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Kurzfassung
J. Roberto S. Mozara

Realistische Multi-Orbitale Systeme – Korrelierte Adatome auf Oberflächen
Die vorwiegend angewandten experimentellen Techniken in der Oberflächenwissenschaft, die
Rastertunnelmikroskopie und -spektroskopie, haben einen Präzisionsgrad erreicht, sodass
die Ergebnisse zu ihrer Erklärung die Entwicklung neuer theoretischer Herangehensweisen
erfordern. Die experimentelle Präzision erlaubt mittlerweile eine detaillierte Auflösung
sowohl der physikalischen und chemischen Zusammensetzung als auch der spektralen
Eigenschaften von Oberflächen. Während vereinfachten Modelle ein erstes qualitatives
Verständnis der physikalischen Vorgänge erlauben, erfordert die experimentelle Auflö-
sung der orbitalen und spektralen Substrukturen eine realistische theoretische Darstellung
des zu untersuchenden physikalischen Systems und eine numerisch exakte Lösung der
entsprechenden Modelle. Die vorliegende Arbeit entwickelt eine Kombination aus ab initio
Dichtefunktionaltheorie und dem Vielteilchen-Anderson-Modell, um korrelierte Adatome,
Moleküle und Nanosysteme auf Substratoberflächen darzustellen, und bettet beide Herange-
hensweisen und deren Kombination sowohl in einen weitergehenden theoretischen und
physikwissenschaftlichen Kontext als auch in den gegenwärtigen Stand der Forschung ein.
Die Entwicklung des ab initio Vielteilchenmodells und die numerische Herangehensweise
zu seiner Lösung wird um die Anwendung auf drei bestimmte Oberflächensysteme, von
denen zwei vorher experimentell untersucht wurden, herum angeordnet.

Die Tantaloxidoberfläche Ta(001)-p(3×3)-O wird gegenwärtig im Hinblick auf den Kondo-
Effekt auf supraleitenden Oberflächen, welcher zu den sogenannten Yu-Shiba-Rusinov-
Zuständen führt, untersucht. Die geometrische und quantenchemische Komplexität dieser
Substratoberfläche erlaubt das Zusammenspiel von Adsorbaten an verschiedenen Positionen,
jeder in seinem eigenen Kondo-Zustand. Die vorliegende Arbeit untersucht die Ta(001)-
p(3×3)-O-Oberfläche mithilfe der Dichtefunktionaltheorie und identifiziert sowohl ihre
elektronische und quantenchemische Struktur als auch ihre spektralen Eigenschaften. Da
ihre relevanten Adsorptionsmechanismen für einzelne und mehrere Atome bis heute noch
nicht geklärt worden sind, wird die Dichtefunktionaltheorie um die Einbeziehung der
van-der-Waals-Wechselwirkungen erweitert, die sich als wichtig für die Stabilität und für
spezielle Anordnungen von Adsorbaten auf verschiedenen Oberflächen erwiesen haben.

Aufgrund der zwei-dimensionalen Geometrie von Oberflächensystemen führt die Sym-
metriebrechung nicht nur zu einer ausgeprägten Kristallfeldaufspaltung und richtungsab-
hängigen Hybridisierung der Adatomorbitale, sie führt auch zu einer anisotropen Coulomb-
Wechselwirkungsmatrix. Diese wird wichtiger auf Substraten mit Pseudolücken, da die
reduzierte Zustandsdichte am Ferminiveau die lokalen Wechselwirkungen auf den Adatomen
die Physik bei niedrigen Energien dominieren lässt. Die vorliegende Arbeit betrachtet
Co-Adatome auf Graphen und löst numerisch das entsprechende ab initio Anderson-Modell
mithilfe von zeitkontinuierlichem Quanten-Monte-Carlo und der kürzlich entwickelten
Methode der stochastischen Optimierung. Die Coulomb-Wechselwirkungsanisotropie wird
innerhalb der eingeschränkten Random-Phase-Approximation ermittelt, welche allerdings
zeigt, dass auch auf Substraten mit Pseudolücken die lokalen Wechselwirkungen nicht
viel stärker als die Hybridisierung sein müssen. Ihre Prävalenz kann allerdings von der



Selbstenergie in Bereichen niedriger Energie abgelesen werden, welche eine Restrukturierung
der orbitalen Beiträge aufgrund der Symmetriebrechung offenbart.

Das System aus einem Co-Adatom auf Cu(111) stellt einen Benchmark für den multi-
orbitalen Kondo-Effekt von Übergangsmetallen auf Metalloberflächen dar. Die spektrale
Signatur ist eine Resonanz am Ferminiveau, deren Breite durch die Kondo-Temperatur
bestimmt wird, welche die Mitte des Übergangsbereichs zu dem Effekt markiert und
entweder theoretisch aus numerischen Lösungen oder experimentell durch Anfitten mit Fano-
oder Frota-Linien extrahiert werden kann. Der Kondo-Effekt in multi-orbitalen Systemen
ist das Resultat einer komplizierten Überlagerung von Spin- und orbitalen Beiträgen.
Platziert man das Co-Adatom neben einer symmetriebrechenden Cu-Kette, so erscheinen
zusätzliche Kristallfeldaufspaltungen und Anisotropien in der Hybridisierung, welche zu
einem modifizierten differentiellen Leitfähigkeitsspektrum führen. Die vorliegende Arbeit
analysiert drei spezifische CoCu𝑛/Cu(111)-Systeme, indem die entsprechenden Anderson-
Modelle gelöst und weiterhin ab initio differentielle Leitfähigkeitsspektren berechnet werden,
welche direkt mit den experimentellen Ergebnissen verglichen werden können. Die Analyse
führt nicht nur zu einer quantitativen Übereinstimmung zwischen Theorie und Experiment,
sondern kann sowohl die multi-orbitalen Kondo-Szenarien identifizieren als auch die Kondo-
Temperaturen extrahieren, was durch Anfitten an experimentelle Daten oder innerhalb
vereinfachter Beschreibungen mit einem einzelnen Orbital möglich war.

Schlagwörter: Tantal, Oxidoberfläche, Superstruktur, Rekonstruktion, orbitale Hybri-
disierung, freies Elektronenpaar, Rastertunnelmikroskopie, Rastertunnelspektroskopie,
Dichtefunktionaltheorie, van der Waals-Wechselwirkung, Cobalt, Graphen, Adatom, korre-
liertes Elektronensystem, eingeschränkte Random-Phase-Approximation, Anderson-Modell,
Quanten-Monte-Carlo, analytische Fortsetzung, Anisotropie, Kupferoberfläche, Streumech-
anismus, multi-orbitaler Kondo-Effekt



Abstract
J. Roberto S. Mozara

Realistic Multi-Orbital Systems – Correlated Adatoms on Surfaces
The most widely used experimental techniques in surface science, scanning tunnelling
microscopy and spectroscopy, have attained at a degree of sophistication, that their findings
demand the development of new theoretical approaches for their explanation. Nowadays
the experimental precision allows for a detailed resolution of the physical and chemical
composition of surfaces as well as of their spectral properties. While simplified models
provide a first qualitative understanding of physical effects, the experimental resolution
of orbital and spectral substructures call for a realistic theoretical representation of the
physical systems under consideration and for a numerically exact solution of the associated
models. The present thesis develops a combination of ab initio density functional theory
and the many-body Anderson impurity model to represent correlated adatoms, molecules,
and nanosystems on substrate surfaces, and embeds both approaches and their combination
into a wider theoretical and physics science context as well as into the current state of
research. The development of the ab initio many-body model and the numerical approach
for its solution will be drawn around their application on three particular surface systems,
of which two of them have been experimentally investigated beforehand.

The tantalum oxide surface Ta(001)-p(3×3)-O is currently under consideration as regards
the Kondo effect on superconducting surfaces, which result in the so-called Yu-Shiba-Rusinov
states, and the geometric and quantum-chemical complexity of the substrate surface allows
for the interplay of adsorbates at various locations, each being in a different Kondo state.
The present thesis examines the Ta(001)-p(3×3)-O surface by means of density functional
theory, and identifies its electronic and quantum-chemical structure as well as its spectral
properties. As its relevant adsorption mechanisms for single and several atoms is to date
not well understood, the density functional analysis is extended as to account for van der
Waals interactions, which have been observed to be important for the stability and for
specific arrangements of adsorbates on several surfaces.

Due to the two-dimensional geometry of surface systems, symmetry breaking not only
leads to a pronounced crystal field splitting and directionally dependent hybridization
of adatom orbitals, but also leads to an anisotropic Coulomb interaction matrix. These
become more important in pseudo-gapped substrates because the reduced density of states
at the Fermi level renders the local interactions on the adatom dominating the low-energy
physics. The present thesis considers Co adatoms on graphene and numerically solves the
corresponding ab initio Anderson impurity model by means of continuous-time quantum
Monte Carlo and the recently developed stochastic optimization method. The Coulomb
interaction anisotropy is determined within the constrained random phase approximation,
which shows that also on pseudo-gapped substrates the local interactions may be not much
stronger than the hybridization. Yet, their prevalence can be observed from the low-energy
region of the self-energy, which reveals a restructuring of its orbital contributions due to
symmetry breaking.

The system of a Co adatom on Cu(111) provides a benchmark for the multi-orbital
Kondo effect of transition metal atoms on metallic surfaces. The spectral signature is a



resonance feature at the Fermi level with a width determined by the Kondo temperature,
which marks the middle of the cross-over scale of the effect and can be extracted either
theoretically from numerical solutions, or experimentally by fitting with Fano or Frota
lines. In multi-orbital systems the Kondo state is the result of a complicated superposition
of spin and orbital contributions. Placing the Co adatom next to a symmetry-breaking Cu
chain, additional crystal field splittings and hybridization anisotropies appear, which lead
to a modified differential conductance spectrum. The present thesis analyses three specific
CoCu𝑛/Cu(111) systems by means of solving their corresponding Anderson impurity models
and of further deriving ab initio differential conductance spectra, which can be directly
compared to experimental results. The analysis not only leads to a quantitative agreement
between theory and experiment, but can also identify the multi-orbital Kondo scenarios
and extract Kondo temperatures, which was not possible by fitting to experimental data
or within simplified single-orbital descriptions.

Key words: tantalum, oxide surface, superstructure, reconstruction, orbital hybridiza-
tion, lone pair, scanning tunnelling microscopy, scanning tunnelling spectroscopy, density
functional theory, van der Waals interaction, cobalt, graphene, adatom, correlated electron
system, constrained random phase approximation, Anderson impurity model, quantum
Monte Carlo, analytical continuation, anisotropy, copper surface, scattering mechanism,
multi-orbital Kondo effect
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CHAPTER 1
Introduction

The electron on which forms and worlds are built,
Leaped into being, a particle of God.
A spark from the eternal Energy spilt,
It is the Infinite’s blind minute abode.
In that small flaming chariot Shiva rides.
The One devised innumerably to be;
His oneness in invisible forms he hides,
Time’s tiny temples of eternity.
Atom and molecule in their unseen plan
Buttress an edifice of strange oneness,
Crystal and plant, insect and beast and man, –
Man on whom the World-Unity shall seize,
Widening his soul-spark to an epiphany
Of the timeless vastness of Infinity.

Sri Aurobindo (1938) [Sri72]

Man has been trying to understand and deploy condensed matter systems according
to his growing capabilities based on his cerebral and cultural status during the course
of evolution. Guided by intuitions and by means of mental reasoning, in the last few
centuries he has developed the enormously sophisticated and successful framework provided
by the combination of experimental and theoretical physics. Based on quantum theory we
nowadays have a theoretical framework at hand which promises a complete understanding
of condensed matter systems and their properties. Alongside with experimental results
from the late 19th and the 20th century, quantum theory has been based on reductionist
avenues and led to the resolution of condensed matter systems into its constituents and the
relations between them. In terms of the most fundamental verified physical theories of today,
condensed matter systems can be identified as many-body objects composed of a huge
amount of participating atoms, which can be described by quantum electrodynamics (QED)
of bound states [Eng02]. The intricacies which often arise in the description of many-body
systems are the result of the mutual interactions between its constituents, out of which
cooperative or resonant phenomena may emerge. These are often difficult to reproduce
theoretically, especially if one is interested in microscopic sourcing and description rather
than in phenomenological heuristics. But the efforts pay off, since back again at the
material scale, the condensed states of matter and the many-body cooperations themselves

1



2 Chapter 1 Introduction

arise as being fundamental as the underlying interactions between its constituents from
which they are derived [And72].

Condensed matter systems comprise ionic cores (the nuclei) and electrons which both
interact via the electromagnetic field. For the consideration of the electronic structure
alone, the ionic motions can be disentangled and treated separately (Born-Oppenheimer
approximation; see for example [Sch13]). One may perform a structural relaxation (for
example within density functional theory (DFT), see Ref. [Bit06] and references therein,
but also within its extensions [Leo08]), in which the actual ionic equilibrium structure can
be obtained by including back-reaction effects of the electronic structure on the spatial
ionic configuration. Furthermore, the vibrational motion of the ions about their equilibrium
positions can be included within DFT and its extensions, and leads to coupling of the
electrons to the corresponding quasi-particles (QPs) called phonons.

Assuming for now the ions residing at their equilibrium positions, the electrons move in the
external potential given by the ionic lattice, and usually one describes the electromagnetic
interaction between the electrons via the photon field, while the electrons are coupled to
the ions via their electrostatic potential [Eng02]. The electrostatic Coulomb interaction
between the electrons themselves (as part of the electromagnetic interactions) can be
derived in the Coulomb gauge from the longitudinal part of the electromagnetic field, and
it appears accompanied by the current-current interaction (the transversal part) needed to
restore causality (the Coulomb interaction is instantaneous) and involving the magnetic
interaction in the system (see Ref. [Kle09] and Appx. A.2). These interactions are at the
basis of all condensed matter systems and, according to their importance, may or may not
be included in theoretical and computational approaches for their description.

The most widely used computational approach to materials is DFT which is based on
the Hohenberg-Kohn (HK) theorems [Hoh64] (Sec. 2.1.1). Hohenberg and Kohn proved
that the ground state of an interacting electron system can be found by the minimization
of an energy functional depending on the electronic density alone which is in one-to-
one correspondence with the external potential built up by the ionic lattice. While the
electrostatic density-density Coulomb interaction (the Hartree term) and the exchange
term can be taken into account exactly, the drawback of DFT is the approximation to
the correlation energy needed to establish the bijective Kohn-Sham (KS) mapping of the
interacting electron system to an auxiliary non-interacting system, both represented in
terms of densities [Koh65].

If the exchange and correlation interactions are relevant for the material under study,
DFT must be extended by some theory going beyond its approximations. The class of
materials containing atoms with open 𝑑 or 𝑓 shells show a peculiar interplay between the
delocalization of electrons over the ionic lattice due to their kinetic energy, which is well
described by DFT, and the localization due to strong Coulomb attraction by the ionic
centres and the subsequent electronic Coulomb repulsion between the electrons. These
interactions leads to strong correlations between the localized electrons [Geo04]. Expressing
the electronic quantum fields in terms of creation and annihilation operators, the Hubbard
model can naturally be derived from the above outlined QED Hamiltonian (Appx. A.2
and Ref. [Hub63]; before any approximation made by DFT), and it reflects the Coulomb
correlations, their strength, and the competition between localization and delocalization
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directly, while the exchange interaction is already included in second quantization due to
the inherent Fermi statistics.

The local electronic correlations can be accounted for by means of a self-consistent
embedding of the Anderson impurity model (AIM) (Sec. 3.2) into the Hubbard model
within the dynamical mean-field theory (DMFT) approach [Geo92; Geo96; Met89; Vol12].
The AIM singles out a correlated site of the ionic lattice and describes its correlations
exactly, while the self-consistency condition incorporates the effects of the other correlated
sites in a mean-field (MF), though dynamical, approximation. Non-local interactions
between the electrons, on the other hand, are difficult to describe and there exist, even
conceptually, diverse approaches. The 𝐺𝑊 approximation (GWA) and the random phase
approximation (RPA) remain in the continuous energy band picture of the electronic system
traversing the ionic lattice, and while they account properly for the non-local correlations,
those are admitted to be rather weak only (Sec. 3.1). To such weak interactions belong
the van der Waals (vdW) forces which result from correlations between distant density
fluctuations (Sec. 2.5). Another perspective is provided by extended DMFT (EDMFT)
[Bie03; Hel11; Sun02] or the dual-fermion and dual-boson approaches [Rub12; Rub09],
which all rely on the picture of electrons hopping between discrete localized orbitals and
interacting locally as well as non-locally. While the combination of their corresponding
equations would yield a complete representation of the extended Hubbard model containing
fermionic as well as bosonic degrees of freedom (DOF), computational solutions in these
approaches always resort to some kind of approximation and often still remain highly
demanding. An exhaustive computational description of strongly correlated systems taking
into account non-local effects thus remains one of the most challenging tasks in condensed
matter theory, despite many efforts and numerous established approaches.

The extension of DFT by DMFT to include local electronic correlations is accomplished
by a projection procedure of the continuous DFT energy bands onto the discrete localized
orbitals placed at the correlated sites of the material under consideration. In this way one
obtains ab-initio parameters of an AIM, which in turn provides the basis for a self-consistent
description of the Hubbard model (Subsec. 3.2.1). The relevant computational efforts for
the solution of the Hubbard model within DMFT go into the solution of the AIM, and one
of the most widely used approaches is the quantum Monte Carlo (QMC) evaluation of the
partition function for the eventual computation of the Green’s function (GF) or higher-order
correlation functions (Sec. 3.3). The GF encodes the relevant spectral information which
can be compared with experimental data. – The double counting (DC) problem results
from a difficulty to represent the many-body correlations which are already contained in
the DFT approach in terms of the AIM variables, though such a representation is needed
for not to overdetermine the correlations and to subtract them during the transition from
DFT to the AIM. As the DC problem was present in the DFT+AIM approach to the
systems investigated in the present thesis, Appx. C provides a short account of its recently
established precise definition within the Luttinger-Ward (LW) functional approach.

Two classes of correlated materials in terms of geometry can be described with this way
of going beyond the DFT approach. First, one may have a single or a set of correlated
adatoms, molecules or nanosystems which are placed on a substrate with particular physical
properties. Such an introduction of inhomogeneities on clean surfaces provides one further
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functionalization of materials for industrial applications. These surface systems can be
represented and efficiently described by the AIM alone. The second class is given by bulk
systems for which a self-consistency description has to be supplemented to the AIM as to
let it describe a material being represented by the Hubbard model.

New experimental results demand the application of these material-specific approaches
to correlated materials for their theoretical substantiation. Clearly, the number of different
correlated materials as well as the number of effects and emergent phenomena which can
be addressed by the DFT+AIM or the DFT+DMFT approaches are very large. The
present thesis aims to develop the DFT+AIM framework for the description of correlated
transition metal (TM) adatoms on metallic surfaces along three experimentally realized
systems. The experimental setups and techniques are described in the publications included
or will to some extent be explained in the main text of the thesis. The theoretical basics
and computational techniques, and the physical effects which can be addressed within
the DFT+AIM approach are discussed more extensively, although still in an intermediate
detailedness: this is because the eventual aim of the present thesis is the presentation of
a particular central theme within the DFT+AIM approach - the realistic description of
the multi-orbital Kondo effect on correlated adatoms (Chpt. 4) -, which needs quite a
few of ingredients with themselves having vast and profound theories behind them. For
example, the Kondo effect is one of the fundamental resonant phenomena in correlated
many-body systems which is connected to Fermi liquid (FL) theory and the scaling approach
(introductory part to Chpt. 4 and Sec. 4.5, respectively).

The second chapter begins its presentation by developing DFT (Sec. 2.1), followed by a
short account of scanning tunnelling microscopy (STM) (Sec. 2.2), which is one important
experimental technique of surface science. The main text develops DFT as used in the
projects reported on, that is, from its basics to its extensions for inclusion of the spin
(Subsec. 2.1.3) and the MF approximation to the Coulomb interaction (Subsec. 2.1.4), while
a further extension to current- and relativistic DFT is provided in the appendix (Appx. A).
In this way DFT is embedded successively into larger contexts and eventually connected
to relativistic QED. At the time of writing the tantalum-oxide surface Ta(001)-p(3×3)-O
is being investigated extensively by the research group of J. Wiebe and R. Wiesendanger
at the Institute for Nanostructure and Solid State Physics of the University of Hamburg.
Sec. 2.3 provides an embedding of the Ta(001)-p(3×3)-O surface into the current state of
research, and Sec. 2.4 presents the publication which resulted from a joint collaboration
and reports on the experimental and DFT characterization of this surface. The publication
is followed by a study on vdW forces in DFT and their application on the same surface.
It is not only about a further characterization of the Ta(001)-p(3×3)-O surface itself:
the current belief is that the adatom adsorption structure, as, for example, reported in
Ref. [Cor17], depends on vdW forces.

The third chapter describes the DFT+AIM approach (Subsec. 3.2.1) and its continuous-
time quantum Monte Carlo (CTQMC) solution (Sec. 3.3) followed by a published application
of the techniques on the system of a cobalt adatom on graphene (Co/graphene; Secs. 3.5
and 3.6). The new feature with respect to the AIM the chapter is going to describe is
the consideration of the realistic Coulomb interaction matrix as determined from the
constrained RPA (cRPA) (Subsec. 3.1.2). Owing to the geometric symmetry breaking
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a surface induces on the adatom, the local Coulomb interaction strength is smaller on
orbitals pointing towards the surface compared to ones in other directions, because then
screening is more efficient. For the Co/graphene system the effects of anisotropy on the
electronic structure were minor, but the self-energy shows considerable differences to the
case in which the Coulomb interaction matrix has been rotationally averaged. Any physical
properties extracted from the self-energy will thus be affected by the screening anisotropy.

The fourth chapter has the multi-orbital Kondo effect as its topic. The exposition
sets out with a general overview on FL theory with the aim to provide the basic ideas
for an understanding of the emergence of the Kondo effect. FL theory connects two
different ground states (GSs) by an adiabatic switching-on of the (Coulomb) interactions
and eventually describes the, possibly strongly, interacting electron system in terms of
weakly interacting QPs. The discussion is complemented by a further exposition of the
scaling approach which provides a microscopic picture of the Kondo effect in terms of
an effective antiferromagnetic interaction between the magnetic moments of the adatom
and the conduction electrons in the substrate (Sec. 4.5). In contrast to FL theory, the
scaling approach leaves the Coulomb interaction strength unchanged and works on the
hybridization by successively integrating out the high-energy DOF, thereby obtaining the
low-energy effective Kondo model. Two further ingredients are necessary to understand
the QMC solution of a realistic AIM in the Kondo regime: First, with the help of the
many-electron (ME) operator approach (Sec. 4.3) one can track the micoscopic transitions
of the adatom between its eigenstates due to hybridization events and determine the
associated Kondo scenario of the system under consideration. Second, in experiments
the Kondo effect manifests itself as a spectral resonance feature near the Fermi level; for
comparison between theory and experiment one obtains the Kondo resonance from the
QMC solution to the corresponding AIM by derivation of the differental conductance
(Sec. 4.4). – The rest of the chapter contains the application of the DFT+AIM approach
to the system of a cobald adatom on the copper surface supporting an additional copper
chain (CoCu𝑛/Cu(111); Sec. 4.6), a system which is currently at experimental investigation
in the group of A. Weismann and R. Berndt at the Institute of Experimental and Applied
Physics of the Christian Albrechts University (CAU) of Kiel. Their finding was that the
usual Kondo effect of the Co/Cu(111) system was modified by placing the Co adatom next
to a Cu chain. The DFT+AIM approach was able to identify the hybridization anisotropy
induced by the chain as the source for the modified spectral resonance feature, and to
provide a complete understanding of the underlying multi-orbital Kondo effect.





CHAPTER 2
DFT and the Ta(001)-p(3×3)-O surface

The set of condensed matter systems considered in research can be roughly divided into
two interconnected subareas: the real materials which are investigated experimentally and
one might seek to describe by theoretical and computational means, and the simplified
and abstract model-like systems which ought to focus on the most relevant properties
of the often very complex real materials. In principle, the computational description of
real materials refers to obtaining its physical, for example, thermodynamic and energetic
properties, often via its partition function or associated thermodynamic potentials like
the energy. The mathematical investigation and computational description of model-like
systems, on the other hand, refers to the exploration of its physical properties under
simplified conditions and of techniques for their retrieval. Both subareas, the real materials
and the model systems, are mutually beneficial: most of the advanced techniques employed
to describe real materials were first developed for the solution of model systems and
subsequently extended to material-specific higher-dimensional parameter spaces, while the
ideas for construction of model systems mostly were born during investigations of real
materials. The present thesis focusses on the material-specific approaches.

In second quantization, the simplest many-body Hamiltonian describing interacting
electrons in the external potential of a fixed ionic lattice is given by

�̂� =
∑︁

𝜎

ˆ
dr𝜓+

𝜎 (r)
[︂
−1

2𝛥+ 𝑉ext(r) − 𝜇

]︂
𝜓𝜎(r)

+ 1
2
∑︁

𝜎𝜎′

ˆ
d(r, r′)𝜓+

𝜎 (r)𝜓+
𝜎′(r′)𝑉el−el(r − r′)𝜓𝜎′(r′)𝜓𝜎(r). (2.1)

Here, 𝑉ext(r) is the external ionic potential and 𝜇 the chemical potential, and the electrons
interact via the Coulomb law: 𝑉el−el(r − r′) = 1/|r − r′|. Natural atomic units with
~ = 𝑐 = 𝑚 = 1 are used [Sza96]. As such, the Hamiltonian in Eq. (2.1) is the full non-
relativistic time-independent Hamiltonian for an electron system in an external potential.

Mathematically one can describe the electronic system in terms of a linear superposition
of Slater determinants constructed of single orbitals [Dir26; Giu05; Hei26; Sch13; Sla29;
Sza96]. All Slater determinants together provide a complete basis of the interacting
many-body Hilbert space, while the orbitals involved in the determinants refer to an
independent-electron description. This is the so-called full configuration interaction (CI)
[Sza96]. The determinental structure naturally incorporates the required antisymmetry of
the many-body wave function (WF), which leads to the so-called exchange interactions,

7
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and the linear superposition of determinants possesses enough mathematical flexibility for
the complete description of correlations. The Hartree-Fock (HF) approximation tries to
approximate the many-body GS by one Slater determinant only, and while the exchange
energy is thereby fully taken into account, the deviation of the HF-GS energy from the exact
one is the correlation energy. Within the CI approach, the deviation may be minimized
by taking into account a, possibly limited, superposition of Slater determinants. Other
approaches, like quantum-mechanical perturbation theory or the GF formalism, try to
include the correlations by other means. We will come back to that point in the next
chapter.

The HF approximation is one possibility to reduce the ME problem to an effective
one-electron problem, where the two-body interactions are represented by an average
one-body potential seen by an electron in the averaged presence of all other electrons. This
is in the spirit of MF approaches to many-body systems, and in case of HF theory amounts
to the neglect of quantum fluctuations [Giu05]. This point will also be discussed together
with the GF formalism in the next chapter (see introductory part to Chpt. 3).

The HF equation is an eigenvalue (EV) equation for the spin-orbitals which appear in
the HF-WF (the Slater determinant):

ℎ(r1)𝜒𝑎(r1) +
∑︁

�̸�=𝑎

[︂ˆ
dr2

|𝜒𝑏(r2)|2
|r1 − r2|

]︂
𝜒𝑎(r1) −

∑︁

�̸�=𝑎

[︂ˆ
dr2

𝜒*
𝑏(r2)𝜒𝑎(r2)
|r1 − r2|

]︂
𝜒𝑏(r1)

= 𝜀𝑎𝜒𝑎(r1).
(2.2)

Here, the subscript on the spin-orbitals denotes the spin and orbital indices. The first
term on the l.h.s. contains the kinetic energy and the external one-body potential, and
it is followed by the Hartree/Coulomb (the second) and the exchange (third) term. The
Coulomb operator is local and multiplicative, while the exchange operator is non-local
in HF theory and cannot be written in terms of a multiplicative factor for the WF. The
Hartree and the exchange term comprise two-particle interactions, and while the former
is repulsive, the latter is attractive and contributes to the binding structure of molecules
and solids. According to Koopmans’ theorem [Koo34; Sza96], the negative of the orbital
energies which appear on the right-hand side of Eq. (2.2) can be considered as ionization
energies. This, however, refers to some “frozen orbital” approximation due to the neglect
of correlations and, mostly, because relaxation of spin-orbitals after ionization is not taken
into account (removal of one electron from the 𝑁 -electron HF-WF does not yield the
HF-WF of the (𝑁 − 1)-electron system). These shortcomings are overcome in going beyond
the HF approximation, for example, in the GF approach (see introductory part to Chpt. 3).

A sophisticated computational description of real materials beyond the HF approximation
becomes rapidly difficult because the Hilbert space dimension grows exponentially with the
number of spin-orbitals and expansion coefficients (that is why HF calculations are mostly
performed for limited quantum systems, such as atoms, molecules, and nanosystems). In
contrast to that, the many-body GS and its physical properties are already determined
by the electronic charge density, which is a function of just three variables. Thus, instead
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of trying to built up a many-body WF and compute the material’s properties out of it,
one can use directly the charge density as the variable to be determined. The first step
in this direction was done within the Thomas-Fermi (TF) model [Fer27; Tho27], which
is a precursor to DFT. Thomas and Fermi found an expression for the kinetic energy of
electrons in atoms in terms of the electronic density (in fact, the to-be-discussed local
density approximation (LDA) of the kinetic energy of non-interacting electrons, here shown
with natural constants),

𝑇TF
𝑠 [𝑛] = 3

5

ˆ
dr

~𝑘2
F

2𝑚 𝑛(r), (2.3)

while the ionic potential and the Hartree term retain their classical forms. They were able
to calculate the energy of an atom, but atomic shell structures, Friedel oscillations, and
chemical bonding cannot be found in the TF model [Giu05; Koh65; Tel62]. Furthermore,
exchange due to the Pauli principle was not included (but then accomplished by Dirac
[Dir30]), and correlations were not accounted for at all.

The HF theory and the TF model contain the mathematical structures relevant for the
DFT. The HF Eq. (2.2) shows that the Coulomb and exchange operators which multiply
the spin-orbitals depend on the spin-orbitals themselves, so that an iterative procedure has
to be applied for its solution. There is thus a principle of self-consistency inherent to HF
theory which carries over to DFT as well. And the charge density in the TF model is the
variable for an energy functional which is to be minimized by the Rayleigh-Ritz method
(the original papers by Thomas and Fermi solved the EV equations by other means, though
[Fer27; Tho27]).

The result thus is that, instead of trying to built up directly a many-body WF, one
can compute the material’s properties by means of minimizing an energy functional which
depends on the electronic density alone, and which formally contains all correlation effects
from the outset. This is possible due to the HK theorems which include the bijective
correspondence between the electronic density and the external ionic potential - while
the rest of the energy functional containing electronic kinetic and interaction energies is
universal (HK theorem I) -, and a variational principle (HK theorem II) [Hoh64]. The
implementation of DFT is realized by the description of the interacting electron system
in terms of an auxiliary non-interacting KS particle system as such that it yields the
interacting GS electronic density [Koh65]. The mapping onto a MF one-electron problem
is given by the effective KS potential 𝑉KS(r) = 𝑉ext(r) + 𝑉H(r) + 𝑉XC(r) comprising the
potential of the ionic lattice, the Coulomb interaction on the Hartree level (the Hartree
term), and the exchange-correlation (XC) potential. For the XC potential approximations
have to be devised as it is unknown in general (an apparently fundamental circumstance
despite the fact that the GS electronic density of the many-body system can in principle be
represented exactly). The KS system is auxiliary and necessary for the DFT implementation
only, for the electronic density may surely be represented by a WF and this might indeed
be done in terms of the KS orbitals organized into a single Slater determinant (referring
to the independent-electron point of view), but it is the electronic density and the total
energy which are important for the description of the material’s GS properties.
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DFT has been applied to numerous and very different physical and chemical systems
with a lot of success. These systems comprise atoms, molecules, solids, and compositions
of those, for example, nanosystems of atoms and molecules on surfaces. In Sec. 2.4 the
application of DFT to the Ta(001)-p(3×3)-O surface is presented, and in Sec. 2.5 the vdW
extension detailed. Even though Ta(001)-p(3×3)-O is on the borderline between metallicity
and insulating behaviour, and bonding is somewhat overestimated DFT (see Sec. 2.5), the
results provide a very good starting point for the understanding of this oxide surface and
the basis for future investigations. There are, however, classes of systems for which DFT
yielded less satisfactory results, and that is mostly connected with the approximations to
the XC term, which are necessary due the difficulty to represent correlations in terms of
the electronic density. In the next Chpts. 3 and 4 correlations are accounted for by models
which are based on a description dual to the density. But also in the approaches discussed
there, DFT still yields the starting point for the inclusion of material-specific data.

The following sections introduce DFT and present the results of its application to the
Ta(001)-(3×3)-O surface. With that they also detail the basis of all computations and
further studies performed or reported on in the present thesis. – Sec. 2.1 presents a
general derivation of DFT. This includes the outline of the HK theorems and their KS
implementation (Subsec. 2.1.1); the discussion of the XC functional and the most common
of its approximations (Subsec. 2.1.2); and the extension of DFT to include magnetism
(Subsec. 2.1.3). Extensions to include the current density (Appx. A.1), and a further one
for the relativistic domain (Appx. A.2) are provided in the appendix; non-relativistic DFT
is hereby successively embedded into larger contexts, and finally derived from relativistic
QED, explaining the emergence of spin and the spin-orbit coupling (SOC), and the form of
the Coulomb interaction. The latter can also be introduced to DFT by an ad-hoc MF-like
extension within DFT+𝑈 (Subsec. 2.1.4). – Sec. 2.2 describes STM and the corresponding
theory for the interpretation of STM images on a basic level. Together with scanning
tunnelling spectroscopy (STS), STM experiments are the ones mostly conducted for such
systems as investigated in the present thesis. Not many STM experiments have been
performed on adsorbates on graphene monolayers due to their difficult preparation, but
the Ta(001)-(3×3)-O as well as the CoCu𝑛/Cu(111) systems (see Chpt. 4) discussed in the
present thesis were investigated by STM. – Sec. 2.3 provides the general embedding of the
Ta(001)-(3×3)-O system in the context of surface science and current research. – Sec. 2.4
finally exemplifies the application of DFT on the Ta(001)-(3×3)-O surface by presenting
the publication as the result of the joint collaboration with the group of Dr. Jens Wiebe
and Prof. Roland Wiesendanger. – Sec. 2.5 goes further, and extends DFT by the vdW
interactions, which often happen to be relevant for the adsorbate-surface interaction and
geometry. It includes a discussion on the iterative Hirshfeld (HI) algorithm to account for
charge transfer (Subsec. 2.5.1), and on the self-consistent screening of dispersion coefficients
(Subsec. 2.5.2). – Sec. 2.6 describes the application of vdW-DFT to the Ta(001)-(3×3)-O
surface; this includes the structural modifications by the vdW interactions (Subsec. 2.6.1), a
Hirshfeld charge and polarization analysis (Subsec. 2.6.2), and a discussion of the dispersion
coefficients (Subsec. 2.6.3).
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2.1 Density functional theory

We start the exposition of DFT by reformulating the EV problem for the Hamiltonian
in Eq. (2.1), in terms of the HK minimum principle for an energy functional depending
on the electronic density. Extensions to include the spin or current density, or to account
better for the correlations, will be introduced in the next subsections after the DFT basics
have been layed out, or in the appendix (Appx. A). HF theory has provided the ideas
of self-consistency and MF theory to electronic systems, and DFT implements the idea
of energy-functional minimization in the HK theorems via the KS equations, which can
be seen analogous to the HF equations, but which extend them in taking into account
correlations beyond the exchange term. These correlations can be considered further by a
MF-like extension within DFT+𝑈 .

2.1.1 The Hohenberg-Kohn theorems and the Kohn-Sham solution

Hohenberg and Kohn [Hoh64] started their derivation of DFT by decomposing the Hamil-
tonian in Eq. (2.1) into three parts,

�̂� = 𝑇 + 𝑉ext + 𝑉el−el, (2.4)

where the first part is the kinetic energy, the second part the external (and the chemical)
potential, and the third part the electron-electron interactions. Formally, the interacting
GS charge density is given by the expectation value

𝑛(r) = ⟨𝛹0|𝜓+(r)𝜓(r)|𝛹0⟩. (2.5)

The GS given by the WF |𝛹0⟩ is assumed to be non-degenerate, but degenerate GSs can be
considered as well [Sch13]. The expectation value renders the electronic density 𝑛(r) being
a functional of the external potential 𝑉ext(r). The HK theorem I states that the external
potential 𝑉ext(r) can conversely be viewed as a unique functional of the electronic density
𝑛(r). This bijection is clear in view of the universality of the other two terms in Eq. (2.4),
𝑇 + 𝑉el−el, which have the same form for all electronic systems, and the proof can be read
in Ref. [Hoh64] and in all textbooks on DFT.

The external potential 𝑉ext(r) determines the Hamiltonian �̂�, and as 𝑉ext(r) is a
functional of 𝑛(r), |𝛹0⟩ is also a functional of 𝑛(r). The two universal terms in Eq. (2.4)
can then be used to define a universal density-dependent functional,

𝐹 [𝑛] = ⟨𝛹0|𝑇 + 𝑉el−el|𝛹0⟩. (2.6)

The Hamiltonian expectation value 𝐸𝑉 [𝑛] = ⟨𝛹0|�̂�|𝛹0⟩ can now be decomposed into the
universal part and the part containing the external potential,

𝐸𝑉 [𝑛] = 𝐹 [𝑛] +
ˆ

dr𝑉ext(r)𝑛(r), (2.7)

and it depends parametrically on the external potential. The GS energy is obtained for the
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GS density. The HK theorem II states that 𝐸𝑉 [𝑛] is minimal for the GS density, that is,

𝐸 = min
𝑛(r)

{︂
𝐹 [𝑛] +

ˆ
dr𝑉ext(r)𝑛(r)

}︂
. (2.8)

We assume for now that all functional derivatives with respect to the density are admissible
(see e.g. Ref. [Giu05] for a discussion of this point), and the variational principle leads to
the equation

𝛿𝐹 [𝑛]
𝛿𝑛(r) = −𝑉ext(r), (2.9)

which again shows the bijective correspondence between the electronic density and the
external potential (HK theorem I). The universal part of the functional is difficult to find
as it contains the correlations, and no conclusive expression in terms of the density has
been found until today.

Kohn and Sham set out for the computational realization of the HK theorems [Koh65].
To this end, the functional 𝐹 [𝑛] is further decomposed into yet another universal functional
and the Hartree energy,

𝐹 [𝑛] = 𝐺[𝑛] + 1
2

ˆ
d(r, r′)𝑛(r)𝑛(r′)

|r − r′|
. (2.10)

The Hartree term will be denoted by 𝐸H[𝑛] in what follows. The functional 𝐺[𝑛] contains
the kinetic energy and the correlations. According to the HK theorems, the kinetic energy
for a non-interacting electron system, 𝑇𝑠[𝑛], is a unique functional of the density. Thus, all
correlations in the system may be gathered into one XC functional 𝐸xc[𝑛], so that

𝐺[𝑛] = 𝑇𝑠[𝑛] + 𝐸xc[𝑛]. (2.11)

The XC functional 𝐸xc[𝑛] is defined by exactly that decomposition. While 𝑇𝑠[𝑛] is the
kinetic energy of a non-interacting system, the particles still are subjected to the constraint
that they yield the interacting density 𝑛(r),

𝑇𝑠[𝑛] = min
𝜓→𝑛(r)

⟨𝜓|𝑇 |𝜓⟩. (2.12)

The kinetic energy for the auxiliary non-interacting KS system is in general different to
the one for the interacting system. With all the definitions at hand, we are able to rewrite
the energy functional as

𝐸V[𝑛] = 𝑇𝑠[𝑛] + 𝐸ext[𝑛] + 𝐸H[𝑛] + 𝐸xc[𝑛]. (2.13)

The energy due to the external potential 𝐸ext[𝑛], and the Hartree energy 𝐸H[𝑛] do not
depend on whether the electronic system is interacting or not as long as they have the
interacting density as their variable. The minimum principle (HK theorem II) yields the
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equation

𝛿𝑇𝑠[𝑛]
𝛿𝑛(r) = −𝑉KS[𝑛](r), (2.14)

where

𝑉KS[𝑛](r) = 𝛿(𝐸ext[𝑛] + 𝐸H[𝑛] + 𝐸xc[𝑛])
𝛿𝑛(r) . (2.15)

The KS potential 𝑉KS[𝑛](r) is a local functional of the density. As the electronic system is
described in terms of non-interacting particles moving in the KS potential, one is now able
to define the KS equation

[︂
−1

2𝛥+ 𝑉KS[𝑛](r)
]︂
𝜑𝛼𝜎(r) = 𝜀𝛼𝜑𝛼𝜎(r), (2.16)

along with the condition that the KS-WFs combine to yield the interacting density

𝑛(r) =
𝑁∑︁

𝛼=1

∑︁

𝜎

|𝜑𝛼𝜎(r)|2, (2.17)

which enters into the KS potential 𝑉KS[𝑛](r). The index 𝛼 comprises band, momentum,
and possible some other indices; the momentum is assumed confined to the first Brillouin
zone (BZ) (due to Bloch’s theorem), the band index can be transformed to other orbitals
if needed [Sch13]. As in HF theory, the KS equation needs to be solved iteratively until
self-consistency is achieved, and one has eventually found the interacting GS density and
the GS energy. The difference, though, is the complete locality of the KS operator, while
the HF operator was non-local, but now all correlations are included (at least formally).
After having obtained the solution and some rearrangements, the GS energy is given by

𝐸 =
𝑁∑︁

𝛼=1
𝜀𝛼 − 𝐸H[𝑛] −

ˆ
dr𝑉xc[𝑛](r)𝑛(r) + 𝐸xc[𝑛]. (2.18)

As in HF theory, the GS energy is not just the sum of the orbital energies, but modified by
the interactions. As the KS system is an auxiliary system, neither the EVs nor the WFs
are physical, even though they are often used like that, and we will do the same to project
onto local orbitals and derive hybridization functions. There is, however, a proof showing
that in metals the EV of the highest occupied KS orbital is the true Fermi level (in spite
of the fact that the KS Fermi surface is not physical) [Giu05].
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2.1.2 The exchange-correlation functional

The electron-electron interaction in Eq. (2.1) can be rewritten in terms of the density
operator as [Sch13]

𝑉el−el = 1
2

ˆ d(r, r′)
|r − r′|

[︀
�̂�(r)�̂�(r′) − 𝛿(r − r′)�̂�(r)

]︀
. (2.19)

The XC functional is the difference

𝐸xc[𝑛] = ⟨𝛹0|𝑉el−el|𝛹0⟩ − 𝐸H[𝑛]

= 1
2

ˆ d(r, r′)
|r − r′|

⟨𝛹0|
[︀
�̂�(r) − 𝑛(r)

]︀ [︀
�̂�(r′) − 𝑛(r′)

]︀
− 𝛿(r − r′)𝑛(r)|𝛹0⟩

=: 1
2

ˆ
d(r, r′) 𝑛(r)𝑛xc[𝑛](r, r′)

|r − r′|
. (2.20)

Integrating the expectation value in the integrand in the second line of Eq. (2.20) over r′,
one obtains the important sum rule

ˆ
dr′ 𝑛xc[𝑛](r, r′) = −1, (2.21)

which leads to the interpretation of 𝑛xc[𝑛](r, r′) as describing an XC hole surrounding an
electron due to exchange and correlation. In terms of the so-called pair correlation function
𝑔[𝑛](r, r′), the XC hole can be written as

𝑛xc[𝑛](r, r′) = 𝑛(r′)(𝑔[𝑛](r, r′) − 1), (2.22)

and the expectation value of the electron-electron interaction takes on the form

⟨𝛹0|𝑉el−el|𝛹0⟩ = 1
2

ˆ
d(r, r′) 𝑛(r)𝑛(r′)𝑔[𝑛](r, r′)

|r − r′|
. (2.23)

This equation makes the naming of 𝑔[𝑛](r, r′) as pair correlation function obvious, and it
describes the deformation of the Hartree energy to account for the full electron-electron
interaction. The pair correlation function can also be calculated in HF theory, and using
the KS orbitals, one may put it in direct analogy. The expression in terms of KS orbitals
is the exchange-only approximation [Giu05].

The general form of the XC functional 𝐸xc[𝑛] (i.e., for the inhomogeneous electron gas
(IHEG)) is not known because the correlations cannot be expressed in terms of the density
(at least up to now). It is possible, though, to extract the exchange term from 𝐸xc[𝑛]
[Koh65], which then has the same form as in HF theory, cf. Eq. (2.2), only with use of the
KS orbitals. In the energy functional 𝐸𝑉 [𝑛], this decomposition would yield a term

𝐸x[𝑛] = −1
2

ˆ
d(r, r′) 𝑛1(r, r′)𝑛1(r′, r)

|r − r′|
, (2.24)
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with

𝑛1(r, r′) =
∑︁

𝛼𝜎

𝜑𝛼𝜎(r)𝜑*
𝛼𝜎(r′). (2.25)

As the non-local nature of the exchange interaction renders the computational efforts rather
high, the extraction of the exchange term is not incorporated in the DFT implementation
used in the projects reported in the present thesis.

Already Hohenberg and Kohn [Hoh64] and Kohn and Sham [Koh65] used the XC
functional for the homogeneous homogeneous electron gas (HEG) as a first approximation,
and subsequently extended it by the gradient expansion in terms of the density. Both
approximations were employed in the publications included in the present thesis, and are
shortly described in the next two subsections.

The local density approximation

The HF equations are exactly solvable for an HEG [Sch13], and one obtains an exact
expression for the exchange energy in terms of the density,

𝜀x(𝑛) = −3
4

(︂
3
𝜋

)︂1/3
𝑛1/3 = −3

4

(︂
3

2𝜋

)︂2/3 1
𝑟𝑠
, (2.26)

where the Wigner-Seitz radius defined by 𝑛 = (4𝜋𝑟3
𝑠/3)−1 was inserted. The correlation

energy per electron for an HEG was computed via Monte Carlo by Ceperley and Alder
[Cep80] in the parametrization of Perdew and Zunger [Per81],

𝜀𝑐(𝑛) =
{︃

−0.1423 (1 + 1.0529√
𝑟𝑠 + 0.3334 𝑟𝑠)−1 for 𝑟𝑠 ≥ 1,

−0.0480 + 0.0311 ln(𝑟𝑠) − 0.0116 𝑟𝑠 + 0.0020 𝑟𝑠ln(𝑟𝑠) for 𝑟𝑠 < 1.
(2.27)

The XC energy per electron for the HEG is the sum of both terms, 𝜀xc(𝑛) = 𝜀x(𝑛) + 𝜀c(𝑛).
Within the LDA, the XC energy per electron of the IHEG is approximated by the same
expression, so that one obtains the XC functional

𝐸LDA
xc [𝑛] =

ˆ
dr 𝜀xc(𝑛(r))𝑛(r). (2.28)

The XC potential in the LDA can then be obtained via functional derivation,

𝑉 LDA
xc [𝑛](𝑟) = 𝛿𝐸LDA

xc [𝑛]
𝛿𝑛(r) . (2.29)

Comparing with Eq. (2.20), one can express the XC energy in the LDA in terms of the XC
hole as

1
2

ˆ
dr′ 𝑛

LDA
xc [𝑛](r,r′)

|r − r′|
= 𝜀xc(𝑛(r)). (2.30)
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Apart from the factor of 1
2 , the expression on the left-hand side is the Hartree potential

of the XC hole. However, it is obvious from Eq. (2.30) that its long-range behaviour is
not the one of the Coulomb law, ∝ 1/|r|. This behaviour might lead to problems for
chemical bonding as it depends strongly on the correct overlap of WFs [Sch13]. The known
overestimation of bonding within the LDA is due to an incorrect logarithmic divergence
in the high-density limit [Giu05], which is corrected by the generalization of the LDA
described in the next subsection. In contrast to these deficiencies, the sum rule in Eq. (2.21)
is satisfied, which is one reason for its successes.

The generalized gradient approximation
The LDA can be employed if the electronic density is sufficiently slowly varying, nearly
behaving like an HEG, and it fails for strongly correlated systems. It can be considered
as the lowest order within the expansion of the XC functional integrand in the gradients
of the density [Hoh64; Sch13]. A slowly varying density can be defined as the one which
changes only little within local Wigner-Seitz spheres (i.e., the density is rather high), so
that an expansion of the integrand of the XC functional in the small quantity

𝑥 =
(︂

4𝜋
3

)︂1/3
𝑟𝑠

|∇𝑛(r)|
𝑛(r) = |∇𝑛(r)|

𝑛4/3(r)
≪ 1 (2.31)

can be performed. This leads to the expression of the gradient expansion approximation
(GEA)

𝐸xc[𝑛] = 𝐸LDA
xc [𝑛] +

ˆ
dr 𝑓(𝑛(r)) |∇𝑛(r)|2

𝑛4/3(r)
, (2.32)

where higher order terms have been neglected. Written as such, it is already an extension
away from the HEG to the IHEG, but still with a slowly varying density. A particular
variant of the second order shown in Eq. (2.32) for spin-polarized systems was given by
Rasolt and Geldart [Giu05; Ras86] having the form

𝐸GEA,(2)
xc [𝑛↑, 𝑛↓] = 1

2
∑︁

𝜎𝜎′

ˆ
dr𝐵xc,𝜎𝜎′(𝑛↑(r), 𝑛↓(r))∇𝑛𝜎(r) · ∇𝑛𝜎′(r). (2.33)

The major drawback of the GEA is the violation of the sum rule in Eq. (2.21). The
generalized gradient expansion (GGA) is designed to satisfy the sum rule, and correct
the LDA for the overbinding. The details are rather complex and a derivation together
with relevant references can be found in Ref. [Giu05], a few details of which we will reflect
shortly.

The XC functional in the GGA for the generally spin-polarized case assumes the form

𝐸GGA
XC [𝑛↑, 𝑛↓] =

ˆ
dr 𝑓(𝑛↑(r), 𝑛↓(r),∇𝑛↑(r),∇𝑛↓(r)). (2.34)

Then it is subjected to the sum rule and the correct long-range behaviour, alongside
with some other exact properties like various scaling behaviours (e.g., for the density)
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and asymptotics (e.g., for the gradient). A derivation of 𝐸GGA
XC [𝑛↑, 𝑛↓] was performed by

Perdew, Burke, and Ernzerhof (PBE) [Per96], and it takes the form

𝐸GGA
XC [𝑛↑, 𝑛↓] =

ˆ
dr𝐹xc(𝑟𝑠(r), 𝑝(r), 𝑠(r))𝜀x(𝑛(r))𝑛(r), (2.35)

where 𝑟𝑠(r) is the local Wigner-Seitz radius, 𝑝(r) the local fractional spin-polarization, and
𝑠(r) essentially the small quantity given in Eq. (2.31), that is, the normalized gradient. The
reason for this form is the better knowledge of the exchange hole in the exchange-only GGA,
and its exact knowledge in the LDA as the starting point for the derivation (i.e., 𝜀x(𝑛(r))
is given in Eq. (2.26)). The LDA is assumed in the limit 𝐹xc(𝑟𝑠, 𝑝, 𝑠) ≃ 𝐹xc(𝑟𝑠, 𝑝, 0).

The PBE functional was used in the project on the Ta(001)-p(3×3)-O surface (Secs. 2.4
and 2.6). A precursor to PBE, the Perdew-Wang 91 (PW91) functional [Wan91], was used
for Co/graphene (Sec. 3.6) and the CoCu𝑛/Cu(111) systems (Sec. 4.6). PW91 is based on
expressions for the correlation energy in the RPA (Sec. 3.1), generalized from the HEG
(i.e., the LDA) to slowly varying densities (the high-density limit 𝑟𝑠 → 0).

2.1.3 Spin in DFT

The magnetism of condensed matter systems can be described with DFT at different levels
of sophistication, and we choose here to show spin-DFT on an intermediate level, that is,
mostly for collinear magnetic states; non-collinearity can be introduced at the price of an
index war. This version for DFT was mostly used throughout the projects reported in the
present thesis, with use of the non-collinear extension only for a few checks. We shortly
discuss other extensions (Appx. A), including the relativistic one, but describe details only
for simplified models and rather present only some general physical considerations with
regard to the ones mentioned in the introduction.

DFT was extended to spin-polarized systems by von Barth and Hedin [Bar72]. The
starting point is the Pauli equation, which is the non-relativistic approximation to the
Dirac equation (cf. last paragraph in Appx. A.2). The Hamiltonian includes an external
electromagnetic potential (to ensure gauge invariance), and a magnetic field derived from
the rotation of its vectorial part, B = ∇ × A, and it acts in the Hilbert space of spinor
states. In this way, the density variable becomes generalized to a 2×2 Hermitian matrix
[Bih06]

𝑛𝜎𝜎′(r) = ⟨𝛹0|𝜓+
𝜎 (r)𝜓𝜎′(r)|𝛹0⟩ = [𝑛(r)]𝜎𝜎′ , (2.36)

here, in the general non-collinear case, with 𝜎, 𝜎′ = +,−. The KS potential as a functional
derivative with respect to the density becomes a matrix as well, and the KS equations
reads (cf. Eqs. (2.15) and (2.16))

[︂
−1

2𝛥 12 + 𝑉 KS[𝑛](r)
]︂(︂

𝜑𝛼,+(r)
𝜑𝛼,−(r)

)︂
= 𝜀𝛼

(︂
𝜑𝛼,+(r)
𝜑𝛼,−(r)

)︂
, (2.37)
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where 12 denotes the 2×2 unity matrix. In terms of the KS orbitals, the density looks like

𝑛𝜎𝜎′(r) =
𝑁∑︁

𝛼=1
𝜑*
𝛼𝜎(r)𝜑𝛼𝜎′(r), (2.38)

and it consists of the charge and magnetization densities,

𝑛(r) = 1
2
[︀
𝑛(r)12 + 𝜎 m(r)

]︀
, (2.39)

with 𝜎 the vector of Pauli matrices. Both, the external potential 𝑉ext(r) and the XC
potential 𝑉xc[𝑛](𝑟) appearing in the KS potential 𝑉KS[𝑛](𝑟) are of matrix form,

𝑉 ext/xc(r) = 𝑉ext/xc(r)12 + 𝜇B𝜎Bext/xc(r), (2.40)

with 𝜇B = 𝑒~/2𝑚𝑐 = 1
2 the Bohr magneton in natural units. In this way, the XC potential

incorporates correlations which are now changed by the presence of the external magnetic
field (we will discuss this point shortly a few paragraphs below). An external electrostatic
field changes the one of the ionic lattice and can be absorbed into 𝑉ext(r). In the general
non-collinear case, that is, if the magnetic moments in the system are not aligned, Eq. (2.37)
describes a set of coupled KS equations for the density components. In the collinear case,
when all magnetic moments are aligned along a preferred direction, e.g. the one given
by the external magnetic field, Eq. (2.37) goes over into two decoupled equations with
components now indexed by (+,−) = (↑ , ↓).

We shortly state the XC functional in the local spin density approximation (LSDA) for
the collinear case [Sch13]. The one in the spin-GEA and spin-GGA have already been
given in Subsec. 2.1.2, albeit in a general functional form. The XC functional in LSDA is

𝐸LSDA
xc [𝑛↑, 𝑛↓] =

ˆ
dr 𝜀xc(𝑛(r),𝑝(r))𝑛(r), (2.41)

where 𝑝(r) = [𝑛↑(r) − 𝑛↓(r)] /𝑛(r) is the fractional spin polarization. Like in the paramag-
netic case for the HEG, one has the splitting 𝜀xc(𝑛, 𝑝) = 𝜀x(𝑛, 𝑝) + 𝜀c(𝑛, 𝑝). The exchange
part is given by

𝜀x(𝑛(r),𝑝(r)) = −3
8

(︂
3
𝜋

)︂
𝑛1/3(r)

[︁
(1 + 𝑝(r))4/3 + (1 − 𝑝(r))4/3

]︁
, (2.42)

and the correlation part was numerically determined by Ceperley and Alder [Cep80], and
given in the parameterization of Vosko et al. [Vos80], it can be looked up in Ref. [Sch13].

Even without an external magnetic field it is sometimes beneficial to use spin-DFT,
because then there are more DOF available for the determination of the electronic structure
or the relaxed geometry. According to experience, spin-DFT sometimes yields larger
adsorption heights for adatoms. In post-DFT calculations there might occur differences
in the results based on magnetically or paramagnetically DFT-determined geometries.
For example, the Co/graphene system (Sec. 3.6) was relaxed within spin-DFT, because
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the accordingly larger Co adsorption height renders the screening of the local Coulomb
interactions (computed by the to-be-discussed cRPA) by the graphene electrons weaker.
Thus, the Coulomb interactions on adatoms come out stronger compared to the ones based
on the paramagnetically relaxed geometry. But there often happens to result unphysical
magnetic moments in the spin-DFT-optimized geometry, as the larger distance between
adatom and surface seem to allow for spin excitations, which in generic cases without SOC
do not exist (physically, the SOC is always present, but it is often smaller than most other
scales in the system). In this case one has to take the average between the spin components
to obtain paramagnetic quantities extracted from spin-DFT, or use paramagnetic DFT with
the magnetically relaxed geometry. In general one has to be cautious with spin-DFT as
there exist examples (like bulk Cr) for the sensitive dependence of the magnetic properties
on the lattice constants, which in turn depend on the energy functional chosen [Bih06;
Sin92] (see also Refs. [Bih00; Faw88; Kol02; Kol05; Sch16] on bulk Cr and Cr(001)).
Whenever available, it is always worth to compare with experimental results.

The physics of a magnetically behaved system can be understood to some extent by
observing the shift of the spin-up and spin-down portions of the density of states (DOS)
with respect to each other (next to other spectral deviations away from the paramagnetic
case). In the simple phenomenological interpretation of the Stoner model, the energy
bands are just shifted with respect to each other, 𝜀𝜎(k) = 𝜀(k) + 𝐼⟨𝑛−𝜎⟩, where 𝐼 is the
Stoner exchange parameter. Any energy enhancement introduced by such a splitting is on
the overall overcompensated by the reduction due to the exchange interaction (see also
introduction to this chapter). The Stoner model can be obtained from the Hubbard model
by the MF approximation, and is thus valid for weak correlations [Lic13]. (The Hubbard
model can in principle be obtained from Eq. (2.1) by a tight-binding-like transformation to
local orbitals which cover all sites, cf. Refs. [Kar13; Kor08; Kov10; Kun11], and is essentially
the lattice version of the to-be-discussed AIM (Sec. 3.2)). For strongly correlated materials,
on the other hand, the Hubbard model (at half-filling) is effectively the Heisenberg spin
model. In systems where Coulomb localization and band delocalization are on a comparable
scale, such as in TM systems, both, longitudinal (Stoner) and transverse (Heisenberg),
magnetic fluctuations need to be considered equally within the Hubbard model. The Stoner
parameter 𝐼 can be identified with the exchange part of the (non-local) Coulomb interaction
between two different sites, 𝐽12 = ⟨12|𝑉el−el(r1 − r2)|21⟩. Ref. [Lic13] also provides a review
of how these quantities can be calculated from first principles.

While the Stoner model point of view can lead to an understanding of magnetism in DFT,
it also makes its shortcomings apparent [Lic13]: DFT contains correlations only in the MF
approximation (see Ref. [Coh08] for a more thorough assessment of the DFT limitations).
Within the GF approach (Chpt. 3, and here especially in Appx. C.1), one can furthermore
see by the equal-time nature of the formalism for DFT that collective excitations, such as
plasmons and magnons (cf. Appx. A.1), are excluded from its description (but one may
still describe them approximately, e.g., within the frozen magnon approximation [Ess11;
Gro01]). (Cf. introductory part to Chpt. 4: Plasmons are quantized density oscillations
(quasi-particles) which arise from the long-range part of the Coulomb interaction; magnons
are analogous collective spin excitations.) The equal-time nature also excludes a notion
of temperature beyond the Fermi distribution function, but thermal excitations (which
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may generate plasmons and magnons) can lead to a reduction of the magnetic order in
the system. Such matters can be met, for example, within time-dependent DFT (TDFT)
which yields the exact response functions. However, due to its reliance on the random
phase approximation, it is again valid only for rather weakly correlated systems such
as aluminium and its plasmonic excitations. One possible solution to include strong
correlations in real materials lies in a first consideration of the local correlations within
an AIM (Chpt. 3), and then in a successive extension of that model, first by the self-
consistency of DMFT (cf. Subsec. 3.2.1) [Geo92; Geo96; Met89; Vol12], and then by the
dual-fermion and dual-boson approaches for the non-local correlations [Rub12; Rub09];
or first by the to-be-discussed GWA (Sec. 3.1), and then by some EDMFT [Bie03; Hel11;
Sun02]. Non-local correlations can also be considered within real-space DMFT (rDMFT),
in which the local correlations on several impurities represented by individual AIMs are
connected via the DMFT self-consistency [Kub16; Tit12], as well as within cluster DMFT
(cDMFT) [Har16; Nom14; Pot18]. There are many implementations and results of, and
reviews on, the DFT+DMFT and related approaches, see Refs. [Ama08; Ani97b; Dan14;
Geo04; Gul11; Hau10; Hel07; Hel08; Kot06; Lec06; Nek13; Pau19; Pav14; Pav11; Pou07;
Tom12] for a selection. The present thesis will later focus on the local correlations without
any self-consistency or anything beyond, that is, to the DFT+AIM approach for correlated
adatoms (and nanostructures) on surfaces.

The concept of spin will be further embedded into the current- and spin-DFT in Appx. A.1,
and more comprehensively derived from QED and relativistic DFT (RDFT) in Appx. A.2.
In the non-relativistic limit one can observe that the spin is coupled to the electronic
motion via the SOC. The electrons move through a lattice potential, or are localized in the
vicinity of an adatom on the surface, so the motion and thus the magnetism is anisotropic.
The concept of magnetic anisotropy will be discussed to some extent in Appx. B. As
mentioned in Subsec. 3.2.1, the implementation details for the transition from DFT to the
AIM, and to some extent for DFT itself as in its incarnation within the Vienna ab-initio
simulation package (VASP) [Kre96], can be read in Refs. [Kar13; Kar11b] and Sec. 3.6.
In Appx. B we will describe a very few DFT implementation details with regard to the
magnetic anisotropy.

2.1.4 Hubbard-𝑈 in DFT
In principle, DFT fully describes the GS of the inhomogeneous electron system and takes
into account all correlation effects. In practice, nobody knows how the XC functional for
the inhomogeneous system looks like. Together with reduced delocalization and momentum,
these inhomogeneities lead to localization of electrons, especially around nuclei having
𝑑- or 𝑓 -shell valencies (Mott localization [Mot49; Mot37]) [Ani97a; Coc12]. Localization
is accompanied by band narrowing, resulting in bands looking more like energy states,
sometimes in insulating behaviour with gaps between energy bands around the Fermi level,
and in discontinuities of the XC potential (which, however, are not reproduced in the
LDA and GGA approximation) [Per17; Sei96]. Localized electrons happen to be strongly
correlated, a situation which is not met properly by common XC functionals derived under
conditions like slowly varying charge densities near the HEG limit. Furthermore, the KS
formalism renders the XC potential being a multiplicative and MF-like term depending
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on the density (and possibly its gradients). In these points the HF theory seems more
precise and general in comparison to DFT; but via the hybrid functional approach the HF
exchange interactions can be taken into account exactly in DFT [Bec93]; and HF theory
does not contain correlations at all, as these pertain to a multi-determinental description
(full CI or some approximative approach to it). Like ordinary band theory, which itself
emphasizes delocalization and metallicity, HF theory does not contain Mott physics.

The shortcomings were in particular seen for Mott insulators like the 3𝑑-TM oxides
[Ani97a; Ani91b]. In Ref. [Ani91b] a first so-called DFT+𝑈 scheme was set up which
used the Hubbard parameter 𝑈 and the Stoner exchange parameter 𝐼 (identified with the
Hund’s rule exchange 𝐽), both calculated beforehand within constrained DFT (cDFT) (see
Refs. [Ani91a; Coc05; Gun89]), in an augmentation of the DFT energy functional by a
MF-like approximation to the Hubbard interaction term,

𝐸𝑉 [𝑛] = 𝐸DFT
𝑉 [𝑛] + 1

2
∑︁

𝑖𝑚𝑚′𝜎

𝑈(𝑛𝑖𝑚𝜎 − �̄�𝑖)(𝑛𝑖𝑚′,−𝜎 − �̄�𝑖)

+ 1
2

∑︁

𝑖,𝑚 ̸=𝑚′,𝜎

(𝑈 − 𝐽)(𝑛𝑖𝑚𝜎 − �̄�𝑖)(𝑛𝑖𝑚′𝜎 − �̄�𝑖). (2.43)

The index 𝑖 runs over the correlated sites, and 𝑚, 𝑚′ over the correlated orbitals. DFT is
a MF approximation to the correlations, reflecting them in the Hartree and XC potential,
both contained in 𝐸DFT

𝑉 [𝑛]. The second and third terms contain the deviations of the
local occupations of the correlated shell around their MF values, �̄�𝑖 = 1

2(2𝑙+1)
∑︀

𝑚𝜎 𝑛𝑖𝑚𝜎.
In this way, spin and orbital DOF are treated on an equal footing allowing for both, spin
and orbital, polarizations. It should be noted that the occupation EVs are used instead
of number operators for the Hubbard term, signifying that the DFT+𝑈 approach still is
a (static) MF approach to the correlations (in contrast to DMFT). The reduction of the
correlation strength in the third term implements the first Hund’s rule (it is 𝑈 > 𝐽 > 0).

A reorganization of the Coulomb interactions shown in Eq. (2.43) into the “direct”
Hubbard term (i.e., occupations directly, and not their deviation around the MF value)
and the so-called DC term was performed subsequently [Czy94; Sol94], opening up a more
detailed assessment of the correlations in the DFT+𝑈 functional being used. The Hubbard
term was then extended to fulfil invariance under unitary transformations of the local
basis [Lie95], providing the possibility to include all Coulomb interaction terms and its
convenient Slater parametrization in the spherically symmetric case. Finally, a simplified
form of the functional has been proposed [Dud98], to be discussed below, and which has
been used in the simulations reported in Secs. 2.4 and 2.6.

In general, the DFT+𝑈 functional is now decomposed into three terms [Coc12],

𝐸DFT+𝑈
𝑉 [𝑛] = 𝐸DFT

𝑉 [𝑛] + 𝐸Hubbard[{𝑛𝑖𝑚𝑚′𝜎}] − 𝐸DC[{𝑛𝑖𝜎}], (2.44)

where the second term contains the electronic interactions as in the Hubbard model (with
occupation EVs and not the deviations from their MF value), and the third term the
DC reflecting the correlations already present in DFT, but which are more appropriately
accounted for by the Hubbard term. That means, the DC is the DFT-MF approximation to
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the Hubbard term. The occupation matrices can be obtained from DFT via projections of
the Bloch states (indexed by band 𝑛 and momentum k) onto atomic-like orbitals (indexed
by site 𝑖 and orbital 𝑚), weighted by the Fermi function,

𝑛𝑖𝑚𝑚′𝜎 =
∑︁

𝑛k
𝑓𝑛k𝜎⟨𝜓𝑛k𝜎|𝜑𝑖𝑚′⟩⟨𝜑𝑖𝑚|𝜓𝑛k𝜎⟩. (2.45)

In terms of these, the Hubbard term in the full and unitary invariant form is given by

𝐸Hubbard[{𝑛𝑖𝑚𝑚′𝜎}] = 1
2
∑︁

𝑖,{𝑚},𝜎

[︀
⟨𝑚,𝑚′′|𝑉el−el|𝑚′,𝑚′′′⟩𝑛𝑖𝑚𝑚′𝜎𝑛𝑖𝑚′′𝑚′′′,−𝜎

+
(︁

⟨𝑚,𝑚′′|𝑉el−el|𝑚′,𝑚′′⟩ − ⟨𝑚,𝑚′′|𝑉el−el|𝑚′′′,𝑚′⟩
)︁
𝑛𝑖𝑚𝑚′𝜎𝑛𝑖𝑚′′𝑚′′′𝜎

]︀
.

(2.46)

Expanding the Coulomb potential 𝑉el−el(r − r′) = 1/|r − r′| into spherical harmonics, one
obtains

⟨𝑚,𝑚′′|𝑉el−el|𝑚′,𝑚′′′⟩ =
2𝑙∑︁

𝑘=0
𝑎𝑘(𝑚,𝑚′,𝑚′′,𝑚′′′)𝐹 𝑘, (2.47)

where the summation has been limited to the case of one electronic shell with specific 𝑛
and 𝑙. The angular Slater integrals are given by

𝑎(𝑚,𝑚′,𝑚′′,𝑚′′′) = 4𝜋
2𝑘 + 1

𝑘∑︁

𝑞=−𝑘
⟨𝑙𝑚|𝑌𝑘𝑞|𝑙𝑚′⟩⟨𝑙𝑚′′|𝑌 *

𝑘𝑞|𝑙𝑚′′′⟩, (2.48)

and the radial Slater integrals by

𝐹 𝑘 =
ˆ

d(𝑟,𝑟′) (𝑟𝑟′)2𝑅2
𝑛𝑙(𝑟)

𝑟𝑘<

𝑟𝑘+1
>

𝑅2
𝑛𝑙(𝑟′) ≡ 𝐹 𝑘(𝑛𝑙,𝑛𝑙). (2.49)

These Slater integrals appear from representing the spherical harmonics in position space.
Only 𝐹 0, 𝐹 2, 𝐹 4 are needed for 𝑑 elements. For the spherically symmetric case, the
Hubbard parameters can be extracted from the Coulomb interaction components via

𝑈 = 1
(2𝑙 + 1)2

∑︁

𝑚𝑚′

⟨𝑚𝑚′|𝑉el−el|𝑚𝑚′⟩ = 𝐹 0,

𝐽 = 1
2𝑙(2𝑙 + 1)

∑︁

𝑚 ̸=𝑚′

= ⟨𝑚𝑚′|𝑉el−el|𝑚𝑚′⟩ = 𝐹 2 + 𝐹 4

14 . (2.50)

These reversely determine the Coulomb interaction in its rotationally invariant parame-
terization; a more thorough discussion on the Slater and other parametrizations can be
found in Ref. [Kar13]. If the values 𝑈 and 𝐽 in Eq. (2.50) or the full (orbital-dependent)
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Coulomb interaction matrix in Eq. (2.46) are known (e.g., from cDFT [Ani91a; Coc05;
Gun89], or from cRPA and possible subsequent averaging, Subsec. 3.1.2, and Secs. 3.5
and 3.6), one knows in fact the screened Coulomb interaction. This is to be distinguished
from the bare Coulomb interaction used in HF theory. One may note at this point that the
Coulomb interaction from cRPA is actually frequency-dependent, and DFT+𝑈 only takes
into account its static part for the Hubbard term (𝜔 = 0; like most quantum impurity
solvers, cf. Chpt. 3); in fact, DFT+𝑈 is the static limit of the GWA (Sec. 3.1) [Coc12].

Finally, according to HF theory, the DC term accompanying the general Hubbard term
given in Eq. (2.46) assumes the form [Coc12]

𝐸DC,FLL[{𝑛𝑖𝜎}] = 1
2
∑︁

𝑖

[︃
𝑈𝑖𝑛𝑖(𝑛𝑖 − 1) − 𝐽𝑖

∑︁

𝜎

𝑛𝑖𝜎(𝑛𝑖𝜎 − 1)
]︃
, (2.51)

with 𝑛𝑖 =
∑︀

𝑚𝜎 𝑛𝑖𝑚𝜎 and 𝑛𝑖𝜎 =
∑︀

𝑚 𝑛𝑖𝑚𝜎. This is the so-called “fully localized limit (FLL)”
which works well for more localized orbitals with strong correlations. The DC term is
subtracted, so integer orbital occupations of 0 or 1 favouring the Mott localization are
encouraged. For the other limit of more extended orbitals with rather metallic behaviour
and weaker correlations, the “around MF (AMF)” limit given in Eq. (2.43) can be used.
Together with the Hubbard term, the AMF functional encourages non-uniform occupations
within the correlated orbitals. For Co/graphene (Sec. 3.6) the AMF limit was used as it
performed best for this apparently weakly correlated system (the AMF limit was tested
against the FLL). For the CoCu𝑛/Cu(111) systems (Sec. 4.6) both DC approaches were
used according to the degree of delocalization of the correlated Co adatom in the different
Cu(111) environments (Subsec. 4.6.7). Hybrid combinations of DC terms interpolating
between these two limits are sometimes also beneficial [Coc12]. In Appx. C.1 the DC
theory is placed in the general context of the Luttinger-Ward functional, where it receives
its exact definition from a non-perturbative “intersection” of DFT and DMFT (or the
AIM); that is, one has to represent the correlations within DFT in the variables of DMFT.

A few extensions of the DFT+𝑈 functional are available. An important one is the so-
called DFT+𝑈+𝑉 method based on the extended Hubbard model containing the inter-site
Coulomb interactions [Coc12],

�̂�Hubbard
𝑉 =

∑︁

⟨𝑖,𝑗⟩

𝑉𝑖𝑗�̂�𝑖�̂�𝑗 , (2.52)

where the sum runs over nearest-neighbour correlated sites (spin and orbital indices are
implicit). The form given here allows for directional dependence of the interactions.
Alongside with its suggested importance for high-𝑇c superconductivity (SC) (𝑈 > 0 and 𝑉
< 0), magnetic and charge order, charge density waves (CDWs), spin density waves (SDWs),
and other non-local properties of materials can be described by taking into account inter-site
correlations. These considerations go along the ones on local and non-local correlations
made in Subsec. 2.1.3 and Appx. A.1. For example, for the solution of extended Hubbard
models, to which Eq. (2.52) contributes the non-local Coulomb interactions, one can extend
the DMFT by the dual-boson approach [Rub12; Ste16b].
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Retaining only the lowest order of the expansion in Eq. (2.48), 𝑎0(𝑚,𝑚′,𝑚′′,𝑚′′′) =
𝛿𝑚𝑚′𝛿𝑚′′𝑚′′′ , one obtains the simplification of the full Hubbard term used within the
DFT+𝑈 calculations for the Ta(001)-p(3×3)-O surface [Dud98]. The Hubbard and DC
terms have the form

𝐸Hubbard[{𝑛𝑖𝑚𝑚′𝜎}] − 𝐸DC[{𝑛𝑖𝜎}] = 1
2
∑︁

𝑖

𝑈𝑖
[︀
(Tr(𝑛𝑖))2 − Tr((𝑛𝑖)2)

]︀

− 1
2
∑︁

𝑖

𝑈𝑖𝑛𝑖(𝑛𝑖 − 1)

= 1
2
∑︁

𝑖

𝑈𝑖Tr[𝑛𝑖(1 − 𝑛𝑖)]. (2.53)

The trace runs over spin and orbital indices, and the third line shows that the rotational
invariance of the original full Hubbard term (Eq. (2.46)) is maintained. No Hund’s rule
coupling 𝐽 is contained in the formula (excluding non-collinear magnetic order, particular
multi-orbital correlations, and its interplay with the SOC [Coc12]), but in Ref. [Dud98]
the on-site Coulomb strength was actually denoted by 𝑈eff,𝑖 = 𝑈𝑖 − 𝐽𝑖. In principle this
might cause problems as, for example, the relation 𝑈 < 𝐽 what was found to be relevant
for the Fe magnetic moment of Fe-based SCs [Coc12]. For positive 𝑈eff,𝑖, though, integer
occupations are preferred and Mott localization is found.

For the Ta(001)-p(3×3)-O surface the DFT+𝑈 approach from Ref. [Dud98] was employed
with 𝑈 on oxygens, because their local interaction was found to be relevant when these are
situated in TM environments (𝑈 on oxygen 𝑝 shells is often comparable to 𝑈 on TM 𝑑
shells) [Nek00]. As the oxygen 𝑝 shell is approximately filled when placed on the Ta(001)
surface, the Hund’s rule coupling 𝐽 is less important and a single 𝑈eff sufficient. Test
calculations showed that 𝑈 on tantalums around 1.0 eV (which lies within the range used
in Ref. [Lan13]) does not change any results.

2.2 Scanning tunnelling microscopy and the Tersoff-Hamann model
The systems studied in the present thesis belong to the realm of surface science. One of
the experiments to study surfaces and nanoparticles thereon is STM invented by Binning
et al. in 1982 [Bin82]. In the ideal setup, an atomically sharp metallic or superconducting
(SC) tip is positioned above the surface, and the resulting tunnelling current is measured.
A bias voltage between the tip and the surface can be applied additionally.

Usually tungsten, platinum or platinum/iridum tips are used for metallic tips; materials
for SC tips include niobium and vanadium. In the constant-current (CC) mode, the bias
voltage is fixed, while the tip is free to relax in the direction perpendicular (longitudinal) to
the surface [Hes16]. The distance is controlled by a feedback loop containing a piezoelectric
crystal, which expands linearly with the current crossing it, so that the tip height is adjusted
accordingly and the bias-dependent surface topography can be assessed. Alternatively,
the tip height can be fixed and the resulting tunnelling current measured while scanning
through all lateral positions. Usual currents vary between 10 pA and 10 nA, and the
longitudinal resolution is within 0.1 Å. As STM relies on an exponential dependence of the
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tunnelling current with respect to the tip-to-surface distance, and is thus very sensitive to
that distance, the whole setup has to be isolated from vibrations from within and without
the laboratory by a vibration damper (see the book by Wiesendanger [Wie94] for technical
details).

For the derivation of the tunnelling current, we follow Ref. [Giu14]. Bardeen provided the
first derivation of the tunnelling current between two metal layers separated by a vacuum
gap, which include the Fermi levels, the DOS, and the spatial overlap of the respective WFs
[Bar61]. The tunnelling current between tip and surface is then given by an expression
resembling first-order perturbation theory,

𝐼(𝑉, rt) = 2𝜋
∑︁

𝑖𝑗

𝑓(𝐸t,𝑖 − 𝐸t,F) [1 − 𝑓(𝐸s,𝑖 − 𝐸s,F)] |𝑀𝑖𝑗(rt)|2𝛿(𝐸t,𝑖 − 𝐸s,𝑗), (2.54)

where the tip Fermi level is offset from the one of the surface by the bias voltage 𝑉 ,
𝐸t,F = 𝐸s,F + 𝑉 . The convention is such that a positive bias leads to a current flowing
from the tip to the surface. To this end, the state 𝑖 of the tip with energy 𝐸t,𝑖 must be
occupied, which is indicated by the corresponding Fermi function, while the state 𝑗 of the
surface with energy 𝐸s,𝑗 must accordingly be unoccupied. The tunnelling matrix element
at the position of the tip 𝑀𝑖𝑗(rt) was determined in Ref. [Bar61] as

𝑀𝑖𝑗(rt) = 1
2

ˆ
dS
[︀
𝜓*

t,𝑖(r − rt)∇𝜓s,𝑗(r) − 𝜓*
s,𝑗(r)∇𝜓t,𝑖(r − rt)

]︀
, (2.55)

where S is a surface separating tip and surface. The tunnelling matrix element 𝑀𝑖𝑗(rt) is
the expectation value of the current operator, and |𝑀𝑖𝑗(rt)|2 describes the interference of
tip and surface WFs.

Under the assumption of a spherical tip apex, Tersoff and Hamann determined the
tunnelling matrix element being proportional to the surface WF at the centre of the tip
sphere [Ter85],

𝑀𝑖𝑗(rt) ∝ 𝜓s,𝑗(rt). (2.56)

Furthermore, DFT describes the GS at zero temperature where the Fermi functions become
step functions. Using the tip DOS, 𝜌t(𝐸) =

∑︀
𝑖 𝛿(𝐸−𝐸t,𝑖), the expression for the tunnelling

current can be simplified to

𝐼(𝑉 ) ∝
ˆ 𝐸s,𝐹 +𝑉

𝐸s,𝐹
d𝐸 𝜌t(𝐸)

∑︁

𝑗

|𝜓s,𝑗(rt)|2𝛿(𝐸 − 𝐸s,𝑗), (2.57)

where the sum over states 𝑗 yields the local DOS (LDOS) of the surface at the position of
the tip, 𝜌s(rt, 𝐸). In the Tersoff-Hamann (TH) approach the tip is simplified as a spherical
potential, that is, its WF has only the 𝑙 = 0 angular moment. Higher moments (relevant
for a large tip apex) can be included or modelled at the cost of the simple proportionality
in Eq. (2.56), while one still may retain only the relevant 𝑚 = 0 components (the others
would give WF nodes against the surface). In practice one not only assumes an 𝑠-wave tip,
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but also a constant DOS 𝜌t, so that Eq. (2.57) becomes just the energy-integrated LDOS
of the surface at the position of the tip. In the CC mode, the surface rt = (𝑥,𝑦,𝑧(𝑥,𝑦))
is then the surface topography measured in STM experiments. The derivative of the
tunnelling current d𝐼(𝑉 )/d𝑉 yields the LDOS of the surface at the position of the tip
and at the particular bias voltage, 𝜌s(rt, 𝑉 ). In this way the local electronic structure
can be measured directly via STM. Technically, the conductance d𝐼/d𝑉 is measured by
superimposing a modulation voltage 𝑉mode, and the current is measured directly with a
lock-in amplifier. The conductance is closely related to the result obtained via STS, in
which the surface is scanned pixel by pixel, and at each lateral position one fixes the height
of the tip and sweeps through the bias. Doing that procedure for several heights, one
measures the three-dimensional vacuum LDOS of the surface.

Magnetic surfaces can be investigated by spin-polarized STM (SP-STM) and STS (SP-
STS) [Pal12], in which spin-polarized currents are used to determine the magnetic structure
of the surface. In Ref. [Pal12] the details of the tip electronic structure, the bias-dependent
background, and the tip-derivative terms are included in the calculation of the conductance
d𝐼/d𝑉 . The background results from the derivative of the energy- and bias-dependent
tunnelling probability 𝑇 (𝐸, 𝑒𝑉 ) in an extended version of Eq. (2.57),

𝐼(𝑉 ) ∝
ˆ 𝐸s,𝐹 +𝑉

𝐸s,𝐹
d𝐸 𝜌t(𝐸)𝜌s(𝐸)𝑇 (𝐸, 𝑒𝑉 ). (2.58)

The theory was applied to a Cr monolayer on Ag(111) in the non-collinear Néel state
at low temperatures, and while the background term was found to be proportional to
the tunnelling current, the other two terms made up the details for the comparison to
experimental tunnelling spectra. These and the magnetic asymmetries were additionally
found to depend on the details of the tip electronic structure.

A simple understanding of the exponential dependence of the LDOS on the tip-to-surface
distance can be obtained in a very simple model [Giu14], in which the surface-to-vacuum
potential barrier is modelled by a step function of height 𝐸s,𝐹 + 𝜑, where 𝜑 is the work
function of the surface. Solving the longitudinal Schrödinger equation for electrons at the
Fermi edge,

− ~2

2𝑚
d𝜓(𝑧)

d𝑧 + (𝐸s,𝐹 + 𝜑)𝜓(𝑧) = 𝐸s,𝐹𝜓(𝑧), (2.59)

one obtains 𝜓(𝑧) ∝ ·exp[−(2𝑚𝜑/~2)1/2𝑧]. Using this result in Eq. (2.57), one can anticipate
the exponential dependence of the tunnelling current on the tip-to-surface distance 𝑑,
𝐼 ∝ exp[−2(2𝑚𝜑/~2)1/2𝑑]. Within the spherical approximation for the tip, having a radius
of curvature 𝑅, the lateral resolution can be determined as [2(𝑅 + 𝑑)Å]1/2 [Ter85]. If
𝑅 ≫ 𝑑, the resolution depends on the quality of the tip, while if 𝑅 ≪ 𝑑 (single-atom
tip apex), it depends on the distance 𝑑. Another important issue is the longitudinal
resolution (the 0.1 Å mentioned before) of contrast corrugations already for clean surfaces
(e.g., the alternations of top and hollow positions, or CDWs), which also happens to have
an exponential dependence on the tip-to-surface distance, like the tunnelling current itself.
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The landscape of condensed matter systems is very large, showing an abundance of
quantum-mechanical effects, and the situation for surface systems is no less complex. Often
these show a diverse interplay of quantum-mechanical and quantum-chemical effects, which
now can be directly accessed via the STM technique. At this point only two examples will
be presented, before we go over to the case of the Ta(001)-p(3×3)-O surface which was
investigated by a combination of STM, STS, and DFT (Sec. 2.4). As explained in Sec. 2.4,
DFT provides us with a rather metallic interpretation of the Ta(001)-p(3×3)-O surface,
albeit it points by various means to its insulating behaviour which was also seen by STS.
The delocalized band picture of DFT thus still allows to access the quantum-chemical
properties of surface systems. Chpt. 4 provides a generalization of STM theory to account
for the correlations on nanosystems supported on surfaces.

STM provides a means for the real-space spectroscopy of surfaces and for a highly
resolved measurement of their topography. A fascinating example of a quantum-mechanical
effect is the delocalization of Co adsorbates on the Cu(110)-p(2×1)-O surface [Kin16] (albeit
results were obtained with the related method of atomic force microscopy (AFM) [Bin86]).
The surface charge density around the Co adatoms develops Friedel oscillations. These
are generally seen around surface imperfections, and contain, for example, information
on the Fermi surface nesting, as was explained along the Cr(001) surface (though, these
Friedel oscillations are to be distinguished from CDWs (Appx. A.1)) [Kol02; Kol05]. Friedel
oscillations can also mediate long-range interactions between adsorbates. Now, several
Co atoms were placed on the Cu(110)-p(2×1)-O surface, and a complicated potential
energy surface (PES) with maxima and minima emerged out of the interpenetrating Friedel
oscillations. Placing yet another Co atom at a minimum of this PES, it transitions into
a long-living delocalized state of ring-like form. While AFM was able to image this
delocalized state of the Co adatom, DFT and a phenomenological construction of the
long-range interaction based on the Friedel oscillations were able to reveal its origin. The
authors of Ref. [Kin16] used the DFT+𝑈 method (Subsec. 2.1.4) to take into account
correlations on localized Co adatoms, in conjunction with vdW forces, as these were found
to be relevant already for the structure of the Cu(110)-O substrate [Bam13]. VdW forces
in DFT and their application to the Ta(001)-p(3×3)-O surface are described in Secs. 2.5
and 2.6.

Like surface reconstructions and Friedel oscillations, CDWs (Appx. A.1) can also be
detected via STM, an example being given by 2H-NbSe2 showing a 3×3 superlattice
[Hes16]. A great deal of research is now being pursued by the study of TM adsorbates
on (conventional) SC surfaces, where they exhibit the Yu-Shiba-Rusinov (YSR) state (see
Sec. 2.3 and references therein). A particular realization is given by Fe adatoms on the
Ta(001)-p(3×3)-O surface. The rest of the present chapter is devoted to the electronic,
structural, and quantum-chemical properties for the Ta(001)-p(3×3)-O surface.

2.3 Context of the Ta(001)-p(3×3)-O surface
The publication “An atomically thin oxide layer on the elemental superconductor Ta(001)
surface” (Phys. Rev. Materials 3, 094801 (2019)) presented in the following section
examines the O-reconstructed Ta surface Ta(001)-p(3×3)-O by means of STM, STS, and
DFT. The pretreatment in the present section puts the Ta(001)-p(3×3)-O surface in place
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of general surface science (O-chemisorbed TM surfaces) and current state of research (e.g.,
on Kondo physics on conventional SCs), and assesses the quality of the DFT approach to
this surface.

There exist three main classes of oxygen compounds in terms of geometry and composition
[Ste14]. There are the bulk, and the bulk-terminated binary, ternary, and quaternary
oxides, of which the binary ones are particularly relevant for the present study as “parental
compounds”, showing structural, physical, and chemical similarities with O-chemisorbed
surfaces of the same or similar substrate-atomic species. The ternary and quaternary
compounds comprise systems such as high-𝑇c SCs.

Finally, there are the O-chemisorbed surfaces themselves. Even though often being
simple in their atomic composition, they show an abundance of physical effects, ranging
from various substrate reconstructions and superstructure formations, to peculiar local
quantum-chemical arrangements and long-range electronic effects. The introduction of
individual or arranged inhomogeneities can further functionalize materials, an example
being given by vacancies on the chlorine-terminated Cu(100) surface [Kal16]. Data points
can be physically represented by the charge, spin, or positional state of a single atom or
quantum dot. The authors of Ref. [Kal16] were able to store complex information in the
positional arrangement of many inhomogeneities given by pairs of Cl atoms and vacancies.

In the case of Ta(001)-p(3×3)-O, a recent functionalization has been achieved by the
adsorption of single Fe atoms on the surface [Cor17; Kam18; Kam21; Kam19]. The p(3×3)-
O template which emerges during annealing provides various adsorption sites above and
below the surface – even with different adsorption heights at the same lateral position. It
further provides the basis for various arrangements of several Fe adatoms [Kam18; Kam21].
Magnetic adatoms interact with the substrate electrons via effective spin- and orbital-flip
processes, which arise from the interplay of Coulomb localization and hybridization: The
discrete adatom eigenstates are hybridized to the substrate electron bands (AIM, Sec. 3.2),
and electrons can hop between adatom and substrate via hybridization events, thereby
changing the spin and orbital state of the adatom during time, so that the local moment is
effectively screened. This is the Kondo effect to be discussed in detail in Chpt. 4.

The properties of the adatom are determined by its valency, level splittings, and the
characteristics of the local interactions. In particular, along with the suppression of two-
valued orbital occupancies due to Coulomb localization, electrons in different orbitals will
interact with each other, and pairs of electrons will interchange their spin. The properties
of the substrate, on the other hand, can be very diverse. These may be geometric in nature,
as, for example, in the CoCu𝑛/Cu(111) systems with and without additional Cu chains next
to the Co adatom 4.6, leading to different crystal field (level) splittings. Or these may be
physical in nature, as, for example, if the SOC intertwining spin and orbital DOF is effective;
often the SOC on the adatom is induced by the substrate. The influence of the substrate
properties on the Kondo behaviour is nowadays of increased interest. In particular, the
Kondo effect is sensitive to a reduced DOS near the Fermi level, as it needs enough states
which provide electron hopping channels. For example, the pseudo-gap in graphene has
the form of a Dirac cone near the Fermi level, which reduces the Kondo effect and makes it
highly dependent on graphene doping, see Secs. 3.5 and 3.6 and references therein. For the
Kondo effect to operate, the adatom needs to be surrounded by mobile electrons, that is,
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it must be placed in a (semi-)metallic environment. For metallic substrates, it is known
that the Kondo effect manifests itself in STS experiments as a narrow resonance near the
Fermi level, see Ref. [Mad98] and Chpt. 4.

If the substrate is a conventional superconductor (SC), such as the Ta(001)-p(3×3)-O
surface at temperatures below 𝑇c = 4.5 K, the electrons near the Fermi level are bound
in Cooper pairs, and are at first not available for electron hopping processes. Adsorbing
Fe atoms on such a surface, its magnetic moment now interacts with a SC substrate, and
a competition develops between the local destruction of the SC order by scattering of
Cooper pairs off the local moment and their break-up on the one hand, and a subsequent
Kondo screening of the local moment, which is restored by a re-emergence of the substrate
metallicity, on the other. Clearly, the screening of the local moment in turn restores the SC
order, and the competition will arrive at a balanced state, characterized by the YSR states,
which are seen in STS as narrow resonances inside the SC gap [Cor17; Fra11; Kam18;
Kam21; Kam19; Rus69; Shi68; Yu65].

We will not go any further into the topic of YSR states, but would like to mention that
in Ref. [Cor17] these states have been observed with Fe atoms on the Ta(001)-p(3×3)-O
surface, if they are placed in the centre of the 3×3 plaquette. This corresponds to an
unusual top-site adsorption, the mechanism for which cannot be described by common
DFT approaches. As will be discussed below and in Sec. 2.6, long-range interactions
(possibly of vdW-type) may become important here. Furthermore, at the very same lateral
position, two Fe adsorption heights are seen to be realizable, with the smaller one leading
to the YSR state, while with the larger one spin excitations occur due to the decoupling of
the spin states from the substrate electrons by a large magnetic anisotropy. In principle,
this situation is similar as with thin insulating layers on metal substrates (such as oxide,
nitride, or halide layers) [Hei04; Hir07]. These two states, between which one can switch by
application of voltage pulses, represent a further possibility for data storage. An apparent
difficulty for technological usage, though, is the low temperature needed for conventional
SCs, and the positional stability of the Fe adatom.

As mentioned above, large-scale arrangements of inhomogeneities, for example, one-
dimensional chains or two-dimensional islands, are investigated with the aim of realizing
the storage of complex data. Spin chains and islands of magnetic atoms on SCs with large
SOC have recently been suggested to realize topological SC, which can host Majorana
excitations at the end of the chains or at vortices, respectively, see Refs. [Ali12; Nad13;
Pie13] and references in the included publication, and that are suitable for topological
quantum computation [Nay08]. Tantalum appears convenient to explore these phenomena,
as it has a rather high critical temperature of 𝑇c = 4.5 K and is known to have a large
SOC parameter [Ben93].

At this point we would like to mention that the SC of the Ta(001)-p(3×3)-O surface plays
no role in the publication included, as the project was about identification of experimental
STM images, and the description of physical, quantum-chemical, structural, and possible
adsorption properties. A description of its conventional SC would be possible within
current-DFT [Hig17] (Appx. A.1), or by consideration of the electron-phonon coupling
within Eliashberg theory [Umm13]. For the competition between the SC order and the
tendency of magnetic adatoms to establish a Kondo singlet with its environment, a proper
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resolution of the low-energy features within the AIM is needed. Because the SC gap is
generally the smallest scale within a SC, for example, smaller than the width of the Kondo
resonance, a numerical resolution is difficult. One may hope that a proper inclusion of
the SC parameter in the AIM (Sec. 3.2), effectively coupling the different hybridization
channels, and a thorough QMC treatment by employing the TRIQS/CTHYB code (Sec. 3.3)
results in the emergence of the YSR states in a realistic many-body calculation. At least
in model calculations that has been achieved [Pok18], but multi-orbital calculations are
much more demanding. Another possibility to account for the SC gap could be standard
quantum-mechanical perturbation theory around the non-SC AIM solution.

The first structural investigation of the Ta(001)-O surface was performed by Titov et al.
[Tit85] suggesting a few models based on different oxygen arrangements that were shown
to appear at various temperatures: at very high temperatures one has the clean Ta(001)
surface; then upon cooling down appear successively the p(1×3)-O, the p(1×2)-O, and
finally the p(3×3)-O pattern. With the high-resolution STM technique it is possible to gain
insight into the structural and chemical details of the surface at low temperatures. The
Ta(001)-O surface has already been considered in other recent studies [Bo18; Guo17], where
reconstruction patterns different from p(3×3)-O are predicted along with the preference
of hollow- over bridge-site adsorption, often exhibited by other systems. We extended
the interpretation of the STM images gained experimentally by the necessity to consider
different arrangements of oxygen states in the same p(3×3)-O formation, with oxygens at
bridge positions, and found mechanisms responsible for the STM contrast reversal which
are of purely electronic origin. Finally, we made a couple of predictions based on our
systematic DFT analysis. For example, even though vdW interactions were neither relevant
to obtain the reconstruction pattern, nor for the interpretation of the STM data, nor
for the electronic structure (all that has been checked; Sec. 2.6), the electronic structure
directly points to the importance of these long-range interactions for the adsorption of
other polarizable atoms and molecules on the surface, see Refs. [Cor17; Kam18]. The
recognition of vdW interactions being relevant for a correct description of nanoparticle
adsorption, in particular, on the related rutile surfaces, goes along such studies as reported
in Refs. [Hec17; Kak18].

The project presented in Sec. 2.4 is from the theory side mainly a DFT characterization
of the surface. VdW forces will be taken into account on the DFT level, that is, semi-
empirically, afterwards in Sec. 2.6. The reason for going beyond standard DFT is the
unusual top-site adsorption of Fe atoms in the centre of the 3×3 plaquette [Cor17]. In
standard DFT relaxation, an Fe atom placed there immediately drops down into one of
the nearby hollow positions, while within vdW-DFT in the variant of the to-be-discussed
Tkatchenko-Scheffler (TS) method (Sec. 2.5) the Fe atom remained at the top position
(not in less advanced vdW-DFT approaches, though). However, there was no stability with
respect to small perturbations in the lateral coordinates of the top position. Furthermore,
upon switching on self-consistent screening of the vdW interactions within the TS method,
the interaction parameters become smaller, and the top position was again not stable already
without small perturbations. Yet another reason for the necessity to go beyond standard
DFT – and beyond vdW-DFT as well – is the two possible adsorption heights at the same
lateral position, one of them being very large: 3.9 Å (showing spin excitations) instead
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of 2.4 Å (showing YSR signatures) [Cor17]. As DFT tends to overestimate bonding (cf.
Sec. 2.5), such unusually large adsorption heights cannot be explained within DFT-based
approaches.

The DFT (Sec. 2.4) and vdW-DFT (Sec. 2.6) studies collect preliminary results and
provide the basis for a possible subsequent GWA/RPA (Sec. 3.1), or any another study on
the Ta(001)-p(3×3)-O surface; the in-depth DFT characterization yields a benchmark for
such further studies. The GWA or its RPA (Sec. 3.1) are in particular relevant for a realistic
description of fluctuations and their vdW interactions [Har09; Har10; Ols13; Ren12; Sch10;
Sho16]. Fluctuations can provide different structural stabilization mechanisms: There
are the vdW interactions between charge density fluctuations (i.e., plasmonic interactions
[Ger72; Kli09]), which possibly organize the fluctuating constituents into a quantum version
of the Kapitza pendulum [Ant18; Cit15; Gil03]. But also spin fluctuations may place a
role, and perhaps they are necessary for the description of the different Fe adsorption
heights and the corresponding magnetic states. Yet another reason to prospect for other
approaches is the experience that DFT in the projector augmented wave (PAW) formalism
(cf. Appx. B), and the LDAs in general (cf. Sec. 2.1.2), have their difficulties with such
inhomogeneous geometries like top-site adsorbed Fe atoms, as one needs a very large basis
set to capture the inhomogeneity with plane waves (PWs), what renders convergence slow
and sometimes even absent.

Finally, we would like to put the Ta(001)-p(3×3)-O surface in a wider surface science
context (albeit surface science is a vast area and only a small selection of references can be
given for each of its topics). There are only a few studies on the O-chemisorbed Ta(001)
surface [Bo18; Guo17; Tit85]. As mentioned, the p(3×3)-O superstructure was already
proposed in Ref. [Tit85] to explain the patterns seen in low-energy electron diffraction
(LEED) and atomic emission spectroscopy (AES) experiments. In Refs. [Bo18; Guo17]
the high-coordinated hollow-site adsorption was proposed, and the resulting Ta(001)-O
variants were studied from an electronic and quantum-chemical point of view following
Ref. [Sun14]; a reference which helped us with the interpretation of our own DFT results on
the Ta(001)-p(3×3)-O surface, especially the realization of the oxygens states as containing
lone pairs. The STM images we acquired experimentally, though, could be interpreted
with bridge-site oxygen adsorption only, like proposed in Ref. [Tit85]. As also mentioned in
Sec. 2.4, adsorption at low-coordinated bridge positions was also found relevant for other
bcc metals as regards reconstruction (Ref. [Kol01] considers various superstructures on
V(001) aligned along bridge positions to identify experimental STM images), catalysis
(Ref. [Bra13] finds different local oxygen coordinations help induce Cr growth on Fe(001)-
p(1×1)-O), and coadsoption (e.g., CO coadsorption on Rh(111)-p(2×2)-O by activated
oxygens in bridge positions [Zha00]). We found coadsorption relevant for the superstructure
formation on Ta(001)-p(3×3)-O (Sec. 2.4).

The already well studied Fe(001)-p(1×1)-O system, see Refs. [Hea89; Leg77; Par10], is a
prototypical example of an oxidized bcc-metal surface [Ada82; Ho76; Jar85; Ueb98]: The
bonding structure was clarified by identifying hybridizations of oxygen and iron orbitals
via the LDOS [Hua85]; correlations and the SOC were included beyond first principles
by relativistic tight-binding Korringa-Kohn-Rostocker calculations augmented by DMFT
[Bor15]; and distance-dependent STM contrast reversals were observed, which shift the



32 Chapter 2 DFT and the Ta(001)-p(3×3)-O surface

p(1×1) corrugation seen on STM images [Pic10]. This contrast reversal is different in
mechanism as in gapped systems like NiO(100), where it occurs by altering the bias sign
[Dud97]. The Fe-p(1×1)-O surface has also been studied by angle-resolved photo-emission
spectroscopy, which allows for a momentum-resolved consideration of Fe-O bonds and O-O
interactions [Pan85]. Oxygen adsorption on Fe(001) occurs at hollow positions, but bridge
positions at lower coverages [Oss15], and other superstructures were found on the (110)
surface orientation as well [Kim98] (Ref. [Ada82] considers hollow positions on Fe(001), but
also on V(001), in contrast to Ref. [Kol01]). The clean Fe(110) surface shows a distance-
and tip-orbital-dependent contrast reversal in STM maps [Mán14]; Ref. [Hei98] finds purely
electronic origins of the corrugation reversals on clean bcc(110)-metal surfaces, though.
Regarding oxygen superstructures, there is an abundance of different formations on bcc
metals, as, for example, on V(001) [Kol01] and Nb(100) [An03; Usa77], and on and in
Nb(110) with a temperature dependence similar as on Ta(001) [Hel03]. For Nb(110),
the bonding structure was also clarified [Kil07], and long-range superstructures at later
oxidation stages observed (in particular, a Moiré pattern) [Sür01]. A superstructure with
substrate and additional incommensurate adlayer reconstructions were seen on Mo(110)
[Grz89]. The small list of examples just given refers to bcc metals; oxygen adsorption
on fcc-metal surfaces has been studied more extensively, see, for example, Ref. [Liu14]
discussing dissociative oxygen chemisorption on fcc(100) surfaces.
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2.4 “An atomically thin oxide layer on the elemental superconductor Ta(001) surface”
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Recently, the oxygen-reconstructed tantalum surface Ta(001)-p(3×3)-O has experienced considerable atten-
tion due its use as a potential platform for studying spin chains on superconductors. Experimental studies using
scanning tunneling microscopy and spectroscopy found rich atomic and electronic structures already for the clean
Ta(001)-O surface, which we combine here with ab initio methods. We found a significant reconstruction of the
surface into a 2D polymorph oxide with two distinct patterns of 1-nm scale. One of the patterns represents an
unusual defect structural state. This state appears only in the simulations with the effective presence of oxygen
vacancies, which we also discuss in the context of the oxide formation. A specific combination of structural
and electronic properties was established behind the diverse shapes detected in topographic maps. We also
observed the energy-dependent partial-charge localization effect under applied bias voltages, which includes
a contrast reversal. These effects originate solely in miscellaneous ionic and metallic properties of the electronic
system. The charge distribution and polarization properties of this atomically thin oxide layer is shown to vary
significantly between normal and defective superstructures, possibly contributing to the rich phenomena related
to topological superconductivity recently discussed for Fe adsorbates.

DOI: 10.1103/PhysRevMaterials.3.094801

The surfaces of elementary superconductors have recently
attracted a lot of attention due to their potential in being
used as platform for spin chains, which may host Majorana
quasiparticles [1–6]. One requirement for the formation of
Majorana states is a strong spin-orbit coupling in the magnetic
chain on superconductor system which facilitates the forma-
tion of noncollinear magnetization states. Therefore, high-
Z elementary superconductors which have an experimen-
tally easily accessible superconducting transition temperature
around 5 K are particularly interesting.

While clean Pb and Re surfaces have been explored [1–5],
the preparation of clean Ta, La, and Nb surfaces is more
challenging [7–10], particularly due to the tendency to form
O reconstructions at the surface. The ordered superstructures
seen in STM topographic images are typically induced by
extra adsorbates [11–13].

On the other hand, such reconstructions also add to the
functionality of the surface, as they tend to decouple the spins
of adatoms from the substrate conduction electrons [14,15],
which enables to tune the coupling of the adatom spins to
the Cooper pairs [16]. Ta(110) and Ta(001) have been studied
by scanning tunneling microscopy (STM) [7,16]. However,
the way the structure of the O reconstruction of Ta(001) is
linked to the STM images found in Ref. [16] remained elusive,
particularly, as there occurs a contrast reversal at a bias voltage
of 1 eV. On Fe(001)-p(1×1)-O, the STM contrast is distance-
dependent [17], the reversal is thus different in mechanism
compared to well gapped systems like NiO(100) [18]. The

*rmozara@physnet.uni-hamburg.de
†akamlapu@physnet.uni-hamburg.de

tip-sample interactions were also shown to be responsible for
the small shifts of the contrast in rutiles [12,19].

A first attempt to characterize the geometry of the Ta(001)-
O surface was done by Titov et al. [8]. The best fit to the
LEED and AES studies at low coverages was found with
a superimposed (3×3)O network. Other structures for the
oxidized Ta surface were studied recently by Guo et al. [20]
and Bo et al. [21] from quantum-chemical point of view
[22]. In case of Ta(001), Ref. [20] considers hollow positions
only, in contrast to the models proposed by Titov et al.
Adsorption at low-coordinated bridge positions, however, was
found relevant for bcc metals in regards of reconstruction [23],
catalysis [24], and CO coadsorption [25].

Here, we present a joint study of Ta(001)-p(3×3)-O
by means of experimental [STM, scanning tunneling spec-
troscopy (STS)] and first-principles [density functional theory
(DFT)] techniques. We show the interplay between two types
of O bridge positions being the reason for normal and defect
structural states related to the 3×3 plaquettes. Charge transfer
between surface sites revealed a distinct polarization texture,
which, together with the electronic structure, we predict to be
relevant for adsorption of other atoms and molecules.

The surface under study was prepared as described in
Ref. [26]. To investigate local spectroscopic properties of the
sample, dI/dV spectra were taken using a W tip via Lock-in
technique with stabilization voltage and current Vstab and Istab,
and with a modulation voltage of Vmod ( f = 827 Hz) added to
the sample bias voltage V .

Figure 1 shows STM images measured at the same location
at various V . From Fig. 1(b), it can be seen that oxidized
Ta(001) forms a well ordered superstructure lattice where a
regular network of plaquettes of square and circular shapes

2475-9953/2019/3(9)/094801(5) 094801-1 ©2019 American Physical Society
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FIG. 1. [(a)–(f)] STM images (3.8 nm×3.8 nm) of the O-
reconstructed Ta(001) surface measured at the same location, but
at various bias voltages as indicated in each panel (I = 0.6 nA).
The dashed square in (c)–(e) represents the same surface area size
of 1.34 nm×1.34 nm showing a contrast reversal between V = 0.2
and 1.5 V. (g) Schematic perspective view on the surface model
indicating the atomic positions as the starting point for the relaxation.
(h) Schematic top view indicating the notion of the sites of O and Ta
atoms.

separated by continuous depression lines with an apparent
depth of ∼30 pm at V = +0.2 V are visible. Square-shaped
plaquettes are much more frequent than circular-shaped pla-
quettes with a relative abundance of about 4:1. The lateral
distance of these plaquettes is 1 nm ∼ 3 aTa, with the lattice
constant aTa = 3.3 Å of Ta, which reveals the 3×3 nature
of the superstructure formation. The periodicity is consistent
with the structure that has been assumed by Titov et al. [8]
[see Fig. 1(g)]. The identification of the plaquettes is further
complicated by a shift of the contrast by half the distance
between the depression lines around a bias voltage of 1 V
[cf. Figs. 1(c)–1(e)].

To reveal the atomic structure in the experimentally ob-
served 3×3 plaquettes, we performed DFT calculations on
the (3×3)O superstructure on Ta(001) with the VASP package
[27]. For this purpose we used spin-polarized DFT function-
als, including U on O atoms [28] (see [26]). The starting
geometry was chosen as proposed by Titov et al. [8]. The
result of the relaxation is displayed in Fig. 2(a), and denoted
as state I [26]. The length of the 3×3 plaquette is calculated
as 3 aTa = 9.9 Å, the first interlayer spacing is compressed by
3.4% in comparison to bulk values. The surface exhibits both
out-of-plane and in-plane reconstruction with buckling of Ta
atoms, and zigzag-ordered (along z axis) rows of O atoms.

As O species can stay mobile on the surface in a wide
range of temperatures during chemisorption [11], the type of
reconstruction is governed by many factors, including oxygen

state I state II

d z,Ta side

(a) (b)
square shape circle shape -.2

0.4
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FIG. 2. [(a) and (b)] Schematic top (top) and side (bottom) views
of the two DFT calculated structures I and II indicating the Ta
(colored circles) and O (black dots) lateral and vertical positions. The
red line depicts the average height of the surface Ta atoms. [(c) and
(d)] Simulated STM images for states I and II, each at the isosurface

value 5×10−5 e/Å
3
. The numbers give the corresponding voltages

at which the images have been calculated. The images have been
generated by the code given in Ref. [29].

partial pressure [30], temperature, and competing electronic,
electrostatic and elastic interactions [31–33]. Initial simula-
tions with additional oxygen contents uncovered a second
energetic minimum for our superstructure [26]. This phase
represents a structural isomer to state I, existing at equivalent
oxygen coverage [Fig. 2(b)]. We denote it as state II and con-
sider it as a defect superstructure. As we show in Figs. 2(c) and
2(d), and will explain later, states I and II correspond exactly
to the cross and circular shapes observed in the STM images.
Structural parameters agree perfectly with those proposed by
Titov et al.

The revealed zigzag-ordered positions along the O rows
are due to repulsive interactions between the O atoms, being
proposed to be responsible for the ordered patterns at low
coverages, in contrast to classic dissociation models [34]. In
particular, adjacent O atoms at the corner have overlap of their
Wigner-Seitz spheres, especially in state II, where they are
elevated. As detailed in Ref. [26] (Table I), after relaxation,
the O atoms at the side positions in state I are higher above
the surface by 1.19 Å [Fig. 2(a)], and can be viewed as sp3

hybridized in a tetrahedral surrounding. Two vacuum-oriented
hybrid orbitals host approximately two lone pairs, and are
very large in extent (Table II in Ref. [26]). The O atoms at
the corner (state I) are located in the surface and form the
geometry of the sp hybridization, so we mark them as “sp”
atoms [26]. In state II, the zigzag-ordered heights are reversed.

To identify the contrast seen in the experimental STM
images, we explored the Tersoff-Hamann (TH) model in an
analogous way as done by Klijn et al. [26,35]. In the rest of
the paper, we show results obtained within LDA + U , other
functionals are discussed in Ref. [26]. All simulated STM
images were evaluated at the charge density isosurface value

5×10−5 e/Å
3
, corresponding to a tip-to-surface distance of

5.93 Å at V = 3.2 V, if the tip is above the center of the 3×3
plaquette in state I. Independence of the STM contrast on the
tip height was checked in experiments and in simulations.

094801-2
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FIG. 3. (a) STM image of a surface area used for spectroscopy
(4.0 nm×8.0 nm, V = 300 mV, and I = 100 pA). [(b) and (c)] 2D
representation of dI/dV spectra taken along the white (b) and the
red (c) dashed vertical lines marked in (a). (d) Representative dI/dV
spectra acquired at four different locations marked by corresponding
colored filled circles in (a). Vstab = 1.5 V, Istab = 0.6 nA, and Vmod =
5 mV. (e) Total DOS of the central, side, and corner Ta in state I.

Exploration of the TH approach on both, states I and II,
leads to the simulated topographies in Figs. 2(c) and 2(d), and
the corresponding differential conductances in Figs. 1(k) and
1(l) in Ref. [26]. For negative and smaller positive bias up
to ∼1.4 eV, we observe depressions along the O rows being
maximal at the corner positions, and protrusions above the Ta
atoms. The latter match perfectly the square (I) and circular
(II) shapes seen in STM images around the Fermi energy
(Figs. 1(b) and 1(c) and Ref. [26]), and we therefore conclude
that, in this bias regime, the depression lines correspond to the
O rows.

Oxygen is typically seen in low-bias STM images as
depression as discussed in a number of papers [17,22,36–38].
Similar to TiO2 [12,37,38], the s-d states of the transition
metal atom decay much slower into the vacuum above the sur-
face as compared to the O states. This effect overcompensates
the stronger exposure of the O atoms to the STM tip expected
from their position above the Ta atoms.

For larger positive bias above 1.8 V, both, for states I
and II, the simulated STM images show a contrast reversal
[Figs. 2(c) and 2(d)]. The cross-shaped depression relocates
to the center and side Ta atoms. This appropriately reproduces
the contrast reversal observed experimentally around V = 1 V
[cf. Figs. 1(c)–1(e)]. This energy-dependent effect originates
from a redistribution of the electronic density, i.e., less density
appears in the vacuum above these Ta atoms at the correspond-
ing bias voltage [26].

Figure 3 shows spatially resolved STS data. Figures 3(b),
3(c) depict 2D color-map representations of STS data ac-
quired along one line on top of the row of O atoms and one
line across the Ta plaquettes marked by the white and red
dashed lines in Fig. 3(a), respectively. At negative bias the

dI/dV intensity is largest above the Ta plaquettes [Fig. 3(b)
and Fig. 3(c), top horizontal dashed line] and reduced above
the O rows (bottom horizontal dashed line). This contrast
is reversed at positive sample bias around 1 eV, where the
dI/dV intensity is shifted towards the O rows and strongest
on the corner O atoms [see bottom horizontal dashed line in
(b)]. This is further evident from the panel (d) where we plot
spectra taken at the four characteristic locations marked by
the correspondingly colored circles in panel (a). Here, in the
negative bias regime, the dI/dV intensity on the central Ta
atoms is larger than that on the side and corner O atoms, while
the situation is reversed for positive bias around 1 V.

These experimental STS results are compared to the cal-
culated LDOS within empty spheres arranged along the topo-
graphic isosurface at a bias of 3.2 eV (i.e., above the contrast
reversal, see Fig. 5 in Ref. [26]). The calculated LDOS shows
a dominating weight above the Ta as compared to the O atoms
up to about 2 eV. A shift of the vacuum LDOS from the Ta to
the O atoms above ∼2.5 eV is in qualitative agreement with
the STS results.

In the following, we discuss the origin of these two distinct
oxide patterns (I and II) in the context of quantum chemistry.
The clean Ta(001) surface represents a sparse structure of
atoms, and during annealing, the O atoms diffuse to positions
providing the strongest bonds. It was shown for Ta(001) that
O atoms do not penetrate into the bulk [39]. As it comes
with the LDA + U method, upon adsorption, an individual
O atom would prefer the hollow position, as it has lowest
energy. The adsorption energy at the twofold bridge position
in the sp3 state (elevated above the surface) is 0.26 eV higher
compared to the hollow position, and even 0.50 eV higher in
the sp state. This contradiction to the experimentally observed
bridge oxygens is resolved by considering a second O atom
nearby. The situation is similar to the CO activation, when in
the hollow position, the bonding orbitals of an O atom are less
chemically active as in bridge positions [25,37]. Indeed, we
find that two nearby O atoms at bridge positions (along [100]
or [010]), both in the sp3 state, have the lowest energy, while
one O atom at the bridge (sp3) and one at the closest hollow
position is 48 meV higher, and both at the hollow positions
are even 60 meV higher in energy.

The effective adsorption energy is higher in state I than in
state II (Table I in Ref. [26]), contradicting the total energy as-
sumption. The energy profile of polarizable metallic surfaces
demands, at best, a full account of dynamical polarization
effects, that is not accessible for such large surfaces. A similar
problem is the presence of intrinsic errors in DFT functionals,
such as self-interaction, typically resulting in shifts of binding
energies [40]. The second source of this energy issue is the
instability of neighboring oxygens at the corners: without
constraints one oxygen in a pair relaxes to a nearby hollow
position. The configurational minimum of this defect super-
structure (state II) is thus separated by high barriers from the
normal state I in the coordinate phase space, that is in line
with the known complex oxygen surface kinetics at higher
temperatures [11].

We also provide a charge transfer examination within
the surface by means of the Bader Charge Analysis (BCA)
[26,41,42] (Fig. 4). A pronounced charge polarization
emerges near oxygen sites, with a remarkable difference of
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FIG. 4. Schematic colormap of Bader charges within the LDA
for state I (left) and state II (right). Displayed are the differences
�qB measured with respect to the free valencies. Blue and red
colors depict charge shortage and excess, respectively. The spheres
have been rescaled down by a factor of 2.5 for clearer visibility.
Surface atoms are marked by black crosses, to distinguish them from
subsurface atoms.

charge volumes at sp and sp3 locations. We propose that the
surface reconstruction is primarily governed by the saturation
of two distinct ionic states in the local trimers [12,26,33], with
compensation of excessive net charge at defect points near the
central Ta.

The BCA result also implies some important considera-
tions for the electronic properties of the surface. As a sim-
ple approximation, the pronounced accumulation of negative
charge at oxygen locations (Fig. 4) can be regarded as a
local electrostatic potential (ESP) [43], additionally shifting
the work function near the oxygen rows. Extraordinarily, the
central Ta atom is also slightly negatively charged in both
structural states. In state II, there are less electronic states at
the central Ta atom [26], so it frequently appears as darker spot
in STM images. The enhanced polarizability of the surface
is also responsible for the gap opening in the STS curves
[Fig. 3(d)].

Large volumes of charge spheres at sp3 locations maps
very well to the picture of lone pairs of oxygen [26]. These
spheres are very close to the central Ta atom and, taken
as lone pairs, are suggested to induce static dipoles at the
nearest atoms [22]. Indeed, we see enhanced polarized states
on the central Ta atom [Fig. 3(e)]. Due to the smearing of
the DOS at the tip positions, and the outward and inward
curvatures of protrusions and depressions, respectively, the
antibonding dipoles can be observed in the STS curves above
EF on all regions of the surface, while below EF the peaks are
mostly due to the lone pairs [22,26]. The interplay between
antibonding electronic states of O and corner Ta atoms with
polarized p-d states of the central Ta atom is the source of the
observed contrast reversal [26].

The pronounced bonding and antibonding peaks in the
central Ta states at approximately −2, −1, 0.6, 2, and 4 eV
[Fig. 3(e)] can mediate the electrostatic interaction with adsor-
bates possessing a dipole moment [43]. This means also, that
induced dipole excitations would lead to vdW forces acting
between the central Ta atom and such polarizable atoms and

molecules, similar as shown for the rutiles [44]. In state II, we
observe the intensity of polarized peaks almost twice lower
(Fig. 5 in Ref. [26]).

In summary, we show that the reconstruction at low oxy-
gen coverages leads to two distinct p(3×3)-O STM patterns
on Ta(001). These patterns correspond to the two structural
phases, co-existing on the surface at low temperatures. The
minor phase (state II) represents a defect superstructure, sep-
arated by a large energy barrier from the main phase (state
I). Despite the inherited limitations of DFT, these findings
suggest that this surface has a nontrivial crystallization ki-
netics during the formation process. Indeed, we obtained the
second phase in simulations through the virtual presence of
oxygen vacancies on the surface. Such a vacancy mechanism
is justified by the adaptive crystal structure, observed for
the thin films and bulk modifications of Ta2O5 [45]. It was
shown, that such a structure can easily be altered by the
presence of defects, that reduce enhanced oxygen vacancy
diffusion, with clear anistropic character [46]. The charge
transport in bulk Ta2O5 is also predicted to be affected by
the appearance of stable polarons in the vicinity of charged
vacancies [47]. The building blocks of our 2D tantalum oxide
relate to the two distinct local geometries around oxygen,
leading to two different characters of oxidation state. Such
local trimers are topologically different, thus posing an inter-
esting question of its relevance for the amorphous nature and
unique properties of bulk and thin-film oxides. The electronic
system splits into groups of saturated ionic states at oxygen
locations and polarized metallic states at selected Ta atoms,
bringing this surface close to the metal-insulator transition.
We explained the observed contrast reversal by taking into
account unusually enhanced polarized states of central Ta
atom. We also show that calculated static polarization prop-
erties of the surface alter in respect to the type of oxygen
row in a plaquette. The surface dipoles induced predominantly
in state I will have important implications for the adsorp-
tion geometry of transition metal adatoms and polarizable
molecules. Finally, our results established a microscopic pic-
ture of the surface that can be employed to control its unique
properties towards the use as a platform to study Majorana
physics.
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SURFACE PREPARATION

The Ta(001)-p(3×3)-O surface was prepared by first sputter cleaning of a single crystal of Ta(001) using high energy
(2 keV) Ar+ ions, followed by repeated cycles of annealing at 1250 ◦C in presence of O atmosphere (1×10−6 mbar) and
flashing up to 2000 ◦C. The sample was then transferred into the STM, which has a base pressure of 5×10−11 mbar,
where it was cooled down to the base temperature of T = 1.1 K [1].

DFT CALCULATIONS

DFT was done in the framework of the VASP package with the projector augmented-wave (PAW) basis set [2, 3].
To avoid mirror polarizations due to the supercell repetition, the atomic arrangement was chosen mirror symmetric
to the central layer within a slab of five 9×9 Ta layers. In this way the supercell contains 12 O and 45 Ta atoms.
The Brillouin zone was covered by a 6×6×1 Γ-centred k-point mesh, and convergence with respect to the number of
k-points was tested. All calculations were performed magnetically, and the surface turned out to be non-magnetic
everywhere and in all cases considered. For the exchange-correlation energy two different choices were made with
the local-density approximation (LDA) and the generalized gradient approximation (GGA) in the variant of Perdew-
Burke-Ernzerhof (PBE) [4]. We included local Coulomb correlation via DFT+U from the outset by choosing U = 6 eV
and J = 0.8 eV for O atoms, which was found to be relevant for oxidized transition-metal surfaces [5]. Relaxations
were performed until forces were below 5×10−3 eV/Å. The electronic structure remains essentially unchanged by use
of GGA and vdW functionals, what we have checked explicitly. For the calculation of the DOS the number of bands
was increased from around 372 (LDA) or 210 (GGA) to around 400 bands, and the energy cutoff from 400 eV to
500 eV, to assure an accurate description of the states above the Fermi energy, and which smoothed the simulated
STM maps (see Sec. “Differential conductances and topographs” below). These were generated with a Mathematica
code available online [6]. To obtain state II one should add additional four O atoms around the central Ta atom (see
Fig. 1(h) of the main manuscript for the notion of the atomic sites), and then relax. Upon removal of these extra
atoms and relaxation, the new state II, a structural isomer to state I, appears.

DIFFERENTIAL CONDUCTANCES AND TOPOGRAPHS

For the simulated STM maps, we applied the Tersoff-Hamann model in an analogous way as done by Klijn et al.
[7], where at sufficiently low voltages the dI/dV signal was related to the LDOS of the surface by

dI(V, x, y)

dV
∝ e ρt(0)ρs(eV, x, y)T (eV, V, z). (1)

Here, the tip DOS ρt is assumed to be constant around and between the Fermi levels of tip and substrate, and
T (E, V, z) = e−2κ(E,eV )z is the transmission coefficient, with κ the decay rate. The surface is covered by the x-y
coordinates, z is the perpendicular distance of the tip, and V the applied bias voltage between tip and surface. The
constant-current topography z(x, y) is obtained by considering the tunneling current

I(x, y) ∝
∫ eV

0

dE ρs(E, x, y)T (E, V, z(x, y)) (2)

at a fixed value. The quantity on the r.h.s. is identical to the integrated LDOS of the surface at the position of the
tip. Plugging the constant-current topography z(x, y) into Eq. (1), one obtains the dI/dV signal at constant current.

OXYGEN ADSORPTION AND TANTALUM RECONSTRUCTION

Tab. I contains the relevant parameters of the (3×3)O superstructure on Ta(001). The termination of the Ta crystal
leads to a compression of the outer surface layers: in the LDA, the first interlayer distance differs from the second
interlayer distance by only 0.96 %, but from the bulk value aTa/2 by 3.35 %. For the clean Ta surface (not shown), the
first to second interlayer distance ratio is 16.03 %, which is already near the ratio between the first interlayer distance
and the bulk value aTa/2 of 16.72 % (for comparison, a compression of 10 %± 3 % was reported in Ref. [8]; and our
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GGA calculations yield a first to second interlayer distance ratio of 14.33 % for clean Ta(001) (also not shown)). The
O adsorption thus reduces the compression of the Ta surface layers considerably.

The collection of surface atoms has been decomposed into trimers (a collection of three atoms) containing one O
and its adjacent two Ta atoms, or one Oside and two Ocorner, or one Taside and two Tacorner. As can be seen from the
surface to subsurface interlayer distances dz, the GGA yields a slightly decompressed surface structure and overall
larger bond lengths compared to the LDA. This is a well-known underestimation of the bond-lengths inside L(S)DA
[9]. Accordingly, the adsorption energies in the GGA are smaller than in the LDA, but the differences in Eads of the
two metastable states are nearly the same for both functionals: 0.36 eV in the LDA and 0.35 eV in the GGA (likewise
for the total energies EDFT/2: 2.16 eV in the LDA, 2.13 eV in the GGA).

The strongest variation is the interchange of the O atom heights between state I and II (i.e. dz of the Ocorner-
Oside-Ocorner trimer, highlighted in blue). While the adsorption height of Oside above the surface is large in state I,
in state II Ocorner is elevated (both in gray). Furthermore, the Ocorner-Oside distance d is considerably decreased
in State II (highlighted in green), leading to a potential overlap of their Wigner-Seitz spheres with radius 1.55 Å.
The same applies to the distance between two adjacent Ocorner in state I. The distance between the Ocorner in the
structure with ideal positions as shown on Figs. 1(g) and (h) of the main manuscript is rather small with 2.33 Å. The
reconstruction within the Ta surface layer is illustrated by the angles θ showing substantial deviations from 180◦, the
vertex of which point in different directions depending on the state (Fig. 2 of the main manuscript). Furthermore,
there appears Ta buckling, as can be seen from the corresponding distances dz, which is also indicated in Figs. 2(a)
and (b) of the main manuscript.

state I (square-shaped) state II (circle-shaped)

EDFT/Eads (eV)
functional +

trimer d (Å) dz (Å) θ (◦) d (Å) dz (Å) θ (◦)

LDA
-308.92/-7.43 (I)

-311.08/-7.79 (II)

Taside - Oside - Taside 1.92 1.19 (1.25, 0.06) 103.73 1.96 -0.11 (-0.09, 0.02) 186.56

Tacorner - Ocorner - Tacorner 1.97 0.08 (0.03, -0.05) 171.12 1.95 0.72 ( 0.77, 0.05) 106.41

Tacorner - Taside - Tacorner 3.02 0.11 (0.06, -0.05) 162.30 3.41 -0.03 ( 0.02, 0.05) 193.39

Ocorner - Oside - Ocorner 3.35 1.22 (1.25, 0.03) 137.28 2.62 -0.86 (-0.09, 0.77) 218.47

Tacenter - Tasurface -0.04 -0.26

Tasurface - Tasubsurface 1.60 1.54

GGA
-282.37/-6.28 (I)

-284.49/-6.63 (II)

Taside - Oside - Taside 1.95 1.22 (1.29, 0.06) 102.07 1.99 -0.15 (-0.15, 0.00) 188.79

Tacorner - Ocorner - Tacorner 1.99 0.06 (0.00, -0.06) 171.28 1.96 0.87 ( 0.94, 0.07) 104.42

Tacorner - Taside - Tacorner 3.00 0.12 (0.06, -0.06) 161.19 3.43 -0.07 ( 0.00, 0.07) 194.75

Ocorner - Oside - Ocorner 3.36 1.29 (1.29, 0.00) 134.81 2.79 -1.09 (-0.15, 0.94) 225.95

Tacenter - Tasurface -0.04 -0.33
Tasurface - Tasubsurface 1.70 1.65

TABLE I. (3×3)O superstructure on Ta(001): Distances and angles between the surface atoms grouped into trimers, together
with distances between the central Ta atom and the Ta surface layer, and the first interlayer (average height of all atoms
within a layer). Site notion is defined in Fig. 1(h) of the main manuscript, and the bondig geometry is depicted in Fig. 2.
Results are listed for each DFT functional together with total energies EDFT/2 (for half of the slab) and adsorption energies
Eads = (ETa(001)−O −NEO −ETa(001))/N with N = 12 the number of O atoms in the supercell. The sign for dz in state I is
the reference for the one in state II, and angles above 180◦ within state II indicate the different direction compared to state I,
in which their vertex is pointing (cf. Figs. 2(a) and (b) of the main manuscript). Numbers in round brackets denote distances
dz of second and third trimer atoms to Tasurface.

BADER CHARGES

The Bader charge analysis associates charge and atom in a rigid manner, separating the Bader volume by the
minima in the charge density around atoms (see Ref. [10] and references therein). In general, BCA yields larger
estimates for the charge transfer than the iterative Hirshfeld algorithm (which we have checked explicitly with vdW
functionals), but still showing similar tendencies. Bučko et al. suggest an agreement between the iterative Hirshfeld
and Born effective charges for ionic crystals [11]. Tab. II, and Fig. 4 of the main manuscript, show a pronounced
charge transfer from the Ta surface to the O atoms. O atoms acquire more charge as getting closer to the surface,
which is known as high electronegativity of oxygen in chemistry. Accordingly, the O atoms do not reach the complete
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O−2 state, as well as the Ta surface atoms do not arrive at the complete Ta+ state either. For both states (I and II)
Tacorner donate more charge as they are attached to two O atoms. In respect to the functionals, the charge transfer
within the system appears to be balanced between the LDA and the GGA, both assigning only slightly different
weights of contribution to the charge transfer from each region. The O atoms obtain slightly more charge in the
GGA.

More interestingly, while the Bader charge analysis considers the surface region around Tacenter in both states as
negatively charged, the Tasubcenter region is already nearly charge neutral. To some extent, the subsurface Ta layers
can be traced back to the almost neutral, but still slightly negative (below −0.1 e) clean Ta(001) surface and its
subsurface, which itself originates from undercoordination due to termination of the crystal. Within the LDA and in
state I, Tasubcorner donates a considerable amount of its charge to its four adjacent Ocorner due to the smaller O height in
this configuration. In general, we see that the charge distribution around Tacenter is very different between state I and
state II, that should be of crucial importance for the adsorption of polarizable atoms and molecules on this surface.

The Bader volumes around each atom were assigned to spheres centered at the atomic sites. The Bader radii show a
rather diverse behavior, but as with the charge transfer, they show an overall balance between the LDA and the GGA.
For most O atoms the Bader radii become smaller in the GGA than in the LDA, although they hold slightly more
charge. In contrast to that, for each functional itself and with consideration of the chemical environment dictated by
the O atoms, Ta Bader charges and radii behave proportionately to each other. The Bader radius is larger for the
Ta atoms, of which their adjacent O atom is lying inside the Ta surface. Finally, the Ta surface atoms always have
larger Bader radii than the subsurface atoms, because the surface compression is lifted by O adsorption, and surface
atoms have access to the vacuum.

In connection with the adsorption of polarizable atoms and molecules, the Bader spheres of Oside and Tacenter are
nearer to each other in state I than in state II. That contributes to the differences in the Tacenter DOS between the
two states.

pattern ion ∆qLDA
B ∆qGGA

B RLDA
B RGGA

B

State I
(square)

Ocorner −1.21 −1.23 1.74 1.73
Oside −1.12 −1.13 3.58 3.53
Tacorner +0.80 +0.79 2.57 2.57
Taside +0.45 +0.45 2.36 2.27
Tacenter −0.19 −0.26 2.73 2.79
Tasub

corner +0.81 +0.73 1.57 1.60
Tasub

side +0.32 +0.37 1.57 1.59
Tasub

center −0.06 −0.02 1.65 1.67
State II
(circle)

Ocorner −1.18 −1.18 2.90 2.92
Oside −1.24 −1.26 1.50 1.49
Tacorner +0.91 +0.99 2.03 1.91
Taside +0.41 +0.37 2.78 2.79
Tacenter −0.24 −0.24 2.86 2.78
Tasub

corner +0.01 +0.10 1.61 1.62
Tasub

side +0.44 +0.36 1.56 1.60
Tasub

center −0.06 −0.05 1.68 1.70

TABLE II. Bader charges qB (e) and radii RB (Å) listed for both DFT functionals, where O has free valency 2s22p4, and Ta
5p65d46s1. Displayed are the differences ∆qB measured w.r.t. the free valencies.

DIFFERENTIAL CONDUCTANCE IMAGES

In Fig. 1, we plot experimental dI/dV images representative for spatial variations of the DOS at a given bias
voltage. Here, the area of measurement for the images is the same as in Fig. 1 of the main manuscript. Compared to
the STM images, the dI/dV images show numerous fine variations of the features as a function of bias voltage. In
particular, there are at least four contrast reversals similar to the one observed in the STM images, i.e. from −1.5 V
1(d) to −1.1 V (e), from −1.1 V (e) to −0.4 V (f), from −0.4 V (f) to +0.5 V (g) and from +1.2 V (i) to +3.8 V (j).
DFT simulation of the conductance leads also to variations of the whole picture, catching contrast reversals in different
areas and possible rotation. However, limitations of the TH approach does not allow to discuss it in details. For
comparison, we display simulated dI/dV images of the two states in Fig. 1(k),(l). Similar to the experimental dI/dV
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FIG. 1. (a)-(j) dI/dV images (3.8 nm×3.8 nm) measured at various bias voltages in the same area as Fig. 1(a)-(f) of the main
manuscript (Istab = 0.6 nA, Vmod = 5 mV). Dashed squares marked in some of the panels serve as guides to the eyes showing
numerous contrast reversals as a function of bias. (k),(l) Simulated dI/dV images for states I (k) and II (l), each at isosurface
value 5×10−7 e/Å3. The integration range around each bias was set to 50 meV (same as Gaussian broadening of the LDOS in
Fig. 5). The images have been generated by the code given in Ref. [6].

images, they reveal multiple contrast reversals, of which we show a selection. However, a one-to-one correspondence
between the different features is hampered by the limitations of the TH model.

THE TA2O MOLECULE AND ORBITAL HYBRIDIZATION

The Ta-O-Ta trimers mentioned in Sec. “Oxygen adsorption and tantalum reconstruction” comprise (hypothetical)
Ta2O molecules. To obtain information on the Ta2O molecule, simplified DFT calculations were performed after
singling out the two trimers Taside-Oside-Taside and Tacorner-Ocorner-Tacorner. The DFT setup was left unchanged
(see Sec. “DFT calculations”). Relaxation starting from all trimers in state I and II yields two different molecular
geometries (Tab. III), which were found to be stable upon perturbations w.r.t. their positions.

The first and second molecule listed in Tab. III approximately correspond to the sp3- and sp-hybridized configura-
tion, respectively: The bonding angle within the sp3 state is comparable to the one of the H2O molecule (104.45◦),
while in the sp state the trimer with the central O has an almost linear geometry as predicted by the Valence Shell
Electron Pair Repulsion (VSEPR) approach [12]. As on the surface, according to the Bader charge analysis the O
atoms do not completely reach the O−2 state. So the orbitals, which do not participate in bonding, host incomplete
lone pairs.

As a molecule itself, the sp-hybridized Ta2O has a net magnetic moment of 3.54µB. Furthermore, it is higher in
energy by 3.03 eV compared to the sp3-hybridized Ta2O molecule. As on the surface, the Bader radius of the O atom
in the sp3 state is much larger than in the sp state.

TABLE III. The Ta2O molecule computed within the LDA: Bond distances d and angles θ, Bader charges ∆qB and radii RB,
magnetic moments µ, and total energies EDFT.

trimer d (Å) θ (◦) ∆qB (e, O) ∆qB (e, Ta) rB (Å, O) rB (Å, Ta) µ (µB, O) µ (µB, Ta) EDFT (eV)
Ta - O - Ta (sp3) 1.91 111.63 −0.99 +0.50 2.34 2.22 0.00 0.00 -19.77
Ta - O - Ta (sp) 1.81 179.75 −1.20 +0.60 1.42 2.51 -0.14 1.84 -16.74
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DENSITY OF STATES AND SURFACE CHEMISTRY

Characterization of the LDOS in state I: Fig. 3 contains the orbital-resolved DOS projected onto the sites
of the O and corresponding nearest Ta atoms within state I. We identify the O p states with energies between
−7.4 eV/−8.3 eV and −5.2 eV/−6.2 eV of Oside/corner as bonding states (Ref. [13]), which can be explained by the
resonance peaks lying within the same energy range for corresponding peaks in Ta p and d orbitals.

Let us have a closer look on the DOS of Oside and Ocorner which are lying on the vertical O row as shown in Fig. 2.
The LDOS of Ocorner shows a set of non-bonding states between −6.2 eV and −4.8 eV arising from its py orbital
(Ref. [13] provides a classification of states seen in LDOS of O adsorbates on transition metal surfaces). This can be
understood from geometry: The py orbital of Ocorner points to hollows. The px orbitals of all O atoms on the vertical
O rows are completely filled and contribute only to bonding states with adjacent Ta atoms.

We can apply some quantum chemistry considerations here. According to the Pauling scale of electronegativity,
the difference of values between Ta and O in the Ta-O bond reaches 2.0 units, which is close to the border between
covalent (< 2) and ionic (> 2) type of bonding. So we expect a charge transfer towards O in this bond. Based on the
surface trimer geometry, we also identify sp and sp3 hybridized O atoms, as in the hypothetical Ta2O molecules. One
should note, that for the sp hybridized O atom embedded into the Ta surface, this localized bonding picture is not
relevant, but we use the name, as it carries typical chemical properties. Focusing on Oside in state I, one observes s and
p states located approximately at the same energy that constitutes the sp3 hybridization. Then, taking into account
the saturation of its hybrid orbitals, two of them are directed towards the adjacent Taside, and the two remaining
point towards the vacuum, along the O row and perpendicular to the other two hybrid orbitals. These host the lone
pairs (or non-bonding states), and we argue that these states have important implications for all chemical properties
of the system. In the DOS one can see that orbitals of py and pz character are higher in energy, in agreement with the
local arrangement. We also identify non-bonding states between −5 eV and up to the Fermi energy, and anti-bonding
states above EF.

Another type of O atom in state I, the sp-hybridized Ocorner, has a more complex electronic structure. First,
the sp state is characterized by a higher electronegativity of the trimer-central atom than the sp3 state, because it
has a larger s-state contribution (see “Bader charge section” in Tab. II). Second, there is the already mentioned
non-bonding set of states for the py orbital. It is possible, that this orbital is rotated towards the sp3 orbital of the
nearest Oside, being aligned inside the O row. Third, there are clear π-bonding and -anti-bonding features on spectra
of neighboring Ta atoms.

Characterization of the LDOS in state II: The O-LDOS in Fig. 4 show a reversed tendency in their behavior,
which corresponds to the reversed adsorption heights within the O rows. We suggest that the Oside py and pz orbitals
form a linear combination as py±pz, with the one lobe pointing to the close-by sp3 orbitals, and the one pointing into
the bulk containing the bonding states. Tacorner now shows excitations being more pronounced in the dz2 and dx2−y2
orbitals as compared to Taside in state I (also due to polarizations induced by lone pairs; to be discussed below),
because the two Ocorner are now elevated above the surface, and in the analogous state of Oside within state I. The
Taside and Tacorner pz orbitals in state II show a reversal in excitation weights compared to state I as well.

Effects of sp and sp3 hybridization on adsorption geometry: One can understand the adsorption geometry
with the help of the proposed sp and sp3 hybridizations, and the superstructure provided in Tab. I, which is depicted
in Figs. 2(a) and (b) of the main manuscript. As we mentioned, the two bonding orbitals of the sp3 hybridized Oside

in state I point to the adjacent Taside, with both DFT functionals having a slightly larger bonding angle than the
H2O molecule (104.45◦; Tab. I). The two remaining lone pairs point diagonally with their orbital lobes to the vacuum
along the O row to form the tetrahedral structure.

According to the Bader charge analysis (Sec. “Bader charges” above), the orbital volumes holding the lone pairs
are very large, and interact repulsively with Ocorner, which is then embedded into the Ta surface and forms the
geometry of the sp hybridization (the in-plane px orbital hybridizes with atoms nearby). The lobe of its non-bonded
py orbital parallel to the Ta surface occupies the free space along the (vertical) O row and below the lobes of the sp3-
hybridized orbitals of Oside pointing to the vacuum. The geometric situation reverses for State II. As there are more
sp3-hybridized O atoms than sp-hybridized ones in State II, it has a lower total energy compared to State I (Tab. I).
This conclusion can also be drawn from Tab. III, which shows that the Ta2O molecule in sp3-hybridized configuration
has lower energy. To sum up, the repulsive character of the formed oxygen lone pairs in the sp3 state should play
an important role during oxygen adsorption and is responsible for the observed surface pattern with zigzag-ordered
O structure perpendicular to the surface. Depending on the temperature and pressure, the O coverage and repulsive
interactions are balanced, and crossing O rows are admitted until the optimal 3×3 superstructure emerges.
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FIG. 2. Idealized surface view with insets showing two configurations of Ta-O-Ta trimers (side views) in state I: side group of
atoms (1) and corner group (2). An overlay of orbital sketches shows principal difference in electronic states: in light green the
“non-bonding” py orbital of the Ocorner in the vertical row, and in blue its bonding px orbital; in (1) we show the proposed sp3

hybridization state for Oside. Color code of orbitals and positions of the atoms under consideration corresponds to Fig. 3. For
state II, O elevations are reversed.
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FIG. 3. Orbital-resolved LDOS of Ta(001)-O in state I (LDA). Only the LDOS of atoms sitting on, or next to the vertical rows
are shown. See discussion in the text.
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FIG. 4. Orbital-resolved LDOS of Ta(001)-O in state II (LDA). Only the LDOS of atoms sitting on, or next to the vertical
rows are shown. See discussion in the text.

Induced polarization effects: In state I, Oside has approximately two lone pairs in sp3-hybridized orbitals with
py and pz contributions. Consequently these can induce dipoles in the Taside orbitals of the same symmetry (the anti-
bonding peaks of p states above EF), although more pronounced in py, which is parallel to the two hybrid orbitals
carrying the suggested lone pairs, and being aligned along the O row. The effect of polarization by induced dipoles is
more pronounced on the Ta surface and subsurface atoms (latter not shown) in the central region of the 3×3 plaquette
and below the O row (not shown; for explanations of lone-pair bonding see Ref. [13]). Excessive peaks above EF are
seen in the Tacenter pz, dxy, dx2−y2 orbitals (Fig. 5), the latter two pointing to Oside and Ocorner. The pz peaks are
due to π bonding with the pz orbital of Tacorner, that is consistent with local geometry. Pronounced dxy and dx2−y2
peaks reflect a non-direct hybridization effect that can be cast to the lone-pair idea: these are the lone-pair induced
bonding and anti-bonding dipoles. Indeed, the sp3-hybridized states interact with Taside s- and d(p)-states [14], which
in turn induce excessive peaks at xy and x2−y2 states of Tacenter.

In state II, now the Taside and Tacorner pz orbitals participate in π bonding (Fig. 4). Tacenter, however, does not
show any sharp peaks around and above EF, and has significantly less intensity of the whole spectrum in comparison
to state I (Fig. 5). This can be also attributed to the immersed position of the Tacenter in state II. While the long-range
effects of the O atoms on the electron structure is less pronounced, the Ta atoms adjacent to the O row show excessive
features above and below EF. Especially in the Tacorner dx2−y2 orbital we observe bonding and anti-bonding peaks,
which we suggest again to reflect dipoles induced by the presence of two adjacent sp3-hybridized Ocorner atoms.
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FIG. 5. Orbital-resolved Tacenter-LDOS of Ta(001)-O in states I (top and middle left) and II (top and middle right). Results
obtained within the LDA. For state I, arrows indicate anti-bonding π-bond states (p-LDOS) and anti-bonding dipole states
(d-LDOS). The comparison of the overall s + d electronic states of the Tacenter to the clean Ta surface atom is shown in the
bottom left spectrum. LDOS projected onto the added s, p, and d orbitals of empty spheres above indicated atomic sites
in Fig. 3(a) of the main manuscript, and arranged along the isosurface at 3.2 eV shown in Fig. 2(c) of the main manuscript.
The radius of the empty spheres has been chosen as the Wigner-Seitz radius of W. All spectra have been broadened using a
Gaussian filter with a FWHM of 50 meV.

Explanation of plaquette shapes and contrast reversal: The alternation of the sp3-hybridized O atoms
in corner and side positions along the rows leads to the additional broader darkening at its locations on the maps.
This effect tunes the square-shaped (sp3 atom at side positions) and circle-shaped (sp3 atom at corner positions)
protrusions and goes well in line with the lone-pair concept. Also, in state II, the d-orbital weight of Tacenter at low
bias is rather small, and thus the central dark spot in low-bias STM images appears. This is because the O atom
Bader spheres are farer away (cf. Fig. 4 in the main manuscript) and lone-pair induced anti-bonding dipole production
is low.

Backwards, we define the following rules to identify plaquette shapes. All plaquettes have similar features at small
bias: deep minima are at the Ocorner, plaquette pattern is present in the system everywhere. We distinguish cross
shapes (state I) from circle shapes (state II) by additional minima/maxima:

1. The sp3-state O site (bent geometry) always shows a minimum (less tunneling probability) and it is delocalized
(the minimum spot/area appears broad).

2. The sp-state O site (aligned geometry) also always shows a minimum, but a smaller spot.

3. The Ta regions correspond normally to the protrusions.

Then plaquette attributes goes for the cross shape as:

• Additional broad minima are at Oside sites (sp3),

• maxima are at Tacorner and Tacenter (not strictly).
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And for the circle shape as:

• Additional broad minima are at Ocorner sites,

• maxima are at Taside,

• and an additional minimum is at Tacenter (central spot).

The contrast reversal means that there are more states above the corner positions at higher biases. There are
four Tacorner in contrast to only one Tacenter. The antibonding states of Ocorner contribute additionally. For the
measurement with the STM tip are the Ta pz and dz2 orbitals slightly more relevant, and the charge density from
different sites tends to interpenetrate at higher distances above the surfaces, especially as anti-bonding states happen
to be more delocalized [15]. Thus, before the contrast reversal, the STM tip measures the orbitals containing anti-
bonding dipole states lowering the work function around Tacenter. At higher bias the anti-bonding states within
orbitals of Tacorner contribute more efficiently [13], also because the potential O-induced gap due to electron-hole
production does not prevail anymore.

Summary: In conclusion, we performed a detailed investigation of the experimentally observed electronic properties
of the Ta(001)-O surface by means of DFT. Thus, we were able to identify its contrast reversal as seen in the STM
images and to predict the adsorption specific properties. One should mention that DFT-GGA in general has a limited
access to electrostatic effects on a surface and overall plays towards its metallic character (see, for instance, the
experimentally observed induced gap (Fig. 3)). The parental bulk material, especially for the local structure containing
the sp3-hybridized trimer, is tantalum pentoxide Ta2O5 [16, 17]. It is an oxide with a high dielectric constant, and
with a reported band gap of ∼ 1 - 4 eV. DFT-GW simulations improved the gap values for the crystalline form of
Ta2O5, although insufficiently [18]. The contribution of Ta s states in the conductance area for intraplanar bonds
was suggested to be the reason for the small gap in β-Ta2O5 and δ-Ta2O5 [18].

Also, we found the picture of the localized molecular bonds helpful, namely the one in terms of hybrid orbitals
hosting non-bonding electrons (lone pairs), that served as a complementary view. Unexpectedly, we could explain
some properties of the surface with repulsive and long-range character of the lone-pairs interaction that coincide with
DFT results. The possibility for long-range effects is also shown by Ta2O5 [16, 17].

The Ta protrusions seen on STM images are due to the dominance of the electronic properties over the structural
ones. In particular, we propose lone-pair induced anti-bonding dipole d states, and anti-bonding π-bonded p states
should play an important role in the physics of the surface. These states above EF lower the work function, and thus
enhance the tunnel current. At higher bias these lead to the contrast reversal.

We see that polarization properties differ in state I and II of the O-reconstructed Ta(001) surface. The arrangement
of sp- and sp3-hybridized O atoms along the rows induces excitations in the center of the 3×3 plaquette of state I by
means of indirect hybridization, but much less in state II. It is Oside in state I, which has the largest Bader radius,
and its Bader sphere has the highest proximity to the one of Tacenter. The inhomogeneous electrostatic texture (cf.
Fig. 4 of the main manuscript) was found to be marked with an unusual formally negative charge on Tacenter. The
pronounced bonding and anti-bonding peaks in the surface Ta d states at approximately −1 eV, −2 eV, 0.6 eV, 2 eV
and 4 eV can mediate the electrostatic interaction with adsorbates possessing a dipole moment [19]. This also means
that the induced dipole excitations would lead to vdW forces acting between Tacenter and such polarizable atoms and
molecules.

[1] L. Cornils, A. Kamlapure, L. Zhou, S. Pradhan, A. A. Khajetoorians, J. Fransson, J. Wiebe, and R. Wiesendanger, Phys.
Rev. Lett. 119, 197002 (2017).

[2] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
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50 Chapter 2 DFT and the Ta(001)-p(3×3)-O surface

2.5 Van der Waals forces in DFT: The Tkatchenko-Scheffler method

Additional to the metallic, covalent, and ionic bonds, non-covalent bonds like the ones
induced by the long-range and dispersive vdW interactions are often relevant for an accurate
description of surfaces and adsorption or arrangement of atoms and molecules thereon, see,
for example, Refs. [Hec17; Kak18]. Local fluctuations of the electronic charge density result
in temporal dipole moments in distant parts of the system, which happen to be correlated
by the long-range Coulomb interaction (i.e., these are plasmon-like interactions [Ger72;
Kli09]). This definition makes readily clear that neither HF theory (cf. introductory part
to this chapter) nor DFT with its local approximations contain vdW interactions [Stö19;
Sto13]; yet these interactions can be included semi-empirically within the DFT framework.

In view of the considerations made in Sec. 2.3, of possible future studies on the adsorption
of TMs on the Ta(001)-p(3×3)-O surface, and of the already obtained experimental results
showing Fe adsorbed at the top position in the centre of the 3×3 plaquette [Cor17], it is
imperative to include vdW interactions within the DFT description already for the clean
surface. As also mentioned in Sec. 2.3, however, neither the geometric nor the electronic
structure of the surface are modified significantly by the semi-empirical consideration of
vdW interactions within DFT, and the numerical Fe adsorption studies already performed
within this setup showed no conclusive result for the stability of the top position. The
present section introduces vdW-DFT on the basis of the calculations reported on in
the following Sec. 2.6. A thorough introduction to vdW forces in DFT can be found in
Ref. [Giu05], and especially in the references therein. Reviews on vdW-DFT covering ranges
of methods (including the one employed in this and the following section) and corresponding
results can be found in Refs. [Ber15; Kim16]. An implementation of the DFT-D2 method
(a similar, but more original approach to vdW-DFT) together with an explanation of how
structural minimization works can be found in Ref. [Buč10]. Benchmarks of the vdW-DFT
approach employed in this and the following section can be found in Refs. [Cla18; Gou16a;
Mar11].

We start with the TS method [Tka09], in which an atomically pairwise attractive energy
contribution is added to the DFT-GS energy (Eq. (2.18)),

𝐸vdW = −1
2
∑︁

𝐴,𝐵

∑︁

L

′
𝑓damp(𝑅𝐴𝐵,L, 𝑅𝐴, 𝑅𝐵) 𝐶6𝐴𝐵

𝑅6
𝐴𝐵,L

. (2.60)

The sum runs over pairs of atoms with distance 𝑅𝐴𝐵,L in supercells separated by a lattice
translation L (the prime on the sums indicates 𝐴 ≠ 𝐵 for L = 0), 𝑅𝐴/𝐵 and 𝐶6𝐴𝐵 are their
corresponding vdW radii (half distance between two atoms, when their Pauli repulsion
and London dispersion attraction are balanced) and 𝐶6 coefficients, respectively, and
𝑓damp is a damping function which cures the singular behaviour at small distances, where
non-vdW-DFT is assumed to correctly describe the electronic structure. The 𝐶6 coefficients
are given by the Casimir-Polder integral

𝐶6𝐴𝐵 = 3
𝜋

ˆ ∞

0
d𝜔 𝛼𝐴(𝑖𝜔)𝛼𝐵(𝑖𝜔), (2.61)
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with 𝛼𝐴/𝐵(𝑖𝜔) the electronic polarizabilities. The zeroth-order Padé approximant is the
static polarizability 𝛼0

𝐴, and the first order is given by 𝛼1
𝐴(𝑖𝜔) = 𝛼0

𝐴/[1 + (𝜔/𝜔𝐴)2], with
𝜔𝐴 the characteristic mean excitation frequency (likewise for atom 𝐵). Substitution
of the first two Padé approximants into Eq. (2.61) gives the London formula 𝐶6𝐴𝐵 =
3
2 [𝜔𝐴𝜔𝐵/(𝜔𝐴 + 𝜔𝐵)]𝛼0

𝐴𝛼
0
𝐵. The physical interpretation of the 𝐶6 coefficients is simple:

According to Eq. (2.61), if the polarizabilities of atom 𝐴 and 𝐵 are “resonant”, their
corresponding vdW interaction becomes strong; within the London approximation the
𝐶6𝐴𝐵 coefficients are proportional to the static polarizabilities, and increase with larger
characteristic mean excitation frequencies. Setting 𝐴 = 𝐵, one obtains 𝜂𝐴 = 4

3𝐶6𝐴𝐴/(𝛼0
𝐴)2,

with 𝐶6𝐴𝐴 the atomic 𝐶6 coefficient, and substitution into the London formula yields

𝐶6𝐴𝐵 = 2𝐶6𝐴𝐴𝐶6𝐵𝐵
𝛼0

𝐵

𝛼0
𝐴
𝐶6𝐴𝐴 + 𝛼0

𝐴

𝛼0
𝐵
𝐶6𝐵𝐵

. (2.62)

Due to charge transfer, atoms in molecules and solids and on surfaces receive modification
of their dispersion coefficients (i.e., 𝑅𝐴, 𝛼𝐴, and 𝐶6𝐴𝐴) as compared to the case in vacuum.
The coefficients are assumed to be rescaled by the effective volumes the atoms adopt within
the system,

𝐶eff
6𝐴𝐴 =

(︂
𝑉 eff
𝐴

𝑉 free
𝐴

)︂2

𝐶 free
6𝐴𝐴,

𝛼eff
𝐴 = 𝑉 eff

𝐴

𝑉 free
𝐴

𝛼free
𝐴 . (2.63)

The effective volumes are defined in terms of the DFT electronic density,

𝑉 eff
𝐴

𝑉 free
𝐴

=
´

dr 𝑟3𝑤𝐴(r)𝑛DFT(r)´
dr 𝑟3𝑛free

𝐴 (r)
, (2.64)

with help of the Hirshfeld atomic partitioning weights

𝑤𝐴(r) = 𝑛free
𝐴 (r)∑︀
𝐵 𝑛

free
𝐵 (r)

, (2.65)

which are defined in terms of non-interacting atoms, and are also used to determine the
Hirshfeld partial charges [Hir77]

𝑞𝐴 = −𝑒
ˆ

dr𝑤𝐴(r)𝑛DFT(r). (2.66)

Like the Bader charges shown in Fig. 2.4, the Hirshfeld partial charges computed during the
TS method reveal that the O-reconstruction of Ta(001) is accompanied by a considerable
charge transfer (Tab. 2.5 and Fig. 2.5). The DOS of the Ta(001)-p(3×3)-O surface
(Figs. 2.7, 2.8, and 2.9) show that DFT considers the surface being metallic everywhere,
and in conjunction with the STS results (Fig. 2.3), which show rather insulating behaviour
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instead, we were able to conclude that the oxygens are chemisorbed on Ta(001) by metallic
bonding with prevailing ionic character (Sec. 2.4). The surface reconstruction should
thus be quite robust against perturbations induced by an STM tips, electric pulses, or
adsorption of other atoms, what could be confirmed experimentally. Chemisorption via
metallic bonding was also found in Ref. [Guo17].

2.5.1 The iterative Hirshfeld algorithm
The problem with surfaces containing ionic components is the use of charge-neutral reference
systems for the determination of effective volumes (Eqs. (2.64) and (2.65)) [Buč14; Buč13a].
The volume ratios used in Eqs. (2.63), which are related to the vdW radii via [Tka09]

𝑅eff
𝐴 =

(︂
𝑉 eff
𝐴

𝑉 free
𝐴

)︂1/3

𝑅free
𝐴 , (2.67)

are close to unity in the original TS method (Fig. 2.10), in contrast to the charge transfer
seen from the Hirshfeld charges (Tab. 2.5). This is counterintuitive because the local
effective volumes should somehow scale with the local charge accumulation or depletion
(perhaps even inversely proportional); indeed, in many applications the Hirshfeld charges
tend to come out as rather small [Buč14; Bul07]). Furthermore, even though there
happens to be charge accumulation at oxygen locations (Tab. 2.5), the vdW radii for the
adsorbed oxygens decrease only marginally or are unchanged, leading to slightly decreased
or unchanged polarizabilities and 𝐶6 coefficients (Tab. 2.6 and Fig. 2.10). And even
though the Ta surface layer becomes depleted everywhere, away from the oxygen rows its
polarizability is enhanced. Within the TS method alone, this could only be explained by a
possible enhancement of metallicity and delocalization, because electronic motion might
be freer, and thus larger electronic dipoles could be induced. However, the observations
point to the HI algorithm, in which a reference system with fractionally ionic charges is set
up, thereby taking care of the charge transfer within the system [Bul07; Van13]. In this
algorithm, the Hirshfeld atomic partitioning weights are computed iteratively,

𝑤𝑖𝐴(r) = 𝑛𝑖−1
𝐴 (r)∑︀
𝐵 𝑛

𝑖−1
𝐵 (r)

, (2.68)

with 𝑤1
𝐴(r) given in Eq. (2.65), and 𝑛𝑖𝐴(r) determined by the equation
ˆ

dr𝑤𝑖𝐴(r)𝑛DFT(r) =
ˆ

dr𝑛𝑖𝐴(r). (2.69)

The iteration is performed until convergence in the Hirshfeld charges is obtained, cf.
Eq. (2.66). The new effective volumes can then be computed from Eq. (2.64), and
subsequently the new polarizabilities and 𝐶6 coefficients from Eq. (2.63).

The problem with the HI algorithm is that anions become unstable due to the inherent
delocalization in PW based methods, which try to spread charge excesses over the entire
supercell [Van13] (the same problem with pronounced inhomogeneities). Even the method
of Watson spheres with compensating positive charges centred at the anions does not yield
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sufficient localization to overcome this problem in our case [Buč13a; Wat58]. Thus, we
use the method of frozen local orbitals, in which the anions have the same orbitals as the
corresponding neutral atom, only their occupancy is changed when the anion is created
[Buč18; Gou16b]. This method, however, can still not be applied to the free Ta(001) surface,
because during the HI algorithm there happen to arise strong charge concentrations around
some atoms in the slab, and the method of Watson spheres again diverges. The Ta(001)
surface can thus be considered only without the HI algorithm (that is why the adsorption
energies were determined within the TS method alone). In contrast to Sec. 2.4, the energy
cut-off for the PW basis set was not increased for the vdW-DFT calculations, because the
delocalization problem would become stronger. According to experience, this also served
to reduce imbalances in the assignment of HI charges to the atoms.

We would like to mention another route to account for the charge transfer, which is
given by the density-dependent dispersion correction, called dDsC-DFT [Ste11a; Ste11b].
In this method the dispersion coefficients depend on the electronic density directly, so that
charge transfer as well as local chemical environments are considered.

2.5.2 Self-consistent screening of dispersion coefficients

By going yet one more step, the metallicity of the surface along with its coexisting static
polarization texture due to charge transfer can be further addressed within the vdW
description. According to the Dobson classification, the additivity of vdW interactions
based on Eq. (2.60) is questionable on several levels, because all possible types of non-
additivities listed in Ref. [Dob14] apply to our case: First, the squeezing of the atomic
spheres is considerable due to charge transfer and bonding. This, however, is captured by
the rescalings in Eqs. (2.63) together with the HI algorithm. Second, both, the metallicity
and the polarization texture, the latter leading to permanent dipoles acting as additional
classical electromagnetic centres, will screen and renormalize the Coulomb interaction in
the system, leading to modified dispersion coefficients as well as to other multipolar terms
not contained in the vdW-DFT energy (Eq. (2.60)). Third, the energetic degeneracies
allowing the electrons to hop through the system may lead to enhanced polarizabilities
(due to vanishing energy denominators). Furthermore, as mentioned before, the longer
propagation paths and enhanced local electronic flexibility in the metallic regions may lead
to larger fluctuating dipoles being induced.

The third point leads to multipolar terms beyond the pairwise approximation for the
vdW energy, which cannot be included in its definition within vdW-DFT given in Eq. (2.60).
The long-range electrostatic screening in metals, however, can be taken into account by
the self-consistent screening (SCS) equations [Buč13b; Tka12],

𝛼TS+SCS
𝐴 (𝑖𝜔) = 𝛼TS

𝐴 (𝑖𝜔) + 𝛼TS
𝐴 (𝑖𝜔)

∑︁

𝐵 ̸=𝐴
𝜏𝐴𝐵𝛼

TS+SCS
𝐵 (𝑖𝜔). (2.70)

Here, 𝜏𝐴𝐵 is the dipole-dipole interaction tensor, and the frequency-dependent polarizabili-
ties 𝛼TS

𝐴 (𝑖𝜔) are defined in Eq. (2.61). The atomic 𝐶6 coefficients in the TS+SCS method
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are again computed from the Casimir-Polder integral

𝐶TS+SCS
6𝐴𝐴 = 3

𝜋

ˆ ∞

0
d𝜔 [𝛼TS+SCS(𝑖𝜔)]2. (2.71)

As detailed in the next section, due to the inhomogeneity of the Ta(001)-p(3×3)-O surface
supporting a static polarization texture, strong polarization and depolarization effects occur
by taking into account the SCS. We would like to note that the TS+SCS method was defined
for gapped systems, but irrespective of the conceptual problems due to delocalization
(vdW interactions between nearby and overlapping regions), it has been applied to metallic
systems as well (see Ref. [Buč13b] and references therein). According to experience, the
imbalances in the assignment of HI charges to the atoms are strongly reduced, though.

We would like to mention a possible extension of the TS+SCS/HI method by the many-
body dispersion (MBD) scheme MBD@rsSCS (“rs” stands for range-separation) [Amb14;
Buč16]. In this approach the general expression for the many-body correlation energy is
separated into a short-range contribution, which is treated with common non-vdW-DFT
functionals, and a long-range contribution (this goes along the definition of plasmons (cf.
introductory part to Chpt. 4)). The long-range many-body correlations are accounted
for by the RPA (Sec. 3.1), which, together with the adiabatic-connection fluctuation-
dissipation theorem (ACFDT), provides an expression for the correlation energy in terms
of the density-density response function. The latter is again given in terms of the SCS
polarizabilities in Eq. (2.70). The density-density response function admits a multipole
expansion of the correlation energy, in which the dipole part usually identified with vdW
forces is dominant. In principle, this approach can thus account for the third type of
non-additivity as given by the Dobson classification.

2.6 Application of the TS method to the Ta(001)-p(3×3)-O surface
The considerations made in Secs. 2.3 and 2.5, and especially the non-additivities listed in the
Dobson classification, call for a thorough GWA/RPA treatment of the Ta(001)-p(3×3)-O
surface (Sec. 3.1) [Har09; Har10; Ols13; Ren12; Sho16]. This system, however, appears
nearly prohibitively complicated for such sophisticated computational approaches, and
probably one needs to tune down the structure, that is, to consider perhaps a smaller
superstructure (e.g., p(1×3)-O) or just a part thereof, to drop the mirror symmetry of the
slab arrangement in the supercell, or to take into account less Ta layers. Before such an
endeavour can be made, a vdW-DFT characterization and benchmark of the surface seem
advisable.

2.6.1 Oxygen adsorption and tantalum reconstruction again
In anticipation of the experimental STM images (Fig. 2.1), where two different topographic
p(3×3)-O patterns within the superstructure formation can be seen, relaxation of the
O-reconstructed surface either has to be performed from two different starting configura-
tions, or one obtains one of the relaxed configurations from the other by an intermediate
modification of the surface. Both routes were found to be possible and led to the same
result. First, starting from a perfect configuration in which the oxygens are flatly embedded
within the Ta surface layer (Fig. 2.1g), a first configuration emerges upon relaxation,
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state I (square-shaped) state II (circle-shaped)

𝐸DFT/𝐸ads (eV)
functional +

trimer 𝑑 (Å) 𝑑𝑧 (Å) 𝜃 (∘) 𝑑 (Å) 𝑑𝑧 (Å) 𝜃 (∘)

GGA+vdW
-299.10/-6.25 (I)
-301.65/-6.51 (II)

Oside - Taside 1.95 1.22 102.48 1.97 -0.08 184.63
Ocorner - Tacorner 1.98 0.10 170.84 1.97 0.84 104.55
Taside - Tacorner 3.01 0.08 162.15 3.42 -0.08 195.95
Oside - Ocorner 3.33 1.21 137.41 2.72 -0.99 222.82
Tacentre - Tasurface -0.04 -0.30
Tasurface - Tasubsurface 1.65 1.61
Osurface - Tasubsurface 2.11 2.19

GGA+vdW(HI)
-300.30/ - (I)
-302.88/ - (II)

Oside - Taside 1.95 1.22 102.56 1.96 -0.11 184.82
Ocorner - Tacorner 1.97 0.13 171.47 1.97 0.83 105.40
Taside - Tacorner 3.02 0.12 162.63 3.41 -0.07 193.61
Oside - Ocorner 3.28 1.20 136.99 2.72 -0.99 222.61
Tacentre - Tasubsurface -0.07 -0.32
Tasurface - Tasubsurface 1.68 1.61
Osurface - Tasubsurface 2.17 2.19

Table 2.4: Ta(001)-p(3×3)-O superstructure parameters within vdW-DFT: Distances and angles
within the O and Ta surface layers decomposed in trimers, together with distances between the
surface layers and the first Ta interlayer (cf. Tab. 2.1). The notion is defined according to
Fig. 2.1(g,h), and angles can be understood with help of Fig. 2.2(a,b); see Tab. 2.1 for further
explanations. Results are listed for each DFT-vdW functional (TS+SCS method without (upper
panel) and with HI algorithm (lower panel), cf. Sec. 2.5) together with the adsorption energies
𝐸ads (definition in the text).

which we denoted by state I and termed “square-shaped”, as it leads to square-shaped
protrusions in simulated STM topographies (Fig. 2.2c). Having obtained state I, during the
adsorption process there will be additional oxygens trying to adsorb on the surface within
an already established p(3×3)-O cell in the first configuration. Placing four additional
oxygens around the tantalum in the centre of this cell (Tacentre; see Figs. 2.1(g,h) for
notion of individual atoms), connecting it with the respective side tantalums (Taside), and
continuing the relaxation, state II, also denoted as “circle-shaped”, emerges and remains
stable after removing the four additional oxygens. Placing one additional oxygen above
Tacentre does not lead to such a configurational transition, which means that a certain
number of oxygens need to intermediately adsorb for the transition to occur. At lower
temperatures the p(3×3)-O superstructure is preferred, so the additional oxygens will
eventually desorb again [Tit85]. – The other route to obtain state II is by choosing another
starting configuration for the relaxation. Shifting the flatly embedded oxygens by 1/4
of the bcc-Ta lattice constant into the surface and allowing the structure to relax leads
to state II as well. However, oxygens do not penetrate into the bulk of Ta(001) [Dra73].
Sec. 2.4 contains yet another explanation for the occurrence of state II and for its rarity, the
latter being connected with the instability of two neighbouring 𝑠𝑝3 oxygens along the [110]
or [11̄0] (two neighbouring Ocorner in state II singled out); one of them drops immediately
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into a nearby hollow position.
The adsorption energy for the oxygens is given in terms of the total energies by 𝐸ads =

(𝐸Ta(001)−O − 𝑁𝐸O − 𝐸Ta(001))/𝑁 with 𝑁 = 12 the number of oxygens in the supercell.
Tab. 2.4 reflects the same tendencies as already detailed in Sec. 2.4 (cf. Tab. 2.1), namely
that the adsorption and total energies in state I are always smaller than in state II,
irrespective of the energy functional being used. An explanation of these facts was given in
Sec. 2.4 as well, and the conclusions made there are not modified by use of vdW functionals.
The total-energy differences between the two states, I and II, are now increased, while
in contrast to that the difference in the adsorption energies 𝐸ads are smaller. This can
be traced back to the different description of the clean Ta(001) surface and the single O
atom within vdW-DFT. The total energies in GGA+vdW are lower as compared to the
GGA results (Tab. 2.1) due to the attractive nature of the vdW forces, and in the LDA
the total energies are the lowest. This order reflects the relation GGA → GGA+vdW →
LDA explained in Ref. [Mar11], and is due to the known overbinding in the LDA (see also
references in Sec. 2.4).

Tab. 2.4 also contains the relevant lattice parameters obtained from relaxation within
vdW-DFT. Taking into account vdW interactions yields the same overall adsorption
geometry as with plain DFT (cf. Tab. 2.1). As explained in Sec. 2.5, the free Ta(001) does
not relax conclusively with the HI algorithm, so that adsorption energies could not be
computed with the full TS+SCS/HI method, but the O-reconstructed Ta(001) accepted
the algorithm. The HI algorithm takes into account charge transfer within the system, and
adapts the vdW interaction parameters accordingly (Sec. 2.5).

The Tasurface-Tasubsurface interlayer distances 𝑑𝑧 arrange themselves along the mentioned
GGA → GGA+vdW → LDA relation, so that GGA+vdW yields a slightly decompressed
surface structure compared to the LDA. One is tempted to infer from state I and the
Osurface-Tasubsurface distance that the HI algorithm tends to decompress the surface as well;
however, this is just because of a slightly different positioning of the Ocorner-Tacorner and
Taside-Tacorner trimers (their triangles are slightly more erected); this tendency is only
insignificantly exhibited by state II (if at all). The Ta-O bond lengths now lie between
the GGA and the LDA, as with the Ta interlayer distances. The Oside-Ocorner distances
are somewhat reduced in state I, especially with the HI algorithm. This latter fact can
be explained by the repulsions between the Ocorner, which become enhanced by stronger
charge accumulation on oxygens. In state II the situation is more clear: The enhancement
of the Ocorner repulsion occurs only with the HI algorithm; this can be understood by
looking at Tasub

corner, where now a strong charge accumulation appears in state II, so that
the Ocorner are further repelled. The Ta-O 𝑑𝑧 distances are roughly in between the LDA
and GGA for both states; the O-O 𝑑𝑧 distances are reduced in state I, but in state II they
are organized according to the binding trends of the functionals.

One can conclude that on the whole the GGA+vdW parameters interpolate between
the ones of the GGA and the LDA according to the binding strength relation. The HI
algorithm and the charge transfer mostly affect the oxygen interactions and modify the
relative positions. The charge transfer enhances ionicity of all species, and there exists a
complex interplay between repulsion and attraction between likewise and different species,
respectively, and overall reduced chemical reactivity due to charge saturation.
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We would like to note that there exists a third state in GGA due to the more flexible
bonding structure. One obtains this state by shifting the oxygens by 1/4 of the bcc-Ta
lattice constant from the flatly embedded positions into the vacuum (𝑑𝑧 = 0.83 Å between
Osurface and Tasurface). Then they become elevated (1.14 Å), but the 𝑑𝑧 distance within
the Oside-Ocorner trimer is only 0.16 Å. Upon switching on the vdW forces within the TS
method, and allowing the surface to relax again, this adsorption structure disappears and
relaxes to state I. Simulated STM images of the third p(3×3)-O structure (not shown) do
not match any pattern seen in experimental STM images. As this third configuration is
not seen in experiment, it either cannot exist next to the other configurations, or GGA
alone is inappropriate, and/or it underlines the necessity of taking into account vdW forces,
or other additional effects, because it underestimates bonding.

2.6.2 Hirshfeld charges and polarization

pattern ion 𝛥𝑞
(TS)
H 𝛥𝑞

(TS)
HI 𝛥𝑞

(TS+SCS)
HI

state I
(square)

Ocorner -0.309 -0.407 -0.443
Oside -0.359 -0.426 -0.464
Tacorner 0.282 0.582 0.528
Taside 0.176 0.386 0.323
Tacentre 0.112 0.406 0.266
Tasub

corner 0.283 0.472 0.386
Tasub

side 0.028 0.161 0.012
Tasub

centre -0.090 -0.811 -0.384
state II
(circle)

Ocorner -0.340 -0.476 -0.479
Oside -0.301 -0.430 -0.430
Tacorner 0.317 0.615 0.618
Taside 0.228 0.451 0.452
Tacentre -0.060 0.021 0.019
Tasub

corner -0.085 -0.605 -0.559
Tasub

side 0.093 0.136 0.323
Tasub

centre -0.108 -0.552 -0.530

Table 2.5: (Left) Hirshfeld charges (in units of 𝑒) computed within the TS(+SCS) method in
GGA+vdW without (𝛥𝑞H) and with the HI algorithm (𝛥𝑞HI). The results were averaged within
the same type of atoms in the supercell (Tacorner, Oside, etc.). (Right) Hirshfeld charges as listed
on the left for state I (top) and state II (bottom). Results for TS method in blue, for TS/HI in red,
and for TS+SCS/HI in green.

The first conclusion from the various Hirshfeld charges (i.e., the differences from neutral-
ity) listed in Tab. 2.5 is the charge transfer from the Ta(001) surface to the O adatoms.
The oxygen Hirshfeld charges are smaller than the Bader charges (i.e., their differences
from neutrality; Fig. 2.4 and Tab. 2.2), and some ionicities have different trends, but the
overall result is the same. The discrepancies might be due to the Bader charge analysis
(BCA) associating charge and atom in a rigid manner (see Ref. [Hen17] and references
therein), while the Hirshfeld weights for each atom cover the whole space [Hir77]. The
oxygens acquire the more charge, the more they are distant to the surface (due to regained
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localization), while Tacorner always donates more charge than Taside, because the former
has two adjacent Ocorner. Note that the BCA tells the opposite story for the oxygens,
because the charge of the oxygens located inside the Ta surface layer happens to be strongly
compressed around their nuclei, and additionally the delocalized electrons from the Ta
surface are associated with them. The Hirshfeld partitioning considers the region around
Tacentre of state I depleted (in contrast to the BCA), while in state II it happens to be
nearly charge neutral. In contrast to that, the central subsurface region Tasub

centre is always
charged, which leads to strongly enhanced dispersion coefficients (Tab. 2.6 and Fig. 2.10).
While the original TS method leads here to a modest increase of charge, the HI algorithm
predicts a strong accumulation, which is again slightly reduced by the SCS. To some extent,
the allocations at the surface and subsurface layers can be traced back to an (artefact)
CDW within the Ta(001) surface layers: Removing the oxygens, five layers remain in the
supercell, which develop a layer-wise alternating CDW with positive Hirshfeld charges in
the two outermost surface layers (already in TS+SCS without HI algorithm, but with
values below 0.1 𝑒). In contrast to that, the BCA on the free Ta(001) shows a gradual
CDW with one period only, and assuming maxima at the two outermost layers. This
allocation of Bader charges remains with oxygen adsorption, but the HI algorithm predicts
a rather strong depletion around Tacentre in state I, while in case of state II there happens
to be approximate charge neutrality, and, carrying more charge, the corresponding 𝐶6
coefficients are very large here (Tab. 2.6 and Fig. 2.10).

The TS method predicts a well-balanced charge transfer within the surface layers of
state I, only Tasub

corner donates a considerable amount of its charge to its environment. In
state II it is Tasub

side which donates, while the others accept. The reason for the ionicities of
the subsurface tantalums below the oxygen rows can be traced back to the oxygen ordering:
The smaller the oxygen heights, the more they attract electrons from the subsurface, and
not only from their adjacent tantalums of the surface layer. For example, in state II, Tasub

side
remains positively charged. This tendency is strongly enhanced by use of the HI algorithm,
and slightly reduced by SCS.

Bučko et al. observed agreement between the HI and the Born effective charges for ionic
crystals [Buč14]. As we detect in a similar vein tendencies in charge transfer which are well
in line with “chemical intuition”, we may apply their relation to the Ta(001)-p(3×3)-O
surface, which happens to exhibit prevailing ionic character against its metallicity. The
square of oxygens in the 3×3 cell is supported by the positively charged tantalums of the
surface and subsurface layers (except Tasub

corner in state II), and this structure results in a
permanent polarization texture of the surface. In state I this texture is more pronounced
than in state II for two reasons: First, as it is negatively charged, Tasub

centre might provide a
compensation to the polarization, a property which is more pronounced in state II. And
second, Tasub

corner is additionally negative here. In principle, such a permanent polarization
texture may lead to vdW contributions as well, in particular, to the Keesom and to the
Debye forces. The Keesom force describes the surface as stabilizing its own polarization
texture, especially in state I, where the square of permanent polarization leads to a dipole
in the central region around Tacentre with reversed orientation. And the Debye force
renders the surface experiencing self-interactions by inducing dipole moments locally, again
especially in the central region. Both forces, together with the usual London forces included
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in vdW-DFT, will provide important mechanisms for the understanding of the adsorption
of other atoms and molecules on the surface as well as for the surface structure itself.

2.6.3 Dispersion coefficients
The next computational results to be discussed are the dispersion coefficients displaying in
detail the actual vdW physics of the Ta(001)-p(3×3)-O surface (Tab. 2.6 and Fig. 2.10).
All three approaches within the TS method led to the same result for the charge order
within the surface, while this is not the case for the dispersion coefficients. As mentioned
in Sec. 2.5, in the original TS method, the dispersion coefficients for the oxygens come out
slightly smaller than the free reference values or are unchanged, although they acquire
charge, and the region around Tacentre shows the reverse tendency. To some extent, the
same problem appears within the subsurface layer, and in general, all dispersion coefficients
are near their free reference data.

The situation is slightly cured in employing the HI algorithm, and now the values for
the dispersion coefficients are in line with the charge transfer, the local environments, and
the geometry (especially as regards the extended lone pairs on oxygens): the oxygens
possess increased values, and the surface tantalums decreased ones. Not shown here are
the results of the BCA for the effective atomic volumes ∝ 𝑅3 (Bader volumes/radii), which
for the oxygens located within the Ta surface layer in both states, I and II, are roughly
the same as in the TS and TS/HI methods, but for the elevated oxygens come out as one
magnitude larger. This property is not reflected in the dispersion coefficients, and, in view
of the proportionality between the vdW radii and (static) polarizabilities in Fig. 2.10, this
either means that the polarizabilities for the elevated oxygens might be much larger than
predicted by the TS method and its extensions, or that their charge accumulation tends to
reduce local dynamics and electronic mobility.

Indeed, in taking into account electrostatic screening effects in metals via SCS, all
dispersion coefficients for the surface layers are strongly decreased, while the subsurface
layer shows a more moderate response. In general, screening appears strongly enhanced at
the surface, and reduces the vdW interaction considerably. Increase of screening at metal
surfaces compared to bulks has already been realized in cRPA studies on the Coulomb
interaction [Şaş12]. SCS reduces the vdW radii and polarizabilities of the oxygens stronger
than the ones of the tantalums, which might be an effect of combined oxygen ionicity and
electronic delocalization (localized charge becomes inert and screened). The 𝐶6 coefficients,
however, are not just as strongly reduced, which means that the tails of the polarizability
coefficients, and thus the dispersive character of the vdW interactions, are important. The
Tasub

centre region receives very large 𝐶6 coefficients in both states, I and II, which might
thus be a favourable region for polarizable adatoms to adsorb. In state II, the Tasub

corner
region might also be favourable for adsorption, but here that might be challenged by the
complicated and stronger multipolar environment given by the specific oxygen arrangement,
and especially by the strongly reduced dispersion coefficients of the oxygens themselves.

According to Tab. 2.6, all tantalum 𝐶6 coefficients in the TS+SCS/HI approach are by
one or two magnitudes larger compared to the values for the oxygens. To get a feeling
for the adsorbate affinity resulting from these values, let 𝐶 and 𝛼 be the 𝐶6 coefficient
and polarizability of an atom trying to adsorb on the surface. The 𝐶6 coefficient for the
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Figure 2.10: Dispersion coefficients: vdW radii, 𝐶6 coefficients, and static polarizabilities
in units of their free reference data, see Tab. 2.6. Left column for state I, right column for
state II. Results for TS method in blue, for TS/HI in red, and for TS+SCS/HI in green.

pair comprising adatom and Tacentre, or adatom and Ocorner, respectively, are given by
(Eq. (2.61))

𝐶6 ≈ 2
0.0815
𝛼 + 𝛼

43.03𝐶
,

𝐶6 ≈ 2
0.0061
𝛼 + 𝛼

0.80𝐶
. (2.72)

The first 𝐶6 coefficient is by more than one magnitude larger than the second. Thus, the
vdW energy contributions (Eq. (2.60)) from the Tacentre region will more effectively lower
the total DFT energy than the oxygen rows, and the adatom is likely to adsorb in the
centre of the 3×3 plaquette. As mentioned, however, the complex static dipole/multipole
texture of the Ta(001)-p(3×3)-O surface will influence the adsorption quite strongly as well.
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Finally, we note once more again, that spin and charge fluctuations are not included in
Eq. (2.60), yet they are assumed to be important for the adsorption of atoms and molecules.



CHAPTER 3
QMC solution of the AIM and the Co/graphene system

In Chpt. 2 we saw that DFT is a highly sophisticated approach for the determination of
the GS of real materials and many of its properties. Albeit it appears sometimes limited
in its capabilities to explain various physical or chemical properties or structures, mostly
related to excitations, lang-range order or interactions, or quantum-chemical effects, in the
case of the Ta(001)-p(3×3)-O surface it provided at least the basis for an interpretation
of the STM images and the reconstructions in quantum-chemical terms beyond its own
domain of applicability. In particular, it captured the charge transfer only partially and
described the surface as rather metallic (albeit the charge redistribution could be seen in
the electronic structure and the charge analysis results). In contrast to that, experimentally
the charge transfer manifested itself in a wide band gap seen everywhere on the surface, so
that quantum-chemical (molecular) interpretations are applicable. DFT exhibited certain
tendencies of the Ta(001)-p(3×3)-O surface in its results for the electronic structure, such
as aligned hybridization peaks or bonding and anti-bonding peaks in the LDOS, but an
interpretation in terms of lone pairs in 𝑠𝑝3-hybridized oxygen orbitals or bonding and
anti-bonding dipoles, respectively, is beyond the immediate DFT description. One of the
“predictions” made in Secs. 2.4 and 2.6 - the adsorption site for polarizable atoms and
molecules on the Ta(001)-p(3×3)-O surface being in the centre of the 3×3 plaquette defined
by the oxygen rows - was already observed before for Fe adatoms [Cor17] (albeit the true
adsorption site was unclear at that time because the clean surface was not identified). This
is rather unintuitive because iron is expected to approach the already adsorbed oxygens in
favour for binding to the surface (via polar covalent or ionic Fe-O bond).

Furthermore, the STM images in Ref. [Cor17] suggest unusual top-site adsorption,
directly above the central Ta surface atom of the 3×3 plaquette. In adsorption calculations
based on the setup of Sec. 2.5, vdW-DFT was at least able to maintain the Fe lateral
position after it has been positioned directly above Tacentre (it did not remain geometrically
exactly at the top position, though), but it was not found to be stable upon small lateral
displacemental perturbations. In contrast to that, without vdW interactions the Fe adatom
directly dropped into one of the nearby hollow positions. Thus, there should be additional
interactions present in the system being relevant for the adsorption of atoms and molecules.
Even though the application of semi-emprirical vdW-DFT points to the relevance of such
additional interactions, the results were not conclusive.

DFT is a MF (static) approach to correlations (cf. introductory part of Chpt. 2 and
Subsec. 2.1.4), but many interpretations of the experimental (STM, STS) and computational
(up to semi-empirical vdW-DFT) results on the Ta(001)-p(3×3)-O surface indicate the

63
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presence of fluctuations beyond the MF approximation (Secs. 2.4-2.6). In particular, the
quantum-chemical concept of lone pairs residing in 𝑠𝑝3-hybridized orbitals of chemisorbed
oxygen and polarizing their substrate environment (Sec. 2.4) cannot be appropriately
represented in DFT. As mentioned in Sec. 2.3, it is currently believed that charge and spin
fluctuations are necessary to stabilize the Fe adatom in the centre of the 3×3 plaquette.
That means, amongst others, that vdW interactions have to be taken into account beyond
the semi-empirical approximation. The most relevant charge fluctuations are dipolar
excitations, and these happen to be correlated with dipolar excitations on approaching
polarizable atoms and molecules. These correlations lead to London dispersion forces,
and they result in two distant fluctuating dipoles interacting attractively with each other
(Sec. 2.5). But one may assume higher multipoles being relevant as well if one looks at
the 𝐶4𝑣 local symmetry of Tacentre (or its even more complicated symmetry w.r.t. the
full oxygen arrangement). Such multipoles might, for example, be accounted for by the
MBD@rsSCS approach mentioned in Subsec. 2.5.2, or by the encompassing RPA or GWA
introduced below (Sec. 3.1).

The consideration of correlations is essential in condensed matter systems, especially in
the ones with pronounced inhomogeneities. As mentioned in Subsec. 2.1.4, the ionic lattice
tends to localize the electrons around its heavier elements. While the kinetic energy of
the electrons becomes larger (being in turn balanced by an enhancement of the negative
potential energy), the kinetic energy of the QPs emerging from the localization is small, and
thus they appear in narrow bands near the Fermi surface [Geo04]. The localized electrons,
now forced to be near each other, happen to be strongly fluctuating and correlated, so that
a strong renormalization of the DFT electronic structure can be expected.

All ingredients for the correlations are contained in the basic second-quantized condensed-
matter Hamiltonian given in Eq. 2.1, and instead of trying to account for the two-
particle Coulomb interaction part by ever more sophisticated, but probably indeterminable
DFT(+𝑈)-XC functionals (Secs. 2.1.2 and 2.1.4), one may try to consider the (time-like)
fluctuations by an energy-dependent potential, the so-called self-energy, thereby realizing
again a single-particle description, but with taking into account the many body correlation
effects [Sza96]. In single-particle quantum mechanics the GF has poles at the EVs of the
Hamiltonian. Within the independent-particle description of HF theory, the GF is given
by

𝐺0(𝑥, 𝑥′, 𝐸) =
∑︁

𝑎

𝜒𝑎(𝑥)𝜒*
𝑎(𝑥′)

𝐸 − 𝜀𝑎
, (3.1)

where the sum runs over all occupied and unoccupied states, and 𝜀𝑎 is the energy of the
HF orbital 𝜒𝑎(𝑥) with 𝑥 comprising space and spin indices. In the full CI beyond the
HF approximation the GF contains all the many body correlation and relaxation effects,
while the single-particle picture is retained. This represents a systematic improvement of
Koopman’s theorem. In particular, the full GF exhibits the exact ionization potentials and
electron affinities of the 𝑁 -particle system. For the excitation spectrum of the 𝑁 -electron
system, however, one needs the two-particle many body GF describing particle-hole pairs
within linear-response theory, but these objects will not be considered in the present thesis
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(a two-particle GF appears in Eq. (3.20), though).

To acknowledge the GF formalism, one may compare it order-by-order within quantum-
mechanical perturbation theory (PT) for the correlation energy [Sza96], that is, within
the Møller-Plesset PT, which is given by the Ruelle-Schrödinger PT together with the
decomposition of the full Hamiltonian in the form

�̂� = �̂�0 + 𝑉 =
∑︁

𝑖

𝑓(𝑖) +
∑︁

𝑖<𝑗

1
𝑟𝑖𝑗

− 𝑉HF, (3.2)

where the one-particle terms are given by the single-particle HF terms, 𝑓(𝑖) = ℎ̂(𝑖) +𝑉HF(𝑖)
(cf. Eq. (2.2)), and with 𝑉HF =

∑︀
𝑖 𝑉HF(𝑖) subtracted from the two-particle Coulomb

interaction (both are included in the two-particle term 𝑉 ). In this way the meaning of
fluctuations around the MF approximation becomes again readily apparent. As in the
DFT+𝑈 approach (Subsec. 2.1.4), it is the fluctuations around the HF-MF value which
modify the total energy, and the PT will be an expansion in the fluctuations around that
MF value. At zeroth order in PT the EV equation is given by

�̂�0|𝛹0⟩ = 𝐸
(0)
0 |𝛹0⟩ =

(︁∑︁

𝑎

𝜀𝑎

)︁
|𝛹0⟩, (3.3)

where |𝛹0⟩ is the determinantal HF-GS constructed from the HF orbitals 𝜒𝑎(𝑖), and 𝜀𝛼 the
orbital energies, see Eq. (3.1). The energy to first order is then given by

𝐸
(1)
0 = ⟨𝛹0|𝑉 |𝛹0⟩ = −1

2
∑︁

𝑎𝑏

(︀
⟨𝜒𝑎𝜒𝑏|𝑉 |𝜒𝑎𝜒𝑏⟩ − ⟨𝜒𝑎𝜒𝑏|𝑉 |𝜒𝑏𝜒𝑎⟩

)︀
, (3.4)

and thus the HF energy by 𝐸(0+1)
0 = 𝐸

(0)
0 + 𝐸

(1)
0 . At second order in PT one obtains

𝐸
(2)
0 =

∑︁ ′

𝑛

|⟨0|𝑉 |𝑛⟩|2

𝐸
(0)
0 − 𝐸

(1)
𝑛

, (3.5)

where the sum runs over doubly excited states |𝑛⟩ = |𝛹 𝑟𝑠𝑎𝑏 ⟩ only (excluding the GS), which
are given by the EV equation �̂�0|𝛹 𝑟𝑠𝑎𝑏 ⟩ = (𝐸(0)

0 − (𝜀𝑎 + 𝜀𝑏 − 𝜀𝑟 − 𝜀𝑠))|𝛹 𝑟𝑠𝑎𝑏 ⟩ (electrons in
states 𝑎 and 𝑏 are excited into states 𝑟 and 𝑠). Rewriting gives

𝐸
(2)
0 = 1

4
∑︁ ′

𝑎𝑏𝑟𝑠

|⟨𝜒𝑎𝜒𝑏|𝑉 |𝜒𝑟𝜒𝑠⟩ − ⟨𝜒𝑎𝜒𝑏|𝑉 |𝜒𝑠𝜒𝑟⟩|2

𝜀𝑎 + 𝜀𝑏 − 𝜀𝑟 − 𝜀𝑠
. (3.6)

This is the first relevant correction to the HF energy. One may note at this point,
that HF theory does not exhibit any structures which can be related to a diagrammatic
representation, while PT does. Furthermore, PT is a simpler way to improve HF theory
for larger systems instead of the CI, which is either always limited to small basis sets or
small molecules, or in need for some truncations for it to be computable [Sza96].
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The exact many body GF for an 𝑁 -particle system is given by [Sza96]

(𝐺(𝐸))𝑖𝑗 =
∑︁

𝑚

⟨𝑁𝛷0|�̂�+
𝑖 |𝑁−1𝛷𝑚⟩⟨𝑁−1𝛷𝑚|�̂�𝑗 |𝑁𝛷0⟩
𝐸 − (𝑁𝐸0 − 𝑁−1𝐸𝑚)

+
∑︁

𝑚

⟨𝑁𝛷0|�̂�𝑗 |𝑁+1𝛷𝑚⟩⟨𝑁+1𝛷𝑚|�̂�+
𝑖 |𝑁𝛷0⟩

𝐸 − (𝑁+1𝐸𝑚 − 𝑁𝐸0) . (3.7)

Here, the sums run over all occupied and unoccupied states of the excited system, and
|𝑁𝛷0⟩ is the exact full CI-GS-WF with HF spin-orbitals of the 𝑁 -particle system. The
energies are given by 𝑀𝐸𝑘 = ⟨𝑀𝛷𝑘|�̂�|𝑀𝛷𝑘⟩, and these are the exact energies of the ground
and excited states. The effects of correlations, given by correlated fluctuations around the
MF approximation, can be seen from the GF perturbation expansion which is algebraic in
energy, that is, from the Dyson equation

𝐺(𝐸) = 𝐺0(𝐸) +𝐺0(𝐸)𝛴(𝐸)𝐺(𝐸), (3.8)

with 𝐺0(𝐸) given as in Eq. (3.1). The Dyson equation is a matrix equation in spin-orbital
space, and it defines the self-energy 𝛴(𝐸) as the quantity containing the correlation effects,
which after reordering shows itself as the already mentioned energy-dependent potential:
𝐺−1(𝐸) = 𝐺−1

0 (𝐸)−𝛴(𝐸). The self-energy can be represented by a perturbation expansion,
𝛴(𝐸) = 𝛴(2)(𝐸) +𝛴(3)(𝐸) + . . ., where the second order is given by

𝛴
(2)
𝑖𝑗 (𝐸) = 1

2
∑︁

𝑎𝑟𝑠

⟨𝜒𝑟𝜒𝑠|𝑉 (|𝜒𝑖𝜒𝑎⟩ − |𝜒𝑎𝜒𝑖⟩)⟨𝜒𝑗𝜒𝑎|𝑉 (|𝜒𝑟𝜒𝑠⟩ − |𝜒𝑠𝜒𝑟⟩)
𝐸 + 𝜀𝑎 − 𝜀𝑟 − 𝜀𝑠

+ 1
2
∑︁

𝑎𝑏𝑠

⟨𝜒𝑎𝜒𝑏|𝑉 (|𝜒𝑖𝜒𝑟⟩ − |𝜒𝑟𝜒𝑖⟩)⟨𝜒𝑗𝜒𝑟|𝑉 (|𝜒𝑎𝜒𝑏⟩ − |𝜒𝑏𝜒𝑎⟩)
𝐸 + 𝜀𝑟 − 𝜀𝑎 − 𝜀𝑏

, (3.9)

where some terms have been factored out for conciseness. The second-order self-energy
may now be compared with Eq. (3.6) for the second-order energy, both having a similar
structure. As in the many body PT beyond the HF approximation, where the HF energy
becomes improved at second order, the first term in the expansion of the self-energy appears
at second order.

Both, the GF method and the quantum-mechanical PT, may be compared at second
order by considering the ionization potential given by the corrected orbital energy [Sza96]

𝜀′
𝑐 = 𝜀𝑐 +𝛴(2)

𝑐𝑐 (𝜀𝑐) = 𝑁𝐸
(0+1+2)
0 − 𝑁−1�̃�

(0+1+2)
0 (𝑐), (3.10)

where the tilde denotes the fact that the energies are defined with respect to the 𝑁 -particle
system (i.e., the 𝑁 -particle HF Hamiltonian is not used to calculate 𝑁−1�̃�

(0+1+2)
0 (𝑐)). Thus,

the lowest relevant order in the GF formalism, that is, the expansion of the self-energy
up to second order, is identical to the lowest non-trivial order in PT. This can be written
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down formally as

𝑁𝐸
(2)
0 − 𝑁−1�̃�

(2)
0 (𝑐) = 𝛴(2)

𝑐𝑐 (𝜀𝑐). (3.11)

In that way, the ionization potentials are corrected by effects of relaxation of the (𝑁 − 1)-
particle system upon the removal of a particle from the 𝑁 -particle system (i.e., it goes
beyond the frozen-orbital approximation of HF theory, cf. introductory part of Chpt. 2).
The relaxations stabilize the (𝑁 −1)-particle system. Furthermore, the corrected ionization
potentials contain the correlations in the (𝑁 − 1)-particle system (negative in energy due to
relaxing effect), and the ones in the 𝑁 -particle system (positive in energy), which, together
with the relaxations, stabilize the 𝑁 -particle relative to the (𝑁 − 1)-particle system.

Most condensed matter systems containing atoms with open 𝑑 or 𝑓 shells turn out
to be strongly correlated. The delocalization of electrons due to their kinetic energy
competes with their localization due the Coulomb interaction (cf. Sec. 3.2), and in bulk-like
systems or repetitive arrangements that interplay is theoretically described by the Hubbard
model [Hub63] (which can essentially be obtained from Eq. (2.1) by a tight-binding-like
transformation to local orbitals covering all sites [Kar13; Kor08; Kov10; Kun11]). A set of
numerical techniques for the solution of the Hubbard model is available; here, and more
technically in Subsec. 3.2.1, we shortly discuss the DMFT approach, see Ref. [Geo96] and
references therein, which treats exactly the local electronic correlations. A full description
taking into account non-local correlations is still a numerical challenge, and we will not
discuss non-local effects in the present thesis (besides the ones from the vdW interactions
which have been discussed in Chpt. 2, cf. 2.5), except mentioning here again the dual-
fermion and dual-boson approaches [Rub12; Rub09], which aim at the solution of the
Hubbard model beyond the local approximation.

As explained in the introduction (Chpt. 1), and in the introductory part of Chpt. 2, the
present thesis aims at a description of real materials and their (local) correlations. Usually,
the theoretical description of electronic and magnetic properties of real materials starts
with DFT (Chpt. 2, Sec. 2.1), which provides the electronic structure within an effective
single-particle MF picture. DFT also provides the necessary ingredients for a projection
procedure from continuous energy band states onto discrete local orbital states placed at
the correlated sites of the real material. These sites can subsequently be studied within a
full many body description while still taking into account their hybridization with the rest
of the system. The projection onto the local orbitals provides realistic ab-initio parameters
of an AIM (Sec. 3.2), which in turn provides the basis for a self-consistent description of
the Hubbard model for bulk-like systems. The AIM alone can be used for a single or a
set of correlated adatoms or nanosystems on a substrate surface, or for single impurities
immersed in a solid bulk (cf. Chpt. 1).

As the present thesis belongs to the realm of computational condensed matter theory,
a small overview of the methods for calculating the relevant many body quantity in
correlated materials, the GF together with the self-energy, is indicated [Gul11]. In Sec. 3.3
the hybridization expansion variant of the CTQMC method will be explained in more
detail, which is at the heart for the solution of AIMs describing strong correlations [Bea96;
Gul08; Gul11; Pro96; Rub05]. CTQMC provides an encompassing method incorporating
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all AIM energy scales, that is, it does not have to be confined to particular regions within
the parameter space (but it has numerical problems at very high or low temperatures, and
the more fundamental sign problem); it can be employed on various and general classes
of models, and at present is capable of providing the full solution of five(𝑑)- and even
seven(𝑓)-orbital AIMs. Together with the self-consistent DMFT embedding of the AIM
into the Hubbard model (cf. Subsec. 3.2.1, and references below), CTQMC is one of the
most important theoretical companions to experimental studies in nanoscience.

The price ones often pays for the CTQMC solution, however, is the fixing of the
AIM parameters after the projection onto the local orbitals has been performed. Two
approaches go beyond that approximation: First, there are the charge-self-consistent
DFT+AIM(DMFT) extensions containing feedback loops between the DFT calculation
and the AIM solution (Subsec. 3.2.1), so that correlations are incorporated into the AIM
parameters [Pou07; Sav04]. Second, the GWA and the cRPA (Sec. 3.1 and Subsec. 3.1.2)
yield frequency-dependent Coulomb interactions due to dynamical screening, so that the
fixing of the AIM parameters means to limit oneself to the static Coulomb interaction part
and neglect retardation. In principle, one can extend the AIM solution to account for this
frequency dependence (e.g., in the context of 𝐺𝑊+DMFT [Bie03; Hel11; Sun02]), and
see that it may have effects on the spectral high-energy satellite structures (plasmonic or
other collective excitations) as well as on the low-energy physics [Ary04; Cas12; Han13b;
Kau17; Shi17b; Wer12]. – In the following we will restrict ourselves to the AIM with
static parameters and its CTQMC solution, as the low-energy physics may assumed to be
determined to a large extent by the low-energy (static Coulomb interaction) parameters.

CTQMC works in imaginary-time space (after Euclidean rotation of equilibrium action
and path integral measure), and thus needs a subsequent analytical continuation of its
solution back to real times where the observables are physical. The analytical continuation
of QMC data is an ill-defined problem due to the inherent numerical noise (so that there
are infinite many solutions), and sophisticated approaches like stochastic optimization
method (SOM) (Sec. 3.4) poses another computational effort following the sometimes rather
expensive DFT and CTQMC calculations. Furthermore, next to the CTQMC temperature
limitations, there may appear problems in resolving the low-energy physics of various
systems, where, however, often the interesting quantum behaviour accompanied by spectral
renormalizations occurs. Yet, Chpt. 4 on the multi-orbital Kondo effect shows that the
implementations of the CTQMC algorithm within the Toolbox for Research on Interacting
Quantum Systems (TRIQS) (cf. Sec. 3.3) and the analytical continuation via the SOM
(Sec. 3.4) are rather powerful in resolving the low-energy features (the Kondo resonance) at
an inverse temperature as high as 𝛽 = 200 eV−1. Test calculations even suggest that within
the multi-orbital Kondo regime (of realistic systems away from half-filling) one could even
go as high in inverse temperature as 𝛽 = 300−400 eV−1.

The major competitors to QMC are the numerical renormlization group (NRG) [Cos15;
De 05; Han13a; Sta15; Wil75], the density-matrix renormalization group (DMRG) [Hal04;
Hal06; Sch05], and the exact diagonalization (ED) [Lu17]. NRG lays a logarithmic
discretization of the substrate energy spectrum underneath an iterative diagonalization of
the AIM Hamiltonian, thereby realizing the idea of the running coupling constants while
successively integrating out the high-energy DOF, see Sec. 4.5. The DMRG is similar,
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reduces the effective DOF to the ones relevant for the low-energy features, and isolates the
states lying there. Both methods work in real-time and real-energy space, are naturally
designed as to properly resolve the ground and low-lying states of the system, and work
well at very low and even vanishing temperatures, where most experiments are performed
and the quantum effects are fully developed and prevail. The shortcomings of these two
methods is in their difficulties in going beyond the AIM and the Hubbard model, and
in their limitations to rather small energy ranges around the Fermi level. Satellite and
high-energy structures away from the low-energy regime thus cannot be resolved with these
two methods. Furthermore, even though there exist NRG and DMRG implementations
and solutions for multi-orbital AIMs, up to now the number of orbitals was always rather
limited, for the calculations are very demanding and sometimes need the exploration or
imposition of symmetries reducing the generality of the model. For example, at most
three-orbital AIMs could be solved with the NRG so far [Cos15; De 05; Han13a; Sta15], but
recent progress has been achieved in extending its domain of applicability to spherically
symmetric Kanamori-Coulomb interactions and the SOC [Hor17]. – ED (or, more precisely,
the Lanczos method [Lan50]) also first discretizes the non-interacting substrate DOF, and
subsequently diagonalizes the resulting Hamiltonian. While that procedure works well
for overall rather metallic behaviour, like in the Co/graphene system to be considered in
Sec. 3.6, it obviously cannot achieve a proper description of the low-energy physics, as that
relies on a precise resolution of the substrate energy spectrum in this region.

CTQMC is a successor to the QMC procedure developed by Hirsch and Fye in 1986
[Hir86]. Hirsch-Fye QMC (HFQMC) discretizes the imaginary-time interval [0, 𝛽) in
equally spaced portions 𝛥𝜏 = 𝛽/𝑀 , performs a Hubbard-Stratonovich transformation
of the partition function on each time slice, thereby introducing 2𝑀 auxiliary Ising spin
variables, and finally performs a trace over this 2𝑀 -dimensional spin space to evaluate
the partition function. In principle this procedure resembles the mathematical definition
of the partition function. It is clear that such a procedure becomes excessively heavy
for multi-orbital AIMs, as each orbital is assigned a time interval, and there may occur
equilibration issues during sampling [Gul11]. Furthermore, there are regions in imaginary-
time space being actually more relevant for the calculation and the physics than others, but
all regions are treated likewise. For example, the region around 𝜏 = 𝛽/2 is important for the
low-energy physics, while the borders of the imaginary-time interval exhibit discontinuities
with strong decreases of the GF. Both issues are met only with a very fine imaginary-time
grid, because in HFQMC the discretization is homogeneous. CTQMC does not rely on
such a discretization and automatically considers important regions in imaginary time as
well as in other directions of the parameter space (Sec. 3.3).

CTQMC is a diagrammatic perturbation theory with a stochastic sampling of the
Feynman diagrams appearing in the expansion of the partition function, and a versatile
tool for a realistic substantiation of experimental results [Gul11] (cf. Sec. 4.6, where
solving the five-orbital AIM for the CoCu𝑛/Cu(111) systems with ab-initio parameters
from DFT produced the substructures of the Kondo feature observed experimentally,
Sec. 4.6). The CTQMC employed in Secs. 3.6 and 4.6 is organized as a continuous-time
hybridization expansion (CTHYB), also called strong-coupling expansion, because the
Coulomb interaction is assumed stronger than the hybridization coupling and thus treated
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non-perturbatively (albeit CTQMC on the whole yields a numerically non-perturbative
result). If the Coulomb interaction is weaker than the hybridization, which applies to weakly
correlated and rather metallic materials, the weak-coupling expansion in the Coulomb
interaction (CTINT) is more appropriate. For fermionic lattice models and cDMFT
an additional auxiliary-field decomposition can be introduced (CTAUX). Performing a
Schrieffer-Wolff (SW) transformation of the AIM Hamiltonian, one obtains the Kondo
model (cf. Sec. 4.5) with high-energy states folded down onto low-energy states which
become thus renormalized. The Kondo model belongs to the more general class of Coqblin-
Schrieffer models, in which charge fluctuations are suppressed and degeneracies become
important. For these the CTJ algorithm can be employed, where the coupling 𝐽 describes
the exchange between the degenerate states and the substrate.

For correlated real materials the strong-coupling expansion CTHYB and its use within
DMFT is most appropriate. Fed with ab-initio parameters from a projection of DFT energy
bands onto the impurity states, local correlations can thereby be considered thoroughly and
realistically, see Refs. [Ama08; Ani97b; Dan14; Geo04; Gul11; Hau10; Hel07; Hel08; Kot06;
Lec06; Nek13; Pau19; Pav14; Pav11; Pou07; Tom12; Zin16] for a selection. For non-local
correlations one may use CTHYB within extensions to DMFT, such as multi-site cDMFT
(see Ref. [Gul11] and references therein), or dual-fermion and dual-boson approaches [Rub12;
Rub09] (see also discussion and references in Subec. 2.1.3). For the susceptibility, excited-
state properties, or assessment of phase boundaries one may use CTHYB to calculate
four-point correlation functions (higher-order GFs); QP dynamics, thermal crossover in
heavy-fermion materials, and also non-equilibrium problems can be addressed within
CTHYB or other versions of CTQMC, see Ref. [Gul11] and references therein. The present
thesis considers the simple case of local correlations on single impurities, such that no
extensions to the AIM like DMFT or beyond are needed.

In Sec. 3.1 the GWA is introduced, which is a GF method applied to solids capable
to describe excitations and to provide a realistic numerical assessment of the Coulomb
interaction matrix in the system in the cRPA (Subsec. 3.1.2). First definitions of the
GF and the spectrum are provided in Subsec. 3.1.1. In Sec. 3.2 the AIM is introduced,
which fully encompasses the local Coulomb correlations. The connection to real-material
data is provided in Subsec. 3.2.1. The AIM-GF is computed via a particular variant of
the quantum Monte Carlo (QMC) method to be discussed in Sec. 3.3. The AIM-GF is
computed on the imaginary-time axis, and for the spectrum an analytical continuation to
real energies has to be performed; this is realized by the SOM, to be explained in Sec. 3.4.
The Co/graphene system was subject to the DC problem, which is explained in more
detail in Appx. C.1. Finally, Sec. 3.5 introduces the Co/graphene system by its embedding
into the current state of research, and in Sec. 3.6 follows the publication summarizing the
research results acquired for this system.

3.1 The 𝐺𝑊 approximation
We have seen in the introduction that the GF method can be used to determine the
excited states and their properties (cf. Eq. (3.7)) [Ary98; Aul00; Hed65; Hel11]. The GF
is embedded in a set of equations, the Hedin equations given below in Eqs. (3.13)-(3.17),
which fully encompass the physics of the system under consideration: Electron propagation
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and Coulomb (self-)interactions, screening of the Coulomb interactions by polarization of
the material, radiative corrections to the interaction vertices; the Hedin equations comprise
and associate to each other self-consistently all Feynman diagrams. Chpt. 4 introduces the
QP concept along the Landau theory for the FL, where the QP energies are expressed in
terms of the bare electronic energies renormalized by the QP interactions. The difference
between the electronic and QP energies can also be expressed within the QP-EV equation
in terms of the self-energy [Ary98],

𝐻0(r)𝛹𝑖(r, 𝜔) +
ˆ

dr′𝛴(r, r′, 𝜔)𝛹𝑖(r′, 𝜔) = 𝐸𝑖(𝜔)𝛹𝑖(r, 𝜔), (3.12)

where 𝐻0(r) comprises all multiplicative single-particle terms, such as kinetic energy,
external, chemical, and Hartree potential. The 𝛹𝑖(r, 𝜔) are the QP-WFs, and 𝐸𝑖(𝜔) their
ground- and excited-state energies. The self-energy is non-local and energy-dependent, and
for its determination one usually has to invoke some approximation. DMFT can be used
to fully incorporate the local correlations, for example, all local vertex corrections. This is
important as higher-order diagrams are induced by the proximity of strongly interacting
localized electrons. (Cf. Refs. [Gre09; Kit06], in which Feynman diagram expansions for
the multi-orbital Kondo effect were truncated to achieve the highest-possible degree of
sophistication within the computability limits at that times; the present thesis employs
the CTQMC algorithm without any truncations). For the non-local correlations in more
weakly interacting systems one may approximate, or even neglect, the vertex corrections
as these become less important for delocalized electrons. The neglect of vertex corrections
amounts to the GWA discussed in the present section. We shortly state and derive the
Hedin equations before going into the physical details.

Hedin obtained the following relations between the non-interacting GF 𝐺0, the interacting
GF 𝐺, the polarizability 𝑃 , the bare Coulomb interaction 𝑉 , the screened Coulomb
interaction 𝑊 , and the three-point vertex 𝛬 [Ary98; Hed65; Kut12] (summation over
repeated spin and integration over repeated space-time variables implied; 𝑥 = (r, 𝑡, 𝜎)):

𝐺(𝑥0, 𝑥1) = 𝐺0(𝑥0, 𝑥1) +𝐺0(𝑥0, 𝑥2)𝛴(𝑥2, 𝑥3)𝐺(𝑥3, 𝑥1) (3.13)
𝑊 (𝑥0, 𝑥1) = 𝑉 (𝑥0, 𝑥1) + 𝑉 (𝑥0, 𝑥2)𝑃 (𝑥2, 𝑥3)𝑊 (𝑥3, 𝑥1) (3.14)
𝑃 (𝑥0, 𝑥1) = 𝐺(𝑥0, 𝑥2)𝛬(𝑥2, 𝑥3, 𝑥1)𝐺(𝑥3, 𝑥0) (3.15)
𝛴(𝑥0, 𝑥1) = −𝐺(𝑥0, 𝑥2)𝛬(𝑥2, 𝑥1, 𝑥3)𝑊 (𝑥3, 𝑥0) (3.16)

𝛬(𝑥0, 𝑥1, 𝑥2) = 𝛿(𝑥0, 𝑥2)𝛿(𝑥1, 𝑥2) + 𝛿𝛴(𝑥0, 𝑥1)
𝛿𝐺(𝑥3, 𝑥4)𝐺(𝑥3, 𝑥5)𝛬(𝑥5, 𝑥6, 𝑥2)𝐺(𝑥6, 𝑥4).

(3.17)

The structure of this set of equations is valid for all Hamiltonians admitting a decomposition
into an interacting and a non-interacting part, in particular, for Eq. (2.1). Eq. (3.13) shows
the Dyson equation, that is, the representation of the interacting GF 𝐺 in a power series
of irreducible self-energies 𝛴 separated by non-interacting GFs 𝐺0. Eq. (3.14) shows the
screened Coulomb interaction line, for which the polarizability 𝑃 has an analogous role
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as the self-energy 𝛴 for the interacting GF 𝐺. The polarizability 𝑃 shown in Eq. (3.15)
consists of a bubble diagram, in which the vertex denoted as 𝑥1 is modified by the three-
point vertex 𝛬 containing the radiative corrections to that vertex. Inserted into Eq. (3.15)
for the screened Coulomb interaction line 𝑊 , one can see that 𝑃 gives modification to the
bare Coulomb interaction line 𝑉 by virtual electron-hole excitations, that is, by polarization
of the material. The self-energy 𝛴 in Eq. (3.16) is given analogously as the polarizability
𝑃 , but with some GF lines 𝐺 replaced by screened Coulomb interaction lines 𝑊 . One
has to take into account that in a vertex always end two GF lines 𝐺 and one interaction
line 𝑊 . These structures can be assessed from Eq. (3.17) for the three-point vertex 𝛬.
In the GWA the second term on the right-hand side in Eq. (3.17) is neglected, which
corresponds to the neglect of radiative corrections for the Coulomb interaction vertex. In
this way, the polarizability is only a simple bubble diagram, and the self-energy is given by
𝛴(𝑥0,𝑥1) = −𝐺(𝑥0,𝑥1)𝑊 (𝑥1,𝑥0), which gives the approximation its name.

A detailed derivation of these equations may be found in Ref. [Ary98; Aul00], and we
follow a very few steps. The starting point is the Hamiltonian given in Eq. (2.1), now
in the Heisenberg representation, where the one-particle terms (kinetic energy, external
and chemical potentials) are collected in the one-particle Hamiltonian ℎ0(𝑥). An external
scalar potential 𝜑(𝑥) is added to the Hamiltonian, so that the Dirac representation (or also
interaction picture) can be defined by

𝜓(𝑥) = �̂�+(𝑡,0)𝜓D(𝑥) �̂�(𝑡,0)

�̂�(𝑡,𝑡0), = T exp
(︁

− 𝑖

ˆ 𝑡

𝑡0

d𝜏 𝜑(𝑡)
)︁
,

𝜑(𝜏,𝜎) =
ˆ

dr𝜑(r,𝜏, 𝜎)𝜓+
D(r,𝜏, 𝜎)𝜓D(r,𝜏, 𝜎), (3.18)

where T is the time-ordering operator. Expressing the GF in the Dirac representation, one
obtains (with 1 = (r1, 𝑡1, 𝜎1) etc.)

𝑖𝐺(1,2) =
⟨𝛹0|T

[︀
�̂�(∞,− ∞)𝜓D(1)𝜓+

D(2)
]︀
|𝛹0⟩

⟨𝛹0|�̂�(∞,− ∞)|𝛹0⟩
, (3.19)

where |𝛹0⟩ is the exact GS of the solid. A functional derivative with respect to the external
potential 𝜑(𝑥) yields

𝛿𝐺(1,2)
𝛿𝜑(3) = 𝐺(1,2)𝐺(3,3+) −𝐺2(1,2,3,3+). (3.20)

The second term on the right-hand side is a two-particle GF, obtained from the GF in
Eq. (3.19) by further insertions of field operators. Now, from the Heisenberg equation in
the Dirac representation,

𝑖
𝜕𝜓D(𝑥)
𝜕𝑡

= [𝜓D(𝑥), �̂�(𝜑(𝑥) = 0)], (3.21)
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one obtains the equation of motion for the GF,

(𝑖𝜕𝑡1 − ℎ0(1))𝐺(1,2) −
ˆ

d3𝑀(1,3)𝐺(3,2) = 𝛿(1 − 2). (3.22)

The so-called mass operator here is given by
ˆ

d3𝑀(1,3)𝐺(3,2) = 𝑖

ˆ
d3𝑉 (1 − 3)𝐺2(1,2,3,3+), (3.23)

so it is just given by the two-particle GF also appearing in Eq. (3.20). Replacing𝐺2(1,2,3,3+)
with help of Eq. (3.20), the 𝐺(1,2)𝐺(3,3+) term yields the one-particle Hartree potential
𝑉H(1), which can thus be moved to the one-particle term ℎ0(1), so that both can be
combined into a new one-particle term 𝐻0(1). Defining

−𝑖
ˆ

d3𝑉 (1,3)𝛿𝐺(1,2)
𝛿𝜑(3) =

ˆ
d3𝛴(1,3)𝐺(3,2), (3.24)

one obtains

(𝑖𝜕𝑡1 −𝐻0(1))𝐺(1,2) −
ˆ

d3𝛴(1,3)𝐺(3,2) = 𝛿(1 − 2), (3.25)

which is the Dyson equation in Eq. (3.13).

Now, one defines the total potential 𝑉 (1) = 𝑉H(1) + 𝜑(1), and the variation

𝜀−1(1,2) = 𝛿𝑉 (1)
𝛿𝜑(2) (3.26)

is the dielectric function physically characterized below in Subsec. 3.1.2. The screened
Coulomb potential 𝑊 (1,2) is given in terms of the bare Coulomb potential 𝑉 (1 − 2) and
the dielectric function as

𝑊 (1,2) =
ˆ

d3 𝜀−1(1,3)𝑉 (3 − 2). (3.27)

Defining furthermore the three-point vertex function as

𝛬(1,2,3) = −𝛿𝐺−1(1,2)
𝛿𝑉 (3) , (3.28)

and multiplying Eq. (3.24) from the right with 𝐺−1(2,4) and integrating over 2, one obtains

𝛴(1,2) = 𝑖

ˆ
d(3,4)𝐺(1,3+)𝛬(3,2,4)𝑊 (4,1), (3.29)

that is, Eq. (3.16) for the self-energy diagram. Using furthermore the Dyson equation in
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the form

𝐺−1(1,2) = (𝑖𝜕𝑡1 −𝐻0(1))𝛿(1 − 2) −𝛴(1,2), (3.30)

which can be obtained from Eq. (3.25), one easily obtains from the definition of the
three-point vertex 𝛬(1,2,3) in Eq. (3.28) the recursive (Dyson-like) relation

𝛬(1,2,3) = 𝛿(1 − 2)𝛿(2 − 3) +
ˆ

d(4,5,6,7)𝛿𝛴(1,2)
𝛿𝐺(4,5)𝐺(4,6)𝐺(7,5)𝛬(6,7,3), (3.31)

that is, the three-point vertex function as defined in Eq. (3.17).
The polarization of the solid is defined as the ratio between the change of the charge

density at one site, 𝛿𝜌(1), and the change of the total potential at another site, 𝛿𝑉 (2). The
charge density can be written in terms of the GF as 𝜌(1) = −𝑖𝐺(1,1+), so that with the
definition of the three-point vertex in Eq. (3.28) it follows

𝑃 (1,2) = −𝑖𝛿𝐺(1,1+)
𝛿𝑉 (2) = 𝑖

ˆ
d(3,4)𝐺(1,3)𝛬(3,4,2)𝐺(4,1+), (3.32)

that is, the definition of the polarization function in Eq. (3.15). Furthermore, with
𝑉 (1) = 𝑉H(1) + 𝜑(1), and the Hartree potential given by 𝑉H(1) =

´
d2𝑉 (1 − 2)𝜌(2), one

derives for the dielectric function

𝜀−1(1,2) = 𝛿𝑉 (1)
𝛿𝜑(2)

= 𝛿(1 − 2) +
ˆ

d3𝑉 (1 − 3) 𝛿𝜌(3)
𝛿𝜑(2)

= 𝛿(1 − 2) +
ˆ

d(3,4)𝑉 (1 − 3)𝑃 (3,4)𝛿𝑉 (4)
𝛿𝜑(2) . (3.33)

Inserting this result into Eq. (3.27) for the screened Coulomb interaction, one obtains its
Dyson-like definition in Eq. (3.14). This completes the derivation of the Hedin equations.
We finally note that there exists an alternative and very nice way of deriving the Hedin
equations from a Feynman diagram point of view [Hel11].

The GWA is the simplest way of going beyond the HF approximation to account for
the (weak) non-local correlations [Ary98]. The correlations between electrons of same spin
(Pauli exclusion) are contained in HF theory, while the ones between electrons of opposite
spin are not. But these latter repulsive correlations lead to the emergence of a screening hole
around the electrons, and the resulting QPs have thus a reduced interaction and Coulomb
energy, and the material a smaller band gap. Formally, in the PT sense, the self-energies
are the same in both, the HF approximation and the GWA, but the latter contains the
dynamical screening effects which renormalize the Coulomb strength (not screened in HF
theory) and the band gap (often too large in HF theory). In contrast to that, DFT in
its LDAs renders the systems often too metallic, thus yielding too small band gaps and
sometimes misses the Hubbard-Mott phase. Furthermore, there exists the self-interaction
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problem due to the charge density description; and finally, more importantly for the
adsorption physics on surfaces, DFT yields a wrong exponential instead of the power-law
image potential decay. DFT and the GWA are fundamentally different approaches, but
both their results can be expressed as GFs; one observes that in DFT the approximation
pertains to the XC potential, while in the GWA one truncates the self-energy. Note that,
computationally, one usually uses the DFT-WFs and energies as input for the GWA, and
one may eventually observe their renormalization and improvement [Aul00].

The limitations of the GWA are given by the above-mentioned fact, that the GWA is
better suited for weak and non-local correlations, and for systems with enhanced electronic
flexibility due to strong polarizability. Core-level spectra and strong electronic interactions
with an eventual breakdown of the QP description cannot be described by the GWA (and
thus also not by the RPA (cf. Subsec. 3.1.2)), because vertex corrections are needed for
short-range interactions. This makes the GWA inappropriate for TM oxides and other
strongly correlated systems [Hel11], and one needs to turn to other approaches. However,
the calculation of the realistic screened Coulomb interaction line (Eq. 3.14) opens up the
possibility for its use as input for these other approaches; this will be explained in more
detail in Subsec. 3.1.2, and exemplified along the Co/graphene system in Secs. 3.6.

3.1.1 The spectral function

Two of the relevant physical quantities measured experimentally are the QP energies
(i.e., the excitation spectrum) and lifetimes (we follow the exposition in Ref. [Ary98]).
Measuring the spectrum amounts to performing photoemission spectroscopy (PES), where
the material is irradiated with photons of energy 𝜔 which knock out electrons of kinetic
energy 𝐸kin(k). Thereby the excitation energies 𝐸k(𝜔) = 𝜔 − 𝐸kin(k) and the spectrum
with a hole, that is, the occupied DOSs, are measured (one should note, though, that
the DOSs yields the number of available states in the system, while the spectrum yields
emission/adsorption probabilities and is normalized). Inverse PES probes the unoccupied
DOSs by injection of electrons into the system. In the so-called sudden approximation,
where electrons have large kinetic energies, relaxation effects become negligible, and the
GF can be written as (cf. Eq. (3.19))

𝑖𝐺(1,2) =
{︃

⟨𝑁𝛹0|𝜓(1)𝜓+(2)|𝑁𝛹0⟩ for 𝑡1 > 𝑡2,

⟨𝑁𝛹0|𝜓+(2)𝜓(1)|𝑁𝛹0⟩ for 𝑡1 < 𝑡2,
(3.34)

where the action of the time-ordering operator has already been carried out, and the
matrix elements are computed between the exact 𝑁 -electron GS. The first line describes
the propagation of an added electron in the system, while the second line the one a hole. In
analogy to Eq. (3.1), the solutions (WFs and energies) to the QP-EV equation (Eq. (3.12))
can be organized into the GF

𝐺(r, r′, 𝜔) =
∑︁

𝑖

𝛹𝑖(r, 𝜔)𝛹*
𝑖 (r′, 𝜔)

𝜔 − 𝐸𝑖(𝜔) . (3.35)
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The EVs to the QP-EV equation are in general complex, with the real part contributing to
the QP energies, and the imaginary part describing the QP damping. In particular, if the
equation 𝜔 = Re(𝐸𝑖(𝜔)) can be solved for some 𝜔 = 𝜔𝑖, and if Im(𝐸𝑖(𝜔𝑖)) is small, then
one has a peak at 𝜔𝑖 describing a QP with lifetime 1/Im(𝐸𝑖(𝜔𝑖)). Both, QP peaks and
satellites, are reflected by these GF poles (though the poles for satellites are sometimes
approximate only). The QP lifetimes are thus inversely proportional to the width of the
QP peaks, where the broadening occurs due to the interactions and provides decay channels
to the other, plasmonic or collective, excitations.

The spectral function 𝐴(r, r′, 𝜔) can either be given as the integral kernel of a Hilbert
transform (cf. Sec. 3.4),

𝐺(r, r′, 𝜔) =
ˆ

d𝜔′ 𝐴(r, r′, 𝜔′)
𝜔 − 𝜔′ + sgn(𝜔′ − 𝜇)𝑖𝛿 , (3.36)

where 𝜇 is the chemical potential, or as the imaginary part of the GF,

𝐴(r, r′, 𝜔) = − 1
𝜋

Im[𝐺(r, r′, 𝜔)sgn(𝜔 − 𝜇)]

=
∑︁

𝑖

[︀
𝑝*
𝑖 (r)𝑝𝑖(r′)𝛿(𝜔 − 𝜇− 𝑁+1�̄�𝑖) + ℎ𝑖(r)ℎ*

𝑖 (r′)𝛿(𝜔 − 𝜇+ 𝑁−1�̄�𝑖)
]︀
,

(3.37)

with

𝑝𝑖(r) = ⟨𝑁+1𝛹𝑖|𝜓+(r, 0)|𝑁𝛹0⟩, ℎ𝑖(r) = ⟨𝑁−1𝛹𝑖|𝜓(r, 0)|𝑁𝛹0⟩,
𝑁±1�̄�𝑖 = 𝑁±1𝐸𝑖 − 𝑁±1𝐸0 > 0, 𝜇 = 𝑁+1𝐸0 − 𝑁𝐸0 ≈ 𝑁𝐸0 − 𝑁−1𝐸0. (3.38)

The form of the spectral function can be obtained by insertion of a complete set of states
for the systems with (𝑁 ± 1) electrons. In this way the spectral function exhibits directly
the electronic excitation energies, with electrons and holes belonging to positive- and
negative-energy solutions (w.r.t. the chemical potential 𝜇), respectively. Substituting the
spectrum in Eq. (3.36) with the second line of Eq. (3.37) yields the Lehmann representation
of the GF [Fjæ13].

The QP peaks can be separated from the continuum (the other spectral parts also
comprising the satellites; cf. introductory part to Chpt. 4). To this end, one notes that
the QP quantum numbers are the same as the ones of the corresponding non-interacting
electrons, and suppressing for now the positional dependence of the GF, the spectral
function is given by (cf. Eq. (3.58))

𝐴(𝜔) = 1
𝜋

Tr [|Im(𝐺(𝜔))|] = 1
𝜋

∑︁

𝑖

|Im(𝐺𝑖(𝜔))|

= 1
𝜋

∑︁

𝑖

|Im(𝛴𝑖(𝜔))|
[𝜔 − 𝜀𝑖 − Re(𝛴𝑖(𝜔))]2 + [Im(𝛴𝑖(𝜔))]2 , (3.39)

where the static part of the self-energy corresponding to the energy EVs of the non-
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interacting system described by 𝐻0 has been extracted (cf. Eq. (3.12)). Once more again,
one can see that the QP energies are given by peaks at 𝐸𝑖 = 𝜀𝑖 + Re(𝛴𝑖(𝐸𝑖)), that is, at
the renormalized energies (cf. discussion after Eq. (4.2)). In the vicinity of these positions,
the spectrum can be approximated by

𝐴(𝜔) ≈
∑︁

𝑖

𝑍𝑖
(𝜔 − 𝐸𝑖)2 + [Im(𝛴𝑖(𝐸𝑖))]2

, (3.40)

where the QP weight (renormalization factor) is given by

𝑍𝑖 =
(︂

1 − 𝜕Re(𝛴𝑖(𝜔))
𝜕𝜔

)︂−1
⃒⃒
⃒⃒
⃒
𝜔=𝐸𝑖

, (3.41)

and, again, the QP lifetime by 1/Im(𝛴𝑖(𝐸𝑖)). In principle, this form applies to all
pronounced spectral structures, be they belonging to QP peaks or to satellites (such as the
Kondo peaks near the Fermi level and the residual spectral weights marking the energy
levels of the isolated impurity, respectively, cf. Chpt. 4). In the context of weakly interacting
AIMs (such as the Co/graphene system, Sec. 3.6), the effects of the hybridization function
dominate over the ones of the self-energy, and the bare energy levels of the impurity (given
by the static part of the hybridization function) become only slightly renormalized by the
self-energy (i.e., their spectral positions are nearly unshifted), with the width of the QP
peaks rather determined by the hybridization strength.

3.1.2 The constrained random phase approximation
In the following we follow the exposition of Ref. [Ary11]. In the GWA, the polarizability
is a simple bubble diagram given by the product of two GFs, 𝑃 (1,2) = 𝐺(1,2)𝐺(2,1). In
equilibrium the GF satisfies the relation 𝐺(r, 𝑡, 𝜎; r′, 𝑡′, 𝜎′) = 𝐺(r, 𝜎; r′, 𝜎′; 𝑡− 𝑡′), and the
Fourier transform of the polarizability can thus be given by (𝑟 = (r, 𝜎))

𝑃 (𝑟, 𝑟′, 𝜔) = −𝑖
ˆ d𝜔′

2𝜋 𝐺(𝑟, 𝑟′, 𝜔 + 𝜔′)𝐺(𝑟′, 𝑟, 𝜔′). (3.42)

The GF in Eq. (3.35) contains the QP-WFs and energies, which are solutions to the QP-EV
equation in Eq. (3.12). In a periodic solid, the index 𝑖 comprises band 𝑛 and momentum
k indices, and these quantum numbers are the same for electrons before the on-set of
interactions and for QPs (cf. introductory part to Chpt. 4). In the RPA the GFs for the
polarizability are approximated by the non-interacting GF

𝐺0(𝑟, 𝑟′, 𝜔) =
o𝑐𝑐∑︁

𝑖

𝜙𝑖(𝑟)𝜙*
𝑖 (𝑟′)

𝜔 − 𝜀𝑖 − 𝑖𝛿
+

unocc∑︁

𝑗

𝜙𝑗(𝑟)𝜙*
𝑗 (𝑟′)

𝜔 − 𝜀𝑗 + 𝑖𝛿
, (3.43)

where the sum over all states has been decomposed into two parts, distinguishing the
occupied from the unoccupied states. The RPA amounts to the neglect of some higher-order
Feynman diagrams assumed to describe the out-of-phase response of randomly distributed
electrons to the total electric potential, which thereby cancel out on the average [Ren12],
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and it is always employed in computational implementations of the GWA [Hel11]. Now,
performing the frequency integral within the polarizability, one obtains

𝑃 (𝑟, 𝑟′, 𝜔) =
(occ, unocc)∑︁

(𝑖,𝑗)

(︂
𝑏𝑖𝑗(𝑟)𝑏*

𝑗𝑖(𝑟′)
𝜔 −𝛥𝑖𝑗 + 𝑖𝛿

−
𝑏*
𝑖𝑗(𝑟)𝑏𝑗𝑖(𝑟′)

𝜔 +𝛥𝑖𝑗 − 𝑖𝛿

)︂
, (3.44)

with the pairs of occupied and unoccupied orbitals given by 𝑏𝑖𝑗(𝑟) = 𝜙*
𝑖 (𝑟)𝜙𝑗(𝑟), and

the energy differences by 𝛥𝑖𝑗 = 𝜀𝑗 − 𝜀𝑖. Having obtained an approximate form for the
polarizability, one may now calculate the screened Coulomb interaction in the system.

However, one often needs the screened Coulomb interaction between electrons on specific
sites of the system and in specific orbitals, but without screenings due to the electrons
which are already on this site and in these orbitals. For example, in the AIM (Sec. 3.2) or in
DFT+𝑈 (Subsec. 2.1.4) one treats the Coulomb interactions between the electrons on one
site and in the interacting shell already exactly. Thus, in the space of states within the solid,
one separates the states which project onto the correlated orbitals from the ones which
project onto the weakly or non-correlated (conduction) orbitals, and excludes the screening
of the interaction between electrons in the correlated subspace. This decomposition is
expressed for the polarizability by

𝑃 = 𝑃c + 𝑃r, (3.45)

where 𝑃c denotes the polarizations within the correlated orbitals, and 𝑃r the ones within
the rest of the system, and the ones between the correlated orbitals and the rest of the
system. We assume that the energy bands with contributions from the correlated orbitals
are the only ones crossing the Fermi level, while all other bands (the rest) are disentangled
and sufficiently separated from the correlated bands. A prominent example is given by
SrVO3, where the three correlated bands crossing the Fermi level are of 𝑡2𝑔 symmetry and
are well separated from the rest. Entangled bands have to be considered differently, but
the underlying idea of separating screening channels remains the same (see also Ref. [Şaş11]
explaining the computational details and the code, which was employed for the Co/graphene
system, Sec. 3.6).

Eq. (3.33) provides a Dyson-like expression for the inverse of the dielectric function.
Inversion yields the dieletric function itself, and employing the polarizability decomposition
given in Eq. (3.45), one calculates

𝜀(1,2) = 𝛿(1 − 2) −
ˆ

d3𝑉 (1 − 3)[𝑃c(3,2) + 𝑃r(3,2)]

= 𝜀r(1,2) +
ˆ

d3𝑉 (1 − 3)𝑃c(3,2)

=
ˆ

d4 𝜀r(1,4)[𝛿(4 − 2) −𝑊r(4,3)𝑃c(3,2)]

=
ˆ

d4 𝜀r(1,4)𝛯(4,2). (3.46)
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In the last line the function 𝛯(4,2) was defined for convenience. Inversion on both sides
yields

𝜀−1(1,2) =
ˆ

d4𝛯−1(1,4)𝜀−1
r (4,2) (3.47)

with the Dyson-like expression

𝛯−1(1,4) = 𝛿(1 − 4) +
ˆ

d(3,5)𝑊r(1,3)𝑃c(3,5)𝛯−1(5,4). (3.48)

Insertion into Eq. (3.27) gives

𝑊 (1,2) =
ˆ

d3𝛯−1(1,3)𝑊r(3,2), (3.49)

which allows the conclusion that 𝑊r(3,2) is the partially screened Coulomb interaction
within the correlated subspace, because the expansion of 𝛯−1(1,4), which contains the
polarizability 𝑃c(3,5), yields the full screening. In equilibrium we thus may denote the
partially screened Coulomb interaction as

𝑈(𝑟, 𝑟′, 𝜔) = 𝑊r(𝑟, 𝑟′, 𝜔), (3.50)

which acquires a frequency dependence (retardation) due to the dynamical screening events.

For the Co/graphene system (Sec. 3.6) we used the static part of the cRPA Coulomb
matrix, and used it as an input for a realistic AIM (Sec. 3.2) which we solved by the
CTQMC algorithm (Sec. 3.3) in its TRIQS/CTHYB incarnation [Par15; Set16]. This code
is able to take into account all Coulomb matrix elements, in particular the ones beyond
the density-density approximation (cf. Ref. [Kar13]). These elements are important for
the full rotational invariance in spherically symmetric systems or approximations (compare
Eqs. (2.43) and (2.46)), or for the consideration of geometric anisotropies such as in
the Co/graphene surface system (see also Refs. [Han13b; Han13c; Şaş12]). Geometric
anisotropies in the Coulomb interaction matrix have also been found relevant in bulk
systems [Sar18; Zha16; Zha17] (see also discussion Sec. 3.5). As mentioned in Subsec. 2.1.3
and the introductory part to the present chapter, the frequency dependence can be taken
into account by a suitably generalized AIM solver [Bie03; Hel11; Sun02].

3.2 The Anderson impurity model

The general Hamiltonian in Eq. (2.1) is given in second quantization and with the field
operators defined in position space. A transformation into momentum space of the solid
can be performed,

𝜓+
𝜎 (r) =

∑︁

𝑛k
𝜑𝑛k𝜎(r)𝑐+

𝑛k𝜎, (3.51)
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with 𝜑𝑛k𝜎(r) the solutions to the KS equation in Eq. (2.16), so that within the DFT
approximation the general Hamiltonian can be given in terms of the energy bands,

�̂� =
∑︁

𝑛k𝜎
𝜀𝑛k�̂�𝑛k𝜎, �̂�𝑛k𝜎 = 𝑐+

𝑛k𝜎𝑐𝑛k𝜎. (3.52)

This is the KS operator in its momentum space representation with the EVs already
plugged in, and it pertains to delocalized and weakly correlated electrons for which the
DFT approximation applies. If the system under consideration involves a strongly correlated
site, an impurity, one may augment the DFT Hamiltonian in Eq. (3.52) by adding its
corresponding atomic Hamiltonian, and a hybridization term between the atomic (discrete)
and the energy-band (continuous) states, resulting in the Hamiltonian for the AIM [And61]:

�̂� =
∑︁

𝑛k𝜎
𝜀𝑛k�̂�𝑛k𝜎 +

∑︁

𝛼𝛽𝜎

(𝜀𝛼𝛽 − 𝜇DC
𝛼𝛽 )𝑐+

𝛼𝜎𝑐𝛽𝜎 + 1
2
∑︁

𝛼𝛽𝛾𝛿𝜎𝜎′

𝑈𝛼𝛽𝛾𝛿𝑐
+
𝛼𝜎𝑐

+
𝛽𝜎′𝑐𝛿𝜎′𝑐𝛾𝜎

+
∑︁

𝑛k𝛼𝜎

[︀
𝑉𝑛k𝛼𝑐

+
𝑛k𝜎𝑐𝛼𝜎 + 𝑉 *

𝛼𝑛k𝑐
+
𝛼𝜎𝑐𝑛k𝜎

]︀
. (3.53)

The second term contains the on-site crystal field (CF) matrix 𝜀𝛼𝛽 labelled by the local
orbitals on the correlated site, from which a DC term 𝜇DC

𝛼𝛽 in the form of a chemical potential
is subtracted. The diagonalization of the CF matrix would yield the impurity energy levels
(cf. Sec. 4.2). The DC term accounts for the correlations already contained in DFT, which
considered thoroughly by the many body treatment beyond (cf. Subsec. 2.1.4). The third
term contains the Coulomb interaction parameters, for example, as obtained via the cRPA
which takes into account that the effective interaction between the correlated electrons
is the bare interaction screened by all the non-correlated electrons (cf. Eq. (3.50)). The
hybridization matrix elements (hybridization couplings) are given by 𝑉𝑛k𝛼 = ⟨𝑛k|𝑉imp|𝛼⟩,
with 𝑉imp the ionic potential operator of the impurity. – One may note that the AIM
Hamiltonian acts on a tensor product space composed of the Hilbert space for the isolated
impurity and the one for conduction electrons, as the energy bands 𝜀𝑛k are the ones
without the presence of the impurity, while the atomic part given by CF, DC term, and
Coulomb interaction contains information about the yet uncoupled impurity placed into the
conduction electron environment (e.g., the CF structure is determined by the symmetries
of the environment, Sec. 4.2). Both, impurity and conduction electrons, are finally coupled
by the hybridization term. The issue that the energy bands 𝜀𝑛k should not know anything
about the impurity will be considered shortly in Subsec. 3.2.1.

The AIM becomes relevant if the Coulomb interaction energies between the correlated
electrons on the impurity sites are larger than their kinetic energies (we closely follow
Ref. [Col15]). There are several classes of material systems for which the AIM is essential for
their description. One of them are the cuprate SCs which are doped antiferromagnetic Mott
insulators. Away from half-filling (the antiferromagnetic order at half-filling is insulating
due to the blocking behaviour of localized electrons), the charge excesses happen to be
highly mobile, leading to their SC behaviour, see also Appx. A.1. Another class is given by
heavy-fermion compounds containing electronic QPs with large effective masses, which,
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due to Hund’s rule coupling, provide local magnetic moments immersed in the metallic
environment. For such systems the AIM needs to be supplemented with the DMFT
self-consistency providing the connection to the Hubbard model (cf. Subsec. 3.2.1, and
Subsec. 2.1.3 and references therein), which is at the basis for the description of strongly
correlated bulk materials or films. Yet another (rather general) class of systems is given
by adatoms or molecules (i.e., nanosystems) on surfaces. For these, the AIM itself fully
describes their physics; these surface systems are the ones to which the exposition in the
present thesis applies.

Localized electrons lead to the formation of local magnetic moments, which subsequently
interact with the conduction sea of electrons [Col15]. This interaction is at the heart of
the correlations in strongly correlated materials. Thus, strong local correlations mostly
result out of partially filled and well localized orbitals which happen to be placed in a
weakly interacting environment. Orbital localization is on hand if the impurity orbitals
show only weak overlap with their environment, which translates to narrow energy bands in
momentum space (cf. Ref. [Geo04]); in principle, an impurity energy level exists only if its
dispersion is weak. The degree of localization is roughly given by the following filtration:

5𝑑 < 4𝑑 < 3𝑑 < 5𝑓 < 4𝑓. (3.54)

Higher principal numbers 𝑛 lead to more nodes in the radial part of the WF, and thus
these are more extended. This tendency can be overruled by the angular momentum
number 𝑙, because the nuclear charge connected with it becomes higher. With increasing
localization there occurs magnetic moment formation, while decreasing localization may
lead to SC. The crossover region contains materials such as cerium- ([Xe]4𝑓15𝑑16𝑠2) and
uranium-based ([Rn]5𝑓36𝑑17𝑠2) heavy-fermion materials and iron-based ([Ar]3𝑑64𝑠2) SCs
[Col15].

As mentioned, the Coulomb repulsion blockades the passage of electrons through strong
interaction centres if there are already electrons localized, which leads to Mott-insulating
behaviour [Col15; Hur41; Mot49; Mot37; Vle53]. On the other hand, via hybridization the
interaction centres arrange around themselves electronic virtual bound-state resonances
[Bla59; Fri56; Hur41]. The two concepts were unified by Anderson, who considered the
tunnelling between the correlated 𝑑 or 𝑓 orbitals and the conduction sea and developed the
AIM Hamiltonian given in Eq. (3.53) [And61]. The atomic part in Eq. (3.53) leads to the
moment formation due to Hund’s rule coupling, and the hybridization part leads to the
resonance behaviour. – The cRPA Coulomb matrix for the Co/graphene system turned out
rather small (Sec. 3.6), which renders the corresponding AIM giving more prominence to
the kinetic part, to delocalization and metallic behaviour. In the CoCu𝑛/Cu(111) systems
(Sec. 4.6) the Coulomb interaction energies are assumed larger than the other energy scales.
Here, most processes have energies below the charge excitation energies, so that the spin
DOF become more relevant, which leads to the prevalence of the Kondo effect (Chpt. 4).
However, in the multi-orbital context the orbital DOF are relevant as well, so that the
Kondo effect becomes enhanced (cf. Subsec. 4.5.3).
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3.2.1 DFT+AIM

The implementation and computational details regarding the transition from the DFT
description and its quantities (cf. Sec. 2.1) to the AIM Hamiltonian can be read in
Refs. [Kar13; Kar11b; Kre96] (see also Sec. 3.6, and Appx. B for a few more details). There,
the projection of delocalized Bloch bands onto local orbitals, which is used for the projects
reported on in the present thesis, is explained in full detail. Here, it is only stated that,
once the DFT energy bands 𝜀𝑛k are determined, a local and non-interacting impurity GF is
obtained by projecting the Bloch GF onto the correlated site and summing over all bands
and momenta in the first BZ,

𝐺
(0)
𝛼𝛽(𝜔) =

∑︁

𝑛k
⟨𝛼|𝑛k⟩ 1

𝜔 − 𝜀𝑛k
⟨𝑛k|𝛽⟩ = 1

𝜔 − 𝜀𝛼𝛽 −𝛥𝛼𝛽(𝜔) . (3.55)

The quantity ⟨𝑛k|𝛼⟩ are the projections from Bloch to local-orbital states, and 𝛥𝛼𝛽(𝜔) is
the hybridization function (which can also be derived within the path integral approach by
integrating out the non-interacting conduction electron DOF, cf. Sec. 3.3 and Ref. [Kar13]).
These equations need some explanations: First, the impurity is included in the supercell
for the DFT calculation, that is, the energy bands here contain information about its
presence. The Bloch WFs |𝑛k⟩ are computed within DFT, and the local orbitals |𝛼⟩ have
to be defined. Usually these are the DFT-WFs (the KS orbitals) projected onto atomic
hydrogen orbitals within a certain radius, or one may use maximally localized Wannier
functions (MLWFs) (see Refs. [Kar13; Kun11] and references therein). Eq. (3.55) is one
means to computationally determine the on-site CF matrix and the hybridization function.
The CF can be regarded as the static part of the hybridization, and written as such, the
hybridization function itself vanishes at high frequencies, 𝛥𝛼𝛽(𝜔) → 0 (𝜔 → ∞). There
are other means to determine these two quantities (cf., e.g., Sec. 4.2 and Refs. [Kar13;
Pav12; Shi17a]), as it is a priori unclear for an impurity immersed in a conduction sea
which radius and occupation it has. The problem is analogous to the definition of partial
charges (Subsec. 2.5.1).

To distinguish the energy bands appearing in the first equality of Eq. (3.55) from the ones
without the impurity in the supercell, we denote the latter as 𝜀(0)

𝑛k in the following. One may
think of the local impurity GF 𝐺

(0)
𝛼𝛽(𝜔) being represented as a Feynman diagram expansion,

in which an electron starting in state |𝛼⟩ hops to the conduction sea via the hybridization
coupling 𝑉𝑛k𝛼, propagates within the sea by the GF 𝐺

(0)
𝑛k(𝜔) = [𝜔 − 𝜀

(0)
𝑛k ]−1, and hops back

onto the impurity into the state |𝛽⟩. Such back-and-forth hoppings occur to any order,
and due to the algebraicity of the (equilibrium) GF in frequency space the expansion is
geometric and can be organized into an analytic form, in which the hybridization function

𝛥𝛼𝛽(𝜔) =
∑︁

𝑛k

𝑉 *
𝛼𝑛k𝑉𝑛k𝛽

𝜔 − 𝜀
(0)
𝑛k

. (3.56)

is generated (one obtains the same result via the path integral approach mentioned above,
cf. Sec. 3.3). The transition from the DFT results to the AIM is thus consistent as regards
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the difference between the energy bands in presence of the impurity, 𝜀𝑛k, and the ones in
its absense, 𝜀(0)

𝑛k . This issue becomes more important in the calculation of the asymmetry
factors for realistic Kondo systems (Sec. 4.4), because it is computationally difficult to
disentangle the conduction orbitals from the correlated ones, as the former are to first
order the non-correlated orbitals on the impurity itself.

In principle, the full set of equations for the GF formalism of the AIM are the local
analogue of the Hedin equations (Eqs. (3.13)-(3.17)); even more as the CTQMC algorithm
(Sec. 3.3) is capable to take into account all vertex corrections (the slightly more general
notation given in Ref. [Hel11] might be more appropriate, though, because the Coulomb
interaction vertex has four indices). Thus, the on-site Coulomb interactions between the
correlated electrons eventually augment the local impurity GF 𝐺

(0)
𝛼𝛽(𝜔) (Eq. (3.55)) by the

self-energy 𝛴𝛼𝛽(𝜔). From the Dyson equation given in Eqs. (3.13) and (3.25), transformed
into frequency space, one obtains the interacting impurity GF

𝐺𝛼𝛽(𝜔) = 1
(𝐺(0)

𝛼𝛽(𝜔))−1 −𝛴𝛼𝛽(𝜔)
. = 1

𝜔 − 𝜀𝛼𝛽 −𝛥𝛼𝛽(𝜔) −𝛴𝛼𝛽(𝜔) . (3.57)

The local spectral function is then given by (cf. Eq. (3.39))

𝜌(𝜔) = − 1
𝜋

Tr [Im (𝐺(𝜔))]

= −
∑︁

𝛼

Im(𝛥𝛼(𝜔) +𝛴𝛼(𝜔))
[𝜔 − 𝜀𝛼 − Re(𝛥𝛼(𝜔) +𝛴𝛼(𝜔))]2 + [Im(𝛥𝛼(𝜔) +𝛴𝛼(𝜔))]2 , (3.58)

where the diagonal components have been indexed only once. The form of the spectral
function here resembles the one of resonances at positions given by the solution to the
equation 𝜔 − 𝜀𝛼 − Re(𝛥𝛼(𝜔) + 𝛴𝛼(𝜔)) = 0, and of widths −[Im(𝛥𝛼(𝜔) + 𝛴𝛼(𝜔))] (see
explanations in Subsec. 3.1.1). As also explained in Sec. 3.1.1, the spectral function
already yields a lot of information on the physics of the system under consideration, which
can be compared to experimental results. In case of STS experiments (Sec. 2.2) one
usually continues processing the AIM spectral function to obtain adatom d𝐼/d𝑉 curves
(cf. Sec. 4.4), which can be directly compared to experimental STS curves, see Sec. 4.6.

We close this section with a very short outline of the DMFT method for strongly
correlated bulk materials, but without giving the theoretical background for its effectiveness
(see Ref. [Met89] and the references cited in the introductory part to this chapter). In
principle, DMFT relies on the simple mathematical fact that the volume of a sphere in
infinite dimensions vanishes. Carrying over to correlated bulk materials represented by
the Hubbard model, all correlations in infinite dimensions become local. The assumed
approximate locality of the correlations in “low-dimensional” materials (i.e., up to dimension
three) means that the corresponding self-energy becomes local as well, so that it looses its
momentum dependence. As the self-energy for the AIM is local and momentum-independent,
it can be used for the Hubbard model within the DMFT self-consistency, which roughly
looks as follows (cf. Ref. [Kar13] for computational details): The iteration starts with the
non-interacting impurity GF 𝐺

(0)
𝛼𝛽(𝑖𝜔) given in Eq. (3.55). Then, by solving the AIM for
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the impurity, one augments this GF by the self-energy 𝛴𝛼𝛽(𝑖𝜔) (cf. Eq. 3.57). In principle,
the first solution of the AIM corresponds to single-shot DMFT, that is, to DMFT without
self-consistency. Then one upfolds the obtained self-energy or interacting impurity GF to
the Hubbard lattice, that is, into the space of Bloch bands, where the self-energy acquires
a momentum dependence via the projectors |𝑛k⟩⟨𝛼| (cf. Eq. (3.55)), 𝛴𝑛𝑛′(𝑖𝜔,k). The
Hubbard GF in this approximation looks like 𝐺𝑛𝑛′(𝑖𝜔,k) = [𝑖𝜔−𝜀𝑛(k)𝛿𝑛𝑛′ −𝛴𝑛𝑛′(𝑖𝜔,k)]−1.
From this GF one again calculates a new impurity GF via downfolding as in Eq. (3.55),
which now contains the correlation effects on the AIM level. From this GF one calculates
a new non-interacting GF 𝐺

(0)
𝛼𝛽(𝑖𝜔) from Eq. (3.57) with the self-energy already obtained.

Then one solves the AIM again and obtains a new self-energy. The iteration is to be
performed until convergence, and one finally has a Hubbard GF in the Bloch space
of the lattice. Thus, the point of self-consistency is characterized by an impurity GF
upfolded to Bloch space, which contains the correlations as if the Hubbard model were
infinite-dimensional.

In the context of real materials, the approach just sketched is termed DFT+DMFT. One
can further augment the DMFT self-consistency by an outer one over the charge density.
The charge density containing correlations can be computed from the Bloch-Hubbard GF
from single-shot DMFT, and then used as an input for another single-shot DFT calculation
(one DFT step only), in which one again obtains a new band structure for the next DMFT
step. The partial convergence on both, DFT and DMFT, sides at each step is important,
for otherwise one cannot achieve charge-self-consistency efficiently; either DFT would relax
to always the original band structure, or most of the DMFT calculations (i.e., iterative
solutions of the AIM) would be performed without them having much impact on later
solutions. Details and references on charge-self-consistency can be found in Ref. [Kar13].
An implementation of DFT+DMFT and of full charge-self-consistency exists with the
TRIQS/DFTTools code [Aic16], which can be combined with the TRIQS/CTHYB code for
the solution of the AIM [Set16] (cf. Sec. 3.3); both codes were established within the TRIQS
collaboration [Par15]. A particular example of its use may be found in Ref. [Kri18]; other
implementations, examples of use, and physical implications can be found in Refs. [Hau14;
Hau10; Pou07; Shi09; Shi10].

3.3 The continuous-time quantum Monte Carlo method
We shortly describe the general ideas and routines connected with the QMC method
[Gul11]. With regard to the Feynman diagram expansion of a partition function, it
amounts to a stochastic sampling over all orders, topologies, and vertex positions on the
(imaginary-)time axis of such Feynman diagrams. QMC automatically detects which regions
of the high-dimensional configuration space generated by the expansion are important.
Additionally, higher orders are correctly suppressed if the coupling constants appearing in
the expansion are small compared to the other energy scales (it is not a necessary condition
for convergence, though).

Consider a partition function given by

𝑍 =
ˆ
𝐶

dx 𝑝(x), 𝑝(x) = 𝑒−𝛽𝐸(x). (3.59)
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The Boltzmann weight 𝑝(x) assigns the configuration x in the configuration space 𝐶 a
probability for its occurrence. The configuration x has the energy 𝐸(x), and all configura-
tions are assumed to exist at the same temperature 𝛽, that is, the system is in equilibrium.
Expectation values based on the Boltzmann distribution are given by

⟨𝐴⟩𝑝 = 1
𝑍

ˆ
dx𝐴(x)𝑝(x). (3.60)

To evaluate the partition function in Eq. (3.59), a Markov process is organized on the basis of
transition probabilities 𝑊xy which satisfy the normalization condition

∑︀
y𝑊xy = 1 [How71].

The Markov process converges exponentially fast to the Boltzmann distribution 𝑝(x) if the
two conditions on ergodicity and (detailed) balance are met. Ergodicity implies that every
configuration can be reached starting from any other configuration in a finite number of steps
within the Markov process. Balance means that the Boltzmann distribution is recovered
if one transforms the whole distribution by one Markov step,

´
𝐶 dx 𝑝(x)𝑊xy = 𝑝(y). A

slightly stricter condition is detailed balance, 𝑊xy/𝑊yx = 𝑝(y)/𝑝(x), a sufficient, but not
necessary condition for balance itself. The Markov process together with detailed balance
is implemented by the Metropolis-Hastings algorithm by decomposing the transition matrix
elements into proposal and acceptance rates, 𝑊xy = 𝑊 prop

xy 𝑊 acc
xy . Here, the acceptance

rates are given by 𝑊 acc
xy = [1, 𝑅xy], with acceptance ratios 𝑅xy = 𝑝(y)𝑊 prop

yx /𝑝(x)𝑊 prop
xy

[Has70].

To numerically solve the AIMs for the Co/graphene (Sec. 3.6) and the CoCu𝑛/Cu(111)
systems (Sec. 4.6), that is, to compute their self-energy, the CTHYB variant of the CTQMC
method established within the TRIQS collaboration was put into use [Par15; Set16]. The
algorithm is defined with respect to the AIM partition function as an imaginary-time path
integral

𝑍 =
ˆ

D[𝑐*
𝛼, 𝑐𝛼, 𝑐

*
𝑛k, 𝑐𝑛k] 𝑒−𝑆[𝑐*

𝛼, 𝑐𝛼, 𝑐*
𝑛k, 𝑐𝑛k],

𝑆[𝑐*
𝛼, 𝑐𝛼, 𝑐

*
𝑛k,𝑐𝑛k] =

ˆ 𝛽

0
d𝜏 𝐻(𝑐*

𝛼(𝜏), 𝑐𝛼(𝜏), 𝑐*
𝑛k(𝜏), 𝑐𝑛k(𝜏)), (3.61)

with the action 𝑆[𝑐*
𝛼, 𝑐𝛼, 𝑐

*
𝑛k, 𝑐𝑛k] being a functional in terms of the AIM Hamiltonian in

Eq. (3.53), and the operators now being Grassmannian variables. Integrating out the
conduction-electron DOF shown in Eq. (3.61), one arrives at the action

𝑆[𝑐*
𝛼, 𝑐𝛼] =

ˆ 𝛽

0
d𝜏 𝐻loc(𝑐*

𝛼(𝜏), 𝑐𝛼(𝜏)) +
∑︁

𝛼𝛽

ˆ 𝛽

0
d(𝜏, 𝜏 ′) 𝑐*

𝛼(𝜏)𝛥𝛼𝛽(𝜏 − 𝜏 ′)𝑐𝛽(𝜏 ′). (3.62)

Without SOC, the index 𝛼 denotes the free combination of spin and orbital indices,
otherwise the latter would become intertwined. The local Hamiltonian 𝐻loc(𝑐*

𝛼(𝜏), 𝑐𝛼(𝜏)) is
the one of the isolated impurity containing CF, DC term, and screened Coulomb interaction
(the second and third terms in Eq. (3.53)), and the second term in Eq. (3.62) contains
the hybridization function as defined in Eqs. (3.55) and (3.56). Expanding the partition
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function in the hybridization function gives

𝑍 =
∑︁

𝑘∈N0

ˆ 𝛽

0

𝑘∏︁

𝑖=1
d(𝜏𝑖, 𝜏 ′

𝑖)
∑︁

{𝛼𝑖,𝛼′
𝑖}

𝑤(𝑘, {𝛼𝑖,𝛼′
𝑖, 𝜏𝑖, 𝜏

′
𝑖}) (3.63)

with the weights

𝑤(𝑘, {𝛼𝑖,𝛼′
𝑖, 𝜏𝑖, 𝜏

′
𝑖}) = Tr

[︂
T𝑒−𝛽𝐻loc

𝑘∏︁

𝑖=1
𝑐*
𝛼𝑖

(𝜏𝑖)𝑐𝛼′
𝑖
(𝜏 ′
𝑖)
]︂

· Det1≤𝑖≤𝑘
[︀
𝛥𝛼𝑖𝛼′

𝑖
(𝜏𝑖 − 𝜏 ′

𝑖)
]︀
. (3.64)

One should note that the Boltzmann weights shown in Eq. (3.63) comprise the infinitesimals∏︀𝑘
𝑖=1 d(𝜏𝑖, 𝜏 ′

𝑖). The first factor in Eq. (3.64) is the dynamical impurity trace. To eventually
calculate the GF 𝐺𝛼𝛼′(𝜏,𝜏 ′) = −⟨𝑐𝛼(𝜏)𝑐+

𝛼′(𝜏 ′)⟩, one should just add the two operators
𝑐𝛼(𝜏) and 𝑐+

𝛼′(𝜏 ′) into the dynamical trace. The second factor in Eq. (3.64) contains the
determinant of hybridization functions (cf. Eq. (3.62)), and results from a rearrangement
within the Boltzmann weights which is possible because the conduction electrons are non-
interacting. The determinantal form serves to reduce the fermionic sign problem [Gul11;
Loh90; Tro05]. From Eqs. (3.63) and (3.64) one can see that the particular expansion order
determines the size of the hybridization matrix, and the expansion order is peaked at its
mean value ⟨𝑘⟩.

The Markov chain consist of QMC updates, by which the configurations appearing in
the partition function expansion in Eq. (3.63) are scanned through and their measured
weights accumulated according to their importance. The QMC updates comprise insertions
and removals of two or four operators, and shifts of the position of an operator. For
all such operations between two configurations there exists a transition probability. The
insertion of two operators 𝑐*

𝛼(𝜏) and 𝑐𝛼′(𝜏 ′), resulting in the new configuration (𝑘 +
1, {𝛼𝑖,𝛼′

𝑖, 𝛼, 𝛼
′, 𝜏𝑖, 𝜏

′
𝑖 , 𝜏, 𝜏

′}) = (𝑘 + 1, {�̃�𝑖,�̃�′
𝑖, 𝜏𝑖, 𝜏

′
𝑖}), is proposed with probability

𝑊 prop
(𝑘,{𝛼𝑖,𝛼′

𝑖,𝜏𝑖,𝜏 ′
𝑖}),(𝑘+1,{�̃�𝑖,�̃�′

𝑖,𝜏𝑖,𝜏 ′
𝑖}) = d(𝜏,𝜏 ′)

𝛽2 , (3.65)

and the removal of two operators is proposed with

𝑊 prop
(𝑘+1,{�̃�𝑖,�̃�′

𝑖,𝜏𝑖,𝜏 ′
𝑖}),(𝑘,{𝛼𝑖,𝛼′

𝑖,𝜏𝑖,𝜏 ′
𝑖}) = 1

(𝑘 + 1)2 . (3.66)

The CTQMC algorithm does not rely on a discretization of the imaginary-time interval
of length 𝛽, so one can understand the insertion probability as the one for two possible
interaction vertex positions, and the removal probability as corresponding to the (𝑘 + 1)2

possibilities to choose two operators to remove. The acceptance ratio is then given by

𝑅(𝑘,{𝛼𝑖,𝛼′
𝑖,𝜏𝑖,𝜏 ′

𝑖}),(𝑘+1,{�̃�𝑖,�̃�′
𝑖,𝜏𝑖,𝜏 ′

𝑖}) = 𝑤(𝑘 + 1, {�̃�𝑖,�̃�′
𝑖, 𝜏𝑖, 𝜏

′
𝑖})

𝑤(𝑘, {𝛼𝑖,𝛼′
𝑖, 𝜏𝑖, 𝜏

′
𝑖})

𝛽2

(𝑘 + 1)2 . (3.67)

The infinitesimals thus cancel out within the Metropolis-Hastings algorithm rendering
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the continuity of the imaginary-time interval preservable; this leads to the numerical and
simulation improvements mentioned in the introductory part to the present chapter; that
is, the CTQMC algorithm makes the solution of multi-orbital AIMs accessible, and it takes
care of specific regions in the configuration space important to be measured properly. If a
proposed update is rejected during the process, the old configuration is measured again.
Additional to these local QMC updates, one often introduces global spin-flip or orbital-flip
updates to enhance equilibration and sampling efficiency, and to reduce the probability to
be trapped in certain regions of the configuration space. Higher-order configurations such
as the insertion or removal of four operators has been shown to be necessary for ergodicity
to be ensured [Set16].

The CTHYB algorithm as implemented in the TRIQS/CTHYB code has received a
couple of important improvements and optimizations to efficiently treat multi-orbital
systems in the strong coupling regime. In particular, we will shortly describe the automatic
partitioning (autopartition) algorithm which divides the local Hilbert space into subspaces,
and the implementation of the left-leaning red-black tree [Set16].

Each update needs the calculation of the hybridization determinant and the dynamical
impurity trace, both shown in Eq. (3.64). The impurity Hilbert space can be very large,
in particular, it is 210 = 1024-dimensional in case of 𝑑-orbital systems, while in case of
𝑓 -orbital systems it has already 214 = 16384 dimensions. The calculation of the dynamical
trace given by the first factor in Eq. (3.64) is strongly enhanced by partitioning the local
Hilbert space in terms of a diagonal block structure consistent with the symmetries of the
system under consideration. The matrix multiplications within the dynamical trace are
then to be performed independently within the subspaces only. To give an example, the
decomposition of the local Hilbert space of the Co/graphene system (Sec. 3.6) in terms of
the charge and spin quantum numbers leads to (2𝑙 + 2)2 = 36 diagonal blocks (𝑙 = 2 for 𝑑
systems), while the autopartition algorithm determined 132 blocks taking into account the
full Coulomb matrix (using cubic harmonics for the local orbital basis).

The second main ingredient for the efficient calculation of the dynamical trace is given by
representing it in terms of a tree structure. From each node emerge two edges (branches)
each ending in a new node (leave), and each node encode the pairwise product of operator
products adjacent in the dynamical trace. The storage of the configurations and pairwise
operator products within the trace in a tree reduces the amount of matrix multiplications
to be recomputed after each QMC update, as always only a small subset of the leaves
are changed. The computational time needed for the AIM solution is greatly reduced by
the tree structure compared to the HFQMC time discretization (cf. introductory part to
this chapter); an example for a five-orbital system hosting three electrons subject to the
Slater-Coulomb interaction showed a reduction in computational time of up to three orders
of magnitude [Set16]. The scaling of computational demands for the tree is O(log2(𝛽)),
while that of the determinants is O(𝛽3) (the average perturbation order ⟨𝑘⟩ is approximately
proportional to 𝛽). Hence, at low temperatures the computation of the hybridization
determinants dominates over that of the dynamical trace, while for high temperatures it
will be the reverse. As the determinants are easier to compute than the dynamical trace,
lower temperatures thus become more accessible due to the tree structure.
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3.4 The stochastic optimization method
To obtain physical information from the imaginary-time GF one needs to perform an
analytical continuation to real times, where the spectrum becomes accessible via a Fourier
and Hilbert transform (cf. Eq. (3.36)). The fermionic spectrum is eventually given by the
Fredholm integral equation

𝐺(𝜏) = −
ˆ

d𝜔 𝑒−𝜏𝜔

𝑒−𝛽𝜔 + 1𝐴(𝜔), (3.68)

where 𝜏 lies on the imaginary-time axis. Due to the noise in the QMC data, the task
belongs to the class of ill-posed problem, and no unique mathematical solution exists, that
is, there are infinitely many solutions 𝐴(𝜔) which yield some imaginary-time GF within the
error-bars of 𝐺(𝜏). The principal approach, then, is to choose some method for the solution
of the Fredholm equation, and supply some additional information with specifications for
the solution [Gou17; Mis12].

We closely follow the exposition in Ref. [Mis12]. The first of such methods is the
least-squares fit, which seeks to minimize the deviation measure ||K(𝐴) −𝐺||2. The kernel
operator K maps the spectrum to the right hand side of the Fredholm equation in Eq. (3.68).
Usually one transforms the continuous version of the least-squares fitting problem to a
matrix equation by discretizing the energy interval on which the spectrum is defined,
||𝐾A − G||2, where A is now a vector with as many components as the number of discrete
energy points. The kernel operator becomes a (generally rectangular) matrix admitting
a singular value decomposition 𝐾 = 𝑈 𝛴 𝑉 +, with 𝑈 and 𝑉 being unitary matrices, and
𝛴 a (rectangular) diagonal matrix holding the singular values of 𝐾. As the outcome of
a numerical calculation, the GF 𝐺(𝜏) is already discrete. Simple inversion of the matrix
equation then yields the spectrum A, but often rendered with the sawtooth noise due to
the inversion of the sometimes small singular values within 𝛴. To reduce this problem, the
deviation measure is accompanied by some regularization functional 𝜆F(𝐴) which ought
to suppress large oscillations of the solution. For example, within the Tikhonov-Phillips
regularization method the discretized functional has the form 𝜆2||𝛤A||2 (e.g., with 𝛤 = 1).

The approaches to solving the Fredholm equation can be represented within Bayes’
theorem [Bay63],

𝑃 [𝐴|𝐺]𝑃 [𝐺] = 𝑃 [𝐺|𝐴]𝑃 [𝐴]. (3.69)

𝑃 [𝐴|𝐺] yields the probability of 𝐴 given 𝐺, and it is proportional to the likelihood function
𝑃 [𝐺|𝐴] and the prior knowledge 𝑃 [𝐴], in terms of which the problem is easier to solve. In the
Tikhonov-Phillips regularization method both functions are given by 𝑃 [𝐺|𝐴] ∝ 𝑒−||𝐾A−G||2

and 𝑃 [𝐴] ∝ 𝑒−𝜆2||𝛤A||2 , and if 𝛤 is just the identity matrix, the modified singular matrix
has inverted singular values 𝛴−1

𝑖𝑖 = 𝜎𝑖/(𝜎2
𝑖 + 𝜆2), so that contributions with 𝜎𝑖 ≪ 𝜆 are

now suppressed. However, some interesting physical problems just contain sharp edges or
peaks, such as the Kondo model with its narrow QP peak near the Fermi level (Chpt. 4).
One approach more appropriate for sharp peaks is the maximum entropy method (MEM)
(also called MaxEnt) which takes as prior knowledge about the spectrum that it is close
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to some default model. The MEM collects possible particular solutions 𝐴(𝜔) by the
likelihood function 𝑃 [𝐺|𝐴] = 𝑒−𝜒2[𝐴]/2 with 𝜒2[𝐴] =

∑︀𝑀
𝑚=1 𝑆

−1(𝜏𝑚)(𝐺(𝜏𝑚) − �̃�(𝜏𝑚))2

(𝐺(𝜏𝑚) being the imaginary-time GF from QMC, �̃�(𝑚) the particular solution obtained
from 𝐴(𝜔) via Eq. (3.68), and 𝑆(𝜏𝑚) proportional to the noise of the QMC data), and
by the prior knowledge 𝑃 [𝐴] = 𝑒𝑆[𝐴]/𝛼 with entropy 𝑆[𝐴] = −

´
d𝜔𝐴(𝜔) ln(𝐴(𝜔)/𝐷(𝜔))

(𝐷(𝜔) being the spectrum of the default model). The solution is finally given by the average
𝐴 =

´
d𝐴𝐴𝑃 [𝐴|𝐺]. The default model may contain often known information, such as

peak shapes. Via the parameter 𝛼 one can balance the weight on either the regularization
strength or the deviation minimization. Clearly, not enough regularization may lead to
over-fitting, but too much may render the default model having too much importance.
More details and references on MEM can be found in Ref. [Kar13]. As the default model is
somewhat reducing the flexibility of the MEM, one may employ the stochastic sampling
method (SSM), which is just given by the likelihood function 𝑃 [𝐴|𝐺] = 𝑒−𝜒2[𝐴]/𝑇 , where 𝑇
is a fictitious temperature which may be changed during the optimization (e.g., to escape
local minima one may temporarily increase the temperature). Regularization is assumed
to be performed by the implicit error cancellation during the averaging between particular
solutions (like with the MEM). The interpretation of the likelihood function 𝑃 [𝐴|𝐺] in
terms of Boltzmann weights allows the organization of a QMC procedure to sample the
particular solutions 𝐴. No default model is assumed, no artificial smoothing performed, and
only little prior knowledge is needed, for example, positive definiteness and normalization.

A variant or successor of such SSMs is given by the even more flexible and powerful
SOM [Kri19; Mis12; Mis15; Mis00], which has been used for the Co/graphene (Sec. 3.6)
and the CoCu𝑛/Cu(111) systems (Sec. 4.6). It does not even rely on an interpretation
of conditional probabilities as Boltzmann weights, or of averages as partition functions.
Yet it is organized on the basis of a powerful QMC-like procedure for the accumulation of
particular solutions and the averaging between them. SOM, which is going to be discussed
below in more detail, is well adapted to resolve spectral fine structures, such as narrow
peaks, while not neglecting the overall structure of the spectrum. The latter dominates
in more metallic-behaved systems, such as the Co/graphene system is suggest to be by
our results. But the power of the SOM lies in the resolution of narrow peaks, such as
the Kondo features near the Fermi level. In the analytical continuation of the QMC data
for CoCu𝑛/Cu(111) systems it allowed for the resolution of the Kondo peaks within each
orbital along with their relative arrangement, so that substructures within the narrow
energy range around the Fermi level, which emerge due to the symmetry breaking induced
by an additional Cu chain near the Co adatom, could be displayed.

In the projects on the Co/graphene (Sec. 3.6) and the CoCu𝑛/Cu(111) systems (Sec. 4.6)
the analytical continuation of the imaginary-time GF to real times was performed using the
TRIQS-based implementation of Mishchenko’s SOM [Kri19]. It amounts to an accumulation
of 𝐿 particular solutions 𝐴, which satisfy the constraint that the deviation measure

𝜒[𝐴] =
𝑀∑︁

𝑚=1

⃒⃒
⃒⃒𝐺(𝜏𝑚) − �̃�(𝜏𝑚)

𝑆(𝜏𝑚)

⃒⃒
⃒⃒ (3.70)



90 Chapter 3 QMC solution of the AIM and the Co/graphene system

is smaller than some small constant, and to a weighted average between them,

𝐴(𝜔) =
𝐿∑︁

𝑗=1
𝜉𝑗𝐴𝑗(𝜔), (3.71)

for example, with 𝜉𝑗 = 1/𝐿. As in the MEM approaches, the function 𝑆(𝜏𝑚) can be set
proportional to the noise of the QMC data if it is known. In the projects reported on, it
was set to a constant, so all data points were considered with an equal weight. While the
GF is still given on a discrete data set, the spectrum itself is allowed to live on a continuous
energy range. The particular solutions (also called configurations) are parametrized by 𝐾
rectangles,

𝐴(𝜔) =
𝐾∑︁

𝑖=1
𝜂𝑃𝑖(𝜔), 𝜂𝑃𝑖 = ℎ𝑖(𝜃(𝜔 − (𝑐𝑖 − 𝑤𝑖/2)) − 𝜃(𝜔 − (𝑐𝑖 + 𝑤𝑖/2))), (3.72)

where the tuple 𝑃𝑖 = (ℎ𝑖, 𝑤𝑖, 𝑐𝑖) holds the height, width, and position of the rectangle,
which are subject to the normalization constraint

𝐾∑︁

𝑖=1
ℎ𝑖𝑤𝑖 = 1. (3.73)

The imaginary-time GF data points computed from the particular solution in Eq. (3.72)
are given by

�̃�(𝜏𝑚) =
𝐾∑︁

𝑖=1
ℎ𝑖

ˆ 𝑐𝑖+𝑤𝑖/2

𝑐𝑖−𝑤𝑖/2
d𝜔𝐾(𝜏𝑚, 𝜔) (3.74)

with the kernel given in Eq. (3.68). While the first implementation of the SOM by
Mishchenko tabulates these integration data beforehand and recomputes the GF after each
update [Mis12], the more recent TRIQS-based implementation [Kri19] improves on this fact
by an “aggressive caching” of the integration data, holding added or changed contributions
in a separate cache, from where they can be reloaded if needed.

SOM performs a Markov-chain sampling of particular solutions, which is organized
according to the Metropolis-Hastings algorithm [Has70; How71]. It starts from a randomly
generated configuration 𝐶 = {𝑃𝑖 | 𝑖 = 1, . . . ,𝐾} of 𝐾 < 𝐾max rectangles satisfying the
normalization constraint Eq. (3.73), and performs 𝐹 global updates 𝐶𝑗(𝑓) → 𝐶𝑗(𝑓 + 1) on
the configurations, each consisting of a given number of elementary updates. There are
two classes of elementary updates, the ones which do not change the number of rectangles,
and the ones which do. To the first class belong the updates which change the parameters
of one rectangle 𝑃𝑖 = (ℎ𝑖, 𝑤𝑖, 𝑐𝑖), or the height (weight) of two rectangles, while the other
class contains updates which add, remove, or split one rectangle, or glue together two
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rectangles. The elementary updates are accepted with probabilities

𝑃𝑟,𝑟+1 =
{︃

1 if 𝜒[𝐶(𝑟 + 1)] ≤ 𝜒[𝐶(𝑟)],
(𝜒[𝐶(𝑟)]/𝜒[𝐶(𝑟 + 1)])1+𝑑 if 𝜒[𝐶(𝑟 + 1)] > 𝜒[𝐶(𝑟)],

(3.75)

and the global update is accepted if 𝜒[𝐶(𝑓 + 1)] < 𝜒[𝐶(𝑓)]. Starting with a small number
𝐿 of particular solutions, the number 𝐹 of global updates is adjusted at the beginning
in such a way, that the resulting fit to the QMC result 𝐺(𝜏𝑚) is within its error bars in
more than half of these 𝐿 attempts, otherwise the number 𝐹 is increased. After that, a
large number 𝐿 of particular solutions is accumulated. To ensure ergodicity, for a certain
time the parameter 𝑑 in Eq. (3.75) is first chosen from the interval (0,1], which allows
escaping local minima within the Markovian phase space, and for the rest of the time from
the interval [1,𝑑max], to decrease the deviation measure. For regularization and avoidance
of over-fitting, all particular solutions satisfying 𝜒[𝐴𝑗 ] ≤ 2 min(𝜒[𝐴𝑗 ]) are included in the
final average in Eq. (3.71), so it has the form

𝐴(𝜔) = 1
𝐿good

𝐿∑︁

𝑗=1
𝜃(2 min(𝜒[𝐴𝑗 ])−𝜒[𝐴𝑗 ])𝐴𝑗(𝜔), 𝐿good =

𝐿∑︁

𝑗=1
𝜃(2 min(𝜒[𝐴𝑗 ])−𝜒[𝐴𝑗 ]).

(3.76)

Spectra obtained via the SOM are presented in Fig. 3.5 and in Sec. 4.6.

3.5 Context of the Co/graphene system
The combination of DFT (Sec. 2.1) with the DMFT (Subsec. 3.2.1) is nowadays a common
approach to study strongly correlated materials in an advanced setting. DFT is incapable
to properly represent the many-body effects present due to the strong Coulomb interaction
between the electrons in such materials, as it describes these on the effective single-electron
KS level. The reason for the strength of the electronic correlations roots in the competition
between delocalization trends due to hybridization, which are well described in DFT,
and strong localization trends due to residing TM or rare-earth elements, attracting and
localizing electrons in their valence shells. In strongly correlated systems, localization is at
least on the same energy scale as delocalization, such as in Hund’s metals [Fan15; Geo13;
Kha15], or even much stronger, such as in 𝑓 -element systems (cf. Sec. 3.2).

In order to include material-specific data in the many body treatment, a preceding
DFT calculation has to be performed to obtain the background on which the correlations
can be formulated and take place. These correlations are well described by the Hubbard
lattice model, to which the DMFT is an approximate, local solution (cf. Subsec: 3.2.1, and
references in introductory part to this chapter). DMFT amounts to considering a single
correlated site within the lattice as an impurity, which is self-consistently embedded in the
bath of conduction electrons, so that the resulting lattice GF contains the local correlations.
The DFT+DMFT approach thereby is equivalent to a self-consistent embedding of the
AIM, for which the parameters were computed previously with DFT, into the Hubbard
model (Subsecs. 3.2.1 and Appx. C.2).
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To determine the Coulomb interaction matrix for the many body AIM or Hubbard model,
the cRPA can be employed (cf. Subsec. 3.1.2 and references therein). The cRPA is capable
of computing the screened Coulomb interaction parameters on all sites within the material
under consideration. However, most AIM solvers (commonly called quantum impurity (QI)
solvers) and DMFT studies resort to different approximations for the Coulomb interaction
matrix, for its determination demands extra simulations (and the AIM solvers need to
be extended for being able to take all the Coulomb matrix elements into account). The
Slater and the density-density approximations, which assume the full Coulomb interaction
spherically symmetric or without spin-flip terms, respectively, have become widely used
[Kar13]. The CTHYB impurity solver (Sec. 3.3) employed within the projects reported on
in this thesis can take into account the full Coulomb interaction matrix provided by the
cRPA method. – There are other few such studies which consider the full Coulomb matrix.
Ref. [Zha16] finds that the geometric anisotropies, though comparatively small, compete
with the SOC and the isotropic part of the Coulomb interaction, leading to a correct
reshaping of the Fermi surface in accordance with experiments. Furthermore, the authors
find the self-energy in the low-energy region being quantitatively different from the HF
counterpart, which is at the root of the reshaping. The results were found for bulk systems
(in particular, Sr2RuO4), but they apply to surface systems as well. In our Co/graphene
study in Sec. 3.6 we made a similar conclusion for the low-energy self-energy and predicted
its possible relevance for the Kondo effect in multi-orbital systems (Chpt. 4). Ref. [Han13b]
calculated the full Coulomb matrix in a number of surface systems by means of the cRPA,
and found additionally the inter-site Coulomb interactions relevant. In Ref. [Han13c] the
authors used these results within the 𝐺𝑊+DMFT approach to calculate photoemission
spectra in a set of two-dimensional correlated systems, though with a QI solver taking into
account the frequency-dependence of the Coulomb interaction and not all of its matrix
elements.

However, not all systems of interest need the full DMFT self-consistency. There are
the systems comprised by correlated impurities embedded in an (approximately) non-
interacting environment, for example, TM or rear-earth elemental adsorbates on metallic or
differently behaved surfaces. For such systems there is no self-consistency needed since the
impurity GF of the corresponding AIM should not be identified with the GF of a lattice
system, that is, one performs only one QMC calculation using the CTHYB solver (which
amounts to single-shot DMFT).

An interesting example of such a system is given by a Co adatom on a monolayer
graphene surface [Eel13]. On the one hand, here we have the situation of a strongly
correlated impurity embedded in a non-correlated environment (i.e., the graphene systems
is considered as non-interacting in view of the physics to be described on the Co impurity,
because its pseudo-gap is actually a result of the electronic correlations, c.f. Ref. [Weh11]).
On the other hand, there are further physical effects caused by the symmetry breaking
introduced by the two-dimensional geometry. On top of strong electronic correlations on a
single atom resulting in many body effects, there will thus be anisotropies appearing in the
system, which call for an efficient and full treatment beyond the spherical approximation.
In Sec. 3.6 these anisotropies were taken into account by the cRPA, thereby providing us
with an anisotropic full Coulomb interaction matrix for the Co adatom. One may expect
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that the anisotropies are somewhat relevant in an environment with a reduced DOS near
the Fermi level. But we observed this expectation not being met in the Co/graphene
system, probably because graphene becomes doped, that is, its Fermi level is shifted away
from the Dirac cone due to the presence of the Co adatom. Another reason, which in
part might result from this doping, is the generally enhanced screening of the Coulomb
interaction on metallic surfaces [Şaş12].

We now shortly recapitulate the working procedure, referring to the sections which have
so far worked out the computational details: To compute the full Coulomb interaction
matrix using the cRPA method (Subsec. 3.1.2), we employed the Spex-Fleur program
[Fri10], a part of the Jülich FLAPW code family [Jül]. It is based on the full-potential
linearized augmented plane-wave (FLAPW) method, and uses MLWFs. Since the screening
is reduced perpendicularly to the graphene surface, we observe that the Coulomb interaction
matrix elements are larger along this direction. In parallel we performed a DFT-GGA
calculation with VASP using the same basis set. By using the DFT++ method [Kar11b], we
extracted the CF splitting within the cobalt adatom due to the two-dimensional hexagonal
graphene environment, and the hybridization between the two (cf. Subsec. 3.2.1).

Since DFT already contains some electronic correlations due to the Coulomb interaction,
they must be subtracted from the CF in the form of a DC correction (cf. Sec. 3.2). DFT
(without the Coulomb correction within DFT+𝑈) does not show any anisotropies in the
correlation effects as it treats them on a MF level, and thus the DC correction, measured
with respect to an anisotropic Coulomb matrix, will itself already be anisotropic. To
determine the DC correction, we employed a Hubbard-I approximation, and adjusted
occupancies to those obtained by DFT using a numerical optimization scheme (differential
evolution; for details refer to Sec. 3.6). This procedure is quite a common route [Kar13],
though not as sophisticated as the “exact” DC approach presented in Appx. C.1.

Having determined all the parameters of the AIM for Co on graphene, we subsequently
performed the full simulation using the TRIQS/CTHYB-QI solver (Sec. 3.3). From the
imaginary-time GF, analytic continuation to real frequencies with the SOM was performed
(3.4), which is able to properly resolve multiplet structures within the spectral density.
This point turned out as not crucial neither for the Co/graphene system itself nor for the
comparison of results obtained with the cRPA and the Slater Coulomb matrices; but if
there happened to be sharp QP peaks (cf. Chpt. 4), such as the narrow Kondo peak at the
Fermi level, this ability would have been relevant.

We now proceed with the embedding of the Co/graphene system into the current
state of research. First, the graphene substrate itself has already recently attracted a
lot of attention since its experimental realization [Nov04]. But its peculiar electronic
properties were already known since the 1940s, see Refs. [Cas09; Gei07] and references
therein. Graphene is an atomically thin allotrope of carbon arranged in a two-dimensional
hexagonal lattice. This arrangement of carbon leads to electronic excitations around the
Fermi level which behave like massless Dirac particles, so that graphene can be described
within the framework of fully relativistic QED, that is, by a Lorentz-invariant theory. The
𝑠𝑝2 hybridization, with the hybrid orbitals arranged within a trigonal planar structure and
taking part in 𝜎-bonding, gives graphene its stability and flexibility, while the 𝑝𝑧 orbitals,
taking part in 𝜋-bonding, exhibit the Dirac cone in the band structure of graphene and are
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half-filled. The Dirac cone leads likewise to a linearly vanishing DOSs at the Fermi level, a
pseudo-gap, which renders graphene being a semi-metal. Together with the consequently
reduced screening of the electronic Coulomb interactions, graphene provides a material
realization accompanying the studies of strongly interacting electrons on the hexagonal
lattice [Hir18]. The electronic flexibility and strong correlations render the vdW forces
being relevant for graphene, especially between neighboring graphene layers (graphite), as
the screening in the perpendicular direction is even less effective [Ryd03]. The flexibility of
graphene in response to external conditions leads to diverse physics, enhances its potential
for functionalization, and may establish a new branch next to the semiconductor industry.

The electronic interactions in graphene are such that, together with the lattice structure,
they lead to the pseudo-gap, a transitional behaviour between Mottness (a correlation
gap) and band-structure-like semi-metallicity, with linearly dispersed excitations [Kot12].
The Dirac cone is the sign that one has a Dirac liquid if Lorentz invariant QPs in the
weak-coupling regime. This has to be contrasted to the usual Galilean invariance for
fermions leading to different dispersions, and on which Landau’s FL theory relies (cf.
introductory part to Chpt. 4). Thus also, the Coulomb interaction is not as in metals, for
it remains long-ranged at charge-neutrality because the screening is ineffective. However, a
slight shift of the chemical potential away from the Fermi level leads again to an efficient
screening, as we also observed for the Co/graphene system (Sec. 3.6). The presence of the
Co adatom leads to a chemical doping of the graphene sheet, and as screening at metal
surfaces appears rather efficient [Şaş12], we obtained a likewise strongly reduced local
Coulomb interaction strength.

Within the GF formalism, a pseudo-gap appears from a singularity of the self-energy at
low energies. As explained in the introductory part to the present chapter, the self-energy
is an effective (single-particle) energy-dependent potential which replaces the Coulomb
interaction in the full Hamiltonian, and it thus encompasses all information about the
correlations in the system. In principle, via a fluctuation diagnostics one may identify
the root of the correlations leading to the pseudo-gap [Gun15], probably also the one
seen in our calculated spectrum at lower Co adatom filling (Fig. 5 in Sec. 3.6. Here, the
reduced adatom filling leads to an imprint of the graphene pseudo-gap on the adatom itself.
However, even though one can see the pseudo-gap in that case, and also in the hybridization
function (Fig. 1 in Sec. 3.6), the BZ k-dependence necessary for the fluctuation diagnostics
is lost in the AIM construction. – This also means that the multi-channel Kondo effect often
assumed to exist for graphene (Sec. 3.5), and which relies on two of the high-symmetry BZ
points, 𝐾 and 𝐾 ′, cannot be transparently described within the AIM construction given in
Sec. 3.2; for this one needs to adapt the AIM to the form used for quantum dots coupled
to several leads. Still, one may assume that all realistic AIMs constructed according to
Sec. 3.2 will show the usual multi-orbital Kondo effect with Fermi-liquid behaviour (i.e.,
without under- or overscreening), because there will always be one hybridization channel
for each orbital. The Kondo effect on graphene has been subject to intensive research
within the last fifteen years, see the discussion below.

The precise adsorption geometry and electronic configuration of the Co/graphene system
was addressed in a number of experimental and quantum-chemical studies. These went
beyond the relaxation procedures usually performed within DFT, and took into account
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the correlations in a more sophisticated manner. Eelbo et al. found the Co atom mostly
adsorbed directly above a carbon atom of graphene [Eel13], that is, top-site adsorption.
Furthermore, they determined the electronic configuration of 3𝑑84𝑠1, with an out-of-plane
easy axis leading to sizable spin and orbital moments. Thus, the Co adatom on graphene
was found to be in a magnetic state. Fe was found to be magnetic as well, while Ni
was non-magnetic. Shortly before that experimental outcome, two other studies were
published; one based on an ab intio many body treatment within auxiliary-field QMC
(AFQMC) and a subsequent size-correction embedding scheme (which corrects for the
finiteness of the graphene flake used for the calculations) [Vir12], and another one based
on an active-space self-consistent field (ASSCF) approach with second-order PT [Rud12].
Both considered the hollow site being the most stable one, and found mainly three different
electronic configurations assumed by the Co atom while it approaches the surface: high-spin
(𝑆 = 3/2) 3𝑑74𝑠2, high-spin (𝑆 = 1) 3𝑑84𝑠1, and a low-spin (𝑆 = 1/2) 3𝑑94𝑠0. Virgus et
al. mentioned, though, that the true spin state remains unclear, and that it depends on
the correlations considered. The study of Rudenko et al. describes the same electronic
transitions while the Co atom approaches the graphene surface above the hollow site,
but also laid down some further insights. Dispersive (vdW) interactions are contained
in their computational approach, and the Co atom could be stabilized in the high-spin
3𝑑74𝑠2 electronic state (the one of free Co) at a distance of approximately 1.6 Å above
the surface. While approaching the surface, the electron is successively transferred from
the 4𝑠 to the 3𝑑 orbital, finally realizing the low-spin 3𝑑94𝑠0 state. This charge transfer is
organized according to the Pauli exclusion principle, as the 4𝑠 orbital is more extended
than the 3𝑑 orbital, the Coulomb repulsion within which additionally being screened.
However, because the differences in the adsorption energies between the states came out as
rather small, and as the 3𝑑94𝑠0 configuration is more unstable due to the localized charge
accumulation, the 3𝑑74𝑠2 state is assumed to be preferred by the Co atom. The 3𝑑84𝑠1

state is then considered as a metastable state between the other two states. In this state, as
the adsorption height of approximately 2.2 Å is rather large, the Co atom is assumed to be
physisorbed, the mechanism being induced by the weak vdW interactions. In principle, this
might be a second example next to the Ta(001)-p(3×3)-O surface considered in Chpt. 2,
where unusual large adsorption heights might be realized by vdW interactions, against the
actually stronger bonding mechanism induced by hybridization and chemisorption, which
lead to smaller adsorption heights. In principle, this goes along to many experimentally
observed fast surface diffusions of TM atoms on graphene. Intuitively, it is certainly rather
difficult to determine the adsorption properties of TM adatoms on graphene due to its
Dirac nature. Most computational schemes rely on some approximations, but the vanishing
DOSs near the Fermi level (small chemical doping will certainly be realized by adsorption)
and the rather large electronic correlations in graphene need some consideration for the
numerical results to be reliable. The ASSCF can be considered as an already sophisticated
approach to the situation at hand.

The Coulomb correlations on the Co atom are determined to be reduced upon its
approach to the surface, from 5.3 eV to 2.6 eV ± 0.2 eV [Rud12]. The strength and tendency
is in line with our results for the local Coulomb interaction strength of the Co/graphene
system as determined within the cRPA. Here, the largest strength 2.2 eV was found in the
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direction perpendicular to the graphene surface (in the 𝑑𝑧2 orbital), while in the other
directions screening was even more effective due to the high electron mobility and large
polarizability. Furthermore, we considered the Co atom chemisorbed at lower adsorption
height. This outcome is rather counterintuitive, as one might think that screening of
the local Coulomb interaction is less efficient on surfaces than in bulks, but indeed the
reverse seems to be true on metals, as has already been mentioned [Şaş12]. While on metal
surfaces one might think that surface charge accumulation and enhanced polarizability due
to longer electron propagation paths in the vacuum above the surface might prevail, only
the mobility and polarizability in free-standing monolayer graphene will contribute to this
enhanced screening.

The Kondo problem in graphene has been debated extensively shortly after its first
experimental realization in 2004 [Nov04]. Only very few experimental realizations of
adatoms on graphene are published, with different outcomes for the Kondo effect. De
Mattos provided the first experiments on the Co/graphene system and discussed the
resonance appearing near the Fermi level in terms of the multi-channel Kondo effect
[Mat09]. The honeycomb lattice as a bipartite lattice has two inequivalent carbon atoms
in real space, and correspondingly two inequivalent points, 𝐾 and 𝐾 ′, in the first BZ. At
these two points the Dirac cones touch, while the van-Hove singularities are at the other
high-symmetry points (𝛤 and 𝑀). The energy profile looks as if it has two inequivalent
valleys at the Dirac points separated by high-energy states. These act as two separate
electron reservoirs coupling to each orbital of the adatom under consideration, which leads
to the two-channel Kondo effect, and finally to overscreening and a non-FL state (if the
coupling to both valleys has the same strength; cf. introductory part to Chpt. 4). The
sublattice symmetry leads to a conserved quantum number, a pseudospin, and to chirality
of the electrons in graphene. The Hamiltonian in graphene couples the pseudospin with the
direction of motion, which modifies the scattering mechanisms, leading to an even more
exotic, highly entangled Kondo behaviour.

Shortly after de Mattos, Brar et al. provided another realization of the Co/graphene
system, where they observed dip-like features in the differential conductance [Bra11] (cf.
also Chpt. 4). Kondo resonances strongly depend on the impurity filling (Chpt. 4), but
these authors found the width of the dip independent of the gate voltage (graphene was
back-gated), with which the Co adatom ionization can eventually be controlled. Supported
by numerical calculations including phononic vibrations, they concluded that these dips
are due to vibrational inelastic electron tunneling, induced by a residual magnetic state
on the Co adatom, which leads to large screening clouds seen in STM images, and
eventually increases the resistivity at low temperatures. Jobst et al. also attributed the
increase of the resistivity at low temperatures to electron-electron interactions (EEIs)
and weak localization, the latter being enhanced due to the two-dimensional geometry of
graphene [Dat95; Job13]. The contribution from weak localization can be suppressed by the
application of an external magnetic field, though, and the EEIs and Kondo contributions
analysed. The conclusion for the EEIs being responsible for the resonances was then
attained by a careful disentanglement analysis of the EEI-mediated resistivity increase and
the one induced by the Kondo effect. They furthermore point out that adsorbed magnetic
molecules can induce inhomogeneities in the sample, and graphene is particularly likely to
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produce ripples [Mey07]. Those ripples are the reason for the enhanced EEIs in graphene.
Based on their findings Jobst et al. state that the interpretation of most experimental
results in terms of the Kondo effect are probably questionable. – In a theoretical paper,
Saffarzadeh et al. attribute the resonances appearing at the Fermi level to spin-dependent
scattering subject to gate voltage dependence [Saf12], that is, to the inelastic electron
tunneling observed in the experiments by Brar et al. [Bra11]. In particular, they point
out that Co has the highest magnetic anisotropy energy (MAE) among TM adsorbates on
graphene, leading to the residual magnetic moment. The resonance was obtained within
the usual 𝑇 -matrix formalism (cf. Sec. 4.4).

Based on the Kondo interpretation, de Mattos found a Kondo temperature of 15 K
[Mat09], which translates to an inverse Kondo temperature of approximately 773 eV−1.
The highest inverse temperature used for the test simulations in our Co/graphene study
(Sec. 3.6) was 70 eV−1. So even with the consideration of the full anisotropic Coulomb
matrix, and even within the sophisticated TRIQS/CTHYB-QI solver it would not have been
possible to account for any residual traces of the Kondo effect. Irrespective of the physical
complexity of an experimentally realized Co/graphene system, which might suppress the
Kondo effect, or render EEIs responsible for the experimentally observed spectral features
near the Fermi level, the parameters of an associated AIM as shown in 3.2 will likely lie
within the Kondo regime, though probably with a small Kondo temperature. Our study on
the Co/graphene system was not directed towards the resolution of the Kondo resonance
near the Fermi level, but to the effects of the Coulomb anisotropies on the overall spectral
structure (Sec. 3.6). While experimentally realized Co/graphene systems will probably
not show any Kondo behaviour at low temperatures, it is, however, still necessary to
understand its origins and properties in ideal situations, either because these situations
might be the starting points for other analyses, or to know how to disentangle the processes
or interactions possibly responsible for the spectral features at the Fermi level.

While inter-valley scattering in graphene might occur, which could merge the two valleys
into just one electron reservoir, Kharitonov and Kotliar assumed this scattering as kind of
unitary transformation retaining the two-channel structure, and thus the multi-channel
Kondo scenario with overscreening and non-FL behaviour [Kha13] (in particular, the valleys
may be mixed, but the diagonalized states are of the same structure, and so the channels
remain independent; cf. Chpt. 4). One of the first such studies on the mathematical
structure of the Kondo effect in graphene was performed by Segupta and Baskaran [Sen08]
four years after its first experimental realization by Novoselov et al. [Nov04]. During their
derivation they note that the Dirac nature of the QPs in graphene leads to a coupling of
different angular momentum channels in the Kondo Hamiltonian, which distinguishes it
from the usual Kondo Hamiltonian in metals. Furthermore, due to the vanishing DOSs at
the Fermi level, the critical coupling for the onset of the Kondo effect at zero temperature
is large, and increases logarithmically with temperature. However, at finite gate voltage
the critical coupling tends to vanish at low temperatures, which opens the possibility to
tune the Kondo effect by gating. The finite critical coupling is associated with the non-FL
behaviour. Zhu et al. further investigated the site dependence, and took into account
the vanishing hybridization in the direction perpendicular to the surface (in the hollow
site), because the 𝜋 orbitals of graphene, to which the adatoms are assumed to couple
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via hybridization, transform according to the 𝐸1 and 𝐸2 representations of 𝐶6𝑣 (near the
Dirac point) [Zhu10]. The valley degeneracy was only relevant at top-site adsorption, and
there it only affects the Kondo temperature, instead of producing the exotic overscreened
Kondo effect appearing at the hollow site. The same site dependence and other Kondo
scenarios were also considered by Wehling et al., who stated the occurrence of the SU(4)
Kondo effect due to the orbital structure of the Co adatom, which gets broken down to
SU(2) if the SOC is taken into account [Weh10]. As the 𝑀 points in the first BZ contain
the van-Hove singularities (the strength of the asymmetric Kondo couplings in part results
from high-energy processes to those singularities), orbitals of different symmetry couple
differently to these points, which is the reason for the different hybridization strengths, and
which also leads to the asymmetric behaviour of the Kondo temperature with respect to the
chemical potential or the gate voltage, respectively. Wehling et al. stated that intervalley
scattering is very strong at the hollow site [Weh10], which was also confirmed by Zhu et
al. [Zhu10], so that the multi-channel Kondo effect should not prevail here. However, as
mentioned above, Kharitonov and Kotliar stated that the multi-channel behaviour would
be retained also in case of strong intervalley scattering [Kha13]. Even more, these authors
extended the scenario to the four-channel Kondo effect because each sublattice has its own
two inequivalent high-symmetry BZ points. – The SOC was also considered in Ref. [Mas14]
in an effective single-orbital AIM solved by NRG. The SOC occurs in a combined manner
intrinsically due to high atomic numbers of the adsorbed species, and extrinsically due to
the spatial symmetry breaking due to the two-dimensionality of the graphene sheet. Also
in Ref. [Mas14] the Co adatom happens to have a magnetic moment depending on the
adsorption site, and the authors considered the top site only. The Kondo effect was found
to strongly depend on the SOC strength not only because of the symmetry breaking, but
also because it induces a non-vanishing DOSs at the Fermi level.

A series of studies on Kondo impurities in graphene was performed by Fritz and Vojta
et al. [Voj15; Voj04; Voj10]. As in other studies, they pointed out the similarity of the
Kondo effect in 𝑑-wave SCs, which exhibit a vanishing DOSs at the Fermi level, and
charge-neutral graphene. Thus, most of their studies were directed to pseudo-gapped
systems in general. The phase diagram of the Kondo model was analyzed with NRG under
consideration of the power-law behaviour of the DOSs near the Fermi level. In particular,
they found a highly mathematical behaviour at particle-hole symmetry, in which there is no
Kondo effect at any strength of the Kondo coupling, while any deviation from particle-hole
symmetry immediately leads to the screened phase. Such a symmetry breaking, however, is
already induced by the next-to-nearest-neighbour hopping, so it is in principle unavoidable.
Furthermore, charge and spin fluctuations become strongly coupled at the case of unit
slope, as is the case for graphene. The complexity of the phase space of the Kondo model
for graphene was pointed out, in particular, its multi-dimensional scaling dependence.

There was one other notable study on the Co/graphene system in terms of a realistic
many body calculation within the GGA+OCA approach conducted by Jacob and Kotliar
[Jac10], in which Dirac point resonances where observed for the AIM, and which were
attributed to the Kondo effect. The one-crossing approximation (OCA) is the lowest-order
self-consistent approximation to the full perturbation expansion, and exact up to first order
in the hybridization. In this sense the hoppings most relevant for the Kondo effect can be
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taken into account, and it is especially powerful as the calculation can be performed at
zero temperature. The adsorption height was beforehand determined being similar as in
our Co/graphene study (i.e., 1.5 Å in Ref. [Jac10] and 1.53 Å in Sec. 3.6), but the starting
occupation of 7.5 was lower, with two holes in the 𝐸1, and one hole in the 𝐸2 orbitals.
These combine to yield the spin-3

2 Kondo effect. A strong dependence of the Kondo effect
on the chemical potential was found, with the resonance pinned to the Dirac point. – In
our GGA+QMC study on the Co/graphene system (Sec. 3.6) we refer to Ref. [Jac10] on
several occasions due to two reasons: First, as the definition of an impurity filling is to
some extent arbitrary, we used their obtained impurity filling for another set of QMC
simulations, and compared the results with the ones obtained with the higher fillings our
DFT calculations yielded. The QMC results show a strong dependence of the electronic
structure on the impurity filling, which is prominently seen in the orbitals of 𝐸1 symmetry,
for these are the ones which are hybridized the most. Second, QMC takes into account all
diagrams rather than only the ones to first order in the hybridization. Thus, except for the
low-temperature problem inherent in all QMC procedures, QMC is a powerful extension
and generalization of the OCA. In case of higher temperatures, such as the ones considered
in Sec. 3.6 and in test simulations on the Co/graphene system, rather metallic behaviour
is seen, so that taking into account all diagrams is indispensable. But also in the Kondo
regime of multi-orbital systems higher-order diagrams should be taken into account, for
these might contribute significantly to the Kondo effect (Sec. 4.1).
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3.6 “Cobalt adatoms on graphene: Effects of anisotropies on the correlated electronic
structure”
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Impurities on surfaces experience a geometric symmetry breaking induced not only by the on-site crystal-field
splitting and the orbital-dependent hybridization, but also by different screening of the Coulomb interaction in
different directions. We present a many-body study of the Anderson impurity model representing a Co adatom
on graphene, taking into account all anisotropies of the effective Coulomb interaction, which we obtained by
the constrained random-phase approximation. The most pronounced differences are naturally displayed by the
many-body self-energy projected onto the single-particle states. For the solution of the Anderson impurity model
and analytical continuation of the Matsubara data, we employed new implementations of the continuous-time
hybridization expansion quantum Monte Carlo and the stochastic optimization method, and we verified the results
in parallel with the exact diagonalization method.

DOI: 10.1103/PhysRevB.97.085133

I. INTRODUCTION

Graphene is a remarkable condensed-matter system with
various promising applications. Field-effect electronic devices
based on graphene [1] as well as a whole wafer-scale integrated
circuit built out of graphene components [2] have been demon-
strated. The material itself displays an abundance of exotic
properties, many of which have their origin in the peculiar
feature of the low-energy electronic excitations: they resemble
massless Dirac fermions [3].

Enhanced functionality of materials can be achieved by
introducing inhomogeneities, of which impurities are one im-
portant kind. The first experimental realization of Co adatoms
on graphene was described by Mattos [4], who extensively
discussed the adsorption geometry as well as the Kondo effect.
Since then, only a few further realizations of magnetic impuri-
ties on graphene were reported, with controversial conclusions
about the existence of the Kondo effect in graphene [5,6].

Diverse theoretical studies have been performed aiming at
characterization of the Kondo effect in pseudogap systems in
general, and in graphene in particular, see Refs. [7–16] and ref-
erences therein. The system of a Co atom adsorbed on a single
layer of graphene can be accurately represented by the Ander-
son impurity model (AIM). Jacob et al. considered the Kondo
effect of the Co/graphene system by performing one of the first
realistic many-body studies utilizing this model in the frame-
work combining the density-functional theory with the one-
crossing approximation (DFT+OCA) [16]. Our ab initio
calculation of the Coulomb matrix yields a weaker repulsion
when compared to the Coulomb vertex employed by Jacob

*rmozara@physnet.uni-hamburg.de

et al. Consequently, we were not able to see the Kondo effect
since the charge fluctuations were not sufficiently suppressed.

For an impurity placed on a surface, the two-dimensional
constraint leads to a geometric symmetry breaking, which
additionally to the crystal-field splitting and the orbital-
dependent hybridization, induces a pronounced anisotropy of
the Coulomb interaction at the impurity [17]. Since electronic
screening in the z direction is weaker, electrons in the Co
d3z2−r2 orbital feel a stronger Coulomb repulsion, whereas in
the directions parallel to the graphene surface the screening is
stronger. It is most efficient for the most hybridized orbitals of
the E1 symmetry. To take these effects into account, we em-
ployed the constrained random-phase approximation (cRPA)
to calculate the effective (partially screened) Coulomb inter-
action matrix [18,19]. Since graphene exhibits a high mobility
of its conduction electrons [20], its electronic polarizability is
rather large, leading to a strong renormalization of the repulsion
strength. The present paper aims at an exploration of the effects
of geometric anisotropy in the effective Coulomb matrix while
solving the corresponding Anderson impurity model by the
continuous-time quantum Monte Carlo (CTQMC) method.
The results are cross-checked with the exact diagonalization
(ED) technique.

This paper is organized as follows. In Sec. II, we describe the
DFT setup. In Sec. III A, we introduce the AIM and how its cor-
responding Hamiltonian is obtained from DFT by projection
onto correlated orbitals. Section III B describes the CTQMC
algorithm for the solution of the AIM, and how analytical
continuation of the Matsubara data is performed using the
stochastic optimization method. Section III C explains how
we performed the ED method. Section III D explains how
we performed the cRPA to obtain the Coulomb matrix, and
Sec. III E the method to obtain the corresponding anisotropic

2469-9950/2018/97(8)/085133(11) 085133-1 ©2018 American Physical Society
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TABLE I. First line: occupations and crystal-field splittings from DFT after projection by the PLO method. The window of energy bands
was taken such that the total occupation agrees with the one of Co supplied in the VASP pseudopotential package. Second line: ccupations as
computed by Jacob et al. [16].

ntot nxy nyz n3z2−r2 nxz nx2−y2 εF εxy εyz ε3z2−r2 εxz εx2−y2

8.2016 0.8093 0.7487 0.9859 0.7485 0.8084 −2.273 −0.720 −0.564 −0.711 −0.541 −0.714
7.02 0.6875 0.5950 0.945 0.5950 0.6875

double counting. Sections IV A–IV C present and discuss the
QMC results, and in Sec. IV D, we compare QMC with ED.
We conclude the paper in Sec. V.

II. DENSITY-FUNCTIONAL THEORY

DFT simulations have been performed to find the equilib-
rium geometry of the system, and to extract kinetic-energy
and Coulomb parameters for the Anderson impurity model.
We considered a supercell with the Co adatom above the
single-layered 3×3×1 graphene sheet.

To determine the equilibrium position of the adatom, we
explored two possible configurations over graphene: top and
hollow. This part of the work was done in the framework of the
VASP package with projector augmented wave (PAW) basis set
[21]. The cut-off energy of the basis was chosen as 500 eV
and the GGA(PW91) [22] approximation was used for the
exchange-correlation energy Exc. The relaxation of the chosen
structures was performed on a 12×12×1 �-centered k-point
mesh until forces were smaller than 0.01 eV/Å. The graphene
layer was kept fixed and the Co adatom was free to relax in all
directions. A vacuum separation of 15.0 Å was chosen.

The hollow position of the Co adatom was found to be
energetically more favored in comparison to the adsorption
site on the top of the carbon atom, which is in agreement
with previous work [8]. Therefore we focused only on the
hollow position and all further calculations in this paper refer
to this absorption geometry. The structural relaxation yielded
a distance of the Co impurity from the graphene sheet of
about 1.5Å, which is in line with previous findings for the
used functionals [8,23]. The filling of the Co d orbitals at
this equilibrium distance ntot = 8.2 was calculated with the
aid of the PLO method by taking into account 18 bands around
the Fermi level (see Ref. [27] and Sec. III A below). Table I
presents occupations of individual d orbitals.

Quantum-chemical calculations performed by Rudenko
et al. predicted the electronic configuration 3d94s0 with S =
1/2 for the cobalt atom placed at 1.5 Å above the graphene
sheet [24], whereas the 3d84s1 configuration, which corre-
sponds to our DFT solution, was stable at larger distances.
At yet larger distances, they found the state of the free atom
(3d74s2) to be the lowest-energy solution. Virgus et al. also
observed the transition from 3d74s2 over 3d84s1 to 3d94s0

when the Co impurity approaches the surface [25]. They
obtained an equilibrium distance of the Co impurity in case of a
3d84s1 configuration, which is comparable to our setting. The
x-ray absorption spectra measured experimentally by Eelbo
et al. also indicate that the Co adatom is in the 3d84s1 electronic
configuration [26]. Jacob et al., on the other hand, found the
filling of the Co d orbitals to be 7.5 in their DFT calculations,

and the subsequent treatment of the electronic correlations
within OCA pushed the filling to a lower value near 7.0 [16].
The distance of Co from the graphene surface that they obtained
is comparable to ours, and we consider their filling additionally
to our ntot = 8.2 in the many-body calculations below.

III. ANDERSON IMPURITY MODEL:
SETUP AND SOLUTION

A. From first-principles DFT to a model Hamiltonian

The Co adatom on graphene resembles the case of a
magnetic impurity coupled to a noninteracting bath for which
the Anderson impurity model can be employed. To obtain
ab initio parameters for this AIM, we projected the DFT band
structure obtained in Sec. II onto Wannier orbitals localized
at the Co adatom. To this end, we used the PLO method [27].
Labeling the Bloch states |k,n〉 by the momentum k and the
band index n, with k being from the first Brillouin zone,
and the Bloch transformed Wannier orbitals with quantum
numbers α = (r,l,m) by Lαk (r is the position of the impurity
within the unit cell, and the Bloch transform is the Fourier
transform over the Bravais lattice), the projectors are given
by Pαn(k) = 〈Lαk|k,n〉. The local Green’s function of the Co
adatom is thereby obtained from the Bloch Green’s function
GB

n (k,iω) = [iω − εn(k)]−1, with εn(k) the band dispersion
relative to the chemical potential, as

Gαβ(iω) =
∑
kn

Pαn(k)GB
n (k,iω)P+

βn(k)

= [iω − ε − �(iω)]−1
αβ , (1)

with the on-site crystal-field matrix εαβ and the hybridization
function �αβ(iω).

The multiorbital single-impurity Anderson model can be
decomposed into three parts:

H = HCo + Hg + Hhyb. (2)

The first part is the local Hamiltonian for the Co d states:

HCo =
∑
αβσ

(
εαβ − μDC

α δαβ

)
c+
ασ cβσ

+ 1

2

∑
αβγ δσσ ′

Uαβγ δ c+
ασ c+

βσ ′cδσ ′cγσ . (3)

The first term is the crystal-field matrix, which is diagonal, i.e.,
εαβ = εαδαβ . The greek indices α, β, γ , δ label the orbitals,
which transform according to the irreducible representations
of the C6v point group: E2 = {xy,x2 − y2}, E1 = {xz,yz}, and
A1 = {3z2 − r2}. The spin degrees of freedom are denoted
as σ , σ ′. The second term in Eq. (3) is the effective on-
site Coulomb interaction we obtained by the cRPA method
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FIG. 1. (Left) Representation-resolved imaginary part of the real-frequency hybridization function �(ω) for the d orbitals of the Co adatom
obtained with the PLO method. (Middle) DFT (filled) and projected (unfilled) DOS A(ω). (Right) Matsubara hybridization function �(iωn) at
β = 20 eV−1. Only the first 60 frequencies are displayed. The inset contains a picture of the geometry.

(Sec. III D). A double-counting (DC) correction μDC
α has to be

subtracted to remove the Coulomb effects present in the DFT
band structure.

The second part in Eq. (2) describes the spin-degenerate
band structure of graphene,

Hg =
∑
knσ

εknf
+
knσ fknσ , (4)

where n is the band index. The on-site crystal-field matrix εαβ

and the energy bands εkn are measured with respect to the
Fermi energy of graphene.

The last part in Eq. (2) is the hybridization between the
adatom and graphene. It is given by

Hhyb =
∑
kασ

(Vkαc+
ασ fkασ + H.c.). (5)

The electron hopping processes to and from the impurity
preserve the local symmetry and hence the hopping amplitudes
Vkα are diagonal in the basis of the irreducible representations
of the point group. The graphene states fkασ are projections
of fknσ onto this basis. The diagonal hybridization function
characterizing the coupling between the adatom and graphene
is obtained after integrating out the graphene degrees of
freedom. It is defined as

�α(iω) =
∑
kα

|Vkα|2
iω − εkα

. (6)

Real-energy and Matsubara representations of the hy-
bridization function and the density of states for all five d

orbitals are presented in Fig. 1. Features of the real-energy
hybridization for the metallic impurity on graphene repeat
findings of Wehling et al. [8]: one can see an almost complete
suppression of the A1 orbital whereas E1 and E2 form a
symmetric slope around the Dirac point that is shifted slightly
to the lower energy by an amount of μ = 0.2 eV. This might be
an effect of the supercell repetition with periodic occurrence of
the Co adatom, effectively doping the graphene sheet, whereas
a single adatom on an infinite sheet would not produce such
a shift of the Fermi level. On the other hand, Mattos reported
the same value for the chemical potential together with a low

Kondo temperature [4] (being discussed in other references
[8,10,28]).

B. Quantum Monte Carlo method and analytical continuation

The interacting impurity Green’s function of the Anderson
impurity model is given as

Gασ (iω) = [
iω − εα + μDC

α − �α(iω) − �α(iω)
]−1

. (7)

The electronic self-energy �(iω) containing all Coulomb
correlation effects was computed employing the hybridization-
expansion variant of the continuous-time quantum Monte
Carlo (CTHYB QMC) method. The CTHYB solver developed
by the TRIQS collaboration [29,30] implements two important
optimizations, namely a caching scheme based on a binary-tree
data structure [31], and a novel scheme to automatically reduce
the local Hamiltonian HCo to a block-diagonal form (see Sec.
4 of Ref. [30] for details). These optimizations enable solving
five-orbital impurity models with the rotationally invariant
Coulomb matrix (referred to as Slater from now on) as well
as with the cRPA approximation of the interaction matrix in a
reasonable time. The “autopartition” algorithm gives a much
finer block structure of the local Hamiltonian than one would
get from the standard partitioning based on the occupation
quantum numbers: N̂↑ and N̂↓ quantum numbers would result
in (2l + 2)2 = 36 diagonal blocks, while we got 132 blocks in
both Slater and cRPA cases (cubic harmonics have been used
as the local orbital basis).

Typical computational time taken by one QMC simulation
has varied from a few hundreds to a few thousands core hours.
Actual values strongly depended on the local occupations as
well as on the temperature.

The analytical continuation of the imaginary-time data has
been performed using a recently established TRIQS-based
implementation of Mishchenko’s stochastic optimization
method (SOM) [32]. This method amounts to a stochastic
solution of the Fredholm integral equation of the first kind,

Gα(τ ) = −
∞∫

−∞
dε

e−τε

1 + e−βε
Aα(ε). (8)
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For a given thermal Green’s function Gα(τ ) measured
in a QMC simulation (index α runs over all orbital and
spin indices) a number of approximate particular solutions
Aα(ε) are constructed. Each particular solution is written as a
superposition of N rectangles {ci,wi,hi} with the total spectral
weight fixed to 1,

Aα(ε) =
N∑

i=1

hiθ (ε − [ci − wi/2])θ ([ci + wi/2] − ε),

1 =
N∑

i=1

hiwi.

A Markovian walk in the space of such superpositions is
organized in order to find a minimum of the residue functional
corresponding to the Fredholm equation (8). The Markov
chain is started from a randomly generated configuration,
typically 500–1000 times. Every time it results in another
particular solution. Eventually, all particular solutions found by
different Markov chains are averaged, so that stochastic noise
is approximately canceled. For a more in-depth description of
the algorithm we refer to the original paper of Mishchenko
et al. [33].

C. Exact diagonalization

As an alternative method to QMC, we employ also the
exact diagonalization, or more accurately, the Lanczos method.
That way, the spectral functions of the impurity model are
directly accessible without the need for analytical continuation
but at the cost of discretized hybridization function. This
discretization amounts to a replacement of the continuous
spectrum εkα with a discrete spectrum εkα in Eqs. (4) and (5),
where k takes values 1,2, . . . ,K . The parameters εkα and Vkα

of such a finite impurity model are determined by minimization
of a weighted sum of squares [34,35]

dα =
∑
n>0

1

ωr
n

∣∣∣∣�α(iωn) −
K∑

k=1

V 2
kα

iωn − εkα

∣∣∣∣
2

(9)

for each of the Co d orbitals α = E1, E2, and A1. In the
formula, �α stands for the diagonal element of the DFT
hybridization function, Eq. (1). The result of the fit for
β = 1/(kBT ) = 20 eV−1, K = 4, and r = 1/2 is shown in
Fig. 2. The fits represent the DFT hybridization function very
accurately, at least by visual inspection. For each α, there are
two energies εkα negative (that is, below the Fermi level) and
two energies εkα positive (above the Fermi level). Since the
hybridization in the A1 orbital is much smaller than in the E1

and E2 orbitals, it is neglected in all our ED calculations. For
one particular setting of the Coulomb vertex, we have explicitly
checked that dropping the A1 hybridization, indeed, has a very
small effect on the quantities of interest.

The fitted impurity model with four bath orbitals attached to
each of the Co E1 and E2 orbitals is too large to be fully solved
by the Lanczos method. To make the solution manageable,
we employ a reduced many-body basis inspired by the work
of Gunnarsson and Schönhammer [36,37]. A cutoff M is
introduced for each N -electron Hilbert space HN , and the

FIG. 2. Fit of the finite impurity model (lines) to the real and
imaginary parts of the DFT hybridization function (dots) using Eq. (9).
Only the first 60 Matsubara frequencies are plotted but the fit included
the lowest 1024 frequencies.

diagonalization is performed only in a subspace,

H(M)
N = {|dN−N<

b −n+m bnbm〉, 0 � m + n � M}. (10)

In this notation, dN−N<
b −n+m indicates N − N<

b − n + m elec-
trons in the Co d shell, bn indicates n electrons in the bath
orbitals above the Fermi level, and bm means m holes in the
bath orbitals below the Fermi level. The symbol N<

b denotes the
number of bath orbitals located below the Fermi level (N<

b =
2 × 10 = 20 in the present case). This Hilbert-space reduction
can be viewed as an expansion in the hybridization parameters
Vkα around the atomic limit, that is, around the Hilbert space
H(0)

N = {|dN−N<
b b0 b0〉}. We use the cutoff M = 5 and we have

verified that this setting provides essentially converged spectral
densities.

D. Effective Coulomb matrix from the constrained
random-phase approximation

The effective, partially screened Coulomb interaction ma-
trix was obtained for the given geometry using the cRPA
method [38,39]. The supercell was enlarged to achieve a
distance of 28.35 Å between two adjacent graphene layers. We
employed the SPEX code [40], a part of the Jülich full potential
linearized augmented-plane-wave (FLEUR) code family [41].
The calculation of the effective interaction in cRPA is based
on the separation of a chosen set of target bands and on a
consequent consideration of all polarization processes between
target and other (screening) bands. In our calculation, we used
19 bands near the Fermi level to project onto the local basis of
the five d states of the Co adatom.

The constructed 625 elements of the cRPA Coulomb matrix
are shown in Fig. 3. One can contrast this cRPA interaction
matrix with the conventional Slater matrix defined by parame-
ters F0,F2,F4. These parameters have been estimated from the
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FIG. 3. Coulomb matrix for the d orbitals of the Co adatom obtained with the cRPA method (left) and subsequently rotationally averaged by
the Slater approximation (right). The order of the orbitals is given by Umlkn. The outlined element U1221 corresponds to the term U1221c

+
1↑c

+
2↓c2↓c1↑,

the index notation 1–5 runs for the orbital ordering (xy, yz, 3z2 − r2, xz, x2 − y2).

cRPA Coulomb matrix via the effective repulsion and exchange
parameters U , U ′, J as

U = 1

5

5∑
m=1

Ummmm = 1.76 eV,

U ′ = 1

20

5∑
m�=m′=1

Umm′mm′ = 0.73 eV,

J = 1

20

5∑
m�=m′=1

Umm′m′m = 0.52 eV, (11)

F0 = U/5 + 4U ′/5 = 0.93 eV,

F2 = 14J/1.625 = 4.44 eV,

F4 = 0.625F2 = 2.77 eV. (12)

First, the cRPA matrix displays a pronounced anisotropy in
the density-density terms on the main diagonal of the plot.
Interorbital exchange, which is responsible for suppressing
parallel alignment on different orbitals, has been found to
expose slightly higher amplitude for the cRPA matrix. Second,
the intensity of the inter- and intraorbital spin-flip exchange
terms (off-diagonal elements) appears to be lower in the
cRPA case when compared to the spherically symmetric Slater
vertex. Another visible feature is the change of the sign for
interorbital spin-flip terms between cRPA and Slater matrices.
The Coulomb matrix obtained by the cRPA method is rather
small. It is reflected in the Slater parameters extracted from the
symmetrized cRPA matrix, Eqs. (11) and (12).

The quantum-chemical considerations made by Rudenko
et al. may provide a lower bound of the interaction strengths
[24]. Our Slater parameters are by a factor of 2 smaller than
theirs at comparable adatom-graphene distances. There are
possibly three reasons why the cRPA Coulomb matrix turns
out so small. First, the Co adatom is closer to the surface, that
in turn increases overlaps with the graphene p orbitals, thus

leading to an enhanced screening of the Coulomb interaction.
Second, the finite distance between the layers of 28.35 Å, even
though very large, might still artificially reduce the interaction
matrix, as an extrapolation to the infinite layer distance has not
been performed [23,42]. This effect, however, is not expected
to contribute by more than 5% at our interlayer distance.
And third, a systematic study revealed the screening of the
Coulomb interaction at metal and insulator surfaces [43]. In
contrast to common expectations, it is found that screening
at metal surfaces is much more efficient than in bulk, and
as a consequence the Hubbard U is reduced by 30%–40%
compared to the bulk values. The situation in the case of the
Co/graphene system is very similar where metallic screening
is very efficient.

E. Anisotropic double counting

As the two-dimensional geometry of an impurity on a
surface breaks rotational invariance, the Coulomb matrix
exhibits an anisotropy between its components. The mean-
field Coulomb terms incorporated in the DFT band structure
have a corresponding anisotropy that has to be taken into
account when the DC correction is introduced in Eq. (3).
The exact expression for the DC correction is not known.
We deduce it from the filling of the Co d orbitals found in
DFT, since the DC correction acts similarly to the chemical
potential and controls the filling of the impurity states in the
impurity model. We considered two cases: the occupations
resulting from our PLO projection procedure, and also the
smaller occupations computed by Jacob et al. [16], all listed
in Table I. The anisotropy requires the DC correction to be
orbitally dependent, and for its determination we employed
the Hubbard-I approximation, which takes into account a large
portion of the electronic correlations. We started with the
atomic Green’s function augmented by the atomic Coulomb
self-energy determined by exact diagonalization of HCo with
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TABLE II. DC correction (in units of eV) obtained for the
anisotropic cRPA (middle columns) and the rotationally invariant
Slater Coulomb matrix (last column). For comparison, the respective
diagonal cRPA Coulomb matrix elements are (in units of eV) E2:
1.95, E1: 1.33, A1: 2.23.

nLDA
tot μDC

E2
μDC

E1
μDC

A1
μDC

7.02 4.39 3.65 5.25 4.87
8.20 4.91 4.28 6.86 5.69

εαβ set to zero,

Gat
α (iω) = 1

iω + μDC
α − �at

α (iω)
, (13)

and then supplied the crystal-field splitting and the hybridiza-
tion,

GHIA
α (iω) = 1

iω − εα + μDC
α − �at

α (iω) − �α(iω)
. (14)

We included the crystal-field splitting after calculating the
atomic self-energy since its effect is small as compared to the
Coulomb effects, and the thus obtained DC correction matches
superiorly the DFT occupations in the subsequent full QMC
simulation. Then, the minimization of the distance∥∥nLDA

tot − nHIA
tot

∥∥2 =
∑

α

∣∣nLDA
α − nHIA

α

∣∣2
(15)

is performed using the differential evolution procedure [44]
as implemented in SCIPY. Differential evolution is a global
optimization method, which is able to find the global minimum

of a multivariate and possibly nondifferentiable function in
relatively short time.

For the symmetrized Coulomb matrix in the Slater ap-
proximation, we calculated the DC correction in the around
mean-field (AMF) limit given by the expression

μDC = nLDA
tot

[
U

(
1 − 1

2N

)
− J

(
1

2
− 1

2N

)]
, (16)

where N = 2l + 1 with l = 2. The choice of the AMF DC
correction was motivated by its superior performance in the
full QMC test simulations as compared to the fully localized
limit (FLL).

The usual way to determine the isotropic DC correction is
to identify the U in Eq. (16) with F0 in Eq. (12) and J with
the one in Eq. (11). For our calculations, we determined U

and J by spherically averaging the Coulomb matrix twice,
which yields U in Eq. (16) to be directly F0 in Eq. (12), while
the Hund’s coupling is reduced to J = 0.37 eV. The results
are summarized in Table II. The magnitude of the anisotropic
DC corrections follows the Coulomb strength in the respective
directions, as may also be compared with Fig. 3.

IV. DISCUSSION OF QMC RESULTS

QMC has been performed at β = 20 eV−1, using 2.0×106

updates and 5.0×105 warmup updates on each core, and
measuring at each 50th update. The set of possible updates
contained double as well as global moves, the latter including
global spin-flips and global orbital permutations of vertex

FIG. 4. (First three columns) Comparison between the representation-resolved imaginary-time Green’s functions G(τ ) for 5 d orbitals of the
Co impurity calculated with the cRPA and the Slater Coulomb matrix. Total cRPA occupations are given in squared brackets, and orbital ones in
round boxes. The upper and lower row contain the full QMC Green’s functions at lower and higher filling, respectively, together with the atomic
solution in the insets (orbital occupations in brackets). Calculations were performed at β = 20 eV−1. (Last column) Representation-resolved
Matsubara self-energy �(iωn) calculated with the cRPA (upper row) and the Slater Coulomb matrix (lower row), both at higher Co filling. Only
the first 10 frequencies are displayed for a better resolution of the low-energy behavior.
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FIG. 5. (First three columns) Comparison between the representation-resolved DOS A(ω) for the d orbitals of the Co impurity calculated
with the cRPA and the Slater Coulomb matrix. The upper and lower rows contain the DOSes at lower and higher Co filling, respectively. Total
cRPA occupations are given in squared brackets, and orbital ones in round boxes. The spectra are obtained from the imaginary-time Green’s
functions in Fig. 4 by analytical continuation with the SOM solver. (Upper right) Representation-resolved Matsubara self-energy �(iωn)
calculated with the cRPA Coulomb matrix at lower Co filling. Tail fitting was performed between the 10th and the 20th Matsubara frequency.
(Lower right) Comparison between the QMC (with the cRPA Coulomb matrix) and the DFT total DOSes (total occupations in squared brackets).

indices. The calculations have been performed on 192 cores
in parallel and took around 14–15 hours.

A. Physical importance of cRPA

The imaginary-time Green’s functions obtained after solv-
ing the multiorbital AIM by the methods described in Sec. III B
are displayed in Fig. 4. The results obtained with the full cRPA
Coulomb matrix are compared to the ones with the Slater
matrix. Rotationally averaging the Coulomb matrix by the
Slater approximation slightly reduces the overall weight of the
interaction strength, and some portions are redistributed, as it
is seen in Fig. 3. The most pronounced differences occur for
the higher filling considered, ntot = 8.2, especially in the A1

representation. The hybridization in A1 is small, thus the effect
solely stems from the Coulomb interaction and its reduction in
the spherical case. Lowering the Co filling by adjusting the DC
correction presents the orbitals with E1 symmetry as flexible
with respect to their occupation, and E1 crosses the Fermi level.
This is a consequence of the orbitals within this representation
being the most hybridized as well as having the strongest partial
screening of the Coulomb interaction.

From the imaginary-time Green’s function, we performed
analytical continuation using SOM, and the results are sum-
marized in Fig. 5. In agreement to the Green’s functions,
the differences for the lower filling are not as pronounced
as for the higher one. Corresponding to the difference in the
A1 orbitals at higher Co filling, the peak is shifted towards
lower values for the cRPA matrix. Considerable differences,

though not qualitative in nature, can also be seen for the
orbitals with E2 symmetry where the main peak below the
Fermi level is slightly shifted. The overall shape of all spectra
remains the same, including the shape and position of subpeaks
and shoulders. Thus considering anisotropies induced by the
breaking of rotational invariance yields spectra that are largely
invariant. One may thus conclude that the spectra obtained
with the full cRPA Coulomb matrix coincide with the Slater
approximation in many important aspects if the DC corrections
are chosen such that the impurity filling coincides in both
cases.

Notwithstanding the similar shapes of the spectra obtained
with the cRPA and the Slater Coulomb matrix, the self-energies
show considerable differences at low energies. As Co on
graphene at higher Co filling of 8.2 is a usual Fermi-liquid,
the self-energies should tend to zero at very low energies. This
property is better resolved with the calculations using the cRPA
matrix as one may observe in Fig. 4. There is also a change
of the order of the self-energy strengths between the orbitals
of E1 and E2 symmetry, and they intersect in the cRPA case.
The interchange at very low energies between the one of E2

and A1 symmetry is in agreement with the interchange of the
peaks in the corresponding spectra in Fig. 5. The relevance of
taking into account anisotropies in the Coulomb matrix by the
cRPA lies in the calculation of the self-energies. In particular,
eventual estimation of Kondo parameters will rely on a proper
determination of the self-energies. Further physical insights
into the effects of anisotropy of the self-energy on the electronic
configuration will be discussed in Sec. IV C.
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TABLE III. Total and representation-resolved Co d-shell occu-
pations, ground state energies εGS, and expectation values of the
local Hamiltonin 〈HCo〉 at β = 20 eV−1. The upper part of the table
corresponds to the full impurity model, the lower part to the local
Hamiltonian HCo alone not coupled to any bath.

ntot nE2 nE1 nA1 εGS[eV] 〈HCo〉[eV]

Impurity problem
cRPA vertex (QMC) 7.23 0.75 0.56 0.98 − −22.30

8.48 0.78 0.85 0.99 − −29.09
cRPA vertex (ED) 7.26 0.76 0.55 1.00 −63.10 −22.32

8.57 0.79 0.86 1.00 −69.66 −29.11
Slater vertex (QMC) 7.40 0.81 0.55 0.99 − −25.09

8.45 0.84 0.78 0.99 − −31.18
Atomic problem
cRPA vertex (ED) 6.94 0.62 0.66 0.91 −23.10 −23.07

8.80 0.75 0.95 1.00 −29.71 −29.69
Slater vertex (ED) 7.43 0.81 0.56 0.97 −25.09 −25.05

8.87 0.92 0.75 0.98 −31.74 −31.71

B. Electronic structure

Having a look at the occupations resulting from the QMC
calculation with the cRPA Coulomb matrix in Table III, one
observes the orbitals in the A1 representation being nearly fully
occupied, and the spectral weight is thus almost exclusively
below the Fermi level as may be seen in Fig. 5. Furthermore,
the calculations leave the occupation stable within the orbitals
of E2 symmetry, it is exactly 3.0 for the lower Co filling and
3.12 for the higher one. The additional electron at higher Co
filling appears in the E1 representation, as it may also be
seen in the corresponding pDOS. The relevant single-particle
peak changes its position from slightly above the Fermi level
for lower Co filling to slightly below for higher filling, and
it merges together with the other main spectral weight from
below with a pronounced amplification of its height, while its
width remains the same.

From the pDOS, it is seen that the E2 representation has a
small peak at the Fermi level. This peak can also be seen in
the pDOS obtained in ED, see Fig. 6, and it corresponds to
a bath state which happens to be very near the Fermi level.
Furthermore, the self-energy in the E1 representation shows
a singularity upon approaching the low-energy region. This
is due to the reduced filling of this representation and the
re-emergence of the graphene pseudogap as an imprint on
the pDOS of the Co impurity. At last, from the tDOS one
observes that QMC with the cRPA Coulomb matrix yields the
same overall electronic structure at higher filling like in case of
the DFT-DOS projected on the impurity, that is, a three-peak
structure, which is slightly stretched to higher energies due
to the Coulomb effects. Note, however, the reordering of the
peaks; in DFT, the lowest one belongs to E2 while due to the
large DC the lowest one in QMC is A1. All these features
together lead to the conclusion that, with the cRPA Coulomb
matrix, QMC yields the electronic structure of the Co/graphene
system very similar to DFT. In essence, this is a consequence
of the strong screening predicted by cRPA.

C. Electronic configuration

The TRIQS CTHYB solver provides us with the reduced
density matrix ρImp of the Co adatom accumulated during the
QMC simulation, and we are thus able to compute the grand
canonical expectation value

〈HCo〉 = TrCo[ρImpHCo]. (17)

The results are included in Table III.
We diagonalized the local Hamiltonian HCo in Eq. (3), and

obtained the ground state and excited states of the atomic
problem containing the CF splitting. From Table III, one
may see the atomic energy expectation values being near the
ground-state energy of the local Hamiltonian. This means
that the Boltzmann weights of the excited states are small,
even at β = 20 eV−1. As the QMC process describes the
propagation of the local state from one eigenstate of the local
Hamiltonian to another upon a hybridization event, physically
relevant details of the impurity system are already reflected by
the low-energy eigenstates. In particular, neglecting the small
difference between the energy levels within one representation,
the ground eigenstate of the local Hamiltonian corresponding
to the higher filling has an SU(4) symmetry in the cRPA case,
with one hole in the E2 representation, while in the Slater
case the hole is in the E1 representation. In both cases, the
ground state has nine electrons, and the orbital occupations
change differently in taking into account the excited states, on
the atomic as well as on the impurity level. Enforcing a lower
impurity filling, the picture changes considerably: the cRPA
case has ground eigenstate filling of seven with a spin-quartet
being distributed over all orbitals, while in the Slater case it
has a spin-triplet mostly in the E1 representation with eight
electrons in total. These different situations would definitely
be reflected in eventual Kondo properties of the Co/graphene
system, and apply to any system with pronounced geometric
symmetry breaking where anisotropies in the Coulomb in-
teraction occur. In contrast to this atomic picture, reflecting
temperature-dependent features of the isolated impurity, the
hybridization events lead to highly excited local states during
the QMC process, thereby mixing the local states with bath
states and leading to metallic behavior far away from the Kondo
scenario. As our cRPA Coulomb matrix is small compared to
the strength of the hybridization, this situation applies to our
case. The local states are then dissolved into broad peaks as
may be seen in the QMC DOS projected onto the single-particle
states of the Co impurity, see Fig. 5.

To further characterize the effects of anisotropy on the
electronic structure of the Co d orbitals, we computed the
total and orbital-resolved charge and spin fluctuations �O =
〈O2〉 − 〈O〉2, with O being the corresponding operator for the
total or orbital occupancy or spin. The results are presented
in Table IV together with the orbital-resolved effective masses
given by

m∗
α = 1 − Im �′

α(iωn)
∣∣
ωn=0 − Re �′

α(0), (18)

which are related to the inverse of the quasiparticle weights
Zα at the Fermi level. In both the cRPA and the Slater cases,
the total charge fluctuation is on the order of one electron, and
for both considered fillings the cRPA case exhibits stronger
fluctuations than the Slater case. The effective mass anisotropy
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FIG. 6. (First three columns) Comparison between the representation-resolved DOS A(ω) for the d orbitals of the Co impurity calculated
with QMC and ED using the cRPA Coulomb matrix. Orbital and total occupations obtained in ED are given in round boxes. The upper and
lower rows contain the DOSes at smaller and larger fillings, respectively. The calculations were performed at β = 20 eV−1. (Last column)
Corresponding total DOSes A(ω) calculated at lower (upper row) and higher Co filling (lower row).

is solely due to the anisotropy of the self-energy. The hybridiza-
tion term in Eq. (18) is essentially negligible. It can be clearly
seen that changing the total impurity occupation away from
the DFT value enhances the mass renormalization, especially
in the orbitals of the E1 symmetry where the non-Fermi-liquid
behavior prohibits the use of Eq. (18) altogether. Generally,
the effective mass scales with the Coulomb strength, and from
Fig. 3, it is clear that the reduction in Coulomb strength in
the E2 orbitals upon the spherical average leads to a reduced
effective mass. Although not pronounced, the reverse tendency
applies to the orbitals of the E1 symmetry.

D. Comparison of CTHYB with ED

The calculations employing the cRPA approximation to
the Coulomb vertex were repeated with the finite-temperature
exact-diagnolization method outlined in Sec. III C. The com-
putedd-orbital occupations are listed in Table III. They are very
close to the corresponding QMC results, the discrepancy in the
total filling ntot is smaller than 0.1 and the discrepancy in the

orbital fillings is at most 0.02. The grand canonical expectation
value of the local Hamiltonian is computed as

〈HCo〉 = 1

Z

∑
ψ

e−βEψ 〈ψ |HCo|ψ〉 , (19)

where |ψ〉 and Eψ are eigenfunctions and eigenvalues of the
discretized impurity Hamiltonian, Eq. (2). This expression is
equivalent to Eq. (17) and the data listed in Table III indeed
confirm that.

The spectral densities calculated with CTHYB and ED are
compared in Fig. 6. The agreement of the main features near
the Fermi level is very good, discrepancies appear at higher
energies where the analytical continuation of QMC data tends
to overestimate broadening and ED shows artifacts of the bath
discretization. The peak at the Fermi level in the E2 spectrum
appears to originate in a sharp feature of the bath density of
states, Fig. 1, and not in any many-body Kondo physics.

TABLE IV. Total and representation-resolved orbital charge and spin fluctuations of the Co impurity displayed against its total d-shell
occupation. The last three columns show the effective masses computed from the self-energy �(iωn).

vertex ntot �Ntot �NE2 �NE1 �NA1 �S2
tot �Sz

tot �Sz
E2

�Sz
E1

�Sz
A1

m∗
E2

m∗
E1

m∗
A1

cRPA 7.23 0.92 0.32 0.19 0.034 2.39 0.86 0.11 0.20 0.007 1.77 − 1.21
8.48 0.97 0.31 0.24 0.015 1.09 0.37 0.09 0.07 0.003 1.21 1.20 1.07

Slater 7.40 0.83 0.29 0.18 0.026 1.95 0.76 0.08 0.20 0.006 1.38 − 1.15
8.45 0.89 0.26 0.28 0.026 1.05 0.38 0.07 0.10 0.006 1.20 1.27 1.15
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V. CONCLUSIONS

We performed a quantum many-body study of the
Co/graphene system within the Anderson impurity model.
DFT calculations have been performed to determine the
ground-state properties and the basis for the projection onto
localized orbitals centered at the Co impurity. To capture
all geometric anisotropies in the Coulomb interaction, we
calculated the effective, partially screened Coulomb matrix via
cRPA. Having determined all the ingredients for the AIM, its
QMC solution has been found by the TRIQS CTHYB solver,
and subsequently analytically continued to the real axis by
SOM. Within the QMC approach, effect of the cRPA Coulomb
matrix has been compared against its approximate rotationally-
invariant form. Additionally, we applied exact diagonalization
to a subset of the investigated cases and we found a very good
agreement between QMC and ED results. This comparison
verifies the performance of the employed analytical continu-
ation method, and in the same time it illustrates that ED can
provide accurate results also in strongly hybridized cases far
from the atomic limit.

As regards the differences between the cRPA and the
Slater approximation, the electronic structure is not changed
considerably, however, profound differences can be found in
the single-particle self-energies of the correlated Co impurity.
This is natural, as the self-energy contains most of the Coulomb
correlation effects. The Coulomb interaction matrix obtained
via cRPA is comparably small. Further considerations might

thus be possible if it were determined to be larger; the
differences between the cRPA and the Slater approximation
are enhanced in this case, and the effects of anisotropies
might thus compete against the hybridization dressing of the
Co impurity, thereby revealing possible differences also in
the electronic structure. Furthermore, an investigation of the
possible existence and properties of the Kondo effect of Co
on graphene incorporating all crystal-field effects and the
graphene pseudogap could be pursued.
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CHAPTER 4
Multi-orbital Kondo Effect of CoCu𝑛/Cu(111) systems

The Kondo effect, even though known for a long time [Haa34; Hew93; Kon64], has received
new interest due to its relevance for the physics of interacting quantum dots and nanosystems
coupled to (approximately) non-interacting leads or substrates. The underlying picture of
spinful electrons hopping back and forth between the nanosystem and the substrate gets
supplemented by the many-body interactions induced by the local Coulomb interaction
on the nanosystem. Due to its repulsive nature, there will mostly be only one electron
in each orbital, leading to electron localization and the emergence of a local moment via
Hund’s rules. The hopping due to hybridization, on the other hand, leads to a rapidly
changing magnetization on the nanosystem in such a way that the local moment effectively
vanishes. This is the famous Kondo screening of the local moment, and for its occurrence
there needs to be a right proportioning between the Coulomb and hybridization strengths,
but the former needs to be larger than the latter for the local moment to exist.

In the following we closely follow the exposition in Ref. [Col15]. The Kondo effect can be
observed experimentally and theoretically from the emergence of a narrow QP peak (also
named as Kondo peak) in the STS d𝐼/d𝑉 spectrum near or directly at the Fermi level, cf.
Secs. 2.2 and 4.4. There are two main theoretical approaches to the Kondo effect, which can
be explained along the two-dimensional phase space spanned by the Coulomb interaction
and hybridization strengths. One of them is given in terms of the scaling approach, where
the Coulomb interaction strength is assumed fixed, and one works on the hybridization by
reducing the conduction electron bandwidth, along with renormalizing effective interaction
parameters. Thereby, high-energy excitations are successively integrated out, and one
obtains an effective low-energy model which exhibits the Kondo peak. The scaling approach
is explained in more detail in Sec. 4.5. It has applications in many branches of physics (such
as in the renormalization of quantum field theories, see also Appx. A.2, and far-reaching
implications, such as the non-renormalizability of quantized gravitational field theories
(based on spin-2 tensor-bosonic particles, the gravitons) [Zee03]. Even though the scaling
approach is powerful, physically elucidative, and leads to such concepts as universality, it
is also rather technical and computationally very demanding, as, for example, in its NRG
incarnation (cf. the introductory part to Chpt. 4; in fact, in condensed matter theory
renormalization is not about finiteness of physical quantities, for there is the natural cut-off
by the lattice itself; it is rather used as a computational tool [Kop10]). In fact, realistic
multi-orbital calculations are difficult to perform with NRG (there are to date no results
for five(𝑑)-orbital systems), and only possible for effective low-dimensional models (like the
spin-𝑁/2 Kondo models, 𝑁 ≤ 3) together with the imposition of certain symmetries [Sta15].
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– Away from well-separated interaction centres and more generally for the extended electron
liquid (i.e., bulk-like systems), the separation of low- and high-energy spectral regions
dates back to the works of Bohm and Pines [Pin52]. They described the high-energy region
by plasmons (collective electronic excitations) containing the effects of the long-ranged
Coulomb interactions, which can be separated from the low-energy region by a canonical
transformation. The result for the low-energy region is an effective fluid of renormalized
electrons, the QPs, containing the effects of the long-ranged Coulomb interaction. In
principle, this approach is analogous to the SW transformation (Subsec. 4.5.1), which,
applied to the AIM, yields the effective Kondo model.

The other approach is given by Landau’s FL theory [Abr59; Bay07; Col15; Lan56; Pin66],
which describes the low-energy physics by phenomenological considerations supplemented
by microscopic details. Here, the spectral properties of the conduction electrons and
the hybridization strengths are held fixed, while the Coulomb interactions are switched
on adiabatically. The motivation for such an approach is the robustness of general
electron-liquid properties even at strong interactions, such as linear specific heat capacities,
temperature-independent paramagnetic susceptibilities, or the existence of a Fermi surface.
The latter is obviously relevant for the Kondo effect, and its spectral concentration of
QPs within a small energy range around the Fermi level. It was Landau who traced back
the robustness of FL behaviour under strongly enhanced interactions to adiabaticity and
the Pauli principle (Fermi statistics) [Lan56]. In this way, he introduced the notion of
QPs as renormalized electrons, that is, the valid interpretation of the strongly interacting
FL as still being composed of independent particles; still indexed by the same quantum
numbers, such as momentum, spin, and charge; but weakly interacting only, and featured
with effective masses and magnetic moments. And he connected electron liquids with very
different spectral properties, for example, the ones before with the ones after the emergence
of the narrow QP Kondo peak at the Fermi level.

The stability of the QPs is due to their residing within a small region around the Fermi
level, as the phase space for scattering of QPs off the Fermi sea (with subsequent creation
of electron-hole pairs carrying away the QP excitation energy) scales quadratically with
distance from the Fermi surface and with temperature, 𝜏−1(𝜀) = 𝜀2 + 𝜋2𝑇 2, and thus an
infinite QP lifetime is ensured only in its immediate vicinity. The temperature dependence
is due to the Pauli principle, and relates to the temperature dependence of the resistivity
of metals [Abr54], 𝜌(𝑇 ) = 𝜌0 +𝐴𝑇 2, which becomes modified in metals containing Kondo
impurities, when the temperature is low enough as such that the quantum-mechanical
effects prevail over the thermal effects. At zero temperature, a QP above the Fermi level
scatters off the Fermi sea while reducing its energy (and thus preserving its existence)
by electron-hole pair production; the QP energy difference 𝜔 is then absorbed by this
electron-hole pair [Sch99]. From Fermi’s golden rule and energy conservation follows

1
𝜏(𝜀) = 2𝜋

~
∑︁

𝑓

|𝑉𝑖𝑓 |2𝛿(𝜀− 𝜀F)
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≈ 1
2𝜋 |𝑉 |2

ˆ 𝜀

0
d𝜔 𝜌(0)

ˆ 𝜔

0
d𝜀′𝜌(0)

ˆ
d𝜀′′𝜌(0) 𝛿(𝜀− 𝜔 − 𝜀′ + 𝜀′′) = 𝜋

~
|𝑉 |2𝜌3(0) 𝜀2.

(4.1)

The decay rate must obviously be smaller than the QP excitation energy 𝜀, for otherwise
the QP would not be stable. The existence of QPs is accompanied by quasi-holes below
the Fermi level. It has to be noted that the FL behaviour is only valid up to critical
interaction strengths, that is, there will certainly be some range of validity, above which
the switching-on of the interactions cannot be performed adiabatically any more, so that a
phase transition occurs [Col15].

Most computational investigations in condensed matter theory start from an Hamiltonian,
and Landau’s FL theory is indeed able to provide the most general one for the low-energy
excitations in terms of a Taylor expansion to all orders. From the just mentioned stability
of QPs near the Fermi surface follows the commutation rule [�̂�, �̂�k𝜎] = 0 for k ∈ FS.
Thus, there is a dilute QP gas around the Fermi surface, in which the QPs scatter only
forwardly. The occupations 𝑛k𝜎 are the ones of excited states which deviate from the
equilibrium values 𝑛(0)

k𝜎 by an amount 𝛿𝑛k𝜎. The Taylor expansion of the total energy in
these deviations yields at zero order the total energy of the equilibrium Fermi sea, at first
order the energy contributions of the QPs (i.e., their excitation energies), and at second
order their two-body interactions,

𝐸tot = 𝐸
(0)
tot +

∑︁

k𝜎
(𝜀(0)

k𝜎 −𝜇)𝛿𝑛k𝜎+ 1
2

∑︁

k𝜎k′𝜎′|q|<𝛬

𝑓k𝜎,k′𝜎′(𝑞)𝛿𝑛k𝜎(q)𝛿𝑛k′𝜎′(−q)+ . . . . (4.2)

The parameter 𝛬 is smaller than the thickness of the QP shell around the Fermi surface,
and now allows for small momentum transfer between the QPs. The energy levels 𝜀(0)

k𝜎 are
the ones before the presence of QPs, and the first order derivative of the total energy 𝐸tot
yields the renormalized energy levels 𝜀k𝜎 = 𝜀

(0)
k𝜎 − 𝜇+

∑︀
k′𝜎′ 𝑓k𝜎,k′𝜎′𝛿𝑛k′𝜎′ . The occurrence

of the deviations 𝛿𝑛k𝜎 means that the Fermi sea is polarized, so the interactions are
expanded and parametrized in terms of multipole moments of these polarizations. The
resulting parameters are called Landau parameters, and they measure the renormalization
of the non-interacting FL by the interaction effects on the QP energies. In the derivation
of these renormalized energy levels 𝜀k𝜎, the rest of the Fermi sea is assumed frozen despite
the presence of the QP excitations. The same can be assumed to apply for the derivation
of the interaction parameters, 𝑓k𝜎,k′𝜎′ = 𝛿𝜀k𝜎/𝛿𝑛k′𝜎′ |𝑛k′′𝜎′′ . But in principle one may allow
the Fermi surface to relax upon the presence of QPs by considering it as a deformable
sphere, now with (as it comes out, collisionless) collective QP excitations. The relaxation of
the Fermi sea obviously leads to renormalized interactions 𝑓k𝜎,k′𝜎′ = 𝛿𝜀k𝜎/𝛿𝑛k′𝜎′ . Indeed,
this concept applies to the Coulomb interaction and its screening as well, which has been
derived in Sec. 3.1, even though here it has been derived for the neutral FL only, with the
important qualification that 𝑓k𝜎,k′𝜎′(𝑞 = 0) remains finite. This property does not apply
for the charged FL with QPs interacting via the (screened) Coulomb interaction, and we
will shortly describe the resolution below. To simplify the rest of the discussion on Landau
FL theory, the Fermi sea is kept frozen in the following, having in mind, that a subsequent
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treatment can account for its relaxation.
The effective mass 𝑚* is defined by the Fermi momentum (or wave vector) 𝑘F,

𝑝F = 𝑚*
d𝜀(0)

|k|

d|k|

⃒⃒
⃒
|k|=𝑘F

. (4.3)

As the Fermi sea is assumed frozen, the Fermi momentum is a constant. In terms of the
effective mass 𝑚*, the DOS becomes renormalized as well (the neutral FL is considered),

𝑁*(𝜀) = 2
∑︁

k
𝛿(𝜀− 𝜀

(0)
k ) = 2

ˆ
d|k| 4𝜋|k|2

(2𝜋)3 𝛿(𝜀− 𝜀
(0)
|k| ) = |k|2

𝜋2
d|k|
d𝜀(0)

k

𝜀→𝜀F−−−→ 𝑚*𝑝F
𝜋2 . (4.4)

The Landau FL interaction parameters shown in Eq. (4.2) can be decomposed into
a spin-symmetric and -antisymmetric part, 𝑓k𝜎,k′𝜎′ = 𝑓𝑠kk′ + 𝑓𝑎kk′𝜎𝜎′. As mentioned,
both parts of the interaction parameters can be expanded in multipole moments of the
Fermi sea polarizations, that is, Legendre polynomials with coefficients being the Landau
parameters. The expansion is analogous to the one of the Coulomb interaction, see
Eqs. (2.47) and (2.48). By application of a chemical potential 𝛿𝜇, or an external magnetic
field 𝐵, the energy levels of the system now contain the change 𝛿𝜀(0)

k𝜎 = −𝜎𝜇S𝐵 − 𝛿𝜇
(𝜇𝑆 = 𝑔

2𝜇𝐵). Together with the interactions, the QP energy levels contain the renormalized
changes 𝛿𝜀k𝜎 = −𝜎𝜆𝑠𝜇F𝐵 − 𝜆𝑐𝛿𝜇, where the 𝜆’s are renormalization parameters. As the
electron liquid is assumed isotropic, the charge and spin polarizability are renormalized by
the 𝑙 = 0 component only,

𝜒𝑛 = 1
𝑉

𝜕𝑁

𝜕𝜇
= 𝑁*(0)

1 + 𝐹 𝑠0
, (4.5)

𝜒𝑠 = 1
𝑉

𝜕𝑀

𝜕𝐵
= 𝜇2

S𝑁
*(0)

1 + 𝐹 𝑎0
. (4.6)

The normalized Landau parameter 𝐹 𝑠0 = 𝑁*(0)𝑓𝑠0 usually has a positive sign if the
interactions are repulsive, which results in a reduced charge susceptibility. This applies
to Kondo systems, in which the charge fluctuations are frozen out. In FLs with strong
ferromagnetic interactions the normalized Landau parameter 𝐹 𝑎0 is negative, though, and
yields an enhanced spin susceptibility. Indeed, the parameter 1/(1 + 𝐹 𝑎0 ) is the normalized
Wilson ratio, which measures the ratio between the Pauli paramagnetic susceptibility and
the low-temperature specific heat, both being linear in the renormalized DOS at the Fermi
level 𝑁*(0). The Wilson ratio is also called the Stoner enhancement factor, and it is
obviously positive in ferromagnetic materials. The spin susceptibility diverges in case of
𝐹 𝑎0 → −1, leading to the Stoner instability, a ferromagnetic quantum critical point where
the magnetic correlations become infinitely ranged, and to the breakdown of Landau FL
theory. Eqs. (4.5) and (4.6) make apparent that the particle-hole excitations near the
Fermi surface, and not all electrons, are important for the physics of the system. This
explained the experimental findings, which measured smaller values for the susceptibilities
than theories predicted before.
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In terms of normalized Landau parameters, the effective mass is given by 𝑚* = 𝑚(1+𝐹 𝑠1 ),
where 𝐹 𝑠1 is the positive 𝑙 = 1 (dipole) component of the interactions. That the mass
enhancement takes place at dipolar order can be understood by looking at the system of
the QP moving in one direction, and its surrounding electron fluid flowing in the reverse
direction. Now, removing the normalization of the Landau parameter 𝐹 𝑠1 , and using
𝑁*(0) = 𝑚*

𝑚 𝑁(0), one obtains the expression

𝑚* = 𝑚

1 −𝑁(0)𝑓𝑠1
, (4.7)

which may be compared with Eq. (18) in Sec. 3.6, where it has been expressed in terms of
GF quantities. For strong interactions, the effective mass 𝑚* may become very large, a
phenomenon which has first been observed by Mott [Mot68; Mot49], who subsequently
characterized the Mott localization based on his findings. Having large effective masses, the
fermion will start being localized, and the class of heavy-fermion compounds emerges. One
observes for the Co/graphene system that the electrons residing in the different orbitals of
the Co adatom have indeed enhanced effective masses, but the enhancement is not that
pronounced as such that one may consider the electrons being strongly localized (Tab. IV
in Sec. 3.6). Consequently, the Co adatom exhibits rather metallic behaviour, which in
turn is connected with the rather weak Coulomb interaction strengths determined by the
cRPA. In contrast to the situation on graphene, the Co adatom on the Cu(111) surface
exhibits a strong mass renormalization due to Kondo charge localization (Sec. 4.6). At last,
as described for the Co/graphene system (Sec. 3.6), non-FL behaviour may emerge around
the Co adatom at lower Co filling due to the peculiarity of the graphene substrate. This can
be detected from the self-energy at low frequencies/energies, which exhibits a singularity
in the orbitals of 𝐸1 symmetry, meaning that there occurs an enhanced scattering rate and
that the QP lifetime is too short for the FL to emerge.

In charged FLs there acts the long-ranged Coulomb interaction. As in real-space, its
Fourier transform into momentum space, 𝑉 (𝑞) = 𝑒2/𝜀0𝑞

2 (𝜀0 being the vacuum permittiv-
ity), exhibits a singularity at 𝑞 → 0. These are the rapid oscillations at small momenta,
so that the correlations between electrons passing by slowly become highly effective. It is
indeed the long-range behaviour of the Coulomb interaction before screening which results
in the singularity, for the Fourier transform of the Coulomb interaction is actually being
given as the limit 𝑎 → 0 of the Yukawa interaction,

𝑒−𝑎𝑟

4𝜋𝑟 =
ˆ dq

(2𝜋)3
𝑒𝑖qr

𝑞2 + 𝑎2 . (4.8)

In fact, the Yukawa potential asymptotics on the left-hand side of Eq. (4.8) can be
considered as the general real-space screened Coulomb potential behaviour, which is short-
ranged. As calculated in the cRPA approximation, the polarization of the electron fluid
around a QP organizes a polarization cloud which screens the QP charge, and the screened
interaction becomes finite-ranged. Thus, screening is necessary for the Coulomb singularity
resolution in momentum space.

Without screening, however, one may split the Coulomb potential into the long-ranged
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classical polarization part and a short-ranged fluctuating quantum part, 𝜑(r) = 𝜑P(r) +
𝜑Q(r) [Col15; Sil58a; Sil58b] (see also the work of Bohm and Pines mentioned above
[Pin52]). The electron-hole excitations happen within the immediate vicinity of the QP,
and thus belong to the short-ranged quantum part. The renormalized QP energy levels
then have the form 𝜀k𝜎(r) = 𝜀

(0)
k𝜎 + 𝑒𝜑P(r) +

∑︀
k′𝜎′ 𝑓k𝜎k′𝜎′𝛿𝑛k′𝜎′(r). Together with the

Gauss law, the difference between the bare and renormalized energy levels have the form
𝛿𝜀k𝜎(r) =

∑︀
k′𝜎′(𝑒2/𝜀0𝑞

2 + 𝑓k𝜎k′𝜎′)𝛿𝑛k′𝜎′(r). So the Coulomb singularity contributes to
the isotropic spin-symmetric part only, and results in the TF screening of the QP charge.
The charge susceptibility for the charged FL now looks like

𝜒𝑐(𝑞) = 𝑁*(0)
1 + 𝑒2𝑁*(0)

𝜀0𝑞2 + 𝐹 𝑠0
= 𝜒𝑛

1 + 𝜅2

𝑞2

, 𝜅2 = 𝑒2

𝜀0
𝜒𝑛. (4.9)

The TF screening wavelength is defined as 𝑙TF = 𝜅−1. At short distances below 𝑟 ≪ 𝑙TF
(at 𝑞 ≫ 𝜅) the susceptibility is the one of the neutral FL, while at large distances 𝑟 ≫ 𝑙TF
(𝑞 ≪ 𝜅) the susceptibility is suppressed. This result is very important for the study of
correlations as these happen to be rather local, and, additionally, the strongly correlated
electrons behave like a neutral FL. The long-ranged singular part plays only a minor role
and remains unrenormalized. With the Fermi sea being further allowed to relax, the QP
interactions look like

𝐹k𝜎k′𝜎′ = 1
(1 + 𝐹 𝑠0 )2

𝑒2

𝜀0(𝑞2 + 𝜅2) + 𝐹 neutral
k𝜎k′𝜎′ , (4.10)

where the first part is the screened Coulomb correction. The form of the QP interactions
also comes out from GWA/cRPA calculations, and was also used as an input for the “exact
DC” approach in Ref. [Hau15] (Appx. C.1).

As mentioned, the range of validity of Landau FL theory is given by the adiabaticity of
the switching-on procedure for the interactions. If ferromagnetic interactions become too
strong, then one obtains the Stoner instability. It is furthermore known that Landau FLs are
unstable against SC. The BCS (Bardeen-Cooper-Schrieffer) theory explains the mechanism
for the emergence of the SC order by the Cooper pairing of electrons, resulting in QPs
obeying bosonic statistics, which are therefore naturally not described by FL theory [Bar90].
Also in high-𝑇c SCs the resistivity does not show a quadratic, but linear dependence on
temperature, so that Landau FL theory is not valid [Sch99]. Such deviations are shared by
all non-FLs: susceptibilities and heat capacities with logarithmic dependencies instead of
power-law or constant behaviour; scattering rates linear in energy and temperature instead
of being quadratic; resistivities with root-like instead of quadratic temperature behaviour.
So, near quantum-critical points the concept of QPs break down; but that is already
generally the case in one dimension (without the system being near a quantum-critial point)
where the Luttinger liquid theory applies instead, which describes the QPs being unstable
and immediately decaying into collective modes (spinons and holons, independently carrying
away the charge and spin of electrons). The Co/graphene system also may represent a
(local) non-FL system for two possible reasons (cf. Sec. 3.6): first, at lower occupation
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there is the enhanced scattering rate in the orbitals of 𝐸1 symmetry directly pointing to
the graphene carbon atoms; and second, the two-channel Kondo model was suggested
to apply due to the two inequivalent graphene BZ points providing two independent
conduction electron channels for screening the local moment (cf. Sec. 3.5 and references
therein, and short explanation below). Next to the high-𝑇c SCs (see Ref. [Sch99] for a
review), or, generally, metals close to a quantum-critical point, there are other non-FLs like
supermassive heavy fermion materials [Col15], or systems exhibiting the fractional quantum
Hall effect, with fractionally charged particles described by anyon statistics [Bal90].

But there are also less exotic objects like the phonons and magnons, which cannot be
described by Landau FL theory (as they are bosonic), or some Kondo systems, like the
two-channel or the disordered Kondo models (for an overview of Kondo scenarios see
Ref. [Cox98]). The two-channel Kondo model is based on frustration, as the impurity would
like to generate a Kondo singlet with one of the conduction electron channels, while the
other channel also wants to participate in the Kondo effect (overscreening), so both channels
eventually hinder optimal entanglement. A heavy mathematical machinery consisting of
conformal field theory (cf. Ref. [Aff95] and references therein) and Bethe ansatz techniques
[And80; And84; Tsv85] was necessary for the solution of the two-channel Kondo model,
but also a bosonization to obtain a perturbation-theoretic approach is possible [Sch97].
The resulting two-channel Kondo state is characterized by a non-vanishing entropy of
ln(2)/2, meaning that it is not a singlet, but an object with

√
2 DOF, which can be

described by a free Majorana particle. The resistivity in this case has a
√
𝑇 -dependence. –

In the disordered Kondo models the temperature dependence results from a continuous
distribution of Kondo temperatures along the impurities immersed in the metal [Ber95;
Mir97] (a peak-like distribution would yield one Kondo temperature for all). Such a disorder
is realized in many alloys, which are able provide a variety of local environments for an
impurity, a particular and to some extent well-studied example given by U atoms in the
Cu5−𝑥Pd𝑥 alloy [Ber95].

The adiabatic switching-on of the interaction can be defined by a unitary transformation
acting on the electronic creation and annihilation operators in the interaction representation,

𝑎+
k𝜎 = 𝑈𝑐+

k𝜎𝑈
+, (4.11)

with the time-evolution operator

𝑈 = T exp
[︀

− 𝑖

ˆ 0

−∞
d𝑡 𝑉 (𝑡)

]︀
, (4.12)

and where T is the time-ordering operator. To obtain the ground and QP states in the
presence of interactions, one applies the time-evolution operator on them, |𝛹⟩ = 𝑈 |𝛹0⟩ and
|p𝜎⟩ = 𝑈 |k𝜎⟩0, respectively. An electron present above the Fermi sea has an overlap with
a QP in the same state, and this quantity defines the WF renormalization factor

𝑍k =
⃒⃒
⟨k𝜎|𝑐+

k𝜎|𝛹⟩
⃒⃒2
> 0. (4.13)
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The renormalization factor may be seen as an order parameter for the FL [Sch97]. Expanding
the time-evolution operator and collecting terms in Eq. (4.11), the electronic creation
operator in terms of the QP creation operators looks like

𝑐+
k𝜎 =

√︀
𝑍k𝑎

+
k𝜎 +

∑︁

k3+k4=k+k2

𝐴(k4𝜎4,k3𝜎3,k2𝜎2,k𝜎)𝑎+
k4𝜎4

𝑎+
k3𝜎3

𝑎k2𝜎2 + . . . , (4.14)

so the insertion of an electron above the Fermi surface is equivalent to inserting a QP along
with exciting a continuum of other states with an odd number of QPs plus quasi-holes,
which have the same total quantum numbers as the inserted QP. These excitations are
encoded in the spectral function evaluated at the particular quantum numbers of the
inserted electron (𝑀𝜆,k𝜎 = ⟨𝜆|𝑐+

k𝜎|𝛹⟩),

𝐴(k, 𝜔) = − 1
𝜋

Im[𝐺(k, 𝜔 + 𝑖𝛿)]

=
∑︁

𝜆

|𝑀𝜆,k𝜎|2𝛿(𝜀− 𝜆)

= 𝑍k𝜎𝛿(𝜔 − 𝜀k𝜎) +
∑︁

𝜆 ̸=k𝜎
|𝑀𝜆,k𝜎|2𝛿(𝜔 − 𝜀𝜆). (4.15)

There is thus a sharp QP peak near the Fermi level (k is near the Fermi surface), and a
continuum elsewhere comprising other excited states with larger broadening and shorter
lifetimes. – The spectral function in Eq. (4.15) shows that the BZ will contain a 𝛿-
peaked submanifold, but the situation may be carried over to impurity systems as well:
Physically, the localization means that the electronic momenta will be strongly dispersed,
and mathematically one may perform the projection of the energy bands onto the correlated
site as shown in Eq. (3.55). The result is a sum of 𝛿-peaks centred at the Fermi level. In
metals there is still a pronounced dispersion of the QP peak, while in Kondo systems it
experiences a strong renormalization as there is less tolerance towards the relevant energetic
processes to deviate from the Fermi level. The emergence of the peak structure can also
be understood from the spectral functions as shown in Eqs. (3.39)-(3.40), and an explicit
expression of the renormalization factor in terms of the self-energy is given in Eq. (3.41).
Examples for Kondo peaks and renormalization factors can be seen in Fig. 4.3 and Tab. 4.1,
respectively.

In equilibrium, and in the picture of discrete particles, there exists a steady transfer
of electrons hopping back and forth between the substrate and the adatom. In the dual
picture of the continuous charge density, above a certain time scale, the density is constant
and, at low temperatures, reflects a highly correlated state. The electronic tunnelling rate
defines a temperature scale, the Kondo scale, via 𝑘B𝑇K = ~/𝜏 , where 𝜏 is the QP lifetime.
Mathematically, below this scale, conventional PT breaks down as the formulas (e.g., for
the Curie susceptibility) become non-analytic and exhibit singularities. Physically, the
state describing the adatom and the substrate becomes highly entangled. The emergence
of the Kondo state is not related to a quantum phase transition, it can rather be described
equivalently by the scaling or the adiabatic FL approach, and with a smooth cross-over (e.g.,
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to a susceptibility plateau). Sec. 4.5 describes how the Kondo Hamiltonian can be obtained
from the more general AIM Hamiltonian by the scaling approach, that is, by integrating
out the high-energy DOF. The cross-over region marked by the Kondo scale defines also
the region in which the local moment formation described by the AIM Hamiltonian in
Eq. (3.53) competes with the quenching of the local magnetic moment via the Kondo
effect. Two main strategies were pursued to understand the Kondo effect, and to solve
associated Kondo models: One numerically by the NRG defined by Wilson in 1975 [Wil75],
and shortly described in the introductory part to Chpt. 3 (see also references therein);
and one analytically by Andrei and Wiegmann in 1980 by recognizing the integrability of
the Kondo model by the Bethe ansatz [And80]. Another solution was found by Tsvelick
and Wiegmann with the ED of the original AIM Hamiltonian [Tsv85]. As mentioned, in
Sec. 4.5 the scaling approach is discussed in some detail, which yields an understanding
of the emergence of the Kondo state. In the present thesis, though, the general AIM
Hamiltonian is solved by the CTQMC machinery discussed in Sec. 3.3, that is, without
any Feynman-diagrammatic approximations or prior application of techniques to obtain
an effective low-energy model. On the one hand, this means that the microscopic details
and the prevalent physics are somewhat hidden within the enormous complexity of the
calculation. But on the other hand, one has the complete solution of the AIM and can
observe the emergence of the Kondo peak in the spectrum. The prevalent physical effects
(i.e., the low-lying impurity states and the transitions between them) can, however, still
be extracted and characterized by an ED of the local adatom Hamiltonian. In principle,
one can build an effective Kondo Hamiltonian out of that information, and compare its
solution against the CTQMC results. An analogous procedure was performed in Sec. 3.6,
where the CTQMC results were compared against the ones obtained via the ED, which
was eventually possible because the Co/graphene system behaved rather metallic.

There are a few general adatom-substrate geometries in which the Kondo effect operates.
With the advent of STM, individual as well as a collection of correlated impurities on
and below surfaces possessing different physical properties could be investigated with an
unprecedented precision. The Kondo effect could thereby be quantified quite precisely. The
high-dimensional orbital complexity of the impurity problem then demands sophisticated
numerical approaches, of which their results can be compared against the high-precision
experimental data. The bulk materials in which the Kondo effect is important are the
already mentioned heavy-fermion compounds, which can be represented by a dense lattice
of Kondo impurities, the Kondo lattice model. Low densities of impurities were already
investigated in the 30s of the last century [Haa34], and high densities lead to competitions,
such as via the RKKY (Ruderman-Kittel-Kasuya-Yosida) effect with a ferromagnetic
coupling between neighbouring impurity spins [Rud54]. In general, for all these models the
local moments, which emerge out of the localization on the impurity orbitals, transform
into composite QPs with very large effective masses. In the simplest model given by the
symmetric single-orbital AIM, containing one interacting energy level immersed in a bath
of non-interacting conduction electrons with a DOS symmetrically arranged around the
Fermi level, the single energy scale marking the middle of the cross-over region is given
by the Kondo temperature 𝑇K =

√︀
2𝑈𝛥/𝜋 exp(−𝜋𝑈/8𝛥), where 𝛥 is the width of the

Kondo resonance [Col15]. According to the Curie-Weiss law, in a magnetic system a local
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moment exists for 𝑇 ≤ 𝑈/𝛥, that is, at sufficiently low temperatures. Experiments and
the numerical or analytical solution of the AIM, or the associated Kondo model then show
that this local moment is screened below 𝑇 ≤ 𝑇K, that is, when the quantum-mechanical
electron-hopping processes start to become more important than the thermal effects.

This section we investigate the Kondo effect in realistic multi-orbital systems. To this end,
we consider Co adatoms in different coordination environments on the Cu(111) surface, and
describe them within the DFT+AIM approach. – In general, the properties of Anderson
impurities, on the one hand, are to a large extent fixed by the choice of the adatom, and by
the characteristics of the local Coulomb interaction on it. In particular, alongside with the
suppression of a two-valued occupancy in an orbital, the electronic densities in different
orbitals will interact with each other, or a pair of electrons may interchange their spin.
Furthermore, the environment in which the impurity is placed will lift the degeneracies of
its energy levels. The properties of the substrate, on the other hand, can be very diverse.
These may be geometric in nature, as, for example, in the CoCu𝑛/Cu(111) systems to
be considered. Or these may be physical in nature, as it will be the case if the SOC,
intertwining the spin and orbital DOF, is effective. The Fe/TaO(001−3×3) system belongs
to this class of materials (cf. Ref. [Cor17], Sec. 2.3, and the introductory part to Chpt. 3;
of course, the choice of the Fe adatom will also determine the properties of the AIM, but
the role of the substrate is what one would focus on in a corresponding study).

The following sections describe the multi-orbital Kondo effect in general, and subsequently
presents a detailed study of the Kondo effect in the CoCu𝑛/Cu(111) systems. Sec. 4.1
contains the general overview of the Kondo effect in multi-orbital systems, and its relation
to the single-orbital AIM. Sec. 4.2 introduces the CF theory, which is needed for an
understanding of the symmetry breaking due to different coordination environments. The
Kondo scenario can be microscopically characterized by knowing the eigensystems of the
Kondo impurity under consideration, for which the ME operator approach discussed in
Sec. 4.3 is needed. To eventually simulate the differential conductance spectra, Sec. 4.4
develops the d𝐼/d𝑉 formulas. After having established all ingredients needed to understand
and work with the CTQMC solution to the AIM in the context of the Kondo effect, Sec. 4.5
is devoted to the emergence of the Kondo Hamiltonian from the scaling approach. In
particular, Subsec. 4.5.1 describes the SW transformation to integrate out the high-energy
impurity DOF; Subsec. 4.5.2 the poor man’s scaling approach to subsequently integrate out
the high-energy DOF of the conduction electrons; and Subsec. 4.5.3 the orbital contributions
to the Kondo effect. Sec. 4.6 then presents the study on the multi-orbital Kondo effect of
the CoCu𝑛/Cu(111) systems.

4.1 The Kondo effect in multi-orbital systems
The AIM and its CTQMC solution fully encompass the local correlations in the sense of the
CI approach (c.f. introductory part to Chpt. 3). In principle, the description of nanosystems
with a realistic AIM alone is of course still limited, as the solution of the AIM might still
be connected with an outer charge-self-consistency loop [Pou07; Sav04], or the Coulomb
matrix be made energy-dependent to account for retardation effects (Sec. 3.1). However,
first, one may hope the renormalization of the DFT input for the AIM by the correlations
(e.g., the back-reaction effects of the correlations on the conduction electron structure)
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being not that essential for the spectral features near the Fermi level. And second, within
DMFT for realistic systems one has made the experience that the retardations mainly
effect energy regions farer away from the Fermi level, rather leading to satellite structures
only [Bie03; Hel11; Sun02] (see introductory part to Chpt. 3). Albeit within the scaling
approach the high-energy regions are folded onto the low-energy region (Sec. 4.5), one may
expect only gross high-energy features being relevant, while smaller satellite structures
should play a minor, or even negligible, role.

The single-orbital AIM easily explains the formation of local moments in case of one
orbital: within the set of eigensystems the state with one electron is energetically the
lowest. The formation of the local moment can also be understood from a MF treatment
of the Coulomb interaction [Col15],

𝑈𝑛↑𝑛↓ ≈ 𝑈(𝑛↑⟨𝑛↓⟩ + ⟨𝑛↑⟩𝑛↓) − 𝑈⟨𝑛↑⟩⟨𝑛↓⟩. (4.16)

The Hamiltonian EVs are to be computed via a self-consistency condition (including the
hybridization), which can be reformulated to obtain MF equations for the orbital occupation
and magnetic moment. The latter develops for Coulomb strengths larger than a critical
value, 𝑈 ≥ 𝑈c = 𝜋𝛥, where 𝛥 is the hybridization strength (a single orbital impurity is
connected to a flat DOS via a constant hybridization coupling 𝑉 ; cf. Eq. (3.56)). – In the
multi-orbital context, the local-moment formation is additionally driven by Hund’s rule
coupling aligning the spins in different orbitals.

In the single-orbital AIM, the MF treatment neglects the quantum-mechanical many-body
effects which start to prevail at low temperatures, where hopping between the impurity and
the bath may lead to a rapidly changing magnetic moment on the impurity, so that the spin
is effectively screened. This is the well-known Kondo effect detailed in the introductory
part to this chapter (see also references therein). At temperatures well below the critical
scale, the resulting AIM state describes a (total-)spin singlet, in which the spins on the
impurity and in the bath are optimally entangled.

In the multi-orbital context the situation is more complicated. Within the multi-orbital
AIM, each orbital has its own coupling to the substrate, and its own Coulomb repulsion.
Without any inter-orbital interactions, the Kondo effect would happen independently for
each orbital. With a full or rotationally invariant Coulomb interaction (e.g., from a cRPA
calculation or a Slater approximation, respectively; cf. Subsecs. 3.1.2 and 2.1.4), the
Hund’s coupling acting between the orbitals tends to align the spins (Hund’s first rule).
But already the density-density Coulomb matrix adds further interaction terms, which let
the different orbitals interact repulsively with each other. According to the Co/graphene
system (Sec. 3.6), geometric and screening anisotropies have only little effect on the Hund’s
coupling strength, for its origin is quantum-mechanical exchange (cf. Fig. 3.3). The locking
of spins in different orbitals makes the Kondo screening less effective, as spin-flip energies
are then larger. Following this result, for the quantum-mechanical hopping processes to
result in the Kondo effect, temperature must be very low. This implies a very narrow QP
peak, as its width is proportional to the Kondo temperature [Col15]. This already known
circumstance was given a more quantitative estimation by Nevidomskyy and Coleman in
2009 in the context of the NRG, explaining the “Kondo resonance narrowing” in multi-
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orbital systems if the spins are locked together to higher total-spin quantum numbers
[Nev09]. In principle, Hund’s rules also align orbital moments and make their flips within
the orbital Kondo effect more difficult (Sec. 4.5.3).

All these interactions next to the Hubbard-𝑈 intertwine the impurity orbitals and let
them appear as “one big orbital” (cf. Subsec. 4.6.9). In principle, a many-body GF is
actually of dimension 2𝑀 , where 𝑀 is the number of orbitals. To analyse the spectrum of
the solution to a multi-orbital AIM, the GF is projected onto the single-particle states given
by the orbitals, and furthermore one usually looks at the diagonal terms only, and compares
their superposition with the experimental spectrum (other components are usually very
small in geometrically symmetric environments). This procedure has been done in the
Sec. 4.6, see Fig. 4.5, where the multi-orbital Kondo effect, a highly-correlated many-body
state, manifests itself as spectral peaks in the single-particle states. Their emergence
and superposition according to Fano theory is described in Sec. 4.4. The position of the
Kondo peaks and the Kondo temperature, both in the multi-orbital context, can also be
understood within the ME operator approach, see Secs. 4.3 and references therein. Clearly,
the impurity physics is completely described by transitions between its eigenstates, only
they are mediated by the hybridization to the substrate.

Even though the Kondo effect has been known since the 30s of the last century [Haa34],
only in the last few decades has been achieved an in-depth understanding beyond preliminary
perturbational results [And80; Hew93; Tsv85]. With the invention of the STM and the
STS, see Secs. 2.2 and 4.4, the Kondo resonance became experimentally directly visible
(e.g., Fig. 4.1), and its dependence on various physical conditions could be investigated.
The theoretical understanding, on the contrary, remained uneasy, though. A first analytical
solution was found by Andrei using thermodynamic Bethe ansatz and conformal field
theory techniques [And80], ableit only at zero temperature [Sak06]. At non-vanishing
temperatures, analytical solutions seem impossible, and one has to resort to numerical
approaches. Due to the enormous computational complexity of the AIM, or the associated
effective Kondo problem, these were approximative at the beginning. However, these were
also the first numerical results showing the main important features of the multi-orbital
Kondo effect. The more sophisticated numerical approaches of today, like the CTQMC
version employed in the present thesis (Sec. 3.3), are able to completely solve the AIM
without any approximation - except if the AIM itself was set up by an approximation (see,
e.g., discussion at beginning of the present section). In the remainder of this section we
will have a look on a very few on these early numerical results for the multi-orbital Kondo
effect, while the ones obtained with more sophisticated approaches will be shortly discussed
in Sec. 4.6.

Analogous to the cases of low-dimensional geometry and topology in mathematics, or
low-dimensional FLs discussed in the introductory part to the present chapter, the Kondo
effect changes strongly between the cases of one, two, and three orbitals, while at higher
number of orbitals one may expect no essentially new physics to enter the game (except
the case with an infinite number of orbitals, as demonstrated by the 𝑁 → ∞ limit in
the so-called 1/𝑁 expansion of 𝑆𝑈(𝑁) Kondo or other statistical models [Hew93]). The
single-orbital Kondo effect is a spin Kondo effect, and one can either change the chemical
potential, and thus the impurity filling away from half-filling, or apply an external magnetic
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field to suppress it (besides, of course, changing the model parameters, and shifting the
AIM outside of the Kondo regime). The phase space of the single-orbital AIM with respect
to Kondo physics is simple. Introducing a second orbital, one may have a pure spin Kondo
effect at half-filling, which often is denoted as an SU(2) Kondo effect, or a combined spin
and orbital Kondo effect, denoted as SU(4) (albeit in many-orbital models with finite
effective Kondo couplings there will always be orbital contributions at higher diagrammatic
orders). Any degenerate DOF, between which can be flipped, are available to be eventually
screened. In Ref. [Zhu04] the two-orbital model was solved by the NRG. An asymmetry in
the overall spectrum occurred also at half-filling, which means that there happen to be
orbital contributions as well (states with one or three electrons are different in energy), but
the Kondo peak itself is still directly at the Fermi level. At quarter-filling the asymmetry
in the spectrum becomes stronger, while additionally the Kondo peak is pushed above
the Fermi level, which helps to reduce the spectral weight below the Fermi level. The
magnetic-field dependence was also analysed, and shown to include the reduction and
splitting of the Kondo peak, which is clear in view of the spin channels becoming populated
differently, and thus the screening mechanism reduced. The orbital Kondo effect in two
degenerate orbitals was also found on the clean Cr(001) surface [Kol02]. – Three-orbital
calculations with the NRG were not feasible some ten years ago, so that one first tried
to employ the non-crossing approximation (NCA) to solve the three-orbital AIM [Kit06;
Sak06]. The NCA is a self-consistent PT omitting vertex corrections. Even though these
were shown to be important for a proper assessment of the Kondo effect [Gre09] (e.g.,
orbital contributions at half-filling are not contained in the NCA), one was able to work out
nicely the essential changes between the two- and three-orbital AIMs with respect to the
Kondo effect. In Ref. [Kit06] the tunnelling conductance was determined for the analysis
of the competition between Hund’s rule coupling 𝐽H and the CF 𝛥𝜀. Hund’s coupling 𝐽H
is more important in three-orbital than in two-orbital models as the locked spin is larger;
the Kondo temperature 𝑇K is correspondingly lower. However, in both models 𝛥𝜀 tends
to enhance 𝑇K first, as the effect of 𝐽H is reduced between non-degenerate orbitals, while
after some maximal conductivity 𝑇K is reduced again, because the reduced degeneracy
provides less screening mechanisms. As the effectivity of 𝐽H is larger in the three-orbital
model, the conductivity maximum is at larger 𝛥𝜀. In general, the conductivity maxima
are characterized by a change of GS with less symmetry. Lowering 𝛥𝜀 with both models
away from half-filling, 𝑇K becomes enhanced until the SU(4) point is reached in which
the degeneracies are optimal for the orbital flips. – In another study employing the same
numerical approach for the solution of the multi-orbital AIM [Sak06], the dependence
on the magnetic field was analysed in the two- and three-orbital models. It was found
that the SU(2) and SU(4) Kondo models behave similar in an external magnetic field, but
while in case of SU(2) there is a suppression of spin flipping and resulting screening, in
case of SU(4) there is just a decrease of 𝑇K. In the two- and three-orbital models one
may observe again a maximum in the conductivity upon increasing the external magnetic
field. Interestingly, in the two-orbital model at zero temperature the Bethe ansatz reveals
no magnetic dependence of the conductivity at all, while in the case of three orbitals it
even increases with the magnetic field. The temperature is thus modifying the behaviour
at stronger external magnetic fields, resulting in the maximum structure, and revealing
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a competition between enhancement and suppression of the Kondo effect. – For a more
complete overview of different Kondo scenarios, the reader is referred to Ref. [Cox98].

4.2 Crystal Field Theory
We follow Refs. [Ney03; Pav12]. If an atom is placed above or within a substrate, both, atom
(adatom/impurity) and substrate, start to hybridize. Conduction electrons are flexible, and
move within the ionic geometry of this system and its corresponding electrostatic potential
(the geometry of the system is the result of a balance between ionic and electronic DOF,
though, see Chpt. 1). The ionic potential the impurity feels, that is, the CF, is mostly
determined by the neighbouring substrate atoms, and the potential lowers the impurity
energy levels in their directions. The energy levels are thus organized according to the
symmetries of the environment, which define the algebra of a point group. The impurity
Coulomb interaction exhibits the same geometric anisotropies as the energy levels, for its
screening will likewise be directionally dependent, see Subsec. 3.1.2 and Sec. 3.6.

The splitting of the energy levels due to the CF not only reflects the symmetries of
the system, but also the local chemical environment of the adatom [Pav12]. According
to Eq. (3.56), the energy levels and CF splitting can be seen as the static part of the
hybridization function. Alternatively, from the DFT Hamiltonian in Eq. (2.16), the hopping
amplitudes can be computed as (see also Ref. [Pav12])

𝑡𝑖,𝑖
′

𝛼𝜎,𝛼′𝜎′ = −
ˆ

dr𝜓*
𝑖𝛼𝜎(r)

[︂
−1

2𝛥+ 𝑉KS(r)
]︂
𝜓𝑖′𝛼′𝜎′(r). (4.17)

They describe the hopping between different sites 𝑖 and 𝑖′, and the local CF matrix (𝑖 = 𝑖′),
which contains the inter-orbital hoppings and, on the diagonal, the impurity energy levels.
The WFs contained here are usually atomic hydrogen-like orbitals, but one can also use
Wannier orbitals, or the KS orbitals projected onto hydrogen-like orbitals [Kar13; Kun11].
For a many-body treatment beyond DFT in terms of an AIM or Hubbard model, the DFT
Hamiltonian in Eq. (2.16) can be expressed in these local orbitals via the hopping elements
in Eq. (4.17), and subsequently augmented by the local Coulomb interaction and the DC
correction (cf. Sec 3.2). Next to exhibiting the symmetries of the environment, the hopping
integrals eventually encode the local bonding and the band structure at the same time.

We assume a small SOC, so that the angular momentum yields good quantum numbers,
and concentrate on the Coulomb interaction between the impurity and the neighbouring
substrate atoms. In the following we consider only the CF splitting, so that the radial
contributions, which are spherically symmetric, are not taken into account. We further
assume for simplicity that all neighbouring substrate atoms have the same distance from
the impurity. The CF potential is given by (cf. Eqs. (2.47)-(2.49))

𝑉CF(r) = −
𝑁𝑠∑︁

𝑖=1

𝑍𝑒2

|R𝑖 − r|

= −𝑍𝑒2
𝑁𝑠∑︁

𝑖=1

∞∑︁

𝑘=0

𝑟𝑘min
𝑟𝑘+1

max

4𝜋
2𝑘 + 1

𝑘∑︁

𝑚=−𝑘
𝑌𝑘𝑚(r̂)𝑌 *

𝑘𝑚(r̂i), (4.18)
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where 𝑟min = min(𝑎,𝑟) and 𝑟max = max(𝑎,𝑟) for |R𝑖| = 𝑎 and |r| = 𝑟 (the impurity is in the
origin), and where 𝑌 *

𝑘𝑚(r̂) = (−1)𝑚𝑌𝑘,−𝑚(r̂) are the spherical harmonics. For the electrons
on the impurity it is 𝑟 < 𝑎, and defining

𝑞𝑘𝑚 =
√︂

4𝜋
2𝑘 + 1

𝑍𝑒2

𝑎𝑘+1

𝑁𝑠∑︁

𝑖=1
𝑌 *
𝑘𝑚(r̂𝑖), (4.19)

𝐶(𝑘)
𝑚 (r̂) =

√︂
4𝜋

2𝑘 + 1𝑌𝑘𝑚(r̂), (4.20)

one can write the sum as

𝑉CF(r) = −
∞∑︁

𝑘=0

𝑘∑︁

𝑚=−𝑘
𝑟𝑘𝑞𝑘𝑚𝐶

(𝑘)
𝑚 (r̂). (4.21)

One can now compute the matrix elements of this potential in the basis given by the local
orbitals. Within DFT these are given by the KS orbitals projected onto atomic orbitals
within a cut-off radius around the atom, and the quantum numbers are the same as for
the hydrogen atom. Thus, one calculates

⟨𝑛1𝑙1𝑚1𝑠1|𝑉CF|𝑛2𝑙2𝑚2𝑠2⟩ = −𝛿𝑠1𝑠2

∞∑︁

𝑘=0

𝑘∑︁

𝑚=−𝑘
𝑞𝑘𝑚

ˆ
d𝑟 𝑟2𝑟𝑘𝑅𝑛1𝑙1(𝑟)𝑅𝑛2𝑙2(𝑟)

×
ˆ 𝜋

0
d𝜃 sin(𝜃)

ˆ 2𝜋

0
d𝜑𝑌 *

𝑙1𝑚1(𝜃,𝜑)𝐶(𝑘)
𝑚 (𝜃,𝜑)𝑌𝑙2𝑚2(𝜃,𝜑)

= −𝛿𝑠1𝑠2

∞∑︁

𝑘=0

𝑘∑︁

𝑚=−𝑘
𝑞𝑘𝑚⟨𝑛1𝑙1|𝑟𝑘|𝑛2𝑙2⟩

×
√︂

2𝑙2 + 1
2𝑙1 + 1𝐶

𝑙10
𝑙20,𝑘0𝐶

𝑙1𝑚1
𝑙2𝑚2,𝑘𝑚

. (4.22)

The relevant assumption made here is the same angular dependence of the DFT-WFs and
the ones of the hydrogen atom. There furthermore appear the radial parts 𝑅𝑛1𝑙1(𝑟) and
the Clebsch-Gordon coefficients 𝐶 𝑙1𝑚1

𝑙2𝑚2,𝑙3𝑚3
. The double sum is restricted to the values

|𝑙2 − 𝑘| ≤ 𝑙1 ≤ 𝑙2 + 𝑘, (𝑙1 + 𝑙2 + 𝑘) mod 2 = 0, and 𝑚2 +𝑚 = 𝑚1. Thus, the values 𝑘 > 4
vanish since it is 𝑙1 = 𝑙2 = 2. The product of the Clebsch-Gordon coefficients in Eq. (4.22)
together with prefactors and restrictions are also known as Gaunt’s coefficients.

While the Gaunt coefficients are somewhat universal, the symmetries of the environment
are encoded in the 𝑞𝑘𝑚’s. In case of Co/Cu(111) (Sec. 4.6), when the Co adatom is placed
on an fcc-site, it has three nearest Cu neighbours at angles 𝜑 = 0, 2𝜋/3, 4𝜋/3. The non-
vanishing expectation values in Eq. (4.22) relevant for the CF are (𝑅(𝑘) = 𝑅(𝑘)(𝑛12,𝑛22),
where 𝑅(𝑘)(𝑛1𝑙1,𝑛2𝑙2) = ⟨𝑛1𝑙1|𝑟𝑘|𝑛2𝑙2⟩)

⟨𝑛12(±2)𝑠1|𝑉CF|𝑛22(±2)𝑠2⟩ = −𝛿𝑠1𝑠2
𝑍𝑒2

𝑎

(︃
3𝑅(0) − 6

7
𝑅(2)

𝑎2 + 1
7
𝑅(4)

𝑎4

)︃
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⟨𝑛12(±1)𝑠1|𝑉CF|𝑛22(±1)𝑠2⟩ = −𝛿𝑠1𝑠2
𝑍𝑒2

𝑎

(︃
3𝑅(0) + 3

7
𝑅(2)

𝑎2 − 4
7
𝑅(4)

𝑎4

)︃
(4.23)

⟨𝑛120𝑠1|𝑉CF|𝑛220𝑠2⟩ = −𝛿𝑠1𝑠2
𝑍𝑒2

𝑎

(︃
3𝑅(0) + 6

7
𝑅(2)

𝑎2 + 6
7
𝑅(4)

𝑎4

)︃
.

The first term yields the same constant shift for all angular momenta, while the second terms
contribute dominantly to the CF splitting. One can observe that the 𝐸2 directions (𝑚 = ±2)
of the 𝐶3𝑣 symmetry group are shifted upwards by the second term, while the 𝐴1 direction
(𝑚 = 0) is shifted more downwards than the 𝐸1 directions (𝑚 = ±1). These results for
the CF are in line with the ones obtained computationally via downfolding/localization
(Eq. (3.55)), which are listed in Tab. 4.1.

4.3 Many-Electron Operators
As was explained in the introductory part to the present chapter, and will be shown in
Subsec. 4.6.8, the Kondo effect can be understood by looking at the hybridization events
between the adatom/impurity and the substrate, in which the adatom jumps between its
ground eigenstates via virtual transitions to its excited eigenstates. The adatom eigenstates
are ME states determined by the diagonalization of the local Hamiltonian consisting of the
CF and the Coulomb matrix. We again assume a negligible SOC, so that the spin and
orbital moments are valid quantum numbers for the adatom eigenlevels. The one-electron
states are characterized by quantum numbers 𝛾 = {𝑛𝑙𝑚𝜎}, and the ME states by the
quantum numbers 𝛤 = {𝑆𝐿𝑆𝑧𝑀}. For the general discussion here, other quantum numbers,
such as Racah’s seniority number (degree of unpaired electrons), will not be included in
the ME state 𝛤 . We follow closely the review by Irkhin and Irkhin [Irk94], which treats the
ME operator approach in the more general context of bulk systems. This review contains
also more general formulas on most relevant quantities in condensed matter theory, for
example, for the Coulomb interaction.

The ME approach is naturally useful in systems with sufficiently localized electrons, so
that band dispersion is weak. TM systems often are in the intermediate regime, which is
determined by an equal importance of CF, hybridization, and Coulomb interaction strength.
These systems seem to require by default an exhaustive numerical solution of the AIM (for
bulk systems within DMFT), as no kind of truncated PT, or one in a subset of diagrams,
seem advisable for a proper description of such systems. This seems to be the case for
the Co/graphene system (Sec. 3.6), in which the local Coulomb interaction determined by
the cRPA was sufficiently screened, so that hybridization was strong enough to excite the
adatom into its higher-lying eigenstates, which eventually led to a rather metallic adatom
behaviour (possibly with an imprint of graphene’s semi-metallicity in a subset of orbitals).
The CTQMC simulation reflects this property by exhibiting high perturbation expansion
orders during tracing out the phase space. In contrast, as the CoCu𝑛/Cu(111) systems are
seen to exhibit the Kondo effect experimentally, a local, phenomenological description in
terms of its ME eigenstates along with a full simulation seem advisable (cf. Sec. 4.6, and
references therein for experimental results on the Co/Cu(111) system). The Kondo effect
is given by transitions between eigenstates with different total spin and/or total orbital
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momentum quantum numbers, and the intermediate excitations visited include mostly the
ones with one electron more or one less, instead of eigenstates with a larger total particle
number difference to the GS.

The ME-WF can be expanded in Slater determinants consisting of one-electron WFs
(which corresponds to the CI approach). In case the SOC strength is small compared to
the CF, one can alternatively set up the ME-WF by successive 𝐿𝑆-coupling,

𝛹𝛤𝑛(𝑥1, . . . , 𝑥𝑛) =
∑︁

𝛤𝑛−1,𝛾

𝐺𝛤𝑛
𝛤𝑛−1

𝐶𝛤𝑛
𝛤𝑛−1,𝛾

𝛹𝛤𝑛−1(𝑥1, . . . ,𝑥𝑛−1)𝜓𝛾(𝑥𝑛). (4.24)

Here, 𝑥𝑖 = (r𝑖,𝑠𝑖), and the expansion is performed with the Clebsh-Gordan and the
fractional parentage coefficients,

𝐶𝛤𝑛
𝛤𝑛−1,𝛾

= 𝐶𝐿𝑛𝑀𝑛
𝐿𝑛−1𝑀𝑛−1,𝑙𝑚

𝐶
𝑆𝑛𝑆𝑧,𝑛

𝑆𝑛−1𝑆𝑧,𝑛−1,
1
2𝜎
, 𝐺𝛤𝑛

𝛤𝑛−1
= 𝐺𝑆𝑛𝐿𝑛

𝑆𝑛−1𝐿𝑛−1
. (4.25)

If the SOC is appreciable, the 𝑗𝑗-coupling scheme has to be used instead. In accordance
with Eqs. (4.24) and (4.25), the ME states 𝛤𝑛 are accompanied by creation and annihilation
operators,

𝐴+
𝛤𝑛

= 1√
𝑛

∑︁

𝛤𝑛−1,𝛾

𝐺𝛤𝑛
𝛤𝑛−1

𝐶𝛤𝑛
𝛤𝑛−1,𝛾

𝑎+
𝛾 𝐴

+
𝛤𝑛−1

, (4.26)

so that

|𝛤𝑛⟩ = 𝐴+
𝛤𝑛

|0⟩. (4.27)

These satisfy the commutation relations

[𝐴𝛤 , 𝐴+
𝛤 ′ ] = 𝛿𝛤𝛤 ′ + 2

∑︁

𝛾1,𝛾2,𝛾3

𝐶𝛤𝛾1𝛾3𝐶
𝛤 ′
𝛾2𝛾3𝑎

+
𝛾2𝑎𝛾1 . (4.28)

These operators, however, are not appropriate for systems with variable particle numbers;
in particular, 𝐴𝛤𝑚𝐴

+
𝛤𝑛

̸= 0 if 𝑚 < 𝑛. Thus, it is advised to introduce projection factors
and define new ME operators,

𝐴+
𝛤 = 𝐴+

𝛤

∏︁

𝛾

(1 − 𝑛𝛾). (4.29)

With these, one has, for example, 𝐴𝛤𝐴+
𝛤 ′ = 𝛿𝛤𝛤 ′

∏︀
𝛾(1 − 𝑛𝛾). This modification serves

enough for the orthogonality of the ME operators and the description of the adatom
eigenstates (in particular, they do not mediate any more between eigenstates of different
total particle number), of which their change in occupation are already described by the
hybridization.

One may reformulate the AIM Hamiltonian in terms of ME operators. To this end, one
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defines Hubbard operators 𝑋(𝛤,𝛤 ′) = 𝐴+
𝛤𝐴𝛤 ′ = |𝛤 ⟩⟨𝛤 ′|. In terms of these,

𝑎+
𝛾 =

∑︁

𝑛

√
𝑛
∑︁

𝛤𝑛𝛤𝑛−1

𝐺𝛤𝑛
𝛤𝑛−1

𝐶𝛤𝑛
𝛤𝑛−1,𝛾

𝑋(𝛤𝑛,𝛤𝑛−1). (4.30)

By the very nature of diagonalization, the resulting local Hamiltonian is diagonal in the
spin and orbital momentum projections, while it still may mediate between the other
quantum number projections (such as the Racah seniority number mentioned above). The
hybridization may be expressed likewise in terms of Hubbard operators, see Ref. [Irk94] for
a thorough discussion. One may further note at this point that the full power of Clebsh-
Gordan coefficients can be used in the context of the AIM Hamiltonian by reformulating
both, the local Hamiltonian and the hybridization, as an expansion in density, spin, and
orbital momentum operators. This is possible in view of the structure of the Hubbard
term given in Eq. (2.46), where the creation and annihilation operators can be organized,
together with help of the expansion in Eq. (2.47) and the Clebsh-Gordan coefficients (cf.
Eq. (4.21)), into scalar products of irreducible tensor operators, which encode, amongst
others, density, spin, and angular momentum operators. Hund’s rules then also follow from
the treatment of the local part.

The ME operator approach can naturally be used in the context of the multi-orbital
Kondo effect. In principle this can be important for the implementation of the CTQMC
solution to the AIM or the NRG solution of the corresponding effective Kondo model (cf.
Subsec. 4.5.1). Instead of writing here the complicated formulas, which just express the
impurity one-electron operators in an expansion of ME Hubbard operators with expansion
coefficients given by Clebsh-Gordan couplings (both, in the 𝐿𝑆- and the 𝑗𝑗-coupling), and
which can be found in Ref. [Irk94], we only discuss the general results, as we do not need
more for the understanding of the CTQMC solution. However, a short digression into
formulas for the multi-orbital Kondo temperature will be made in the following.

As mentioned, the AIM Hamiltonian can be expressed in terms of ME operators. The
most important states for the multi-orbital Kondo effect are the GSs with 𝑁 electrons, and
the excited states with 𝑁 − 1 electrons (the states with 𝑁 + 1 electrons are higher in energy
due to Coulomb repulsion). In principle, one can include higher-excited states (which is
done by the CTQMC impurity solver), but the formulas then become very demanding, and
they are of less relevance for the main contributions to the Kondo effect. The excited states
can be integrated out by the SW transformation discussed in Subsec. 4.5.1, and one obtains
the effective Kondo model, also called 𝑠-𝑑 exchange model, as it describes the effective
direct exchange interaction between the (𝑑-)impurity and the conduction (𝑠-)electrons in
the substrate. After calculating the impurity GFs, one obtains the Kondo temperature as
the width of the corresponding Lorentzian-shaped spectrum,

𝑇K ≈ 𝐷 exp
[︂

−
(︂

(2𝑆 + 1)(𝑆𝐿+ 1)
(2𝑆′ + 1)(2𝐿′ + 1) − 1

)︂−1 1
2𝜌(𝜀F)𝐽K

]︂
, (4.31)

where 𝐷 is the conduction electron bandwidth, 𝜌(𝜀F) the value of the conduction electron
DOS at the Fermi level, and 𝐽K ≈ |𝑉 |2/(𝐸𝐿𝑆 − 𝐸𝐿′𝑆′) the Kondo coupling strength (cf.
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Eq. (4.53)). 𝐸𝐿𝑆 is the energy of the GSs, and 𝐸𝐿′𝑆′ the energy of the excited states with
one electron less.

Besides that the multi-orbital Kondo temperature 𝑇K given in Eq. (4.31) is shown
only up to first order in SW-PT (Subsec. 4.5.1; higher orders can be derived in within
renormalization group (RG)-PT), it does neither take into account CF effects as detailed
in Sec. 4.2, nor orbital flips as explained in Subsec. 4.5.3, and it considers only the lowest-
lying eigenstates. Within these approximations one may observe from Eq. (4.31) that at
half-filling 𝑇K is the lowest, while at any occupation away from half-filling it increases
because Hund’s rules align fewer spins. However, CF effects lower the GS degeneracy,
and 𝑇K increases because Hund’s rules are less effective between non-degenerate orbitals.
Furthermore, orbital contributions enhance 𝑇K as well because they act as additional
degeneracies. And at last, according to experience also with the CoCu𝑛/Cu(111) systems
(Sec. 4.6), there often happens to exist a bunch of low-lying eigenstates, which neither
belong to the GS multiplet, nor are they connected to the GSs by a hybridization event,
because they have the same total particle number (they are distinguished by other quantum
numbers). These low-lying states contribute with their own Kondo effect. – One may
finally note at this point, that the effective Kondo model at half-filling does not take into
account the fact that at higher orders in PT orbital contributions may appear, if one
starts an orbital flip from an excited state containing a hole or an additional electron. In
principle this might enhance 𝑇K as well, albeit to a small extent; but such processes make
up one particular difference between the AIM and its effective Kondo model. Especially in
the case of TM systems, where Hund’s rule couplings are often not much stronger than
hybridization strengths, these processes might further decrease the comparability with
effective Kondo models (next to other complexities due to the multi-orbital nature).

4.4 Asymmetry factors in multi-orbital systems

In the present section we derive the scanning tunnelling spectra as being used for the
CoCu𝑛/Cu(111) systems (Subsec. 4.6.3). To this end, we closely follow the derivation in
Ref. [Mad01], and extend the AIM Hamiltonian in Eq. (3.53) by coupling both, adatom
and substrate, to the tip above the surface,

�̂�tip =
∑︁

𝜎

𝜀𝑡𝑐
+
𝑡𝜎𝑐𝑡𝜎 +

∑︁

𝛼𝜎

(𝑀𝛼𝑡𝑐
+
𝛼𝜎𝑐𝑡𝜎 +𝑀*

𝑡𝛼𝑐
+
𝑡𝜎𝑐𝛼𝜎)

+
∑︁

𝑛k𝜎
(𝑀𝑛k𝑡𝑐

+
𝑛k𝜎𝑐𝑡𝜎 +𝑀*

𝑡𝑛k𝑐
+
𝑡𝜎𝑐𝑛k𝜎). (4.32)

The tip is assumed spherical, that is, it has a single 𝑠-like orbital, which is labelled by
the index 𝑡. This assumption is made in many theoretical explanations accompanying
STM experiments, and only a few studies go beyond this approximation, cf. Refs. [Mán15;
Mán14; Pal12]. The generalization to multi-orbital tips is straightforward, and would imply
tracing over all tip states in the following formulas; but it also would imply to simulate the
tip electronic structure, which can be very demanding. The current is given by the rate of
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change of the tip particle number operator �̂�𝑡,

𝐼 = 𝑒

⟨
𝜕�̂�𝑡
𝜕𝑡

⟩
= 𝑖𝑒

~

⟨
[�̂�,�̂�𝑡]

⟩

= 𝑖𝑒

~
∑︁

𝛼𝜎

(𝑀𝛼𝑡⟨𝑐+
𝛼𝜎𝑐𝑡𝜎⟩ −𝑀*

𝑡𝛼⟨𝑐+
𝑡𝜎𝑐𝛼𝜎⟩) − 𝑖𝑒

~
∑︁

𝑛k𝜎
(𝑀𝑛k𝑡⟨𝑐+

𝑛k𝜎𝑐𝑡𝜎⟩ −𝑀*
𝑡𝑛k⟨𝑐+

𝑡𝜎𝑐𝑛k𝜎⟩)

= 2𝑖𝑒
~

ˆ
d𝜀 𝜌tip(𝜀)(𝑓(𝜀− 𝑒𝑉 ) − 𝑓(𝜀))

×

[︃∑︁

𝛼𝛽

𝑀*
𝑡𝛼(𝐺a

𝛼𝛽(𝜀) −𝐺r
𝛼𝛽(𝜀))𝑀𝛽𝑡

+
∑︁

𝛼𝑛k
𝑀*
𝑡𝛼(𝐺a

𝛼𝑛k(𝜀) −𝐺r
𝛼𝑛k(𝜀))𝑀𝑛k𝑡 +

∑︁

𝑛k𝛼
𝑀*
𝑡𝑛k(𝐺a

𝑛k𝛼(𝜀) −𝐺r
𝑛k𝛼(𝜀))𝑀𝛼𝑡

+
∑︁

𝑛k𝑛′k′

𝑀*
𝑡𝑛k(𝐺a

𝑛k𝑛′k′(𝜀) −𝐺r
𝑛k𝑛′k′(𝜀))𝑀𝑛′k′𝑡

]︃
. (4.33)

The last lines rely on a leading-order expansion in 𝑀 of the expectation values appearing
in the second line, that is, on Fermi’s golden rule. The difference between advanced and
retarded GFs is just the (non-time-ordered) expectation value of respective operators. The
conduction electron states within the GFs in the last lines are the ones perturbed by the
presence of the adatom, which are given in terms of the unperturbed GFs by

𝐺𝛼𝑛k(𝜀) = 𝐺𝛼(𝜀)𝑉 *
𝛼𝑛k𝐺

(0)
𝑛k(𝜀)

𝐺𝑛k𝑛′k′(𝜀) = 𝛿𝑛k𝑛′k′𝐺
(0)
𝑛k(𝜀) +

∑︁

𝛼𝛽

𝐺
(0)
𝑛k(𝜀)𝑉𝑛k𝛼𝐺𝛼𝛽(𝜀)𝑉 *

𝛽𝑛′k′𝐺
(0)
𝑛′k′(𝜀). (4.34)

Inserting the unperturbed conduction electron GF and reorganizing the expression, one
obtains

𝐼 = 4𝑒
~

ˆ
d𝜀 𝜌tip(𝜀)(𝑓(𝜀− 𝑒𝑉 ) − 𝑓(𝜀))

× Im
[︃∑︁

𝑛k
𝑀*
𝑡𝑛k𝐺

(0) a
𝑛k (𝜀)𝑀𝑛k𝑡

+
∑︁

𝛼𝛽

(︀
𝑀*
𝑡𝛼 +

∑︁

𝑛k
𝑀*
𝑡𝑛k𝐺

(0) a
𝑛k (𝜀)𝑉𝑛k𝛼

)︀
𝐺a
𝛼𝛽(𝜀)

(︀
𝑀𝛽𝑡 +

∑︁

𝑛k
𝑉 *
𝛽𝑛k𝐺

(0) a
𝑛k (𝜀)𝑀𝑛k𝑡

)︀
]︃
.

(4.35)

Separating the real and imaginary parts from the unperturbed conduction electron GF,

Re(𝐺(0) 𝑎
𝑛k (𝜀)) = P 1

𝜀− 𝜀
(0)
𝑛k

, Im(𝐺(0) 𝑎
𝑛k (𝜀)) = 𝜋𝛿(𝜀− 𝜀

(0)
𝑛k), (4.36)
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where P denotes the principal value, one defines the parameters

𝐴𝛼𝑡(𝜀) = 𝑀𝛼𝑡+
∑︁

𝑛k
𝑉 *
𝛼𝑛kRe(𝐺𝑛k(𝜀))𝑀𝑛k𝑡, 𝐵𝛼𝑡(𝜀) =

∑︁

𝑛k
𝑉𝛼𝑛kIm(𝐺𝑛k(𝜀))𝑀𝑛k𝑡. (4.37)

Thus, one simply has

𝐼 = 4𝑒
~

ˆ
d𝜀 𝜌tip(𝜀)(𝑓(𝜀− 𝑒𝑉 ) − 𝑓(𝜀))

× Im
[︃∑︁

𝑛k
|𝑀𝑡𝑛k|2𝐺(0) a

𝑛k (𝜀) +
∑︁

𝛼𝛽

(𝐴*
𝑡𝛼(𝜀) + 𝑖𝐵*

𝑡𝛼(𝜀))𝐺a
𝛼𝛽(𝜀)(𝐴𝛽𝑡(𝜀) + 𝑖𝐵𝛽𝑡(𝜀))

]︃
.

(4.38)

Due to the non-vanishing imaginary part of the self-energy, the advanced impurity GF
𝐺a
𝛼𝛽(𝜀) is the same as given in Eq. (3.57), and we drop its superscript. At this point

we assume a diagonal impurity GF, thereby reflecting the symmetries of the adatom
environment, and thus its orbitals having no overlap, 𝐺𝛼𝛽(𝜀) = 𝛿𝛼𝛽𝐺𝛼(𝜀). Writing out the
adatom GF, using Eq. (4.36), and reorganizing once more again, one obtains

𝐼 = 4𝑒
~

ˆ
d𝜀 𝜌tip(𝜀)(𝑓(𝜀− 𝑒𝑉 ) − 𝑓(𝜀))

×

[︃∑︁

𝑛k
|𝑀𝑡𝑛k|2Im(𝐺(0)

𝑛k) +
∑︁

𝛼

|𝐵𝑡𝛼(𝜀)|2

Im(�̃�𝛼(𝜀))
|𝑞𝛼𝑡(𝜀)|2 + 2𝜀𝛼(𝜀)Re(𝑞𝛼𝑡(𝜀)) − 1

1 + (𝜀𝛼(𝜀))2

]︃

(4.39)

with the asymmetry and Fano parameters

𝑞𝛼𝑡(𝜀) = 𝐴𝛼𝑡(𝜀)
𝐵𝛼𝑡(𝜀)

, 𝜀𝛼(𝜀) = 𝜀− [𝜀𝛼 + Re(𝛥(𝜀) +𝛴(𝜀))]
Im(𝛥(𝜀) +𝛴(𝜀)) (4.40)

(cf. Eq. (4.65)). The first term in squared brackets in Eq. (4.39) contains the tunnelling
of electrons from the tip to the unperturbed substrate, and can often be assumed as
contributing only a constant background to the current. This is for example the case if
the substrate is metallic with a slowly varying DOS. The second term in squared brackets
describes the tunnelling from the tip into the impurity states, including virtual transitions
into the substrate (the conduction states), and from the tip into conduction states with
virtual transitions into the impurity.

In most, if not all, cases one does not know the explicit k-dependence of the couplings
𝑉𝑛k𝛼 and 𝑀𝑛k𝛼, so these are dropped. The remaining k-summations can then be performed
as with the k-summation of the Bloch GF to obtain the localized GF, cf. Eq. (3.55). For
the 𝐵 parameter this means the simplification

𝐵𝛼𝑡(𝜀) =
∑︁

𝑛

𝑉𝛼𝑛

[︂∑︁

k
Im(𝐺𝑛k(𝜀))

]︂
𝑀𝑛𝑡, (4.41)
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where the expression in squared brackets is proportional to the DOS in the band 𝑛. Now,
the band states labeled by the band index 𝑛 can be projected onto local orbitals positioned
at the sites through which the conduction electrons propagate. This procedure is dicussed
in more detail in Ref. [Kar11b], especially the fact that in most cases the number of bands
is larger than the number of orbitals (so this projection is not bijective). To leading order,
the most important conduction orbitals are the non-correlated orbitals of the impurity
itself [Fra15]. This considerably simplifies the determination of the conduction states,
because they can be obtained by using regular DFT projectors including both correlated
and non-correlated orbitals at the correlated sites. Given the conduction orbitals indexed
by 𝜈 at the correlated site R, the states are given by

|𝜈R𝜎⟩ =
∑︁

𝑛

𝑇 *
𝜈𝑛

∑︁

k
𝑒𝑖kR|𝑛k𝜎⟩. (4.42)

For example, one of the hybridization terms in the AIM Hamiltonian in Eq. (3.53) then
looks like

∑︁

𝑛k𝛼
𝑉𝑛k𝛼𝑐

+
𝑛k𝜎𝑐𝛼𝜎 =

∑︁

𝜈R𝛼

𝑉𝜈R𝛼𝑐
+
𝜈R𝜎𝑐𝛼𝜎. (4.43)

Finally, the discussion can be simplified by specifying which correlated orbitals are
coupled to which conduction orbitals due to symmetry reasons. This has been done for the
CoCu𝑛/Cu(111) systems. In a subset of the systems, however, the correlated Co adatom
on the Cu(111) surface was placed next to symmetry breaking Cu chains supported on the
surface. The symmetry breaking induces hybridizations within the conduction and within
correlated orbitals, respectively, which were previously defined without the presence of
the Cu chain and according to the 𝐶3𝑣 symmetry of the system. If the correlated orbitals
hybridize with each other significantly, one has to consider the off-diagonal elements of the
impurity GF matrix 𝐺𝛼𝛽(𝜀) in Eq. (4.39) (as in Eq. (4.38)), which is difficult to compute
with CTQMC, though. A diagonalization of the local impurity GF as given in Eq. (3.55)
also does not help, because for the CTQMC calculation the Coulomb interaction matrix
has to be transformed accordingly, which renders the matrix rather complicated. According
to experiences (with the seven(𝑓)-orbital system 𝛿-Pu, which has likewise non-negligible
off-diagonal elements and complex hybridizations due to a considerable SOC strength), the
autopartition algorithm within TRIQS/CTHYB does not help with this problem (Sec. 3.3).
But as the correlated orbitals happen to be rather localized, their hybridization due to
symmetry breaking often remains small, so a diagonal approximation can still be employed.

The hybridizations within the conduction orbitals due to symmetry breaking, however,
cannot be neglected. In the publication included in the present chapter the situation
has been accounted for by adapting the tunnelling ratios 𝛾𝛼 = 𝑀𝛼𝑡/𝑀𝑛𝑡 appearing in
the asymmetry factors 𝑞𝛼𝑡(𝜀) in Eq. (4.40), where 𝑀𝑛𝑡 has been assumed constant for all
conduction orbitals. A more precise approach would be to reconsider which correlated
orbitals couple to which conduction orbitals, possibly with the conduction electron GF
𝐺𝜈R(𝜀) defined in a basis adapted to the geometric environment (a superposition of cubic
harmonics, i.e., hybrid orbitals). The form of the equations (e.g., Eq. (4.39)) remains
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invariant under basis transformations, though. – In Subsec. 4.6.3 Eq. (4.39) will be further
worked on; there also the meanings of the asymmetry and Fano parameters will be clarified
along the results for the CoCu𝑛/Cu(111) systems.

4.5 The Kondo Hamiltonian from scaling
As described in the introductory part to the present chapter, there are two complementary
approaches to the Kondo model. There is the scaling approach starting from the isolated
interacting atom, which is progressively immersed in the sea of conduction electrons. This
amounts to equivalently lowering the temperature progressively, so that the local moment
forms and finally the FL emerges via its screening. And there is the adiabatic approach
starting from the non-interacting FL, which describes the adiabatic renormalization of
its Friedel-Anderson resonance by switching on the interactions, resulting in the well-
known Kondo resonance [Col15]. The spectrum is mathematically displayed in Eqs. (3.37)
and (3.39), showing the energy positions of the QP- and hole-like excitations relative
to the Fermi level. In the symmetric single-orbital AIM, in the non-interacting limit
the Friedel-Anderson resonance is given by a Lorentzian at the Fermi level of width 𝛥
(the hybridization strength), which in the strongly interacting region develops a three-
peak structure showing the narrower Kondo resonance associated with the rapid spin-
fluctuations of the local moment, and the two symmetrically arranged broad peaks farer
away associated with the valence fluctuations (see Fig. 4.3). Still, due to the Friedel sum
rule, Langreth found that the spectral value at the Fermi level is an adiabatic invariant,
that is, 𝐴𝑓 (𝜔 = 0) = sin2(𝛿𝑓 (0))/𝜋𝛥, a formula also valid at infinite interaction strength
[Col15] (the scattering phase shift 𝛿𝑓 (𝜔) is the phase of the S-matrix; if 𝛿𝑓 (0) = 𝜋

2 , the
Friedel sum rule tells that the occupation of the single-orbital AIM is 𝑛𝑓 = 1, what is the
case for an optimal Kondo effect). The resonance narrowing means that the QP weight
becomes much smaller than the hybridization strength, 𝑍 ≪ 𝛥, and most of the spectral
weight is pushed away from the Fermi level to the valence peaks. The QP weight 𝑍
measures the area under the resonance with height 𝐴𝑓 (𝜔 = 0).

What changes within the GF upon adiabatically switching on the interactions is the
self-energy. In the FL theory for an interacting impurity coupled to a substrate, it obeys
the general Taylor expansion up to second order

𝛴𝑓 (𝜔 − 𝑖𝜂) = 𝛴𝑓 (0) + (1 − 𝑍−1)𝜔 + 𝑖𝐴𝜔2. (4.44)

The first term on the right-hand side describes a remaining scattering strength at zero energy,
and the second term the linear dependence common to FL theory (c.f. Figs. 3.4 and 3.5).
The last term is due to the Pauli exclusion principle, and describes the quadratic phase-
space energy dependence of particle-hole pair production mentioned in the introductory
part to the present chapter. There, the QP lifetime was stated to be inversely proportional
to the square of the energy separation to the Fermi level.

In STM experiments, one is mostly interested in the low-energy physics of the nanosystem
coupled to the substrate. Small biases are applied, and the electronic structure around
the Fermi level can be recorded. High biases can be applied as well, but if the system
is electronically flexible and chemically reactive, one cannot be sure that the system
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changes its state. The low-energy features measured in STM experiments can nowadays be
compared one-to-one to numerical solutions to realistic models.

In this section we discuss the emergence of the low-energy Kondo from the AIM Hamilto-
nian via the scaling approach as implemented by the RG transformation. The Hamiltonian
changes upon integrating out the high-energy DOF, the effects of which are included in new
effective couplings, which then control the low-energy behaviour of the system. In principle,
only certain gross high-energy features are relevant for the low-energy physics; for example,
the van-Hove singularities in the graphene DOS contribute to the Kondo temperature and
its asymmetric voltage dependence [Weh10] (Sec. 3.5). We will not discuss the emergence
of universality classes of systems with the same low-energy physics by RG transformations
[Col15], or the fact that the AIM Hamiltonian can itself be derived from an even more
general Hamiltonian [Hew93]. Instead, we will introduce the RG transformation, and
apply it to the AIM Hamiltonian. The machinery explained in the following will not be
applied computationally to the CoCu𝑛/Cu(111) systems (Sec. 4.6), but serve as a means
to understand the Kondo effect; the interpretation of the CTQMC results based on the
ME operator approach (Sec. 4.3) rely on a prior derivation of the Kondo Hamiltonian, as
the latter describes the spin and orbital transitions between the adatom eigenstates.

4.5.1 The Schrieffer-Wolff transformation

We again follow the lines of Ref. [Col15]. The AIM Hamiltonian (Eq. (3.53)) consists of
three parts: The Hamiltonian of the adatom/impurity containing its energy levels and
the local interactions, the energies of the non-interacting substrate, and the hybridization
between impurity and substrate. In the simplest case, the substrate DOS is flat and of finite
bandwidth. Transitions between different impurity states are realized via intermediate
transitions into conduction electron states, and vice versa. The Hamiltonian can thus
be divided into a low- and a high-energy part, �̂�L and �̂�H, and the hybridization 𝑉
(generalization to multi-orbital systems is straightforward, one might think the orbital
indices being suppressed):

�̂�(𝐷) =
(︂
�̂�L 𝑉 +

𝑉 �̂�H

)︂
. (4.45)

The parameter 𝐷 marks the cut-off between the low- and the high-energy states of
both, impurity and conduction electrons. The Hamiltonian in this decomposition is
diagonalized by a unitary transformation, ^̃𝐻 = �̂��̂�(𝐷)�̂�+, and after projection with 𝑃

onto the upper left part a low-energy Hamiltonian is obtained, ^̃𝐻L = 𝑃L
^̃𝐻𝑃L. Rescaling,

�̂�(𝐷′) = 𝑏 ^̃𝐻L, leads to a renormalized Hamiltonian of the same form as the original
Hamiltonian. Eventually one obtains a continuous flow with respect to renormalizing the
bandwidth, and the limit is obtained for 𝑏 → 1. The RG is obviously a semigroup in the
mathematical sense as it contains a projection; there is not an element of the group being
the inverse of another element of the group.

As the Hamiltonian is supposed to retain its form, its couplings become renormalized,
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which is mathematically expressed by the 𝛽-function,

𝜕𝑔𝑗
𝜕(ln(𝐷)) = 𝛽𝑗({𝑔𝑖}). (4.46)

The 𝛽-function is mostly known from high-energy physics, for example, in relation to the
asymptotic freedom in quantum chromodynamics, but its relevance for the low-energy
and statistical physics is likewise as high. The logarithm is continuously growing, so one
can make immediate characterizations for the running coupling constants: If 𝛽 < 0, the
coupling is relevant, because it grows if the bandwidth is reduced; for 𝛽 > 0 the coupling
is irrelevant. Integrating out the high-energy DOF means tracing out a path in the phase
space from a point in which the system contains the high-energy DOF to a point in the
low-energy region. Usually, at higher energies the excited states are reached easily, while at
lower energies there remain virtual transitions only. There is a cross-over region along the
path in phase space in which the Hamiltonian changes its structure, and one finally arrives
at some fixed point below the lowest energy scale of the system, where the Hamiltonian
remains invariant under further RG transformations. The structure of the Hamiltonian
and its couplings at the fixed point describe the low-energy physics of the system. In
case of the AIM, the cross-over region marks the transition from the local-moment to the
Kondo regime, where only the spin DOF are left, and the interaction is described by spin
exchange between the local moment and the conduction electrons.

The diagonalization of the Hamiltonian in Eq. (4.45) is performed by the SW transfor-
mation [Sch66],

�̂�

(︂
�̂�L 𝜆𝑉 +

𝜆𝑉 �̂�H

)︂
�̂�+ =

(︃ ^̃𝐻L 0
0 ^̃𝐻H

)︃
, (4.47)

where, as usual, the hybridization strength has been normalized by extracting a coupling
𝜆. As the hybridization induces the virtual transitions into the high-energy states, it
acts as a perturbation, and one can divide the Hamiltonian as �̂� = �̂�0 + 𝜆�̂�1, with
�̂�0 = diag(�̂�L, �̂�H), and 𝜆�̂�1 the off-diagonal parts of Eq. (4.47). The operator �̂� has an
action operator as its generator, �̂� = 𝑒𝑆 . This action operator should be anti-Hermitian,
and admits an expansion in the coupling 𝜆, 𝑆 = 𝜆𝑆1 + 𝜆2𝑆2 + · · · . The Baker-Campbell-
Hausdorff formula yields

𝑒𝑆(�̂�0 + 𝜆�̂�1)𝑒−𝑆 = �̂�0 + 𝜆([𝑆1, �̂�0] + �̂�1)

+ 𝜆2
(︂

1
2[𝑆1, [𝑆1, �̂�0]] + [𝑆1, �̂�1] + [𝑆2, �̂�0]

)︂
+ · · · . (4.48)

For the diagonalization to be realized one has to impose [𝑆1, �̂�0] = −�̂�1. Imposing further
𝑆2 = 0, one obtains

^̃𝐻L ≈ �̂�L + 𝜆2𝛥�̂�, 𝛥�̂� = 1
2𝑃L[𝑆1,�̂�1]𝑃L. (4.49)
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The matrix 𝛥�̂� should be block-diagonal, which can be achieved with the action operator
having the form

𝑆1 =
(︂

0 −𝑠+

𝑠 0

)︂
. (4.50)

Thus, one can write 𝑉 = −[𝑆1, �̂�0] = −𝑠𝐻L + �̂�H𝑠. Matrix elements of the hybridization
operator then have the form ⟨𝐻|�̂�1|𝐿⟩ = 𝑉𝐻𝐿 = −𝑠𝐻𝐿𝐸𝐿 + 𝐸𝐻𝑠𝐻𝐿, so the ones of the
action operator are 𝑠𝐻𝐿 = 𝑉𝐻𝐿/(𝐸𝐻 −𝐸𝐿). For the second-order term of the renormalized
Hamiltonian one obtains the representation

𝛥�̂� = −1
2
∑︁

𝐿𝐿′𝐻

|𝐿⟩
(︂
𝑉 *
𝐿𝐻𝑉𝐻𝐿′

𝐸𝐻 − 𝐸𝐿
+ 𝑉 *

𝐿𝐻𝑉𝐻𝐿′

𝐸𝐻 − 𝐸𝐿′

)︂
⟨𝐿′|. (4.51)

In an obvious sense this expression can be represented by a Feynman diagram with an
incoming and outgoing line, two vertices, and a virtual line connecting the two. In principle,
one can go back to the operator notion and write 𝑉 *

𝐿𝐻𝑉𝐻𝐿′ = ⟨𝐿|𝑉 +|𝐻⟩⟨𝐻|𝑉 |𝐿⟩. Due to
the linearity of Hilbert spaces and physical operators, a ME low-energy state |𝐿⟩ is mapped
onto a unique high-energy state |𝐻⟩ for any of the operators summed in 𝑉 . All ME states
are mutually orthogonal, so one can simplify 𝑉 *

𝐿𝐻𝑉𝐻𝐿′ = ⟨𝐿|𝑉 +𝑉 |𝐿⟩, while retaining the
sum over high-energy states and the energy arguments in the denominators.

One can insert the precise definition of the hybridization operator displayed in Eq. (3.53)
into Eq. (4.51). To this end, the impurity creation and annihilation operators should be
represented in the space of ME states (Sec. 4.3). The lowest eigenstates of the impurity have,
say, 𝑁 electrons (energetic degeneracies are admitted), and the hybridization maps onto
states of 𝑁 ± 1 electrons. With help of the Fierz identity 2𝛿𝜎𝜏𝛿𝜏 ′𝜎′ = 𝛿𝜎𝜎′𝛿𝜏 ′𝜏 + 𝜎𝜎𝜎′𝜎𝜏 ′𝜏 ,
the product of hybridization operators can be recast into

𝑉 +𝑉 =
∑︁

𝛼𝛼′,𝜎𝜎′

𝑛𝑛′,kk′

𝑉 *
𝛼𝑛k𝑉𝑛′k′𝛼′

[︂
1
2𝑐

+
𝑛′k′𝜎′𝑐𝑛k𝜎′𝑐𝛼′𝜎𝑐

+
𝛼𝜎 + 1

2𝑐𝑛k𝜎′𝑐+
𝑛′k′𝜎′𝑐

+
𝛼𝜎𝑐𝛼′𝜎

− 𝑐+
𝑛′k′𝜎′𝜎𝜎′𝜎𝑐𝑛k𝜎

∑︁

𝜏𝜏 ′

𝑐+
𝛼𝜏𝜎𝜏𝜏 ′𝑐𝛼′𝜏 ′

]︂
. (4.52)

The third term is the effective interaction of the multi-orbital Kondo model describing the
singlet formation via the positive Kondo coupling constants

𝐽𝛼𝑛k,𝛼′𝑛′k′ = 𝑉 *
𝛼𝑛k𝑉𝑛′k′𝛼′

×
∑︁

𝐻

(︂
1

𝐸𝑁+1
𝐻 − 𝐸𝑁𝐿

+ 1
𝐸𝑁+1
𝐻 − 𝐸𝑁𝐿′

+ 1
𝐸𝑁−1
𝐻 − 𝐸𝑁𝐿

+ 1
𝐸𝑁−1
𝐻 − 𝐸𝑁𝐿′

)︂
.

(4.53)

The indices of these couplings belong to the low-energy states as shown in Eq. (4.51). In
the single-orbital AIM the first two terms in Eq. (4.52) yield a residual potential scattering
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term, which vanishes in the symmetric AIM. In the multi-orbital generalization here, this
term describes orbital flips, and it generates the orbital Kondo effect, cf. Subsec. 4.5.3.

4.5.2 Poor man’s scaling

The SW transformation to integrate out the high-energy DOF of the impurity states can
also be used to reduce the high-energy excitations in the substrate involving the conduction
band edges; in the SW procedure, these were reintroduced by the rescaling �̂�(𝐷′) = 𝑏 ^̃𝐻L.
The part of the Hamiltonian describing the spin-flip processes in the Kondo effect is given
by (cf. Eq. (4.52))

�̂�K =
∑︁

𝛼𝛼′
|𝜀𝑛k|,|𝜀𝑛′k′ |<𝐷

𝐽𝛼𝑛k,𝛼′𝑛′k′ Ŝ𝑛′k′,𝑛kŜ𝛼𝛼′ , (4.54)

where now 𝐷 is the bandwitdh of the conduction electron states in the substrate, and the
impurity states are already of low energy. The aim is now to integrate out the regions with
𝐷′ < |𝜀𝑛k| < 𝐷, 𝐷′ = 𝐷 − 𝛿𝐷, which are of high energy, thereby reducing the bandwidth,
and including high-energy effects by renormalizing the Kondo coupling constants. The
hybridization between the low- and high-energy regions is given by

𝑉K =
[︃ ∑︁

𝛼𝛼′,|𝜀𝑛k|<𝐷′

𝐷′<|𝜀𝑛′k′ |<𝐷

+
∑︁

𝛼𝛼′,|𝜀𝑛′k′ |<𝐷′

𝐷′<|𝜀𝑛k|<𝐷

]︃
𝐽𝛼𝑛k,𝛼′𝑛′k′ Ŝ𝑛′k′,𝑛kŜ𝛼𝛼′ . (4.55)

This part of the Hamiltonian constitutes the off-diagonal elements in Eq. (4.45). One
has now first to characterize the low- and high-energy conduction electron states (to first
order), between which 𝑉K mediates via the spin operator Ŝ𝑛′k′,𝑛k. To the low-energy states
belong the GS, additional electrons above, and additional holes below the Fermi level, but
both within the range |𝜀𝑛k| < 𝐷′. To the high-energy states belong electrons within the
range 𝐷′ < 𝜀𝑛k < 𝐷, and holes within −𝐷 < 𝜀𝑛k < −𝐷′.

The calculation of the matrix elements ⟨𝐿|𝑉K|𝐻⟩ and ⟨𝐻|𝑉K|𝐿′⟩ proceeds similar as
before. One has to note that a low-energy electron (hole) state can be excited into a
high-energy electron (hole) state only, for otherwise the matrix elements vanishes. The
GS does not contribute. The hybridization 𝑉K is a tensor product of operators, and it
acts correspondingly on the product states consisting of conduction electron and impurity
states. For the term involving electrons, that is, |𝐿⟩ = 𝑐+

𝑛1k1
|𝐺⟩ and |𝐻⟩ = 𝑐+

𝑛2k2
|𝐺⟩, with

0 < 𝜀𝑛1k1 ≪ 𝐷′ (i.e., near the Fermi level) and 𝐷′ < 𝜀𝑛2k2 < 𝐷, and |𝐺⟩ the GS, one
calculates (working in the space of conduction electron states)

∑︁

𝐻

⟨𝐿|𝑉K|𝐻⟩⟨𝐻|𝑉K|𝐿′⟩
𝐸𝐻 − 𝐸𝐿

=
∑︁

�̄�
𝐷′<𝜀𝑛′k′<𝐷
𝜇𝜇′∈{𝑥,𝑦,𝑧}

1
𝜀𝑛2k2 − 𝜀𝑛1k1

𝐽�̄�𝑛k,𝛼1𝑛1k1𝐽𝛼′
1𝑛

′
1k′

1,�̄�𝑛k 𝑆
𝜇
𝛼1�̄�𝑆

𝜇′

�̄�𝛼′
1
(𝜎𝜇𝜎𝜇′)𝜎1𝜎′

1
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≈
∑︁

�̄�
𝜇𝜇′∈{𝑥,𝑦,𝑧}

𝜌(0)|𝛿𝐷|
𝐷

𝐽2 𝑆𝜇𝛼1�̄�𝑆
𝜇′

�̄�𝛼′
1
(𝜎𝜇𝜎𝜇′)𝜎1𝜎′

1
. (4.56)

Several approximations were employed to obtain the last line: First, the hybridization
couplings 𝑉𝛼𝑛k were assumed momentum-independent. That might or might not be a
good approximation, but it is needed for the following differential equation for the Kondo
couplings to be derived. In most cases, the hybridization couplings are assumed orbitally
independent as well. And second, one approximates 𝜀𝑛2k2 ≈ 𝐷, and 𝜀𝑛1k1 , 𝜀𝑛′

1k′
1

≈ 0.
Now, there is the term arising from hole states, |𝐿⟩ = 𝑐𝑛1k1 |𝐺⟩ and |𝐻⟩ = 𝑐𝑛2k2 |𝐺⟩, with
−𝐷′ ≪ 𝜀𝑛1k1 < 0 and −𝐷 < 𝜀𝑛2k2 < −𝐷′,

∑︁

𝐻

⟨𝐿|𝑉K|𝐻⟩⟨𝐻|𝑉K|𝐿′⟩
𝐸𝐻 − 𝐸𝐿

≈ −
∑︁

𝛼�̄�𝛼′
𝜇𝜇′∈{𝑥,𝑦,𝑧}

𝜌(0)|𝛿𝐷|
𝐷

𝐽2 𝑆𝜇𝛼1�̄�𝑆
𝜇′

�̄�𝛼′
1
(𝜎𝜇′

𝜎𝜇)𝜎1𝜎′
1
. (4.57)

The spins of the low-energy electrons (𝜎1, 𝜎′
1) were flipped. During calculation of both,

Eqs. (4.56) and (4.57), one observes that the Feynman diagram of the first equation is
given by a direct scattering of electronic states,

⟨𝐻|𝑉K|𝐿′⟩ ∝ ⟨𝐺|𝑐𝑛2k2𝜎2𝑐
+
𝑛2k2𝜎2

𝑐𝑛′
1k′

1𝜎
′
1
𝑐+
𝑛′

1k′
1𝜎

′
1
|𝐺⟩, (4.58)

while the second equation describes virtual electron-hole excitations,

⟨𝐻|𝑉K|𝐿′⟩ ∝ ⟨𝐺|𝑐+
𝑛2k2𝜎2

𝑐+
𝑛1k1𝜎1

𝑐𝑛2k2𝜎2𝑐𝑛′
1k′

1𝜎
′
1
|𝐺⟩. (4.59)

As the latter include fermion exchange, these yield a negative contribution to the resulting
Hamiltonian. Adding the results in Eqs. (4.56) and (4.57), one obtains a commutator, for
which one computes with the usual spin commutator relations

𝑆𝜇𝛼1�̄�𝑆
𝜇′

�̄�𝛼′
1
([𝜎𝜇𝜎𝜇′ ])𝜎1𝜎′

1
= 2 S𝛼1𝛼′

1
𝜎𝜎1𝜎′

1
. (4.60)

Thus, the Hamiltonian in Eq. (4.54) with the conduction electrons on the reduced bandwidth
exhibits a renormalized Kondo coupling constant, which is given by (𝛿𝐷 = −|𝛿𝐷|)

𝐽(𝐷 − |𝛿𝐷|) = 𝐽(𝐷) − 2𝐽2𝜌(0)𝛿𝐷
𝐷

or 𝜕[𝜌(0)𝐽 ]
𝜕[ln(𝐷)] = −2[𝜌(0)𝐽 ]2. (4.61)

This is the famous flow equation of RG theory up to second order in PT, which describes
the change of the effective couplings during the renormalization of the conduction electron
bandwidth. In particular, the Kondo coupling 𝐽 increases if the bandwidth is reduced.
The generalization of the flow equation to the multi-orbital and momentum-dependent
setting is possible and can be read in Ref. [Kog18].

To summarize the renormalization concept, the SW transformation reduces the energy
scale for both, the impurity and the conduction electrons, while Hamiltonian and bandwidth
for the conduction electrons are restored through rescaling. Furthermore, the AIM Hamilto-
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nian is restructured in the form of the Kondo Hamiltonian plus higher-order terms. These
terms start to be negligible if the low-lying impurity eigenstates relevant for the Kondo
effect contribute dominantly (i.e., if their couplings in the corresponding perturbative
approximation to the full Hamiltonian are larger than the ones of the higher-order terms).
Having obtained the Kondo Hamiltonian, one further works on the conduction electrons
by reducing their bandwidth with the help of poor man’s scaling. Thereby the Kondo
couplings are rescaled, and eventually one arrives at the low-energy fixed point.

4.5.3 Orbital Kondo effect
In Eq. (4.52) the first term contains orbital flips, which lead to the orbital Kondo effect.
The corresponding Hamiltonian has the form

𝐻K,orb =
∑︁

𝛼𝛼′
|𝜀𝑛k|,|𝜀𝑛′k′ |<𝐷

𝐾𝛼𝑛k,𝛼′𝑛′k′(𝑐+
𝑛′k′𝜎′𝑐𝑛k𝜎′𝑐𝛼′𝜎𝑐

+
𝛼𝜎 + 𝑐𝑛k𝜎′𝑐+

𝑛′k′𝜎′𝑐
+
𝛼𝜎𝑐𝛼′𝜎), (4.62)

where the 𝐾’s are the orbital Kondo couplings. The hybridization term resulting from this
Hamiltonian is of similar form as in Eq. (4.53). Performing the same analysis as before,
and adding the contributions from low-energy electron and hole states near the Fermi level
as in Eq. (4.56), one obtains

𝛥𝐻𝑛1k1𝜎1,𝑛′
1k′

1𝜎
′
1

∝ 𝜌(0)|𝛿𝐷|
𝐷

×
∑︁

𝛼𝛼′,𝜎
�̄��̄�′,�̄�
𝑛2k2

(𝐾𝛼𝑛2k2,𝛼′𝑛′
1k′

1
𝐾�̄�𝑛′

1k′
1,�̄�

′𝑛2k2 −𝐾𝛼𝑛1k1,𝛼′𝑛2k2𝐾�̄�𝑛2k2,�̄�′𝑛′
1k′

1
)

× (𝑐𝛼′𝜎𝑐
+
𝛼𝜎 − 𝑐+

𝛼𝜎𝑐𝛼′𝜎)(𝑐�̄�′�̄�𝑐
+
�̄��̄� − 𝑐+

�̄��̄�𝑐�̄�′�̄�)𝛿𝜎1𝜎′
1
. (4.63)

One may observe here that dropping the band and momentum dependence of the hybridiza-
tion couplings would render this term vanishing, and the orbital Kondo coupling would not
be renormalized at second order. Writing 𝑐�̄�′�̄�𝑐

+
�̄��̄� = 𝛿�̄�′�̄� − 𝑐+

�̄��̄�𝑐�̄�′�̄�, one can drop terms
of higher order than two in the impurity operators, and obtain terms of similar forms as
the original orbital Kondo Hamiltonian in Eq. (4.62), albeit somewhat broken up due to
the orbital and momentum dependence of the orbital Kondo couplings. For a thorough
analysis of the renormalization procedure for anisotropic Kondo couplings one may refer
oneself to Ref. [Kog18].

4.6 Kondo effect of Co adatoms at Cu chains
The research group of Prof. A. I. Lichtenstein has collaborated with several experimental
groups, in particular with the one of A. Weismann and Prof. R. Berndt at the CAU in
Kiel in the context of the SFB 668 (project A3). Recently, this group produced chain-like
structures on a clean Cu(111) surface by physically touching it with an STM tip [Spe08]
(Fig. 4.1 left). The resulting chains are monatomic in height and width, and are dislocations,
which can be modelled by chains of Cu atoms on the surface. Placing one or more Co
atoms at different positions along the chain, specific line shapes are seen in the STS curves
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recorded afterwards (Fig. 4.1 right). To interpret the experimental results, use of the
DFT+AIM approach (Subsec. 3.2.1) was made to capture the Kondo behaviour of the
Co adatoms by the efficient CTQMC procedure as implemented in the TRIQS/CTHYB
code (Sec. 3.3). The latter is a numerically exact solution of the underlying AIM, and
the Kondo properties of the system can thereby be assessed properly. The impurity solver
is capable to take into account the full Coulomb matrix, and all geometric anisotropies
exhibited by the CF and the hybridization.

The interaction of an adatom carrying a local magnetic moment with its substrate often
happens via the Kondo effect. The associated spectral resonance feature around the Fermi
level has been observed for several nanosystems on surfaces, adatoms, small atomic clusters,
and organic molecules [DiL12; Kna17; Li98; Mad01; Mad98; Man00; Min12; Née08; Née07;
Ott09; Pac17; Piv07; Ter09; Wah04]. Usually the theoretical descriptions accompanying
the experimental results rely on single-orbital AIMs or spin-1

2 Kondo models, in which a
single spin is screened by the conduction electrons of the substrate. These models provide a
simplified and well understood scenario, see Refs. [And61; Kon68; Kon64], and are able to
qualitatively explain even advanced experimental situations involving the Kondo effect (see,
e.g., Refs. [Cor17; Kam21; Kam19]; Sec. 4.1). Important parameters of the experimental
data like the Kondo temperature 𝑇K, which determines the energy scale of the effect and is
related to the width of the resonance, are extracted by fitting line shapes, for example,
Fano [Fan61] and Frota [Fro92; Fro86; Prü11] lines, which are related to these single-orbital
models.

Even though the neglect of the adatom orbital structure and the symmetries of its
environment appears to be a rather crude approximation, it often leads to useful results at
little expense. However, at present experimental evidence accumulates that demonstrate the
involvement of multiple orbitals (see also Subsec. 4.6.10). For example, results from adsorbed
molecules show that different Kondo signatures can emerge in different orbitals, which
reflects the hybridization anisotropies similar as in the CoCu𝑛/Cu(111) systems discussed
in this section [Kna17; Pac17]. Moreover, it was reported that Fe-phthalocyanine (FePc)
molecules can exhibit SU(2) and SU(4) Kondo effects (i.e., the latter comprising orbital
contributions), depending on their position, and thus on the respective symmetries of the
substrate lattice [Min12]. The superposition of a Kondo resonance with a charge excitation,
both in the 𝑑𝑧2 orbital, has been proposed for MnPc molecules [Küg15], indicating that
several orbitals must be involved for the stability of the Kondo effect (see also Subsec. 4.6.9).
The study on the CoCu𝑛/Cu(111) systems presented in the following underlines the need
for a full consideration of all correlated orbitals in real Kondo systems.

The present section investigates the Kondo effect of single Co adatoms on Cu(111)
surfaces, and attached to chains of Cu atoms (denoted as CoCu𝑛/Cu(111)), by means
of the DFT+AIM approach as discussed in Chpt. 3, and along the line shapes seen in
experimental STS data (Fig. 4.1 right). Multi-orbital calculations of the Kondo effect
were performed, and quantitatively reproduce the experimental spectra. The hybridization
of the Co 𝑑 orbitals with the Cu chain lifts the orbital degeneracies, which were present
on the (111) terrace, and leads to distinct spectral line shapes, which are not consistent
with a single-orbital description (Subsec. 4.6.9). More recent STS measurements on the
CoCu𝑛/Cu(111) systems were able to better resolve the spectral depressions for the Co
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adatom at the central part of the chain at approximately ±10 eV (Fig. 4.1 right), and show
that a SOC might be relevant in these systems. The SOC leads to a further symmetry
breaking of the spin DOF, and eventually to a magnetic anisotropy, which can be taken
into account by an extension of the AIM Hamiltonian. A derivation of the corresponding
Hamiltonian for the MAE based on DFT data is provided in Appx. B.
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Figure 4.1: (Left) STM image of (a) Co adatoms
and a Cu chain on Cu(111), and (b) Co adatoms
attached to the central part of the chain. Images
were acquired at 𝑉 = 30 mV and 𝐼 = 30 pA. (Right)
d𝐼/d𝑉 spectra of Co adatoms at three positions: (1)
on the (111) terrace, (2) at the end of, and (3) at
the central part of the Cu chain. The data of the
Co adatom at the central part of the chain exhibits
depressions at ≈ ±10 mV indicated by arrows. The
spectrum from the end of the chain is offset by 0.5 nS
for clarity. d𝐼/d𝑉 spectra were measured with a
modulation amplitude of 1 mV.
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4.6.1 Experimental results
Experiments were conceived and performed by N. Noei and A. Weismann (CAU in Kiel).
Fig. 4.1a (left) shows the topography of a chain of monatomic width along with Co adatoms.
Using a reduced tunnelling resistance (𝑉 = 30 mv, 𝐼 = 1𝜇A) these atoms could be moved
with the STM tip to positions aside of the chain (Fig. 4.1b left), or at one of its ends.
The d𝐼/d𝑉 spectra of the CoCu𝑛/Cu(111) systems exhibit an Abrikosov-Suhl resonance
around zero bias [Née11; Née08; Uch08; Wah04] (Fig. 4.1 right).

Three clearly different kinds of spectra (Fig. 4.1 right) could be discriminated as cor-
responding to three Co adatom positions, namely on the (111) terrace, at the central
part of, and at the end of the chain (Fig. 4.1 right). The Abrikosov-Suhl resonance of
Co adatoms at the central part of the chain exhibits a remarkably complicated structure,
which matches neither a Fano nor a Frota line shape1. It exhibits an antiresonance at the
Fermi level decorated with depressions at approx. ±10 mV (arrows). The amplitude of the

1 For comparison with prior work, a Kondo temperature 𝑇K may be extracted using a Frota line shape
of the DOS 𝜌(𝐸) ∝ Re

√︀
𝑖𝛤F/(𝐸 − 𝐸0 + 𝑖𝛤F), where the Frota parameter 𝛤F is related to the Kondo

temperature by 𝑘B𝑇K = 2.54 𝛤F. For Co adatoms on the (111) terrace, one thus obtains 𝑇K ≈ 52 K
similar to published values [Kno02; Née08; Wah04].
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antiresonance is approx. 60 % lower than for Co adatoms on the (111) terrace, and its
width is reduced by approx. 30 %. For Co adatoms at the end of the chain a reduction of
approx. 55 % in amplitude, and an increase of approx. 10 % in width is observed.

4.6.2 DFT+AIM setup
To analyse the Kondo effect arising from the electronic correlations within the Co 𝑑
orbitals, DFT (Sec. 2.1) was combined with the multi-orbital AIM (Sec. 3.2) [Dan16;
Sur12; Újs00]. For the DFT calculations, the Cu atoms of the chain and the Co adatom
were placed on fcc sites above the Cu(111) surface. These calculations were performed
with the VASP code [Kre96] using a 6×6×5 slab for the Cu(111) surface to support the
different configurations atop, and with a 9×9×1 𝛤 -centred k-point mesh. A vacuum
separation of 12.5 Å was chosen, and all configurations were relaxed until the forces were
below 0.02 eV/Å. The obtained electronic structure was then projected onto the Co 𝑑
orbitals to extract parameters for the AIM; the projection of the DFT band structure
onto the AIM was done with the method of projected local orbitals (PLO) [Kar11b]. The
main weight of the Co 𝑑-orbital LDOS from DFT lies within the energy window of ±1.5 eV
(Fig. 4.2), and the bands were selected accordingly. The Coulomb matrix was assessed
by the rotationally invariant Slater form with parameters 𝑈 = 4.0 eV and 𝐽 = 0.9 eV (cf.
Eq. (2.50)). The thus obtained AIM was solved by the CTQMC procedure as implemented
in the TRIQS/CTHYB code [Par15; Set16] (Sec. 3.3). Analytical continuation of the QMC
data was done with the SOM [Kri19] (Sec. 3.4). The complete workflow and computational
details can be read in Ref. [Kar13], Subsec. 3.2.1, and Sec. 3.6.
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Figure 4.2: Total DFT-LDOS of the Co 𝑑 orbitals (dashed line; scale on the left), and the
conduction 𝑠 and 𝑝 orbitals (solid line; scale on the right). The LDOS at the Fermi level
increases with higher coordination (cf. Ref. [Née08]).

The CTQMC solution of the AIM yields the GF of the Co 𝑑 orbitals

𝐺𝛼(𝜔) = [𝜔 + 𝜇− 𝜀𝛼 −𝛥𝛼(𝜔) −𝛴𝛼(𝜔)]−1, (4.64)

where 𝛼 enumerates the Co 𝑑 orbitals, 𝜇 is the chemical potential including the DC
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(Subsec. 2.1.4, Appx. C.1), which subtracts the Coulomb correlations already contained in
DFT, 𝜀𝛼 are the CF-split orbital energies (Sec. 4.2), and 𝛥𝛼 are the hybridization functions
(Eq. (3.56)). 𝛴 is the self-energy computed by CTQMC (Chpt. 3), and it contains all
many-body correlations relevant for the Kondo effect. When the Co atom is adsorbed on a
Cu(111) terrace, the GF is approximately diagonal in the symmetry-adapted cubic basis
and transforms according to the two irreducible representations of the 𝐶3𝑣 point group,
with one of them decomposing into two two-fold degenerate blocks: the 𝐸-irreducible
representation {𝐸1(𝑥𝑧, 𝑦𝑧), 𝐸2(𝑥𝑦, 𝑥2−𝑦2)}, and {𝐴1(𝑧2)}. With a Cu chain next to the Co
adatom, however, the orbital degeneracy of the constituents of 𝐸1 and 𝐸2 is lifted. Orbitally
resolved spectral functions are given by 𝐴(𝜔) = −Im[𝐺(𝜔 + 0+)]/𝜋 (cf. Eq. (3.39)).

Fig. 4.3 shows the DOS/spectrum obtained by CTQMC at 𝛽 = 200 eV−1. SOM is
particularly suited to resolve the sharp Kondo peak at the Fermi level. The spectrum for
the case of a Co adatom on the (111) terrace may be compared with the one obtained
in Refs. [Dan16; Sur12]. For the analytical continuation 4001 energy points were used
between ±10 eV. From analytical continuation some resonance and (d𝐼/d𝑉 ) antiresonance
peaks had cusps at their highest and lowest point, respectively (see, e.g., the raw curves
in Fig. 4.9). These were treated in the small energy range between −0.05 eV and 0.02 eV
by substituting each data point by the average of the averages with its two neighbours.
Subsequently, the spectra were smoothed on the whole energy range by inserting the
geometric mean of two data points between them. If the curve crossed the abscissa between
two data points, the arithmetic mean was used instead. Spectra shown in Figs. 4.5 and 4.7
underwent that procedure two times.
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Figure 4.3: Orbital-resolved and total (insets) DOSes 𝐴 with the Co adatom at the fcc
position above the Cu(111) surface without (encircled 1), at the end of (2), and at the side
of an fcc-positioned Cu chain (3). Results were obtained by QMC at 𝛽= 200 eV−1, and by
analytical continuation with SOM (see text for explanations).

4.6.3 Derivation of the differential conductance

To obtain the influence of the orbital Kondo resonances on the conduction DOS of the
substrate, the differential conductance was computed from the DFT and the QMC data by
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the Fano-like relation [Kno02; Mad01; Prü12] (cf. Eq. (4.39))

− d𝐼
d𝑉 ∝ |𝐵|2

Im �̃�

𝑞2 − 1 + 2𝑞𝜀
1 + 𝜀2 (4.65)

for each Co 𝑑 orbital and at each bias, with �̃�(𝜔) = −𝜇 + 𝜀 + 𝛥(𝜔) + 𝛴(𝜔). With
𝛼 enumerating the Co 𝑑 orbitals, the asymmetry factors are given by (cf. Eqs. (4.40)
and (4.41))

𝑞𝛼(𝜔) =𝛾𝛼 +𝐴𝛼(𝜔)
𝐵𝛼(𝜔) ,

𝐴𝛼(𝜔) =
∑︁

𝛽

𝑉𝛼𝛽 Re 𝑔𝛽(𝜔), (4.66)

𝐵𝛼(𝜔) =
∑︁

𝛽

𝑉𝛼𝛽 Im 𝑔𝛽(𝜔).

Here, 𝛼 again denotes the Co 𝑑 orbitals, and the sums run over the conduction orbitals.
𝑉 is the hybridization coupling between adatom and substrate, which also enters the
Hamiltonian for the AIM (k-independence has been assumed), and 𝑔 the GF of the
substrate. For symmetry reasons, not all Co 𝑑 orbitals couple to all conduction orbitals,
they rather group into the following three sets [Fra15]:

(𝑝𝑥) ↔ (𝑑𝑥𝑧,𝑑𝑥𝑦)
(𝑝𝑦) ↔ (𝑑𝑦𝑧,𝑑𝑥2−𝑦2) (4.67)

(𝑠,𝑝𝑧) ↔ (𝑑𝑧2).

Within these sets, 𝑉 may be estimated from the approximation 𝛥𝛼(𝜔) = |𝑉𝛼(𝜔)|2
∑︀

𝛽 𝑔𝛽(𝜔)
as the average of the real and imaginary parts of this equation. The parameters 𝛾𝛼 =
𝑀𝑡𝛼/𝑀𝑡𝑠 measure the ratio between tunnelling from tip to adatom and tip to substrate,
and are the only fitting parameters of our theory. The transfer matrix element 𝑀𝑡𝑠 is
assumed to be one constant for all conduction orbitals. Furthermore, the energy parameter
𝜀 is given by (cf. Eq. (4.40))

𝜀𝛼(𝜔) = 𝜔 − Re �̃�𝛼(𝜔)
Im �̃�𝛼(𝜔)

(4.68)

Defining the tunnelling matrix elements

𝑇𝛼(𝜔) = 𝛾𝛼 +𝐴𝛼(𝜔) + 𝑖𝐵𝛼(𝜔), (4.69)

Eq. (4.65) can be rewritten to obtain,

− d𝐼
d𝑉 (𝜔) ∝

∑︁

𝛼

Im[𝑇 2
𝛼(𝜔)𝐺𝛼(𝜔)], (4.70)
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and with the phase 𝜑 of 𝑇 , Eq. (4.70) can in turn be written as

− d𝐼
d𝑉 (𝜔) ∝

∑︁

𝛼

|𝑇𝛼(𝜔)|2 Im[𝑒2𝑖𝜑𝛼(𝜔)𝐺𝛼(𝜔)]. (4.71)

The complex functions 𝑇𝛼 weigh the contributions of the various orbitals to the current and
add a phase 𝜑, which leads to the asymmetric line shapes. 𝑇𝛼 comprises the substrate GF
(the corresponding DOS of which is shown in Fig. 4.2), the hybridization strengths (4.4 and
Tab. 4.1), and the relative tunnelling matrix elements from the tip to the adatom and the
substrate 𝛾𝛼, respectively. The phase 𝜑 is also referred to as the line-shape parameter (LSP)
[Prü12]. Even multiples of 𝜋/2 yield a peak (resonance), and odd multiples of 𝜋/2 a dip
(antiresonance) in the conduction DOS. In this way, the LSP is in one-to-one correspondence
to the tunnelling ratio. In Ref. [Née08] the latter was determined as 𝛾0 = 0.22, revealing
interference between the competing tunnelling paths. The definition of 𝑞 in Eq. (4.66)
is different in that it contains the hybridization coupling 𝑉 (cf. also Eq. (4.40)), so that
it was rescaled by 20% to 𝛾0 = 0.264. To take into account the mixing of the 𝑑𝑧2 and
𝑑𝑥2−𝑦2 orbitals (𝑑𝑧2 and 𝑑𝑥𝑦 orbitals) caused by hybridization at the end (central part)
of the chain, their contributions to the tunnelling ratios were adjusted accordingly. This
corresponds to two adjustable parameters at the end and the central part of the chain, and
none for the Co adatom on the terrace.

The calculated d𝐼/d𝑉 curves in Fig. 4.5 exhibit Kondo antiresonances. As the CTQMC
simulation has been performed for a temperature of 58 K to obtain convergence, all peaks
are broader by an order of magnitude than their experimental counterparts recorded at
5 K, see, for example, Refs. [Nag02; Zha13]. The corresponding orbital-resolved spectral
functions are shown in Figs. 4.3. For Co on the flat (111) terrace, the antiresonance is well
developed and mainly originates from the Co 𝑑𝑧2 orbital. The hybridizations of the 𝑑𝑥𝑦
and 𝑑𝑥2−𝑦2 orbitals are the weakest among all 𝑑 orbitals, because these WFs are oriented
in the plane parallel to the surface and no adatoms are located nearby. The 𝑑𝑥𝑧 and 𝑑𝑦𝑧
orbitals on the other hand show the strongest hybridization to the substrate.

This sequence is reversed when the Co atom is a nearest neighbour of Cu atoms at the
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Figure 4.4: Orbital-resolved hybridization function 𝛥 for a Co adatom on the (111) terrace
(encircled 1), at the end of a Cu chain (2), and at the central part of a Cu chain (3). The
Cu and Cu atoms are located at fcc positions. Re(𝛥) and Im(𝛥) are displayed by solid and
dashed lines, respectively. Insets show a zoom into the low-energy region.
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Figure 4.5: (Upper panel) Orbital-resolved differential conductance d𝐼/d𝑉 of a Co adatom
on the (111) terrace (encircled 1), at the end of (2), and at the central part of a Cu chain (3).
The Cu and Cu atoms are located at fcc positions. The tunnelling ratio 𝛾/𝛾0 is given in the
legend. (Lower panel) Corresponding LSPs.

end or the central part of a Cu chain. When the Co adatom is attached to the end of a Cu
chain, the amplitude of the antiresonance is halved, while its width is increased. Moreover,
the hybridization of the 𝑑𝑥2−𝑦2 orbital is increased by 48%, because one of its lobes is
pointing towards the chain (𝑥 direction) Tab. 4.1). Simultaneously, symmetry mismatch
between the the 𝑑𝑥𝑧 orbital and the 𝑠 orbital of Cu chain atom reduces the hybridization
with the conduction band electrons by 30%. With the Co adatom next to the Cu chain,
further substructures emerge Figs. 4.1 and 4.5. Subsuming these substructures, which
originate from several 𝑑 orbitals, broadens the overall antiresonance. At the central part of
the chain, the 𝑑𝑦𝑧 orbital hybridization is similarly suppressed (–33%), while the 𝑑𝑥𝑦 orbital
exhibits the strongest hybridization of all 𝑑 orbitals. The distinct changes of the 𝑑 orbital
spectral functions reflect modified hybridizations that depend on the coordination of the Co
atom to its environment. In particular, simulated d𝐼/d𝑉 curves for Co at the central part
of the chain show depressions corresponding to the experimental ones at approx. ±10 meV.
The orbital-resolved d𝐼/d𝑉 spectra reveal that they originate from the broad 𝑑𝑧2 and 𝑑𝑦𝑧
states along with, at positive bias, the strong 𝑑𝑥𝑦 resonance contribution and, at negative
bias, the strong decrease of the 𝑑𝑧2 weight.
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As has just been explained, the 𝑑𝑥𝑦 resonance results from enhanced hybridization of
this orbital with the substrate (comprising the chain), so the tip increasingly detects the
Kondo resonance on this orbital. The same applies for Co at the end of the chain, where
the 𝑑𝑥2−𝑦2 resonance contribution is exactly at the Fermi level, and reduces the amplitude
of the antiresonance arising from the 𝑑𝑧2 and 𝑑𝑥𝑦 orbitals. The d𝐼/d𝑉 data reflect the
spectrum of a many-body state comprising single-orbital contributions (Sec. 4.1). Together
with the interference between the different tunnelling paths, these add up to yield the
complex line shape observed.

The hybridization of the 𝑑𝑧2 orbital is virtually identical in all three cases. However,
owing to level repulsions in the multi-orbital setting (Fig. 4.6), its energy is successively
increased and its occupation decreases from 𝑛 = 1.56 (free surface) over 1.20 (end of chain)
to 1.14 (central part of chain). As a result, the Kondo resonance of the 𝑑𝑧2 orbital shifts
to positive energies. The local environment also strongly affects the occupations of the
in-plane orbitals: (𝑛𝑥𝑦, 𝑛𝑥2−𝑦2) = (1.330, 1.677) at the end, and (1.588, 1.295) at the central
part of a chain. Consequently, the sequence of the energies of the 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 Kondo
resonances is inverted between the Co positions at the central part and the end of a chain.
All these changes reflect intertwined modifications of the Co adatom electronic structure.

The experimental spectra of Co at the central part of a Cu chain have similarities with
the line shape observed in Ref. [Jac15], where it has been attributed to spin excitations.
However, there are important differences. Most importantly, the central minimum observed
in all spectra does not occur directly at zero bias. This observation is particularly
important, because it implies an asymmetry of the central part of the spectrum with
respect to 𝑉 = 0 mV. If the rising parts at +9 mV and −12 mV in the spectrum of Co
at the central part of the chain were due to spin excitations (Fig. 4.1 right), they should
be centred around 𝑉 = 0 mV. The rise of the d𝐼/d𝑉 spectrum near ±10 mV is not clear
cut, though, because of the scatter of the data. However, given the Kondo effect of Co
on Cu(111) terraces, it appears unlikely that Co next to a chain, where its coordination
is higher, would develop a local moment. The overall hybridization strength is not much
increased with the higher coordination, and remains well below the strength of the Coulomb
interaction. As a result, charge fluctuations should not be much enhanced, and the Kondo
effect is expected to survive. – However, as mentioned in the introductory part to the
present chapter, new data has been acquired in the meantime showing a more symmetric
and pronounced distribution around 𝑉 = 0 mV. Considering the derivation of the MAE
term in Appx. B, one might think of the symmetry breaking in the CF inducing a SOC on
the Co adatom.

4.6.4 Analysis of orbital contributions
The Cu chain breaks the 𝐶6𝑣 symmetry, and leads to anisotropies within CF, hybridization
and Coulomb matrix. The present study focusses on the anisotropies arising in CF and
hybridization by assuming a rotationally invariant DC and Coulomb matrix for each
configuration. For the Co adatom on the flat (111) terrace and at the end of the Cu chain,
the FLL was used to determine the DC (𝜇DC = 26.85 eV), while next to the chain it was
the AMF approach (𝜇DC = 25.92 eV). The choice of the AMF-DC for the adatom next to
the chain is due to enhanced delocalization in this case, which renders the DFT mean-field
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picture more suitable. Further details can be found in Subsec. 4.6.7.
The DFT+AIM results for the differential conductance (Fig. 4.5) show the Kondo

antiresonance emerging in the conduction DOS due to local electronic correlations. On
the flat (111) terrace, the Kondo antiresonance is well developed, showing a line shape
originating from the Co 𝑑𝑧2 orbital alone, for which the LSP is always near 𝜋/2 (Fig. 4.5).
With the Co adatom at the end of the Cu chain, the amplitude of the Kondo antiresonance
becomes halved, while its width is slightly enlarged. From the LSPs one can infer the
reduction of the amplitude from the Co 𝑑𝑥2−𝑦2 orbital. This orbital couples mostly to the
𝑝𝑦 conduction orbital due to symmetry reasons [Fra15], and at the same time experiences
enhanced hybridization with the Cu chain arranged along the 𝑥 direction (−Im[𝛥(0)] for
𝑑𝑥2−𝑦2 now is 48% larger, cf. Figs. 4.4, 4.5, 4.6, and Tab. 4.1). Thus, tunnelling into the Co
𝑑𝑥2−𝑦2 orbital is more effective, because the 𝑝𝑦 orbital has remained unchanged, and the
𝑑𝑥2−𝑦2 Kondo peak leads to a resonance contribution in the conduction DOS. With the Co
adatom next to the Cu chain, it is now the Co 𝑑𝑥𝑦 orbital which leads to the reduction of
the amplitude, because at the same time it mostly couples to the unaffected 𝑝𝑥 conduction
orbital [Fra15] and to the Cu chain (−Im[𝛥(0)] now is 59% larger, cf. Figs. 4.4, 4.5, 4.6,
and Tab. 4.1). The small peak at 25 meV in the simulated d𝐼/d𝑉 curve results from the
𝑑𝑥𝑦 orbital, as can be seen in Fig. 4.5.

The couplings between the adatom 𝑑 and conduction 𝑠 and 𝑝 orbitals listed in Eq. (4.67)
are assumed to be valid for all configurations, that is, with and without the chain. Thus, five
𝛾 parameters for configuration have to be determined, and were estimated from geometry
considerations. For the Co adatom on the flat (111) terrace, all 𝛾 parameters were fixed
to the same value 𝛾0 (Fig. 4.5). At the end of the Cu chain, tunnelling into the adatom
𝑑𝑥2−𝑦2 orbital was increased (𝛾 = 3.4 𝛾0) and tunnelling into the 𝑑𝑧2 orbital was slightly
reduced, because its energy level is increased. Next to the chain an enhanced tunnelling
into the adatom 𝑑𝑥𝑦 orbital was considered (𝛾 = 2.0 𝛾0).

4.6.5 Analysis of orbital Kondo peaks
For the Co adatom on the flat (111) terrace, the Kondo peak is the highest in 𝐴1, which is
perpendicular to the surface, while it is lower in the 𝐸1, and the lowest in the 𝐸2 directions
parallel to the surface. The efficiency of the Kondo singlet pairing depends on various
parameters, of which the hybridization is an important one: Optimal screening needs
hopping processes to occur, but at the same time relies on a preserved suppression of
charge fluctuations. As Im[𝛥(0)] in 𝐸2 is small, the orbital Kondo temperature 𝑇K is
small as well (Figs. 4.4, 4.6, and Tab. 4.1). The latter can be estimated from the formula
𝑇K = −𝜋𝑍Im[𝛥(0)]/4 for each orbital, with 𝑍 = [1 −𝛴′(0) −𝛥′(0)]−1 the QP weight at
the Fermi level (cf. Sec. 3.6; the Matsubara self-energy was used for the derivative) [Dan16;
Hew93; Sur12]. As the QMC simulations were performed at 58 K, the Kondo peaks are
not fully developed and thus appear broad. The true width of the Kondo peak can only
be seen deep in the Kondo regime, where five-orbital QMC has yet no access to. The
result is thus a general temperature broadening of one order of magnitude as compared to
experimental Kondo peaks [Nag02; Zha13]. For the Co adatom on the (111) terrace and
at the end of the chain, the half-width-at-half-maximum (HWHM) can still be estimated
graphically from the total d𝐼/d𝑉 curves in Fig. 4.5 as 305 K and 376 K, respectively,
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configuration orbital 𝑇K 𝑛/𝑁tot 𝑍 −Im[𝛥(0)] 𝜀

Central part of chain

𝑑𝑥𝑦 165.9 1.588 0.0843 0.236 -0.184
𝑑𝑦𝑧 226.6 1.772 0.1415 0.187 -0.203
𝑑𝑧2 49.0 1.141 0.0254 0.232 -0.134
𝑑𝑥𝑧 231.9 1.743 0.1319 0.209 -0.204
𝑑𝑥2−𝑦2 74.2 1.295 0.0381 0.228 -0.157
average/total 149.5 7.539

End of chain

𝑑𝑥𝑦 35.6 1.330 0.0256 0.169 -0.160
𝑑𝑦𝑧 126.8 1.769 0.0614 0.251 -0.180
𝑑𝑧2 53.2 1.202 0.0264 0.245 -0.163
𝑑𝑥𝑧 144.9 1.870 0.0900 0.194 -0.205
𝑑𝑥2−𝑦2 63.5 1.677 0.0348 0.221 -0.165
average/total 84.8 7.848

Flat (111) terrace

𝑑𝑥𝑦 19.4 1.496 0.0164 0.146 -0.136
𝑑𝑦𝑧 94.5 1.622 0.0442 0.277 -0.183
𝑑𝑧2 101.4 1.567 0.0559 0.234 -0.186
𝑑𝑥𝑧 97.3 1.630 0.0451 0.277 -0.184
𝑑𝑥2−𝑦2 20.1 1.532 0.0172 0.149 -0.137
average/total 66.6 7.847

Table 4.1: Orbital Kondo temperatures 𝑇K (K) together with their average (last line for each
configuration). Furthermore orbital and total occupations 𝑛 and 𝑁tot, orbital QP weights 𝑍,
hybridization strengths −Im[𝛥(0)] (eV), and energies 𝜀 (eV). QMC simulations were performed at
58 K.

while for the adatom at the central part of the chain the complicated substructures and
their unaligned positions together with the broad appearance of the Kondo peak for the
𝑑𝑧2 orbital prevent a graphical estimation of 𝑇K altogether. The estimation via the QP
weights, however, always yields an upper bound to the true 𝑇K, but they are already near
experimental values. The difference in the order of magnitudes between experimental and
theoretical Kondo peak widths corresponds to the difference between the temperatures, at
which experiments and simulations were performed, and can further be characterized by
the analytical temperature dependence of the Kondo peak given in Refs. [Nag02; Zha13].
The width is proportional to

√︀
(𝛼𝑇 )2 + (2𝑇K)2, where theoretically 𝛼 = 2𝜋, and with 𝑇K

extracted from the simulations, we arrive at calculated resonance widths of 194 K at the
terrace, and 201 K at the end of the chain. Use of the formula in case the Co adatom is
aside to the chain gives 236 K.

Other parameters like the orbital energies relative to the chemical potential can change
the situation quite strongly as well, as can be inferred from the evolution of the Co 𝑑𝑧2

spectrum (Fig. 4.5). The hybridization is not changed, but its energy level is successively
increased towards the Fermi level from 𝜀 = −0.19 eV in steps of 0.03 eV (Fig. 4.6 and
Tab. 4.1). This can be attributed to level repulsions within the multi-orbital setting.
Thus, the Kondo temperature 𝑇K decreases, which can be understood by inspection of
Fig. 4.1 / Tab. 4.1: the QP weight 𝑍 also enters into 𝑇K, and it appears to be directly
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related to the orbital energies 𝜀. The evolution of 𝑇K listed in Tab. 4.1 in the other orbitals
can be attributed to the position of energy levels, and to the hybridization strengths as
well, and from Fig. 4.6 one can conclude, that the relevance of the orbital energies is higher.
The conclusion can almost certainly be extended, if one compares the configurations with
the Co adatom on the (111) terrace and at the end of the chain, while next to the chain
the AMF-DC was chosen, which renders the comparison not as direct, but the relation
between orbital temperatures 𝑇K and energies 𝜀 is still preserved within that configuration.

4.6.6 Estimation of temperature dependence
The relation between the d𝐼/d𝑉 line shapes, and their decomposition into orbital contri-
butions (Fig. 4.5), remain valid upon prediction of the different evolutions expected for the
orbital Kondo peaks while lowering the simulation temperature. The Kondo temperatures
are rather high in the 𝐸1 directions, and the simulation temperature of 58 K is already
well inside their Kondo cross-over region, so their evolution will not significantly change
the simulated total d𝐼/d𝑉 curve. For example, the negative-bias tail of the Co 𝑑𝑦𝑧 orbital
next to the chain will mostly retain its relation to the other peaks, and it corresponds to
the depression at −10 meV in the total d𝐼/d𝑉 curve. The same retention is expected from
all orbitals of Co adatoms on the (111) terrace and at the end of chains. Considering again
the adatom next to the chain, 𝑇K is small in 𝑑𝑧2 and in 𝑑𝑥2−𝑦2 , so at low temperature the
corresponding peaks will be narrowed in width and increased in amplitude. The central
peak in the total d𝐼/d𝑉 curve is mostly due to these orbital contributions, and will be even
better resolved. The peak in 𝑑𝑥𝑦 will develop as well, although not as strongly, because the
simulation temperature is already well in its cross-over region. Still, the peak at 5 meV and
subsequent depression at 10 meV will remain explicable by the 𝑑𝑥𝑦 behaviour. Moreover,
the asymmetry of the total d𝐼/d𝑉 curve can be expected to be seen even more clearly in
theory, because the 𝑑𝑧2 and 𝑑𝑥2−𝑦2 tails at positive bias will lose their weight more rapidly
than the 𝑑𝑥𝑦 tail.
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Figure 4.6: Orbital Kondo parameters extracted from QMC with the Co adatom on the
(111) terrace (encircled 1), at the end of (2), and next to the Cu chain (3): QP weights 𝑍,
Kondo temperatures 𝑇K (K) rescaled by one order of magnitude, and orbital occupations 𝑛.
DFT input for the AIM: energy levels 𝜀 (eV), and hybridization strengths Im[𝛥(0)] (eV).
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4.6.7 Comparison of double countings
The FLL-DC often yields better results for the description of the Kondo effect, as it starts
from the atomic limit for the estimation of the Coulomb effects in DFT, and is thus better
suited for strongly correlated systems [Kar13] (Subsec. 2.1.4). However, for the Co adatom
next to the chain, although the simulated total d𝐼/d𝑉 curve with FLL-DC can be adjusted
to obtain the experimental line shape, the large 𝛾-parameter for tunnelling into the 𝑑𝑧2

orbital, which one needs to assume for the agreement, is difficult to justify. In contrast to
that, the AMF-DC easily leads to the experimental line shape and its substructures, and
both Kondo temperatures extracted from the QMC data coincide (145 K from FLL, and
from AMF in Tab. 4.1). For the other configurations, on the contrary, the 𝑇K extracted
from the QMC results with AMF-DC are remote from experimental values: 114 K and
127 K for the adatom on the (111) terrace and at the end of the chain, respectively. The
agreement of line shapes and Kondo temperatures between experiment and theory, together
with details for the choice of tunnelling parameters, led us to select the FLL-DC for the
Co adatom on the flat (111) terrace and at the end of the chain, and the AMF-DC at the
central part of the chain.

4.6.8 Analysis of symmetry breaking
Diagonalization of the local Hamiltonian (cf. Sec. 4.3) of Co on the (111) terrace reveals
the presence of an SU(4) Kondo effect as previously reported for phthalocyanine molecules
[Fra11; Min12]. This is because both, spin and orbital DOFs, are present. The low-lying
eigenstates are sixfold degenerate, their filling is 8, and the two holes align their spins via
Hund’s rules to a total spin of 1. At the chain, the Co orbital degeneracy is lifted and the
orbital Kondo effect is partially suppressed. This leads to an approximate SU(2) Kondo
effect of the spin DOF alone. Still, the symmetry breaking is not as severe as to reduce
the Kondo temperature 𝑇K. The main reason is because Hund’s rules, which reduce 𝑇K by
spin alignment, are less effective within non-degenerate orbitals.

In the multi-orbital context and away from half-filling, symmetries increase the Kondo
temperature 𝑇K, because Hund’s rule alignment plays a minor role under these conditions
(total spins are smaller, and less energy has to be paid to flip the state). Consequently,
the orbital Kondo effect needs to be taken into account. On the flat (111) terrace, the
diagonalization of the local Hamiltonian reveals the presence of an SU(4) Kondo effect.
The GS is six-fold degenerate, its filling is 𝑁at

tot = 8, and the two holes residing in 𝐸1 and
𝐸2 states align their spins via Hund’s rules to yield 𝑆at

tot = 1. The orbital contributions to
the Kondo effect arise from orbital flips without change of spin. As there are more states
with 𝑁at

tot = 7 than with 𝑁at
tot = 9, and as the excitation energies of the former are lying

lower, charge fluctuations yield a filling 𝑁tot = 7.85 with all orbitals being approximately
at three-quarter filling (Tab. 4.6).

The CF depends on the energy window chosen for the projection from the Bloch bands to
the correlated orbitals (see Sec. 4.6.2). The 𝑑𝑧2 happens to be slightly lower by 2 meV than
the orbitals of 𝐸1 symmetry, and thus is filled first. At non-zero temperature the lowest-
lying and six-fold degenerate excited states shown in Fig. 4.8 contribute with their own
SU(4) Kondo effect. The occupations reveal the orbital contributions to the Kondo effect
more clearly than the absolute GSs with 𝑑𝑧2 filled (not shown), which have a complicated
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Figure 4.7: Comparison of results obtained with the AMF-DC (upper row) and with the
FLL-DC (lower row): Total and orbital-resolved differential conductance d𝐼/d𝑉 and orbital-
resolved spectra 𝐴 (the latter two in insets) with the Co adatom on the (111) terrace (left
column, encircled 1), at the end of (middle column, 2), and next to the chain (right column, 3).
Best adjustments found for 𝛾/𝛾0 are listed in the legends.

distribution of their spin over 𝐸1 and 𝐸2 orbitals. This is similar to the case of a Co
adatom next to the chain, whose spin is distributed over all orbitals (shown on the right in
Fig. 4.8). The existence of transitions between two degenerate triplets via orbital flips was
checked explicitly. Thus, there is a six-fold degenerate GS, but also a six-fold degenerate
excited state (and even more than that). All these multiplets contribute with their own
SU(4) Kondo effect, and all these Kondo effects add up coherently. In view of that, with the
extracted CF there occurs a superimposed SU(4) Kondo effect, albeit temperature might
suppress Kondo effects from multiplets other than the GS considerably. This situation
should be common in multi-orbital systems with unbroken symmetries.

With the Co adatom at the chain, the orbital Kondo effect is partially suppressed
depending on the coordination, which results in an approximate SU(2) Kondo effect.
The orbital 𝐶3𝑣 symmetry is broken (Fig./Tab. 4.1), and the two degenerate triplets are
energetically separated, in case of the Co adatom at the end of the chain by 5 meV (CF
splitting in 𝐸2; Fig. 4.8). With the same FLL-DC, the Co adatom next to the chain has the
same Kondo scenario as at the end, only the CF splitting in 𝐸2 is as large as 27 meV. At
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Figure 4.8: Ground and excited state configurations of the Co adatom on the flat (111)
terrace (encircled 1), at the end (2), and at the central part of the chain (3). The dashed line
is a guide to the eye, which organizes five orbital energy levels into one adatom configuration,
and helps to distinguish the positions of the energy levels w.r.t. each other. Boxes in beige
highlight the triplets. Large arrows denote occupation of one electron, small arrows without
annotated number half an electron, other small and medium-size arrows carry an annotation
for the occupation. See text for further explanations.

non-zero temperatures, low-lying eigenstates of the local Hamiltonian contribute with their
own Kondo effect as well, but the tendencies in the CF splitting and partial suppression of
orbital Kondo contributions remain. As a result they are less relevant at stronger symmetry
breaking.

The determination of the Kondo scenario of a realistic adatom is difficult, and depends
on the various parameters chosen for the local Hamiltonian, especially on the DC. For all
configurations, AMF-DC leads to 𝑆 = 3/2 GSs at filling 𝑁at

tot = 7 without the additional
orbital degeneracy, like in case of the Co adatom next to the chain (Fig. 4.8). The
tendencies in the CF splitting, however, prevail, so that excitations are more difficult
the stronger the symmetry breaking. Still, the energy level positions and hybridization
strengths overcompensate the reduction of symmetry, and 𝑇K rises at higher coordination.

It should be noted that with the choice of DCs made, the symmetry of the GS formally
is higher at the central part of the chain than at its end (𝑆 = 3/2 quartet vs. 𝑆 = 1 triplet,
respectively). This indicates that the contribution of the orbital Kondo effect is strongly
suppressed next to the chain, while at its end symmetry breaking and thus the suppression
are only partial.
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Figure 4.9: Comparison between the 𝑑𝑧2 spectral function of Co on the Cu(111) surface
from the full five-orbital AIM (black curve) with single-orbital AIM calculations having the
same energy level and hybridization function for 𝑑𝑧2 , but with the other 𝑑 orbitals switched off,
and the chemical potential adjusted to attain half-filling. In (a) the Hubbard bands are shown,
in (b) a zoom into the low-energy region to resolve the Kondo peaks in full amplitude is shown.

4.6.9 Comparison to one-orbital model
Fig. 4.9 compares the spectral function of the Co 𝑑𝑧2 orbital on the (111) terrace with
single-orbital calculations having the same energy level and hybridization function for 𝑑𝑧2 ,
but with other 𝑑 orbitals switched off, and the chemical potential adjusted to obtain optimal
Kondo behaviour near half-filling. The only adjustable parameter of the single-orbital
model is the Coulomb interaction strength 𝑈 , which has been scanned through a set of
values between 𝑈 = 4.0 eV, used in the full five-orbital calculations, down to 𝑈 = 2.0 eV.
Fig. 4.9(a) shows the Hubbard bands approaching the Fermi level upon lowering 𝑈 . Like
in Hubbard models, at lower values for 𝑈 , metallic behaviour sets in, and the Hubbard
bands start to merge. As the hybridization function is asymmetric, the single orbital is
slightly above half-filling, so the upper Hubbard band has lower weight and is closer to
the Fermi level, but higher in amplitude. This is in contrast to the situation where 𝑑𝑧2

is inside the five-orbital environment. Its occupation is much higher, but the behaviour
of Hubbard bands is reversed. With a single-orbital model one will thus not obtain the
electronic structure for the same orbital in a multi-orbital environment. Local interactions
between the orbitals and their respective hybridizations let them appear as one big orbital
having space for ten electrons, instead of five orbitals with each having space for two.

Fig. 4.9(b) zooms into the low-energy region to resolve the Kondo peaks in the 𝑑𝑧2 orbital.
A large 𝑈 leads to a low 𝑇K, and at simulation temperature above the Kondo scale the
resonance is less developed. All calculations were performed at 𝛽 = 200 eV−1. To achieve
reasonable agreement between the 𝑑𝑧2 spectrum within the full AIM and of a single-orbital
model, one needs to rescale 𝑈 to physically incorrect values. To obtain a Kondo peak, one
furthermore has to fix the occupation near half-filling, for otherwise charge fluctuations
increase significantly, and the Kondo effect would disappear. The true shape and stability
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of the resonance, however, relies on the orbital occupation and the presence of the other
orbitals within the full AIM.

On the (111) terrace, the line shape of the differential conductance d𝐼/d𝑉 is largely
due to the Co 𝑑𝑧2 orbital. This seems to suggest that a single-orbital model of the Kondo
effect may be sufficient to analyse experimental data. However, as has been just shown,
the line shape of the 𝑑𝑧2 orbital itself depends on the local interactions with the other
orbitals, but also on the Kondo scenario. The spin in the 𝑑𝑧2 orbital couples to other spins
in different orbitals via Hund’s exchange to yield a large-spin Kondo effect, and the orbital
Kondo effect additionally contributes to the line shape. A single-orbital treatment neglects
these effects and thus misses the relevance of symmetry and the presence of other orbitals.
Within the full description one can discuss CFs, potentially different bonding environments,
such as due to a nearby Cu chain, and one obtains a more realistic electronic structure of
the Co adatom.

4.6.10 Summary
Distinct line shapes of the Kondo resonance are observed in tunnelling spectra of Co
adatoms on the Cu(111) surface in different local environments. The differences are
observed because neighbouring atoms of the CU chain lift orbital degeneracies. The results
show that a single-orbital description of the Kondo effect of adatoms at surfaces may be
oversimplified. The line shapes result from contributions from individual orbitals, and a
full five-orbital CTQMC treatment was able to identify all of them. This goes beyond usual
NRG model building, which tries to identify the Kondo scenario beforehand by means of
DFT data, and is at present not capable to go numerically beyond three orbitals [Cos15;
Sta15]. Especially the various features of the d𝐼/d𝑉 curve of the Co adatom at the central
part of the chain needed full consideration of all five orbitals in the AIM (see Refs. [Fra15;
Jac09; Ter09] for analogous statements). Furthermore, the QMC data even provide a
means of estimating the Kondo temperature, where fitting with Fano and Frota line shapes
to experimental data may not be performable.

The authors of Ref. [Jac09] made analogous studies with TM atoms in Cu nanocontacts,
using a DFT+OCA solver (cf. Sec. 3.5), to show that different peaks seen in conductance
spectra are due to Kondo resonances in different orbitals. In Ref. [Kar11a] a Co-benzene
sandwich molecule between Cu nanocontacts was studied with QMC methods, to further
show that the orbital Kondo effect contributes. In Ref. [Fra15] a DFT+OCA study was
performed for Co/Cu(111), and it was shown that different Kondo effects superimpose
to yield a final multi-orbital Kondo effect. The coupling groups between the adatom and
conduction orbitals were used according to this reference (cf. Eq. (4.67); conduction orbitals
are the Co 𝑠 and 𝑝 orbitals); the authors considered all five orbitals in their calculations,
but still fail with the relevant 𝑧2 orbital due to neglect of direct tunnelling into the surface
and subsequent interference effects. – The system of a MnPc molecule adsorbed on Pb(111)
(MnPc/Pb(111)) shows different orbital Kondo peaks as well [Jac13], and the corresponding
authors try to correct the interpretations made in the seminal Ref. [Fra11] on the Kondo
effect on SC substrates. Ref. [Küg15] studied the MnPc/Ag(001) system by a combination
of STM experiments and DFT+AIM calculations using a CTQMC solver, and found a
superposition of Kondo effects and/or orbital states, both residing in different orbitals. In
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view of that, already quite a few statements on the importance of multi-orbital Kondo
physics to interpret experimental data were made, but none of them performed a full
CTQMC solution of the AIM plus a subsequent evaluation of the differential conductance
“as ab-initio as possible”; the study presented here closes this gap. Geometric symmetry
breaking due to different coordination environments, and its effects on the Kondo physics,
has been studied before, see, for example, Refs. [Tsu14; Zha05]; but a direct comparison of
one- and five-orbital models as in Subsec. 4.6.9 has been done for the first time.



CHAPTER 5
Summary and Outlook

The present thesis developed an introduction to the DFT+AIM approach and reported on
its application on real material systems. There were four different threads around which the
thesis has been organized. The first thread was defined by DFT; the introduction (Chpt. 1)
started from QED of bound states, and quickly derived from this general perspective on
condensed matter systems the approaches in which practical simulations and comparison
to experimental results can be performed. The exposition in the subsequent chapters took
the converse path, though, and successively developed the theory of non-relativistic DFT
without the presence of spin (Subsecs. 2.1.1 and 2.1.2), of spin-DFT (Subsec. 2.1.3) and
DFT+𝑈 (Subsec. 2.1.4), and eventually of current- and RDFT (both in Appx. A), where
contact with bound-state QED was restored.

The DFT approach was applied within a study on the Ta(001)-p(3×3)-O surface which
was in parallel under experimental investigation using STM and STS, and it was able
to identify the geometry as well as the electronic and quantum-chemical properties of
the surface (Sec. 2.4). Its nature of being a static approach to the inherently dynamical
correlations, however, prevents the determination of the adsorption properties of other
atoms and molecules, so that a further characterization of the Ta(001)-p(3×3)-O has been
performed by application of DFT extended as to include vdW forces (Secs. 2.5 and 2.6).
– The bridge between theory and experiment needed a short account on STM theory for
weakly correlated surfaces (Sec. 2.2). This theory was later extended to include adatoms
hosting strongly interacting electrons (Sec. 4.4), to account for experimental spectra which
result from probing the electronic structure of both, adatoms and surfaces, and which thus
include local correlations as well as interference effects between the two tunnelling paths.

The second thread was thus the development of the AIM and its recognition as an
essential ingredient to account for the local electronic correlations present on TM or
rear-earth adatoms (on surfaces) or impurities (in bulks) Sec. 3.2. While the nature
of DMFT and the relation to bulk systems is realized by an additional self-consistency
condition accompanying the AIM, for the systems considered in the present thesis, that
is, correlated adatoms on surfaces, the AIM itself already provides the basis for their
exhaustive many-body treatment.

In principle the AIM can also be applied to represent the electronic structure of adatoms
hosting weakly correlated electrons, to which the Co/graphene system apparently belongs
(Secs. 3.5 and 3.6). In view of that, the AIM thus provides a means to describe the electronic
structure of adatoms on surfaces in general, for which numerical approaches for its solution
have to be devised. The present thesis outlined the combination of CTQMC (Sec. 3.3) and
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SOM (Sec. 3.4) as the numerical solution to the AIM, which includes the evaluation of
the imaginary-time GF and its analytic continuation to real energies, where the spectral
information for comparison to experiment can be found. On the one hand CTQMC is a
non-perturbative, that is, numerically exact, solution of the AIM, and on the other hand
SOM is capable to calculate very different kinds of spectra from QMC data, be they smooth
on the whole energy range or peaked at particular energies. Thus, the CTQMC+SOM
solution was able to provide the spectrum of the rather weakly interacting Co/graphene
system (Fig. 3.5) as well as to show the narrow Kondo peak of the CoCu𝑛/Cu(111) systems
(Fig. 4.3).

Instead of explaining all too much on the computational and numerical details, except
of further explaining the theoretical merge of DFT and the AIM within the DFT+AIM
approach for realistic many-body models (Subsec. 3.2.1), the AIM was decorated with some
of its physical relevances and prospects of its application. In employing the DFT+AIM
approach to the Co/graphene system we included the Coulomb interaction matrix calculated
with help of the cRPA (Subsec. 3.1.2) and thereby incorporated the anisotropies which
arose from the symmetry breaking due to the surface geometry. The cRPA itself is part of
the RPA and the GWA, so further explanations on both these theories was provided - also
with respect to the vdW interactions which are encompassed by the RPA.

After explaining all the theoretical and numerical approaches to correlated electrons on
individual interaction centres, in the third thread the thesis ascended to the emergence of
the spectral resonance structures which appear if the correlations happen to be strong. In
particular, Chpt.4 was dedicated to the multi-orbital Kondo effect, and to its explanation in
terms of the complementary pictures of FL theory and the scaling approach. The chapter
also explained how to determine the Kondo scenario from the ME approach (Sec. 4.3), how
further symmetry breaking within the CF effects the energy levels (Sec. 4.2) and eventually
the Kondo scenario (cf. Subsec. 4.6.8), and how to derive the differential conductance
(Sec. 4.4 and Subsec. 4.6.3) which can directly be compared to experimentally measured
spectra (cf. Figs. 4.1 right and 4.5). The whole theory and computational scheme developed
was then applied to the CoCu𝑛/Cu(111) systems (Sec. 4.6).

The relevance of the developed DFT+AIM approach became apparent as it properly
describes the local correlations of nanosystems on surfaces. Further directions for its
extension can be thought of. On the computational side, one can incorporate an outer
charge-self-consistency loop to account for the back reaction effects of the local correlations
on the DFT electronic structure (introductory part to Chpt. 3). This is an extension
which works on the AIM parameters without changing its form. But of course one can
extend the AIM Hamiltonian itself, for example, by the SOC term (Appx. B) or by the SC
energy gap (cf. Sec. 2.3). The first extension would be needed to consider the magnetic
anisotropy in a system, the second one to describe YSR states. But for both these additional
terms one would have to think of how to numerically resolve their small energy scales
in the CTQMC+SOM solution; possibly a quantum-mechanical PT seems advisable at
first place. However, such extensions are worth the efforts: In case of an additional CF
splitting possibly inducing a considerable SOC, one could realistically simulate the impact
of the magnetic anisotropy on the differential conductance and directly compare it to the
experimental spectrum. Similarly interesting would be to see the SC energy gap and the
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YSR states in a realistic many-body calculation, as this amounts to a complete reshaping
of the low-energy spectrum.

The realm of surface science is vast and highly complex. Due to the relevance of
quantum chemistry in these systems, and the interplay and interpenetration of different
physical and quantum-chemical effects, the description of such systems is highly demanding.
Furthermore, correlations at all length scales are seen to be important. While DFT is
capable to account for weak correlations and metallicity, it cannot properly represent strong
correlations and has its difficulties with gapped systems; in particular, quantum-chemical
structures can be estimated from the DFT-DOS, but are seen to be rather mimicked by the
DFT approach instead of truly represented. Inhomogeneities with strong correlations, such
as TM adatoms on surfaces, need the dual picture of the AIM to have their many-body
effects be properly accounted for.

The fourth thread was given by the application of DFT and DFT+AIM on the
Ta(001)-p(3×3)-O surface (Secs. 2.4 and 2.6), the Co/graphene system (Sec. 3.6), and
the CoCu𝑛/Cu(111) systems (Sec. 4.6). The context of the current state of research and
their relevance was explained for each of these systems, and finally the investigations and
results themselves were reported on. The DFT approach was applied to the Ta(001)-
p(3×3)-O surface and served to identify its physical and quantum-chemical structure; the
DFT+AIM approach was developed along, and applied on, the Co/graphene system, and
the consideration of the cRPA Coulomb matrix made apparent the relevance of geometric
anisotropies on the low-energy physics and possibly the Kondo effect; and the multi-orbital
Kondo scenarios and the differential conductances of the CoCu𝑛/Cu(111) systems were
determined.

The Ta(001)-p(3×3)-O surface can be put into the wider context of the Kondo effect on
superconducting surfaces. Sec. 2.4 provided a DFT characterization of the subtrate, while
in Ref. [Cor17] Fe adatoms were investigated in this wider context. The Ta(001)-p(3×3)-O
surface provides several possible adsorption sites and different possible arrangements for
Fe adatoms, and thus various Kondo effects and their interplay can be observed [Kam18;
Kam21; Kam19]. As mentioned, the DFT approach points to aspects of the surface beyond
its own actual domain of applicability, albeit within its frame it was able to reveal the
underlying quantum-chemistry. A further characterization, possibly within the RPA or
GWA is needed (Sec. 3.1), but one has to organize and make possible calculations on such
a complicated system. This is especially important in view of the adsorption properties on
this surface, which are not fully settled, yet. As regards the Kondo effect of adsorbates
from a computational point of view, there remains, as mentioned, the problem of how to
resolve the SC gap in QMC calculations.

An analogous statement may apply to the Co/graphene system (Sec. 3.6), for the adatom
properties strongly depend on a precise determination of its adsorption and electronic
structure because the chemical potential is shifted due to doping. The Kondo effect in
pseudo-gapped systems is very sensitive to this fact (Sec. 3.5). As regards the Kondo effect
in multi-orbital systems in general, the precise estimation of the DC is important as well
(cf. Subsec. 4.6.8), for the Kondo scenario depends on the impurity filling and orbital
occupations. Appx. C reported on the exact representation of the DC in terms of the LW
functional, but this approach still has to be extended to the geometric anisotropies inherent
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to surface systems. – The AIM has the power to naturally describe completely the local
physics of adatoms on surfaces, but a precise extraction of the underlying relevant physics
is not easy. For example, at the time of writing the thesis it was not known if Co/graphene
exhibits the Kondo effect, and other, in part more plausible, interpretations of the few
experimental data were given (cf. Sec. 3.5).

Finally, we provided a description of the local electronic correlations present in the
CoCu𝑛/Cu(111) systems in terms of the multi-orbital Kondo effect (Sec. 4.6). Further
experimental studies revealed that the SOC might be relevant for these systems, and point
to the necessity to incorporate further interactions into the AIM. The approach applied in
this thesis was ab initio to a large extent, but further directions of development are at hand,
and were in part realized already. On the one hand, one should include the STM tip and its
multi-orbital character in the determination of the differential conductance (cf. Sec. 4.4).
On the other hand, there are the tunnelling matrix elements which were determined by
physical reasoning, to achieve consistency between theory and experiment (Subsec. 4.6.3).
The experimental spectra are often complex enough for not making the consistency a
coincidence. Yet, in principle one can compute these tunnelling matrix elements as an
overlap of WFs, for example, as in Eq. (2.55). Having realistic tunnelling matrix elements
would result in completely ab initio differential conductances.
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A Beyond spin-DFT and DFT+𝑈

A.1 Current in DFT
Even though it has not been used in any of the projects and calculations reported in the
present thesis, but as it serves for the completeness of the theoretical background, we will
shortly digress into current- and spin-DFT as defined by Vignale and Rasolt [Vig88]. But
first we make contact with some physical objects which could be described by current- and
spin-DFT, and find their relevance for the Ta(001)-p(3×3)-O surface to be presented in
Secs. 2.3, 2.4, and 2.6.

An electronic current might exist if there is an inhomogeneous charge distribution present
in the material system [Gra13]. In principle this applies for CDWs in which currents with
opposite momenta form standing waves [Frö54]. If the CDW is incommensurate, that
is, if its wavelength is not a rational or integer multiple of the lattice constant, it might
move itself (together with the lattice distortion). Usually, however, CDWs are pinned to
impurities present in the system, and as was shown for the TM trichalcogenide NbSe3, for
incommensurate CDWs to move, often an electric field has to be applied above a certain
threshold value which can lead to depinning [Grü81].

CDWs (but not charge transport) can in principle be described by DFT extended as
to include phonon vibrations of the lattice, as was shown for the TM dichalcogenide
TiSe2 [Duo15]. Below the Peierls transition temperature the phonon mode of wave vector
2𝑘F, which couples electrons at the Fermi surface moving in different directions, becomes
macroscopically occupied and freezes out, so that a static regular lattice distortion emerges,
eventually leading to the CDW [Bar90; Pei30]. The CDW is accompanied by the appearance
of a band gap at the Fermi surface due to the transfer of normal electrons into the CDW,
which renders the system insulating. Even though most of the original papers considered
the CDW mechanism as a possible explanation of SC, it thus turned out that the underlying
electron-phonon coupling leads to a rather different behaviour. Then the question remains
whether CDWs cooperate or compete with the SC order, as many systems for which the
CDWs are observed also superconducting [Cha12; Cho18; Jat18; Lia18]. The coupling of
both phenomena is still under active investigation, and both scenarios seem to be realizable
in the same system, depending on the degree of disorder, as shown for NbSe2 [Cho18]. – A
review on CDWs and their dynamics is provided in Ref. [Grü88]; a particular realization
of the one-dimensional CDW pertaining to the original Peierls theorem is reported in
Ref. [Kom17].

The amplitudes of the lattice distortions and CDWs are usually rather small (corre-
sponding to the small band gap), and they appear only in one-dimensional or layered
systems which admit nesting vectors in two-dimensional BZ (see, however, Ref. [Joh08] for
counter-arguments to the nesting-vector concept). But CDWs may occur also in larger
magnitudes at surfaces due to the bulk termination and local charge accumulation, and
they are accompanied by reconstruction of the surface into superstructures. This is also the
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case for the Ta(001)-p(3×3)-O surface investigated in Secs. 2.4 and 2.6. Reconstructions
of surfaces show an abundance of patterns, sometimes with surface CDWs different in
symmetry than the corresponding ones in the bulk [Che18].

Usually, one should perform density functional PT or use some other extended DFT for
the inclusion of phonon modes which may eventually lead to CDWs [Duo15; Hei13; Lüd05;
Tog15]. In this setup one can also determine the Peierls transition temperature [Duo15].
But CDW behaviour can also be described within usual DFT, as shown for Ta-based TM
dichalcogenides [Mil18]. As mentioned in Sec. 2.4 presenting the project results on the
Ta(001)-p(3×3)-O surface, DFT yields a rather metallic description of the surface even
though experiments show the surface being an insulator. However, the simulations point
in many aspects to the insulting behaviour if one looks at the results from the BCA, which
reveal a pronounced charge accumulation and immobilization at oxygen locations. The
charge order, which is connected to the surface reconstruction, admits an interpretation in
terms of a CDW accompanied by insulating behaviour of the surface. One can furthermore
see in the DOS of the surface and subsurface layers (latter not shown in Sec. 2.4), along
which path within the surface the lone pairs on oxygens induce static dipoles on the Ta
surface atom in the centre of the (square-shaped) 3×3 plaquettes of the superstructure
formation, even though they are not neighbouring each other. Long-range effects are not
contained in DFT due its local approximation, yet it mimics them indirectly via such paths
as it still contains within its self-consistency some non-local dependence of the KS orbitals
on the electronic density.

The magnetic analogue of CDWs are SDWs, which may also appear in incommensurate
order and are at least quasi-one-dimensionally arranged. The prototypical example of
a SDW material is chromium below its Néel temperature of 311 K [Bih00; Faw88]. The
Cr(001) surface was also discussed in the context of the orbital Kondo effect by employing
the DMFT machinery [Kol02; Kol05; Sch16] (see also Chpt. 4, and here Sec. 4.5.3). SDWs
are discussed in the context of high-𝑇c SC, where spin-flip excitations induced by a moving
electron can attract another electron resulting in Cooper pairing [Dai15]. Still, as mentioned
in Sec. 2.1.3, like magnons these spin-flip excitations are to be distinguished from SDWs,
as the latter belong to the itinerant magnetism of the material in its GS. The proposal
to describe high-𝑇c SC with such spin flips is based on the observation that all these
superconductors are also SDW materials, and an associated excitation mechanism could be
given within the resonating valence bond theory, see Refs. [And13; Bas09; Dal14; Man11]
and references therein.

In general, there exists neither spin nor current densities without an external magnetic
field due to time-reversal invariance. However, there might be a broken symmetry present
in the system, such as spin-symmetry breaking leading to ferromagnetism, or current-
symmetry breaking in open-shell atoms (i.e., atoms with an incompletely filled valence
shell) leading to current and spin-current densities appearing in the GS [Vig88]. Particular
examples are just given by incommensurate CDWs and SDWs. Any form of current leads
to itinerant magnetization within the system, be it polarization or magnetization currents
due to movement or circulation of electric or magnetic dipole moments, respectively, or
free currents. The theory for orbital magnetization in infinitely extended systems was
established only recently and is reviewed in Ref. [Tho11], and the theory for electronic
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polarization in Ref. [Spa12]. Instead of going into this topic here, we assume to have
enough motivation for the definition of a current-DFT, which encompasses all kinds of
currents, be they located and circulating, or free and traversing the system (cf. remarks
after Eq. (A.39)). Furthermore, the second main motivation for its presentation is to
see how causality eventually re-emerges in taking the current density into account. This
becomes more important in TDFT where the XC potential is time-dependent and contains
retardation effects, which implies yet another non-locality next to the usual one due to
non-local correlations already present in time-independent DFT [Vig06]. While the latter
can be cured by the local density approximations (with some non-local effects taken into
account by the DFT self-consistency), the former signifies that charge and spin densities as
basic variables are not sufficient for retardation to be respected, and additionally current
and spin-current densities need to be considered instead. However, while in current-
and spin-DFT as to be developed in this section the introduction of the currents yields
the coupling to external electromagnetic potentials along with corresponding magnetism,
causality and retardation are actually fully restored only by taking into account the current-
current interaction (along with the instantaneous Coulomb interaction) resulting from
the electron-photon coupling in QED (Appx. A.2). – We would also like to note at this
point that SC pertains to a current in the system, and actually needs a current-DFT
description as well [Hig17]. However, SC results from electron-phonon coupling, and is
usually addressed within Eliashberg theory [Umm13].

The first formulation of DFT including the current density generated by strong external
magnetic fields was given by Vignale and Rasolt in Ref. [Vig87]. The main result was
an explicit expression for the part of the XC functional depending on the paramagnetic
current density jp(r), which will be given Eq. (A.9) for the generalization of current-DFT
to include spin. The explicit form follows from gauge invariance and vice versa, and
results in the dependence 𝐸xc[𝑛,jp] = 𝐸xc[𝑛,v], where v(r) = ∇ × jp(r)/𝑛(r). The proof
of gauge invariance and the continuity relation needed a special treatment within the DFT
one-particle approximation. Furthermore, one has to use the paramagnetic current density
instead of the physical one as the basic variable (cf. Eq. (A.3)), as this is the one which
happens to be conjugate to the external vector potential (i.e., it determines the external
vector potential in the sense of the generalized HK theorem I). The use of non-gauge-
invariant, unphysical quantities is rooted in the non-relativistic approximation, and the
decomposition of the Hamiltonian into the part describing the electronic system itself and
the one providing the coupling to the external fields. Finally, they found the dependence of
the XC potential on v(r) advantageous, for in this variable a local approximation can be
defined, while there is no such approximation for the paramagnetic current density jp(r).

The current-DFT for the charge and current density was subsequently extended by
Vignale and Rasolt to include the spin and spin-current density [Vig88]. The Hamiltonian
in the collinear case (the non-collinear case is analogous) with external electromagnetic
potentials is written as

�̂� = �̂�0 +
∑︁

𝜎

ˆ
dr
[︂
�̂�𝜎(r)𝑉 ′

ext,𝜎(r) + ĵ𝑝𝜎(r)V𝜎(r) + 1
2 �̂�𝜎(r)V2

𝜎(r)
]︂
, (A.1)
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with �̂�0 containing the kinetic energy and Coulomb interactions of the electrons. The
external electric and magnetic fields are given by the relations 𝑉ext(r) = 1

2 [𝑉 ′
ext,↑(r) +

𝑉 ′
ext,↓(r)] and 𝜇B~𝐵(r) = 1

2 [𝑉 ′
ext,↑(r) − 𝑉 ′

ext,↓(r)], and they couple to the charge and spin
densities, respectively (cf. again remarks after Eq. (A.39)). The external vector potential
is subject to the condition V↑(r) = V↓(r) = V(r), with ẑ𝐵(r) = ∇ × V(r), and ẑ being
the quantization axis. As before, the density components are �̂�𝜎(r) = 𝜓+

𝜎 (r)𝜓𝜎(r), and the
paramagnetic current density is given by

ĵ𝑝𝜎(r) = − 𝑖

2

[︁
𝜓+
𝜎 (r)∇𝜓𝜎(r) − ∇𝜓+

𝜎 (r)𝜓𝜎(r)
]︁
. (A.2)

The physical current density comprises the paramagnetic and the diamagnetic current,

ĵ𝜎(r) = ĵ𝑝𝜎(r) + 𝑛𝜎(r)V𝜎(r). (A.3)

For the gauge invariance of the Hamiltonian to be ensured, only the paramagnetic current
density has to appear in it. Still, it is the physical current density with which the density
obeys the continuity relations for charge and spin (as an equation for DFT variables, not
operators),

𝜕𝑛𝜎(r, 𝑡)
𝜕𝑡

+ ∇j𝜎(r, 𝑡) = 0. (A.4)

The universal functional 𝐹 [𝑛𝜎, j𝑝𝜎] (≡ 𝐹 [𝑛↑, 𝑛↓, j𝑝,↑, j𝑝,↓]) is given by the GS expectation
value

𝐹 [𝑛𝜎, j𝑝𝜎] = ⟨𝛹0[𝑛𝜎, j𝑝𝜎]
⃒⃒
�̂�0
⃒⃒
𝛹0[𝑛𝜎, j𝑝𝜎]⟩, (A.5)

and the implementation of the correspondingly generalized HK theorems yields the KS
potential

𝑉KS,𝜎[𝑛𝜎](r) = 𝑉 ′
ext,𝜎(r) + 𝑉H,𝜎[𝑛𝜎](r) + 𝑉xc,𝜎[𝑛𝜎](r) (A.6)

+ 1
2

[︁
V2
𝜎(r) − {V𝜎(r) + Vxc,𝜎[𝑛𝜎, j𝑝𝜎](r)}2

]︁
, (A.7)

with the XC external vector potential given by

Vxc,𝜎[𝑛𝜎, j𝑝𝜎](r) = 𝛿𝐸xc[𝑛𝜎, j𝑝𝜎]
𝛿j𝑝𝜎(r) . (A.8)

The XC functional in the high-density limit and until second order in the current density (or
rather v2(r)) can be obtained by using results from linear response theory (see Ref. [Vig88]
for details), and the result is

𝐸xc[𝑛𝜎, j𝑝𝜎] = 𝐸LDA
xc [𝑛↑, 𝑛↓] +

∑︁

𝜎

ˆ
dr 𝑘F𝜎

48𝜋2

(︂
𝜒𝐿𝜎
𝜒0
𝐿𝜎

− 1
)︂
𝑛𝜎(r)

⃒⃒
⃒⃒∇ × j𝑝𝜎(r)

𝑛𝜎(r)

⃒⃒
⃒⃒
2
. (A.9)
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Here, 𝑘F𝜎 is the Fermi momentum, and 𝜒(0)
𝐿𝜎 the spin-𝜎 contribution to the orbital-magnetic

susceptibility of the (non-)interacting electron gas (calculated within the RPA; Sec. 3.1).
The second term contains the current-current interaction resulting from its coupling
to the external electromagnetic field, the contributions of which are contained in the
susceptibility (this is somewhat analogous to the Eqs. (A.31) and (A.33) for the current-
current interaction in QED), and its form is in compliance with gauge invariance. The
current-current interaction serves to restore causality (i.e., it incorporates the retardation
effects), which is broken by only taking into account charge density and instantaneous
Coulomb interaction along with coupling of the spin density to the external magnetic field
[Kle09; Vig06]. The result is valid for slowly varying currents, that is, |∇× j𝑝𝜎|/|j𝑝𝜎| ≪ 𝑘F𝜎
(cf. Eq. (2.31)).

The results could have been obtained in the non-relativistic limit from the full relativistic
QED Hamiltonian (e.g., by a Foldy-Wouthuysen transformation, cf. Appx. A.2) containing
the interaction part

�̂�ext =
ˆ

dr �̂�𝜇(r)𝑉 𝜇
ext(r), �̂�𝜇(r) = ^̄𝜓(r)𝛾𝜇𝜓(r). (A.10)

In principle, the electromagnetic field has to be treated classically to prevent electron-
positron annihilation, and their subsequent recombination into the QED vacuum. As
always in the relativistic context, one has the possibility for manifest causality and gauge
invariance, for example, the V2

𝜎(r) term would not appear in the Hamiltonian. However,
the disadvantage is the need for renormalization procedures to treat the divercengies
appearing in four-dimensional PT.

A.2 Relativistic DFT

As mentioned in the introduction (Chpt. 1), condensed matter systems can in the most
general context be described by bound-state QED. QED is the merger of special relativity
and quantum field theory for (U(1)-)charged particles interacting via the electromagnetic
field. Considering the interacting system in QED at zero temperature, we know that this
many-body system in its GS can be described (at least formally) completely by DFT.
Within this section we closely follow the exposition of RDFT in Ref. [Eng02]. As the
present section contains only the results needed to understand causality, and eventually the
emergence of the SOC from the relativistic context, the reader is referred to Ref. [Eng02]
and the references therein for more details on RDFT.

The Lagrangian for the electrons reads

Le(𝑥) = ^̄𝜓(𝑥)
(︀
𝑖𝑐𝛾𝜇𝜕

𝜇 −𝑚𝑐2)︀𝜓(𝑥), (A.11)

and the one for the electromagnetic field

L𝛾(𝑥) = − 1
16𝜋𝐹𝜇𝜈(𝑥)𝐹𝜇𝜈(𝑥) − 𝜆

8𝜋

(︁
𝜕𝜇𝐴

𝜇(𝑥)
)︁2
, 𝐹𝜇𝜈(𝑥) = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇. (A.12)
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The interaction between the two is

Lint(𝑥) = −𝑒�̂�𝜇(𝑥)𝐴𝜇(𝑥), �̂�𝜇(𝑥) = ^̄𝜓(𝑥)𝛾𝜇𝜓(𝑥), (A.13)

and the electrons are subject to some classical time-independent external potential,

Lext(𝑥) = −𝑒�̂�𝜇(𝑥)𝑉𝜇(r). (A.14)

The fields 𝜓(𝑥) in this section denote Dirac spinor fields, and 𝛾𝜇, 𝜇 = 0, . . . , 3, are the
Dirac gamma matrices. For comparability to the non-relativistic limit, 𝑚, 𝑐, 𝑒 have been
reintroduced in this section, but ~ = 1 is retained. Einstein summation is employed with
metric signature (+, − , − ,−), and 𝑥 = (𝑡, r) (written opposite to the non-relativistic
notion (r, 𝑡)). If the external potential arises from positive charges (e.g., ions), one may
equivalently describe them with their own Lagrangian, and let them interact with the
electrons via their own coupling to the photon field. We shall follow the viewpoint of
Eq. (A.14), where the electrons move in the classical external electromagnetic potential
of the (spatially fixed) ions (Born-Oppenheimer approximation), and perhaps some other
time-independent external fields. For example, the spatial part of the four-potential 𝑉 𝜇

may include the ionic magnetic moments. The second term in Eq. (A.12) is the gauge-fixing
term within the Gupta-Bleuler quantization approach of the photon field (𝜆 being the
gauge-fixing parameter) [Ble50; Gre96; Gup50]. This term is needed for the canonical
quantization procedure, that is, for the definition of equal-time commutation relations
between 𝐴𝜇(𝑥) and its conjugate momenta 𝜋𝜇(𝑥). The classical Lorentz gauge condition
𝜕𝜇𝐴

𝜇(𝑥) = 0 cannot be satisfied as an operator equation (a quantum anomaly), only its
expectation values are admitted to obey that condition, that is, ⟨𝜕𝜇𝐴𝜇(𝑥)⟩ = 0. But this is
sufficient to eliminate the unphysical time-like and longitudinal polarization components of
the photon field.

The invariance of the Lagrangian with respect to local gauge transformations of the
photon field yields the current conservation,

𝜕𝜇�̂�
𝜇(𝑥) = 0, (A.15)

from which follows the conservation of the total charge

�̂� =
ˆ

dr �̂�0(𝑥) =
ˆ

dr𝜓+(𝑥)𝜓(𝑥). (A.16)

The canonical energy-momentum tensor follows from Noether’s theorems via invariance of
the QED action under spatio-temporal translations, and it has the form

�̂�𝜇𝜈(𝑥) = ^̄𝜓(𝑥)
[︀
𝑖𝑐𝛾𝜇𝜕𝜈 − 𝑔𝜇𝜈

(︀
𝑖𝑐𝛾𝜌𝜕𝜌 −𝑚𝑐2)︀]︀𝜓(𝑥)

− 1
4𝜋

{︂
𝐹𝜇𝜌(𝑥)𝜕𝜈𝐴𝜌(𝑥) + 𝜆

(︁
𝜕𝜌𝐴

𝜌(𝑥)
)︁
𝜕𝜈𝐴𝜇(𝑥)

− 𝑔𝜇𝜈
[︂

1
4𝐹𝜌𝜎(𝑥)𝐹 𝜌𝜎(𝑥) + 𝜆

2

(︁
𝜕𝜌𝐴

𝜌(𝑥)
)︁2
]︂}︂
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+ 𝑔𝜇𝜈𝑒�̂�
𝜌(𝑥)

(︁
𝐴𝜌(𝑥) − 𝑉𝜌(r)

)︁
. (A.17)

The energy-momentum tensor in this form is neither symmetric nor gauge-invariant, but
we do not need the symmetrized Belinfante-Rosenfeld version for our purposes [Gre96].
From Eq. (A.17) one derives the continuity equation for the energy-momentum tensor,

𝜕𝜇�̂�𝜇𝜈(𝑥) = 𝑒�̂�𝜌(𝑥)𝜕𝜈𝑉𝜌(r). (A.18)

The inhomogeneity on the right-hand side tells that the external potential acts as a source
field. Its time-independence yields the equation

𝜕𝜇�̂�𝜇0(𝑥) = 0, (A.19)

and performing a spatial integral yields the energy conservation and the definition of the
Hamiltonian in the Feynman gauge with 𝜆 = 1,

�̂� = �̂�e + �̂�𝛾 + �̂�int + �̂�ext (A.20)

�̂�e =
ˆ

dr𝜓+(𝑥)
(︀
−𝑖𝑐𝛼𝜕 + 𝛽𝑚𝑐2)︀𝜓(𝑥) (A.21)

�̂�𝛾 = 𝑒

ˆ
dr
[︁(︁
𝜕0𝐴𝜇(𝑥)

)︁(︁
𝜕0𝐴𝜇(𝑥)

)︁
+ 𝜕𝐴𝜇(𝑥) · 𝜕𝐴𝜇(𝑥)

]︁
(A.22)

�̂�int = 𝑒

ˆ
dr �̂�𝜇(𝑥)𝐴𝜇(𝑥) (A.23)

�̂�ext = 𝑒

ˆ
dr �̂�𝜇(𝑥)𝑉𝜇(r). (A.24)

Here, 𝛽 = 𝛾0, 𝛼 = 𝛾0𝛾, and the usual nabla is denoted in this section by a bold partial
because nabla in the relativistic context denotes the covariant derivative. As often the case
in quantum field theories, renormalization procedures are needed due to the appearances
of divergencies in the perturbation expansion based on the Hamiltonian in Eq. (A.20).
Here, renormalization includes the subtraction of negative-energy contributions leading to
divergent vacuum expectation valuess (VEVs) (within interacting QED without the external
field), and the removal of ultraviolet (UV) divergencies, which includes the redefinition of
the parameters of the theory, auch as the electronic charge, and leads to the appearance of
counterterms. The total GS energy and GS current are then given by

𝐸tot = ⟨𝛹0|�̂�|𝛹0⟩ − ⟨0|�̂�e + �̂�𝛾 + �̂�int|0⟩ +𝛥𝐸tot (A.25)
𝑗𝜇(r) = ⟨𝛹0|�̂�𝜇(𝑥)|𝛹0⟩ +𝛥𝑗𝜇(r). (A.26)

Here, the VEV ⟨0| · · · |0⟩ in Eq. (A.25) subtract the divergencies due to the negative-energy
states in interacting QED without the external field. The ones with the external field have
the form of UV divergencies, and are included in the counterterms 𝛥𝐸tot and 𝛥𝑗𝜇(r). |𝛹0⟩
is the interacting GS with the external field.

Already the non-relativistic spin-DFT does not fulfil the uniqueness property of the HK
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theorem I, so that two different external potentials may lead to the same GS [Cap01]. For
example, an external magnetic field which already fully polarizes a material will not change
the charge and spin density if it becomes stronger. The probable invalidity of the HK
theorem I, however, does not prevent the construction of a unique GS energy functional
depending on the GS current density (HK theorem II). Important is the unique definition
of the GS in terms of the current density, |𝛹0⟩ = |𝛹0[𝑗]⟩, up to a static (i.e., due to its
time-independence non-dynamical) gauge transformation of the external potential (i.e.,
𝑉 ′
𝜇(r) = 𝑉𝜇(r) + 𝜕𝜇𝛬(𝑥) with 𝛬(𝑥) = const · 𝑡+ 𝜆(𝑥) and �𝜆(𝑥) = 0). Fixing the gauge,

a GS energy functional can be constructed on the basis of renormalization, which has
subtracted the negative-energy contributions and thus renders the energy bounded from
below,

𝐸tot[𝑗] = ⟨𝛹0[𝑗]
⃒⃒
�̂�
⃒⃒
𝛹0[𝑗]⟩ − ⟨0|�̂�e + �̂�𝛾 + �̂�int|0⟩ +𝛥𝐸tot. (A.27)

What remains is the expression of the results obtained from the variational principle
in terms of relativistic KS (RKS) particles 𝜑𝑘(r) (here indexed by 𝑘 instead of 𝛼 (cf.
Eq. (2.16))). Their kinetic energy is given by

𝑇𝑠[𝑗] =
∑︁

𝑘

𝛩𝑘

ˆ
dr𝜑+

𝑘

(︀
−𝑖𝑐𝛼𝜕 + 𝛽𝑚𝑐2)︀𝜑𝑘(r) + 𝑇𝑠,v[𝑗], (A.28)

where

𝛩𝑘 =

⎧
⎪⎨
⎪⎩

0 for 𝜀𝑘 ≤ −𝑚𝑐2

1 for −𝑚𝑐2 < 𝜀𝑘 ≤ 𝜀F

0 for 𝜀f < 𝜀𝑘,

(A.29)

and 𝑇𝑠,v[𝑗] encompass vacuum contributions and counterterms. The energy from the
coupling of the current density to the external potential retains the classical expression

𝐸ext[𝑗] = 𝑒

ˆ
dr 𝑗𝜇(r)𝑉 𝜇(r), (A.30)

with the current density as in Eq. (A.26). The Hartree energy is given in terms of the free
photon propagator [Dre03]

𝐷(0)
𝜇𝜈 (𝑥− 𝑦) = ⟨00

⃒⃒
T𝐴(0)

𝜇 (𝑥)𝐴(0)
𝜈 (𝑦)|00⟩

= 𝑔𝜇0𝑔𝜈0
𝑒2

|r − r′|
𝛿(𝑡− 𝑡′) +𝐷(0),T

𝜇𝜈 (𝑥− 𝑦), (𝑦 = (𝑡′, r′)), (A.31)

(with T the time ordering operator, and T denoting transversality) as

𝐸H[𝑗] = 1
2

ˆ
dr d4𝑦 𝑗𝜇(r)𝐷(0)

𝜇𝜈 (𝑥− 𝑦)𝑗𝜈(r′), (A.32)

which, using 𝑗𝜇(r) = (𝑛(r), j(r)/𝑐), can be decomposed into the Coulomb contribution as
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seen in Eq. (2.10), that is, the classical Hartree term, and the transverse contribution (in
the stationary case)

𝐸T
H[j] = − 𝑒2

2𝑐2

ˆ
d(r, r′) j(r) · j(r′)

|r − r′|
. (A.33)

The transverse part of the photon propagator 𝐷(0),T
𝜇𝜈 (𝑥− 𝑦) (which is space-like) contains

retardation and magnetic effects. In the weakly relativistic limit, without the transverse
part one obtains the so-called Dirac-Coulomb approximation, and with the transverse part
the Dirac-Coulomb-Breit approximation. The XC term 𝐸xc[𝑗], finally, is defined by the
decomposition 𝐸tot[𝑗] = 𝑇𝑠[𝑗] +𝐸ext[𝑗] +𝐸H[𝑗] +𝐸xc[𝑗]. For a thorough discussion of the
XC functional 𝐸xc[𝑗] the reader is referred to Refs. [Dre03; Eng02]. One may note here
that it can be approximately constructed analogously to the non-relativistic limit, but with
this analogy already hampered by the fact that the relativistic homogeneous electron gas
(RHEG) does not exhibit any currents, jRHEG(𝑥) = 0.

In the non-relativistic current- and spin-DFT (Appx. A.1), the current-current interaction
contained in the XC energy (Eq. (A.9)) is due to the presence of the external potentials,
and do not originate from the QED electron-photon coupling. From the latter only the
Coulomb part is taken into account in �̂�0, cf. Eq. (A.1). We will give a short account of
that at the end of the present section. The inclusion of the current-current interaction in
the transverse contribution to the Hartree energy, Eq. (A.33), leads to the full restoration
of causality missing in the usual non-relativistic approaches [Kle09]. RDFT contains both
current-current interactions, but the transverse contribution from the electron-photon
coupling is of order 1/𝑐2 and thus neglected in the non-relativistic approximation [Eng02].

Having set up the RKS system and the energy functional, one is now able to obtain the
RKS equation from the minimum principle,

[︀
−𝑖𝑐𝛼𝜕 + 𝛽𝑚𝑐2 + 𝛼𝜇𝑉

𝜇
RKS[𝑗](r)

]︀
𝜑𝑘(r) = 𝜀𝑘𝜑𝑘(r), (A.34)

with the RKS potential

𝑉 𝜇
RKS[𝑗](r) = 𝑒𝑉 𝜇

ext[𝑗](r) + 𝑉 𝜇
H [𝑗](r) + 𝑉 𝜇

xc[𝑗](r), (A.35)

where

𝑉 𝜇
H [𝑗](r) = 𝑒2

ˆ
dr′ 𝑗

𝜇(r′)
|r − r′|

, 𝑉 𝜇
xc[𝑗](r) = 𝛿𝐸xc[𝑗]

𝛿𝑗𝜇(r) . (A.36)

The RKS equation describes the system of non-interacting Dirac particles in the presence
of the effective RKS potential 𝑉 𝜇

RKS[𝑗](r).

Having set up the RKS equation, it is now time to consider the physics it contains in
some limits. As in most systems there is no external magnetic field applied, one may
consider Bext(r) = ∇×V(r) = 0. The external part of the QED Hamiltonian in Eq. (A.24)
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thus assumes the form

�̂�ext = 𝑒

ˆ
dr �̂�0(𝑥)𝑉 0(𝑥) =

ˆ
dr �̂�(r)𝑉ext(r). (A.37)

According to the HK theorem I, there now exists a unique correspondence between the
external potential 𝑉ext(r), the GS |𝛹0⟩, and the GS density 𝑛(r). The XC energy functional
𝐸xc[𝑛] now depends on the charge and spin density only, and the transverse component
of the Hartree energy 𝐸T

H[j[𝑛]] depends implicitly on the densities. As mentioned in
Subsec. 2.1.3 (on spin-DFT), there might still be a magnetization present in the system
also without an external magnetic field applied. Thus, a non-vanishing current density
j[𝑛] = ⟨𝛹0[𝑛]| ĵ |𝛹0[𝑛]⟩ might still exist because the magnetic moment does a-priori vanish
only in closed-shell systems. It is this purely electrostatic case together with the so-called
no-sea approximation (the neglect of all radiative corrections due to vacuum contributions)
which is standardly used in quantum chemistry [Dre03].

Another approximation starts with the Gordon decomposition of the four-current density,

𝜓(𝑥)𝛾𝜇𝜓(𝑥) = 𝑖

2𝑚𝑐
[︀
𝜓(𝑥)∇𝜇𝜓(𝑥) −

(︀
∇𝜇𝜓(𝑥)

)︀
𝜓(𝑥)

]︀

− 𝑒

𝑚𝑐2𝜓(𝑥)𝜓(𝑥)𝑉 𝜇(r) + 1
2𝑚𝑐𝜕𝛽𝜓(𝑥)𝜎𝛼𝛽𝜓(𝑥), (A.38)

with ∇𝜇 the covariant derivative containing the gauge (electromagnetic) potential, and
𝜎𝛼𝛽 = 𝑖

2 [𝛾𝛼,𝛾𝛽]. The space-like component gives the current density in terms of its
orbital/paramagnetic part, its diamagnetic part (describing the centre-of-mass motion),
and the curl of the magnetization density

1
𝑐

j(𝑥) = 1
𝑐

j𝑝(𝑥) − 𝑒

𝑚𝑐2𝜓(𝑥)𝜓(𝑥)V(r) − 1
𝑒

𝜕 × m(𝑥), (A.39)

where the magnetization density is given by m(𝑥) = −𝜇B 𝜓(𝑥)𝛴𝜓(𝑥), with 𝛴 = diag(𝜎,𝜎).
The time-like component contains the spin densities (i.e., the charge and the spin density),
the coupling to the external electric potential, and the divergence of the electric moment
(polarization) density [Str98]. The Gordon decomposition here may be compared with
Eq. (A.3), the one in the current- and spin-DFT (Appx. A.1), which contains the centre-of-
mass motion only. The curl of the magnetization density in the collinear formulation is
shifted within the Hamiltonian in Eq. (A.1) (the implicit term 1

2 [𝑛↑(r) − 𝑛↓(r)][𝑉 ′
↑(r) −

𝑉 ′
↓(r)]), in contrast to the non-collinear extension where the physical current density

exhibits the curl of the magnetization density directly: it is the spin-current density [Str98;
Vig88]. See also Ref. [Sun05] for a more thorough discussion of the various components
contained in the four-current density (in particular, there are “linear” and angular parts
describing translational and rotational (precessing) motions of the vectorial part). Spin-
DFT itself neglects the orbital current and the gauge term, and the coupling of the curl of
the magnetization density to the external vector field within the Hamiltonian yields by
partial integration and Bext(r) = 𝜕 × V(r) the relativistic generalization of the Zeeman
term −𝜇Bm(r)Bext(r). The variables for relativistic spin-DFT are given by 𝑛 and m.
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Yet other approximations are given by the weakly relativistic and the non-relativistic
limits. The first one is obtained by application of the Foldy–Wouthuysen transformation
[Gre00], which is designed as to decouple the two bispinors within a Dirac spinor (which
are coupled in the Dirac basis), because for a fixed sign of the energy one of them becomes
larger than the other. The transformation is performed by an expansion up to certain
orders of 1/𝑚𝑐2, and the result is

�̂� =
ˆ

dr𝜓+(𝑥)
{︂[︂

1
2𝑚

(︁
p̂ − 𝑒

𝑐

(︁
Â(𝑥) + V(r)

)︁)︁2
+𝑚𝑐2 − 1

8𝑚3𝑐2

(︁
p̂ − 𝑒

𝑐
Â
)︁4
]︂
𝛽

+ 𝑒
(︁
𝐴0(𝑥) + 𝑉0(r)

)︁
− 𝜇B𝛴

(︁
B̂(𝑥) + 𝜕 × V(r)

)︁
𝛽

+ 𝜇B
4𝑚𝑐𝛴

(︁
p̂ × Ê(𝑥)

)︁
− 𝜇B

2𝑚𝑐𝛴
(︁

Ê(𝑥) × p̂
)︁

− 𝜇B
4𝑚𝑐 𝜕 Ê(𝑥)

}︂
𝜓(𝑥).

(A.40)

Here, p = −𝑖𝜕, 𝐴𝜇(𝑥) = (𝐴0(𝑥)/𝑐,A(𝑥)), and 𝑉 𝜇(r) analogously. The term in the first
squared brackets is the expansion of the relativistic energy [(p − 𝑒(A + V)/𝑐)2 +𝑚2]1/2

and describes the relativistic mass enhancement. Not all terms are shown. There follow the
electrostatic energies, the Zeeman terms, the coupling between the spin and the rotation of
the electric field E (which, by the Maxwell equations, is the time derivative of the magnetic
field B), the SOC, and at last the Darwin term. The commonly known form of the SOC
can be obtained for spherical potentials with E = −(𝜕𝑉/𝜕𝑟)r/𝑟. The equation does not
mix the two bispinors anymore. For the upper two-spinor, by neglecting all terms outside
of the squared brackets of order 1/𝑐, while retaining inside the squared brackets only the
first term, one obtains the non-relativistic Pauli equation for an electron in the presence of
the electromagnetic and external fields. It is also by the Foldy-Wouthuysen transformation
and its decoupling that the Hamiltonian of current- and spin-DFT in Eq. (A.1) an can be
obtained (just Eq. (A.40) additionally contains the electromagnetic field).
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In view of the physics to be captured by DFT, the condensed matter system can be divided
into three main parts: the nuclei of the ionic lattice, the core electrons located at the nuclei,
and the valence and conduction electrons. The chemical bonding is mostly performed by
the valence electrons, which thus are responsible for the geometric structure of the system,
but also for its electronic and magnetic properties. The core electrons can be combined
with the nuclei to form the ionic lattice, thus setting up an effective pseudopotential (PP)
in which the valence and conduction electrons move [Sch13]. The combination of core
electrons and nuclei into frozen cores greatly reduces the computational demands, which
are now set by the DFT description of the valence and conduction electrons only.

The PP definition depends on the choice of which orbitals are treated as core and which
as valence. In any case, the valence orbitals will be orthogonal to the core orbitals, which
is mathematically realized by rapid oscillations and thus the many nodes of the valence
WFs. These oscillations need to be near the localized core electrons, and are therefore less
important for the chemical bonding. As they are also difficult to treat numerically, one
can just define pseudo-WFs, which replace the original KS-WFs by some smoother and
nodeless WF inside some augmentation sphere around the nuclei, but which are identical
to the KS-WFs outside that sphere.

This simple construction results in problems with the transferability of the PPs and the
just gained computational power [Kre99]: The transferability needs a sufficiently small core
radius, for otherwise the usability of the augmentation spheres for the various condensed
matter systems become too limited; but still the core radius must be at least around the
outermost maximum of the KS-WF, for only then the charge distribution and moments
are well-reproduced. But the reduced space for the strongly localized orbitals lead to
large basis sets for the expansion of the WFs into PWs, which now increases again the
computational demands. The basis set size can be reduced by increasing the core radius,
but this would reduce again the transferability. Vanderbilt solved this problem by dropping
the norm-conservation imposed on the PPs, but at the same time introducing localized
atom-centred augmentation charges to balance the charge deficit [Van90].

In the PAW approach developed by Blöchl [Blö94], the KS-WFs are obtained from the
computationally more convenient pseudo-WFs by the linear transformation

|𝛹𝑛⟩ = |𝛹𝑛⟩ +
∑︁

𝑖

(|𝜑𝑖⟩ − |𝜑𝑖⟩)⟨𝑝𝑖|𝛹𝑛⟩. (B.1)

The index 𝑖 comprises site and orbital indices. To make the computational results more
sophisticated, one can include several PWs for the same site and orbital having different
reference energies (also addressed by the index 𝑖). The PWs 𝜑𝑖 for the KS-WF are obtained
for corresponding reference atoms, and the so-called projector functions 𝑝𝑖 are defined via
the orthogonality relation ⟨𝑝𝑖|𝜑𝑗⟩ = 𝛿𝑖𝑗 , with 𝜑𝑖 the PWs for the pseudo-WFs. All PWs are
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once and for all times fixed for both, KS- and pseudo-WFs, and the pseudo-WFs now become
variational. The PAW transformation in Eq. (B.1) can be abbreviated by the operator
𝑇 = 1 +

∑︀
R 𝑇 , so locally one has within the augmentation spheres |𝜑𝑖⟩ = (1 + 𝑇R)|𝜑𝑖⟩.

The variational quantities are now the pseudo-WFs |𝛹𝑛⟩. – The PAW approach is used in
VASP [Kre96], which was used throughout all projects reported on in the present thesis.

This formalism can naturally be extended to include non-collinear magnetism (Sub-
sec. 2.1.3). Within the non-collinear formalism the density is a 2×2 matrix given by
Eq. (2.36). A KS formalism can be written down as usual (with taking care of the compli-
cations mentioned in Subsec. 2.1.3), and the pseudo-WFs now acquire an additional spin
index 𝛼, that is, |𝛹𝛼𝑛 ⟩ [Hob00]. The PAW formalism then becomes appropriate for the
inclusion of the SOC, Appx. A.2. The SOC Hamiltonian in DFT has the form [Ste16a]

�̂�𝛼𝛽
SOC = ~2

(2𝑚𝑐)2
𝐾(𝑟)
𝑟

d𝑉 (𝑟)
d𝑟 �̂�𝛼𝛽L̂, (B.2)

with 𝐾(𝑟) = 1/[1−𝑉 (𝑟)/2𝑚𝑐2]2, and 𝑉 (𝑟) the spherical part of the KS potential (Sec. 2.1).
This form of the SOC Hamiltonian can be transferred into

�̂�𝛼𝛽
SOC = ~2

(2𝑚𝑐)2

∑︁

𝑖𝑗

|𝑝𝑖⟩𝑅𝑖𝑗�̂�𝛼𝛽L̂𝑖𝑗⟨𝑝𝑗 |, 𝑅𝑖𝑗 = 4𝜋
ˆ 𝑟c

0
d𝑟 𝑅𝑖(𝑟)

𝐾(𝑟)
𝑟

d𝑉 (𝑟)
d𝑟 𝑅𝑗(𝑟). (B.3)

One may see from this equation that the SOC parameter ∝ 𝑅𝑖𝑗 has a more complicated
meaning in DFT as it becomes orbitally dependent (but only on 𝑙, not 𝑚, because the
radial functions 𝑅𝑖(𝑟) do not depend on 𝑚). Furthermore, its physical meaning is actually
reduced by the necessity to choose the PP, so one may say that the SOC parameter
is even “gauge-dependent”. However, in the realistic AIM approach beyond DFT (with
parameters determined from DFT without SOC), one can still extend the AIM by the SOC
Hamiltonian with the SOC parameter as determined from DFT, because both, the AIM
and SOC parameters, are eventually determined with the same PP and within the same
PAW basis set.

As the SOC is effective locally, the corresponding modifications of the AIM can be assessed
within its impurity part [Dai08]. In principle, the complicated multi-orbital structure will
lift all degeneracies between the ME eigenstates. However, the SOC parameter is small,
and quantum-mechanical PT, see Ref. [Sch13], shows that degeneracies may survive the
SOC up to second order. Indeed, at first order one can see that the SOC Hamiltonian does
not change the GS energies: their change is given by the matrix element 𝜆⟨𝑔𝜇|L̂Ŝ|𝑔𝜇′⟩,
with 𝑔 denoting the GS and 𝜇 counting its degeneracy 𝑑, and L̂ always maps to excited
states, while Ŝ maps to states within the same spin multiplet only. At second order the
energies are modified via the Hamiltonian

�̂�
(2)
SOC = 𝜆2

{𝑥,𝑦,𝑧}∑︁

𝑎𝑏

𝑑∑︁

𝜇𝜇′=1
𝑆𝑎|𝑔𝜇⟩𝛬𝜇𝜇

′

𝑎𝑏 ⟨𝑔𝜇′|𝑆𝑏, (B.4)
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where

𝛬𝜇𝜇
′

𝑎𝑏 =
∑︁

𝑖 ̸=𝑔

𝑑𝑖∑︁

𝜈=1

⟨𝑔𝜇|�̂�𝑎|𝑖𝜈⟩⟨𝑖𝜈|�̂�𝑏|𝑔𝜇′⟩
𝜀𝑏 − 𝜀𝑖

, (B.5)

with 𝜀𝑔 and 𝜀𝑖 the ground and excited state energies, respectively. Knowing that the spin
operator maps to states within a multiplet only, the GS Hamiltonian in Eq. (B.4) can be
rewritten as a matrix product in the 𝑑-dimensional GS multiplet,

𝐻
(2)
SOC = 𝜆2

{𝑥,𝑦,𝑧}∑︁

𝑎𝑏

𝑆𝑎 𝛬𝑎𝑏 𝑆𝑏 (B.6)

Often it appears possible to focus on the diagonal directional components, and in this
approximation one can read off the commonly known MAE parameters, 𝐻(2)

SOC = 𝐸(𝑆2
𝑥 −

𝑆2
𝑥) +𝐷𝑆2

𝑧 − 𝐷
3 𝑆

2.
As mentioned in the introductory part to the present section, the SOC might lead to a

modified Kondo scenario based on the MAE term in Eq. (B.4) [Ter09], and to the step-like
appearance of the d𝐼/d𝑉 as seen in Fig. 4.1. If the in-plane MAE parameter 𝐸 is small,
one can observe, for example, for a 𝑆 = 3/2 system that the 𝑆𝑧 = ±1/2 states are still
degenerate, while they become energetically decoupled from the states with 𝑆𝑧 = 3/2. If
a tunnelling current with a bias equal to their energy difference is applied, an inelastic
tunnelling channel opens up, and is seen as additional steps in the corresponding d𝐼/d𝑉
spectra. This situation might apply to the case of the Co adatom at the central part of the
chain, where according to the diagonalization of the local Hamiltonian the GS has 𝑆 = 3/2
(Subsec. 4.6.8). As the states with 𝑆𝑧 = ±1/2 are still degenerate, a Kondo resonance
appears at the Fermi energy, which is decorated by the steps away from the Fermi energy.
In the other configurations with 𝑆 = 1, there is either not Kondo resonance any more,
or only the orbital Kondo effect contributes, because one GS with 𝑆𝑧 = 0 alone does not
provide any degeneracy. – The situation becomes more complicated to discuss in case the
other, or even all (Eq. (B.4)), MAE parameters are important. In principle, for a Kondo
effect to surface, the diagonal components should be dominant, for otherwise the lifting of
the degeneracies becomes too strong.

Another important ingredient in the theory is how the experiments are actually performed:
the adatom-substrate system is put into subject to an external magnetic field, which
additionally lifts the remaining degeneracies due to spin. In this way, the MAE and its
magnetic-field dependence in different directions can be investigated. A further restructuring
of the d𝐼/d𝑉 spectrum can then be observed accordingly, for example, the splitting of
the central Kondo peak in case of 𝑆 = 3/2, in case the external magnetic field has a
component perpendicular to the surface. The importance of an external magnetic field
can theoretically be understood from its appearance at first order in quantum-mechanical
PT. However, Eqs. (B.4) and (B.5) reveal that there is already a SOC already due to pure
geometric reasons, that is, due to CF effects, which in certain systems might be comparable
in strength as the energy separations between the eigenstates of the unperturbed local
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Hamiltonian. This situation might apply to the CoCu𝑛/Cu(111) systems, and a more
detailed study would analyse the interplay between the MAE term and the symmetry
breaking due to the different coordination environments.



C Luttinger-Ward functional and the DC correction

C.1 Exact DC correction
Having outlined the transition from DFT to the AIM to account for the local electronic
correlations (Subsec. 3.2.1), there remains the issue of the DC problem to be clarified, that
is, its general relevance. The DC term is needed to subtract the correlations already present
in DFT, but which are fully accounted for by the post-DFT treatment as, for example,
within DFT+𝑈 (Sec. 2.1.4). DFT+𝑈 still lies within the realm of DFT, that is, it is a
static and MF approach, and describes the correlations between static deviations of orbital
occupations from their MF values. For these the DC term can be computed as given in
Eq. (2.51) for the FLL-DC (the AMF-DC is contained in Eq. (2.43)), and in nearly all
other approaches to correlations beyond DFT, such as the AIM for correlated adatoms,
molecules, or other nanosystems, or DMFT for the local correlations in bulk systems, one
uses the same or related formulas. An overview of common DC approaches can be found
in Ref. [Kar13].

Recently, Haule provided a nice mathematical representation of the DC problem by
means of the LW functional approach [Hau15]. To know what the LW functional is and
what it is good for, we neglect its possible convergence problems at strong interactions in
some models (to which, however, the AIM belongs) [Koz15], and show it to be the Legendre
transform of the free energy with respect to the GF [Ren16]. Let us start with the path
integral containing a set of external sources 𝐽 (a real matrix) to which the operators c
(organized in a vector) couple,

𝑍[𝐽 ] =
ˆ

D[c,c+]𝑒−𝑆[c,c+]+c+𝐽c. (C.1)

𝑍 = 𝑍[0] is the partition function which contains all closed diagrams (also the ones with
disconnected components) in terms of the bare (non-interacting) GF and the bare vertex,
and from the path integral with sources (i.e., from Eq. (C.1)) one can obtain the 𝑁 -point
GF via functional derivation,

𝐺𝑖1𝑗1...𝑖𝑁 𝑗𝑁 = −⟨𝑐𝑖1𝑐+
𝑗1

· · · 𝑐𝑖𝑁 𝑐
+
𝑗𝑁

⟩ = − 1
𝑍[0]

𝛿𝑁𝑍[𝐽 ]
𝛿𝐽𝑗1𝑖1 · · · 𝐽𝑗𝑁 𝑖𝑁

⃒⃒
⃒⃒
𝐽=0

. (C.2)

The effective action is defined by

𝑊 [𝐽 ] = ln(𝑍[𝐽 ]). (C.3)

Physically it amounts to the sum of all closed and connected (zero-particle irreducible)
diagrams, and mathematically to the generating functional for the connected GFs, that is, it
eventually subtracts from the 𝑁 -point GF in Eq. (C.2) the diagrams with disconnected com-
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ponents. The Legendre transform of the effective action with respect to 𝐺 = −𝛿𝑊 [𝐽 ]/𝛿𝐽T

yields the Kadanoff-Baym (KB) functional [Bay61] given by

𝛤 [𝐺] = −𝑊 [𝐽 ] − Tr(𝐽T𝐺), 𝐽 = 𝐽 [𝐺]. (C.4)

The KB functional is the two-particle irreducible effective action, and evaluated at the
stationary point (i.e., at the physical GF) it becomes the grand potential 𝛺 [Blö13].
Subtracting its non-interacting part, one obtains the LW functional,

𝛷[𝐺] = 𝛤 [𝐺] − 𝛤0[𝐺] = 𝛤 [𝐺] − Tr[log(−𝐺)] − Tr[(𝐺−1 −𝐺−1
0 )𝐺], (C.5)

which is the sum of all two-particle irreducible diagrams in terms of the bold (interacting)
GF and the bare vertex, also named as skeleton expansion. The first functional derivative
of the LW functional yields the self-energy,

𝛿𝛷[𝐺]
𝛿𝐺

= 𝛴. (C.6)

We obviously cannot go further beyond this simple derivation of the LW functional, but
mention its unifying perspective and ability to provide a framework from which different
conserving approximations can be derived (see for example Ref. [Kot06] and references
therein; Ref. [Kot06] is a review on realistic DMFT calculations, in particular DFT+DMFT,
and provides a LW functional approach to both, DFT and DMFT, which is only rudimentary
outlined below).

The LW functional is universal, that is, it does not depend on material-specific data being
included in the KB functional (Eq. (C.5)). Following Haule in Ref. [Hau15], we denote the
LW functional by 𝛷𝑉C [𝐺], where 𝑉C denotes the bare Coulomb interaction (like some other
references, Haule assumed the KB as the LW functional, and 𝛷𝑉C [𝐺] as “its interacting part”,
but we take the LW functional as the interacting part of the KB functional). In particular,
the LW functional for DFT has the form 𝛷DFT

𝑉C
[𝐺] = 𝐸H[𝜌]+𝐸XC[𝜌], that is, it is the sum of

Hartree and XC energy (functional derivative w.r.t. the density yields the DFT self-energy,
i.e., the sum of Hartree and XC potential, cf. Eq. (C.6)). DFT is a static approximation
to the correlations, so the variable of the LW functional, the GF 𝐺(r, 𝜏, r′, 𝜏 ′), has to be
truncated to its diagonal component, that is, to the density 𝜌(r,𝜏). Yet the Coulomb
interaction is still the same. For the DMFT approach (for the AIM the discussion is the same,
see below) the LW functional is given by 𝛷DMFT

𝑉C
[𝐺] = 𝛷𝑈 [𝐺local], where 𝑈 is the screened

Coulomb potential and 𝐺local the (still dynamical) GF of the impurity coupled to a self-
consistent bath. Here, the GF has been truncated by “localization”, which may be denoted
with help of a projection operator, 𝐺local(r, r′) = 𝑃𝐺(r, r′) =

∑︀
𝛼,𝛼′⟨r|𝛼⟩⟨𝛼|�̂�|𝛽⟩⟨𝛽|r′⟩,

where 𝛼 = (𝑛, 𝑙,𝑚) and ⟨r|𝛼⟩ = 𝑢𝑛𝑙(𝑟)𝑌𝑙𝑚(r) (radial WFs times spherical harmonics). (At
this point we may note that the already discussed HF theory and GWA follow from the LW
functional by truncations in the space of Feynman diagrams within its skeleton expansion
rather than from a truncation of its variable). 𝐺local(r,r′) is actually the GF of the AIM
impurity with discrete states (coupled to a self-consistent bath) embedded into (upfolded
to) the lattice model. The DC problem now becomes rather clear: DFT relies on an
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auxiliary system, which is the uniform electron gas defined on a continuum, while DMFT
refers to lattice models, such as the Hubbard model, together with the mapping to a local
model, such as the AIM. The quantum numbers of the DFT auxiliary system are given by
the continuous momenta of the solid, while the ones of the AIM by discrete orbital states.
One may say in more mathematical, category theoretical terms that the two systems are
living in two different categories. Furthermore, it is known that the DFT self-energy has
no diagrammatic representation, while DMFT admits such a representation (indeed, the
same as the one of the exact LW functional, only with 𝐺 and 𝑉C replaced by 𝐺local and
𝑈), so it is a priori unclear what the relation between the two is, and how (and if at all)
physical processes may be mutually represented. The link, however, can be established
within the LW functional approach (or, again more mathematically, by some functorial
mapping between the two). In particular, the Hartree term in DFT looks like

𝐸H,DFT
𝑉C

[𝜌] = 1
2

ˆ
d(r, r′)𝜌(r)𝜌(r′)𝑉C(r − r′), (C.7)

which in terms of DMFT variables can be expressed as

𝐸H,DMFT
𝑈 [𝑃𝜌] = 1

2

ˆ
d(r,r′)(𝑃𝜌(r))(𝑃𝜌(r′))𝑈(r − r′), (C.8)

where 𝑈(r − r′) is the screened Coulomb potential. This term is the exact DC arising
from the Hartree interaction, and one may observe that it results from successive variable
truncations. Indeed, again mathematically, one has a commutative diagram of truncation
mappings, that is, one could also have performed first the DMFT truncation, followed by
the one of DFT. The physical result for the Hartree term is a uniform electron gas, now
given by the localized charge 𝑃𝜌(r), and interacting via the screened Coulomb potential
𝑈(r − r′). Doing the same for the XC energy, one obtains the LW functional for the DC
correction,

𝛷DC,DFT+DMFT[𝑃𝜌] = 𝐸XC,DMFT
𝑈 [𝑃𝜌] + 𝐸H,DMFT

𝑈 [𝑃𝜌]. (C.9)

In conclusion, one obtains the exact DC correction by a continuum representation of
DMFT.

C.2 Relation between DMFT and the AIM via the Luttinger-Ward functional
We finally give a short presentation of the relation between the Hubbard model as solved by
DMFT and the underlying AIM. A short account of the computational procedure within
DMFT has been provided in Subsec. 3.2.1, while we will give here its relation to the AIM
as expressed by the LW functional approach [Pot06]. As mentioned, the KB functional as
defined in Eq. (C.5) yields the grand potential if evaluated at the stationary point. The
grand potential is an expansion in the bare vertex with particle lines given by the bare
(non-interacting) GF, so the KB functional itself depends parametrically on the bare vertex
and its variable is the bare GF, 𝛤𝑈 [𝐺0], and one has 𝛤𝑈 [𝐺𝑡,0] = 𝛺𝑡,𝑈 . Here, 𝑡 denotes the
one-particle parameters, such as the hoppings, and 𝑈 the interaction parameters. The bold
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(interacting GF) depends on both these parameters, 𝐺𝑡,𝑈 , and via Eq. (C.6) so does the
self-energy, 𝛴𝑡,𝑈 . By the nature of the KB functional, its functional derivation evaluated
at the bare GF yields the bold GF,

𝛿𝛤𝑈 [𝐺0]
𝛿𝐺0

⃒⃒
⃒⃒
𝐺0=𝐺𝑡,0

= 𝐺𝑡,𝑈 . (C.10)

The functional on left-hand side, being universal, is sufficient for the definition of a
functional 𝐺𝑈 [𝛴] with 𝐺𝑈 [𝛴𝑡,𝑈 ] = 𝐺𝑡,𝑈 .

Now, from Eq. (C.6) one may see that 𝐺 and 𝛴 are conjugate variables, and the Legendre
transform of the LW functional is then defined by 𝛷𝑈 [𝐺] = 𝐹𝑈 [𝛴𝑈 [𝐺]] + Tr(𝛴𝑈 [𝐺]𝐺) (cf.
Eq. (C.4)). Using the Legendre transform 𝐹𝑈 [𝛴], one may define the KB functional in
terms of the self-energy, 𝛤𝑡,𝑈 [𝛴] = 𝐹𝑈 [𝛴] + Tr[log(𝐺−1

𝑡,0 − 𝛴)−1] (cf. Eq. (C.5)). Again
comparing with Eq. (C.5), the Legendre transform is given by 𝐹𝑈 [𝛴] = 𝛤𝑈 [𝐺𝑈 [𝛴]−1 +𝛴]−
Tr[log(𝐺𝑈 [𝛴])]. One thus finally arrives at the KB functional in terms of the self-energy,

𝛤𝑡,𝑈 [𝛴] = 𝛤𝑈 [𝐺𝑈 [𝛴]−1 +𝛴] − Tr[log(𝐺𝑈 [𝛴])] + Tr[log(𝐺−1
𝑡,0 −𝛴)−1]. (C.11)

Obviously, evaluated at the physical self-energy 𝛴𝑡,𝑈 , one observes the consistency of the
construction 𝛤𝑡,𝑈 [𝛴𝑡,𝑈 ] = 𝛤𝑈 [𝐺𝑡,0]. Functional derivation of the Legendre transform 𝐹𝑈 [𝛴]
of the LW functional yields the bold GF 𝐺 (the variable conjugate to 𝛴). Thus, functional
derivation of Eq. (C.11) yields the stationarity condition

𝛿𝛤𝑡,𝑈 [𝛴]
𝛿𝛴

= −𝐺𝑈 [𝛴] + (𝐺−1
𝑡,0 −𝛴)−1 = 0. (C.12)

The equation 𝐺𝑈 [𝛴] = (𝐺−1
𝑡,0 −𝛴)−1, which is to be solved by finding the physical 𝛴𝑡,𝑈 ,

applies to the lattice model as well as to the AIM, because the LW functional 𝛷𝑈 [𝐺] is
the same for both. If the AIM has single-particle parameters 𝑡′, the equation (with 𝑡 = 𝑡′)
is solved for 𝛴 = 𝛴𝑡′,𝑈 , and one obtains the bold GF 𝐺𝑈 [𝛴𝑡′,𝑈 ] = 𝐺𝑡′,𝑈 . In DMFT one
approximates the exact bold GF by the one of the AIM, but Eq. (C.12) is obeyed locally
only at the correlated site which has been represented by the AIM, and one obtains

𝐺𝑡′,𝑈
⃒⃒
local = (𝐺−1

𝑡,0 −𝛴𝑡′,𝑈 )−1⃒⃒
local, (C.13)

which is just the DMFT self-consistency condition for the single-particle parameters 𝑡′
(describing the self-consistent bath, to which the local correlated orbitals couple).
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