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Kurzfassung

Im Bereich der Quantenphysik werden nichtklassische Zustände wie Über-
lagerung und Verschränkung untersucht. Ein Beispiel für eine Überlagerung
ist der quantenoptische Schrödinger-Katzen-Zustand, der als Qubit im Bere-
ich der Quanteninformatik verwendet werden könnte. Eine Möglichkeit,
einen solchen Zustand zu erzeugen, ist die Subtraktion eines einzelnen Pho-
tons von einem schwach gequetschten Lichtzustand. Allerdings ist die
resultierende Amplitude α dieses Zustands sehr klein und liegt bei nur
ungefähr 1. Für eine Anwendung als Qubit ist ein α über 2 erforder-
lich. Dies kann erreicht werden, indem die erzeugten Katzenzustände auf
einem 50/50 Strahlteiler mit 2 Wiederholungen probabilistisch überlagert
werden. Ein solches Experiment erfordert einen anspruchsvollen Aufbau
mit 4 Quetschlichtquellen und einer 4 übereinstimmenden Einzelphotonen-
detektion, um den Erfolg des Wachsens anzukündigen. In dieser Arbeit
wurde ein anderer Ansatz getestet, der es erlaubt, das Ergebnis des zu-
vor beschriebenen Experiments mit nur einer Quetschlichtquelle und einem
Einzelphotonendetektor zu emulieren. Dazu wurde eine 8-Port-Homodyn-
Detektion eines Katzenzustands mit einem α von 1,1 experimentell real-
isiert. Die Überlagerung an einem 50/50 Strahlteiler mit 2 Wiederholungen
wurde in einer Datennachbearbeitung durchgeführt. Es konnte ein Katzen-
zustand mit einem α von 2,6 emuliert werden. Damit wurde die erforder-
liche Schwelle für Qubit-Anwendungen erreicht, aber der Katzenzustand ist
nur in Form von bereits gemessenen Datenpunkten verfügbar, die in einem
Computer gespeichert sind. Ob unsere emulierten Katzenzustände für weit-
ere Anwendungen genutzt werden können, wird derzeit untersucht. Der
Aufbau für die Erzeugung der Katzenzustände wird für ein zukünftiges
Projekt über Verschränkungsdestillation wiederverwendet, welches den Ab-
stand für die Quantenschlüsselverteilung im Bereich der Quantenkryptogra-
phie verbessern könnte.
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Abstract

Quantum physics allows to investigate nonclassical states like superpositions
and entanglement. One example for a superposition is the quantum optical
Schrödinger cat state, which might be used as a qubit in the area of quan-
tum computation. One way of producing such a state is the subtraction of
a single photon from a weakly squeezed state of light. The resulting ampli-
tude α of this state is small and just around 1. For an application as qubit,
an α above 2 is required. This can be achieved by probabilistically overlap-
ping the created cat states on a 50/50 beam splitter with 2 iterations. Such
an experiment needs a challenging setup with 4 squeezed-light sources and
a 4 coincident single photon detection for heralding success of the growth.
In this thesis another approach was tested, which allows to emulate the out-
come of the previously described experiment by using only 1 squeezed-light
source and 1 single photon detector. For that an 8-port homodyne detection
of a cat state with an α around 1.1 was experimentally realized. The interfer-
ence on a 50/50 beam splitter with 2 iterations was done in post processing.
It was possible to emulate a cat state with an α around 2.6. Hence the re-
quired threshold for qubit applications was reached, but the cat state is only
available in form of already measured data points inside a computer. If our
emulated cat states can be used for further applications is under investiga-
tion. The cat state setup will be repurposed for a future project about entan-
glement distillation, which might be able to improve the possible distance
for quantum key distribution in the field of quantum cryptography.
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Chapter 1

Introduction

In 1935 an astonishing thought experiment was published by Erwin Schrö-
dinger to demonstrate the strange properties of quantum physics [1]. This
thought experiment is called "Schrödinger’s cat" and describes a cat which is
dead and alive at the same time. Figure 1.1 visualizes the thought experiment
of Schrödinger’s cat.

Figure 1.1: Schrödinger’s cat. A cat is placed inside a box, which is completely iso-
lated from the environment. Additionally, a toxic substance is placed
inside the box, which can kill the cat. The toxic substance will be re-
leased by an atomic decay, which is a random event. Therefore, without
a measurement process it is unknown if the atom is decayed and the cat
is dead or if the atom is not decayed and the cat is alive. Hence, the cat
is in a superposition of dead and alive until someone opens the box to
observe the state of the cat. In the moment of observation, the superpo-
sition collapses and the cat is either dead or alive. Picture received from
Joachim Herz Stiftung / Jenny Meßinger-Koppelt.
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To achieve this superposition of two different states, the cat is placed in-
side a box, which is completely isolated from the environment. Inside the
box is also a toxic substance, which can be released by a mechanism, which
is triggered by a random event like an atomic decay. This leads to two pos-
sibilities: the atom is decayed and the cat is dead or the atom is not decayed
and the cat is alive. Without a measurement process, the state of the cat is
unknown and can be interpreted as a superposition of dead and alive. If
someone opens the box, to observe the state of the cat, the superposition
collapses and the cat is either dead or alive. Of course, it is not possible to
isolate a living object completely from the environment because, therefore,
ultra cold temperatures and an ultra high vacuum are needed, which can-
not be realized for a living object. Hence, the Schrödinger’s cat remains a
thought experiment and cannot be done in a real experiment. But quantum
physics allows to create other superposition states in an experimental way,
for example, by using atom-light interactions [2][3][4].

In this thesis a method is shown to create a quantum optical cat state,
which is defined as a superposition of two coherent states |α〉 with opposite
phases [5, p.174]. The basic idea is to subtract a single photon from a weakly
squeezed state of light. Therefore, a small part of the weakly squeezed state
is tapped off to a single photon detector, which is used as a trigger to do
a conditional measurement. This procedure was already done in [6][7] and
delivered a state with a high fidelity to a cat state. The amplitude α is only
in the order around 1. Hence, it is a very small cat state, which is sometimes
labeled as "Schrödinger kitten state" [7].

In [6][7] the state characterization was done with a conventional balanced
homodyne detection. For this thesis another detection method was used, the
so called "8-port homodyne detection", which measures two non commuting
observables simultaneously [8]. Therefore, two balanced homodyne detec-
tors are used. The signal is divided on a beam splitter into two equal parts
and with one detector the amplitude quadrature is read out while the other
detector measures the phase quadrature at the same time. With this detection
scheme the Q-function of the Schrödinger kitten state can be measured. Ad-
ditionally, the 8-port homodyne detection allows to use the measured data
for a post processing.

Schrödinger kitten states with larger amplitudes can be created by over-
lapping two indistinguishable Schrödinger kitten states on a 50/50 beam
splitter. The procedure is similar to the Hong-Ou-Mandel effect [5, p.217-
219][9], where indistinguishable Fock |1〉 states are superimposed on a 50/50
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beam splitter. The result is a Fock |2〉 state in one of the beam splitter out-
puts, randomly distributed between the beam splitter output ports. While in
the Hong-Ou-Mandel effect the Fock number increases, for cat states the am-
plitude α gets larger. This was already done in a pure experimental way and
resulted in a cat state with an α of 1.85 [10]. This idea was previously pro-
posed in [11] and further developed by [12]. The resulting grown states can
be overlapped again to further increase the amplitude. But the experimental
effort with 4 squeezing resonators and 4 single photon detectors would be
quite high. The success rate is also very small due to the necessary 4 coinci-
dent trigger. The 8-port homodyne detection allows to emulate the outcome
of the experiment with 4 squeezed-light sources and a 4 coincident single
photon detection by using only 1 squeezed-light source and 1 single photon
detection.

A possible application for Schrödinger kitten states is the usage as qubit
in the field of quantum computation [13]. A qubit can be in a superposition
of the logical states |0〉 and |1〉 [14, p.13-16]. Therefore, quantum computers
can solve some specific problems more efficiently compared to a classical
computer [15]. To work fine as qubit the cat state amplitude α should be at
least 2 [13, p.1]. So, the amplitude of the photon subtracted states is too small
and after one iteration of overlapping it is still too small, but the amplitude
after the 2. iteration should be large enough for this application.

Also other experiments were already done with the combination of single
photon detection and balanced homodyne detection. For example, the gener-
ation of Fock states [16][17][18] or an entanglement distillation [19][20]. Such
combination of continuous and discrete variables is called "hybrid quantum
optics" [21]. The basic idea for the Fock state generation is the same as for
the cat state generation, but even smaller initial squeezing values were taken
[17, p.3573]. For the entanglement distillation, an entangled state was cre-
ated by overlapping a squeezed state with a vacuum state on a beam splitter
[19, p.178]. This introduces nonclassical correlations between the beam split-
ter output ports. The basic idea of a distillation is to extract a low amount
of strong nonclassical states from a high amount of weak nonclassical states
[22]. Such extraction can be done by conditioning to a single photon detec-
tion. Distillation could be useful for quantum cryptography [23][24][25] by
increasing the possible distance of quantum key distribution [19][26].

This thesis has following structure. Chapter 2 gives the quantum the-
ory of light, which is necessary for understanding the thesis. Afterwards in
chapter 3 the experimental methods are explained, especially the generation
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of squeezed states of light and Schrödinger kitten states are thematized. Ad-
ditionally, the detection of light is introduced. In chapter 4 an optimization
of the squeezed-light source is presented. Thereafter a method called "noise
envelope locking" is shown in chapter 5, which allows to stabilize the phases
in the experiment without using a coherent field. Chapter 6 is about a char-
acterization of avalanche photo diodes, which are needed to apply a single
photon subtraction from the squeezed-light. In chapter 7, finally, the mea-
surement of Schrödinger kitten states with an 8-port homodyne detection is
shown and the post processing to increase the amplitude of the kitten states
is done. The thesis ends with a discussion and outlook in chapter 8.
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Chapter 2

Quantum theory of light

In this chapter the quantum theory of light is introduced. A lot of quantum
optics books are available, which explain the theoretical principles in detail
[5][27][28][29]. This chapter only gives a short summary about the central
concepts, which are necessary to understand the following chapters of this
thesis. For example, quadrature operators are defined, Heisenberg’s uncer-
tainty principle is shown and the properties of different states of light are
discussed and visualized. For the visualization the Python package "QuTiP"
was used [30][31].

2.1 Field quantization

The field quantization follows the description in [5, p.10-15]. Starting from
Maxwell’s equations without sources and taking the boundary conditions of
a resonator leads to the field operator Ê(z, t):

Ê(z, t) =

√
2ω2

Vε0
q̂(t) sin(kz) . (2.1)

It describes a field which propagates in z-direction and is polarized along the
x-direction. The frequency of the mode is given by ω, k is the wave number,
ε0 is the dielectric constant, V is an effective volume and q̂(t) is a time de-
pended operator.
The Hamilton operator Ĥ is given by

Ĥ =
1
2
( p̂2 + ω2q̂2) , (2.2)

where q̂ and p̂ are the quantum mechanical position and momentum opera-
tors.
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The annihilation operator â and the creation operator â† are introduced:

â =
1√
2h̄ω

(ωq̂ + i p̂) , (2.3)

â† =
1√
2h̄ω

(ωq̂− i p̂) . (2.4)

They have a non vanishing commutator:

[â, â†] = 1 . (2.5)

The Hamilton operator Ĥ can be written as

Ĥ = h̄ω(â† â +
1
2
) = h̄ω(n̂ +

1
2
) . (2.6)

The h̄ is the reduced Planck constant and n̂ represents the photon number
operator:

n̂ = â† â . (2.7)

2.2 Quadrature operators

The quadrature operators are defined analog to [5, p.17/152]. The annihi-
lation operator â and the creation operator â† are non hermitic operators.
Therefore, they cannot be observed. But with â and â† a hermitic operator
can be created, the so called generic quadrature operator X̂(Θ) defined as

X̂(Θ) =
1
2
(âe−iΘ + â†eiΘ) . (2.8)

For Θ = 0◦ this leads to the amplitude quadrature X̂:

X̂ =
1
2
(â + â†) (2.9)

and for Θ = 90◦ this leads to the phase quadrature Ŷ:

Ŷ =
1
2i
(â− â†). (2.10)

The field operator Ê(z, t) from equation 2.1 can be rewritten as

Ê(z, t) = 2ε0 sin(kz)[X̂ cos(ωt) + Ŷ sin(ωt)] , (2.11)
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and the Hamilton operator Ĥ from equation 2.6 can be rewritten as

Ĥ = h̄ω(X̂2 + Ŷ2) . (2.12)

2.3 Heisenberg uncertainty principle

The Heisenberg uncertainty principle can be found in [5, p.150-151]. For two
operators Â and B̂ with the commutator relation [Â, B̂] = iĈ following un-
certainty relation is given:

∆2Â ∆2B̂ ≥ 1
4
|
〈
Ĉ
〉
|2 . (2.13)

∆2Ô is the variance of an operator Ô

∆2Ô =
〈

Ô2
〉
−
〈
Ô
〉2

, (2.14)

and
〈
Ô
〉

represents the expectation value:

〈
Ô
〉
=
〈
ψ|Ô|ψ

〉
. (2.15)

For the amplitude quadrature X̂ and the phase quadrature Ŷ the commutator
is called:

[X̂I , ŶI ] =
i
2

. (2.16)

Equation 2.13 and equation 2.16 lead to the uncertainty relation of the quadra-
ture operators:

∆2X̂ ∆2Ŷ ≥ 1
16

. (2.17)

The Heisenberg uncertainty principle shows that the product of the variances
is limited. Therefore, it is not possible to measure the amplitude quadrature
X̂ and the phase quadrature Ŷ precisely at the same time.

2.4 Wigner function

Information about the Wigner function are taken from [28, p.37-54][32]. The
Wigner function is a phase space quasi-probability distribution, which can
fully describe a quantum state of light. It can have negative values, which in-
dicates that a state is nonclassical, for example, the Fock states in section 2.6.
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But it is also possible to have a nonclassical state without observing negativi-
ties in the Wigner function. For example, the squeezed states in section 2.8 are
nonclassical states without negativities in the Wigner function. The Wigner
function is defined as:

W(X, Y) =
1

2π

∞∫
−∞

eiYz
〈

X− z
2
|ρ̂|X +

z
2

〉
dz , (2.18)

where ρ̂ is the density matrix:

ρ̂ = |ψ〉 〈ψ| . (2.19)

The Wigner function is normalized:

∞∫
−∞

∞∫
−∞

W(X, Y) dX dY = 1 . (2.20)

Furthermore, the Wigner function is real for Hermitian operators ρ̂:

W(X, Y)? = W(X, Y) . (2.21)

2.5 Vacuum state

Figure 2.1: Photon statistics (left) and Wigner function (right) are shown for a vac-
uum state. The vacuum state contains no photons. The quadrature dis-
tributions are symmetric Gaussians around the origin with a minimal
uncertainty product. Plots created with the Python package "QuTiP".
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The vacuum state is introduced in [5, p.29]. For the vacuum state |0〉 the
expectation values for the quadrature operators is zero. Hence, there is no
electric field on average: 〈

0|X̂|0
〉
= 0 , (2.22)〈

0|Ŷ|0
〉
= 0 . (2.23)

Whereas the variances of the quadrature operators are non zero:

∆2X̂ =
〈

0|X̂2|0
〉
−
〈
0|X̂|0

〉2
=

1
4

, (2.24)

∆2Ŷ =
〈

0|Ŷ2|0
〉
−
〈
0|Ŷ|0

〉2
=

1
4

. (2.25)

Therefore, the vacuum state has a certain noise around zero. When the vari-
ances are put into the Heisenberg uncertainty principle from equation 2.17
the minimal possible value of 1/16 comes out. So, the vacuum state is a state
of minimal uncertainty. The value of 1/16 is a normalization constant, which
can be chosen differently. Another typical value is a vacuum normalization
to 1. Figure 2.1 shows the photon statistics of a vacuum state, which is con-
stant zero. The Wigner function of a vacuum state is also shown in figure 2.1
and has following formula [28, p.45]:

W|0〉(X, Y) =
1
π

e(−X2−Y2) . (2.26)

2.6 Fock state

The Fock state properties are presented in [5, p.14-15]. The Fock states |n〉 are
created from the vacuum state |0〉:

|n〉 = (â†)n
√

n!
|0〉 . (2.27)

The mean photon number of a Fock state is given by

〈n|n̂|n〉 = n . (2.28)

The variance of the photon number is zero:

∆2n̂ =
〈

n|n̂2|n
〉
− 〈n|n̂|n〉2 = 0 . (2.29)
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Figure 2.2: Photon statistics (left) and Wigner function (right) are shown for a Fock
state with n = 1 (top) and n = 2 (bottom). Fock states have exactly the
number of photons as their Fock number. The quadrature distributions
are symmetric around the origin. They have a non Gaussian shape and
contain negativities, which indicates the nonclassicality of Fock states.
Plots created with the Python package "QuTiP".

Hence, Fock states have a fixed photon number as can be seen in figure 2.2.
The Wigner function of a Fock state is also shown in figure 2.2 and has fol-
lowing formula [33, p.9]:

W|n〉(X, Y) =
1
π

e(−X2−Y2)(−1)nL(0)
n [2(X2 + Y2)] , (2.30)

where L(0)
n are generalized Laguerre polynomials.

The Wigner function of a Fock |1〉 state looks like a crater with a negativity
at the origin. Hence, it is a nonclassical state of light.
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Figure 2.3: Photon statistics (left) and Wigner function (right) are shown for a co-
herent state with α = 1 (top) and α = 2 (bottom). Coherent states have a
Poissonian photon distribution. The quadrature distributions are sym-
metric Gaussians displaced from the origin with a minimal uncertainty
product. Plots created with the Python package "QuTiP".

2.7 Coherent state

The properties of a coherent state are taken from [5, p.43-71]. Coherent states
|α〉 can be presented as a sum over Fock states |n〉:

|α〉 = e
−|α|2

2

∞

∑
n=0

αn
√

n!
|n〉 . (2.31)

The photon statistics of a coherent state is a Poissonian as can be seen in
figure 2.3. A characteristic of a Poisson statistics is that the expectation value
is equal to the variance:

〈α|n̂|α〉 = |α|2 = ∆2n̂ . (2.32)
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The coherent states |α〉 are eigenstates to the annihilation operator â, where
α = |α|eiΘ is a complex number.
The expectation value of the amplitude quadrature X̂ and the phase quadra-
ture Ŷ are: 〈

α|X̂|α
〉
= |α| cos(Θ) , (2.33)〈

α|Ŷ|α
〉
= |α| sin(Θ) . (2.34)

The variances are the same as for the vacuum state |0〉. Hence, they are also
states of minimal uncertainty:

∆2X̂ =
〈

α|X̂2|α
〉
−
〈
α|X̂|α

〉2
=

1
4

, (2.35)

∆2Ŷ =
〈

α|Ŷ2|α
〉
−
〈
α|Ŷ|α

〉2
=

1
4

. (2.36)

Coherent states |α〉 can be presented as a shifted vacuum state |0〉:

|α〉 = D̂(α)|0〉 , (2.37)

where D̂ is the shifting operator:

D̂(α) = exp(αâ† − α∗ â) . (2.38)

The Wigner function of a coherent state is shown in figure 2.3 and has fol-
lowing formula [28, p.49]:

W|α〉(X, Y) =
1
π

e(−(X−X0)
2−(Y−Y0)

2) . (2.39)

2.8 Squeezed state

The description of squeezed states follows [5, p.150-165]. The squeezing op-
erator is called:

Ŝ(ξ) = exp
[

1
2
(ξ∗ â2 − ξ â†2)

]
. (2.40)

When it is applied to a vacuum state |0〉, a squeezed vacuum state |0, ξ〉 is
created. When it is applied to a coherent state |α〉, a squeezed coherent state
|α, ξ〉 is created. For ξ following relation is given:

ξ = reiθ , (2.41)
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Figure 2.4: Photon statistics (left) and Wigner function (right) are shown for a
squeezed vacuum state with r = 0.5 (top) and r = 1 (bottom). Squeezed
vacuum states have a photon distribution where only even Fock num-
bers are populated. The quadrature distributions are Gaussians with an
elliptic shape around the origin. The squeezed quadrature has a lower
uncertainty as the vacuum state. The orthogonal anti-squeezed quadra-
ture has a larger uncertainty as the vacuum state. The uncertainty prod-
uct is limited by Heisenberg’s uncertainty principle. Plots created with
the Python package "QuTiP".

with r as squeeze parameter in the interval of 0 ≤ r ≤ ∞ and Θ as squeeze
angle in the interval of 0 ≤ Θ ≤ 2π. For squeezed states there is an angle
Θ where the generic quadrature operator X̂(Θ) from equation 2.8 gives a
smaller variance as the vacuum state has. The orthogonal quadrature is anti-
squeezed because it has a larger variance as the vacuum state to fulfill the
Heisenberg’s uncertainty principle from section 2.3. Therefore, a squeezed
state looks like an ellipse and can be seen in figure 2.4 as Wigner function,
which has following formula [28, p.48]:

W|0,ξ〉(X, Y) =
1
π

e(−e2ξ X2−e−2ξY2) . (2.42)
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The Wigner function of a squeezed state shows no negativity, but it is still a
nonclassical state of light [5, p.150/165]. The photon statistics of a squeezed
state is also shown in figure 2.4 and contains only even numbers. The reason
for this characteristic is a pairwise creation of photons, as it is explained in
chapter 3.1.

2.9 Schrödinger cat state

Figure 2.5: Photon statistics (left) and Wigner function (right) are shown for an odd
cat state with α = 1 (top) and α = 2 (bottom). Odd cat states have a
photon distribution where only odd Fock numbers are populated. The
quadrature distributions contain negativities, which indicates the non-
classicality of odd cat states. For small amplitudes an odd cat state ap-
proximates to a Fock |1〉 state and has a negativity at the origin. For
high amplitudes an interference pattern is visible and two Gaussian
hills at the edges can be observed. Plots created with the Python pack-
age "QuTiP".

The description of Schrödinger cat states is taken from [5, p.174-182]. A
cat state in quantum optics is a superposition of two coherent states |α〉 with
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opposite phases:
ψcat ∝ (|α〉 ± | − α〉) . (2.43)

Equation 2.43 is called "odd cat" for the superposition with "-" because only
odd photon numbers appear in the photon statistics:

ψcat, odd ∝ e
−|α|2

2

∞

∑
n=0

α2n+1√
(2n + 1)!

|2n + 1〉 . (2.44)

In figure 2.5 the photon statistics of an odd cat is visualized. The Wigner
function of an odd cat is also shown in figure 2.5 and has following formula
[5, p.178]:

Wcat, odd(X, Y) =
1

π(1 + e−2α2)
[e−2(X−α)2−2Y2

+ e−2(X+α)2−2Y2

−2e−2X2−2Y2
cos (4Yα)] .

(2.45)

The Wigner function of an odd cat state looks for small amplitudes α similar
to a Fock |1〉 state. Consequentially it has the crater shape and a negativity at
the origin. Hence, it is also a nonclassical state of light. For higher amplitudes
an interference pattern appears with more negativity stripes.

Equation 2.43 is called "even cat" for the superposition with "+" because
only even photon numbers appear in the photon statistics:

ψcat, even ∝ e
−|α|2

2

∞

∑
n=0

α2n
√

2n!
|2n〉 . (2.46)

In figure 2.6 the photon statistics of an even cat is visualized. The Wigner
function of an even cat is also shown in figure 2.6 and has following formula
[5, p.177]:

Wcat, even(X, Y) =
1

π(1 + e−2α2)
[e−2(X−α)2−2Y2

+ e−2(X+α)2−2Y2

+2e−2X2−2Y2
cos (4Yα)] .

(2.47)

The Wigner function of an even cat state also indicates the nonclassicality of
the state because it has negativities. For small amplitude α there are 2 neg-
ativities, which are beside the origin. For higher amplitudes an interference
pattern appears with more negativity stripes.
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Figure 2.6: Photon statistics (left) and Wigner function (right) are shown for an
even cat state with α = 1 (top) and α = 2 (bottom). Even cat states
have a photon distribution where only even Fock numbers are popu-
lated. The quadrature distributions contain negativities beside the ori-
gin, which indicates the nonclassicality of even cat states. For high am-
plitudes an interference pattern is visible and two Gaussian hills at the
edges can be observed. Plots created with the Python package "QuTiP".

2.10 Q-function

Information about the Q-function are taken from [28, p.54-56]. The Q-function
is the convolution of the Wigner function with the vacuum state:

Q(X, Y) =
1
π

∞∫
−∞

∞∫
−∞

W(X′, Y′)e(−(X−X′)2−(Y−Y′)2) dX′ dY′ . (2.48)

The connection to the density matrix from equation 2.19 is given by:

Q(α) =
1

2π
〈α|ρ̂|α〉 . (2.49)
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The Q-function is also a quasi-probability distribution, which can be used to
characterize a state of light. The Q-function is non negative and normalized
to unity. The Q-function can be measured via an 8-port homodyne detec-
tion, which is explained in chapter 3.4.2. Figure 2.7 shows the Q-function for
different states of light.
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Figure 2.7: Q-functions for different states of light. First row: vacuum state (left)
and Fock state with n = 1 (right). Second row: coherent state with
α = 1 (left) and squeezed state with r = 1 (right). Third row: odd cat
state with α = 1 (left) and even cat state with α = 1 (right). Last row:
odd cat state with α = 2 (left) and even cat state with α = 2 (right). Plots
created with the Python package "QuTiP".
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Chapter 3

Experimental methods

In this chapter the experimental methods are introduced. At the beginning,
the generation of squeezed states of light by using a nonlinear effect are ex-
plained. Afterwards the generation of Schrödinger kitten states is shown.
The basic idea to create such states is to subtract a single photon from a
weakly squeezed state of light. Therefore, a single photon detector is nec-
essary. Hence, the concept of a single photon detection is part of this chapter.
Finally, the balanced homodyne detection is thematized, which makes it pos-
sible to measure and characterize the different states of light.

3.1 Generation of squeezed states of light

The properties of squeezed states of light were already shown in chapter 2.8.
Here some background information about the generation are presented. This
chapter is based on following literature [34][35, p.23-57][36, p.84-88].

The generation of squeezed states of light is done in a nonlinear process
called "spontaneous parametric down-conversion" or " optical parametric
amplification". To activate this process, a laser beam of a certain wavelength
is sent into a nonlinear crystal as pump field. Inside the crystal the pump
field is converted to light with the doubled wavelength. According to energy
conversation a pump photon at 532 nm can decay to 2 photons at 1064 nm.
The process in opposite direction is also possible, where light of the doubled
frequency is produced by combining 2 photons at 1064 nm to 1 photon at
532 nm. This case is called "second harmonic generation" (SHG). More de-
tails about the SHG process can be found in [36, p.96-105].

For both directions a phase matching between the two wavelength is nec-
essary to get a high conversion efficiency. In this thesis a periodically poled
potassium titanyl phosphate (PPKTP) crystal is used for the squeezing gen-
eration, therefore, a quasi-phase matching has to be done via controlling the
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Figure 3.1: Phase matching conditions. The intensity of a converted light field is
shown in dependence of the crystal length for different phase matching
conditions. Perfect phase matching (blue), which shows a continuously
increasing intensity. No phase matching (red), only very small intensi-
ties are reachable. Quasi-phase matching (green), where the intensity
increases stepwise. The reason for this behavior is the periodic poling
of the crystal, which is indicated by the arrows. Picture taken from [37,
p.32] referring to [38, p.2632].

crystal temperature. Figure 3.1 shows the quasi-phase matching and com-
pares it to the cases of perfect phase matching and no phase matching. The
characteristic shape of the quasi-phase matching is a stepwise enlargement
of the intensity caused by the periodic poling.

The PPKTP crystal is placed inside a resonator to achieve higher squeez-
ing values. Figure 3.2 shows such squeezing resonator. The cavity is formed
by a coupling mirror and the backside of the PPKTP crystal, which is curved
and coated for high reflectivity. The length of the cavity can be controlled
with a piezoelectric element on the coupling mirror. Furthermore, the squeez-
ing resonator contains Peltier elements to control the temperature of the PP-
KTP crystal to achieve the necessary quasi-phase matching. The pump field
is coupled into the squeezing resonator through the coupling mirror together
with a vacuum mode of the doubled wavelength. Inside the crystal the vac-
uum mode is squeezed and a squeezed vacuum mode is coupled out through
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Figure 3.2: A squeezing resonator is shown. It is a linear cavity composed of a
high reflected (HR) coated nonlinear crystal (PPKTP) and a coupling
mirror. The temperature of the PPKTP crystal can be stabilized with
Peltier elements to the required quasi-phase matching temperature. The
coupling mirror is connected with a piezoelectric element to be able to
control the cavity length. A pump field at 532 nm enters the squeezing
resonator through the coupling mirror together with a vacuum mode
at 1064 nm. Inside the PPKTP crystal the vacuum mode is squeezed
by optical parametric down conversion. The squeezed state leaves the
squeezing resonator through the coupling mirror. Picture created with
Microsoft Power Point.

the coupling mirror. Theoretically due to destructive interference at the cou-
pling mirror infinity squeezing would be possible. But in practice the reach-
able squeeze values are limited by optical loss. Optical loss can be seen as
mixing in a vacuum state, which reduces the amount of squeezing. Follow-
ing formula describes the variance of a squeezed state ∆2X̂ε(Θ) with optical
loss ε:

∆2X̂ε(Θ) = (1− ε)∆2X̂Initial(Θ) + ε∆2X̂0 . (3.1)

∆2X̂0 is the variance of the vacuum state and ∆2X̂Initial(Θ) indicates the vari-
ance of the initial created squeezed state. Equation 3.1 can be converted to a
formula for the optical loss ε and the initial squeezing ∆2X̂Initial(Θ):

ε =
1− ∆2X̂∆2Ŷ

2− ∆2X̂− ∆2Ŷ
, (3.2)

∆2X̂Initial(Θ) =
∆2X̂ε(Θ)− ε∆2X̂0

1− ε
. (3.3)
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Figure 3.3: Squeezed state with optical loss. The relative noise power in dB is plot-
ted against the optical loss for different initial squeeze values. The solid
lines represent an initial squeeze value of 20 dB and the dashed lines
represent an initial squeeze value of 3 dB. It is visible that the squeezed
quadrature is more vulnerable for optical loss than the anti-squeezed
quadrature and higher squeeze values are more vulnerable for optical
loss than lower squeeze values. The plot was created with a gnuplot
script written by Jan Südbeck.

Squeeze values can be represented in decibel (dB):

x dB = −10 log10

(
∆2X̂(Θ)

∆2X̂0

)
. (3.4)

Alternatively, the squeeze value can be expressed as r value, as it was intro-
duced in chapter 2.8. The connection between r and dB is

r = −1
2

ln(10−
x dB

10 ) . (3.5)

Figure 3.3 shows a simulation of different squeezed states with optical loss.
The squeezed and anti-squeezed quadrature get smaller for higher optical
loss. The squeezed quadrature reacts stronger to optical loss than the anti-
squeezed quadrature and higher squeeze values are more vulnerable than
smaller squeeze values.
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3.2 Generation of Schrödinger kitten states

Figure 3.4: Schrödinger kitten state generation. A weakly squeezed state (around
2 dB - 3 dB) is generated in a squeezing resonator (SQZ) and is sent to an
unbalanced beam splitter (UBS). The UBS reflects most of the squeezed
signal to a balanced homodyne detector (BHD), but a small part of the
squeezed signal is transmitted to a single photon detector (SPD). The
SPD signal indicates that a single photon (Fock |1〉 state) was subtracted
from the squeezed state. By conditioning the BHD signal to the SPD
signal, an odd cat sate can be detected from the BHD. The reachable
cat state amplitude α with this method is only around 1. Therefore, the
generated states are called "Schrödinger kitten states". Picture created
with Inkscape referring to [7, p.84].

The properties of quantum optical cat states were already shown in chap-
ter 2.9. Here some background information about the generation are pre-
sented. This chapter is based on following literature [6][7][39].

The basic idea is to subtract a single photon from a weakly squeezed state
of light. Therefore, a squeezed state of light is generated as described in
the previous section 3.1. Only a small pump power of a few mW is used to
generate an initial squeeze value around 2 dB - 3 dB. The squeezed field is
sent to an unbalanced beam splitter, which sent a small part of the squeezed
signal to a single photon detector and the rest of the signal to a balanced
homodyne detector. The single photon detector signal acts as a trigger, which
indicates that a single photon was subtracted from the squeezed signal. The
balanced homodyne detector signal is conditioned to this trigger to measure
a quantum state of light, which looks very similar to an odd cat state. The
amplitude α of this state is only around 1, therefore, the generated states do
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Figure 3.5: Q-functions of an odd cat state with α = 1 are shown for different loss
values. Top left no loss, top right 10 % loss, bottom left 25 % loss and bot-
tom right 50 % loss. With increasing loss, the odd cat state is smoothed
out by a vacuum state and the characteristic hole in the middle of the Q-
function vanishes. The plots were created with a Python script written
by Felix Pein.

not represent a macroscopic cat state. In the literature such cat states with
small amplitudes are called "Schrödinger kitten states". Figure 3.4 visualizes
the Schrödinger kitten state generation.

As discussed in chapter 2.9 the cat states are nonclassical states of light
and, therefore, they are vulnerable for decoherence sources like optical loss.
Hence, an increasing loss destroys the cat state properties as can be seen in
figure 3.5 for an odd cat with α = 1. The plots of the lossy Q-function were
created with a Python script written by Felix Pein. The model behind this
script is explained in [40, p.16-18].
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3.3 Single photon detection

For the single photon detection different kind of detectors can be used. Two
types of single photon detectors are explained. On the one hand an avalanche
photo diode (APD) and on the other hand a superconducting nanowire single
photon detector (SNSPD).

3.3.1 Avalanche photo diode

Figure 3.6: On the top side the working principle of an APD is shown. A photon
creates an electron. This electron is accelerated by an applied voltage
and triggers an avalanche of secondary electrons. On the bottom side
an example of an APD signal is shown. It is a self-made measurement
of the COUNT 50N-FC signal with an oscilloscope. More details about
this detector can be found in chapter 6.3 and in the data sheet [41]. Top
picture created with Microsoft Power Point referring to [42, p.3]. The
bottom picture is an oscilloscope data plot done in Python with a script
written by Felix Pein.
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An introduction about APDs can be found in [43]. The APD is a detector
based on a semiconducting material, for example, silicon or InGaAs. A single
photon creates a single electron. The single electron is accelerated by an ap-
plied bias voltage and creates a secondary electron. The secondary electrons
can create further electrons, which results in an avalanche of electrons which
produce a measurable signal. Figure 3.6 shows the working principle of an
APD and illustrates the resulting signal on an oscilloscope. After such an
avalanche process the detector needs a certain recovery time before the next
photon can be measured. The time where the detector is blind is called "dead
time". Even without a photon, an APD can generate a signal, for example, be-
cause a thermal excitation releases an electron, which activates an avalanche.
Signals which are created without a photon are called "dark counts". Another
relevant effect is the process of after pulsing. After an avalanche an electron
might stuck in the detector material which triggers a new avalanche.

Not every photon activates an avalanche. Hence, the quantum efficiency
of an APD is an interesting parameter. A rough estimation of the quantum
efficiency η can be calculated by dividing the measured count rate Rdetected

through the incoming photon rate Rincident:

η =
Rdetected
Rincident

. (3.6)

Thereby the incoming photon rate Rincident is defined as:

Rincident =
Pλ

hc
, (3.7)

with the wavelength λ, power P, speed of light c and Plank constant h. A
more precise quantum efficiency ηcorrected can be determined by using a count
rate R′detected which is corrected from dark counts Rdark and dead time τ:

R′detected =
Rdetected

1− Rdetectedτ
− Rdark

1− Rdarkτ
, (3.8)

ηcorrected =
R′detected
Rincident

. (3.9)

3.3.2 Superconducting nanowire single photon detector

An introduction about SNSPDs can be found in [44]. The SNSPD consists
of a thin and narrow superconducting nanowire. The nanowire is cooled
below the critical temperature for a superconducting state. If a photon hits
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the nanowire, the superconductivity is disturbed by a hotspot, which has a
finite electrical resistance and leads to a measurable signal. Figure 3.7 visu-
alizes the working principle of an SNSPD and shows the resulting signal on
an oscilloscope.

Figure 3.7: On the top side the working principle of an SNSPD is shown. Starting
point (a), a photon is absorbed by the nanowire and creates a hotspot
(b). The supercurrent flows around the hotspot (c). A barrier across
the nanowire is created (d). The bias current goes to a readout ampli-
fier and creates a measurable output voltage. The hotpot cools down
and the detector recovers for the next detection (e). On the bottom side
an example is shown how a SNSPD signal looks like. It is a self-made
oscilloscope measurement of the detector used in chapter 7.4. Top pic-
ture taken from [40, p.23] referring to [44, p.4]. The bottom picture is
an oscilloscope data plot done in Python with a script written by Felix
Pein.
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SNSPD also have a non perfect quantum efficiency and a certain dark
count rate, but typically the quantum efficiency reaches much higher values
than a commercial APD and the dark count rates are quite small. Hence, the
performance of a SNSPD beats an APD, but the price of an SNSPD is much
higher.

3.4 Balanced homodyne detection

In this thesis different methods of balanced homodyne detection are used.
The conventional homodyne detection with one balanced homodyne detec-
tor and the 8-port homodyne detection, which requires two balanced homo-
dyne detectors measuring at the same time. The theoretical background for
both methods is introduced.

3.4.1 Conventional homodyne detection

Figure 3.8: A balanced homodyne detector is shown. The signal field is overlapped
with an intense local oscillator on a 50/50 beam splitter. The beam split-
ter output ports are measured with positive intrinsic negative (PIN)
photo diodes. The difference signal of the PIN photo diode signals is
created and can be read out with a measurement device. As measure-
ment device either a spectrum analyzer or a data acquisition card are
used. The measured quadrature can be defined with the phase shifter
in the local oscillator path. Picture created with Inkscape referring to [5,
p.168].

The conventional balanced homodyne detection is described in [5, p.167-
169]. A signal field is overlapped with an intense local oscillator of the same
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wavelength on a 50/50 beam splitter. Thereby the spatial modes of the sig-
nal field and local oscillator have to be matched to each other to reach a good
interference contrast (visibility). In the output ports of the beam splitter, posi-
tive intrinsic negative (PIN) photo diodes are placed and the difference signal
is created. The difference signal can be read out with a measurement device
for example a spectrum analyzer or a data acquisition card. The phase of
the local oscillator can be changed with a phase shifter and allows to decide
which quadrature is measured. Figure 3.8 shows a balanced homodyne de-
tector. The mathematical description follows.

The relation between input (â, b̂) and output (ĉ, d̂) modes is given by:

ĉ =
1√
2
(â + ib̂) , (3.10)

d̂ =
1√
2
(b̂ + iâ) . (3.11)

The photo diode in mode ĉ measures the intensity Ic =
〈
ĉ† ĉ
〉

and the photo
diode in mode d̂ measures the intensity Id =

〈
d̂†d̂
〉

. Hence, the differential
signal has following formula:

Ic − Id = 〈n̂cd〉 =
〈

ĉ† ĉ− d̂†d̂
〉

. (3.12)

The differential signal can be expressed in terms of the incoming modes (â, b̂)
by using equation 3.10 and equation 3.11:

〈n̂cd〉 = i
〈

â†b̂− âb̂†
〉

. (3.13)

Mode b̂ is the intense local oscillator, which can be represented as a coherent
state. Hence, the differential signal is:

〈n̂cd〉 = |β|(âeiωte−iΘ + â†e−iωteiΘ) , (3.14)

with β = |β|e−iψ and Θ = ψ+ π
2 . The ω is the frequency of the local oscillator

mode b̂. For a homodyne detection the signal mode â should have the same
frequency as the local oscillator and can be set to â = â0e−iωt. The differential
signal can be written as

〈n̂cd〉 = 2|β|
〈

X̂(Θ)
〉

, (3.15)
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with the quadrature operator

X̂(Θ) =
1
2
(â0e−iΘ + â†

0eiΘ) . (3.16)

The measured quadrature can be determined by controlling the phase Θ with
the phase shifter in the local oscillator path.

3.4.2 8-port homodyne detection

Figure 3.9: An 8-port homodyne detector is shown. It consists of two balanced ho-
modyne detectors (BHD) from figure 3.8. The signal field is split on
the 8-port beam splitter (BS) in two equal parts to be available for both
BHDs at the same time. The splitting of the signal field introduces 50 %
loss in each 8-port BS output port because a vacuum state couples in
through the open 8-port BS input port. The local oscillator (LO) is also
split with a half-wave plate ( λ

2 ) and polarizing beam splitter (PBS) to be
available for both detectors. The LO phase in BHD1 is stabilized to the
squeezed quadrature while the phase in BHD2 is stabilized to the or-
thogonal anti-squeezed quadrature. The phases can be controlled with
phase shifters (PS) in the local oscillator paths. The 8-port detection
scheme allows to measure the Q-function of the signal field. Picture
created with Inkscape referring to [28, p.150].
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Information about the 8-port homodyne detection are taken from [8][28,
p.144-171][45, p.49-51]. The central idea of 8-port homodyne detection is to
split the signal in two equal parts and use two balanced homodyne detectors
to read out orthogonal quadratures simultaneously. Of course, the splitting
of the signal introduces 50 % loss. Hence, the simultaneous measurement of
orthogonal quadratures is performed on vacuum smoothed out states. The
8-port detection scheme allows to measure the Q-function of the signal field.
Figure 3.9 shows an 8-port homodyne detector. The mathematical descrip-
tion follows.

The relation between output (ĉ, d̂) and input (â, v̂) modes on the 8-port
beam splitter is given by:(

ĉ
d̂

)
=

1√
2

(
1 −1
1 1

)(
â
v̂

)
. (3.17)

With equation 2.9 the amplitude quadrature measured at BHD1 can be ex-
pressed by

X̂c =
1
2
(ĉ + ĉ†) =

1√
2
(X̂a − X̂v) . (3.18)

With equation 2.10 the phase quadrature measured at BHD2 can be expressed
by

Ŷd =
1
2
(d̂ + d̂†) =

1√
2
(Ŷa + Ŷv) . (3.19)

The commutator for the vacuum smoothed out amplitude quadrature mea-
surement at BHD1 and phase quadrature measurement at BHD2 vanishes:

[X̂c, Ŷd] = [(X̂a − X̂v), (Ŷa + Ŷv)] = 0 . (3.20)

The probability distribution prd of Xc and Yd represents the Q-function of the
signal in front of the 8-port beam splitter.

prd(Xc, Yd) = Q(Xa, Ya) (3.21)

The variances of the amplitude quadrature ∆2X̂c and phase quadrature ∆2Ŷd

are:
∆2X̂c =

1
2
(∆2X̂a + ∆2X̂v) , (3.22)

∆2Ŷd =
1
2
(∆2Ŷa + ∆2Ŷv) , (3.23)
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The variance before the 8-port beam splitter can be received by calculating
out the in coupled vacuum state:

∆2X̂a = 2∆2X̂c − ∆2X̂v , (3.24)

∆2Ŷa = 2∆2Ŷd − ∆2Ŷv . (3.25)
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Chapter 4

Optimization of the squeezed-light
source

In my master thesis a squeezed-light source was built together with Daniela
Abdelkhalek and Lorena Rebón [45, p.95-116][46]. In the course of this thesis
the squeezed-light source could be improved. The optimization was part of
the bachelor thesis from Maximilian Faden [47]. We found a way to decrease
the optical loss and got higher squeeze levels than I had in my master thesis.
In this chapter the experimental setup for a conventional squeezing measure-
ment with one balanced homodyne detector is introduced. Furthermore, the
characterization of the squeezed-light source with two balanced homodyne
detectors is shown. The chapter ends with a v-class entanglement measure-
ment, which was also part of Malte Lautzas master thesis [48, p.55].

4.1 Experimental setup

Figure 4.1 shows the setup for a conventional squeezing measurement. For
greater clarity not every used component is shown. A Nd:YAG laser at a
wavelength of 1064 nm was used. It was bought from the company "Inno-
light". The laser had an integrated second harmonic generation where a cer-
tain amount of 1064 nm light was converted to 532 nm light. The out coupled
laser power at a wavelength of 1064 nm was around 350 mW. The available
power of the 532 nm light was around 800 mW. The reported powers in this
whole thesis were measured with a power meter (Ophir Nova II). It was a
pretty old device, the last calibration was many years ago and some parts on
the active area were damaged. Therefore, all given powers in this thesis have
an estimated relative error of ±10 %. More information about the laser can
be found in [49, p.43-46]. The spatial modes of the laser beams were not per-
fectly in a TEM 00 mode. For the 532 nm light this was no problem, but for
the 1064 nm light it was important to have a clean TEM 00 mode, therefore,
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Figure 4.1: Simplified setup for a conventional squeezing measurement. The yel-
low area shows the squeezing generation and the red area shows a con-
ventional balanced homodyne detector. The red light (1064 nm) was
sent through an electro optical modulator (EOM) and passed a mode
cleaner (MC), which was stabilized to resonance by a photo diode (PD)
in reflection with the Pound-Drever-Hall technique. The red light was
split with a half-wave plate ( λ

2 ) and a polarizing beam splitter (PBS).
One part was sent as control field to the squeezing resonator (SQZ) the
other part was sent as local oscillator to the balanced homodyne detec-
tor (BHD). The phase of the local oscillator could be controlled with a
phase shifter (PS). The green light (532 nm) was sent through a Faraday
isolator and an EOM. Then it passed a beam splitter (BS), a PS and a
dichroic beam splitter (DBS). The green light was converted inside the
SQZ to squeezed-light at 1064 nm. The SQZ was stabilized to resonance
by a PD in reflection. The squeezed signal was reflected by the DBS and
was sent into the BHD where it was overlapped with the local oscilla-
tor. The difference signal of the BHD PDs was read out with a spectrum
analyzer. Picture created with Inkscape.

a ring cavity (mode cleaner) was used. To stabilize the length of the mode
cleaner to resonance of the TEM 00 mode, the Pound-Drever-Hall technique
was used by detecting light in reflection of the mode cleaner [50]. There-
fore, a phase modulation far away from the linewidth of the mode cleaner
was necessary. The modulation frequency was 72 MHz, it was imprinted
on the 1064 nm light by sending it through an electro optical modulator.
The linewidth (full width half maximum: FWHM) of the mode cleaner was
751 kHz for s-polarized light with a finesse of 950 and a roundtrip length of
42 cm. For p-polarized light the finesse was lower and the linewidth was
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accordingly larger, but all optics in the experiment were optimized for s-
polarized light so the mode cleaner was always stabilized to the s-polarized
mode. Because of the ring cavity geometry, the mode cleaner also acted as
polarization filter. The modes for s-polarized light and p-polarized light were
on resonance for different resonator lengths. When the mode cleaner length
was stabilized to the s-polarized mode, the p-polarized mode was filtered
out. Furthermore, the resonator acted as a low pass filter in the frequency do-
main and suppressed laser noise outside its linewidth. The filtered 1064 nm
light was divided into two parts by using a half-wave plate and a polarizing
beam splitter. One part was sent into the balanced homodyne detector as
local oscillator, the other part was sent to the squeezer as control field.

The 532 nm light traveled through a Faraday isolator to avoid back re-
flections in the second harmonic generation. A phase modulation of 52 MHz
was imprinted by an electro optical modulator to be able to use the Pound-
Drever- Hall method to stabilize the length of the squeezing resonator with
the light in reflection. The squeezing resonator had the geometry of a lin-
ear cavity, so the reflected light had to be separated from the incoming light.
Therefore, a 50/50 beam splitter was used, which threw away 50 % of the in-
coming power, but made it also possible to detect 50 % of the back reflected
light on a photo diode for the Pound-Drever-Hall stabilization. After this
50/50 beam splitter the 532 nm light was sent to a mirror, which could be
moved with a piezoelectric element and acted as a phase shifter. In front
of the squeezing resonator was a dichroic beam splitter (DBS), which trans-
mitted the 532 nm light. The 532 nm light was coupled in the squeezing res-
onator as pump field and created a squeezed vacuum with a wavelength
around 1064 nm by a nonlinear process in a periodically poled potassium ti-
tanyl phosphate (PPKTP) crystal with the dimensions of 1 mm x 2 mm x 5 mm.
The squeezed vacuum was coupled out on the same side where the 532 nm
light was coupled in. The coupling mirror had a reflectivity of 89 % for
1064 nm and 97.5 % for 532 nm. The DBS separated the squeezed field from
the pump by reflecting 1064 nm light while the 532 nm back reflected light
was transmitted. The squeezed-light had only a very small intensity, so it
was not possible to use it for aligning the optical paths. Therefore, the con-
trol field could be used. It was sent to the high reflective backside of the
squeezing resonator. The PPKTP crystal itself acted as a mirror by having
coatings for both wavelength and a curvature of r = 10 mm. A small amount
of the control field could be transmitted through the squeezing resonator and
it propagated in the same mode as the squeezed field. If the control field was
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good aligned, the squeezed field was also be good aligned. The squeezed
field was sent into a balanced homodyne detector where it was overlapped
with the local oscillator of the same wavelength on a 50/50 beam splitter.
This allowed to measure and characterize the amount of squeezing by de-
tecting the overlapped signal with two photo diodes. Their differential sig-
nal was read out with a spectrum analyzer to achieve the noise of the signal
scaled with the power of the local oscillator. In the local oscillator path a
mirror, which could be moved with a piezoelectric element, was placed to be
able to control the phase of the local oscillator. This gave the opportunity to
define the quadrature which was measured. For the theoretical background
of a balanced homodyne detection see chapter 3.4.

4.2 Squeezing measurement preparations

Before a squeezing measurement could be done, a few preparations were
necessary. The Pound-Drever-Hall locks had to be activated, the temperature
of the PPKTP crystal needed the right value to fulfill the quasi-phase match-
ing condition and the mode of the squeezed field had to be overlapped with
the mode of the local oscillator to get a good interference contrast.

4.2.1 Pound-Drever-Hall locks

The theoretical background about the Pound-Drever-Hall technique can be
found in [50]. In this subsection only the experimental realization is de-
scribed. Figure 4.2 visualizes the Pound-Drever-Hall technique for the sta-
bilization of the mode cleaner and squeezing resonator lengths. Both locks
follow the same idea: a phase modulation was imprinted on the incoming
laser beam with an electro optical modulator. A photo diode was placed in
reflection of the resonator. The signal of the photo diode was mixed with the
same frequency as was used for the electro optical modulator. This generated
an error signal, which could be sent into a proportional-integral-derivative
(PID) controller. The PID controller was connected with a high voltage am-
plifier, which controlled the length of the resonator through a piezoelectric
actuated mirror. The stabilization point was set to have a minimal possible
signal on the photo diode in reflection.

To activate a Pound-Drever-Hall lock, the resonator length was manu-
ally tuned to the resonance of the TEM 00 mode. Then the PID controller
was switched on, that stabilized the resonator length to the TEM 00 mode



4.2. Squeezing measurement preparations 37

Figure 4.2: Simplified setup for the Pound-Drever-Hall locks. The red area indi-
cates the Pound-Drever-Hall lock of the mode cleaner (MC) length. The
green area indicates the Pound-Drever-Hall lock of the squeezing res-
onator (SQZ) length. The principle idea was exactly the same for both
resonators, only different modulations frequencies were used (72 MHz
for the MC and 52 MHz for the SQZ). The modulation frequency was
imprinted on the incoming laser beam with an electro optical modula-
tor (EOM). In reflection of the resonator a photo diode (PD) was placed.
The signal of the photo diode was mixed with the same frequency as
used for the EOM. This generated an error signal, which could be sent
into a proportional-integral-derivative (PID) controller. The PID con-
troller was connected with a high voltage amplifier, which controlled
the length of the resonator through a piezoelectric actuated mirror. The
stabilization point was set to have a minimal possible signal on the
photo diode in reflection. Picture created with Inkscape.

automatically. For the mode cleaner lock any resonator length which was
resonant for the 1064 nm TEM 00 mode could be used. But for the squeezing
resonator lock it was important to choose the correct length. The squeez-
ing resonator was stabilized with the 532 nm pump field, but should also be
on resonance for the squeezed field at 1064 nm. Therefore, the cavity length
had to be chosen to a length which fulfilled the resonance condition for both
wavelengths simultaneously. That was only every second resonance of the
532 nm TEM 00 mode. Figure 4.3 shows which resonances of the 532 nm
pump field could be used for the Pound-Drever-Hall lock to be on resonance
with the 1064 nm field at the same time. Even when the 532 nm light was
stabilized to the correct peak it was still possible that the 1064 nm light was



38 Chapter 4. Optimization of the squeezed-light source

Figure 4.3: Oscilloscope signals for the squeezing resonator length stabilization via
Pound-Drever-Hall technique. The modes from the 532 nm light to the
squeezing resonator are visible (green), measured in reflection. The
modes from the 1064 nm light to the squeezing resonator are visible
(red), measured in transmission. In one FSR of the 1064 nm light field
two FSRs of the 532 nm light field can be seen. The squeezing resonator
should be on resonance for both wavelength at the same time. There-
fore, the Pound-Drever-Hall lock, which used the green light, had to
be activated with the correct peak. By fine tuning the squeezing-crystal
temperature it was possible to overlap the correct green mode with the
red mode. Oscilloscope data plot done in Python with a script written
by Felix Pein.

not on resonance. To made 532 nm and 1064 nm simultaneously resonant, the
temperature of the squeezing-crystal could be tuned, which is explained in
the following subsection.

4.2.2 Squeezing-crystal temperature

The squeezing-crystal needed a certain temperature to fulfill the quasi-phase
matching condition, which is explained in chapter 3.1. Additionally, the si-
multaneous resonance of 532 nm and 1064 nm was achieved with the temper-
ature setting. A design with two temperature controllers was used, invented
by Axel Schönbeck [51, p.39-43]. Figure 4.4 visualizes the two temperature
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Figure 4.4: Squeezing-crystal temperature controllers. Two temperature controllers
were used to stabilize the squeezing-crystal temperature. The first tem-
perature controller was responsible for the central area of the crystal. In
this zone the waist of the pump field arrived and did mainly the para-
metric down conversion. Therefore, the quasi-phase matching condi-
tion should be fulfilled by setting the necessary temperature on con-
troller 1. The second temperature controller was responsible for the
crystal backside where the coating was placed. The temperature for
controller 2 was set in a way that both wavelength (532 nm +1064 nm)
were simultaneously on resonance. The two temperature design was in-
vented by Axel Schönbeck [51, p.39-43]. Picture created with Microsoft
Power Point.

design for the squeezing-crystal temperature stabilization. Temperature con-
troller 1 was used to achieve the quasi-phase matching in the central area of
the crystal where the waist of the pump field arrived and did the mainly
parametric down conversion. Temperature controller 2 was used for the
simultaneous resonance of both wavelength (532 nm +1064 nm). Typically
both temperature controllers were used with a temperature around 33 °C.

4.2.3 Mode matchings to a diagnostic mode cleaner

For experiments based on squeezed-light the optical loss is a limiting prop-
erty, as can be seen in chapter 3.1. Beside the intrinsic loss sources of the used
optics, the interference contrast (visibility) between squeezed field and local
oscillator can strongly influence the total optical loss. To minimize the optical
loss in the experiment the interference contrast should be as good as possible.
In the ideal case the squeezed field and the local oscillator have exactly the
same transversal mode at the 50/50 beam splitter of the balanced homodyne
detector. To reach the same mode properties, a trick was used: both fields
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Figure 4.5: Diagnostic mode cleaner setup to reach a good interference contrast. At
the beginning the local oscillator (LO) was sent via a flip mirror inside
the balanced homodyne detector (BHD) to the diagnostic mode cleaner
(DMC). The length of the DMC was periodically scanned and the modes
could be read out with a photo diode (PD) in transmission of the DMC.
The mode of the LO was matched to the DMC. Therefore, two mirrors
and two lenses were used (MM1, blue area). Afterwards the control
field was also matched to the DMC with two mirrors and two lenses
(MM2, red area). When both fields were matched to the DMC, they
were overlapped on the 50/50 beam splitter of the BHD. Picture created
with Inkscape.

were sent via a flip mirror to a resonator (diagnostic mode cleaner). Fig-
ure 4.5 visualizes the setup for getting a good visibility. At the beginning, the
local oscillator was matched to the diagnostic mode cleaner as good as pos-
sible. Therefore, two lenses and two mirrors were used to be able to control
all necessary degrees of freedom of the spatial mode like height propagation,
side propagation, waist size and waist position. To see the modes on the
diagnostic mode cleaner a photo diode in transmission of the resonator was
used and the length of the resonator was periodically scanned by applying an
oscillating voltage to the piezoelectric element of the resonator mirror. When
the mode matching from the local oscillator was done, the control field was
also matched to the diagnostic mode cleaner as good as possible. When both
fields were matched to the diagnostic mode cleaner in a very good way, then
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the spatial modes were overlapped in the whole path and, consequently, they
were also overlapped on the 50/50 beam splitter of the balanced homodyne
detector. The mode matchings to the diagnostic mode cleaner in this thesis
were typically in the area around 99 %. In figure 4.7, posterior this chapter, a
mode matching to the diagnostic mode cleaner is shown.

The local oscillator mode matching was easy to do because a constant
power level reached the diagnostic mode cleaner. For the control field the
situation was more complicated. The control field was in s-polarization and
to reach the diagnostic mode cleaner it had to be transmitted by the squeez-
ing resonator, which was stabilized to resonance with a Pound-Drever-Hall
lock. For this resonator length stabilization, the pump field in s-polarization
was used. With this configuration the parametric down conversion process
started and leaded to a phase sensitive amplification and deamplification of
the control field. In the experiment was no phase stabilization for pump or
control field available. Hence, phase fluctuations occurred, which leaded to a
fluctuating control field intensity. Doing a mode matching with a fluctuating
intensity was still possible, but required some practice.

4.3 Squeezing measurement with one balanced ho-

modyne detector

When all preparations were done, the squeezing measurement could be exe-
cuted. Therefore, the signal of the balanced homodyne detector was read out
with a spectrum analyzer. The theoretical background about such a conven-
tional homodyne detection can be read in chapter 3.4.1. Typical settings of the
spectrum analyzer for a squeezing measurement were a sideband frequency
of 5 MHz with a resolution bandwidth (RBW) of 300 kHz and a video band-
width (VBW) of 300 Hz. The sweep time was set to 300 ms and 4 traces were
recorded. One trace represented the dark noise and was measured while no
light was sent to the balanced homodyne detector. Another trace was the
vacuum level, which was measured while the local oscillator was sent to the
balanced homodyne detector, but without any signal field. And of course
the traces for the maximum squeezing and anti-squeezing were measured.
Therefore, the signal field and the local oscillator were sent to the balanced
homodyne detector at the same time and the phase of the local oscillator was
set in a way that the signal on the spectrum analyzer was minimal (squeezed
quadrature) or maximal (anti-squeezed quadrature). For the results in this
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Figure 4.6: Result of the conventional squeezing measurement. The relative noise
power in dB is plotted against the measurement time in ms. The anti-
squeezed trace (blue) was 21.2 dB above the vacuum level (black). The
squeezed trace (red) was 10.6 dB below the vacuum level. The dark
noise (grey) was 17.7 dB below the vacuum level. The phase of the local
oscillator was stabilized by hand. Settings for the measurement: side-
band frequency = 5 MHz, RBW = 300 kHz, VBW = 300 Hz, sweep time
= 300 ms and pump power in front of the squeezer = 25 mW. The setup
for this measurement is shown in figure 4.1. Data evaluation done in
Python with a script written by Malte Lautzas.

chapter the phase stabilization to the maximal or the minimal noise level was
done by hand. In chapter 5 another phase locking technique is introduced,
which allows to stabilize the phase for longer time scales automatically.

Figure 4.6 shows the result of a conventional squeezing measurement. All
of the squeezing data evaluations and plots in this thesis were done with a
Python script mainly written by Malte Lautzas. The measured traces were
normalized to the vacuum level. Hence, the relative noise power in dB is
shown and the vacuum trace is on 0 dB. For the squeezed quadrature a value
of -10.6 dB was reached while the anti-squeezed quadrature was 21.2 dB. The
dark noise clearance was 17.7 dB for a local oscillator power of 18 mW in front
of the beam splitter from the balanced homodyne detector.

When a dark noise correction was done by subtracting the dark noise
from all other traces a dark noise corrected squeeze value of -11.5 dB and a
dark noise corrected anti-squeeze value of 21.3 dB could be evaluated. For
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this calculation it is important to switch the dB values into a linear scale then
perform the subtraction and transform the results back to a dB scale. From
the dark noise corrected values, the optical loss could be calculated with
equation 3.2 and lead to a value of 6.5 %. In accordance with equation 3.3
the initial squeezing could be calculated to 21.6 dB. For this measurement a
pump power of 25 mW in front of the squeezer was used. Because of a bad
mode matching of the pump field to the squeezer only around 70 % of this
power was coupled in the squeezing resonator. The green trace in figure 4.3
visualizes the bad mode matching.

In my master thesis the same measurement was done, but there the op-
tical loss was higher and the resulting squeeze level was lower [46, p.26-27].
The dark noise corrected squeeze value was -8.3 dB and the dark noise cor-
rected anti-squeeze value was 19.4 dB. An optical loss of 13.9 % and an ini-
tial squeezing of 20.0 dB were calculated. The pump power and dark noise
clearance were in the same order as for the improved measurement. The
reason for the higher loss in my master thesis was a bad visibility caused
by another implementation of the preparation steps. In subsection 4.2.3 the
procedure of doing the mode matchings is described. Therefore, the mode
matching of the control field was done while phase sensitive power fluctu-
ations were visible. For the measurement in my master thesis the control
field was turned to p-polarization before it was sent into the squeezing res-
onator by using a half-wave plate to avoid the power fluctuations. Mode
matchings are in general much easier to do when the power level is con-
stant. We thought the spatial mode of the control field for s-polarization and
p-polarization should be exactly the same and it makes no difference which
polarization is used to do the mode matching to the diagnostic mode cleaner.
But this was an incorrect assumption. The spatial mode of the control field
was different for s-polarization and p-polarization. Figure 4.7 visualizes the
difference between a control field in s-polarization and a control field in p-
polarization. In figure 4.7 the mode matching to the diagnostic mode cleaner
was done for a control field in s-polarization as good as possible. Then the
polarization was turned to p-polarization with a half-wave plate in front of
the squeezing resonator. A significant additional peak appeared in the mode
matching on the diagnostic mode cleaner. This peak was identified with a
Thorlabs beam profiler as a higher order height mode. Hence, the spatial
mode between squeezing resonator and diagnostic mode cleaner had a dif-
ferent height propagation for s-polarization and p-polarization. Probably the
difference was caused by the nonlinear PPKTP crystal.
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Figure 4.7: Mode matching from the control field to the diagnostic mode cleaner
(DMC). Top: the control field was set to s-polarization (s-pol) with a
half-wave plate ( λ

2 ) in front of the squeezing resonator (SQZ). Bottom:
the polarization was turned to p-polarization (p-pol) by using the half-
wave plate in front of the SQZ. An additional peak in the bottom picture
appeared, which could be removed with the height screws of the mode
matching mirror set. Obviously, the mode of the control field in trans-
mission of the SQZ had a different height propagation for s-pol and
p-pol. Picture created with Inkscape, oscilloscope plot was done with a
Python script written by Felix Pein and the mode profile was measured
with a beam profiler from Thorlabs.

The generated squeezing was in s-polarization, therefore, it was impor-
tant to do the mode matching with a control field in s-polarization to be sure
that the control field represented the spatial mode of the squeezed field.
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4.4 Squeezing measurements with two balanced

homodyne detectors

Figure 4.8: Simplified setup for squeezing measurements with two balanced ho-
modyne detectors. The yellow area shows the squeezing generation
and the blue area shows an 8-port homodyne detector. The setup is the
same as in figure 4.1 with an additional balanced homodyne detector
(BHD). The squeezed field was split on a 50/50 beam splitter (8-port
BS) to send 50 % of the signal in each BHD. The local oscillator was split
with a half-wave plate ( λ

2 ) and a polarizing beam splitter (PBS). Picture
created with Inkscape.

For the planned experiment an 8-port homodyne detection was necessary,
which is theoretically explained in chapter 3.4.2. For an 8-port homodyne de-
tection a second balanced homodyne detector was necessary and the signal
field was split with a 50/50 beam splitter as can be seen in figure 4.8. With
an additional half-wave plate and a polarizing beam splitter, a local oscilla-
tor could be sent to both detectors. To characterize the losses in the 8-port
paths, a conventional squeezing measurement along the 8-port paths was
performed. Therefore, the same 4 traces as in section 4.3 were recorded con-
secutively for both balanced homodyne detectors. Of course, this was no real
8-port measurement because from definition an 8-port measurement is a si-
multaneously measurement with both balanced homodyne detectors (BHD).
Real 8-port measurements are presented in chapter 7.

The spectrum analyzer had the same settings as in section 4.3. For BHD1
the anti-squeezed trace was 15.3 dB and the squeezed trace was -2.6 dB. The
dark noise clearance was 17.0 dB for a local oscillator power of 18 mW in



46 Chapter 4. Optimization of the squeezed-light source

front of the beam splitter from the balanced homodyne detector. For BHD2
the anti-squeezed trace was 15.7 dB and the squeezed trace was -2.6 dB. The
dark noise clearance was 18.6 dB for a local oscillator power of 18 mW in front
of the beam splitter from the balanced homodyne detector.

Figure 4.9 shows the normalized results for both balanced homodyne de-
tectors. Formula 3.24 and 3.25 allowed to calculate out the loss from the
50/50 8-port beam splitter. The reconstructed squeeze value without the
50 % beam splitter loss for BHD1 was -10.2 dB and the anti-squeeze value
was 18.2 dB. When also a dark noise correction was applied to the data,
the dark noise corrected reconstructed values were -11.1 dB for the squeezed
quadrature and 18.3 dB for the anti-squeezed quadrature. From this values
an optical loss of 6.4 % and an initial squeezing of 18.6 dB could be calculated
with equations 3.2 and 3.3. For BHD2 the reconstructed values were -10.1 dB
squeezing and 18.7 dB anti-squeezing and the dark noise corrected recon-
structed values were -10.7 dB squeezing and 18.7 dB anti-squeezing. From
this values an optical loss of 7.4 % and an initial squeezing of 19.0 dB could
be calculated with equations 3.2 and 3.3. Both detectors gave more or less the
same results. A perfect agreement was very unrealistic to reach because a lot
of factors influenced the losses in the two paths and could explain the dif-
ference. For example, different mode matchings, different amount or qual-
ity of optics, non perfect 50/50 splitting of the signal or slightly different
quantum efficiencies of the balanced homodyne detector photo diodes. The
reconstructed values were also similar to the results from the conventional
squeezing measurement where the whole signal was detected with one bal-
anced homodyne detector in the previous section 4.3.

In my master thesis a similar measurement was done [46, p.28-29]. With
BHD1 the squeezed quadrature was measured as -2.3 dB and with BHD2 the
anti-squeezed quadrature was measured as 14.2 dB. For the reconstructed
dark noise corrected values a squeezed quadrature of 7.0 dB and an anti-
squeezed quadrature of 17.2 dB were reported. The calculated optical loss
was 18.7 % and the initial squeezing was 18.1 dB. Here a strong optimization
is visible, which has the same explanation as was given in section 4.3.
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Figure 4.9: Results for a squeezing measurement along the 8-port paths for BHD1
(top) and BHD2 (bottom). The relative noise power in dB is plotted
against the measurement time in ms. The anti-squeezed trace (blue)
was 15.3 dB for BHD1 and 15.7 dB for BHD2 above the vacuum level
(black). The squeezed trace (red) was 2.6 dB below the vacuum level for
both BHDs. The dark noise (grey) was 17.0 dB below the vacuum level
for BHD1 and 18.6 dB for BHD2. The phase of the local oscillator was
stabilized by hand. Settings for the measurement: sideband frequency =
5 MHz, RBW = 300 kHz, VBW = 300 Hz, sweep time = 300 ms and pump
power in front of the squeezer = 25 mW. The setup for this measurement
is shown in figure 4.8. Data evaluation done in Python with a script
written by Malte Lautzas.
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4.5 Entanglement measurement

Figure 4.10: Simplified setup for an entanglement measurement. The signal was
split on the beam splitter (8-port BS), this introduced 50 % loss (half
a vacuum state) for the split signals, which were sent to the balanced
homodyne detectors (BHD). This process delivered correlations and
anti-correlations between BHD1 and BHD2 (indicated with the + and -
signs inside the split states). The sum or difference of the BHD signals
was created by a self built electronic device from former group mem-
bers. The sum and the difference signal were read out with a spectrum
analyzer and characterized the states in front of the 8-port BS. Picture
created with Inkscape.

So far, the BHDs were used consecutively. For the following measure-
ment both BHDs were used at the same time. The 8-port homodyne de-
tection setup, where the signal field was split at a 50/50 beam splitter, was
exactly what is known as v-class entanglement [52][53][54]. This means that
there were correlations and anti-correlations between the quadratures in the
vacuum smoothed out states on BHD1 and BHD2. By measuring the same
quadrature at the same time with both BHDs, the quadratures of the in cou-
pled states of the 8-port beam splitter can be achieved. One beam splitter
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input was a squeezed state without the 50 % loss from the 8-port beam split-
ter, the other beam splitter input was a vacuum state. To characterize the in
coupled states, the sum and difference of the BHD signals were read out with
a spectrum analyzer. Figure 4.10 visualizes the setup for a v-class entangle-
ment measurement, which was nearly the same setup as in figure 4.8. The
only difference was an additional electronic box in figure 4.10, which added
or subtracted the BHD signals.

In figure 4.11 the spectrum analyzer measurement is shown. For this mea-
surement the local oscillators in BHD1 and BHD2 were both stabilized to the
maximal squeezing at the same time to characterize the maximal squeezing
of the squeezed state without the 50 % loss from the 8-port beam splitter. Af-
terwards both local oscillators were stabilized to the maximal anti-squeezing
to characterize the maximal anti-squeezing of the squeezed state without the
50 % loss from the 8-port beam splitter. In addition, measurements were
done where one local oscillator was stabilized to the maximal squeezing or
anti-squeezing while the other local oscillator was periodically scanned. It
is clearly visible that the oscillating traces have a local minimum exactly on
the vacuum level at certain time points, as expected for v-class entanglement
[54]. The spectrum analyzer had the same settings as in section 4.3. The mea-
sured traces were normalized to the vacuum level. Hence, the relative noise
power in dB is shown and the vacuum trace is on 0dB. For the squeezed
trace a value of -9.0 dB could be reached while the anti-squeezed trace was
17.3 dB. The dark noise clearance was 15.6 dB for a local oscillator powers
of 18 mW for BHD1 and 13 mW for BHD2, measured in front of the beam
splitters of the balanced homodyne detectors. Different local oscillator pow-
ers were necessary to have the same absolute vacuum levels. If the absolute
vacuum levels were different, the entanglement measurement was destroyed
because the sum and difference of the BHD signals gave not out exactly the
in coupled states. This could be seen in the oscillating traces which had no
local minimum on the vacuum level anymore.

When a dark noise correction was done by subtracting the dark noise
from all other traces a dark noise corrected squeeze value of -10.0 dB and a
dark noise corrected anti-squeeze value of 17.4 dB could be evaluated. From
the dark noise corrected values the optical loss could be calculated with equa-
tion 3.2 and lead to a value of 8.4 %. In accordance with equation 3.3 the ini-
tial squeezing could be calculated to 17.8 dB. For this measurement a pump
power of 25 mW in front of the squeezer was used. Because of a bad mode
matching of the pump field to the squeezer only around 70 % of this power
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Figure 4.11: Result for a v-class entanglement measurement. The relative noise
power in dB is plotted against the measurement time in s. The anti-
squeezed trace (blue) was 17.3 dB above the vacuum level (black). The
squeezed trace (red) was 9.0 dB below the vacuum level. The dark
noise (grey) was 15.6 dB below the vacuum level and was averaged
over 10 traces. The red and blue traces were measured by hand lock-
ing both LO phases simultaneously to the maximal possible noise level
(anti-squeezing) and afterwards to the minimal possible noise level
(squeezing). The oscillating signals were created by locking one LO
phase to squeezing and afterwards to anti-squeezing while the other
LO phase was periodically scanned. Settings for the measurement:
sideband frequency = 5 MHz, RBW = 300 kHz, VBW = 300 Hz, sweep
time = 150 ms and pump power in front of the squeezer = 25 mW. The
setup for this measurement is shown in figure 4.10. Data evaluation
done in Python with a script written by Malte Lautzas.

was coupled in the squeezing resonator.
The reported values were in good agreement with the reconstructed val-

ues from the squeezing measurement along the 8-port paths in section 4.4.
However, the reconstructed squeeze values were a little bit higher and the
calculated loss was lower than the entanglement measurement. A possible
explanation could be a different visibility because of different mode match-
ings to the diagnostic mode cleaner. The entanglement measurement was
done two months after the 8-port path characterization, so the alignment
might be different. But typically the mode matchings were checked before
a measurement and they should not differ much. An obvious difference
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between the entanglement measurement and the squeezing measurements
along the 8-port paths was the electronic device to add or subtract the BHD
signals in figure 4.10. This device was self built from former group members.
It looked pretty old and we did not have much information about it. Proba-
bly this device introduced some extra noise and destroyed the entanglement
a little bit and this was the reason for the deviation between the reconstructed
values in section 4.4 and the values in this chapter.

In conclusion, the squeezed-light source could be optimized and was
characterized with different methods. An optical loss below 10 % was
achieved, which was a good basis for the cat state measurements.
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Chapter 5

Measurements with noise envelope
phase lock

The results presented in the previous chapter 4 were measured while the lo-
cal oscillator phases were stabilized by hand. For doing a short squeezing
measurement, which was typically 300 ms, this procedure worked fine. But
for the generation of Schrödinger kitten states a data acquisition over min-
utes or maybe even hours was necessary. It was not possible to hold the
phases stable by hand for such time scales. Therefore, an automatic locking
technique was needed. Typically locking methods like the Pound-Drever-
Hall technique [50] need a strong coherent field. But for the Schrödinger
kitten state generation, a single photon detector was part of the experiment,
so strong coherent fields had to be avoided. An alternative idea to stabi-
lize the phases of the local oscillators without a strong coherent field was
given by Daniela Abdelkhalek and Axel Schönbeck [45, p.106-108]. They cre-
ated a LabVIEW code, which controlled the local oscillator phase shifter in
a way that the signal on the BHD had a maximal variance (anti-squeezing)
or minimal variance (squeezing). Unfortunately, this LabVIEW program did
only work for short time scales and it was not possible to improve it to be
long term stable. Axel Schönbeck suggested another idea by using an enve-
lope detector [55]. With such a detector, the variance of a BHD signal could
be read out and an analog servo proportional-integral-derivative (PID) lock-
ing technique could be used to stabilize the phases to the maximal squeezed
quadrature or maximal anti-squeezed quadrature. The experimental realiza-
tion was done by Malte Lautzas in his master thesis [48]. In this chapter the
noise envelope locking technique is explained and the measurements from
chapter 4 are shown again with noise envelope stabilized phases.
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5.1 Noise envelope locking technique

Figure 5.1: Noise envelope locking technique for phase stabilization. The phase of
the local oscillator (LO) was stabilized to maximal noise (anti-squeezed
quadrature) or minimal noise (squeezed quadrature). Therefore, the
balanced homodyne detector (BHD) signal was sent into an envelope
detector, which could read out the variance of the signal. The sig-
nal from the envelope detector was mixed with a frequency of 75 kHz,
which was also sent over a high voltage amplifier to the phase shifter
(PS). With this configuration an error signal was created in the mixer,
which could be sent into a proportional-integral-derivative controller
to stabilize the high voltage on the PS to a maximal or minimal noise
level on the BHD. The BHD signal was split to be still available for mea-
surements with a spectrum analyzer. Picture created with Inkscape.

Figure 5.1 shows the basic idea of the noise envelope locking technique.
A phase modulation of 75 kHz was imprinted on the phase shifter, which
controlled the measured quadrature in the balanced homodyne detector. The
balanced homodyne detector signal was split with a signal splitter from "Mini-
Circuits" to be available for the envelope detector and for a spectrum ana-
lyzer at the same time. The envelope detector read out the variance of the
signal and sent it into a mixer together with the modulation frequency of
75 kHz. The output of the mixer was used as an error signal, which was sent
into an analog PID controller to lock the phase shifter position via a high
voltage on a piezoelectric element. The stabilization point depended on the
phase relation between the modulation frequency on the phase shifter and
the modulation frequency which was sent into the mixer. A phase flip by
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180° could switch between a stabilization to the squeezed quadrature and
anti-squeezed quadrature.

5.2 Noise envelope stabilized squeezing measure-

ment with one balanced homodyne detector

For a conventional squeezing measurement with noise envelope lock the
same preparations were necessary as are described in chapter 4.2. The mea-
surement procedure was done analog to chapter 4.3. But now instead of
stabilizing the LO phase by hand, the noise envelope locking technique from
figure 5.1 was used. Figure 5.2 shows the result of a conventional squeezing
measurement with noise envelope lock. The measured traces were normal-
ized to the vacuum level. Hence the relative noise power in dB is shown
and the vacuum trace is on 0 dB. For the squeezed quadrature a value of -
9.7 dB could be reached while the anti-squeezed quadrature was at 20.7 dB.
The dark noise clearance was 17.5 dB for a local oscillator power of 20 mW in
front of the beam splitter from the balanced homodyne detector. When a dark
noise correction was done by subtracting the dark noise from all other traces
a dark noise corrected squeeze value of -10.5 dB and a dark noise corrected
anti-squeeze value of 20.8 dB was evaluated. From the dark noise corrected
values the optical loss could be calculated with equation 3.2 and lead to a
value of 8.3 %. Additionally, with equation 3.3 the initial squeezing could be
calculated to 21.2 dB. For this measurement a pump power of 26 mW in front
of the squeezer was used. Because of a bad mode matching of the pump field
to the squeezer only around 70 % of this power was coupled in the squeezing
resonator.

For the hand locked conventional squeezing measurement in figure 4.6 a
measured squeeze level of -10.6 dB could be reached and the calculated loss
was 6.5 %. So, the results were better without the noise envelope locking
technique. Between these measurements more then half a year passed. In
principle differences in the mode matchings to the diagnostic mode cleaner
could explain a loss difference, but the mode matchings were checked from
time to time and they looked not so different to explain around 2 % higher
loss. Another explanation might be some dust or dirt on the optics in the
squeezing path. The experiment was placed in a clean room area, but this
gave no absolute guarantee to avoid all kind of particles. Moreover, for
the noise envelope stabilized measurement the signal of the BHD had to
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Figure 5.2: Result of the conventional squeezing measurement with noise envelope
lock. The relative noise power in dB is plotted against the measurement
time in ms. The anti-squeezed trace (blue) was 20.7 dB above the vac-
uum level (black). The squeezed trace (red) was 9.7 dB below the vac-
uum level. The dark noise (grey) was 17.5 dB below the vacuum level.
Settings for the measurement: sideband frequency = 5 MHz, RBW =
300 kHz, VBW = 300 Hz, sweep time = 300 ms, average 10 traces and
pump power in front of the squeezer = 26 mW. The setup for this mea-
surement is shown in figure 4.1. Data evaluation done in Python with a
script written by Malte Lautzas.

be split to be available for the noise envelope lock and the spectrum ana-
lyzer at the same time, as can be seen in figure 5.1. Therefore, a splitter
from the company "Mini-Circuits" was used and this splitter seemed to in-
troduce some extra noise, which reduced the amount of squeezing. But a
hand locked squeezing measurement without using this splitter was done on
the same day as the noise envelope stabilized conventional squeezing mea-
surement was recorded and it showed -9.9 dB squeezing and 19.4 dB anti-
squeezing. After dark noise correction, the squeeze level was -10.5 dB and
the anti-squeeze level was 19.5 dB. The loss calculated from the dark noise
corrected values was 7.9 %. So, the splitter alone could not explain the en-
tire additional loss. For certain modulation frequencies the squeezing was
also damaged, but it was always tried to choose a modulation frequency
which made no problems. Nevertheless, a good working modulation fre-
quency might still introduced some extra noise, which reduced the reachable
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squeezing. The additional loss was probably caused by a combination of the
discussed possibilities. But even when the reachable squeezing was lower,
the setup had a clear advantage with the noise envelope lock: the local os-
cillator phases could be stabilized over longer time scales. This allowed the
usage of the average function of the spectrum analyzer to get more precise
results. For the noise envelope stabilized result in figure 5.2 the traces were
averaged 10 times. It is clearly visible that the statistical error in figure 5.2
was smaller compared to the hand locked single traces in figure 4.6. To quan-
tify the improvement the statistical error for the single hand locked squeezed
trace was 0.17 % relative error while the relative error for the averaged noise
envelope stabilized squeezed trace was 0.04 %. Errors were automatically
calculated in the Python data evaluation script, written by Malte Lautzas,
with help of the package "Uncertainties: a Python package for calculations
with uncertainties" from Eric O. Lebigot.

5.3 Noise envelope stabilized squeezing measure-

ments with two balanced homodyne detectors

The noise envelope stabilized squeezing measurement along the 8-port paths
was done analog to chapter 4.4. But now both BHDs used the noise envelope
locking technique from figure 5.1. For BHD1 the anti-squeezed trace was
16.2 dB and the squeezed trace was -2.4 dB. The dark noise clearance was
16.2 dB for a local oscillator power of 20 mW in front of the beam splitter
from the balanced homodyne detector. For BHD2 the anti-squeezed trace
was 17.5 dB and the squeezed trace was -2.5 dB. The dark noise clearance
was 18.6 dB for a local oscillator power of 20 mW in front of the beam split-
ter from the balanced homodyne detector. Figure 5.3 shows the normalized
results for both balanced homodyne detectors. Formula 3.24 and 3.25 al-
lowed to calculate out the loss from the 50/50 8-port beam splitter. The re-
constructed squeeze value without the 50 % beam splitter loss for BHD1 was
-8.5 dB and the anti-squeeze value was 19.2 dB. When also a dark noise cor-
rection was applied to the data, the dark noise corrected reconstructed values
were -9.2 dB for the squeezed quadrature and 19.3 dB for the anti-squeezed
quadrature. From this values an optical loss of 11.1 % and an initial squeez-
ing of 19.8 dB could be calculated with equations 3.2 and 3.3.
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Figure 5.3: Results for a squeezing measurement along the 8-port paths with noise
envelope lock for BHD1 (top) and BHD2 (bottom). The relative noise
power in dB is plotted against the measurement time in ms. The anti-
squeezed trace (blue) was 16.2 dB for BHD1 and 17.5 dB for BHD2 above
the vacuum level (black). The squeezed trace (red) was 2.4 dB below
the vacuum level for BHD1 and 2.5 dB for BHD2. The dark noise (grey)
was 16.2 dB below the vacuum level for BHD1 and 18.6 dB for BHD2.
Settings for the measurement: sideband frequency = 5 MHz, RBW =
300 kHz, VBW = 300 Hz, sweep time = 300 ms, average 10 traces and
pump power in front of the squeezer = 25 mW. The setup for this mea-
surement is shown in figure 4.8. Data evaluation done in Python with a
script written by Malte Lautzas.
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For BHD2 the reconstructed values were -8.7 dB squeezing and 20.5 dB
anti-squeezing and the dark noise corrected reconstructed values were -9.1 dB
squeezing and 20.5 dB anti-squeezing. From this values an optical loss of
11.6 % and an initial squeezing of 21.1 dB could be calculated with equations
3.2 and 3.3. The results of both BHDs were very similar. Reasons for a devia-
tion were already discussed in chapter 4.4. For the noise envelope stabilized
measurements in figure 5.3 the traces were averaged 10 times, which reduced
the statistical error compared to the single trace hand locked measurements
in figure 4.9. The squeeze level in the noise envelope stabilized measurement
was lower and the calculated optical loss was higher than the hand locked
measurements. Possible reasons for this deviation were already discussed in
section 5.2.

5.4 Noise envelope stabilized entanglement mea-

surement

The noise envelope stabilized entanglement measurement was done analog
to chapter 4.5. But now both BHDs used the noise envelope locking tech-
nique from figure 5.1. Figure 5.4 shows the result of a v-class entanglement
measurement with the noise envelope lock. The measured traces were nor-
malized to the vacuum level. Hence, the relative noise power in dB is shown
and the vacuum trace is on 0 dB. For the squeezed trace a value of -7.4 dB
could be reached while the anti-squeezed trace was 16.7 dB. The dark noise
clearance was 15.0 dB for local oscillator powers of 19 mW for BHD1 and
15 mW for BHD2, measured in front of the beam splitters of the balanced ho-
modyne detectors. Different local oscillator powers were necessary to have
the same absolute vacuum level, which was discussed in chapter 4.5. When
a dark noise correction was done by subtracting the dark noise from all other
traces a dark noise corrected squeeze value of -8.0 dB and a dark noise cor-
rected anti-squeeze value of 16.8 dB could be evaluated. From the dark noise
corrected values the optical loss could be calculated with equation 3.2 and
lead to a value of 14.2 %. Additionally, with equation 3.3 the initial squeez-
ing could be calculated to 17.5 dB. For this measurement a pump power of
26 mW in front of the squeezer was used. Because of a bad mode match-
ing of the pump field to the squeezer only around 70 % of this power was
coupled in the squeezing resonator. For the noise envelope stabilized entan-
glement measurement in figure 5.4 the traces were averaged 10 times, which
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Figure 5.4: Result for a v-class entanglement measurement with noise envelope
lock. The relative noise power in dB is plotted against the measure-
ment time in ms. The anti-squeezed trace (blue) was 16.7 dB above the
vacuum level (black). The squeezed trace (red) was 7.4 dB below the
vacuum level. The dark noise (grey) was 15.0 dB below the vacuum
level. The oscillating signals were created by locking one LO phase to
squeezing or anti-squeezing while the other LO phase was periodically
scanned. Settings for the measurement: sideband frequency = 5 MHz,
RBW = 300 kHz, VBW = 300 Hz, sweep time = 300 ms, average 10 traces
and pump power in front of the squeezer = 26 mW. The setup for this
measurement is shown in figure 4.10. Data evaluation done in Python
with a script written by Malte Lautzas.

reduced the statistical error compared to the single trace hand locked mea-
surements in figure 4.11. The squeeze level in the noise envelope stabilized
entanglement measurement was lower and the calculated optical loss was
higher than the hand locked measurement. Possible reasons are the signal
splitter, mode matchings and some dust on the optics as discussed in sec-
tion 5.2. The noise envelope stabilized entanglement measurement resulted
to lower squeeze level and higher loss values compared to the reconstructed
squeeze values from the noise envelope stabilized squeezing measurement
along the 8-port paths in section 5.3. This was probably caused by the elec-
tronic device to add or subtract the balanced homodyne detector signals in
figure 4.10.

In conclusion, the squeezed-light source with noise envelope phase sta-
bilization showed smaller squeeze and higher loss values compared to the
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hand locked results in chapter 4, but the noise envelope phase stabilization
allowed to measure over longer time scales, which was an essential require-
ment for the cat state measurements.
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Chapter 6

Avalanche photo diode
characterization

To create Schrödinger kitten states, a single photon subtraction from a
squeezed state of light was applied (see chapter 3.2). To realize a single pho-
ton subtraction a single photon detector was used. The most common types
are avalanche photo diodes (APD), which use an amplification of charge car-
rier to make the signal of a single photon visible. In chapter 3.3 the theoreti-
cal background about single photon detectors can be read. In this chapter the
characterization of different APDs is shown. We had two silicon APDs in our
group and we temporarily had an InGaAs APD. The results for the silicon
APDs were accrued in the bachelor thesis from Julian Hörsch [56]. The in-
vestigation of the InGaAs APD was done together with Stephan Grebien and
Malte Lautzas. This chapter begins with an introduction of the experimental
setup and the procedure for a measurement of the quantum efficiency. The
basic idea is to compare the signal strength from the APD with a reference
power, which is sent to the APD. Afterwards the quantum efficiency results
and other relevant parameters like dark counts and dead times are presented
for all three APDs.

6.1 Experimental setup

Figure 6.1 shows the setup for a quantum efficiency measurement. For greater
clarity not every used component is shown. The same laser as in chapter 4
was used, but for the quantum efficiency measurements only the laser beam
with a wavelength of 1064 nm was needed. At the beginning, the laser beam
was sent through a mode cleaner (MC). Details about the MC and its length
stabilization with a Pound-Drever-Hall locking scheme were already given
in chapter 4.2.1. To be able to control the power of the laser beam it was sent
through a half-wave plate and a polarizing beam splitter (PBS). The light
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Figure 6.1: Simplified setup for a quantum efficiency measurement. The laser beam
(1064 nm) was sent through an electro optical modulator (EOM) and
passed a mode cleaner (MC), which was stabilized to resonance by a
photo diode (PD) in reflection with the Pound-Drever-Hall technique.
Afterwards the light passed a half-wave plate ( λ

2 ) and a polarizing beam
splitter (PBS), which allowed the control of the power. In transmission
of the PBS the light was in p-polarization and was sent through a di-
agnostic mode cleaner (DMC). Then the polarization was turned to s-
polarization with a ( λ

2 ) plate. The beam was attenuated via transmis-
sion through two mirrors with T = 0.33 % for each mirror. Finally, the
light was coupled into a fiber and was detected by an avalanche photo
diode (APD). Picture created with Inkscape.

in transmission of the PBS was in p-polarization. The beam passed a di-
agnostic mode cleaner (DMC). Afterwards the polarization was turned to s-
polarization with a half-wave plate. The laser beam was transmitted through
two attenuation mirrors. This mirrors had each a transmission of 0.33 % for
s-polarized light. Finally, the light was coupled into a fiber and could be
detected by an APD.

6.2 Measurement procedure

The first step was to activate the Pound-Drever-Hall lock of the MC. After-
wards mode matchings to the DMC had to be done. On the one hand the
beam from the MC had to be matched to the DMC, on the other hand a
good mode matching from the DMC into the fiber coupler was necessary.
To reach a good matching between DMC and fiber coupler a trick was used:
some light was sent through the backside of the fiber. Figure 6.2 illustrates
this reversed fiber mode matching technique. The mode from the fiber was
matched to the DMC with two lenses and two mirrors. When this mode
matching was good, the mode matching from the DMC to the fiber was also
good. To perform a mode matching the length of the DMC was scanned
by applying a periodic voltage to the integrated piezoelectric element. The
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Figure 6.2: Reversed fiber mode matching technique. To get a good mode matching
into the fiber a trick was used: some light was sent through the backside
of the fiber. With two lenses and two mirrors the fiber mode matching
(Fiber MM, blue area) could be performed by aligning the beam from
the fiber to the length scanned diagnostic mode cleaner (DMC). The
modes were monitored with a photo diode (PD) in transmission of the
DMC. When the mode from the fiber was matched to the DMC, the
mode from the DMC was also matched to the fiber. Picture created with
Inkscape.

photo diode signal in transmission of the DMC was read out with an oscillo-
scope. The mode matching between fiber and DMC was around 91 %. The
mode matching from MC to DMC was around 98 %.

The power of the laser beam in front of the DMC was set to a value in
the range of 0.2 µW − 20 µW. To control the power the half-wave plate in
front of the PBS was used. To measure the power a power meter was used
(Ophir Nova II). As discussed in chapter 4.1 this power meter had a large
estimated relative error of ±10 %. Hence, no high precision measurements
of the quantum efficiency were possible, however, that was not a problem
because the goal of the APD characterizations in this chapter was to get a
rough estimation about the quantum efficiency magnitude. The power which
reached the APD had to be much smaller. The typical order which can be
handled by an APD is a power in the pico watt range. It was impossible to
set such small powers with the power meter, so the power range of 0.2 µW −
20 µW was chosen and with the attenuation mirrors it was reduced to 11 ppm
of the adjusted intensity, which brought the power to the correct order for
an APD. The non perfect mode matchings to the DMC and optical loss on
every optical component could further reduce the power, but for a rough
estimation of the quantum efficiency this was neglected.

The APD signal was read out with an oscilloscope (Keysight InfiniVision
DSOX3024T). The impedance on the oscilloscope channel should be set to
50 Ohm [41, p.2]. Triggering to the oscilloscope channel was activated with
the trigger mode “edge than edge”. The mode coupling option was set to
“normal”. After pressing the time-axis button, the APD pulse was visible in
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Figure 6.3: APD dead time measurement principle. The dead time of an APD
could be estimated on the oscilloscope. Therefore, the time interval be-
tween the beginning of the triggered pulse and the next possible pulse
was measured (red arrow). The vertical measurement cursors (yellow
dashed lines) were used to read out this time interval on the oscilloscope
monitor. Picture saved with Keysight InfiniVision DSOX3024T.

the center of the oscilloscope. An example screenshot from the oscilloscope
is shown in figure 6.3. The oscilloscope was able to perform a counter mea-
surement for the used channel, which counted the pulses per second.

For the quantum efficiency measurement, the maximal count rate was
read out with the oscilloscope by manually turning the DMC to resonance
by using a potentiometer, which controlled the voltage on the piezoelectric
element in the DMC. It was also possible to measure the dead time with the
oscilloscope by using the measurement cursors and determine the time inter-
val where no pulse appeared. An illustration about the dead time measure-
ment is shown in figure 6.3. The dark count rate of the APD was also mea-
sured. Therefore, the fiber was disconnected from the APD and a protection
cap was placed on the fiber coupler. Hence absolutely no light could reach
the detector and the intrinsic dark count rate of the APD could be observed
on the oscilloscope. Finally, the quantum efficiency could be calculated with
equation 3.9.
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Figure 6.4: Quantum efficiency for the COUNT NIR silicon avalanche photo diode.
The photon detection efficiency Pd in % is plotted against the wave-
length in nm. For 1064 nm the photon detection efficiency is around
5 %− 7 %. Picture taken from data sheet [41, p.5].

6.3 Characterization of the first detector

The first detector characterized was a silicon APD from "Laser Components".
It is part of the series COUNT NIR and has the model number COUNT 50N-
FC. The 50 stands for a dark count rate of 50 counts per second and the FC
predicates that the APD is fiber coupled. The dead time should be 45 ns.
These and more information about the detector can be found in the data sheet
[41]. The measured dark count rate was around 35 counts per second and the
measured dead time was 45 ns. The measured values are in good agreement
with the data sheet values, but for the quantum efficiency a large deviation
between data sheet and measurement can be observed. Figure 6.4 shows the
quantum efficiency of the COUNT NIR in dependence of the wavelength,
which is given in the data sheet [41, p.5]. For 1064 nm a value between 5 %
and 7 % can be estimated. The measured value was only around 1 %. A possi-
ble explanation for such small quantum efficiency could be that the COUNT
NIR is only specified for the wavelength range from 400 nm to 1000 nm [41,
p.1-2]. So, the used wavelength of 1064 nm was far away from the specified
area. This might gave additional losses, for example, through the fiber cou-
pler, which contained a lens that was optimized and coated for the range
from 440 nm to 1000 nm [41, p.3]. Of course, another possible explanation
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might be a systematic error in the experimental setup. To investigate if the
experimental setup worked correctly, another APD was characterized, as it is
shown in the following section.

6.4 Characterization of the second detector

Figure 6.5: Quantum efficiency for the AQRH silicon avalanche photo diode. The
photon detection efficiency PDE is plotted against the wavelength in
nm. For 1064 nm the photon detection efficiency is around 1 %− 2 %.
Picture taken from data sheet [57, p.7].

Another silicon APD from "Perkin Elmer" (now called "Excelitas Tech-
nologies") was available in our group, which was used in former experiments
by Christoph Baune [33]. The model number is SPCM-AQRH-13-FC. The 13
has no physical meaning, it is just a consecutive type number and the FC
predicates again that the APD is fiber coupled. The dark count rate should
be 250 counts per second and the dead time should be 22 ns. These and more
information about the detector can be found in the data sheet [57]. The mea-
sured dark count rate was around 260 counts per second and the measured
dead time was 28 ns. The measured dark count rate is in good agreement
with the data sheet value. The measured dead time is a little bit higher than
the data sheet value, but this should not be a problem because the value is
still smaller than the dead time from the COUNT NIR. Figure 6.5 shows the
quantum efficiency of the AQRH in dependence of the wavelength, which
is given in the data sheet [57, p.7]. For 1064 nm a value between 1 % and



6.5. Characterization of the third detector 69

2 % can be estimated. The measured value was around 1 %. For the AQRH,
which is specified for a wavelength range from 400 nm to 1060 nm, the mea-
sured value is close to the expected value. For this detector the operating
wavelength of 1064 nm is only 4 nm outside the specification, which proba-
bly does not contribute much extra loss. Therefore, this measurement can be
seen as a confirmation that the experimental setup worked in principle. The
most probable reason for the COUNT NIR deviation between data sheet and
measurement is indeed the usage 64 nm outside its specification.

6.5 Characterization of the third detector

Figure 6.6: Quantum efficiency for the PDM IR InGaAs avalanche photo diode. The
photon detection efficiency in % is plotted against the wavelength in
nm. For 1064 nm the photon detection efficiency is around 13 % for 3 V,
around 18 % for 5 V and around 20 % for 6 V. Picture taken from data
sheet [58, p.1].

To get a higher quantum efficiency for 1064 nm, an InGaAs APD was
bought from "MPD", which was called "PDM IR" and also had a fiber cou-
pled input. In contrast to our silicon APDs, the PDM IR had a USB connec-
tion, which allowed the use of specialized computer software to adjust sev-
eral parameters. For example, the dead time could be set to a value between
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1 µs and 3000 µs, the operating temperature could be set to 4 different values
between 225 K and 243 K and different bias voltages could be chosen. The
quantum efficiency depends on the bias voltage and is shown in figure 6.6 for
3 V, 5 V and 6 V. The dark count rate also depends on the parameters used and
should be maximal 1000 counts per second for 2 V. These and more informa-
tion about the detector can be found in the data sheet [58]. Figure 6.6 shows
a quantum efficiency for 1064 nm of around 13 % for 3 V, around 18 % for 5 V
and around 20 % for 6 V, but with our setup we could only measure around
3 % for 3 V and around 5 % for 5 V. The 6 V setting was not investigated. The
measurements were done for different temperature settings (229 K, 233 K and
243 K) and different dead times (10 µs, 20 µs, 30 µs and 40 µs). The dead time
had to be high enough to suppress after pulsing. A marker for having after
pulsing was a much higher dark count rate as expected. In this case the dead
time was increased until the dark count rate dropped to a reasonable value.
Which dead time was needed depended on the other selectable parameters.
The company was contacted because of the low quantum efficiency results.
Thereafter they also did a quantum efficiency measurement and confirmed
that the quantum efficiency around 1064 nm is really much smaller as shown
in the data sheet [58, p.1]. They gave us the possibility to refund the detector
and we agreed. Therefore, this detector is not available for further measure-
ments, but at least we got another confirmation that the results presented in
this chapter are valid.

For the cat state measurements in the following chapter, the COUNT NIR
was used because it has a much lower dark count rate compared to the
AQRH while the quantum efficiency of both silicon APDs is in the same or-
der of around 1 %. Therefore, the signal to noise ratio is better for the COUNT
NIR, which gives better cat states than the AQRH would give.
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Chapter 7

8-Port measurements of
Schrödinger kitten states

So far either continuous homodyne detection was used (chapter 4 and chap-
ter 5) or a discrete single photon detection was used (chapter 6). For this
chapter both techniques were combined to generate Schrödinger kitten states.
The characterization was done with an 8-port homodyne detector. The the-
oretical background about the generation of Schrödinger kitten states and
8-port homodyne detection is given in chapter 3.2 and chapter 3.4.2. At the
beginning of this chapter the experimental setup is shown and explained. Af-
terwards the measurement procedure and the data evaluation are presented.
By exchanging the single photon detector strong improvements could be
achieved. Finally, the result of a post processing of the measured data is
reported, where the amplitude of the Schrödinger kitten state was increased.
The measurement and evaluation of Schrödinger kitten states were part of
the master theses from Stephan Grebien and Felix Pein [40][59]. The real-
ization of this experiment was strongly inspired by the doctor theses from
Christoph Baune and Jonas Schou Neergaard-Nielsen [33][39]. The post pro-
cessing was done by Jaromír Fiurásek from the Palacký University Olomouc.

7.1 Experimental setup

Figure 7.1 shows the setup for a Schrödinger kitten state measurement. For
greater clarity not every used component is shown. The setup for the squeez-
ing generation and the 8-port homodyne detection was the same as described
in chapter 4. For the Schrödinger kitten state generation, a single photon
was subtracted from the squeezed field. Therefore, a small amount of the
squeezed field was tapped off. This was done by using a half-wave plate
and a polarizing beam splitter to be able to control the splitting ratio. Typ-
ically values between 1 % and 10 % were tapped off. The tapped off signal
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Figure 7.1: Simplified setup for an 8-port cat state measurement. The squeezing
generation (yellow) and 8-port homodyne detection (blue) is the same
as in figure 4.8. The green area is new and was needed to subtract a
single photon from the squeezed field. First the squeezed field passed a
Faraday isolator, which filtered out back scattered light from the homo-
dyne detectors. Then a half-wave plate ( λ

2 ) and polarizing beam splitter
(PBS) was used to tap off a small part of the signal towards the fiber
coupled avalanche photo diode (APD). An ultra narrow bandpass filter
(UNBF) and two filter cavities (FC) were in front of the APD to be sure
that only light reached the APD which was also detectable from the ho-
modyne detectors. The data acquisition (DAQ) of the orthogonal phase
locked homodyne detector signals was done with a computer (PC) and
was triggered by the APD signal. Picture created with Inkscape.

was sent through an ultra narrow bandpass filter (UNBF) with a transmis-
sion of 85 %. Afterwards it passed two filter cavities (FC) and was coupled in
a fiber, which was connected to an avalanche photo diode (APD). As APD the
Laser Components module COUNT NIR was used, which was characterized
in chapter 6.3.

Filter cavities were needed because the used APD had a broadband de-
tection range over a wavelength interval of several hundred nanometer, as
can be seen in figure 6.4, but the used homodyne detectors had only a band-
width of a few hundred MHz as displayed in figure 7.2. The APD should
only trigger the data acquisition for modes which could be seen from the
homodyne detectors. But the squeezing resonator had a free spectral range
(FSR) of 4.6 GHz. Hence, it could create also squeezed modes, which were
not detectable by the homodyne detectors. To filter out these modes in front
of the APD, two filter cavities were used with a FSR of 56.8 GHz for FC1 and
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Figure 7.2: Balanced homodyne detector (BHD) bandwidth characterization. The
noise power in dBm was plotted against the frequency in Hz. For both
BHDs the vacuum noise (black) and the dark noise (grey) were mea-
sured. Up to a few hundred MHz a significant distance between dark
noise and vacuum noise was visible. For higher frequencies the vacuum
noise converged to the dark noise level and the BHDs got blind. Set-
tings for the measurement: RBW = 1 MHz, VBW = 1 kHz, sweep time =
2 s and the local oscillator was around 18 mW in front of the 50/50 beam
splitter. Data plot done in Python with a script written by Felix Pein.

47.8 GHz for FC2. But these two filter cavities had a common multiple with
a GHz squeezing mode and still unwanted photons could reach the APD.
Therefore, an ultra narrow band pass filter with a FWHM of 0.64 nm was
also used. Figure 7.3 shows the principle of the filter cavities. The mechan-
ical filter cavity design was taken from Axel Schönbeck [60, p.50-51]. The
software "Finesse" was used to find suitable mirrors. For both mirrors in
both cavities a radius of curvature of 25 mm and a reflectivity of 99 % were
chosen. The corresponding finesse is 313. The quotient from FSR to finesse
gives the linewdith (FWHM), which is 181 MHz for FC1 and 153 MHz for
FC2. The linewidth of the squeezing resonator was a little bit smaller. It was
characterized a long time ago as FWHM = 110 MHz [45, p.102][46, p.31].

Also a Faraday isolator, with a transmission of 97 %, was placed in the
squeezing path. Without this Faraday isolator a lot of clicks from the local
oscillators appeared on the APD and made the kitten state measurements
impossible. Figure 7.4 illustrates what happens without Faraday isolator.
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Figure 7.3: Filter cavity principle. On the top area of the picture the principle idea
of the filter cavities is shown. The squeezing resonator (SQZ) created
not only squeezing inside the linewidth around 1064 nm, but also at
several other wavelengths, which fulfilled the resonance condition of
the squeezing resonator (FSR = 4.6 GHz). All these GHz modes were
filtered out. Therefore, two filter cavities (FC) were used with a FSR of
56.8 GHz for FC1 and 47.8 GHz for FC2. At a certain point out of the
picture both filter cavities had a common multiple with a GHz squeez-
ing mode. To filter out this case, an ultra narrow band pass filter with a
FWHM of 0.64 nm was used (bottom picture). Top picture created with
Finesse and Microsoft Power Point. Bottom picture taken from manu-
facturer’s test report.

A small amount of the local oscillator powers seem to be scattered into
the signal modes. This light passed the 8-port beam splitter and was re-
flected from the polarizing beam splitter (PBS) into the squeezer (SQZ). Then
the back scattered light was reflected from the SQZ and copropagated to the
signal field. Some power of the back scattered light was transmitted by the
PBS and passed the two filter cavities (FC) and coupled into the fiber to the
avalance photo diode (APD). Placing the Faraday isolator, at the position
shown in figure 7.1, solved this problem.
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Figure 7.4: Situation without Faraday isolator. Some power from the local oscilla-
tors (LO) was scattered back from the balanced homodyne detectors
(BHD). The 8-port beam splitter (BS) was passed and the back scat-
tered light was reflected from the polarizing beam splitter (PBS) into
the squeezer (SQZ). Then the back scattered light was reflected from the
SQZ and copropagated to the signal field. Some power of the back scat-
tered light was transmitted by the PBS and passed the two filter cavities
(FC) and coupled into the fiber to the avalance photo diode (APD). On
the APD a lot of clicks were visible, which came from the back scattered
light. To filter out the back scattered light a Faraday isolator had to be
placed between the SQZ and the PBS. Picture created with Inkscape.

7.2 Measurement procedure

For a Schrödinger kitten state measurement the same preparations as for
squeezing measurements were necessary like activating the Pound-Drever-
Hall locks, set the correct squeezing-crystal temperature and doing the mode
matchings for the balanced homodyne detectors. Detailed explanations about
this steps were already given in chapter 4.2. Additionally, the single photon
subtraction path had to be prepared. From time to time the mode matchings
to the filter cavities and to the fiber coupler were checked. But these mode
matchings were quite stable and it was not necessary to do it before every
measurement. Typical mode matching values which could be reached were
around 90 % to the first filter cavity and around 99 % to the second filter cav-
ity. The mode matching to the fiber coupler was around 92 %. For this fiber
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mode matching the same trick as in chapter 6.2 was used: some light was
sent through the backside of the fiber, which was matched to the second fil-
ter cavity. To be able to observe the mode matchings several flip mirrors and
photo diodes were placed in the single photon subtraction path, which are
not shown in figure 7.1.

The filter cavities needed the correct length to be on resonance for the
1064 nm mode, which was detected from the balanced homodyne detectors.
To find the correct length of the filter cavities, the control field was used,
which was sent through the backside of the squeezing resonator. The filter
cavites were set to the correct length by manually tuning the voltage of the
integrated piezoelectric elements until the control field was fully transmitted
by both filter cavities. The control field came from the same laser as the local
oscillator. Therefore, the control field represented exactly the mode which
should be transmitted by the filter cavities. The control field could only be
used for finding the correct length while the APD was blocked, because the
intensity of the control field would destroy the APD. When the filter cavi-
ties had the correct length, the control field had to be blocked. Afterwards
the APD could be unblocked. The filter cavities could be hold on resonance
without control field by using the APD signal. Therefore, the APD signal
was sent into an oscilloscope to monitor the click rate. When the click rate
got smaller the filter cavity lengths were fine tuned by changing the voltage
to the piezoelectric elements manually until the click rate reached the max-
imum value. The APD signal was also necessary as trigger for the 8-port
balanced homodyne detection, which was recorded with a data acquisition
card. Hence, the APD signal was split with a signal splitter (self built device
from former group members), to be available for the oscilloscope monitoring
and data acquisition card at the same time.

The maximal click rate on the APD depended on several parameters like
tap off to the APD, optical loss and the adjusted initial squeezing. Further-
more, room light and stray light could create additional clicks. In addition,
the APD had an intrinsic dark count rate of around 35 clicks per second, mea-
sured in chapter 6.3. For the Schrödinger kitten state measurement, the tap
off was set to 10 % and an initial squeezing around 3 dB was taken, measured
at a sideband frequency of 5 MHz with a resolution bandwidth of 300 kHz.
Of course, the initial squeezing over the whole spectrum from figure 7.5 was
accordingly smaller. The corresponding pump power was around 5 mW. The
click rate on the APD for this configuration was around 12.000 clicks per sec-
ond. The optical table was covered with a black plastic foil to avoid room
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light clicks. The effective dark count rate was around 150 clicks per second.
It was a little bit higher than the intrinsic dark count rate of 35 clicks per sec-
ond. Possible explanations were additional clicks from stray light of the laser
beams or other light sources on the optical table like control lamps on the
photo diodes or the plastic foil did not cover the table completely.

The last step before the Schrödinger kitten state measurements could be
started was the installation of the data acquisition system. The measure-
ments was done with a data acquisition card from Teledyne SP Devices:
ADQ32 with a sampling rate of 2.5 GSPS and 12 bit vertical resolution [61].
It contained two input channels and a trigger channel. The APD signal was
sent into the trigger channel and the two balanced homodyne detector sig-
nals were connected to the input channels. Figure 7.5 shows the squeezing
spectra measured along the 8-port paths, which were used for the data ac-
quisition. The squeezing spectra were captured for a cat state measurement
configuration, which was typically a local oscillator power around 18 mW,
pump power around 5 mW and the tap off was a few percent. The visible
amount of squeezing was quite small because of the 50 % loss from the signal
splitting in combination with a low initial squeezing. Some sharp peaks and
oscillations at high frequencies were visible. The sharp peaks were caused by
electronic pick up, for example, from devices in the lab like signal generators
for the Pound-Drever-Hall locks. The oscillations were introduced by signal
splitting electronics, which belonged to the homodyne detectors.

The balanced homodyne detector signals were also needed for the noise
envelope phase locks, which were introduced in chapter 5. Therefore, signal
splitters were used, which divided the BHD signals into three parts. So, the
BHD signals could be sent into the data acquisition card and into the enve-
lope detectors at the same time. The third output of the signal splitters was
sent into spectrum analyzers to monitor the phase locks. For the 8-port bal-
anced homodyne detection, the phase of BHD1 was stabilized to the maximal
anti-squeezed quadrature and the phase of BHD2 was stabilized to the maxi-
mal squeezed quadrature. The theoretical background about 8-port balanced
homodyne detection is presented in chapter 3.4.2.

When everything was locked the data acquisition could begin. Therefore,
a control software in the programming language "C" was created by Stephan
Grebien, which was based on an application programming interface received
from the manufacturer. Some settings could be adjusted by the experimental-
ist like how many samples were acquired and which delay from the trigger
was considered.
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Figure 7.5: Squeezing spectra along the 8-port paths for BHD1 (top) and BHD2
(bottom). The noise power in dBm is plotted against the frequency
in Hz. The anti-squeezed trace (blue), vacuum level (black), squeezed
trace (red) and dark noise (grey) are shown. Both BHDs looked simi-
lar. The sharp peaks were caused by electronic pick up. The oscillations
were introduced by signal splitting electronics. The phase of the local
oscillator was stabilized with the noise envelope phase lock. Settings
for the measurement: RBW = 300 kHz, VBW = 300 Hz, sweep time =
1.8 s and pump power in front of the squeezer = 5 mW. The setup for
this measurement is shown in figure 4.8. Data plot done in Python with
a script written by Felix Pein.
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The amount of samples defined the size of the measurement window
around a trigger event. The delay was required to compensate different
optical lengths, cable lengths and response times between APD and BHDs.
To identify the necessary delay and amount of samples, some test measure-
ments were done. Therefore, different settings were tried out until an inter-
esting area was visible in the recorded time window. What interesting means
is shown in the next section.

7.3 Data evaluation

Figure 7.6: Schrödinger kitten state localization. The segment quadrature variance
is plotted against the sample position. The whole measurement win-
dow contained 128 samples, which corresponded to 51.2 ns. Most of the
time the segment quadrature variance was on a constant level, which
represented the anti-squeeze value (blue) and the squeeze value (or-
ange). But for a certain time interval the segment quadrature variance
strongly increased. This was the interesting area where the kitten state
was located. Slightly different sample positions of the interesting area
in the squeezed and anti-squeezed quadrature could be explained by
different cable lengths from the homodyne detectors to the data acquisi-
tion card. Plot created with a Python script written by Stephan Grebien.

The data evaluation was done analog to [33, p.71-73][39, p.95-99]. Each
click on the APD activated the data acquisition and a certain time window
was saved on the computer. For the APD measurement 128 samples were
used. That corresponded to 51.2 ns. But only a small part of this time window
represented the kitten state. To localize the kitten state inside the recorded
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Figure 7.7: Quadrature extraction principle. Each measured trace was pointwise
multiplied with the temporal mode function. Afterwards the sum over
all resulting points was taken, which leaded to one quadrature value
for each trace. Also vacuum traces were multiplied with the temporal
mode function. In this case, the sum over all resulting points leaded
to vacuum quadrature values, which can be used for a normalization.
Exactly the same procedure was applied to the second homodyne detec-
tor to get the corresponding orthogonal quadratures. The shown data
points are only some example points and did not represent the temporal
resolution of the data acquisition card. Picture taken from [40, p.40].

traces a certain property of odd kitten states was used: an odd kitten state
has larger quadrature variances compared to a squeezed state as can be seen
in figure 2.7. Therefore, the relevant sample positions could be identified by
calculating the variance at each sample position over all recorded traces. The
result is called segment quadrature variance and can be seen in figure 7.6.
Most of the time the segment quadrature variances were constant and repre-
sented the anti-squeeze and squeeze values. For a certain time interval, the
segment quadrature variance strongly increased. This was the interesting
area where the kitten state was located. Slightly different sample positions
of the interesting area in the squeezed and anti-squeezed quadrature could
be explained by different cable lengths from the homodyne detectors to the
data acquisition card.

The segment quadrature variance from figure 7.6 could be used to esti-
mate a temporal mode function, which was needed for the further evalua-
tion. Therefore, the interesting area of the segment noise was cut out and
normalized to unity. The square root was applied to achieve the tempo-
ral mode function. It allowed to extract one single quadrature value from
each recorded trace. Therefore, the temporal mode function was multiplied
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pointwise with the acquired traces and the outcome was summed up. Fig-
ure 7.7 illustrates the extraction of the X quadratures from one homodyne
detector signal. The corresponding Y quadratures were received from the
second homodyne detector signal with the same method. Typically several
million clicks were used to start the data acquisition. Hence, several mil-
lion quadrature pairs (X,Y) could be extracted. The probability distribution
over all these quadrature values represents the Q-function, as can be seen in
equation 3.21. For the measurements shown in this thesis, a vacuum normal-
ization to 1 was used. Therefore, 10 million vacuum traces were recorded
with each homodyne detector, which were also transformed to quadrature
values as shown in figure 7.7. For the normalization, the difference between
signal quadrature and mean value of the vacuum quadratures was divided
by the standard deviation of the vacuum quadratures.

The first kitten state measurement evaluations as histogram were done
with a Python script written by Stephan Grebien during his master thesis
[59, p.47-48]. Later Jaromír Fiurásek joined the team and shared a MATLAB
script for the data evaluation, which had even more features. For example, it
could give out the density matrix of the measured state by using a maximum
likelihood estimation [62]. The resulting density matrices for the kitten state
measurements presented in this thesis are shown in appendix A.1. Further-
more the MATLAB script contained the post processing procedure to grow
up the kitten states, which is discussed in section 7.5. Felix Pein wrote a
Python script to plot the received density matrix as Q-function, Wigner func-
tion and photon statistics [40, p.62-65]. Following equations were used for
that: 2.18, 2.19, 2.48 and 2.49.

Figure 7.8 left side shows the measurement result with an APD, where
10 million clicks were taken to activate the data acquisition. The Q-function
looked similar to the simulated odd Schrödinger kitten state with α = 1 and
25 % loss from figure 3.5. The Wigner function had a negativity, which is
a sign of the nonclassicality of the state. The negativity was at the origin,
which is a characteristic property of an odd cat state as can be seen in the
simulated odd cat in figure 2.5. The photon statistics had dominantly con-
tributions at odd photon numbers. While a pure odd cat state only has odd
photon numbers, as can be seen in figure 2.5, the measured state also had a
non vanishing contribution of even photon numbers, which was caused due
to the optical loss. Another point which is noticeable is a certain asymmetry
in the intensity distributions. In addition, a slightly rotation angle in the his-
togram is visible in figure 7.9 top left. Investigations about possible reasons
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for asymmetry and rotation were done when a better single photon detector
was available, which is the topic of the next section.

7.4 Exchange of the single photon detector

With the APD it was already possible to measure a state which was similar
to an odd cat state. Because of the low quantum efficiency of around 1 % (see
chapter 6.3), the data rate with an APD as a single photon detector was quite
small. For this thesis a growing of cat states in post processing was planned,
so a lot of data points were needed.

An obvious improvement of the data rate was the usage of another sin-
gle photon detector, which had a higher quantum efficiency than the cur-
rently used APD. For the used wavelength of 1064 nm, the APD technol-
ogy is in general not the best. Therefore, other single photon technologies
were searched and a promising device could be found: a superconducting
nanowire single photon detector (SNSPD), for the theoretical background of
these technology look to chapter 3.3.2. These kind of detectors reach very
high quantum efficiencies above 85 % at 1064 nm [63]. At the same time it has
other nice properties like very small dark count rates. However, the price of
these detectors is quite high and could not be spent as part of the project bud-
getary. But it was possible to borrow such SNSPD from Boris Hage from the
University of Rostock. This detector was built by the company "Single Quan-
tum". It was custom made and no official data sheet exists, but Boris Hage
told us following parameters: quantum efficiency around 90 % for 1064 nm,
dead time around 70 ns - 80 ns, timing jitter below 100 ps and a dark count
rate around 1 click per second. We could work with this detector for several
weeks. Hence, it was enough time to measure a lot of cat states and try out
different things like varying parameters as pump power, tap off and local
oscillator power.

In this thesis only one large data set is shown, where 1300 million clicks
were used to activate the data acquisition. It was a long time measurement
over some hours, which was acquired by Felix Pein on 01.07.2021. The prin-
ciple measurement procedure was exactly the same as reported in section 7.2.
The only differences were concerning the SNSPD. Due to the high quantum
efficiency the event rate was much higher. A direct comparison for constant
parameters with the APD showed a factor 50 more clicks per second on the
SNSPD.
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Figure 7.8: Schrödinger kitten state measurement results for APD (left) and SNSPD
(right). The Q-function (top), Wigner function (middle) and photon
statistics (bottom) are shown. The purity of the Schrödinger kitten state
measured with SNSPD was higher than the APD measurement. This
could be seen in all representations. The Q-function showed less noise
in the center, the Wigner function had a larger negativity and in the pho-
ton statistics the vacuum contribution was smaller. Settings for the mea-
surement: sampling rate 2.5 GSPS, pump power in front of the squeezer
= 5 mW. The setup for this measurement is shown in figure 7.1. Data
evaluation done with a MATLAB script written by Jaromír Fiurásek.
Plots created with a Python script written by Felix Pein.
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Figure 7.9: Schrödinger kitten state histograms. The APD measurement with 10
million data points shows a slightly rotation (top left). The total SNSPD
measurement with 1300 million data points shows no rotation (top
right). However, in partial data sets of 50 million data points also ro-
tations are visible for the SNSPD with different orientation (bottom left
and bottom right). Data evaluation done with a Python script written
by Stephan Grebien and Felix Pein.

A higher factor of around 90 would be expected when the quantum effi-
ciency from the APD is 1 % and the quantum efficiency from the SNSPD is
90 %. There are various possible explanations for the lower improvement fac-
tor. First the quantum efficiency measurement of the APD in chapter 6.3 was
a rough estimation and no high precision measurement. Therefore, a result
of around 1 % quantum efficiency could also be 1.2 % or maybe even more,
which would already strongly decrease the improvement factor. Addition-
ally, the quantum efficiency of the SNSPD might be smaller as the expected
90 %. On the one hand the quantum efficiency of the SNSPD depended on
the polarization of the incoming signal. A half-wave plate and quarter-wave
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plate were placed in front of the fiber coupler to maximize the click rate, but
maybe not enough fine tuning was spent in this optimization and some per-
cent quantum efficiency were lost. On the other hand, the quantum efficiency
of the SNSPD depended on the applied bias voltage. This voltage should be
high to reach a high quantum efficiency, but at the same time it had to be
small enough to have a stable running detector. The bias voltage was set to
70 % of the maximal possible setting point. For this setting the detector was
stable and the count rate was high, but maybe this setting was connected to
a quantum efficiency below the maximal possible value. In principle there
was one more parameter connected to single photon detectors which could
explain the reduced improvement factor. Due to the high quantum efficiency
the count rate might be so high that dead time effects played a role and sup-
pressed some events. With the formula from equation 3.8 a dead time correc-
tion could be applied to recover these lost events. But for the used click rates
in our experiment, the dead time effects were neglectable small. Probably
the reason for the improvement factor of only 50 was a combination of the
discussed possibilities. But a factor of 50 was still a strong improvement for
the measurements, it allowed to reduce the tap off by several percent, which
reduced the optical loss of the cat state and led to cat states with a higher
purity. At the same time the data rate was still more than a factor 10 higher
than the APD.

For the long time measurement presented in this thesis following param-
eters were used. The pump power was around 5 mW and the local oscilla-
tors were around 18 mW, which is the same configuration as was used for
the APD measurement. The tap off was set to 2.5 %, which gave around
150 000 clicks per second on the SNSPD. The effective dark count rate was a
few hundred clicks per second. Due to the low intrinsic dark count rate of
1 clicks per second the reason for these dark counts were other light sources
in the lab like room light, stray light and control lamps on photo diodes. In
principle the effective dark count rate could be reduced by better shielding
the fiber coupler, but compared to a click rate of 150 000 clicks per second a
dark count rate of a few hundred clicks per second could be neglected and
no time was spent in optimizations. Also, the data acquisition settings had to
be adjusted because the SNSPD had another delay as the APD. The amount
of samples was set to 80.

The data evaluation was the same as reported in section 7.3. Figure 7.8
right side shows the results with a SNSPD. It is clearly visible that the purity
of the Schrödinger kitten state could be increased by exchanging the single
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photon detector. In comparison to the APD results in figure 7.8 left side the
Q-function showed less noise in the center, the Wigner function had a larger
negativity and in the photon statistics the vacuum contribution was smaller.
Felix Pein tried to quantify the loss differences with various fitting models,
but the results were inconsistent and did not match to the expected loss re-
duction from the tap off change and signal to noise ratio improvement. For
example a fit to a Q-function with loss model [40, p.61-62] leaded to a total
loss of 34 % for the APD kitten state measurement while it was still 31 % for
the SNSPD measurement. But the tap off was reduced from 10 % to 2.5 % and
at the same time the loss contribution through dark counts was improved
from above 1 % to below 1 %. Probably the asymmetry, which was visible
in the APD and the SNSPD measurement, made fitting difficult and reduced
the validity of the out coming parameters. Hence, the reported loss values
can only be seen as a rough estimation. The fitting process also gave out a
value for the amplitude α which was 1.0 for the APD measurement and 1.1
for the SNSPD measurement.

The high event rate of the SNSPD gave the possibility to get very fast
enough data points to compare cat states for different parameter settings in
the experimental setup. This allowed us to try out different things to inves-
tigate the asymmetry problem. A possible explanation for the asymmetry
might be a mixing of the odd cat state with a coherent state with a very
small α. Therefore, the reason of a copropagating weakly coherent state at
1064 nm was searched. An obvious candidate for a coherent state at 1064 nm
is the local oscillator. As discussed in section 7.1 a Faraday isolator had to
be installed because some light of the local oscillator was scattered to the
squeezing resonator. Even if this Faraday isolator had a good suppression
there might be some leakage and, consequently, some local oscillator in the
signal mode. But if the asymmetry was really caused by the local oscillator,
the local oscillator power should have an influence to the asymmetry. Kitten
state measurements with different local oscillator powers were done, but no
systematic changes in the asymmetry could be observed. Therefore, the local
oscillator was unlikely as reason.

Another 1064 nm field on the optical table was the control field. As dis-
cussed in section 7.2 the control field was blocked during the measurements
with a beam dumb. In principle these beam dumps were quite trustwor-
thy, but to be absolutely sure that no light from the control field entered the
squeezing resonator, a plate was placed behind the beam dump to have a
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double blocking stage. Nevertheless, no improvements were visible refer-
ring to the asymmetry.

Another idea was tried out: filtering the pump field with a laser line fil-
ter FL05532-1 from Thorlabs. The pump field was generated from 1064 nm
light through second harmonic generation, so there might be some 1064 nm
light inside the pump field. The laser line filter would suppress the 1064 nm
contamination. But kitten state measurements with this laser line filter still
showed the asymmetry. Hence, this idea, which was suggested by Boris
Hage, did not explain the asymmetry. Also, using different pump powers
or different tap off values did not help.

Maybe the origin of the coherent state was inside the squeezing resonator
due to a conversion process from the pump field. In this case the asymmetry
might be influenced with parameters from the squeezing resonator like the
used coatings and resulting intra cavity losses. But systematically manipu-
lating these parameters would be rather complicated and time consuming.
Therefore, this possibility could not be investigated. In the end there was no
way to control or remove the asymmetry during the measurements.

Furthermore, in the APD measurement from figure 7.9 top left a slightly
rotation of the cat state is visible. As opposed to this in the SNSPD measure-
ment from figure 7.9 top right no rotation is visible. But when only partial
data sets of 50 million data points from the SNSPD measurement were evalu-
ated, then also slightly rotations get visible, as can be seen in the bottom area
of figure 7.9 for 2 example partial data sets. However, over all 1300 million
data points these rotations seem to average out. A parameter could be iden-
tified which influenced the rotation angle. It was the stabilization point of
the anti-squeezed noise envelope phase lock. By changing this locking point
with an offset button of the used servo, the rotation angle could be controlled.
But even when the locking point was in a good position and no rotation was
visible at the beginning of a measurement it came to some drifts while the
measurement was running. It was not possible to fix this while the SNSPD
was available.

7.5 Growing of cat states in post processing

1200 million quadrature pairs from the long time measurement presented in
the previous section 7.4 were used for the post processing to achieve cat states
with larger amplitudes. Therefore, this 1200 million quadrature pairs were
split in two data sets with 600 million each. The two sets were overlapped
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Figure 7.10: Post processing basic idea. The top side of the picture shows what can
happen, when a cat state is superimposed with another indistinguish-
able cat state on a 50/50 beam splitter. Either a cat state with larger
amplitude appears in the bottom beam splitter output port and the top
port is empty or it is the other way round and a cat state with larger
amplitude appears in the top port and the bottom port is empty. The
outcome is randomly distributed and cannot be predicted. The bottom
side of the picture illustrates how a cat state could be identified in one
beam splitter output port, for example, the bottom one. Therefore, the
top output port was used for a vacuum conditioning. Consequently,
in the bottom output only the quadrature pairs were considered, when
the corresponding quadrature pair in the top port was inside the vac-
uum circle. Picture created with Inkscape referring to [10, p.380].

on a beam splitter by using equation 3.17. One beam splitter output port
was used for a vacuum conditioning. That means when the quadrature pair
in this conditioning port was inside a defined circle around zero, the other
beam splitter output port was accepted and stored. When the conditioning
port result was outside the circle, the quadrature pair in the other output
port was thrown away. Hence, the post processing reduced the amount of
quadrature pairs, but the remaining quadrature pairs represented a cat state
with a larger amplitude analog to the pure experimental realization in [10].
Plenty of 7.4 million quadrature pairs survived the post processing. They
were divided in 2 equal parts again to repeat the procedure and further in-
crease the amplitude. Only 370 000 quadrature pairs were remaining, which
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was not enough to do a third step. Figure 7.10 illustrates the basic idea of the
post processing. The post processing was done by Jaromír Fiurásek, it was
integrated in the MATLAB data evaluation script mentioned in section 7.3.
The density matrices after post processing are shown in appendix A.1.

Figure 7.11 shows the results of the post processing. The measured state
from figure 7.8 right side is shown again for comparison. Additionally, the
results in terms of Q-functions and Wigner functions are shown for both
growing steps. It can be seen that the post processing increased the ampli-
tude α because the intensity hills in Q and Wigner function drifted apart.
While the initial state had an α of 1.1, the first step post processing could in-
crease it to 1.7 and after the second step it was already 2.6. But the negativity
in the Wigner function was destroyed after the post processing because the
higher amplitudes were more sensitive for optical loss. Additionally, the loss
seemed to be increased by the post processing. At least Felix Pein’s fitting
code [40, p.61-62] gave out following values: 31 % for the measured state,
37 % after the first step and 42 % after the second step. But as discussed be-
fore in section 7.4 the fitting parameter are not fully trustable. However, an
increasing loss sounded reasonable because accordingly to Jaromír Fiurásek
the post processing could also amplify the noise.

In the photon statistics also changes were visible, as can be seen in fig-
ure 7.12. After the post processing more higher photon number states were
populated. The modal value was 1 for the measured state. After the first step
post processing the modal value was 2 and after the second step it was 4.
Due to the high loss, even and odd photon numbers were populated approx-
imately equally. Nevertheless, the development of the modal value could be
seen as a hint that an odd cat state was transferred into an even cat state, as
expected [10, p.379]. Also, the scaling factor of the amplitudes was close to
the predicted factor of

√
2 per step [12, p.8]. In conclusion, the post process-

ing gave plausible results.
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Figure 7.11: Schrödinger kitten state results of the post processing (first step: mid-
dle row, second step: bottom row) and comparison to the measured
state (top row) are presented. The Q-functions (left column) and
Wigner functions (right column) are shown. It is clearly to see that the
post processing increased the amplitude α because the intensity hills in
Q and Wigner function drifted apart. The initial state had an α of 1.1.
After the first step post processing it was already 1.7 and after the sec-
ond step it was 2.6, but the negativity in the Wigner function was de-
stroyed after the post processing because the higher amplitudes were
more sensitive for optical loss. Post processing done with a MATLAB
script written by Jaromír Fiurásek. Plots created with a Python script
written by Felix Pein.
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Figure 7.12: Schrödinger kitten state photon statistics of the post processing (first
step: middle, second step: bottom) and comparison to the measured
state (top) are presented. The modal value was 1 for the measured
state. After the first step post processing the modal value was 2 and
after the second step it was 4. Post processing done with a MATLAB
script written by Jaromír Fiurásek. Plots created with a Python script
written by Felix Pein.
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Chapter 8

Discussion and outlook

In this chapter the central results of the thesis are summarized and discussed.
The same chronology as in the thesis is used. First the continuously measure-
ments of squeezed states are presented, then the discrete measurements with
single photon detectors are discussed and, finally, the hybrid measurements
with both techniques at the same time are processed. At the end of this chap-
ter an outlook is given, which shows how the experiment could be expanded
in the future.

8.1 Discussion

The highest squeeze value which could be observed in this thesis was 10.6 dB
measured at 1064 nm. For this measurement, a conventional balanced homo-
dyne detection was used and the phase of the local oscillator was stabilized
by hand. This value looked quite small in comparison to the squeeze record
of 15.0 dB measured at 1064 nm [64]. But it was never the plan to reach the
squeeze record and not too much time was spent into the loss minimiza-
tion. For example, the mode matchings to the diagnostic mode cleaner for
achieving a good visibility were only around 99.0 %. For coming closer to
the squeeze record the goal would be 99.9 %. Another avoidable loss source
came from the 5 lenses which were placed between squeezing resonator and
balanced homodyne detector. To come closer to the squeeze record a more
efficient setup with a smaller amount of optics need to be used. Nevertheless,
a squeeze value above 10 dB was still a good result because it indicated that
the optical loss had to be below 10 %, which was already a good basis for the
further experiment. Jan Südbeck installed an identically constructed squeez-
ing resonator on another optical table and reached a very similar squeeze
value of 10.7 dB [65, p.61-62].

To be able to do measurements over longer time scales, the phase of the
local oscillator was stabilized with the noise envelope locking technique [55].
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Therefore, a modulation frequency was applied to the local oscillator phase
shifter. An error signal was generated, which could be used to stabilize the
phase shifter to the maximal noise level (anti-squeezing) or minimal noise
level (squeezing). The advantage of this technique was that no copropagat-
ing coherent fields were necessary, which was recommended for the cat state
measurements because a single photon detector was part of the experiment,
which should not get in contact with a strong coherent field.

For the single photon detection, initially a COUNT NIR avalanche photo
diode (APD) from Laser Components was used. The quantum efficiency was
measured and was around 1 % for the wavelength of 1064 nm. The data sheet
predicts a higher quantum efficiency of around 5 %− 7 %, but also tells that
the fiber coupler is just optimized for the wavelength range from 440 nm to
1000 nm [41, p.3]. Probability for 1064 nm the fiber coupler introduced addi-
tional loss, which was the reason for the low measured quantum efficiency.
To confirm that the experimental setup worked correctly, another detector
(AQRH) was characterized, which is specified up to 1060 nm [57, p.1]. Hence,
it was better suitable for the operating wavelength of 1064 nm. The measured
quantum efficiency at 1064 nm was also around 1 %, but for the AQRH this
value is in good agreement to the data sheet, which predicts 1 %− 2 % quan-
tum efficiency at 1064 nm [57, p.2]. In conclusion, the measured quantum
efficiencies seems to be valid. For the further measurements, the COUNT
NIR was used because it showed only around 35 dark counts per second,
which was much better than the AQRH with around 260 dark counts per
second.

Schrödinger kitten states could be created by subtracting a single pho-
ton from a weakly squeezed state analog to [6]. The characterization was
done via an 8-port homodyne detection, which could directly measure the
Q-function of a quantum state of light [28, p.153]. For this measurement 10
million quadrature pairs were acquired. By fitting a Q-function with loss to
the data an α = 1.0 and approximate loss of 34 % was received. The am-
plitude was similar as in other experiments where Schrödinger kitten states
were created by subtracting a single photon from a weakly squeezed state
as well [6]. Also, the density matrix could be extracted from the measured
8-port data via a maximum likelihood estimation [62]. The density matrix
allowed to plot the Wigner function and photon statistics of the measured
Schrödinger kitten states.

The Schrödinger kitten state measurements could be improved by ex-
changing the single photon detector. Instead of the avalanche photo diode a
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superconducting nanowire single photon detector (SNSPD) was used, which
can reach a much higher quantum efficiency of above 90 % at 1064 nm, fur-
thermore, it had more or less no dark counts. Therefore, the signal to noise
ratio was better, which reduced the loss coupled in through dark counts and,
additionally, the tap off to the detector could be reduced, which also saved
some percent loss. A Schrödinger kitten state with α = 1.1 and approximate
loss of 31 % could be measured. The data rate with SNSPD was much higher
compared to the APD measurements.

Some unexpected features were visible in the measured data: an asym-
metric intensity distribution and small rotations. For the rotation the rea-
son could be identified. It was caused by fluctuations in the setting point of
the noise envelope phase lock for the anti-squeezed quadrature. But it was
not possible to solve this issue. The reason for the asymmetry could not be
clarified. Roman Schnabel suggested following idea: it might be connected
to the squeeze operation itself. Lossy squeezed states inside the squeezing
resonator might be amplified by induced emission to weak coherent states.
To proof this idea further investigations would be necessary like systemati-
cally changing parameters of the squeezing resonator. For example, the intra
cavity loss could be manipulated by using different coupling mirrors with
varying reflectivity for 1064 nm. But this would be a lot of effort because ex-
changing a coupling mirror is connected with much realignment to repair the
mode matchings of the light fields to the squeezing resonator and from the
squeezing resonator to the diagnostic mode cleaners.

The asymmetry brought two disadvantages. On the one hand it reduced
the purity of the measured Schrödinger kitten states because something else
is mixed in. On the other hand, it caused difficulties for fitting the data.
Therefore, the reported cat state characterization, in terms of amplitudes
α and loss values, is not fully trustable. Even when the fits are not fully
trustable to characterize the loss. A comparison of our measured states with
simulated lossy states by eye also gave a rough total loss estimation in the
order of 30 %− 40 %.

In general the loss values look quite high referring to the quantified loss
sources like below 10 % loss from the squeezed-light source + 3 % loss from
the Faraday isolator + tap off (10 % for APD or 2.5 % for SNSPD) and a dark
count contribution of the single photon detector (a little bit above 1 % for
APD or below 1 % for SNSPD). But beside these loss sources there were other
noise sources, which were not quantified like noise through the data acqui-
sition because of a finite resolution or noise due to the measurements over
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a broad spectrum. On the one hand the squeezing spectra contained oscilla-
tions and some extra peaks from electronic devices in the lab. Therefore, the
loss characterization, which was done at a sideband frequency of 5 MHz with
a resolution bandwidth of 300 kHz, is not valid for the whole spectrum. Fur-
thermore, the Schrödinger kitten state generation over a broadband spectrum
mixed different Schrödinger kitten states together, which also smoothed out
the measured state. The observed rotations in partial data sets, caused by
non perfect phase locking, further smoothed out the results. Maybe the not
quantified noise sources were so strong that above 30 % total loss estimation
is still realistic.

The high quantum efficiency of the SNSPD made it possible to collect
large amounts of data in a reasonable time window. Around 1300 million
quadrature pairs could be measured and were used for a post processing to
grow the cat states. Therefore, 1200 million quadrature pairs were taken and
split into two sets with 600 million data points. By emulating the interference
of the data points on a 50/50 beam splitter and doing a vacuum conditioning
in one output port, a higher cat state amplitude in the other output port could
be reached. The first step increased the amplitude from α = 1.1 to α = 1.7.
But the post processing strongly reduced the amount of quadrature pairs
from 1200 million to 7.4 million. The remaining amount of quadrature pairs
were large enough to do a second step. Thereby the amplitude could be
further increased to α = 2.6 and the amount of quadrature pairs was further
reduced to 370 000. For a third step this amount of quadrature pairs was
too small. The scaling factor of the amplitudes α was close to the predicted
factor of

√
2 per step [12, p.8]. The post processing destroyed the negativity

in the Wigner functions. Two effects could play a role. On the one hand
the post processing seemed to increase the loss because the impurities of the
states were also amplified. On the other hand, a higher cat state amplitude
is much more sensitive to optical loss and the negativity is already destroyed
for smaller loss values.

The presented experiment can be improved with different approaches.
The optical loss can be reduced by using better or less optics or by improving
the mode matchings to the diagnostic mode cleaners. A better data acquisi-
tion card could be bought, which has a higher sampling rate and more bits
to improve the resolution. Alternatively, with the used data acquisition card
an optimization might be possible because the measurement range is 500 mV
[61, p.3], but the homodyne detector signals were only around 20 mV peak to
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peak. During the measurements, no suitable amplifier was available. There-
fore, the 12 bit vertical resolution was not fully used. By implementing an
amplifier to increase the detector signals to the given measurement range a
better resolution would be reached.

Better locking performances would also be an enhancement. The noise
envelope phase locks had to be relocked a few times per hour and they
caused some rotations of the measured Schrödinger kitten states. Therefore, a
more stable phase lock would reduce the phase noise. At the same time mea-
surements over longer time scales would be possible and the tap off to the
single photon detector could be further reduced, which would also improve
the purity of the measured Schrödinger kitten states. For much smaller tap
off values the observed dark counts could play a role. But for the SNSPD the
observed few hundred dark counts were triggered by light sources from the
lab, which could be filtered out by better shielding of the fibre coupler. The
filter cavities were locked by hand, so an automatic locking system would
also be a simplification for the measurement procedure. Another lock which
had to be relocked from time to time was the pre mode cleaner. It was sta-
bilized only with a Pound-Drever-Hall lock, which controlled a piezoelectric
actuated mirror. By implementing a temperature controller, as it is mean-
while standard in other experiments in our group, the long term stability
could be increased.

Also, some oscillations in the squeezing spectra could be observed, which
were introduced by signal splitting electronics. Maybe a better solution could
be found, which avoids these oscillations and gives a more flat and equal
spectrum in both homodyne detectors. Maybe the discussed possibilities
would increase the purity of the measured cat states so far that also after the
post processing a clear negativity might be visible in the Wigner functions.

This thesis shows Schrödinger kitten states with an amplitude α above
2, which is the threshold for qubit applications [13, p.1]. They were gen-
erated by superimposing smaller Schrödinger kitten states on an emulated
beam splitter with 2 iterations. The resulting grown Schrödinger kitten states
are unlikely for an application as qubit due to strong decoherence by optical
loss and other noise sources. The grown states are only available as already
measured data points inside a computer. For an experimental usable state, a
setup with 4 squeezing resonators and a 4 single photon detector coincidence
would be necessary, which is challenging to realize.
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8.2 Outlook

The long term goal is to transfer the cat state experiment into an entangle-
ment distillation. The basic idea of a distillation is to extract a low amount of
strongly nonclassical states from a high amount of weakly nonclassical states
[22]. Distillation could be useful for quantum cryptography [23][24][25] by
increasing the possible distance of quantum key distribution [19][26]. But
distillation is not always possible. It could be shown that it is not possible to
distill Gaussian states with Gaussian operations [66][67][68]. Gaussian states
are quantum states of light with a Gaussian Wigner function [69, p.2]. For ex-
ample, squeezed states of light are Gaussian states. Gaussian operations are
operations which transform a Gaussian state into another Gaussian state [69,
p.2]. Some examples for Gaussian operations are beam splitters, homodyne
detectors and squeezing resonators.

The impossibility to distill Gaussian states with Gaussian operations is a
"no-go" theorem [19, p.178]. To make a distillation possible, the no-go the-
orem has to be circumvented. This could be done by using a non Gaussian
state instead of a Gaussian state. A Gaussian state is transformed into a non
Gaussian state by phase noise. Phase noise is coupled in by using fibers or
can artificially created by using a piezoelectric actuated mirror which im-
prints a disturbance frequency [69, p.3-4]. For such non Gaussian states, a
distillation against phase noise can be performed. This kind of distillation
from non Gaussian states with Gaussian operations was already done in our
working group from the former group members Daniela Abdelkhalek and
Alexander Franzen [26][45][69][70].

Another method to circumvent the no-go theorem is using a non Gaus-
sian operation instead of a Gaussian operation. A typical example of a non
Gaussian operation is a single photon detection [19, p.178]. Through the sin-
gle photon detection a distillation from Gaussian states against optical loss
can be performed. This kind of distillation was already done for entangled
states by Takahashi et al. [19]. Figure 8.1 shows the setup of these entan-
glement distillation. A v-class entangled state was prepared by overlapping
a squeezed state with a vacuum state on a 50/50 beam splitter. From both
beam splitter outputs a small amount was tapped of to a single photon de-
tector. The rest of the signals was sent to conventional balanced homodyne
detectors, which read out the same quadrature. The entanglement could be
seen by adding or subtracting the signals from the balanced homodyne de-
tectors.
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Figure 8.1: Setup of an entanglement distillation from Gaussian states with non
Gaussian operations. An entangled state is prepared (yellow) by gener-
ating a squeezed state (SQZ) and overlap it with a vacuum state (Vac)
on a balanced beam splitter (BBS). Alice and Bob both tapped off a small
amount of their signal with an unbalanced beam splitter (UBS) and sent
it through a filter cavity (FC) to a single photon detector (APD) to do the
distillation (green). The state verification (blue) was done with conven-
tional balanced homodyne detectors (BHD). Therefore, Alice and Bob
read out the same quadrature Θ, which could be chosen by controlling
the phase of the local oscillator (LO) with a piezoelectric actuated mir-
ror. The entanglement could be seen by reading out the added (+) or
subtracted (-) BHD signals with a measurement device. Picture created
with Microsoft Power Point referring to [19, p.178].

Figure 8.2 shows the results of the entanglement distillation from Gaus-
sian states with non Gaussian operations, realized by Takahashi et al. [19].
The entanglement strength is shown as logarithmic negativity for different
initial squeeze values. The entanglement strength was increased, when the
balanced homodyne detector measurements were conditioned to a single
photon subtraction with one single photon detector or a two photon sub-
traction with both single photon detectors. For the single photon subtraction,
the magnification of the entanglement strength was even higher than the two
photon subtraction. The Wigner functions of the conditioned states looked
also different. For a single photon subtraction the Wigner function looked
like an odd cat state with a negativity at the origin. For a two photon sub-
traction the Wigner function looked like a deformed Gaussian state. Without
conditioning to the single photon detectors the Wigner function represented
a Gaussian state.
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Figure 8.2: Results of an entanglement distillation from Gaussian states with non
Gaussian operations. The logarithmic (Log) negativity is shown in de-
pendence of the initial squeezing. A single photon subtraction (red)
increased the entanglement strength compared to the undistilled case
(green). A two photon subtraction (blue) also increased the entangle-
ment strength, but a little bit smaller than the single photon subtrac-
tion. The Wigner function of the single photon subtracted state had a
negativity and looked like an odd cat state. The Wigner function of
the two photon subtracted state looked like a deformed Gaussian state.
The undistilled data were represented by a Gaussian Wigner function.
Picture created with Microsoft Power Point referring to [19, p.179].

For our planned entanglement distillation the setup will be a little bit dif-
ferent as shown in figure 8.1. Instead of a conventional homodyne detection,
an 8-port homodyne detection will be used for Alice and for Bob. Both will
split their signal on a 50/50 beam splitter and measure the amplitude and
phase quadrature at the same time. Therefore, in total 4 balanced homodyne
detectors will be necessary. The advantage of this method is the possibility to
do a further distillation in post processing. Accordingly to Jaromir Fiurásek,
the post processing will only work for two photon subtracted states. With
the cat state setup in figure 7.1 and the superconducting nanowire detector
already some experience with two photon subtraction could be collected. The
superconducting nanowire detector from the University of Rostock (Boris
Hage’s working group) contained 4 channels. For the measurements pre-
sented in this thesis only one channel was used, but measurements with two
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channels were already performed and evaluated. By subtracting two pho-
tons from a squeezed state, an improvement in the squeeze factor could be
reached (squeezing distillation). These results will be part of Stephan Gre-
bien’s doctor thesis.

In figure 8.1 v-class entanglement is generated by overlapping a squeezed
state with a vacuum state on a 50/50 beam splitter. The long term goal for
our experiment will be the usage of s-class entanglement. Therefore, two or-
thogonal squeezed states are superimposed on a 50/50 beam splitter [71]. Of
course, for that a second squeezing resonator has to be built and installed on
the optical table. The advantage of s-class entanglement is a stronger entan-
glement strength [53], which is useful for applications in quantum cryptog-
raphy [25].
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Appendix

A.1 Density matrices

Figure A.1: Density matrices for the results presented in this thesis. From up to
down: measurement with APD, measurement with SNSPD, post pro-
cessing first step and post processing second step. Density matrices are
extracted from the measured Q-functions by using a MATLAB script
written by Jaromír Fiurásek, which is based on maximum likelihood
estimation.
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