outside their localization
domain. Furthermore, there is a class of CLSs which are
protected by spatial local symmetry of the Hamiltonian
against any perturbations preserving this local symmetry
and the geometry within their localization domain [10].
As a side note, the more general study of local symmetries
has recently been put on new grounds by introducing a
framework of nonlocal currents [29–34] by means of
which the parity and Bloch theorem are generalized to
locally symmetric systems [35]. Recently, it has been
shown that CLSs may result from particular local sym-
metries which commute with the Hamiltonian in discrete
systems [10].
While favoring their storage, the compactness and

consequent decoupling of CLSs from their surroundings
poses the challenge of how to transfer them controllably
across a lattice. We here demonstrate how transfer of local-
symmetry-induced CLSs can be achieved using two differ-
ent approaches, based on free and driven time evolution.
The first approach utilizes the common perfect (i.e., with
unit fidelity) quantum state transfer scenario, where static
intersite couplings are tailored such that a selected state
evolves freely from one location to another. Quantum
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state transfer techniques are especially explored in con-
nection with entanglement transfer [17,18], while engi-
neered coupling conditions for perfect transfer are also
applied to network setups [15,16]. As we show here, a CLS
can be perfectly transferred under free evolution after a
suitable local phase flip in its amplitude or in selected
intersite hoppings. The second approach uses optimal
control theory [24–28], where the system is dynamically
driven to the target state. For the tight-binding systems
treated here, it aims at maximizing the fidelity of the
transfer of a CLS across the system by designing smooth
time-dependent modulations of the couplings. The main
advantage is its applicability in cases where instantaneous
changes, like the phase flips above, are not feasible in
practice. A special representative of optimal control is,
e.g., the celebrated stimulated adiabatic Raman passage
(STIRAP) [36] in three level systems. Recently [37], CLSs
in Lieb lattices have been used, in the form of “dark states”
[38], as a transfer channel between two local states during
a spatial STIRAP process. We here take an orthogonal
viewpoint, since our aim is to transfer the dark state (CLS)
itself to other dark states through the network.
For definiteness, we shall apply the proposed concept of

storage and transfer of CLSs to a decorated Lieb lattice
(DLL); see Fig. 1. It is derived from the original Lieb lattice
[39] by replacing the sites of one sublattice with dimers.
The resulting network can be extended to more complex
geometries and to higher dimensions, and different CLSs
can be routed independently across the network.
Star subsystem.—The basic building block for CLS

transfer in the DLL is its isolated unit cell. It represents
a five-point star graph and is shown in the lower inset of
Fig. 1. It is governed by the Hamiltonian

H ¼ vcjcihcj þ
X4
n¼1

vnjnihnj þ Jnðjnihcj þ jcihnjÞ; ð1Þ

with on-site potentials vn and outer nodes n ¼ f1;…; 4g
coupled to the central node c by real hoppings Jn.

The above Hamiltonian can be physically realized in various
contexts. One possibility is a coupled waveguide array
[40,41], with each node representing a waveguide cross
section and neighboring waveguides evanescently coupled
through the overlap of their fundamental modes. By tuning
the distancebetweenneighboringwaveguides, their coupling
can be individually controlled [42,43] and also made
negative [44]. The system is then effectively described by
a discrete Schrödinger equation in terms of single-site
excitations jni, with time t replaced by the coordinate along
the waveguide axis [41]. Another possible physical realiza-
tion ofH is in terms of spins, with each node representing a
spin-1=2 qubit (measured up or down). The Heisenberg XX
interaction Hamiltonian reduces to this simple description
within the subspace of one excitation (1 spin up and all others
down) [17].
In the presence of local symmetry under permutation only

of sites 1 and 2, that is, J1 ¼ J2 ≡ J and v1 ¼ v2 ≡ v, the
star Hamiltonian H hosts the eigenstate jIi ¼ ½ðj1i − j2iÞ=ffiffiffi
2

p �. This is a CLS with opposite amplitudes on sites 1 and 2
and vanishing amplitudes on all others. Its hopping rate
J1I1 þ J2I2 ¼ J1 − J2 (with In ¼ hnjIi) to the central site
vanishes. It is thus decoupled by local symmetry from the
rest of the star system, and, being an eigenstate, “stored” for
an arbitrary time interval until the local symmetry condition
is violated. Crucially, this local-symmetry-induced decou-
pling persists even if JðtÞ and vðtÞ are time dependent,
allowing for a gradual modulation without perturbing
the CLS [up to a global phase, jIðtÞi ¼ e−iϕðtÞ=ℏjIi with
ϕðtÞ ¼ R

t
t0
vðt0Þdt0]. Moreover, jIi is unaffected by any

change of the remainder of the Hamiltonian, i.e., of vc,
v3, v4, J3, or J4. In complete similarity, for J3 ¼ J4 and
v3 ¼ v4 the star hosts a second compact localized eigenstate
jFi ¼ ½ðj3i − j4iÞ= ffiffiffi

2
p �. Both jIi and jFi are also dark states

since they are the only eigenstates of the Hamiltonian
Eq. (1) which have nonzero coefficients only in two sites.
An important fact is that jIi and jFi are also eigenstates of the
full Hamiltonian when the star subsystem is repeatedly
connected to form the DLL (see Fig. 1). In fact, different
locally symmetric star subsystems, each with its own
parameters vn, Jn, can be connected in a suitable way to
form a network hosting multiple independent CLSs, each
stored on only two sites with opposite amplitude.
In the following, we first present different protocols

transferring a CLS in the star subsytem. These can easily
be extended to the full DLL, as we will show afterwards.
In the Supplemental Material (SM) [45], we demonstrate the
robustness of the considered protocols to perturbations. For
the state transfer within the time T, the two CLSs jIi and jFi
will serve as the initial and final state. Throughout the rest of
this work, we set vn ¼ v, but Jn are not necessarily equal to
each other and may also be time dependent during the pulse.
However, we impose the symmetry condition J3 ¼ J4 at the
end of the transfer to ensure that jFi is an energy eigenstate.
The initially stored CLS is thus transferred to the target

FIG. 1. Decorated Lieb lattice (DLL), constructed from the
original Lieb lattice (whose plaquette is shown in the lower left-
hand inset) by replacing the encircled sites with dimers. Each
such dimer can host one CLS with opposite amplitudes on the
two dimer sites. The lower right-hand inset shows the isolated
“star” subsystem functioning as a unit for the CLS transfer.
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location and can be stored again indefinitely. In a spin
network setting, the initial state jIi is a maximally entangled
state between the spins at sites 1 and 2 of a dimer.
Transfer by phase flips.—For the transfer protocol

visualized in Fig. 2(a), we set Jn ¼ J and consider the
possibility to instantaneously imprint a phase flip by π (that
is, a sign change) on one of the components of jIi at t ¼ 0,
turning it into jLi≡ ½ðj1i þ j2iÞ= ffiffiffi

2
p �. This new state jLi is

no longer an eigenstate of H, and will evolve freely and
with unit fidelity within time T to the state jRi≡ ½ðj3i þ
j4iÞ= ffiffiffi

2
p � for suitable chosen on-site potentials and cou-

plings. Exactly at t ¼ T another sign flip is applied to one
of the components of jRi in order to turn it into the desired
target CLS jFi. For the choice J ¼ 1=4 energy units and
v ¼ 2J, the transfer time is T ¼ ðℏπ=2JÞ ¼ 2π (setting
ℏ ¼ 1). General analytical derivations for the evolution
jψðtÞi ¼ e−iHtjIi are given in the SM [45], exploiting the
so-called “equitable partition theorem” [10,50,51]. As an
alternative version of this transfer protocol, we can apply
the instantaneous sign flips at t ¼ 0 and T to the hoppings
J1, J3 (or J2, J4) instead, as depicted in Fig. 2(b). The free
time evolution is then essentially equivalent to the previous
one in Fig. 2(a).
Transfer by optimal control.—Now we turn to optimal

control solutions in order to design smooth pulses to avoid
instantaneous operations. Taking into account that the
initial state jIi is an eigenstate of Hðt ¼ 0Þ, we need to
smoothly drive it out of stationarity in order to end up with
the final state jFi as an eigenstate of the final Hamiltonian
Hðt ¼ TÞ. To find smooth optimal driving pulses for the
couplings Jn, we apply the chopped random-basis (CRAB)
[52,53] optimal control method to the functional form:

JnðtÞ¼J

�
1þsin

�
t
2

�
½xn sinðωntÞþx0n cosðωntÞ�2

�
: ð2Þ

This determines the optimal parameters xn, x0n;ωn (n ¼ 1, 2,
3, 4) for transferring jIi to jFi in time T, with the same
initial and final conditions as previously (that is, Jn ¼ J).
More information on the CRAB procedure and the specific
optimizations performed here can be found in the SM [45].
For this particular case, we further impose JnðtÞ ≥ J ¼ 1=4,
so that sign changes in the Jn are avoided. The resulting
optimal Jn-driving pulses are presented in Fig. 3 together
with the state evolution. The infidelity 1 − jhFjΨðTfÞij2 of
these pulses is approximately 10−12.
Transfer across a network.—By exploiting the robust-

ness of CLSs, the state transfer schemes established above
can now be used in the full DLL, as shown in Fig. 4(a).
Starting from the upper left, the transfer process consists of
(1) separating the star subsystem hosting the initial CLS jIi
from the remainder of the lattice, (2) performing the
transfer to the final CLS jFi within the star, and

FIG. 2. Transfer of a stored dimer-localized CLS jIi to a final
CLS jFi within a star subsystem via free time evolution between
sign flips of (a) one component of the initial and final states and
(b) one of the couplings (double line) of the central site to each
of the initial and final CLS dimers. The inset in (a) shows the
evolution of the state jψi over time T ¼ 2π with jψð0Þi ¼ jLi and
jψðTÞi ¼ jRi for vn ¼ 2Jn ¼ 1=4 ∀ n. The phase of ψnðtÞ ¼
hnjψðtÞi at site n is color coded and its amplitude is indicated by
the width of the corresponding stripe. The evolution for (b) is
identical except for opposite signs on ψ2ðtÞ, ψcðtÞ, and ψ4ðtÞ.

FIG. 3. CLS transfer via optimal control using the CRAB
method for the couplings Jn of the form in Eq. (2). At the end of
the procedure, all couplings Jn ¼ J again. The inset shows the
temporal profile of the JnðtÞ and the evolution of the state over
time T ¼ 2π.

FIG. 4. (a) The “dimer-jump” process reducing state transfer
within the decorated Lieb lattice to a star subsystem. It transfers a
CLS on sites 1,2 to another CLS on sites 3,4 by (1) decoupling
the corresponding star from the remainder of the system,
(2) performing the transfer, and subsequently (3) recoupling
the star, whence the process can (4) start anew, as indicated by
c → c0. (b) The robustness of CLSs with respect to perturbations
outside their localization domain allows for the transfer of
multiple CLSs along different routes in the network (orange
and green directed paths), as long as these routes do not
simultaneously use the same star subsystem.
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(3) reconnecting the star to the remainder. The process can
then start anew (4) to transport the state over longer
distances.
To separate the star while keeping jIi unaffected, we

ramp-down its outer couplings to surrounding sites to zero
within time δt such that the local symmetry protecting jIi is
preserved. With the site indexing in Fig. 4(a), starting at
t ¼ 0 this means that J1;5ðtÞ ¼ J2;5ðtÞ for 0 ≤ t ≤ δt with
J1;5ðδtÞ ¼ 0. This modulation does not perturb jIi, even for
δt → 0. The other couplings of the star to its surroundings
(J3;8, J4;8 and Jn;c with n ¼ 6, 7, 9, 10) can be ramped
down in an arbitrary way, since they do not connect to the
localization domain of jIi. Within the separated star, the
actual state transfer can be performed according to one of
the above protocols over time T. Afterwards, we ramp-
up the outer couplings again, now preserving the local
symmetry which protects jFi, that is, increasing J3;8
and J4;8 symmetrically, and the other couplings arbitrarily,
from zero to their final values.
Transferring a CLS to a distant dimer in another star

subsystem is achievedvia consecutive “dimer jumps” like the
one just described, as depicted in Fig. 4(b). This procedure
can be employed simultaneously along different paths in
the network. These may also intersect in space, as long as in
each instant in time the different paths use different star
subsystems; see orange and green paths in Fig. 4(b). Once a
CLS has reached its final destination, it is stored for arbitrary
time. In this sense, the proposed network becomes a simple
model for a hybrid setup functioning simultaneously as
a directional transfer device and as a multiple quantum
memory unit. Crucially, this functionality is retained with
high fidelity in the presence of various perturbations [45],
even when the transfer paths remain connected to the
surrounding lattice during the dimer jumps.
In practice, an actual realization of an equivalent network

will depend on the limitations of the underlying physical
platform. We emphasize that the DLL operated on here is
a very basic lattice geometry enabling the proposed CLS
transfer concept, but can be generalized to other geometries
in a straightforward way. For instance, if intradimer
coupling is non-negligible due to the small spatial sepa-
ration, an alternative CLS transfer unit can be used, with
essentially the same procedure applied [45].
Robustness.—As we demonstrate in the SM [45], the

proposed protocols are quite robust against imperfections.

For example, when considering finite-time linear ramps of
duration δt instead of instantaneous hopping flips, a single
dimer jump can still be performed with a fidelity above
0.998 even for slow ramps of δt ¼ T=4. One can easily
increase the robustness of the protocols further, as we now
show by optimizing the storage fidelity of the DLL. In this
network, the dimer CLSs correspond to two flatbands,
which are degenerate to an additional flatband related to so-
called “plaquette” CLSs [shown in Fig. 5(b)]. Additionally,
two Dirac cones touch these three flatbands, as shown in
Fig. 5(a). Under (small) perturbations, the dimer CLSs
mix—due to their small energy separation—with other
states. As a result, they spread across the lattice, which
decreases the storage fidelity. However, this issue can be
solved [45] by modifying the DLL as shown in Fig. 5(b).
For 0 < jJ00j < jJ − J0j, the two degenerate dimer CLS
flatbands are gapped from all others, as demonstrated in
Fig. 5(c), thus increasing the storage performance. In this
modified DLL, dimer jumps are achieved by (i) decoupling
the corresponding star subsystem, (ii) modifying the
couplings within the star so as to recover the values of
the original DLL, (iii) transferring the CLS, and (iv) rees-
tablishing the coupling values of the modified DLL before
recoupling the star.
Equipping static transfer protocols with storage.—Lastly,

we demonstrate the versatility of our approach by showing
how to equip any static (i.e., relying on simple time
evolution) PST network with CLSs, thus greatly enhancing
its storage capabilities. Figure 6 sketches the procedure.
One replaces each of the sites a, b by dimers a1;2; b1;2,
and all couplings between a, b and the remainder of the
network by symmetric, renormalized couplings to these
dimers. The modified network then features one CLS per
dimer, which can be perfectly transferred by a procedure
similar to the hopping flip presented above [45].
Interestingly, the transfer fidelity of the modified network
can exceed that of the original network, as we demonstrate
for a one-dimensional chain in the SM [45].
Conclusion.—We have demonstrated how local sym-

metries in a decorated Lieb lattice can be exploited to store
and transfer compact localized states via different, easily
realizable, modulation protocols. This provides a powerful
prototype for a quantum device which simultaneously
performs flexible transfer and robust storage of information
within the same physical platform. We also have demon-
strated how any network capable of static perfect state

E
 (

ar
b.

 u
ni

ts
)

E
 (

ar
b.

 u
ni

ts
)

FIG. 5. (a) Band structure of the DLL. (b) Plaquette CLS in the
modified DLL. (c) Band structure of the modified lattice for
0 < jJ00j < jJ − J0j. See text for details.

FIG. 6. Equipping a network capable of PST between sites a, b
with CLS storage. (a) Original network. (b) Modified network,
along with CLSs (see text).
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transfer of single-site excitations can be equipped with
CLSs, such that these can be both perfectly transferred and
stored. The transfer protocols utilize either instantaneous
phase flips (with unit fidelity) or optimal temporal control
of intersite couplings with near-unit fidelity. They can thus
be adapted to the needs of different potential realizations
in, e.g., electronics, atom optics, photonics, or acoustics.
Under the very weak requirement of local symmetries
protecting the CLSs, extension of the proposed concept to
alternative network geometries and different dimensional-
ity is straightforward. Based on multiple intersecting CLS
transfer paths as proposed here, a future vision would be the
design of a dynamical network with switchable quantum
gates and embedded quantum memories.
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Supplemental Material

I. STATE TRANSFER PROTOCOLS NOT RELYING ON OPTIMAL CONTROL

A. State transfer with amplitude flip

For vn = v, n ∈ {1, 2, 3, 4, c} and Jn = J , n ∈ {1, 2, 3, 4}, the Hamiltonian

H =




v1 0 J1 0 0
0 v2 J2 0 0
J1 J2 vc J3 J4
0 0 J3 v3 0
0 0 J4 0 v4


 (1)

can be analyzed analytically by means of the so-called equitable partition theorem [1–3]. This theorem gives a block-partitioning
of a locally symmetric Hamiltonian, allowing for a simpler computation of both eigenvectors and eigenvalues. The underlying
local symmetry is restricted to be a permutation that commutes with the Hamiltonian and which acts non-trivially only on a
subset of sites. For the Hamiltonian treated here, the underlying symmetry is described by the operator S performing the cyclic
permutation 1 → 2 → 3 → 4 → 1 and mapping c to itself. Then, [H,S] = 0, and by the equitable partition theorem, the
eigenvectors are

|φ(i)〉 =
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with corresponding eigenvalues E(i) = {v, v, v, v − 2J, v + 2J}. In terms of these eigenvectors, the two states |L〉 =

(1/
√

2, 1/
√

2, 0, 0, 0)T and |R〉 = (0, 0, 0, 1/
√

2, 1/
√

2)T are expanded as

|L〉 =
∑

i

a
(i)
L |φ(i)〉 =

1√
2
|φ(3)〉+

1

2
|φ(4)〉+

1

2
|φ(5)〉

|R〉 =
∑

i

a
(i)
R |φ(i)〉 = − 1√

2
|φ(3)〉+

1

2
|φ(4)〉+

1

2
|φ(5)〉

with coefficients a(i)L,R = 〈φ(i)|L,R〉. To achieve a unitary time-evolution of state |L〉 at t = 0 to |R〉 at t = Tf , the conditions

a
(i)
L e−iE

(i)Tf = a
(i)
R (here and in the following, we set ~ = 1) must hold, leading to

e−iE
(3)Tf = −1, e−iE

(4)Tf = 1, e−iE
(5)Tf = 1 (2)

which is fulfilled for

v = J

(
4k1

1 + 2k2
− 2

)
, Tf =

π(1 + 2k2)

2J
, k1,2 ∈ Z. (3)

For k1 = 1, k2 = 0, one finds v = 2J, Tf = π
2J which was given in the main text. We note that if v = J

(
4k1

1+2k2
− 2
)

+ δv =

vopt + δv deviates from the optimal value, then

〈L|eiHTf |R〉 = eiδvTf ,

so that v could be chosen arbitrarily if the global phase of |R〉 (and therefore of |F 〉) is not of importance. A similar version of
this statement holds for all protocols of this work that do not rely on optimal control.
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B. State transfer with hopping flip

For vn as above and J1 = J3 = J and J2 = J4 = −J , the eigenvectors of H are
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with corresponding eigenvalues E(i) = {v, v, v, v − 2J, v + 2J}. In order to enable a unitary time-evolution of state |I〉 =

(1/
√

2,−1/
√

2, 0, 0, 0)T at t = 0 to |F 〉 = (0, 0, 0, 1/
√

2,−1/
√

2)T at t = Tf , one must solve a(i)I e−iE
(i)Tf = a

(i)
F . This

system of equations is equal to Eq. (2), and the parameters needed to achieve perfect transfer are thus identical to that of the
phase flip protocol. Similarly, one can show that for J1 = J3 = −J , the same parameters are needed to perfectly transfer the
state |I〉 to |F 〉.

II. METHODS AND CALCULATIONS FOR OPTIMAL CONTROL PROTOCOLS

The optimal control method Chopped Random-Basis quantum optimization (CRAB) [4, 5] is based on expressing the time-
dependent driving functions/pulses for the control fields (here the couplings J) on a truncated randomized basis. This recasts the
problem of a functional minimization (of the infidelity function) to a multi-variable function minimization that can be performed,
for example, via a direct-search method. Here we use Nelder-Mead optimization for the parameters of the function. To achieve
state transfer within the star-subsystem, we assume an initial and final J0 = 1/4 which is also the minimum threshold for all
couplings, and we have chosen the following (CRAB-inspired) expressions for the driving functions:

Jn(t) = J0

{
1 + sin

(
t

2

)
[xn sin(ωnt) + x′n cos(ωnt)]

2
}

(4)

The method essentially starts with a random set of frequencies ωi (i = 1, ..., 4) which is different in every iteration and op-
timizes 8 amplitude parameters xi, x′i. The set {ωi, xi, x′i} which minimizes the infidelity is defining the optimal pulses.
For the pulses presented in Fig. 3 of the main text, we have xn = {0.584995, 2.40152, 2.503224, 0.219905}, x′n =
{2.999709, 0.595406, 0.455494, 2.810278} and ωn = {1.445214, 1.306884, 1.168016, 1.351003}.

III. GENERATION OF CLS

In the transfer protocols presented in the main text, we assumed that the initial CLS |I〉 already exists at t = 0. Depending
on the system realization, however, it may be easier to imprint a local excitation only on one lattice site rather than to excite the
dimer CLS directly. Therefore, we now propose protocols that start with state |c〉 (occupying only the central site in the star)
at t = 0 and end with |I〉 at a desired generation time Tg . To this aim, we initially decouple all outer sites from |c〉 by setting
Jn(t = 0) = 0 and turn on only J1 and J2. The on-site potentials are vn = 2J = 1/2 as in the main text.

Analogously to the transfer protocols shown there, the CLS generation can be done either by instantaneous phase or hopping
flips, or by continuous modulation via optimal control. In the first case, J1 = J2 are switched on at t = 0 to the value J ′ = 3

√
2,

for which the system evolves freely from |c〉 to |L〉 in time Tg = T/2 = π (analytical details are given in the next section below).
Then, at t = Tg a phase flip is applied to obtain |I〉. In the second case we use optimal control to evolve the system from |c〉
directly to |I〉 by gradually turning on J1, J2 (from 0 to J ′) according to a temporal profile produced via the CRAB method
(with an infidelity of approximately 10−13), graphically depicted in Fig. 1. Here, a linear rise has been chosen for J2, while J1
oscillates and necessarily also becomes negative, as shown below. With these conditions we prepare and store (due to the equal
final couplings) the CLS |I〉.

As easily anticipated, these CLS generation protocols can also be used in order to perform the state transfer from |I〉 to |F 〉,
now in two steps. In the first step |I〉 is evolved to |c〉 within time T/2 using one of the generation protocols time-reversed. In
the second step |F 〉 is generated from |c〉 within time T/2, just like |I〉 was above.

A. Preparation, storage and piecewise transfer with phase flip

Let us now show how one can yield |L〉 from initially exciting the state |c〉 = (0, 0, 1, 0, 0)T for J3 = J4 = 0 and J1 = J2 =
J ′. After obtaining |L〉, a phase flip can be applied to yield |I〉. For the above choice of couplings, the Hamiltonian Eq. (1)
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Figure 1. Creation of the CLS by an initial excitation of the central site c and subsequent optimal control using the CRAB method for the
couplings J1 and J2. The inset shows the temporal profile of the Jn(t) and the evolution of the state over time Tg = π.

becomes block-diagonal, and the eigenvectors split into two groups, each of which having nonvanishing amplitudes only on sites
of one of the two blocks. The eigenvectors relevant for the expansion of |L〉 and |c〉 are

|φ(i)〉 =
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with eigenvalues E(i) = {v, v −
√

2J ′, v +
√

2J ′}. By expanding |c〉 and |L〉 into the eigenvectors of the Hamiltonian, one can
show that

e−iE
(2)Tf = −1, e−iE

(3)Tf = 1

must be fulfilled in order to have

〈c|eiHTf |L〉 = 1.

This is the case for

v = −
√

2J ′(4k′1 − 1)

4k′2 − 1
, Tf =

π(4k′1 − 1)

2v
or v = −

√
2J ′(4k′1 + 1)

1 + 4k′2
, Tf =

π(4k′1 + 1)

2v
(5)

where in both equations k′1,2 ∈ Z. The special form v =
√
2J′

3 , t = π
2v given above is obtained by taking the second solution as

well as setting k′1 = 0, k′2 = 1 and J ′ = 3
√

2J .

B. Preparation, storage and piecewise transfer with hopping flip

The CLS |I〉 can likewise be obtained from |c〉 by performing instantaneous hopping flips. We therefore switch H to H ′ at
t = 0, for which J2 = −J ′ = −J1, and at Tf we switchH ′ back toH . As the final state is now |I〉 = (1/

√
2,−1/

√
2, 0, 0, 0)T ,

we need to expand |c〉 and |I〉 in terms of the eigenvectors of H ′. The eigenvectors relevant for the expansion of |I〉 and |c〉 are
then

|φ(i)〉 =
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0
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with eigenvalues v, v −
√

2J ′, v +
√

2J ′. The expansion of |c〉 and |I〉 is equal to that of the phase flip protocol, with identical
parameters needed to achieve 〈c|eiHTf |I〉 = 1.

C. Preparation, storage and piecewise transfer with optimal control

For the preparation storage and piecewise transfer protocol with optimal control, shown in Fig. 1, we use

J1 =
{

1 + x sin(ωt) + x′ sin(ω′t)
}

3
√

2(1− t/π) (6)

J2 = 3
√

2(1− t/π).
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Here we have a set of 4 parameters to optimize (both frequencies and amplitudes) and we allow the Jn to take also negative
values. For Fig. 1, the optimal parameter values are x = 0.829226, x′ = 1.524626, ω = 1.7638, ω′ = 1.943375. The
necessity of negative values for Jn becomes apparent if we see the system of differential equations governing the dynamics,
which simplifies to:

ψ̇1 = i(J1ψc + v1ψ1)

ψ̇2 = i(J2ψc + v2ψ2)

ψ̇c = i(J1ψ1 + J2ψ2 + vcψc)

With |ψ(t = 0)〉 = |c〉 and v1 = v2 = vc = 1/2, the amplitude ψ1 or ψ2 can acquire the desired negative value −1/
√

2 only if
J1 or J2 becomes negative (for some t-intervals) as well, respectively.

IV. MODIFIED NETWORK FOR EVANESCENTLY COUPLED WAVEGUIDE ARRAYS

+-

+

-

CLS

7-site Hamiltonian

CLS transfer

Figure 2. Modified network for evanescently coupled waveguide arrays.

We here provide a modified network, along with some transfer protocols, for cases where the five-point Hamiltonian Eq. (1)
is not suitable for a physical realization. The basis for these protocols is the seven-point graph, described by the Hamiltonian

H7 =




v1 0 J1 0 0 0 0
0 v2 J2 0 0 0 0
J1 J2 v3 J3 0 0 0
0 0 J3 v4 J4 0 0
0 0 0 J4 v5 J5 J6
0 0 0 0 J5 v6 0
0 0 0 0 J6 0 v7



. (7)

For v1 = v2, J1 = J2 and v3 = v4, J3 = J4, this Hamiltonian hosts two compact localized states, |I〉 = (1/
√

2,−1/
√

2, 0, 0, 0, 0, 0)T

and |F 〉 = (0, 0, 0, 0, 0, 1/
√

2,−1/
√

2)T . We assume that at t = 0, the state |I〉 is excited and one wants to transfer it to the
CLS |F 〉 at t = Tf .
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A. Phase flip protocol

Similar to protocol 1 for the five-point Hamiltonian, we assume that at t = 0, a phase flip is applied, changing the state |I〉 into
|L〉 = (1/

√
2, 1/
√

2, 0, 0, 0, 0, 0)T . Our aim is to transfer this into |R〉 = (0, 0, 0, 0, 0, 1/
√

2, 1/
√

2)T at t = Tf , where we apply
another phase flip, turning |R〉 into |F 〉. In the following, we will choose vi = 0, i = {1, . . . , 7}, J1 = J2 = J5 = J6 = J .
With this choice of parameters, H7 is globally symmetric w.r.t. to a left-right flip with site 4 as a center for J3 = J4, but only
locally symmetric for J3 6= J4. In both cases, the so-called ‘nonequitable partition theorem’ [1, 6] allows to obtain analytical
expressions for both the eigenvalues and eigenvectors of H7. This theorem is similar to the equitable partition theorem, but
allows for the treatment of a greater class of local symmetries. For the current example, the eigenvalues of H7 are the union of
the eigenvalues of

R =



v
√
ξ 0 0√

ξ v J J
0 J v 0
0 J 0 v


 , C0 =



v J J
J v 0
J 0 v




with ξ = J2
3+J2

4 . If we denote the eigenvectors xν , ν ∈ {1, . . . , 4} ofR as (xν1 , . . . , x
ν
4)T and those ofC0 as (wµ1 , w

µ
2 , w

µ
3 )T , µ ∈

{1, 2, 3}, with T denoting the transpose, then the (unnormalized) eigenvectors of H7 are




J3√
ξ
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. (8)

For J3 = J4 = J ′ =
√

3, J = 1, we find that
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are normalized eigenvectors of Eq. (7) with corresponding eigenvalues E(i) = {0, 0, 0,−
√

2,
√

2,−2
√

2, 2
√

2}. In terms of
|φ(i)〉, the initial and final state |L,R〉 are written as

|L〉 =
∑

i

a
(i)
L |φ(i)〉 = −

√
3

8
|φ(3)〉 − 1

2
|φ(4)〉 − 1

2
|φ(5)〉+

1

4
|φ(6)〉+

1

4
|φ(7)〉

|R〉 =
∑

i

a
(i)
R |φ(i)〉 = −

√
3

8
|φ(3)〉+

1

2
|φ(4)〉+

1

2
|φ(5)〉+

1

4
|φ(6)〉+

1

4
|φ(7)〉

where a(i)L,R = 〈φ(i)|L,R〉. Then, for Tf = π√
2

, the state |L〉 has evolved into |R〉. We then apply another instantaneous phase
flip, turning |R〉 into the CLS |F 〉.

B. Hopping flip protocol

This protocol is similar to the hopping flip protocol presented in the main part of this work for the five-point Hamiltonian. We
initially set vi = 0, i = {1, . . . , 7}, J1 = J2, = J5 = J6 = J and J3 = J4 = J ′ as for the protocol of Section III A. Then, at
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t = 0, the couplings J2 and J6 are instantaneously changed to −J . After this change, the new eigenvectors of Eq. (7) are

|φ(i)〉 =








1/
√

2

1/
√

2
0
0
0
0
0



,




0
0
0
0
0

1/
√

2

1/
√

2



,




−
√

3/4√
3/4
0

1/2
0

−
√

3/4√
3/4




,




1/
(
2
√

2
)

−1/
(
2
√

2
)

−1/2
0

1/2

−1/
(
2
√

2
)

1/
(
2
√

2
)




,




1/
(
2
√

2
)

−1/
(
2
√

2
)

1/2
0
−1/2

−1/
(
2
√

2
)

1/
(
2
√

2
)




,




−1/
(
4
√

2
)

1/
(
4
√

2
)

1/2

−
√

3/8
1/2

−1/
(
4
√

2
)

1/
(
4
√

2
)




,




−1/
(
4
√

2
)

1/
(
4
√

2
)

−1/2

−
√

3/8
−1/2

−1/
(
4
√

2
)

1/
(
4
√

2
)








with corresponding eigenvalues E(i) = {0, 0, 0,−
√

2,
√

2,−2
√

2, 2
√

2}. In terms of these eigenvectors, the initial and final
states |I, F 〉 are expanded as

|I〉 =
∑

i

a
(i)
I |φ(i)〉 = −

√
3

8
|φ(3)〉+

1

2
|φ(4)〉+

1

2
|φ(5)〉 − 1

4
|φ(6)〉 − 1

4
|φ(7)〉

|F 〉 =
∑

i

a
(i)
F |φ(i)〉 = −

√
3

8
|φ(3)〉 − 1

2
|φ(4)〉 − 1

2
|φ(5)〉 − 1

4
|φ(6)〉 − 1

4
|φ(7)〉

where a(i)I,F = 〈φ(i)|I, F 〉. Then, for Tf = π√
2

, the state |I〉 has evolved into |F 〉. We then perform another flip such that the
couplings J2 = J6 = J , and |F 〉 becomes a CLS again.

C. State transfer with CRAB

This protocol is similar to the five-site optimal control protocol presented in the main part of this work. It is graphically
depicted in Fig. 3. We start with an initial CLS |I〉, with Hamiltonian parameters vi = 1/2 and J1 = J2 = J5 = J6 = 1

4
√
2

= J

as well as J3 = J4 = 3. We then vary Jn, n = {1, 2, 5, 6} in time according to

Jn = J
{

1 + sin

(
t

4

)[
xn sin(ωnt) + x′n cos(ωnt)

]2}
. (9)

The optimal parameters are xn = {4.1435, 3.2435, 2.5509, 4.7169}, x′n = {2.2124, 3.3942, 3.3221, 1.9491} and ωn =
{1.9171, 0.9476, 0.4496, 0.9671}, and the infidelity 1− | 〈F |Ψ(Tf )〉 |2 of these pulses is approximately 10−8.

0

+1

-1

0 2 4

2

1 3

4

c
2
3
4

1

5
6
7

0

2

4

CRAB

TRANSFER

Figure 3. CLS transfer within the seven-point graph of Fig. 2 via optimal control using the CRAB method for the couplings J1, J2, J5 and
J6 of the form in Eq. (9). J3 = J4 = 3 are constant throughout the process. The inset shows the temporal profile of the varied Jn(t) and the
evolution of the state over time T = 4π.
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D. Piecewise transfer and CLS creation with CRAB

This protocol is similar to the three-site optimal control protocol presented above which prepares a CLS, as was shown in
Fig. 1. It is graphically depicted in Fig. 4, with an infidelity of approximately 10−8. We start with an excitation of site 4 ≡ c,
which is decoupled from the remainder of the graph. The coupling J3 = t/(2π) to the left half of the graph is then linearly
ramped up, and the couplings J1,2(t) are varied as well. At time Tg = 2π, the CLS |I〉 is created. The on-site potentials vi = 1/2
are constant throughout the process, and the ansatz for J1,2(t) is

Jn = J
{

1 + sin

(
t

2

)[
(xn sin(ωnt) + x′n cos(ωnt))

]}
, n ∈ {1, 2} (10)

with J = 1
4
√
2

as above and final parameters xn = {6.9763, 4.1098}, x′n = {2.1072, 6.4490} and ωn = {1.7465, 0.7946}.
Again, as for the CLS-generation protocol presented above, one could use this protocol also to transfer |I〉 to |F 〉 by first
transferring |I〉 to |c〉 by means of a time-reversed reversal of the protocol shown, and then transfer |c〉 to |F 〉 via its forward
version.

CRAB

1 2

2

1 c3 2
1

c
3 0

+1

-1

-2

0

2

EXCITE
STORECREATE CLS

Figure 4. Creation of the CLS by an initial excitation of the central site c and subsequent optimal control using the CRAB method for the
couplings J1, J2 and J3. The inset shows the temporal profile of the Jn(t) and the evolution of the state over time Tg = 2π.

V. ROBUSTNESS OF THE HOPPING FLIP PROTOCOL

We now investigate the robustness of the two hopping flip protocols, as described in Sections I B and IV B of this Supplemental
Material.

A. Impact of disorder

To investigate the impact of disorder on the hopping flip protocol, we perform the protocol for the two cases that (a) only the
couplings and (b) both couplings and on-site potentials deviate from their optimal value. The deviation is modeled as

vi → vi · (1 + δi), i = 1, . . . , 5 (11)
Ji → Ji · (1 + δ′i), i = 1, . . . , 4 (12)

for the five-site protocol presented in the main text, where vi = 0.5 ∀ i and J1,3 = −J , J2,4 = J = .25, and

vi → δi, i = 1, . . . , 7 (13)
Ji → Ji · (1 + δ′i), i = 1, . . . , 6 (14)

for the seven-site protocol presented above, where J1 = J5 = J = 1, J2 = J6 = −J , and J3 = J4 =
√

3.
In both cases, the δi, δ′i are normally distributed random numbers with zero mean and variance σ2. For both protocols, we

evaluate the mean value< F > of the fidelity F = | 〈ICLS |U(tfinal)|FCLS〉 |2, with U(t) being the time-evolution operator for
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H(t). We note that H(t) describes the situation where an instantaneous hopping flip is performed at t = 0 and tfinal. The two
states |ICLS , FCLS〉 are the CLS “living” on the left or right dimer, respectively. For the five-site protocol, tfinal = 2π, while
for the seven-site protocol tfinal = π/

√
2. As can be seen in Fig. 5, the instantaneous hopping flip protocol is, both for five and

seven sites, quite robust against disorder.

Figure 5. Performance of the two hopping flip protocols as a function of the standard deviation σ of the noise δ. Subfigures (a1 – a2) and (b1
– b2) correspond to the performance of the five and seven-site site protocols, respectively. The subfigures (a1) and (b1) show the case where
only the couplings are perturbed, while subfigures (a2) and (b2) show the case where both couplings and on-site potentials are perturbed. The
blue line shows the mean value < F >= µ of the fidelity, with the shaded blue area denoting µ plus/minus one standard deviation of the
fidelity. For each data point, 50000 realizations have been simulated.

B. Finite duration hopping flip

So far, we assumed that the hopping flips (both in the five- and seven-site protocol) could be performed instantaneously,
which, in the absence of disorder, led to unit fidelity. In both protocols, two of the couplings were flipped to −J at t = 0 and
flipped back to J at t = tfinal. We now investigate the impact of a finite-duration ramp instead of an instantaneous flip. As
we show in Fig. 6 for different durations of the linear ramp, the fidelity decreases only slightly. Even for extraordinary slow
pulses with a duration of π/2, the fidelity F (t) = | 〈I|U(t)|F 〉 |2 [with U(t) being the time-evolution operator for H(t)] for
t = tfinal + δt is still above 0.998 for the five-site protocol.

Figure 6. Performance of the five-site (a) and seven-site (b) hopping flip for the case of a linear ramp of duration δt. The parameter tfinal = 2π
for the five-site protocol and tfinal = π/

√
2 for the seven-site protocol, respectively. An example pulse is shown in (c).

C. Non-perfect decoupling

Throughout the main part of the manuscript, we assumed that it is possible to completely decouple the five-point star graph
from the remainder of the system. In practice, however, a complete decoupling is usually quite challenging. In Fig. 7, we
therefore investigate the impact of a non-vanishing coupling of the five-point star graph to its surroundings during state transfer
(the “dimer-jump”). Here, d and d′ control the coupling strengths of the immediate neighbors of the five-star graph, and the
coupling of these neighbors to their other neighbors, respectively. Throughout the main part of the manuscript, during state

5.0 storage and transfer of compact localized states 119



9

transfer we set d = 0 and ramp it up to 1 afterwards, while d′ = 1 for all times. In the modified protocol demonstrated here,
before the transfer d = d′ = 1. One then ramps them up (or down) to their respective values (see Fig. 7 (b)), performs the
transfer and ramps them back to d = d′ = 1 after the transfer has been done. As Fig. 7 clearly demonstrates, our method is
quite robust against imperfect decouplings, and can be made to function even in the case of d = 1 by increasing the value of d′.
Indeed, when setting d′ to a high value such as 3, a high fidelity above 0.9 is obtained even for d = 1.

The reason behind this remarkable robustness against finite coupling strengths lies in the compactness of the CLS. For exam-
ple, during propagating from |I〉 to |F 〉 by means of a flip pulse of finite duration δt > 0, the amplitudes of the propagating state
|Ψ(t)〉 at sites 1 and 2 are, in good approximation, equal in absolute value and have a phase-difference of π. There is thus nearly
no tunneling from these two sites to site 7. The same applies for the amplitudes at sites 4 and 5 and their tunneling to site 6,
which is likewise suppressed.

Lastly, we would like to note that setting the on-site potentials vi = v′ > v for i = {1, . . . , 6} is also a practical way to
decouple the star-subsystem from the remainder of the network and can further increase the transfer fidelity in cases where
d′ 6= 0 can not be achieved. We would like to thank the referee for pointing this out.

CLS transfer1

2
3

4

5

7 6

Figure 7. (a) Physical setup: Transfer of a CLS within a five-point star graph (central five sites 1 to 5 connected by black and blue solid lines)
which is not decoupled from the remainder of the system, here simplified to consist of 8 other sites. (b) Fidelity F (t) = | 〈F |U(t)|I〉 |2 at
t = 2(π+ δt) [with U(t) being the time-evolution operator for H(t)] of the finite-duration hopping flip protocol [J1,3(t) = J3,5(t) shown in
the lower right of subfigure (a)] for varying values of the hopping flip pulse duration δt and d, d′. For d = 0, the five-star graph is completely
decoupled from the remainder of the system.

VI. PERTURBATIONS OF THE OPTIMAL CONTROL PROTOCOLS

In order to investigate the effect of perturbations on the optimal control protocols for five sites [described in Eqs. (4) and (6)]
and seven sites [described in Eqs. (9) and (10)], we now analyze different scenarios.
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A. Static disorder

We first disturb only the amplitudes xn and x′n of the corresponding Eqs. (4), (6), (9) and (10) and assume that the frequencies
ωn do not suffer from disorder. We disturb the amplitudes as

xn → xn · (1 + δn) (15)
x′n → x′n · (1 + δ′n) (16)

where δn and δ′n are zero mean uniformly distributed random numbers between −d/100 and d/100, so d = 5 would describe a
disorder strength of 5 percent. The result of this perturbation is shown in the first column of Fig. 8.

Next, we disturb only the frequencies ωn so that

ωn → ωn · (1 + δn) (17)

where δn are zero mean uniformly distributed random numbers between −d/100 and d/100. The result of this perturbation is
shown in the second column of Fig. 8.

Lastly, we disturb both the amplitudes xn, x′n as well as the frequencies ωn so that

xn → xn · (1 + δn) (18)
x′n → x′n · (1 + δ′n) (19)
ωn → ωn · (1 + δ′′n) (20)

where δn, δ′n, δ
′′
n are zero mean uniformly distributed random numbers between −d/100 and d/100. The result of this perturba-

tion is shown in the third column of Fig. 8.
In conclusion, the optimal control protocols are very robust against perturbations of the amplitudes of the pulses, while being

prone to frequency deviations. However, this does not pose a problem if the pulses are realized by superposing different lasers,
as their frequency bandwidth is usually extremely small, so that frequency deviations can therefore be neglected for this case.

B. Additive noise

Lastly, we investigate the effect of additive noise on the optimal control pulses, which we model as

Jn(t)→ Jn(t) + δn(t, α, fmax, σ). (21)

Here, δn(t, α, fmax, σ) describes colored noise of zero mean and with variance σ, with frequencies between 0 and fmax and a
spectrum S(f) ∝ 1/fα. Similarly to Ref. 7, we individually generate each differentiable noise sequence as

δn(t, α, fmax, σ) = σ
N(fmax, α)

M

M−1∑

k=0

√
S(fk) cos

(
2π(fkt+ η

(n)
k )

)
+ ∆n (22)

where the ηk(n) are normally distributed random variables with zero mean and unit variance, fk = k
M fmax, S(fk) = f−αk , and

S(0) = 0. Here and in the following, we set M = 214. The frequency and α-dependent normalization factor N(fmax, α) is set
to 181 for fmax = {10, 1} and to 185 for fmax = 0.1, with α = 0. The offset ∆n is chosen for each realization η(n)k such that

∫ tmax

0

δn(t, α, fmax, σ)dt = 0. (23)

Figure 9 shows the impact of white (α = 0) additive noise of different frequencies fmax [for a subset of frequencies fmax,
we have also done the computations for pink noise with α = 1 and achieved similar results, though not shown here]. As can
be seen, all protocols maintain an average fidelity above 0.9 for σ ≤ 0.1, demonstrating their robustness. For fmax = 10, the
impact of the noise strongly decreases. This is simply due to the fact that for large fmax, the Hamiltonian is disturbed on much
smaller timescales than that of the actual transport, so that the wavepacket cannot follow the perturbation, but only “sees” a
time-averaged version instead. As all noise sequences are of zero mean, this time-average vanishes in the limit of infinite fmax,
so the fidelity naturally increases with increasing fmax.
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Figure 8. Performance of the optimal control protocols by disturbances in the parameters. From top to bottom: Five-site transfer [subfigures
(a1 – a3)], five-site CLS creation [subfigures (b1 – b3)], seven-site transfer [subfigures (c1 – c3)], seven-site CLS creation protocols [subfigures
(d1 – d3)], described by Eqs. (4), (6), (9) and (10), respectively. From left to right: Parameter distortions in the amplitudes xn, x′n [subfigures
(a1 – d1)], in the frequencies ωn [subfigures (a2 – d2)], and in both amplitudes and frequencies [subfigures (a3 – d3)]. For each data point,
50000 realizations have been computed. For the CLS-creation protocols, the fidelity has been computed for a full transfer between two CLS
by performing the protocol twice (from the initial CLS to the central site, and then from the central site to the final CLS).

VII. INCREASING THE ROBUSTNESS OF THE STORAGE PROTOCOL

To investigate the impact of perturbations on the storage protocol for realistic cases, we create a two-dimensional network
consisting of 7×7 unit cells as the one shown in Fig. 5 (b) of the main part. For clarity, the basic geometry and numerical values
of on-site potentials and couplings are shown in Fig. 10 (a1). To emulate a macroscopically large network, we impose periodic
boundary conditions on the network. We then disturb every single on-site potential and coupling of this network as

vi → vi · (1 + δi) (24)
Ji → Ji · (1 + δ′i) (25)

where δi, δ′i are normally distributed random variables with zero mean and variance σ2. Due to these perturbations, an initially
excited CLS |Ψ(0)〉 on any of the dimers will no longer be stationary, but spread out across the network. In Fig. 10 (b1), we
show the ensemble average of the time-dependent fidelity

F (t) = | 〈Ψ(0)|Ψ(t)〉 |2 (26)

with |Ψ(t)〉 = exp(−iHt) |Ψ(0)〉. Although the network is prone to errors, its robustness against them can be greatly enhanced
by suitable modifications. Two such modifications are shown in Fig. 10 (a2) and (a3), with the respective ensemble averaged
fidelities shown in Fig. 10 (b2) and (b3) for different values of the standard deviation σ of the perturbation. Especially the
rightmost modification is extremely robust. z To understand the reason for these different degrees of robustness, we have shown
the corresponding band structures [8] of the (unperturbed) periodic networks in Fig. 10 (c1 – c3). Each network features three
flat bands (FBs), labeled I to III , with corresponding eigenstates shown in Fig. 10 (d). FBs I and II are degenerate for all three
networks and in case of the first and second network, they are also degenerate to FB III . Moreover, the dispersive bands feature
a Dirac cone for the first network, with the touching point lying exactly at the energetical position of the three FBs.
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Figure 9. Performance of the optimal control protocols by adding white noise (α = 0). (a) Five-site transfer, (b) five-site CLS creation,
(c) seven-site transfer, (d) seven-site CLS creation protocols, described by Eqs. (4), (6), (9) and (10), respectively. For each data point,
approximately 1400 realizations have been computed. For the CLS-creation protocols, the fidelity has been computed for a full transfer
between two CLS by performing the protocol twice (from the initial CLS to the central site, and then from the central site to the final CLS).

In an unperturbed network, any single-dimer CLS as the two shown in Fig. 10 (d), is an eigenstate of the underlying Hamil-
tonian. We stress that if this network is perturbed such that the local symmetry protecting the particular CLS is not violated,
this CLS remains an eigenstate, independent of the strength of the perturbation. However, if the perturbation – like the one we
introduced above – does not preserve the local symmetry, then the CLS is no longer an eigenstate. For weak perturbations, it
will then couple mostly to states which are energetically close in the unperturbed system, which are many for the case of the
first and second network due to the simultaneous degeneracy of three flat bands, and additionally due to the Dirac-cone for the
first network. This explains the small storage robustness of the first and second network. In the third network, the two flat bands
I and II are still degenerate, though their eigenstates have no spatial overlap, which might explain the high robustness of this
network even for strong perturbations with σ = 0.2.

We now derive the conditions under which the FBs I and II separate from the other bands. Importantly, the band structure
of the networks shown in Fig. 10 (a3) can be computed analytically for arbitrary values of v, J, J ′ and J ′′. In order to do this,
we once more rely on the powerful EPT, which can be used to decompose a locally symmetric system into block-diagonal form
by means of a similarity transform, so that the union of the eigenvalues of the individual blocks are equal to that of the original
system. In order to make the reader familiar with the EPT, we apply it on a simple locally symmetric three-site system in Fig. 10
(e). For clarity, the Hamiltonian is depicted both in matrix form (top) and in graphical form (bottom). In Fig. 10 (f), we then
apply the EPT to the full network from Fig. 10 (a3). The result of this decomposition is a set of disconnected sites with on-site
potential v − J ′′, which correspond to the degenerate two flat bands I and II at E(I)

CLS = E
(II)
CLS = v − J ′′. The connected part

is equal to a modified Lieb-lattice, whose Hamiltonian reads in momentum space

H(k) =




v
√

2e−
ikx
2

(
J + J ′eikx

)
2
√

2J cos
(
ky
2

)

√
2e−

ikx
2

(
J ′ + Jeikx

)
v + J ′′ 0

2
√

2J cos
(
ky
2

)
0 v + J ′′


 .

Since H(k) ∈ C3×3 it can be diagonalized analytically, and its bands are given as

E
(III)
CLS = v + J ′′

E1,2 = v +
1

2

(
J ′′ ±

√
24J2 + 16J (J cos (ky) + J ′ cos (kx)) + 8J ′2 + J ′′2

)
.

Since E(I)
CLS = E

(II)
CLS = v − J ′′, these two flat bands separate from the others provided that 0 < |J ′′| < |J − J ′|.

5.0 storage and transfer of compact localized states 123



13

-

-

-

-
- ++++++ Plaquette

CLS

Single-
Dimer
CLS #2

Single-
Dimer
CLS #1

+

-

& 
line states

Figure 10. Increasing the robustness of storage. (a1 – a3) real-space setups, (b1 – b3) performance of the average storage fidelity of these
networks under perturbations, (c1 – c3) the corresponding band structures for the unperturbed networks. (d) shows the eigenstates of the three
flat bands appearing in (c1 – c3). Under some conditions, the plaquette CLS may become linearly dependent, and so-called line-states emerge,
which are investigated in more detail in Ref. 9. Subfigures (e) and (f) demonstrate the application of the equitable partition theorem (EPT).
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VIII. ROBUSTNESS OF THE PROTOCOLS FOR COMBINED DISTORTIONS

In this Supplemental Material, we provide three video files demonstrating the robustness of the combined transfer and storage
network. These videos show the results for the following key parameters:

• A 7 × 7-grid of five-point star graphs has been used as a basis, whose unperturbed parameters are equal to the system
shown in Fig. 10 (a3). To emulate the effect of very large networks, periodic boundary conditions are enforced on the
network.

• Every coupling and on-site potential is multiplied by an individual random number 1+δ, where δ are normally distributed
numbers with zero mean and variance σ2. The parameter σ is given in the top of the corresponding video.

• The hopping flips are done in a finite time δt = 2π/10.

In the videos, the radius of each circle is proportional to the absolute value of the amplitude on the corresponding site. In order
to increase the visibility, circles below a certain size are plotted in white. The coupling strength is both encoded in the color
(red for positive, blue for negative values) and thickness (proportional to the coupling’s absolute value). The dotted couplings
connect the outermost unit cells, so that periodic boundary conditions are enforced.

IX. EQUIPPING EXISTING PERFECT STATE TRANSFER NETWORKS WITH COMPACT LOCALIZED STATES

In the past, different methods for transferring a state across a static network, especially for one-dimensional chains, have
been proposed[10–12]. For long chains and under the impact of perturbations, the transfer fidelity of these methods is usually
better than our method. This is due to the fact that we would rely on a series of sequential dimer-jumps, instead of transferring
the state through the chain in a single step, as is done in static transfer protocols. While the transfer fidelity of our method is
usually lower, it allows for a faithful storage by means of compact localized states. This is a key advantage over commonly used
protocols, which – after the transfer process – store the state in a single site by decoupling it from its environment . In reality,
a complete decoupling to neighboring sites is usually not feasible, and the state to be saved will tunnel to these neighbors. If,
on the other hand, the state is stored by means of a compact localized state, the two sites hosting it do not need to be decoupled
at all. The only requirement to allow for faithful storage is that they are coupled symmetrically to their environment, so that the
CLS is protected by destructive interference, preventing any tunneling. In particular, for a strictly symmetric coupling to the
environment, the strength of this coupling can be arbitrary.

When faced with scenarios where states need to be transferred across large distances and stored before and after transfer, it
would thus be ideal to equip existing transfer methods, which are robust against imperfections during transfer, with compact
localized states, which allow for robust storage. Indeed, such a combination of both approaches can be achieved for any static
routing network supporting perfect state transfer of single excitations, with only minimal changes in this network. The procedure
is shown in detail in Fig. 12 (a – c) for one-dimensional chains and is elaborated below for arbitrary networks. In Fig. 12 (d), we
benchmark the original and the modified protocols for the case of Jn =

√
n(N − n). Importantly, the modified CLS protocol is

always as good as the original one in terms of the transfer fidelity under perturbed conditions, and for N ≤ 11 even outperforms
it.

We now explicate and prove the method for arbitrary networks. To this end, let us assume that the original network is described
by a Hamiltonian H and supports perfect state transfer between sites a, b within time Tf . A sketch of the network is shown in
Fig. 11 (a). We now renumber the sites, so that a refers to the second-last site N − 1 and b to the last site N , and H (here and in
the following, vectors and matrices – but not brakets – are written bold-faced for clarity) is then written as

H =

(
R G
G† C0

)
. (27)

Here

C0 =

(
va ha,b
h∗a,b vb

)

describes the subsystem of sites a, b only, R ∈ C(N−2)×(N−2) describes the subsystem without sites a, b, and G ∈ C(N−2)×2

describes the coupling between R and C0. The eigenvectors of H can then be written as

|xν〉 =



wν

uνa
uνb
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Figure 11. Equipping a network capable of perfect state transfer between sites a, b with CLSs. (a) Original network, described by H. (b)
Modified network described by H′, along with the CLSs |I ′〉 , |F ′〉. By a combination of hopping flips and time-evolution (not shown here,
see text for details) |I ′〉 can be perfectly transferred to |F ′〉.

with wν ∈ C(N−2)×1 and ν = 1, . . . , N . Since H supports perfect state transfer between sites a and b at time Tf , we have

〈I|eiHTf |F 〉 = 〈N − 1|eiHTf |N〉 =
∑

ν

uνa(uνb )∗eiEνTf = eiφ

with φ a phase and |I〉 = |N − 1〉 , |F 〉 = |N〉, where |n〉 denotes the vectors whose nth entry is equal to one and vanishes
otherwise.

We now modify the system as shown in Fig. 11 (b), so that its Hamiltonian becomes

H′ =




R 1√
2
G 1√

2
G

1√
2
G† C0 02×2

1√
2
G† 02×2 C0




and it is straightforward to show that the two CLS |I ′〉 = |N−1〉−|N+1〉√
2

(localized on sites a1 and a2) and |F ′〉 = |N〉−|N+2〉√
2

(localized on sites b1 and b2) are eigenstates of H′. To transfer |I ′〉 to |F ′〉, we perform an instantaneous flip of couplings, so
that

H′ → H′′ =




R 1√
2
G − 1√

2
G

1√
2
G† C0 02×2

− 1√
2
G† 02×2 C0




and |I ′〉 , |F ′〉 are no longer eigenstates of H′′. By means of the so-called ‘nonequitable partition theorem’ [1] its N + 2
eigenstates can then be shown to be

|xν〉 =




wν

1√
2
uνa

1√
2
uνb

− 1√
2
uνa

− 1√
2
uνb



, |xN+r〉 =



0N×1
zr

zr




with ν = 1, . . . , N and r = 1, 2. The zr ∈ C2×1 are the eigenvectors of the isolated C0. For the modified system, we then have

〈I ′|eiH′Tf |F ′〉 =

N∑

ν=1

eiEνTf 〈I ′|xν〉 〈xν |F ′〉 =
1

2

N∑

ν=1

2uνa√
2
· 2(uνb )∗√

2
· eiEνTf = eiφ,

since the overlap of |xN+1〉 , |xN+2〉 with |I ′〉 , |F ′〉 vanishes. Thus, at time Tf , we have successfully transferred |I ′〉 to |F ′〉.
By performing another instantaneous hopping flip, so that H′′ → H′, the state |F ′〉 becomes again an eigenstate of the system
and can thus be stored. We note that the time to perfectly transfer the CLS |I ′〉 within the modified system H′′ is the same as
that to transfer the single-site excitation |I〉 in the original system H.
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Transfer

Transfer

Hopping
Flip

Transfer

Hopping
Flip

Hopping
Flip

TransferHopping
Flip

Figure 12. (a – c) Demonstration of a general method to equip chains supporting perfect state transfer with CLSs. (d) Benchmark on the
performance of protocols (a) and (b) for different chain lengths. For both protocols, every coupling (thus in particular breaking the local
symmetry of the dimer couplings) is individually multiplied by (1 + δ), where δ is a normally distributed random number with zero mean
and variance σ2. The fidelity is defined as | 〈Il|exp(iHtOpt)|Fr〉 |2, where |Il, Fr〉 denote the states at the left and right end. For the original
protocol, these are single excitations of the first and last site, respectively. For the modified CLS-protocol, these are compact localized states on
the first and last dimer, respectively. The time tOpt is the one for which, in the unperturbed case, optimal transfer with unit fidelity is achieved.
We have here chosen vn = 0 and Jn =

√
n(N − n), for which it is well-known that perfect transfer is possible in time tOpt = π/2.
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We present an algorithm to design networks that feature pretty good state transfer (PGST), which is of interest
for high-fidelity transfer of information in quantum computing. Realizations of PGST networks have so far
mostly relied either on very special network geometries or imposed conditions such as transcendental on-site
potentials. However, it was recently shown that PGST generally arises when a network’s eigenvectors and the
factors P± of its characteristic polynomial P fulfill certain conditions, where P± correspond to eigenvectors which
have ±1 parity on the input and target sites. We combine this result with the so-called isospectral reduction of
a network to obtain P± from a dimensionally reduced form of the Hamiltonian. Equipped with the knowledge
of the factors P±, we show how a variety of setups can be equipped with PGST by proper tuning of P±. Having
demonstrated a method of designing networks featuring pretty good state transfer of single site excitations, we
further show how the obtained networks can be manipulated such that they allow for robust storage of qubits.
We hereby rely on the concept of compact localized states, which are eigenstates of a Hamiltonian localized
on a small subdomain, and whose amplitudes completely vanish outside of this domain. Such states are natural
candidates for the storage of quantum information, and we show how certain Hamiltonians featuring pretty good
state transfer of single site excitation can be equipped with compact localized states such that their transfer is
made possible.

DOI: 10.1103/PhysRevA.101.042304

I. INTRODUCTION

The ability to reliably transfer information through a quan-
tum system is of key importance in the quest towards quantum
computers. One particularly appealing approach is that of
perfect state transfer (PST) [1–4] of a given state—usually
a single site excitation of an XY Hamiltonian—from an input
to a target site. What makes PST appealing is that it achieves
perfect transfer fidelity (the portion of the final state at the
desired site) F = 1 by simple time evolution of the input
excitation with the time-independent Hamiltonian. On the
other hand, the demand of strictly unity fidelity for PST
is very restrictive for designing quantum networks for state
transfer. For practical applications it is anyway never met
since imperfections and noise eventually lead to nonperfect
transfer. Therefore, given that in any practical case the transfer
fidelity will be lower than unity, a less restrictive alternative
(in terms of conditions to be applied when designing different
configurations of networks for state transfer) is pretty good
[5] (also called almost perfect [6]) state transfer (PGST),
where F gets arbitrarily close to unity at a corresponding
time: Specifically, for every ε > 0 there is a time tε such that
F (tε ) > 1 − ε, where F (t ) = |〈ψI |eiHt |ψF 〉|2 (setting h̄ = 1)
for a transfer from state |ψI〉 to state |ψF 〉 at time t , with
H denoting the Hamiltonian. Since PGST includes the case
of PST, it is a broader concept, and it can be realized in a
broader range of setups. As a consequence, the—compared to
PST—enlarged parameter space of Hamiltonians supporting

PGST could be explored to find configurations that are less
prone against both imperfections and noise than others.

On a practical level, however, PGST suffers from two
problems. First, the design of PGST Hamiltonians is chal-
lenging, since it usually requires information about the ex-
act eigenvalue spectrum. So far, many approaches to PGST
are therefore based on special Hamiltonian designs such as
certain graph products [7–11]. A general and intuitive design
mechanism of PGST Hamiltonians is thus lacking. The need
for such a mechanism becomes even more apparent in view of
the difficulty of designing a PGST Hamiltonian that achieves
reasonable fidelities in sufficiently short transfer time. From
the investigation of different Hamiltonians, it is known that
these transfer times can be prohibitively large for certain
systems [12,13], while classes of chains are known as well
where these times can be sufficiently low [6]. Overall, further
research is needed in order to make practical use of the
concept of PGST, and to this end the ability of generating huge
families of PGST Hamiltonians is of high importance.

Recently, progress in the design of PGST has been made
in Ref. [14]. There, an approach is presented that achieves
PGST between two sites u and v without direct tuning of the
eigenvalue spectrum. The approach is based on Hamiltonians
H which feature so-called cospectral sites u and v for a range
of parameters. In Hamiltonians with such cospectral sites u
and v, all eigenvectors can be chosen to have parity ±1 on u
and v. Eisenberg et al. then show that PGST between u and
v automatically arises if the factors P±, which are related to

2469-9926/2020/101(4)/042304(20) 042304-1 ©2020 American Physical Society
129



M. RÖNTGEN et al. PHYSICAL REVIEW A 101, 042304 (2020)

eigenvectors which have nonvanishing amplitudes on u and v

and additionally have ±1 parity on them, respectively, of the
characteristic polynomial of H fulfill certain conditions. The
task of achieving PGST therefore boils down to proper tuning
of the factors P±. In practice, though, obtaining these factors
from the underlying Hamiltonian is not easy. In Ref. [14], P±
are (up to special cases involving symmetries or very small
setups) not obtained, but indirect methods, which manipulate
H such that P± are enforced to meet the desired properties,
are presented. An example of such a method is the addition
of transcendental numbers to the values of certain on-site
potentials of the Hamiltonian. While elegant, this method
is restricted in the sense that it requires the ability to ma-
nipulate on-site potentials. The question thus arises whether
other, more general methods of designing PGST Hamiltonians
exist.

In this work we present such a method by pursuing an alter-
native road to PGST. Namely, by directly obtaining the poly-
nomials P± from an underlying symmetric Hamiltonian that
features cospectral sites u and v. To this end, we combine the
mathematical relations underlying the works in Refs. [14,15]
with the theory of isospectral reductions [16–22]. Isospec-
tral reduction is a method to reduce the size of a given
Hamiltonian while keeping a large amount of information on
its eigenvalues and eigenvectors. We utilize the isospectral
reduction to “compress” only the relevant spectral information
for the problem at hand by building upon the very recent
results of Ref. [22]. These results put strong constraints on
the structure of the isospectral reduction of a Hamiltonian that
features cospectral sites. We use these structural constraints to
extract the P± from the isospectral reduction of H. Equipped
with P±, we show how this allows for a convenient and power-
ful algorithm for designing Hamiltonians featuring PGST by
properly tuning P± while maintaining the cospectrality of u
and v. In order to be self-contained, we also collect known
facts from the literature and condense them into a detailed
method to generate Hamiltonians that feature cospectral sites
u and v.

Interestingly, this cospectrality is often accounted for by
spatial local symmetries, i.e., symmetries, which are only
valid in spatial subdomains of the whole system. Usually
the signatures of such local symmetries are only indirectly
encoded into so-called nonlocal currents, as has been shown
in Refs. [23–28]. On the contrary, the impact of the underlying
local symmetries is directly visible in setups featuring cospec-
tral vertices u and v, where all eigenvectors are (in the case of
degeneracies, can be chosen to be) locally parity symmetric
on these sites. It would thus be interesting to analyze cospec-
tral Hamiltonians within the framework developed in those
works.

Having demonstrated how to design networks capable of
PGST of single site excitations, we show how these networks
can be modified to allow for robust storage of qubits. To this
end, we slightly modify these networks, thereby equipping
them with so-called compact localized states. Such states are
eigenstates of the underlying Hamiltonian [29,30], and are
perfectly localized on a finite number of sites. They are thus
ideally suited for the storage of qubits, and we show how, after
equipping networks with compact localized states, these can
also be pretty well transferred.

This work is structured as follows. We first define the nec-
essary and sufficient conditions for the realization of PGST
in Sec. II A. We then investigate the necessary condition,
namely strong cospectrality, which is a stronger version of
cospectrality, in more detail in Sec. II B, and the connection
of this property to symmetries in Sec. II C. Our treatment
of strong cospectrality is completed in Sec. II D, where we
show how Hamiltonians with this property can be designed.
In Sec. II E we introduce isospectral reductions, and show
how they can be harnessed to extract the polynomials P±.
In Sec. III we use this method to construct an algorithm
for the design of graphs featuring PGST. This algorithm
represents one of the two highlights of this work. We apply
the algorithm to three examples in Secs. III B and III C. In
Sec. IV we present the necessary modifications needed for
PGST of compact localized states. Finally, we conclude our
work in Sec. V.

II. THEORY: PRETTY GOOD STATE TRANSFER
OF SINGLE-SITE EXCITATIONS

Throughout this work we will consider setups described by
symmetric Hamiltonians of the form

H =
∑

i

Ei|i〉〈i| +
∑
〈i, j〉

hi, j |i〉〈 j|, (1)

with real on-site potentials Ei and couplings hi, j = h j,i, where
the sum in Eq. (1) runs over all interconnected sites i and j. We
use boldface for both vectors and matrices. The Hamiltonian
given by Eq. (1) can be represented, for example, by coupled
waveguide arrays [31,32]. However, in the context of quantum
computers, a natural choice are spin networks, where each
site represents a spin-1/2 qubit (measured up or down). The
Heisenberg XX interaction Hamiltonian then reduces to the
simple description Eq. (1) within the subspace of one excita-
tion (1 spin up and all others down) [33].

In the course of this work, we will often depict H as a
graph, i.e., as a collection of vertices and edges connect-
ing them. The weighted adjacency matrix of the graph then
equals H. As this establishes a one-to-one relation between
graphs and the underlying H, we will use these two terms
interchangeably. Likewise, we will use the terms “site” and
“vertex” interchangeably throughout this work.

In the following we will comment on the conditions for
PGST, and show how it can be achieved. In order to help
the reader in comprehending the different aspects involved,
we visualize in Fig. 1 the main mathematical background of
our method to achieve PGST. The overview Fig. 1 contains
all core mathematical theorems used in this work in compact
form. We stress that the style of presentation at this point aims
at being self-contained, thereby transferring insights from
graph theory to a broader physics community in Secs. II B
to II D. Sections II E and III contain, along with the results
provided in Sec. IV, the highlights and main novelties of this
work.

A. Necessary and sufficient conditions

In order to support PGST between two sites u and v, a
Hamiltonian H has to fulfill the following two conditions,
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Non-degenerate spectrum of H

1

23

4

FIG. 1. Gray part: The connection between main theorems that lead to realizations of PGST. Double lines with arrows denote mathematical
relations ⇐, ⇒, ⇔. Yellow/golden part: Essential steps (enumerated 1 to 4) of the algorithm for the design of PGST Hamiltonians (presented
in Sec. III). The isospectral reduction RS(H, λ) is defined in Eq. (14).

whose combination is necessary and sufficient: (i) The two
sites u and v must be strongly cospectral (see the following
subsection) and (ii) its spectrum must fulfill the following
condition [34]: Every set of integers {li, mj} which fulfills∑

i

liλ
+
i +

∑
j

m jλ
−
j = 0, (2)

∑
i

li +
∑

j

m j = 0, (3)

must also fulfill ∑
i

mi is even. (4)

Here λ+
i , λ−

j are the eigenvalues associated with eigenvectors
|ψ+

i 〉, |ψ−
j 〉 of H that fulfill

〈ψ+
i |u〉 = +〈ψ+

i |v〉 �= 0, 〈ψ−
j |u〉 = −〈ψ−

j |v〉 �= 0,

where |u〉, |v〉 describe single-site excitations of sites u and
v, respectively. We note that the above condition is stated
in Ref. [34] in slightly different form. We connect the two
variants in Appendix A.

Note that there is always at least one set of integers {li, mj}
fulfilling Eqs. (2) and (3), namely, the trivial choice li = mj =
0 ∀ i, j, which also fulfills Eq. (4). In certain cases, this trivial
choice is also the only one fulfilling Eqs. (2) and (3). An
example is the case where there are only two eigenvalues,

λ+ = √
2, λ− = √

3. Then

l
√

2 + m
√

3 = 0,

for integers l, m can only be fulfilled when l = m = 0. Pro-
vided that the two sites u and v are also strongly cospectral,
the setup would thus feature PGST between them.

B. Geometric interpretation of cospectrality

A necessary condition for PGST is that u and v are
strongly cospectral [34]. As strongly cospectral vertices are
also cospectral [35] (see Fig. 1), we will first investigate
and understand this weaker property before turning to its
stronger version. Two vertices u, v are said to be cospectral
if σ (H \ u) = σ (H \ v), where σ (H) denotes the eigenvalue
spectrum of H, and H \ u denotes the Hamiltonian obtained
from H by deleting the uth row and column. For our purpose,
it is easier to rely on an equivalent condition [35] in terms
of the diagonal entries of powers of H. Namely, u and v are
cospectral if and only if

(Hk )u,u = (Hk )v,v (5)

for all non-negative integers k < N , where H ∈ RN×N . As a
side remark, we note that Eq. (5) automatically holds for all
k > 0 provided that it holds for 0 < k < N . This is due to
the Cayley-Hamilton theorem, which states that every matrix
power Hk�N can be expanded in terms of smaller powers
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FIG. 2. The entries of matrix powers of any matrix can be
interpreted in terms of walks. (a) A graph, described by the matrix
H denoted in (b). We have here used the convention from graph
theory that diagonal elements Hi,i are plotted as links from i to itself.
(b)–(d) Help on how to interpret the entries of powers Hk (see text
for details).

Hk<N , i.e.,

Hk�N =
N−1∑
i=0

a(k)
i Hi,

with a(k)
i being the expansion coefficients. These coefficients

are scalars, and therefore Eq. (5) must hold for all non-
negative integers k, provided that it holds for 0 � k < N .

While well known in graph theory, it is perhaps surprising
to many physicists that the entries of Hk (for integer k > 0)
possess a convenient interpretation. To this end, we interpret
the Hamiltonian matrix as a graph, i.e., as a network of
vertices Vi connected to each other by weighted edges ei, j =
{Vi,Vj}, with weight w(ei, j ) = Hi, j . This is exemplarily done
in Fig. 2(a) for the Hamiltonian given in Fig. 2(b). In this
picture of representing H as a graph, every matrix element
Hi, j �= 0 is connected to an edge between vertices i and j; and
in particular, nonvanishing diagonal elements Hi,i �= 0 refer to
a link from site i to itself, with weight given by w(ei,i ) = Hi,i.

Now that we have interpreted the entries of H in terms
of edges, we show how entries of higher-order powers Hk>1

can be interpreted in terms of walks. A walk can be thought
of as a route through the graph from one vertex to another
by walking along the edges connecting neighboring vertices.
Mathematically, it is defined as an alternating sequence of
vertices and edges, where each edge must connect its pre-
cursor vertex to its successor. For example, in Fig. 2(a) a
walk of length 2 from vertex 1 to 4 would be the sequence
p = {V1, e1,3,V3, e3,4,V4}. In order to interpret the entries

of Hk , we note that, just as each edge ei, j can be given
a weight w(ei, j ), we can also give each walk a weight by
multiplying the weights of all edges occurring within this
walk. Thus, the weight of the walk p = {V1, e1,3,V3, e3,4,V4}
would be w(p) = w(e1,3) w(e3,4) = 1 · 1. Equipped with
these definitions, one can show that (a proof is provided in
Appendix B)

(Hk>0)a,b =
∑

p

w
(
p(k)

a,b

)
, (6)

where p(k)
a,b denotes one possible walk of length k between

vertices a and b, and the sum is over all such walks. In other
words, the value of the matrix element (Hk )i, j is equal to the
sum of weights of all walks of length k between vertices i and
j. In Figs. 2(b)–2(d) we have visualized this interpretation of
walks, and have also explicitly given the integer powers Hk<N .

We now connect the interpretation of matrix elements of
Hk in terms of walks to the cospectrality of two vertices u
and v. As we have seen above, these are cospectral if and
only if Eq. (5) is fulfilled for all integer k < N , with N being
the number of sites contained in H. Now, by interpreting the
entries of Hk in terms of walks, the cospectrality of u and
v can therefore be determined in a simple and straightfor-
ward manner. Namely, by evaluating all walks of length k
that go from u onto itself, and those that go from v onto
itself, and comparing the respective sum of weights, order by
order in k < N . Thus, in Fig. 2, (Hk )1,1 = (Hk )2,2 for k < 4
(and, by the Cayley-Hamilton theorem, also for all integer
k > 0), which makes the sites u = 1 and v = 2 cospectral.
Alternatively, one can also rely on the statement that two sites
u and v are cospectral if and only if σ (H \ u) = σ (H \ v).
As the graph of H \ 1 is identical to that of H \ 2, their
spectra σ (H \ 1) = σ (H \ 2) are trivially identical, and the
sites u = 1 and v = 2 are therefore cospectral.

We show a collection of cospectral graphs in Fig. 3. In ev-
ery graph, the two red vertices (labeled u and v) are cospectral,
provided that (i) any two couplings denoted by the same line
style are identical, (ii) the two red sites u, v have identical
on-site potential, and (iii) all light-gray vertices have identical
on-site potential. Let us now investigate these graphs in more
detail. By comparing different variations, it can be seen that
certain changes do not break the cospectrality of two vertices.
For example, in Fig. 3(a2) we have modified the graph from
Fig. 3(a1) by identically coupling each red vertex u and v to
an additional vertex. In Fig. 3(a3) we have modified the graph
of Fig. 3(a1) by inserting the “central” vertex m. We term this
vertex central since it can be reached from sites 1 and 5 by
a walk comprising two steps, and the corresponding weights
of these two walks are identical. To understand why inserting
this vertex does not break the cospectrality, one only needs
to investigate the influence of this change by comparing the
diagonal matrix elements (Hk

B)S,S and (Hk )S,S . Here HB and
H describe the setup of Figs. 3(a1) and 3(a3), respectively,
and S = {u, v} label the two red sites. Before the change, u
and v were cospectral, so that (Hk

B)u,u = (Hk
B)v,v ∀ k. Thus,

to understand why the cospectrality is kept, we only need to
look at the differences (�Hk )S,S = (Hk )S,S − (Hk

B)S,S caused
by inserting the new vertex. Though tedious, it is a straight-
forward task to show that (�Hk )1,1 = (�Hk )5,5 for k < 9,
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FIG. 3. A collection of graphs featuring cospectral vertices. In
every graph, the two red vertices (labeled u and v) are cospectral,
provided that (i) any two couplings denoted by the same line style
are identical, (ii) the two red sites u, v have identical on-site potential,
and (iii) all light-gray vertices have identical on-site potential.

and, by the Cayley-Hamilton theorem, therefore for all k. The
addition of vertex m does thus, at each order k, add an equally
valued sum of weights of walks from site 1 to itself compared
to those from site 5 to itself. For this reason, its addition does
not change the cospectrality of u = 1 and v = 5.

C. Strong cospectrality and the impact of symmetries

As we have seen above, cospectrality is linked to the
geometric and spectral properties of a graph. It is likewise
linked to properties of the graph’s eigenstates. Indeed, it can
be shown that two sites u, v are cospectral if and only if [35],
for H|λi〉 = λ|λi〉,∑

i

|〈λi|u〉|2 =
∑

i

|〈λi|v〉|2 (7)

is fulfilled for all λ. In words, u and v are cospectral if and
only if, within each degenerate subspace, the sum of squares
of absolute values of projections on sites u is equal to that of
projections on site v.

If u and v are cospectral and additionally [14]

〈λ̃i|u〉 = ±〈λ̃i|v〉 (8)

for any superposition |λ̃i〉 = ∑
j c j |λ j〉 of degenerate states

|λ j〉, then u and v are said to be strongly cospectral. There-
fore, strong cospectrality implies cospectrality, but the reverse

is not necessarily true. Unlike cospectrality, which can be
readily interpreted and tested for in terms of walks, we are not
aware of an easy, i.e., without computing the determinant or
the eigenstates of the graph, method to test whether a given
general graph is strongly cospectral or not. As the field of
cospectral vertices is quite young, there is hope that this may
change in the future, and we refer the interested reader to
Ref. [35] for further information on the fascinating field of
strongly cospectral vertices.

With the above statements in mind, let us now investigate
the symmetries of cospectral graphs. To this end, we compare
the graphs shown in Fig. 3 to the one shown in Fig. 2(a). The
latter graph has the special property that the underlying
Hamiltonian is invariant under the permutation of vertices
1 and 2 and therefore commutes with the corresponding
permutation operator. As is well known, such a symmetry
has a drastic impact: The eigenstates are (or, in case of
degeneracies, can be chosen to have) parity ±1 with respect to
a flip of sites u and v. Thus, they fulfill Eq. (7), so that u and
v are cospectral. Provided that states of negative and positive
parity are nondegenerate to each other, they additionally fulfill
Eq. (8), so that u and v are even strongly cospectral. While the
fact that a permutation symmetry of u and v leads to their
(strong) cospectrality should be no surprise, things change
when inspecting the graphs shown in Fig. 3. While they
indeed all have cospectral vertices u and v, none of them
is invariant under any nontrivial permutation of vertices. In
other words, the underlying Hamiltonian does not commute
with the corresponding permutation matrices. However, due to
cospectrality their eigenstates fulfill the same equation Eq. (7)
[and, depending on degeneracies, also Eq. (8)] as they would
do in the presence of a permutation symmetry. For this reason,
graphs (or, just as well, matrices) whose eigenstates fulfill
Eqs. (7) and (8) (and which need not have any permutation
symmetries) were recently termed latently symmetric [21,22].
However, although these symmetries may indeed seem hid-
den, we would like to mention here that all the graphs shown
in Fig. 3 indeed feature local symmetries, i.e., symmetries
within subdomains of the system, such that the underlying
symmetry operations commute with the Hamiltonian of the
subsystem, but not with that of the complete one. An example
is the subsystem of sites 2, 3, 4 in Fig. 3(a1), which is invariant
under the permutation of sites 2 and 4. Given the high number
of local symmetries in latently symmetric setups, it would
be interesting to investigate such systems under the recently
established framework of local symmetries [23–28], which
provides dedicated tools for the analysis of such setups.

As a concluding remark, we note that there are still many
open questions regarding the connection between local sym-
metries of a Hamiltonian H and the cospectrality of two sites
u and v of H. Given such a Hamiltonian, it is clear that the
subsystem HSS ∈ R2×2 with S = {u, v} is invariant under the
exchange of u and v, since H is symmetric and cospectrality of
u and v implies that Hu,u = Hv,v . However, it is yet unknown
whether and to which amount H must necessarily feature
more (i.e., apart from that of HSS) local symmetries in order to
allow for the cospectrality of u and v. Although the question
about the necessity of local symmetries for cospectrality is
thus still open, local symmetries often naturally appear during
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FIG. 4. Different procedures of generating graphs featuring cospectral vertices u and v. (a1) and (a2) Creation of a graph [as the one shown
in (a2)] featuring cospectral vertices from an arbitrary graph [as the one shown in (a1)] by symmetrization of the site u. In (a3) we divide the
given graph featuring cospectral sites u and v into two parts: The two red sites denoting u, v, and the remainder of the graph, denoted by a
cloud. In the remainder of this figure, the combination of the two red sites u, v with a cloud denotes an arbitrary subsystem featuring cospectral
vertices u and v. In (a4)–(d) we present a number of operations on such a general graph which preserve the cospectrality. The validity of these
operations is proven in Appendix C. Notably, if one removes the cloud which depicts a larger subgraph from (b3), one gains the iconic graph
that is shown in the first paper on cospectral vertices by Schwenk [36] and is also depicted in many publications related to cospectrality, for
example in Refs. [14,22,35].

the process of designing networks with cospectral vertices, as
we will see in the following section.

D. Designing graphs featuring strongly cospectral vertices

Let us now briefly recapitulate the above. We have seen
that a necessary condition for PGST from u to v is strong
cospectrality of these two vertices. This implies that u and
v are cospectral, and we demonstrated that whether u and v

are cospectral can be easily determined by testing whether
(Hk )u,u = (Hk )v,v ∀ k < N . We then showed how these ma-
trix entries can in turn be determined by summing up the
respective weights of all possible walks of length k from sites
u and v to themselves. In the following we will show how one
can design graphs featuring strongly cospectral vertices u and
v. We will start with a simpler problem, namely, the design of
graphs with cospectral vertices u and v, and then show how
strong cospectrality can be achieved.

A convenient way to create a graph with cospectral vertices
is to take any graph, and replicate and symmetrize one of its
sites u, as shown in Figs. 4(a1)–4(a4). This symmetrization
then automatically yields the cospectrality of site u and its
symmetry partner u = v (see Fig. 4). This is due to the
fact that the underlying Hamiltonian is invariant under an

exchange of u and v, which can easily be shown to imply
cospectrality of these vertices.

Having seen how a graph can be changed to feature cospec-
tral vertices u and v, let us now show some modifications
of this graph which keep the cospectrality. The procedure
is shown in Figs. 4(b1)–4(d), but let us elaborate more on
Figs. 4(a1)–4(a3) first. Figures 4(a1) and 4(a2) show the above
symmetrization procedure for a simple example setup of five
sites. In Fig. 4(a3), the logic underlying Figs. 4(b1)–4(d)
is shown. Namely, the cloud incorporates a subgraph which
must be chosen such that the composite graph, consisting of
this subgraph and the two red vertices, features cospectrality
of these two red vertices. This subgraph can consist of the
four vertices as shown in Fig. 4(a3), but can likewise be
an arbitrarily complicated structure as long as the two red
vertices u, v are cospectral in the composite structure. In
Fig. 4(a4) we show a first composite structure. We then change
it by a series of modifications in Figs. 4(b1)–4(b3), Figs. 4(c1)
and 4(c2), and Fig. 4(d). Each of these modifications keeps
the cospectrality of the two red vertices u, v, as we prove in
Appendix C.

These modifications can be divided into two classes: Those
where the subsystem HRG consisting of the two red sites
u, v and the light gray sites is reflection symmetric about the
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TABLE I. The results of an exhaustive search, where all Mtot(N )
graphs with unity-valued weights and with N vertices have been
generated and further analyzed. Out of these Mtot(N ) graphs, the
ones featuring permutation symmetries, have been excluded, and the
remaining MnA(N ) graphs have been individually checked whether
they contain at least two cospectral vertices. The total number
MLS (N ) of these graphs is then counted for every N . The generation
and counting of the Mtot(N ) and MnA(N ) have been done by using the
“nauty” suite [37], while we counted the graphs MLS (N ) by means of
a custom Mathematica routine. Technically, for each of the MnA(N )
graphs, we computed the matrix powers up to order N − 1, and by
analyzing the diagonal entries of these powers checked if there are at
least two cospectral vertices.

N Mtot(N ) MnA(N ) MLS (N )

8 11 117 3 552 78
9 261 080 131 452 2 247
10 11 716 571 7 840 396 78 489
11 1 006 700 565 797 524 380 3 714 397

horizontal axis, so that its sites i are transformed as i ↔ i [see
Fig. 4(b1)] and those where there is no such symmetry. The
graphs shown in Figs. 4(b1), 4(b2), and 4(c1) belong to the
first class. The principle underlying this class of modifications
is that, under the symmetry operation of a reflection of HRG

about the horizontal axis, the two sites u and v are mapped
onto each other. Due to this symmetry, they are trivially
cospectral within HRG. As we show in Appendix C, their
cospectrality is preserved also in the full system, where HRG

is connected to the cloud. The graphs shown in Figs. 4(b3),
4(c2), and 4(d) belong to the second class. In these setups,
the corresponding subgraph HRG is no longer symmetric at
all. Nevertheless, the sites u and v are cospectral, and their
cospectrality can readily be understood by evaluating the
powers of HRG, as was done in Sec. II B.

While it is straightforward to show that two vertices u
and v are cospectral in any given graph H (such as the
subgraphs HRG above), finding a systematic way to create
graphs which (i) do not feature any permutation symme-
tries and (ii) nevertheless feature two cospectral vertices u
and v is not easy. For this work, we have obtained such
asymmetric cospectral graphs by systematically perturbing
symmetric cospectral graphs (by adding nodes and/or mod-
ifying couplings), such that their permutation symmetries are
broken while the cospectrality is kept. An alternative and
more systematic way is to create databases of graphs with
cospectral vertices. We have done so by systematically gen-
erating all MLS (N ) unweighted (i.e., with all couplings being
unity) graphs of N vertices that feature two cospectral vertices
u, v, but no permutation symmetry. The obtained numbers
are rather large and are given in Table I. This suggests that
graphs with cospectral vertices are, by no means, a rare
phenomenon. As the study of these graphs is still an emerging
field, we expect that more construction principles for such
graphs will be found in the near future. To help the reader
and to spread the understanding of graphs with cospectral
vertices, we developed a graphical MATLAB tool that allows
us to design graphs and check for cospectrality of vertices in

an intuitive and fast way. This tool is available upon request
from the authors.

Let us now come back to a statement about local sym-
metries, made in the last paragraph of Sec. II C. There we
stated that local symmetries often occur naturally during the
process of designing Hamiltonians featuring cospectral sites.
We can now support this statement by looking at the graphs
depicted in Figs. 4(b3) and 4(c2), both of which feature
local symmetries. In Fig. 4(b3) the subgraph consisting of
the sites u, v, 1, 2, 3, 4 is invariant under the permutation
1 ↔ 4, 2 ↔ 3, u ↔ v. This local symmetry is caused by the
way Fig. 4(b3) was constructed. Namely, by first making
symmetric changes [performed in Figs. 4(b1) and 4(b2)] to
the initial setup of Fig. 4(a4), and breaking them afterwards
by performing another change, as done in Fig. 4(b3). The
underlying symmetries present in Figs. 4(b1) and 4(b2) are
then rendered to be local symmetries in Fig. 4(b3). A similar
reasoning can be done for the setup depicted in Fig. 4(c2).
Local symmetries can also occur accidentally, as we now
show. To this end, we note that the graph in Fig. 4(d) was
designed on purpose such that u and v are cospectral for
arbitrary h1, h2, h3, h4 > 0. In particular, the hi can be cho-
sen asymmetrically, i.e., such that no any two couplings are
identical. Yet, as a byproduct of this construction that aims at
an asymmetric graph, the on-site potentials of the sites 1 to 4
must all have the same value in order to maintain cospectrality
of u and v for arbitrary h1, h2, h3, h4. As a result, the subgraph
of sites 1,2,3,4 is invariant under the cyclic permutation 1 →
2 → 3 → 4 → 1, representing an accidental local symmetry
caused by cospectrality.

Having shown a method to create graphs featuring cospec-
tral vertices, let us now comment on how these can be
modified to achieve strong cospectrality. To this end, let
us analyze Eqs. (7) and (8) which describe the conditions
for cospectrality and strong cospectrality, respectively. From
these two equations, it follows that whenever a Hamiltonian H
features two sites u and v which are cospectral but not strongly
cospectral, H must have degenerate eigenvalues. One can thus
achieve strong cospectrality of u and v by suitably modifying
H such that (i) the cospectrality of u and v is kept and (ii) the
spectrum of H becomes nondegenerate. In other words, if we
let H(ξ ) denote a Hamiltonian with cospectral sites u and v

for a set of N parameters ξ ⊆ RN describing couplings and
on-site potentials occurring in H(ξ ), we look for subspaces
ξ ′ ⊆ ξ in which H(ξ ′) is nondegenerate. For the graph shown
in Fig. 3(c), we have a six-dimensional parameter space

ξ = {(h1, h2, h3, h4, Ered, Egray) ∈ R},
where Ered, Egray denote the on-site potentials of the red (de-
noted by u and v) and light gray sites, respectively, and h1 to h4

label the four different couplings, which are denoted by four
different line styles in Fig. 3(c). For a setup designed using the
procedure demonstrated in this section, the parameter space ξ

can be obtained as follows:
(1) Parametrize the couplings and on-site potentials oc-

curring in Hcl = Hcl(ξcl ), where Hcl denotes the Hamilto-
nian describing the isolated cloud. For the graph depicted in
Fig. 4(a3), we have

ξcl = {(a, b, c, d, Ewhite ) ∈ R}, (9)

where Ewhite denotes the on-site potential of the white sites.
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(2) Denote by ξcoupl the parameter space for the sym-
metrized couplings from Hcl to the sites u and v. For Fig. 4(a3)
we have

ξcoupl = {(e, f ) ∈ R}. (10)

(3) Constrain the couplings and on-site potentials occur-
ring in Hcl = Hcl(ξcl ) such that u and v are cospectral within
Hcl(ξcl ). Here Hcl denotes the Hamiltonian describing the
setup without the cloud. For graphs designed using Fig. 4, we
explicitly have

ξcl =

⎧⎪⎨
⎪⎩

{Er ∈ R} Fig. 4(a3),
{(Er, Eg, h1, h2) ∈ R} Fig. 4(b3),
{(Er, Eg, h1) ∈ R} Fig. 4(c2),
{(Er, Eg, h1, h2, h3) ∈ R : h4 > 0} Fig. 4(d),

where Er, Eg denote the on-site potentials of the red (denoted
by u, v) and light gray sites, respectively.

(4) Construct ξ from ξcl, ξcoupl, and ξcl as

ξ = ξcl ∪ ξcoupl ∪ ξcl (11)

so that the dimension of ξ is equal to the sum of dimensions
of ξcl, ξcoupl, and ξcl. For Fig. 4(a3) we yield

ξ = {(a, b, c, d, e, f , Ewhite, Er ) ∈ R}.

E. Relating the spectral condition to minimal polynomials

As explained in Sec. II A, PGST between u and v hap-
pens if and only if u and v are strongly cospectral and the
spectrum meets the conditions Eqs. (2) to (4). In the previous
section we showed that designing a strongly cospectral graph
is straightforward. On the other hand, meeting the spectral
requirements remains a difficult task. Nevertheless, in a recent
paper [14] by Eisenberg et al., this task has been rendered
simpler. They showed that Eqs. (2) to (4) are automatically
fulfilled, provided that the polynomials P± (defined below)
are irreducible over the base field F (which contains all the
entries of H) and fulfill

Tr(P+)

deg(P+)
�= Tr(P−)

deg(P−)
, (12)

where Tr(P±) denote the sum of roots of P±, and deg(P±)
denote their respective degree. The polynomials P± stem
from a decomposition of the characteristic polynomial of H.
More specifically, given a Hamiltonian H with two strongly
cospectral sites u and v, its characteristic polynomial P can be
decomposed [14] as

P = P0 P+ P−, (13)

such that P+ and P− have no multiple roots, do not share any
roots, and where the polynomials P± are related to eigenvec-
tors of H which are (i) nonvanishing on sites u and v and
(ii) are of positive/negative parity on these sites, respectively.
Each root of P0 with multiplicity k is related to exactly k
eigenvectors of H, all of which have vanishing amplitudes
on u and v. The problem of fulfilling the spectral condition
for PGST thus boils down to tuning the polynomials P±
accordingly. There are two possible routes to achieve this, an
indirect and a direct one. In the indirect route, the properties of
the polynomials P± are controlled by applying certain changes
to the underlying Hamiltonian that cause P± to be irreducible

2

1

3 41
2 3

2

1

FIG. 5. (a) Original graph H, and its decomposition into HSS and
HSS , where S = {1, 2}. (b) The isospectral reduction RS (H, λ) of the
graph H over S.

over F and meet Eq. (12), but P± are not directly known.
Such a method has been presented in Ref. [14], where several
such mechanisms have been shown. In particular, the method
shown there starts from a graph with cospectral vertices and
selectively adds transcendental numbers to some diagonal
entries of H, such that the modified setup features PGST.
While elegant and powerful, indirect methods do not provide
explicit forms of the polynomials P±. This limits the ability to
understand under which circumstances the underlying setup
might feature PGST.

In cases where H features an involutory permutation sym-
metry σ , i.e., [H, σ ] = 0 with σ 2 = I , the Hamiltonian can
be block diagonalized [15] to obtain P±. An example for
such an involutory symmetry is any permutation that does
only pairwise permutations of two indices, such as S : 1 ↔ 2
(acting as the identity on indices 3 and 4) for the graph in
Fig. 2. Unfortunately, this approach is not applicable to setups
that do not invoke such permutation symmetries, such as all
graphs in Fig. 3.

In the following we will present a method to create PGST
that relies on the recently introduced isospectral reduction of
H. This method and the transfer of compact localized states, as
presented in Sec. IV, are the two highlights of our work. Once
the polynomials are obtained, proper tuning of parameters
allows us to meet the requirements for PGST.

1. Isospectral reductions

We first provide some key aspects of isospectral reductions
[16–20,22], introduced first by Bunimovich and Webb [16].
This concept will allow us to extract the polynomials P±. Our
explanations will be accompanied by the illustration in Fig. 5.

The basic idea of isospectral reductions is to reduce the
dimension of a given matrix Hamiltonian H by certain trans-
formations specified by a set of sites S, yielding a smaller
matrix RS (H, λ) dependent on a parameter λ, which car-
ries the same or almost the same spectral information as
the original matrix H. Among others, the benefit of such a
reduction lies in a reduction of complexity. For this reason,
the isospectral reduction has been invented in the context of
network analysis, where the sheer size of the investigated
networks often complicates their treatment. Let us now define
the isospectral reduction of a given matrix H. This reduction
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RS (H, λ) is done over the set of sites S, so that

RS (H, λ) = HSS − HSS (HSS − Iλ)−1HSS (14)

and is defined for all values of λ that are not eigenvalues of
HSS , where S denotes the complement of the set of vertices
S. HSS and HSS denote two subsystems of H, obtained from
H by deleting all sites in S or S, respectively. HSS = (HSS )T

are the submatrices which couple HSS to HSS and HSS to HSS ,
respectively. The dimension of RS (H, λ) is given by |S|, i.e.,
the number of sites over which H is isospectrally reduced.
Such a decomposition is shown in Fig. 5(a). In Fig. 5(b) we
then show the isospectral reduction of the graph in Fig. 5(a)
over the sites S = {1, 2}.

A major goal of the isospectral reduction is to reduce
the size of the problem, while maintaining (almost) all of
its spectral features. It may seem that such a reduction is
impossible, since, by the fundamental theorem of algebra,
a Hermitian matrix H ∈ CN×N has exactly N eigenvalues.
A reduced version H′ ∈ C|S|×|S|, |S| < N would, therefore,
inevitably have N − |S| less eigenvalues. However, the above
is not necessarily true anymore if the entries of H′ are not just
constant real or complex numbers, but functions of a parame-
ter λ, i.e., H′ = H′(λ). The so-called nonlinear eigenvalues of
H′ are then given by solving the nonlinear eigenvalue equation

H′(λ)x = λx (15)

for λ, where x is called the nonlinear eigenvector. For the
isospectral reduction, we have H′(λ) = RS (H, λ), and the
nonlinear eigenvalues of RS (H, λ) are thus found by solving

det[RS (H, λ) − Iλ] = 0. (16)

It can be shown that the set of nonlinear eigenvalues of
RS (H, λ) is equal to the set of all eigenvalues of H, except
those which are also eigenvalues of HSS . Thus, if H and HSS
do not share any eigenvalues, the spectrum σ [RS (H, λ)] is
identical with that of H, i.e., σ [RS (H, λ)] = σ (H), as desired.

From Eq. (15) we get that the nonlinear eigenvectors
{v1, . . . , vn} of RS (H, λ), where n is the number of nonlinear
eigenvalues of RS (H, λ), fulfill

H′(λi )xi = RS (H, λi )vi = λivi.

Importantly, the set of nonlinear eigenvectors {vi} does not
need to be pairwise orthogonal, and could even be linearly
dependent or pairwise identical. In the context of isospectral
reductions, the importance of these nonlinear eigenvectors
stems from the fact that they can be linked [20,38] to the
eigenvectors of H. Namely, every nonlinear eigenvector vi ∈
R|S|×1 of RS (H, λ) with nonlinear eigenvalue λi is, up to nor-
malization, the projection of the corresponding eigenvector
Vi ∈ RN×1 of H ∈ RN×N onto the sites S. In other words,

vi = ki(Vi )S ∈ R|S|×1, (17)

where ki is a normalization constant, HVi = λiVi, and |S|
denotes the number of elements in S.

2. Extracting the polynomials P± through isospectral reductions

In order to use the isospectral reduction to extract the poly-
nomials P±, we will rely on a recently proven theorem from
Ref. [22]. This theorem states that for symmetric matrices H,

the isospectral reduction RS (H, λ) over two sites {u, v} = S
is bisymmetric if and only if u and v are cospectral in H.
Moreover, u and v are strongly cospectral if and only if they
are cospectral and all nonlinear eigenvalues of RS (H, λ) are
simple. This theorem is remarkable, as it connects the two
seemingly unrelated concepts of cospectrality and isospectral
reductions.

To give an intuitive argument for why this theorem makes
sense, we show how cospectrality of u and v follows from
bisymmetry of RS={u,v}(H, λ) for the simple case when
σ (H) = σ [RS (H, λ)]. In this case, each nonlinear eigenvec-
tor vi of RS (H, λ) is the projection of the corresponding
eigenvector Vi of H on the sites S. Now, as can be easily
shown, the nonlinear eigenvectors of RS (H, λ) have (in the
case of degeneracies, can be chosen to have) parity ±1 on
u and v if and only if RS (H, λ) is bisymmetric. Therefore,
the eigenvectors {Vi} of H fulfill Eq. (7), i.e., sites u, v are
cospectral due to the bisymmetry of RS (H, λ). If, additionally,
all nonlinear eigenvalues of RS (H, λ) are simple, the {Vi} also
fulfill Eq. (8), i.e., (Vi)u = ±(Vi )v .

We now use the connection between cospectrality and
bisymmetry of RS={u,v}(H, λ) to extract P±. To this end, we
assume that u and v are strongly cospectral. By Theorem
3.8. from Ref. [22], RS (H, λ) is then bisymmetric, and all its
nonlinear eigenvalues are simple. Due to its bisymmetry, we
can parametrize

RS (H, λ) =
(

A(λ) B(λ)
B(λ) A(λ)

)
, (18)

with A(λ), B(λ) being rational functions of λ. As we have
explained above, all nonlinear eigenvectors of RS (H, λ) are
(in the case of degeneracies, can be chosen to be) of definite
parity on u and v. Therefore, the characteristic polynomial
PR(λ) of RS (H, λ) can be factored into two parts, PR =
P+

R (λ) P−
R (λ), such that the roots of the polynomials P±(λ)

are the nonlinear eigenvalues of nonlinear eigenvectors of
RS (H, λ) with positive and negative parity, respectively. As
we show in Appendix D, P±

R = A(λ) ± B(λ) − λ. They obey
the relation

P+
R (λ) P−

R (λ) = det
(
RS (H, λ) − Iλ

) = det(H − Iλ)

det(HSS − Iλ)
,

where the first equality is proven in Appendix D, and the
second on p. 7 in Ref. [18].

There are now two possible scenarios for which the polyno-
mials P±(λ) can be obtained. In the first scenario, H and HSS
must not share any eigenvalues. In that case, all eigenvalues
of H are given by the union of roots of P±

R (λ), and by the
above assumption of strong cospectrality of u and v, all these
eigenvalues are nondegenerate. Combining these properties,
we see that all eigenvectors of H do not vanish [39] on the
sites u and v, and the corresponding amplitudes on these two
sites are of definite parity with respect to exchanging u and v.
Thus, P0(λ) = 1 [from the decomposition of the characteristic
polynomial of H, as done in Eq. (13)], and we get

P(λ) = P+(λ) P−(λ),
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where P(λ) = det(H − Iλ) is the characteristic polynomial of
H. The P±

R ≡ p±/q± are rational functions in λ, so that

P+
R (λ) P−

R (λ) = p+(λ)

q+(λ)

p−(λ)

q−(λ)
= det(H − Iλ)

det(HSS − Iλ)
, (19)

where p±(λ), q±(λ) and both determinants are polynomials in
λ. Since

det(H − Iλ) = P(λ) = P+(λ) P−(λ),

it would be ideal if the numerators in Eq. (19) match, so that
p±(λ) = P±(λ). However, since Eq. (19) remains invariant
under the transformation

p±(λ) → c±(λ) p±(λ), (20)

q±(λ) → c±(λ) q±(λ), (21)

with c±(λ) functions of λ, the p±(λ) are not uniquely de-
termined by Eq. (19) alone. To uniquely determine P±(λ),
one needs to properly reduce the fractions p±(λ)/q±(λ) [i.e.,
performing the transformations of Eqs. (20) and (21) with
suitable c±(λ)] such that the following conditions are fulfilled.
First, the leading-order coefficients a(±)

n± of the polynomials

p+(λ) =
n+∑

n=0

a(+)
n λn, p−(λ) =

n−∑
n=0

a(−)
n λn,

where n± are the respective degrees of p±(λ), must be chosen
such that

a(+)
n+ = 1, a(−)

n− = (−1)N ,

where N is the dimension of H ∈ RN×N . This ensures that
the product of p+(λ) p−(λ) has a leading order coefficient
of (−1)N , which matches the leading order coefficient of
det(H − Iλ). Second, the fractions p±(λ)/q±(λ) must be ir-
reducible. The latter property means that p+(λ), q+(λ) [and
also p−(λ), q−(λ)] are coprime, i.e., their only common factor
is unity. If the above two conditions are fulfilled, we obtain

P±(λ) = p±(λ)

as desired.
The second scenario where P±(λ) can be obtained is when

all eigenvectors x′
i of H which are related to common eigen-

values λ′
i of both H and HSS vanish on S. The polynomial

P0(λ) from Eq. (13) then becomes

P0(λ) =
∏

i

(λ′
i − λ) (22)

and we can factorize

det(H − Iλ) =
(∏

i

(λi − λ)

)(∏
i

(λ′
i − λ)

)
,

det(HSS − Iλ) =
(∏

i

(λ′
i − λ)

)(∏
i

(λ′′
i − λ)

)
, (23)

where λ′′
i are the eigenvalues of HSS which are not simul-

taneously eigenvalues of H. As a result of Eqs. (13), (22),

and (23), ∏
i

(λi − λ) = P+(λ) P−(λ)

and similarly to Eq. (19) we obtain

P+
R (λ) P−

R (λ) = p+(λ)

q+(λ)

p−(λ)

q−(λ)
=

∏
i(λi − λ)∏
i(λ

′′
i − λ)

.

If the fractions p±(λ)/q±(λ) are properly reduced as above,
we again have that

P±(λ) = p±(λ).

The isospectral reduction can thus be used to extract the
polynomials P± provided that (i) H and HSS do not share
a common root, or (ii) all common roots of H and HSS are
related to eigenvectors of H which vanish on S. In the next
section we show how this knowledge can be harnessed to
design Hamiltonians featuring PGST.

III. APPLICATION: DESIGNING GRAPHS WITH PRETTY
GOOD STATE TRANSFER

In Sec. II we have introduced the concept of cospectrality
and have shown how, based on the isospectral reduction,
the polynomials P± can be extracted. With this theoretical
background, one can derive the following algorithm for the
design of graphs with PGST.

(1) Achieving cospectrality
Design/take a graph H(ξ ) with cospectral vertices u and

v, e.g., by means of the procedure demonstrated in Sec. II D.
Here ξ denotes the parameter space of couplings and on-site
potentials occurring in H for which u and v are cospectral and
for which there exists at least one possible walk from u to v.

(2) Achieving strong cospectrality
Due to cospectrality of u and v for all H(ξ ), the isospectral

reduction

RS={u,v}(H(ξ ), λ) =
(

A(ξ, λ) B(ξ, λ)
B(ξ, λ) A(ξ, λ)

)

of H(ξ ) over S = {u, v} [with rational functions
A(ξ, λ), B(ξ, λ)] is, by Theorem 3.3 from Ref. [22],
guaranteed to be bisymmetric. Compute

P±
R (ξ, λ) = A(ξ, λ) ± B(ξ, λ) − λ ≡ p±(ξ, λ)

q±(ξ, λ)
,

and, by suitable algorithms (see Sec. III A), find a subspace
ξ ′ ⊆ ξ for which P±

R (ξ ′, λ) individually have only simple
roots, and additionally have no common roots. By Theorem
3.8 from Ref. [22], u and v are then strongly cospectral.

(3) Extraction of P±
By suitable algorithms (see Sec. III A), either

(a) further restrict ξ ′ such that H(ξ ′) and HSS (ξ ′) do not
share any eigenvalues,

(b) or, alternatively, restrict ξ ′ such that all eigenvalues
λ′

i shared by H(ξ ′) and HSS (ξ ′) are related to eigenvectors
of H(ξ ′) which vanish on S.
In both cases, properly reduce (or expand) the fractions

occurring in P±
R (ξ ′, λ) such that
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(a) the leading order coefficients of p±(ξ ′, λ) (which
are polynomials in λ) are +1 and (−1)N , respectively,
where N is the dimension of H ∈ RN×N ,

(b) p±(ξ ′, λ)/q±(ξ ′, λ) are irreducible.
As a result P±(ξ ′, λ) = p±(ξ ′, λ).
(4) Enforcing pretty good state transfer
Within the subspace ξ ′, search (see Sec. III A) for realiza-

tions ξ ′′ ⊆ ξ ′ such that
(a) P±(ξ ′′, λ) are irreducible over the base field F

which contains all entries of H(ξ ′′).
(b) Tr[P+(ξ ′′,λ)]

deg[P+(ξ ′′,λ)] �= Tr[P−(ξ ′′,λ)]
deg[P−(ξ ′′,λ)] .

H(ξ ′′) then features PGST from u to v. We note that
Tr[P±(ξ ′′, λ)] can be computed without finding the roots of
these polynomials, since Tr[ f (x)] = −an−1/an for a polyno-
mial f (x) = ∑n

i=0 aixi of degree n.
(5) Repetition (if necessary)
Since not every graph may support PGST, the above proce-

dure is not guaranteed to work in all cases (see Sec. III A for
details). Thus, if step 4 is not successful, i.e., no parameters
ξ ′′ exist such that P±(ξ ′′, λ) fulfill steps 4(a) and 4(b), go
back to step 3 and try its alternative route. If this, again,
is not successful, go back to step 1, modify the graph by
adding/removing vertices, and start anew.

A. Annotations

Let us now make two comments regarding the above
algorithm. First, steps 2 to 4 require the search for suitable
subspaces, which in general must be performed by means of
suitable trial-and -error algorithms. However, the subspace
ξ ′ ⊆ ξ (the search for which is the subject of steps 2 and
3 of the algorithm) can in some cases be given by explicit
expressions, as we demonstrate in Sec. III B. Second, not
all setups may support PGST, and the above algorithm is
therefore not guaranteed to work in all cases. However, we
have successfully tested the algorithm with a variety of setups,
and among others, all six graphs depicted in Fig. 3 were
successfully tuned to support PGST between the two red sites.

Overall, we stress that the main advantage of our algorithm,
compared to existing methods for the design of PGST, is
the ability to derive explicit forms for the polynomials P±.
We hope that the insights gained on how to extract the
polynomials P± will lead to a better understanding on the
classes of setups which support PGST. This understanding is
facilitated by the fact that the core method of our approach,
the isospectral reduction RS={u,v}(H(ξ ), λ), can be performed
symbolically. As we will see in the next section, in some
cases, nearly all steps of the algorithm can be done without
numerical evaluations at all.

B. Example

We now apply the algorithm presented above to a simple
example, depicted in Fig. 6(a), and will go separately through
each of the steps 1 to 4.

1. Achieving cospectrality

We start the algorithm with the graph shown in Fig. 6(a),
which represents a very simple graph featuring cospectral

FIG. 6. (a)–(c) Three setups which can, by means of our algo-
rithm, be tuned to feature PGST between the two red vertices labeled
u and v. In all figures, u and v are cospectral for any choice of on-site
potentials and couplings, as long as (i) u and v have identical on-site
potential, (ii) all light gray vertices have identical on-site potential,
and (iii) all couplings denoted by the same letter [and in (a) and
(b) also share the same line style] have the same value. Details on
the application of our algorithm to these three setups are given in
Sec. III B and Sec. III C.

vertices u and v. The graph is described by

H(ξ ) =

⎛
⎜⎜⎜⎜⎜⎝

Er b a 0 0 h
b Eg 0 0 0 0
a 0 Eg 0 0 0
0 0 0 Eg 0 c
0 0 0 0 Eg d
h 0 0 c d Er

⎞
⎟⎟⎟⎟⎟⎠, (24)

where d = √
a2 + b2 − c2,

ξ = {(a, b, c, h, Er, Eg) ∈ R : d > 0 and (a, b, c, h) �= 0},
and Er, Eg denote the on-site potentials of the red (denoted by
u, v) and light gray sites, respectively. The red sites u = 1 and
v = 6 are then guaranteed to be cospectral for the Hamiltonian
H(ξ ).

The form of d = √
a2 + b2 − c2 is chosen such as to

ensure cospectrality of u and v within a large parameter
space. For example, for a = b = c, H would be invariant
under the exchange 3 ↔ 4, 2 ↔ 5, 1 ↔ 6, so that u = 1 and
v = 6 would trivially be cospectral. However, our choice of
d = √

a2 + b2 − c2 > 0 ensures this cospectrality even for
asymmetric cases such as a = 2b = 4c, where H is not in-
variant under any nontrivial permutation of sites.
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2. Achieving strong cospectrality

The isospectral reduction of H(ξ ) over S = {u, v} then
gives

RS={u,v}[H(ξ ), λ] =
(

δ
λ−Eg

+ Er h

h δ
λ−Eg

+ Er

)
,

where δ = a2 + b2, so that

P+
R (ξ, λ) = δ

λ − Eg
+ h − λ + Er,

P−
R (ξ, λ) = δ

λ − Eg
− h − λ + Er .

Following the procedure of the algorithm, we now have to
investigate (i) under which circumstances all roots of P±

R (ξ, λ)
are simple and (ii) under which conditions P+

R (ξ, λ) and
P−

R (ξ, λ) do not share any roots. Since

P+
R (ξ, λ) = −Eg(h − λ + Er ) + λ(h − λ) + δ + λEr

λ − Eg
, (25)

P−
R (ξ, λ) = Eg(h + λ − Er ) − λ(h + λ) + δ + λEr

λ − Eg
(26)

are rational functions in λ, we define the corresponding nu-
merators and denominators as p±(ξ, λ) and q±(ξ, λ). Since
the p+(ξ, λ), q+(ξ, λ) and p−(ξ, λ), q−(ξ, λ) could in princi-
ple share roots, we need to evaluate when this can happen.
To this end, we can use the so-called resultant [40]. Two
given polynomials f (x) and g(x) share at least one root if and
only if their resultant R( f , g) is zero. The resultant, defined
in terms of the so-called Sylvester matrix, can be computed
symbolically and is implemented in common computer alge-
bra systems. For the problem at hand, we yield

R[p+(ξ, λ), q+(ξ, λ)] = R[p−(ξ, λ), q−(ξ, λ)] = δ, (27)

which can obviously never vanish, since δ = a2 + b2 and we
demanded that a, b ∈ R and a, b �= 0. Thus, we can evaluate
the roots of P±

R (ξ, λ) by evaluating only their numerators
p±(ξ, λ).

To check whether p+(ξ, λ) and p−(ξ, λ) share any roots,
we again rely on the resultant, which gives

R[p+(ξ, λ), p−(ξ, λ)] = 4h2δ > 0.

Thus, p+(ξ, λ) and p−(ξ, λ) will not share any roots. We
then need to check when p+(ξ, λ) and p−(ξ, λ) individually
have multiple roots. To this end, we compute their so-called
discriminant [41]. The discriminant D( f (x)) of a polynomial
f (x) is zero if and only if f (x) has at least one multiple
root. Like the resultant, the discriminant can be computed
analytically and is implemented in many computer algebra
systems. We then get

D(p±(ξ, λ)) = (Eg − Er )(Eg ∓ 2h − Er ) + h2 + 4δ.

D(p±(ξ, λ)) can only vanish if δ = − 1
4 (Eg − Er ∓ h)2 < 0,

which is again forbidden by our assumptions that a, b ∈ R and
a, b �= 0.

Let us now recapitulate the above. We have investigated
under which conditions all roots of RS={u,v}[H(ξ ), λ] are
simple. The motivation for this study is the fact that, whenever

this is the case, the sites u and v are not only cospectral,
but also strongly cospectral. For the Hamiltonian given by
Eq. (24), we have found that both of the above conditions
are fulfilled for all elements in the parameter space ξ , so
that ξ ′ = ξ , and u, v are always strongly cospectral in this
Hamiltonian H(ξ ). We can thus move on to the third step of
our algorithm.

3. Extraction of P±

Following the procedure of the algorithm, we now have
to investigate under which circumstances H(ξ ′) and HSS (ξ ′)
share eigenvalues. We therefore compute their resultant

R
(
det[H(ξ ′) − Iλ], det[HSS (ξ ′) − Iλ]

) = 0. (28)

Thus, H(ξ ′) and HSS (ξ ′) always share at least one eigen-
value. Indeed, closer evaluation shows that, irrespective of
how ξ ′ is chosen, H(ξ ′) and HSS (ξ ′) share a twofold de-
generate eigenvalue λ = Eg, with corresponding (unnormal-
ized) eigenvectors x1 = (0, 1,−b/a, 0, 0, 0)T /

√
4 and x2 =

(0, 0, 0, 1,−c/d, 0)T /
√

4. Both eigenvectors have zero am-
plitude on the sites S = {1, 6}, and by the reasoning in
Sec. II E 2, the corresponding doubly degenerate eigenvalue
Eg of H(ξ ′) is not of relevance to us. To see whether there
are any other common eigenvalues of H(ξ ′) and HSS (ξ ′), we
investigate the resultant

R

(
det[H(ξ ′) − Iλ]

(λ − Eg)2
,

det[HSS (ξ ′) − Iλ]

(λ − Eg)2

)
= δ4. (29)

Since δ = a2 + b2 > 0, H(ξ ′), HSS (ξ ′) do not share any other
roots.

To extract P±(ξ ′, λ), we test whether p±(ξ ′, λ), given by
the respective numerators of Eqs. (26) and (25), have lead-
ing order coefficients +1 and that p±(ξ ′, λ)/q±(ξ ′, λ) are
irreducible fractions. The latter is indeed the case, but the
leading order coefficients are −1. Thus, we have P±(ξ ′, λ) =
−p±(ξ ′, λ), and explicitly

P+(ξ ′, λ) = Eg(h − λ + Er ) − λ(h − λ) − δ − λEr,

P−(ξ ′, λ) = −Eg(h + λ − Er ) + λ(h + λ) − δ − λEr .

4. Enforcing pretty good state transfer

Inserting P±(ξ ′, λ) into Eq. (12) and simplifying the result-
ing inequality yields

2

Eg − h + Er
�= 2

Eg + h + Er
, (30)

which is obviously fulfilled whenever h �= 0. The only task
left is to search for realizations ξ ′′ ∈ ξ which render both
P±(ξ ′′, λ) to be irreducible over the base field F which
contains all entries of H(ξ ′′). If we choose (ξ ′′) such that
H(ξ ′′) ∈ Q6×6, we have F = Q, and one realization leading
to PGST is

a = 1, b = 2, c = 1/4, h = 1, Eg = Er = 0. (31)

5. Comparison with an alternative treatment

As an alternative to applying our algorithm onto the simple
setup of Fig. 6(a), one could also find exact conditions for
the occurrence of both perfect and pretty good state transfer
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by directly computing the eigenvalue spectrum and the cor-
responding eigenvectors. We will now do so for the case that
Eg = Er = 0.

For this case, one can obtain analytical expressions for the
eigenvalues λ0 ∪ λ− ∪ λ+ with

λ0 = {0, 0}, (32)

λ− = {−h ±
√

h2 + 4δ}, (33)

λ+ = {h ±
√

h2 + 4δ}, (34)

where δ as above and where the eigenvectors belonging to λ0

identically vanish on u and v, and the eigenvectors belonging
to λ− (λ+) are of negative (positive) parity on u and v.
Evaluating the transfer amplitude

〈u|eiHt |v〉 =
∑

i

[〈u|φi〉〈φi|v〉eiλit ], (35)

with |φi〉, λi being the eigenvectors and eigenvalues of H, then
yields

〈u|eiHt |v〉 = 2iα sin

(
h + β

2
t

)
+ (1 − 2α)i sin

(
h − β

2
t

)
,

(36)

where

α = 1

4

(
h√

δ + h2
+ 1

)
, β =

√
h2 + 4δ. (37)

If

h

β
= 1 + 4c1

1 + 4c2
, (38)

with c1, c2 being integers, the setup features PST between u
and v. If

h

β
∈ R \ Q (39)

is irrational, the setup features pretty good state transfer
between u and v. The latter statement follows from the fact
that, if expression Eq. (39) holds, the only set of integers
{li, mj} fulfilling Eqs. (2) and (3) is the trivial one where
li = 0, mj = 0 for all i, j, which also fulfills Eq. (2).

For comparison with the outcome of our algorithm, we
insert the parameters of (31) into (39), yielding the irrational
number

1√
21

(40)

as expected.

C. Application of the algorithm to larger systems

The graph treated in the previous subsection has been
deliberately chosen to be rather simple, so that the reader
can comprehend the essential steps of our algorithm. The
algorithm itself is not limited to such simple examples, and
indeed can be applied to rather complicated networks. In
Figs. 6(b) and 6(c) we show two such networks. The first
such network has been taken from our collection of 2247 un-
weighted (i.e., where all couplings are unity) graphs with nine

vertices (see Table I) which have no permutation symmetries,
but cospectral vertices. In a second step, we systematically
checked which edge weights and on-site potentials of this
particular graph can be changed while preserving the cospec-
trality. One out of several different choices is then depicted in
Fig. 6(b). The graph depicted in Fig. 6(c) has been obtained
by starting from a highly symmetric graph with 22 vertices
(namely, the graph shown without the two central vertices)
in which, among other pairs of sites, the two sites u and
v are cospectral. We then added the two central sites and
systematically checked in which ways these two sites and the
highly symmetric prototype graph can be connected such that
the symmetry is broken, but the cospectrality of u and v is
preserved.

We now give the results of the application of our algorithm
onto these two examples. For the graph of Fig. 6(b) the
algorithm yields that, among many other possible choices of
parameters, PGST between the sites u and v is achieved for

a = b = c = d = e = 1, f = 2 (41)

and with all on-site potentials being equal to zero. For this
set of parameters, all eigenvalues of H are nondegenerate,
and u and v are thus strongly cospectral. Furthermore, for
this specific choice of parameters, the algorithm yields the
polynomials

P+(λ) = λ7 + λ6 − 16λ5 − 26λ4 + 33λ3 + 51λ2 − 16λ − 8,

(42)

P−(λ) = −λ2 + λ + 8, (43)

and it can easily be shown that these two polynomials are
irreducible over the base field of the Hamiltonian H (namely,
over the rational numbers), and also fulfill Eq. (12), so that the
setup supports PGST between u and v.

For the graph of Fig. 6(c) the application of our algorithm
yields that one possible choice for obtaining PGST between
the sites u and v is to set all on-site potentials equal to zero,
and all couplings equal to unity. The polynomials P± are then
obtained as

P+(λ) = λ18 + 2λ17 − 24λ16 − 52λ15 + 211λ14

+ 501λ13 − 841λ12 − 2282λ11 + 1520λ10

+ 5271λ9 − 960λ8 − 6129λ7 − 158λ6 + 3392λ5

+ 172λ4 − 792λ3 + 34λ2 + 42λ − 4, (44)

P−(λ) = λ6 − 2λ5 − 6λ4 + 8λ3 + 10λ2 − 5λ − 2. (45)

IV. STORAGE AND PRETTY GOOD TRANSFER
OF COMPACT LOCALIZED STATES

So far we investigated the transfer of single-site exci-
tations, and showed how networks supporting pretty good
transfer of these states can be designed. In the following we
will demonstrate how such networks can be modified to allow
for robust storage of qubits. The need for such modifications
arises since, although relatively easy to transfer, single site
excitations are difficult to store. To achieve storage, the un-
derlying sites would need to be completely decoupled from
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FIG. 7. The graph shown features a compact localized state
(CLS) |�CLS〉 = |1〉−|2〉√

2
on sites 1 and 2.

the remainder of the Hamiltonian right after state transfer,
which is usually not achievable. As a consequence, the single
site excitation would tunnel to adjacent (weakly) coupled
sites, drastically degrading the storage performance. Recently,
a solution to this problem has been proposed in Ref. [42].
There, qubits were not encoded into excitations of single
sites, but into excitations of dimers, which are schematically
shown in Fig. 7, where the dimer consisting of the two sites
1 and 2 is excited. Storage in these dimers does not rely on
decoupling, but rather on destructive interference. To achieve
such interference, the couplings of the two constituents of
the dimer to the remainder of the system (in Fig. 7, these
are identically given by h′) are chosen symmetrical, and the
dimer sites are excited with a phase difference of π . This
completely suppresses any tunneling of this dimer state to its
environment. It can be easily proven that such dimer states
are eigenstates of the underlying Hamiltonian, and due to
their strictly limited spatial extent, they are known as compact
localized states (CLS). In Fig. 7, for example, the CLS is
given by |�CLS〉 = |1〉−|2〉√

2
, and one can easily show that it is an

eigenstate of the underlying Hamiltonian H with eigenvalue
λ = v − h. Importantly, this is also an eigenvalue of the
isolated Hamiltonian of the subsystem

HSS =
(

v h
h v

)
,

where v denotes the identical on-site potential of sites 1
and 2, and where S = {1, 2}. The fact that the eigenvalues
of CLSs depend only on the subsystem on which they are
localized is indeed a general property, and this is just one
of the many intriguing features of these states. Not only do
CLSs feature localization without disorder, as is the case for
the well-known Anderson localization [43], but they are also
strongly connected to the appearance of flat bands. These
are, in turn, conjectured to play a role in the superconduction
of cuprates [30,44–50]. We refer the reader interested in the
exciting field of CLSs and flat bands to the review [30].

What makes compact localized states important in the
context of this work is their unique combination of favor-
able properties. The fact that they are eigenstates allows for
their perfect, i.e., unity fidelity, storage in idealized model
systems, where imperfections can be ignored. If, on the other
hand, such model systems are realized and imperfections are
introduced, CLSs profit from the fact that they are localized
only on a subdomain of the full system. This means that they
are immune to any imperfections of the underlying Hamil-
tonian outside of this domain and its directly neighboring
sites. Moreover, the fact that they are localized by means of

destructive interference means that they are even immune to
certain perturbations inside or directly next to their domain
of localization. For example, the coupling h′ in Fig. 7 could
be varying in time and, in particular, grow arbitrarily big, but
|�CLS〉 would still remain a compactly localized eigenstate of
H(t ). This naturally changes if the symmetry of the couplings
h1,3, h2,3 or the on-site potentials of sites 1 and 2 is broken.
However, as has been demonstrated in [42], by tuning the
CLSs eigenvalue v − h, the CLS can be energetically sepa-
rated from the other states of the (unperturbed) system. It then
follows from perturbation theory that, for weak perturbations,
the CLS is only slightly affected.

The combination of all these properties clearly renders
compact localized states ideal candidates for the storage of
qubits. However, the fact that they are eigenstates of H com-
plicates their transfer, which is naturally impossible by simple
time evolution if H is time independent. In Ref. [42] a set
of minimal changes to the setup have been demonstrated that
allow for both perfect storage and perfect, i.e., unity fidelity,
transfer of CLSs in specialized networks. Similar ideas—
though not using the term of CLSs, and not focusing on
the special properties of these states for storage—have been
proposed earlier for the transport of qubits in Refs. [51,52].
In this section we use the underlying idea and show how a
network capable of PGST of single-site excitations of sites
u and v can be modified by a set of minimal changes such
that (i) the network supports compact localized states and
(ii) it is possible to perform pretty good transfer of these
states. The only condition on the underlying network is that,
during the transfer process, there are no direct links (edges)
between u and v. The basic idea is sketched in Figs. 8(a)
and 8(b). We start from a Hamiltonian H—an example being
depicted in Fig. 8(a)—which supports PGST from u to v, with
time-dependent fidelity

F (t ) = |〈u|eiHt |v〉|2. (46)

We then create a modified version Hm of H by replacing u
and v by dimers u1,2 and v1,2, and by replacing all couplings
of u, v to their environment by symmetrized and renormalized
couplings with the dimer. The modified Hamiltonian Hm of H
of Fig. 8(a) is shown in Fig. 8(b). The fidelity

F ′(t ) = |〈u+|eiHmt |v+〉|2 (47)

for the transfer of symmetric excitations |u+〉 = |u1〉+|u2〉√
2

to

|v+〉 = |v1〉+|v2〉√
2

by means of the modified Hamiltonian Hm can
then be shown (see Appendix E for details) to be identical
to F (t ). In particular, while H supports PGST of single site
excitations u and v, its modified version Hm supports PGST
of symmetric dimer excitations |u+〉 and |v+〉.

On the other hand, Hm supports also two compact lo-
calized states, |u−〉 = |u1〉−|u2〉√

2
and |v−〉 = |v1〉−|v2〉√

2
. They are

eigenstates of Hm and can thus not be transferred by simple
time evolution. However, |u−〉 can be transferred to |v−〉 by
means of a time-dependent Hamiltonian H′

m(t ). To this end,
we constrain H′

m(t ) such that

H′
m(t < 0) = H′

m(t � Tf ) = Hm (48)

so that the transfer takes place between t = 0 and t = Tf . As
a result, |u−〉 and |v−〉 are eigenstates before t = 0 and after
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FIG. 8. (a) Original setup featuring PGST from u to v, described
by H. (b) Modified setup described by Hm, featuring two CLS
|u−〉 = |u1〉−|u2〉√

2
and |v−〉 = |v1〉−|v2〉√

2
. By means of a time-dependent

Hamiltonian H′
m(t ) (as depicted in the inset), transfer of CLSs is

possible. In the proposed protocol, H′
m(t ) differs from Hm in that

only the couplings of one site of each dimer to the remainder of the
setup are changed by linear ramps with ramp time δt . These ramps
are depicted in (d). (c) The transfer fidelity over the ramp time δt
for the setup (b), with all on-site potentials set to zero and coupling
parameters a−g given in Eq. (52). Here Topt is the time for which,
for δt = 0, a transfer fidelity of 0.996 has been reached (see text for
more details).

t = Tf . We then construct H′
m(t ) from Hm by making all cou-

plings hi,u1 , hi,v1 of u1, v1 (but not of u2, v2) time dependent.
In the following we consider two different protocols.

In the simplest possible protocol, one instantaneously
switches the sign of the couplings hi,u1 and hi,v1 at t = 0,
and switches back at t = Tf . Due to this change, the initial
state |u−〉 is no longer an eigenstate of H′

m(t ) for t < 0 < Tf ,
and thus spreads across the lattice. If we denote H′

m(0 <

t < Tf ) = H′′
m = const., then the transfer fidelity during this

spreading is given by

F ′′(t ) = |〈u−|eiH′′
mt |v−〉|2 = F ′(t ) = F (t ). (49)

Once F ′′(t ) achieves a sufficiently high value F ′′(Tf ) = 1 − ε

for given ε, the second quench is performed, so that the

previously modified couplings are instantaneously switched
back to their original value. At Tf , the state of the system is
then given by

|�(Tf )〉 = eiφ
√

1 − ε|v−〉 +
∑

ν

cν |ψν〉, (50)

where φ is a phase and the coefficients cν must fulfill
|〈�(Tf )|�(Tf )〉| = 1. The states |v−〉 and |ψν〉 �= |v−〉 are
eigenstates of the pre/post quench Hamiltonian Hm. Since
H(t ) = Hm for t � Tf , we have

|〈v−|�(t � Tf )〉|2 = F ′′(Tf ) = const. (51)

The CLS |u−〉 is thus stored with the time-independent fidelity
F ′′(Tf ) and, due to its properties, enjoys protection against
a large number of imperfections of Hm. As we wrote above,
by connecting the two dimer sites hosting the CLS |u−〉 by
a coupling h, its energy can be tuned to be far away from
all other states. As a consequence, the CLS becomes highly
robust against perturbations, as has been shown in [42].

Our second protocol is motivated by the fact that, in
practice, instantaneous coupling flips are rather unrealistic.
Thus, they should be replaced by more realistic switching
pulses. These will naturally change the transfer fidelity, and
the strength of this change clearly depends both on the in-
dividual system and the realization of the flipping pulse. In
Ref. [42], the impact of linear ramps (instead of instantaneous
coupling flips) on linear chains that support perfect transfer of
compact localized states has been investigated. As has been
shown there for the case of chains of length N = 5, even
extraordinary slow ramping times of nearly half of the total
transfer time only leads to a decrease of the transfer fidelity
from unity to 0.97. This being said, we now exemplarily inves-
tigate the impact of finite duration linear ramps of couplings
on the transfer fidelity of the simple example setup shown
in Fig. 8(a). Restricting all on-site potentials to be zero, the
two sites u and v are cospectral for any choice of the seven
parameters ξ = {a, b, c, d, e, f , g} ∈ R. Before investigating
the impact of finite-time ramps on the transfer of compact
localized states, we first find the subspace ξ ′′ ⊆ ξ in which
the setup supports PGST of single site excitations. Within this
subspace, we then look for realizations ξ ′′′ ⊆ ξ ′′ for which the
maximum transfer fidelity

Fmax(Tf ) = max[F (t � Tf )]

from site u to v within a given time Tf and boundaries on
the absolute values of parameters ξ ′′ is as large as possible.
In other words, we optimize the system to (i) support PGST
from u to v and (ii) reach an acceptable transfer fidelity in
as little time as possible. In practical applications, such an
optimization is always necessary. Since PGST by definition
is an asymptotic property, the underlying network may reach
a suitably high transfer fidelity only after prohibitively long
transfer times. For the setup shown in Fig. 8(a), we restricted
the optimization to the subspace where all on-site potentials
vanish, and obtained a maximum transfer fidelity

F (Topt = 10.8345) = 0.996

for

a = 0.7975, b = 0.8103, c = 0.8880, d = 2.3473,

e = 2.3005, f = 0.3061, g = 0.5489. (52)
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In order to investigate the transfer of compact localized
states, we first apply the above set of modifications to Fig. 8(a)
and equip it with two compact localized states. The modified
setup is shown in Fig. 8(b) and supports the two CLS |u−〉 =
|u1〉−|u2〉√

2
and |v−〉 = |v1〉−|v2〉√

2
. By performing instantaneous

coupling flips at t = 0 and Topt, we can transfer |u−〉 to |v−〉
(and vice versa) with the fidelity F (Topt). We now slightly
change the protocol and switch the couplings by performing
linear ramps with a duration δt . The ramps are started at t = 0
and t = Topt, so that the transfer process is finished at t =
Topt + δt . The process is sketched in Figs. 8(b)–8(d). At t = 0,
the state of the system is given by |�(t = 0)〉 = |u−〉, i.e., a
single CLS is localized on the left dimer. The transfer process
is then started [shown in the inset of Fig. 8(b)] by linearly
ramping down g′(t ) such that g′(t = δt ) = −g/

√
2. At t =

Topt, these are then linearly ramped up again, reaching their
final value g′(Topt + δt ) = g/

√
2. The pulse g′(t ) is shown in

Fig. 8(d) for δt = Topt/5. In Fig. 8(c) the transfer fidelity is
plotted against the pulse duration δt . Quite counterintuitively,
the fidelity of transferring compact localized states increases
first for increasing δt . Investigating the cause for this behavior
would certainly be a worthwhile topic for further research.
For larger δt , the fidelity falls off as expected, but overall
remains quite high. Even for comparatively slow ramps of
δt = Topt/10, the transfer fidelity decreases only by roughly
10−4. Notably, this high robustness against slow control pulses
was also observed in Ref. [42] for the case of linear chains
equipped with compact localized states.

V. BRIEF CONCLUSION

We presented a method to design Hamiltonians H featuring
pretty good state transfer (PGST) between two sites. A neces-
sary condition for PGST is that these two sites are so-called
strongly cospectral, which means that all eigenstates have
parity ±1 on these two sites. We showed how Hamiltonians
featuring strongly cospectral sites can be designed. We then
relied on so-called isospectral reductions of these Hamilto-
nians to yield a factoring of their characteristic polynomial
in terms of smaller polynomials P±, which are related to
eigenvectors with parity ±1 on u and v. The motivation for
this factorization is the fact that PGST automatically arises in
setups where the coefficients of P± fulfill a set of relations, as
has recently been shown by Eisenberg et al. [14]. Equipped
with explicit knowledge of P±, we show how they can be
properly manipulated by changing couplings and on-site po-
tentials while maintaining the strong cospectrality. Through
these manipulations, PGST can therefore be achieved in cer-
tain setups, and we develop our method into an algorithm to
design PGST Hamiltonians. We further show how Hamiltoni-
ans featuring PGST can be equipped with so-called compact
localized states (CLS). Such states are eigenstates of H and
are strictly localized on a spatially finite (and usually very
small) domain, which allows for robust storage of qubits
encoded into such CLSs. We further present time-dependent
protocols which allow for PGST of CLSs. Our work opens
new routes towards flexible design of PGST networks and

broadens their scope to allow for robust storage as well. An
important future task is to investigate how well the transfer
fidelity of PGST Hamiltonians within a given maximal trans-
fer time Tmax can be optimized by parameter tuning. This
task should be supported by the algorithm presented in this
work, as it allows us to obtain rather small parameter spaces
ξ in which a given parameter dependent Hamiltonian H (ξ )
features PGST.
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APPENDIX A: PROOF FOR AN ALTERNATIVE
SET OF CONDITIONS FOR PGST

In the literature, two versions of the necessary and suffi-
cient conditions for pretty good state transfer exist [14,34]. In
the remainder of this Appendix, λ+

i , λ−
j are the eigenvalues

associated with eigenvectors |ψ+
i 〉, |ψ−

j 〉 of H that fulfill

〈ψ+
i |u〉 = +〈ψ+

i |v〉 �= 0, 〈ψ−
j |u〉 = −〈ψ−

j |v〉 �= 0,

where |u〉, |v〉 describe single-site excitations of sites u and v,
respectively. The first version of the necessary and sufficient
conditions for PGST then reads as follows.

Theorem 1. There is PGST between sites u and v if and
only if (i) u, v are strongly cospectral, and (ii) if all sets of
integers {li, mj} which fulfill

∑
i

liλ
+
i +

∑
j

m jλ
−
j = 0, (A1)

∑
j

m j is odd, (A2)

also fulfill ∑
i

li +
∑

j

m j �= 0. (A3)

This version is explicitly proven in [34].
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The second, and more commonly used, version is the one
used in this work:

Theorem 2. There is PGST between sites u and v if and
only if (i) u, v are strongly cospectral, and (ii) if all sets of
integers {li, mj} which fulfill∑

i

liλ
+
i +

∑
j

m jλ
−
j = 0, (A4)

∑
i

li +
∑

j

m j = 0, (A5)

also fulfill ∑
j

m j is even. (A6)

Though Theorem 2 can easily be derived from Theorem 1,
there seems to be no explicit derivation in the literature. We
now give this derivation here for completeness and start from
the proof of Theorem 1 in Sec. III of Ref. [34]. In the proof
it is shown that pretty good state transfer between sites u and
v occurs if and only if (i) u, v are strongly cospectral, and (ii)
for any set of integers {li, mj} which fulfill∑

i

liλ
+
i +

∑
j

m jλ
−
j = 0 (A7)

there exists a δ ∈ R such that

δ

⎛
⎝∑

i

li +
∑

j

m j

⎞
⎠ + π

⎛
⎝∑

j

m j

⎞
⎠ = 0 (mod 2π ). (A8)

In [34] Theorem 1 is then deduced from Eqs. (A7) and (A8).
To derive Theorem 2 which is used in this paper, we insert
Eq. (A5), yielding

0 δ + π

⎛
⎝∑

j

m j

⎞
⎠ = 0 (mod 2π ), (A9)

which is fulfilled for any δ ∈ R if and only if
∑

j m j is even.

APPENDIX B: PROOF FOR THE INTERPRETATION
OF MATRIX ENTRIES OF POWERS

OF Hk IN TERMS OF WALKS

We now prove Eq. (6) which states that

(Hk>0)a,b =
∑

p

w
(
p(k)

a,b

)
, (B1)

where w(p(k)
a,b) denotes the weight of one possible walk of

length k between vertices a and b, and the sum is over all such
walks. To this end, we write (Hk>0)a,b as

(Hk>0)a,b =
∑

l1,...,lk−1

Ha,l1 Hl1,l2 · · · Hlk−2,lk−1 Hlk−1,b, (B2)

where each index li goes from 1 to N with H ∈ RN×N . We now
interpret every term Hi, j occurring in Eq. (B2) as the weight of
the edge connecting sites i and j. Each summand is, therefore,
the weight of a walk of length k from site a to b via the
sites l1, l2, . . . , lk−1, where walks over physically nonexisting
edges (i.e., those with vanishing weights Hi, j = 0) naturally

have vanishing weights as well. As a consequence, we can
write Eq. (B2) as Eq. (B1), and the value of the matrix element
(Hk )a,b is equal to the sum of weights of all walks of length k
between vertices a and b.

APPENDIX C: PROOFS FOR COSPECTRALITY

We now prove the validity of the design mechanism pre-
sented in Sec. II D. In particular, we will prove that all changes
shown in Fig. 4 applied onto an already cospectral network
keep this cospectrality. To this end, we prove the following:

Theorem 3. Let

Hi =
(

HSS HSSi

HSiS HSiSi

)
∈ R (C1)

be symmetric matrices with i = 1, 2 and

HSS =
(

E h
h E

)
bisymmetric. Denote the two sites in HSS as S = {u, v}. If u, v

are cospectral in Hi, then they are also cospectral in

H′ =
⎛
⎝HSS HSS1

HSS2

HS1S HS1S1
0

HS2S 0 HS2S2

⎞
⎠. (C2)

Proof. We use the fact [22] that the isospectral reduction
RS={u,v}(H, λ) is, for symmetric H, bisymmetric if and only
if the sites u and v are cospectral. Individually, we therefore
have that

RS (Hi, λ) = HSS − HSSi
(HSiSi

− λI)−1HSiS

is bisymmetric. We then evaluate the isospectral reduction of
H′, which can be written as

RS (H′, λ) = HSS − AB−1AT , (C3)

where

A = (HSS1
, HSS2

), B =
(

HS1S1
− λI 0

0 HS2S2
− λI

)
.

Eq. (C3) then becomes

RS (H′, λ) = HSS −
∑

i

HSSi
(HSiSi

− λI)−1HSiS.

This expression is bisymmetric, since HSS as well as each
of the two summands are individually bisymmetric, and
sums of bisymmetric matrices are bisymmetric again. Due
to the connection between bisymmetry of RS={u,v}(H, λ) and
the cospectrality of sites u and v, we have therefore proven the
above theorem. �

To apply this theorem to Sec. II D, we divide the setups
shown their into three parts, as shown in Fig. 9 for a slightly
modified version of the graph depicted in Fig. 4(b3). We start
by investigating only the subsystem H1, i.e., we ignore the
connections between HSS and HS2S2

. Since this subsystem H1

is, by construction, invariant under a permutation of the two
red sites u and v, these two sites are automatically cospectral
if H1 is decoupled from HS2S2

. We then separately investigate
only the subsystem H2, i.e., ignore the connections between
HSS and HS1S1

. By computing the matrix powers H2, it can be
easily shown that u and v are cospectral in this subsystem as
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FIG. 9. Visualization of the decomposition of the graph H′

[which is a slightly modified version of the one depicted in Fig. 4(b3)
into subsystems H1, H2, HSS , HS1S1

, and HS2S2
.

well. Thus, the two sites u and v are cospectral in both H1 and
H2. It can then easily be shown that H′ of Fig. 9 has exactly
the form of Eq. (C2). Thus, u and v are also cospectral in H′.

By repeating this procedure for each graph presented in
Fig. 4, it can be proven that u and v are cospectral in all
of them. We have thus proven the validity of the design
mechanism proposed in Sec. II D.

APPENDIX D: PROOF FOR THE FORM OF P±
R

We want to prove that, for bisymmetric

RS (H, λ) =
(

A(λ) B(λ)
B(λ) A(λ)

)
, (D1)

the characteristic polynomials P±
R (λ) related to nonlinear

eigenvectors of positive and negative parity, respectively, are
given by P±

R (λ) = A(λ) ± B(λ) − λ.
To prove this, we perform a similarity transform

R′
S (H, λ) = A−1RS (H, λ)A, with

A =
(

1 1
1 −1

)
so that

R′
S (H, λ) =

(
A(λ) + B(λ) 0

0 A(λ) − B(λ)

)
becomes block diagonal. Therefore, its nonlinear eigenvectors
are obviously (1, 0)T (those of the first block) with eigenval-
ues {λ1

i } and (0, 1)T (those of the second block) with eigenval-
ues {λ2

j}. Multiplying these nonlinear eigenvectors by A then
yields the corresponding nonlinear eigenvectors of RS (M, λ).
Therefore, these are obviously (1, 1)T with eigenvalues {λ1

i }
and (1,−1)T with eigenvalues {λ2

j}. We remind the reader
that, since RS (M, λ) depends on λ, it can have more then
two nonlinear eigenvectors, and these need not be linearly
independent. The eigenvalues {λ1

i }, {λ2
j} are therefore related

to nonlinear eigenvectors of positive and negative parity,
respectively, and are the solutions to the equations

det
[
A
(
λ1

i

) + B
(
λ1

i

) − λ1
i

] = 0,

det
[
A
(
λ2

j

) − B
(
λ2

j

) − λ2
j

] = 0.

It is thus obvious that P±
R (λ) = A(λ) ± B(λ) − λ are the

characteristic polynomials related to nonlinear eigenvectors of
positive and negative parity, respectively, and that

P+
R P−

R = det
[
R′

S (H )
] = det

[
RS (H )

]
.

APPENDIX E: MATHEMATICAL DETAILS ON THE
TRANSFER OF COMPACT LOCALIZED STATES

We now prove the statements made in Sec. IV. The proofs
are similar to those done in [42], but are included here so that
the current work is self-contained.

We assume that the original network is described by a
Hamiltonian H and supports PGST between sites S = {u, v}.
We then partition the system such that

H =
(

HSS HSS

HSS HSS

)
∈ R(N+2)×(N+2).

As stated in Sec. IV, we demand H to have no direct coupling
between u and v, so that

HSS =
(

E 0
0 E

)
∈ R2×2

is diagonal. We denote the eigenvectors of H as

|φν〉 =
⎛
⎝wν

xν
u

xν
v

⎞
⎠, ∈ R(N+2)×1,

with wν ∈ RN×1. The fidelity for transfer from |u〉 to |v〉 is
given as

|〈u|eiHt |v〉|2 =
∣∣∣∣∣
∑

ν

xν
u

(
xν
v

)∗
eiλν t

∣∣∣∣∣
2

.

We then modify the system as shown in Fig. 8(b), so that
its Hamiltonian becomes

Hm =

⎛
⎜⎝

HSS
1√
2
HSS

1√
2
HSS

1√
2
HSS HSS 02×2

1√
2
HSS 02×2 HSS

⎞
⎟⎠.

By means of the equitable partition theorem [29,53–55] its
N + 4 eigenstates can then be shown to be

|φν〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

wν

1√
2
xν

u

1√
2
xν
v

1√
2
xν

u

1√
2
xν
v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, |φN+2+r〉 =
⎛
⎝0N×1

zr

−zr

⎞
⎠,

with ν = 1, . . . , N + 2 and r = 1, 2. The zr ∈ C2×1 are the
eigenvectors of the isolated HSS . We now denote the first N
sites as S, and the remaining four as u1, v1, u2, v2. The fidelity

F ′(t ) = |〈u+|eiHmt |v+〉|2 (E1)

[Eq. (47) from Sec. IV] for the transfer of symmetric excita-
tions |u+〉 = |u1〉+|u2〉√

2
to |v+〉 = |v1〉+|v2〉√

2
can then be evaluated
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as

F ′(t ) = |〈u+|eiHmt |v+〉|2

=
∣∣∣∣∣
N+2∑
ν=1

〈u+|φν〉〈φν |v+〉eiλν t

∣∣∣∣∣
2

=
∣∣∣∣∣
N+2∑
ν=1

xν
u

(
xν
v

)∗
eiλν t

∣∣∣∣∣
2

= F (t )

as claimed in Sec. IV, since the overlap of |u+〉, |v+〉 with
|φN+2+r〉 vanishes.

We now look at the compact localized states supported by
Hm. There are two of these, given by |I ′〉 = |u1〉−|u2〉√

2
(localized

on sites u1 and u2) and |F ′〉 = |v1〉−|v2〉√
2

(localized on sites v1

and v2). To transfer |I ′〉 to |F ′〉, we perform an instantaneous
flip of couplings at t = 0, so that

Hm → H′′
m =

⎛
⎜⎜⎝

HSS
1√
2
HSS − 1√

2
HSS

1√
2
HSS HSS 02×2

− 1√
2
HSS 02×2 HSS

⎞
⎟⎟⎠

and |I ′〉, |F ′〉 are no longer eigenstates of H′
m. By means of the

so-called nonequitable partition theorem [29,56] the N + 4

eigenstates of H′′
m can then shown to be

|φν〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

wν

1√
2
xν

u

1√
2
xν
v

− 1√
2
xν

u

− 1√
2
xν
v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |φN+2+r〉 =
⎛
⎝0N×1

zr

zr

⎞
⎠,

with ν = 1, . . . , N + 2, r = 1, 2, and zr as above. We then
yield

F ′′(t ) = |〈u−|eiH′′
mt |v−〉|2

=
∣∣∣∣∣
N+2∑
ν=1

〈u−|φν〉〈φν |v−〉eiλν t

∣∣∣∣∣
2

=
∣∣∣∣∣
N+2∑
ν=1

xν
u

(
xν
v

)∗
eiλν t

∣∣∣∣∣
2

= F ′(t ) = F (t )

as claimed in Sec. IV.
Thus, if H supports PGST of single site excitations u and v,

Hm supports two compact localized states, and by switching

Hm
t=0→ H′′

m, these compact localized states can be pretty well
transferred. As explained in Sec. IV, the compact localized
states can also be stored with time-independent fidelity F (t >

Tf ) = F (Tf ) by instantaneously switching H′′
m

t=Tf→ Hm.
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Originating from spectral graph theory, cospectrality is a 
powerful generalization of exchange symmetry and can be 
applied to all real-valued symmetric matrices. Two vertices of 
an undirected graph with real edge weights are cospectral 
if and only if the underlying weighted adjacency matrix 
M fulfills [Mk]u,u = [Mk]v,v for all non-negative integer 
k, and as a result any eigenvector φ of M has (or, in the 
presence of degeneracies, can be chosen to have) definite 
parity on u and v. We here show that the powers of a matrix 
with cospectral vertices induce further local relations on its 
eigenvectors, and also can be used to design cospectrality 
preserving modifications. To this end, we introduce the 
concept of walk equivalence of cospectral vertices with respect 
to walk multiplets which are special vertex subsets of a 
graph. Walk multiplets allow for systematic and flexible 
modifications of a graph with a given cospectral pair while 
preserving this cospectrality. The set of modifications includes 
the addition and removal of both vertices and edges, such 
that the underlying topology of the graph can be altered. 
In particular, we prove that any new vertex connected to a 
walk multiplet by suitable connection weights becomes a so-
called unrestricted substitution point (USP), meaning that 
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any arbitrary graph may be connected to it without breaking 
cospectrality. Also, suitable interconnections between walk 
multiplets within a graph are shown to preserve the associated 
cospectrality. Importantly, we demonstrate that the walk 
equivalence of cospectral vertices u, v imposes a local structure 
on every eigenvector φ obeying φu = ±φv �= 0 (in the case 
of degeneracies, a specific choice of the eigenvector basis 
is needed). Our work paves the way for flexibly exploiting 
hidden structural symmetries in the design of generic complex 
network-like systems.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Eigenvalue problems of real symmetric matrices are ubiquitous in many fields of sci-
ence. Special examples are graph theory in mathematics as well as properties of quantum 
systems in physics. A first step in dealing with such problems is often based on a symme-
try analysis in terms of permutation matrices that commute with the matrix H at hand. 
Given a set of such permutation matrices, a symmetry-induced block-diagonalization of 
H is possible and powerful statements about the eigenvectors of H can be made [1,2]. 
The permutation symmetries of a matrix can be conveniently visualized in the frame-
work of graphs. A graph representing a matrix H ∈ RN×N is a collection of N vertices 
connected by edges with weights Hi,j, like the one shown in Fig. 1. Due to this map-
ping between a matrix and the graph representing it we denote both the graph and the 
corresponding matrix with the same symbol H. In this graphical picture, the action of 
a permutation matrix P corresponds to permuting the vertices of the graph, along with 
the ends of the edges connected to them. H is then transformed to H ′ = PHP−1, and if 
P and H commute, PH = HP , then the graph remains the same after the permutation, 
i.e. H ′ = H. In particular, if P exchanges two vertices u and v, while permuting the 
remaining vertices arbitrarily, its commutation with H means that the u-th and v-th 
row of H coincide, Hu,j = Hv,j for all j ∈ �1, N� ≡ {1, 2, . . . , N} (and the same for the 

Fig. 1. An undirected, unweighted graph with four vertices represented by a 4 × 4 symmetric matrix H, and 
the interpretation of its powers Hk in terms of “walks”: The matrix element [Hk]i,j counts the number of 
distinct walks of length k from vertex i to j, as illustrated for k = 1, 2, 3.
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u-th and v-th column, since H is symmetric). It can then be shown that the u-th and 
v-th diagonal elements of any non-negative integer power of H coincide,

[Hk]u,u = [Hk]v,v ∀ k ∈ N, (1)

and that any eigenvector φ of H has—or, if degenerate to another eigenvector, can be 
chosen to have—positive or negative parity on u and v [3], that is,

φu = ±φv. (2)

The eigenvector components on the remaining vertices, which are generally not pairwise 
exchanged by P , may have arbitrary components. Thus Eq. (2) constitutes a local parity 
of the eigenvectors. This property is intricately related to the interpretation of powers 
of H in terms of walks [4,3], which are sequences of vertices connected by edges, on the 
corresponding graph. For an unweighted graph (having Hi,j ∈ {0, 1}), the element [Hk]i,j
counts all possible walks of length k from vertex i to j on the graph. This is illustrated in 
Fig. 1 for selected walks of length 1, 2, 3. With this interpretation, Eq. (1)—and thereby 
also Eq. (2)—hold if the graph has an equal number of “closed” walks starting and ending 
on u or v, for any walk length k. This is the case, e.g., for vertices 1 and 2 in the graph 
of Fig. 1. For weighted graphs (having Hi,j ∈ R), the interpretation of matrix powers 
in terms of walks is modified by weighing the walks accordingly (see below), with all 
corresponding results staying valid.

Interestingly, and in many cases counterintuitively, the local parity of eigenvectors of 
a graph, Eq. (2), can be achieved even if H does not commute with any permutation 
matrix P , as long as Eq. (1) is fulfilled. Given this condition, the eigenvalue spectra of 
the two submatrices H \u and H \v, obtained from H by deleting vertex u or v from the 
graph, respectively, coincide, and u and v are said to be cospectral [3]. Originating from 
spectral graph theory [5], the results of the study of cospectral vertices have so far been 
applied to the field of quantum information and quantum computing, but also—under 
the term isospectral vertices—to chemical graph theory [6–8]. In a very recent work [9], 
cospectral vertices have also been linked to so-called “isospectral reductions”, a concept 
which allows to transform a given matrix into a smaller version thereof which shares all 
(or, in special cases, a subset of) the eigenvalues with the original matrix.

Given a graph with cospectral vertices u and v, one may ask what kind of changes 
can be made to it without breaking the cospectrality. One particularly interesting feature 
that occurs for some graphs is the presence of so-called unrestricted substitution points
(USPs), which were introduced in Ref. [8]. Given a graph H with two cospectral vertices 
u and v, a third vertex c is an USP if and only if one can attach an arbitrary subgraph 
to c without breaking the cospectrality of u and v. While it is a straightforward task to 
identify all USPs of a given graph, the origin of these special points has been elusive so 
far.

In this work we shed new light on this phenomenon by introducing the concept of walk 
equivalence of cospectral vertices u, v with respect to a vertex subset of a graph. In the 
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simplest case of an unweighted graph, two vertices u and v are walk equivalent relative to 
a vertex subset if the cumulative number of walks from u to this subset equals that from 
v to this subset, for any walk length. The vertex subset then corresponds to what we 
call a walk multiplet relative to the pair u, v. The smallest walk multiplets, which we call 
singlets, consist of a single vertex and are identified with the above mentioned USPs, 
and we here demonstrate how to create such points in a systematic way. Specifically, 
we show that a graph can be extended via any of its walk multiplets by connecting it 
to a new vertex while preserving the cospectrality of the associated vertex pair. This 
procedure can be repeated any number of times with different walk multiplets. All the 
newly added vertices turn out to be USPs, thus allowing us to connect arbitrary new 
graphs exclusively to them without breaking the cospectrality. Additionally, we show 
that one can also alter the topology of a graph without extending it by modifying the 
interconnections between two or more walk multiplets. This provides a systematic way 
to construct graphs with cospectral vertices but no permutation symmetry, based on 
breaking existing symmetries by walk multiplet-induced modifications. The concept of 
walk equivalence of vertices is further generalized to the case where walks to different 
subsets of a walk multiplet can be equipped with different weight parameters.

Apart from providing means to modify a graph without breaking the cospectrality, 
we show that walk multiplets can be used to obtain a substantial understanding of 
the structure of eigenvectors of general real symmetric matrices with cospectral pairs. In 
particular, for a suitably chosen eigenbasis, walk multiplets induce linear scaling relations 
between eigenvector components on the multiplet vertices, in dependence of the local 
parity—Eq. (2)—of the eigenvector on the cospectral vertex pair associated with the 
multiplet. As a special case, the eigenvector components vanish on any walk singlet 
and, by iteration, on any arbitrary new graph connected exclusively to walk singlets. 
We believe our work will provide valuable insights into the structure of eigenvectors of 
generic network-like systems and thereby aid in the design of desired properties.

The paper is structured as follows. In Section 2, we first motivate the concept of 
walk multiplets as a generalization of USPs, before we define them generally in terms 
of walks on graphs, and proceed discussing their properties. In Section 3, we show how 
walk multiplets allow for the modification of graphs without breaking vertex cospec-
trality. In Section 4, we apply the concept to derive relations between the components 
of eigenvectors on walk multiplet vertices, with vanishing components on walk singlets 
as a special case. In Section 5, we use walk multiplets to generate graphs that feature 
cospectral vertices without having any permutation symmetry. We conclude the work in 
Section 6. In the Appendix we provide the proofs of all theorems.

2. Walk multiplets

As the name suggests, the concept of “walk multiplets,” to be developed below, is 
based on walks along the vertices of a graph. In particular, as illustrated in Fig. 1, the 
entries of powers Hk can be interpreted in terms of walks [4] on the corresponding graph 
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with N vertices. Indexing the vertices of the graph by vi ∈ �1, N�, a walk of length k
from vertex v1 to vertex vk+1 is a sequence

αk(v1, vk+1) = (v1, v2), (v2, v3), . . . , (vk, vk+1) (3)

of k (possibly repeated) edges (vi, vi+1) corresponding to nonzero matrix elements 
Hvi,vi+1 . Note that a diagonal element Hn,n corresponds to a “loop” on vertex n, that is, 
an edge connecting n with itself. If the entries of H are either 0 or 1, that is, the graph 
is unweighted, then the element [Hk]m,n equals the number of walks from m to n on the 
graph. We leave it like this for now, but will consider walks on general weighted graphs 
further below. Throughout this work H = H� ∈ RN×N will denote a real symmet-
ric matrix but also the corresponding graph itself, since there is a one-to-one mapping 
between them for our purposes.

2.1. Unrestricted substitution points: the simplest case of walk multiplets

Let us introduce the idea of walk multiplets, starting with some preliminary consider-
ations by inspecting the example graph in Fig. 2(a), adapted from Ref. [8]. As is common 
in the field of chemical (or molecular) graph theory, this graph is used as a very simple 
representation of a molecule, with the vertices being atoms of some kind and the edges 
between them being atom-atom, i.e. molecular, bonds. For simplicity, we consider all 
bonds to be of the same unit strength, meaning that all edges have the same weight 1, 
and all atoms to have zero “onsite potential”, so there are no loops on vertices (like the 
one on vertex 4 in Fig. 1).

While seeming quite common, this graph has some interesting “hidden” properties. 
First of all, it has cospectral vertices labeled u and v. This cospectrality does not stem, 
though, from a corresponding exchange symmetry (permuting vertices u and v with each 
other). Indeed, without being symmetric under exchange, the cospectral vertices fulfill 
Eq. (1), that is, the number of closed walks from u back to u and from v back to v is the 
same, for any walk length k. Notably, cospectral vertices go under the name “isospectral 
points” in molecular graph theory.

A second interesting property of the graph in Fig. 2 is that it has some special vertices, 
labeled c and r, called “unrestricted substitution points” (USPs) [6,8], which were already 
mentioned in Section 1. Those are vertices to which new vertices or subgraphs may be 
attached, or which may even be removed completely, without breaking the cospectrality 
of u and v. This is done in Fig. 2(b). Now, let us approach this in terms of walks, and 
focus on the vertex c of the example for concreteness. Cospectrality of u, v is preserved 
when connecting c to the arbitrary new graph C, meaning that the number of closed 
walks from u and v is the same for any walk length also after this modification. All 
additionally created closed walks from u or v which visit the arbitrary subgraph C, 
however, necessarily traverse the USP c on the way. This suggests that the number of 
walks from u to c is the same as from v to c, for any walk length—because the possible 
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Fig. 2. (a) A molecular graph, taken from Ref. [8], which has two cospectral vertices u, v and two “unrestricted 
substitution points” (USPs) c, r. (b) The USPs are vertices which can be connected to any arbitrary graph 
C (as done with c) or also removed from the graph (as done with r), without breaking the cospectrality 
of u, v. (c) In the present work we generalize USPs to vertex subsets called “walk multiplets”, an example 
here being the subset M = {m1, m2, m3}. We can connect this subset to a new vertex c′, which we can in 
turn connect to an arbitrary graph C′, without breaking the cospectrality of u, v. The added vertex c′ is a 
walk “singlet”, which is identified as an USP.

walk segments within C are evidently the same for walks from u and from v. Indeed, 
this turns out to be exactly the case: A vertex c of a graph H with cospectral vertices 
u, v is an USP if and only if it fulfills [H�]u,c = [H�]v,c for any non-negative integer �.

While already offering a great flexibility, USPs do not necessarily occur in all graphs 
with cospectral pairs. This leads to the question: Are there other possibilities of graph 
extensions, involving a set of points instead of just a single point to which one can 
connect an arbitrary graph? Imagine, for example, a subset M of some graph’s vertex 
set to which some arbitrary new graph C ′ can be connected, by connecting an arbitrary 
single vertex c′ of C ′ to all vertices in M, without breaking the cospectrality between 
two vertices u, v of the original graph. Such a subset M, associated in this way with a 
cospectral vertex pair, corresponds to what we will call a “walk multiplet” relative to 
u, v. An example is illustrated in Fig. 2(c). The key property, in analogy to USPs, is that 
the cumulative number of walks from u to all vertices in M is the same as from v to M. 
An USP is then just the simplest case of a walk multiplet consisting of a single vertex, 
a walk “singlet”.

Below, we will formalize the concept of walk multiplets and describe the various flavors 
they can assume in general undirected and real-weighted graphs, which correspond to 
real symmetric matrices. Their value in extending graphs with cospectral vertices will 
be shown subsequently in Section 3, and their significance for graph eigenvectors will be 
demonstrated in Section 4. First, we introduce some helpful key notions in the description 
of walks.

2.2. Weighted walks and walk matrices

Let us first extend the correspondence between walks on a graph, defined in Eq. (3), 
and powers of its matrix H to a weighted graph, where the entries of H are arbitrary 
real numbers. Any walk αk from v1 to vk+1 is then given a weight w(αk) equal to 
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the product of the edge weights w(vi, vi+1) = Hvi,vi+1 of all edges traversed [10], that 
is,

w(αk(v1, vk+1)) = w(v1, v2)w(v2, v3) · · ·w(vk, vk+1) =
k∏

i=1
[H]vi,vi+1 . (4)

The entries [Hk]m,n are then given by the sum over weighted walks as [10]

[Hk]m,n =
∑

αk

w (αk(m,n)) (5)

where the sum runs over all distinct walks of length k from m to n.
Consider, now, a subset M ⊆ V of the set V of the vertices of a graph H. The walk 

matrix of H relative to M is the matrix [11] WM = [eM, HeM, . . . , HN−1eM], whose k-th 
column equals the action of Hk−1 on the so called indicator (or characteristic) vector 
eM of M with [eM]m = 1 for m ∈ M and 0 otherwise. Thus, the element

[WM]s,� =
∑

m∈M

[H�−1]s,m (6)

equals the sum over weighted walks [in the sense of Eq. (5)] of length � − 1 ∈ �0, N − 1�
from vertex s to all vertices of M.

Below we will use this notion of collective walks to vertex subsets to identify struc-
tural properties of graphs and their eigenvectors. It will then be convenient, however, 
to account also for the case where the walks to different vertices m ∈ M, represented 
by [Hk]s,m, are multiplied by some (generally different) factors γm. Treating WM as the 
Krylov matrix [12] of H generated by eM, we thus simply replace this generating vector 
with a weighted indicator vector eγ

M having a tuple γ = (γm)m∈M of general real values 
γm instead of 1’s in its nonzero entries m ∈ M. This extends the common walk matrix 
to a corresponding “weighted” version which we denote as W γ

M, that is

W γ
M = [eγ

M, Heγ
M, . . . , HN−1eγ

M], γ = (γm)m∈M, [eγ
M]m =

{
γm, m ∈ M,

0, m /∈ M.
(7)

For this weighted walk matrix, Eq. (6) is accordingly modified to the more general form

[W γ
M]s,� =

∑

m∈M

γm[H�−1]s,m, � ∈ �1, N�, (8)

so that the interpretation of matrix powers in terms of walks is further equipped with 
weights γm for the individual walk destinations m.
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2.3. Walk equivalence of cospectral vertices

Combining the intuition of equal number of walks to vertex subsets in Section 2.1
with the notion of weighted walk matrices in Section 2.2, it now comes natural to define 
the general case of a walk multiplet. We will then discuss examples of walk multiplets 
before analyzing their consequences in the next sections.

Definition 1 (Walk multiplet). Let H ∈ RN×N be a matrix with vertex set V and walk 
matrix W γ

M relative to a subset M ⊆ V with weighted indicator vector eγ
M corresponding 

to the tuple γ = (γm)m∈M. If the u-th and v-th rows of W γ
M fulfill

[W γ
M]u,∗ = p[W γ

M]v,∗ (9)

(with ∗ denoting the range �1, N�, i.e. all matrix columns), then M corresponds to an
even (odd) walk multiplet with parity p = +1 (−1) relative to the two vertices u, v, 
denoted as Mp

γ;u,v, and u, v are walk equivalent (antiequivalent) with respect to Mp
γ;u,v.

A walk multiplet Mp
γ;u,v is thus not merely a subset M, but this subset equipped 

with a |M|-tuple of weight parameters γ and a parity p, associated with a given vertex 
pair u, v. If all weights γm are equal, then Mp

γ;u,v is a uniform walk multiplet, and we 
will first discuss such multiplets. In this case the common weight is obviously a global 
scaling factor in Eq. (9) and can be set to unity without loss of generality, γm = 1 for all 
m ∈ M. We will show cases of nonuniform walk multiplets (with unequal γm in general) 
afterwards. Although walk multiplets are generally defined above relative to any pair of 
vertices u, v, we will concentrate on multiplets relative to cospectral vertices u, v from 
now on. Also, for brevity, we will drop the indication of vertices u, v in the subscript of 
Mp

γ;u,v when they are clear from the context. According to their cardinality (the number 
|M| of vertices in M) we call multiplets “singlets”, “doublets”, etc. Note that the same 
subset M can in general correspond simultaneously to different walk multiplets relative 
to different cospectral vertex pairs or with different tuples γ. We should also point out 
that the notion of “walk equivalence” of two graphs as a whole has been used [13,14], 
and stress that we here introduce the notion of walk equivalence of two vertices with 
respect to a vertex subset.

Before showing examples of walk multiplets, we note that the condition (9) only 
incorporates walks of length k ∈ �0, N − 1� from u and from v to M; see Eq. (8). At 
first sight one might then wonder whether the sum over longer walks (k � N) to M is 
also equal for u and v. This is indeed the case. Due to the Cayley-Hamilton theorem, we 
have that HN =

∑N−1
k=0 ckH

k with constant coefficients ck, meaning that higher powers 
k > N −1 of H can be written as polynomials in H of order up to N −1. Thus, if Eq. (9)
holds, we have that

∑

m∈M

γm[Hk]u,m = p
∑

m∈M

γm[Hk]v,m ∀ k ∈ N. (10)
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Fig. 3. (a) A graph with edge weights +1 (solid lines) and −1 (dashed lines) in which the two vertices 1
and 2 are cospectral (among other cospectral pairs) and (b) the same graph with edges weighted by 12
real parameters wn as shown, preserving the cospectrality of {1, 2}. The tables below list all uniform walk 
singlets, doublets, and triplets (top to bottom) relative to {1, 2}, with superscripts indicating the parity p
of each multiplet; see Example 1.

For an unweighted graph, the notion of walk equivalence of u and v with respect to M
then acquires a simple interpretation: An even uniform walk multiplet (γm = 1 for all 
m ∈ M) corresponds to a vertex subset M such that the number of walks from u to M
equals the number of walks from v to M (that is, summed over all m ∈ M) for any walk 
length k. Let us now have a look at some uniform walk multiplets in an example graph.

Example 1. In the graph depicted in Fig. 3(a), the two vertices u = 1, v = 2 are cospec-
tral. All uniform walk singlets, doublets, and triplets of H with respect to 1, 2 are given 
in the table below. We put a superscript +(−) on each individual multiplet subset to 
indicate its even (odd) parity p. Importantly, the vertex cospectrality and multiplet 
structure of a graph are in general not strictly bound to a specific set of edge weight 
values. Indeed, one may generally “parametrize” the edge weights, by setting groups of 
them to the same but arbitrary real value, and still retain the graph’s vertex cospectral-
ity as well as a subset of its walk multiplets. To demonstrate such a parametrization, 
in Fig. 3(b) the graph of Fig. 3(a) has been weighted by arbitrary real parameters wn

(n = 1, 2, . . . , 12) as shown. The uniform multiplets shown in the table below the graph 
are present for any choice of the weight parameters wn, as does the cospectrality of 1, 2. 
Note, however, that certain uniform multiplets of the original graph are removed in the 
parametrized one for arbitrary values wn (that is, if there are no further constraints 
on these values); for example, {3, 7}+ and {4, 7}+. Other cospectrality-preserving edge 
weight parameterizations (not shown) may keep different sets of multiplets intact. We 
note here that the graphs in Fig. 3 were chosen to have a simple geometry to highlight the 
occurrence of even and odd walk multiplets. Indeed, in this particular case the graph’s 
matrix H (for both subfigures of Fig. 3) commutes with the signed permutation

Π =
[
0 1
1 0

]
⊕
[

0 −1
−1 0

]
⊕ 1 ⊕

[
0 1
1 0

]
⊕ −1 (11)
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with Π2 = I. This symmetry induces some of the present walk multiplets, e.g. the anti-
doublet {3.4}− relative to {1, 2}, since [Hk]1,3 + [Hk]1,4 = [Π2Hk]1,3 + [Π2Hk]1,4 =
[ΠHkΠ]1,3 + [ΠHkΠ]1,4 = −[Hk]2,4 − [Hk]2,3. In fact, all walk multiplets which are 
retained after the parametrization in Fig. 3(b) can be seen as a consequence of this 
symmetry. The remaining ones, that is, {3, 7}+, {4, 7}+, {3, 5, 7}+, {4, 5, 7}+ in Fig. 3(a), 
cannot be explained by this simple symmetry but rather by a symmetry of the graph’s 
walk structure—specifically, under row permutation on the graph’s walk matrix, see 
Eq. (9).

Surely, the graph in Example 1 also features a whole lot of nonuniform multiplets, but 
we do not show them for simplicity. We have another example dedicated to nonuniform 
multiplets right below. Apart from that, though, the reader might have noticed that the 
cospectral pair {1, 2} in Fig. 3 itself is included in the list of uniform walk multiplets. 
This is not a coincidence for this particular graph.

Remark 1. A cospectral vertex pair {u, v} is a uniform even walk doublet relative to 
itself, since [Hk]u,u + [Hk]u,v = [Hk]v,v + [Hk]v,u, with [Hk]u,u = [Hk]v,v by Eq. (1)
and [Hk]u,v = [Hk]v,u by the symmetry of H = H�. Thus Eq. (10) is fulfilled with 
M = {u, v} and p = +1.

In the next example, we will illustrate the occurrence of nonuniform walk multiplets, 
where the walks to different destinations m in the associated subset M are generally 
weighted differently by weights γm. Usually, however, those weights γm are not all dif-
ferent from each other, but can be partitioned into groups of equal values. We call the 
vertex subset of a multiplet with such equal values in the tuple γ = (γm)m∈M a sublet
of the multiplet. In other words, given a nonuniform walk multiplet Mp

γ, the subset M
is the union of Ns = Ns(γ) � |M| disjoint sublets mμ, that is,

M =
Ns⋃

μ=1
mμ, mμ ∩mν = ∅ ∀μ 
= ν, γm∈mμ

= Γμ (12)

such that all weights γm with m ∈ mμ have equal value Γμ which we call the “coefficient” 
of the sublet mμ. The expanded form of the multiplet condition, Eq. (10), then becomes

∑

μ

Γμ

∑

m∈mμ

[Hk]u,m = p
∑

μ

Γμ

∑

m∈mμ

[Hk]v,m ∀k ∈ N. (13)

We indicate the coefficients Γμ as subscripts of vertex sublets within a walk multiplet, 
as shown in the following example.

Example 2. The graph in Fig. 4 has two cospectral vertices u = 2 and v = 6, with walk 
multiplets shown in the table for a maximum number of 4 vertices (there are no singlets). 
As an example of notation, the even nonuniform walk triplet Mp

γ = {(1, 5)a, (4)2a}+
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Fig. 4. An unweighted graph with two cospectral vertices 2, 6, with all existing walk multiplets up to maximal 
size of four vertices listed in the table below the graph (there are no walk singlets). Each walk multiplet 
{· · · }± is composed of sublets (· · · )Γμ

with coefficients Γμ ∈ R which are independent among multiplets 
(although the same symbols a, b are used for brevity); see Example 2.

(with γ = (γ1, γ4, γ5) = (a, 2a, a)) is composed of the sublets m1 = {1, 5} and m2 = {4}
with coefficients Γ1 = a and Γ2 = 2a, respectively, where the parameter a can take any 
nonzero value. Note that the values of sublet coefficients (like a, b in Fig. 4) in different
multiplets are unrelated. For instance, {(4)a, (8)−a}+ is an even doublet composed of 
sublets {4} and {8} with coefficients a and −a, independently of the values of a in the 
other multiplets in Fig. 4. Similarly, {(1)a, (3)b, (4)2a+b, (5)a+b}+ is an even quadruplet 
composed of the four sublets {1}, {3}, {4}, {5} with corresponding nonzero coefficients 
a, b, 2a + b, a + b. If, however, any n > 0 of these coefficients vanish, then the remaining 
4 − n sublets with nonzero coefficients constitute a multiplet with 4 − n vertices. For 
example, if b = −a, the coefficient of {5} vanishes, and the remaining three sublets form 
the triplet {(1, 4)a, (3)−a}+. Finally, note that any uniform multiplet consists of a single 
sublet, like, e.g., {(1, 4, 7)a}+. As one can see, the number of nonuniform multiplets is 
much larger than the number of uniform ones in the present example.

Now, going back to Fig. 3, a closer look at the table there suggests that the union of 
multiplets of same parity p form a multiplet; for instance, {8}− ∪ {3, 4}− = {3, 4, 8}−. 
Indeed, the union of disjoint uniform multiplets of equal parity always forms a new 
uniform multiplet. In fact, different uniform multiplets may also overlap (that is, have 
common vertices), and their union is again a multiplet, though a nonuniform one. Take, 
e.g., the three uniform even multiplets {(3, 7)a}+, {(4, 7)b}+, {(5)a′}+, now written with 
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arbitrary uniform weights a, b, a′, respectively. Their union forms the nonuniform even 
multiplet {(3)a, (4)b, (5)a′ , (7)a+b}+ consisting of four sublets with coefficients Γ1,2,3,4 =
a, b, a′, a + b. Quite generally, any two walk multiplets of equal parity can be merged into 
a larger multiplet, as expressed by the following remark.

Remark 2. It is clear from Eq. (9) that, if Ap
γ and Bp

δ are two even (odd) walk multiplets 
with weighted indicator vectors eγ

A and eδ
B, respectively, then Cp

ε with C = A ∪B is also 
an even (odd) multiplet with weighted indicator vector eε

C = eγ
A + eδ

B.

Note, however, that not all nonuniform multiplets can be decomposed as a union of 
uniform multiplets. This is easily verified from the table of Fig. 4. For example, the 
even nonuniform walk quadruplet {(2, 6)a, (3, 7)b}+ is the union of the two even uniform 
doublets {(2, 6)a}+ and {(3, 7)b}+, but none of the walk triplets can be decomposed into 
smaller multiplets (that is, a doublet and a singlet or two overlapping doublets). On the 
other hand, the nonuniform quadruplet {(1)a, (3)−a, (4)b, (8)a−b}+ is composed of the 
nonuniform triplet {(1, 4)a, (3)−a} and doublet {(4)a′ , (8)−a′} with a′ ≡ b − a.

3. Preserving vertex cospectrality via walk multiplets

Walk multiplets are very valuable for the analysis and understanding of matrices with 
cospectral vertices u and v. As we will show, once (one or more of) the walk multiplets 
of H relative to u and v are known, one can use this knowledge to extend a graph 
H by connecting a new vertex (or even arbitrary graphs) to it whilst preserving the 
cospectrality of u and v. This naturally generalizes the notion of USPs to subsets of 
more than one vertex of a graph. We will also show how to interconnect walk multiplets, 
thereby changing the topology of a given graph, while preserving the associated vertex 
cospectrality.

In the literature [11], connecting a single vertex to a graph H via multiple edges of 
weight 1 results in a graph H ′ which is coined a “cone” of H. To treat general weighted 
graphs, we will here require cones with weighted edges:

Definition 2 (Weighted cone). Let G ∈ RN×N represent a graph with vertex set V =
{1, 2, . . . , N}. A weighted cone of G over a subset M ⊆ V with weight tuple γ = (γm)m∈M

is the graph

H =
[

G eγ
M

eγ�
M 0

]
, (14)

constructed by connecting a new vertex c = N +1 (the tip of the cone) to M with edges 
of weights γm = Hm,c = Hc,m to the corresponding vertices m ∈ M, where eγ

M is the 
weighted indicator vector of Eq. (7) with nonzero entries γm.

160 scientific contributions



C.V. Morfonios et al. / Linear Algebra and its Applications 624 (2021) 53–86 65

For instance, the graph in Fig. 3(a) is the weighted cone H over the vertex subset {1, 2}
of the graph H \ 8 (H after removing vertex 8) with weight tuple γ = (γ1, γ2) = (−1, 1). 
We can now state one of the main results of this work, which will allow for the systematic 
extension of graphs with cospectral pairs while keeping the cospectrality:

Theorem 1 (Walk singlet extension). Let G = G� ∈ RN×N represent an undirected graph 
with two cospectral vertices u, v, let Mp

γ be an even (odd) walk multiplet of G relative 
to u, v, and let H be a weighted cone of G over the subset M with real weight tuple 
γ = (γm)m∈M. Then

(i) Vertices u, v are cospectral in H.
(ii) The tip c of the cone H is an even (odd) walk singlet relative to u, v.
(iii) Any even (odd) walk multiplet in G is an even (odd) walk multiplet in H.

Point (i) of the theorem extends the notion of USPs to vertex subsets for the case of a 
single new connected vertex c: the vertex c is now connected to a subset M instead of a 
single USP of a graph without breaking the associated vertex cospectrality. Further, by 
point (ii) of the theorem, another new vertex c′ can be connected to c while preserving 
cospectrality, just as would be the case if c were a USP. Point (iii) finally allows multiple
single new vertices to be connected to different walk multiplets, or to the same walk 
multiplet. In the case of a USP, however, cospectrality is preserved when connecting a 
new arbitrary graph to the USP, and not only a single new vertex. This is indeed also 
the case for a walk singlet.

Corollary 1. Let the vertex c of a graph H be an even (odd) walk singlet relative to a 
cospectral pair u, v in H, and let C be a graph connected exclusively to c via any number 
of edges with arbitrary weights. Then all vertices of C are even (odd) walk singlets relative 
to u, v.

We thus see that any walk singlet is a USP, and below (Corollary 3) we will also 
show that the reverse is true. Now, suppose we have connected some walk singlets to 
corresponding new subgraphs C, C ′, . . . , which then also consist purely of singlets. Those 
subgraphs may also be interconnected among each other in an arbitrary manner, by 
iteratively interconnecting pairs of singlets, leaving the associated cospectrality intact. 
In fact, vertex interconnections preserving cospectrality can be generalized to the suitable 
interconnection of arbitrary walk multiplets of equal parity, as ensured by the following 
theorem.

Theorem 2 (Walk multiplet interconnection). Let G ∈ RN×N be a graph with a cospectral 
pair {u, v} and Xp

γ , Yp
δ be (in general non-uniform) walk multiplets relative to {u, v}

having same parity p and weight tuples γ, δ, respectively, with possible subset overlap 
Z = X ∩Y 
= ∅. Then the cospectrality of {u, v} and any walk multiplet relative to {u, v}
with parity p are preserved in the graph H ∈ RN×N with elements
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Hx,y = Hy,x =
{

Gx,y + γxδy if x /∈ Z or y /∈ Z

Gx,y + γxδy + γyδx if x, y ∈ Z
∀ x ∈ X, y ∈ Y

and Hi,j = Gi,j otherwise.

The above theorem, in contrast to the extension of a graph by external vertices in 
Theorem 1, allows for the internal modification of the graph itself while keeping the 
cospectrality of a given vertex pair. In particular, the topology of the graph may be 
changed by adding new edges or deleting existing ones. Before showing examples using 
Theorems 1 and 2, let us also note the following.

Remark 3. By Theorem 2, one can interconnect a cospectral pair {u, v} (which corre-
sponds to a walk doublet relative to itself) to itself by setting X = Y = {u, v} and adding 
an edge between u, v as well as loops on u, v, all of equal arbitrary weight (added to pos-
sible existing edges), while keeping their cospectrality. Then, by Lemma 3.1 of Ref. [15], 
those loops can be removed, with u, v still remaining cospectral. In other words, two 
cospectral vertices u, v of a graph can be interconnected or disconnected without affect-
ing their cospectrality.

To show Theorems 1 and 2 in action, we will now apply them to the example graphs 
in Fig. 3(a) and Fig. 4 of the previous section, whose walk multiplet structure has 
already been analyzed. With the first example, we showcase the cospectrality-preserving 
extension of a graph; via a uniform walk multiplet, via a combination of overlapping 
uniform multiplets, and finally by connecting another arbitrary graph to it.

Example 3. In Fig. 5(a) we have modified the graph of Fig. 3(a) by connecting a new 
vertex c = 9 to the even uniform walk doublet {3, 7}+ relative to the cospectral pair {1, 2}
with weight a. In the terminology of Theorem 1, this new graph is the cone H of the graph 
in Fig. 3(a), G, over the subset M = {3, 7} with a weight tuple γ = (γ3, γ7) = (a, a). 
By Theorem 1, vertex c then forms an even singlet and all even multiplets of the graph 
G in Fig. 3(a) are still present in the new graph of Fig. 5(a), as confirmed in the table 
at the bottom of the figure. Now, in Fig. 5(b) we further connect c to other vertices 
in H, without breaking the cospectrality of {1, 2} or its walk equivalence to any even 
multiplet. Indeed, by Theorem 2, vertex c can be connected to the even singlet {5}+

with some weight a′. We can—again by Theorem 2—additionally connect c, with weight 
b, to the even uniform doublet {4, 7}+ which overlaps with the already connected one 
{3, 7}+. As a result, the edge (c, 7) now has weight a + b. Of course, these successive 
connections amount to the final graph simply being the weighted cone of the initial 
one with tip c over {3, 4, 5, 7} with weight tuple γ = (γ3, γ4, γ5, γ7) = (a, b, a′, a + b). 
Thus, {(3)a, (4)b, (5)a′ , (7)a+b}+ is an even nonuniform walk quadruplet; see Remark 2. 
In Fig. 5(c) we make use of Corollary 1 and connect a whole graph C, represented 
by a cloud since it can be just any graph, to the even singlet c via any number of 
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Fig. 5. Extension of a graph via walk multiplets, using Corollary 1 and Theorem 2; see Example 3 for 
details. The graph of Fig. 3(a) is successively extended by (a) connecting a new vertex c = 9 symmetrically 
to the even uniform walk doublet {3, 7}+ relative to the cospectral pair {1, 2} with weight a, (b) further 
connecting c to the even singlet {5}+ with weight a′ and to the even uniform doublet {4, 7}+ with weight 
b, (c) connecting an arbitrary graph C (cloud) to the even walk singlet c via any number of edges with 
arbitrary weights, and (d) connecting another graph C′ to the even walk singlet {5}+ and then C′ to C
in an arbitrary manner, forming a larger arbitrary graph connected to vertices 5 and c. In all steps, the 
cospectrality of {1, 2} as well as the uniform walk multiplets listed in the table below (for up to cardinality 3) 
are preserved. The graph in (b) is the “weighted cone” of the graph in Fig. 3(a) over subset {3, 4, 5, 7} with 
weight tuple γ = (γ3, γ4, γ5, γ7) = (a, b, a′, a + b). Also, {(3)a, (4)b, (5)a′ , (7)a+b}+ is an even nonuniform 
walk quadruplet relative to {1, 2} with the same weight tuple γ.

edges with arbitrary weights—again preserving cospectrality and walk equivalence of 
{1, 2}. In Fig. 5(d), we have connected another cloud graph C ′ to the walk singlet {5}+. 
This latter cloud C ′ can finally be connected—by Theorem 2—in any arbitrary way 
to C into a larger cloud graph, since both {5}+ and {c}+ are even singlets (as are 
all cloud vertices connected to them). Note that point (iii) of Theorem 1 means that 
walk multiplets of the original graph G with parity opposite to that of Mp

γ are not
necessarily present in the new graph (cone) H. Indeed, in the present example with 
p = +1 all but one odd walk multiplet of Fig. 3(a) (the walk singlet {8}−) disappeared 
in Fig. 5(a)–(d).
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As we see, using Theorem 1 together with Corollary 1 and Theorem 2, given a graph 
H with cospectral vertices u, v one can: (1) generate walk singlets by connecting new 
vertices to existing walk multiplets, (2) connect an arbitrary new subgraph to such a 
singlet, and subsequently (3) even interconnect such subgraphs. In other words, we now 
see that, starting from a small graph with cospectral vertices u and v, one can construct 
arbitrarily complex graphs maintaining this cospectrality, using the concept and rules 
for the introduced walk multiplets.

Let us here also corroborate the necessity of equal parity of two walk multiplets for 
their combination to be a multiplet (see Remark 2), by a counterexample. In Fig. 5, 
{5}+, {8}− are walk singlets of opposite parity relative to the cospectral pair {1, 2}. 
Assume, now, that these two singlets can be combined into a walk doublet Cp

ε relative 
to {1, 2} with subset C = {5, 8}, weight tuple ε = (a, b) and parity p = ±1. Then, 
by Theorem 1, connecting a new vertex c′ to C via edges with weights a, b would not 
break the cospectrality. However, this is not the case. Indeed, in the extended graph 
we would get [H5]1,1 = [H5]2,2 − 4ab, violating Eq. (1) for k = 5 if ab 
= 0. This 
means that only one of the vertices {5}+ and {8}− may be connected to c′ (a = 0 or 
b = 0) to keep {1, 2} cospectral. In other words, either even or odd walk multiplets can 
generally be simultaneously connected to a new vertex while keeping the cospectrality 
of the associated cospectral pair.

In the following example, we demonstrate how the topology of a graph itself can 
be modified, i.e. without extending it by new vertices, while preserving a cospectral 
pair.

Example 4. In Fig. 6, we apply Theorem 2 to the graph of Fig. 4, resulting in graphs with 
the same vertices as in the original graph but with some of them connected differently. 
Specifically, in Fig. 6(a), we interconnect the even uniform walk doublet {(3, 7)a}+ with 
the even nonuniform walk triplet {(1, 5)b, (4)2b}+ (see list of walk multiplets in Fig. 4). 
According to Theorem 2, {u, v} = {2, 6} remains cospectral if we add the product ab to 
the edge weights between each of the vertices 3, 7 of the doublet and vertices 1, 5 of the 
triplet, and 2ab to the edge weights between 3, 7 and 4, as shown in the figure. Thus, 
the new edges (1, 3), (3, 4), (3, 5), and (4, 7) are created in the resulting graph, so that 
the graph topology has been modified. Note, though, that the multiplet interconnection 
procedure comes with a partial restriction on the weights of the new graph. For instance, 
starting in Fig. 6(a) with an unweighted graph and setting also a = b = 1, the edges 
(1, 7), (3, 4), (4, 7), (5, 7) in the new graph have weight 2 (and the rest 1); that is, 
the new graph cannot be unweighted. In Fig. 6(b), we interconnect {(3, 7)a}+ with 
{(4)b, (8)−b}+. Starting with the original graph unweighted and setting a = b = 1, the 
addition of edge weights according to Theorem 2 removes the edges (3, 8) and (7, 8), while 
adding (3, 4) and (4, 7), with {2, 6} remaining cospectral. This demonstrates how walk 
multiplet interconnections can be used to disconnect vertices of a graph while preserving 
the associated cospectrality.
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Fig. 6. Two modifications of the graph depicted in Fig. 4 which keep the cospectrality of the vertices 2 and 
6 while changing the graph topology, using 2; see Example 4. In (a) we interconnect the walk multiplets 
{(3, 7)a}+ and {(1, 5)b, (4)2b}+, with added edge weights as indicated, and in (b) we interconnect walk 
multiplets {(3, 7)a}+ with {(4)a, (8)−a}+, starting from the original graph unweighted and setting a = 1.

By Theorem 1, the cospectrality of a vertex pair is preserved in the weighted cone 
over a walk multiplet of a graph with the same weight tuple γ, with the tip of the cone 
then being a walk singlet. We now ask for the reverse: When the cospectrality of u, v is 
preserved under a single-vertex addition, is that vertex necessarily a walk singlet relative 
to u, v? The affirmative answer is given by the following theorem, which also makes a 
similar statement for the case of single vertex deletions.

Theorem 3 (Preserved cospectrality under single vertex additions or deletions). Let G be 
a graph with vertex set V and with two cospectral vertices u, v ∈ V . Then

(i) The cospectrality of u and v is preserved in the cone H of G over a subset M ⊆ V

with weight tuple γ = (γm)m∈M if and only if Mp
γ is a walk multiplet relative to u, v.

(ii) The cospectrality of u and v is preserved in the graph R = G \ c (obtained from G
by removing the vertex c ∈ V ) if and only if c is a walk singlet in G relative to u, v.

Recall that the tip of the cone in part (i) is a walk singlet relative to u, v (by The-
orem 1). In part (ii), a walk singlet is removed, without breaking the cospectrality of 
{u, v}. Thus, the theorem implies that the only way to add a single vertex to a graph, 
or to remove a single vertex from it, without breaking the cospectrality of two vertices 
u, v, is if that vertex is a walk singlet relative to u, v.

A word of caution, though: Whereas walk singlets can safely be removed from a graph 
without destroying the associated cospectral pair, the same is not true for larger walk 
multiplets in general. An interesting special case where a multiplet can be removed is 
when (i) its vertices are pairwise cospectral and (ii) relative to each such cospectral 
pair its remaining vertices are singlets, as explained in the proof of Theorem 3 in the 
Appendix. An example of this is the walk anti-doublet {3, 4}− in Fig. 3(a), whose removal 
does preserve the cospectrality of the pair {1, 2}.
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Combining Theorem 1 with Theorem 3 results in the following conclusion regarding 
walk singlets.

Corollary 2. A vertex c of a graph is a walk singlet relative to cospectral vertices u, v if 
and only if it is exclusively connected via edges with weight tuple γ = (γm)m∈M to a walk 
multiplet Mp

γ relative to u, v.

Let us now make the link to where we started (in Section 2.1), with the notion of 
USPs. Recall that an USP is a single vertex to which an arbitrary new graph can be 
connected, or which can also be removed, without breaking the cospectrality of a vertex 
pair. While it is clear from Theorem 1 that any walk singlet is an USP, one might ask 
if also the reverse is true, that is, whether any USP is a walk singlet. The removal of a 
walk singlet is covered by Theorem 3(ii). Regarding the connection of arbitrary graphs, 
we have the following.

Corollary 3 (USPs are singlets). If the cospectrality of a vertex pair {u, v} of a graph H
is preserved when connecting an arbitrary graph C to a single vertex c of H, via edges 
of arbitrary weights, then c is a walk singlet relative to {u, v}.

This statement can be easily understood from the above. Indeed, since C is an ar-
bitrary graph, we can choose it to be a single vertex c′. If the cospectrality of u, v is 
preserved under this addition, then by Theorem 3(i), c′ must then be a walk singlet. But 
by Corollary 2, c must be a walk singlet as well. Thus, we have that every USP is a walk 
singlet.

Before we proceed, let us review the above, starting with a recapitulation of the 
concept of cospectral vertices. Known in molecular graph theory as “isospectral points”, 
this concept can be seen as a generalization of exchange symmetry [6]. Indeed, any 
two vertices u and v that are exchange symmetric are also cospectral, but the reverse 
is not necessarily the case. Similar to the case of exchange symmetries, one can then 
draw powerful conclusions from the presence of cospectral vertices. For example, one can 
use the presence of cospectral vertices to express the characteristic polynomial of the 
underlying matrix H in terms of smaller polynomials [16]. In quantum physics it has been 
shown [3] that cospectrality of u and v is a necessary condition for so-called perfect state 
transfer between these two vertices, which is important in the realization of quantum 
computers. In general, if two vertices u and v are cospectral, then all eigenvectors have (in 
the case of degeneracies, can be chosen to have) definite parity on these two vertices [15]. 
The implications of such local parity depend, of course, on what the underlying matrix H
represents, but can be quite impactful. In network theory [9,17], for example, the local 
parity of eigenvectors implies that two cospectral vertices have the same “eigenvector 
centrality”, which is a measure for their importance in the underlying network.

Irrespective of these powerful implications of cospectrality, however, one might object 
that fulfilling its defining Eq. (1) is rather difficult, especially in larger graphs comprising 
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thousands of vertices. What we have shown above is that fulfilling Eq. (1) is, on the 
contrary, rather easy: Given a small graph G with cospectral vertices u and v, one can 
easily embed G into a (much) larger graph G′ by suitably connecting some vertices of G′

to the walk multiplets of u and v. In other words, we have shown that cospectrality does 
not necessarily rely on global fine-tuning. This viewpoint-changing finding, however, is 
just the implication of a much more important insight. Namely, that the matrix powers 
of H—which are used to identify walk multiplets—are a source of detailed information 
about the underlying graph, as we will demonstrate in the following.

4. Eigenvector components on walk multiplets

Having seen how multiplets can be used to extend a graph whilst keeping the cospec-
trality of vertices, we now analyze their relation to the eigenvectors of H. To this end, 
we first choose the orthonormal eigenvector basis according to the following Lemma.

Lemma 1 (Lemma 2.5 of [15]). Let H be a symmetric matrix, with u and v cospectral. 
Then the eigenvectors {φ} of H are (or, in the case of degenerate eigenvalues, can be 
chosen) as follows. For each eigenvalue λ there is at most one eigenvector φ with even 
local parity on u and v, i.e., φu = φv 
= 0, and at most one eigenvector φ with odd 
local parity on u and v, i.e., φu = −φv 
= 0. All remaining eigenvectors for λ fulfill 
φu = φv = 0. The even (odd) parity eigenvector can be found by projecting the vector 
eu ± ev onto the eigenspace associated with λ.

Remark 4. If the projection of eu ± ev onto the eigenspace associated with λ yields the 
zero-vector, then the corresponding even (odd) parity eigenvector does not exist.

With this choice, the components of odd and even parity eigenvectors on a walk 
multiplet obey the following constraint.

Theorem 4 (Eigenvector components on walk multiplets). Let H = H� ∈ RN×N rep-
resent a graph with a pair of cospectral vertices u, v, and let its eigenvectors be chosen 
according to Lemma 1. Then any eigenvector φ of H with eigenvalue λ and nonzero 
components of odd (even) parity p on u, v,

φu = p φv 
= 0, p ∈ {+1,−1}, (15)

fulfills
∑

m∈M

γmφm = 0 (16)

if and only if M−p
γ is a walk multiplet relative to u, v with even (odd) parity −p and 

weight tuple γ = (γm)m∈M.
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Remark 5. It is an interesting—and to the best of our present knowledge unanswered—
question whether analogous general statements can be made regarding the eigenvector 
components on walk multiplets relative to a cospectral pair {u, v} for eigenvectors with 
zero components on u, v.

Let us take a look at the impact of Theorem 4 in an example. We use a graph we are 
already familiar with and which has an interesting multiplet structure.

Example 5. The graph of Fig. 4 has three eigenvectors φν (labeled by ν = 1, 2, 3) with 
odd parity on the cospectral pair {2, 6}, given by the columns

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2√
10

1
2
√

5 − 1
2
√

5
− 1√

10 − 1√
5

1√
5

− 1√
10

1
20
(
5 +

√
5
) 1

20
(
5 −

√
5
)

1√
10

1
20
(
5 −

√
5
) 1

20
(
5 +

√
5
)

0 −1
2 −1

2
1√
10

1√
5 − 1√

5
1√
10

1
20
(
−5 −

√
5
) 1

20
(√

5 − 5
)

1√
10

1
20
(
5 −

√
5
) 1

20
(
5 +

√
5
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As an example, we apply Theorem 4 for the even walk quadruplet {(1)a, (3)b, (4)2a+b,

(5)a+b}+ (shown in the table of Fig. 4) relative to {2, 6}. By Eq. (16), each of the above 
eigenvectors fulfills

aφν
1 + bφν

3 + (2a + b)φν
4 + (a + b)φν

5 = 0; φν
2 = −φν

6 
= 0, ν = 1, 2, 3, (17)

for any values of the parameters a, b, as the reader may easily verify. Note that the 
above eigenvectors also have local odd parity on {3, 7}. This is again a result of Eq. (16), 
since {(3, 7)a}+ is an even walk doublet relative to the cospectral pair {2, 6}, so that 
φν

3 + φν
7 = 0 for ν = 1, 2, 3.

For uniform walk multiplets, and especially singlets, Theorem 4 simplifies: If an even 
(odd) walk multiplet Mp

γ relative to u, v is uniform (γm = const.), then 
∑

m∈M φm = 0
for any eigenvector φ with odd (even) parity on u, v; in particular, φ has zero component 
on any even (odd) walk singlet. The zero component of an eigenvector φ on a vertex c can 
be understood as a cancellation of weighted eigenvector components in the eigenvalue 
equation Hφ = λφ, written as 

∑
m�=c Hcmφm = (λ − Hcc)φc. If φc = 0, the sum over 

components φm on vertices m adjacent (i.e. connected by edges) to c, weighted by the 
corresponding edge weights, vanishes, i.e. 

∑
m�=c Hcmφm = 0. This coincides, though, 

with Eq. (16) of Theorem 4 for Hcm = γm. Further, recall that the components of eigen-
vectors with parity p on cospectral vertices vanish on walk singlets with opposite parity 
−p. In the light of Theorem 1(ii) and Corollary 1, this suggests that walk multiplets may 
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Fig. 7. (a) A graph with no walk singlets relative to the only cospectral pair {1, 8} which remains cospectral 
for any nonzero edge weights w1 (solid lines) and w2 (dashed lines). The graph has seven eigenvectors 
with odd local parity (and nonzero components) on {1, 8}. (b) When connecting an arbitrary graph C
symmetrically via a single vertex c to the cospectral pair {1, 8}, which is also a uniform even walk doublet 
{1, 8}+, then by Corollary 1 all vertices within C are walk singlets relative to {1, 8}. The original odd party 
eigenvectors vanish on all vertices of C.

be used to construct graphs having eigenvectors with multiple vanishing components, 
namely on graph extensions consisting only of walk singlets. We demonstrate this in the 
following example.

Example 6. We start with the graph in Fig. 7(a), which has no walk singlets (or any 
other walk multiplets up to size 5, for that matter) relative to its cospectral pair {1, 8}. 
The cospectrality of {1, 8} is independent of the values of the weights w1 and w2 (indi-
cated by solid and dashed lines), as long as they are nonzero. We can now easily create 
singlets by symmetrically connecting a new graph C, depicted by a cloud in Fig. 7(b), to 
the two cospectral vertices 1, 8 via a single vertex c of C. This is ensured by Corollary 1
and Theorem 2, with the cospectral pair here simultaneously representing a walk doublet 
(see Remark 1). The original graph in Fig. 7(a) has seven eigenvectors with odd parity 
on {1, 8} for any choice of the edge weights w1, w2 
= 0. We note that this number can 
be deduced by applying the methodology of Ref. [18], wherein the so-called “isospectral 
reduction” is used to split the graph’s characteristic polynomial into smaller pieces, the 
orders of which are linked to the number of positive and negative parity eigenvectors. 
Coming back to the example, we note that each of those seven odd parity eigenvectors 
has vanishing components on all vertices of C by Corollary 1 and Theorem 4. Of course, 
depending on the internal structure of the subgraph C, the total graph may now fea-
ture further eigenvectors (not those seven from above) which have zero components on 
different subgraphs (not C).

When the subgraph C is much larger than the original graph of Fig. 7(a), most of 
the eigenvector components of the seven odd parity eigenvectors vanish. Eigenvectors 
with such a property are known as “sparse eigenvectors” [19,20] in engineering or com-
puter science. Such eigenvectors can also be characterized as “compact”, since they have 
nonzero components only on a strict subset of the vertex set of a graph H. Indeed, if H
represents a Hamiltonian of a physical system composed of discrete sites (like the atoms 
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in molecular model of Fig. 2), then eigenstates of H which are strictly confined to a 
subset of sites are often referred to as “compact localized states” [21,22] or even “dark 
states” [23,24] depending on the context. We have here demonstrated how such compact 
eigenvectors can be generated for a graph featuring cospectral vertices, by extending 
the graph via walk multiplets. As a perspective for future work, this may be used to 
design discrete physical setups with compact localized states or, more generally, network 
systems with some eigenvectors vanishing on desired nodes.

5. Generating cospectral vertices without permutation symmetry from highly 
symmetric graphs

Until now, the existence of cospectral vertices has been assumed to be given, and we 
now come to the question of how to generate such graphs. One possible method is to 
start from two graphs G1, G2 with the same characteristic polynomial (such graphs can 
be constructed by means of the so-called “Godsil-McKay-switching” from Ref. [25]), and 
then search for a graph H such that H \ u = G1 and H \ v = G2. The two vertices u
and v are then guaranteed to be cospectral in H.

The concept of walk multiplets, as introduced in this work, naturally suggests another 
scheme for generating graphs with cospectral vertices. Starting from a matrix H which 
commutes with a permutation matrix P which exchanges u and v (with arbitrary per-
mutations of the remaining vertices, so that other vertices could be symmetry-related as 
well), one first identifies the walk multiplets of H relative to {u, v}. In a second step, H
is changed by either (i) connecting one or more new vertices to (some of) the multiplets 
having common parity, following Theorem 1, or (ii) interconnecting multiplets by adding 
edge weights between them, following Theorem 2. Vertices u and v remain cospectral 
under these operations, but the resulting matrix H ′ may feature less permutation sym-
metries than H. Interestingly, H ′ could feature no permutation symmetry at all, as we 
demonstrate in the following examples.

Example 7. Fig. 8(a) shows a “ladder” graph with two legs and three rungs. As drawn 
here, it is symmetric both under a reflection about the horizontal and the vertical axis. 
As a result of the symmetry about the vertical axis, and among other cospectral pairs, 
the two central vertices u, v are cospectral. Moreover, as a result of the combined hori-
zontal and vertical reflection symmetry, the two pairs {d1, d2} and {d1, d3} correspond to 
even uniform walk doublets relative to {u, v}. In Fig. 8(b), a new vertex c is connected 
to {d1, d2} and another new vertex c′ is connected to {d1, d3}, with some arbitrary 
but uniform weights a and b, respectively. The extension by c and c′ breaks the previ-
ous reflection symmetries in the resulting graph, which in fact features no permutation 
symmetries at all. By Theorem 1, however, the vertices u, v remain cospectral. Note, in 
particular, that the occurrence of the walk doublet {d1, d3} in Fig. 8(a) can be intuitively 
explained by the graph’s combined reflection symmetry about its vertical and horizontal 
axes. The symmetry about the horizontal axis is then broken when first adding ver-
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Fig. 8. Generation of a weighted graph with cospectral vertices and without any permutation symmetry; see 
Example 7. (a) A “ladder” graph, reflection symmetric about its vertical and horizontal axes, with cospectral 
vertices u and v, is modified by (b) connecting two new vertices c and c′ to the uniform walk doublets 
{d1, d2}+ and {d1, d3}+ relative to {u, v} with weights a and b, respectively, or (c) interconnecting those 
walk doublets by adding edge weights as shown. In both (a) and (b), the resulting graph has no permutation 
symmetries, while u, v remain cospectral, as ensured by Theorems 1 and 2, respectively.

tex c, so one might intuitively expect also the walk multiplet condition for {d1, d3} to 
be violated. Nevertheless, Theorem 1 guarantees that {d1, d3} remains a walk multiplet 
relative to {u, v}, and so c′ can be further added without breaking cospectrality. An alter-
native way to generate a graph with cospectral vertices and no permutation symmetries 
is shown in Fig. 8(c). Here the same original graph is modified by applying Theorem 2: 
Instead of connecting the two walk doublets {d1, d2}+ and {d1, d3}+ to added vertices, 
they are now interconnected to each other. Specifically, the weights ab are added pair-
wise to the edges between d1, d2, d3, and a loop of weight 2ab is added to the overlap 
d1 = {d1, d2} ∩ {d1, d3}, with a and b being arbitrary parameters. Note that, while the 
vertex set of the graph remains the same, its topology has now changed by the added 
edges (d1, d3) and (d2, d3). Again, the pair {u, v} remains cospectral, while the resulting 
graph has no permutation symmetry.

Example 8. Fig. 9(a) shows again a graph which, as visualized, is vertically and hori-
zontally reflection symmetric and has (among others) two cospectral vertices u, v and 
two uniform even walk doublets {d1, d2}+ and {d1, d3}+ relative to {u, v}. We now use 
Theorem 2 to change the topology of the original graph and subsequently Theorem 1
to further extend it by new vertices, with u, v remaining cospectral in the final graph 
where all permutation symmetries are broken. Specifically, in Fig. 9(b) we interconnect 
the walk doublet {d1, d3}+ to the doublet {u, v}+ by uniformly adding edge weights be-
tween their vertices (creating new edges if absent) according to Theorem 2. In Fig. 9(c) 
we proceed by connecting a new vertex c to the doublet {d1, d2}+ and another new ver-
tex c′ first to {d1, d3}+ and then to {u, v}+ (equivalent to connecting c′ directly to the 
walk quadruplet {(d1, d3)a, (u, v)b}+), following Theorem 1. We finally also disconnect 
u from v, which leaves them cospectral according to Remark 3.
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Fig. 9. The highly symmetric graph in (a) with (among other pairs) the cospectral vertex pair {u, v} is mod-
ified by (b) interconnecting the walk doublets {u, v}+ and {d1, d3}+ (according to Theorem 2), and then (c)
disconnecting the two cospectral vertices u, v from each other (Remark 3), connecting a new vertex c to the 
walk doublet {d1, d2}+, and another new vertex c′ to the walk quadruplet {(d1, d3)a, (u, v)b}+ (Theorem 1), 
resulting in a graph with cospectral vertices u, v but no permutation symmetries; see Example 8.

The highly symmetric base graphs in Examples 7 and 8 were chosen unweighted and 
without loops for simplicity. Notably, they could easily be enriched by adding loops on 
their vertices and weighting the edges such that the indicated cospectral pairs {u, v} are 
still present (that is, by respecting the reflection symmetries about the vertical and/or 
horizontal axes). Then, the extensions and interconnections described above could still 
be performed, creating weighted graphs featuring cospectral pairs without permutation 
symmetries.

6. Conclusions

Cospectral vertices offer the exciting possibility of eigenvectors of a matrix H having 
local parity on components corresponding to cospectral vertex pairs, even without the 
existence of corresponding permutation matrices commuting with H. Here, we introduced 
the notion of “walk equivalence” of two cospectral vertices with respect to a vertex subset 
of a graph represented by a matrix H. Such subsets, corresponding to what we call “walk 
multiplets”, provide a simple and generally applicable method of modifying a given graph 
with cospectral vertices such that the cospectrality is preserved. The definition of walk 
multiplets is based on the entries of the powers of H and can be expressed in terms of 
so-called walk matrices used in graph theory. As we demonstrate here, the concept of 
walk multiplets generalizes that of “unrestricted substitution points” (USPs), introduced 
for molecular graphs, to vertex subsets of arbitrary size: Any arbitrary new graph can be 
connected, via one of its vertices, to all vertices of a walk multiplet relative to a cospectral 
pair in an existing graph, without breaking the cospectrality. In fact, USPs turn out to 
coincide with walk “singlets”, that is, multiplets comprised of a single vertex. We further 
showed how walk multiplets can be used to derive sets of local relations between the 
components of an eigenvector with certain parity on a given associated cospectral pair. 
As a special case, the eigenvector components then vanish on any walk singlet as well 
as on any graph connected exclusively to walk singlets. This relates to the generation of 
so-called “compact localized states” in artificial physical setups, also known as “sparse 
eigenvectors” in other areas of science. We also presented a scheme in which we use 
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walk multiplets to construct a class of graphs having cospectral vertices without any 
permutation symmetries.

It is important to notice that the analysis performed here applies also to more than 
two cospectral vertices: For any subset S of cospectral vertices, cospectrality is indeed 
defined pairwise for any two vertices u, v ∈ S, and thus the walk multiplet framework 
applies to any such pair. Our results may thus offer a valuable resource in understanding 
and manipulating the structure of eigenvectors in an engineered network system via 
its walk multiplets—that is, by only utilizing the powers of the underlying matrix. In 
particular, the local eigenvector component relations derived here may be systematically 
exploited to deduce parametric forms of eigenvectors for generic graphs with cospectral 
pairs; an investigation left for future work.

Let us finally also hint at a possible connection to recent studies of local symmetries 
in discrete quantum models, which provide relations between the components of general 
states in the form of non-local continuity equations [26,27] and may offer advantages 
for state transfer on quantum networks [18]. In this context, it would be intriguing to 
explore the possible implications of walk multiplets for the dynamical evolution of wave 
excitations on general network-like systems.
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Appendix A. Proofs of theorems

We here restate Theorems 1 to 4 together with their proofs.

Theorem 1 (Walk singlet extension). Let G = G� ∈ RN×N represent an undirected graph 
with two cospectral vertices u, v, let Mp

γ be an even (odd) walk multiplet of G relative 
to u, v, and let H be a weighted cone of G over the subset M with real weight tuple 
γ = (γm)m∈M. Then

(i) Vertices u, v are cospectral in H.
(ii) The tip c of the cone H is an even (odd) walk singlet relative to u, v.
(iii) Any even (odd) walk multiplet in G is an even (odd) walk multiplet in H.
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Proof. We partition any walk of length k in H into the walks restricted exclusively to 
G and the additionally generated walks in H visiting the new vertex c. Then we apply 
the multiplet condition, Eq. (10), which is valid in the old graph G. For convenience, we 
define

A
(�)
s;M ≡

∑

m∈M

γm[G�]sm, B
(�)
s;M ≡

∑

m∈M

γm[H�]sm. (A.1)

Then, since Mp
γ is a walk multiplet relative to u, v in G, we have from Eq. (10) that

A
(k)
u;M = pA

(k)
v;M ∀k ∈ N, p ∈ {+1,−1}. (A.2)

To prove (i), we compute, with walk lengths fulfilling � + n + r = k − 2,

[Hk]u,u =[Gk]u,u +
∑

�,n,r

∑

m,m′∈M

[G�]u,mHm,c[Hn]c,cHc,m′ [Gr]m′,u (A.3)

=[Gk]u,u +
∑

�,n,r

∑

m,m′∈M

[G�]u,mγm[Hn]c,cγm′ [Gr]m′,u (A.4)

=[Gk]u,u +
∑

�,n,r

A
(�)
u;M[Hn]c,cA

(r)
u;M (A.5)

=[Gk]v,v + p2
∑

�,n,r

A
(�)
v;M[Hn]c,cA

(r)
v;M (A.6)

=[Hk]v,v, (A.7)

where we used p2 = 1, Eq. (A.2), and the cospectrality of u, v in G. To prove (ii), we 
compute, now with � + n = k − 1,

[Hk]u,c =
∑

�,n

∑

m∈M

[G�]u,mHm,c[Hn]c,c =
∑

�,n

∑

m∈M

γm[G�]u,m[Hn]c,c (A.8)

=
∑

�,n

A
(�)
u;M[Hn]c,c (A.9)

=
∑

�,n

pA
(�)
v;M[Hn]c,c = p [Hk]v,c (A.10)

To prove (iii), we compute, again with � + n = k − 1,

[Hk]u,m =[Gk]u,m +
∑

�,n

∑

m′∈M

[G�]u,m′Hm′,c[Hn]c,m (A.11)

=[Gk]u,m +
∑

�,n

A
(�)
u;M[Hn]c,m (A.12)

so that, multiplying by γm and summing over m ∈ M, we have
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B
(k)
u;M =A

(k)
u;M +

∑

m∈M

γm

∑

�,n

A
(�)
u;M[Hn]c,m (A.13)

= pA
(k)
v;M +

∑

m∈M

γm

∑

�,n

pA
(�)
v;M[Hn]c,m (A.14)

= p
∑

m∈M

γm

(
[Gk]v,m +

∑

�,n

A
(�)
v;M[Hn]c,m

)
= p

∑

m∈M

γm[Hk]v,m = pB
(k)
v;M

(A.15)

Note that, if any arbitrary graph C is connected exclusively to the added vertex c, 
then any vertex c′ of C is also a walk singlet relative to {u, v}. Indeed, simply replacing 
[Hn]cc with [Hn]cc′ in Eqs. (A.8) to (A.10) above leads to [Hk]u,c′ = p [Hk]v,c′ , which 
proves Corollary 1. �

Theorem 2 (Walk multiplet interconnection). Let G ∈ RN×N be a graph with a cospectral 
pair {u, v} and Xp

γ , Yp
δ be (in general non-uniform) walk multiplets relative to {u, v}

having same parity p and weight tuples γ, δ, respectively, with possible subset overlap 
Z = X ∩Y 
= ∅. Then the cospectrality of {u, v} and any walk multiplet relative to {u, v}
with parity p are preserved in the graph H ∈ RN×N with elements

Hx,y = Hy,x =
{

Gx,y + γxδy if x /∈ Z or y /∈ Z

Gx,y + γxδy + γyδx if x, y ∈ Z
∀ x ∈ X, y ∈ Y

and Hi,j = Gi,j otherwise.

Proof. To prove that the vertices u, v remain cospectral in the modified graph H with 
added edge weights Hx,y − Gx,y as described in the theorem, we will partition the walks 
in the new graph into walk segments such that the multiplet relations, Eq. (9), can be 
applied for the segments within the old graph G.

We first express the newly generated closed walks from u using (i) walks segments in 
the old graph G to reach a vertex of one of the multiplets X (or Y ), (ii) the new edge 
(that is, the weight added if the edge already existed) to cross to the other multiplet Y
(or X), and (iii) finally coming back to u using walks in the new graph H.

Defining M = X\Z, W = Y\Z, and with added edge weights Hij − Gij = γiδj (resp. 
γiδj + γjδi) if i, j ∈ X ∪ Y ∧ (i /∈ Z ∨ j /∈ Z) (resp. i, j ∈ Z), we have

[Hk]u,u = [Gk]u,u+
∑

l+n+1=k

{ ∑

m∈M,w∈W

[Gl]u,mγmδw[Hn]w,u +
∑

z∈Z,w∈W

[Gl]u,zγzδw[Hn]w,u+

(A.16)
∑

w∈W ,m∈M

[Gl]u,wδwγm[Hn]m,u +
∑

z∈Z,m∈M

[Gl]u,zδzγm[Hn]m,u+

(A.17)
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∑

m∈M,z∈Z

[Gl]u,mγmδz[Hn]z,u+ (A.18)

∑

w∈W ,z∈Z

[Gl]u,wδwγz[Hn]z,u+ (A.19)

∑

z′∈Z,z∈Z

[Gl]u,z′(γz′δz + γzδz′)[Hn]z,u

}
. (A.20)

We can now combine sums over subsets as follows: 
∑

m∈M + 
∑

z∈Z =
∑

x∈X in (A.16), 
and the same in (A.18) with the first term (γz′δz) in (A.20). Similarly, 

∑
w∈W + 

∑
z∈Z =∑

y∈Y in (A.17), and the same in (A.19) with the second term (γzδz′) in (A.20). This 
yields

[Hk]u,u = [Gk]u,u +
∑

l+n+1=k

{ ∑

x∈X,w∈W

[Gl]u,xγxδw[Hn]w,u

+
∑

y∈Y ,m∈M

[Gl]u,yδyγm[Hn]m,u

+
∑

x∈X,z∈Z

[Gl]u,xγxδz[Hn]z,u +
∑

y∈Y ,z∈Z

[Gl]u,yδyγz[Hn]z,u

}

= [Gk]u,u +
∑

l+n+1=k

{ ∑

x∈X,y∈Y

[Gl]u,xγxδy[Hn]y,u +
∑

y∈Y ,x∈X

[Gl]u,yδyγx[Hn]x,u

}
.

(A.21)

Next, we account for the walk segments from vertex i = x, y back to u, which have a 
similar form:

[Hn]i,u = [Gn]i,u +
∑

r+s+1=n

{ ∑

x′∈X,y′∈Y

[Hr]i,x′γx′δy′ [Gs]y′,u

+
∑

y′∈Y ,x′∈X

[Hr]i,y′δy′γx′ [Gs]x′,u
}
. (A.22)

Plugging this into (A.21), after some sorting and combining of terms we arrive at (with 
x, x′ ∈ X and y, y′ ∈ Y )

[Hk]u,u = [Gk]u,u + 2
∑

l+n+1=k

∑

x,y

[Gl]u,xγxδy[Gn]y,u+

∑

l+r+s+2=k

∑

x,x′,y,y′

{
[Gl]u,xγxδy[Hr]y,y′δy′γx′ [Gs]x′,u+

[Gl]u,yδyγx[Hr]x,x′γx′δy′ [Gs]y′,u+

2[Gl]u,xγxδy[Hr]y,x′γx′δy′ [Gs]y′,u
}

(A.23)
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It is now evident that [Hk]u,u is equal to [Hk]v,v by applying cospectrality of u, v in G
and multiplet conditions for Xp

γ , Yp
δ .

To prove that any general non-uniform walk multiplet Qp
ε (with weight tuple ε and of 

the same parity p as Xp
γ , Yp

δ ) in G is preserved in H, we evaluate the following expression 
by using Eq. (A.22):

∑

q∈Q

εq[Hk]u,q =
∑

q∈Q

εq

{
[Gk]u,q +

∑

r+s+1=k

∑

x∈X,y∈Y

[Gs]u,xγxδy[Hr]y,q

+
∑

r+s+1=k

∑

y∈Y ,x∈X

[Gs]u,yδyγx[Hr]x,q

}
(A.24)

= p
∑

q∈Q

εq[Hk]v,q, (A.25)

where in the last step we applied the multiplet conditions for Qp
ε , Xp

γ , Yp
δ . �

Theorem 3 (Preserved cospectrality under single vertex additions or deletions). Let G be 
a graph with vertex set V and with two cospectral vertices u, v ∈ V . Then

(i) The cospectrality of u and v is preserved in the cone H of G over a subset M ⊆ V

with weight tuple γ = (γm)m∈M if and only if Mp
γ is a walk multiplet relative to u, v.

(ii) The cospectrality of u and v is preserved in the graph R = G \ c (obtained from G
by removing the vertex c ∈ V ) if and only if c is a walk singlet in G relative to u, v.

Proof. We start with part (i) of the theorem. If Mp
γ is a walk multiplet, then cospectrality 

of {u, v} is preserved by Theorem 1. For the converse, we assume that {u, v} remain 
cospectral, that is

[Hk]u,u = [Hk]v,v ∀ k ∈ N, (A.26)

where, with A(�)
s;M defined as in Eq. (A.1),

[Hk]s,s = [Gk]s,s +
∑

n

∑

�,�′

∑

m,m′∈M

[G�]s,mγm[Hn]c,cγm′ [G�′
]m′,s (A.27)

= [Gk]s,s +
∑

n

∑

�,�′

A
(�)
s;M[Hn]c,cA

(�′)
s;M (A.28)

with s ∈ {u, v}, �, �′ � 0, n � 0, and � + �′ = k − n − 2. We further define

D�,�′ ≡ A
(�)
u;MA

(�′)
u;M − A

(�)
v;MA

(�′)
v;M = D�′,�, a(k)

n ≡
∑

�+�′=k−n−2
�,�′�0

D�,�′ . (A.29)
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Using [Gk]u,u = [Gk]v,v and substituting the decomposition from Eq. (A.28) into 
Eq. (A.26) for s = u, v we arrive at

[Hk]u,u − [Hk]v,v =
k−2∑

n=0
a(k)

n [Hn]cc = 0 ∀ k ∈ N. (A.30)

To prove that Mp
γ is a multiplet, we must show that (dropping the subscript M)

A(�)
u = pA(�)

v ∀ � ∈ N, p ∈ {+1,−1}. (A.31)

We prove this by induction. For k = 2 (that is, n = 0, � = �′ = 0), Eq. (A.30) yields 
[A(0)

u ]2 = [A(0)
v ]2 or

A(0)
u = pA(0)

v , (A.32)

so that Eq. (A.31) is fulfilled in zeroth order � = 0. For the induction step, we assume 
that Eq. (A.31) is fulfilled up to some arbitrary order r, that is,

A(�)
u = pA(�)

v ∀ � � r, (A.33)

and show that this equation also holds for � = r +1. To this end, we evaluate Eq. (A.30)
for k = r + 3. For this choice of k, all but two summands vanish, since the assumption 
Eq. (A.33) implies that D�,�′ = 0 if �, �′ � r. We thus obtain D0,r+1 + Dr+1,0 = 0, and 
since D0,r+1 = Dr+1,0, it follows that A(0)

u A
(r+1)
u = A

(0)
v A

(r+1)
v . Thus, if A(0)

u 
= 0, due 
to Eq. (A.32) we get A(r+1)

u = pA
(r+1)
v , as desired.

If A(0)
u = 0, it follows from Eq. (A.32) that also A(0)

v = 0, and from Eq. (A.29)
we obtain D0,� = D�,0 = 0 for all �. We exploit this fact by evaluating Eq. (A.30) for 
k = r+4, yielding D1,r+1 = Dr+1,1 = 0. Now, if A(1)

u 
= 0 we again get A(r+1)
u = pA

(r+1)
v , 

as desired. If A(1)
u = 0, we proceed to the next higher order k = r + 5, and so on. In 

the limiting case where A(�)
u = 0 for all � � r, we evaluate Eq. (A.30) for k = 2(r + 2), 

which yields Dr+1,r+1 = 0 and therefore A(r+1)
u = pA

(r+1)
v . This completes the proof of 

the first part.
For part (ii), we first prove that, if c is a singlet in G, then its removal does not break 

the cospectrality of u and v. To this end, we use the fact that

[Gk]u,u =[Rk]u,u +
∑

�+n=k

[G�]u,c[Gn]c,u (A.34)

=[Rk]u,u +
∑

�+n=k

[G�]v,c[Gn]c,v (A.35)

and

[Gk]v,v =[Rk]v,v +
∑

�+n=k

[G�]v,c[Gn]c,v. (A.36)
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Since u and v are cospectral in G, it follows that [Rk]u,u = [Rk]v,v for all k, so that 
u, v are also cospectral in R if c is a singlet in G. For the reverse direction we need to 
prove that, if the cospectrality of u and v is preserved by the removal of a single vertex 
c, then this vertex must be a walk singlet. With G being a cone of R with tip c, and 
demanding u, v to be cospectral in both R and G, combining part (i) of this theorem 
with Theorem 1 immediately gives that c must be a singlet in G. �

A.1. Comment: removal of a general multiplet

Consider removing a walk multiplet Mp
γ instead of the singlet c. Then

[Gk]u,u =[Rk]u,u +
∑

�+r+n=k

∑

m,m′∈M

[G�]u,m[Gr]m,m′ [Gn]m′,u (A.37)

and cospectrality is preserved in the resulting graph R only if

∑

�+r+n=k

∑

m,m′∈M

[G�]u,m[Gr]m,m′ [Gn]m′,u =
∑

�+r+n=k

∑

m,m′∈M

[G�]v,m[Gr]m,m′ [Gn]m′,v

(A.38)

for all k. Thus, cospectrality of a vertex pair in a graph is generally not preserved when 
removing a multiplet, except if Eq. (A.38) if fulfilled. Assuming a uniform multiplet 
(γm = 1 for all m ∈ M), a special case where this occurs is when all pairs {m, m′}
in M are cospectral and, for each such pair, all remaining vertices m′′ /∈ {m, m′} in 
M are singlets relative to {m, m′}. Then [Gr]m,m′ can be factored out of the sums in 
Eq. (A.38) (taken separately for m = m′ and m 
= m′) and equality follows from the 
multiplet condition Eq. (A.31), for both p = ±1. For a walk quadruplet, e.g., the elements 
[Gr]m,m′ would have the form

[Gr]M,M =

⎡
⎢⎣

ar br br br

br ar br br

br br ar br

br br br ar

⎤
⎥⎦ , (A.39)

with the values ar and br generally depending on the power r. For a uniform p-doublet, 
this reduces to [Gr]m,m = [Gr]m′,m′ and [Gr]m,m′ = [Gr]m′,m. This is the case, e.g., for 
the walk anti-doublet {3, 4}− in Fig. 3(a) which can be removed without affecting the 
cospectrality of the pair {1, 2}.

Theorem 4 (Eigenvector components on walk multiplets). Let H = H� ∈ RN×N rep-
resent a graph with a pair of cospectral vertices u, v, and let its eigenvectors be chosen 
according to Lemma 1. Then any eigenvector φ of H with eigenvalue λ and nonzero 
components of odd (even) parity p on u, v,
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φu = p φv 
= 0, p ∈ {+1,−1}, (15)

fulfills
∑

m∈M

γmφm = 0 (16)

if and only if M−p
γ is a walk multiplet relative to u, v with even (odd) parity −p and 

weight tuple γ = (γm)m∈M.

Proof. Using the spectral decomposition

H =
N∑

ν=1
λνφ

νφν� (A.40)

of H in the orthonormal eigenbasis {φν}, chosen according to Lemma 1, we have, for 
s ∈ {u, v},

[Hk]s,m =
N∑

ν=1
λk

νφ
ν
sφ

ν
m =

∑

ν∈N+

λk
νφ

ν
sφ

ν
m +

∑

ν∈N −

λk
νφ

ν
sφ

ν
m ∀k ∈ N, (A.41)

where we have collected the labels ν of eigenvectors with parity ±1 on {u, v} into the 
set N ± (the remaining eigenvectors with φν

u = φν
v = 0 do not appear in the sum). 

Note that Eq. (A.41) incorporates the spectral decomposition of the identity matrix, 
Is,m =

∑N
ν=1 φν

sφ
ν
m for k = 0, meaning that λ0

ν = 1 even in the case of zero eigenvalues. 
Next we calculate:

[Hk]u,m − p[Hk]v,m = (1 − p)
∑

ν∈N+

λk
νφ

ν
uφν

m + (1 + p)
∑

ν∈N −

λk
νφ

ν
uφν

m (A.42)

= 2
∑

ν∈N −p

λk
νφ

ν
uφν

m, (A.43)

where we used the parity of eigenstates on {u, v}, i.e. φν
u = ±φν

v for ν ∈ N ±, so that the 
prefactor (1 ∓ p) of the sum over ν ∈ N ± vanishes for p = ±1. Multiplying by γm and 
summing over m ∈ M we obtain

B
(k)
u;M − pB

(k)
v;M = 2

∑

ν∈N −p

λk
νφ

ν
u

∑

m∈M

γmφν
m, (A.44)

with B(k)
s;M defined as in Eq. (A.1). It follows that, if Eq. (16) is fulfilled with φ = φν , 

for all ν ∈ N −p, then B(k)
u;M = p B(k)

v;M for all k and thus Mp
γ is a walk multiplet relative 

to {u, v} with parity p. Conversely, if Mp
γ is a multiplet, then the left side of Eq. (A.44)
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vanishes for all k ∈ N. For k ∈ �0, np − 1�, where np ≡ |N −p|, we can write Eq. (A.44)
in the matrix form

V �c ≡

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
λ1 λ2 · · · λnp

λ2
1 λ2

2 · · · λ2
np

...
... . . . ...

λ
np−1
1 λ

np−1
2 · · · λ

np−1
np

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

c1
c2
...

cnp

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎦ , (A.45)

with coefficients cν = 2φν
u

∑
m∈M γmφν

m, where V � is the (square) Vandermonde matrix 
with [V �]i,j = λj−1

i , yielding

det(V ) = det(V �) =
∏

1�μ<ν�np

(λν − λμ). (A.46)

Now, our choice of eigenvectors ensures that λν 
= λμ for all ν 
= μ with ν, μ ∈ N −p, so 
that det(V ) 
= 0. Thus V is invertible, so that Eq. (A.46) yields cν = 0 for all ν ∈ N −p, 
and since φν

u 
= 0 we have that 
∑

m∈M γmφν
m = 0 for all ν ∈ N −p, completing the 

proof. �
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Flat bands by latent symmetry
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Flat energy bands of model lattice Hamiltonians provide a key ingredient in designing dispersionless wave
excitations and have become a versatile platform to study various aspects of interacting many-body systems.
Their essential merit lies in hosting compactly localized eigenstates which originate from destructive interference
induced by the lattice geometry, in turn often based on symmetry principles. We here show that flat bands can be
generated from a hidden symmetry of the lattice unit cell, revealed as a permutation symmetry upon reduction of
the cell over two sites governed by an effective dimer Hamiltonian. This so-called latent symmetry is intimately
connected to a symmetry between possible walks of a particle along the cell sites, starting and ending on each of
the effective dimer sites. The summed amplitudes of any eigenstate with odd parity on the effective dimer sites
vanish on special site subsets called walk multiplets. We exploit this to construct flat bands by using a latently
symmetric unit cell coupled into a lattice via walk multiplet interconnections. We demonstrate that the resulting
flat bands are tunable by different parametrizations of the lattice Hamiltonian matrix elements which preserve
the latent symmetry. The developed framework may offer fruitful perspectives to analyze and design flat band
structures.

DOI: 10.1103/PhysRevB.104.035105

I. INTRODUCTION

Wave excitations in a lattice system are governed by the
form of its energy band structure and the corresponding eigen-
states. Since the dawn of quantum mechanics, substantial
efforts have been made to understand the response properties
of crystals in terms of their energy bands. With the technologi-
cal advances of the past decades, however, also artificial lattice
systems have been realized with ever increasing accuracy.
This has enabled an unprecedented engineering of bands with
targeted properties. A most intriguing case is that of “flat”
bands with vanishing curvature, which have become a subject
of intense research for designed lattice setups [1]. Those range
among various spatial scales and different technological plat-
forms, such as photonic waveguide or resonator arrays [2–4],
optical lattices for trapped atoms [5,6], superconducting wire
networks [7], nanostructured electronic lattices [8], optome-
chanical setups [9], or electric circuit networks [10].

The remarkable features induced by flat bands essentially
originate from the vanishing group velocity—or, equivalently,
diverging effective mass—of the eigenstates residing in them.
This allows for dispersionless wave excitations over the whole
crystal-momentum range of the flat band [3], which may be
exploited for their robust storage and transfer [11]. In turn,
transport properties of flat band states can be manipulated
by weak perturbations which set a dominant energy scale for
them [1]. In particular, flat bands have been used, e.g., to
model certain types of superfluidity [12–18] or topological
phases of matter [19–23]. Flat bands have also been explored
very recently to generate many-body localization [24–26] and
“caging” [27,28] in the presence of interactions, or to control
superradiance via synthetic gauge fields [29].

Flat bands of discrete lattice Hamiltonians rely on the
occurrence of eigenstates which are strictly localized on a
subset of sites, with vanishing amplitude in the remainder
of the lattice [30]. Such “compact localized states” (CLSs)
can be classified according to the number of unit cells they
occupy [31]. Notably, they do not violate the translational in-
variance of the lattice since they can, due to their macroscopic
degeneracy at the flat band energy, be linearly combined into
extended Bloch states. A CLS originates from the destructive
interference of its amplitudes on the neighboring lattice sites
coupled to the site subset the CLS occupies. This mechanism
may result directly from the geometric symmetry of the lattice
unit cell under a site permutation operation [32,33]. It may
also be caused by a bipartite (or chiral) symmetry of a lattice
composed of sublattices [34], or induced “accidentally” by
tuning the Bloch Hamiltonian matrix elements into the CLS
condition. Various schemes for generating flat bands from
CLSs have been proposed, based, e.g., on local permutation
symmetries [33,35], “origami” rules [36], local basis trans-
formations [32], solving inverse eigenvalue problems [31,37],
and, as shown very recently, using the properties of Gram
matrices [38] or combining lattice deformations with site ad-
ditions [39]. Despite the great value of such approaches, the
question remains whether flat bands may be systematically in-
voked by symmetry principles beyond the existing paradigms.

In the present work we propose a scheme to create flat
bands which is based on a type of hidden symmetry in the unit
cell Hamiltonian of a lattice. This so-called latent symmetry,
introduced recently in graph theory [40], is revealed as a per-
mutation symmetry once reducing the unit cell Hamiltonian
over a particular subset of sites to an effective subsystem
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Hamiltonian. Very recently, latent symmetries were proposed
as a novel possibility to explain seemingly accidental spectral
degeneracies of generic Hamiltonian matrices [41]. Reduc-
tion over a pair of latently exchange-symmetric sites—as we
will focus on here—results in an effective two-site symmetric
dimer, and the symmetry-induced parity of this dimer’s eigen-
states is inherited in the original unit cell; that is, any of its
eigenstates is locally even or odd on the latently symmetric
sites. Latent symmetry of two sites can be intuitively inter-
preted as a collective symmetry of so-called walks [42] (i.e.,
sequential hoppings) along the coupled sites of the unit cell,
starting and ending at each of those two sites. Equivalently,
the latent symmetry is simply expressed in terms of powers of
the Hamiltonian. We here combine latent symmetry with the
occurrence of special subsets of sites called walk multiplets.
On each such site subset, the amplitudes of any nondegenerate
eigenvector with odd parity on the latently symmetric sites
sum to zero. As we show, periodic lattices generated by inter-
connection of walk multiplets between latently symmetric unit
cells host flat bands with corresponding CLSs which occupy
single unit cells. Importantly, the underlying latent symmetry
persists upon the simultaneous variation of certain parameters
in the lattice Hamiltonian, making the generated flat bands
systematically tunable. With our results applicable to arbitrary
dimensions, we demonstrate the principle for one- and two-
dimensional lattices with simple prototype cells possessing
latent symmetries.

After introducing the concepts of latent symmetry and walk
equivalence in Sec. II, we show how to combine them to
generate flat band lattices in Sec. III, illustrating the principle
with prototype examples. We discuss possible extensions in
Sec. IV, while Sec. V concludes this work.

II. LATENT SYMMETRY, COSPECTRALITY,
AND WALK MULTIPLETS

Consider the eigenvalue problem H |ϕ〉 = E |ϕ〉 for a real
symmetric N × N Hamiltonian matrix H represented in the
orthonormal basis of single orbitals |n〉 on N coupled sites, n ∈
H ≡ {1, . . . , N}. To introduce the notion of latent symmetry,
let us partition the system into a selected subset S ⊂ H with
NS = |S| sites and its complement S = H \ S. The reduced
NS × NS Hamiltonian H̃S effectively describing subsystem S
under the influence of the rest of the system S is then given by
[43–45]

H̃S(E ) = HS + Γ [E − HS]−1Γ � ≡ HS + ΣS(E ), (1)

where the diagonal blocks HX = HXX of H are the Hamil-
tonians of the isolated subsystems X = S,S and Γ = HSS

is the coupling from S to S. This is essentially Feshbach’s
projection operator method [46] applied to the present dis-
crete model, while the term ΣS(E ) can be recognized as the
“self-energy” [45,47] of S induced by its coupling to S. It
amounts to “renormalized” matrix elements in the resulting
Hamiltonian H̃S(E ), in analogy to decimation procedures in
real-space renormalization group theory [45], which has been
applied to study, e.g., localization in disordered and quasiperi-
odic tight-binding structures [48–50]. The reduced eigenvalue
problem now has a smaller dimension, but is nonlinear due
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FIG. 1. Left: An unweighted graph, representing a Hamiltonian
H with unit hopping (thin edge lines) and zero on-site elements,
with two cospectral vertices S = {u, v} = {1, 2} forming a latently
symmetric site pair. Right: H is reduced over S to the effec-
tive Hamiltonian H̃S describing a symmetric two-site dimer with
on-site elements f (visualized as loop edges in the graph) and
hopping g depending functionally on the eigenvalue E ; in this
example f (E ) = (8 − 4E − 10E 2 + 2E 3 + 2E 4)/d (E ) and g(E ) =
(−6 + 6E 2 + 2E 3)/d (E ), where d (E ) = 7E − 2E 2 − 8E 3 + E 5.

to the E -dependence of H̃S. The spectrum σ (H̃S ) of H̃S,
given by det[E − H̃S(E )] = 0, coincides with that of H after
removing E values which happen to be eigenvalues of HS and
for which H̃S is not defined; symbolically, σ (H̃S ) = σ (H ) −
σ (HS ) (note that σ is a multiset in the presence of repeated
eigenvalues). Most importantly, any eigenvector |ϕ̃〉 of H̃S

equals the restriction of that of H , with the same eigenenergy,
to the subsystem S [51]: 〈s|ϕ̃〉 = 〈s|ϕ〉 for s ∈ S.

A latent symmetry is a permutation symmetry ΠS of the
reduced Hamiltonian H̃S such that any extended permutation
ΠS ⊕ ΠS (including the identity ΠS = IS) is not a symmetry
of the original Hamiltonian H . Throughout this work, S will
consist of two sites u and v, and by “latent symmetry” we will
always mean symmetry under transposition (i.e., exchange)
of u and v. Then H̃S effectively behaves like a two-site dimer
with E -dependent on-site potentials and coupling; see Fig. 1.
If u and v are latently symmetric in H , this effective dimer
is symmetric under exchange of u and v. If nondegenerate,
its eigenstates |ϕ̃〉 accordingly have definite parity 〈u|ϕ̃〉 =
±〈v|ϕ̃〉, and the same holds for the corresponding eigenstates,
with the same eigenenergies, of H : 〈u|ϕ〉 = ±〈v|ϕ〉. Such a
parity of amplitudes on u and v in the original, extended
system H , is usually traced back to an involutory site permu-
tation symmetry. Remarkably, the global parity in H̃S is here
inherited to the eigenstates |ϕ〉 as a local parity in H , where
there is no permutation symmetry producing it.

Latent symmetries were introduced very recently [40,52]
in the context of isospectral graph reductions [53]. There, H
is the (weighted) adjacency matrix of a connected graph with
vertex set H and edges with weights Hmn = 〈m|H |n〉 between
vertices. For brevity we will refer to the graph itself simply as
H . The isospectral reduction of the graph over a subset S of
its vertices is exactly the graph with adjacency matrix given in
Eq. (1). An example graph is shown in Fig. 1, containing the
two latently symmetric vertices S = {u, v} = {1, 2}.

A crucial fact, promoting the treatment of latent symmetry
with the tools of graph theory, is the following [42]: Two
latently symmetric vertices u, v of a graph are cospectral,
meaning that the spectra of the “vertex-deleted” graphs Hu =
H − u and Hv = H − v (where vertices u and v, as well
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as edges incident to them, have been deleted, respectively)
coincide, σ (Hu) = σ (Hv ). Alternatively, and of more use for
our purposes here, cospectral vertices are defined by the
property that their corresponding diagonal entries in any non-
negative power r of H coincide [54],

[Hr]uu = [Hr]vv ∀ r ∈ N. (2)

In general, for an unweighted graph (Hmn ∈ {0, 1}) the
element [Hr]mn gives the total number of all possible walks
of length r from vertex m to n [55,56], that is, sequences

α = (a1 = m, b1)(a2, b2) · · · (ar, br = n) (3)

of r possibly repeated edges (ai, bi ) with ai+1 = bi. For ex-
ample, the walk with steps 1 → 3 → 5 → 8 → 6 → 2 along
the sites of Fig. 1 is denoted as the sequence of edges
(1, 3)(3, 5)(5, 8)(8, 6)(6, 2). Note that also loops, with bi =
ai, may be included in a walk, representing on-site potentials
Haiai . Equation (2) concerns the special case of closed walks
(n = m) starting and ending at each cospectral vertex u or v.
For instance, Eq. (2) can easily be verified in the unweighted
graph of Fig. 1 for the first few powers r, by counting all
closed walks of length r starting at u = 1 or v = 2. The
closed walks of length r = 3, for example, are (in simplified
step notation) 1 → 3 → 5 → 1 and 2 → 4 → 6 → 2, plus
the same in opposite directions, in accordance with [H3]11 =
[H3]22 = 2.

For a weighted graph, a weight w(α) is assigned to each
walk, equal to the product of edge weights along it, w(α) =∏r

i=1 w(ai, bi ) = ∏r
i=1 Haibi . The above interpretation of ma-

trix powers in terms of walks is then generalized to a sum over
walk weights [57],

[Hr]mn =
∑

α∈A(r)
mn

w(α), r ∈ N, (4)

where A(r)
mn is the set of all walks of length r from m to n.

Fortunately, there is no need to evaluate Eq. (2) beyond k =
N − 1 since, by the Cayley-Hamilton theorem, any higher
powers Hk�N can be expressed as lower order polynomials in
H . As a consequence, if Eq. (2) holds for r = 0, . . . , N − 1,
it automatically holds for all r. This enables the use of the
N × N walk matrix [58,59] WM of a subset M ⊆ H to encode
walks ending in M, constructed by the action of Hr on the
indicator vector |eM〉 of M (with 〈m|eM〉 = 1 for m ∈ M and
0 otherwise):

WM = [|eM〉, H |eM〉, . . . , HN−1|eM〉], (5)

also known as the Krylov matrix of H generated by |eM〉
[60,61]. The rth column of WM is given by [WM]∗r =
Hr−1|eM〉 (∗ denoting all indices) and its element

[WM]sr =
∑
m∈M

[Hr−1]sm (6)

yields the sum over weighted walks—in the sense of Eq. (4)—
of length r − 1 from vertex s to all vertices in M.

We call two vertices u, v walk equivalent [62] relative to
M if their summed walks to M are equal for any walk length
r, that is, if the corresponding rows of WM are equal,

[WM]u∗ = [WM]v∗. (7)
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FIG. 2. The same graph as in Fig. 1, but now parametrically
weighted in the two different ways which preserve the cospectral-
ity of S = {u, v} = {1, 2}. Different edges and loops (hopping and
on-site elements in H ) are visualized by different line numbers and
vertex sizes, respectively. Subsets Mμ (μ = 1, 2, . . . , 5) of sites with
same shading (also with same vertex size) are “walk multiplets” with
respect to S (with u, v being “walk equivalent” relative to any Mμ),
fulfilling Eq. (7). Here the doublets are {1, 2}, {3, 4}, {5, 6}, and the
singlets {7}, {8}.

Conversely, we say that M then constitutes a walk multiplet
with respect to {u, v}; specifically, a walk M-let of size M =
|M| (singlet for M = 1, doublet for M = 2, etc.) [63].

Examples of walk singlets (M = 1) and doublets (M =
2) are shown in Fig. 2. There the weights of the graph in
Fig. 1 have also been parametrized in two different ways
such that the cospectral pair {1, 2}, and each shown walk
multiplet relative to it, are preserved [64]. More specifically,
the cospectrality of {1, 2} and walk multiplets relative to it
remain intact for any arbitrary value—a parameter of H—of
edge weights (including loops) which are equal. For instance,
in the right parametrization the equal weights H13 = H15 =
H24 = H26 can be varied together arbitrarily while retaining
the cospectrality and walk multiplets of {1, 2}.

As we will see further below, this cospectrality- and
multiplet-preserving parametrization will allow for a flexi-
ble tuning of flat bands. In the next section we will start
by showing how the combination of walk equivalence with
cospectrality for vertex pairs may be used to generate CLSs
and corresponding flat band lattices.

Before continuing, let us note that, if two vertices u and
v are related by a permutation symmetry of the graph, i.e.,
there is some permutation matrix Π commuting with H for
which Π |u〉 = |v〉, then Eq. (2) is automatically fulfilled. In
this work we focus on cospectral pairs u, v for which Eq. (2) is
not induced by permutation symmetry, but which correspond
to latent symmetry as defined above. As will be discussed later
on (see Sec. IV C), constructing such graphs is not a trivial
task. We have here resorted to numerical validation of Eq. (2)
for a fixed small graph size (N = 8), with a latently symmetric
example provided in Fig. 1. It should thus be clear that the
graphs we utilize as representative examples in this work
are special cases whose structure supports latent symmetry.
Modifying them arbitrarily (e.g., by adding or deleting edges)
would in general invalidate Eq. (2) and thus break the latent
symmetry between the selected vertices u, v in each case.
Nevertheless, as shown in Ref. [62], there exist systematic
graph modifications which do preserve the cospectrality of a
given vertex pair. Those modifications are outlined below (in
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Sec. III A) and will constitute the key ingredient in generating
flat bands by combining latent symmetry with walk multiplets.

III. FLAT BANDS INDUCED BY WALK EQUIVALENT
COSPECTRAL SITES

Let us now consider a graph H with cospectral vertices u, v

which are walk equivalent relative to a multiplet M, like in
Fig. 2 (with M chosen as one of the multiplets Mμ). Due to
cospectrality, any nondegenerate eigenvector |ϕν〉 has (or, if
degenerate, can be chosen to have) local parity on {u, v} [65],

〈u|ϕ±
ν 〉 = ±〈v|ϕ±

ν 〉, (8)

with + (−) denoting even (odd) parity. This local parity on
the cospectral pair {u, v} is equivalent to a symmetry Q of
H with Q2 = I which exchanges u and v, that is, Q|eu〉 =
|ev〉, while acting as a general orthogonal transformation on
the complement H \ {u, v} [41,54], as described in detail in
Appendix A.

Now, by inserting the spectral decomposition H =∑
ν Eν |ϕν〉〈ϕν | into Eq. (7) and using Eq. (8), one can show

[62] that the amplitude sum of any odd {u, v}-parity eigenstate
over any walk multiplet relative to {u, v} vanishes, that is,∑

m∈M
〈m|ϕ−

ν 〉 = 〈eM|ϕ−
ν 〉 = 0, (9)

where, in the case of degenerate |ϕ−
ν 〉, it has been chosen to

be the only {u, v}-odd eigenstate to its eigenvalue Eν , given
by the projection of the vector |u〉 − |v〉 onto that degenerate
subspace [62]. In particular, 〈m|ϕ−

ν 〉 vanishes on any walk
singlet M = {m}. We note that walk singlets are fixed (that
is, each mapped onto itself) under the action of Q, as shown
in Appendix A.

The generation of flat bands from a latently symmet-
ric H will ultimately consist in converting it into a Bloch
Hamiltonian by interconnecting any of its walk multiplets
within the same graph H itself via edges with corresponding
complex weights. To develop and demonstrate the principle
step-by-step in the following subsections, we will first pro-
vide the necessary graph modification rules in Sec. III A;
apply them to construct a periodic 1D lattice, or directly its
Bloch Hamiltonian, hosting CLSs in Sec. III B; demonstrate
how the corresponding flat bands can be parametrically tuned
in Sec. III C; and combine the above in a 2D example in
Sec. III D.

A. Graph modifications preserving walk multiplets

As shown in Ref. [62], certain modifications can be per-
formed on a graph H such that the cospectrality of vertex pair
{u, v} together with the walk multiplets relative to it remain
intact. For clarity, we here focus on their simplest form (see
Sec. IV below for related generalizations).

The cospectrality of {u, v}, as well as any walk multiplet
M of H , are preserved in the new graph H ′ obtained by
performing the following modifications:

(M1) Connection of an arbitrary graph exclusively to any
walk singlet c of H via edges of arbitrary weights,
whereby all vertices of the added graph become walk
singlets in H ′;

FIG. 3. Schematically depicted graph modifications addressed in
Sec. III A and Appendix B: (M1) connection of an arbitrary graph
G exclusively to a walk singlet c of H , (M2) connection of a walk
multiplet M of H to a single vertex c′ of an arbitrary graph G′, and
(M3) interconnection of two overlapping walk multiplets X and Y
of H .

(M2) Connection of all vertices of any walk multiplet of H
to a single vertex c′ of an arbitrary graph via edges of
uniform weight, whereby all vertices of the added
graph become walk singlets in H ′;

(M3) Interconnection of any two walk multiplets of H via
edges of uniform weight between all vertices of one
multiplet and each vertex of the other (added to any
already existing edge weights),

where any walk multiplet is implied relative to {u, v}. In
Appendix B we provide brief proofs of the above properties in
their general form. A generic schematic of the modifications
is given in Fig. 3. Note that if the two multiplets in (M3)
overlap (that is, have common vertices), then the vertices in
the overlap are interconnected by double (additional) edges,
like the double loop in Fig. 3; see Appendix B.

In the following we will employ the above modifications
(M1)–(M3) for the construction of flat band lattices, illus-
trated in concrete examples.

B. Flat bands via walk multiplet interconnections

In the following principle for constructing flat band lat-
tices, an original latently symmetric Hamiltonian H featuring
walk multiplets will be used as a unit cell of a lattice with
Hamiltonian H 	. The unit cells are interconnected using the
modifications described above in Sec. III A. In this way the
latent symmetry in any copy of H is inherited by the whole
lattice in the sense that it remains present after the intercon-
nection. We stress that, in order to induce flat bands, the walk
multiplets used in the those interconnections are relative to a
given cospectral site pair {u, v}, as described above, and not
to any arbitrary site pair.
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FIG. 4. Top: Construction of a lattice Hamiltonian H 	 using the
Hamiltonian H of Fig. 1 as an isolated unit cell, via modifications
(M1)–(M3) of Sec. III A with respect to its cospectral site pair {1, 2}:
For each of the copies of H (left), setting the labeled graph as refer-
ence, first we connect the walk singlet {8} to sites 1,2 of the cell above
using (M1) and the walk doublet {1, 2} to site 8 of the cell below
using (M2) (middle), and then connect the walk multiplets {3, 4} and
{7} to walk singlets of the resulting graph using (M3) (right), with
intercell connections h indicated by dotted lines. Bottom: The Bloch
Hamiltonian Hk corresponding to the lattice Hamiltonian H 	 can
be constructed from H via (M3) by interconnecting the singlet {8}
({7}) to the doublet {1, 2} ({3, 4}), though with complex Hermitian
couplings he±ikL indicated by purple (green) double-arrowed dotted
lines, with k = |k| and lattice constant L; see Sec. III B.

In Fig. 4 (top) we illustrate the modifications (M1)–(M3)
as applied to our example Hamiltonian H of Fig. 1 to create
a periodic lattice H 	 with H as a unit cell. First, for a given
reference cell H (the cell with labeled sites in Fig. 4; simply
“cell” will mean “unit cell” from here on), we connect the
walk singlet {8} to sites 1,2 in the cell above and the doublet
{1, 2} to site 8 in the cell below. Thus, the cospectrality of the
pair {1, 2} and relative multiplets are preserved by simulta-
neous application of (M1) (connecting a singlet to the graph
above) and (M2) (connecting a multiplet to the graph below).
Note that, after this interconnection, all sites in the remainder
of the lattice (outside the reference cell) are singlets relative to
{1, 2} in the reference cell. Second, in the resulting graph, we
apply (M3) by interconnecting the doublet {3, 4} with the site
7 of the cell above (a singlet relative to {1, 2} in the reference
cell) and the singlet {7} to sites 3,4 of the cell below (both
singlets relative to {1, 2} in the reference cell).

Note that the same interconnections as for the reference
cell to adjacent cells can be performed simultaneously for
all periodically arranged copies of H , without affecting the
cospectrality of {u, v} = {1, 2} in the reference cell. Thus,
since the reference cell is chosen arbitrarily, each unit cell in
H 	 inherits the cospectral pair {u, v} (in local labeling for that
cell) and its relative walk multiplets from the isolated graph
H . We also underline that the distinction between the different
intercell connections in Fig. 4 by the labels M1, M2, M3 refers
only to the way the lattice is constructed by sequential applica-
tion of those graph modification rules. In the final lattice, those
physical connections are qualitatively equivalent; in fact, the
connections labeled M1 and M2 constitute the same intercell
coupling, translated by one unit cell.

The intercell connection scheme previously outlined can be
more compactly expressed directly at the level of the Bloch
Hamiltonian Hk of the lattice. Hk is generally obtained by
Fourier transformation of the lattice Hamiltonian elements
[66] as

[Hk]mn =
∑

�

eik·�〈m|H 	|n�〉, (10)

where |n�〉 is the orbital |n〉 in the cell at position �, with
|n〉 ≡ |n�=0〉 for the reference unit cell at � = 0. The eigen-
values Eν (k) of Hk constitute the band structure of the lattice.
Interconnections between different cells in the lattice graph H 	

(e.g., with some coupling 〈m|H 	|n�〉 = h ∈ R between sites
m, n� �=0) are equivalent to the corresponding interconnections
in the single cell graph H , though additionally weighted with
conjugate Bloch phases (i.e., coupling [Hk]mn = [Hk]∗nm =
h eik·� between sites m, n). This is shown in Fig. 4 (bottom) for
the example lattice. The resulting Bloch graph Hk is directed,
with complex conjugate edge weights in opposite directions
between any vertex pair being interconnected. In fact, Hk

can be seen as resulting from the cospectrality-preserving
modification (M3) (interconnection of two walk multiplets) on
H , though with additional uniform prefactors e±ik·� in either
direction of the connection (see Fig. 4). In Appendix C we
explicate that site pair cospectrality and corresponding latent
symmetry are preserved under walk multiplet interconnec-
tions (M3) with complex Hermitian coupling weights.

Let us now explain how the multiplet interconnection de-
scribed above can induce CLSs and corresponding flat bands
for the resulting lattice. Specifically, any {u, v}-odd eigenstate
|ϕ−

ν 〉 of the initially isolated unit cell H constitutes a CLS
in the lattice H 	 constructed via multiplet interconnection
between unit cells. Indeed, consider the infinite-length column
vector |ϕ−

ν;�〉 defined to have the components of |ϕ−
ν 〉 on the

cell at �, padded with zeros on all other cells �′ �= �, that
is, 〈n�′ |ϕ−

ν;�〉 = 〈n|ϕ−
ν 〉 δ��′ . In other words, |ϕ−

ν;�〉 is a CLS
occupying the cell at �.

Notice now that |ϕ−
ν;�〉 is an eigenstate of the lattice Hamil-

tonian H 	 to the eigenenergy Eν (the eigenenergy of |ϕ−
ν 〉 in

the isolated cell H). To see this, let us write H 	 in the form

H 	 =
⊕

�

H +
∑

��=�′,X,Y

(
h��′
XY |eX;�〉〈eY ;�′ | + H.c.

)
, (11)

where H is repeated on the block diagonal and |eX;�〉〈eY ;�′ |
contains the off-diagonal block coupling multiplet Y in cell

035105-5

5.0 flat bands by latent symmetry 187



C. V. MORFONIOS et al. PHYSICAL REVIEW B 104, 035105 (2021)

�′ to multiplet X in cell � with uniform coupling strength
h��′
XY , and zeros otherwise (|eX;�〉 being the infinite column

with components |eX〉 on cell � and zeros otherwise)—see,
e.g., colored couplings in Fig. 4 (top right). Now, acting with
H 	 on |ϕ−

ν;�〉 directly yields

H 	|ϕ−
ν;�〉 = Eν |ϕ−

ν;�〉, (12)

since H |ϕ−
ν 〉 = Eν |ϕ−

ν 〉 for block � (corresponding to the only
cell occupied by |ϕ−

ν;�〉), while 〈eX;�|ϕ−
ν;�〉 = 〈eX|ϕ−

ν 〉 = 0 by
Eq. (9).

As an example, the lattice constructed in Fig. 4 features
two different CLS types, which are illustrated in Fig. 5 (right
panel) in two different unit cells of the lattice. The orange
arrows indicate an example of how the CLS amplitudes cancel
out (interfere destructively) on a neighboring cell site upon
action of H 	 due to the multiplet condition, Eq. (9).

Analogously to the above, |ϕ−
ν 〉 is an eigenvector of the

Bloch Hamiltonian Hk constructed from H via multiplet in-
terconnections. More specifically, Hk can be written as

Hk = H +
∑

�,X,Y

(
h�
XY eik·�|eX〉〈eY | + H.c.

)
, (13)

summing over all interconnected multiplet pairs X,Y with
Y in cell � and X in the reference cell � ≡ 0 connected
with uniform coupling weight h�

XY . Acting with Hk on |ϕ−
ν 〉

immediately yields

Hk|ϕ−
ν 〉 = Eν |ϕ−

ν 〉, (14)

again due to Eq. (9). This holds for any k, so |ϕ−
ν 〉 corresponds

to a flat band at the k-independent eigenenergy Eν in the band
structure of the lattice.

In Fig. 5 the band structure of the lattice constructed in
Fig. 4 is shown [67]. As we see, there are two flat bands at E =
±√

2, corresponding to the two CLSs “CLS1” and “CLS2”
depicted on the right, with odd parity on the cospectral sites
{1, 2}.

We would like to underline here that the constructed flat
bands are independent of the intercell coupling strength used
in the walk multiplet interconnections. Indeed, as evidenced
by Eq. (9), the hopping elements h�

XY connecting the lattice
cells do not enter the eigenvalue problem in Eq. (14). The
corresponding flat band energy Eν is therefore unaffected by
the value of the h�

XY , which however generally do affect
the rest of the energy spectrum. Thus, the intercell coupling
strengths used in the walk multiplet interconnections can be
flexibly tuned to modify the dispersive part of the band struc-
ture around the constructed flat bands.

The above construction of CLSs and flat bands from latent
symmetry and walk multiplets can be seen as a generaliza-
tion of the construction from local permutation symmetries
Π which are involutory (Π2 = I) and leave certain sites of
the unit cell fixed. If n is such a fixed site, i.e., Π |n〉 = |n〉,
then any eigenstate |ϕ〉 with odd parity under Π has 〈n|ϕ〉 =
〈n|Π2ϕ〉 = −〈n|ϕ〉 = 0, that is, has a node (vanishing am-
plitude) on the fixed site. Interconnecting unit cells into a
lattice by coupling such Π -fixed sites from cell to cell, any
Π -odd eigenstate of the isolated unit cell yields a CLS and
thus a corresponding flat band for the lattice. This scenario
constitutes a special case of the construction described in

FIG. 5. Band structure (left) of the lattice H 	 in Fig. 4, with
unit intracell couplings and intercell couplings h = 2. It features two
flat bands at E = ±√

2 (red lines) corresponding to the two latent-
symmetry induced CLSs “CLS1” and “CLS2” depicted (right). The
amplitudes of each shown CLS are real with indicated relative sign +
(red) and − (blue), with magnitudes proportional to the areas of the
corresponding signed (red/blue) circles, and zero on all other sites.
The isolated unit cell Hamiltonian H and site labeling are highlighted
(green) in the middle. An example of destructive interference of one
of CLS1’s amplitudes on the connected site of an adjacent cell is
indicated by (orange) arrows, with ±ϕ denoting the amplitude on the
walk doublet {3, 4}. Energies are in units of the uniform intracell
site couplings, and lengths in units of the lattice constant L = 1
(quasimomentum k in units of 1/L).

the present work (based on walk equivalent cospectral sites),
where (a) the cospectral sites are related by a common per-
mutation symmetry exchanging those sites and (b) the unit
cells are interconnected via walk singlets relative to the pair
of exchanged sites [68]. We note that such a local exchange
symmetry is, in turn, a special case of general local permuta-
tion symmetries inducing CLSs, as addressed in Ref. [33] in
terms of so-called equitable partitions of graphs. Relating that
approach to latent symmetries involving site subsets S of more
than two sites is an interesting direction of further research.
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FIG. 6. Band structure (left) of a lattice constructed from H in
Fig. 1 as a unit cell by interconnecting its walk doublets {1, 2} and
{3, 4} as indicated by dotted edges in Hk and H 	 (right), with unit
intracell couplings and intercell couplings h = 2. The two flat bands
at E = ±√

2 (red lines) correspond to the same CLSs as in Fig. 5.
Note that the band around E ≈ 0.8 is dispersive and only looks rather
flat at the used plotting scale of the E axis.

We stress that in the present case (Fig. 5), the zeros of
the CLSs within the unit cell (on sites 7,8) are not induced
by any permutation symmetry of the cell fixing those nodal
sites, but rather by latent symmetry and walk equivalence (of
the cospectral sites relative to walk singlets), as described
above.

For simplicity we have applied walk singlet-to-doublet
intercell connections in the above example (Figs. 4 and 5).
It is clear from the above, however, that the procedure to
generate flat bands applies naturally for any walk multiplet
interconnection as intercell coupling; see Eqs. (13) and (14).

As an example, in Fig. 6 we start with the same graph H
(as in Fig. 4) but now interconnect the walk doublets {1, 2} and
{3, 4} in Hk, i.e., each site 1,2 to both 3,4 with complex Her-
mitian couplings (including Bloch phases), and corresponding
real intercell couplings in H 	, as explained above. This lattice
maintains the same CLSs and flat bands as before (Fig. 5),
though generally with modified dispersive bands.

In general, any Hermitian walk multiplet interconnection
(M3) with complex Bloch phases, applied to a unit cell H , is

mapped to an intercell connection in the lattice Hamiltonian
H 	 preserving the latent symmetry in each cell. This allows for
great flexibility in generating flat bands with a given latently
symmetric prototype cell.

To summarize, the proposed flat band construction princi-
ple consists in

(i) starting with a Hamiltonian H in the form of a graph
having two latently exchange-symmetric, cospectral
vertices {u, v},

(ii) identifying walk multiplets of H relative to {u, v}, and
(iii) using H as the unit cell of a lattice constructed by

periodically interconnecting any walk multiplet of
each cell to any walk multiplet of other cells (which
can be neighboring cells but also more remote ones).

The resulting lattice H 	 then features a flat band for each
eigenstate |ϕ−

ν 〉 of H with odd parity on {u, v}, which becomes
a macroscopically degenerate CLS in H 	 occupying one unit
cell.

C. Parametric invariance of latent symmetry flat bands

It is important to notice that the generation of CLSs and
resulting flat bands from latent symmetry and walk multiplets
of a graph H is not restricted to a fixed set of edge weight
values Hmn. Indeed, there is a certain freedom in changing
H’s elements parametrically while still inducing flat bands
from the same latent symmetry and walk multiplets. Specif-
ically, this parametrization means that there exist groups of
the elements Hmn which can be set to a common arbitrary
real value per group, without breaking the given latent sym-
metry and selected walk multiplets. For example, the weight
parametrizations shown in Fig. 2 preserve the cospectrality
of {u, v} as well as the multiplets interconnected to form the
lattice in Fig. 4. Thus, when varying the weight parameters
(that is, the common value of each group of elements Hmn),
flat bands are still induced for the constructed lattice. Their
energy positions, however, generally depend on the weight
parameters, which allows for tuning the flat bands relative to
the rest of the band structure.

We demonstrate this parametric invariance of the flat bands
for our navigating example graph in Fig. 7, where the band
edges for the lattice in Fig. 5 are plotted for a continuous
variation of selected couplings in the unit cell. Specifically,
using the cospectrality- and multiplet-preserving edge weight
parametrization of Fig. 2 (right), a selected subset of couplings
is set to a common varying value p (see Fig. 7 caption). As
we see, while the dispersive band widths vary with p, the flat
bands constructed by latent symmetry for p = 1 remain flat
for any p (see red lines, whose vertical cross sections at any p
are single points at the corresponding Eν). This is in contrast
to flat bands that may appear “accidentally” when varying p,
as seen, e.g., for the second lowest band which becomes flat
at a single point around p ≈ 0.4765.

Furthermore, in this example the upper (lower) flat band
energy increases (decreases) linearly with p across the disper-
sive bands and the gaps between them. This demonstrates the
possibility to tune the flat band positions relative to dispersive
bands without invoking any apparent symmetry of the unit
cell.
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FIG. 7. Band edges (black lines) and band projections⋃
k∈BZ Eν (k) (gray shades) of the bands Eν (k) over the Brillouin

zone (BZ) for the lattice in Fig. 5 with varying coupling parameter
H13 = H15 = H24 = H26 = p indicated (orange lines) in the
schematic on the left; p = 1 corresponds to the band structure in
Fig. 5. The two flat bands induced by latent symmetry of sites 1,2
occur at any p, with energies varying in p (thick red lines).

For clarity, let us here underline the qualitative difference
of intercell and intracell variations regarding their influence
on the constructed flat bands. The intercell couplings used
in walk multiplet interconnections in the unit cell [the h�

XY
in Eq. (13) for each interconnected multiplet pair X,Y ] can
be varied at will leaving the flat bands intact in energy. In
contrast, the intracell couplings must first be parametrized
into groups of common values, as described above, whose
variation then retains the occurrence of the flat bands but may
generally alter their energy position. Combined, those inter-
and intracell coupling variations constitute a flexible way to
design the overall band structure featuring flat bands induced
by latent symmetry.

D. Flat bands via walk singlet augmentation

Another variation of using the graph modifications in
Sec. III A for flat band construction is to first modify a latently
symmetric graph H itself, before interconnecting it into a
lattice. In particular, using (M2) we can augment H by con-
necting new vertices to walk multiplets relative to a cospectral
pair {u, v}. In the resulting graph H ′, each such new vertex
c′ will be a walk singlet, which will in turn have vanishing
amplitude in any nondegenerate eigenvector with odd parity
on {u, v}; see Eq. (9). This “singlet augmentation” may be
used, e.g., to bring a given unit cell into a more preferable
shape for connection into a lattice.

FIG. 8. Band structure (left) of a 2D lattice (bottom right) con-
structed by repetition of an unweighted 8-vertex graph H (with unit
intracell couplings) augmented by two vertices 9 and 10 connected
to the graph’s cospectral pair {1, 2} and the walk doublet {3, 4},
respectively (top right), with dotted double-arrowed edges indicating
complex couplings he±ikx(y)L in ±x(y) direction in the Bloch Hamil-
tonian H ′

k (see text). Intercell edges with unit weight h = 1 (dotted
lines) connect the walk singlets {7, 8, 9, 10} of the graph in x and y
direction, preserving its two CLSs (depicted in the lattice; colormap
as in Fig. 5) which correspond to two flat bands at E = ±√

2 − 1.

We demonstrate this procedure by constructing a 2D flat
band lattice in Fig. 8. The original 8-vertex graph H (upper
right of figure) has four doublets relative to the cospectral
pair {u, v} = {1, 2}, with one of them further consisting of
the two singlets {7}, {8}. The graph has two eigenvectors with
odd {u, v} parity which vanish on those singlets. Note that,
like the graph in Fig. 2, this one can also be parametrized
in its edge weights while keeping its latent symmetry and
corresponding compact eigenvectors, as we will see below.
For simplicity we first keep its unweighted version. We now
connect two new vertices 9 and 10 to two doublets using
modification (M2), which thus yields two more singlets on
which the previous compact eigenvectors also vanish. Then
we connect the new graph H ′ into a 2D lattice—similarly
to the procedure in Sec. III B—via its four corner singlet
vertices, as shown, described by the corresponding Bloch
Hamiltonian H ′

k. The resulting band structure Eν (k) features
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FIG. 9. Band edges and projections as in Fig. 7 but for the 2D
bands of the lattice in Fig. 8 for varying parameter p in two different
cases of the edge weight parametrization as shown at the top; p = 1
corresponds to the band structure in Fig. 8.

two flat bands at E = ±√
2 − 1, with the corresponding CLSs

depicted in two unit cells of the lattice.
We emphasize that the CLSs are induced by the latent

symmetry of the site pair {1, 2}, and not by a permutation
symmetry of the lattice cell. Specifically, the cell is indeed
reflection symmetric about one diagonal (the line passing
through sites 7 and 9), and the CLSs are odd under this
reflection with nodes on this diagonal, as expected (recall
discussion on permutation symmetry Π in Sec. III B). This
symmetry does not explain, however, the other two CLS
nodes at sites 8 and 10. Each of those are instead fixed
under the latent symmetry operation Q (see Appendix A)
induced by the cospectrality between u, v. In fact, a general
weight parametrization preserving the walk multiplet struc-
ture violates the cell’s reflection symmetry, though retains the
compactness of the CLSs, that is, their nodes on the singlet
sites, and the corresponding flat bands.

The latter is demonstrated in Fig. 9, where a cospectrality-
and multiplet-preserving parametrization of the edge weights
by real parameters pi=1,2,...,7 is considered (top panel).
Parametrization of the on-site elements, or loops, is also pos-
sible but not shown for simplicity. The band edge evolution
for two parametrical variations is plotted. In the first case
(left plot) we set p2 = p7 = p (other intracell hoppings to
unity) and vary p, whereby the flat bands (red lines) are pre-
served with linearly varying energy. In the second case (right

plot) we set p1 = p2 = p3 = p (other intracell hoppings again
equal unity), whose variation modifies the dispersive bands
but leaves the flat band energies fixed. We thus see that such
parametrizations of the unit cell Hamiltonian preserving its
latent symmetry, together with the chosen intercell couplings
(whose variation, not shown here, evidently also preserves the
latent symmetry), can be used to tune the induced flat bands
flexibly in relation to the surrounding band structure.

Finally, we note that in this example we interconnected
the unit cells via their corner walk singlets for simplicity.
One could instead, or additionally, interconnect larger mul-
tiplets between the cells, still preserving the same CLSs
and concomitant flat bands—though generally changing the
dispersive bands. For example, the walk doublet {3, 4} (see
Fig. 8) of the cell at each � could be connected diagonally in
the lattice to the doublet {5, 6} of the cell at � + Lx̂ + Lŷ.

IV. DISCUSSION

Having demonstrated how latent symmetry, in combination
with walk multiplets, may be employed to induce flat bands,
let us now discuss some aspects and extensions of the pre-
sented framework.

A. Number and spatial extension of CLSs

In each of the above examples, Figs. 5 and 8, there were
two CLSs per unit cell associated with a cospectral site pair
{u, v} in H . The number of such CLSs depends on the struc-
ture of the graph used as a cell. Specifically, the number
of eigenstates of H with odd {u, v} parity is given by the
dimension of the Krylov subspace generated by the vector
|−〉 ≡ |u〉 − |v〉 [65], that is, the rank of the correspond-
ing Krylov matrix [|−〉, H |−〉, H2|−〉, . . . , HN−1|−〉]. Also,
there may be more than one cospectral pair in the graph H ,
each of which may induce different CLSs in a correspond-
ing multiplet-interconnected lattice. Of course such latently
symmetric cospectral pairs may further coexist with cospec-
tral pairs corresponding to permutation symmetries swapping
only two vertices u, v. Clearly for such pairs all other sites
in H are walk singlets, with corresponding CLSs confined to
{u, v} in each lattice cell. In the examples shown here, we have
chosen cell graphs having only latent symmetries for clarity.

Note, further, that in the above flat band construction
scheme (see Sec. III B) we have explicitly considered the orig-
inal graph H (or some augmented one, see Sec. III D) as the
unit cell of the generated lattice H 	. The induced CLSs then
occupy U = 1 unit cell each, using the number of occupied
unit cells U as a flat band classifier [31] (recently generalized
accordingly for lattice dimensions d > 1 [69]). One could in
principle, however, start with a supercell H ′ of a target lattice
H 	, consisting of U > 1 interconnected copies of H , and
look for new cospectral pairs {u′, v′} which are not cospectral
in H . Then, CLSs induced by {u′, v′}-odd eigenstates of H ′
will generally occupy U > 1 primitive unit cells within the
supercell. The key challenge here would be to design inter-H
connections which coincide with walk multiplet interconnec-
tions between supercells H ′. We leave this endeavor for future
work.
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B. Generalizations of walk multiplets

The concept of walk multiplets can be generalized [62]
by replacing the indicator vector of M in Eq. (5) with a
nonuniform version |eγ

M〉, with a tuple γ of generally different
amplitudes

γm = 〈
m

∣∣eγ

M

〉
(15)

for m ∈ M and 0 otherwise. γm = 1, up to a global factor,
corresponds to the uniform walk multiplets considered so far.
If a new vertex c′ is connected to M via those weights γm,
then the associated cospectrality is preserved and c becomes a
walk singlet if Eq. (7) is fulfilled—now with the walk matrix
generated by |eγ

M〉. In other words, the modification (M2)
of Sec. III A is generalized to such nonuniform walk multi-
plets, as is, similarly, the multiplet-interconnection (M3); see
Appendix B. A particular case is that of overlapping uniform
multiplets Mμ (μ = 1, 2, . . . ), whose union yields a nonuni-
form multiplet with indicator vector |eγ

M〉 = ∑
μ |eMμ

〉, where
|eMμ

〉 is the usual indicator vector of multiplet Mμ. An exam-
ple is schematically shown as overlapping multiplets X and Y
in Fig. 3.

Another variation is to consider walk antiequivalence by
replacing Eq. (7) with [WM]u∗ = −[WM]v∗. In this case, M
is a walk antimultiplet relative to {u, v} and the role of par-
ity is swapped: Now the eigenvectors |ϕ+

ν 〉 with even parity
on {u, v} become CLSs, with vanishing amplitudes on anti-
singlets [62]. These generalizations of the concept of walk
multiplets offer an even larger flexibility in generating flat
band lattices from graphs with latent symmetries.

C. Occurrence and construction of latently symmetric graphs

In all of the above we have assumed that the original graph
H is latently exchange symmetric, that is, features some pair
of vertices u and v which are cospectral but not exchange sym-
metric in H . We also assumed the given graph to feature some
walk multiplets relative to {u, v}. The aim was to show how
these properties, when given, can be used instead of common
symmetries—that is, permutation operations commuting with
H—to induce CLSs and corresponding flat bands for periodic
lattice structures.

The systematic construction of latently symmetric graphs
is far from trivial. To date, and to the best of our knowl-
edge, there is indeed no general procedure for constructing
undirected, latently symmetric graphs; it is rather a subject
of ongoing research. One approach is based on “unpacking”
the isospectrally reduced form of a graph [42], by applying
partial fraction decomposition to its functional dependence on
the eigenvalue E , and then accordingly constructing a gen-
erally directed graph with complex weights. Another recent,
semiempirical approach [70], starts from a graph with trivially
cospectral vertices—that is, induced by some permutation
symmetry—which is then modified by adding vertices and
edges such that the permutation symmetry is broken while the
cospectrality is not.

In fact, the defining property of vertex cospectrality, Eq. (2)
evaluated up to r = N − 1, makes it straightforward to re-
sort to numerical iteration for verifying it. In this spirit,
Ref. [70] reports on the occurrence of latently symmetric
graphs out of all possible unweighted graphs of given small

size. Specifically, we have created a database of all un-
weighted graphs (adjacency matrices) of size up to N = 11
which have at least one cospectral vertex pair and no permu-
tation symmetry. For N � 7 there is no such graph. For N =
8, 9, 10, 11 there are 78, 2 247, 78 489, 3 714 397 such graphs,
respectively. Although this is, in each case, a small portion
(≈7.0, 8.6, 10.0, 4.7%) of all possible graphs, the analysis
shows that there is a substantial number of latently symmetric
unweighted graphs even for such small sizes. This means that
latent symmetry would in principle not be hard to design in a
targeted setup, consulting, e.g., the above database.

For larger graphs (N � 1) there is numerical evidence
that the occurrence of latent symmetries is correlated to that
of common permutation symmetries, in the sense that their
percentage has been found to follow the same trend when
varying a structural parameter for a class of randomly gen-
erated graphs, as stated in Ref. [52]. The exact reason for this
behavior is an open question.

In the same manner as cospectral vertices, we identify
walk multiplets relative to a cospectral pair {u, v} of a given
graph by scanning through all vertex subsets of all possible
sizes for those that fulfill Eq. (7). For the graphs available
in the above database, we have observed that, typically, the
graphs have multiple walk multiplets [relative to the featured
cospectral pair(s)] for each multiplet size—although there are,
e.g., cases where walk singlets are absent—with the number
of multiplets typically increasing with their size. Also, there
is always at least one walk doublet, namely the cospectral
pair itself. The walk multiplet structure is further enriched
by considering their generalized version (nonuniform and
antimultiplets, see Sec. IV B above), as described in detail
in Ref. [62]. The relation of general walk multiplets to the
structure of eigenvectors of graphs with cospectral vertices is
an interesting topic to be pursued.

V. CONCLUSIONS

We have shown how flat bands can be induced by latent
symmetry between a pair of sites in the unit cells of discrete
lattices. This symmetry is revealed as an exchange permuta-
tion symmetry of the effective Hamiltonian upon reduction
of the cell over the site pair subsystem, and imposes odd or
even local parity of the original Hamiltonian eigenstates on
those two sites. Using recent concepts and tools from graph
theory, where latent symmetry takes the form of cospectrality
between two vertices, we propose a framework for generating
flat bands from the structural properties of graphs lacking
permutation symmetries. The key ingredient is the occurrence
of walk equivalence of cospectral vertices relative to vertex
subsets called walk multiplets. This signifies a collective sym-
metry between possible walks along the edges of a graph from
its cospectral vertices to a given walk multiplet, expressed in
terms of corresponding walk matrices. Crucially, the ampli-
tude sum on walk multiplets vanishes for any nondegenerate
eigenvector with odd parity on cospectral vertices.

When connecting the graph as a unit cell into a lattice
via its walk multiplets, those eigenvectors constitute compact
localized states (CLSs) forming flat bands within an otherwise
dispersive band structure. We illustrate the scheme for 1D
and 2D lattices using simple graphs with cospectral sites. A

035105-10

192 scientific contributions



FLAT BANDS BY LATENT SYMMETRY PHYSICAL REVIEW B 104, 035105 (2021)

generalization to more complex cell geometries, possibly with
multiple latent symmetries, and to higher-dimensional lattices
is straightforward. As we demonstrate, the latent symmetry
persists over flexible parametrizations of the lattice Hamilto-
nian elements, making the induced flat bands systematically
tunable. This should allow for a feasible generation of flat
bands from latent symmetries in various realization platforms
such as, e.g., photonic waveguide arrays or electric circuit
networks, with tailored intersite connections. We thus offer
a fundamental insight into a class of CLSs originating from
hidden Hamiltonian symmetries, which may also provide a
valuable tool in designing flat band setups.
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APPENDIX A: COSPECTRALITY FROM WALK
MATRICES AND ORTHOGONAL SYMMETRY

Here we give a brief account on the orthogonal symmetry
matrix Q describing vertex cospectrality. The purpose is to
provide an insightful connection between the latent symme-
try of a graph, upon reduction over two cospectral vertices,
and the underlying symmetry operation exchanging those
vertices in the original graph. The description is adapted
from Ref. [58] to a graph with N vertices H and symmetric
weighted adjacency matrix H .

First, consider two arbitrary subsets U ,V ⊆ H with walk
matrices

WX = [|eX〉, H |eX〉, . . . , HN−1|eX〉] (A1)

for the indicator vectors |eX〉, X = U ,V . If WV is invertible
(that is, has full rank N), then the matrix

QUV = WUW −1
V (A2)

commutes with H , thus representing a general symmetry
transformation. To see this, recall that

HN =
N−1∑
r=0

crHr (A3)

by the Cayley-Hamilton theorem which states that H fulfills
its own characteristic equation χ (x) = ∑N

r=0 arxr = 0, where
cr = −ar/aN . Therefore, we have that

HWX = WXC, X = U ,V , (A4)

where

C =

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cN−1

⎤
⎥⎥⎥⎥⎦ (A5)

is the companion matrix [60] for H . Thus,

HQUV = WUCW −1
V

= WU

(
W −1

V HWV

)
W −1

V = QUVH. (A6)

Furthermore, if both WU and WV are invertible and fulfill

W �
UWU = W �

V WV , (A7)

then QUV is orthogonal:

Q�
UV = [

W −1
V

]�
W �

U

= [
W −1

V

]�
W �

V WVW −1
U = WVW −1

U = Q−1
UV . (A8)

With invertible WX (X = U or V ), H has simple eigenvalues
[58] Eν (no degeneracies) and then, because QUV commutes
with H , it is a polynomial in H . Thus, if H is symmetric, so is
QUV , and since it is also orthogonal, we obtain that

QUV = Q�
UV = Q−1

UV . (A9)

Now, if U = {u} and V = {v} constitute two cospectral
vertices, we have [54]

W �
u Wu = W �

v Wv. (A10)

Then, if both Wu and Wv are invertible, Eq. (A9) holds for
Q{u},{v} ≡ Q of the main text, that is, Q2 = Q�Q = I . In par-
ticular, since QWv = Wu and QH = HQ, we have that Q|v〉 =
|u〉 and Q|u〉 = |v〉. Thus, being also orthogonal, Q is block
diagonal with one block being the antidiagonal matrix

JS =
[

0 1
1 0

]
(A11)

swapping u and v in S = {u, v}.
Furthermore, for a walk multiplet M the condi-

tion [WM]u∗ = [WM]v∗ [Eq. (7)] yields 〈u|Hr |eM〉 =
〈v|Hr |eM〉 = 〈v|HrQ�Q|eM〉 = 〈u|HrQ|eM〉 for r =
0, . . . , N − 1, where we used H = H�, QH = HQ, and
Q|v〉 = |u〉. Since Wu has full rank, the N columns Hr |u〉 span
an N-dimensional column space, meaning that Q|eM〉 = |eM〉
(both vectors have equal projections in all N dimensions).
Thus, if H has a vertex subset F consisting of walk singlets,
then [Ws]u∗ = [Ws]v∗ ∀s ∈ F , so another block of Q is the
|F | × |F | unit matrix IF leaving the singlet vertices fixed
(causing the odd-{u, v}-parity eigenvectors to vanish on
them).

The remaining orthogonal block QO operates on the re-
maining vertices within O = H \ (S ∪ F ), transforming the
corresponding rows of Wv into those of Wu: [Wu]O,∗ =
QO[Wv]O,∗. With vertices labeled accordingly, Q thus has the
form

Q = JS ⊕ IF ⊕ QO. (A12)

As an example, for the graph of Fig. 1 the |O| × |O| block is
given by QO = 1

2

[A B
B A

]
, with A = [1 1

1 1

]
and B = [−1 1

1 −1

]
,

where O = {3, 4, 5, 6}.
Notice here that, since Q commutes with H , its eigenvec-

tor matrix block-diagonalizes H accordingly under similarity
transformation. Such a transformation can be seen as reminis-
cent of the “Fano detangling” procedure of Ref. [32], though
here for a cospectral site pair {u, v} (instead of a single site)
and determined from the walk structure of H .
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If the spectrum of H is degenerate or has any eigenvector
with vanishing amplitudes on {u, v}, then Wu and Wv do not
have full rank [54,59] and are thus not invertible. Hence,
although a Q matrix still exists, which is unique under the
convention of treating eigenvectors vanishing on {u, v} as
{u, v}-even [54], it cannot be obtained directly from Eq. (A2)
[71].

Alternatively, the following expression can be used for a Q
matrix (obeying, Q2 = Q�Q = I and Q|u〉 = |v〉) [41]:

Q = P+ − P− = I − 2P−, (A13)

where P± = ∑
ν |ϕ±

ν 〉〈ϕ±
ν | is the projector onto eigenvectors

with ± parity on {u, v} (P+ also including eigenvectors van-
ishing on {u, v}), chosen in case of degeneracy such that there
is at most one eigenvector of each parity nonvanishing on
{u, v} for any given eigenvalue. This expression is not directly
derived from the structure of the graph (specifically, its walk
matrices Wu,Wv) but rather invokes the spectral properties of
H—that is, one first needs to find its eigenvectors.

APPENDIX B: GENERAL COSPECTRALITY-PRESERVING
GRAPH EXTENSIONS AND INTRACONNECTIONS

We show here that the cospectrality of a pair {u, v} and
the walk multiplets relative to it are preserved by the modi-
fications (M1), (M2), and (M3) listed in Sec. III A. Like in
Ref. [62], the modifications are now stated in a more general
form for nonuniform walk multiplets with weighted indicator
vector |eγ

M〉 (see Sec. IV).
For an original weighted adjacency matrix of a graph H ,

the modified one H ′ will have the form of a sum

H ′ = A + B, (B1)

with

A = H ⊕ G (B2)

generally being a block-diagonal matrix (including the case of
absent or 0 × 0 block G) and

B = |b1〉〈b2| + |b2〉〈b1| (B3)

being a symmetric sum of rank-one coupling matrices. Setting
the |b1,2〉 to be site subset indicator vectors below, B will
express the interconnection of those subsets in the modified
graph H ′.

The powers of H ′, appearing in the corresponding modified
walk matrices W ′

M, are given by

[A + B]r =
r∑

p=0

∑
π (A,B)

{Ar−pBp}, (B4)

where
∑

π (A,B){Ar−pBp} denotes the sum of all distinct per-
mutations of A’s and B’s in matrix products with r − p A’s
and p B’s; for instance, AAB + ABA + BAA for r = 3, p = 1.
H ′r is thus generally a weighted sum of products of the
matrices Hr−p ⊕ Gr−p, [|b1〉〈b1|]n1 , [|b2〉〈b2|]n2 , [|b1〉〈b2|]n3 ,
[|b2〉〈b1|]n4 with p ∈ {0, 1, . . . , r} and ni ∈ {0, 1, . . . , p}.

In the following we briefly prove preservation of cospec-
trality and walk multiplets under modifications (M1), (M2),
(M3), which are depicted schematically in Fig. 3.

1. Singlet extension (M1)

For a singlet c ( �= u, v) of H connected symmetrically—
i.e., so that H ′ is symmetric—to an arbitrary graph G with
vertices G, we have |b1〉 = |c〉, which is the indicator vector
of c in H ′, and |b2〉 = |eγ

G〉, which is the arbitrarily weighted
indicator vector of G, in Eq. (B3).

From Eqs. (B1) and (B4), elements [H ′r]uu = 〈u|H ′r |u〉
thus only have contributions involving |u〉 in factors [Hq]uu

and [Hq]uc, [Hq]cu for different powers q. For instance,
with 〈c|eγ

G〉 = 0, we have A2B2A = A2(〈eγ

G|eγ

G〉|c〉〈c| +
|eγ

G〉〈eγ

G|)A, whose uu element becomes [A2B2A]uu =
[H2]uc〈eγ

G|eγ

G〉Hcu.
Since {u, v} are cospectral in H and c is a walk singlet,

those factors [Hq]uu, [Hq]uc, [Hq]cu remain equal under the
replacement u → v, as do, trivially, factors not containing
the index u. This yields [H ′r]uu = [H ′r]vv , so {u, v} remain
cospectral in H ′.

Similarly, walk matrix elements [W ′
M]ur for any walk mul-

tiplet M of H only have contributions involving |u〉 in factors
[WM]uq and [Hq]uc. Thus, since [WM]uq = [WM]vq (M walk
multiplet in H) and [Hq]uc = [Hq]vc (c walk singlet in H), we
have [W ′

M]u∗ = [W ′
M]v∗, that is, M is a walk multiplet also

in H ′.

2. Multiplet extension (M2)

For a walk multiplet M of H connected symmetrically to a
single vertex c′ of an arbitrary graph G, we have |b1〉 = |c′〉,
which is the indicator vector of c′ in H ′, and |b2〉 = |eM〉 in
Eq. (B3). With similar arguments as in Appendix B 1 above,
again we get [H ′r]uu = [H ′r]vv and [W ′

X]u∗ = [W ′
X]v∗ for any

walk multiplet X of H .

3. Multiplet interconnection (M3)

If two disjoint walk multiplets X and Y of H are symmet-
rically and fully interconnected—that is, each vertex of one
is connected to all of the other, with weights added to any al-
ready existing connection—we have A = H in Eq. (B2), with
G now being absent, and |b1〉 = |eX〉, |b2〉 = |eY 〉 in Eq. (B3).
With similar arguments as in Appendix B 1, cospectrality of
the pair {u, v} and any walk multiplet M relative to it are
preserved in H ′. Using the same form of the interconnection
matrix B, this also holds if X and Y overlap, that is, have
common vertices.

APPENDIX C: SYMMETRY VERSUS HERMITICITY

In this Appendix we briefly comment on the relation
between vertex cospectrality and latent symmetry when
considering a complex Hermitian—as opposed to a real
symmetric—Hamiltonian H . Note that, for complex Hermi-
tian H , the cospectrality condition for a pair {u, v} in terms of
walk matrices, Eq. (A10), is replaced with

W †
u Wu = W †

v Wv, (C1)

with ( )† = ( )�∗ denoting Hermitian conjugation.
It was recently shown [42] that cospectrality of a vertex

pair {u, v} of a graph H is equivalent to latent symme-
try between u and v—that is, the 2 × 2 reduction H̃{u,v} of
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H is bisymmetric—if H is symmetric, that is, its graph is
undirected. Therefore, to relate vertex cospectrality to latent
symmetry, we have assumed a symmetric unit cell Hamil-
tonian matrix H , which was also chosen real to generally
possess a real eigenvalue spectrum.

Nevertheless, if H is modified into a Bloch Hamiltonian
Hk exclusively by interconnecting walk multiplets with self-
adjoint complex weights (a special case of a directed graph;
see Hk in Fig. 4 with each dotted line indicating complex
conjugate weights he±ik·� in either direction), then vertex
pair cospectrality does imply corresponding latent symme-
try, and vice versa. Indeed, the multiplet interconnection in
Appendix B above remains valid in the same form (with
〈x| = |x〉† and “symmetric” replaced by “self-adjoint”) for
walk multiplets with indicator vector |eγ

M〉 weighted by a
complex tuple γ [see Eq. (15)]. For instance, in Hk in Fig. 4
the singlet {8} is connected with complex weight γ8 = heikL =
[Hk]8m = [Hk]∗m8 (m = 1, 2) to the doublet {1, 2} and the sin-
glet {7} is connected with complex weight γ7 = he−ikL =
[Hk]7m = [Hk]∗m7 (m = 3, 4) to the doublet {3, 4}, for some
real h.

Now, since such walk multiplet interconnections pre-
serve {u, v}-cospectrality and relative multiplets (as shown in
Appendix B), in particular {u, v} itself remains a walk doublet

in Hk: [
Hr

k

]
uu + [

Hr
k

]
uv

= [
Hr

k

]
vv

+ [
Hr

k

]
vu (C2)

for all powers r ∈ N. As a consequence,[
Hr

k

]
uv

= [
Hr

k

]
vu ∈ R ∀ r ∈ N. (C3)

Thus, the restriction of each power Hr
k to the cospectral pair

is bisymmetric, that is, commutes with the 2 × 2 exchange
matrix JS={u,v}, Eq. (A11).

As we showed very recently in Ref. [41], a necessary and
sufficient condition for a latent symmetry transformation T
upon reduction to a vertex subset S is that all powers of H
restricted to S have the same symmetry:

T H̃S = H̃ST ⇐⇒ T [Hr]S = [Hr]ST ∀ r ∈ N. (C4)

In the present case S = {u, v} is a cospectral pair and T = JS,
with [Hr

k ]SJS=JS[Hr
k ]S implying H̃k;SJS = JSH̃k;S, meaning

that Hk has a latent JS symmetry in its reduction over {u, v}.
To summarize: For a general directed graph H , {u, v}

cospectrality is necessary but in general not sufficient for
corresponding latent symmetry [42]; but for a complex self-
adjoint H ′ (in our case the Bloch Hamiltonian Hk) constructed
from an undirected H via Hermitian interconnection of walk
multiplets relative to {u, v}, it is both necessary and sufficient.
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Degeneracies in the energy spectra of physical systems are commonly considered to be either of
accidental character or induced by symmetries of the Hamiltonian. We develop an approach to explain
degeneracies by tracing them back to symmetries of an isospectral effective Hamiltonian derived by
subsystem partitioning. We provide an intuitive interpretation of such latent symmetries by relating them to
corresponding local symmetries in the powers of the underlying Hamiltonian matrix. As an application, we
relate the degeneracies induced by the rotation symmetry of a real Hamiltonian to a non-Abelian latent
symmetry group. It is demonstrated that the rotational symmetries can be broken in a controlled manner
while maintaining the underlying more fundamental latent symmetry. This opens up the perspective of
investigating accidental degeneracies in terms of latent symmetries.
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Introduction.—Identifying the origin of spectral degen-
eracies in quantum systems is of fundamental importance
for the understanding and control of their structural and
dynamical properties. Degenerate states are at the heart of
spectacular phenomena like the Jahn-Teller effect [1] and
the quantum Hall effect [2,3] as well as the electromagnetic
response of, e.g., atoms or molecules [4,5] in general. In
lattice systems designed macroscopic degeneracies can
realize flat bands within a variety of setups including
optical lattices, photonic waveguide arrays, and super-
conducting networks [6]. Further, degeneracies in the form
of conical intersections of molecular potential energy
surfaces play a central role for ultrafast dynamical decay
processes [7,8] and are responsible, e.g., for molecular self-
repair mechanisms in photobiology [9].
When degeneracies occur in the energy spectrum, the

first place to seek their origin is commonly the group of
geometrical symmetry operations commuting with the
underlying Hamiltonian. Prominent examples for such
symmetries are the molecular point group in chemistry
or the space group in crystallography. If this group is non-
Abelian—that is, if at least two symmetry operations do not
commute with each other—it induces degeneracies of
multiplicities determined by the dimensions of the group’s
irreducible representations. More challenging is the reverse
question of assigning degeneracies to a symmetry group
with a physical significance [10,11]. A famous example of
a physically significant, yet not obvious, symmetry from
the early days of quantum theory is the SO(4) symmetry
leading to the conservation of the Runge-Lenz vector in the
hydrogen atom [12]. If no such physically meaningful
symmetry group can be found, the degeneracy is tradi-
tionally called accidental [13]. This often occurs for

systems with several or many degrees of freedom where
eigenenergies happen to coincide at some location in the
corresponding parameter space, intersections of molecular
potential energy surfaces being a typical example [14].
In this work, we promote a different viewpoint on assign-

ing degeneracies to symmetries of the system. Instead of
performing a symmetry analysis of theHamiltonian itself, we
do this for the effective Hamiltonian obtained from the
original one by reducing it onto a subsystem while retaining
the energy spectrum. We note that its core property—the
preservation of the energy spectrum—clearly distinguishes
this approach from thosewhich analyze the symmetries of an
effective model obtained by truncation or a mean-field
ansatz. Focusing on generic discrete models, we here show
how geometrical symmetries of the isospectrally reduced
Hamiltonian induce spectral degeneracies for the original
system. Such latent symmetries, as introduced recently in
graph theory [15], are generally not apparent in the original
system at hand. In fact, as we show here, they are directly
linked to corresponding local symmetries, though in all
powers of the original Hamiltonian. Navigating through the
proposed concepts, visualized by minimalistic examples, we
(i) show how non-Abelian latent symmetries are necessarily
induced by rotation symmetries of a real Hamiltonian, and
(ii) demonstrate that these latent symmetries, alongwith their
induced degeneracies, can be preserved even when breaking
the original rotational symmetry. Lastly, we link a special
case of latent symmetry to what we call here a generalized
exchange symmetry of the Hamiltonian.
Degeneracies from latent symmetries.—The concepts

and results developed in this work are valid for generic
setups described by a finite-dimensional matrix. This
matrix can be drawn from a wide range of physical
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platforms: It could represent a Bloch Hamiltonian of a
tight-binding lattice [16], a molecular Hückel Hamiltonian
[17,18], a multiport scattering matrix [19], or very gene-
rally the matrix H occurring in (linearized) dynamical
problems [20], such as coupled oscillators [21]. To convey
the main ideas in a transparent way, we will illustrate it by
means of minimalistic prototypical setups.
In order to reveal the latent symmetries of a general

complex matrix H, we will rely on a dimensional reduction
of H which preserves the eigenvalue spectrum. This
isospectral reduction is defined as [15,22]

RSðH; λÞ ¼ HSS −HSS̄ðHS̄ S̄ − λIÞ−1HS̄S; ð1Þ

whereby S is a set sites and S̄ denotes the complement set of
all other sites of the given setup. HSS and HS̄ S̄ denote the
respective Hamiltonians of the sub-systems consisting only
of the sites in S or S̄. HS̄S and HSS̄ represent the coupling
between the two sub-systems, and I is the identity matrix.
The isospectral reduction RSðH; λÞ is equivalent to an
effective Hamiltonian gained from a subsystem partitioning
of H [23], and its entries are rational functions of the
parameter λ.
A Hamiltonian H is latently symmetric if there exists an

isospectral reduction RSðH; λÞ with a symmetry, that is,
which commutes with a group of matrices fMg indepen-
dent of λ. We now demonstrate this concept by means of the
simple 6-site Hamiltonian H depicted in fig. 1(a). This
Hamiltonian illustrates the minimal prototype of a system
with non-trivial latent symmetry. H is parametrized by
three real coupling parameters hi ≠ 0, i ∈ f1; 2; 3g and two
on-site potentials v1, v2. The eigenvalue spectrum of H
contains two doubly degenerate eigenvalues for any choice
of these parameters. To explain these degeneracies in terms
of latent symmetries ofH, we reduce it by means of Eq. (1)
over S ¼ f1; 2; 3g. This yields the symmetric matrix

RS¼f1;2;3gðH; λÞ ¼

0
B@

a b b

b a b

b b a

1
CA; ð2Þ

with a ¼ v1 þ ðh21 þ h22=λ − v2Þ, b ¼ ðh1h2=λ − v2Þ þ h3.
A graphical representation of Eq. (2) is depicted in
Fig. 1(b). The graph is highly symmetric and is invariant
under six symmetry operations: three rotations and three
reflections. These six operations form the so-called dihedral
group D3, which is non-Abelian.
We now draw a general connection between non-Abelian

latent symmetries of a given Hamiltonian H and its
eigenvalue spectrum. To this end, we use the fact that
each of the so-called “nonlinear” eigenvalues belonging to
RSðH; λÞ in Eq. (2), defined as the solutions λj to the
nonlinear eigenvalue problem

Det½RSðH; λjÞ − λjI� ¼ 0 ð3Þ

is also an eigenvalue of H [22]. Moreover, whenever the
eigenvalue spectra of H and of the subsystem HS̄ S̄ do not
intersect, the eigenvalue spectra of RSðH; λÞ and H
coincide [22]. This motivates calling RSðH; λÞ an
“isospectral reduction.” From the above considerations, it
is clear that degeneracies in the eigenvalue spectrum of
RSðH; λÞ necessarily correspond to degeneracies in the
eigenvalue spectrum of H. Moreover, and as we show in
Sec. I. of the Supplemental Material [24], non-Abelian
symmetries of the isospectral reduction RSðH; λÞ lead to
degeneracies in the spectrum of its nonlinear eigenvalues.
Thus, non-Abelian latent symmetries of H necessarily
induce degeneracies onto the eigenvalue spectrum of H.
Specifically, lower bounds on the multiplicity of H’s
eigenvalues are given by dimensions of the irreducible

(a)

(c) (d)

(b)

FIG. 1. (a) A six-site Hamiltonian H which features a non-
Abelian D3 permutation symmetry if h1 ¼ h2, but only an
Abelian C3 permutation symmetry if h1 ≠ h2. A line between
two different sites i, j corresponds to a nonvanishing matrix
element Hi;j, taking parametric values h1, h2, or h3 (indicated by
different line styles). Loops connecting a site to itself correspond
to diagonal matrix elements Hi;i with parametric values v1 or v2.
(b) The result of the isospectral reduction of H over the three red
sites S ¼ f1; 2; 3g. The reduced Hamiltonian [Eq. (2)] features a
D3 permutation symmetry for any choice of λ; hi, or vi. (c) A
modified kagome lattice with H as a unit cell. The band structure
of this lattice for kx ¼ 0 is plotted in (d) for h1 ¼ 4=3, h2 ¼ 5=3,
h3 ¼ 0.7, h4 ¼ 3=2, vi ¼ 0.
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representations of the underlying non-Abelian symmetry
group of RSðH; λÞ.
We emphasize that the above statements are completely

general in the sense that they are valid for all kinds of latent
symmetries (not just permutations), and for arbitrary (even
non-Hermitian) diagonalizable matrices H. Irrespective of
this applicability to general symmetries, we concentrate on
the special case of permutation symmetries throughout this
Letter. After all, permutation symmetries are among the
easiest to detect—often by bare eye—and thus provide a
convenient workhorse for depicting the main features of
latent symmetries.
In the above, we have explained the spectral degener-

acies of the prototype example Fig. 1(a) in terms of its
latent symmetries. This system has been deliberately
designed to be as simple as possible in order to convey
the main ideas of latent symmetries. The underlying
concept is, however, not limited to such basic examples,
but can be applied to larger systems, as we demonstrate
now. Figure 1(c) shows a lattice built by taking the
prototype Hamiltonian H of Fig. 1(a) as a unit cell. The
band structure of this lattice is depicted in Fig. 1(d). At the
Γ point, that is, at k ¼ 0, the corresponding Bloch-
Hamiltonian features the same latent symmetries as H in
Fig. 1(a). This explains the two double degeneracies in the
band structure [24]. Interestingly, the lattice further hosts
two flat bands, which in general can also be designed
through latent symmetries [30].
Latent Dn permutation symmetries.—Let us now exam-

ine the symmetries of the prototype example of Fig. 1 in
more detail. This setup is invariant under permutations
which cyclically permute sets of three sites, graphically
represented by rotations of multiples of 2π=3. These
rotations form the abelian cyclic group of order 3, denoted
by C3. As we have seen above, the setup also featured a
latent D3 permutation symmetry, and this is no coinci-
dence. Indeed, as we show in the Supplemental Material,
every Cn-permutation symmetric real Hamiltonian H fea-
tures a latent Dn permutation symmetry [24]. As is well
known, the dihedral group Dn is non-Abelian for n ≥ 3, so
that the underlying Hamiltonian automatically features
degeneracies. This gives an alternative explanation to those
degeneracies, which are classically understood in terms of
the combination of the Abelian group Cn≥3 and the real
valuedness of H which corresponds to a time-reversal
symmetry of H [31].
Latent Dn symmetries without any permutation

symmetries.—Above we have stated that a Cn permutation
symmetry of a real Hamiltonian is a sufficient condition for
a latent Dn permutation symmetry. However, it is not a
necessary condition. Indeed, we demonstrate in the follow-
ing the versatility of latent symmetries by showing that they
can even exist when the underlying Hamiltonian H has no
permutation symmetry at all. Figure 2(a) shows an example
of such a Hamiltonian H, which can also be interpreted as

the Bloch HamiltonianHBðk ¼ 0Þ of the lattice in Fig. 2(b)
at crystal momentum k ¼ 0. A detailed derivation of this
lattice is shown in Sec. V of the Supplemental Material
[24]. For hh0h00 ≠ 0 and h0 ≠ h00, H does not feature any
permutation symmetry. However, for any choice of those
three hopping parameters, it features a latent D3 symmetry
which becomes visible when reducing H over the three red
sites S ¼ f7; 8; 9g. As a result of this non-Abelian latent
symmetry,H has at least one doubly degenerate eigenvalue
pair for any choice of h0 and h00. We can now understand the
two double degeneracies in the band structure [depicted
in Fig. 2(c)] of the lattice of Fig. 2(b) at kx ¼ ky ¼ 0:
At this point, the Bloch-Hamiltonian is given by H, so
that it features a latent D3 symmetry and therefore also
degeneracies.
Interestingly, when setting h0 ¼ h00, H features a C2

permutation symmetry, graphically corresponding to a
reflection about the line connecting the sites 4 and 7.
One can thus say that h0 and h00 are control parameters for a
symmetry breaking, and since H features a latent D3

permutation symmetry for any choice of h; h0; h00, this
opens the perspective of investigating and understanding
symmetry breaking in terms of latent symmetries. In
Sec. III. of the Supplemental Material, we show how latent
symmetry preserving modifications (which may break
permutation symmetries) can be derived [24].

(a) (c)

(b)

FIG. 2. (a)AHamiltonian that features nopermutation symmetry
for hh0h00 ≠ 0 and h0 ≠ h00. It does, however, feature a latent D3

permutation symmetry that becomes visible when reducing over
S ¼ f7; 8; 9g. (b) A latticewhose Bloch-HamiltonianHB atk ¼ 0
equals H. The dotted box shows the lattice unit cell. (c) The band
structure of this lattice for kx ¼ 0; h ¼ 1; h0 ¼ 1=2; h00 ¼ 3=4.
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Linking latent to local symmetries.—One might wonder
if a latent symmetry leaves some recognizable traces in the
original Hamiltonian. This is indeed the case: By express-
ing RSðH; λÞ as a power series in λ and subsequently
analyzing it order by order, one can show [24] that

½RSðH; λÞ;M� ¼ 0 ⇔ ½ðHkÞSS;M� ¼ 0 ∀ k; ð4Þ

where M denotes a symmetry operation. In other words,
symmetries of RSðH; λÞ correspond to local symmetries
[32,33] ofH in all matrix powers. In particular,H itself has
to be locally symmetric. Indeed, for our introductory
example of Fig. 1(a) and S ¼ f1; 2; 3g, we see that HSS
denotes the inner triangle, which obviously features the
same symmetries as the corresponding isospectral reduc-
tion RSðH; λÞ depicted in Fig. 1(b).
Equation (4) can be used to facilitate the search for latent

permutation symmetries. To this end, let us assume that we
are given a (possibly large) Hamiltonian H and want to
check if it features a latent permutation symmetry as the
one depicted in Fig. 1(b). In other words, we look for a set
of three sites S ¼ fu; v; wg such thatRSðH; λÞ has the form
of Eq. (2). Now, instead of computing and checking all
possible isospectral reductions ofH over three sites, we can
use Eq. (4) to see that any candidate sites u, v, w necessarily
have to fulfill ðHkÞu;u ¼ ðHkÞv;v ¼ ðHkÞw;w for all k. This
condition can be augmented by employing the Cayley-
Hamilton theorem, which states that any matrix power
Hk≥N (N being the dimension of H) is a polynomial in
smaller powers. Thus, by computing the matrix powers
H;H2;…; HN−1—the cost of which grows polynomially
with N—and grouping the sites accordingly, the number of
possible candidate sites fu; v; wg can be drastically
reduced. In particular, if there is any k such that Hk

features no three sites with equal on-site potential
ðHkÞi;i, a latent symmetry of the kind Eq. (2) is impossible.
Generalized exchange symmetries.—Having demon-

strated the relation of latent symmetries to symmetries of
the subsystem HSS and to degeneracies of H, we finally
relate a subclass of latent symmetries to symmetries of the
original Hamiltonian H. This subclass consists of latent
permutation symmetries of real Hamiltonians. Using graph-
theoretical tools [34,35], such Hamiltonians can be shown
to necessarily feature what we call here a generalized
exchange symmetry (GES). A GES is an orthogonal
symmetric matrix Qði;jÞ fulfilling ½Qði;jÞ; H� ¼ 0 and
ðQði;jÞÞ2 ¼ I and which exchanges the two sites i, j while
acting on the remaining sites as an orthogonal trans-
formation. In the special case when this transformation
is a pure permutation, Qði;jÞ becomes a normal exchange
symmetry, i.e., it acts on each site either as the identity or as
an exchange operator. To provide an impression of the
GESs, we explicitly computed—by solving the equations
derived from its defining properties—Qð1;2Þ for the
Hamiltonian of Fig. 1(a):

Qð1;2Þ ¼

0
BBBBBBBBB@

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 h1h2
d 1 − h2

1

d
h1ðh1−h2Þ

d

0 0 0 1 − h2
1

d
h1ðh1−h2Þ

d
h1h2
d

0 0 0
h1ðh1−h2Þ

d
h1h2
d 1 − h2

1

d

1
CCCCCCCCCA

ð5Þ

with d ¼ h21 − h2h1 þ h22. Note that for the case of h1 ¼ h2
the GES Qð1;2Þ becomes the ordinary exchange symmetry
which permutes (1,2), (5,6), and leaves 3 and 4 invariant,
and therefore describes the reflection about the line that
connects sites 3 and 4 in Fig. 1. However, in the case where
h1 ≠ h2, this pure permutation symmetry is broken,
whereas the more abstract GES persists. We note that,
while the GESs as an abstract symmetry class persists, the
matrix entries of Qð1;2Þ depend on h1 and h2. This is an
important difference to the latentD3 permutation symmetry
of H, whose matrix representation is independent of the
values of hi.
Finally, let us note that one can use the above insights to

prove the existence of degeneracies for real latently Dn≥3
permutation symmetric Hamiltonians in yet another way
[24]. Such Hamiltonians feature more than one GES, and
by explicitly constructing them it can be shown that at least
two of them do not commute with each other. Since the
Hamiltonian H commutes with both of these GESs, it
directly follows that H has to have at least one degenerate
eigenvalue. It remains an open task to classify GESs using
group-theoretical tools.
Conclusions.—We have provided a theoretical frame-

work which connects non-Abelian latent symmetries of
generic discrete models to their spectral degeneracies. For
the important class of latent permutation symmetries, our
results may allow for a geometrical explanation of appa-
rently accidental degeneracies. Moreover, by identifying
latent symmetries as local symmetries of all powers of the
Hamiltonian, our results additionally suggest a convenient
method for finding these latent symmetries. We further
demonstrate that it is possible to break symmetries of an
original Hamiltonian while preserving its latent symmetry.
This may inspire techniques to modify—or probe—a given
system asymmetrically without affecting its degeneracy.
Our considerations apply quite generally to physical

systems possessing a discrete representation in terms of a
finite-dimensional matrix. This includes, among others,
tight-binding models, molecular Hamiltonians in truncated
orbital bases, and multiport scattering setups. We therefore
envision the applicability of our results in a broad variety of
setups, contributing to the better understanding, design, and
control of spectral degeneracies beyond conventional
symmetries.
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1

Supplemental Material

In this supplemental material, mathematical details of the proofs for the results presented in the main text as well
as the Bloch-Hamiltonians for the lattices depicted in Figs. 1 and 2 of the main text are included. It is structured
as follows. In section I we derive a connection between latent symmetries of H and degeneracies in its eigenvalue
spectrum. Section II relates latent symmetries of H to local symmetries of H in all matrix powers. In section III
we develop the concept of complement multiplets, which allow one to perturb a Hamiltonian featuring a latent
permutation symmetry without breaking this symmetry. In section IV we provide details on the generalized exchange
symmetries. Section V shows the derivation of the Bloch Hamiltonians for the lattices of Figs. 1 and 2 of the main
text. Section VI contains auxiliary Lemmata used in proofs of Theorems in this Supplemental Material.

Throughout the following, L denotes the set of values of λ for which the isospectral reduction RS(H,λ) is defined.

I. THE RELATION BETWEEN THE SYMMETRIES OF THE ISOSPECTRAL REDUCTION AND
DEGENERATE EIGENVALUES OF THE HAMILTONIAN

In the main part of this work, it was stated that non-abelian latent symmetries of a Hamiltonian necessarily induce
degeneracies onto its eigenvalue spectrum. A key in proving this statement lies in the application of representation
theoretical tools to the isospectral reduction, which we shall do in the following

Theorem 1: Symmetries of the isospectral reduction and degeneracies of H

Let RS(H,λ) be the isospectral reduction of the Hamiltonian H over a set of sites S, and let G be a finite
group with elements {g} represented by matrices {Γ(g)}, and let RS(H,λ) commute with all of them, i.e.,
[RS(H,λ),Γ(g)] = 0 ∀ λ ∈ L, r ∈ G.

Let Γ be decomposed into n pairwise non-equivalent irreducible representations Γ̃i of G with multiplicities
ai 6= 0 and with dimensions di, that is, there exists an invertible matrix A such that

Γ′(g) = AΓ(g)A−1 =

n⊕

i=1

Γ̃⊕aii (g) ∀ g ∈ G (1)

where ⊕ denotes the direct sum, and M⊕k = M ⊕ . . . ⊕M︸ ︷︷ ︸
k−times

. Then for each ai the eigenvalue spectrum of H

contains at least ai eigenvalues that are (individually) di-fold degenerate.

Proof. RS(H,λ) represents a whole family of matrices parametric in λ. Each matrix in RS(H,λ) commutes with the
representation Γ(g) of each group element g of the finite symmetry group G. Thus, employing Schur’s lemma, it is
easy to prove that for each λ ∈ L, RS(H,λ) is block-diagonalized by the same similarity transformation

R′S(H,λ) = ARS(H,λ)A−1 =

n⊕

i=1

Bi(λ) (2)

with Bi(λ) being a (ai di)-dimensional matrix. Moreover, due to Schur’s lemma, each Bi(λ) can be further block-
diagonalized by permuting its rows and columns, thereby yielding

R′′S(H,λ) = P R′S(H,λ)P−1 =

n⊕

i=1

b⊕dii (λ) (3)

with P denoting the corresponding permutation matrix, and bi(λ) a matrix of dimension ai.
If we denote by Wπ the set of rational functions p(λ)/q(λ) with the numerator degree being less than or equal

to the denominator degree, then every matrix element (RS)i,j ∈ Wπ [1]. Moreover, since Wπ is closed under linear
transformations, (R′′S)i,j ∈ Wπ. This means that every ai-dimensional block bi(λ) of R′′S , when being solved for
its non-linear eigenvalues via det (R′′S(H,λ)− λI) = 0, features at least ai solutions [1]. Since R′′S features di
such blocks and since every eigenvalue of RS(H,λ) is also an eigenvalue of H [1], it follows that for each irreducible

representation Γ̃i of dimension di and multiplicity ai the Hamiltonian H contains at least ai eigenvalues that are
(individually) di-fold degenerate.
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2

II. THE CONNECTION BETWEEN SYMMETRIES OF THE ISOSPECTRAL REDUCTION AND
LOCAL SYMMETRIES OF Hk

One of the main results of this work is the relation between latent symmetries of a matrix H and its local symmetries
in every matrix power. This result was given without proof in the main part of this work, and is proven below.

Theorem 2

Let RS(H,λ) denote the isospectral reduction of H over some set of sites S, and let A ∈ C|S|×|S|, where |S|
denotes the number of sites in S. Then

[A,RS(H,λ)] = 0 ∀ λ ∈ L ⇔
[
A,
(
Hk
)
S,S

]
= 0 ∀ k ≥ 0, (4)

where (Hk)S,S denotes the submatrix derived from Hk by taking the rows and columns corresponding to the
set S.

Proof. “⇒” can be shown by induction. The initial case k = 0 is trivially fulfilled. The next step is to assume[
A,
(
Hk
)
S,S

]
= 0 holds for all 0 ≤ k ≤ k′ and then to show it holds also for 0 ≤ k ≤ k′ + 1. By partitioning the

matrix H into blocks over S and its complement S̄ the following identity can be shown to hold:

(
Hk
)
S,S

=
(
Hk−1)

S,S
HS,S +

k−2∑

m=0

(Hm)S,S HS,S

(
HS,S

)k−2−m
HS,S . (5)

Evaluating the commutator of A with eq. (5) for k = k′+1 and applying the induction assumption along with eq. (26)

of lemma 3 we get
[
A,
(
Hk+1

)
S,S

]
= 0, which completes the induction.

“⇐”: First, we evaluate the commutator of A with eq. (5) and apply the assumption
[
A,
(
Hk
)
S,S

]
= 0 ∀ k ≥ 0.

Next, again by induction we can show that

[
A,HS,S

(
HS,S

)l
HS,S

]
= 0 ∀ l ≥ 0. To prove that [A,RS(H,λ)] = 0

for all λ ∈ L we use the identity eq. (28) for RS(H,λ) from lemma 4. Since [A,HS,S ] = 0 by assumption and[
A,HS,S

(
HS,S

)n
HS,S

]
= 0 ∀ n ≥ 0 by induction, we have that [A,RS(H,λ)] = 0 for all λ ∈ L.

III. MODIFICATIONS PRESERVING LATENT PERMUTATION SYMMETRIES

Given a Hamiltonian H ∈ CN×N with a latent permutation symmetry, it is often possible to modify H while
keeping this symmetry. In particular, by analyzing the matrix powers of H, a large class of such latent-symmetry-
preserving modifications can be found, as we derive in the following. We will start by defining what we call complement
multiplets.

Definition 1: Complement multiplet

Let S be a set of sites of a hermitean Hamiltonian H ∈ CN×N , that is, S ⊆ {1, . . . , N}, and S denote its
complement (i.e., all other sites of H). A set M of sites of H with M ⊆ S forms a complement multiplet with
respect to S if

∑

m∈M

(
HH

k
)
s,m

= ck ∈ C ∀ s ∈ S, k ≥ 0. (6)

where H is obtained from H by setting the couplings between S and S to zero.

Once a (subset of) complement multiplets have been identified, they can be used to modify the Hamiltonian without
breaking the underlying latent symmetry, with the procedure and its proof detailed in the following
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Theorem 3

Let S be a set of sites of the hermitian Hamiltonian
◦
H ∈ CN×N . If one modifies

◦
H → H ∈ C(N+1)×(N+1) by

adding a single site c (with arbitrary on-site potential) and subsequently coupling each complement multiplet

Mj of
◦
H to the site c with the coupling hj , i.e.,

Hx,c = H∗c,x =
∑

x∈Mj

hj , (7)

with the star denoting complex conjugate, then the isospectral reduction changes as

RS(H,λ) = RS(
◦
H,λ) + a(λ)J, (8)

with a(λ) being a rational function in λ, J ∈ R|S|×|S| is a matrix of ones, and where |S| denotes the number of

sites in the set S. In particular, if S is latently permutation symmetric in
◦
H, it remains latently permutation

symmetric in H.

Proof. In order to show eq. (8) holds, we evaluate the difference betweenRS(H,λ) andRS(
◦
H,λ). To this end, we define

H̃ as the matrix obtained from
◦
H by adding the site c without connecting it, and by lemma 2, RS(

◦
H,λ) = RS(H̃, λ).

Further, we denote Sc = S ∪ c. Next, for a sufficiently large λ0 and |λ| > λ0 > 0, the matrix inverses occurring

in RS(H,λ) and RS(H̃, λ) can be simultaneously formulated as convergent Neumann series. Finally, we note that

HS,Sc
= H̃S,Sc

and HS,c = H̃S,c = 0. We arrive at:

RS(H,λ)−RS(
◦
H,λ) =

∞∑

k=1

HS,Sc

[(
HSc,Sc

)k−1
−
(
H̃Sc,Sc

)k−1]
HSc,S

tk (9)

=

∞∑

k=1

◦
HS,S

[(
HS,S

)k−1
−
(
H̃S,S

)k−1] ◦
HS,St

k (10)

where t = 1/λ. In the following, we abbreviate the terms in square brackets of eq. (10) by the matrix ∆
(k−1)
S,S

. We

further denote by H and
◦

H the matrices obtained from H and
◦
H, respectively, by decoupling the set of sites S from

the remaining sites.

Using a graph-theoretical interpretation (see Ref. [2]) the (i, j)-th matrix element of ∆
(k)

S,S
can be expressed in terms

of walks in a graph G(H) of length k starting at site si, that is, the i-th element of S, and ending at site sj while
necessarily visiting the new site c at least once. This yields

∆
(k)

S,S
=

∑

2+l+m+n=k

[( ∑

x∈∪iMi

( ◦
H
l
)
S,x

Hx,c

)(
H
m
)
c,c

( ∑

x∈∪iMi

Hc,x

( ◦
H
n
)
x,S

)]
(11)

Next, we replace Hx,c by eq. (7) and multiply eq. (11) with
◦
HS,S on the left and its transpose on the right (compare

with eq. (10)):

∑

2+l+m+n=k

[(∑

i

∑

x∈Mi

◦
HS,S

( ◦
H
l
)
S,x

hi

)(
H
m
)
c,c

(∑

i

∑

x∈Mi

h∗i
( ◦
H
n
)
x,S

◦
HS,S

)]
(12)

Using eq. (6), we recognize that
∑
x∈Mi

◦
HS,S

( ◦
H
l
)
S,x

= c
(i)
l
~1S with an-all constant |S|-dimensional vector ~1S .

This means that the matrix in eq. (12) is proportional to all-one matrix J with a constant pre-factor a(k) =
∑

2+l+m+n=k

[(∑
i hic

(i)
l

)(
H
m
)
c,c

(∑
i hic

(i)
n

)∗]
. Inserting this result in eq. (10), we obtain that a(λ) from eq. (8)

equals
∑∞
k=1 a

(k−1) ( 1
λ

)k
for |λ| > λ0.

Finally, we note that the left-hand side of eq. (10) is a rational function of λ. Since it equals a(λ) J ∀ |λ| > λ0, by
the identity theorem for polynomials it must be equal to a(λ) J also for |λ| ≤ λ0, λ ∈ L. Now, since J commutes

with any permutation matrix, each latent symmetry of
◦
H is preserved in H.
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IV. THE CONNECTION BETWEEN (LATENT) Cn>2 SYMMETRIES AND DEGENERACIES FOR
REAL-SYMMETRIC HAMILTONIANS

In the following, we will present more details on the concept of generalized exchange symmetry (GES). We will then
use these to finally prove theorem 5, which states that, for real-valued Hamiltonians, a more than twofold rotational
symmetry (that is, a symmetry Cn>2) necessarily leads to a non-abelian latent Dn symmetry.

As explained in the main part of this work, each generalized exchange symmetry (GES) is given by a symmetric
orthogonal matrix Q(u,v) which permutes two sites u, v while acting as an orthogonal transformation on the others.
The Q(u,v) were introduced in Ref. [3], where it has been shown that, for real Hamiltonians, Q(u,v) exists if and only
if (Hk)u,u = (Hk)v,v for all k. In this case, the eigenvalue spectra of H \ u and H \ v coincide, and the two sites u
and v are said to be cospectral [3].

Similar to Ref. [4], we will now explicitly construct Q(u,v) by means of projectors. To this end, we first choose the
eigenstates according to the following

Lemma 1: Lemma 2.5 of Ref. [5]

Let H be a real symmetric matrix, with u and v cospectral. Then the eigenstates {|φ〉} of H are (or, in the
case of degenerate eigenvalues, can be chosen) as follows. For each eigenvalue λ there is at most one eigenstate

|φ〉 with even local parity on u and v, i. e., 〈u|φ(+)
i 〉 = 〈v|φ(+)

i 〉 6= 0, and at most one eigenstate φ with odd

local parity on u and v, i. e., 〈u|φ(−)i 〉 = −〈v|φ(−)i 〉 6= 0. Here, |x〉 denotes a vector which possesses the value

one at site x and zeros on all other sites. All remaining eigenstates for λ fulfill 〈u|φ(0)i 〉 = 〈v|φ(0)i 〉 = 0. The
even (odd) parity eigenstate can be found by projecting the vector |u〉 ± |v〉 onto the eigenspace associated
with λ.

With this choice of the eigenstate basis, we state the following

Theorem 4

Let the orthonormal eigenstates {|φ〉} of H be chosen according to lemma 1, and define the projectors

P
(u,v)
+ =

∑

i

|φ(+)
i 〉 〈φ

(+)
i | , P

(u,v)
− =

∑

i

|φ(−)i 〉 〈φ
(−)
i | , P

(u,v)
0 =

∑

i

|φ(0)i 〉 〈φ
(0)
i | (13)

Then Q(u,v) = P
(u,v)
+ + P

(u,v)
0 − P (u,v)

− fulfills

(Q(u,v))−1 = (Q(u,v))T = Q(u,v), Q(u,v) |u〉 = |v〉 . (14)

Proof. The property (Q(u,v))−1 = Q(u,v) follows simply from the fact that the projection matrices eq. (13) are
idempotent. (Q(u,v))T = Q(u,v) follows from the fact that one can choose the eigenvectors of H to be real-valued,
so that the projector onto the eigenspace associated to any eigenvalue is real, thereby rendering also the projection
matrices eq. (13) real and therefore also symmetric.

In order to prove that Q(u,v) |u〉 = |v〉, we use lemma 1 and the orthonormality of eigenstates |φi〉 to get

〈v|Q(u,v)|u〉 = (Q(u,v))u,v =
∑
i 〈u|φi〉 〈φi|u〉 = 1. Additionally, since

∑
i(Q

(u,v)
u,i )2 =

∑
i(Q

(u,v)
v,i )2 = 1 due to the

orthogonality of Q(u,v), it follows that (Q(u,v))u,i = δi,v and (Q(u,v))v,i = δi,u.

With these prerequisites and a good understanding of the concept of GES, we are now finally able to prove
the connection between Cn rotational symmetries of a real Hamiltonian and the necessary emergence of Dn latent
permutation symmetries, explicated in the following

Theorem 5

Let H ∈ RN×N be a real symmetric Hamiltonian that features a latent or non-latent Cn>2 permutation
symmetry. Then

• H necessarily also features a latent Dn permutation symmetry and features at least bn−12 c pairs of doubly
degenerate eigenvalues, where bxc rounds x down to the nearest integer.

• There exist two GESs of H which do not commute with each other.
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Proof. • If H features a (latent or non-latent) Cn>2 permutation symmetry, then there is at least one set S of n
sites and a n× n permutation matrix P fulfilling

P k 6= I ∀ 1 ≤ k < n, Pn = I, [RS(H,λ), P ] = 0 ∀ λ ∈ L (15)

where I is the identity matrix. Together with the symmetry and real-valuedness of H, this property implies
that the rows and column of RS(H,λ) can be permuted such that it is a real symmetric circulant matrix. It is
known that such matrices commute with the permutation matrix corresponding to the operation that performs
a flip about the anti-diagonal. Together with the cyclic permutations of order n, this operation generates the
dihedral group Dn, and H thus features a latent Dn permutation symmetry.

Next, we note that it is known that the eigenstates of real symmetric circulant matrices are independent of their
entries [6], here in particular independent of λ. Using them to diagonalize RS(H,λ) one obtains a diagonal
n× n matrix with entries fj(λ) ∈Wπ , j = 1, . . . , n, that is, rational functions pj(λ)/qj(λ) with the numerator
degree being less than or equal to the degree of the denominator. The eigenvalues of RS(H,λ) are thus given
by the sum of the multisets denoting the solutions to fj(λ)−λ = 0. Similar to the proof of theorem 1, it can be
shown that each of these equations has at least one solution. Furthermore, fj(λ) = fn−j(λ), because RS(H,λ)
is not only circulant but also real-symmetric. Finally, since every eigenvalue of RS(H,λ) is contained in the
spectrum of H [1], we conclude that H has at least bn−12 c pairs of doubly degenerate eigenvalues.

• From the above and from theorem 2 we have
[(
Hk
)
S,S

, P
]

= 0 for all k ≥ 0, i.e.
(
Hk
)
S,S

is a real symmetric

circulant matrix. In each power k, the diagonal elements
(
Hk
)
ii

=
(
Hk
)
jj
∀ i, j are pairwise equal, meaning

that each pair of sites in S is cospectral. By Ref. [3], for each such pair there is a GES Q(i,j) which commutes
with H and theorem 4 applies.

For the sake of simple notation let us now assume that the sites of H are labeled (if this is not the case, one can
easily renumber the sites accordingly) such that si → i, with P permuting the sites in S = {s1, . . . , s|S|} such

that the site i < n is mapped onto the site i + 1, and n onto 1. The fact that (Hk)S,S is circulant symmetric
then implies (Hk)1,2 = (Hk)2,3 ∀ k. In the terminology of Ref. [2], site 2 is a walk-singlet w.r.t. the cospectral
sites 1 and 3. Thus, by Theorem 4 from Ref. [2], the eigenstates of H [chosen according to lemma 1 for the
cospectral pair 1 and 3] with negative parity on cospectral sites vanish on site 2. By combining the projector
definition of Q(1,3) with the completeness relation of eigenstates one can show (Q(1,3))2,2 = 1. Furthermore,

since Q(1,3) is orthogonal, the matrix elements (Q(1,3))2,j = δ2,j . On the other hand, site 3 is not necessarily a
singlet for the cospectral pair 1 and 2. Specifically, we have

Q(1,3) =




0 0 1
0 1 0
1 0 0

0

0 A


 , Q(1,2) =




0 1

1 0
0 0

0 a b

0 bT B


 (16)

where A,B ∈ R(N−3)×(N−3) and b ∈ R1×(N−3). Since the upper left 3× 3 block of the commutator of the above
two matrices does not vanish, these two matrices do not commute.

V. BAND-STRUCTURE CALCULATIONS

To derive the Bloch-Hamiltonian HB(k) = HB(kx, ky), we follow the convention of Eq. (2.75) of Ref. [7]. To this
end, let |mR〉 denote the state which is completely localized on site m of the unit cell located at position R. For our
two-dimensional lattices, the vectors R = A~a1 +B~a2, where A,B are integers and ~a1,2 are the two primitive vectors
describing the lattice. The Bloch-Hamiltonian can then be written as

(HB(k))nm =
∑

R

eik·R 〈m0|HL|mR〉 (17)

where HL denotes the Hamiltonian of the infinite lattice.
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A. Bloch-Hamiltonian for the modified Kagome lattice

With ~a1 = (1, 0)T , ~a2 = ( 1
2 ,
√
3
2 )T , we obtain the Bloch-Hamiltonian of Fig. 1 (c) of the main text as




0 h3 h3 h2 0 h1
h3 0 h3 h1 h2 0

h3 h3 0 0 h1 h2

h2 h1 0 0 h4e
i

(√
3ky
2 − kx

2

)

h4e
−ikx

0 h2 h1 h4e
−i

(√
3ky
2 − kx

2

)

0 h4e
−i

(
kx
2 +

√
3ky
2

)

h1 0 h2 h4e
ikx h4e

i

(
kx
2 +

√
3ky
2

)

0




. (18)

At kx = ky = 0, the isospectral reduction of the Bloch-Hamiltonian over the sites S = {1, 2, 3} then has the
structure



a(λ) b(λ) b(λ)

b(λ) a(λ) b(λ)

b(λ) b(λ) a(λ)


 . (19)

Thus, the Bloch-Hamiltonian features a latent D3 permutation symmetry at k = 0.

B. Construction of the Bloch-Hamiltonian belonging to Fig. 2 (b)

Let us here briefly discuss how one could build a lattice from the Hamiltonian depicted in Fig. 2 (a) of the main
text. The basic idea is to interpret H as the Bloch-Hamiltonian HB of an extended lattice, evaluated at the Γ-point,
that is, H = HB(k = 0). Out of the many possible ways to achieve this, we here first remove the three curved
couplings—the ones between sites (6, 11), (5, 10), and (4, 7)—from H, and use the resulting system HUC as the unit
cell of a lattice, as depicted in Fig. 2 (b). The corresponding Bloch-Hamiltonian HB(k) = HUC +HIC(k) is the sum
of the unit cell Hamiltonian HUC and a k-dependent inter-cell coupling HIC(k). The matrix elements of HIC(k) are
obtained by taking an arbitrary reference unit cell, A. For each site i in A that is connected with coupling hij to a
site j in an adjacent unit cell B, (HIC(k))ij = hij e

ik·RAB with RAB denoting the vector pointing from A to B, as

one can show by means of eq. (17). At k = 0, all complex exponentials in HIC(k) become unity, and one can design
HB(k = 0) = H by suitably connecting the initial unit cell to its neighbors. For the above choice and by chosing
~a1 = (0, 1)T , ~a2 = ( 5

3 cos(π/6), 12 )T , we then obtain the Bloch-Hamiltonian of Fig. 2 (b) of the main text as

(
06×6 C

C† 05×5

)
(20)

with 0n×n denoting the n× n matrix of zeros, and

C =




h h 0 0 h′′

h 0 h h′ 0

2h h h 0 0

heiky 2h 2h 0 0

h 0 h′e
i
(

ky
2 −

5kx
2
√

3

)
0 0

0 0 h 0 h′′ei(
5kx
2
√

3
+

ky
2 )




. (21)

For kx = ky = 0, this Hamiltonian equals the one depicted in Fig. 2 (a) of the main text, as intended.

VI. AUXILIARY LEMMATA
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Lemma 2

Let S be a set of sites of
◦
H. If one extends

◦
H → H =

( ◦
H 0

0 H ′

)
(22)

then the isospectral reduction over S remains unchanged, i.e., RS(H,λ) = RS(
◦
H,λ) .

Proof. Follows straightforwardly from the fact that
(
HS,S − λI

)−1
=




(
HS1,S1

− λI
)−1

0

0
(
HS2,S2

− λI
)−1


 is

block diagonal and HS,S2
= 0 with sites S1 from

◦
H, S2 from H ′ and S1 ∪ S2 = S.

Lemma 3

Let the isospectral reduction

RS(H,λ) = HS,S −HS,S

(
HS,S − λI

)−1
HS,S (23)

over some set S of sites. If RS(H,λ) commutes with a |S| × |S| matrix A, that is, [A,RS(H,λ)] = 0 ∀ λ ∈ L,
then

[A,HS,S ] = 0 (24)
[
A,HS,S

(
HS,S − λI

)−1
HS,S

]
= 0 ∀ λ ∈ L. (25)

[
A,HS,S

(
HS,S

)k
HS,S

]
= 0 ∀ k ≥ 0. (26)

Proof. First, eq. (24) follows from [A,RS(H,λ)] = 0 by evaluating the limit λ → ∞. Second, eq. (25) follows from
eq. (24) and [A,RS(H,λ)] = 0. Last, for a sufficiently large λ0 and |λ| > λ0 > 0, the left-hand side of eq. (25) can be
formulated as a convergent power series in x = 1

λ :

1

λ0

∞∑

k=1

ckx
k = 0 ∀ x : 0 < |x| < 1

λ0
(27)

where ck =

[
A,HS,S

(
HS,S

λ0

)k−1
HS,S

]
. By the identity theorem for power series it follows that all ck = 0, thus

proving eq. (26).

Lemma 4

Let RS(H,λ) = HS,S −HS,S

(
HS,S − λI

)−1
HS,S be the isospectral reduction of H over a site set S. Then

RS(H,λ) = HS,S +

|S|∑

k=1

ck
c0

k−1∑

n=0

(
k − 1

n

)
(−λ)

k−1−n
HS,S

(
HS,S

)n
HS,S ∀ λ ∈ L (28)

where ci = ci(λ) are the coefficients of the characteristic polynomial of HS,S − λI.
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Proof. For λ ∈ L the matrix HS,S − λI := M is invertible, with characteristic polynomial pM (λ, x) =
∑|S|
k=0 ck(λ)xk

and c0 6= 0. From the Cayley-Hamilton theorem one obtains the identity relation M−1 = −∑|S|k=1
ck
c0
Mk−1. Inserting

this relation into the definition of isospectral reduction and applying the binomial theorem for
(
HS,S − λI

)k−1
we

arrive at eq. (28).
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6
S U M M A RY, C O N C L U S I O N S , A N D O U T L O O K

In this cumulative thesis, we investigated symmetries of physical systems de-
scribed by a discrete model. Specifically, we investigated two different types of
symmetries, the first one being local symmetries. A local symmetry is a symmetry

of a subsystem. That is, when isolating this subsystem from the remainder of the setup, it
features a symmetry. Or, phrased differently, a local symmetry is a symmetry that is,
in general, valid only in a part of the system. The second symmetry type is that of a
latent symmetry. When a Hamiltonian is latently symmetric, then a suitably chosen
effective version of this Hamiltonian features a symmetry (more details will be
given below). In the following, we will briefly motivate our works, summarize our
main findings, link them together, and also give an outlook to interesting questions
that arise from these findings.

Before we start, we apologize for repeating some introductory facts and figures
that we already showed in Part i of this thesis. The reason is that we believe
that summary, conclusions, and outlook should be comprehensible even without
reading the main text of this work, and to this end, restating some material is
necessary.

In the following, we will focus on tight-binding models to present our results in
an intuitive manner. However, our results are applicable to general discrete models,
and we will discuss this point in a concluding remark in Section 6.2.1.

6.1 local symmetries

What impact do local symmetries have on the eigenstates of a system? That is the main
question driving the research presented in this section. Indeed, understanding the
impact of local symmetries of a Hamiltonian on its eigenstates can be challenging:
Contrary to the case of global symmetries, that is, symmetries of the whole system, the
operators describing local symmetries usually do not commute with the underlying
Hamiltonian. Without such a commuting operator, most instruments—group theory,
for example— that are normally applied to the treatment of global symmetries
cannot be used for their local counterparts. Nevertheless, and as was shown in a
series of papers, the impact of local symmetries on the eigenstates of several wave
physical setups can be quantified through a framework of current-like correlators,
so-called non-local currents [MR10, 30–32, 36]. This framework represented the
starting point for this entire thesis, and thus we will start by presenting our
work [MR1] in which the non-local currents are measured in a photonic setup.
Afterwards, we will move away from non-local currents, though stick with the
topic of local symmetries and investigate its various aspects.
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6.1.1 Local symmetries in one-dimensional systems

The measurement of non-local currents in a system of so-called evanescently
coupled waveguides was the topic of our first work [MR1]. In such systems, neigh-
boring waveguides are placed closely to each other so that their fundamental modes
overlap. As a result, light propagating in such waveguides can “tunnel” to adjacent
waveguides, and the propagation can be described by a discrete Schrödinger equa-
tion. As a consequence, and assuming equal waveguides, the system is mapped
to a tight-binding model of sites that are coupled to each other via next-neighbor
couplings hi,j. In [MR1], we investigated the case where this tight-binding model
is one-dimensional, that is, a chain. In such a chain, the spatial distribution of
coupling strengths determines the symmetry of the setup, and in particular the
chain may be either globally symmetric, locally symmetric, or completely asym-
metric. Example waveguide setups for each of these classes were produced and
the non-local currents were measured. We then showed that these currents can be
used to distinguish between the three cases of global symmetry, local symmetry, or
complete asymmetry.

Local symmetries in one-dimensional tight-binding chains were also the topic of
our second work [MR2]. Specifically, we investigated tight-binding chains consisting
of N sites with a constant next-neighbor coupling h and a variable on-site potential
vi, described by the Hamiltonian

Ĥ =
N

∑
i=1

vi |i〉 〈i|+ h
N−1

∑
i=1

(
|i〉 〈i + 1|+ |i + 1〉 〈i|

)
(6.1)

where |n〉 is a single-site excitation of the site n. The potential vi was constrained
to take only two different values, vA and vB. Such a binary chain features a large
number of local symmetries for any possible arrangement of the A’s and B’s 1.
Depending on the sequence of on-site potentials, the system then corresponds to
different physical systems, such as a lattice (for a periodic sequence) or a com-
pletely disordered system (for a random sequence). We concentrated on the cases
in-between these two extremes and analyzed different classes of so-called deter-
ministic aperiodic systems, a popular example being quasicrystals. Specifically,
we investigated three different sequences for the on-site potential values: the Fi-
bonacci (corresponding to a quasicrystal), the Thue-Morse, and the Rudin-Shapiro
sequence. For weak coupling h, the eigenstates of the investigated setups featured
three properties: (i) They had low amplitude everywhere but on one or more iden-
tical substructures2, and for most states the amplitude on these substructures was
approximately locally symmetric. (ii) For most states, this substructure localization
occurred simultaneously across the bulk of the chain, so that these states were
rather extended within the bulk. Additionally, the eigenenergies of these states

1 For example, already the simple sequence

AAA BA BAB

features a number of different local reflection symmetries, three of which are marked by brackets
above and below this sequence.

2 By “substructure” we mean a finite subsection of the chain comprising a small number of sites. In
the previous footnote, some examples for substructures would be AAA, ABA, and BAB.
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clustered to so-called quasi-bands. (iii) There were some states which were localized
on a substructure on one of the edges of the finite chain, and whose eigenenergy
lay in a gap between quasi bands; we thus called these states “gap-edge states”.

We were curious to see whether these three properties could be linked to each
other and to the local symmetries of the chain itself. To this end, we developed
a framework of local resonators. Backed by degenerate perturbation theory, this
framework proposes that—at low coupling strength—certain substructures within
the chain act as embedded resonators, that is, they are able to confine a wave at
certain energies. In this picture, it is clear that any eigenstate Ψ of the chain that is
(almost completely) localized on a single resonator has to locally (approximately)
resemble one of the eigenmodes of this resonator. More specifically, if we denote
the resonator by R, then up to a normalization factor the projection of Ψ onto R has
to be approximately equal to an eigenmode3 φ of R. As a result, the energies of Ψ
and φ are close to each other. Now, when a given resonator occurs more than once
within the chain—as is the case in the systems that we investigated—it follows
from the above argument that the eigenstate Ψ may simultaneously localize on
some or even all of these resonators. Importantly, since most resonator structures in
the three investigated chains were locally symmetric, their eigenmodes shared this
symmetry. This is the reason why the localization patterns—that is, the distribution
of high-amplitude values—of most eigenstates in these chains were found to be
locally symmetric.

In general, there may be more than one eigenstate corresponding to the same res-
onator eigenmode. Since the energy of each of these states has to be approximately
equal to that of this resonator mode, a quasi band emerges. In this picture, the
presence of a gap-edge state can also be explained: A resonator lying on the edge of
the chain differs from those in the bulk, and in general its eigenmodes energetically
differ from those of other resonators. Thus, a state localized on such an edge-
resonator is energetically separated from the other eigenstates of the chain, and
since its energy matches none of the eigenmodes of other resonators in the chain, it
is localized on the edge; in other words, this state corresponds to a gap-edge state.

In the above works [MR1, MR2], we showed that local symmetries are a versatile
concept for the treatment of one-dimensional systems. Especially our second work
[MR2] showed that local symmetries can have a drastic impact on the eigenstates
of a system by causing them to localize on locally symmetric substructures. Local
symmetry induced localization, though of a different kind, will also be the main
topic of Section 6.1.2. Before we move there, however, let us give a brief outlook on
potential topics of future research based on [MR1, MR2].

6.1.1.1 Outlook

Based on the above works, there are several routes for further research. The first
would be the application of the theory of non-local currents to aperiodic chains.
This is in particular appealing since, as we have written above, a locally symmetric
setup usually does not have locally symmetric eigenstates. In this sense, the aperiodic
chains with weak couplings are an exception, as their eigenstates indeed feature

3 To be precise, by “eigenmodes” of a resonator R we here mean the set of eigenstates that R would
have if one would completely decouple it from the remainder of the chain.
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(approximately) locally symmetric amplitude patterns on the resonators on which
they localize. Thus, to analyze this phenomenon from another viewpoint, it would
be interesting to analyze these chains in terms of non-local currents. Moreover,
to complement the treatment, it would be interesting to combine the framework
of non-local currents with degenerate perturbation theory that we used for the
development of the local resonator framework.

The second pathway would be the generalization of the local resonator frame-
work, for example, to higher-dimensional systems, or to non-binary chains, that is,
to chains where the on-site potential is allowed to take more than just two different
values. A first step in the latter direction would be to start with a binary chain,
and then let some on-site potentials deviate from their binary value. In particular,
this could be done to energetically control gap-edge states. In a preliminary study
we found that by this method a gap-edge state could even be controllably moved
in-between two bands. Moreover, the impact of dynamically changing the values of
the non-binary potentials could be investigated, which, if suitably done, may allow
the conversion of an extended state of the chain into a gap-edge state.

6.1.2 Compact localized states and flat bands through local symmetries

Figure 6.1: A simple tight-binding setup, with each solid line corresponding to a coupling of
strength 1, with all on-site potentials set to zero. The symmetric dimer represents
a defect in the infinitely extended chain and leads to compact localization in
the form of an anti-symmetric excitation of the dimer.

Besides analyzing the impact of local symmetries on one-dimensional chains, a
second focus of this thesis was the relation of local symmetries to so-called compact
localized states (CLSs). A CLS is an eigenstate of a discrete model with compact
support, that is, it vanishes outside of a (usually small) part of the system. We
note that such a “discrete model” could describe many different setups such as
interacting bosons or fermions on a lattice, and many more. To be specific, and to
have an easily understandable setup, in the following we will concentrate on the
tight-binding Hamiltonian

Ĥ = ∑
i

vi |i〉 〈i|+ ∑
<i,j>

hi,j |i〉 〈j| (6.2)

with the second sum going over neighboring sites, vi being the on-site potential
of site i, hi,j describing the coupling strength between the sites i and j, and with
|i〉 denoting a single-site excitation of the i-th site. An example of a simple CLS in
such a tight-binding model is depicted in Fig. 6.1.

The extreme localization of CLSs is caused by destructive interference, which is
in turn allowed for by a suitable interplay of coupling strengths and the geometry
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of the system. In lattices, such interplay may lead to macroscopically degenerate
CLSs, and consequently to the emergence of a completely flat band.

CLSs and flat bands are interesting from many viewpoints—for example, they
might play a role in high-temperature superconductivity—, but our personal moti-
vation for entering this field was the fact that many systems that host CLSs feature
local symmetries. In particular, we were curious whether these two phenomena are
linked to each other.

In [MR3], we found—by applying recent insights from graph theory—that cer-
tain classes of local symmetries can indeed be systematically linked to compact
localization. In particular, we derived a powerful construction principle that allows
to equip tight-binding lattices with locally symmetric structures that host CLSs.
Roughly speaking, this principle is based on replacing one or more sites of the
lattice with highly symmetric structures that can host CLSs. In the simplest case,
one chooses a unit cell of the lattice and replaces a single site of that cell with
a reflection-symmetric dimer. Due to the resulting local reflection symmetry, the
modified lattice then features one eigenstate that (i) is an anti-symmetric excitation
of the two sites comprising the dimer and (ii) vanishes everywhere outside of this
dimer. In other words, the modified lattice features a CLS localized on the dimer.
The system depicted in Fig. 6.1 is an example where the above procedure has been
applied to a one-dimensional chain whose unit cell comprises a single site.

Importantly, the parameters describing this dimer—such as its coupling strength
to the remainder of the system—can be tuned such that the energy spectrum of
the modified lattice equals that of the unmodified chain plus the single energy
eigenvalue of the CLS. Additionally, the energy of this CLS may be tuned freely,
and in particular may energetically lie within the energy continuum corresponding
to one of the dispersive bands of the lattice. Since—as can easily be shown—this
highly localized CLS is orthogonal to the extended eigenstates of this band, it
corresponds to a bound state in the energy continuum4.

The above construction principle can be successively applied to an arbitrarily
large number of unit cells. In particular, it may be applied to each unit cell in the
same way. As a result, each unit cell is equipped with a CLS, and all of these
CLSs have the same energy. These are thus macroscopically degenerate, and a flat
band emerges. If, additionally, the procedure of adding each CLS is done in the
minimally invasive way sketched above, that is, without changing the energy of
any other eigenstate of the system, then the energetical position of this flat band
can be tuned without modifying the energies of other bands of the lattice.

4 One might object that, due to the dimer defect, the Bloch states of the unperturbed lattice have
been perturbed. However, this is not the case: Bloch’s theorem can be easily modified to describe
this system provided that the dimerization is done in a suitable manner, that is, provided that the
coupling parameters and on-site potentials are chosen appropriately. In this case, the band structure
remains unchanged under the dimerization. Moreover, the nature of Bloch states is not changed. To
be precise, if Ψ denotes an eigenstate of the unperturbed lattice, then after the dimerization this state
becomes Ψ′, and we have

Ψ′ =

{ Ψ√
2

On each of the two dimer sites

Ψ Everywhere else.
(6.3)

Thus, the Bloch state Ψ is essentially unchanged, and in particular it is still extended throughout the
lattice.
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In [MR4], we moved away from tight-binding lattices, and applied the principle
of local symmetry induced compact localization to systems of coupled dipolar
nanoparticles. An important difference to tight-binding setups is the nature of
the coupling, since the electromagnetic interactions between the dipoles are long
ranged. Another difference is that the system is open and is now described not by a
Hamiltonian, but by the so-called dyadic Green’s matrix. Since each dipole scatterer
has three degrees of freedom5, the Green’s matrix of a setup with N scatterers
is of dimension 3N. To complete the description of the setup, we note that the
spectral characteristics of this Green’s matrix are linked to scattering properties of
the system. That is, the eigenvalues correspond to the lifetime and frequency of
scattering resonances, with the eigenvectors describing the electric field distribution
of these resonances on the dipoles.

In this context of dipolar nanoparticles, a compact localized state corresponds
to a scattering resonance whose electric field vanishes on most dipoles. And
although the long range coupling makes it more difficult to achieve destructive
interference that is necessary for this effect, we demonstrated that it is still possible.
Specifically, we proposed a reflection symmetric setup that consists of N + 2
scatterers. All scatterers are placed on the xy-plane of the setup, with N scatterers
additionally being arranged on a line, and with the remaining two scatterers
being displaced from this line in a reflection symmetric manner. As a result of
this reflection symmetry, the dyadic Green’s matrix describing this setup becomes
locally symmetric. That is, it is invariant under the operation which permutes the
z-degrees of freedom of the two displaced masses, while acting as the identity on
all other degrees of freedom. As a result of this local symmetry, a compact localized
state is induced.

Concluding the above, we found that local symmetries play an important role for
compact localization. In particular, local symmetries enable the systematic design of
systems featuring such localization, both in tight-binding setups and in systems fea-
turing long range coupling. In the following, we will discuss possibilities of further
research in this exciting field of local symmetry induced compact localization.

6.1.2.1 Outlook

Overall, the study of compact localization and flat bands is a rapidly growing
field, and there are many directions for further research building upon [MR3,
MR4]. An especially interesting project would be the application of local symmetry
principles not only to the tight-binding Hamiltonian of Eq. (6.2) or the dyadic
Green’s matrix, but also to Hamiltonians describing interacting particles6. Apart
from such models, another route would be to apply the principle of local symmetry
induced compact localization to other systems that can be described (in a suitable
approximation) by discrete models, for example to networks of coupled optical
waveguides. Here, a compact localized state would be an excitation in a subset of
waveguides, with destructive interference preventing a spreading of this excitation
to the remainder of the network. Moreover, since the results of [MR3] apply only to

5 Corresponding to electric field components in the x, y, and z-direction.
6 We note that the novelty in this proposal would not be the demonstration of compact localization in

such systems, which has indeed already been proposed (see, e.g., [312, 313]), but the application of
local symmetry concepts.
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certain classes of local symmetries, the generalization of our ideas to other types
of (local) symmetries would be another possible route for further research. In our
work [MR8] that will be summarized below, we have already taken a first step into
this direction by exploring latent symmetry induced compact localization.

With regard to [MR4], we saw that the proposed compact localization in systems
of dipolar nanoparticles leads to scattering resonances whose electric field vanishes
on a large number of dipoles. This is an unusual effect, and thus it would be
interesting to explore technological applications of it. Another route for future
research is a closer investigation of these systems: Since our model—in form of the
dyadic Green’s matrix—operates in the dipole approximation, the investigation of
the impact of higher-order-effects on the compact localization promises to yield
interesting insights. Lastly, we note that the proposed setup is reflection symmetric,
and an immediate generalization of the results would be the investigation of
compact localization in asymmetric systems, one example of which we already
discovered in our preliminary studies.

6.1.3 Transfer of compact localized states

Since a CLS is an eigenstate that is localized in a tiny volume of the system, it is
completely unaffected by any perturbations that happen outside of this volume.
It is thus ideally suited for the storage of information in a quantum computer.
However, using CLSs in this manner would further require the ability of transferring
them with high-fidelity in-between different quantum processing units. In [MR5,
MR6], we explored means of achieving such transfer. To this end, we investigated
networks of coupled spins described by the XX or the Heisenberg model. We
restricted ourselves to the subspace where only one spin is excited, for which these
models can be mapped to a tight-binding network described by the Hamiltonian of
Eq. (6.2).

The core of [MR5] was the development of a specialized lattice supporting the
simultaneous storage and transfer of a large number of CLSs. Since this lattice was
obtained from the well-known Lieb lattice by replacing some sites by symmetric
dimers, we called it the “decorated Lieb lattice”. Each unit cell of the decorated
Lieb lattice is locally symmetric and possesses two symmetric dimers such as the
one depicted in Fig. 6.1. As each of these dimers can host a CLS in the form of
an anti-symmetric excitation, they can be used for the storage of these states. We
further showed how a CLS can be transferred between different dimers. To this
end, we explored two different methods.

The first method is based on optimal control techniques. That is, we achieved
high-fidelity transfer of the CLS by modifying the underlying Hamiltonian in an
optimized, time-dependent manner.

We further developed a second method for CLS transfer that is applicable not
only to the decorated Lieb lattice, but to a broad range of setups. Apart from
two control pulses initializing and finalizing the transfer, this method does not
require a time-dependent control over the system’s parameter, and is thus much
simpler. The method is based on the so-called perfect state transfer (PST) technique
which was originally developed in the quantum information community for the
transfer of qubits. More specifically, PST was developed in the context of a spin



218 summary, conclusions , and outlook

network modeled by the XX or Heisenberg Hamiltonian, with the underlying
idea being as follows. Initially, the network is prepared in a state where all spins
point downwards. A qubit is then encoded into a single spin u, and the aim is to
transfer this qubit across the network to another spin v by pure time-evolution
of the underlying time-independent Hamiltonian. The fidelity of this process is
demanded to be unity, for which the Hamiltonian has to be fine-tuned.

In the above sketched process, initially only the spin u is excited. As a result, it
can be shown that the dynamics of this time-evolution take place in the subspace
where only one spin is excited, and the system can be mapped to a tight-binding
Hamiltonian. Here, the original qubit corresponds to a single-site excitation of u,
with PST corresponding to the perfect transfer to a single-site excitation of v. For
our method, we started with such a tight-binding PST Hamiltonian and modified it
such that it allows for perfect transfer of dimer CLSs. Technically, this modification
consisted of the dimerization of the sites u and v as well as the introduction of two
local control pulses before and after the transfer process. This proposed method is
completely general in that it can be used to equip a large class of PST Hamiltonians
with dimer-CLSs, which can then be both stored and transferred with high fidelity.

In [MR6], we moved away from PST and instead investigated the related concept
of so-called pretty good state transfer (PGST). Just as PST, this technique has been
developed for the transfer of qubits (or, equivalently, of single-site excitations),
but in general only achieves near-unity fidelities. Among others, the motivation
for using such a non-optimal transfer technique is that (i) the requirements that a
Hamiltonian must fulfill to feature PST are rather demanding, thereby limiting the
number of potential networks capable of such transfer, and (ii) in an experiment,
a fidelity of unity will anyway not be reached due to imperfections. In our work
on PGST, we achieved two things. Firstly, we developed a novel algorithm for the
design of tight-binding Hamiltonians featuring PGST. Secondly, and in complete
similarity to the above procedure for PST setups, we showed that large classes
of systems featuring pretty good transfer of single site excitations can easily be
modified such that they feature both pretty good transfer of CLSs as well as the
ability to store these states.

In summary, in the works [MR5, MR6] we developed different methods for the
combined high-fidelity transfer and storage of CLSs. Interestingly, these methods
turned out to be remarkably robust against imperfections and perturbations, which
became apparent in the context of detailed robustness studies in both [MR5] and
[MR6].

6.1.3.1 Outlook

When thinking about future pathways, there are three important points to bear in
mind: Firstly, the fact that even a single symmetric dimer can host a CLSs. Secondly,
the fact that the compact localization of CLSs enormously simplified our works
[MR5, MR6]. For example, the modification of the established transfer mechanisms
of single-site excitations to dimer-CLSs was remarkably simple, consisting only
of a dimerization of two sites and two local control pulses. Thirdly, the fact that
their compact localization also makes CLSs highly robust against imperfections
and perturbations.
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Thus, we can see that CLSs are a highly versatile tool, and given this versatility,
there are many open routes that one could go. Among others, one might implement
logical or quantum gates with CLSs, promote the dimer-CLSs to polymer-CLSs, or
find mechanisms to “catch” an extended excitation of a setup by converting it into
a CLS.

As written above, the results of [MR5, MR6] can be applied to spin systems
described by a Heisenberg or XX model provided that one works in the subspace
where only one spin is excited. Moving away from this regime is a promising
direction, and also connects to our proposal in Section 6.1.2.1 of analyzing the
impact of local symmetries on compact localization in many-body systems.

6.2 latent symmetries

Figure 6.2: (a) A simple 9-site tight-binding system in which the two red sites u and v are
latently symmetric (see text for details). All solid lines correspond to couplings
of strength 1, and all on-site potentials are equal to zero. (b) The isospectral
reduction of the setup in (a) over S = {u, v}, depicted as a graph (left) and as a
matrix (right).

In the last part of this thesis, we focused on a concept which is—at first glance—
unrelated to the concept of local symmetries. This concept is called “latent sym-
metries”, and was introduced in 2019 in the context of graph theory [306]. Latent
symmetries can be defined for a large number of discrete models, but, just as for
CLSs, it is easiest to discuss them in the context of the tight-binding Hamilto-
nian of Eq. (6.2). In Section 6.2.1, we shall discuss the wide applicability of latent
symmetries in more detail.

Figure 6.2 (a) shows a latently symmetric tight-binding model comprising nine
sites. At first glance, the system features no symmetry, that is, it is not invariant
under any reflection, rotation, or combination thereof. However, and irrespective
of this apparent asymmetry, the two sites u and v are latently symmetric. A latent
symmetry is defined via the so-called isospectral reduction

RS(H, E) = HSS + HSS
(
E− HSS

)−1 HSS (6.4)

which is equivalent to an effective Hamiltonian obtained through subsystem parti-
tioning. In Eq. (6.4), E denotes the energy, S is the set of sites over which the original
Hamiltonian is reduced, and S denotes its complement, that is, all other sites of
the system. The matrices HSS and HSS denote the sub-Hamiltonians describing
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only the subsystem S or S, with HSS and HSS denoting the coupling between these
two subsystems. We remark that the quantities HSS, HSS, HSS, and HSS denote sub-
matrices of the Hamiltonian matrix H, while so far we have talked—for example,
in Eq. (6.2)—on the level of the Hamiltonian operator Ĥ. While we will discuss
this issue in more detail in Section 6.2.1, for simplicity we here concentrate on our
tight-binding Hamiltonian of Eq. (6.2). If this Hamiltonian operator Ĥ describes a
setup of N sites, then we can write it as the N × N matrix H by choosing the basis
of single site-excitations. In this basis, the matrix element Hi,j of H is given by vi if
i = j, hi,j if i 6= j and i, j are coupled, and zero otherwise. Since it is thus clear how
the Hamiltonian Ĥ and the corresponding Hamiltonian matrix H are related to each
other, in the following we will use these two terms interchangeably.

After this small, but necessary excursion on matrices, let us come back to the
topic of latent symmetries. The simplest kind of latent symmetry occurs when the
original Hamiltonian is reduced over a set of just two sites S = {u, v} such that this
reduction is reflection symmetric [an example is shown in Fig. 6.2 (b)]. This has
a profound impact on the system: In the simplest case where all eigenvalues are
non-degenerate, the eigenstates of the Hamiltonian have definite parity on u and v.

Initially, our motivation to study latent symmetries stemmed solely from the
observation of this rather counter-intuitive parity. However, we soon realized that
latent symmetries are related to a much more profound fact. Namely, that the
powers of a Hamiltonian H are a valuable source of knowledge. For example, if the
Hamiltonian H = HT is real-symmetric, then a latent symmetry of two sites u and
v is equivalent to the statement that

(
Hk
)

u,u
=
(

Hk
)

v,v
(6.5)

for all positive integer k. That is, the diagonal entries of u and v are equal in all
matrix powers of H.

In [MR7], we were interested in a simple question: Given a tight-binding Hamilto-
nian H with two latently symmetric sites u and v, which modifications are allowed
without breaking this latent symmetry? The answer—and this should not be sur-
prising after our above emphasis—can be found through a thorough analysis of
the matrix powers of H. Indeed, we found that such an analysis can be used to
derive a broad range of latent symmetry preserving modifications. For example, if
we pick a single site c of our latently symmetric Hamiltonian H, and connect this
site to another system H′, then this extension does not break latent symmetry if
and only if (

Hk
)

u,c
= p

(
Hk
)

v,c
(6.6)

for all positive integer powers k, and with p ∈ {±1}. Moreover, we showed that the
analysis of the Hamiltonian’s matrix powers gives deep insights about the system’s
eigenstates. For example, any eigenstate with negative parity on u and v necessarily
vanishes on each site c fulfilling Eq. (6.6) with p = 1.

In [MR8], we applied the derived principles of latent symmetry preserving
modifications to the design of tight-binding setups with latent symmetry induced
flat bands. We devised several design strategies. In the simplest strategy, we start
with a latently symmetric Hamiltonian H that features one or more sites {ci} that
fulfill Eq. (6.6). We then build a lattice by using H as a unit cell and connecting
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it to other unit cells—that is, other copies of H—via one or more of the sites {ci}.
Each unit cell is then guaranteed to keep its latent symmetry, and if we label the
latently symmetric sites in a given unit cell by u and v, we see that each eigenstate
with negative parity7 on these two sites vanishes outside of this unit cell. Thus,
it corresponds to a compact localized state. Relying on our results from [MR7],
we demonstrated that the lattice Hamiltonian parameters—that is, couplings and
on-site potentials—can be parametrized in a high-dimensional manifold without
breaking the latent symmetry or the condition Eq. (6.6) for the sites {ci}. In
particular, such a parametrization allows to change the overall band structure of
the setup without losing the latent symmetry induced flat bands.

So far, we have only discussed the special case of a latent symmetry of two sites
u and v. That is, we discussed the case where the isospectral reduction Eq. (6.4) of
the original Hamiltonian over S = {u, v} has a symmetry. The concept of latent
symmetry can also be generalized, that is, the reduction of the Hamiltonian over
a larger set of n > 2 sites can have a symmetry as well. An especially interesting
case arises when such a reduction features several symmetries such that the group
formed by them is non-abelian. In this case, we say that the underlying Hamiltonian
features a non-abelian latent symmetry (group).

In [MR9], we investigated such non-abelian latent symmetries in more detail.
This investigation led to two important insights. Firstly, we found that non-abelian
latent symmetries necessarily induce degeneracies in the eigenvalue spectrum
of the underlying Hamiltonian. In this respect, latent symmetries thus behave
analogously to “conventional” non-abelian symmetries of the Hamiltonian itself,
for which the induction of degeneracies is well-known. An important consequence
of this finding is the classification of spectral degeneracies: While these can often
be related to symmetries of the underlying Hamiltonian, there are cases where no
suitable symmetry can be found, and the degeneracies are then usually said to be
“accidental”. Now, given that (i) latent symmetries are usually hidden from direct
observation, but become visible only after performing the isospectral reduction,
and that (ii) non-abelian latent symmetries induce degeneracies, it could be that
several so-called accidental degeneracies are in fact caused by non-abelian latent
symmetries.

Secondly, we found that there is a profound connection between the two main
topics of this thesis, namely, local and latent symmetries. Specifically, we found that

[RS(H, E), M] = 0 ⇔
[(

Hk
)

SS
, M
]
= 0 ∀ k . (6.7)

Here, M is a matrix describing the symmetry of the isospectral reduction; in the
simplest case, it would be a 2× 2 matrix describing a reflection symmetry of two
sites u, v. This equation states that a latent symmetry M of the isospectral reduction
over S is equivalent to a local symmetry M of the Hamiltonian in all matrix powers8.
Once again, this result shows that the matrix powers of the Hamiltonian are an
important and valuable source of knowledge.

7 Due to the latent symmetry of u and v, there is at least one such state
8 We remark that, to see whether a Hamiltonian features a latent symmetry, one might thus either

(i) look for local symmetries in H itself and in all matrix powers Hk, or (ii) investigate the isospectral
reduction of H. In both cases, whether a given Hamiltonian H features a latent symmetry or not is
usually not clear when investigating only H.
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Overall, in our above works and also in several other preliminary studies, we
found that latent symmetries are an exciting and very rich concept allowing to
see a physical system from a completely new viewpoint. Applying this concept
to a variety of physical setups is a logical next step, and in the following we shall
discuss some potential pathways for this application.

6.2.1 Outlook

In our above studies of latent symmetries, we focused on tight-binding setups.
However, and as we also noted above, latent symmetries are applicable to a much
broader class of systems. The reason for this broad applicability is that the isospec-
tral reduction Eq. (6.4) is defined in terms of a general square and diagonalizable
matrix H, which in particular even does not need to be hermitian. Thus, the concept
of latent symmetry can be applied to any physical system that is described by the
matrix eigenvalue problem

H~Ψ = λ~Ψ . (6.8)

This includes, in particular, tight-binding setups and the Green’s matrix that
we discussed in Section 6.1.2, systems of coupled oscillators (in the harmonic
approximation), or multi-port systems described by the scattering matrix. Moreover,
many-body systems described by, e.g., the Bose-Hubbard model or the Heisenberg
model can be related to Eq. (6.8) by writing the corresponding Hamiltonian as a
matrix. To perform this step, one needs to go into a specific basis, for which often a
“natural choice” exists. For example, for a system of interacting fermions of bosons,
one would typically work with Fock states.

So far our investigation of latent symmetries did not focus on a specific physical
system, but rather on the generic discrete model of Eq. (6.2). In particular, we
assumed complete control over all on-site and coupling elements, without taking
into account conditions on these that might be induced by the specific underlying
physical system. This was necessary, since the phenomenon of latent symmetries
has been barely investigated so far, and we first needed to build a solid founda-
tion of insights before we could start a search for latent symmetries in specific
physical systems. With the above works [MR7–MR9], this foundation is now built,
and we have already started several projects that focus on latent symmetries in
specific systems, such as multi-port scattering systems, systems of coupled acoustic
waveguides, chemical molecules, and coupled oscillators.

A recurring theme in our studies of latent symmetries is that the powers of the
matrix H occurring in the above matrix eigenvalue problem Eq. (6.8) are a very
valuable source of knowledge. In view of this, further research in this direction
promises to yield interesting results.
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