
Multimodal Perception for Robotic
Grasping and Pouring

Dissertation
with the aim of achieving a doctoral degree at the

Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics

Universität Hamburg

Hongzhuo Liang
Hamburg, 2022

mailto:hongzhuo.liang@uni-hamburg.de

Day of oral defense: 05.05.2022

The following evaluators recommend the admission of the dissertation:
Supervisor:
Prof. Dr. Jianwei Zhang
Department of Informatics,
Universität Hamburg, Germany

Reviewer:
Prof. Dr. Stefan Wermter
Department of Informatics,
Universität Hamburg, Germany

Chair:
Prof. Dr. Timo Gerkmann
Department of Informatics,
Universität Hamburg, Germany

mailto:jianwei.zhang@uni-hamburg.de
mailto:stefan.wermter@uni-hamburg.de
mailto:timo.gerkmann@uni-hamburg.de

IV

Abstract

Abstract
Programming a modern service robot to implement daily tasks requires a thorough un-
derstanding of the environment. Inspired by everyday human experience and the mul-
timodal processing mechanism of the human brain, engineers have developed various
sensors to build robots with a near-human sensory system. However, extracting valuable
data from noisy inputs and efficiently integrating the multiple signals is still challenging.
This dissertation investigates the use of multimodal sensory perception for two of the
most fundamental service robot tasks, grasping and pouring.

Regarding two-fingered grasping, several effective improvements, i.e., attentional
sampling, three-dimensional grid search, and invalid candidate correction, are added to a
state-of-the-art grasp candidate generation algorithm. Then a novel deep-learning-based
grasp evaluation algorithm PointNetGPD is proposed. To the best of our knowledge,
PointNetGPD is the first work that uses 3D point clouds directly as input for grasp
pose evaluation. In parallel, a self-built grasp dataset labels 350K parallel-jaw grasps by
meticulous scores based on force-closure quality and friction coefficient values.

To endow robots with the same dexterity as human hands, a closed-loop multifin-
gered grasping framework based on multimodal reinforcement learning is presented.
A dexterous grasping simulation environment is built to train a multifingered grasping
agent. This agent uses fingertip tactile sensing, joint torques, and hand proprioception
as observation and outputs the joint actions for a multifingered hand. To reduce the
dimension of the target space, a PCA-based hand synergy is calculated based on a self-
collected dataset with pairwise human hand and robot hand motions. In the real robot
experiments, the improved grasp generation method and the PointNetGPD model are
used to determine the initial grasp poses. Furthermore, real robot experiments show that
the trained agent can be applied in the real world even if the model is trained purely in
simulation.

To tackle the two major challenges, generalization and precision, in the perception
for robotic pouring, two neural networks AP-Net and MP-Net, are proposed. The re-
current neural network AP-Net utilizes the audio vibration to estimate liquid height and
generalizes well to different experiment settings (e.g., different target containers, dif-
ferent initial liquid heights, different liquid types) while the precision can still be guar-
anteed. However, the performance of the audio-only AP-Net model is limited in noisy
environments. Therefore, the novel audio-haptic recurrent deep MP-Net is proposed to
predict liquid height in real-time and is robust to different levels and types of noise.
Moreover, a multimodal pouring dataset including audio-frequency recordings, liquid
real-time weight, force-torque data, video of the pouring motion, and source container
trajectories during the pouring is collected.

The system assessment and comparison across network evaluation and various robo-
tic experiments show that the proposed multimodal neural networks can successfully
solve the grasping and pouring related perception problem. Combining the proposed
perception networks learned for grasping and pouring, a service robot can accomplish
daily tasks like grasping, pouring, and serving a drink to human users.

V

Abstract

VI

Zusammenfassung

Zusammenfassung
Das Programmieren moderner Serviceroboter zur Erfüllung von alltäglichen Aufgaben
setzt ein sehr gutes Verständnis der jeweiligen Umgebung voraus. Inspiriert von der
Leistungsfähigkeit des menschlichen Gehirns zur multimodalen Verarbeitung und seiner
immensen Erfahrung im Alltagsleben haben Forscher verschiedeneste Sensoren ent-
wickelt, um Roboter mit möglichst menschlicher Perzeption auszustatten. Allerdings
bleibt die Verarbeitung dieser verrauschten Signale und die effiziente Integration von
Signalen verschiedener Quellen eine immense Herausforderung. Diese Doktorarbeit
beschäftigt sich mit der Nutzung multimodaler Wahrnehmung für zwei grundsätzliche
Aufgaben der Servicerobotik: Das Greifen von Objekten und das Eingießen von Flüs-
sigkeiten.

Zunächst wird ein moderner Algorithmus zur Generierung von Greifhypothesen
zum Greifen mittels zweier Finger um mehrere effektive Verbesserungen erweitert. Im
Speziellen wird das Generieren unter Aufmerksamkeitsfokus, dreidimensionale Raster-
suche und die Korrektur ungültiger Hypothesen eingeführt. Darauf aufbauend wird ein
neuer Deep-Learning-basierter Algorithmus PointNetGPD zur Evaluation von Greifhy-
pothesen vorgeschlagen. Unseres Wissens nach stellt PointNetGPD das erste System
dar, das 3D-Punktwolken direkt als Eingabe zur Bewertung von Greifhypothesen nutzt.
In diesem Rahmen wird auch ein neuer Datensatz von 350.000 Griffen eines Paral-
lelgreifers mit Qualitätswertung nach Kraftschluss und Reibungskoeffizienten bereit-
gestellt.

Um Roboter mit der Fingerfertigkeit menschlicher Hände zu versehen, wird ein
geschlossenes Regelungssystem zum Mehrfingergreifen eingeführt, das auf multi-
modalen Daten mittels Verstärkungslernen trainiert wird. Zu diesem Zweck wird
eine Simulationsumgebung für Greifexperimente mit Mehrfingergreifern modelliert.
Die simulierten Agenten nutzen taktile Daten in den Fingerspitzen, Drehmomente
der Gelenke sowie Eigenwahrnehmung der Gelenkpositionen als Eingabe und gene-
rieren Bewegungsaktionen für die Gelenke des Greifers. Um die Dimensionalität des
Zielraumes zu reduzieren, wird eine Hauptkomponentenanalyse von Synergien ver-
schiedener Handstellungen genutzt. Der hierfür notwendige Datensatz enthält selbst-
aufgenommene Paare aus menschlichen Handbewegungen und passenden Handbewe-
gungen der Roboterhand. Im realen Roboterexperiment werden die vorgeschlagenen
Verbesserungen des Griffgenerators sowie PointNetGPD genutzt, um die initiale Griff-
pose zu bestimmen. Die Experimente demonstrieren, dass der ausschließlich in der
Simulation trainierte Agent in der physischen Welt erfolgreich agieren kann.

Die Generalisierbarkeit und die Genauigkeit von Perzeptionssystemen stellen zwei
große Hürden in der Umsetzung von Eingießbewegungen dar. Dazu werden zwei neu-
ronale Netze AP-Net und MP-Net vorgeschlagen, die geeignete Eigenschaften zeigen.
Das rekurrente Netz AP-Net nutzt Audiovibrationen, um die Füllhohe von Gefäßen
während der Gießbewegung zu schätzen. Es generalisiert über verschiedene Experi-
mentalbedingungen, inklusive verschiedener Gefäße, Flüssigkeiten und initialer Füll-
höhe, mit zufriedenstellender Präzision. In Umgebungen mit vielen Nebengeräuschen
hingegen ist dies nicht mehr der Fall. Um hier robustere Ergebnisse zu erzielen, wird
das audio-haptische MP-Net entwickelt. Dieses schätzt in Echtzeit die aktuelle Füllhöhe

VII

Zusammenfassung

und ist dabei robust gegen verschiedene Arten und Stärken von Störsignalen. Zum Trai-
ning der Netze wird ein neuer Datensatz mit Eingießbewegungen vorgestellt, der Au-
diodaten, das aktuelle Füllgewicht des Zielgefäßes, Kraft und Drehmoment am Gießbe-
hälter, sowie Bewegungstrajektorien und Videoaufnahmen enthält.

Die Bewertung und der Vergleich der vorgestellten Systeme über verschiedene phy-
sische Experimente hinweg demonstriert den Nutzen multimodaler neuronaler Netze
zur Bewältigung von Perzeptionsproblemen für Greif- und Gießaufgaben. Durch Kom-
bination der vorgestellten Lösungsansätze kann ein Serviceroboter Alltagsaufgaben wie
das Greifen und Aufheben von Objekten, das Eingießen von Flüssigkeiten oder das
Servieren von Getränken für Menschen übernehmen.

VIII

Contents

Abstract V

Zusammenfassung VII

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of this Thesis . 3
1.3 Novelty and Contribution of this Thesis 4
1.4 Structure of this Thesis . 5

2 Related Work 9
2.1 Grasp Basics . 10

2.1.1 Friction Cone . 10
2.1.2 Force-Closure Grasp . 10
2.1.3 Grasp Quality Measure . 11

2.2 Two-fingered Grasping . 12
2.2.1 Model-based Grasp Detection 13
2.2.2 Model-free Grasp Detection 14

2.3 Multifingered Grasping . 15
2.3.1 Multifingered Grasp Configuration Detection 16
2.3.2 Dimensional Reduction for Multifingered Hands 17

2.4 Pouring Motion Generation . 18
2.5 Liquid Perception for Robotic Pouring 19

2.5.1 Visual Sensing . 20
2.5.2 Audio Sensing . 21
2.5.3 Haptic Sensing . 21
2.5.4 Multimodal Fusion . 21

3 Grasp Candidate Generation 23
3.1 GPG Algorithm . 23

3.1.1 Grasp Simplification . 23
3.1.2 Antipodal Grasp Simplification 24
3.1.3 Darboux Frame and Principal Curvature 24
3.1.4 Grasp Generation Using Geometry 25

3.2 GPG Algorithm Improvements . 26

IX

Contents

3.2.1 Attentional Sampling Process 26
3.2.2 Three-dimensional Grid Search 27
3.2.3 Projection of Invalid Candidates 27
3.2.4 Conservative Approach Depth 28

3.3 Robot Experiments . 29
3.3.1 Brief Introduction of GPD . 29
3.3.2 Objects Presented in Isolation 31
3.3.3 Objects Presented in Dense Clutter 31

3.4 Discussion and Summary . 32

4 Two-fingered Grasping Using Point Clouds 33
4.1 Introduction . 33
4.2 Problem Formulation . 35

4.2.1 Definitions . 35
4.2.2 Objective . 36
4.2.3 Challenges . 36

4.3 Grasp Dataset Generation with Meticulous Scores 36
4.3.1 Sampling . 36
4.3.2 Scoring . 37
4.3.3 Training Dataset . 38

4.4 Learning a Grasp Quality Metric from Point Cloud 38
4.4.1 Brief Introduction of PointNet 38
4.4.2 Network Architecture and Grasp Representation 38
4.4.3 Training and Inference Details 40

4.5 Network Evaluation . 40
4.5.1 Network Evaluation Details 40
4.5.2 Results Analysis . 41

4.6 Robot Experiments . 42
4.6.1 Data Preprocessing . 42
4.6.2 Objects Presented in Isolation 43
4.6.3 Objects Presented in Dense Clutter 44
4.6.4 Object Shape Completion . 45

4.7 Discussion and Summary . 47

5 Multifingered Grasping Based on Multimodal Reinforcement Learning 49
5.1 Introduction . 49
5.2 Grasp Synergies Dataset . 51
5.3 Simulator Selection . 53
5.4 Multimodal Grasping Policy . 55

5.4.1 Simulation Environment . 56
5.4.2 Observations . 57
5.4.3 Actions . 60
5.4.4 Reward . 61
5.4.5 Curriculum Learning . 61

5.5 Model Evaluation . 61

X

Contents

5.5.1 Comparing Different Input Modalities 62
5.5.2 Comparing Different Network Architectures 62
5.5.3 Comparing Different Dimension Reduction Dimensions 63

5.6 Robot Experiments . 64
5.6.1 Robot Experiments in Simulation 64
5.6.2 Initial Grasp Generation for Real Robot Experiments 65
5.6.3 Sensor Mapping . 66
5.6.4 Real Robot Verification . 67

5.7 Discussion and Summary . 69

6 Making Sense of Audio Vibration for Robotic Pouring 71
6.1 Introduction . 71
6.2 Data Preparation . 73

6.2.1 Multimodal Pouring Dataset 73
6.2.2 Data Analysis . 75

6.3 AP-Net* Architecture . 76
6.4 AP-Net* Evaluation . 77
6.5 Robot Experiments . 78

6.5.1 Evaluation of Different Target Containers 80
6.5.2 Evaluation of Varying Microphone Positions 81
6.5.3 Evaluation of Varying Initial Liquid Height 82
6.5.4 Evaluation of Different Types of Liquid 83

6.6 Discussion and Summary . 83

7 Robust Robotic Pouring using Audition and Haptics 85
7.1 Introduction . 85
7.2 Multimodal Pouring Dataset . 87

7.2.1 Dataset Collection Setup . 87
7.2.2 Data Analysis . 88
7.2.3 Audio Data Augmentation . 90

7.3 Multimodal Pouring Network . 91
7.4 MP-Net Evaluation . 92
7.5 Robotic Experiments . 94

7.5.1 Evaluation of Different Target Containers 94
7.5.2 Evaluation of Different Pouring Heights 95
7.5.3 Evaluation of Different Source Containers 96
7.5.4 Evaluation of Varying Noise Conditions 96
7.5.5 Evaluation of Varying Positions of Noise Source 97
7.5.6 Evaluation of Varying Initial Liquid Height 98
7.5.7 Evaluation of Different Types of Liquid 99
7.5.8 Evaluation of Different Types of Noise Sources 99
7.5.9 Shape Prediction of Target Containers 100

7.6 Discussion and Summary . 101

XI

Contents

8 Conclusion and Future Work 103
8.1 Achievements . 103
8.2 Limitations . 105
8.3 Future Work . 105

A List of Abbreviations 107

B Publications 109

C Acknowledgements 111

Bibliography 113

XII

List of Figures

1.1 A Sumatran orangutan is using a twig as tool to pry food 2
1.2 An example of the tasks this thesis attempts to solve 4
1.3 Overview of this thesis . 6

2.1 Schematic diagram of the friction cone 11
2.2 Grasp wrench space . 12
2.3 Pipeline for model-based grasping . 13
2.4 Grasp representation for Dex-Net and GPD 15
2.5 Four human hand motions which are only affected by one principal mo-

tion component . 17
2.6 An ideal pouring motion of the source container 19
2.7 Robot control system of a vision-based pouring architecture 20

3.1 Geometry simplification of a two-fingered gripper 24
3.2 Surface curvature planes . 25
3.3 Grasp coordinate frame G(i) definition 26
3.4 Candidate grasps generated by different methods 27
3.5 Example of invalid candidate projection 28
3.6 Variations of approach depths for grasp candidates 28
3.7 Experimental setup for grasping unknown soft objects 29

4.1 An illustration of the proposed PointNetGPD for detecting reliable grasp
configuration from point clouds . 34

4.2 Example grasps in our dataset . 37
4.3 Architecture of PointNet . 39
4.4 Architecture of our grasp quality evaluation network based on PointNet 39
4.5 Grasp representation in the local gripper coordinate 40
4.6 Classification accuracy with different models and configurations 41
4.7 Settings of our robotic grasping experiments 43
4.8 Overview of the shape completion based grasp pipeline 45
4.9 Comparison of grasp candidates generated using GPG with different in-

put point cloud . 45
4.10 Image of Mech-Eye camera from Mech-Mind mounted on a camera holder 46

5.1 An illustration of the multifingered hand-arm grasping system 50
5.2 Joint mechanics of the Shadow hand 51

XIII

List of Figures

5.3 An illustration of human teleoperating Shadow hand using a Cyberglove
for robotic grasp pose dataset collection 52

5.4 Shadow hand synergies . 53
5.5 An overview of the multimodal reinforcement learning structure 55
5.6 CoppeliaSim with the imported UR10e robot arm and a Shadow left hand 57
5.7 Objects used to train the RL agent . 58
5.8 Initial grasp pose in the simulator . 59
5.9 Example contact forces of five fingertips read from the simulator during

grasping . 59
5.10 Grasp examples using agent GRU-M3PCA5 in the simulator 62
5.11 Network evaluation result on different input modalities 63
5.12 Network evaluation result on GRU and MLP network architectures . . . 63
5.13 Network evaluation result on different dimension reduction values for

the Shadow hand . 64
5.14 Grasp success rate tested in the simulation 65
5.15 Illustration of grasp mapping from a two-fingered gripper to the Shadow

hand . 66
5.16 Objects used in the real robot experiments 67
5.17 Grasp example in real robot environment 67
5.18 Grasp examples for each object . 68

6.1 The robotic pouring system . 72
6.2 Setup used to collect multimodal human pouring dataset 74
6.3 A pouring example recorded by a webcam during the human pouring

data collection . 74
6.4 Examples of audio spectrograms in our dataset 75
6.5 The spout equipped on the source container in robotic experiments . . . 76
6.6 Illustration of length of the air column 77
6.7 AP-Net* architecture . 78
6.8 Evaluation results of models tested on the human pouring dataset 79
6.9 The target containers used in the audio-based pouring 80
6.10 Controlling results of pouring water to a desired length of air column . . 81
6.11 Evaluation results of eight microphone positions 82
6.12 Evaluation results of varying initial height and different liquids 83

7.1 The multimodal pouring pipeline . 86
7.2 Multimodal pouring setup . 87
7.3 Source containers used in the multimodal pouring work 88
7.4 A sample of force/torque data in our pouring dataset 89
7.5 Sample scale reading of a pouring sequence 90
7.6 Examples of audio spectrograms that add different noise levels of the

same audio signal in the dataset . 91
7.7 MP-Net architecture . 92
7.8 Network evaluation results of MP-Net and four baselines 93
7.9 Real robot experiment results . 96

XIV

List of Figures

7.10 Visualization of different pouring heights 97
7.11 Robot experiments results for models in different noise levels 98
7.12 Evaluation of varying positions of noise source 98
7.13 Evaluation results on three robot experiments 99
7.14 Schematic diagram of a symmetric container 100
7.15 Prediction result of estimating the target container shape 101

8.1 Combining five achievements made by this thesis, the PR2 robot serves
a drink to a user . 104

8.2 Examples of the future work of this thesis 106

XV

List of Figures

XVI

List of Tables

3.1 Grasp experiments on isolated object 31
3.2 Grasp experiments on clutter objects 31

4.1 Accuracy of different models and configurations 41
4.2 Results of single object grasping experiments 44
4.3 Results of clutter removal experiments 44
4.4 Real robot experiment result . 46

5.1 Free physics simulators comparison 54
5.2 Robot experiment result for multifingered grasping 69

6.1 Absolute mean weight and standard deviations errors converted from
the length of the air column error of the robot experiment 82

7.1 The properties of nine target containers 95
7.2 The pouring volume (ml) error at SNRdB = 5, Ha = 60mm 95

XVII

List of Tables

XVIII

Chapter 1

Introduction

1.1 Motivation
To build a robot that can deal with daily tasks to support elderly people is a crucial goal
in the service robotic community. This goal can be divided into many subtasks and thus
formulate many research areas, among which grasping and manipulation are the most
commonly used skills. Unlike most industrial applications that require robots capable
of dealing with high-precision duplicated tasks in structured environments, the service
robot always works in an unstructured environment. The home environment constantly
changes during human activities. Therefore, it is impossible to program every single mo-
tion manually. In particular, grasping is fundamental for all manipulation, and pouring
is one of the most commonly performed manipulation tasks in the kitchen environment.
Thus, a system that programs the robot to accomplish tasks autonomously is required.
A promising solution is to perceive the environment via sensory inputs, especially mul-
timodal sensory, and to extract useful information from high-dimensional inputs. Then
several general types of robotic software are needed, such as trajectory generation, path
planning, and dynamics compensation. Finally, motor commands are sent to the low-
level controller, and motors move to the desired position within the desired time limit.

Imagine you are sitting on your sofa, and you are thirsty. Now you would like a
service robot to serve you a drink. What kind of skills should the robot possess to achieve
this goal? First of all, the robot needs to understand human commands, which can be
given by standard computer input/output devices like a keyboard or mouse. Recently,
due to the improvement of Natural Language Processing (NLP), using human language
input is becoming more and more popular [80]. To simplify the use of the robot, the task
commands given to the robot should ideally be the only user input. Then the robot has to
complete the rest of the task independently. First, it should autonomously move to where
the cups are stored, e.g., the kitchen. Autonomous driving requires the robot to solve the
Simultaneous Localization and Mapping (SLAM) problem that updates the environment
map and the robot’s position as it moves. After it arrives in the kitchen, a manipulation
skill is needed to open the drawer or the cupboard, then a grasping skill is needed to
grasp the cup and place it on the table. Then the grasping skill is needed again to grasp
a source container (with the liquid that the human user wants). With proper planning of

1

Chapter 1. Introduction

the pouring motion, the robot will pour the desired amount of liquid with a pouring
height perception algorithm. In the end, the robot grasps the cup, moves towards the
human, and hands the drink over.

The tasks mentioned above are complicated for a robot, and every step is a sub-
stantial individual research topic in the robotic community. However, these grasping
and manipulation tasks are straightforward for humans, even animals. As shown in Fig-
ure 1.1, after several days’ self-learning, a Sumatran orangutan can grasp a twig and use
it as a tool to pry food from an acrylic box. Far beyond the very best systems in artificial
intelligence and robotics, the human brain is an extraordinarily dynamic system that ro-
bustly integrates vast amounts of information from different and noisy sensory channels.
From this immense quantity of raw data, the brain forms a unified and cohesive view of
its universe and quickly makes decisions for the specific task.

Figure 1.1: A Sumatran orangutan is using a twig as tool to pry food from an acrylic box. Photo
was taken by the thesis author at Hagenbecks Tierpark zoo in 2021.

Regarding the grasping task, humans utilize their visual system to locate the objects
and generate grasping poses. When the objects are grasped, they take advantage of their
hands, containing full-palm tactile sensory. With the tactile sensory, humans can eval-
uate the grasp poses and adjust finger motions in real-time based on object texture and
slippery detection. In addition, the force sensing of human joints helps to estimate the
weights and the stiffness of the objects. The thermal sensation and auditory perception
are all essential in the manipulation tasks. Regarding the pouring task, humans perform
incredible pouring height estimations when they visualize the pouring scenario com-
pletely. However, when pouring hot liquid on a cold and dark night, as the temperature
difference between the environment and the liquid is high, much steam will be gener-
ated, thus occluding the vision-based perception pipeline. Weadon [121] has reported

2

1.2. Aim of this Thesis

that a blind person can use sound to estimate how near a liquid is to the top of its con-
tainer. Similarly, normal people can achieve this goal by concentrating on the pouring
sounds. Furthermore, the changing weights of the pouring container is another helpful
clue in the pouring task.

Inspired by the multi-inputs processing mechanism of the human brain and the hu-
man experience, we learn that:

• Visual is usually the dominant modality for grasping and pouring tasks.

• When one dominant modality is occluded or hardly used, other modalities can
become the dominant sensations and complement the whole perception system.
For example, suppose the environment is dark and noisy during a pouring task.
In that case, the tactile, force/torque, and proprioception senses complement the
vision and audio sensing system and provide more valuable information.

• It is essential to equip the robot with a similar multisensory system as humans.
Humans use multisensory information to accomplish daily tasks, e.g., vision, tac-
tile, proprioception, force/torque, and audio.

• To comprehend the manipulation scenario, the skill learning algorithms for the
robots should make use of multiple modalities and be able to extract and integrate
valuable data from noisy inputs robustly.

Deep learning and deep neural networks are systems that try to mimic biological
neural network architectures. We want such a system to automatically solve problems
that are tedious for humans. With the recent development of deep neural networks, image
processing [60] and audio processing [47] has achieved exciting results. Compared to
traditional methods, deep neural networks can better represent the input data where the
feature of the input data can be abstracted automatically during the training. Thus, using
a deep neural network to solve robotic perception problems is a good choice.

1.2 Aim of this Thesis
This thesis aims to develop service robot software that are based on multisensory input
and achieve everyday tasks such as stable grasping and pouring a specific amount of
liquid accurately, as shown in Figure 1.2. A PR21 service robot is serving drinks to the
human. The scientific problems that this thesis tries to solve are:

• A novel two-fingered robotic grasp pipeline. The grasp pose generation method
should generate high-quality grasp candidates based on visual inputs. Moreover,
the grasp evaluation algorithm should determine the quality of each grasp candi-
date.

• A multifingered grasping pipeline that endows robots with the same dexterity as
human hands. The multifingered grasping strategy can generate the finger motions
of the robotic hand based on multiple sensing modalities.

1https://robots.ieee.org/robots/pr2

3

https://robots.ieee.org/robots/pr2

Chapter 1. Introduction

(a) (b)

(c) (d)

Figure 1.2: An example of the tasks this thesis attempts to solve. (a) PR2 is ready to carry out
tasks. (b) and (c) PR2 is grasping a liquid bottle. (d) PR2 is pouring the desired liquid into a
mug.

• Estimating real-time pouring height using auditory perception when visual signals
are not accessible.

• A robust robotic pouring height estimation algorithm using multimodal inputs.
The method should be robust to environmental noise, unknown containers, and
other environmental variables.

1.3 Novelty and Contribution of this Thesis
The main contributions of this thesis are listed below:

• Two-fingered Robotic Grasping Pose Detection using Point Cloud: We im-
proved the state-of-the-art two-fingered grasping approaches from two aspects:
grasp candidate generation and the grasp candidate evaluation. In the grasp candi-
date generation stage, we propose several improvements [70] to the popular grasp
pose generation algorithm [114]. In the grasp evaluation stage, we propose the
novel grasp evaluation algorithm PointNetGPD [72] based on point cloud input

4

1.4. Structure of this Thesis

using PointNet [89] architecture. To the best of our knowledge, this is the first
work that uses 3D point clouds directly as input for a grasp evaluation network.
Furthermore, we propose a novel grasp dataset generation method that labels the
grasp candidates using both the force-closure-based quality value and the friction
coefficient value.

• Multifingered Robotic Grasping Using Proprioception, Tactile, and Torque:
We propose a multifingered grasping framework that takes the output of PointNet-
GPD as the initial grasp and then uses a multimodal Reinforcement Learning (RL)
framework for multifingered grasping [69]. Fingertip tactile sensing, joint torques,
and hand proprioception are fused as the training observation, and the hand syn-
ergy principle reduces the target action space. The proposed framework generates
robust grasp poses in simulation and the real world with the proper design of mul-
tisensory inputs and training methods.

• Accurate Robotic Pouring Perception using Audio: We have designed a robotic
audio-based pouring system that makes sense of audio perception for robotic pour-
ing height perception to estimate the length of the air column [71]. To the best
of our knowledge, we are the first that use audio for liquid height perception.
Moreover, we built a large-scale multimodal human pouring dataset containing
audio-frequency recordings, liquid real-time weight, force/torque data, video of
the pouring motion, and source container trajectories during the pouring.

• Robust Robotic Pouring Perception using Audio and Force: While audio can
give us a high accurate pouring height perception, a noisy environment will influ-
ence the sensing accuracy. We discuss using a multimodal network that could help
improve the robustness of the liquid height estimation network, allowing it against
noise and against changes in different tasks and varying environments [73]. In ad-
dition, the proposed multimodal network is able to reconstruct the shape of the
target containers.

1.4 Structure of this Thesis
This thesis contains two main parts, robotic grasping and robotic pouring. The structure
of this thesis is shown in Figure 1.3. The rest of this section will introduce and give an
abstract of each chapter.

Related Work

• Chapter 2: Related Work. This chapter will introduce the related work on robotic
grasping and pouring. We will illustrate the commonly used grasp quality metrics
available, model-based grasp detection and model-free grasp detection. Further-
more, the robotic pouring trajectory generation and the liquid height perception
methods will be introduced for accurate robotic pouring. The commonly used sen-
sor modalities include vision, audio, force/torque and multimodal fusion.

5

Chapter 1. Introduction

Grasping
Chapter 4:

Two-fingered Grasping

Chapter 5:
Multifingered Grasping

Vision

Tactile

Proprioception

Force/torque

AudioPouring

Chapter 6:
Audio Pouring

Chapter 7:
Multimodal Pouring

Chapter 3:
Grasp Candidate

Generation

Chapter 2
Related Work

(HCR 2018) [70]

(ICRA 2019) [72]

(RA-L 2022) [69]

(IROS 2019) [71]

(IROS 2020) [73]

Figure 1.3: Overview of this thesis. The left column shows the two main robotic topics dis-
cussed in this thesis. The middle column shows the five main chapters that discuss the main
contributions by the author. Chapter 3 [70], Chapter 4 [72], Chapter 5 [69], Chapter 6 [71], and
Chapter 7 [73] are based on five papers by the author. The right column shows the sensor modal-
ities used in this thesis.

Robotic Grasping

• Chapter 3: Grasp Candidate Generation. This chapter will introduce the grasp pose
generation method GPG [114] based on point cloud input with our modifications
to improve grasp candidate generation. This chapter is based on the paper [70].

• Chapter 4: Two-fingered Grasping Using Point Clouds. Based on the grasp can-
didate generation method in the previous chapter, we propose the two-fingered
grasp evaluation method PointNetGPD. It takes point cloud as input, and outputs
the grasp evaluation scores. This chapter is based on the paper [72].

• Chapter 5: Multifingered Grasping Based on Multimodal Reinforcement Learn-
ing. To carry out useful tasks with the multifingered hand, this chapter solves the
basic multifingered grasping problem via RL method training in simulation and
adapting to the real world. This chapter is based on the paper [69].

Robotic Pouring

• Chapter 6: Making Sense of Audio Vibration for Robotic Pouring. To pour liquid
into a target container, precise perception is needed. This chapter discusses the

6

1.4. Structure of this Thesis

technique that takes advantage of audio sensing to solve the liquid height percep-
tion problem. This chapter is based on the paper [71].

• Chapter 7: Robust Robotic Pouring using Audition and Haptics. The previous
chapter discussed liquid height perception using only audio sensor input. This
chapter builds upon that and discusses the benefits of multimodal sensory in-
put that combines audio and force/torque input. This chapter is based on the pa-
per [73].

Conclusion

• Chapter 8: Conclusion and Future Work. The final chapter concludes this thesis
and lists the findings and outcomes of the Ph.D. study. In the end, potential future
work is also proposed to overcome current shortcomings and extend the current
state of my work.

7

Chapter 1. Introduction

8

Chapter 2

Related Work

As discussed in Chapter 1, achieving a robot serve drinks contains several subtasks, i.e.,
grasping the bottle, pouring liquid into a mug, grasping the mug, and handing it over to
the human. All subtasks needed in this scenario can be abstracted into two topics: grasp-
ing and pouring. As the grasping and pouring tasks are the most commonly required,
the robotic community is also committed to building versatile service robots with these
capabilities. However, in contrast to humans, these straightforward tasks are pretty chal-
lenging for robots, from understanding the environment to executing motions. There-
fore, many sophisticated algorithms are designed in robotics based on human brains and
daily experiences. Many neuroscience and physiology researchers have found that hu-
mans always do tasks according to multisensory inputs and condition different sensory
inputs accordingly. Multisensory integration is key to how humans process these signals,
i.e., vision, sound, touch, smell, and even taste. In grasping motion generation, accord-
ing to the research on human grasping behavior, we found that human grasping can be
sorted into several grasping types [34]. Sensory data like vision, tactile, and propriocep-
tion usually work together for grasping detection and motion planning. This chapter will
introduce the state-of-the-art research progress on robotic grasping.

Besides grasping, humans are also experts at handling liquids. After training, hu-
mans can precisely implement the tasks mentioned above without spilling any liquid.
For example, Chinese tea being poured from impressively high up by performers using
a long-mounted pot, or cocktails made in fantastic shows by bartenders. This is because
humans can precisely condition visual, audio, and force sensing to control the pouring
motion. Applying the same sensor modalities to a robot requires the processing of vision
sensing, audio sensing, force/torque sensing, and proprioception.

For reference, Section 2.1 gives a brief introduction to robotic grasping basics, in-
cluding friction cones, force-closure, and grasp quality measures. Section 2.2 intro-
duces the grasp detection method in both model-based and model-free methods for a
two-fingered gripper. Section 2.3 introduces the current state-of-the-art of multifingered
grasping methods. Section 2.3.1 introduces multifingered grasp detection methods. As
the multifingered hand usually has a large action space, it is often efficient to introduce
dimension reduction into controlling such a hand. Section 2.3.2 introduces several ex-
amples of work that uses dimensional reduction techniques in robotic control, especially
in robotic grasping. Robotic pouring has usually been implemented through generating

9

Chapter 2. Related Work

motion trajectories or estimating specified features of the liquids or the containers as the
guidance for pouring tasks. As a result, Section 2.4 introduces robotic pouring motion
generation methods for a robotic arm. Section 2.5 discusses robot pouring algorithms
depending on different modalities, such as vision, audio, and force/torque.

2.1 Grasp Basics
The fundamental of robotic grasping is the static analysis of a grasp. Which is the re-
search field that finds the relationship between the target grasp object and the grasp
force generated during the grasp. This kind of research aims to find an efficient method
to evaluate whether a grasp is good or not before executing it in the real world. There
are three main ways to identify a good grasp:

• Using the geometry method to judge whether a grasp is force-closure or form
closure.

• Using a physics simulator to test a grasp to see whether the object falls from the
gripper.

• Using a data-driven method to collect a large dataset of grasps containing both
positive and negative samples and using a deep neural network to score a grasp
candidate.

The geometry method is the fundamental method for evaluating a grasp. This section
will introduce this in more detail. The basis of the geometry method is to assume that
the hand and graspable objects are rigid objects and use force-closure measures to score
a grasp. To make the complicated force-closure theory easier to understand, we discuss
the 2D grasp situation and explain what a force-closure grasp is and how to use Grasp
Wrench Space (GWS) [58] to quantify the grasp quality.

2.1.1 Friction Cone
We first assume the grasp is a so-called precision grasp where all the contact points
with the objects are fingertips. Then the fingers will exert pressure on the object, and the
object will be against the fingers with forces in opposite directions. As the finger and
object have friction, all possible forces from object to finger lie in a cone around the
normal surface. This 3D shape is called a friction cone. If the grasp is simplified to a 2D
scenario, the friction cone can be collapsed into a triangle as shown in Figure 2.1. The
friction angle γ is the angle that forms the friction cone. It can be defined as γ = tan−1 µ
where µ is the friction coefficient.

2.1.2 Force-Closure Grasp
Every contact of a grasp can be described as a 3-dimensional force and 3-dimensional
torque, which is called a wrench. A grasp with n contact points can be described as:

10

2.1. Grasp Basics

Friction cone

Contact point

Surface

γ
γ

Figure 2.1: Schematic diagram of the friction cone. (left) 3D friction cone. (right) 2D friction
triangle.

w1, w2, · · · , wn. Then a stable grasp with some external disturbance wext must satisfy
the following formulation:

n∑
i=1

wi + wext = 0 (2.1)

If a grasp with all contact forces within its friction cone and with all contact wrenches
combined can balance the external disturbance, we can call it a force-closure grasp [85].
To determine whether a grasp is force-closure by a geometrical method is quite straight-
forward, as shown in Figure 2.2. The first row shows grasp forces using a black arrow,
and the yellow dot is the contact point. The grasp analysis graph is then shown in the
second row. The object to grasp is simplified to an origin point (black point in the fig-
ure), and the red triangles illustrate the friction cone of the contacts. Then, we can draw
a convex hull of the grasp by connecting all of the friction cone’s outliers. If the origin
is inside the convex hull as shown in Figure 2.2(a)(c), then the grasp is force-closure.
Otherwise, the grasp is not force-closure, as visualized in Figure 2.2(b).

2.1.3 Grasp Quality Measure
To evaluate the quality of a grasp, many analytic approaches physically analyze the
geometry of the gripper configuration and the object to evaluate the quality of a grasp.
Force-closure and GWS analysis are two mainstream grasp quality metrics. The force-
closure methods take the friction between the gripper and object into consideration,
while GWS works on friction-less cases.

The grasp quality commonly used in the analytical evaluation of a grasp is called
grasp wrench space. This concept is formed using the space spanned by all contacts.
More specifically, the GWS is the largest inscribing ball of a grasp’s convex hull, as the
green circle shown in Figure 2.2(a) and (c) indicates. The dimension of this circle (or a
ball in a 3D situation) can be taken as the grasp quality. Figure 2.2(c) has a larger circle
dimension than (a), so the quality of grasp (c) is higher than that of grasp (a).

However, these analytic methods can only provide reliable grasp quality measure-
ments when a precise object model is available. As a result, they cannot handle raw
sensor inputs like camera images and point clouds.

11

Chapter 2. Related Work

Origin Friction cone Convex hull

Largest inscribing ball

(a) (c)(b)

Contact point Object to be grasped

Figure 2.2: Grasp wrench space in a 2D situation. Adapted image from [7], ©2003, IEEE.
(a) and (c) are force-closure grasps, while (b) is not force-closure. By comparing the largest
inscribing ball in (a) and (c), the grasp with a larger inscribing ball (c) has a larger grasp quality
than (a).

2.2 Two-fingered Grasping
Given an object (or a cluster of objects) and essential environmental constraints (lo-
cation of the collision objects, camera pose relative to the robot base), grasp configu-
ration detection aims to find a gripper configuration that maximizes the grasp quality
metrics. The grasp configuration detection problem usually can be divided into two
sub-problems: one is grasp candidate generation [114] and the other grasp quality
evaluation [113]. Much work is proposed to improve either one or both problems for
better grasp performances. Existing methods for grasp configurations usually fall into
one of two categories: model-based or model-free, based on whether the 3D model of
the object is known or not. Another difference is that the model-based methods usually
need a grasp quality metrics or a human-labeled grasp score to rank the grasps. How-
ever, model-free methods usually use a neural network to rank the grasps based on a
large grasping dataset labeled by the model-based method.

As a result, both model-based and model-free methods need proper grasp quality
metrics to label the grasp quality. Model-based methods use this as a grasping know-
ledge base for grasp selection or online grasp evaluation. The grasp quality metrics can
also be used for data collection and labeling, serving as the training dataset for the neural
network.

12

2.2. Two-fingered Grasping

Object segmentation Object 6D
pose estimation

GraspInput image

Figure 2.3: Pipeline for model-based grasping. Given an input image, the first step is object
segmentation, which recognizes the target object, segments it, and preprocesses it into a clean
point cloud. This process can be optimized by using a multi-camera system to get a complete
object point cloud. The second step is to get the 6D pose of the object by matching the segmented
point cloud with the object model in the dataset. The last step is to match the pre-calculated grasp
pose to real robot scenario. The robot in this figure is a Kuka LWR arm with a SchunckWsg50
gripper.

2.2.1 Model-based Grasp Detection
Model-based approaches [131] typically rely on a pre-built grasp database of common
3D object models labeled with sets of feasible grasps and quality metrics provided by
assisted tools like GraspIt! [81] or Dex-Net [76]. The pipeline for model-based grasp-
ing is shown in Figure 2.3. Miller and Allen proposed GraspIt! for robotic grasping
simulation. A Graphical User Interface (GUI) is provided to visualize the grasp. In the
backend, GraspIt! samples grasp candidates and calculate the grasp quality. The sim-
ulator provides a lot of predefined robotic end effectors, like the Baxter hand and the
Shadow hand, and even the human hand, which enables researchers to calculate robotic
grasps intuitively. Mahler et al. presented Dex-Net, a dataset of 3D object models and
the code to calculate grasp quality accordingly. The code can evaluate grasp quality on
the run if the object model is known. Both tools use the grasp quality metrics proposed
in Section 2.1. Zeng et al. [131] proposed a grasp pipeline that first segments and labels
multiple views of a scene with a Convolutional Neural Network (CNN) and matches
the segmented point cloud with the 3D model in the dataset to calculate the 6D pose of
the object. Then they used pre-calculated grasps for the object. So this system is limited
regarding the known-object model, a well-performed 6D pose estimation method, and
accurate CAD models of the grasped objects. As a result, this system will not be able to
generalize to novel objects.

The above work requires 6D object-pose estimation, limiting the method to work on
known objects. To grasp the unknown object with a single viewpoint input, Varley et
al. [118] proposed to use a 3D CNN, which conducts convolution on a voxelized 3D
grid from a point cloud to obtain the geometry representation of grasping objects. This

13

Chapter 2. Related Work

representation will then be fed into a grasp generation model. Inferring a grasp with
a 3D CNN could improve the analysis of grasp geometry. However, one of the main
drawbacks of this method is that the runtime and memory complexity grows cubically
with the resolution of the input 3D voxels [91]. As a result, the input will be limited to a
pretty low resolution. Furthermore, the sparsity of the point cloud may even distract the
neural network from learning meaningful features of grasp geometry since most of the
voxels will not be occupied by any points.

After the object is detected and recognized, the grasp needs to be executed. The
model-based methods need to associate the sensor input with an object entry in the
database for grasp planning during execution. Such matching is mainly based on visual
and geometrical similarity [6, 31, 10, 46]. However, due to imprecise sensing and the
limited size of the database, model-based methods could arguably have poor generalized
performances on novel objects and in environments where objects are presented in dense
clusters.

2.2.2 Model-free Grasp Detection
Like model-based methods, model-free methods are usually composed of two parts:
grasp candidate generation and grasp quality metrics. However, the difference is that
the grasp quality calculation here is usually replaced by a neural network, so there is no
need to match the pre-calculated grasp to the robot scene. In the first part, the geometry
information captured by sensors will be leveraged as a heuristic or constraint [114] to
build an adaptive grasp configuration sampler over the given object. A brief introduction
to grasp candidate generation is described in Chapter 3. The quality metrics will then
evaluate these grasp candidates. In some recent model-free methods, large grasp datasets
are also needed for training better quality metrics based on deep neural networks [75,
41].

One of the challenges to robotic grasping is the uncertainty of perception. Since the
robotic gripper needs to interact with the object in a 3D space, a precise and fine 3D
visual analysis will be critical for a successful grasp. Motivated by the success of deep
neural networks in various 3D computer vision tasks [15, 106, 133, 67], several trials
on combining 3D computer vision techniques and grasp planning have been carried
out [113, 75, 41, 118, 130].

Mahler et al. [75] proposed a grasp quality CNN to predict the grasp quality of the
grasp candidates. Grasp candidates are represented by rotating and moving the input
image such that the center of the image is the grasp center point and the grasp is aligned
with the image width, as shown in Figure 2.4(a). Their work is designed for a top-down
grasp where the gripper is perpendicular to the support surface. Work from ten Pas et
al. [113] designed several projection features on normalized point clouds to construct
a CNN-based grasp quality evaluation model called Grasp Pose Detection (GPD) and
reach state-of-the-art performance in grasping objects among dense clutter. The sample
input of GPD is shown in Figure 2.4(b). However, due to the network architecture and
hand-crafted depth features, in our experiments, we found that GPD suffers from severe
overfitting and performance reduction when the input point cloud is overall sparse. On
the other hand, it could be hard to obtain a relatively comprehensive point cloud in most

14

2.3. Multifingered Grasping

(a) (b)

Figure 2.4: Grasp representation for Dex-Net and GPD. (a) Network input for Dex-Net [75].
Reprinted image: ©2017, IEEE. (b) Network input for GPD [113], the detailed method for this
representation is illustrated in Section 3.3.1. Reprinted image: ©2017, SAGE Publications.

real-world grasping situations, especially when the clutter is highly occluded.
As shown in Figure 2.4, the approaches mentioned above all represent the input sen-

sor information by 2D images and only take images as the input of the CNN, which may
be insufficient for geometry analysis as these kinds of grasp representations may lose
some geometry information. By introducing PointNet [89] for 3D representation learn-
ing and meticulous grasp quality labels for supervision, point-cloud-based methods [72]
can outperform these results regarding both grasping performance and efficiency. Chap-
ter 4 will describe this method in detail.

More recently, with the growing popularity of PointNet and generative models, a
large part of research work generates grasps in an end-to-end manner with a single point
cloud input. Mousavian et al. [84] formulated the problem of grasp generation as sam-
pling a set of grasps using a variational autoencoder [57] and assessing and refining
the sampled grasps using a grasp evaluator model. Wu et al. [126] further proposed a
novel, end-to-end Grasp Proposal Network for 6 Degree of Freedom (DoF) grasp detec-
tion. This network has a grasp proposal module that defines anchors of grasp centers at
discrete but regular 3D grid corners, which can generate precise and diverse grasps.

2.3 Multifingered Grasping
Multifingered grasping uses a high-DoF hand to plan and grasp the objects. This task is
difficult in two ways:

• The control. The Shadow hand, an example of a multifingered robot hand, has
24 joints and is controlled by 20 motors. So the action space for controlling the
Shadow hand is 20. That is to say, we need to give the hand a command that
is composed of a 20-dimensional vector at each control timestep. Even without
considering object dynamics, a perfect grasping action based on grasp synthesis
for a high-DoF dexterous hand is still a challenging task [92].

• The design. Unlike a two-fingered gripper with only one control parameter, mul-
tifingered hands are hard to model and represent. Multifingered hands differ con-
siderably in their designs, making it hard to come up with a general representation.

15

Chapter 2. Related Work

The DoF difference can vary from 4 to 20, which often limits the multifingered
hand study to certain kinds of end-effectors.

2.3.1 Multifingered Grasp Configuration Detection
Multifingered grasping has been widely studied for decades. Like two-fingered grasping,
it can also be divided into model-based and model-free methods. Two-fingered grasping
usually considers two contact points, while multifingered grasping usually considers
more than two contacts. Based on the contact points and the precise object model, we
rank the grasp quality analytically.

However, the model-based methods in a real environment usually face many uncer-
tainties like the object’s physical property, sensor noise, and camera pose noise. Li et
al. [68] proposed a probabilistic model to address robust dexterous grasping under these
uncertainties. Due to the computational expense of multifingered grasp planning, Fan
et al. [33] proposed a finger splitting strategy to plan precision grasps for multifingered
hands from parallel grasps. This work starts from an optimal two-fingered grasp con-
figuration using a finger splitting strategy to optimize the contact points and palm pose.
Brahmbhatt et al. [8] presented a novel framework for grasp synthesis based on the sur-
face shape and contact map of the target object. They used a human-demonstrated con-
tact map as a constraint to optimize and refine the grasp candidates from GraspIt! [18].
However, ideal contact maps are hard to generate for unknown objects in real robot ap-
plications. Kumar et al. [61] used human hand motion demonstration to initialize and
reduce the search space of their multifingered robot hand. However, this requires pose
estimation for the objects to get an object bounding box. Although this work did not
use object mesh information on multifingered grasps, the 6D pose estimation part needs
the object mesh to match the input with the model in the dataset. In conclusion, the
model-based method’s common weakness is that it requires prior knowledge of the ob-
ject model.

For the model-free method, Shao et al. [104] proposed a deep-learning-based method
to generate grasp points for multifingered robots. It takes the object point cloud, and
gripper point cloud generated from Unified Robot Description Format (URDF) as input
and outputs the corresponding grasp contact points depending on how many fingers the
input gripper contains. However, it is an open-loop grasping method.

As a result, RL is often used in multifingered grasping [3, 4, 37, 13, 125, 79]. Fi-
cuciello et al. [37] proposed a synergy-based RL strategy and achieved stable grasps.
However, the grasping performance critically depends on the quality of the hand pre-
shaping. Furthermore, they proposed a hand-arm grasp system based on this work [36].
Due to the fact that this method needs to train the model in the real world, the whole
grasp pipeline is time-consuming. Chebotar et al. [13] trained a prediction model based
on tactile information to predict whether a grasp will be successful or not. Then they
used this model as guidance for a RL algorithm to perform a regrasp action if a grasp
failure was predicted. However, the test objects were rather simple. For training in the
simulation, Wu et al. [125] proposed to use RL to train a grasp agent that can recover
from a failed grasp due to a vision sensor error. The method uses tactile information and
proprioceptive observation to output the grasp, lift, and regrasp. The highlight is that the

16

2.3. Multifingered Grasping

tactile observation is preprocessed to a binary form, making the agent easy to transfer
from simulation to real. However, the robot hand they used is a Barrett hand. The three-
fingered Barrett hand contains four motors, and each finger is controlled by one motor.
The hand also has a spread motion. The hand model is relatively simple, which makes
the training of such an agent less challenging.

Merzić et al. [79] leveraged the contact force into multifingered grasp learning. The
problem is phrased as a finite-horizon discounted Markov Decision Process (MDP).
The observations are the object pose and the contact force. They concluded that contact
forces could improve the grasping robustness specifically under pose uncertainty. How-
ever, transferring the contact force from simulation to the real world is quite challenging
as the mapping from the sensor reading to a meaningful physical value is often very
time-consuming. In [24, 25], the grasp type of dexterous grasping is studied to reduce
the complexity of grasp planning. However, they only considered six grasp types in their
work, which is not enough to represent all possible human-like grasp gestures.

2.3.2 Dimensional Reduction for Multifingered Hands
End-effector system like human hand has multiple numbers of actuators. Such a sys-
tem, in theory, requires a vast amount of computational time for its control. However,
the human nervous system can control hands extremely fast. The result from Santello
et al. [99] indicates that human hand control takes place in a subspace of much lower
dimension than the original hand’s DoF. Figure 2.5 shows that the human hand grasping
motion uses one motion parameter. This result gives us the theoretical basis and con-
fidence to reduce the dimension needed to control the bio-inspired high-DoF robotic
hand system. Furthermore, the dimensional reduction is an efficient method to learn a
high-level representation of the robot kinematics and dynamics [35].

Figure 2.5: Four human hand motions which are only affected by one principal motion compo-
nent.

Feix et al. [34] studied the human grasp and concluded a taxonomy with 33 different
grasp types. This taxonomy is commonly used to define the natural human grasp types.
Ciocarlie et al. [19] proposed to use dimensional reduction to control artificial hands for
a given task. They brought up the concept of eigengrasps to define the grasps using a
subspace. They then used eigengrasps to control four different hand types like the Bax-
ter hand and the Shadow hand. The computational advantage is shown that a reduced

17

Chapter 2. Related Work

dimensionality framework can be used in an interactive grasping system. Wimböck et
al. [124] further applied the data reduction techniques to the DLR Hand II. A synergy
impedance controller was derived and implemented using only two principal compo-
nents. Bernardino et al. [5] used a data glove to teleoperate a real Shadow hand to grasp
different objects using eight different grasp types. The collected data was used to com-
pute eigengrasps using a linear mapping method, Principal Component Analysis (PCA).
Humans automatically compensate for the mapping error between the Shadow hand and
the human hand. The same method was further applied to the iCub hand. More recently,
Starke et al. [108] studied human grasping data and used an autoencoder to learn a three-
dimensional latent space for grasp representation. Compared to previous work that uses
linear mapping like PCA for dimension reduction, their work uses a deep autoencoder
that can better extract the human grasping synergy information. However, the above
approaches did not provide an autonomous method to control this low-dimensional sub-
space. Ficuciello et al. [37] also use grasp synergies were used to reduce the dimensions
needed for grasp planning. However, the Schunk Hand they used has 20 joints which
are actuated by 9 motors. Thus, the action space to control this hand has been mechan-
ically constrained. Instead, we concentrate on the Shadow Hand, which has 18 motors
to control 22 finger joints and 2 motors for 2 wrist joints. It is difficult to control this
hand by using traditional methods. A detailed discussion of the multifingered grasping
we did using a Shadow hand can be found in Chapter 5.

2.4 Pouring Motion Generation
Pouring motion generation belongs to a subset of trajectory planning but with more
constraints than the basic collision-free motion planning. It is also constrained by the
liquid dynamics and properties of deformable objects (liquid in this case). With different
liquid properties, the pouring strategy would be different. Figure 2.6 shows an ideal
pouring motion of the source container. If the workspace allows, this motion can be
simplified to a motion in a 2D plane that is perpendicular to the support surface.

Brandi et al. [9] suggested learning pouring tasks using kinaesthetic teaching. They
then generalized pouring actions by warping the parameters from known containers to
unknown containers. The proposed method can be used to generate motor control se-
quences for robotic pouring.

Langsfeld et al. [62] achieved dynamic pouring tasks from human demonstration.
This work used an Imitation Learning (IL) approach to the pouring motion generation
task. Instead of using Learning from Demonstration (LfD) that uses kinesthetic demon-
strations, IL can learn how humans recover from failed attempts to perform compliant
manipulation tasks. A robot experiment used a Baxter to pour water into a target con-
tainer on a rotating table.

Yamaguchi et al. [129] solved the general pouring task using a skill library. This
library stores different behaviors of human demonstration for flow control, such as tip-
ping, shaking and tapping. Then a learning framework was proposed to select from these
pouring behaviors. In the end, they used a PR2 robot for the pouring demonstration.

Since transferring compliant manipulation skills from humans to robots is always

18

2.5. Liquid Perception for Robotic Pouring

Figure 2.6: An ideal pouring motion of the source container.

tricky, Pan et al. [86] solved the online trajectories of the source container in simulation
using a simplified dynamic model for fluid constraint and a receding-horizon optimiza-
tion method to handle the fluid dynamics. Due to the simplified model, the simulator
can only work in a pouring simulation with mild speed. However, the comparative ex-
periment with a full-featured Computational Fluid Dynamics (CFD) simulation shows
that in mild speed pouring, the simplified dynamic model can be used to replace the
time-consuming CFD simulator.

More recently, Sermanet et al. [103] proposed to use an unsupervised perceptual
procedure for automatic reward function generation. The visual inputs are processed
into an intermediate abstraction then are used to get a smooth and dense reward function
in their work. Do et al. [28] solved this problem by learning a pouring policy using Deep
Deterministic Policy Gradient (DDPG) in simulation and transferring the learned policy
from simulation to a real robot.

2.5 Liquid Perception for Robotic Pouring
Other researchers focus on using different modalities as input to detect viscosity [32],
height [29], the volume of the liquid or granular material [20], thus relying on the per-
ception results to perform pouring by a simple controller on the real robot. We focus
on height perception in robot pouring, as height perception is essential for a robot to
pour precisely into a target container. The rest of this section will introduce different
modalities used for liquid height perception.

19

Chapter 2. Related Work

2.5.1 Visual Sensing
Vision is one of the most commonly used modalities regarding the pouring in human
daily life and robotics. Obviously, vision-based perception strongly depends on the light-
ing conditions, the color of the liquids, and the shape of the target containers. Pithadiya
et al. [88] compared several edge detection techniques for the filling height inspection
of convex target containers. Do et al. advocated a probabilistic approach to estimate the
liquid height based on an RGB-D camera [29]. They further switched the analytical es-
timation approaches depending on the types of liquid and utilized a Kalman filter to deal
with the uncertainties of the vision data [27]. However, the mean height errors for ten
pourings of 3 transparent liquids were larger than 4 mm. Instead of directly predicting
the absolute height of the liquid, another popular method estimates the input volume
of the liquid by analyzing the visual information of the water flow [101]. Schenck et
al. [101] used a thermal camera to generate pixel-level ground truth data of heated water
using thermal imagery. The estimation result was used to determine the water volume
using both a model-based and a neural network method. However, this method suffers
from poor estimation error due to the varied liquid types and the complex shapes of
water flow. Figure 2.7 shows the network architecture of this work.

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

LS
TM

D
ec

on
vo

lu
tio

n

C
ro

p

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

C
on

ca
te

na
tio

n

C
on

vo
lu

tio
n

Fu
lly

 C
on

ne
ct

ed

Vo
lu

m
e

P
ro

ba
bi

lit
y

HMM PID Controller Robot Control Signal

C
on

vo
lu

tio
n

Figure 2.7: Robot control system of a vision-based pouring architecture adapted from [101].
Firstly, the pouring systems feeds an RGB image into a CNN and outputs a volume probability
at each timestamp. Then, it uses Hidden Markov Model (HMM) to estimate the volume of the
container. In the end, a proportional-integral-derivative (PID) controller is used to compute the
control signal for pouring. ©2017, IEEE.

To predict the absolute height of the liquid, Dong et al. [30] used a point cloud to
model the target container and a proportional-derivative controller to perform the pour-
ing action. Do et al. [27] utilized a Kalman filter dealing with opaque and transparent
liquids based on an RGB-D camera. However, the mean height errors for ten pourings
of three transparent liquids were larger than 4 mm.

20

2.5. Liquid Perception for Robotic Pouring

2.5.2 Audio Sensing
The auditory information embodies sustainable clues when liquid or granular materi-
als interact with other objects, such as the frequencies and vibrations of the liquids and
the air. Griffith et al. [40] indicated that auditory and proprioceptive data enhance the
classification tasks for the interaction between objects and water. Sakiko et al. [52] veri-
fied that the vibration when pouring liquid out as an audio-haptic rendition significantly
affects the amount of liquid poured. Clarke et al. [20] used audio-frequency vibration
generated by shaking the granular material to evaluate the weight that poured out. How-
ever, the weight of the poured-out granular materials does not allow estimating the target
container’s filling height. Nevertheless, granular materials and liquids also have entirely
different properties, which is hard to transfer. None of the above work solves the height
regression problem in robotic pouring by exploiting audio vibration of the air in the tar-
get container. As a result, in this thesis, we would like to study the use of audio sensing
in liquid height perception.

2.5.3 Haptic Sensing
Haptic sensing, especially force and torque sensing, is also popular in robotic pouring
perception. Specifically, force data is exerted to generate pouring trajectories by predict-
ing the angular velocity of the pouring container in simulation [50]. Rozo et al. [94]
used a parametric hidden Markov model to retrieve joint-level commands given the
force-torque inputs from the human demonstration. Saal et al. [97] examined the viscos-
ity estimation of the various liquids from tactile sensory data. Although force from the
pouring container could explicitly represent the volume of the poured liquid, force can-
not measure the liquid height in an unseen target container. The goal of learning robust
robot pouring from human demonstrations, including hand trajectories and force/torque
data, is explicitly discussed by Huang and Sun [51], as part of their multitask dataset on
daily human interactive manipulation. Matl et al. [78] utilized a force sensor mounted
at the end of a robotic arm with a container grasped by a gripper to get the change of
wrenches, and they used a physics-based model to estimate the mass and volume of the
liquid. In the above three papers, perception happens before the pouring action begins.
Although the force signal from the pouring container can explicitly represent the vol-
ume of the poured-out liquid, it cannot measure the liquid height in an unseen target
container.

2.5.4 Multimodal Fusion
Recently, many multimodal approaches have been applied in various fields. For instance,
in the field of automatic speech recognition, Afouras et al. [1] presented a deep audio-
visual speech enhancement network to separate a speaker’s voice. Furthermore, by uti-
lizing vibration and force feedback, Zhang et al. [132] proposed a robust slicing ap-
proach to robotic cutting. Moreover, Lee et al. [65] implemented a neural network lever-
aging multimodal feedback from vision and touch for contact-rich manipulation tasks.

21

Chapter 2. Related Work

Nonetheless, the multimodal approaches work well in a wide range of tasks. However,
in pouring tasks, multimodal neural networks are rarely used.

In robotic pouring, recent studies have shown that multimodal sources represent
the environmental features better than a single modality in pouring tasks [98]. Wu et
al. [127] presented a hierarchical Long Short-Term Memory (LSTM) [48] model, which
could detect if a pouring sequence was successful. This model is based on a pouring
dataset, including visual sequences and IMU data. However, this work only classifies
whether a pouring action was successful but cannot predict the precise height of the
poured liquid. Wilson et al. [123] implemented a multimodal CNN to fuse audio and
visual data to predict the weight of the poured liquid, detect overflow and classify the
liquid and the target container. Park et al. [87] proposed another interesting robot appli-
cation for anomaly detection during robot manipulation using haptic, visual, auditory,
and kinematic sensing. As described in Section 2.5.2, the audio-only network failed to
work in a noisy environment or when pouring liquids with high viscosity as the audio
signal is weak in these conditions. Based on how humans rely on the correlations of
haptics and audio while pouring, in [73], we take advantage of audio and force/torque
data as the input to promote the robustness of robotic pouring (Chapter 7).

22

Chapter 3

Grasp Candidate Generation

For a robot to grasp novel objects autonomously, the standard approach is to generate
grasp candidates according to vision sensor input (RGB image, depth image, or point
cloud). An analytical or data-driven-based method is used to evaluate the grasp candi-
dates, based on which the robot executes the best grasp candidate out of the evaluation
procedure.

This chapter will first introduce one of the grasp candidate generation algorithms in
Section 3.1. This section introduces the grasp generation algorithm (GPG) proposed by
ten Pas et al. [114] to perform heuristic grasps sampling using geometry from the point
cloud input. Then some modifications [70] to improve GPG algorithm are introduced in
Section 3.2. Finally, in Section 3.3, several robot experiments are conducted to verify
that the modified grasp pose generation method can acquire more grasp candidates and
thus help to improve the performance of the later grasp evaluation network.

3.1 GPG Algorithm
Recall that in Section 2.1, we introduced the definition of friction cone, force-closure
grasp and GWS. The grasp candidate generation provides a large set of grasp candidates,
which we hope most of them are force-closure grasps. GPG is the algorithm to generate
such grasps.

3.1.1 Grasp Simplification
In this chapter, we focus on the two-fingered grasp candidate generation. So the geom-
etry of a gripper can be simplified to a shape that consists of three cuboid shapes as
shown in Figure 3.1. The grasp g ∈ G can be defined by four parameters, i.e., finger
width, finger height, gripper outer diameter, and finger depth where G is the set of grasp
candidates. Note that the gripper outer diameter is the maximum distance a gripper can
open.

23

Chapter 3. Grasp Candidate Generation

1. Finger width
2. Finger height
3. Gripper outer diameter
4. Finger depth

3

1 2

4

Figure 3.1: Geometry simplification of a two-fingered gripper.

3.1.2 Antipodal Grasp Simplification
As described in Section 2.1, the antipodal grasp is defined as if a grasp has two contact
points with an object, then the line connecting these two points is inside the two friction
cones generated by the two contact points.

However, the GPG algorithm uses a modified definition, i.e., the grasp is not closed
and does not have contact with the target object when generating the grasp candidate.
Instead, it opens the gripper to its gripper outer diameter and expects the gripper to be
antipodal when it grasps. The benefit of this is that we can check the collision when the
gripper is not closed. That can make sure the whole grasping motion is collision-free
until the gripper contact some point on the object.

3.1.3 Darboux Frame and Principal Curvature
The GPG does not sample grasps directly from G ⊆ SE(3)1, which would be very inef-
ficient as a sample in SE(3) will result in many useless grasps far away from the object.
Instead, GPG samples grasps depending on the object geometry using point cloud as
input to ensure every grasp is relevant to the object geometry. The geometry knowledge
used for GPG is the Darboux frame and principal curvature.

In differential geometry, each point on a 3D surface has two principal curvature
directions: main principal curvature direction and minor principal curvature direction.
These two directions are calculated by the PCA that represents how differently the sur-
face is bent in different directions at the given point. The point normal direction and
two principal curvature directions can form a frame. This frame is also called a Dar-
boux frame, as shown in Figure 3.2. Although any orthogonal frame of the surface is a
Darboux frame, GPG only takes the one consisting of the principal curvatures, which
is the orientation of a grasp candidate. Note that the calculation of the Darboux frame
requires the knowledge of the normal direction of the selected point on the object sur-
face. Usually, estimating the normal direction of a surface is a trivial task as it is easy
to calculate a perpendicular vector to a flat surface; however, estimating it using a point
cloud directly is significantly more complex as a point cloud is acquired from the depth

1SE(3) is the Euclidean group of rigid body displacements in three-dimensions.

24

3.1. GPG Algorithm

planes of principal curvatures
normal vector

tangent plane

Figure 3.2: Surface curvature planes (Darboux frame). Reprinted image from [39], ©2016 CC-
BY-SA Wikipedia.

sensors are only samples of a real surface. One way to overcome this is to convert the
point cloud to a surface and then calculate the point normal. However, converting a point
cloud to a surface usually requires some manual modifications and fine-tuning. So for
code automation and efficiency, GPG chooses to use point cloud to estimate normal di-
rection directly. The method used to estimate point cloud normal is from [112] to be
robust to local surface discontinuities.

The generated grasp frame g is shown in Figure 3.3. The x axis is the normal di-
rection of the sampled point in the input point cloud. The y axis is the main principal
curvature direction, also called the binormal direction, and the z axis is the minor prin-
cipal curvature direction.

3.1.4 Grasp Generation Using Geometry
The above section describes how to form a grasp candidate, and this section will illus-
trate how to sample as many grasp candidates as possible.

1. Process the input point cloud C using voxelization and workspace limits. Voxelize
the point cloud would help distribute the input point cloud evenly in the 3D space
to avoid sampling in only certain areas.

2. Sample n points p ∈ C evenly and randomly.

3. Estimate the normal direction of the input n points.

4. Calculate the Darboux frame of the n input points.

25

Chapter 3. Grasp Candidate Generation

pt

pm

pb

G(i)

x

y

z

Figure 3.3: Grasp coordinate frame G(i) in sample point i (block circle in the figure) with grasp
superimposed at the origin. pt, pm and pb are the top, middle and bottom areas of the point
cloud.

5. Grid search based on the n Darboux frame.

(a) Based on the sampled Darboux frame, make a 2D grid that contains (Φ, X),
where Φ denotes a discrete set of orientation, and X denotes a discrete set
of grasp positions (The values are set to 8 and 20 respectively in GPG).

(b) Loop around all the combinations of Φ and X , and push the gripper until
collision, then count the final result as a grasp candidate.

6. Collision check for unsuitable grasp candidates removal.

(a) Remove grasp candidates that have a collision with the input point cloud C.

(b) Remove grasp candidates that the grasp closing area does not contain any
point. The definition of the grasp closing area is shown in Figure 4.5(b).

7. If the desired grasp candidate number is not achieved, go to item 2 and continue
the grasp sampling procedure.

3.2 GPG Algorithm Improvements
This section describes four modifications for the generation process that facilitates the
generation of more high-quality grasp candidates.

3.2.1 Attentional Sampling Process
As noted in GPG, top grasps show a higher success rate than side grasps in cluttered
scenes. Also, grasps are not allowed to collide with the support surface. Whereas pre-
vious work exploited this information only during candidate selection, we modify the
sampling process already. We divide the workspace p into three parts, pt, pm and pb,
where pb denotes the point cloud from the bottom up to the gripper height of p, pt

26

3.2. GPG Algorithm Improvements

denotes a similar margin of the point cloud from the top of p, and pm denotes the re-
maining part of p excluding pb and pt. If the height of p exceeds three times the gripper
height, we uniformly sample 60% of all candidate points randomly from pt and the rest
from pm. Otherwise, we uniformly sample all points from pt ∪ pm. Figure 3.3 illus-
trates the different parts of a point cloud, and an example grasp pose G with the grasp
superimposed at the origin. As demonstrated in Figure 3.4, this process samples more
candidates in the top region of the point cloud.

3.2.2 Three-dimensional Grid Search
For each point i that is sampled from the input cloud, a local reference frame G(i) is
computed. To improve the variance of generated grasps for this point, GPG performs a
two-dimensional grid search along the y axis and around z. We extend this grid search to
three dimensions and include rotations around the y axis to cover even more local vari-
ations. Figure 3.4 illustrates positive grasp candidates generated for five sample points
by the two methods. As can be seen, the extended grid search in Figure 3.4(a) yields
a higher number of grasp candidates, which are better distributed over the graspable
object surface. Moreover, Figure 3.4(b) shows the original GPG output grasps. Even
though the three-dimensional grid search also generates several infeasible grasps that
have to be removed later, some of these will be corrected in the next step, and some
remain to support the neighbor-based selection described below.

(a) (b)

Figure 3.4: Candidate grasps generated by different methods. (a) Grasps sampled by attentional
sampling and 3D grid search method (ours). (b) Grasps sampled by uniform sampling and the
2D grid search method (original GPG).

3.2.3 Projection of Invalid Candidates
One remaining issue with the generated candidates is that while they respect possible
collisions of the fingers and the environment, they do not always allow for feasible
gripper approaches. In particular, the system generates grasps that approach objects from
below, enclosing an angle of less than 90◦ between the approach direction and the normal
of the support surface. In these cases, we project the infeasible candidates to align their
approach directions to the support surface. This is illustrated in Figure 3.5.

27

Chapter 3. Grasp Candidate Generation

(a) (b)

Figure 3.5: Example of invalid candidate projection. (a) A grasp candidate generated by original
GPG. (b) The candidate projected to the support surface.

3.2.4 Conservative Approach Depth
To fully define the sampled grasp, the last missing parameter should specify how far
the respective grasp point should penetrate the volume inside the gripper. In the origi-
nal GPG, the gripper is pushed forward until it collides with the perceived point cloud
to generate a maximally stable grasp that encloses as much as possible of the object
with the gripper. While this strategy can generate very safe grasps, it mainly applies to
two-finger parallel grippers with limited finger length. When the length of the fingers
exceeds the typical size of individual objects in a scenario, the fingers will often col-
lide with unobserved parts of the scene and more often pick multiple objects in unstable
grasps. Additionally, most adaptive grippers focus on a stable grasp volume between
the fingertips but not necessarily within the whole volume inside the gripper. This is the
case for the Robotiq 3-finger adaptive robot gripper visible in Figure 3.7(a) when used
for precision grasps.

In order to avoid these problems in a general way, we compute the approach depth by
pushing the gripper further forward either until there is no collision with the perceived
point cloud or until no further points are added to the volume inside the gripper. Fig-
ure 3.6 contrasts both criteria. The modified strategy in Figure 3.6(a) is less aggressive
and keeps the fingers of the gripper further away from possibly unseen obstacles.

(a) (b)

Figure 3.6: Variations of approach depths for grasp candidates. (a) Conservative strategy and (b)
GPG’s greedy strategy.

28

3.3. Robot Experiments

3.3 Robot Experiments
To validate the efficiency and flexibility of the improved grasp generation algorithm,
experiments were conducted using two conditions: objects were presented to the robot in
isolation and a cluttered scenario. The experiments were carried out on a UR52 robotic
arm with an attached Robotiq 3-finger adaptive robot gripper3. We manipulated eight
different, previously unseen soft toys with sizes between 3 cm and 10 cm. The robotic
setup and the objects can be seen in Figure 3.7. A Kinect24 RGB-D camera captures
input point cloud data from one fixed view. The whole system is implemented using the
Robot Operating System (ROS) framework [90] and was tested on an Intel i9-7900X
3.30 GHz system with 128 GB RAM. Inverse kinematics uses an analytical solver based
on IKFast [26], and motion planning was implemented via the MoveIt library [21].

(a) (b)

Figure 3.7: Experimental setup for grasping unknown soft objects. (a) Grasp in dense clutter.
(b) Soft objects used in our experiment.

3.3.1 Brief Introduction of GPD
As this chapter only compares the grasp generation performances, we use Grasp Pose
Detection (GPD) algorithm [113] as our grasp evaluation backend. Section 3.1 illus-
trated the steps needed to generate the grasps using the GPG algorithm. This section
will introduce how the grasp evaluation algorithm GPD works.

1. Generate: Generate a set of grasp candidates using GPG as illustrated in Sec-
tion 3.1.

2https://www.universal-robots.com
3https://robotiq.com/products/3-finger-adaptive-robot-gripper
4https://developer.microsoft.com/en-us/windows/kinect

29

https://www.universal-robots.com
https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://developer.microsoft.com/en-us/windows/kinect

Chapter 3. Grasp Candidate Generation

2. Encode: Represent and encode the grasp candidates into several 2D images.

3. Score: Use a CNN to score the represented grasp candidates.

4. Select: Choose the best grasp from the scoring result.

The encoding process converts input point cloud and a 6D grasp pose into 2D image
representations. As shown in Figure 2.4(b) on page 15, the 6D grasp pose was repre-
sented as three 2D images, which represent one projection direction where the first two
images have one channel each, and the third image have three channels. After repeat-
ing this process in all three projection directions, 15 channels of information have been
acquired.

In detail, the point cloud of grasp closing region C(h) is scaled into a grid of
M×M×M dimension. Then the point cloud in C(h) should be mapped into one of the
M3 grid cells. V (x, y, z) ∈ {0, 1} denotes whether the grid cell is occupied, U(x, y, z) ∈
{0, 1} denotes whether the grid cell has been observed. Moreover, n̂(x, y, z) ∈ S2 de-
notes the surface normal that points outwards from the grid cells, where S2 is the surface
of the input point cloud. With the symbols defined above, we can define the grasp rep-
resentation as follows. In the grasp frame, as shown in Figure 3.3, in each coordinate
axis, the grid cells can be mapped into an M × M × α tensor, where α is the channel
number. For each of the three projection directions, GPD projects three images. For the
projection of the (x, y) plane as an example, we can calculate the three images Io, Iu, In
as shown in Equation 3.1.

Io(x, y) =

∑
z∈[1,M] zV (x, y, z)∑
∈[1,M] V (x, y, z)

Iu(x, y) =

∑
z∈[1,M] zU(x, y, z)∑
∈[1,M] U(x, y, z)

In(x, y) =

∑
z∈[1,M] n̂(x, y, z)V (x, y, z)∑

∈[1,M] V (x, y, z)

(3.1)

In the Equation 3.1, Io and Iu are M ×M × 1 tensor, and the In is M ×M × 3 tensor.
In which, Io represents the averaged heightmap of the occupied points, Iu represents the
averaged heightmap of the unobserved region, and In represents the averaged surface
normal. Please refer to the original paper [113] for more detailed explanations.

For the scoring, a four-layer CNN is used to get a single-value output to represent
the grasp quality. The CNN structure used in GPD is same as LeNet [63]. The first two
layers are two combinations of a convolution layer followed by a pooling layer. The
third layer is one inner product layer with a rectified linear unit as output, and the fourth
layer is one inner product layer with a softmax as the output. The final output is a value
that represents the grasp quality and with a selected threshold for binary classification.

In the end, a selection will have to be made to provide the robot with a grasp to
execute. All the grasp candidates above the good grasp threshold are sorted from high
score to low score, and then we use MoveIt to check whether the grasp is collision-free
and executes the best grasp if the grasp trajectory is possible.

30

3.3. Robot Experiments

3.3.2 Objects Presented in Isolation
We ran ten trials for each object presented in isolation on the table. The results shown in
Table 3.1 demonstrate that our improvements result in more grasp attempts and a higher
success rate. Note that the number of attempts of some low objects (in this dataset,
the potato and the banana) is zero. In these cases, we let the algorithm run for five
minutes, but no actionable grasp was generated. This is mainly because all generated
grasp candidates collided with the table below the object. In contrast, the conservative
approach depth avoids these collisions and manages to grasp the objects.

Table 3.1: Grasp experiments on isolated object

Objects to pick Ball Potato Frog Sponge Onion Banana Melon Bear Total

GPD
Success / Attempts 8/10 0/0 7/10 7/10 10/10 0/0 5/10 9/10 46/60

Success rate 80% Null 70% 70% 100% Null 50% 90% 76.7%

Ours
Success / Attempts 10/10 10/10 8/10 10/10 10/10 7/10 9/10 8/10 72/80

Success rate 100% 100% 80% 100% 100% 70% 90% 80% 90%

In Table 3.1 considering the eight failures in our method, four were due to inac-
curacies of collision objects in the MoveIt planning scene, and three were due to the
collision of the fingers with the object prior to forming a grasp, one was due to point
cloud registration errors or inaccuracies in the kinematic calibration of the robot.

3.3.3 Objects Presented in Dense Clutter
We randomly put all objects in a heap in a dense clutter condition and let the system pick
them successively. We ran ten trials in this task, and the results can be found in Table 3.2.
Our method achieved a success rate of 91.1% for attempted grasps and picked 78.8% of
all objects. For both metrics, this outperforms the original GPD implementation by at
least 20%.

Note that the number of successes differs from the number of grasped objects in
both cases. In some cases, the gripper grasps more than one object at once, but as there
is no concept of an object in the entire grasp generation process, this is a common
phenomenon. That is because we do not segment the point clouds when we preprocess
the point clouds. In Table 3.2 considering the five failures in our method, three were due
to inaccuracies of collision objects in the MoveIt planning scene, and two were due to
the collision of the fingers with the object prior to forming a grasp.

Table 3.2: Grasp experiments on clutter objects

Success / Attempts Grasped Objects / Total Objects Success Rate Completion Rate

GPD 32 / 45 44 / 80 71.1% 55%
Ours 51 / 56 63 / 80 91.1% 78.8%

31

Chapter 3. Grasp Candidate Generation

3.4 Discussion and Summary
In this chapter, the grasp candidate generation algorithm was introduced, and its modifi-
cations were proposed. Robotic experiment shows that The experimental results demon-
strate that our improvements can increase the number of attempted grasps, as well as
achieve higher success rates for attempts and completion rates for pick tasks. Overall
the GPG improvements generate more robust and reliable grasp candidates.

Even so, it leaves many alternative pathways untouched. While sampling of candi-
dates allows for more intuitive internal dynamics, it also requires a lot of computation.
Training function approximators to generate grasps of similar quality seems a promis-
ing approach to reduce overhead, yet it remains a difficult area in practical applications.
Creating 3D occupancy grid maps will help reduce the grasp failure caused by the arm
and gripper’s accidental collision with other objects. Moreover, the objects used in our
experiments are all soft objects that are usually easy to grasp. Furthermore, the grasp
evaluation network uses GPD, which is not using the point cloud directly and may lose
information while processing the point cloud into 2D projection.

In the next chapter, we will design a novel grasp evaluation network that takes the
3D point cloud as input and tries more challenging objects and dense clutters in real
robot grasping experiments.

32

Chapter 4

Two-fingered Grasping Using Point
Clouds

To enable the service robot to complete autonomous grasp tasks, two-fingered grasping
is the fundamental technique that a robot needs to learn. Chapter 2 introduced the grasp
theory and Chapter 3 introduced the grasp generation method. However, the grasp evalu-
ation network used in the robotic experiment is GPD, a network that uses the 2D project
of the 3D point cloud from different hand-crafted viewpoints as input. However, the
projection may lose some important 3D information from the scene. This chapter will
propose an end-to-end grasp evaluation network (PointNetGPD) to address the chal-
lenging problem of localizing robot grasp configurations directly from the point cloud.
Compared to recent grasp evaluation metrics that are based on hand-crafted depth fea-
tures and a CNN, PointNetGPD is lightweight and can directly process the 3D point
cloud that locates within the gripper for grasp evaluation. Taking the raw point cloud as
input, PointNetGPD can capture the complex geometric structure of the contact area be-
tween the gripper and the object even if the point cloud is very sparse. To further improve
PointNetGPD, we generate a large-scale grasp dataset with 350k real point clouds and
grasps with the YCB object dataset [11] for training. The performance of the proposed
model is quantitatively measured both in simulation and on robotic hardware.

The structure of this chapter is as follows, Section 4.1 motivates why we need a new
grasp evaluation network and illustrates our main contributions. Section 4.2 introduces
the main problem of grasp evaluation and the main challenges. Section 4.3 explains
the generation procedure of a new grasping dataset. Section 4.4 mentions the network
architecture for grasp quality evaluation. Section 4.5 presents the network evaluation
compared with the baseline method. Section 4.6 reports the robot experiments results
that show our network can outperform other CNN based networks. In the end, the con-
clusion and future work of this chapter presents in Section 4.7.

4.1 Introduction
Planning a grasp under uncertainty is a difficult task in robotics. For a robot that oper-
ates in the real world, uncertainty may come from varied aspects. This chapter mainly

33

Chapter 4. Two-fingered Grasping Using Point Clouds

Quality Evaluation
with PointNet

Executed
Grasp

Grasp Candidates
Generation

Grasp Dataset

Best
Grasp

Robot Initial
State

Figure 4.1: An illustration of the proposed PointNetGPD for detecting reliable grasp configu-
ration from point clouds. Taking raw sensor inputs from a common RGB-D camera, the depth
maps will be first converted into a point cloud. Then several grasp candidates will be sampled
with essential geometry information as heuristic or constraints. For each candidate, the point
cloud within the gripper will be cropped and transformed into local coordinates and finally fed
into the grasp quality evaluation network PointNetGPD. The grasp with the highest score will
be executed. The model is trained with a large-scale grasp dataset based on the YCB object
dataset [11].

concentrates on the uncertainty caused by the imprecision and deficiency in sensing.
This kind of uncertainty is usually associated with the sensor we use for robotic per-
ception [119]. To address this problem, a grasping model that can work with raw sensor
input is needed. Some recent advances suggest to use deep neural networks that have
been trained on large-scale grasp datasets labeled by humans [76, 75] or grasping out-
comes done by robotic hardware [41, 42] to plan grasps directly with sensor input like
RGB images [66], depth images [75] or point cloud [114]. Such research work yields
promising results across a wide variety of objects, sensors, and robots, and their models
generalize well to novel objects that are not present in the training set. However, most
of the current methods still rely on 2D (image) or 2.5D (depth map) input; some grasp-
ing models even require complex hand-crafted features [113] before they can process
the data, while very few of them will take the 3D geometry information into consid-
eration [130]. Intuitively, whether a grasp is successful or not is always related to how
the robot (gripper) interacts with the object surface in 3D space; thus the lack of geom-
etry analysis could entail side effects to grasp planning, especially when accurate and
complete sensing is not available.

To tackle these unsolved issues, inspired by the recent work of PointNet [89] that
directly operates on point clouds for 3D object classification and segmentation, a point
cloud based grasp evaluation method for detecting reliable grasp configurations from
the point cloud is proposed in this thesis. As illustrated in Figure 4.1, PointNetGPD
provides an effective pipeline to generate and evaluate grasp configurations. Compared

34

4.2. Problem Formulation

with previous grasp detection methods that depend on multi-view CNN [113] or 3D
CNN [118], our approach does not require point cloud projection on multiple 2D im-
ages or rasterization into dense 3D volumes. As a result, it can sustain the geometric
information of the original point cloud and infer grasp quality more efficiently.

Recent success in deep neural network based grasp detection methods [75, 66] em-
phasizes the importance of training on large-scale datasets. To further improve the per-
formance of the proposed grasp detection method, we built a grasp dataset with a 350k
real point clouds captured by depth cameras, parallel-jaw grasps and analytic grasp met-
rics over a subset of the YCB [11] object dataset. Different from other grasp datasets
like Dex-Net [75], we provide fine-grained scores for each grasp instead of binary la-
bels. Specifically, given a 6D grasp pose and a CAD model of an object, we perform
force-closure [85] and a friction-less GWS [58] analysis on the grasp respectively to
obtain such scores. Quantitative scores make the more flexible label assignment pos-
sible during training, which could also improves the performance of our grasp quality
evaluation network.

To summarize, our key contributions of this chapter are:

• We propose to evaluate the grasp quality by performing geometry analysis di-
rectly from a 3D point cloud based on the network architecture of PointNet [89].
Compared with other CNN-based methods [75, 113, 130], our method can exploit
the 3D geometry information in the depth image better without any hand-crafted
features and sustain a relatively small amount of parameters for learning and infer-
ence efficiency. Also, we found our proposed method still works well even when
the point cloud is very sparse, which implies its potential for planning grasps un-
der imprecise and deficient sensing.

• We build a large-scale grasp dataset that contains 350k parallel-jaw grasps with
the point cloud captured in real world. Meticulous grasp quality scores that com-
bine the force-closure and GWS analysis are provided. Our experiments demon-
strate that our grasping model can obtain significant performance gains from these
meticulous scores and labels.

• To overcome the drawback of single-viewed point cloud might generate invalid
grasp candidates, we tested to add a shape completion framework to enhance the
quality of grasp candidates generation.

4.2 Problem Formulation

4.2.1 Definitions
Given a specified object o, things that are related to grasping will be the coefficient of
friction between the object and gripper µ ∈ R, the object’s geometry and mass prop-
erties Mo, and the 6D pose Wo ∈ R6. Let so = (Wo,Mo, µ) represent the state of
the object. We denote a grasp configuration in 3D space as g = (p, r) ∈ R6, where
p = (x, y, z) ∈ R3 and r = (rx, ry, rz) ∈ R3 specify the position and orientation of

35

Chapter 4. Two-fingered Grasping Using Point Clouds

the gripper respectively. We only consider parallel-jaw grippers in this chapter. Also, we
assume a camera to capture the depth map, and the converted point cloud that contains
N points is denoted as P ∈ R3×N . For simplicity, all spatial quantities are in camera co-
ordinates. To evaluate the quality of a grasp, we denote a quality metric as Q(s,g) → R.
Notice that Q works with an accurate object state instead of a point cloud, and our grasp
quality is a continuous quantity instead of a binary label.

4.2.2 Objective
Given a gripper configuration g and sensor observation P, our goal is to learn a qual-
ity metric Qθ(P,g) ∈ {c0, c1, · · · } to predict the grasp quality from a point cloud. θ
defines the parameters of our proposed grasp quality evaluation network described in
Section 4.4. c0, c1, · · · are labels that represent the quality of a grasp g, and can be as-
signed to any ground truth quality metrics Q(s,g).

4.2.3 Challenges
There are two main challenges to solving the problem mentioned above. First, learning
such a grasp quality metric may require a massive number of samples over a wide range
of objects to achieve good performances and generalization. Second, the input point
cloud P could be imprecise and deficient, which leads to additional difficulties in ge-
ometry analysis. Consequently, we propose to evaluate the grasp quality by direct point
cloud analysis with PointNet [89], and train our grasp quality metric on a generated
large-scale dataset of 350k real point cloud and grasps over objects from the YCB [11]
object dataset to obtain robust grasp classification results.

4.3 Grasp Dataset Generation with Meticulous Scores
The generation of our grasp dataset involves two steps: sampling and scoring. Grasp
candidates are firstly sampled over provided object meshes; then these candidates will
be labeled by robust grasp quality metrics including force-closure and GWS, details are
listed as follows:

4.3.1 Sampling
Although the YCB [11] object dataset provides registered point clouds for most of the
objects, we still sample over the precise meshes scanned using Google Scanner instead
to prevent the sampler from generating unfeasible grasps (such as grasps that collide
with the object). For each grasp, we randomly sample two surface points p1, p2 as
contact points and an approach angle between [0, π/2) as the approach angle, then a
grasp g((p1 + p2)/2, r) will be constructed. To further eliminate unfeasible grasps, we
conduct a sanity check by simulating the approach and close-finger action with a gripper
model to see whether it will collide with the object. Finally, the remaining grasps are
then transformed from mesh into point cloud coordinates. The transform matrices are

36

4.3. Grasp Dataset Generation with Meticulous Scores

obtained by doing Iterative Closest Point (ICP) using PCL [96] between the mesh and
corresponding registered point clouds.

4.3.2 Scoring
Given a sampled grasp g and object state s, we adopt two different robust grasp quality
metrics to label the grasp. One of them is a force-closure metric Qfc; it requires the
coefficient of friction µ and only provides a binary outcome that indicates whether the
grasp is force-closure or not. Here we modify it to enable quantitative scoring: Starting
from 0.4, we gradually increase µ until the grasp is antipodal, then the value 1/µ will be
recorded as a score for the current grasp. Such modification is intuitive since an antipodal
grasp that requires lower friction could be arguably better. As is shown in Figure 4.2,
the grasp with lower µ could be more robust and feasible. We also observe that such
difference will be more notable when the object has a more complex physical shape.

(a) (b)

Figure 4.2: Example grasps in our dataset label with Qfc. (a) green grasps are labeled with
µ = 0.4. (b) red grasps are labeled with µ = 2.0. We find that on this relatively simple box-like
object, there is a significant difference in robustness between the green and red grasps.

The other grasp metric Qgws is based on GWS analysis [58]. Compared to Qfc, GWS
analysis proposes to use the radius of GWS as a quantitative score of grasp quality.
GWS itself can either be calculated in R3 or R6 space. In practice, here we only apply a
simplified Qgws with R3 friction-less grasp wrench space.

We adopt a weighted sum to combine these two kinds of metrics, and produce a final
quality score:

Q(s,g) = αQfc(s,g) + βQgws(s,g). (4.1)

We observe that Qgws could be much larger than Qfc for most of the grasps and objects,
thus we choose (α, β) = (1.0, 0.01) in our experiments.

37

Chapter 4. Two-fingered Grasping Using Point Clouds

4.3.3 Training Dataset
We use the dataset generated in section 4.3 to train our grasp quality evaluation model.
Since there are quantitative quality (Equation 4.1) values instead of binary labels in
our dataset, it will be flexible to assign classifying labels and even enable the multi-
class grasp quality classification. The threshold for each label will be discussed in
Section 4.5. There are 350k point cloud and grasps over 47 YCB objects. To keep a
balance of grasps with different qualities, we sample an equal number of grasps with
Qfc value from {1/0.4, 1/0.45, 1/0.5, 1/0.8, 1/1.2, 1/1.6, 1/2.0}. For the point cloud,
as suggested in [113], we use the real point cloud provided by YCB object dataset in-
stead of the simulated point cloud obtained with a CAD model for a better generalization
to real-world grasping tasks.

4.4 Learning a Grasp Quality Metric from Point Cloud

4.4.1 Brief Introduction of PointNet
To deal with the point cloud as input, a neural network that can process point cloud
information efficiently is needed. Most researchers would like to transform input point
cloud into voxel grids and use network like VoxelNet [133] for inference. Or people
can project point cloud into several images like [113] that treat the inputs as images
and processing them using CNN. However, using a network that can directly take point
cloud as input and can respect the permutation invariance of the point cloud would be a
better choice. PointNet [89] is the network architecture that meets our needs.

The architecture of PointNet is shown in Figure 4.3. The input n×3 points were first
going into a mini-network (T-Net) for calculate an affine transformation matrix, and use
matrix multiply to transform the input point cloud to a unified coordinate. Then with
two Multi-Layer Perception (MLP) layers and a similar mini-network for the transform
of the features that output from the MLP. This feature transformation matrix is used to
align features from different input point clouds. This local feature output Flocal is then
sent to three MLP layers and a max pooling layer to get a global feature Fglobal. For
classification task, Fglobal can be directly used as input of three MLP layers. The output
is k classes depends on the label number. For segmentation task, Flocal and Fglobal are
concatenated together. In detail, Fglobal is inserted into each element of Flocal. Then
throw several MLP layers, the output is n × m, where m is the number of parts of the
input scene.

4.4.2 Network Architecture and Grasp Representation
The architecture of our grasp quality evaluation network is illustrated in Figure 4.4.
Our PointNet based network will take as input the grasp represented by the point cloud
within the closing area of the gripper. For learning and inference efficiency, we do not
take the whole point cloud as input like [75, 66]. The point cloud will firstly be trans-
formed into the unified local gripper coordinate introduced in Figure 4.5, this is mainly

38

4.4. Learning a Grasp Quality Metric from Point Cloud

Color explanation

n ⛌ 3

Input
Points

n ⛌ 3Input
Transform

Global Feature
(1024)

n ⛌ 1024

n ⛌ 64MLP
(64, 64) n ⛌ 64 Feature

Transform
MLP

(64, 128, 1024)

Max Pool

MLP
(512, 256, k)

Output Scores
(k)

T-Net

Matrix
Multiply

3 ⛌ 3
transform

T-Net

Matrix
Multiply

64 ⛌ 64
transform

n ⛌ 1088

n ⛌ 128

MLP
(512, 256, 128)

MLP
(128, m)

Output Scores
(n ⛌ m)

Classification
Network

Segmentation
Network

Common Parts Classification Segmentation

Figure 4.3: Architecture of PointNet. The input of the network is n points. With several compo-
nents in common (violet blocks), PointNet can handle different perception tasks like classifica-
tion (green blocks) and segmentation (yellow blocks). The segmentation network is the extension
of the classification network, which get features both from local side (n×64) and the global side
(1× 1024). Adapted from [89], ©2017, IEEE.

In
pu

t T
ra

ns
fo

rm
M

LP
 (6

4,
 6

4)
Fe

at
ur

e
Tr

an
sf

or
m

M
LP

 (6
4,

 1
28

, 1
02

4)
M

ax
 P

oo
lin

g

p1(x, y, z)

p2(x, y, z)

pN(x, y, z)

.

.

.
Input Points

N ⛌ 3

M
LP

 (5
12

, 2
56

, C
)

G
lo

ba
l F

ea
tu

re

O
ut

pu
t C

la
ss

es
1
⛌

C

0

1

0

.

.

.

Figure 4.4: Architecture of our grasp quality evaluation network based on PointNet. Given a
grasp and point cloud, the grasp is represented by the points within the closing area of the gripper.
As is shown in Figure 4.5, all the points will be transformed into local gripper coordinates before
being fed into the network. After several spatial transformations and feature extractions, the final
global feature will be applied to classify the quality level of the input grasp.

to eliminate the ambiguity caused by the different experiment (especially camera) set-
tings. Specifically, we treat the approaching, parallel and orthogonal directions of the
gripper as the XYZ axes respectively, while the origin will be located at the bottom cen-
ter of the gripper. Then these N points will be passed through the network to estimate
the level of quality. Compared to other CNN-based grasp quality evaluation networks,
our model is lightweight and only has approximately 1.6 million parameters.

39

Chapter 4. Two-fingered Grasping Using Point Clouds

(a)

X

Y

Z
Gripper Closing Area

(b)

Figure 4.5: Grasp representation in the local gripper coordinate. A grasp is represented by the
point cloud within the gripper closing area. (a) a typical grasp configuration. (b) axes of local
coordinates and the transformed point cloud within the gripper closing area (magenta) that serves
as the grasp representation.

4.4.3 Training and Inference Details
We use a C-class cross-entropy loss as the objective of our classifier. C equal to 2 and
3 in our case. The whole network is optimized with Adam [56] optimizer, and all the
parameters are initialized with values sampled from a zero-mean Gaussian distribution.
We augment our data by adding a random offset to the point cloud, but still keep all the
points within the gripper closing area.

4.5 Network Evaluation

4.5.1 Network Evaluation Details
In network evaluation, we mainly want to compare the performances on grasp quality
classification between our proposed PointNetGPD and current state-of-the-art methods.
We choose GPD [113] as the baseline. In the dataset, since we cannot acquire the camera
location for computing the unobserved area used in the 15 channel version of GPD, we
only compare the 3 and 12 channel versions, and we compare with 15 channels version
of GPD in robotic experiments. Also, to examine the stability on sparse point cloud,
we provide either point cloud from 1-viewed or full point cloud input for each grasp.
The point cloud of 1-viewed is taken from the camera in front of the object. For the full
point cloud, we register the point cloud from all the available viewpoints. After the point
cloud is ready, we discard the sample that has less than 50 points in the gripper closing
area, then for the rest, we upsample/downsample their point cloud into 1000 points.

Finally, we run a 3-classes classification experiment mainly for verifying the validity
of the scores we provided in our grasp dataset. For 2-classes classification, we regard

40

4.5. Network Evaluation

a grasp with score above 1/0.6 as positive, while for 3-classes classification, the score
thresholds for 3-classes classification will be 1/0.5 and 1/1.2. See Equation 4.1 for the
detailed calculation.

0 25 50 75 100 125 150 175 200
Epochs

0.67

0.69

0.71

0.73

0.75

0.77

0.79

0.81

0.83

0.85

Ac
cu

ra
cy

Testing Accuracy (1-Viewed Point Cloud)

0 25 50 75 100 125 150 175 200
Epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Testing Accuracy (Full Point Cloud)

GPD, 3 channels
GPD (w/ dropout), 3 channels
GPD, 12 channels
GPD (w/ dropout), 12 channels
Ours (PointNetGPD), 2-classes
Ours (PointNetGPD), 3-classes

Figure 4.6: Classification accuracy with different models and configurations on single views
and on full point cloud. We can find that all the models obtain better performance with full point
cloud input than with a single view, while the proposed grasp evaluation model outperforms the
baselines on both input types. More quantitative results can be found in Table 4.1.

Table 4.1: Accuracy of different models and configurations

GPD (3 channels) GPD (12 channels)
without dropout with dropout without dropout with dropout

#Parameters 3.63M 3.64M
1-Viewed Point Cloud 76.36% 76.42% 79.34% 79.96%

Full Point Cloud 81.38% 82.50% 83.50% 84.29%

Ours (2-classes) Ours (3-classes)
All classes Best classes All classes Best Classes

#Parameters 1.60M
1-Viewed Point Cloud 84.75% 82.26% 79.45% 90.37%

Full Point Cloud 91.81% 92.18% 84.15% 89.76%

4.5.2 Results Analysis
The testing accuracy of all the considered models during training is demonstrated in
Figure 4.6. We list the best result among the 200 epochs in Table 4.1. Here we high-
light some important facts we found in these results. First, our proposed PointNetGPD
performs significantly better on grasp quality classification than all the GPD baselines.
Even on the most difficult 1-viewed point cloud, PointNetGPD still has an averaged

41

Chapter 4. Two-fingered Grasping Using Point Clouds

4.79% improvement over the best GPD baseline. Furthermore, from Figure 4.6 we can
see that GPD can easily get overfitting on the training set. However, although we make
it easier by utilizing Dropout [107] on the GPD network, there is still a performance gap
between GPD and our method. Such results are partly due to the number of parame-
ters. Compared to GPD, the network in our proposed method has fewer parameters and
performs better, which means that our network is more effective regarding geometry
analysis, especially from the sparse point cloud.

For the 3-classes experiment, we found that the accuracy of the class of the best
quality is even better than the best class in the 2-classes experiment. This may imply
that a grasp with a higher score will be easier to identify (Equation 4.1). In our robotic
experiments, we will make further validations by comparing the results of 2-classes and
3-classes grasping models.

4.6 Robot Experiments
For experiments on the robotic hardware, we conduct several robotic grasping tasks
to see whether our model can generalize well to real-world settings. We validate the
reliability and efficiency of our proposed PointNetGPD in two robotic experimental
conditions: objects were presented to the robot in isolation as well as in a clutter. These
experiments were carried out on a UR5 robotic arm with an attached Robotiq 3-finger
adaptive robot gripper. As shown in Figure 4.7(a), the gripper works under pinch mode,
in which only two contact surfaces are allowed to move toward and away from each
other along a 1-D manifold. Especially, since we only use one Kinect2 depth sensor,
all the point clouds provided in robotic experiments are 1-viewed, which makes it even
more challenging.

We selected 22 objects from the YCB object dataset. In these objects, 11 of them
have already been presented in our grasp dataset, while the rest are novel. We also se-
lected 16 from 22 objects to construct two object sets that are used for clutter removal.
Details can be found in Figure 4.7(b).

The whole system is implemented using the ROS framework, particularly, a fast
hybrid evolutionary inverse kinematics solver bio-ik [95] is used for solving inverse
kinematics within the MoveIt [21] framework.

For both conditions, we compare a 2-classes and a 3-classes PointNetGPD with a
15-channel GPD baseline. In addition, to validate the significance of the quality scores
provided in our dataset, we also compare the grasp performance between the best and
the second class in 3-classes PointNetGPD.

4.6.1 Data Preprocessing
Single acquired point cloud view from 3D cameras generally includes a non-negligible
level of noise and data outside our defined region of interest. Here we denoise the input
clouds by voxelizing, remove outliers and clip the cloud around a defined region of
interest. Notably, this last step removes the support surface of graspable objects from
the input. We don’t segment objects from these point clouds because we generate grasp

42

4.6. Robot Experiments

(a) (b)

Figure 4.7: Settings of our robotic grasping experiments. (a) Grasping experiment setup with
UR5 robotic arm and Robotiq 3-finger adaptive robot gripper. (b) Objects used in our experi-
ments. Red polygon shows the objects presented in the training dataset, magenta polygon con-
tains the objects that are not in the dataset. The green (clutter 1) and blue (clutter 2) polygons
present the two object sets used in clutter experiments, respectively.

candidates using geometry information rather than the pose and the shape of an object.
Then GPG with our improvement as mentioned in Chapter 3 is used to generate grasp
candidates and PointNetGPD is used to evaluate the proposed grasp candidates.

4.6.2 Objects Presented in Isolation
In this experimental condition, all the objects presented in Figure 4.7(b) are tested. We
test each object for ten rounds with random initial orientations. If the gripper failed to
grasp an object or no collision-free grasp pose was generated within a long time (in our
practice, we use 5 minutes), we mark this attempt as failed. We only consider the success
rate for performance evaluation in this experiment.

Table 4.2 demonstrates the grasping results for a single object using three different
models. Note that Table 4.2 does not contain the objects whose success rates are 100%
for all the three models, such as chips can, Rubik’s Cube, plastic apple and so on, or 0%
such as the medium clamp. The 0% success rate of this object is probably caused by the
poor quality and the low height of the acquired point cloud, and the irregular shape. As
Table 4.2 illustrated, the two types of PointNetGPD methods manifest a higher average
success rate, which suggests that the proposed model can better understand the spatial
geometry of the point cloud in the graspable region.

43

Chapter 4. Two-fingered Grasping Using Point Clouds

Table 4.2: Results of single object grasping experiments

Method Avg.
Bleach
cleanser

Mug
Meat
can

Tomato
soup can

Banana
Toy power

drill
Chain

Mustard
bottle

Wood
block

Screw
driver

GPD 49% 100% 30% 60% 90% 20% 80% 0% 90% 90% 20%
Ours

2-classes
81% 100% 50% 80% 100% 90% 70% 60% 100% 90% 70%

Ours
3-classes

82% 90% 70% 70% 100% 90% 80% 60% 90% 90% 80%

Table 4.3: Results of clutter removal experiments

GPD Ours 2-classes
Success rate Completion rate Success rate Completion rate

Set 1 84.83% 95% 86.54% 94.08%
Set 2 61.13% 81.50% 61.07% 84.38%

Ours 3-classes (best class) Ours 3-classes (second class)
Success rate Completion rate Success rate Completion rate

Set 1 89.33% 100% 52.10% 100%
Set 2 66.20% 95% 43.75% 37.5%

4.6.3 Objects Presented in Dense Clutter
In the dense clutter condition, we select 16 objects from those who have grasping success
rate above 0 for all the compared model to construct two object sets (Set 1 and Set 2).
The green and blue polygons in Figure 4.7(b) represent these two sets, respectively.
Furthermore, Set 1 has six objects with 100% success rate in isolated condition for all
the three models, while Set 2 only have two objects with 100% success rate. We run
experiments with each object set for five rounds.

Besides the models we compared in the isolation condition, here we also test the
grasp that is predicted to be the second class through our 3-classes PointNetGPD. This
is mainly to verify the validity of the multi-class classification. We use success rate
and completion rate as the criterion for performance evaluation. The success rate is the
percentage of successful grasps, while the completion rate is the percentage of objects
that are removed from the clutter.

From the results presented in Table 4.3, we found that all the models overall perform
better in Set 1 than Set 2 because the objects in Set 1 could better fit the geometry shape
of the gripper, and some of them have a higher roughness. Meanwhile, grasps from the
best class of 3-classes PointNetGPD show the best grasping outcomes, especially on
completion rate. This shows a significant averaged improvement of 13.5% over GPD.
Moreover, the fact that grasps from the best class of 3-classes PointNetGPD are hugely
superior to the second class confirms the effectiveness of 3-classes classification, which
implies the capability and implication of the meticulous scores in our dataset.

Occlusion and incomplete point could cause failures in this experiment since we only
have one fixed view of the point cloud. Additionally, multiple adjacent objects could

44

4.6. Robot Experiments

be treated as one single object because of missing the object segmentation procedure.
Therefore, the final grasps are employed across multiple objects, resulting in failures.

4.6.4 Object Shape Completion

Shape
completion

Grasp candidates generation and evaluation
with completed point cloud

Input point
cloud

Figure 4.8: Overview of the shape completion based grasp pipeline. The left two blocks are
shape completion module. In this module, a partial point cloud in first block is sent to a shape
completion network and the output is in second block. The output point clouds serve as the input
of GPG, then PointNetGPD is used to evaluate the grasp candidates.

(a) (b) (c)

Figure 4.9: Comparison of grasp candidates generated using GPG [114] with different input
point cloud. (a) RGB image to show the example environment, (b) grasp generated with partial
point cloud, (c) grasp generated with complete point cloud.

PointNetGPD is trained on a grasp dataset generated using reconstructed YCB ob-
ject mesh and evaluates the input grasp quality. The grasp candidates in the grasp dataset
are all collision-free with respect to the target object. As a result, the grasp evaluation
network assumes all the input grasp candidates are not colliding with the object. If the
object has occlusion due to the camera viewpoint, current geometric-based grasp pro-
posal algorithm will generate grasp candidates that collide with the object. Thus, using a
complete point cloud could ensure that the grasp candidate generation algorithm gener-
ates grasp sets that do not collide with the graspable objects [14]. Figure 4.9 shows the
comparison of grasp generation result using GPG [114] with and without point cloud

45

Chapter 4. Two-fingered Grasping Using Point Clouds

completion, Figure 4.9(b) shows a candidate generated using partial point cloud and
Figure 4.9(c) shows a grasp candidate generated using complete point cloud. We can
see that the grasp in Figure 4.9(b) has a collision with the real object while Figure 4.9(c)
avoids generating such grasp.

To evaluate the performance improvement using complete point cloud for robotic
grasping, we choose six YCB objects to test the grasping success rate. The robot arm
and gripper used in this experiment is same as above. However, the vision sensor is
changed to Mech-Eye, an industrial 3D camera from Mech-Mind1 to acquire a high-
quality partial point cloud. The image of the camera and its point cloud sample are
shown in Figure 4.10. The package that used to integrate this camera into ROS is devel-
oped by us based on the official CPP API and is open sourced2. The selected six objects
are listed in Table 4.4. We select these objects because they are typical objects that may
fail to generate good grasp candidates without shape completion. For other objects such
as banana or marker, they are quite simple and small, which causes that improvement of
shape completion on the grasping result is minor.

(a) (b)

Figure 4.10: (a) Image of Mech-Eye camera from Mech-Mind mounted on a camera holder. (b)
Example point cloud take from Mech-Eye camera.

Table 4.4: Real robot experiment result

Method
Cracker

box
Mug Meat can

Pitcher
base

Bleach
cleanser

Power
drill

Avg.

Without shape completion 70% 70% 80% 80% 90% 40% 71.67%
With shape completion 80% 100% 100% 80% 90% 50% 83.33%

For the selected six objects, we perform grasp evaluation on two different methods:
PointNetGPD grasp with/without shape completion. We run the robot experiment by

1https://en.mech-mind.net
2https://github.com/MechMindRobotics/mecheye_ros_interface

46

https://en.mech-mind.net
https://github.com/MechMindRobotics/mecheye_ros_interface

4.7. Discussion and Summary

randomly putting the object on the table and grasping for ten times, then calculating the
success rate. The experiment result is shown in Table 4.4. We can see that all six objects
outperform or equal with the one do not use shape completion as input point cloud.
The low success rate of power drill for both methods is because when the robot tries to
grasp the head of the power drill, the contact area is too slippery. A typical failure we
observed is from the limited camera viewpoint. In some viewpoint, GPG generates grasp
candidates that sink into the object. An example of this situation is shown in Figure 4.9.
This is a strong evidence that shape completion model can improve the grasp success
rate in some particular situations.

4.7 Discussion and Summary
In this chapter, we presented PointNetGPD, a novel approach for detecting grasp con-
figurations from point clouds. As the core module in our grasp pipeline, we proposed
to address the challenging grasp quality evaluation over imprecise and deficient point
cloud with PointNet. To further improve the performances, we generate a large-scale
grasp dataset with 350k real point cloud and grasps with the YCB object dataset for
training. Our experiments show that our model outperforms the state-of-the-art grasp
detection method. The grasping dataset and software for dataset generation and network
are public available3.

As a final remark, our goal is to integrate the grasp candidate generation step into
the network for performing grasp planning in an end-to-end fashion. Additionally, our
grasp generation method did not consider objects that are placed tightly together, thus
our network may give a false grasp output that grasp more than one objects. We plan to
do clutter segmentation simultaneously [128, 120], which can prevent the model from
planning unfeasible grasps that cross more than one object.

3https://lianghongzhuo.github.io/PointNetGPD

47

https://lianghongzhuo.github.io/PointNetGPD

Chapter 4. Two-fingered Grasping Using Point Clouds

48

Chapter 5

Multifingered Grasping Based on
Multimodal Reinforcement Learning

5.1 Introduction
Even though the two-fingered grasping problem has been widely studied and reaches
a satisfying success rate as demonstrated in the last chapter, multifingered grasping
is still far from solved. The fact that the robotic community is beginning to expect
robots to approach the manipulation capabilities of humans makes it important to solve
this problem. Even with carefully planned trajectories or a dedicated mechanism de-
sign [43, 44, 74, 54], two-fingered grippers can only be used to execute some simple
object interactions and manipulate some specific object categories. Therefore, to endow
robots with the same dexterity as human hands, which can effectively grasp different
objects and utilize various tools like a spraying bottle or in-hand rotating a cube [2], an-
thropomorphic hands have become a promising solution and have gained much attention
over the past years of research.

The human hand is a very complex, articulated biomechanical system, and the prob-
lem of replicating its structure and capability is very challenging in terms of mechanical
design and motion planning and control. When grasping an unknown object in daily
life, humans usually first use visual perception to estimate the object’s physics prop-
erties, i.e., size, weight, center of mass, surface smoothness, and stiffness, based on
prior experience. A rough grasp pose can be estimated from visual information. During
approaching and contacting with the object, humans begin to use their comprehensive
tactile and force feedback to explore the object further and finally choose a stable pos-
ture to grasp it. During this process, humans will estimate whether the grasp is stable by
the tactile and visual feedback before lifting the object to avoid slipping out of the hand.

Inspired by how humans grasp objects, we develop a robust robotic grasping strategy
by merging multiple sensing modalities with anthropomorphic dexterous hands. The fu-
sion of different data from tactile fingertips, torque sensors, and robot proprioception
(joint positions) promises a robust and intelligent method to teach the robot multifin-
gered grasping.

Therefore, we propose a hand-arm system for multifingered grasping. We start with

49

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

Real robot environmentSimulation environmentSynergy dataset

Figure 5.1: An illustration of the multifingered hand-arm grasping system. To simplify the
hand’s control and make the hand move like a human, in the left block, we collect a Shadow
hand pose dataset using Cyberglove to teleoperate a virtual hand. We use this dataset to perform
a principal component analysis to reduce the number of inputs needed to control the robot hand.
The middle block presents our simulated training system. In the simulation, we use multimodal
information as observation to train a multifingered grasping agent. The right block illustrates
that the grasping agent purely trained in simulation has proved to work well in the real world by
several grasping experiments.

a point cloud as input and run the grasp evaluation network PointNetGPD proposed in
Chapter 4 to generate a candidate two-fingered grasp, then map this as the pre-grasp pose
for the dexterous hand. To control the dexterous hand to execute the grasping action,
instead of using a fixed grasping trajectory, we first use hand synergies [99] to make a
dimensional reduction. Then we use the reduced dimension information as target action
space to train a multimodal RL based agent. With this agent, the dexterous robotic hand
can close its fingers and grasp the object successfully.

Our contribution of this chapter can be summed up as follows:

• We collect a dataset of common human hand motions and map these motions
to the Shadow robot hand successfully. Because the corresponding motion data
of the Shadow hand joints are too complicated and take up a lot of computing
memory, we calculate postural hand synergies using PCA to reduce the dimension
of controlling the hand;

• We build a dexterous manipulation simulation environment based on Coppelia-
Sim [93] and PyRep [53] which has a UR10e1 robot arm mounted with a Shadow
robot hand2;

• We introduce a multifingered grasping agent that fuses multimodal sensor data
(fingertip tactile sensing, joint torques, and hand proprioception) based on the RL
algorithm. The agent is easy to transfer from simulation to the real world platform
with the help of binary tactile information and level-based torque information.
Our robot experiments prove that our agent trained in simulation works well on
the real robot system and outperforms the baseline methods;

1https://www.universal-robots.com/products/ur10-robot
2https://www.shadowrobot.com/dexterous-hand-series

50

https://www.universal-robots.com/products/ur10-robot
https://www.shadowrobot.com/dexterous-hand-series

5.2. Grasp Synergies Dataset

LF
RF

MF
FF

TH

1

2

4

5

3

WR1WR2

J2

J1

Coupled JointsNormal Joints

Figure 5.2: Joint mechanics of the Shadow hand. θw ∈ {WR1,WR2} refers to wrist joints 1
and 2. And θf ∈ {LF,RF,MF,FF,TH} refers to little finger, ring finger, middle finger, first
finger, and thumb (22 joints). Joints 1 and 2, marked blue in each finger, are coupled (these two
joints are controlled by one motor).

• Through comparative experiments in simulation, we find that the fusion of mul-
timodal sensing increases the performance of the agent, and the policy using the
Recurrent Neural Network (RNN) structure (Gated Recurrent Unit (GRU) in our
work) is better than a simple MLP structure. We also find that the most suitable di-
mension reduction value for PCA is 5. Real robot experiments are performed with
different models. By comparing the model with different modalities and different
baselines, we verified the effectiveness of our proposed algorithm.

The rest of this chapter is organized as follows. The grasp synergies dataset is intro-
duced and collected in Section 5.2. Then the multimodal grasping policy is proposed to
solve the multifingered grasping problem in Section 5.4. In Section 5.6, both the sim-
ulation and real robot experiment are described to compare the success rate between
RL agent and two baselines. Finally, the conclusion and future work are discussed in
Section 5.7.

5.2 Grasp Synergies Dataset
Similar to the human hand, the Shadow hand has five fingers with 24 joints, including 2
active joints on the wrist, 18 active joints on the fingers and 4 coupled joints, as shown
in Figure 5.2. However, it is pretty challenging to train a RL agent in such a high-

51

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

Figure 5.3: An illustration of human teleoperating Shadow hand using a Cyberglove for robotic
grasp pose dataset collection.

dimensional action space. High-dimensional action space equals huge exploration space,
which will cause a low learning efficiency and without constraints is likely to generate
weird hand poses. To ensure that the generated hand poses are more human-like and
the exploration space can also be significantly reduced, we simplify this problem by
creating a motion subspace.

In the research field of human hand grasping, it is popular to apply the definition
of grasp synergies [99] to describe and simplify human grasps by PCA. Therefore, a
Shadow hand pose dataset is necessary to calculate the eigenvectors and eigenvalues
representing the most correlated directions in the joint space.

To this end, we collect a Shadow hand pose dataset, using the 33 grasp types of hu-
mans described in [34], such as large-diameter grasp and tripod grasp. In this chapter,
we made a big dataset of anthropomorphic robotic hand grasping datasets that consists
of three parts of data based on that taxonomy. The first portion of the hand pose dataset
is from our previous work [5]. Three human subjects teleoperate an air-muscle version
of the Shadow hand with a Cyberglove3. Eight precision grasp types are used to grasp
twelve primitive objects and 442 joint samples are recorded. Figure 5.3 is an illustra-
tion of using Cyberglove to teleoperate a Shadow hand for robotic grasp pose dataset
collection. To improve the collection efficiency and the object diversity of the dataset,
we further collect 3000 samples by controlling the virtual Shadow hand using the Cy-
berglove as shown in Figure 5.1(left). Furthermore, we extend the hand pose dataset
based on the YCB-Affordance dataset [23]. The YCB-Affordance dataset contains man-
ually annotated human grasps covering all 33 grasp taxonomies on the 58 objects of the
YCB benchmark set. We use the bio-ik [95] solver to calculate a corresponding Shadow
hand mapping via the labeled human hand keypoints. After removing some unreachable
grasps for the Shadow hand, we finally got more than 200 robot hand postures.

We consequently perform a principal component analysis to reduce the joint space
dimensions used to control the multifingered hand based on the collected dataset. The n
eigenvectors corresponding with the largest n eigenvalues are selected to form a trans-
formation matrix. The optimal number of synergies n is determined by our comparative

3http://www.cyberglovesystems.com

52

http://www.cyberglovesystems.com

5.3. Simulator Selection

model evaluation in Section 5.5. Figure 5.4 illustrates the hand motion corresponding to
the first three components, which are called the first, second, and third grasp synergies
(C1, C2, C3).

C1

C2

C3

- 0 +

Figure 5.4: Shadow hand synergies. C1, C2, and C3 rows show example grasp postures of
the Shadow hand controlled by the first three principal components of our dataset. For each
component, C1 is responsible for open/close all fingers, C2 rotates the thumb for precision grasp,
C3 is for the in-hand rotation.

5.3 Simulator Selection
Using a physics simulator for robotic grasping evaluation and grasp planning is a very
useful approach. Collins et al. [22] gave a detailed review on the pros and cons in differ-
ent robotic application areas. Each simulator has its own strengths, like some simulators
are for medical robotics, they focus more on the teleoperation simulation performance.
Some simulators focus more on soft body simulation or liquid simulation. In this thesis,
we focus more on different performances on robotic manipulation, especially on robotic
grasping. All the experiments are purely calculated in a computer and do not need to
worry about damaging the real robots [17]. A simulator can simulate the rigid body
contacts of different objects, links, bodies while controlling a moveable part inside the
simulator. In the simulator, all the physics definitions apply Newton’s three laws. So we
can use simulation to evaluate the grasp quality. Note that RViz4 is not a simulator. RViz
is only a visualizer that can visualize all the robot models in the given pose.

4https://github.com/ros-visualization/rviz

53

https://github.com/ros-visualization/rviz

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

There are a lot of simulators available in the market. But they can all be divided
into two parts, the back end and the front end. The back end, also called the simulation
engine, is usually responsible for calculating the forces caused by the contacts and the
position, speed and acceleration of all the objects in the simulation environment. Often,
the user can also add some sensors into the environment, like vision sensor, force/torque
sensor, tactile sensor that simulate the corresponding sensor in the real world. The front
end is a GUI that shows all the objects in the simulation environment, the light, and the
rendering of the vision sensors.

Currently, popular physics simulators/engines are Gazebo [59]5, Bullet6, DART7,
Darake8, Webots9, MuJoCo [116]10, CoppeliaSim [93]11, Chrono [111]12 and other sim-
ulation software.

Recently, as deep learning comes more and more popular, there is a trend that make
the training in the simulator differentiable like Nimble13, Brax14 and Isaac Gym [77]15.
A comparison of different simulation software is shown in Table 5.1.

Table 5.1: Free physics simulators comparison

Open Source Engine GPU support Differentiable

Gazebo ✓ ✗ ✗ ✗

Bullet ✓ ✓ ✗ ✗

DART ✓ ✓ ✗ ✗

Darake ✓ ✓ ✗ ✗

Webots ✓ ✗ ✗ ✗

MuJoCo ✓ ✓ ✗ ✗

CoppeliaSim ✓∗ ✗ ✗ ✗

Chrono ✓ ✓ ✗ ✗

Nimble ✓ ✓ ✓ ✓

Brax ✓ ✓ ✓ ✓

Isaac Gym ✗ ✓ ✓ ✓

*The CoppeliaSim lib core is open-sourced under GNU GPL.

For doing robotic grasping simulation, we choose to use CoppeliaSim. This is be-
cause this simulator has quite a large user community and is free to educational use.

5https://gazebosim.org
6https://pybullet.org
7https://dartsim.github.io
8https://drake.mit.edu
9https://cyberbotics.com

10https://www.mujoco.org
11https://www.coppeliarobotics.com
12https://projectchrono.org
13https://nimblephysics.org
14https://github.com/google/brax
15https://developer.nvidia.com/isaac-gym

54

https://gazebosim.org
https://pybullet.org
https://dartsim.github.io
https://drake.mit.edu
https://cyberbotics.com
https://www.mujoco.org
https://www.coppeliarobotics.com
https://projectchrono.org
https://nimblephysics.org
https://github.com/google/brax
https://developer.nvidia.com/isaac-gym

5.4. Multimodal Grasping Policy

RL Network

Fingertip tactile infomations
Joint torques

 PCAInverse PCA

Finger
actions

Wrist
actions

Lift arm
decisions

 Observations

Rewards

Joint positions

Figure 5.5: An overview of the multimodal reinforcement learning structure. At each timestep,
three different types of input information (joint positions, joint torques, and fingertip tactile in-
formation) are captured from the environment and concatenated as one vector, representing the
agent’s current state. This state vector is then stacked with several history states as the input and
goes into the RL policy network. Three types of actions (blue lines) result from the policy net,
controlling the lifting decision, wrist rotation and finger joints separately.

James et al. [53] has developed a great python interface for using CoppeliaSim. Some
great simulators also have a lot of users, but it was either not free when we did the work
(MuJuCo), or is not public available at the time author began the study (Isaac Gym).

5.4 Multimodal Grasping Policy
In this section, a complete grasp motion can be defined as the following steps:

1. Find a set of pre-grasping poses that describe where to move the Shadow hand.

2. Find a collision-free trajectory to move the arm and hand to a pose from the pre-
grasp pose set.

3. Close the five fingers of the Shadow hand using zero value of the Shadow hand
as the target, stop the hand motion when any of the fingertips has contact with the
object.

4. Perform the RL grasping policy to close all the fingers and lift the object.

The first two steps are the initial grasp generation, in the training, as the object pose
is known by the simulator, there is no need to apply any advanced vision based grasp
generation, we simply get the object’s center position and add an offset that makes the
Shadow hand 5 cm above the target object. The object pose will have a small disturbance

55

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

during the training to make the agent generalize. The initial grasp generation for the real
robot is introduced in Section 5.6.2.

The third step is to close fingers to a pre-grasp pose. Starting from all joints of the
hand at zero position, the hand moves under the position control commands that go to
the PCA zero position where the PCA value is all zero, and use inverse PCA to get the
corresponding hand joint positions. When the fingertips of the hand (red part as shown
in Figure 5.5) detect the contact, the hand pre-grasp motion ends. Otherwise, the hand
will stop until it reaches the target joint positions.

The fourth step is to perform RL grasp policy as shown in Figure 5.5. The RL algo-
rithm we used here is Proximal Policy Optimization (PPO). The agent perform actions
according to the environment observations, which contains fingertip tactile information,
joint positions and torques. At each timestep, all three information are captured from the
agent and concatenated to an array. RL agent using a stochastic policy π(at|Ot) take the
observations and output three actions: finger actions, wrist actions and lift arm decisions.
The simulator will perform the action and return the new observations and rewards. In
Section 5.4.4 is the details of reward function. The goal of the RL agent is to find a
policy π that maximizes the expected sum of discounted rewards over a finite trajectory
T . The action value function is defined as:

π∗ = argmax
π

Eτ(π)

[T∑
t=0

γtrt

]
(5.1)

where γ ∈ (0, 1) is the discount factor, τ is the trajectory distribution under the policy
π.

5.4.1 Simulation Environment
As shown in Figure 5.1, the simulation and real robot setup are kept the same. The
simulator we use is CoppeliaSim [93]. As shown in Figure 5.6, this setup consists of
a UR10e robot arm and a Shadow dexterous hand (left-hand version). This simulator
provided a plugin to import URDF files to the simulator scene.

There are several modifications of the environment to make the simulator works as
expected:

1. In the original URDF file, we defined some dummy objects with no visual but a
big collision shape. Like some virtual walls, cameras for our lab’s tracking system,
and five virtual spheres in the Shadow hand’s fingertip. These objects are removed
as CoppeliaSim will treat them as visual objects and make the motion planning
hard as there are too many collision objects.

2. As the control of the simulated system is based on PyRep [53], some modifications
are done to meet the requirements for the robots16.

3. Several commits are contributed to PyRep for bug fixes and feature requests17.
16github.com/stepjam/PyRep/blob/master/tutorials/adding_robots.md
17github.com/stepjam/PyRep/commits?author=lianghongzhuo

56

https://github.com/stepjam/PyRep/blob/master/tutorials/adding_robots.md
https://github.com/stepjam/PyRep/commits?author=lianghongzhuo

5.4. Multimodal Grasping Policy

Figure 5.6: CoppeliaSim with the imported UR10e robot arm and a Shadow left hand.

4. In this chapter, the focus is on the interesting motion that fingers interact with
the target grasping object. If all links in the hand-arm system are using the actual
weight value in the real world, the fingers in the hand are shaking while doing
the experiment as the weight of the fingertip is very light compared to the robot
arm. A tiny motion displacement will lead to a huge oscillation in the fingertip. To
avoid this hand trembling, all the links in hand increase the weight by 100 times
relative to its real weight defined in the URDF file by the Shadow company. As
the hand is now exceptionally heavier than the real world hand, the simulated arm
cannot hold this arm, so the connector link between hand and arm is set to static.

In the simulation, we use 61 objects for training and testing, including 11 objects
from the YCB object dataset [11], 14 objects from ShapeNet [12], 5 primitive shapes,
and 31 objects from EGAD [82] as listed in Figure 5.7. Since the object pose is known
in simulation, we set the initial grasp pose by adding an offset along the z-axis (perpen-
dicular to the table) and a slight disturbance of the x- and y-axis as shown in Figure 5.8.

5.4.2 Observations
Inspired by human hands using multiple modalities to grasp objects, the observations
used in this chapter include tactile sensing, torque, and joint angle. Except for joint an-
gles, which are consistent in both simulation environment and real world, other modal-
ities are known hard to transfer from simulation to real world. To transfer the training

57

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

YCB dataset:

Shapenet dataset:

EGAD dataset:

Figure 5.7: Objects used to train the RL agent. This includes 11 objects from the YCB object
dataset [11] (red rectangle), 14 objects from the ShapeNet object dataset [12] (green rectangle),
5 primitive shapes (4 boxes and 1 cylinder), and 31 (only 24 shown) objects from the EGAD
dataset [82] (blue rectangle).

model directly from the simulation to a real platform without any further training, ob-
servations of the agent should be as similar to a real robot as much as possible. Accurate
contact force values and joint torque values are notoriously hard to get in simulation en-
vironments, and these continuous values are difficult to map to a real robot, as shown in
Figure 5.9, the fingertip force is unexpectedly high, and the values have a large oscillate.
The high value results because as explained in Section 5.4.1, the simulated Shadow hand
was set an unrealistic weight to make the simulation stable. The raw value oscillates be-
cause the simulator takes all contacts as rigid bodies, so the contact of two bodies in the
simulator is not continuous. In the simulator, when two bodies have a contact, it gener-
ates a force against each other and moves the objects apart to make contact disappear.
When we control the body to continuously make contact, these two bodies actually keep
making contact and going away. Thus the contact force reading is not continuous. If the
raw values generated in the simulator are used to train the RL agent, it is clear the RL
agent trained in the simulation will be hard to transfer to the real world.

To make the sim-to-real problem easier, the input observations are preprocessed to
make the observation space as similar as possible in simulation and reality. In detail,
the fingertip tactile information was processed to binary contact information denoted as

58

5.4. Multimodal Grasping Policy

Figure 5.8: Initial grasp pose in the simulator.

0 1 2 3 4 5 6 7 8
time (s)

0

50

100

150

200

to
ta

l f
or

ce
 (N

)

First finger
Middle finger
Ring finger
Little finger
Thumb

Figure 5.9: Example contact forces of five fingertips read from the simulator during grasping.
Note that, in this grasp, only three fingertips are activated (ring finger, little finger and thumb).

ϕ ∈ {0, 1} and joint torque value is similar to the fingertip force value, was prepro-
cessed to level-based joint torque denoted as τ ∈ {0, ..., 5} in the model to minimize
the gap between simulation and real scene. The detailed mapping from raw values to
the abstracted values is described in Section 5.6.3. The whole observation at t = tk is
then defined as ok = ⟨ϕ, τ, θ⟩, where ϕ are fingertip tactile information, τ are the joint
torques, θ are joint angles of the hand. The previous grasping observations are also use-
ful, as the fingertip tactile information can reason the object’s shape during the grasping.
To utilize the benefit of historical observations, a RNN based model is proved useful.

59

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

So we use h observation timesteps Ot = ⟨ot−(h−1), ..., ot−1, ot⟩ as our final observation
(h = 3 in our work).

5.4.3 Actions
The actions generated from the policy have three parts:

1. Principal component increment values ∆ϵ. Add this value to the current principal
component values gives the target principal component value. Then the resulting
target joint value θh are calculated by the inverse PCA.

2. Wrist joint angle increment value ∆θw. The Shadow hand has two wrist joints
WR1 and WR2 as shown in Figure 5.2. Just like a human grasping an object with
no vision help, rotation of the wrist can help to adjust the grasp pose. In the robot
the wrist motion is also useful when the agent interacts with the object. Adjusting
the wrist can expand the exploration space, especially when the initial hand pose
is not optimal. The target wrist joint angle θw is then calculated by adding ∆θw
with the current wrist joint angle.

3. Lifting decision ρ. This is a discrete action that let the agent decide when to lift
the arm to complete the grasp motion. Before the agent decides to lift the object
ρ = 0, the arm keeps static, and when ρ = 1 the agent controls the arm to move
w cm higher relative to the current wrist pose. During the lifting, the hand keeps
the joint states. The episode ends after the agent finishes the lift arm motion.

The combined action output from the policy is represented as at = {∆ϵ,∆θw, ρ} as
shown in Figure 5.5. Then the log action probability can be denoted as:

log π(at|Ot) = log π(ρ|Ot) + (1− ρ)
[
(log π(∆ϵ|Ot) + log π(∆θw|Ot)

]
(5.2)

For the finger motions, although the inverse PCA can output 22 joint angles for
the five fingers, four pairs of coupled joints need special consideration. The four pair
coupled joints are shown in Figure 5.2 with four pink blocks marked as J1 and J2.
According to the Shadow hand mechanical design, the coupling method for J1 and J2
is that J1 will not move unless J2 reaches its joint limit (π/2). So on the controller side,
the robot will first take the sum of J1 and J2 input value to control J2 until J2 reaches
π/2, then the real value for J∗

1 and J∗
2 will be:

J∗
1 =

{
0, J1 + J2 <

π
2

J1 + J2 − π
2

J1 + J2 ≥ π
2

(5.3)

J∗
2 =

{
J1 + J2, J1 + J2 <

π
2

π
2

J1 + J2 ≥ π
2

(5.4)

60

5.5. Model Evaluation

5.4.4 Reward
In this multifingered grasping task, a training episode is terminated after the lifting at-
tempt, and then a binary reward Rs ∈ {0, 1} representing whether the object has been
picked up successfully is returned. The concrete reward function is defined as:

R =

{
1 + (emax − e)× ζ if ρ = 1 and Rs = 1

0 otherwise
(5.5)

This sparse reward function only gives a positive reward when the grasp is successful.
Where ζ = 0.1 is episode length extra reward to encourage the agent to lift as soon as
possible; emax is the maximum episode length when the agent reaches this episode, the
arm will lift and finish the grasping, emax = 10 in our case; e ≤ emax is the timestep
when the arm lifts.

5.4.5 Curriculum Learning
Curriculum learning is a commonly used performance improvement method in the train-
ing of machine learning models [64]. Curriculum learning requires the training of a
model in a meaningful order, from an easy task to a sophisticated task. The key to the
successful use of curriculum learning is how to rank the task difficulties and how to
choose the proper pacing function for introducing more complicated tasks.

In our task, we want to train the agent in simulation to grasp objects even though
object pose estimation is inaccurate. The initial horizontal position and yaw orientation
of the object are randomized in a range related to the learning process p ∈ [0, 1]. Here,
the initial pose change should be selected carefully that makes the agent either not too
easy to accomplish the task or too difficult (e.g., move the object far away that the hand
can reach). The reason that we use object initial pose change as the task difficulty metrics
is that during the simulation experiment, we found the initial position and pose of the
object change can influence the grasp success rate a lot. In the real robot experiment, the
sensor noise and camera calibration error are inevitable. At the beginning of the training,
a fixed pose of the object is used for the agent to grasp where p = 0 in this case. As the
grasp success rate sr increases, the p increases linearly.

The initial position posi, and orientation orii of the object can be calculated by:{
posi = posi + δpos δpos ∈ [−δp,+δp]

roti = roti + δrot δrot ∈ [−δo,+δo]
(5.6)

in which δp = 0.01× p± 0.003 and δo = 0.1× p are the variation range of orientation
and position, respectively. δpos and δrot are both sampled from uniform distribution:
U(−δ, δ).

5.5 Model Evaluation
In the simulation, we train our agent with different parameters to choose the best per-
forming model regarding grasp success rate and time to converge during training.

61

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

Figure 5.10: Grasp examples using agent GRU-M3PCA5 in the simulator.

We test our algorithm with different parameters for comparison: 1) Comparing the
network performance with different input modalities: using joint angle information only,
using joint angle as well as tactile information, and use all the information: joint an-
gle, tactile and joint torques; 2) Comparing networks that use GRU and MLP; 3) Com-
paring different PCA dimension reduction numbers. We use the pattern NET-MXPCAY
for naming the models, NET represents different network architectures. MX where X ∈
{1, 2, 3} means different number of input modalities. PCAY where Y ∈ {3, 5, 8, 10}
means the dimension reduced from original Shadow hand joint space. All models are
trained with three timesteps of history observations as input (h = 3). Figure 5.10
shows example grasp experiments using agent GRU-M3PCA5 in the simulator. From
Figure 5.11 to Figure 5.13 show the evaluation result of the above three parameters
respectively. Each curve is plotted with five individual runs trained using the same hy-
perparameters. All models are trained for 1600 episodes.

5.5.1 Comparing Different Input Modalities
This experiment (Figure 5.11) illustrates the grasping performance of different input
modalities. The learning curves are similar in the first 500 episodes, after which the
learning curve with only joint angles as input (M1) begins to drop, then increases back
to 80% and drops again. This is because the task difficulty is changing all the time
through curriculum learning (section 5.4.5). The agent with two modalities as input (M2)
exhibits similar instability from episode 1000 for the same reason. As a comparison, the
multimodal agent (M3) shows the best robustness to the increasing task difficulty.

5.5.2 Comparing Different Network Architectures
This experiment (Figure 5.12) demonstrates that GRU outperforms the MLP architec-
ture. The GRU architecture can better understand the history information, thus got a
higher grasp success rate.

62

5.5. Model Evaluation

0 200 400 600 800 1000 1200 1400 1600
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Input modalities

GRU-M1PCA5
GRU-M2PCA5

GRU-M3PCA5

Figure 5.11: Network evaluation result on different input modalities. M1 means the input has
only joint angles. M2 means the input modalities are joint angles and fingertip tactile sensing, M3
means the inputs have one more modality: joint torques.

0 200 400 600 800 1000 1200 1400 1600
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Network architectures

MLP-M3PCA5 GRU-M3PCA5

Figure 5.12: Network evaluation result on GRU and MLP network architectures.

5.5.3 Comparing Different Dimension Reduction Dimensions
For this experiment (Figure 5.13), we test the performance using different PCA dimen-
sion reduction values. A latent space with a higher dimension means a bigger action
space to explore and more dexterous hand motions to learn. The best performance is
from the agent with latent dimension space Y = 5. The model GRU-M3PCA3 learns
faster than other models initially. However, the curve stops growing after episode 500

63

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

0 200 400 600 800 1000 1200 1400 1600
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

PCA components

GRU-M3PCA3
GRU-M3PCA5

GRU-M3PCA8
GRU-M3PCA10

Figure 5.13: Network evaluation result on different dimension reduction values for the Shadow
hand. The reduced dimension values tested here are 3, 5, 8 and 10.

and converges at a lower success rate of 80%. This signifies that the latent space is too
small to learn dexterous hand motions to grasp all the objects correctly. When we in-
crease the dimension value to 8 and 10, the agents learn more slowly and have a lower
success rate than other models, which indicates that the action space is too large and
makes learning how to grasp a challenge for the agent.

An interesting find is that the robot tends to use the little finger and the thumb to form
a grasp. We guess the reason is that using these two fingers can make the hand cover
more object surfaces due to the mechanical design of the hand which approximates the
human hand but is not perfect.

5.6 Robot Experiments
For the robotic experiments, the best-performing agent in the simulation is used to exe-
cute the multifingered grasping which is agent GRU-M3PCA5.

5.6.1 Robot Experiments in Simulation
Although in the previous section, we have reported the overall grasp success rate while
training using different hyperparameters, it is still interesting to get the success rate of
each object. For each object in the simulator, we performed 100 times of grasp trials and
calculate the grasp success rate.

The grasp success rate of each object in the simulator is shown in Figure 5.14. From
the figure, we can see that most objects can reach near 100% success rate. However,
object with ID 21 has 0% success rate. This is because this object has a small head and
all the initial grasp given by the simulator is only above the object. During the grasping,

64

5.6. Robot Experiments

1 6 11 16 21 26 31 36 41 46 51 56 61
Simulated object ID

0.0

0.2

0.4

0.6

0.8

1.0
Gr

as
p

su
cc

es
s r

at
e

in
 si

m
ul

at
io

n

Figure 5.14: Grasp success rate tested in the simulation using agent GRU-M3PCA5. From 1-
11 are objects from YCB object dataset (blue), 12-25 are objects from ShapeNet object dataset
(orange), 26-30 are primitive shapes (green), 31-61 are objects from EGAD dataset (red).

the Shadow hand can not explore and get much useful observation. Objects with ID
48, 59, 60 are from EGAD dataset, the success rate of these objects is low as they are
designed to be different to grasp and have very challenging geometries.

5.6.2 Initial Grasp Generation for Real Robot Experiments
Since we do not know the exact object poses in the real-world experiments, we use
our previous work [72] to serve as an initial grasp pose generator for real robot exper-
iments. Recall in Chapter 4 that PointNetGPD is a two-fingered grasp evaluation net-
work that takes the partial point cloud near the grasp candidate as input and outputs the
grasp quality of the grasp candidate. After motion planning and collision checking using
MoveIt [21], the kinematically feasible grasps are chosen as our initial grasp proposals.
As these grasps are initially intended for a two-fingered gripper, a proper mapping from
a two-fingered gripper to a five-fingered hand is needed, as illustrated in Figure 5.15.

The grasp mapping proceeds as follows:

1. We move all fingers of the Shadow hand to a predefined pose where all the fingers
make a “C” shape as shown in Figure 5.15 (middle);

65

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

Initial grasp generation Mapped grasp pose

thumb

little
finger

wrist

Grasp mapping

Figure 5.15: Illustration of grasp mapping from a two-fingered gripper to the Shadow hand. (left)
The initial grasp generation using PointNetGPD. (middle) Mapping from two-fingered grasp to
Shadow hand. (right) Initial grasp pose in the real robot system.

2. The grasp location is defined as the middle point between the fingertips of thumb
and little finger;

3. The approach direction of the grasp (x-axis) is the palm norm inverse direction;

4. The y-axis of the grasp is chosen by the connection of the fingertips of thumb and
little finger;

5. Then the z-axis can be defined as the cross product of the x- and y-axis.

5.6.3 Sensor Mapping
We need to process the raw data from the tactile and torque sensors to the abstracted
sensor data that are used as RL inputs. For the tactile sensor, in the simulator, we detect
whether there is a contact between the fingertip and object to determine the mapping
values. On the real robot, we press each fingertip sensor manually and record the raw
reading to get the upper sensor range of each finger. The lower range of the tactile
sensors is calculated by keeping the hand still, reading the sensor raw value ten times,
and getting an average. Then we mark a tactile observation as 1 if the sensor reading is
higher than a threshold value of 0.3% of the total range, otherwise as 0. For torques, in
the simulator, we directly map the measured joint torques to the discrete levels. However,
in the real robot, as the Shadow hand does not provide torque reading out of the box,
we use the measured tendon force of each motor instead. When doing experiments with
the Shadow hand, we also found that the tendon reading τj will drift after some time.
Therefore, we take the tendon reading when the hand is empty at the beginning of each
grasp attempt and set it as the initial tendon value τj,0 for each joint. For mapping the
torque data, we use empirical thresholds ∈ {−200,−100, 0, 100, 200} for the real robot
and {−20,−10, 0, 10, 20} for the simulator to map the reading τj−τj,0 to the level-based
reading ∈ {0, 1, 2, 3, 4, 5} expected by the RL agent.

66

5.6. Robot Experiments

51 6 7 8

9 10 11

432

12 13 14 15

Figure 5.16: Objects used in the real robot experiments. Objects with IDs from 1 to 9 are in the
training dataset, and objects with IDs from 10 to 15 are unseen by the multifingered grasping
agent. Objects 7, 8, and 9 are 3D printed models from EGAD.

Figure 5.17: Grasp example in real robot environment. The agent used in these grasps is
GRU-M3PCA5.

5.6.4 Real Robot Verification
For the real robot experiments, we selected 15 objects, including some objects used dur-
ing training (object ID 1 to 9) and novel objects (object ID 10 to 15), as can be seen in
Figure 5.16. A Kinect2 depth camera is used to get the object point cloud required for
initial grasp pose generation in the actual robot experiments. For each object, we conduct
ten grasp trials for each of the below four different agents. The first two agents are our
Baseline1 and Baseline2, respectively, which use a hard-coded sequence to close
the fingers for all the grasp trials. In Baseline1, we set a torque limit for each joint
and control the hand in position mode. All active joints are controlled to track the given
trajectory until reaching the target positions or the tendon force limit. In Baseline2,
besides joint position and joint torque-sensing, we add one more modality: tactile sens-

67

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

Figure 5.18: Grasp examples for each object. The agent used in these grasps is GRU-M3PCA5.

ing. The first finger, middle finger, and ring finger will stop closing if the tactile sensor
on the fingertip is triggered, which helps to prevent from over pushing the object beyond
a proper grasping position. The third agent uses the GRU-M2PCA5 model. The fourth
agent uses the GRU-M3PCA5 model.

To perform a fair comparison of the experiments to demonstrate the difference be-
tween agents when the grasp pose is the same, we first mark the target object in a fixed
position on the table. Then we use a point cloud and PointNetGPD to generate ten initial
grasp poses that are limited to top-down grasps. After this, we perform the finger motion
with the above four different agents. The grasp success rates in Table 5.2 indicate that
the RL method can outperform the baseline method in most objects, which establishes
that the agent trained using RL has learned a robust grasping strategy. The RL agent
trained using three modalities performs better than the RL agent using two modalities.
We also see that the success rates for objects 4 and 5 are quite low. This is because these
objects are smaller on the top, which needs more precise grasping actions. From the
experiments, we find out that the average episode length in simulation and real exper-
iments is 5.8 and 6.2 for model GRU-M3PCA5. The action frequencies of the models
are 1.8 Hz and 1.6 Hz in simulation and the real world. Besides the random grasp ex-
periments, we also conduct a grasp experiment where we fix our object pose, and initial
grasp pose for all three agent conditions to show the difference between agents when the
grasp pose is the same. Figure 5.17 shows an example of grasp sequence in real robot
experiment. Grasp examples on the real robot are shown in Figure 5.18.

68

5.7. Discussion and Summary

Table 5.2: Robot experiment result for multifingered grasping. The results of object ID 12 and
15 are not shown as they got a 100% grasp success rate in all methods. The definition of object
ID is in Figure 5.16.

Object ID 1 2 3 4 5 6 7 8 9 10 11 13 14

Baseline1 80% 70% 40% 40% 20% 20% 50% 50% 80% 60% 60% 50% 70%
Baseline2 70% 80% 40% 40% 30% 20% 40% 60% 80% 70% 60% 60% 80%
GRU-M2PCA5 60% 90% 80% 60% 50% 80% 60% 70% 90% 100% 90% 90% 80%
GRU-M3PCA5 100% 100% 80% 50% 40% 80% 70% 70% 100% 100% 100% 100% 70%

5.7 Discussion and Summary
This chapter proposes a novel hand-arm multifingered grasping system to solve the au-
tonomous multifingered grasping problem. We first build a hand pose dataset to teach
the dexterous Shadow hand how humans commonly move their hand during grasping
by mapping human motions to the Shadow hand. A PCA-based hand synergy is then
trained to reduce the dimension used to control the hand, which accelerates the train-
ing speed of a grasping agent. Then we build a simulation environment to train the RL
agent. Detailed simulation trials with different parameters demonstrate that our agent
works best with three modalities as input and a GRU network architecture. Real robot
experiments show that the trained RL agent can be applied in the real world even if
the model is trained purely in simulation. Our method clearly outperforms the baseline
method.

Training the robot to do object in-hand manipulation tasks such as tool use will be
our ongoing work. Domain randomization [115, 117] plays an important role in bridging
the gap between simulation and the real world. The dynamic parameters such as friction,
object mass, and even moment inertia will be randomized in a reasonable range. We also
plan to accelerate the simulation time with a differentiable physics simulator. Besides,
adding vision to the agent to let the agent find the initial grasp by itself is also an exciting
research direction.

69

Chapter 5. Multifingered Grasping Based on Multimodal Reinforcement Learning

70

Chapter 6

Making Sense of Audio Vibration for
Robotic Pouring

In this chapter, we focus on the challenging perception problem in robotic pouring. Most
of the existing approaches either leverage visual or haptic information. However, these
techniques may suffer from poor generalization performances on opaque containers or
concerning measuring precision. To tackle these drawbacks, we propose to make use of
audio vibration sensing and design a deep neural network AP-Net* to predict the liquid
height from the audio fragment during the robotic pouring task. AP-Net* is trained on
our collected real-world pouring dataset with multimodal sensing data, which contains
more than 3000 recordings of audio, force, video and trajectory data of the human hand
that performs the pouring task. Each record represents a complete pouring procedure.
We conduct several evaluations on AP-Net* with our dataset and robotic hardware.

6.1 Introduction
Robotic pouring [110] is a crucial robotic task in both domestic and industrial environ-
ments. In a nutshell, a robot is required to pour a liquid from one container to another
while preventing it from spilling. Therefore, the robust and accurate perception will
play an essential role in this task, especially in estimating the liquid height in the target
container. Recent approaches to solving this perception problem mostly rely on visual
sensing [101, 102, 83, 100]. Using a camera situated in front of the target container,
the current liquid height can be regressed from the visual features of the captured im-
age. However, these approaches cannot generalize to opaque containers since the liquid
height cannot be seen or could suffer from poor estimation errors. On the other hand,
haptic sensing is another important modality for the perception of robotic pouring. For
example, when the force and torque feedback from the manipulator is available, we can
either estimate the volume of liquid being poured or directly learn a pouring policy in an
end-to-end manner [94]. However, the correlation between haptic information and the
pouring liquid can be rather complicated and are varied among different end effectors
and containers. These drawbacks in existing perception methods suggest that the robust
and accurate perception in robotic pouring still remains an open problem. To sum up,

71

Chapter 6. Making Sense of Audio Vibration for Robotic Pouring

Desired height

Ha

AP-Net*

Multimodal human
pouring dataset Length of air

column (Ha)

Robot control
signal

Figure 6.1: The robotic pouring system. (Left) Given the robot a target liquid level, audio vi-
brations during the pouring manipulation by a robot are recorded by a microphone then fed into
AP-Net*. (Center) AP-Net* is trained offline to predict the length of the air column of the target
container from our multimodal pouring dataset. (Right) The length of the air column Ha pre-
dicted by AP-Net* is used to guide the robot’s pouring control signals.

the major challenges in the perception for robotic pouring are twofold:

1. Generalization. The perception in robotic pouring should be able to generalize to
different containers, liquid type, and liquid status.

2. Precision. The estimation result, i.e., the prediction of liquid height, should be
accurate enough to satisfy the requirement in pouring task.

We propose to tackle these issues by leveraging the modality of acoustics. Inspired
by how humans judge the liquid height during pouring with their hearing, we try to
design a model that can estimate the position of liquid height from audio vibration. This
is based on the observation that the vibrational frequency of the air in the container will
change as the level of liquid rises during the pouring procedure. Moreover, estimating
liquid height using audio vibration is immediate. Thus, there is no need to explicitly
perform an integration, which further reduces the prediction bias and achieves more
accurate results.

In this chapter, we introduce a deep network called AP-Net* that utilizes the audio
vibration to estimate liquid height for robotic pouring. Specifically, the main part of AP-
Net* is a RNN that maps an audio fragment into the prediction of the current height of
one liquid in the target container. Figure 6.1 illustrates the perception pipeline in our
proposed method for robotic pouring. There are two considerations on choosing a recur-
rent structure for our AP-Net*. Firstly, using RNNs was already shown to be effective

72

6.2. Data Preparation

in audio analysis due to the inherent sequential properties of audio itself. Secondly, a
recurrent structure can implicitly integrate the prior knowledge that the liquid level rises
up monotonically during the pouring, which may help the model to reduce the noise and
to predict more smooth results. These two considerations are verified in both our dataset
and robotic experiments.

Recent successes in deep neural network based robotic perception methods [60, 109,
105, 45, 49] emphasize the importance of training on large-scale datasets. To further
improve the performances of the proposed method, we built up a dataset which contains
more than 3000 records of motion trajectories from human demonstrations including
audio-frequency recordings, force and torque, and video flows.

In summary, our key contributions are twofold:

• We propose to tackle the challenging liquid height estimation task in the per-
ception of robotic pouring by leveraging the audio vibration data and a neural
network model with a recurrent structure. Extended experiments on dataset and
robotic hardware demonstrate that our method can facilitate a robust and accurate
audio-based perception for robotic pouring.

• We built a large-scale multimodal dataset with a focus on the perception task for
robotic pouring, which contains more than 3000 human pouring sequences. To the
best of our knowledge, this is the first multimodal dataset for the perception task
in robotic pouring.

6.2 Data Preparation

6.2.1 Multimodal Pouring Dataset
Training a regression model which learns the correlations between the audio vibration
and the liquid height in the receivers relies on a meaningful pouring dataset. We col-
lected a multi-sensor dataset by humans in a quiet environment. Besides the audio data
and liquid height labels (measured indirectly via a digital scale under the target con-
tainer), we also recorded videos of the whole pouring procedure, the trajectories of the
human hand that performed the pouring by a motion tracking system, and the haptic
feedback of the end effector of the manipulator via a torque sensor on the source con-
tainer. The cost of collecting dataset by humans is comparatively low compared to a
robot. However, this approach brings the challenge of transferring a model learned from
this dataset to robotic pouring due to the different pouring trajectories and loud back-
ground noise.

Our dataset setup is shown in Figure 6.2. It includes a source container, three differ-
ent target containers with three different materials (referred to as glass, Thermos, and
mug, shown in the first three items of Figure 6.9 on page 80), a Behringer B-5 micro-
phone (44.1 kHz), an ATI Mini40 force/torque sensor (500 Hz), a Maul Logic digital
scale (1 Hz), a Logitech web camera (30 Hz), and a PhaseSpace Impulse X2E motion
tracking system (240 Hz). The height of the glass, Thermos, and mug are respectively
127 mm, 150 mm and 99 mm. We placed the source containers relative to the bottom

73

Chapter 6. Making Sense of Audio Vibration for Robotic Pouring

Tracking LED MarkersScale

ATI Force /
Torque Sensor

Source
Container

Web Camera

Motion Tracking System

Microphone

Target Container

Figure 6.2: Setup used to collect multimodal human pouring dataset.

Figure 6.3: A pouring example recorded by a webcam during the human pouring data collection.

center of the microphone at a horizontal distance of 250 mm and a vertical distance of
750 mm. For each pouring trial, the subject held the handle of the source container and
started pouring task at an angle varying between 8◦±15◦ and at a random position which
is relative to the mouth of the target container ranging from 450 mm to 500 mm. Pouring
during the training only involved water.

In this manner, we respectively collected 1000 trials for three target containers in-
volving two subjects. For each trial, we took multimodal data right before the scale
reading started to change, and right after the scale reading became stable. The lengths of
one pouring recording varied from 4 seconds to 11 seconds. Although we only consider
the modality of audio vibration in this chapter, future work on perception methods with
multimodal fusion can be facilitated with our dataset.

74

6.2. Data Preparation

6.2.2 Data Analysis

0 1.5 3 4.5 6 7.5 9
0

1000

2000

3000

4000

5000

6000

7000

8000

60

50

40

30

20

10

0

10

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

7000

8000

50

40

30

20

10

0

10

20

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4
0

1000

2000

3000

4000

5000

6000

7000

8000

80

70

60

50

40

30

20

10

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4
0

1000

2000

3000

4000

5000

6000

7000

8000

70

60

50

40

30

20

10

0

Pouring into glass without spout

Pouring into mug without spout

Pouring into Thermos without spout

Pouring into Thermos with spout

Figure 6.4: Examples of audio spectrograms in our dataset. The x axis of the spectrograms
represents time (seconds), and the y axis represents the frequency (Hz). From left to right, top to
bottom. The first three spectrograms are generated from the audio signals pouring from a bottle
without a spout pouring into a glass, a Thermos, and a mug. The last figure is the spectrogram
for a bottle with a spout pouring into a Thermos. The spout is in Figure 6.5.

Audio-frequency data

When pouring the liquid into a container, as the liquid height rises, two distinctive res-
onance frequencies will change. First, like in an organ pipe, when the length of the air
column of the container gets shorter, the air vibrates faster and the resonance frequency
of the air increases. Second, the resonance frequency of the container itself becomes
slightly lower because of the resistance to water pressure [38].

We resample all audio data to 16 kHz and computed spectrograms with a window
length of 0.032 seconds and a half-window overlap. We use a Short-Time Fourier Trans-
form (STFT) frequency resolution of 512, and this generates audio slices with 257 de-
scriptors. As shown in the four spectrogram examples in Figure 6.4, one high-energy
and rising curve between 256 Hz-2048 Hz is clearly visible in all spectrograms. This
curve represents the resonance frequency of the air. Meanwhile, the bottom two spectro-
grams in Figure 6.4 demonstrate that different pouring speed does not change the main
theory of the resonance frequency of the air. We propose that the rising of the resonance
frequency of the air actually depends on the liquid height and not on the much heavier
and more heavily damped liquid height. Therefore, using audio vibration to estimate
the real-time liquid height could make sense. But the resonance frequency of the target
container which should principally have a slight downtrend cannot be clearly seen in our
dataset.

75

Chapter 6. Making Sense of Audio Vibration for Robotic Pouring

Figure 6.5: The spout equipped on the source container in robotic experiments.

Scale data

The weight data measured by the scale is used to calculate the liquid height. To ac-
complish the real-time perception task, we deploy linear interpolation to the initial
weight recordings because of the low sample rate of the scale. We respectively gen-
erate a quadratic polynomial with fifteen pairwise weight and height measurements for
each target container. Afterward, we calculate the corresponding liquid height using the
polynomial from the interpolated weights. It follows that the height data is a 257 × 1
times continuous series.

6.3 AP-Net* Architecture
Our goal is to acquire the desired filling height of the liquid through learning a ro-
bust model based on audio vibration. Although the correlations between the resonance
frequency of the air and the liquid height are time-independent, the pouring task is a
sequential and variable-length problem. Instead of choosing a simple feed forward net-
work to reach our goal, we make use of the RNN to exhibit and learn the real-time
height of the liquid. There are two popular recurrent units we can use: LSTM unit and
GRU [16], both of which alleviate the vanishing gradient problem in a gating mecha-
nism.

Furthermore, determining a well-suited ground truth is also crucial in supervised
learning. The physical model suggests that the increase of resonance frequency in pour-
ing motions results from the reduced length of the air column. And this conclusion exists
on different types of target containers. Intuitively, we deduce that target containers with
an air of the same height have a similar resonance frequency although they are of differ-
ent shapes and different filling heights. That is to say, in our task, to make sense of audio
vibration, using the length of the air column as ground truth could be more generative
and indicative than using the height of the liquid level. For example, in Figure 6.6, two
target containers are filled at different liquid heights but have an air column of the same
length. Otherwise, if we take the height of liquid level as the ground truth, we would
have one label corresponding to different audio-frequency features.

With the above considerations, we design a recurrent deep network (AP-Net*) Pθ

to predict the length of the air column Ha. θ defines the parameters of our proposed
AP-Net*. The network architecture is shown in Figure 6.7.

In order to augment our dataset, we randomly choose audio clips with a length of 4
seconds from one complete pouring audio sequence. The number of audio clips is pro-

76

6.4. AP-Net* Evaluation

Ha

H1 H2 H3

Figure 6.6: Illustration of length of the air column. In first and second containers, different target
containers are filled to different height of the liquid, but have the same length of the air column
Ha and a similar resonance frequency of the air when the liquid is poured into them. Compared
with first and third container, the liquid height H1 and H3 are same. However, the third container
container is almost full and first container is only half fill. Thus, they have different sound pat-
terns during the pouring.

portional to the length of a pouring trial. We take the raw 4 seconds audio fragment and
transformed them into 257×251 window slices. Then each time slice of the spectrogram
is progressively fed into the encoder module (1-layer LSTM/GRU unit) to a layer of 256
recurrent features Ah. The height predictor (a 2-layer MLP) takes the recurrent vector
as input and performs regression of the temporary length of the air column. The height
predictor is supervised with a mean squared error (MSE) loss Lheight

Lheight = ∥Ĥa −Ha∥2. (6.1)

In addition, leveraging the principle that the liquid height in the target container in-
creases monotonically, we introduce an auxiliary Lmono to enforce the estimated length
of the air column being decreasing along the time t

Lmono =
∑
t

[max(0, (Ĥat+1 − Ĥat))]. (6.2)

Overall loss. Combining both Lheight and Lmono, the complete training objective for
AP-Net* is defined by Laudio

Laudio(θ) = Lheight + α · Lmono, (6.3)

where α is a hyperparameter for balancing these two loss functions. In our implementa-
tion, we set it to 0.01 for the best performances via some preliminary experiments.

6.4 AP-Net* Evaluation
We examined which structure of AP-Net* could learn the most indicative representa-
tions during the pouring events. To explore the appropriate encoder module of the audio
branch, we designed a basic feed forward network (two layers of MLP for regression)
as one baseline. Moreover, to find out the recurrent units that could maintain the conse-
quent frequency memory better, we evaluated two popular recurrent units: LSTM and
GRU. We refer to these structure as AudioFC, AudioLSTM, and AudioGRU respec-
tively. There were two evaluation metrics used: 1) the fraction of audio sequence whose

77

Chapter 6. Making Sense of Audio Vibration for Robotic Pouring

RNN

257 × n

Length
of air

column

n × 1

Pouring audio Audio spectrogram Height predictor4s sample

Figure 6.7: AP-Net* architecture. The raw audio data is transformed into a spectrogram with
257 descriptors. Then the encoder module (RNN unit) is progressively fed each time slice of
audio-frequency spectrogram. Finally, the height predictor module produces the 1D length of
the air column of the target containers. The blue rectangular denotes a Fully-connected (FC)
layer following with a batch normalization layer and a rectified linear unit.

air column length prediction error is below a threshold; 2) the average height prediction
error on each target container (including on all the containers).

The evaluation results on the testing set are shown in Figure 6.8(a) and Figure 6.8(c),
which indicate that the recurrent architectures are significantly superior to the AudioFC
baseline. Both recurrent architectures achieve 90% accuracy below an absolute 2 mm
length error, and the absolute mean length errors are below 1.5 mm. The results not
only show that the recurrent architectures can integrate the prior knowledge from audio
sequences, but also verify that the audio vibration is eligible to infer the liquid height
between different target containers. On comparison of these two recurrent architectures,
the AudioLSTM architecture slightly outperformed AudioGRU architecture on a single
target container and all target containers, demonstrating its advantage of having more
trainable parameters when trained with our large training set.

Figure 6.8(b) manifests the results of AudioLSTM model trained on the training
set with only a single target container or all target containers (shown as Overall). As
shown in this plot, on the Thermos cup it outperforms the other two target containers
and the glass shows the worst performance. This is mainly due to the different materials
of these containers. For example, the stainless steel material makes the crispest sound.
Furthermore, we can see that the model trained on our complete training set with all
types of containers achieves the best accuracy, which suggests that it benefits a lot from
a larger dataset and could embody a better-generalized ability than any models that
trained on only a part of the dataset.

6.5 Robot Experiments
In this section, we evaluate the adaptability and robustness of our audio-based perception
method in pouring experiments with a UR5 robot. In the experiment setup, we fixed the
pouring trajectory of the robot and the source container position in the robot’s gripper.
To improve the quality of the recorded pouring sound, we fixed the center of the gripper
right above the top center of the scale at a height of approximate 310 mm. Unfortunately,
the high position of the gripper gives rise to a high possibility of spillage during pouring.
We solved this problem by equipping the source container used for pouring with a thin

78

6.5. Robot Experiments

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Length Error Threshold e (mm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
 w

ith
 le

ng
th

 e
rro

r <
 e

AudioLSTM
AudioGRU
AudioFC

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Length Error Threshold e (mm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 w
ith

 le
ng

th
 e

rro
r <

 e

Glass
Mug
Thermos
Overall

(b)

Overall Glass Thermos Mug
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

M
ea

n
Le

ng
th

 E
rro

r (
m

m
)

AudioFC
AduioLSTM
AudioGRU

(c)

Figure 6.8: Evaluation results of AudioFC, AudioLSTM and AudioGRU models tested on the
human pouring dataset. Evaluation results of the fractions of audio sequence whose the length
of the air column’s errors are below a threshold (a) by all models on our overall test data and (b)
only by AudioLSTM model tested on overall test data and each single target container’s dataset.
(c) Comparison of length errors on the different target containers evaluated by all models.

spout shown in Figure 6.5. Accordingly, the pouring speed was drastically reduced due
to the spout, compared to the dataset with human pouring. Therefore, we re-collected
a small dataset of 30 trials for each target container using the source container with a
spout.

We first selected the AudioLSTM model which was trained on our original dataset
with all target containers to estimate the real-time length of the air column. Then, we
fine-tuned this AudioLSTM model on our new dataset collected with a spout on the

79

Chapter 6. Making Sense of Audio Vibration for Robotic Pouring

Figure 6.9: The target containers used in the audio-based pouring. From left to right, the first
three target containers are the target containers in our datasets: a glass, a Thermos (stainless
steel cup), and a mug; the latter three target containers are the unseen containers used in robotic
experiments: a red mug, a blue mug and a plastic cup.

source container. Finally, the refined model was employed as the feedback command,
which terminated the pouring immediately once the desired length of the air column had
reached. The average computation time of one feedback loop is 21 ms, of which nearly
20 ms are spent on processing the spectrograms (a desktop machine with a 20-core Intel
i9-7900X CPU and two 1080Ti GPUs).

To verify the generalization ability and robustness to robotic pouring tasks, we de-
sign four groups of robotic experiments: evaluation on different target containers, dif-
ferent microphone positions, different initial liquid heights and different types of liquid.

6.5.1 Evaluation of Different Target Containers
In this experiment, we kept the distance between the target containers and the micro-
phone the same as in our original dataset. During the robotic pouring, we varied the tar-
get length of the air column between [40 mm, 50 mm, 60 mm, 70 mm, 80 mm] for three
existing target containers in our dataset and three unseen target containers in Figure 6.9.
The height of the red mug, blue mug and plastic cup respectively are 97 mm, 94 mm and
103 mm. Owing to the different height of each target container, we also tested 90 mm
and 100 mm targets for three target containers in our dataset, and a 90 mm target for the
plastic cup. The water was poured for five times to each considered height of each target
container.

Quantitative results in Figure 6.10(a) indicate that our audio-based perception sys-
tem can exploit the useful audio features even though there are huge differences be-
tween the human setup (used in our dataset) and the robot setup (used in our robotic
evaluations), such as the pouring trajectories and the degree of noise of sthe pouring
environment. From Figure 6.10(a) and Figure 6.10(b), we can see that when the target
length of the air column is shorter (i.e.the liquid height is higher), the estimated length
of the air column gradually become more accurate. It suggests that our model works
well in height estimation, and the model will be more sensitive when the target length
Ha is relatively high. Since there is more likely to spill out with higher liquid height, this
property provides our AP-Net* the extra ability to prevent the manipulator from spilling
out the liquid.

For numerical results, Figure 6.10(c) quantifies that the absolute mean errors and the

80

6.5. Robot Experiments

30 40 50 60 70 80 90 100 110
Target length Ha (mm)

30

40

50

60

70

80

90

100

110

Po
ur

ed
 le

ng
th

 Ĥ
a (

m
m

)

Target
Glass
Thermos
Mug

(a)

30 40 50 60 70 80 90 100 110
Target length Ha (mm)

30

40

50

60

70

80

90

100

110

Po
ur

ed
 le

ng
th

 Ĥ
a (

m
m

)

Target
Red Mug
Blue Mug
Plastic Cup

(b)

Glass Thermos Mug Red Mug Blue Mug Plastic Cup
−1

0

1

2

3

4

5

6

7

8

9

M
ea

n
er

ro
r (

m
m

)

(c)

Figure 6.10: Controlling results of pouring water to a desired length of air column by our trained
LSTM model in robotic experiments. (a) Length estimation of target containers from our dataset.
(b) Length estimation of unseen target containers. (c) Comparison on the absolute mean error
and standard deviation of different target containers among all desired heights.

standard deviations of the liquid height are both below 3 mm among all target containers
used during training and below 4.5 mm among the unseen target containers. Addition-
ally, we converted the height error of each cup to weight error in this experiment as
shown in Table 6.1. In previous work on robotic pouring, Schenck et al. [101] reported
a mean error of 38 ml and Do et al. [27] achieved a mean volume error 22.53 ml over
three different target containers. Compared to their results, the robotic pouring with our
audio-based perception system can achieve higher precision.

6.5.2 Evaluation of Varying Microphone Positions
We compared the performance of our method on eight different positions of the bottom
center of the microphone as shown in Figure 6.11(a). Position 1 is the position that we

81

Chapter 6. Making Sense of Audio Vibration for Robotic Pouring

Table 6.1: Absolute mean weight and standard deviations errors converted from the length of
the air column error of the robot experiment

Glass Thermos Mug Red Mug Blue Mug Plastic Cup
9.54± 7.81ml 9.91± 8.48ml 13.79± 11.04ml 7.92± 7.14ml 6.42± 6.31ml 10.72± 8.70ml

UR5 control
box &

work station
UR5

cup

8

7

6

5

4
3

2

1

230 mm
380 mm

(a)

1 2 3 4 5 6 7 8
Different Microphone Positions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
er

ro
r (

m
m

)

(b)

Figure 6.11: Evaluation results of eight microphone positions. (a) Schematic diagram of eight
microphone positions relative to the target containers, the UR5 robot position, and the control
box of UR5 robot (which is the major noise source). (b) Evaluation results of eight microphone
positions shown in (a).

placed the microphone in our dataset. The distances between the target containers and
the bottom center of the microphone at positions 1, 2, 3, 4 and at positions 5, 6, 7, 8
are 230 mm and 380 mm respectively. We used the mug and the desired length of air
column at 40 mm, as in the later two groups of evaluations. Then we poured water at
each microphone position for five times. Since the robot poured from the right side of
the target container, all tested microphone positions were on the left side to avoid a
collision between the microphone and the robot.

As shown in Figure 6.11(b), the estimation results indicate that our method gen-
eralizes well to the different positions of microphone due to the highly consistent of
mean height error among all tested positions. In particular, the distance between the
noisy robot control box and the microphone does not have a significant influence on the
performances, which further suggests the robustness of AP-Net* against noise.

6.5.3 Evaluation of Varying Initial Liquid Height
In this experiment, we selected the initial liquid height of target containers from the
set: [10 mm, 20 mm, 30 mm, 40 mm], and poured liquid from each initial length for five
times. Other experiment settings are the same as the evaluation of different microphone
positions. The results of the absolute mean error and standard deviation are listed in

82

6.6. Discussion and Summary

0 10 20 30 40
Initial height (mm)

0.0

0.5

1.0

1.5

2.0

2.5
M

ea
n

er
ro

r (
m

m
)

Water

(a)

Water Milk Juice C. Water
Different liquids

0
2
4
6
8

10
12
14
16
18
20

M
ea

n
er

ro
r (

m
m

)

(b)

Figure 6.12: Evaluation results of (a) varying initial height and (b) different liquids. Where C.
Water represents carbonated water.

Figure 6.12(a). This demonstrates that our AP-Net* is stable among these different ex-
periment settings, which indicates that it generalizes well to the different initial liquid
height in robotic pouring.

6.5.4 Evaluation of Different Types of Liquid
To analyze the influence of liquid type on our perception method, we also conducted
pouring experiments with pure water (which is used in other experiments), carbonated
water, 1.8% fat milk and orange juice with pulp. These types of liquid have different
physical properties regarding density, thickness, and viscosity. We used the same exper-
iment setting as in evaluations of different microphone positions and poured each type
of liquid for five times. Figure 6.12(b) demonstrates that our model is able to generalize
to common household liquids like carbonated water and orange juice. However, it has
failed to work well on milk as its higher viscosity makes the sound weaker and induces
difficulties to record and analysis. As the milk and juice are with higher viscosity than
pure and carbonated water, it turns out that our the generalization performances of our
AP-Net* are negatively correlated to the viscosity of the liquid.

Through these experiments above on the generalization performances of AP-Net*,
we verify that our method is able to handle different target containers, microphone po-
sitions, initial heights and some liquid types in robotic pouring. And we also see a re-
striction of our method as it cannot be applied to liquid with high viscosity.

6.6 Discussion and Summary
This chapter presents a real-time perception system used for estimating the liquid height
in robotic pouring. We offer a multimodal pouring dataset including audio-frequency

83

Chapter 6. Making Sense of Audio Vibration for Robotic Pouring

recordings, liquid real-time weight, force and torque feedback, video and motion tra-
jectories. With this dataset, we develop a robust audio-based perception model named
AP-Net*. AP-Net* takes an audio sequence as input and produces the estimation of the
length of the air column of the target containers to represent the height of liquid. Es-
pecially, using the length of the air column of the target as label can deal with the risk
to overfill without any prior knowledge of the target container. Model evaluations on
our dataset suggest that the acoustic sequences provide rich information of liquid height
and achieve high precision on our tests. Various robotic experiments with a focus on
generalization and precision performances demonstrate that our proposed AP-Net* gen-
eralizes well to different experiment settings while the precision can still be guaranteed.
The dataset and associated software are public and are available1.

In future work, to facilitate robot behavior in human-robot interaction scenarios, we
plan to extend our approach to more noisy environments including human voice and
make the distance between the source and target container changeable. Making use of
the force, torque, or visual data from our multimodal dataset and designing a novel
neural network based on multiple modalities would be a promising approach to improve
the robustness of height estimation in robotic pouring.

1https://lianghongzhuo.github.io/AudioPouring

84

https://lianghongzhuo.github.io/AudioPouring

Chapter 7

Robust Robotic Pouring using Audition
and Haptics

Robust and accurate estimation of liquid height lies as an essential part of pouring tasks
for service robots. Since AP-Net proposed in Chapter 6 cannot work well in a noisy
environment, therefore, this chapter proposes a multimodal pouring network (MP-Net)
that is able to robustly predict liquid height by conditioning on both audition and haptics
input. MP-Net is trained on a self-collected multimodal pouring dataset. This dataset
contains 300 robotic pouring recordings with audio and force/torque measurements for
three types of target containers. We also augment the audio data by inserting robot noise.
We evaluated MP-Net on our collected dataset and a wide variety of robot experiments.
Both network training results and robot experiments demonstrate that MP-Net is robust
against noise and adapts to the task and environment. Moreover, we further combine the
predicted height and force data to estimate the shape of the target container.

7.1 Introduction
Pouring a specific amount of liquid into a container is an important manipulation skill for
service robots in applications such as bartending or housekeeping and also in industrial
environments. Compared to humans who can effortlessly pour the liquid into a container
without spilling, predicting the liquid height in the target container is still challenging
for a robot. For the robust and accurate perception of robot pouring, recent approaches
mainly rely on vision [102, 83, 100]. They take the RGB image as input, then infer
the liquid height, liquid amount, even pouring trajectories. However, vision fails under
occlusions or in the dark. Using audio [20, 123, 71] is a second option for robot pouring
perception, but the performance of this method will degrade in a noisy environment.
Besides, if the robot is equipped with force/torque sensing, the amount of liquid poured
out from the source container can be measured directly [50], but the liquid height in a
target container can only be predicted if the initial fill level and the shape of the container
are known. These drawbacks in existing perception methods suggest that to estimate
the liquid height precisely, it is necessary to find a robust approach that still works in
conditions where one modality becomes incomplete or deteriorated.

85

Chapter 7. Robust Robotic Pouring using Audition and Haptics

● Audition + Noise
● Haptics (force/torque)

Desired height
Ha

Multimodal pouring dataset Length of air
column (Ha)

Robot control
signal

Multimodal
PouringNet

(MP-Net)

Figure 7.1: The multimodal pouring pipeline. (Left) The goal of our pouring task is to pour
the desired amount of liquid into a target container. The generated sounds depend on the height
of the remaining air column (Ha) in the container. (Center) We collected a multimodal robotic
pouring dataset, which contains 300 pouring sequences with audio and force/torque sensor data
for training our network. A scale recorded the weight of the poured liquid. We then calculated
Ha to serve as ground truth. (Right) By giving the audio and haptic as input, our Multimodal
PouringNet (MP-Net) predicts Ĥa as output. This output is then used to control the robotic
pouring.

Therefore, we propose to tackle the issues of robust robotic pouring by a multimodal
perception method. This multimodal system should be robust in a wild environment, for
example, against different levels of noise, types of noise, or light conditions. The per-
ception system should be able to generalize to different target containers, liquid types,
and initial liquid height in the target containers.

In this chapter, we develop a novel multimodal neural network called MP-Net that
takes preprocessed audio spectrograms and force/torque data as the input and estimates
the length of the air column in the target container. This idea is inspired by human
experiences, as humans can infer whether the target container is almost full from the
pouring sound and use their proprioceptive haptic feedback to estimate how much liquid
is poured out from the source container [52, 121]. Figure 7.1 illustrates the proposed
perception pipeline.

The main structure of MP-Net is a RNN that implicitly integrates the prior know-
ledge that the liquid level rises monotonically during the pouring. A multimodal pour-
ing dataset with audio and haptics was built up to train this model. To further improve
the adaptability to the noisy environment of MP-Net, we augmented the audio data by
adding different noise levels of robot noise. The benefits of force/torque data and audio
data augmentation are verified in both our dataset and a wide range of robotic experi-
ments, respectively.

To sum up, our main contributions are:

1. We propose a multimodal neural network MP-Net to estimate the liquid height
robustly and to enhance the precision and generalization ability of robotic pouring.
Not only the haptic input but also the audio data augmentation facilitate to produce
a robust model that can generalize broadly.

86

7.2. Multimodal Pouring Dataset

Source container

ATI force/torque sensor

Scale

Loudspeaker

Microphone

Target containers

Spout

Sound card

Figure 7.2: Pouring setup used to collect our multimodal dataset and to perform the robot exper-
iment. The three target containers used to collect the dataset are shown on the right. We put these
containers on a calibrated scale to get the real-time label of the liquid height. A force/torque
sensor is mounted on the source container to collect force and torque information while pouring,
and a microphone was set on the table to collect the pouring audio. Loudspeakers were used to
create ambient noise for the robot experiments.

2. System assessment and comparison across eight robotic experiments, e.g., pouring
water into different containers, in various noisy environments with different noise
levels and noise sources, revealed that high accuracy could be achieved by our
proposed method.

3. The shape of the target container can be reconstructed by combining the force data
and real-time height prediction.

7.2 Multimodal Pouring Dataset

7.2.1 Dataset Collection Setup
To create the multimodal dataset for the height estimation task, we designed a robot
pouring setup, as shown in Figure 7.2. It consists of a UR5 robot arm with a Robotiq 3-
finger adaptive robot gripper, and a custom 3D-printed bottle holder with an embedded
ATI force/torque sensor. A standard plastic bottle (S1 in Figure 7.3) is used as the source
container, with an optional bottle spout to limit liquid flow. The target container is placed
on a MAULlogic digital scale which measures the combined weight of the container and
the liquid inside. Audio is recorded with a microphone in an environment with only UR5
robot ego-noise. The dataset setup contains three different target containers with three

87

Chapter 7. Robust Robotic Pouring using Audition and Haptics

(a) S1 (b) S2 (c) S3

Figure 7.3: S1, S2, S3 represent three different source containers where S1 is the container used
to collect dataset, S2, and S3 are novel source containers.

different materials and heights. The properties of these containers are shown in Table 7.1
with ID 1-3.

Unlike our previous work that used human pouring sequences as training data [71],
we use the robot to perform the pouring task. The main reason is that the haptic data
coming from human pouring is massively different from the robot pouring data, which
makes it hard to transform human pouring to robotic pouring.

We set a fixed pouring trajectory and place the mouth center of the source container
310 mm above the scale plane. In this manner, we collected 100 trials each for three
different target containers. For each trial, we recorded both audio and force/torque data
starting just before the scale reading begins to change, and stopping after the reading of
the scale becomes stable again. The lengths of one pouring recording varied from 24-40
seconds according to the capacity of the different target containers.

7.2.2 Data Analysis
Audio-frequency data

To better extract audio information from the microphone, we resampled all audio data
from 44.1 kHz to 16 kHz and computed spectrograms with a window length of 32 ms
and 50% overlap without zero-padding. For network training, we randomly chose 4
seconds of audio clips from one complete pouring audio sequence. Using fixed length
training samples allows for batch processing for better GPU performance, and random
starts correspond to different initial liquid amounts, so that the network can generalize
to partially filled containers.

Force/torque data

The force/torque sensor we use is ATI Mini45 (500 Hz). As the weight of the source
container is far below the maximum payload of this sensor (580 N in Fx/Fy), the raw

88

7.2. Multimodal Pouring Dataset

0 10 20
Time (s)

−5

−4

−3

−2

−1

0
Fo

rc
e,

 b
ia

se
d

(N
)

force x raw
force x filtered

0 10 20
Time (s)

−34

−33

−32

−31

−30

−29

−28
force y raw
force y filtered

0 10 20
Time (s)

23

24

25

26
force z raw
force z filtered

0 10 20
Time (s)

−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

To
rq

ue
, b

ia
se

d
(N

m
)

torque x raw
torque x filtered

0 10 20
Time (s)

−1.20

−1.15

−1.10

−1.05

−1.00

−0.95

−0.90
torque y raw
torque y filtered

0 10 20
Time (s)

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

torque z raw
torque z filtered

Figure 7.4: A sample of force/torque data (N/Nm) in our pouring dataset. In each sub-figure,
we show the raw sensor data (light line) and the filtered data using a Butterworth low pass filter
(dark line). See the text for details.

data is rather noisy but becomes usable after simple low-pass filtering. See Figure 7.4 for
typical raw force/torque data (in N/Nm) during a sample pouring sequence. In each sub-
figure, we plot the noisy raw signal from the sensor shown as a light color together with
a low-pass filtered signal shown as a dark color. The change of the bottle weight during
pouring can clearly be seen in the force/torque readings for the x- and y-axis, while
the z-axis measurements show only little change. This is due to the specific orientation
of the sensor in our 3D-printed holder, dictated by the cable routing. While the sensor
z-axis is almost horizontal (orthogonal to gravity), the x- and y-axes of the sensor are
pointing diagonally upwards, so that the raw sensor readings actually increase when
pouring from the source container. The pouring motion from the robot slightly rotates
the bottle around the z-axis.

Scale data

To get the ground truth of the pouring perception problem, we used a MAULlogic dig-
ital scale to measure the weight of the target container (accuracy ±2 g). Because the
publishing frequency of the scale is only 1 Hz, we deployed a linear interpolation (Fig-
ure 7.5(a)) to get real-time scale readings. To convert the measured weights into the
heights Ha of the air column needed for network training, we sampled 10-15 random

89

Chapter 7. Robust Robotic Pouring using Audition and Haptics

0 5 10 15 20 25 30
Time (s)

0

50

100

150

200

250

300

350

W
ei

gh
t (

g)

raw scale
interpolated scale

(a)

0.0 0.1 0.2 0.3 0.4
Weight (kg)

0

20

40

60

80

100

120

Le
ng

th
 o

f a
ir

co
lu

m
n

(m
m

) measured float point
measured fixed point
fitting curve

(b)

Figure 7.5: (a) Sample scale readings of a pouring sequence in our dataset from bottle ID 1.
Each red dot is one weight measurement from the scale. The blue line is the interpolated curve.
(b) Converting liquid weights (kg) into length of the air column (mm) for bottle ID 1. The dotted
points are the manually measured data, where the red points indicate the empty and completely
filled container. The blue line is the fitting curve that calculates from the scale reading to the
length of the air column.

amounts of liquid for each target container, up to full container capacity, and manually
measured the length of the air column. A polynomial curve fitting is utilized using this
data to calculate the approximate air column length for different amounts of liquid and
corresponding measured weights (Figure 7.5(b)).

7.2.3 Audio Data Augmentation
Considering that the variability of the audio data is significant enough, models trained
on it will better generalize in different audio conditions. Therefore, we augmented the
audio data in our dataset by adding noise. We recorded an ego noise from a humanoid
PR2 robot, which is commonly used for research in household environments. In detail,
we employed the signal-to-noise ratio in decibels (SNRdB) as our reference on how
much noise was added.

SNRdB = 10 log

(
Asignal

αnf × Anoise

)2

(7.1)

αnf =
Asignal

Anoise

× 10
SNRdB
−20 (7.2)

audio = signal + noise× αnf (7.3)

Equations 7.1-7.3 illustrate how noise was added, where Asignal and Anoise are the Root
Mean Square (RMS) amplitude for the recorded pouring audio and noise, respectively.
αnf is the ratio of the input noise.

We mixed the original audio sequences with noise of different levels ranging from
−20 to +20 SNRdB with a step size of 5 dB. The number of generated audio clips,

90

7.3. Multimodal Pouring Network

0 12 24 36 48

Time (s) (SNRdB=-5)

0

2K

4K

6K

8K
F
re

q
u
e
n
c
y
 (

H
z
)

-50 dB +0 dB

0 12 24 36 48

Time (s) (SNRdB=0)

-50 dB +0 dB

0 12 24 36 48

Time (s) (SNRdB=5)

-50 dB +0 dB

0 12 24 36 48

Time (s) (SNRdB=10)

-50 dB +0 dB

0 12 24 36 48

Time (s) (SNRdB=15)

-50 dB +0 dB

Figure 7.6: Examples of audio spectrograms that add different noise levels of the same audio
signal in the dataset. While the SNRdB is high (e.g., SNRdB = 15, right), which indicates the
audio signal is rather clear, we can clearly see rising frequency curves between 256 Hz-2048 Hz.
But when the SNRdB is low (e.g., SNRdB = −5, left), there is no meaningful structure of the
resonance frequency.

of 4 seconds length each, is proportional to the length of a pouring trial. Figure 7.6
shows examples of mixed audio spectrograms for different SNRdB. When SNRdB > 0,
one high-energy and rising curve between 256 Hz and 2048 Hz is clearly visible during
pouring. This curve represents the resonance frequency of the air. But when SNRdB ≤
0, the spectrogram has little structure of the resonance frequency, which indicates this
audio sequence contains more noise than signal.

7.3 Multimodal Pouring Network
Our goal is to design a robust network architecture to acquire the liquid filling height
by making sense of audition and haptics together. Audio vibration results in the changes
in the resonance frequency of the air in the target container. Force/torque changes result
from the liquid poured out of the source container, which yields additional guidance
about the liquid in the target container, especially when the audio signal is deteriorated.

The pouring process is a typical sequential problem and the predicted length has a
temporal relationship. Intuitively, we choose a RNN [16] as our model architecture. The
multimodal network architecture MP-Net is shown in Figure 7.7. In detail, we utilize
the LSTM unit to process the multimodal inputs. We mix audio clips with noise using
Equation (7.3) and transform it into a 257 × n matrix using STFT. The haptic data is
processed to a 6× 8×n matrix (6 F/T sensor channels, and 8 F/T samples arrive during
each 16msec STFT interval) and then concatenated with the audio data to a 305 × n
matrix for input. Here, n is the number of the time slice, and we get n = 251 when
using audio clips of 4 seconds duration from our dataset. Then each time slice of the
fusion data is progressively fed into the encoder module (2-layer LSTM unit) to a layer
of 56 recurrent features Ah.

Besides, it is crucial to find a well-suited ground truth in supervised learning. Due
to the fact that when the length of the air column gets shorter in an organ pipe, the air
vibrates faster and the resonance frequency of the air increases [38, 122], it is more
indicative to choose the length of the air column Ha as the ground truth of our model
instead of the liquid height. Thus, the height predictor (a 2-layer multilayer perceptron)

91

Chapter 7. Robust Robotic Pouring using Audition and Haptics

Haptics input

Pouring audio
4s sample

Audio
spectrogram

Height
predictor

Noise
SNRdB

FC
(3
2
×
𝑛

)

෡ 𝐻
𝑎
(𝑛
)

LS
TM

 (3
0
5
×
𝑛

)

FC
 (
6
4
×
𝑛

)STFT

R
eL

U

R
eL

U

(𝑓𝑥, 𝑓𝑦 ,𝑓𝑧, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧) × 8 × 𝑛

257 × 𝑛

LS
TM

 (3
0
5
×
𝑛

)

Figure 7.7: MP-Net architecture. The raw audio data is transformed into a spectrogram with
257 descriptors. Then the encoder module (a recurrent neural unit) is progressively fed each
time slice of the audio-frequency spectrogram and the corresponding haptic data. Finally, the
height predictor module produces the 1D length of the air column of the target containers. The
blue rectangle denotes a FC layer followed by a batch normalization layer and a rectified linear
unit. Here, n = 251 for a 4 s pouring sample.

in MP-Net takes the recurrent vector Ah as input and performs a regression of the length
of the air column Ha. The height predictor is supervised with a Mean Squared Error
(MSE) loss Lheight

Lheight = ∥Ĥa −Ha∥2. (7.4)

In addition, an auxiliary Lmono is introduced to enforce the decrease of the estimated
length of the air column over time t

Lmono =
∑
t

[
max(0, (Ĥat+1 − Ĥat))

]
. (7.5)

Overall loss

Combining with Lheight and Lmono, the complete training objective for MP-Net is de-
fined by Lmp

Lmp(θ) = Lheight + α · Lmono, (7.6)

where α is a hyperparameter for balancing these two loss functions. In our implementa-
tion, we set it to 0.01 for the best performance via some preliminary experiments.

7.4 MP-Net Evaluation
We examined our proposed multimodal network MP-Net against the following baseline
methods:

92

7.4. MP-Net Evaluation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Length error threshold e (mm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
 w

ith
 le

ng
th

 e
rro

r <
 e

MP-Net
MP-Net*
AP-Net
AP-Net*
FT-Net

(a)

-20 -15 -10 -5 0 5 10 15 20
SNRdB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 w
ith

 le
ng

th
 e

rro
r <

 5
 m

m

MP-Net
AP-Net
FT-Net

(b)

Figure 7.8: Network evaluation results of MP-Net and four baselines. (a) The fraction of the
input sequence whose length prediction error is below a threshold between five models. (b)
The fraction of the input sequence whose length prediction error is below 5 mm between MP-
Net, AP-Net, FT-Net. MP-Net and AP-Net trained and tested on nine datasets, where the only
difference between each dataset is the noise level of audio data.

1. MP-Net*: the same network architecture as MP-Net but trained without adding
noise to the audio data.

2. AP-Net: only audio branch of MP-Net and training on augmented audio data with
noise.

3. AP-Net*: same network architecture as AP-Net without audio augmentation [71].

4. FT-Net: only force/torque branch of MP-Net that only takes force/torque data as
input.

All the models mentioned above were trained on our whole dataset which contains
pouring samples collected from three different target containers.

First, we evaluated MP-Net and four baselines using the fraction of the input se-
quences whose length prediction error |Ĥa − Ha| is below a threshold e. We trained
MP-Net and AP-Net on noisy audio, with noise levels from the SNRdB set [0, 5, 10, 15,
20]. Except for FT-Net, MP-Net and the other three baseline models were then tested on
audio data with SNRdB = 5 noise level. Figure 7.8(a) shows that MP-Net has a stable
advantage of about 8% over AP-Net over the full range of tested length error thresholds,
which indicates that the force data provide a positive gain to the training result. The per-
formances of MP-Net* and AP-Net* are both poor compared to MP-Net and AP-Net,
respectively, which indicate that augmenting audio data also contributes a lot to the net-
works. FT-Net was not trained on audio and has learned to predict the air column length
averaged over all containers.

93

Chapter 7. Robust Robotic Pouring using Audition and Haptics

To compare the robustness of MP-Net, AP-Net, FT-Net with regard to audio noise,
we evaluate the percentage of input sequences whose length prediction error stays below
5 mm, when both the training and the testing data were augmented with the same noise
levels. Each model was trained and tested on audio data augmented with 9 different
SNRdB levels from the set [-20, -15, -10, -5, 0, 5, 10, 15, 20] respectively. Figure 7.8(b)
illustrates that the accuracy of MP-Net and AP-Net increases with SNRdB. The accuracy
curve of FT-Net is straight because force/torque data is independent of audio noise. We
can see that MP-Net has at least 27% higher accuracy than AP-Net when SNRdB ≤ −15,
and has 8% higher accuracy when SNRdB = 0. Note that the performance of AP-Net
degrades quickly for SNRdB ≤ −15, which indicates that the noise interferes with the
audio and the network cannot gain useful information from it anymore. Nevertheless,
with the help of force/torque data, MP-Net can still perform comparably to FT-Net in
such a noisy situation. This phenomenon proves that MP-Net has learned to predict
liquid height by conditioning on both audio and haptic input.

7.5 Robotic Experiments
To verify and compare the reliability and robustness of the proposed MP-Net in robotic
pouring tasks, we carried out eight evaluation experiments on different target contain-
ers, different pouring heights, different source containers, different noise levels, varying
positions of the noise source, different initial liquid heights, different types of liquid,
and different noise sources.

All experiments used both MP-Net and AP-Net to compare their real-world per-
formance, except for the different source containers experiments. To adapt to different
noisy environments, MP-Net and AP-Net were trained on noisy audio data with noise
levels SNRdB from 0-20. The experiment setup was the same as in our dataset collec-
tion setup and the initial water level of the source container was random. MP-Net took
the latest 4 s sequence of audio and haptic data. While the sequence length of the input
signal was less than 4 s, all the input signals were fed into the network. Once the esti-
mated length of the air column was smaller than the desired one, the robot immediately
stopped pouring. To compensate for the liquid poured out during the stopping motion, a
corresponding correction was applied.

7.5.1 Evaluation of Different Target Containers
We used nine different target containers for robot experiments of which ID 1-3 are in
the training dataset, ID 4-9 are unseen. Table 7.1 illustrate the properties of these nine
containers. We kept the distance between the target containers and the microphone the
same as in our original dataset. Then we set the desired length of the air column to
60 mm. We synthesized a SNRdB=5 audio signal by playing the PR2 robot noise from
a pair of loudspeakers located at positions 1&1 as shown in Figure 7.12(a). Here, 1&1
means that both loudspeakers were placed at position 1. We repeated the experiments
five times for each container.

94

7.5. Robotic Experiments

Table 7.1: The properties of nine target containers

ID 1 2 3 4 5 6 7 8 9

Figure

Material Glass C∗ Steel C∗ C∗ Plastic Plastic Enamel Glass

Height
(mm)

127 99 150 97 94 103 115 78 135

Volume
(ml)

460 428 766 310 298 416 408 382 358

*C represents for Ceramics.

Table 7.2: The pouring volume (ml) error at SNRdB = 5, Ha = 60mm

ID 1 2 3 4 5 6 7 8 9

MP-Net
15.8±
14.0

11.5±
8.1

6.3±
6.1

16.6±
19.0

8.2±
9.3

12.8±
11.5

23.7±
18.7

8.5±
9.6

13.9±
4.4

AP-Net
23.1±
8.2

7.5±
8.2

6.0±
4.7

25.3±
14.5

5.2±
2.3

14.3±
10

46.6±
70.6

41.6±
10.4

26.6±
45.4

Figure 7.9(a) displays that the absolute mean errors of the liquid height are below
8 mm and the standard deviations are below 4 mm for both MP-Net and AP-Net among
the known target containers. Container 3 performs best for both networks due to the
stainless steel material which makes the crispest sound. Furthermore, we converted the
height error of each cup to a weight error, shown in Table 7.2. We can see that AP-Net
performs well on known containers and even outperforms MP-Net a little on containers
2 and 3. Regarding the unseen containers, especially for container 7 and 9, MP-Net
exhibits a stronger generalization ability than AP-Net in a noisy environment.

7.5.2 Evaluation of Different Pouring Heights
In this experiment, we placed the source container at four different heights from the set
[310, 260, 210, 160] mm respectively. The height of the source container is the vertical
distance from the mouth center of the source container to the scale plane. We carried
out five robot experiments on each height using target container 2 when SNRdB = 5.
Figure 7.9(b) indicates that our algorithm performs well for the three higher heights but
not at the lowest height. As the pouring height decreases, the volume of the pouring
sound also decreases. With the source container at height 160 mm the pouring sound is

95

Chapter 7. Robust Robotic Pouring using Audition and Haptics

1 2 3 4 5 6 7 8 90

5

10

15

20

25

30

35
M

ea
n

Le
ng

th
 E

rro
r (

m
m

)
MP-Net
AP-Net

(a)
310 260 210 1600

5

10

15

20

25

30

35 MP-Net
AP-Net

(b)
S1 S2 S30

5

10

15

20

25

30

35 MP-Net

(c)

Figure 7.9: In the following robot experiments, the SNRdB were set to 5 dB. Robot experiment
result (a) on pouring water into different target containers (Ha = 60mm, ID 1-3 are in the
training dataset, ID 4-9 are novel), (b) on four different pouring heights (pouring height 1 was
the height for dataset collection, Ha = 40mm), (c) on one known source container S1 and two
novel source containers S2, S3 (Ha = 40mm).

too low, and haptics only is not sufficient for the network to perceive the height of the
air column.

7.5.3 Evaluation of Different Source Containers
The source container influences the flow-rate and the initial force/torque data. There-
fore, we tested two novel source containers S2 (44 g) and S3 (484 g), which are shown
in the left side of Figure 7.2, to compare with the container S1 (64 g) used for network
training and all other experiments. We kept the pouring height at 310 mm, and the other
experimental setup was the same as in the evaluation of the different pouring height. Fig-
ure 7.9(c) suggests that different source containers hardly affect network performance.

7.5.4 Evaluation of Varying Noise Conditions
To further verify the performance of our MP-Net model in different noise conditions,
we implemented a set of experiments using target container 2 under six different noise
levels of [-5, 0, 5, 10, 15, 20] SNRdB. The loudspeakers were again located at positions
1&1. For each SNRdB level, we tested five different target lengths of air column, namely
[40, 50, 60, 70, 80] mm. We carried out five robot experiments on each audio and target
length condition.

As visualized in Figure 7.11, MP-Net has a substantial advantage over AP-Net when
SNRdB = −5, which further indicates the advantages of multimodal fusion. In this ex-
periment, we also tested AP-Net* under different noise conditions. AP-Net* performed

96

7.5. Robotic Experiments

Height 1: 310 mm

Height 2: 260 mm

Height 3: 210 mm

Height 4: 160 mm

Figure 7.10: Visualization of different pouring heights.

well while SNRdB ≥ 10, but when SNRdB < 10, the robot either stopped pouring im-
mediately or overfilled the target containers. Therefore we did not list the experiment
results of AP-Net* tested on audio with SNRdB < 10.

7.5.5 Evaluation of Varying Positions of Noise Source
To assess whether MP-Net is sensitive to the direction of the noise source, we set up six
different position combinations [1&1, 2&2, 3&3, 4&4, 2&4, 1&3] of the two loudspeak-
ers. The two loudspeakers played a synthetic SNRdB =5 noise signal at each position.
We used the target container 2 and a desired air column length of 40 mm. The other
experimental setup was the same as in the evaluations of the different target containers.
Then at each combined position of the two loudspeakers, we poured water five times.
As shown in Figure 7.12(b), when the loudspeakers are at position 1&1, both models
perform best as the loudspeakers are behind the microphone. MP-Net generalizes better
than AP-Net to the different positions of the loudspeakers due to the lower consistent
mean height errors among all tested positions.

97

Chapter 7. Robust Robotic Pouring using Audition and Haptics

−5 0 5 10 15 20
SNRdB

40

50

60

70

80
Po

ur
ed

 le
ng

th
 Ĥ

a (
m

m
)

MP-Net

−5 0 5 10 15 20
SNRdB

AP-Net

10 15 20
SNRdB

AP-Net*

Figure 7.11: Robot experiment results of the performance of MP-Net, AP-Net, and AP-Net* in
environments with different levels of noise (measured by SNRdB). We evaluate with five dif-
ferent target liquid heights and the results are demonstrated in five different colors, respectively.
The dashed lines represent the desired lengths of the air column, while the solid dots (with error
bars) show the actual ones when the pouring terminates.

UR5

23

4 1

 loudspeaker positions

cup

mic

 UR5 control box

(a)
1&1 3&3 2&2 4&4 2&4 1&30

5

10

15

20

25

30

35

M
ea

n
Le

ng
th

 E
rro

r (
m

m
)

MP-Net
AP-Net

(b)

Figure 7.12: Evaluation of varying positions of noise source. (a) Schematic diagram of four
different loudspeaker positions relative to the target containers, the UR5 robot position, and
the control box of the UR5 robot (top view). (b) Evaluation results of six combinations of two
loudspeakers positions shown in (a).

7.5.6 Evaluation of Varying Initial Liquid Height
In this experiment, we poured water into the target container 2, starting from five dif-
ferent initial liquid heights [0, 10, 20, 30, 40] mm. We tested five times from each ini-
tial level. We put two loudspeakers at 1&1 positions and kept the other test setups the
same as in the evaluations of the varying direction of noise sources. The results in Fig-

98

7.5. Robotic Experiments

0 10 20 30 400

5

10

15

20

25

30

35
M

ea
n

Le
ng

th
 E

rro
r (

m
m

)
MP-Net
AP-Net

(a)

Water Orange Milk0

5

10

15

20

25

30

35 MP-Net
AP-Net

(b)
PR2 Piano Voice0

5

10

15

20

25

30

35 MP-Net
AP-Net

(c)

Figure 7.13: Evaluation results of (a) varying initial heights of the source container, (b) different
types of liquids and (c) different types of noise sources. In these experiments, the SNRdB was
set to 5 dB. The target height Ha was set to 40 mm.

ure 7.13(a) demonstrate that MP-Net is again more robust than AP-Net. Force and torque
data yield a meaningful indication of how much water was poured out.

7.5.7 Evaluation of Different Types of Liquid
We conducted pouring experiments with different liquids: pure water, orange juice and
1.8% fat milk. These liquid have different physical properties regarding density and
viscosity. We used the same experimental setting as in the evaluations of different mi-
crophone positions and poured each type of liquid for five times. As manifested in
Figure 7.13(b), MP-Net can generalize to common household liquids like water and
orange juice while AP-Net cannot handle the task of pouring orange juice well under
SNRdB = 5. However, similar to [71], due to the high viscosity of milk which makes
the pouring sound very low, both models cannot generate correct height predictions.

7.5.8 Evaluation of Different Types of Noise Sources
We also assessed our model with three noise types: PR2 robot noise, human voices and
a continuous piece of piano music. The human voice is represented by discrete sounds
of a man counting numbers in English. We poured water under each type of noise five
times. All experimental settings were the same as in the evaluations of different types
of liquid. Figure 7.13(c) shows that MP-Net is not affected by different noise types, but
the accuracy of AP-Net has a small fluctuation under a musical disturbance.

99

Chapter 7. Robust Robotic Pouring using Audition and Haptics

Δℎ𝑟Δ𝑚
Figure 7.14: Schematic diagram of a symmetric container. In a specified time interval ∆t, the
change in mass ∆m can be determined by the F/T sensor and the change in height ∆h can be
derived through MP-Net. Then the radius r at each height can be calculated to form an edge-
profile of this container.

7.5.9 Shape Prediction of Target Containers
In this section, we applied MP-Net to predict the shape of symmetric target containers.
In this case, the edge profile is sufficient to describe the shape of the containers, which
is determined by the correlation between height and radius [55]. Figure 7.14 shows a
volume profile filled with liquid of density ρ, where ∆V,∆m,∆h are the poured liquid
volume, and the weight and liquid height differences during a time interval ∆t respec-
tively. Assuming that ∆t is very small, then ∆m can be calculated by approximating the
shape of ∆V as a cylinder,

∆m = ρ∆V

= ρπr2∆h
(7.7)

We can determine ∆m by the (fx, fy, fz) values from the force/torque sensor and ∆h

through our neural network output Ĥa. In the robot experiments, the frequency of ∆m
and Ĥa was 500 Hz and 12 Hz, respectively. To get a smooth and accurate estimation of
the container shape, we used a quadratic function to fit the scatter points,

r(h) ≈

√
∆m

∆h

1

ρπ
(7.8)

For target containers 1, 2, 4, 5, 6, 7, we conducted five trials of the experiment in which
the robot pours into these target containers. We recorded the real-time estimation of Ĥa

and force data into a rosbag. When the target container was filled to about 90% of its
total height, we stopped the pouring and the recording. Using the data from these ros-
bags, we calculated the edge-profiles of the target containers. In Figure 7.15, the thick
black curves are the ground truth profiles, while five colored curves around black curves
depict the experimental results. The magenta area in the middle of each target container
visualizes the mean error of the radius prediction. As expected, the mean radius estima-
tion error is highest for an empty container, when our recursive network cannot yet rely

100

7.6. Discussion and Summary

−40 −20 0 20 40
Radius r (mm)

0

20

40

60

80

100

120

He
ig

ht
 h

 (m
m

)

Container 1

−40 −20 0 20 40
Radius r (mm)

Container 2

−40 −20 0 20 40
Radius r (mm)

Container 4

−40 −20 0 20 40
Radius r (mm)

0

20

40

60

80

100

120

He
ig

ht
 h

 (m
m

)

Container 5

−40 −20 0 20 40
Radius r (mm)

Container 6

−40 −20 0 20 40
Radius r (mm)

Container 7

Figure 7.15: Prediction result of estimating the target container shape. The black curve is the
ground truth, while the five different colored curves are the estimated target container shape in
five trials. The mean error of the estimated container radius at different heights is plotted in the
middle of each subplot (the shaded magenta area).

on its memory but stabilizes as the liquid level rises. Due to the restriction to quadratic
functions, the reconstruction works best for containers with low edge curvature (such as
containers 1, 7).

7.6 Discussion and Summary
In this chapter, we motivate the need for robust robotic pouring by combining audio
and haptic information. We recorded a robot pouring dataset that includes 300 complete
pouring sequences with audio and force/torque data. We propose a novel audio-haptic
recurrent deep network (MP-Net) trained on this dataset that predicts liquid height in
real-time.

The multimodal perception algorithm is systematically tested across four baselines
and a wide range of robotic pouring experiments. The results substantiate that MP-Net
is quite robust against noise and against changes in different tasks and varying environ-

101

Chapter 7. Robust Robotic Pouring using Audition and Haptics

ments. Finally, the multimodal nature of our network lets us reconstruct the shape of the
target container. The dataset and associated software are public and are available1.

One limitation of our approach is the poor generalization to liquids like milk or
fruit juices, which would be considered quite similar to water by many humans, while
the pouring noises are actually quite different. Training on different liquid types would
improve network performance, but MP-Net will still fail in situations where the auditory
signal is too weak. Another issue is our use of raw force/torque data as the network input,
which changes significantly for different grasp types and pouring motions. This could
be resolved by training on many grasps, or simply by feeding the preprocessed weight
data into the network.

For future work, using audio and haptic information for dynamic control of robotic
pouring would be an exciting research direction.

1https://lianghongzhuo.github.io/MultimodalPouring

102

https://lianghongzhuo.github.io/MultimodalPouring

Chapter 8

Conclusion and Future Work

This thesis studied two important robotic tasks in everyday life, grasping and pouring.
The two robotic tasks can then be used to compose a complex service robot task, i.e.,
serving a human user drinks.

In detail, the target defined in Section 1.2 can be concluded as five sub-goals which
are discussed in Section 8.1. Section 8.2 presents the limitation of this thesis, and Sec-
tion 8.3 lists the future work the author will do to enhance robotic perception and robotic
skill learning.

8.1 Achievements
The drink-serving robot task can be divided into five sub-tasks:

• Improved grasp pose generation method. An improved grasp pose generation
method is proposed. The proposed grasp pose generation improves the grasp gen-
eration to generate more grasp candidates in the graspable region of cluttered
space. The versatile grasp candidates give the grasp evaluate network more chance
to find better grasps. The robotic experiment also proves that our improved grasp
candidates generation method can achieve an overall better grasp success rate in
a fair comparison using the same grasp evaluation network.

• Grasp evaluation network to improve grasp evaluation results. With a handy
yet powerful grasp generation algorithm. The grasp evaluation network PointNet-
GPD is proposed to rank the grasp quality. The grasp evaluation network is based
on PointNet, which takes pure point cloud as input and a local frame grasp rep-
resentation. Robot experiments show that PointNetGPD can better evaluate grasp
candidates even in a dense clutter with single-viewed point cloud input. A further
experiment shows that a shape completion network in the grasp generation loop
can also improve the grasp success rate.

• Multifingered grasping based on RL and multimodal inputs. The multifin-
gered grasping is also studied. We train the whole multifingered grasp skill in
simulation and conduct real robot experiments. The agent in the simulator takes

103

Chapter 8. Conclusion and Future Work

tactile, torque, and joint proprioception as observation and is trained by the PPO
algorithm. The action space is simplified with PCA dimension reduction to sim-
plify the task. The real robot experiment shows that multimodal inputs can help
learn multifingered grasping, and the agent trained in the simulation can success-
fully transfer to the real robot.

• Audio-based network for robot audio pouring height estimation. To pour liq-
uid without the help of a vision sensor, audio perception is studied to make sense
and retrieve real-time liquid height perception. With the help of a large human
pouring dataset that contains multimodal information, we use the audio sensing
and a LSTM network for liquid height perception. The robot experiment shows
that audio can get a precise liquid height perception in a quiet environment.

• Multimodal robot pouring height perception based on audio and force/torque
sensing. To further make the audio pouring perception robust to environment
noise and other disturbance, a multimodal pouring height perception network is
proposed that uses audio and force/torque. With the augmentation of the audio
training set with noise and the help of force/torque data, the multimodal network
can make liquid height perception even in a noisy environment.

The main takeaway of this thesis is that the author solved both the robotic grasping
(Chapter 3, 4, 5) and the pouring perception task (Chapter 6, 7) using multimodal neural
networks. This proves that multimodal information can be more robust to environmental
uncertainty. In the end, by combining the above five achievements, a demo of the PR2
robot grasp bottle and pouring liquid is shown in Figure 8.1.

Audio
pouring

RL-based
multifingred

grasping

Audio and
force/torque

pouring

GPG
improvments

Grasp evaluation
network

PointNetGPG

Figure 8.1: Combining five achievements made by this thesis, the PR2 robot serves a drink to a
user. The whole task includes grasping and pouring.

104

8.2. Limitations

8.2 Limitations
Even though this thesis has accomplished many achievements, there is still space for
improvement. These limitations will prevent a more autonomous drinking system not
addressed in this thesis.

The semantic understanding of the environment is missing. Semantics is the concepts
represented by the things in the real world. With semantic understanding, the robot can
find the position of the target container and source container autonomously without
having to hard code it.

Our multifingered grasping work handles grasp very well, but using a dexterous hand
to do tool-using is much more interesting and valuable, such as using a screwdriver.
Furthermore, the simulator used for RL agent training is CPU-based. Changing to a
GPU-based simulator like Isaac Gym would accelerate the training speed and try more
hyperparameters for better training results.

In the robotic pouring height estimation part, the audio-based method highly relies
on the input audio quality. Even though we have improved the audio-based network with
a multimodal network, an obvious limitation is that these audio-based methods cannot
be utilized when the pouring motion generates only weak sound.

8.3 Future Work
There are a lot can be done to do to enhance the thesis topic:

• Add semantic understanding for the service robot. To make the robot under-
stand what to do and how to do it by letting the robot understand the environment
would be interesting. The service robot would be more intelligent if it could un-
derstand where it is located, what task the user wants it to do, and how.

• Make the service robot learning more interesting and challenging tasks. Af-
ter grasping the object properly, the service robot is more useful if it can play
with the grasped object. Learning in-hand dexterous manipulation skills would be
very useful, as shown in Figure 8.2. In the figure, we plan to make the robot do
more challenging tasks like using a power drill and screwdriver, playing the guitar
and wipe the table. Some tasks are hard to accomplish using only one arm, it is
necessary to study the problem of dual arm manipulation.

• Add more sensor modalities in robotic pouring estimation. Our current robotic
pouring estimation method lacks vision sensing. It would be beneficial for a robot
to estimate the liquid height using vision sensing and other modalities, such as
pouring liquid with high viscosity.

• Integrate a container classification network in height estimation. As differ-
ent liquid types have different sounds, training a classification network to classify
liquid type from the audio is also possible. This result may also help the general-
ization of the liquid height estimation network.

105

Chapter 8. Conclusion and Future Work

Figure 8.2: Examples of the future work of this thesis, robotic tool using, guitar playing and
wipe the table.

• Learning robot pouring motion that can adjust with environmental change.
Current robotic pouring motion assumes that the target container position is fixed.
Using the force, motion trajectories, and visual data from our multimodal dataset
and studying the complementarity and interaction between multiple modalities in
robotic pouring would also be an exciting direction of future research.

106

Appendix A

List of Abbreviations

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

DDPG Deep Deterministic Policy Gradient

DoF Degree of Freedom

FC Fully-connected

GRU Gated Recurrent Unit

GUI Graphical User Interface

GWS Grasp Wrench Space

HMM Hidden Markov Model

ICP Iterative Closest Point

IL Imitation Learning

LfD Learning from Demonstration

107

Appendix A. Abbreviations

LSTM Long Short-Term Memory

MDP Markov Decision Process

MLP Multi-Layer Perception

MSE Mean Squared Error

NLP Natural Language Processing

PCA Principal Component Analysis

PID proportional-integral-derivative

PPO Proximal Policy Optimization

RL Reinforcement Learning

RMS Root Mean Square

RNN Recurrent Neural Network

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping

STFT Short-Time Fourier Transform

URDF Unified Robot Description Format

108

Appendix B

Publications

Below are all the publications published during my PhD study, sorted by publication
date.

[1] Hongzhuo Liang, Lin Cong, Norman Hendrich, Shuang Li, Fuchun Sun, and Jian-
wei Zhang. Multifingered grasping based on multimodal reinforcement learning.
IEEE Robotics and Automation Letters (RA-L), 7(2):1174–1181, Apr. 2022.

[2] Lin Cong, Hongzhuo Liang, Philipp Ruppel, Yunlei Shi, Michael Görner, Norman
Hendrich, and Jianwei Zhang. Reinforcement learning with vision-proprioception
model for robot planar pushing. Frontiers in Neurorobotics, Jan. 2022.

[3] Wenkai Chen, Hongzhuo Liang, Zhaopeng Chen, Fuchun Sun, and Jianwei
Zhang. Improving object grasp performance via transformer-based sparse shape
completion. Journal of Intelligent & Robotic Systems, 104(45), 2022.

[4] Hongzhuo Liang, Chuangchuang Zhou, Shuang Li, Xiaojian Ma, Norman Hen-
drich, Timo Gerkmann, Fuchun Sun, and Jianwei Zhang. Robust robotic pouring
using audition and haptics. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 10880–10887, Nov. 2020.

[5] Lin Cong, Michael Görner, Philipp Ruppel, Hongzhuo Liang, Norman Hendrich,
and Jianwei Zhang. Self-adapting recurrent models for object pushing from learn-
ing in simulation. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5304–5310, 2020.

[6] Shuang Li, Jiaxi Jiang, Philipp Ruppel, Hongzhuo Liang, Xiaojian Ma, Norman
Hendrich, Fuchun Sun, and Jianwei Zhang. A mobile robot hand-arm teleoperation
system by vision and IMU. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 10900–10906, 2020.

[7] Jinpeng Mi, Hongzhuo Liang, Nikolaos Katsakis, Song Tang, Qingdu Li, Chang-
shui Zhang, and Jianwei Zhang. Intention-related natural language grounding via

109

Appendix B. Publications

object affordance detection and intention semantic extraction. Frontiers in Neuro-
robotics, 14:1–12, 2020.

[8] Hongzhuo Liang, Xiaojian Ma, Shuang Li, Michael Görner, Song Tang, Bin Fang,
Fuchun Sun, and Jianwei Zhang. PointNetGPD: Detecting grasp configurations
from point sets. In IEEE International Conference on Robotics and Automation
(ICRA), pages 3629–3635, Nov. 2019.

[9] Shuang Li, Xiaojian Ma, Hongzhuo Liang, Michael Görner, Philipp Ruppel, Bing
Fang, Fuchun Sun, and Jianwei Zhang. Vision-based teleoperation of shadow dex-
terous hand using end-to-end deep neural network. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 416–422, May. 2019.

[10] Zhen Deng, Haojun Guan, Rui Huang, Hongzhuo Liang, Liwei Zhang, and Jian-
wei Zhang. Combining model-based Q-learning with structural knowledge trans-
fer for robot skill learning. IEEE Transactions on Cognitive and Developmental
Systems, 11(1):26–35, 2019.

[11] Hongzhuo Liang, Shuang Li, Xiaojian Ma, Norman Hendrich, Timo Gerkmann,
Fuchun Sun, and Jianwei Zhang. Making sense of audio vibration for liquid height
estimation in robotic pouring. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5333–5339, 2019.

[12] Shuang Li, Hongzhuo Liang, and Jianwei Zhang. Path planning for wheeled mo-
bile service robots based on improved genetic algorithm. In Shanghai International
Symposium on Human-Centered Robotics (HCR), pages 249–252, 2018.

[13] Hongzhuo Liang, Shuang Li, Michael Görner, and Jianwei Zhang. Generating
robust grasps for unknown objects in clutter using point cloud data. In Shanghai
International Symposium on Human-Centered Robotics (HCR), pages 298–301,
2018.

110

Appendix C

Acknowledgements

Jianwei

Stefan
Timo

D
a
d
s

Moms

Shuang

Norman

Lu UHH

Michael

Florens

C
h
a
o

Zhaopeng

XiaojianJinpeng

Z
h
e
n

Lin

Jianzhi

SongGe

Philipp

Wiebke

Bernd

Andreas

Chuang

Yihong

Sam
Y
u
y
a
n
g

Daniel

Marc

Yunlei

Margarete

DieterHamburg

Wenkai

N
i
k
l
a
s

Jiaxi

Yannick

Di

C
h
a
o
b
i
n

G
e
r
m
a
n

Bo

Aimen

Eugen

Hannes

Junhu

Denis

Yanzi D
a
n

Q
i
n
g
d
u

Hao

111

Appendix C. Acknowledgements

112

Bibliography

Bibliography
[1] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. My lips are

concealed: Audio-visual speech enhancement through obstructions. In IN-
TERSPEECH, pages 4295–4299, 2019. doi:10.21437/Interspeech.
2019-3114.

[2] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefow-
icz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn
Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder,
Lilian Weng, and Wojciech Zaremba. Learning dexterous in-hand manipula-
tion. The International Journal of Robotics Research (IJRR), 39(1):3–20, 2020.
doi:10.1177/0278364919887447.

[3] Tim Baier-Löwenstein. Lernen der Handhabung von Alltagsgegenständen im
Kontext eines Service-Roboters. PhD thesis, Universität Hamburg, 2008. URL:
https://ediss.sub.uni-hamburg.de/handle/ediss/2192.

[4] Tim Baier-Löwenstein and Jianwei Zhang. Learning to grasp everyday objects
using reinforcement-learning with automatic value cut-off. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 1551–1556,
2007. doi:10.1109/IROS.2007.4399053.

[5] Alexandre Bernardino, Marco Henriques, Norman Hendrich, and Jianwei Zhang.
Precision grasp synergies for dexterous robotic hands. In IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages 62–67, 2013. doi:
10.1109/ROBIO.2013.6739436.

[6] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-
driven grasp synthesis — a survey. IEEE Transactions on Robotics (T-RO),
30(2):289–309, 2013. doi:10.1109/TRO.2013.2289018.

[7] Christoph Borst, Max Fischer, and Gerd Hirzinger. Grasping the dice by dic-
ing the grasp. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 4, pages 3692–3697, 2003. doi:10.1109/IROS.
2003.1249729.

[8] Samarth Brahmbhatt, Ankur Handa, James Hays, and Dieter Fox. ContactGrasp:
Functional multi-finger grasp synthesis from contact. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2386–2393, 2019.
doi:10.1109/IROS40897.2019.8967960.

[9] Sascha Brandi, Oliver Kroemer, and Jan Peters. Generalizing pouring actions be-
tween objects using warped parameters. In IEEE-RAS International Conference
on Humanoid Robots (Humanoids), pages 616–621, 2014. doi:10.1109/
HUMANOIDS.2014.7041426.

113

https://doi.org/10.21437/Interspeech.2019-3114
https://doi.org/10.21437/Interspeech.2019-3114
https://doi.org/10.1177/0278364919887447
https://ediss.sub.uni-hamburg.de/handle/ediss/2192
https://doi.org/10.1109/IROS.2007.4399053
https://doi.org/10.1109/ROBIO.2013.6739436
https://doi.org/10.1109/ROBIO.2013.6739436
https://doi.org/10.1109/TRO.2013.2289018
https://doi.org/10.1109/IROS.2003.1249729
https://doi.org/10.1109/IROS.2003.1249729
https://doi.org/10.1109/IROS40897.2019.8967960
https://doi.org/10.1109/HUMANOIDS.2014.7041426
https://doi.org/10.1109/HUMANOIDS.2014.7041426

Bibliography

[10] Peter Brook, Matei Ciocarlie, and Kaijen Hsiao. Collaborative grasp plan-
ning with multiple object representations. In IEEE International Conference on
Robotics and Automation (ICRA), pages 2851–2858, 2011. doi:10.1109/
ICRA.2011.5980490.

[11] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel,
and Aaron M. Dollar. The YCB object and model set: Towards common bench-
marks for manipulation research. In IEEE International Conference on Ad-
vanced Robotics (ICAR), pages 510–517, 2015. doi:10.1109/ICAR.2015.
7251504.

[12] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. ShapeNet: An information-rich 3D model repository. arXiv preprint
arXiv:1512.03012, 2015.

[13] Yevgen Chebotar, Karol Hausman, Zhe Su, Gaurav S Sukhatme, and Stefan
Schaal. Self-supervised regrasping using spatio-temporal tactile features and
reinforcement learning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1960–1966, 2016. doi:10.1109/IROS.
2016.7759309.

[14] Wenkai Chen, Hongzhuo Liang, Zhaopeng Chen, Fuchun Sun, and Jianwei
Zhang. Improving object grasp performance via transformer-based sparse shape
completion. Journal of Intelligent & Robotic Systems, 104(45), 2022. doi:
10.1007/s10846-022-01586-4.

[15] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3D ob-
ject detection network for autonomous driving. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6526–6534, 2017.
doi:10.1109/CVPR.2017.691.

[16] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches.
In 8th Workshop on Syntax, Semantics and Structure in Statistical Translation
(SSST-8), pages 103–111, 2014.

[17] HeeSun Choi, Cindy Crump, Christian Duriez, Asher Elmquist, Gregory Hager,
David Han, Frank Hearl, Jessica Hodgins, Abhinandan Jain, Frederick Leve,
Chen Li, Franziska Meier, Dan Negrut, Ludovic Righetti, Alberto Rodriguez,
Jie Tan, and Jeff Trinkle. On the use of simulation in robotics: Opportunities,
challenges, and suggestions for moving forward. Proceedings of the National
Academy of Sciences, 118(1), 2021. doi:10.1073/pnas.1907856118.

[18] Matei Ciocarlie, Corey Goldfeder, and Peter K. Allen. Dimensionality reduc-
tion for hand-independent dexterous robotic grasping. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3270–3275, 2007.
doi:10.1109/IROS.2007.4399227.

114

https://doi.org/10.1109/ICRA.2011.5980490
https://doi.org/10.1109/ICRA.2011.5980490
https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.1109/IROS.2016.7759309
https://doi.org/10.1109/IROS.2016.7759309
https://doi.org/10.1007/s10846-022-01586-4
https://doi.org/10.1007/s10846-022-01586-4
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1073/pnas.1907856118
https://doi.org/10.1109/IROS.2007.4399227

Bibliography

[19] Matei T Ciocarlie and Peter K. Allen. Hand posture subspaces for dexterous
robotic grasping. The International Journal of Robotics Research, 28(7):851–
867, 2009. doi:doi.org/10.1177/0278364909105606.

[20] Samuel Clarke, Travers Rhodes, Christopher G. Atkeson, and Oliver Kroemer.
Learning audio feedback for estimating amount and flow of granular material. In
Conference on Robot Learning (CoRL), pages 529–550, 2018.

[21] David Coleman, Sachin Chitta, and Nikolaus Correll. Reducing the barrier to
entry of complex robotic software: a MoveIt! case study. Journal of Software
Engineering for Robotics, pages 3–16, 2014.

[22] Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard. A review
of physics simulators for robotic applications. IEEE Access, 9:51416–51431,
2021. doi:10.1109/ACCESS.2021.3068769.

[23] Enric Corona, Albert Pumarola, Guillem Alenya, Francesc Moreno-Noguer, and
Gregory Rogez. GanHand: Predicting human grasp affordances in multi-object
scenes. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5031–5041, 2020. doi:10.1109/CVPR42600.2020.
00508.

[24] Zhen Deng. Integrating Perception and Optimization for Dexterous Grasping
and Manipulation. PhD thesis, Universität Hamburg, 2019. URL: https://
ediss.sub.uni-hamburg.de/handle/ediss/6122.

[25] Zhen Deng, Bin Fang, Bingwei He, and Jianwei Zhang. An adaptive planning
framework for dexterous robotic grasping with grasp type detection. Robotics and
Autonomous Systems, 140:103727, 2021. doi:10.1016/j.robot.2021.
103727.

[26] Rosen Diankov and James Kuffner. OpenRAVE: A planning architecture for
autonomous robotics. Robotics Institute, Pittsburgh, PA, Technical Report CMU-
RI-TR-08-34, 2008.

[27] Chau Do and Wolfram Burgard. Accurate pouring with an autonomous robot
using an RGB-D camera. In Intelligent Autonomous Systems (IAS), pages 210–
221, 2019. doi:10.1007/978-3-030-01370-7_17.

[28] Chau Do, Camilo Gordillo, and Wolfram Burgard. Learning to pour using deep
deterministic policy gradients. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 3074–3079, 2018. doi:10.1109/
IROS.2018.8593654.

[29] Chau Do, Tobias Schubert, and Wolfram Burgard. A probabilistic approach to
liquid level detection in cups using an RGB-D camera. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2075–2080, 2016.
doi:10.1109/IROS.2016.7759326.

115

https://doi.org/doi.org/10.1177/0278364909105606
https://doi.org/10.1109/ACCESS.2021.3068769
https://doi.org/10.1109/CVPR42600.2020.00508
https://doi.org/10.1109/CVPR42600.2020.00508
https://ediss.sub.uni-hamburg.de/handle/ediss/6122
https://ediss.sub.uni-hamburg.de/handle/ediss/6122
https://doi.org/10.1016/j.robot.2021.103727
https://doi.org/10.1016/j.robot.2021.103727
https://doi.org/10.1007/978-3-030-01370-7_17
https://doi.org/10.1109/IROS.2018.8593654
https://doi.org/10.1109/IROS.2018.8593654
https://doi.org/10.1109/IROS.2016.7759326

Bibliography

[30] Chenyu Dong, Masaru Takizawa, Shunsuke Kudoh, and Takashi Suehiro. Preci-
sion pouring into unknown containers by service robots. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 5875–5882,
2019. doi:10.1109/IROS40897.2019.8967911.

[31] Guoguang Du, Kai Wang, Shiguo Lian, and Kaiyong Zhao. Vision-based robotic
grasping from object localization, object pose estimation to grasp estimation for
parallel grippers: a review. Artificial Intelligence Review, 54(3):1677–1734, 2021.
doi:10.1007/s10462-020-09888-5.

[32] Christof Elbrechter, Jonathan Maycock, Robert Haschke, and Helge Ritter. Dis-
criminating liquids using a robotic kitchen assistant. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 703–708, 2015.
doi:10.1109/IROS.2015.7353449.

[33] Yongxiang Fan, Te Tang, Hsien-Chung Lin, and Masayoshi Tomizuka. Real-
time grasp planning for multi-fingered hands by finger splitting. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4045–
4052, 2018. doi:10.1109/IROS.2018.8594369.

[34] Thomas Feix, Javier Romero, Heinz-Bodo Schmiedmayer, Aaron M. Dollar, and
Danica Kragic. The grasp taxonomy of human grasp types. IEEE Transactions on
Human-Machine Systems, 46(1):66–77, 2016. doi:10.1109/THMS.2015.
2470657.

[35] Fanny Ficuciello, Pietro Falco, and Sylvain Calinon. A brief survey on the role
of dimensionality reduction in manipulation learning and control. IEEE Robotics
and Automation Letters (RA-L), 3(3):2608–2615, 2018. doi:10.1109/LRA.
2018.2818933.

[36] Fanny Ficuciello, A. Migliozzi, G. Laudante, Pietro Falco, and Bruno Sicil-
iano. Vision-based grasp learning of an anthropomorphic hand-arm system in
a synergy-based control framework. Science Robotics, 4(26), 2019. doi:
10.1126/scirobotics.aao4900.

[37] Fanny Ficuciello, Damiano Zaccara, and Bruno Siciliano. Synergy-based policy
improvement with path integrals for anthropomorphic hands. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 1940–1945,
2016. doi:10.1109/IROS.2016.7759306.

[38] Anthony P. French. In vino veritas: A study of wineglass acoustics. American
Journal of Physics, pages 688–694, 1983.

[39] Eric Gaba. Minimal surface curvature planes — Wikipedia, the free
encyclopedia, 2006. [Online; accessed 20-December-2021]. URL:
https://en.wikipedia.org/wiki/File:Minimal_surface_
curvature_planes-en.svg.

116

https://doi.org/10.1109/IROS40897.2019.8967911
https://doi.org/10.1007/s10462-020-09888-5
https://doi.org/10.1109/IROS.2015.7353449
https://doi.org/10.1109/IROS.2018.8594369
https://doi.org/10.1109/THMS.2015.2470657
https://doi.org/10.1109/THMS.2015.2470657
https://doi.org/10.1109/LRA.2018.2818933
https://doi.org/10.1109/LRA.2018.2818933
https://doi.org/10.1126/scirobotics.aao4900
https://doi.org/10.1126/scirobotics.aao4900
https://doi.org/10.1109/IROS.2016.7759306
https://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg
https://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg

Bibliography

[40] Shane Griffith, Vladimir Sukhoy, Todd Wegter, and Alexander Stoytchev. Object
categorization in the sink: Learning behavior-grounded object categories with wa-
ter. In ICRA Workshop on Semantic Perception, Mapping and Exploration, 2012.

[41] Di Guo, Tao Kong, Fuchun Sun, and Huaping Liu. Object discovery and grasp
detection with a shared convolutional neural network. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2038–2043, 2016. doi:
10.1109/ICRA.2016.7487351.

[42] Di Guo, Fuchun Sun, Bin Fang, Chao Yang, and Ning Xi. Robotic grasping
using visual and tactile sensing. Information Sciences, 417:274–286, 2017. doi:
10.1016/j.ins.2017.07.017.

[43] Junhu He. Robotic In-hand Manipulation with Push and Support Method.
PhD thesis, Universität Hamburg, 2017. URL: https://ediss.sub.
uni-hamburg.de/handle/ediss/7359.

[44] Junhu He and Jianwei Zhang. Push resistance in in-hand manipulation. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2488–2493, 2014. doi:10.1109/IROS.2014.6942901.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016. doi:10.1109/CVPR.
2016.90.

[46] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic, Kurt Kono-
lige, Nassir Navab, and Vincent Lepetit. Multimodal templates for real-time
detection of texture-less objects in heavily cluttered scenes. In IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 858–865, 2011. doi:
10.1109/ICCV.2011.6126326.

[47] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N.
Sainath, and Brian Kingsbury. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Sig-
nal Processing Magazine, 29(6):82–97, 2012. doi:10.1109/MSP.2012.
2205597.

[48] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735.

[49] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger.
Densely connected convolutional networks. In IEEE/CVF Conference on com-
puter vision and pattern recognition (CVPR), pages 2261–2269, 2017. doi:
10.1109/CVPR.2017.243.

117

https://doi.org/10.1109/ICRA.2016.7487351
https://doi.org/10.1109/ICRA.2016.7487351
https://doi.org/10.1016/j.ins.2017.07.017
https://doi.org/10.1016/j.ins.2017.07.017
https://ediss.sub.uni-hamburg.de/handle/ediss/7359
https://ediss.sub.uni-hamburg.de/handle/ediss/7359
https://doi.org/10.1109/IROS.2014.6942901
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2011.6126326
https://doi.org/10.1109/ICCV.2011.6126326
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243

Bibliography

[50] Yongqiang Huang and Yu Sun. Learning to pour. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 7005–7010, 2017.
doi:10.1109/IROS.2017.8206626.

[51] Yongqiang Huang and Yu Sun. A dataset of daily interactive manipulation. The
International Journal of Robotics Research (IJRR), pages 879–886, 2019. doi:
10.1177/0278364919849091.

[52] Sakiko Ikeno, Ryo Watanabe, Ryuta Okazaki, Taku Hachisu, Michi Sato, and
Hiroyuki Kajimoto. Change in the amount poured as a result of vibration when
pouring a liquid. In Haptic Interaction, pages 7–11. Springer, 2015.

[53] Stephen James, Marc Freese, and Andrew J. Davison. PyRep: Bringing V-REP
to deep robot learning. arXiv preprint arXiv:1906.11176, 2019.

[54] Liyiming Ke, Jingqiang Wang, Tapomayukh Bhattacharjee, Byron Boots, and
Siddhartha Srinivasa. Grasping with chopsticks: Combating covariate shift in
model-free imitation learning for fine manipulation. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages 6185–6191, 2021. doi:
10.1109/ICRA48506.2021.9561662.

[55] Monroe Kennedy, Karl Schmeckpeper, Dinesh Thakur, Chenfanfu Jiang, Vijay
Kumar, and Kostas Daniilidis. Autonomous precision pouring from unknown
containers. IEEE Robotics and Automation Letters (RA-L), 4(3):2317–2324,
2019. doi:10.1109/LRA.2019.2902075.

[56] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimiza-
tion. In International Conference for Learning Representations (ICLR), 2015.

[57] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In In-
ternational Conference for Learning Representations (ICLR), 2014.

[58] David Kirkpatrick, Bhubaneswar Mishra, and Chee-Keng Yap. Quantitative
Steinitz’s theorems with applications to multifingered grasping. Discrete & Com-
putational Geometry, 7(3):295–318, 1992. doi:10.1007/BF02187843.

[59] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), volume 3, pages 2149–2154, 2004.
doi:10.1109/IROS.2004.1389727.

[60] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), pages 1097–1105, 2012.

[61] Visak Kumar, Tucker Hermans, Dieter Fox, Stan Birchfield, and Jonathan Trem-
blay. Contextual reinforcement learning of visuo-tactile multi-fingered grasping
policies. In NeurIPS Workshop on Robot Learning: Control and Interaction in
the Real World, 2019.

118

https://doi.org/10.1109/IROS.2017.8206626
https://doi.org/10.1177/0278364919849091
https://doi.org/10.1177/0278364919849091
https://doi.org/10.1109/ICRA48506.2021.9561662
https://doi.org/10.1109/ICRA48506.2021.9561662
https://doi.org/10.1109/LRA.2019.2902075
https://doi.org/10.1007/BF02187843
https://doi.org/10.1109/IROS.2004.1389727

Bibliography

[62] Joshua D. Langsfeld, Krishnanand N. Kaipa, Rodolphe J. Gentili, James A. Reg-
gia, and Satyandra K. Gupta. Incorporating failure-to-success transitions in imi-
tation learning for a dynamic pouring task. In Workshop on Compliant Manipu-
lation: Challenges and Control, Chicago, IL, 2014.

[63] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998. doi:10.1109/5.726791.

[64] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco
Hutter. Learning quadrupedal locomotion over challenging terrain. Science
robotics, 5(47), 2020. doi:10.1126/scirobotics.abc5986.

[65] Michelle A. Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese,
Li Fei-Fei, Animesh Garg, and Jeannette Bohg. Making sense of vision and
touch: Self-supervised learning of multimodal representations for contact-rich
tasks. In IEEE International Conference on Robotics and Automation (ICRA),
pages 8943–8950, 2019. doi:10.1109/ICRA.2019.8793485.

[66] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting robotic
grasps. The International Journal of Robotics Research (IJRR), 34(4-5):705–724,
2015. doi:10.1177/0278364914549607.

[67] Jiaxin Li, Ben M Chen, and Gim Hee Lee. SO-Net: Self-organizing network for
point cloud analysis. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9397–9406, 2018. doi:10.1109/CVPR.2018.
00979.

[68] Miao Li, Kaiyu Hang, Danica Kragic, and Aude Billard. Dexterous grasping
under shape uncertainty. Robotics and Autonomous Systems, 75:352–364, 2016.
doi:10.1016/j.robot.2015.09.008.

[69] Hongzhuo Liang, Lin Cong, Norman Hendrich, Shuang Li, Fuchun Sun, and Jian-
wei Zhang. Multifingered grasping based on multimodal reinforcement learn-
ing. IEEE Robotics and Automation Letters (RA-L), 7(2):1174–1181, 2022.
doi:10.1109/LRA.2021.3138545.

[70] Hongzhuo Liang, Shuang Li, Michael Görner, and Jianwei Zhang. Generating
robust grasps for unknown objects in clutter using point cloud data. In Shang-
hai International Symposium on Human-Centered Robotics (HCR), pages 298–
301, 2018. URL: https://dl.acm.org/doi/10.5555/3281667.
3281730.

[71] Hongzhuo Liang, Shuang Li, Xiaojian Ma, Norman Hendrich, Timo Gerkmann,
Fuchun Sun, and Jianwei Zhang. Making sense of audio vibration for liq-
uid height estimation in robotic pouring. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 5333–5339, 2019. doi:
10.1109/IROS40897.2019.8968303.

119

https://doi.org/10.1109/5.726791
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1109/ICRA.2019.8793485
https://doi.org/10.1177/0278364914549607
https://doi.org/10.1109/CVPR.2018.00979
https://doi.org/10.1109/CVPR.2018.00979
https://doi.org/10.1016/j.robot.2015.09.008
https://doi.org/10.1109/LRA.2021.3138545
https://dl.acm.org/doi/10.5555/3281667.3281730
https://dl.acm.org/doi/10.5555/3281667.3281730
https://doi.org/10.1109/IROS40897.2019.8968303
https://doi.org/10.1109/IROS40897.2019.8968303

Bibliography

[72] Hongzhuo Liang, Xiaojian Ma, Shuang Li, Michael Görner, Song Tang, Bin
Fang, Fuchun Sun, and Jianwei Zhang. PointNetGPD: Detecting grasp config-
urations from point sets. In IEEE International Conference on Robotics and
Automation (ICRA), pages 3629–3635, 2019. doi:10.1109/ICRA.2019.
8794435.

[73] Hongzhuo Liang, Chuangchuang Zhou, Shuang Li, Xiaojian Ma, Norman Hen-
drich, Timo Gerkmann, Fuchun Sun, and Jianwei Zhang. Robust robotic pouring
using audition and haptics. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 10880–10887, 2020. doi:10.1109/
IROS45743.2020.9340859.

[74] Raymond R. Ma, Lael U. Odhner, and Aaron M. Dollar. Dexterous manipu-
lation with underactuated fingers: Flip-and-pinch task. In IEEE International
Conference on Robotics and Automation (ICRA), pages 3551–3552, 2012. doi:
10.1109/ICRA.2012.6225348.

[75] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan,
Xinyu Liu, Juan Aparicio, and Ken Goldberg. Dex-Net 2.0: Deep learning to
plan robust grasps with synthetic point clouds and analytic grasp metrics. In
Proceedings of Robotics: Science and Systems (RSS), 2017. doi:10.15607/
RSS.2017.XIII.058.

[76] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose Roderick, Michael
Laskey, Mathieu Aubry, Kai Kohlhoff, Torsten Kröger, James Kuffner, and Ken
Goldberg. Dex-Net 1.0: A cloud-based network of 3D objects for robust grasp
planning using a multi-armed bandit model with correlated rewards. In IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 1957–1964,
2016. doi:10.1109/ICRA.2016.7487342.

[77] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier
Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur
Handa, et al. Isaac Gym: High performance GPU-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[78] Carolyn Matl, Robert Matthew, and Ruzena Bajcsy. Haptic perception of liq-
uids enclosed in containers. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 7142–7149, 2019. doi:10.1109/
IROS40897.2019.8968528.

[79] Hamza Merzić, Miroslav Bogdanović, Daniel Kappler, Ludovic Righetti, and
Jeannette Bohg. Leveraging contact forces for learning to grasp. In IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 3615–3621,
2019. doi:10.1109/ICRA.2019.8793733.

[80] Jinpeng Mi, Hongzhuo Liang, Nikolaos Katsakis, Song Tang, Qingdu Li, Chang-
shui Zhang, and Jianwei Zhang. Intention-related natural language grounding

120

https://doi.org/10.1109/ICRA.2019.8794435
https://doi.org/10.1109/ICRA.2019.8794435
https://doi.org/10.1109/IROS45743.2020.9340859
https://doi.org/10.1109/IROS45743.2020.9340859
https://doi.org/10.1109/ICRA.2012.6225348
https://doi.org/10.1109/ICRA.2012.6225348
https://doi.org/10.15607/RSS.2017.XIII.058
https://doi.org/10.15607/RSS.2017.XIII.058
https://doi.org/10.1109/ICRA.2016.7487342
https://doi.org/10.1109/IROS40897.2019.8968528
https://doi.org/10.1109/IROS40897.2019.8968528
https://doi.org/10.1109/ICRA.2019.8793733

Bibliography

via object affordance detection and intention semantic extraction. Frontiers in
Neurorobotics, 14:1–12, 2020. doi:10.3389/fnbot.2020.00026.

[81] Andrew T. Miller and Peter K. Allen. GraspIt! a versatile simulator for robotic
grasping. IEEE Robotics & Automation Magazine, 11(4):110–122, 2004. doi:
10.1109/MRA.2004.1371616.

[82] Douglas Morrison, Peter Corke, and Jürgen Leitner. EGAD! an evolved grasp-
ing analysis dataset for diversity and reproducibility in robotic manipulation.
IEEE Robotics and Automation Letters (RA-L), 5(3):4368–4375, 2020. doi:
10.1109/LRA.2020.2992195.

[83] Roozbeh Mottaghi, Connor Schenck, Dieter Fox, and Ali Farhadi. See the glass
half full: Reasoning about liquid containers, their volume and content. In IEEE
International Conference on Computer Vision (ICCV), pages 1889–1898, 2017.
doi:10.1109/ICCV.2017.207.

[84] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-DOF GraspNet: Varia-
tional grasp generation for object manipulation. In IEEE International Confer-
ence on Computer Vision (ICCV), pages 2901–2910, 2019. doi:10.1109/
ICCV.2019.00299.

[85] Van-Duc Nguyen. Constructing force-closure grasps. The International
Journal of Robotics Research (IJRR), 7(3):3–16, 1988. doi:10.1177/
027836498800700301.

[86] Zherong Pan and Dinesh Manocha. Motion planning for fluid manipulation using
simplified dynamics. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4224–4231, 2016. doi:10.1109/IROS.2016.
7759622.

[87] Daehyung Park, Zackory Erickson, Tapomayukh Bhattacharjee, and Charles C.
Kemp. Multimodal execution monitoring for anomaly detection during robot
manipulation. In IEEE International Conference on Robotics and Automation
(ICRA), pages 407–414, 2016. doi:10.1109/ICRA.2016.7487160.

[88] Kunal J. Pithadiya, Chintan K. Modi, and Jayesh D. Chauhan. Selecting the most
favourable edge detection technique for liquid level inspection in bottles. Inter-
national Journal of Computer Information Systems and Industrial Management
Applications (IJCISIM), 3:34–44, 2011.

[89] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep
learning on point sets for 3D classification and segmentation. In IEEE/CVF Con-
ference of Computer Vision and Pattern Recognition (CVPR), pages 77–85, 2017.
doi:10.1109/CVPR.2017.16.

[90] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-source robot
operating system. In ICRA workshop on open source software, pages 1–6, 2009.

121

https://doi.org/10.3389/fnbot.2020.00026
https://doi.org/10.1109/MRA.2004.1371616
https://doi.org/10.1109/MRA.2004.1371616
https://doi.org/10.1109/LRA.2020.2992195
https://doi.org/10.1109/LRA.2020.2992195
https://doi.org/10.1109/ICCV.2017.207
https://doi.org/10.1109/ICCV.2019.00299
https://doi.org/10.1109/ICCV.2019.00299
https://doi.org/10.1177/027836498800700301
https://doi.org/10.1177/027836498800700301
https://doi.org/10.1109/IROS.2016.7759622
https://doi.org/10.1109/IROS.2016.7759622
https://doi.org/10.1109/ICRA.2016.7487160
https://doi.org/10.1109/CVPR.2017.16

Bibliography

[91] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. OctNet: Learning
deep 3D representations at high resolutions. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 6620–6629, 2017. doi:
10.1109/CVPR.2017.701.

[92] Maximo A. Roa, Max J. Argus, Daniel Leidner, Christoph Borst, and Gerd
Hirzinger. Power grasp planning for anthropomorphic robot hands. In IEEE
International Conference on Robotics and Automation (ICRA), pages 563–569,
2012. doi:10.1109/ICRA.2012.6225068.

[93] Eric Rohmer, Surya P. N. Singh, and Marc Freese. CoppeliaSim (formerly V-
REP): a versatile and scalable robot simulation framework. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 1321–1326,
2013. doi:10.1109/IROS.2013.6696520.

[94] Leonel Rozo, Pablo Jiménez, and Carme Torras. Force-based robot learning
of pouring skills using parametric hidden Markov models. In IEEE Interna-
tional Workshop on Robot Motion and Control, pages 227–232, 2013. doi:
10.1109/RoMoCo.2013.6614613.

[95] Philipp Ruppel, Norman Hendrich, Sebastian Starke, and Jianwei Zhang. Cost
functions to specify full-body motion and multi-goal manipulation tasks. In IEEE
International Conference on Robotics and Automation (ICRA), pages 3152–3159,
2018. doi:10.1109/ICRA.2018.8460799.

[96] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation (ICRA), pages 1–4,
2011. doi:10.1109/ICRA.2011.5980567.

[97] Hannes P Saal, Jo-Anne Ting, and Sethu Vijayakumar. Active estimation of
object dynamics parameters with tactile sensors. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 916–921, 2010.
doi:10.1109/IROS.2010.5649191.

[98] Ricardo Sanchez-Matilla, Konstantinos Chatzilygeroudis, Apostolos Modas,
Nuno Ferreira Duarte, Alessio Xompero, Pascal Frossard, Aude Billard, and An-
drea Cavallaro. Benchmark for human-to-robot handovers of unseen containers
with unknown filling. IEEE Robotics and Automation Letters (RA-L), 5(2):1642–
1649, 2020. doi:10.1109/LRA.2020.2969200.

[99] Marco Santello, Martha Flanders, and John F. Soechting. Postural hand synergies
for tool use. Journal of Neuroscience, 18(23):10105–10115, 1998. doi:10.
1523/JNEUROSCI.18-23-10105.1998.

[100] Connor Schenck and Dieter Fox. Reasoning about liquids via closed-loop sim-
ulation. In Proceedings of Robotics: Science and Systems (RSS), 2017. doi:
10.15607/RSS.2017.XIII.014.

122

https://doi.org/10.1109/CVPR.2017.701
https://doi.org/10.1109/CVPR.2017.701
https://doi.org/10.1109/ICRA.2012.6225068
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.1109/RoMoCo.2013.6614613
https://doi.org/10.1109/RoMoCo.2013.6614613
https://doi.org/10.1109/ICRA.2018.8460799
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1109/IROS.2010.5649191
https://doi.org/10.1109/LRA.2020.2969200
https://doi.org/10.1523/JNEUROSCI.18-23-10105.1998
https://doi.org/10.1523/JNEUROSCI.18-23-10105.1998
https://doi.org/10.15607/RSS.2017.XIII.014
https://doi.org/10.15607/RSS.2017.XIII.014

Bibliography

[101] Connor Schenck and Dieter Fox. Visual closed-loop control for pouring liquids.
In IEEE International Conference on Robotics and Automation (ICRA), pages
2629–2636, 2017. doi:10.1109/ICRA.2017.7989307.

[102] Connor Schenck and Dieter Fox. Perceiving and reasoning about liquids using
fully convolutional networks. The International Journal of Robotics Research
(IJRR), 37(4-5):452–471, 2018. doi:10.1177/0278364917734052.

[103] Pierre Sermanet, Kelvin Xu, and Sergey Levine. Unsupervised perceptual re-
wards for imitation learning. In Proceedings of Robotics: Science and Systems
(RSS), 2017. doi:10.15607/RSS.2017.XIII.050.

[104] Lin Shao, Fabio Ferreira, Mikael Jorda, Varun Nambiar, Jianlan Luo, Eugen
Solowjow, Juan Aparicio Ojea, Oussama Khatib, and Jeannette Bohg. Un-
iGrasp: Learning a unified model to grasp with multifingered robotic hands.
IEEE Robotics and Automation Letters (RA-L), 5(2):2286–2293, 2020. doi:
10.1109/LRA.2020.2969946.

[105] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning Repre-
sentations (ICLR), 2015.

[106] Shuran Song and Jianxiong Xiao. Deep sliding shapes for amodal 3D object
detection in RGB-D images. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 808–816, 2016. doi:10.1109/CVPR.
2016.94.

[107] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research (JMLR), 15(56):1929–1958, 2014.

[108] Julia Starke, Christian Eichmann, Simon Ottenhaus, and Tamim Asfour. Human-
inspired representation of object-specific grasps for anthropomorphic hands. In-
ternational Journal of Humanoid Robotics (IJHR), 17(2):1–20, 2020. doi:
10.1142/S0219843620500085.

[109] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1–9, 2015. doi:10.1109/CVPR.2015.
7298594.

[110] Minija Tamosiunaite, Bojan Nemec, Aleš Ude, and Florentin Wörgötter. Learn-
ing to pour with a robot arm combining goal and shape learning for dynamic
movement primitives. Robotics and Autonomous Systems, 59(11):910–922, 2011.
doi:10.1016/j.robot.2011.07.004.

123

https://doi.org/10.1109/ICRA.2017.7989307
https://doi.org/10.1177/0278364917734052
https://doi.org/10.15607/RSS.2017.XIII.050
https://doi.org/10.1109/LRA.2020.2969946
https://doi.org/10.1109/LRA.2020.2969946
https://doi.org/10.1109/CVPR.2016.94
https://doi.org/10.1109/CVPR.2016.94
https://doi.org/10.1142/S0219843620500085
https://doi.org/10.1142/S0219843620500085
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1016/j.robot.2011.07.004

Bibliography

[111] Alessandro Tasora, Radu Serban, Hammad Mazhar, Arman Pazouki, Daniel
Melanz, Jonathan Fleischmann, Michael Taylor, Hiroyuki Sugiyama, and Dan
Negrut. Chrono: An open source multi-physics dynamics engine. In High Per-
formance Computing in Science and Engineering, pages 19–49. Springer Inter-
national Publishing, 2016. doi:10.1007/978-3-319-40361-8_2.

[112] Gabriel Taubin. Estimation of planar curves, surfaces, and nonplanar space curves
defined by implicit equations with applications to edge and range image segmen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
13(11):1115–1138, 1991. doi:10.1109/34.103273.

[113] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp pose
detection in point clouds. The International Journal of Robotics Research (IJRR),
36(13-14):1455–1473, 2017. doi:10.1177/0278364917735594.

[114] Andreas ten Pas and Robert Platt. Using geometry to detect grasp poses in 3D
point clouds. In Robotics Research: Volume 1, pages 307–324. Springer Interna-
tional Publishing, 2018. doi:10.1007/978-3-319-51532-8_19.

[115] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks from
simulation to the real world. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 23–30, 2017. doi:10.1109/IROS.
2017.8202133.

[116] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine
for model-based control. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5026–5033, 2012. doi:10.1109/IROS.
2012.6386109.

[117] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jam-
pani, Cem Anil, Thang To, Eric Cameracci, Shaad Boochoon, and Stan Birch-
field. Training deep networks with synthetic data: Bridging the reality gap
by domain randomization. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 1082–10828, 2018. doi:
10.1109/CVPRW.2018.00143.

[118] Jacob Varley, Chad DeChant, Adam Richardson, Joaquín Ruales, and Peter K.
Allen. Shape completion enabled robotic grasping. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2442–2447, 2017.
doi:10.1109/IROS.2017.8206060.

[119] Jacob Varley, Jonathan Weisz, Jared Weiss, and Peter K. Allen. Generating multi-
fingered robotic grasps via deep learning. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4415–4420, 2015. doi:10.
1109/IROS.2015.7354004.

124

https://doi.org/10.1007/978-3-319-40361-8_2
https://doi.org/10.1109/34.103273
https://doi.org/10.1177/0278364917735594
https://doi.org/10.1007/978-3-319-51532-8_19
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/CVPRW.2018.00143
https://doi.org/10.1109/CVPRW.2018.00143
https://doi.org/10.1109/IROS.2017.8206060
https://doi.org/10.1109/IROS.2015.7354004
https://doi.org/10.1109/IROS.2015.7354004

Bibliography

[120] Yikai Wang, Wenbing Huang, Fuchun Sun, Tingyang Xu, Yu Rong, and Junzhou
Huang. Deep multimodal fusion by channel exchanging. In Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pages 4835–4845, 2020.

[121] Connie Weadon. Pouring in the dark. Future Reflections, 10(3), 1991.

[122] Emile S. Webster and Clive E. Davies. The use of Helmholtz resonance for mea-
suring the volume of liquids and solids. Sensors, 10(12):10663–10672, 2010.
doi:10.3390/s101210663.

[123] Justin Wilson, Auston Sterling, and Ming C. Lin. Analyzing liquid pouring se-
quences via audio-visual neural networks. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 7702–7709, 2019. doi:
10.1109/IROS40897.2019.8968118.

[124] Thomas Wimböck, Benjamin Jahn, and Gerd Hirzinger. Synergy level impedance
control for multifingered hands. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 973–979, 2011. doi:10.1109/IROS.
2011.6094555.

[125] Bohan Wu, Iretiayo Akinola, Jacob Varley, and Peter K. Allen. MAT: Multi-
fingered adaptive tactile grasping via deep reinforcement learning. In Conference
on Robot Learning (CoRL), 2019.

[126] Chaozheng Wu, Jian Chen, Qiaoyu Cao, Jianchi Zhang, Yunxin Tai, Lin Sun,
and Kui Jia. Grasp proposal networks: An end-to-end solution for visual learn-
ing of robotic grasps. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 13174–13184, 2020.

[127] TzYing Wu, JuanTing Lin, TsunHsuang Wang, ChanWei Hu, Juan Carlos
Niebles, and Min Sun. Liquid pouring monitoring via rich sensory inputs. In
European Conference on Computer Vision (ECCV), pages 335–351, 2018.

[128] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter Fox. Unseen object
instance segmentation for robotic environments. IEEE Transactions on Robotics
(T-RO), 37(5):1343–1359, 2021. doi:10.1109/TRO.2021.3060341.

[129] Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara. Pour-
ing skills with planning and learning modeled from human demonstrations. In-
ternational Journal of Humanoid Robotics (IJHR), 12(03):1–40, 2015. doi:
10.1142/S0219843615500309.

[130] Xinchen Yan, Jasmine Hsu, Mohi Khansari, Yunfei Bai, Arkanath Pathak, Ab-
hinav Gupta, James Davidson, and Honglak Lee. Learning 6-DOF grasping
interaction via deep geometry-aware 3D representations. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3766–3773, 2018.
doi:10.1109/ICRA.2018.8460609.

125

https://doi.org/10.3390/s101210663
https://doi.org/10.1109/IROS40897.2019.8968118
https://doi.org/10.1109/IROS40897.2019.8968118
https://doi.org/10.1109/IROS.2011.6094555
https://doi.org/10.1109/IROS.2011.6094555
https://doi.org/10.1109/TRO.2021.3060341
https://doi.org/10.1142/S0219843615500309
https://doi.org/10.1142/S0219843615500309
https://doi.org/10.1109/ICRA.2018.8460609

Bibliography

[131] Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo, Ed Walker Jr, Rodriguez
Alberto, and Jianxiong Xiao. Multi-view self-supervised deep learning for 6D
pose estimation in the Amazon picking challenge. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1386–1383, 2017. doi:
10.1109/ICRA.2017.7989165.

[132] Kevin Zhang, Mohit Sharma, Manuela Veloso, and Oliver Kroemer. Leveraging
multimodal haptic sensory data for robust cutting. In IEEE-RAS International
Conference on Humanoid Robots (Humanoids), pages 409–416, 2019. doi:
10.1109/Humanoids43949.2019.9035073.

[133] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-end learning for point cloud based
3D object detection. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4490–4499, 2018. doi:10.1109/CVPR.2018.
00472.

126

https://doi.org/10.1109/ICRA.2017.7989165
https://doi.org/10.1109/ICRA.2017.7989165
https://doi.org/10.1109/Humanoids43949.2019.9035073
https://doi.org/10.1109/Humanoids43949.2019.9035073
https://doi.org/10.1109/CVPR.2018.00472
https://doi.org/10.1109/CVPR.2018.00472

Erklärung der Urheberschaft

Ich versichere an Eides statt, dass ich die vorliegende Dissertation im Bereich der Infor-
matik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel benutzt
habe. Insbesondere wurden dabei keine nicht im Quellenverzeichnis benannten Internet-
Quellen verwendet. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen
entnommen wurden, sind als solche kenntlich gemacht.

Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen Prü-
fungsverfahren eingereicht habe und die eingereichte schriftliche Fassung der auf dem
elektronischen Speichermedium entspricht.

Hamburg, Jan. 27, 2022 Hongzhuo Liang
Ort, Datum Unterschrift

127

Erklärung zur Veröffentlichung

Ich erkläre hiermit mein Einverständnis zur Einstellung dieser Dissertation in den Be-
stand der Bibliothek.

Hamburg, Jan. 27, 2022 Hongzhuo Liang
Ort, Datum Unterschrift

129

	 Abstract
	 Zusammenfassung
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Aim of this Thesis
	1.3 Novelty and Contribution of this Thesis
	1.4 Structure of this Thesis

	2 Related Work
	2.1 Grasp Basics
	2.1.1 Friction Cone
	2.1.2 Force-Closure Grasp
	2.1.3 Grasp Quality Measure

	2.2 Two-fingered Grasping
	2.2.1 Model-based Grasp Detection
	2.2.2 Model-free Grasp Detection

	2.3 Multifingered Grasping
	2.3.1 Multifingered Grasp Configuration Detection
	2.3.2 Dimensional Reduction for Multifingered Hands

	2.4 Pouring Motion Generation
	2.5 Liquid Perception for Robotic Pouring
	2.5.1 Visual Sensing
	2.5.2 Audio Sensing
	2.5.3 Haptic Sensing
	2.5.4 Multimodal Fusion

	3 Grasp Candidate Generation
	3.1 GPG Algorithm
	3.1.1 Grasp Simplification
	3.1.2 Antipodal Grasp Simplification
	3.1.3 Darboux Frame and Principal Curvature
	3.1.4 Grasp Generation Using Geometry

	3.2 GPG Algorithm Improvements
	3.2.1 Attentional Sampling Process
	3.2.2 Three-dimensional Grid Search
	3.2.3 Projection of Invalid Candidates
	3.2.4 Conservative Approach Depth

	3.3 Robot Experiments
	3.3.1 Brief Introduction of GPD
	3.3.2 Objects Presented in Isolation
	3.3.3 Objects Presented in Dense Clutter

	3.4 Discussion and Summary

	4 Two-fingered Grasping Using Point Clouds
	4.1 Introduction
	4.2 Problem Formulation
	4.2.1 Definitions
	4.2.2 Objective
	4.2.3 Challenges

	4.3 Grasp Dataset Generation with Meticulous Scores
	4.3.1 Sampling
	4.3.2 Scoring
	4.3.3 Training Dataset

	4.4 Learning a Grasp Quality Metric from Point Cloud
	4.4.1 Brief Introduction of PointNet
	4.4.2 Network Architecture and Grasp Representation
	4.4.3 Training and Inference Details

	4.5 Network Evaluation
	4.5.1 Network Evaluation Details
	4.5.2 Results Analysis

	4.6 Robot Experiments
	4.6.1 Data Preprocessing
	4.6.2 Objects Presented in Isolation
	4.6.3 Objects Presented in Dense Clutter
	4.6.4 Object Shape Completion

	4.7 Discussion and Summary

	5 Multifingered Grasping Based on Multimodal Reinforcement Learning
	5.1 Introduction
	5.2 Grasp Synergies Dataset
	5.3 Simulator Selection
	5.4 Multimodal Grasping Policy
	5.4.1 Simulation Environment
	5.4.2 Observations
	5.4.3 Actions
	5.4.4 Reward
	5.4.5 Curriculum Learning

	5.5 Model Evaluation
	5.5.1 Comparing Different Input Modalities
	5.5.2 Comparing Different Network Architectures
	5.5.3 Comparing Different Dimension Reduction Dimensions

	5.6 Robot Experiments
	5.6.1 Robot Experiments in Simulation
	5.6.2 Initial Grasp Generation for Real Robot Experiments
	5.6.3 Sensor Mapping
	5.6.4 Real Robot Verification

	5.7 Discussion and Summary

	6 Making Sense of Audio Vibration for Robotic Pouring
	6.1 Introduction
	6.2 Data Preparation
	6.2.1 Multimodal Pouring Dataset
	6.2.2 Data Analysis

	6.3 AP-Net* Architecture
	6.4 AP-Net* Evaluation
	6.5 Robot Experiments
	6.5.1 Evaluation of Different Target Containers
	6.5.2 Evaluation of Varying Microphone Positions
	6.5.3 Evaluation of Varying Initial Liquid Height
	6.5.4 Evaluation of Different Types of Liquid

	6.6 Discussion and Summary

	7 Robust Robotic Pouring using Audition and Haptics
	7.1 Introduction
	7.2 Multimodal Pouring Dataset
	7.2.1 Dataset Collection Setup
	7.2.2 Data Analysis
	7.2.3 Audio Data Augmentation

	7.3 Multimodal Pouring Network
	7.4 MP-Net Evaluation
	7.5 Robotic Experiments
	7.5.1 Evaluation of Different Target Containers
	7.5.2 Evaluation of Different Pouring Heights
	7.5.3 Evaluation of Different Source Containers
	7.5.4 Evaluation of Varying Noise Conditions
	7.5.5 Evaluation of Varying Positions of Noise Source
	7.5.6 Evaluation of Varying Initial Liquid Height
	7.5.7 Evaluation of Different Types of Liquid
	7.5.8 Evaluation of Different Types of Noise Sources
	7.5.9 Shape Prediction of Target Containers

	7.6 Discussion and Summary

	8 Conclusion and Future Work
	8.1 Achievements
	8.2 Limitations
	8.3 Future Work

	A List of Abbreviations
	B Publications
	C Acknowledgements
	Bibliography

