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Chapter 1

Introduction

We consider extremal problems for hypergraphs. A k-uniform hypergraph is an ordered
pair H = (V,E) where V is a (finite) set whose elements are called vertices and
where E € V® ={e c V: |e| = k} is a set of k-element subsets. The elements in E are
called edges. A 2-uniform hypergraph will be simply called graph and, since we focus
mainly on 3-uniform hypergraphs, unless stated otherwise, a hypergraph will always
be 3-uniform. Frequently we omit the parenthesis and the commas in the set notation,
e.g. we denote the edge {z,y, z} simply by xyz. Since isolated vertices (i.e. vertices
not contained in any edge) do not play an important réle in the following problems
we frequently identify a hypergraph with its set of edges, and therefore, for instance
we may write £ € H for a set of edges F and a hypergraph H. Given a k-uniform
hypergraph H and subset of vertices S < V(H) of size t we define the neighbourhood
and the t-degree of S by

Ny(S)={e: Scee E(H)} and dy(S)=|Ng(9)|,

respectively, and if H is clear from the context we omit it from the notation. For t = 1
and t = k — 1 the t-degree are called degree and codegree respectively. Moreover, we
denote the minimum ¢-degree among all sets of vertices of size t by d.(H ).

Given a vertex set V' of size n, a k-uniform hypergraph whose edge set is exactly V(¥

is called complete k-uniform hypergraph and will be denoted by K ¥ (for k = 2 we omit

7



8 CHAPTER 1. INTRODUCTION

the superindex and simply write K,,). Given a set of n ordered vertices vy, vg, ..., vUp,
the (tight)' path P,(L3), is a hypergraph whose edges consist of all sets of three consecutive

vertices. In other words, the edge set is given by

E(PP)={vivig10ip2: 1 <i<n—2}.

n

We frequently say that P® is a (vy,v2)-(v,_1, v, )-path, and that (vi,vs) and (v,_1,v,)
are respectively the starting pair and ending pair of the path, and they are both
called ends. For simplicity we denote a path by listing its vertices. A (tight)' cycle C,(f)
is a path with the two additional edges v v,,_1v, and vivov,. We define paths and cycles
analogously for graphs and denote them by P, and C,, respectively.

We consider three classical extremal problems in which the general question consists in
determining conditions for the existence of a substructure in a host graph or hypergraph.
For Turan-type problems this substructure consist in a hypergraph of fixed size, and we
normally look for a condition in the number of edges or density of the host hypergraph.
In contrast, in Dirac-type problems the structure is spanning, that is, it contains as
many vertices as the host hypergraph. Here a minimum degree condition is a common
parameter to consider. Finally, we consider decomposition problems in which the main
goal is to find a partition of all edges into parts with certain structure.

On all these three problems we obtained results for 3-uniform hypergraphs. In
particular, we determined the Turan density of complete hypergraphs of size five in
hypergraphs with quasirandom links (see Subsection 2.1 and in particular Theorem 2.1.3
and Corollary 2.1.5). Moreover, we obtained asymptotically optimal uniform density
conditions that enforce the existence of a Hamilton cycle in hypergraphs with mild
minimum degree conditions (see Subsection 2.2 and Theorem 2.2.2). Finally, we found
an asymptotically optimal minimum codegree condition that enforces the existence of a
decomposition into cycles of fixed length (see Subsection 2.3 and Theorem 2.3.1).

In the following three sections we present some of the basic concepts and prototypical

examples of Turan-type, Dirac-type, and decompositions problems. While for graphs,

'Tn the literature there are other definitions of ‘path’ or ‘cycle’ in hypergraphs (non necessarily

tight). In this work, unless stated otherwise, we assume all paths and cycles are tight.
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several results on these problems are already obtained, extensions of these results to k-
uniform hypergraphs are in general very difficult. We studied restrictions and variations
of these problems in hypergraphs with certain quasirandom properties. These properties

are discuss in detailed in Section 1.4.

1.1 Turan-type problems

Given a positive integer n and a hypergraph F', we define the extremal number ex(n, F')
as the maximum number of edges that a hypergraph on n vertices can have without

containing a copy of F' as a subhypergraph. This is
ex(n, F') = max{|E(H)|: H is a hypergraph with |V (H)|=n and F & H},
and moreover we define the Turdan density of I’ as the limit
F
7(F) = lim L{(?ZL’ ) :
= (5)

which always exist since the sequence ex(n, F)/(}) is non-increasing.

(1.1.1)

For graphs, ex(n, F) and 7(F) are defined analogously, and due to the work of
Turan [63], Erdds and Stone [21], and many others we are able to determine the value
of the Turdn density of any graph in terms of its chromatic number.? In particular the
following beautiful formula (that first appeared in [59]) holds for every graph F'

X(F) -2

= m o1

While that and many other related results were obtained for graphs, for hypergraphs
our knowledge about 7(F') is very restricted. In fact, determining the Turdn density of
K f’) remains a major open problem in the area and was already posed by Turan eighty
years ago [63]. Even for the hypergraph on four vertices and three edges, denoted by

K 4(3)_, the value its Turan density is still unknown. The best lower and upper bounds

2As usual, the chromatic number of a graph G is the minimum number of colours needed to colour

the vertices of G in such a way that all edges contain vertices of two different colours.
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obtained so far for these hypergraphs are given by

2 _
Z<n(KPT)<02871  and

- < m(KPY) < 0.5616.

Nejdy

The first lower bound comes from a construction by Frankl and Fiiredi [23] and the
second is attributed to Turdn (see for example [20]). The upper bounds were obtained
through computer assisted proofs in [6,49] based on the so called flag algebra method
introduced by Razborov in [48].

Since this problem turns out to be so difficult, several variations were studied. Here
we study a variant introduced by Erdds and Sés [19]. They suggested a version of this
problem in which the host hypergraphs have the restriction of being ‘uniformly dense’
among linear sized sets of vertices (see Definition 3.2.2). Our first contribution concerns

a variation of this original problem and we will describe it in detail in Section 2.1.

1.2 Dirac-type problems

For Turan-type problems we study conditions in hypergraphs that force the existence of
a subgraph of fixed size. In contrast, one can study necessary conditions for the existence
of a spanning subgraph. For example, Dirac [16] proved that for n > 3 every graph G
with 01(G) = n/2 contains a cycle covering all vertices, or Hamilton cycle. This result is
best possible in terms of the minimum degree since a graph with its vertex set partitioned
into two classes of sizes |n/2| and [n/2] and containing all edges with both vertices in
the same class does not contain a Hamilton cycle. In the context of graphs many optimal
results of this kind were obtain. For instance, minimum degree conditions forcing the
existence of clique factors [30], F-factors [3], and powers of Hamilton cycles [39].

In contrast with Turan-type problems, there are some optimal results for hyper-
graphs extending Dirac’s theorem. In particular, Rodl, Rucinski, and Szemerédi [58]
proved an asymptotically optimal version of Dirac’s result. They proved that every
n-vertex hypergraph H with d;(H) > (3 + o(1))n yields a Hamilton cycle. For their
proof they introduced the so-called ‘Absorption Method’ (see a detailed description in
Subsection 4.1). Later, in [52] Reiher, Rodl, Schacht, and Szemerédi proved the same
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conclusion for every n-vertex hypergraph H with 6;(H) = (3 +0(1))(5). This last result
is also asymptotically optimal.

As in the graph case the optimal constructions contain large ‘holes’, meaning, large
sets of vertices (or pairs of vertices) containing no edge. Lenz, Mubayi, and Mycroft
[41] studied conditions for the existence of spanning structures in ‘uniformly dense’
hypergraphs (see Definition 3.2.2) in which these kind of holes are forbidden. We follow
this lead and obtained asymptotically optimal conditions for the existence of Hamilton

cycles in different kind of ‘uniformly dense’ hypergraphs. We present our results in

Section 2.2.

1.3 Decomposition problems

Given a k-uniform hypergraph H, a decomposition of H is a collection of subhypergraphs
such that every edge of H is covered exactly once. When these subhypergraphs are
all isomorphic copies of a single hypergraph F we say that it is an F'-decomposition,
and that H is I'-decomposable. Finding conditions for the existence of decompositions
of hypergraphs is one of the oldest problems in combinatorics. In general, there are
divisibility conditions which are obviously needed. For example, it is easy to see that
for H to contain an F-decomposition, the number of edges of H has to be divisible by
|F'|. Further, if all vertices in F' have degree d, it is clear that all degrees in H have
to be divisible by d. We refer to these conditions as trivial divisibility conditions. In
recent years several new decompositions results have been proven and several major

open problems were resolved.

Kirkman [38] in 1847 proved that the complete graph K, can be decomposed
into K3 for every odd n with (}) being a multiple of 3. Wilson [64, 65] extended
this result by proving that for every fixed graph F', the complete graph K, contains
an F-decomposition whenever the trivial divisibility conditions hold. More recently,
Keevash [36,37] generalised these results for k-uniform hypergraphs when n is sufficiently

large. Later, Glock, Kiihn, Lo, and Osthus [28] proved the same theorem using a different
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method. With these results we have a very good understanding of F-decomposition
problems for complete k-uniform hypergraphs.

We study decomposition problems for hypergraphs with large codegree. We say that
a hypergraph is d-vertex-divisible when all vertices have degrees divisible by d. A 3-
vertex-divisible hypergraph H whose number of edges is divisible by ¢ satisfies all trivial
divisibility conditions for finding a C’ég)—decomposition, and in such a case we say H
is Cég)—dim'sible. Moreover, given n, £ € IN the CéS)-decomposz’tion threshold 58) (n) is the
minimum d such that every Cé?’)—divisible hypergraph H on n vertices with dy(H) = d
contains a Cé3)—decomposition. Further, we define the following related parameter

58
(5(5’2 =lim sup M (1.3.1)

n—->-=o0 n

For graphs, the parameters d¢,(n) and d¢, can be defined analogously. Nash-Williams [42]
showed that dc,(n) = 3n, and proving that this inequality is optimal is one the most
famous conjectures in the area. For longer odd cycles very recently Joos and Kiithn [34]
proved that 6c, — % as { — oo, while 0¢, > % for every odd /.

For even cycles much more is known, and in fact Barber, Khiin, Lo, and Osthus [§]
proved that dc,, = 5 for £ > 3, and dc, = . Remarkably, Taylor [60] determined the
exact values of d¢,,(n) for every ¢ # 3 and n sufficiently large.

For hypergraphs not much is known about codegree conditions for F-decompositions.
From the general results obtained in [28] one can deduce that (5(032 < 1. In this thesis we

determine 58{ ) for all but finitely many values of ¢ (see Theorem 2.3.1 in Section 2.3).

1.4 Restrictions on the host hypergraphs

Chung, Graham, and Wilson [14] studied several equivalent quasirandom properties for
graphs. Based on one of those we introduce the following definition. We say a graph

is (o, d)-quasirandom if for every two sets of vertices X and Y satisfy that

e(X,Y)=l{(z,y) e X x Y:exe E(G)}| = d|X||Y| £ o|V(G)]*. (1.4.1)
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For extremal problems it is natural to study densities that force certain graph properties,
and therefore, take graphs in which only the lower bound in (1.4.1) is consider. More
precisely, given g, d € (0, 1], an n-vertex graph G is (p, d)-bidense if for every two sets
of vertices X, Y < V(G) we have

e(X,Y) = d|X||Y] £ on®. (1.4.2)

There are several notions that extend the previous definitions to k-uniform hyper-
graphs. We refer the reader to [1,62] for a more general and detailed discussion on
quasirandomness in k-uniform hypergraphs. For 3-uniform hypergraphs the following is

a natural extension of (1.4.2).

Definition 1.4.1. Let o, d € (0,1] and let H be a hypergraph on n vertices. We say
that H is (o,d,.")-dense if for every three sets of vertices X, Y, Z we have

e(X,Y,Z) = |{(x,y,2) e X xY x Z: zyz e E(H)}| = d|X||Y]||Z] — on®.

It is easy to see that sufficiently large (p, d)-bidense graphs contain a copy of every
fixed graph F'. This can be done by picking a vertex of average degree and since, the
neighbourhood of that vertex is d-bidense as well, we can continue picking vertices
inductively in successive neighbourhoods. The following construction due to Rodl
[57] shows that this property does not hold for (g,d,..)-dense hypergraphs (and it
also does not hold for the further extensions of (1.4.2) considered in Definition 1.4.3
below). In particular, it proves the existence of arbitrarily large ..-dense hypergraphs

not containing K f).

Example 1.4.2. Given a sufficiently large n, let V = {1,2,...,n} and for every
pair ij € V® assign the colour red or blue uniformly at random. We construct the
hypergraph H whose edges are all triplets i < 7 < k for which the colours 5 and ik
are different. Since this happen with probability % a standard application of Azuma’s
inequality yields that for every ¢ > 0, H is asymptotically almost surely (g, 1/2,.%)-dense.

Moreover, observe that given four vertices 1 < j < k < £, two of the three pairs ij, ik,
and i/ have the same colour, and therefore one of the edges ijk, ij¢, or ik{ is not present

in H. This means that H does not contain K AES).
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In this thesis we study following two further extensions of (1.4.2) for hypergraphs

(also considered in [2,50,53,55] among others).

Definition 1.4.3. Let g, d € (0,1] and let H be a hypergraph on n vertices. We say
that H is (o,d,~)-dense if for every set of vertices X and every collection of ordered

pairs of vertices P < V x V we have
e(X,P) = |{(z,(y,2)) € X x P:ayz e E(H)}| = d|X||P| - on®.

We say that H is (o,d,A)-dense if for every two collections of ordered pairs of

vertices P,QQ < V x V we have
e(P,Q) = {((z,y), (y,2)) € P x Q: zyz € B(H)}| = d|KA(P,Q)| — on®,  (1.4.3)

where KA(P,Q) = {((z,y), (y,2)) € P x Q}.

Observe that .. is the weakest notion and A is the strongest. In these definitions, the
symbols .., &, and A refer to the different choices for the vertex sets X, Y, or Z and the
sets of pairs of vertices P or ().

We are now ready to state the main result of this thesis.



Chapter 2

Main results

2.1 Turan densities in uniformly dense hypergraphs

As mentioned in Section 1.1 the problem of determining the Turdn density m(F') (see
definition in (1.1.1)) is in general a difficult problem and, therefore, Erdés and Sés [19]
consider a restricted version for uniformly dense hypergraphs. In light of Definitions 1.4.1

and 1.4.3 we consider the corresponding notions of Turan densities.

Definition 2.1.1. Given a hypergraph F' and * € {~, & A} let

7. (F)=sup{d € [0, 1]: for every > 0 and n € IN there exists an F-free,

(n,d, x)-dense hypergraph with at least n vertices} .

For a thorough discussion on Turan problems for uniformly dense hypergraphs we
refer the reader to [50].

The original question from Erdés and So6s [19] asks for determining 7., (K f)_). By a
computer assisted proof Glebov, Kral, and Volec [25] answered this question by showing

1
4

The same result was obtained later by Reiher, Rodl, and Schacht [54] with a different

ma (K7

proof based on the regularity method for hypergraphs. For K f') Example 1.4.2 shows
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and proving that this construction is optimal is a well known open problem (see for
example [50]).

For A-density much more is known. In fact, Reiher, R6dl, and Schacht [55] obtained
a general upper bound for WA(Kt(S)), which turned out to be best possible for all t < 16
except for t = 5, 9, and 10.

Theorem 2.1.2 (Reiher, Rédl, and Schacht [55]). For every integer r = 2 we have

3 r—2
WA(KQ(?")) < .
Moreover, we have
0= Tr/\(Kéig)) )
% < 7&(K5(3)) < % = WA(K(SS)) - = WA(KS’)),
and % < WA(KéS)) < 7TA(Kl(g)) < % _ WA(KS)) L m(}(l(g))' 0

We closed the gap for 7, (K, ég)) and showed that the lower bound is best possible.

Theorem 2.1.3 (Berger, Piga, Reiher, Rodl, and Schacht [10]). We have that

Theorem 2.1.3 has a consequence for hypergraphs with quasirandom links. For a

hypergraph H and a vertex x, define the link graph of x, by the edges
H(z) = {yze V®: ayz e BE(H)}. (2.1.1)

One can check that if all the vertices of a hypergraph H have a (0, d)-quasirandom link
graph (see (1.4.1)), then H is (f(9),d,A)-dense, where f(6) — 0 as 6 — 0. In fact,
such hypergraphs would even satisfy in addition a matching upper bound for e, (P, Q)
in (1.4.3) and, hence, having quasirandom links is a stronger property. However, the
lower bound construction for ma(K ég)) (see below) has quasirandom links with density
1/3 and, therefore, Theorem 2.1.3 yields an asymptotically optimal result for such
hypergraphs.
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Example 2.1.4. For a map ¢: V® — Z/3Z, let H, = (V, E) be the hypergraph
defined by

ryz e E = U(zy) +Y(xz) +Y(zy) =1 (mod 3). (2.1.2)

Observe that for any set of five different vertices U = {uy, us, ug, u4, us} the following
equality follows by double counting
Z P(uug) + Y(uug) + Y (ujug) = 3 Z Yuiug) .
i upelU® =)
Since the second sum is zero modulo 3 at least one of the ten triplets in the first sum
fails to satisfy (2.1.2). Consequently, Hy is K, ég)—free for every map .

Moreover, if 1 is chosen uniformly at random, then following the lines of the proof
of [55, Proposition 13.1] shows that for every fixed § > 0 and sufficiently large |V|
with high probability the hypergraph H, has the property that all link graphs are
(0,1/3)-quasirandom.

Summarising the discussion above we arrive at the following corollary, which in light

of Example 2.1.4 is asymptotically best possible.

Corollary 2.1.5. For every € > 0 there exist 0 > 0 and an integer ng such that every
hypergraph on at least ng vertices with all link graphs being (5,1/3 + €)-quasirandom
contains a copy of KE()?’). ]

The proof of Theorem 2.1.3 is based on the regularity method for hypergraphs and
we explain the details of the proof in Chapter 3.

2.2 Hamilton cycles in uniformly dense hypergraphs

In this section we study conditions in uniformly dense hypergraph for the existence of a
Hamilton cycle. Observe that the notions of uniform density given in Definitions 1.4.1
and 1.4.3 cannot prevent the existence of an isolated vertex (which immediately forbids
the existence of a Hamilton cycle). Therefore, minimum degree conditions have to be

considered as well.
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In the case of graphs, this problem is degenerate in the sense that arbitrarily small
local density and a minimum degree at least €(n) is enough to force the existence of a
Hamilton cycle. More precisely, using a result from Chvatal and Erddés [15], it is not
hard to prove that for every a,d > 0 there is an ¢ > 0 for which every large (g, d)-
bidense n-vertex graph with minimum degree at least an contains a Hamilton cycle.

For hypergraphs, this line of research can be traced back to the work of Lenz, Mubayi
and Mycroft [41] who studied conditions in uniformly dense hypergraphs for loose
Hamilton cycles. For an even n € IN and an n-vertex hypergraph H, a loose Hamilton
cycle is an ordering of the vertex set V(H)={v1,...,v,} such that ve;_1v;v9;11 € E(H)
for every 1 <14 < %, where the indices are taken in Z/nZ. In [41] they proved that for
arbitrarily small d, a > 0 there is an ¢ > 0 such that every sufficiently large (o, d,.".)-
dense n-vertex hypergraph with minimum degree an? contains a loose Hamilton cycle.
As this density condition is the weakest one, this theorem implies the same result for
the stronger notions = and A.

Aigner-Horev and Levy [2] proved the same conclusion for tight cycles instead of
loose cycles, but considering minimum codegree conditions instead of vertex degrees
and assuming the strongest density notion A. More precisely, they proved that for
every d, « > 0 there is a ¢ > 0 such that every sufficiently large (o, d, A)-dense hypergraph
with minimum codegree an contains a tight Hamilton cycle. It turns out that for the -

density an analogous result is not possible due the following counterexample.

Example 2.2.1. Let G be a random graph' G,_»1/> and define a hypergraph on the
same set of vertices for which a triple of vertices is a edge if it forms a triangle in GG
or in G. Observe that every cycle in H uses edges such that either all of them induce
triangles in G or all of them induce triangles en G. Finally, add two new vertices z and y
in such a way that Ny (z) = F(G) and Ng(y) = E(G). Then z is covered only by cycles
induced by triangles in G and y is covered only by cycles induced by triangles in G.

Hence H contains no tight Hamilton cycle. Moreover, if we add all the edges containing

1 As usual G,,p represents a n-vertex random graph for which every edge is taken independently at

random with probability p.
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the pair {z,y} then the hypergraph H only yields a Hamilton path, but not a Hamilton
cycle. One can show that for every o > 0 with high probability H is (g, 1/4,&)-dense

and it has minimum degree (1/4 — 0)(}) and even minimum codegree (1/4 — o)n.
We proved that the previous example is essentially best possible.

Theorem 2.2.2 (Araijo, Piga, and Schacht [5]). For everye > 0 there exist o > 0 and ng
such that every (o, 1/4 + €, &)-dense hypergraph H onn > ng vertices with 6 (H) = £(3)

contains a Hamilton cycle.

We also strengthen a result of Aigner-Horev and Levy [2] by showing that their
codegree assumption for tight Hamilton cycles in A-dense hypergraphs can be relaxed

to a minimum vertex degree assumption.

Theorem 2.2.3 (Aratjo, Piga, and Schacht [5]). For every d, o > 0 there exist o > 0
and ng such that every (o, d, A)-dense hypergraph H onn > nq vertices with 6;(H) = a(})

contains a Hamilton cycle.

Theorem 2.2.3 was conjectured in [2] and was obtained independently in [24]. We
mainly focus on the proof of Theorem 2.2.2, but the proof of Theorem 2.2.3 is based on
similar ideas. The details of the proofs of Theorems 2.2.2 and 2.2.3 are presented in

Chapter 4.

2.3 Minimum codegree conditions for cycle decom-
positions

We study minimum codegree conditions for decompositions of hypergraphs into cycles.

First, we determined 5(5; ) for all but finitely many values of ¢ € IN.

Theorem 2.3.1 (Piga and Sanhueza-Matamala [44]). Suppose { satisfies one of the

following:

(i) € is divisible by 3 and it is at least 9, or
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(i) =107,
Then 68 = 2/3.

As seen in Section 1.3, the Cj-decomposition thresholds for graphs depend on the
parity of /. In contrast, Theorem 2.3.1 implies that (58 ) = % for all sufficiently large ¢,
regardless of whether the cycle is tripartite or not.

We also study conditions for cycle decompositions — not necessarily of the same

length—. The following is a simple corollary of Theorem 2.3.1.

Corollary 2.3.2. Any 3-vertez-divisible hypergraph H with d2(H) = (2/3 + o(1))|H|

has a cycle decomposition.

Corollary 2.3.2 turned out to be best possible (see Theorem 2.3.4 below) and was
conjectured? by Glock, Kiihn, and Osthus [29, Conjecture 5.6].

A tour is a sequence of non-necessarily distinct vertices vy,...,v, such that, for
every 1 < i < £ the three consecutive vertices v;v;,1v;42 induce an edge (understanding
the indices modulo ¢) and moreover all of these edges are distinct. If a hypergraph H
contains a tour that covers each edge exactly once, we call it Fuler tour and we say
that H is Fulerian.

With analogous definitions for graphs, Euler [22] famously proved that every Eule-
rian graph must be 2-vertex-divisible, and he stated (later proved by Hierholzer and
Wiener [31]) that connected and 2-vertex-divisible graphs are Eulerian. Analogously, it is
an easy observation that every Eulerian hypergraph must be 3-vertex-divisible. However,
the characterisation of Eulerian hypergraphs is not as simple as for graphs. In [32]
Jackson proved that K3 is Eulerian for every n such that the degrees are divisible by 3.
This was conjectured before by Chung, Diaconis, and Graham [13] and they even believe
it should be true for complete k-uniform hypergraphs for every k£ > 2. Recently, Glock,
Joos, Kiithn, and Osthus [26] proved this conjectured for sufficiently large n.

?In a previous version of their paper their conjectured that cycle decompositions should already

exists in hypergraphs with do(H) = (1/2 + o(1))|H]|.
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In fact, from a more general result in [26] one can deduced a ‘minimum codegree’
version of their theorem: there exists ¢ > 0 such that any sufficiently large 3-vertex-
divisible hypergraph H with dy(H) > (1 — ¢)|H| is Eulerian. The constant ¢ which
they obtained is fairly small and therefore improving the minimum codegree condition
becomes a natural problem. Their proof is based fundamentally on a reduction to the
problem of finding a cycle decomposition. In the same fashion, we can use Theorem 2.3.1

to improve the minimum codegree condition.

Corollary 2.3.3. Any 3-vertez-divisible hypergraph H with §2(H)>(2/3 4 o(1))|H]| is

FEulerian.

Glock, Joos, Kithn, and Osthus [26] conjectured that a minimum codegree condition
of (1/2 + o(1))|H| should be enough to guarantee the existence of Euler tours. However,
Corollary 2.3.3 turned out to be asymptotically best possible (see Theorem 2.3.4 below).

We use the same construction to prove that Theorem 2.3.1 and Corollaries 2.3.2
and 2.3.3 are asymptotically best possible. Note that C’é?’)—decompositions, cycles
decompositions, and Eulerian tours are particular instances of decompositions into tours.
Hence, the following theorem imply a lower bound construction for all the aforementioned

results.

Theorem 2.3.4 (Piga and Sanhueza-Matamala [44]). Let ¢ > 4 and n = 3(¢ + 3)
be divisible by 18. Then there exists a Cy-divisible hypergraph H on n wvertices which
satisfies 92(H) = (2n — 15)/3, but does not admit a tour decomposition.

The proof of Theorem 2.3.1 is based in the so called iterative absorption method
and we present the details in Chapter 5. The proofs of Corollaries 2.3.2 and 2.3.3 and
Theorem 2.3.4 are included in Chapter 5 as well.



Chapter 3

Turan density of K 5(3) in A-dense

hypergraphs

The main goal of this chapter is proving Theorem 2.1.3. The proof is based on the
regularity method for hypergraphs and in the next section we recall the relevant concepts.
We follow the ideas in [50] to transfer Theorem 2.1.3 to a statement for reduced
hypergraphs A (see Proposition 3.1.3). The proof of Proposition 3.1.3 is based on a
further reduction to the case in which there exists an underlying bicolouring of the
pairs V) which corresponds to a bicolouring of the vertices in the reduced hypergraph
A (see Proposition 3.1.5). We proved this proposition by analysing ‘holes’ in the
hypergraph (see Section 3.3). Finally, we show that in the context of Theorem 2.1.3
such bicoloured reduced hypergraphs yield a K é?’) (see Proposition 3.1.6). Sections 3.3
and 3.4 are devoted to the proofs of Propositions 3.1.5 and 3.1.6. Finally in Section 3.5

we discuss related open problems and variations of the main problem.

The work corresponding to this chapter was done in collaboration with Berger,

Reiher, Rodl, and Schacht [10].

22
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3.1 Hypergraph regularity and bicoloured reduced
hypergraphs

Given a large hypergraph H = (V| E), the regularity lemma for hypergraph provides a
vertex partition V; w Vo w ... w V; = V together with partitions P¥ of the edges of the
complete bipartite graphs between all (;) pairs of classes V;, V;. Each class P € P
is e-regular in the sense of Szemerédi’s regularity lemma for graphs. Moreover, the

hypergraph H is “regular” among most triads, i.e., among most of the tripartite graphs

PYY = P9y Pl P*
with P27 e PY, P{ e P* and PJ* € P*. Roughly speaking, here “regular” means,
that the hyperedges of H match the same proportion of triangles for every tripartite
subgraph of such a triad.

Important structural properties of a hypergraph H after an application of the
hypergraph regularity lemma can be captured by the reduced hypergraph, which can
be viewed as a generalisation of the reduced graph in the context of Szemerédi’s
regularity lemma for graphs. Given a set of indices I and pairwise disjoint, non-empty
sets of vertices P¥ for every pair of indices ij € I®, let for every triple of distinct
indices ijk € I® a tripartite hypergraph A“* with vertex classes P%, P and P7* be
given. We consider the disjoint union of all those hyperedges and, hence, we obtain
a ('é‘)-partite hypergraph A with

VA = | P77 and  BA) = | EAT).
ijel® ijkel®)
We say A is a reduced hypergraph with index set I, vertex classes P¥, and con-
stituents A“*. In this work the index set I will often be an ordered set and we may
assume [ < IN.

An application of the hypergraph regularity lemma to a given hypergraph H naturally
defines a reduced hypergraph A in which the vertices P¥ € P¥ represent a set of pairs
between the vertex classes V; and V;. Moreover, a hyperedge P Pi¥ P in the reduced

- ) . ijk
hypergraph signifies that H is regular and dense on the triad P, .

o
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As mentioned above the properties of the hypergraph H are often transferred to the
reduced hypergraph. We consider A-dense and K, ég)—free hypergraphs H and below we
discuss the corresponding properties for the reduced hypergraph A after an appropriate
application of the hypergraph regularity lemma.

Roughly speaking, the A-density condition translates into a minimal codegree condi-
tion for almost all pairs of vertices from different vertex classes in almost all constituents
of the reduced graphs. However, one can always move to a large reduced hypergraph
in which all pairs of vertices from different vertex classes in the same constituent have
large codegree (see [50, Lemma 4.2] for details). This inspires the following definition

of (d,A)-density for reduced hypergraphs.

Definition 3.1.1. For d € [0, 1], we say that a reduced hypergraph A with index set I

is (d,A)-dense, if for every ijk € I®® and all vertices P € P¥ and P* € P* we have
d(P, P*) = |{P* e pi*. PIpFpite B(ATM)}] = d|P*|.

As discussed above (see [50, Section 5] for details), an appropriate application of the
hypergraph regularity lemma to a (1, d + €, A)-dense hypergraph H yields a (d +£/2,A)-
dense reduced hypergraphs A. The following definition allows us to transfer K és)—freeness

of H to the reduced hypergraph A.

Definition 3.1.2. We say a reduced hypergraph A with index set I supports a
clique Kf’) if there is a (-element subset J < I and vertices PY € P% for every
ij € J® such that

PYP* Pk e B(A7F)
for all ijk e J®,

Note that, if the reduced hypergraph A defined from a hypergraph H through
an appropriate application of the regularity lemma supports a K ég), then the embed-
ding/counting lemma yields a K| 5(3) C H, Hence, K, éS)—free hypergraphs H have reduced
hypergraphs that do not support K ég) :

The discussion above reduces the proof of Theorem 2.1.3 to the following statement

for reduced hypergraphs.
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Proposition 3.1.3. For every € > 0 every sufficiently large (% + E,A) -dense reduced

hypergraph A supports a K, 5(3).

For the proof of Proposition 3.1.3 we proceed by contradiction and assume that for
some € > ( there are (% + £,A)-dense reduced hypergraphs of unbounded size that do

not support Ké?’). This motivates the following notion.

Definition 3.1.4. For e > 0 we say a reduced hypergraph A is e-wicked if it is (% +e,A)-
dense and fails to support a K, 5(3). In case ¢ is clear from the context or irrelevant, we

may sometimes suppress it and call e-wicked reduced hypergraphs simply wicked.

Proposition 3.1.3 asserts that wicked reduced hypergraphs do not exist and the proof
is divided in two main parts. First we reduce the problem to the case in which the
reduced hypergraph A on some index set I can be bicoloured. By this we mean that
there is a colouring ¢: V(A) — {red, blue} of the vertices such that for every ij € I
we have

o l(red) n PV # & and ¢ (blue) N PY # @ (3.1.1)

and there are no hyperedges in A with all three vertices of the same colour. Given such
a colouring ¢, we define the minimum monochromatic codegree density of A and ¢ by
{ d(P%, Pi*)

. pij - pij  pik o pik iy _ ik
P PP eP? PTeP™ and p(PY) = p(P )}

(3.1.2)

(A, p) = nin, min
The following proposition reduceds Proposition 3.1.3 to bicoloured reduced hyper-

graphs.

Proposition 3.1.5. Given ¢ > 0 and t € N, let A be a sufficiently large e-wicked
reduced hypergraph. There exists a reduced hypergraph A, with index set of size at least t
3
5

not supporting a K, ) and a bicolouring ¢ of A, such that 7o( A, p) = é + 5

For the proof of Proposition 3.1.5 we mainly analyse holes in wicked reduced hyper-
graphs, i.e., subsets of vertices with very low density. It turns out that two essentially
disjoint holes can be used to define an appropriate colouring on a subhypergraph

of A (see Section 3.3). The next proposition completes the proof of Proposition 3.1.3
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by contradicting the conclusion of Proposition 3.1.5, which shows that large wicked

hypergraphs indeed do not exist.

Proposition 3.1.6. For every € > 0 every sufficiently large bicoloured reduced hyper-

graph A with 15(A, ¢) = & + € supports a Kég).

The proof of Proposition 3.1.6 is deferred to Section 3.4.

3.2 Preliminaries

In this section we introduce some necessary definitions and properties for reduced

hypergraphs.

3.2.1 Transversals and cherries

We start with the following notion for reduced hypergraphs A with index set I.
For J < I we refer to a sequence of vertices Q(J) = (QY);;cs@ with QY € PY
as a J-transversal. Similarly, for two disjoint subsets of indices K,L < I we say
that Q(K,L) = (Q*)wperxr is a (K, L)-transversal when Q¥ € P*. For sub-
sets J, € J, K, € K, and L, L we refer to the transversals Q(J,) < Q(J) and
Q(K,, L,) < Q(K, L) (defined in the obvious way) as restricted transversal. Whenever
the sets J, K, L < I are clear from the context we may omit them and write transversal
to refer to J-transversals or to (K, L)-transversals.

Since we are working with A-dense reduced hypergraphs (see Definition 3.1.1) pairs
of vertices sharing one index will play an important roéle. More precisely, given indices
ijk € I®) with i < j < k and given vertices PY € P¥, P* ¢ P* and P/* € PI* we say
that the ordered pair (P¥, P¥*) is a left cherry, the ordered pair (P* Pi*) is a right
cherry, and the ordered pair (P¥, P7*) is a middle cherry. Often we refer to them simply
as cherries.

For indices ijk € I®® and a set of cherries €7* < P¥ x P* we say a transversal Q

avoids €V* if the pair (QY, Q%) ¢ € for Q¥, Q* € Q. Furthermore, for J = I we say Q
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avoids a set of cherries € = Uijke S CUF i it avoids €9F for every ijk € J©®. We

extend this definition to (K, L)-transversals in an analogous way.

Lemma 3.2.1. For everyt € IN and § > 0 there is a p > 0 such that the following holds.
Suppose that A is a reduced hypergraph with an index set I of size |I| =t and given

(a) sets Q7 < PY of size at least 6|PY| for everyij e 1%,
(b) sets of left cherries L% < P x P of size at most u|P7||P*| for every ijk e I,

(¢) and sets of right cherries Z% < P* x PI* of size at most u|P*||P*| for every
ijk e IO,

Then there is a transversal Q(I) = (QY)jere with QY € QY avoiding £ = J, jpere L7
and X = Uijkel(3) %Z]k

Lemma 3.2.1 follows from a simple counting argument.

Proof. Obviously by assumption (a) there are ¢ (2) [ Lijere» |Pi| transversals with all
vertices in | J;c; @Y. On the other hand, it follows from assumptions (b) and (c¢) that
at most 2(3) [ [ ;e [PY] of these transversals may contain a left or a right cherry

from £ U Z. Consequently, the lemma holds for sufficiently small u = p(t, 9). m

3.2.2 Inhabited transversals in ..~-dense reduced hypergraphs

We shall utilise the main result from [56] for ..-dense hypergraphs. As discussed in
Section 3.1 uniform density conditions translates to reduced hypergraphs through
an appropriate application of the regularity lemma for hypergraphs. The following
correspond to the notion of .-density in the context of reduced hypergraphs (see,

e.g., [50,56] for more details).

Definition 3.2.2. Let u > 0 and A be a reduced hypergraph on an index set I. We
say that A is (u,..)-dense, if for every ijk € I®) we have

e(AEY > 4 [P | PiF| [Pk (3.2.1)
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Further, for disjoint subsets of indices K, L, M < I we say that A is (u,.)-tridense
on K, L, M, if (3.2.1) holds for every triple (i,j,k) in K x L x M.

Note that by definition every (d,A)-dense reduced hypergraph is also (d,..)-dense.
The following result from [56, Lemma 3.1], states the existence of transversals containing

edges in #-dense reduced hypergraphs.

Theorem 3.2.3. Lett € N, u > 0, and let A be a (p,..)-dense reduced hypergraph on

a sufficiently large index set I. There exist a set I, < I of size t and three transver-

sals Q(1,), R(I.), and S(1,) such that Q¥ R*Si* e E(A) for everyi < j <k inI,. [

Triples of transversals satisfying the conclusion of Theorem 3.2.3 will play an impor-

tant role here and we motivates the following definition.

Definition 3.2.4 (inhabited triple of transversals). Given a reduced hypergraph A with
index set I. We say a triple of transversals Q(J)R(J)S(J) for some J < I is inhabited
if for every i < j < k in J we have QY R*S/* e E(A).

Similarly, for pairwise disjoint sets of indices K, L, M < I, we say a triple of
transversals Q(K, L)YR(K, M)S(L, M) is inhabited if for every k € K, ¢ € L, and m € M
we have Q¥ RM S e E(A).

Here we will also need a version of Theorem 3.2.3 in which the resulting transversals

avoid given sets of forbidden cherries.

Lemma 3.2.5. Fort € N and p > 0 there is i/ > 0 such that the following holds.
Let A be a (p,)-dense reduced hypergraph on sufficiently large index set I and for
alli < j <k inl let L% < P x P* and #7* < P* x PI* be sets of left and right

cherries satisfying
(L < [PUNPEL and | B < PP

There exist a set I, < I of sizet and a triple of inhabited transversals Q(1.), R(l.), and
S(1,) avoiding the cherries L% and %%, for every ijk e I,
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For the proof of Lemma 3.2.5 we will consider random preimages of reduced hyper-

graphs.

Definition 3.2.6 (random preimages of reduced hypergraphs). Given a reduced hyper-
graph A with index set I and vertex classes P¥ for ij € I® and given an integer £ > 1,
we fix ('Q) disjoint sets P¥ of size { and consider the uniform probability space 2A(A, {)
of all mappings h from Uijd@) Pii to U,L-jel(z) P satisfying

hPY) < P

for every ij e 1%,
With each such map h we associate a reduced hypergraph A; with index set I and

vertex classes P¥ for ij € I®), where edges are defined by
PIP¥Pi* e B(A"), whenever h(PY)h(PX¥)h(PI*) e B(A)

for all ijk € I® and all P¥ € P9, Pi* e P and PJ* € PI*. In particular, h signifies a

homomorphism A;, — A.

Below we pass to such a random preimage A; of A for sufficiently large ¢, which

will allow us to deduce Lemma 3.2.5 for A by applying Theorem 3.2.3 to Ay,

Proof of Lemma 3.2.5. Given t € IN and p > 0, let ¢; be sufficiently large for an
application of Theorem 3.2.3 with ¢ and 4 in place of ¢ and p. Further, we fix an integer

¢ and p' > 0 to satisfy the hierarchy

/

pott > 0t

Finally, let A be a reduced hypergraph as in the statement of Lemma 3.2.5 and we may
assume that its index set [ is of size t;.

Similar as in the proof of [50, Lemma 4.2] we consider the probability space (A, ¢)
from Definition 3.2.6 and we shall prove that with high probability the associated
reduced hypergraph A, is (£,.)-dense and no cherry has its image in the sets £k

57..
or Rk,
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For every constituent A7* the random variable e(A7") satisfies E[e(A7*)] = puf3
and by Azuma’s inequality (see, e.g. [33, Corollary 2.27]) we obtain
g ¢
P (A, is not (4, .)-dense) < Z ]P(e(Aﬁfk) < %) < (31) exp(—‘;if).
ijkel(3)

Moreover, since Z%* < 1//|P¥||P%*|, the probability that the image of some cherry lies

in those sets is bounded by
Z IP(h(P,”)h(Pfk) e Z* for some PYP* e P x Pfk) < (31),1/62.
ijkel(3)

The same inequality holds for the sets Z“* and note that by our choice of variables

tl 2@ tl /
(3) exp(—F5) + 2<3>,u€2 <1

Therefore, we can fix an h such that Aj, is (§,.%)-dense and no cherry has its image in
the sets L% or Z'i*.

Applying Theorem 3.2.3 to Aj, yields a set I, < I of size t and three transver-
sals Qn (1), Ru(L.), and S,(1,) such that Q¥ R*Si* € E(A}) for every i < j < k in I,.

It is easy to see that the transversals

QL) = (MQ)) jeye - R(L) = (R(RY))) jeye»  and  S(L) = (h(S)) ey

satisfy the desired properties and the lemma follows. O

3.2.3 Partite versions

We will also need a slightly more technical variant of Theorem 3.2.3, which guarantees
the existence of inhabited triples of transversals in the intersection of multiple .’.-tridense

reduced subhypergraphs.

Lemma 3.2.7. Lett, r € N, p > 0 there is an s € N such that the following is true.
Let A be a reduced hypergraph on index set I. Suppose that there are

(a) disjoint subsets of indices K, L, M < I each of size s,
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(b) sets Xq,...,X, of size s, and

(c) for every r-tuple ¥ € Hie[r] X; a (p,)-tridense subhypergraph Az < A on K, L, M.
Then, there are

(7) subsets K, < K,L, < L, M, = M of size t,

(i7) subsets Y; € X; of size t for every i€ [r], and

(7ii) there is a triple of transversals Q(K,, L) R(K., M,)S(Ly, M,), which is inhabited
in Ay, for every ye Hie[r] Y;.

The proof of Lemma 3.2.7 relies on repeated applications of the following auxiliary

lemma.

Lemma 3.2.8. Lett, r e IN, p > 0 there is an s € N such that the following is true.
Let A be a reduced hypergraph on index set I. Suppose that there are

(a) disjoint subsets of indices K, L < I each of size s,
(b) sets Xq,..., X, of size s, and

(c) for every r-tuple T € Hie[r] X;, every k € K, and every { € L we have a subset
PEL < PH of size at least p|P*|.

Then, there are
(i) subsets K' < K, L' < L of size t,
(77) subsets X! < X; of size t for every i€ [r], and

(#i) a transversal Q(K', L") such that for every T € [ [, X; and every kl € K' x L'
we have that Q" e Pkt

Proof. Given t, r € IN, u > 0 we fix an integer s such that

tru < s. (3.2.2)
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Let A be a reduced hypergraph as in the statement of the lemma and further let K’ < K,
and L' € L be arbitrary subsets of size t.

For every (K’, L')-transversal Q we consider the set

1Q) = {:Ee [ [ Xi: @ e P for all kt e K’ x L’}.

i€[r]

Summing over all (K’, L')-transversal Q assumption (c¢) yields

2l@l= > II P¥l=u" TT PR
o ie[r]

Fe] Ljeqr Xi bleK'xL! kbeK'x L/

Hence, we can fix a (K’, L’)-transversal Q such that
2
Q=" [ ]|,
i€[r]

We may view r(Q) as an r-partite r-uniform hypergraph of density at least ,ut2 on vertex
classes of size s. Consequently, a result of Erdés [18] combined with the hierarchy (3.2.2)
yields subsets X| < X; of size t for every i € [r] such that

[[Xi=x9),
i€(r]

which concludes the proof of Lemma 3.2.8. ]
Next we derive Lemma 3.2.7.

Proof of Lemma 3.2.7. Given t, r € IN, u > 0 we fix integers s, &', and s” such that
trpu s «s «s

and let A be a reduced hypergraph as in the statement of the lemma.

We will prove the lemma by applying Lemma 3.2.8 three times, once for every pair
from K, L, and M.

For every ke K, /€ L, me M, and every ¥ € Hie[r] X; we consider the set

P(kJ_:li,m) = {Pké € Pkei ’NAIE:Zer(PkZ)’ > %‘PkMH7)fm|} .
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Since Az is (p,.~)-tridense we have
e(AF™) = p|P*|[Prm|| P
and a standard averaging argument implies
PG| = 5P
Lemma 3.2.8 applied with s’, 7 + 1, and £ in place of ¢, r, and p and with X, , = M
yields subsets K’ € K, L' < L, M' < M, and X < X, for every i € [r], of size s’ and a
transversal Q(K’, L') such that for every (Z,m) € [[;c,) Xi x M" and every kl € K’ x L'

we have that Q* e Pt

For the second application of Lemma 3.2.8 we consider the set
P(z[ _ {Pkm c Pkm: ‘NAgzm (ng, Pkm)‘ > %|P€m|}

for every k € K', £ € L', m € M’', and every ¥ € Hie[r] X/. By our choice of the

transversal Q(K’, L") we have
| Nogem (Q)] = 5P| P

and, as before, this implies

Pyl = 4P
Again, we apply Lemma 3.2.8, now with s”,  + 1, and £ in place of ¢, r, and p and with
X/, =L toreach subsets K" < K', L" < L', M" < M', and X/ < X/, for every i € [r],
of size s” and a transversal R(K", M") such that for every (Z, () € [ [,y X{ x L” and
every km e K” x M" it is R € Pz,

Last, we consider the set
Pz = Nawem (QF, R*™)

for every £ € L". k € K";m € M”", and every T € H.E[r] X/!. By our choice of the
transversals Q(K”, L") and R(K”, M") we have [P{#},| = 4|P“"|. The final application
of Lemma 3.2.8, with ¢, » + 1, and £ in place of ¢, r, and p, yields t-sized subsets
K, c K" L, c L', M, € M", and Y; < X/, for every i € [r], and a transversal
S(L., M.) such that for every § € [, Vi and every kém € K, x L. x M, we have that
QM RFMSIM e E(Ay). O
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3.3 Bicolouring wicked reduced hypergraphs

In this chapter we prove Proposition 3.1.5. The proof pivots on the analysis of holes
in a reduced hypergraph and develops its theory in §3.3.1-§3.3.5, before we deduce
Proposition 3.1.5 at the end of this section in §3.3.6.

3.3.1 Holes and links in reduced hypergraphs

Given a reduced hypergraph A with index set I, a natural definition of a hole across
a subset of indices J < I and subsets of vertices ®7 < P for ij € J@ would maybe
require that for every ijk € J® the sets ®7, ®* ®/* span no hyperedges in A
However, this notion is too restrictive for our analysis and we shall only require that

these sets induce hypergraphs of low density.

Definition 3.3.1. Given a reduced hypergraph A and a subset of indices J < I we say
that a subset of vertices ® < V(A) is a p-hole on J if 7 = & ~ PY is nonempty for all
ij € J® and
e(DY, @, &) < p| P[PPI

for every ijk e JO).

The size of the hole is |J| and the smallest s > 0 such that |®¥| > ¢|P¥| for every
ij € J® is called the width of the hole. We refer to u-holes with size at least t and with
width at least ¢ as (u,t,s)-holes.

Roughly speaking, for the proof of Proposition 3.1.5 we shall find two almost disjoint
holes with widths bigger than 1/3 on a large set of indices in a wicked reduced hypergraph.
These holes will be used to define the desired red/blue-colouring ¢ for Proposition 3.1.5.

Holes may induce a few hyperedges, however, cherries that are contained in too many

such hyperedges are considered to be exceptional. This leads to the following definition.

Definition 3.3.2. Given a p-hole ® on J, ¢ > 0, and ijk in J® we say that a
cherry (P, P*) € 4 x ®%* js c-exceptional if

IN(PY, P%) n &% > |7
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For indices v < j < k in J we denote by
LD e) P x PR FR (D e) PR x PF and HF(D,e) < P x PIF
the e-exceptional left, right, and middle cherries and we set
ZL(be) =) L7(®,e), #(D,e)=| ] #M(P,e), and M (D,e) =| ] M47(D,¢).
i<j<k i<j<k i<j<k

It is easy to see that holes can only contain few exceptional cherries. More precisely,

for every p-hole ® on J and every € > 0 we have for all i < j < kin J
e [PHH|L75(®,¢)| < e(@7, 7, &%) < [PV P[P
and the same reasoning for Z and .# yields

2 @) < EPYPH]L |2 @.0)| < EIPH [P

and  [.49(@,2)| < E[PY||PH|. (33.1)

The holes @ studied here, arise from neighbourhoods N (P*, P¥) i.e., for appropri-
ately chosen P* € P and P* € PV we set &Y = N(P* Pi*). Note that in (d,A)-dense
reduced hypergraphs, holes obtained this way will automatically have width at least d.

Given a (K, L)-transversal Q, a subset K, € K, and an index ¢ € L we define the
Q-link of { on K, by

MQ K, 0= | N@™,Q¥).

kk'eK ()
The following lemma asserts that in A-dense reduced hypergraphs that do not sup-

port K, ég) the O-links contain large holes.

Lemma 3.3.3. Lett € N, u, d > 0, let A be a (d,A)-dense reduced hypergraph with
index set I that does not support a Kég), and for sufficiently large disjoint subsets of
indices K, L < I let Q be a (K, L)-transversal.

Then there exist K, € K and L. < L of size t such that A(Q, K., {) is a (i, t,d)-hole
for every l € L,.
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Proof. Let q = (“‘;11) and define an auxiliary 2-colouring of the pairs (kk'k", ¢) € K®) x L

depending on whether
e(N(QX,QF"), N(Q", Q") N(Q¥*, Q")) > uP*||[P*"||P*¥| (3.3.2)

or not. Since K and L are sufficiently large, the product Ramsey theorem (see e.g.
Proposition 9.1 in [46]) yields K; € K with |K;| = max{3d %t} and L; < L with
|Ly| > max{p~!,t} such that either (3.3.2) holds or it fails for every kk'k" ¢ K¥
and ¢ € Ly. In fact, if (3.3.2) fails on ng) x Ly, then K, = K; and L, = L have the
desired properties. Consequently, we may assume (3.3.2) holds on K fg) x L.

Let Ly be a subset of L; of size |Ly| = [2/p] and consider some ¢¢' € LY. Since
we have |[N(Q*, Q)| = d|P*| for every k € K, there is a subset Ky € K, of size at
least d| K| such that

ﬂ N(ng,kal) + &,

kEKQ

Repeating this argument iteratively ¢ times for every pair in L, we obtain nested

subsets K; 2 Ky 2 --- 2 K, such that

K| = d'|Ki| >3 and (1) N(Q¥,Q™) # @ for every (¢’ € L5,

keKy

Consequently, there is some kk'k” € K q(3) such that for every ¢ € ng) we can fix a

vertex P e P satisfying
PYQMQH | PYQRIQRY | P QF QR ¢ B(A). (3.3.3)
We infer from (3.3.2) that

2 (V@Y. Q). N(@Q™, Q™) N(QYQ™)) > | Lo P |[PH"| [P

EGLQ

Consequently, there is an edge R* RFF" RF'F" e B(A*¥'*") such that for more than | Lo

indices ¢ € L, we have

Rkk,kaQk/Z’ RkkﬂQkZQk”e’ Rk/k//Qk/ng//f e E(A) . (334)
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Hence, since u|Ls| = 2 there are two indices ¢, ¢’ € Ly such that (3.3.4) holds also with
¢ replaced by #. In view of (3.3.3), we arrive at the contradiction that P*, together
with the six vertices Q" for k € {k, k', k"} and X € {¢,¢'}, and with the three vertices
R RFK"  RFF" support a KE(,S) in A. H

Two consecutive applications of Lemma 3.3.3 yield the symmetric conclusion that

both links A(Q, K., /) and A(Q, L., k) are p-holes for every ¢ € L, and k € K,.

Corollary 3.3.4. Lett € N, u, d > 0, let A be a (d,A)-dense reduced hypergraph with
index set I that does not support a Ké3), and for sufficiently large disjoint subsets of
indices K, L < I let Q be a (K, L)-transversal.

Then there exist K, < K and L, < L of size t such that for every ¢ € L, and for
every k € K, the Q-links A(Q, K,,?) and A(Q, L., k) are (u,t,d)-holes.

Proof. For sufficiently large ¢ = /(t, u,d) a first application of Lemma 3.3.3 yields
subsets K" and L' of size at least ¢’ such that A(Q, K', () is a (u,t', d)-hole for every ¢ €
L'. A second application to the restricted transversal Q(K’, L') (with the roles of K
and L exchanged) then yields subsets L, < L’ and K, < K’ of size t such that
additionally A(Q, Ly, k) is a (u, t,d)-hole for every k € K,. O

3.3.2 Intersecting and disjoint links

Next we define concepts for pairs of links having a substantial intersection and of being

almost disjoint.

Definition 3.3.5. Let A be a reduced hypergraph with index set I, let K, L, M < |
be pairwise disjoint sets of indices, and let Q(K, L) and R(K, M) be transversals.
For (€ L and m € M we say the links A(Q, K, () and A(R, K, m) are d-intersecting if

IN(Q, Q") A N(RF™, RF™)| > 5| P (3.3.5)

for all kk' e K®. If, on the other hand, (3.3.5) fails for all kk' € K®, then we say
A(Q, K, () and A(R, K, m) are ¢-disjoint.
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Moreover, we say a pair of transversals Q(K, L)R(K, M) has J-intersecting links
(resp. d-disjoint links) if A(Q, K, () and A(R, K, m) are d-intersecting (resp. d-disjoint)
for every £ € L and m € M.

We remark that the notions of d-intersecting and d-disjoint do not complement each
other. However, by means of (the product version of) Ramsey’s theorem we can always
pass to subsets of K, L, and M for which one of the properties holds (see, e.g., proof of
Corollary 3.3.7 below).

The next lemma shows that in reduced hypergraphs that do not support K, éB) at

most one pair from a triple of inhabited transversals can have an intersecting link.

Lemma 3.3.6. Let § > 0, let A be a reduced hypergraph with index set I, and for
sufficiently large disjoint sets K, L, M < I let Q(K, L)YR(K, M)S(L, M) be an inhabited
triple of transversals. If both pairs of transversals Q(K, L)R(K, M) and Q(K, L)S(L, M)
have d-intersecting links, then A supports a K, ég).

Proof. Fix m € M, a subset K, < K of size at least 71, and ¢ = ([‘5;]). Take
arbitrary two distinct indices k, &’ € K,. Since |[N(Q*, Q¥*) n N(RF™ RF™)| = §|P*|
for every ¢ € L there is a subset L; € L of size at least §|L| such that

() M@, Q") A N(R*™ R*™) = . (3.3.6)

fELl

As the pair k, K’ was taken arbitrarily, we can repeat the argument iteratively ¢ times
(for every pair in K,) and find nested subsets L © Ly © Ly © --- 2 L, such that (3.3.6)
with L replaced by L, holds for every kk' e K®.

Moreover, we have |L,| > §?|L| and since L is sufficiently large, we have |L,| > 2 and
we can select 0 € ng)' Owing to (3.3.6) with Ly replaced by L,, for every kk' € K,

there is a vertex P e P* guch that
Pkk'@kﬂ@k%’ Pkk'QkZ'Qk/€’7 Pkk:'kaRk/m c E(A) ) (337)

Moreover, since Q(K, L)S(L, M) has d-intersecting links and K, is of size at least 6!
there exists kk’ € K such that

N(Qkf’Qkf’) A N(Qk’Z’Qk’E’) A N(s€m78€’m> + &,
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Therefore, there is a vertex P% € N(Q*, Q') n N(Q¥*,Q¥") n N (S, 8'm) < pt
such that
PM’QI@ZQIM" PMQWQW/, PM’SEmSé’m c E(A) . (338)

Moreover, since Q(K, L)R(K, M)S(L, M) is inhabited we have
Qkkamsém’ Qk@’kasé’m’ Qk’ka’msfm’ Qk’Z’Rk’msf’m c E(A) ) (339)

Consequently, the ten hyperedges provided by (3.3.7)—(3.3.9) show that the vertices
PF P! together with QFY, QF, QK¢ QFY, RF™ R¥™ and S, S*™ support a KE(,S)
on the five indices k, k', ¢, ¢, and m. m

By means of the product Ramsey theorem (see e.g. Proposition 9.1 in [46]) we can
move from at most one pair with intersecting links (given by Lemma 3.3.6) to at least

two pairs with essentially disjoint links.

Corollary 3.3.7. Lett € IN, 6 > 0, let A be a reduced hypergraph with index set I
that does not support K5(3), and let Q(K, LYR(K, M)S(L, M) be an inhabited triple of
transversals for sufficiently large disjoint sets K, L, M < I.

Then there exist subsets K, < K, L, < L, and M, < M each of size t such that
at most one pair of restricted transversals Q(K,, Ly )R(K., M), Q(K,, L.)S(L., M,),
R(K,, M,)S(Ly, M,) has §-intersecting links and all other pairs have 6-disjoint links.

Proof. Define a 2-colouring on the tuples (kk’,¢,m) € K® x L x M depending on
whether N(Q*, Q%) n N(RF™, R¥™) = §|P*'| or not.

Since K, L, and M are large enough, we can deduce from the product Ramsey
theorem that there exist large subsets K1 € K, L4 < L, and M; < M for which the
pair of restricted transversals Q(K7, L1)R(K;, M;) has d-intersecting or d-disjoint links.

We can repeat this argument and consider the triples in L§2) x K1 x M to obtain
subsets Ky € K1, Ly € Ly and My € M such that the pair Q(Ks, Lo)S(Lay, Ms) has §-
intersecting or d-disjoint links. Observe that these properties are closed under subsets
of indices and hence, we have that the pair Q(Ky, Ly)R(K>, M) has d-intersecting

or §-disjoint links.
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Using the Ramsey argument again yields subsets K, < Ky, L, € Lo, and M, < M,
such that all pairs of restricted transversals Q(K,, L.), R(K., M,), and S(L,, M,)
have d-intersecting or d-disjoint links. Since the initial sets K, L, and M are large
enough, we argue that K,, L,, and M, can be taken of size at least ¢.

Finally, applying Lemma 3.3.6 we observe that at most one of those pairs of transver-

sals has a d-intersecting link, and hence, at least two of them have d-disjoint links. [

Finally, we may combine Corollaries 3.3.4 and 3.3.7. More precisely, after an
application of Corollary 3.3.7 and three consecutive applications of Corollary 3.3.4 we

arrive at the following statement.

Corollary 3.3.8. Lett € IN, 0, u, d > 0, let A be a (d,A)-dense reduced hypergraph
with index set I that does not support a KE()B), and for sufficiently large disjoint sets K,
L, McIlet Q(K,L)R(K,M)S(L, M) be an inhabited triple of transversals.

There exist subsets K, <€ K, L, < L, and M, < M of size at least t such that

(7) at most one pair Q(K,, L )R(K., M), Q(K., L.)S(Ls, M), R(K., M,)S(L., M,)
of restricted transversals has d-intersecting links and all other pairs have §-disjoint

links

(71) and for every k € K,, £ € L., and m € M, the links A(Q, K., ), A(Q, L., k),
AR, Ki,m), A(R, M, k), A(S, L.,m), and A(S, M., L) are (u,t,d)-holes. O

3.3.3 Equivalent holes

Roughly speaking, in the next step for the proof of Proposition 3.1.5 we show that for
wicked reduced hypergraphs (see Definition 3.1.4), the set of holes with width bigger
than 1/3 splits into only two classes defined by d-intersections. For that we transfer the

notion of d-intersecting from links to holes.

Definition 3.3.9. Given a reduced hypergraph A with index set I, a subset J < I,

and p, 6 > 0, we say two pu-holes ® and ¥ on J are é-intersecting if

|07 A W] > 5|PY| (3.3.10)
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for all ij € J@?). If, on the other hand, (3.3.10) fails for all ij € J®, then we say ® and
U are d-disjoint.

For ;1 > 0 and § € (0, 1] the notion of J-intersecting defines a reflexive and symmetric
relation on the p-holes on J. However, maybe somewhat surprisingly, the next lemma
shows that this relation is also transitive on holes with width bigger than 1/3 in wicked
reduced hypergraphs, if one passes to an appropriate subset of J. This justifies the
shorthand notation

@E&J\II

for é-intersecting holes on J.

Lemma 3.3.10. For every € > 0 there exists p > 0 such that for every t € N the
following holds. Suppose A is an e-wicked reduced hypergraph with index set I and for
sufficiently large J < I we are given (u,|J|,1/3 + €)-holes ®, ¥, and 2 with

@E&J\P and \IJEE’JQ.
Then there is a subset J, < J of size t such that ® =, ;, ).

Proof. Given € > 0 we fix auxiliary integers ¢, to, t3 and we set u to satisfy the hierarchy
ety <ty <ty ut. (3.3.11)

Let t € IN and let A be an e-wicked reduced hypergraph with index set I and for
sufficiently large J < I let ®, ¥, and Q be (y, |.J],1/3 + €)-holes such that ® and ¥, as
well as, ¥ and () are e-intersecting.

Consider an auxiliary 2-colouring of the pairs ij € J depending on whether
D9 A QY] < e|PY| (3.3.12)

or not. Since J is sufficiently large, there is a subset J; < J of size max{t;,t} such
that (3.3.12) either holds or fails for every ij € J\2). If (3.3.12) fails, we set J, = J; and
are done. Consequently, we may assume that (3.3.12) holds for every ij € J1(2) and from

which we shall derive a contradiction to the assumption that A does not support K 5(,3).
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First we note that for all i < j < k from J; and every PY € P¥ and P/* € P/* the
(1/3 +¢,a)-density of A and the given width of the holes ® and 2 together with (3.3.12)

imply

IN(PY, P7%) (9% 0 Q™)| = |N(PY, PPF)| + @™ + |Q*

_ ‘fpzks‘ _ ‘q)ik A sz‘
> 2¢|P™. (3.3.13)

We define the reduced subhypergraph A4; < A on J; with vertex set V(A;) = V(A)
and with edges defined for every i < j < k in J; by

E(A7") = E(A[07 A UV, o U QF Wk A QIF]) |
Since ® and U, as well as, ¥ and ) are e-intersecting, we infer from (3.3.13) for every
1 <j <kin Jp that

[E(ATS )= ). NP9, P*) n (% 0 Q%)| = 26°|PY|| PP P
Piicai Al
PikegiknQik
and, hence, A, is (2¢3,..)-dense.

We consider the e-exceptional left and right cherries (see Definition 3.3.2) of the

holes @, ¥, and Q (restricted to .J;), i.e., for every i < j < k in J; we set
Lk = LR ) u LF(Q,e) and  RZF = ZIF(D,e) U (T, €) .
We infer from (3.3.1) that
29 < PPt and || < 2L PP

By the choice of i we can apply Lemma 3.2.5 to A; with t,, 23, and 2?" in place
of t, u and /. This yields an Jy < J; of size ty and three transversals Q(.Js), R(J2),
and S(Jy) avoiding the exceptional cherries from Z“* and Z%* for every ijk € JQ(?’).

Furthermore, for every ¢ < j < k in J, we have
QUR*S* e BE(AV") = E(ATF[®Y A W o U QF Wik A QiF) (3.3.14)

We fix disjoint subsets K, L, M < J, such that K’ and M’ have size |ty/3], L has
size t3, and for every (k,¢,m) e K x Lx M we have k < { < m. Note that by definition
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R(K', M') < ® U Q and hence there exists a I1 € {®, 2}, which contains more then half
of R(K', M"). Therefore, an application of the K6vari-Sés-Turdn Theorem (see [40])
leads to subsets K < K’ and M < M’, each of size t3, such that

R e TI*™ for every k€ K, and m € M. (3.3.15)

Owing to (3.3.14), the restricted transversals Q(K, L), R(K, M), and S(L, M) form
an inhabited triple in A. We derive a contradiction by Lemma 3.3.6 and for that we shall
show that two of the pairs Q(K, L)R(K, M), Q(K,L)S(L, M), and R(K, M)S(L, M)
have e-intersecting links.

First, we recall that, independent of the chosen II, the pair Q(K, L)S(L, M) consists
of transversals inside the hole ¥ and both avoid the exceptional left and right cherries

from W. Hence, for all ke K, ¢¢' € L&, and m € M we have

‘NA(QIM’ Qké’) A \DMN < 6‘7)@[‘ and ‘NA(Slm, Sg/m) A \I/M/ < 8‘7386/

Consequently, the (1/3 + €, A)-density of A4 and the width of ¥ imply

‘N_A(le,QkW) A NA<S€m’56’m)| = SIIPM/

for every k € K, £¢' € L'®  and m € M, i.e., the pair Q(K, L)S(L, M) has e-intersecting
links.

If IT = @, then Q(K, L) and R(K, M) are both transversals in ® (see (3.3.15)) and
both Q and R avoid the exceptional right cherries of . As before, this implies that the
pair Q(K, L)R(K, M) has e-intersecting links. Consequently, Lemma 3.3.6 gives rise to
the contradiction that A supports a K, ég).

Analogously, if IT = €, then R(K, M) and S(L, M) are both transversals in 2 and
since both R and S avoid the exceptional left cherries of 2, the pair of transversals

has e-intersecting links, which leads to the same contradiciton. O]

Another application of Ramsey’s theorem leads to the following corollary.

Corollary 3.3.11. For every € > 0 there exists ;1 > 0 such that for all integers t, r = 2
the following holds. Suppose A is an e-wicked reduced hypergraph with index set I and
for sufficiently large J < I we are given (u,|J|,1/3 + ¢)-holes @4, ..., P,.
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Then there is a subset J, < J of size t such that
(i) for all o, ¢' € [r] the holes ®, and @, are either e-intersecting or e-disjoint on J,

(i) and = j, is an equivalence relation on {®q, ..., D, } with at most two equivalence

classes.

Proof. For € € (0,1] let u > 0 be given by Lemma 3.3.10. For fixed ¢, r = 2 let ¢ >t be
sufficiently large for an application of Lemma 3.3.10 with e, u, and with 2 in place of ¢.

For a given e-wicked reduced hypergraph A and (y, |J|,1/3 + €)-holes ®4,..., P, we
impose that the size of J is larger than the 2(2)_colour Ramsey number for graph cliques

on t’ vertices, i.e.,
I — () for = {&= (Eor)prep®: Eopr € {0,1} for oo € [r]P}. (3.3.16)
We assign to a pair ij € J@ the colour £ = (§99/)[T]<2> with £,y = 1 signifying

ij ij
‘CDQ N <I>g,

> [Pl

and £,y = 0 otherwise. Owing to (3.3.16) there exists a subset J, < J of size at least

t' =t and a colour & = (¢ @ such that all pairs of J, were assigned £*. Note

;9’)99’6[?"]
that assertion (i) follows directly from the definition of the colouring, i.e., ®, and ®,
are e-intersecting on J, if {7, = 1 and e-disjoint otherwise.

Obviously the relation =, ;, is reflexive and symmetric. Moreover, our choice of ¢’
allows us to invoke Lemma 3.3.10 and the transitivity follows from the definition of the
colouring. Since all holes have width at least 1/3 + ¢ at least two among any choice of

three holes must share at least |P¥| vertices in P¥ for any ij € J{? and, hence, =, j,

has at most two equivalence classes. O

3.3.4 Unions of equivalent holes

The next lemma shows that the union of equivalent holes of width bigger than 1/3 is
still a hole on a suitable subset of the index set. This will be crucial in the proof of

Proposition 3.1.5. Roughly speaking, we will start with two disjoint holes of width
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bigger than 1/3 and then every other hole of width bigger than 1/3 can be united with
one of the two starting holes. We shall ensure that the union will be a larger hole and,
hence, after a bounded number of unions we arrive at two holes. These two holes can
be used later to define the two colouring ¢ asserted by Proposition 3.1.5 (see §3.3.5 and
§3.3.6 for details).

Lemma 3.3.12. For every u, € > 0 there exists v > 0 such that for every t € IN the
following holds. Suppose A is an e-wicked reduced hypergraph with index set I and for
a sufficiently large subset J < I we are given two (v,|J|,1/3 + )-holes ® and ¥ on J

such that ® =, ; V.
Then, there exists a subset J, < J of size at least t such that ® UV is a p-hole on J,.

Proof. Let ;> 0 and € > 0 be given. We may assume that ¢ < 2/3 and we let p, > 0 be
a sufficiently small auxiliary constant so that Corollary 3.3.11 applies with . Moreover,

we fix integers t4 < t3 <ty < t; and v > 0 so that

(1) t4 is sufficiently large to apply Corollary 3.3.11 with e, ., 7 = 4, and 2 in place
of t,

(2) ts is sufficiently large to apply Corollary 3.3.8 with t4, €, ., and 1/3 + ¢ in place
of t, §, u, and d,

(3) tq is sufficiently large and v < min{y, .} is sufficiently small so that Lemma 3.2.5
applies with 3t3, /8, and 2v/e in place of ¢, p, and 1/,

(4) and t; —> (t2)3.
Finally, for t € N let J < I be sufficiently large so that
|J| — ()3 for t' = max{t,t,}.
Given (v,|J|,1/3 + ¢)-holes ® and ¥ on J let

L =ZL(Pe)u L (V,e) and Z =R (D,e) v RZ(V,¢)
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be their e-exceptional left and right cherries. For later reference we recall that (3.3.1)
yields
L < = |7>”||7>““\ and |%7"| < \P”“HP”W (3.3.17)

We begin with an apphcatlon of Ramsey’s theorem for hypergraphs and consider a

2-colouring of the triples ijk € J©® depending on whether
e(®Y L W * LWk Bk G WIR) > PPk P (3.3.18)

or not. Owing to the size of J, there exists a subset J; € J of size ¢’ = max{t,t;} such
that either (3.3.18) holds or fails for all ijk € J1 %) Note that in case it fails we would
be done and, hence, we may assume that (3.3.18) holds for every ijk € J1(3) and in the
remainder we shall derive a contradiction from this assumption.

First we observe that inequality (3.3.18) implies that for at least one the eight
possible tuples (I, IT,, II3) € {®, U'}3 we have

e(IT9, TT# T1F) > g‘pz’ijikajk‘ (3.3.19)

for every ijk € Jl Actually, since ® and ¥ are v-holes and v < p inequality (3.3.19)
can neither hold for e(®¥, ®¥* &%) nor for e(W¥, ¥* Wi*) Thus, we may define an
auxiliary 6-colouring of the triples ijk in Jl(g) depending on which of the six available
tuples in {®, ¥}3 satisfies (3.3.19), where we fix some choice in an arbitrary way in
case several choices satisfy (3.3.19). In view of (4) there is a subset J, € J; of size o
such that for every ijk € J3¥ inequality (3.3.19) holds for e(IT¥, IT# TI5%) for the same
tuple (I1;, Iy, I13) € {®, U}? for every ijk € I8

Consequently, the reduced subhypergraph A" < A defined for every i < j < k
in Jy by

Piipkpik e B(A) — P pkpik ¢ B(A[IY, I, TT]) (3.3.20)

is (14/8,)-dense on Jo. Due to (3.3.17) and our choice of t; and v in (), Lemma 3.2.5 en-
sures a subset J3 € Js of size 3t3 and an inhabited triple of transversals Q(J3)R(J3)S(J3)
where each transversal avoids the sets of exceptional left and right cherries . and & of

® and V.
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Since Q(J3)R(J3)S(J3) is an inhabited triple, we have Q¥ R*S7* e E(A’) for every
i < j < kin Jy and, therefore, the definition of 4" in (3.3.20) implies

QUell;, R*ell,, and S*ell, (3.3.21)

for allt < j < k in Js.

Fix disjoint subsets of indices K3, L3, M3 < J3 each of size t3 and such that for
every (k,¢,m) € K x Lx M it holds that k¥ < ¢ < m. Clearly, the restricted transver-
sals Q(K3, L3), R(K3, Ms), and S(Ls, Ms) still form an inhabited triple of transversals.
Therefore, the choice of ¢3 in (2) allows an application of Corollary 3.3.8, which yields
subsets Ky € K3, Ly < L3, and My < M3 each of size t4 satisfying properties (7) and (i)
of Corollary 3.3.8.

Next we shall show that all three pairs of restricted transversals Q(Ky, Ly)R(K4, My),
Q(Ky, Ly)S(La, My), and R(K 4, M4)S(Ly, My) have e-intersecting links. However, this
contradicts property (7) of Corollary 3.3.8, which allows only one pair of transversals
with e-intersecting links and this contradiction concludes the proof of Lemma 3.3.12.
Below we show that the pair Q(Ky, Ly)R(Ky, My) has an e-intersecting link the proof
for the other pairs follows verbatim the same lines.

Fix some ¢ € Ly and m € M. Property (i7) of Corollary 3.3.8 tells us that A(Q, K4, ¢)
and A(R, Ky, m) are (p, t4,1/3 4+ €)-holes on K,. Moreover, since v < p, also ® and ¥
are (fis, t4, 1/3 +€)-holes on K and, therefore, the choice of ¢, in (1) and an application
of Corollary 3.3.11 yields a subset K, < K of size at least two such that =, g, defines

an equivalence relation with at most two equivalent classes on the p,-holes
ANO, K, 0), AR,K,,m), I, and Il,.

In view of (3.3.21) we have Q(K,, Ly) < II; and R(K,, M) < I, and since Q and R

avoid the exceptional cherries from . and # we infer
IN@Q™.QY) nI¥| <e[P™]  and  [N(R™, R*"™) 0 IEY| < <[P
for k, k' € K,. Consequently,

II; and A(Q, K., () are e-disjoint and I, and A(R, K., m) are e-disjoint
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Either II; = Il or by assumption of the lemma we have II; =, g, Il and since =, g,

has only two equivalence classes, we arrive at
ANQ, K., l) =.k, A(R,K.,m).

Therefore, property (i) of Corollary 3.3.8 yields the same conclusion for K4 2 K, i.e.,
A(Q, K4, 0) and A(R, K4, m) are e-intersecting. Finally, since ¢ € Ly and m € M, were ar-
bitrary, we infer the promised assertion that the pair of transversals Q(Ky, L4)S (L4, My)

has e-intersecting links. O]

We finish this subsection with the following corollary that follows from the application
of Corollary 3.3.11 and Lemma 3.3.12. We will use it for the proof of the lemma presented

in the following section.

Corollary 3.3.13. For every p, € > 0 there exists v > 0 such that for every t € N the
following holds. Suppose A is an e-wicked reduced hypergraph with index set I and for
a sufficiently large subset J < I we are given three (v,|J|,1/3 + €)-holes ®, ¥, and
such that ® and VU are e-disjoint.

Then, there exists a subset J, < J of size at least t such that one of the following holds
(A) U Qisa (ut 1/3+ ¢c)-hole e-disjoint with ¥
(B) or W uQisa(u,t,1/3+ €)-hole e-disjoint with ®.

Proof. Given p and € > 0 we fix an auxiliary positive constant p/ < p small enough to
apply Corollary 3.3.11 with €. We fix v < p/ to be small enough to apply Lemma 3.3.12
with € and p/. Finally, given t € IN we fix positive integers t5 < t; such that: ¢, is large
enough to apply Corollary 3.3.11 with ¢t and » = 3 and t; is large enough to apply
Lemma 3.3.12 with ¢5 in place of t. Let A as in the lemma and consider a set J < [
large enough for an application of Corollary 3.3.11 with » = 3 and ¢; in place of t.
Apply Corollary 3.3.11 with r = 3 to find a subset J; < J of size ¢; in which =, j
is an equivalence relation on {®, ¥ O} with at most two equivalence classes. Since ®

and U are e-disjoint without loss of generality we may assume

O=., . (3.3.22)
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Moreover, part (i) of Corollary 3.3.11 implies that 2 and ¥ are e-disjoint on J;.
An application of Lemma 3.3.12 yields the existence of a set Jy < J; of size t5 on
which
Qudisa (¢, ta,1/3 + ¢)-hole.

Since W is e-disjoint with both ® and 2, we have that {2 U ® and ¥ are 2e-disjoint.
However, to prove (A ) we need an other application of Corollary 3.3.11 for the holes ®, ¥
and ® U Q. Through this application we obtain a subset J, < J, of size ¢ in which =, 4, is
an equivalence relation with at most two equivalent classes. Since ® and W are e-disjoint
and obviously ® U Q =_ ;, Q alternative (A ) follows.

In the case in which Q =, ;, W instead of (3.3.22) alternative (B) follows with the

same argument. OJ

3.3.5 Two large disjoint holes

In this section we establish the existence of two essentially disjoint holes such that
most cherries in each hole have a large neighbourhood in the other hole. For that we
consider the following sets of unwanted cherries. Given p-holes ® and ¥ on J, € > 0,
and indices ijk € J® a cherry (PY, P*) e PY x P¥* is e-bad if
(PY, P™*) e @7 x ®* and [N (P, P*) \ WF| > e[ P7¥]
or (PY,P*)e W x U* and |[N(PY, P*) < ®%| > ¢|PI¥|.

For i < 57 < k we denote the sets of all e-bad left, middle, and right cherries by
(D, W, e) = PY x P* (D, W,e) = PY x P/* and 27H(®,0,¢) = P x PIF,
where the letters .Z, ¢, and & come from the initials of the words “left”, “central”, and

“right” in Spanish.

The following lemma shows that given two disjoint holes ® and ¥ of width at
least 1/3 + ¢ it holds that (for a large subset of indices) either there are few bad cherries
or there is a third hole Q of width 1/3 + ¢ with a positive proportion of vertices outside

of ® and V. In the latter case an application of Corollary 3.3.13 yields two disjoint holes

@, and W, whose sum of widths increased.
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Lemma 3.3.14. For every p, e = v > 0 and t € IN there is v > 0 such that the following
holds. Suppose A is an e-wicked reduced hypergraph with index set I and for sufficiently
large J < I we are given e-disjoint (v,|J|,1/3 + ¢)-holes ® and V.

Then, there exists a subset J, < J of size t such that one of the following holds

(A) there exist two e-disjoint (u,t,1/3 + €)-holes ®, and U, such that
08 W] > @Y L W] + J|PY
for every ij e J?,

(B) or foralli< j <k in J. the sets of y-bad cherries satisfy

[FE(D, W, )| < uPY[PE] | 2VH(@, W,y < pl P[P,
and €7 (0,0, y)| < u|PY||P.

Proof. Given u, ¢ = v > 0, and t € IN we fix auxiliary integers t1, . .., tg, and we choose v

to satisfy

ettty tstg <<ty

Let A, J < I, ®, and ¥ be as in the statement of the lemma. In particular we
have t; « |J|. Consequently, if (B) fails to be true, an application of Ramsey’s theorem
with four colours tell us that there exists a subset J; < J of size at least ¢; such that

one of the following cases holds for every ¢ < j < k in J;

I D, W, )| > pPIPE, 298D, 0, y)] > p| PP
or [GVH®, T, )| > uPY||PH|.

We analyse each case separately.
First Case: | 7% (0, U, ~)| > u|P¥||P*| for every i < j <k in J;.

Consider the sets of bad cherries restricted to the holes ® and ¥ defined by

jqijk _ ,ﬂij’“(@, \1177) A DY« d*  and j\;]k _ ﬂijk(CI)7 \IJ’,Y) A U Pk
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for every i < j < k in .J;. Note that |.#7%| > LIPU||P*| or | ZF| > L|P||P™*|. Then,
with out loss of generality, and through an other application of Ramsey’s theorem we

may assume that there is a set Jy < J; of size at least t5 such that
5] > SIPP (3.3.23)

for every 1 < j < k in Js.
Consider an auxiliary reduced hypergraph A" with V(A") = V(A) and with edges
defined for every ¢ < j < k in Jy by

(PY,P* PiFye B(A) <« (PY,P*) e 7% LD, ~/2)
and notice that A’ is not necessarily a subhypergraph of A.
Observe that for every i < j < k in Jy, due to (3.3.1) we have
ijk 2V ik ij | | ik
L7 (@, 7/2)] < 7|7”H7D | < ulPY[P™,
which together with (3.3.23) yield that A’ is (u,..)-dense.
Moreover, since we have

| L@, 7/2)] < 7|7’”\|772k! and  [275(D,7/2)| < 7|7’”“||7’Jk|7

our choice of constants allows us to apply Lemma 3.2.5. Thus, we obtain a subset J3 < Jy
of size t3 and transversals Q(J3), R(J3), and S(J3) that avoid .Z(®,~/2) and Z(P,~/2)
and form an inhabited triple of transversals in A’.

First, since the triple QRS is inhabited, we have Q¥ R*Si* € E(A’) for every three

indices ¢+ < 7 < k in J3. This is to say
(QY, R*) e 7% . L (D,~/2). (3.3.24)

We remark that the reduced hypergraph A’ and the transversal S are not relevant for
the rest of the proof.
By the definitions of .#37" and .Z%(®,~/2), (3.3.24) tell us that

INQI,R*) N WM = 9[PH| and  [N(QT, R¥) 1 @7 < L)
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Moreover, we have that |[N(QY, R*)| > (1/3 + £)|P?*| and therefore we obtain
IN(QY, B*) \ (@7 U W) = JIPo|, (3.3.25)

for every 1 < j < k in J3.
Second, since the transversals Q@ and R avoid Z(®,~y/2) we have that for every fixed

indices ¢ < 7 < k < £ in J3 the neighbourhoods
ik ik ij Y\ pij €\ pij it il ij Y\ pij €\ pij
IN(@QT, Q™) n @Y < S|PV < 5[P¥] and [N(RT, B) n @Y| < SPY| < S|PY].
Since ® has width 1/3 + ¢ and by the aA-density, this implies that
IN(Q™, Q%) n N(R™, RI)| = ¢|PY]. (3.3.26)
In order to prove (A ) we consider for every x < ¢ < j in J; the set
Q49 = N(Q™, R*) < PY. (3.3.27)

Observe that if there is a subset J. < J; of size at least t; + 1 and such that for every

r<i<j<kin J, we have
(2, OF, OF) < v|PY| P[P (3:3.28)

then the set Q@ = | , Q) with mp = min J] is a (v,14,1/3 + €)-hole. An

i<jedi~{xo
application of Corollary 3.3.13 implies that there is a subset J, < J. of size at least ¢ in
which Q2 U ® and ¥ or 2 U ¥ and ¢ are two e-disjoint p-holes. By taking &, = & U Q2
and W, = V¥ in the first case or &, = ® and ¥, = ¥ U  in the second, (3.3.25) implies
that (A) follows.

Therefore, we may assume that (3.3.28) does not hold, and by an application of

Ramsey’s theorem for 4-uniform hypergraphs there is a set Jy < J3 of size at least t4

such that
(92, Q2 Q) > w|PY| P[P (3.3.29)

for every four indices z <1 < j < k in Jy.
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Take disjoint subsets Xy, K4, Ly, and My of J; each of them of size ||J4|/4] and
such that for every (x,k,¢,m) € Xy x K4 x Ly x My we have x < k < { < m. Observe
that, for every fixed x € X4, even if we only consider the edges in the restricted
constituents AFM[QF QFm QM) for every (k,f,m) € K4 x Lg x My, the resulting
reduced hypergraph A, is (v,.~)-tridense, because of (3.3.29). Then, an application
of Lemma 3.2.7 with » = 1 yields the existence of subsets X5 € X, K5 € Ky, Ls <
Ly, and M5 < M, each of them of size t5, and transversals T (K3, Ls), U(K5, Ms),
and V(Ls, M) such that

THUR™ V™ ¢ E(A,), (3.3.30)

for every (k,¢,m) € K5 x Ls x Ms and x € X5. Observe that this means T* e QF

Ukm e Qkm and V™ e Q. Moreover, recalling (3.3.27) we have
kaR:vKTkK c E(Amké)’ QackRszkm c E(Aka), and QxZRzmvfm c E(Axﬁm) )
In other words all three triples of transversals

Q(Xs5, K5)R(Xs, Ls)T (K5, Ls) Q(Xs, K5)R(X5, Ms)U(K5, M5),
and Q(X5,L5)R(X5,M5)V(L5,M5)

are inhabited. Note that here we consider restrictions of the transversals Q@ and R
on different subsets of indices. Moreover, from (3.3.30) we infer that the triple of

transversals

T (K5, Ls )U(Ks, M5)V(Ls, Ms)

is also inhabited.

We iteratively apply Corollary 3.3.8 four times to these triples of inhabited transver-
sals. After these four applications we obtain index sets Xg, K4, Lg, and Mg each of
them of size at least 2, which satisfy (7) and (i7) of Corollary 3.3.8 for all those four
inhabited triples of transversals.

We shall show that the two pairs of restricted transversals T (Kg, Lg)U (K, Mg) and
U (K, Mg)V(Lg, Mg) have e-intersecting links which contradicts (i) of Corollary 3.3.8

and concludes the proof.
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First we show that the pair T (Kg, Lg)U (K, Mg) has e-intersecting links. Because

of (i) we only need to prove that for some k, k' € Kg, ¢ € Lg, and m € Mg we have
IN(TH, T n N(UF™, UF™)| = e|P*. (3.3.31)

Fix k, k' € Kg, { € Lg, and m € Mg, and consider Q(Xs, K¢)R (X, Le)T (K¢, Ls).

Because of (3.3.26) we have that for every z, 2’ € X,
|N(Q$k,Q$/k) A N(R‘Té,RxleN > €|P$$,|.

By (i) of Corollary 3.3.8 this implies that the whole pair Q(Xg, K¢)R(Xs, Lg) has e-
intersecting links. Again by (7) this can hold for at most one pair of transversals, and the
other two must have e-disjoint links. Then, the pair Q(Xg, K4)T (K, Lg) has e-disjoint

links, and for every x € Xg we have
IN(Q™, Q™) n N(T™, T™)| < e[ P,

and we may some fix x € X.
With a similar argument for Q(Kg, X¢)R(Xg, Mg)U(Kg, Mg) we obtain an analogous

inequality
|N(ka,ka/) A N(Ukm, Uk’m)| < €|1szk’|‘

Finally since both neighbourhoods N (T*¢ T*¢) and N(U*", U*™) have small inter-
section with N(Q"*, Q®*"), and by the (A, 1/3 + £)-density condition, (3.3.31) follows.

The proof that the pair U (K, Mg)V(Lg, Mg) has e-intersecting links follows among
the same lines, by considering the triples of transversals Q(Xg, K¢)R(Xq, Me)U(Kg, Ms)
and Q(Xs, Lg)R(Xg, Mg)V(Lg, Mg). This finishes the proof of the first case.

Second Case: |27F(®, W, ~v/2)| > 1| P*||P*| for every i < j <k in J;.
The proof is identical to the first case after simply reversing the order of the indices,

which exchanges the notions of left and right cherries.

Third Case: |€"%(®, U, ~/2)| > u|PY||P*| for every i < j <k in J;.
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As before we consider the set of e-bad cherries restricted to the different holes € F
and ‘Kéj * and following the same Ramsey argument we find a subset J, < J of size at

least t5 for which we may assume that
6| > SIPY| P,

for every i < j < k in Js.
Again we define a reduced hypergraph A" with V(A") = V(A) and this time the

edges are given by
(P7,P*, P*) e B(A) <= (P9, P") e 6" a7 (®,7/2),

for i < j < kin Jy (see Definition 3.3.2). Similarly as in the first case, by an application
of Lemma 3.2.5 we obtain a set J3; € Jy of size t3 and transversals @ and & which
satisfy (QY,S7%) e €% ~ .7 (®,~/2) for every i < j < k in Js. This is to say, the
following variant of (3.3.25) holds

IN(QY, )\ (@ L UH)] = L[PH. (33.32)

Moreover, because of Lemma 3.2.5 transversals Q and S avoid the exceptional
cherries from Z(®,¢/4) and Z(P,e/4). With this we can deduce the following version
of (3.3.26). For every i < j < k < { in J, we have

IN(QY, Q%) n N(5%, S*)| = e|P*| and |N(S*,S%) ~ N(S*, 57| = e|P*|.
(3.3.33)

For every ¢« < x < j in J3 define the set of vertices
Q9 = N(Q™,8%) < PY, (3.3.34)

Observe that if there is a subset J, € J3 of size at least ¢4, and such that for every five

indices i < x < j <y < k in J. we have

(U, O, Q4F) < P[PPI (3:3:35)
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then, we can establish (A ) as follows: consider J! to be every second element in J] and

/in is a (v,t4,1/3 + £)-hole. As

i<jeJy

let i* = min{j > i: j € J.}. Thus, the set Q = J
in the first case, an application of Corollary 3.3.13 yields a set J, < J! of size t in which
either ® U Q and ¥ or ® and ¥ U ) are two e-disjoint u-holes. Because of (3.3.32) those
two holes signify that (A ) holds.

Therefore, we may assume that (3.3.35) does not hold, and by an application of
Ramsey’s theorem now for 5-uniform hypergraphs there exists a subset J, < J3 such

that for every 1 <x < j <y <k in Jy.
e(Q, QIF QIR > v|PY||P*||PiH|. (3.3.36)

Take now sets of indices Ky, Xy, Ly, Yy, and My of size |J,/5] and such that for
every (k,x,0,y,m) € Ky x Xy x Ly x Yy x My we have k < x < { <y < m. By (3.3.36)
all reduced hypergraphs A(,,) given by the restrictions .A’(“f% = AMmQEE Qb Qlm]
are (v,.~)-tridense for every (z,y) € Xy x Y;. We can apply Lemma 3.2.7 this time
with » = 2. This application yields the existence of subsets X5 < Xy, Y5 € Yy, K5 <
K4, Ls € L4, and M5 < M,y each of size t5, and transversals T (K5, Ls), U(K5, Ms),
and V(Ls, Ms) such that for every (k,¢,m) € K5 x Ly x M5 and (z,y) € X x Y we have

THUkmytm ¢ A’(“fz). In particular, the triple of transversals
T (K5, Ls)U(K5, M5)V(Ls, Ms) (3.3.37)

is inhabited. Moreover, this implies that 7% e QF, UM e QF™ and V" e Q™ and

due to (3.3.34) we obtain the edges
kaTkZSQ:Z c E(Ak:d)’ QkakmSQcm c E(Ak:rm)7 and nyvémsym c E(Aﬂym)
This is to say, the triples of transversals

Q(K5a X5)T(K5a L5)S(X5v L5) ) Q(K57 X5)M(K57 M5)S(X57 M5) 5
and  Q(Ls, Vo) V(Ls, Ms)S(Ys, M) (3.3.38)

are all inhabited.
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Again, we apply Corollary 3.3.8 iteratively four times to the triples of transversals
from (3.3.37) and (3.3.38). Thus we obtain sets Kg, X, Lg, Y, and Mg each of
them of size at least tg, satisfying (i) and (7)) of Corollary 3.3.8 for those triples of
transversals. We show that the two pairs of restricted transversals T (K, Lg)U(Kg, M)
and U (Kg, Mg)V (L, Mg) have e-intersecting links which as in the first case contradicts (7)
of Corollary 3.3.8 and concludes the proof.

The proof for the pair T (K, Ls)U(Kg, Mg) follows from the same arguments pre-
sented in the first case. However, for U (Kg, Mg)V(Lg, Vi) we proceed slightly different.

Because of (i) of Corollary 3.3.8 it is enough to prove that for some k € Kjg

and m € Mg it holds that
AU, Mg, k) = my AV, Mg, 1) . (3.3.39)

First, consider the triple Q(Kg, X¢)U(Ks, Mg)S(Ks, M), and observe that (3.3.33)
implies that
A(Q, Xﬁ, k’) 557)(6 A(S, X67 m)

for every k € Kg and m € M. This means that the pair of transversals Q(Kg, X¢)S(Xg, Ms)
has e-intersecting links. Because of (7) of Corollary 3.3.8 at most one of the three pairs
of transversals can have e-intersecting links, and the rest must have e-disjoint links. In

particular, for every k € Kg and x € X4 we have
AU, Mg, k) and A(S, Me, x) are e-disjoint (u, g, 1/3 + €)-holes. (3.3.40)

Reasoning analogously for the triple of transversals Q(Yg, Lg)V(Lg, Mg)S(Ys, Ms)

we can deduce that for every £ € Lg and y € Yj
AV, Mg, 0) and A(S, Mg, y) are e-disjoint (u, tg, 1/3 + €)-holes. (3.3.41)
Moreover, because of (3.3.33), for every x € X and y € Yy we obtain
A(S, M, z) =. my A(S, Mg, y). (3.3.42)

Observe that, by (ii) of Corollary 3.3.8, all three relations (3.3.40), (3.3.41), and
(3.3.42) concern p-holes in Mg of width at least 1/3 + . Then, by an application
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of Lemma 3.3.11 with » = 4 we obtain a subset M; < Mj of size at least two such
that =, 5, is an equivalence relation with at most two equivalence classes. Therefore,

since (3.3.40), (3.3.41), and (3.3.42) are closed under subsets of indices, we conclude
A(Z/{, M7, k)) Ea,M7 A(V, M7, 6)
By (7) of Corollary 3.3.8 this implies (3.3.39). O

We can iteratively apply Lemma 3.3.14 to eventually arrive at alternative (B). If
after an application of Lemma 3.3.14 to a pair of e-disjoint v-holes we conclude that (A )
holds, then we obtain two e-disjoint p-holes with 1 > v and on a smaller set of indices,
but for which the sum of the widths is larger. With a suitable choice of constants we can
apply Lemma 3.3.14 again and repeat this procedure finitely many times. In each time
we increase the sum of the widths by /2 and therefore after at most 4y~! iterations

alternative (B) must hold. Thus, we obtain the following corollary.

Corollary 3.3.15. For every p, € = v > 0 and t € N there is v > 0 such that the
following holds. Suppose A is an e-wicked reduced hypergraph with index set I and for
sufficiently large J < I we are given e-disjoint (v, |J|,1/3 + €)-holes ® and V.

Then, there exists a subset J, < J of size t and e-disjoint (p1,t,1/3 + ¢)-holes P,
and V, such that for allv < j < k in J, the sets of v-bad cherries satisfy

I (D, Ty )| < @ P[P, 2@, Bay )] < P[P,
and €7 (0., W )| < plPY|[PH. O

3.3.6 Bicolourisation

In this section we use the previous results on holes to find a suitable bipartition of the
vertices. Through this partition and some modifications of the hypergraph we construct
the bicoloured reduced hypergraph A, stated in Proposition 3.1.5.

Roughly speaking, A, will be the preimage of a random homomorphism (see Defini-

tion 3.2.6) from the given wicked reduced hypergraph A restricted to the symmetric
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difference of the two holes ®, and ¥, provided by Corollary 3.3.15. The bicolouring ¢
of V(A,) is defined through the holes ®, and ¥,.

For the application of Corollary 3.3.15 we need to establish the existence of two
essentially disjoint holes. Those will be provided by Corollary 3.3.8. Moreover, the
inhabited triple of transversals required for the application of Corollary 3.3.8 will be
given by Theorem 3.2.3. Below we give the details of this proof.

Proof of Proposition 3.1.5. Given € and ¢ let v, © > 0 and ¢ € IN be such that

=133 and et >ty x>t

Then, let v be given by Corollary 3.3.15 and let t, > t to be large enough for such
an application. Let t; to be sufficiently large to apply Corollary 3.3.8 with t = t5,
d=¢e,p=v,andd=1/3 +e¢.

Recalling that by definition every (d,a)-dense reduced hypergraphs is in particular
(d,..)-dense, we let A be an e-wicked reduced hypergraph with a sufficiently large index
set I, so that we can apply Theorem 3.2.3 with ¢ = 3¢; and u = 1/3+¢. Consequently, we
obtain a subset I; < [ of size 3t; and an inhabited triple of transversals Q(I1)R(11)S(11).

Fix an arbitrary partition K; w Ly w M; of I} with partition classes of size t;. Corol-
lary 3.3.8 applied to the inhabited triple of transversals Q(Ky, L1)R(Ky, My)S(Ly, M)
yields subsets Ky < K, Ly < Ly, and My < M, of size ty satisfying properties (7)
and (7) of the corollary.

Without loss of generality, we may assume that Q(Ky, La)R (K>, M) has e-disjoint
links. Thus, by arbitrarily fixing ¢ € Ly and m € M, we obtain e-disjoint v-holes ®
and ¥ defined by

O =A(Q,Ky () and V¥ =A(R,Ky,m).

Next, we apply Corollary 3.3.15 to obtain a set J3 & K> of size t and e-disjoint -
holes ®, and W, such that for every ¢ < 7 < k in J3

7D, Uy, )| < pPI|PF], | 27H(D,, Ua, )| < | P[P
and |€7*(D,,U,, )| < p|PY||P*| . (3.3.43)
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We define a bicoloured reduced hypergraph A; which satisfies the minimum codegree
conditions required by the proposition, for almost every monochromatic pair. For every

pair ij € Jéz) consider the colour classes
R7 =07 VY and BY =V \ 07,

and let R = Uije e R and B = Uij es® B, Define the reduced hypergraph A; on
the index set J3 with vertex classes P = R U B9 < PV for every ij € JéQ) and with
edges given by

E(A) = B(A[R U B]) ~ (E(R) U E(B)) .

Now we show that monochromatic cherries which are not y-bad have large codegree
(in A;). For indices i < j < k in J3, consider a cherry (R¥, R*) € RY x R* such

that (RY, R*) ¢ #4k(®, U, ~), then we have
INA(RY, ™)\ WIF| < [P,

Consequently, since ®, and ¥, are e-disjoint and using the A-density condition we

conclude that
[N, (R7, R*)| =N 4(RY, R™) 57"
>|Na(R7, R*)| — INA(RY, R*) \ 0| — |®1F A W]

> (3 +2) 1P = 2P~ [ 0

1 . ) ) 2 . )
_ ( beo v) (1] — |02 ~ w3¥]) (3 - v) DI* W

3
1 2 e . . ,
> = o~ 2 = Jk| _ |®dIk jk
(3+€ gl (3 8+7>1_€) (IP7*] = |@l" n BIF)))
1 ¢ ;
>4+ = Jk 3.3.44
(3+4) P, (3.3.44)

where the last inequality comes from our choice of v and from PJ* < Pk < (®iF ~ Wik).

We can deduce analogous inequalities for cherries (R*, R7*) ¢ 2UF(®,, U, v) and
for cherries (RY, R7%) ¢ €%(®,, ¥,,v). Similarly, we obtain those bounds for non-bad
cherries in B. As a result, the reduced hypergraph A; satisfies a minimum codegree

condition for all monochromatic pairs that are not y-bad cherries.
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Finally, similar as in [50, Lemma 4.2] we define the reduced hypergraph 4, by taking
preimages of a random homomorphism h € 2(A;,¢) (see Definition 3.2.6). We show
that there is a choice of h € (A4, ¢) for which the associated reduced hypergraph 4,

with index set J3 and vertex set V(Ap) = P satisfies the desired properties.

ijet{?
First, observe that for any choice of the map h, since A; < A does not support
a K 5(3), neither does Aj,. Moreover, the bicolouring V' (A;) = R U B of A; induces a

bicolouring ¢p,: V(A,) — {red, blue} of A;, defined by
on(PP) =red <= h(P?)eR and ,(PY) =blue «= h(P?)eB.

Therefore, it is left to prove that with positive probability we have

|
To(An 1) = 5 + % . (3.3.45)

For indices i < j < k in J3 and a cherry (P, Pi*) e Pi x P let X = X(PY, Pi¥)
be the event
en(PY) = on(P) and [N, (PY,PI)| < (5 + 5 ) IPE.
This is to say, X is the event in which the pair (P¥, PJ*) violates condition (3.3.45).
Note that for monochromatic pairs that are not y-bad, (3.3.44) tells us that the expected

size of their neighbourhood is large. More precisely, if
on(PI) = ou(P) and  (h(PY),h(PF)) ¢ F4(D., 0., 7)

then,

B (4, (P2, P > (545 ) 1P,

Therefore, by Chernoff’s inequality, we obtain

P (X | pu(PY) = on(PF) and (h(P), h(Pi)) ¢ %@, 0,,7)) < exp (—5%)

T 128

Consequently, in view of (3.3.43) we can bound the probability of X by
P(X) = [PV~ Pk > P (X |h(P7) = P and h(P*) = P*)
(Pid, Pik)eP}? x Pik

< p+exp (—5L).
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Analogous inequalities can be deduced for monochromatic cherries which are not in the
central bad cherries €% (®,, U, ) or the right bad cherries 29%(®,, ¥,, ).

Finally, since there are at most 3/2 (;) cherries to consider, we arrive at

1 19 t 2
P (Tz(AmSOh) <3 + 8) < 30 <3) (M + exp (‘é)) -

Owing to the hierarchy u « ¢! « ¢! this probability is smaller than 1, and therefore
there is a map h € (A4, ¢) for which A, has the desired properties. n

34 K 5<3) in bicoloured reduced hypergraphs

In this section we establish Proposition 3.1.6 and show that bicoloured reduced hy-
pergraphs with minimum monochromatic codegree density bigger than 1/3 support a
K.

In the proof we shall use the following type of neighbourhoods in reduced hyper-
graphs A. For two vertices P, P’ € V(A) and a subset U < V(A) we denote by
Ny (P, P") the neighbourhood restricted to U. Similarly, for two subsets U, U < V (A)
we write Ny (P) for the set of pairs in U x U’ that together with P form a hyperedge

in A, i.e.,

Ny(P,P') = {UeU: PP'U e E(A)}
and Ny (P) = {(U,U") eU x U': PUU' € E(A)}.

Proof of Proposition 3.1.6. Given € > 0 we fix a sufficiently small auxiliary constant &

with 0 < £ « € such that @ equals to some integer s. Moreover, let I be a sufficiently

large index set such that its cardinality satisfies the partition relation |I| — (5)?2

2, le.,
it is as least as large as the s-colour Ramsey number for the graph clique K5. Let A be
a bicolored reduced hypergraph with index set I and vertex classes P¥ for ij € I® and
let p: V(A) — {red, blue} satisfy (A, ¢) = 1/3 + .
For every ij € I set
Rasd
WP

RY = ¢ (red) N PY and
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and, analogously, we define 8% = ¢~ !(blue) n PY and §;; = |BY|/|PY]. In view
of (3.1.1), the assumption on 7»(A, ) implies that all g;;, 8;; € [1/3 +¢€,2/3 — ¢].
Splitting the interval [1/3 + €,2/3 — ¢] into s intervals of length 2¢, the size of I yields
a subset J < I of size 5 such that all 3;; with ij € J®? are in the same interval. Let 3

be the centre of this interval and set o = 1 — 3. We thus arrive at

Bij =B+¢& and oij=0%¢§
for all ij € J®. Without loss of generality we may assume 5 < g, which implies

2
<o<o+éE< - —¢. (3.4.1)

1
—t+e<f-E¢<p< 3

3

N | —

For ijk € J® the codegree condition translates for red vertices RY € ¥ and

R* e R to

Vo (R0 ) = (s, 1% > (<)

1 1 ks (L EY
#(59) () 1212 (5 + )1 00

where we used £ « ¢, 8 for the last inequality. Similarly, for blue vertices we have
| Ny (B, B*)| = (1 + 5) 7% | (3.4.3)
30 2
We may rename the indices in J and assume that J = Z/5Z. We shall show that
A restricted to J supports a K 5(3). For that we have to find ten vertices P¥ € P¥ one
for every ij € J® such that for all of the ten triples ijk € J©® the vertices P7, P,
and P/* span a hyperedge in the constituent A“Y*. For every i € J = Z/57 we will
select P! from B4+ and P¥*2 from R%*2. Since A contains no monochromatic
triples as hyperedges, it is easy to see that up to symmetry this choice for the colour
classes is unavoidable, as it corresponds to the unique 2-colouring of F(K5) with no
monochromatic triangle.
The rest of the proof is based on several averaging arguments relying on the minimum
degree condition. For generic vertices from R and B we shall use capital letters R and

B. In the process we will make appropriate choices to fix the ten special vertices that
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signify the supported K 5(,3). For those vertices we will use small letters » and b depending
on its colour.

We begin with the selection of 714 € |, Applying (3.4.3) to all pairs of vertices
BY e 981 and B* ¢ 8% implies that the total number of hyperedges in A5 crossing
the sets SR, B and B* is at least

1 €
|;BI5H%45| . <3Q + 2) |m14|_

Consequently, we can fix some vertex r'4 € R such that

1

g
—+ - ) [BY||BY]. 3.4.4
(5, +5) 215" (34.4)

\%

|N%15X%4s (T14)|

The following claim fixes the four vertices b2, b3* and '3, r?4.

Claim 1. There exist blue vertices b'? € B2, v** € B3* and red vertices r'3 e K13,
r?* e M such that

(i) b2rtr2t and r3r1p3t are hyperedges in A

(i) and | Negzs (b2, 713) A Nogas (124, 5%4)| > (1 - %) 19623,

Proof. Owing to (3.4.2) for every R'™ € R' we have d(R",r'*) > (35 + §)|B%| and,
hence, there is a vertex b3 € B34 such that
1
30

Similarly, we can fix a vertex 72* € %4 such that

N4, (5 4 5 ) 195 = L. (3.45)
| Nagss (2, 51)] > 319\%23| | (3.4.6)
Recalling that [R3| < (o + &)| P3| for every B'? € B'? and B?® € B?% we have
’lei& (B].Q’ B23) A NER13 (T14,b34)‘ 2 <; + 5) ‘7)13| + ’led (7,,14’ b34)‘ - |9%13‘
> Nos(r4 8] = (24 € 3 =€) PP

(3.4.5

= ) <1 — 30 + i) ’les(r147b34)‘ '



3.4. K& IN BICOLOURED REDUCED HYPERGRAPHS 65

Hence, the number of hyperedges crossing Nogi2 (114, 724), Npas (r24, b34), and Nygs (114, 534)
is at least
M7 [N 0,941 - (135 + ) ()
Consequently, there exist b'2 € Nagi2(r4, r24) and r'3 € Nyus(r14, b*4) such that
|N%23 (bu, 7”13) M N%QS (7’24, b34 ( - 36 + ) 24, b34)|
O ) 1w

1— ) 1823,

where the last inequality follows from the identity o =1 — . O

The next claim fixes the four vertices ', b*> and 725, 735, Together with Claim 1 this
fixes all vertices except b?* and both claims guarantee those seven hyperedges supporting

a K, é?’) that do not involve b%.

Claim 2. There exist blue vertices b'®> € B®, v¥ ¢ B and red vertices r*® € R,
35 ¢ R such that b12b¥0r2?> | p13p15p35  plaplopas p24p25085 - and b34356% are hyperedges

in A.
Proof. Consider the following sets of pairs in B x B4,

G1 = {(B",B%) e B x B%: Nyos (b'?, BY) N Nyos (r**, BY) # &}
and Gy = {(B"Y, B*) € B x B Nyss (b3, B%) 0 Nyss (b**, B¥) # @} .
Note that for every B'® € B! there is some R* € Nyes(b'?, B') and we have
34.2) 1
Moo 0, 12)| 57 .

Clearly, {B'} x Ny (r?*, R*) < G, and, hence, we establish

1
G| = %|‘B15||%45|. (3.4.7)
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A symmetric argument yields the same bound for G5. Combining (3.4.7) and the same
bound for Gy with (3.4.4) leads to

2 N 1
38 3o

Consequently, we can fix a pair (b'%,0%) € G; N Gy N Ngis a5 (r14). Moreover, having

3.4.1
Gl + 1l + W (1> ( 5+ g+ 5 ) 191 2 2]

fixed b'® and b* this defines a vertex r* € P2R?® from the non-empty intersection
considered in the definition of G;. Similarly, G5 leads to our choice of 35 € R,

Since (b'?,b%) € Ngis, s (r1?), the hyperedge 7140155% exists in A and the other
four hyperedges are a result of the definition of G; and G,. O]

As mentioned above, Claims 1 and 2 fix all vertices except v** € B2 and all

b23

hyperedges not involving 6*°. For the three remaining hyperedges it suffices to show

Noges (62, 71%) 1 N (1, 84) 0 N (r55,1%) # .
Claim 1 (77) and (3.4.2) imply

’Ng% (512, 7’13) M Ngzs (T24, b34) M N%23 (7“25, 7“35)‘
= ’N%% (blz, 7”13) M N%23(7’24, 534)’ + ’Ngzs (7”25, 7’35>’ - {%23’
(3.4.2) <1 1 1 €

=

Hence a choice for b* € N3 (b2, 1713) A Nagas (1?%,b34) N Nagas (12°, 73%) exists and, there-

fore, A restricted to J supports a K ég). O]

3.5 Concluding Remarks

We close with a few related open problems and possible future directions for research.

3.5.1 Turan problems for cliques in A-dense hypergraphs

In view of Theorems 2.1.2 and 2.1.3 for cliques K é?’) with ¢ < 16 vertices only the cases

¢ =9 and 10 are still unresolved and closing the bounds

1 2
5 < malKgY) < ma(K3Y) < 3
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would be interesting.
Determining the value 7, (K 53)) for large values of £ might be a challenging problem
and one may first focus on the asymptotic behaviour. For every ¢ > 3 Theorem 2.1.2

tells us
1

N log, (£)

For a lower bound we consider the following well known random construction.

m(KP) <1 . (3.5.1)

Example 3.5.1. Forr > 2 we consider random hypergraphs H, = (V, E,,) with the edge
set defined by the non-monochormatic triangles of a random r-colouring ¢: V3 — [r]
for a sufficiently large vertex set V. It is easy to check that for any fixed n > 0 with
high probability such hypergraphs H,, are (1, =%, A)-dense. On the other hand, if { is
at least as large as R(3;r), the r-colour Ramsey number for graph triangles, then every

such H, is K*-free.
Consequently, Example 3.5.1 yields
3) 1 .
a(K,”) = 1— =, whenever ¢ > R(3;r)
r

and using the simple upper bound R(3;7) < 37! we arrive at

_ log, log, ()
log, ()

for sufficiently large ¢. Comparing the bounds in (3.5.1) and (3.5.2) suggests the following

m(KP) =1 (3.5.2)

problem.

Problem 3.5.2. Determine the asymptotic behaviour of 1 — WA(KéB)).

3.5.2 Turan problems for hypergraphs with uniformly dense

links

As discussed in the introduction there is a small difference between Theorem 2.1.3 and

Corollary 2.1.5. Below we briefly elaborate on these differences.
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In this work we study A-dense hypergraphs, which are defined by the lower bound
condition (1.4.3) in Definition 1.4.3. Requiring in addition a matching upper bound,
i.e., replacing (1.4.3) by

lea(P,Q) — d|KA(P,Q)|| < n|V]?,

leads to the notion of (n,d,A)-quasirandom hypergraphs. Clearly, we can transfer the
definition of ma(F) in Definition 2.1.1 and define the Turdn-density 7} (F') by restricting
to A-quasirandom hypergraphs H

7_‘_/

A

(F') = sup{d € [0,1]: for every n > 0 and n € IN there exists an F-free,

(n,d, A)-quasirandom hypergraph with at least n vertices} .

By definition we have 7, (F') < ma(F) for every hypergraph F' and one may wonder if
this inequality is sometimes strict.
For Kég) it is easy to check that the lower bound construction in Example 2.1.4

yields K, EE?’)—free (n,1/3, A)-quasirandom hypergraphs for every fixed n > 0 and, hence,

On the other hand, the lower bound construction for Ké?’) from [55] is given by Exam-
ple 3.5.1 for = 2. In those hypergraphs H, we can take P and () to be the pairs in

colour 1 and 2 respectively and get

eA(P7 Q) = “CA(Pa Q)’?

i.e., they have relative density 1. Therefore, the hypergraphs H, are only (n,1/2,A)-
dense, but not (7, 1/2, A)-quasirandom. In fact, we are not aware of any matching
quasirandom lower bound construction for WA(Ké3)) and it seems possible that W;\(K((;S))

is strictly smaller than 7, (K, é?’)) suggesting the following general problem.!

1'We remark that for the concepts of .\-dense/quasirandom hypergraphs there is no difference for the
corresponding Turan-densities, as every ..-dense hypergraph contains large ~-quasirandom hypergraphs

of at least the same density.
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Problem 3.5.3. Characterise hypergraphs F with 7w, (F) < wa(F'), if there are any.

Recalling the discussion after Theorem 2.1.3 we note that A-dense and A-quasirandom
hypergraphs can be characterised through properties of their link graphs. As mentioned
in Section 2.1 a hypergraph in which all links are quasirandom is A-dense. More
generally, for every n > 0 there exists some ¢ > 0 such that for every d € [0, 1] and
every sufficiently large hypergraph H, in which all but at most g|V| links are (d, )-
quasirandom, is (7, d,A)-quasirandom. In fact, the opposite implication holds with
the quantification of ¢ and n exchanged, and therefore both properties are essentially
equivalent. Similarly, A-density is equivalent, in the same sense as above, to the property
of having bidense (see definition in (1.4.2)) links for almost all vertices.

Finally, one may also consider hypergraphs having just (g, d)-dense link graphs,
where the lower bound (1.4.2) is only applied to the special cases X = Y. On the
hypergraph level this would be equivalent to restricting to the cases P = @ in (1.4.3) in
Definition 1.4.3. Based on this concept we define

"

mh(F) = sup {d € [0,1]: for every n > 0 and n € N there exists an F-free hypergraph
H = (V,E) with |V| > n and all but at most o|V'| vertices

have (o, d)-dense link graphs}

for every hypergraph F'. Since having (g, d)-dense link graphs is a weaker property we

have the trivial inequality

for every hypergraph F' and one may ask for which hypergraphs F' this inequality is

strict.

3.5.3 Turan problems for A-dense hypergraphs with bounded

number of colours

In view of Proposition 3.1.6 one may consider a variant of 7,(F) restricted to large

hypergraphs H = (V, E) with “bounded colouring number” defined in the following
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sense: There is colouring of V® with a bounded number of colours such that for every
hyperedge e € F not all pairs in e® have same colour. Below we briefly discuss a
corresponding problem for reduced hypergraphs.

We say a reduced hypergraph A with index set I is r-coloured by ¢: V(A) — [r]
if there are no monochromatic hyperedges, i.e., [{¢(zy), ¢(z2),¢(yz)| = 2 for every
hyperedge zyz € E(A). Moreover, such a colouring is balanced if |P¥| € rIN for every

ij € I® and )
P

r

[P7 A o)| =
for every o € [r] and ij € I®. Given an (not necessarily balanced) r-colouring ¢ we

define the minimum codegree density

IN(PY, P*) 0 o7 (o)]

(3) pij - pij pik - pik
P o 1(0) cigk e IV, PY e PY P" e P o€ r],

¥ (A, @) = min{

and |{(P7), o(P™), o}| = 2}.

We remark that for a 2-colouring ¢ in the definition of d2(.A, ¢) we also consider pairs of
vertices (P¥, P%*) with different colours, which is one of the main differences compared to
the definition of 7 (A, ¢) in (3.1.2). In addition, we measure the codegree neighbourhood
with respect to the size of colour class p~!(p) in P* instead of all of P7*. For balanced

2-colourings ¢ we therefore have
2-7(A ) = 62(A ). (3.5.3)
For integers r > 1 and ¢ > 3 we consider the following Turédn-type parameter

mo (K, ég)) =sup {d € [0, 1]: for every ¢t € N there is a balanced r-coloured,

reduced hypergraph (A, ¢) with index set of size at least t

and 62(A, ¢) = d, which does not support Kég)}.

Remark 3.5.4. For the corresponding parameter 7, (K 153)) one considers K ,@—free
hypergraphs H = (V, E) for which there is a quasirandom r-colouring : V? — [r]

such that the pairs of every hyperedge receive at least two different colours. In this
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context, the A-density with respect ¢ is at least d, if for all colours gp, gg, ¢ € [r] with
l{op, 00, 0}| = 2 and all monochromatic sets of pairs P and () with colours gop and gg
at least, up to an additive error term of o(|V|*), a d proportion of the triangles zyz with
zy € P, zz € Q and ¢(yz) = p are hyperedges in H. Defining WA’T(KE?))) accordingly
and following the proof of [50, Theorem 3.3] then yields 7, , (K 53)) = ma (K f’) ) (see [9]
for details).

Given a balanced (r + 1)-coloured reduced hypergraph (A, ¢) we may simply remove
the vertices from o~!(r + 1) and we obtain a balanced r-coloured reduced hypergraph
with the same minimum codegree density. Consequently, for every r > 1 and ¢ > 3 we
have

T 3 T 3
md (KP) = md (KD,

AT

Note that if d5(.A, ¢) = d for some balanced r-colouring ¢, then A is (d — 1/r, A)-dense

and, consequently, with the notation following [50, Theorem 3.3] we have

lim w4 (KP) < (k).

r—500 A,

In the other direction, considering random balanced r-colourings of reduced A-dense
hypergraphs A that do not support K ég) with monochromatic hyperedges removed,

establishes the opposite inequality and we arrive at

lim w4 (KP) = (k).

r—5>00 AT A

In view of Remark 3.5.4 and [50, Theorem 3.3] this shows

lim ma, (KP) = m(KP) (3.5.4)

r—>00

This way one may consider 7, , (K, 553)) as the multipartite version of m, (K ég)) in the
similar spirit as the multipartite extremal problems for graphs and (3.5.4) can be
considered as a variant of [12, Theorem 1] in this context.

For small values of » we note that

7T,W(Ké3)) =1, whenever ¢ > R(3;r).
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In fact, this easily follows by considering the random hypergraphs H, from Example 3.5.1.
For r = 1 and 2 we have 7TA,1<K§3)) = 1 for every ¢ > 3 and 7TA72(Ké3)) = 1 for every

¢ = 6. Moreover, one can show that
(see [9] for details) and Proposition 3.1.6 combined with (3.5.3) and Remark 3.5.4 yields

man(K) = 1 (K < (3.5.5)

2
3
We note that owing to more restrictive definition of d5(A, @) compared to 75(.A, ), the
upper bound of (3.5.5) can be proved more easily than the proof of Proposition 3.1.6 by
simply exploiting that every pair of vertices in K §3) has codegree three. A slightly more
refined argument allows us to improve this upper bound from 2/3 to the reciprocal of

the golden ratio. In the other direction we have a lower bound construction establishing

< maa(KP) < 0.618

DO | —

(see [9]), which leaves the following problem open.

Problem 3.5.5. Determine 7TA72(K553)).



Chapter 4

Hamilton cycles in uniformly dense

hypergraphs

In this chapter we present the proof of Theorem 2.2.2, which is based in the Absorption
Method. In the following section we introduce the method and its three main parts:
the Almost Covering Lemma (see Lemma 4.1.2), the Connecting Lemma (see Lemma
4.1.4), and the Absorbing Path Lemma (see Lemma 4.1.3). The proofs of those lemmata
are given in Sections 4.3, 4.4, and 4.5. In Section 4.2 we collect some preliminary
observations needed for the main proof. In Section 4.6 we discuss the necessary changes
to the main proof in order to prove Theorem 2.2.3. We close with a few concluding
remarks in Section 4.7.

The work corresponding to this chapter was done in collaboration with Aradjo and

Schacht [5].

4.1 Absorption Method

In [58], Rodl, Ruciniski and Szemerédi introduced the Absorption Method, which turned
out to be a very useful approach for embedding spanning cycles in hypergraphs. This
method reduces the problem to finding an almost spanning cycle with a small special

path in it, called the absorbing path. The absorbing path A can absorb any small set
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of vertices into a new bigger path, with the same ends as A, completing the almost
spanning cycle into a Hamilton cycle.

The almost spanning cycle will be composed from smaller paths, which will be
connected to longer paths. For that it would be useful if any given two pairs of
vertices (z,y) and (w, z), being the ends of such smaller paths, can be connected by a
short path. However, in view of the assumptions of Theorem 2.2.2, it is easy to see that
not any pair of pairs can be connected in this way (in particular, there could be pairs
with codegree zero). For that we introduce the following notion of connectable pairs and
we will show that for those pairs there actually exist connecting paths between them

(see Lemma 4.1.4 below).

Definition 4.1.1. Let H = (V, E) be a hypergraph. We say that (z,y) € V x V is
[B-connectable in H if the set

Zyy ={2€V:ayze E(H) and d(yz) = 8|V},

has size at least 5|V|. Moreover, we say that an (a, b)-(c, d)-path is 3-connectable if the

pairs (b,a) and (¢, d) are S-connectable.

Observe that the starting pair of the path is asked to be S-connectable in the inverse
direction that as it appears in the path.

The proof of Theorem 2.2.2 splits into three lemmata. Let H be a (p,1/4+¢,&)-dense
hypergraph on n vertices, with 1/n « ¢ « €. First we prove that such hypergraphs can
be almost covered by a collection of ‘few’ paths. We remark that this is even true under
the weaker assumption of non-vanishing ..-density. A straight forward proof is presented

in Section 4.3.

Lemma 4.1.2 (Almost Covering Lemma). For all d,y € (0,1] there exist o,5 > 0,
and ng such that in every (o, d,s)-dense hypergraph H on n = ng vertices there exists a
collection of at most 1/ disjoint 3-connectable paths, that cover all but at most v*n

vertices of H.

Next we discuss how to find an absorbing path, which contains a collection of several

smaller structures, called absorbers. For v € V, we call A, € H an absorber for v if
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both A, and A, U {v} span paths with same ends (we say that A, absorbs v). The main
difficulty is to define the absorbers in such a way that we can prove that every vertex is
contained in many of them. In Section 4.5 we see that the absorbers considered here
are in fact more complicated and absorb sets of three vertices instead of one. This leads
to a divisibility issue which we consider separately in Lemma 4.5.4. Going further, we
can find a relatively small collection of paths which can absorb any sufficiently small
given set of vertices. After finding this collection we connect them together to form one

path with the absorption property described in the following lemma.

Lemma 4.1.3 (Absorbing Path Lemma). For every e > 0 there exist o, 8,7 > 0 and ng
such that the following is true for every positive v < ' and every (o,1/4 + £, &)-dense
hypergraph H = (V, E) on n = ng vertices with 6,(H) > en?.

For every R < V, with |R| < 2v?n, there exists a (B-connectable path A with
V(A) <V N R and |V (A)| < yn, such that for every U < V(H) ~ A with |U| < 3v*n,

the hypergraph H[V (A) U U] has a Hamilton path with the same ends as A.

The set of vertices R in Lemma 4.1.3 will act as a reservoir of vertices that will be
used later for connecting the paths mentioned in Lemmata 4.1.2 and 4.1.3, without
interfering with the vertices already used by those paths.

The next lemma justifies Definition 4.1.1 and shows that between every two [-
connectable pairs there exist several short paths connecting them. As it was said before,
this is used for connecting the absorbers in the proof of Lemma 4.1.3. Moreover, observe
that all paths mentioned in Lemma 4.1.2 and 4.1.3 are S-connectable. This allows us to
connect them together into an almost spanning cycle and the absorbing path in this

cycle will absorb all the remaining vertices to complete the Hamilton cycle.

Lemma 4.1.4 (Connecting Lemma). For every e, > 0 there exist o, > 0 and ny
such that for every (o,1/4 + €, &)-dense hypergraph H on n = ng vertices the following
holds.

For every pair of disjoint ordered 3-connectable pairs of vertices (x,y), (w,z) € VxV
there exists an integer ¢ < 15 such that the number of (x,y)-(z,w)-paths with ¢ inner

vertices is at least an’.
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In view of the construction given in Example 2.2.1, one can see that the 1/4 in
the &-density assumption in Lemma 4.1.4 cannot be dropped. In that example, there
are two classes of pairs that cannot be connected by a path (namely the pairs in G and
in (), even though they are 3-connectable. Hence, &-density of at least 1/4 is required
for Lemma 4.1.4.

Also Lemma 4.1.3 requires &-density bigger than 1/4. In the proof of Lemma 4.1.3
this assumption will be crucial for connecting the so-called absorbers to a path, which
makes use of Lemma 4.1.4. Moreover, the type of absorbers used here, leads to a
‘divisibility issue’. This is addressed in Lemma 4.5.4 for which we also employ the same
density assumption.

We now deduce Theorem 2.2.2 from Lemmata 4.1.2—4.1.4.

Proof of Theorem 2.2.2. Given € > 0 we apply Lemma 4.1.3 and obtain oy, 5, and v’
Lemma 4.1.2 applied with d = 1/4 and v = min{y’,¢/2} yields g and 5. Applying
Lemma 4.1.4 with £ and

B = émiﬂ{ﬁh 52}7

reveals v and p3. Finally we set

o = min{o1, 02/8, 03},

and let n be sufficiently large. Having fixed all constants, let H be a (g, 1/4+ ¢, 2)-dense
hypergraph on n vertices.

We consider a random set R € V, in which each vertex is present independently
with probability 72. For every positive integer £ < 15 consider two pairs (z,¥), (w, 2) €
V x V between which there are at least an’ paths with ¢ inner vertices. Let Y =
Y, (z,y), (z,w)) count the number of such paths whose inner vertices are contained
in R. We point out that Y is a function determined by n independent random variables,

{—1

each of which can influence the value of Y by at most n~". Therefore a standard

application of Azuma’s inequality (see [33, Section 2.4]) implies that

PlY < ﬂ ~an’ | = exp(—Q(n)) < L
2 2 15n%’

(4.1.1)
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for any fixed ¢, (z,y), and (w, z). Moreover, by Markov’s inequality we have that

P(|R| = 2+°n) < ; (4.1.2)

Therefore there exists a realisation of R, which from now on will take over the
name R, that is not in the event considered in (4.1.2) and in any of the events considered
in (4.1.1) (all 4-tuples of vertices and values of £). Since 7' < v, 0 < g1, and |R| < 2v*n,
Lemma 4.1.3 ensures that we can find a ;-connectable absorbing path A of size smaller
than yn and which does not intersect R.

Let V' = V N (V(A) u R). Since |V(A) u R| < 3yn < n/2, the induced hyper-
graph H[V'] is (80,1/4 + €,&)-dense. In particular, H[V'] is (89, 1/4 + £,.~)-dense and
since 8p < 0o, Lemma 4.1.2 implies that there exists a collection of at most 1/, paths
with f(;-connectable ends in H[V’] that cover all but at most v?n vertices.

Set t = [1/8; + 1| and let (P;);cy) be any cyclic ordering of such paths together with
the absorbing path. Assume that we were able to find connections in R between the
paths Py, P, ..., P;, using inner vertices from R only. Moreover, we make sure that
each connection is made with at most 15 inner vertices. Let C; be the path that begins

with P, and ends in P; using those connections. Therefore
V(C;) nR| <t-15=o0(n).

Now, we want to show that we can connect P; with P, to construct C;,;. Observe
that all the paths from (P);cy are S-connectable. This follows from the choice 8 < 3
for the absorbing path A. From the paths given by Lemma 4.1.2 we know that they
are fa-connectable in H[V']. Owing to 8 < (35/2 and |V’| = n/2 the [-connectibility
follows.

Let (z;,y;) be the ending pair of P; and (z;, w;) the starting pair P,,;. Lemma 4.1.4
implies that, for some ¢; < 15, there exist at least an® (z;,v;)-(2;, w;)-paths, each with ¢;
inner vertices. By the choice of R, the number of (z;, y;)-(2;, w;) paths of length ¢; + 2
whose inner vertices lie in R is at least v2an’ /2. Since at most |V (C;) n R|n%~t = o(n%)
such paths contain a vertex from Cj, for sufficiently large n large enough we can find

one path disjoint from Cj.
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Finally, consider C} the final cycle obtained in this process, by connecting P, to P;.
As C} includes all the paths in the almost covering the number of vertices not covered
by Cy is at most
VN V(C)| < |R| ++°n < 3v°n.

This finishes the proof, since A can absorb these vertices into a new path with the same

endings. O]

4.2 Preliminary results and basic definitions

In this section we collect preliminary results and introduce necessary notation. Let n,d €
[0,1] and let G = (V} w V4, E) be a bipartite graph, we say that G is (1, d)-regular if

for every two sets of vertices X < V; and Y < V5 we have
e(X,Y) — dIX|[Y]] < n|VA[|Va] .

It is easy to see that every dense graph contains a linear sized bipartite regular
subgraph, with almost the same density. That can be proved by a simple application
of Szemerédi’s Regularity Lemma or alternatively by a more direct density increment

argument (see [43]).

Lemma 4.2.1. For alln, d > 0 there exists some p > 0 such that for every n-vertex
graph G with e(G) = dn?/2, there are disjoint sets Vi, Vo € V(Q), with |Vi| = |Va| = [un]
such that the bipartite induced subgraph G[Vy,Va] is (n,d’)-reqular for some d' > d. [

For a hypergraph H = (V, E) recall its shadow 0H is the subset of V) of those
pairs that are contained in some edge of H. For disjoint sets of vertices V;, V5, € V with
a slight abuse of notation we write dH[V7, V5] for the set of ordered pairs in V; x V5

that correspond to unordered pairs in the shadow, i.e.,
aH[Vvla‘/Z] = {(U17U2) € ‘/1 X Vv23 {Ul,’ljg} S 8H} .

Given o,d > 0, a set of ordered pairs of vertices P € V2, and a subset X < V we say

that H is (o,d,&)-dense over (X, P) if for every subset of vertices X’ € X and every
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subset of pairs P’ < P we have
e(X', P') = d|X'||P'| — o| X[|P|,

which is a version of &-density restricted to P and X. For the next lemma we also need
the following concept of restricted vertex neighbourhood. Given a vertex v € V and a

set of ordered pairs P € V? we define its neighbourhood restricted to P by
N(v,P) ={(z,y) € P:vzy € E}.

Lemma 4.2.2. Let H = (V, E) be a hypergraph, X < V be a set of vertices, and
Pc V2 If H is (0,d,~)-dense over (X, P) for some constants o, d > 0, then

o e X: IN(@, P)| < (d - vO)IPI}| < valX].

Proof. Let X' < X be the vertices with less than (d — ,/0)|P| neighbour pairs in P.
The definition of X’ and the (o, d, &)-density of H over (X, P) provide the following
upper and lower bounds on e(X’, P)

d|X"|P| = ol X||P| < e(X", P) < (d — /o) |P| - | X'|
and the desired bound on |X’| follows. O

The following result asserts that every hypergraph contains a subhypergraph with
almost the same density and such that every pair of vertices with positive codegree has
at least Q(|V|) neighbours. This fact can be proved by removing iteratively the edges

which contain a pair with small codegree and we omit the details.

Lemma 4.2.3. For every f > 0 and every n-vertex hypergraph H there is a hyper-
graph Hs < H on the same vertex set with e(Hg) > e(H) — Bn® such that for every
pair of vertices x, y either dy,(z,y) = 0 or du,(v,y) = pn. In particular, if we

have dy,(v,y) > 0, then (x,y) is 3-connectable in H. O

Let F' and I’ be two hypergraphs. We say that F' contains a homomorphic copy
of F' if there is a function ¢ : V(F') — V(F) such that for every edge zyz € E(F’) we
have that o(z)o(y)e(z) € E(F). We denote this fact as F/ 22 F and we recall the

following well known consequence from Erdés [18].
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Lemma 4.2.4. For every £ > 0 and k, ¢ € N there is ¢ > 0 and ng € N such that the
following holds. Let F' and F' be hypergraphs such that |V (F)| = k and |V(F')| = ¢
and F' 222 F. If a hypergraph H on n > ng vertices contains at least En® copies of F,

then H contains (n’ copies of F'. [

We denote the hypergraph with four vertices and three edges by K. f’)_. We refer to
the vertex of degree three as the apez. Glebov, Kral, and Volec [25] showed that ..-density
bigger than 1/4 yields the existence of a, in fact of many copies of, K ig)_.

Theorem 4.2.5 (Glebov, Kral & Volec, 2016). For every € > 0 there exist o and £ > 0
such that every sufficiently large (0,1/4 + ¢€,..)-dense n-vertex hypergraph contains én’
copies of Kf’)*. ]

4.3 Almost covering

In this section we present a very straightforward proof of Lemma 4.1.2.

Proof of Lemma 4.1.2. Given d,y > 0 take 8 and ¢ such that
d~®
P=e="g
We show that a maximal collection of S-connectable paths, each of which having at
least 3n vertices, must cover all but at most v?n vertices. We do that by showing that
every set X < V(H) with at least v*n vertices contains a 3-connectable path of size 3n.

Indeed, the (p, d,..)-density implies that in such a set X, we have

dI X3
G(X)Z |6| —QTLS,

where we discounted the ordering of triples. In H[X] we remove, iteratively, every edge
that contains an (unordered) pair of vertices with codegree smaller than fn. In this

way, we remove at most An? edges and get a hypergraph with at least

d|X|?
e(X) — pn® = |6| — on® — Bn?

d6
= (e
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edges. Owing to the choice of 5 and p this hypergraph is not empty. Now a path
with n vertices can be found in a greedy manner. Moreover, if (x,y) is a pair contained

in such path, then we have that the set
Zyy ={2€V:zyze E and d(yz) = fn}

has at least Sn vertices. O

4.4 Connecting Lemma

We dedicate this section to prove the Connecting Lemma (Lemma 4.1.4). The proof splits
into several lemmata. The Connecting Lemma asserts that every ordered connectable pair
can be connected to any other ordered connectable pair. In a first step in Lemmata 4.4.1
and 4.4.3 we show that there are many connections between large sets of unordered
pairs (without specifying the order of the ending pairs). In fact, these connection can
be achieved by paths consisting of only two edges, which we refer to as lemma:cherries
(see Definition 4.4.2 below). On the price of extending the length by at most two, in
Lemma 4.4.4 we establish that one can even fix the order of one of the sets of given
pairs. On the other hand, this is complemented by Lemma 4.4.7 showing that there are
many pairs of unordered pairs that can be connected in any orientation. We call such
pairs of pairs turnable (see Definition 4.4.5 below).

For the proof of the Connecting Lemma we can now start with any given connectable
pair (x,y) and move to its second neighbourhood, which is a large set of ordered pairs.
From that set we shall reach many turnable pairs. Similarly, from any given ending
pair (z,w) we also reach many turnable pairs. These paths give the turnable pairs an
orientation, but since the turnable pairs can be connected in any orientation, we find
the desired (z,y)-(z,w)-paths. The detailed presentation of this argument renders the

proof of the Connecting Lemma, which we defer to the end of this section.

Lemma 4.4.1. For all &, € € (0,1] there exist n, 0 > 0 such that the following holds
for sufficiently large m.
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Suppose Vi, Vo, V3 are pairwise disjoint sets of size m and G = (V1 w Va, P) is an
(n, &)-regular bipartite graph. If H = (Vi w Vo w Vs, E) is a 3-partite hypergraph that
is (0,1/4 + €,&)-dense over (V3, P), then

[OH[Vi, V]| + [0H[Va, V3]| = (1 + ) m?.

Proof. Given & and ¢ we set

€\2 &e
=(— d < >,
e (21) e TS5

Let G = (Vy w Vs, P)and H = (V; w Vo w V3, E) be given. Since G is bipartite we may
view P as a subset of V; x V5 and, hence, as a set of ordered pairs. Lemma 4.2.2 applied
to V3 and P ensures for the hypergraph H that there are at most ,/om vertices in V3
with less than (1/4 + € — ,/0)|P| neighbour pairs in P. We remove such vertices from V3
and let V3 be the resulting subset of V.

Consider a fixed vertex vz € V3. By the definition of VJ, we have

1 1 15
N (v, P)| = (4 te— @) 1P| > <4 + 166) P, (4.4.1)

For i = 1, 2 we consider the neighbourhood of v3 in dH[V;, V3] defined by
Ni(vs) = {Ui € Vi (v, v3) € 6H[Vi,1/},]}

and note that
’N(Ug, p)| < eg (N1<U3), NQ(Ug)) .
Consequently, the (7, )-regularity of G yields

[N (vs, P)| < €|N1(vs)]| Na(v3)] + nm? . (4.4.2)

Combining (4.4.1) and (4.4.2) with the lower bound on |P| provided by the regularity

of G we obtain
15 , 15 , , N
48| N1 (v3)||Na(v3)| = <1+ZE>|P| dnm ><1+ZE> (E—m)m” —4nm* = <1+§e>§m )

where the last inequality makes use of the choice of 7. Hence, the AM-GM inequality

tells us
7
(IV: (v3)] + [ Na(vs)])” = 4 | Ny (vs)|| No(vs)| = (1 + §e>m2
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and, consequently, we arrive at

7 \12 11
N1 (03)] + | No(v3)| = (1 + 56) m> (1 + Ee)m.

Finally, summing for all vertices v3 € V5 we obtain the desired lower bound

|OH[V1, V3| + |0H[Va, V3] = D7 (IN1(vs)] + | Na(v3)))

’U3€V3/

where we used the choice of o for last inequality. n

Paths of length two will play a special role in our proof and the following notation

will be useful.

Definition 4.4.2. Given a hypergraph H = (V, E) and disjoint sets p, ¢ € V®, we say
that the edges zyz, yzw € F form a (p, q)-cherry, if p = {z,y} and ¢ = {z, w}.

Moreover, given two sets P, Q € V® we say that edges e, ¢/ € E form a (P,Q)-
cherry, if they form a (p, ¢)-cherry for some disjoint sets p € P and q € Q.

The next lemma asserts that in &-dense hypergraphs with density larger than 1/4

large sets of pairs induce many cherries.

Lemma 4.4.3. For every &, € € (0, 1] there exist o, v > 0 such that the following holds
for every sufficiently large (o,1/4 + €, &)-dense hypergraph H = (V, E). For all sets P,

Q < V@ of size at least 3¢n? there are at least vn* (P, Q)-cherries.

Proof. Given £ and € we apply Lemma 4.4.1 and we obtain n and ¢’. Without loss of
generality we may assume that n < £/2. Moreover, Lemma 4.2.1 applied with 1 and
d = ¢ yields some p > 0 and we fix the desired constants ¢ and v by

1

= 250@ and v =90"n'e.

0
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Let H = (V,E) and P, Q < V® satisfy the assumptions of the lemma.

We consider a random balanced bipartition of AvB of V and let Py = {pe P: p < A}
and Qp = {g € Q: ¢ < B}. A standard application of Chebyshev’s inequality shows
that there exists a balanced partition of V such that |Pa|, |Qg| = &n?/2. We apply
Lemma 4.2.1 separately to the graphs (A, P4) and (B, Qp) and obtain four pairwise
disjoint vertex sets Aj, Ay € A and By, By € B each of size m > un/2 such that the
induced bipartite graphs P[A;, A;] and Q[Bj, Bz are both n-regular with density at
least €.

Next for i = 1, 2 we consider the 3-partite subhypergraph H|[B;, P[A1, As]] on
Ay w Ay v B; with the edge set

{{z,y,2} € V®:zeB;and {y,z} € E(P[Ay, As])}

Lemma 4.2.3 applied to H[B;, P[A;, As]] with 8 = p yields a subhypergraph HZ;P . We
want to prove that H5" is (¢/,1/4 + ¢, &)-dense over (B;, P[A1, As]). Since we removed
at most o(3m)? edges from H[B;, P[A;, As]] the error term in the &-density condition

of Hy" can add up to at most
on® + 0(3m)® < 28on® < o' - |By| - e(P[A1, As)) .

This implies that H}"” is (¢/,1/4 + €, &)-dense over (B;, P[Ay, Ay]). Similarly, for i = 1,
2 we also define the 3-partite hypergraph Hé’Q with vertex partition B; w By w A; and
note that it is (o', 1/4 + ¢, &)-dense over (A4;, Q[B1, Bs)).

Applying Lemma 4.4.1 to the bipartite graph P[A;, A2] and the 3-partite hypergraph
H ;’P implies

|8H;’P[A1, Bl” + !aHgl’P[Am Bl]! > (14 ¢)m?

Moreover, three further applications of Lemma 4.4.1 to P[Ay, Ao] with H}" and to
Q[B1, B;] with H}? and with H2? show that
2

(1omz" 1Ay, Bil|+[oH" (4, B| )+ (|0HEC1By, Ail|+[0HEC[By, A)]) 2 4(1+2)m?,

2
i=1 i=1
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In particular, rearranging the terms shows that
2 2 ' .

32 (lomi1As B))| + |0Hi B, A]) = 4(1 + 2)m?

i=1j=1
and, hence, there are some indices ig, jo € {1, 2} such that

|0HI"[ Ay, Bjl| + [0H29[Bj,, Aig]| = (1 4 £)m?.

Consequently, the set of ordered pairs

R={{y.z} e V®: (y,2) e aHI"[A;,, B;,] and (z,y) € OH[B;,, A;, ]}

Jo>

has size at least em?.

Finally, we note that every {y, z} € R has positive degree in both hypergraphs H gO’P
and H ;‘”Q and, hence, these degrees are at least 3om. Therefore, there are at least 90*m?
distinct vertices x € As_;, and w € Bs_j, such that zyz and yzw form a (P, Q)-cherry.

Summing over all pairs in R yields at least
em? - 90°m?* = vn?
(P, @Q)-cherries in H. ]

The following corollary allows us to find many connections between large sets of

unordered pairs and large sets of ordered pairs.

Lemma 4.4.4. For every &, € € (0, 1] there exist ¢, 0 > 0 such that the following holds
for every sufficiently large (0,1/4 + £, &)-dense n-vertex hypergraph H = (V, E).

Let P <V xV be a set of ordered pairs and let Q < V@ be a set of unordered pairs,
each of size at least En?. There is an £ € {2,4} such that there are at least (n**? paths
of length ¢ which start with an ordered pair from P and ends in (some ordering of) with

a pair from Q.

Proof. Given ¢ and e we apply Lemma 4.4.3 with £/6 and ¢ and obtain ¢ and v.
Lemma 4.2.4 applied for v/2; 4, and 6 (in place of £, k, and ¢ in Lemma 4.2.4) yields
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the promised constant ¢ > 0. With out loss of generality we may assume that ¢ < v/2
and let n be sufficiently large.

For a given set of ordered pairs P € V x V let P be the set of unordered pairs obtained
from P by ignoring the order. In particular, |P| > |P|/2 > £n?/2 and Lemma 4.4.3
asserts that there are vn? different (P, Q)-cherries. That is to say there are vn? paths
on four vertices of the form zyzw where {z,y} € P and {z,w} € Q.

If for (n* of those cherries we have that (z,y) € P, then the lemma follows with
¢ = 2. Hence, we may assume that for at least (v — ¢)n* = vn?/2 of those paths we
(only) have (y,z) € P. Consequently, Lemma 4.2.4 yields (n® blowups of these two edge
paths where the vertices y and z are doubled, i.e., H contains at least (n® 6-tuples of

distinct vertices (z,y1, Yo, 21, 22, w) such that for every i, j € {1,2} we have
(yi,x)e P, {z;,w}e@, and zyz;w isa path with two edges.

In particular, every such 6-tuple induces a path y;x2z1yswzs which starts with an ordered
pair from P and ends in an unordered pair from () and this concludes the proof of the

lemma. O

For establishing the Connecting Lemma (Lemma 4.1.4) we shall extend Lemma 4.4.4
in such a way that we can connect large sets P and (), where both of them consist of
ordered pairs. For that certain blowups of K f’)fs will be useful and we introduce the

following notation.

Definition 4.4.5. We say a 7-tuple of distinct vertices (ay, as, as, by, by, c,d) € V7 is a
turn in a hypergraph H = (V, E) if for every i € {1, 2,3} and j € {1, 2} the set {a;, b;, ¢, d}
spans a copy of a Kf’)_ in H with a; being the apex.

Combining Theorem 4.2.5 and Lemma 4.2.4 shows that the hypergraphs with ..
density bigger than 1/4 contain many turns. Moreover, we observe that in a turn 7" the
paths

alblcagbg s alblcagdb2a2 5 blalcdagbg ) and blaleQCLQ (443)

with at most 3 inner vertices connect the pairs {ay, b} and {as, bo} in all four possible

orientations. This motivates the following definition.
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Definition 4.4.6. For a hypergraph H = (V| E) we say two disjoint unordered pairs g,
q' € V@ are (0, L)-turnable, if for every ordering (g1, ¢2) of ¢ and every ordering (¢}, ¢4) of
¢’ there exists some positive integer ¢ < L such that the number of (¢, ¢2)-(q}, ¢5)-paths

in H with ¢ inner vertices is at least 9|V |*.

It follows from (4.4.3) that pairs {a1, b} and {as, by} that are contained in Q(|V]3)
turns are (1, 3)-turnable for some sufficiently small ¢ > 0. The following variation of

this fact, will be useful in the proof of the Connecting Lemma.

Lemma 4.4.7. For every € € (0,1] there exist ¥, o > 0 such that the following holds
for every sufficiently large (0,1/4 + £,)-dense hypergraph H = (V, E).

There exists a set Q < V) of size at least V|V|? such that for every q € Q there
exists a set Q'(q) < V? of size at least V|V |* such that q and ¢ are (9,3)-turnable for
every ¢' € Q'(q).

Proof. Let H = (V, E) be a sufficiently large (o,1/4 + ¢,..)-dense hypergraph on n
vertices. A combined application of Theorem 4.2.5 and Lemma 4.2.4 yields a set 7 < V7
of at least (n” turns (ay, as, as, by, b, c,d) in H for some sufficiently small ¢ = ((g) > 0

and we shall deduce the conclusion of the lemma for

For every pair (a,b) € V x V and i € {1,2} let T;(a,b) be the set of such turns where

a and b play the roles of a; and b;, respectively. We consider the set
T = {(a,a’,ag,b, b,e,d) e T:|Ti(a,b) nTa(a',b)| = Cn3/2}

and note that |7*| = (n"/2. By a standard averaging argument there are at least (n?/4

pairs (a,b) € V x V for which we have

n5

I Ti(a,b) T >i

and we denote the set of these ordered pairs by R. Note that for every pair (a,b) € R
there is a set R'(a,b) €V x V with

|R'(a,b)| = inz such that |Ti(a,b) N To(a’,0')| = 2n° (4.4.4)

DO [y



88 CHAPTER 4. HAMILTON CYCLES IN &-DENSE HYPERGRAPHS

for every (a’,0') € R'(a,b). Finally, let Q) be the set of unordered pairs derived from R,
ie.,

Q={{0,} € V?: (q1, ) € R}

and for every ¢ = {qi, ¢2} set

Q(q) = {{a1.¢5} e VP (41, ¢5) € R (q1.q2) v R/ (g2, 1)} -

Clearly,

Q] = ’2R| > §n2 =9n* and Q'(q) (4§4) gnQ = n?
and the required number of paths for every orientation of ¢ € @ and ¢’ € Q'(q) follows
from (4.4.3) and (4.4.4). O

Roughly speaking, the proof of Lemma 4.1.4 follows from Lemmata 4.4.4 and 4.4.7.
The definition of connectable pairs allows us to move from the given ordered pairs
(z,y) and (w, z), that need to be connected, to large sets of ordered pairs P, P’, by
considering their second neighbourhoods. Moreover, Lemma, 4.4.7 yields sets Q < V()
and Q'(¢q) < V® for every q € Q of turnable pairs. Applying Lemma 4.4.4 first to P
and @ and then to P’ and @'(q) for all g € @ leads to the desired (z,y)-(z, w)-paths.

Proof of Lemma 4.1.4. For given €, § > 0 let ¥ and o, be the constants provided by
Lemma 4.4.7. We set

¢ = min{v, 5%}
and Lemma 4.4.4 applied with £ and ¢ yields ¢ and p,. Finally, we define the promised
constants
29
0 = min{oy, 02} and a = C13

Let H = (V, E) be a sufficiently large (o, 1/4 + ¢, )-dense hypergraph on n ver-
tices and let (z,y), (w,z) be two disjoint S-connectable pairs. Consider the second

neighbourhoods of these pairs defined by

P={(u,v) eV xV:zyu, ywwe E} and P ={(u,v)eV xV:wzu, 2u'v' € E}.
(4.4.5)
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Owing to the 3-connectability, both sets P and P’ have size at least 3°n? > £n?.
Next, let Q@ < V® and Q'(q) < V® for every ¢ € Q be the sets of size at least
2 > ¢n? provided by Lemma 4.4.7. For every q € Q we denote by Py(q) (resp.

Ps(q)) the number of (u,v)-(q1, ¢2)-paths having 4 (resp. 6) vertices and (u,v) € P and

{q1,q2} = q. Moreover, we normalise these numbers by

L@) P6(Q>}

nt 7 nb

np(q) = max {

and note that Lemma 4.4.4 applied to P and () ensures
Z np(q) = C. (4.4.6)
q€Q
Analogously, we define P{(¢'), FP5(q), and np:(q') for every ¢’ € (o @'(¢) and Lemma 4.4.4
applied to P’ and Q)’(q) implies
>, neld) = ¢ (4.4.7)
7'eQ’(q)
for every g € Q). Recall, that the paths accounted for in (4.4.6) and (4.4.7) induce an
ordering of the vertices in ¢ and in ¢’. However, by Lemma 4.4.7 the pairs ¢ and ¢’
are (9, 3)-turnable for every g € @ and ¢’ € Q'(¢q), which means that these pairs can be

connected for any possible orientation. Consequently, there is some ¢ with
5 < ¢ < max{4,6} + max{1,2,3} + max{4,6} = 15
such that the number of (x,y)-(z, w)-walks in H is at least

(4.4.7) (4.4.6) (29 '
1 ZUP -0 Z ne(d) = D ZUP V- = =
qeQ q'€Q’(q) q€Q
At most O(n‘~1) of these walks might not be a path and, hence, the lemma follows for

sufficiently large n. m

4.5 Absorbing path

We dedicate this section to the proof of Lemma 4.1.3. Similarly as in [52] the absorbers

we consider here have two parts. Moreover, we use an idea of Polcyn and Reiher [45],
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which reduces the abundant existence of absorbers to a degenerate Turdn problem for
the price that we can only absorb exactly three vertices at each time.

Consider the complete 3-partite hypergraph K§?§73 with parts A; = {z;,vy;, 2z}, for
every ¢ = 1,2,3. Note that this hypergraph contains the paths

T1X2X3Y1Y2Y3212223 4 (4-5-1)

and

T1X2T3212273 - (452)

This means that from every copy of K. égﬁ, ordered as a path like in (4.5.1), we may
remove the three inner vertices 1, y2, 3 to obtain a path with the same ends. Since we
only consider dense hypergraphs, we can guarantee that many copies K?E?3)73 exist. In
other words, in such a situation the path x;z923212923 could absorb the three vertices
Y1, Yo, and y3. However, not every triple might be contained in a K. §3§3 and this will be
addressed by the second part of the absorbers used here.

Suppose we want to absorb some arbitrary vertices vy, vo, and vs. The idea, similarly
as in [52], is to exchange v; with y; contained in some K§33)3 Suppose we have found
a K. 3533)3 as described above, but additionally we find a path (as a graph) on four vertices
with edges from Ny (v;) N Ny (y;) disjointly for each i = 1,2,3. We argue that this whole
structure can absorb vy, v9, v3. Indeed, if a;b;c;d; is a path on four vertices with edges
from Ng(v;) n Ng(y;), then both P(v;) = a;bv;c;d; and P(y;) = a;by;c;d; are paths
in the hypergraph and with the same endings. Moreover, the minimum degree and
the uniform density imply that for each vertex v € V', most vertices of V have Q(n?)
common neighbours with v, which is enough to find such paths.

Therefore, if we choose to absorb vy, vy, v3, we will consider the paths P(vq), P(vs),
and P(vs) and the path of K§3§3 as in (4.5.1). On the other hand, if we choose not to
absorb them, then we consider the paths P(y;), P(y2), and P(ys) and the path of Kég?)
as in (4.5.2). We will also show that for each triple of vertices, we can find many of
these configurations, so that we can choose a small amount of them that still can absorb

every triple and also connect them into a single path. Observe that this absorbing path
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can only absorb sets of vertices with size divisible by three, an issue with which we deal

later. First we prove that for every triple there are many absorbers.
Definition 4.5.1. Let H = (V, E) be a hypergraph and (vy,vs,v3) € V3. We say
A= (K, P, Py, P)eVox Vi x Vi x V1,

with K = (x1, e, T3, Y1, Y2, Y3, 21, 22, 23) and P; = (a;, b;, ¢;, d;) is an absorber for (vy, va, v3)

if the ordered sets
(Z> T1T2X3Y1Y2Y32122%3, T1T2T3212223,
(ZZ) aibivicidi and azbzy,czdz for i = 1, 2, 3

induce paths in H. All hyperedges of those paths that do not include a vertex

from {vy,vq,v3} are called internal edges of the absorber A.

Formally absorbers are defined to be four tuples. However, sometimes it will be

convenient to view them as 21-tuples of vertices.

Lemma 4.5.2. For all d, € € (0,1] there exist o, & > 0 such that for sufficiently large n
the following holds.
For every (p,d,~)-dense hypergraph H on n wvertices with §,(H) = en? and every

triple T = (vy,v9,v3) € V(H)? of distinct vertices there are at least En*' absorbers for T.

Proof. Given d and ¢ we define some auxiliary constant ¢ = (d/2)?"/3 and set

1 /d\™ Cdo%°
Q:36(2) ad =S

Let H = (V, F) be a (p,d,&)-dense hypergraph on n vertices and consider some triple
of vertices T' = (vy,vq,v3) € V3.
Three applications of Lemma 4.2.2 each with X = V" and for i € [3] with the set of

ordered pairs

{(u,w): {u,w} € Ny(v;)}
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tells us, that there are at most 3,/on bad vertices v € V that may fail to satisfy
d
[N (v) A Ny (vi)| = (d = /o)|Nu(v;)| = (d = o) (H) = Eenz (4.5.3)

for some i € [3]. Moreover, the (o, d,~)-density of H implies that the edge density of H
is at least d —2p > d/2 and since the extremal number of any fixed 3-partite hypergraph
is o(n3) we have K. 3(,3333 C H for sufficiently large n. In fact, the standard proof of this
fact from [18] yields at least ((d/2)?" —o(1))n? such copies. Consequently, for sufficiently

large n there are at least

dn 27

((2) - 0(1)) n? —3/on-n® = (n’

copies of K§?3273 in H that contain no bad vertex. Let K = K7 < V? be the set of these
K{),in H.

Consider some K = (z1, 9, X3, Y1, Y2, Y3, 21, 22, 23) € K. Since none of the vertices
of K is bad, for every vertex v from K inequality (4.5.3) holds for every i € [3]. In
particular, for every i € [3] we have [Ny (y;) n Ng(v;)| = den?/2 and it follows from [11]
that there exist at least ((de/2)® — o(1))n* paths on four vertices with edges from
Ny (y;) n Ny (v;). Consequently, for sufficiently large n, there exist at least

3.3 3 9.9
K| - <<d§ - 0(1)>n4) > (n? - ‘;;nl? > 2tn?!

4-tuples A = (K, P, Py, P3) € V? x V4 x V4 x V4 with P, inducing a path in Ng(y;) n
Ny (v;) for i = [3]. Such an A may only fail to be an absorber for 7', if it contains some
vertex from T itself or if its 21 vertices are not distinct. However, since there are at

most O(n?") such “degenerate” A’s the lemma follows for sufficiently large n. O

Note that for the proof of Lemma 4.5.2 positive &-density was sufficient. However,
to address the aforementioned divisibility issue, we will show that the hypergraphs H
considered here contain a copy of Cg(4), the 4-blow-up of the cycle on 8 vertices. For
the proof of that, we make use of the assumption that the &-density of H is bigger than
1/4.
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The Cs(4) is formed by 8 cyclicly ordered independent sets {e;, f;, gi, hi}ic[s) such
that the only edges are the ones with vertices from three consecutive such sets. Note

that Cg(4) contains the path

€1€o. .. €8f1f2 Ce fggng .. .gghlhg Ce hg. (454)

Moreover, by removing the sets {f;}ic[s] or {fi, gi}ic[s) from the path in (4.5.4) leads to
paths with the same ends in Cg(4) with 24 or 16 vertices, respectively. We also remark
that 16, 24 and 32 are congruent to 1, 0 and 2 modulo 3, respectively. Therefore, if we
connect such a path to the absorbing path, we can decide to remove some of the vertices

so that the size of the leftover set is divisible by 3.

Lemma 4.5.3. For all € > 0 there exist o, ¥ > 0 such that every sufficiently large
(0,1/4 + €,a)-dense hypergraph H = (V, E) contains 9|V|3* copies of Cs(4).

Proof. Given € > 0 we apply Theorem 4.2.5 to obtain o; and £. Then, the application of
Lemma 4.4.3 to £/6 and ¢ yields g and v. Set p = min{py, 02} and let n be sufficiently
large.

Let H = (V,E) be a (0,1/4 + ¢,&)-dense hypergraph on n vertices. In view of
Lemma 4.2.4 it suffices to show that H contains (n® copies of Cy for some ¢ > 0.

Theorem 4.2.5 implies that H contains at least én? copies of K. f’)*. Let R be the set
of ordered pairs (a,z) such that both vertices are contained in at least £n?/2 of these
Kf’)_ with a being the apex. By double counting we infer |R| = &n?/2.

For every (a,z) € R, let P,, € V® be those pairs {y, z} that span such a copy
of K4(3)_ together with @ and x. An application of Lemma 4.4.3 to P = ) = P, , yields
at least vn? (P, Q)-cherries, i.e., paths with 4 vertices starting and ending at a pair
from P, ,.

Let F' be the hypergraph with vertex set {a,z,y,y, 2,2’} such that the sets of
vertices {a,x,y, z} and {a,z,y, 2’} span copies of Kf')* with apex a and it contains
a ({y, z},{y/, #'})-cherry. Observe that since y and z (resp. ¢’ and z’) play a symmetric

role in K f’)_, regardless of the orientation of the pairs {y, z} and {y/, 2’} in the cherry
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the resulting hypergraph is isomorphic. Without loss of generality we will assume that

the cherry is a path of the form yzy'z’. By the reasoning above, H contains at least

|R|-vn* > 51/716

copies of F'. We argue that there is a homomorphism of Cg in F'. Indeed, if we consider

the vertices of F' in the following cyclic ordering
zayzy' 2 ay’

one can check that every consecutive triple forms an edge in F. Since there are at
least Q(n®) copies of F in H, then by Lemma 4.2.4 and taking ¢ small enough, we have
that there are at least (n® copies of Cs. n

We are now ready to prove Lemma 4.1.3.

Proof of Lemma 4.1.53. Given € > 0 the constants appearing in this proof will satisfy

the following hierarchy
, 1
I1>ex»& 0> B>»0,a>»y =2v>» —, (4.5.5)
n

where the auxiliary constants &, 9, and « are provided by Lemmata 4.5.2, 4.5.3, and 4.1.4
and it is easy to check that (4.5.5) complies with the quantification of these lemmata.
Let H be a (0,1/4+ ¢, &)-dense hypergraph with §;(H) > en? and let R be a subset of V
with at most 2y?n vertices. Fix the subhypergraph Hs  H provided by Lemma 4.2.3.

For T € V3, let Ar be the set of those absorbers for T' in H that have no vertex
in R and all its 36 internal edges from Hg. It follows from Lemma 4.5.2 applied with
d=1/4+ ¢ and ¢ that

(4.5.5)
|Ar| = &n*' =21 |R|n*—6-36(e(H ) —e(Hpg))n'® = &n*' —42+°n* =216 gn*" > g

TL21 .

Let A = [, Ar be the union over all triples T' € V? and consider a random collection
of absorbers C < A in which each element of A is present independently with probability
B A3y
P=o0ar
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Since E|A| = p|A|, Markov’s inequality ensures that

1
P(IC| = 7**n) < 5 (4.5.6)
Moreover, for every T' € V3 we have
4/3 21 4/3
Vi g An a3
E|C = > : = > 4vyn,
IC n Ar| = p|Ar] 2 Al 9 1 Y n
Chernoft’s inequality combined with the union bound over all triples yields
P(AT € V?: |Cn Ar| < 39°n) < o(1). (4.5.7)

Letting Y be the number of pairs of distinct absorbers A, A’ € C that share a vertex we

note

EY:pQ-n21-212-n20:

and by Markov’s inequality, we have
(4.5.8)

Consequently, with positive probability none of the bad events from (4.5.6), (4.5.7),

and (4.5.8) happen. In particular, there exists a realisation of C such that
IC| < 4*3n, IC n Ar| = 37*n for every T e V?, and V()| <~*n.

For every pair of absorbers accounted in Y'(C) we remove one of the involved absorbers
in an arbitrary way and obtain a subset B < C of pairwise vertex disjoint absorbers

satisfying
Bl <|C| < ~**n and Bn Ar| > |C n Ap| — 4*n = 2+*n for every T € V3.
y Y Y Yy

Recall that if the absorbing path would only contain the absorbers from B, then it could
only absorb sets U with a cardinality that is divisible by 3. We address this divisibility
issue by adding a copy of Cg(4) to the path. Lemma 4.5.3 guarantees at least 9n3?

copies of Cg(4) in H. Similarly, as for the estimate of Ar, we infer that there is one
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such Cs(4) which is vertex disjoint from the set R and from all absorbers from B and

which only contains edges from Hpg. In fact, this follows from

In®* — 32 |R[n’! — 21|B[n* — 6 - ¢(Cs(4)) (e(H) — e(Hg))n*

) (4§.5)

> 9n’? — 6442032 — 21 4Y3n%? — 3072 Bn? 0.

Fix an ordering of the vertices of such a Cs(4) that induces a path (see, e.g., (4.5.4))
and denote this path by Pe.

In order to obtain the final absorbing path, each absorber (K, P, Py, P3) € B will
be viewed as a collection of four paths: x1xsx3212923 and a;b;y;c;d;, for 1 = 1,2, 3, as in
Definition 4.5.1. Therefore, together with joining Po we have to connect ¢ = 4|B| + 1
paths to build the promised absorbing path A. For each of the connections we will
appeal to Lemma 4.1.4 and each application will require to add up at most 15 inner
vertices.

Let (Pi)ie[t] be an arbitrary enumeration of all these paths that need to be connected.
We continue in an inductive manner starting with A; = P;, let A; be the already
constructed path containing P; for every ¢ < j. Since every connection requires at most

15 inner vertices and the longest path in (F;)cq has 32 vertices we have

V(A + zt] V(P)| < 15(5 — 1) + 32t < A7t <47(4B] + 1) < 47(4y*3n +1) < n.
o (4.5.9)

Suppose now that we want to connect P;, which ends in (z,y), to Pj;1, which starts

at (z,w). Since all paths P; with i € [¢] have its edges in Hg, by Lemma 4.2.3 they
are (-connectable. Therefore, Lemma 4.1.4 implies that there are at least an’ paths,
with ¢ < 15 inner vertices, connecting (z,y) with (z,w) in H. Consequently, in view

of (4.5.9) and |R| < 27?n our choice of v in (4.5.5) shows that at least one of such

connecting paths must be vertex disjoint from

which concludes the inductive step and proves the existence of the path A;.;.
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Finally, let A = A; be the final path and let U € V \ V(A) with |U| < 3v*n. First
we remove 0, 8 or 16 vertices from Pg in A and reallocate them to U to get a set U’ with
size divisible by three. Moreover |U’| < 3v*n + 16 < 3(7*n + 6) and, hence, U’ can be
split into at most v*n + 6 disjoint triples. Since each triple has at least 2¢y?n > v?n + 6

absorbers in A, we can greedily assign one for each and absorb all of them into A. [J

4.6 Proof of Theorem 2.2.3

In this section we discuss the few modifications necessary in the proof of Theorem 2.2.2
in order to prove Theorem 2.2.3. Recall that both theorems have the same minimum
vertex degree assumption. However, where Theorem 2.2.3 requires the given hypergraph
H to be A-dense for some positive density, Theorem 2.2.2 requires -density bigger than
1/4. In other words, the uniform density assumptions of both theorems are incomparable.

The proof of Theorem 2.2.2 consist of three main parts, namely Lemmata 4.1.2—-4.1.4.
Observe that Lemma 4.1.2 can be applied directly under the conditions of Theorem 2.2.3,
but for Lemmata 4.1.3 and 4.1.4 we have the assumption of &-density at least 1/4 which
is not provided by Theorem 2.2.3.

We start with the discussion of the Connecting Lemma in the context of Theorem 2.2.3
in the next section and we defer the discussion of the adjustments for the Absorbing

Path Lemma (Lemma 4.1.3) to Section 4.6.2.

4.6.1 Connecting Lemma for Theorem 2.2.3

The following lemma will play the réle of Lemma 4.1.4 in the proof of Theorem 2.2.2.

Lemma 4.6.1 (Connecting Lemma for A-density conditions). For every d, 3 > 0 there
exist o, « > 0 and an ng such that for every (o,d,A)-dense hypergraph H on n = nyg
vertices the following holds.

For every £ € {5,6,7} and every pair of disjoint ordered 3-connectable pairs (x,y),

(w,z) e V x V, the number of (x,y)-(z,w)-paths with { inner vertices is at least an’.
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Proof of Lemma 4.6.1 (sketch). We begin with the following observation. For sets of
pairs P, P’ =V x V each of size at least 2(n?) we show that

there are at least Q(n”) p-p’-paths with one inner vertex and pe P, p' € P'. (4.6.1)

Note that every (g, d, A)-dense hypergraph is (g, d, &)-dense and in view of Lemma 4.2.2
applied to P and V' there is a set X < V such that |X| = Q(n) and for every x € X
we have |N(z, P)| = Q(n?). Similarly, another application of Lemma 4.2.2 to P’ and X
yields a set X’ < X of size Q(n) such that

[N(z, P)| =Q(n*)  and  |N(z,Q)| = Q(n?)

for every x € X’. Consequently, a standard averaging argument tells us that each of the

sets

Q = {(pg,:r;) eV x X" |{p1eV: (p1,p2) € P and pipx € E}| = Q(n)}

and
Q = {(:E,p’l) e X'xV:|{pyeV: (p},p,) € P and xpip, € E}| = Q(n)}

has size Q(n?). Finally, the A-density of H applied to Q and Q' yields Q(n®) p-p/-paths
starting in P and ending in P’ with an inner vertex from X, i.e., it establishes (4.6.1).
For given connectable pairs (z,y) and (w,z) letting P and P’ be their second
neighbourhoods as defined in (4.4.5), yields the conclusion of Lemma 4.6.1 for ¢ = 5.
For ¢ = 6 we note that ~-density implies that there are 2(n?) #’-connectable pairs
(y,y') with zyy' € E for sufficiently small 5’ = 5'(d) > 0. Applying the same argument
as above for every such pair (y,y’) proves the case ¢ = 6. Finally, for ¢/ = 7 the same
reasoning applied to the connectable pairs (y/,y") with zyy', yy'y” € E concludes the
proof. O

4.6.2 Absorbing Path Lemma for Theorem 2.2.3

Recall that the proof of Lemma 4.1.3 required &-density bigger than 1/4 in only two

places:
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(7) for the connection of the absorbers to a path and

(7) in Lemma 4.5.3 for addressing the divisibility issue of the size of the absorbable

sets,

while for the abundant existence of the absorbers &-density d for any d > 0 is sufficient
(see Lemma 4.5.2). As shown in Section 4.6.1 for the connecting lemma positive A-density
suffices, which addresses (7). Moreover, in Lemma 4.6.1 we are even free to choose the
length of the connecting paths, which renders the divisibility issue from (77) in this

context.

4.7 Concluding remarks

We briefly discuss a few open problems for 3-uniform hypergraphs and possible generali-

sations of Theorems 2.2.2 and 2.2.3 to k-uniform hypergraphs.

4.7.1 Problems for 3-uniform hypergraphs

Theorems 2.2.2 and 2.2.3 concern asymptotically optimal assumptions for uniformly
dense hypergraphs that guarantee the existence of Hamilton cycles. The following

notation will be useful for the further discussion.

Definition 4.7.1. Given * € { & A} and a € {1,2}. We say a pair of reals (d, «)
is (%, a)-Hamilton if the following assertion holds:

For every € > 0 there exist o > 0 and ng such that every (o, d+e¢, x)-dense hypergraph
H = (V,E) with [V| = n = ng and 6,(H) = (a +¢)(,",) contains a Hamilton cycle.

We remark that we can restrict our attention to Hamilton cycles, since the result
of Lenz, Mubayi, and Mycroft [41] asserts that already (0,0) would be (%, a)-Hamilton
for loose cycles for every choice of x € {~, & A} and a € {1,2}. For Hamilton cycles
Aigner-Horev and Levy [2] showed that (0,0) is (A, a)-Hamilton for a = 2 and this was
extended by Gan and Han [24] and by Theorem 2.2.3 to @ = 1. It remains to characterise



100 CHAPTER 4. HAMILTON CYCLES IN &-DENSE HYPERGRAPHS

the minimal pairs (d, @) that are (x, a)-Hamilton for the four combinations x € {=, &}
and a € {1, 2}.
Example 2.2.1 shows that for (d, a) being (&, 1)-Hamilton we must have

1

max{d, a} > 1 (4.7.1)

On the other hand, Theorem 2.2.2 asserts that for d = 1/4 already o = 0 suffices. It
would be interesting to determine the smallest value a. ; such that d = 0 suffices. In
view of (4.7.1) we have a1 = 1/4 and the result from [52] bounds a.; by 5/9. Since
all known lower bound constructions for that result are lacking to be &-dense it seems
plausible that a.; < 5/9.

Similarly, let o be the infimum over all & > 0 such that (0, «) is (&, 2)-Hamilton.
Here it follows from [58] that oo < 1/2. Moreover, Example 2.2.1 yields a hypergraph
with minimum codegree (1/4 — o(1))n that fails to contain a Hamilton cycle. Therefore,
we have a2 > 1/4 and at this point we are not aware of any reason that excludes the

possibility that a. > matches this lower bound.
Problem 4.7.2. Determine a1 and o .

For Hamilton cycles in ..-dense hypergraphs the problem appears to be more delicate
as the following unbalanced version of Example 2.2.1 shows. Instead of a uniformly chosen
bipartition of F(K,_3) we may colour the edges independently red with probability p
and blue with probability 1 — p. Let H, be the resulting hypergraph, where the rest
of the construction is carried out in the same way as in Example 2.2.1. By symmetry
we may assume p = 1/2 and for the same reasons as in Example 2.2.1 the hypergraph
H, contains no Hamilton cycle. Moreover, for every fixed ¢ > 0 we have with high

probability that

0 (H,) = (min{l —p,p*+ (1 —p)*}— g) (Z) and 9y2(H,) = ((1 —p)? — Q)n

and that H, is (0,p® + (1 — p)*,.)-dense. For p close to 1 this shows that there is
no d < 1 such that (d,0) is (-, a)-Hamilton for a € {1,2}. In particular, there is no

straightforward analogue of Theorem 2.2.2 in this setting.
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It would be intriguing if this construction is essentially optimal for every p > 1/2. In
such an event it would imply a resolution of the following problems, where the lower

bound would be obtained from H, for p = 2/3 and p = 1/2.
Problem 4.7.3. Is it true that:
(i) (1/3,1/3) is (=, 1)-Hamilton?

(i) (1/4,1/4) is (=, 2)-Hamilton?

4.7.2 Possible generalisations to k-uniform hypergraphs

The notion of Hamilton cycles straight forwardly extends to k-uniform hypergraphs.
Moreover, the definition of uniformly dense hypergraphs is inspired from the theory of
quasirandom hypergraphs (see, e.g., [1,62] and the references therein). Below we briefly
recall the generalisation of Definitions 3.2.2 and 1.4.3 for general k-uniform hypergraphs,
where we follow the presentation from [51].

Given a nonnegative integer k, a finite set V, and a set Q < [k] we write V9 for
the set of all functions from @) to V. It will be convenient to identify the Cartesian
power V¥ with V¥ by regarding any k-tuple v = (vy,...,v;) as being the function
i — v;. We denote by v — v | Q the projection from V* to V¥ and the preimage of
any set Gg < V¥ is denoted by

Ke(Gg) ={veV": (v|Q)eGg}.

We may think of Gg € V@ as a directed hypergraph (where vertices in the directed
hyperedges are also allowed to repeat). More generally, for a subset @ < Z2([k]) of the
power set of [k] and a family &4 = {Gg: Q € Q} with Gg < V© for all Q € Q, we define
Kiu(@) = (] Ki(Ga)- (4.7.2)
QeQ
Moreover, if H = (V, E) is a k-uniform hypergraph on V', then ey (%) denotes the
cardinality of the set

Ep(@) = {(vi,...,00) € Ke(9): {v1,..., 0} € E}.
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Now we are ready to state the generalisation of Definitions 3.2.2 and 1.4.3.

Definition 4.7.4. Let o, d € (0,1], let H = (V, E) be a k-uniform hypergraph on n
vertices, and let @ < Z([k]) be given. We say that H is (g, d, Q)-dense if for every
family 4 = {Gq: Q € Q} associating with each Q € Q some Gg < V? we have

en(9) = d|Kip(9)| — on”.
It is easy to check that for k& = 3 the following subsets of Z([3])

Q. = {{1}a {2}7 {3}} , Q.= {{1}7 {Qa 3}} , and Q= {{L 2}7 {173}}

correspond to .., &-, and A-dense hypergraphs. More precisely, for every » € {, & A}
we have that a 3-uniform hypergraph is (o, d, x)-dense if and only if it is (o, d, Q,)-dense.

Example 2.2.1 straight forwardly extends to k-uniform hypergraphs. In fact, we may
consider a random bipartition G w G of the (k — 1)-element subsets of an (n — 2)-element
set and we define a k-uniform hypergraph containing only those hyperedges such that all
of its (k — 1)-element subsets are in the same partition class. Finally, we may add two
vertices x and y such that the (k — 1)-uniform link of z is G and the (k — 1)-uniform link
of y is G. We remark that for k = 2 this construction leads to two disjoint cliques with
~ n/2 vertices, which is a lower bound construction for Dirac’s Theorem [16] in graphs.

It is easy to check that the resulting k-uniform hypergraph H does not contain a
Hamilton cycle and for every fixed o > 0 it is (o, 2%, Q)-dense for

Q={Qe[k]*?:1eQ}u{{2,....k}}

with high probability for sufficiently large n. Note that for £ = 3 we have Q = Q. and H
provides a lower bound for Theorem 2.2.2. It seems plausible that the hypergraph H is
essentially optimal for O-dense hypergraphs also for k£ > 3, i.e., that Q-dense k-uniform

217% and minimum vertex degree Q(n*~1)

n-vertex hypergraphs with density bigger than
contain a Hamilton cycle. This would be an interesting extension of Theorem 2.2.2 to
k-uniform hypergraphs.

Moreover, one can check that for

Q ={{1,...,k—1}{1,...,k—2,k}}
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the hypergraph H constructed above is not (g,d, Q')-dense for any fixed d > 0 and
sufficiently small p > 0. Note that for £k = 3 we have @' = Q, and, in fact, Theorem 2.2.3
asserts that (o, d, @')-dense hypergraphs with minimum vertex degree Q(n?) contain
a Hamilton cycle for any d > 0 and sufficiently small p. We remark that the proof of
Theorem 2.2.3 discussed in Section 4.6 extends to k-uniform Q’-dense hypergraphs with

an appropriate minimum vertex degree condition.



Chapter 5

Codegree threshold for cycle

decompositions

The main goal of this chapter is proving Theorem 2.3.1, but the proofs of Theorem 2.3.4
and Corollaries 2.3.2 and 2.3.3 are included as well.

We start by proving Theorem 2.3.4 in Section 5.1 to then present the short proofs
for the Corollaries 2.3.2 and 2.3.3 in Section 5.2.

In Section 5.3 we prove Theorem 2.3.1 by using the technique of iterative absorption,
which we review there. The technique relies on three main lemmata, the Vortex Lemma,
Cover-Down Lemma, and Absorbing Lemma. After some useful tools (Section 5.4),
these three lemmata are proved in Sections 5.5, 5.6 and 5.7, respectively. We finish in
Section 5.8 with some remarks and open questions.

For this chapter we introduce the following definitions. A walk in a hypergraph H
is a path that might repeat vertices and a trail is a walk that does not repeat edges.
We recall that a tour is a cycle that might repeat vertices but not edges. We extend
all notations introduced for paths to walks. Given a walk W = vivy ... v, we define its
beginning b(W) and terminus t(W) as {v1,ve} and {v,_1, v} respectively (note that this
is an unordered version of the starting and ending pairs defined at the beginning of
Chapter 1). Moreover, if C = {C},...,C,} is a collection of subgraphs of H, sometimes
we will let E(C) be the hypergraph whose edges are |, _,., £(C}).

104
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The work corresponding to this chapter was done in collaboration with Sanhueza-

Matamala [44].

5.1 Lower bounds

In this section we prove Theorem 2.3.4. The following lemma captures divisibility
constraints that tours in hypergraphs must satisfy, and it will be the basis of our
constructions. For a hypergraph H, a subgraph W < H and vertex sets X, Y, Z in
V(H), let W[X,Y,Z] be the set of edges xyz in E(W) such that z € X, y € Y,

and z € 7.

Lemma 5.1.1. Let H be a hypergraph with a vertex partition {Uy, Uy, Us}, and such
that H{Uy, Uy, Us| = @. If W is a tour in H then

|W[U1,U1,U2]| = |W[U1, UQ,UQ]‘ (IIlOd 3)

Proof. Let W = wyws - - - w,, in cyclic order, and let P = o7 - - - 0, be a cyclic word over
the symbols {0, 1,2}, where o; = j if and only if w; € U;. Since W is a tour, it does not
repeat edges. Thus we have that |[W|[U;, Uy, Us]| is exactly the same as the number of
appearances of the patterns F; = {112,121, 211} formed by three consecutive symbols
in P. Similarly, |W[Uy,Us, Us]| is exactly counted by the number of appearances of
Fy = {122,212, 221} consecutively in P. In both cases we count the cyclic appearances
of the patterns, i.e. we also consider the patterns formed by o, 10,01 and o.0,05.

Define ®(P) as follows. Scan the triples of consecutive symbols of P one by one, and
if they belong to F; U Fy, we add the sum of the values of their symbols to ®(P). More
formally, let I < [r] be such that i € [ if and only if 0;0,,10;42 € F1 U Fy (where the
indices are always understood modulo 7, i.e. 0,41 = 01 and 0,9 = 03), and then

O(P) = Y (0 + i1 + 0iva).
icl

We aim to show that ®(P) = 0 mod 3. If I = @&, this is obvious, and if I = [r]

then ®(P) sums every symbol of P three times, and thus also ®(P) = 0. Thus we
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may assume [ ¢ {&,[r]}. We write I as a disjoint union of intervals of consecutive
indices, minimising the number of intervals. Thus, without loss of generality (after
shifting W and P cyclically) we can assume [ = I; U --- U I}, so each I; is of the
form {a;,a; +1,...,b;} for some a; < b; and further we have a; = 1, b; < aj+; — 2
for all 1 < j < k, and b, < r — 1. Setting ®; = Zidj(ai + 011 + 0442) We have
O(P) = D1 <j<x Py, s0 it is enough to show that ®; = 0 mod 3 for each j.

Fix an arbitrary j € {1,...,k}. For brevity write a = a; and b = b; and let
P; = 040441 0p410p42. We claim that P; begins with two repeated symbols. Since
I < I, we have 0,0,110442 € F1 U Fy, thus in particular o, and 0,,; must be in {1, 2}.
If 0, # 0441, then we would have o,0,,1 = 12 or 0,0,+1 = 21. In any case, it cannot
happen that 0,1 € {1, 2}, since then that would imply that a — 1 € I, contradicting the
choice of Ij,. Thus o,_; = 0, and therefore 0,_10,0,.1 = 012 or 04_10,0,4+1 = 021. But
this implies that W contains an edge in H[Uy, Uy, Us], a contradiction. Thus P; begins
with two repeated symbols, and an analogous argument implies that P; also ends with
two repeated symbols.

If a = b, then we would have 0,0,1104,42 = 111 or 0,0,4104+2 = 222, then implying
a ¢ I, a contradiction. Thus a < b, and therefore P; must have the form P; = z2Q;yy,
where z,y € {1, 2} and Q; is a (possibly empty) word. It is easy to see that every symbol

in @; is counted three times in ®. Thus we have

Q; = Z(Ji+ai+1+ai+2)—x+2x+3< 2 Gi)+2y+950m0d37

a<i<b a+2<i<b

and this implies ®(P) = 0 mod 3, as discussed before.
Finally, note that, for j € {1,2}, if 0,0,110,42 € Fj, then 0; + 0,41 + 0442 = j mod 3.
Thus ®(P) = |W|[Uy, Uy, Us]| + 2|W[Uy, Us, Us]| mod 3. But since ®(P) = 0 mod 3 and
= —1 mod 3, we deduce |W Uy, Uy, Us]| = |W[Uy, Us, Us]| mod 3, as desired. O

To prove Theorem 2.3.4, we will consider alterations of the following hypergraph.

Definition 5.1.2. Let n be divisible by 18 and write n = 18k. Consider the hypergraph

H,, on n vertices, whose vertex set is partitioned into three clusters Vg, V1, Vo whose
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sizes are ng, ni, ne respectively, and are defined by
ng = 6k, ny = 6k — 2, and  ny = 6k + 2. (5.1.1)
Given a vertex x € V(H,), the label I(z) of x is i if and only if z € V;. The edge set of
H, is
E(H,) = {xyz : l(z) + l(y) + I(z) # 0 mod 3}.
In words, every 3-set is present as an edge in H,,, except for those which are entirely
contained in one of the clusters V; or have non-empty intersection with all three clusters.
Usually n will always be clear from context, and for a cleaner notation we will just write

H = H,, in the remainder of this section.

We begin our analysis by noting the hypergraph H has large minimum codegree.
Lemma 5.1.3. Let n € 18N. Then 62(H) = (2n — 12)/3.

Proof. Let x,y € V(H), and set p = [(x) + [(y). By the definition of H, a vertex z
will form an edge together with xy whenever p + I(z) # 0 mod 3. This is equivalent
to l(z) = 1 —pmod3 or I(z) = 2 — pmod 3. Thus, if 7,5 € {0,1,2} are such that
i=1—-pmod3and j=2—pmod 3, then N(zy) = (V; uV;) ~ {z,y}. A quick case
analysis reveals that |N(zy)| is minimised whenever x € V4, y € V; and in such a case

dy(zy) = ng+ny —2 =12k — 4. Thus 62(H) = 12k — 4 = (2n — 12)/3, as required. [

We note that identities (5.1.1) imply that ng, n;, and ny are even and that for all
i €{0,1,2} we have

n; =1 (mod 3), (5.1.2)
Given (4,7, k) € {0,1,2}>, write Hy, = H[V;, V}, Vi].
Lemma 5.1.4. Let n € 18N. Then
(7) for every x € V(H), dg(z) =1 mod 3 and

(4i) |Hia] # |Hig2| mod 3.
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Proof. We begin by noting that (7;) = 2m(m — 1) mod 3 holds for all integers m. Thus
(7;) = 1 mod 3 if m = 2 mod 3, and (T;) = 0 mod 3 otherwise.

Now let x € V. Then the pairs yz such that zyz € H are those such that
1. ye Vo~ {z} and z € V; U V4, of which there are (ng — 1)(n; + ng) many,

2. yz € Vi, of which there are ("21) many, and

3. yz < Va, of which there are (”22) many.

Thus we have dy(z) = (no — 1)(n1 + na) + () + ("2). Together with (5.1.2), we have

that dg(x) =0+ 0+ 1 =1 mod 3. Analogous calculations show that

dy(y) =0+ 0+ 1=1mod 3 for y € V; and

dy(z) =140+ 0= 1mod 3 for z € V5,

thus (7) holds.
Finally, the sizes of |Hy1o| and |Hjgo| are ("21)712 and (”;)nl respectively, which then

are easily seen to be equivalent to 0 and 1 modulo 3, respectively, which implies (iz). [

Since H is not quite 3-vertex-divisible, our counterexample will consist actually of a

slight alteration of H obtained by removing some sparse subgraph.
Lemma 5.1.5. Let n € 18N. Then there exists a perfect matching F' < H~(H1y120 Hyas).

Proof. Let k be such that n = 18k. Let a,b be two distinct vertices in V5, and let
Vi = Vi u{a,b} and Vj = Vo \ {a,b}. Note that [Vy| = |V/| = |VJ]| = 6k. Let
Vo = A{x1, ..., zert, Vi = {y1,.. ., yer} and Vi = {z1,..., 26}, with y; = a and yo = b.
Then

F = {yoi 1Y2ixai—1 : 1 < i <3k} U {z0i_120;w9; 1 1 <1 < 3k}

is a perfect matching in which every edge intersects V; in exactly one vertex. Thus F

has no edge in Hy15 U Hygo, as required. O

We are now ready to show Theorem 2.3.4.
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Proof of Theorem 2.3.J. Consider the hypergraph H = H,, given in Definition 5.1.2,
and consider the perfect matching F' € H ~\ (Hy12 U Hyg2) given by Lemma 5.1.5. Let
0" e{4,...,0+ 3} be such that |[E(H — F)| + ¢’ = 0 mod ¢. Since n = 18k > 3(¢ + 3),
we have |Vo| =6k > (+3>/¢. To H— F, we add a cycle C of length ¢, edge-disjoint
from H — F, which is entirely contained in V5. We claim the hypergraph

H=H\F)uC

has all of the desired properties.

We first check H' is Cég)—divisible. We start by checking H' is 3-vertex-divisible.
Indeed, let x € V(H’) be arbitrary. We have dy(x) = 1 mod 3 by Lemma 5.1.4(7), we
have dp(x) = 1 since F is a perfect matching, and de(z) = 0 mod 3 since C' is a cycle
on ¢’ = 4 vertices. Thus dy/(x) =1 —1+ 0= 0mod 3 for all z € V(H'), as required.
Moreover, the number of edges of H' is |E(H')| = |E(H — F)| + ¢, which was chosen to
be divisible by £, so indeed H' is C*-divisible.

Now we check H’ has large codegree. It suffices to show H — F has large codegree.
Removing a perfect matching from H decreases the codegree of every pair at most by 1,
thus by Lemma 5.1.3, we have 0y(H — F) = 05(H) — 1> (2n—12)/3 -1 = (2n — 15)/3.

Now we prove H' does not have a tour decomposition. Since F' < H ~\ (Hy12 U Hy22)

and C' < V) we have
H/[V17V17V2] = Hi1p and H’[Vsz,Vz] = Hia .

For a contradiction, suppose that W1, ..., W" are tours forming a tour decomposition
in H'. For a walk W, let Wi19 = Hy1o 0 E(W), and let Wigy = Hyge n E(W). Since the
tours are edge-disjoint and cover all edges of H', we have >}, _;_ [W{},| = |Hi12| and
Yicicr [Wiga| = [Hizz|. Moreover, Lemma 5.1.1 implies that |[W{ ,| = [W{y| mod 3 for
each 1 < i < r. Therefore, |Hy12| = |Hi22| mod 3, but this contradicts Lemma 5.1.4(77).

]

Remark 5.1.6. For sufficiently large values of n, we can make our example vertex-

regular instead of C’é?’)—divisible. This is needed, for instance, when we are looking at
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decompositions into spanning vertex-disjoint collections of cycles, such as Hamilton
cycles.

Start from H = H,, and remove F' as before to get to H = H — F which is
3-vertex-divisible. Every vertex in V; has the same degree d;, for all i € {0,1,2}, and a
calculation reveals that d; = dy — 9 and dy = dy — 3. Then, adding three edge-disjoint
Hamilton cycles to H[V;] and one Hamilton cycle to H[V5] leaves a hypergraph H* in
which every vertex has degree dy. It can be similarly proved that H* does not admit

any tour decomposition.

5.2 Proof of Corollaries 2.3.2 and 2.3.3

In this short section we deduce Corollaries 2.3.2 and 2.3.3 from Theorem 2.3.1.

Proof of Corollary 2.53.2. Let m be the number of edges of H, and write it as m = 9¢+r
for some ¢ > 1 and 0 < r < 9. Find a cycle C of length 9 4+ r in H: this can be done
greedily (see Section 5.4.1 for details). Then, H' = H — C is a 3-divisible graph, its
minimum codegree is dy(H') = d2(H) — 2 = (2/3 + €/2)n, and its number of edges
is m— (94 r) = 9(¢ — 2), which is divisible by 9. By Theorem 2.3.1, H' has a
Co-decomposition, together with C' this is a cycle decomposition of H. m

For the proof of Corollary 2.3.3 we use the strategy of Glock, Joos, Kiithn, and
Osthus [26]. Crucial part of their argument is (using our terminology) to first find a
trail W which is spanning i.e. every 2-tuple of distinct vertices of H is contained as
a sequence of consecutive vertices of W, but at the same time it is sparse (it satisfies
Ay(W) = o(n), where Ag(H) denotes the maximum codegree of H among all pairs of
vertices).

Here we state their lemma only for 3-uniform hypergraphs. A hypergraph H on
n vertices is a-connected if for all distinct vy, va, vy, v5 € V(H), there exist at least an

vertices vz € V(H) such that vjvovzvavs is a walk in H.
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Lemma 5.2.1 (|26, Lemma 5]). Suppose n € N is sufficiently large in terms of c.
Suppose H is an a-connected hypergraph on n vertices. Then H contains a spanning

trail W satisfying Ay(W) < log® n.

Proof of Corollary 2.3.3. Take ng such that 1/ny « e. Since d2(H) = (2/3+¢)n, then H
is e-connected. By Lemma 5.2.1 there exists a spanning trail W = wy - - - w, satisfying
Ay (W) < log® n. Use the e-connected property of H to close W to a tour, using three
extra vertices, while avoiding edges previously used by W (using that Ay(W) < log®n).
The resulting W’ = w; - --w,,3 is a spanning tour which satisfies Ay(W’) < 2log®n.
Let H = H — W'. Since W’ is a tour and H is 3-vertex-divisible, H' is 3-vertex-
divisible as well. Since Ay(W') < 2log®n < en/2 and §(H) = (2/3 + )n, we deduce
do(H') = (2/3 4 ¢/2)n. Since n is sufficiently large, Corollary 2.3.2 implies that H' has a
cycle decomposition. Fix one of those cycles C' = vyvy - - - v, and note that the ordered
pair (vy,v2) must appear consecutively in some part of W’ (since W’ is spanning). We
may write W’ = Wv,v, W3 and extend W’ by taking W{vyvs - - - v, v109 W3, which is still
an spanning tour, but now uses the edges of C' in addition to those of W’. Attaching

the cycles of the decomposition one by one to W', we obtain the desired Euler tour. [

5.3 Iterative absorption: proof of Theorem 2.3.1

Our proof of Theorem 2.3.1 follows the strategy of iterative absorption introduced
by Barber, Kiihn, Lo, and Osthus [8] and further developed by Glock, Kiihn, Lo,
Montgomery, and Osthus [27] to study decomposition thresholds in graphs. We base
our outline in the exposition of Barber, Glock, Kiithn, Lo, Montgomery, and Osthus [7].

The method of iterative absorption is based on three main lemmata, originally called
the the Vortex Lemma, Absorbing Lemma, and the Cover-Down Lemma. We will
introduce these lemmata first while explaining the global strategy, then we will use them
to prove Theorem 2.3.1. The proof of these lemmata will take up the rest of the chapter.

A sequence of nested subsets of vertices Uy 2 Uy 2 -+ - 2 Uy is called a (§, £, m)-vortex

in H if satisfies the following properties.
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(V1) Uy = V(H),

(V2) for each 1 < i < ¢, |U;| = |&|U;—1]],

(V3) U =m,

(V4) d(z,U;) = [N(x,U)| = 6("91) for each 1 <i < ¢ and z € U;_y, and

(V5) d(zy,U;) = |N(zy,U)| = 6|U;| for each 1 < i < ¢ and zy € U,
where N(z,U) and N(zy,U) correspond to the restricted neighbourhoods

N(z,U)={yze U?: zyz e E(H)},
N(zy,U)={z€eU: zyze E(H)}.

The existence of vortices for suitable parameters §, £, and m is stated in the Vortex

Lemma.

Lemma 5.3.1 (Vortex Lemma). Let £,0 > 0 and m’ € N be such that 1/m’ « £. Let H
be a hypergraph on n = m’ vertices with do(H) = 6. Then H has a (§ — &, &, m)-vorter,

for some |Em'| < m < m/.

The main idea is to use the properties of the vortex to find a suitable Cé?’) -packing,
i.e. a collection of edge-disjoint Cg(s) c H. We will find a packing covering most edges of
H, and moreover the non-covered edges will lie entirely in U,. The Absorbing Lemma
will provide us with a small structure that we put aside at the beginning, and that
will be used to deal with the small remainder left by our C’lg‘g)—packing. If R Hisa
subgraph of H, a Cég)—absorber for R is a subgraph A € H, edge-disjoint from R, such
that both A and AU R are C’é?’)—decomposable.

Lemma 5.3.2 (Absorbing Lemma). Let £ > 7, ¢ > 0, and n,m € N such that
1/n «e,1/m,1/0. Let H be a hypergraph on n vertices with éo(H) = (2/3 + €)n. Let
Rc H be C’f)—divisible on at most m vertices. Then there exists a C’ég)—absorber for R

in H with at most (2mf)? edges.
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Finally, we construct the desired Cé?’)—packing step by step through the nested sets
of the vortex. More precisely, suppose U; 2 U, are two consecutive sets in a vortex of
H. The Cover-Down Lemma allows us to find a Cég)-packing which covers every edge of
H|U;], except maybe for some in H[U;41]. Thus the desired packing will be found via

iterative applications.

Lemma 5.3.3 (Cover-Down Lemma). Let £ > 9 be divisible by 3 or at least 107, let
e, >0, and let n € N with 1/n « p,e < 1/¢. Suppose H is a hypergraph on n vertices,
and U € V(H) with |U| = |en|, which satisfy

(CD1) 6o(H) = (2/3 + 2¢)n,

(CD2) dy(x,U) = (2/3 + ) ('Y} for each x e V(H),

(CD3) dy(zy,U) = (2/3 + ¢)|U]| for each xzy € V(H)®, and
(CD4) dy(x) is divisible by 3 for each x € V(H)\ U.

Then H has a Cég)-decomposable subhypergraph F such that H — H|U] < F, and
Ay(F[U]) < pm.

Assuming lemmata 5.3.2-5.3.3, we prove Theorem 2.3.1.

Proof of Theorem 2.3.1. 1t is enough to show that for every ¢ > 0, there exists ng such
that every C’ég)—divisible hypergraph H on n > ng vertices with dy(H) = (2/3 + 82)n

admits a Cég)—decomposition. Given ¢ and ¢, we fix m’, ng such that
1/ng « 1/m’ < ¢,1/¢. (5.3.1)

. . 3 e
Let H on n = ny vertices as before, we are done if we show H has a C’é )—decomposmlon.

Step 1: Setting the vortex and the absorbers. By Lemma 5.3.1, H has a (2/3 + Te, &, m)-

vortex Uy 2 -+ - 2 Uy, for some m such that [em/| < m < m/.

Let .Z be the family of all Cég)—divisible hypergraphs which are subgraphs of H[U,].
s

Since |Uy| = m, clearly |.Z| < 2(5). Pick an arbitrary hypergraph L € .Z. Since m < m/
and (5.3.1), a suitable application of Lemma 5.3.2 yields a C’é?’)—absorber Ap € HNH|U{]
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of L with at most (4mf)® edges. Since 1/n « 1/m,e,1/f, removing the edges of Af
only barely affects the codegree of H, thus we can repeat the argument to obtain an
absorber A, € H ~ H[U;| for some L' # L, edge-disjoint from Aj. Since the total
number of L € Z is tiny with respect to n, we can iterate this argument to obtain
edge-disjoint C’ég)—absorbers Ap € H ~ H|Uy| for each L € £. Moreover, each Af
contains at most (4mf)? edges, and hence, the union A = |J,., A, € H \ H[U]
contains at most |.Z|(4ml)? < 2(?)(47715)9 < en edges. By construction, we have A is
C’é?’) -decomposable and for every L e ¥, L U A is C’é?’)-decomposable.

Let H = H ~ A and observe that dy(H') = (2/3+ Te)n and Uy 2 --- 2 Uy is a
(2/3 + 6¢, e, m)-vortex for H' (for this, it is crucial that A € H ~. H|U;]). Notice that
since A and H are C’lf:)’)—divisible7 we get that H' is Cég)—divisible.

Step 2: The cover-down. Now we aim to find a C’é3)—packing in H' using every edge of

H' ~ H'|U,]. Let Upyy = @. For each 0 < i < ¢ we shall find H; € H'[U;] such that
(a;) H — H; has a C’ég)—decomposition,
(bi) 02(H;) = (2/3 + 4¢)|Uil,
(i) du,(x,Uisr) = (2/3 + 5¢) (V) for all z € U,
(d;) dy,(xy,Uir1) = (2/3 + 5¢)|Uss 1] for all z,y € U;, and
(&) HilUiy1] = H'[Uisa].

For i = 0 this can be done by setting Hy = H’. Now suppose H; satisfying (a;)—(¢;)
is given for some 0 < i < ¢, we wish to construct H;,; satisfying (a;.1)—(e;1). Let

H,L/ = Hl AN HI[UH_Q] By (bb>*(dL) and |Ui+2| < 8|U¢+1| < €2|Ui|, we have
(CD2) dp (2, Uis1) = dg,(, Uir) — [Ussa|([Us1] — 1) = (2/3+3¢) (V1)) for each x € U,
(CD3) dpi(wy,Uis1) = dpi(zy, Uigr) — [Uiga| = (2/3 + 4€)|Uiya| for each x,y € U;, and

(CD4) dpu (x) is divisible by 3 for each z € U; \ Uj1.
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This allows us to apply Lemma 5.3.3 with ¢,¢, |U;|, H!,U;y1 playing the roles of
e, u,n, H U. We get a Cég)—decomposable subgraph F; € H/ such that H/\H/|U;41] € F;
and that Ao(F;[U;11]) < e!|U;|. Let Hiyy = H;[Uiy1] \ Fi, we prove it satisfies the
required properties.

Clearly F; is C’ég)—divisible and F; < H] < H,;. Therefore (a;) implies that the
hypergraph H' — H; ;1 = (H'— H;) U F; has a Cég)-decomposition, and thus (a;41) holds.
Moreover, from (d;) and since Ao(F;[Uis1]) < €*|Ui| < €2|Uisa], we prove (b;i1) by
noticing that do(H;y 1) = (2/3 + 5e)|Uir1| — €2|Uisa| = (2/3 + 4¢)|U;s4),

By the properties of (2/3 + 6e, &, m)-vortices, we have dg(x, Ui, 2) = (2/3 + 6¢) ('g”)
for each x € Uy, 1, together with Ay(F;[U;11]) < €%|U;11] and (¢;) we deduce (¢, 1) holds,
and (d;;1) can be verified similarly. Finally, since F; € H] = H; ~\ H;[U;;1], we have
F;[Uio] is empty and therefore H;,1[U; o] = H;[U;yo| = H'[Uiio], which verifies (e;,1).

Now H, < H'|U,] is such that H' ~\ H, has a C’ég)—decomposition.

Step 3: Finish. Since both H" and H' \ H, are C’é?’)—divisible, we deduce H, < H'|U,]
is C’ég)—divisible. Therefore, H, € .£ and by construction of A we know that H, U A
is Clgg)—decomposable. Since H is the edge-disjoint union of H' ~ H, and H, u A, and
both of them have C,Z(S)—decompositions, we deduce H has a Cég)—decomposition, as

desired. O

5.4 Useful tools

We collect various results to be used during the proof of Lemmatas 5.3.2-5.3.3.

5.4.1 Counting path extensions

The following lemma find short trails between prescribed pairs of vertices. For a
hypergraph H, a set of vertices U < V(H), and a set of pairs G < V(H)® let
5%3)(H; U, G) be the minimum of |N(e;) n N(ez) n N(e3) nU| over all possible choices of
e1, e, ez € G. This is the size of the minimum joint neighbourhood in U of three distinct

pairs in G. Also, let 5§3)(H; U) = 5§3)(H, U,V (H)®) and 5&3)(H) = 553)(]-]; V(H)).
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Lemma 5.4.1. Let ¢ > 0 and n,{ € N be such that ¢ = 5 and 1/n < ¢,1/0. Let H
be a hypergraph on n vertices, U € V(H), and G < V(H)m such that the set of pairs
{uv € V(H)(g): ue U} € G. Suppose 553)(1-[; U,G) = 2en. Then, for every two disjoint

(-4

pairs v1ve and ve—1ve in G there exist at least (en)™™* many (vy, va2)-(ve—1, ve)-paths on £

vertices, whose internal vertices are in U.

Proof. Every pair of vertices in GG has at least 2en neighbours in U. For each 1 <17 < (-3,
since {uv € V(H)?: ue U} < G we can build a path vivs - - - v; such that {v;_1,v;} € G
by choosing vertices in U greedily. Due to (553)(H U, G) = 2en we are able to finish the
path by choosing v,_5 as a common neighbour in U of the pairs v,_4vp_3, v,_3v,_1 and
vg_1vyg, all of which belong to GG. At any step we only need to avoid choosing one of the
vertices already chosen so far, which are at most ¢ < en. Thus in each step there are at

least en possible choices, which gives the desired bound. O

In the particular for a hypergraph H with d2(H) > (2/3 + €)n a simple application
of Lemma 5.4.1 with U = V(H) and G = V(H)"® implies the existence of many trails
of length ¢ > 5 between arbitrary pairs of vertices.

Sometimes we want find many paths which also avoid a small prescribed set of
vertices or edges, for instance to extend paths into cycles. This is accomplished as

follows.

Lemma 5.4.2. Let e, > 0 and n,l € N be such that £ = 5 and 1/n « u < €,1/¢.

4 many (Ula U2)'(U€fla Uf)'

paths on { vertices in H. Let F < H with Ay(F) < pun. Then there are at least en’~*

Suppose that vy, v, ve_1,v, € V(H) and there are at least 2en*~

many (v1,va)-(ve—1, ve)-paths on € vertices in H \ F.

Proof. The number of (v, v2)-(ve_1,v)-paths on £ vertices such that vjvgvg € F' is at
most dp(v1v9)nt=> < Ag(F)n'=> < pun*~*. Similar bound are obtained for the paths of
the same form such that v,_sv,_1vp € F, vgvgvs € F, or vy_3v,_2vp_1 € F. Finally, the
paths such that v;vj;1v;42 € F for some 3 < j < £ — 4 is at most |E(F)[n*~" < un**.
All together, the number of paths destroyed by passing from H to H \ F'is at most

(€ — 2)un*=* < en®*, where the last inequality uses u « . O]
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The following is an immediate corollary of Lemma 5.4.1 and Lemma 5.4.2.

Corollary 5.4.3. Let € > 0 and n,l, V' € N be such that 1/n « p < e <& 1/€,1/0' and
¢ =0+ 1. Let H be a hypergraph on n vertices, U < V(H) and G < V(H)(2) such
that {uv e V(H)®: ue U} = G. Suppose 553)(1-[; U,G) = 2¢'n. Let P be a path on {'
E/

vertices in H, whose two endpoints are in G. Then there are at least en*=" many cycles

C' on ( vertices which contain P and such that V(C) NV (P) < U.

Note that for a hypergraph H with do(H) > (2/3 + ¢)n and a set W < V(H)
with |[W| < en/2, a simple application of Corollary 5.4.3 with U = V(H) ~ W and
with G = V(H )(2) yields the existence of many cycles containing one fix path P and

avoiding the set of vertices W.

5.4.2 Probabilistic tools

We shall use the following concentration inequalities [33, Corollary 2.3, Corollary 2.4,
Remark 2.5, Theorem 2.10].

Theorem 5.4.4. Let X be a random variable which is a sum of n independent {0, 1}-

random variables, or hypergeometric with parameters n, N, M.
(1) If x = TE[X], then P[X > z] < exp(—x),

(it) P[|X — E[X]| = t] < 2exp(—2t*/n), and

(iii) P[|X — E[X]| = ] < 2exp(—t?/(3E[X])).

The following lemma allows us to bound the tail probabilities of sums of sequentially-
dependent {0, 1}-random variables by comparing them with binomial random variables.
We use the probability-theoretic notion of conditioning in a sequence of random variables,
which in our application will take the following form. If Xy, ..., X; are random variables,
we denote by P[X; = 1|X3,..., X;_1] < p; the fact that the probability of X; = 1 is

always at most p;, even after conditioning on any possible output of Xy,..., X;_1.
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Theorem 5.4.5. Let X, ..., X; be Bernoulli random variables (not necessarily indepen-
dent) such that for each 1 <1 <t we have P[X; = 1|Xy,..., X; 1] < p;. Let Yy,....Y;
be independent Bernoulli random variables such that P[Y; = 1] = p; for all 1 <i < t. If
X=X'_ X;andY =Y"_Y;, then P[X = k] < P[Y = k] for all k € {0,1,...,}.

The proof of Theorem 5.4.5 was given by Jain [47, Lemma 7] in the particular case
where p; = p for all 1 < ¢ < t. The slightly more general statement of Theorem 5.4.5

follows by mimicking that proof (which goes by induction on t), so we omit it.

5.5 Vortex Lemma

We prove Lemma 5.3.1 by selecting random subsets (cf. [7, Lemma 3.7]).

Proof of Lemma 5.3.1. Let ng = n and n; = |{n;_1| for all i > 1. In particular, note
n; < &n. Let ¢ be the largest ¢ such that n; > m’ and let m = n,.;. Note that
/

[gm'] <m <.

Let & = 0 and, for all i > 1, define & = &_; + 2(¢'n)~Y3. Thus we have

1/3 1/3 —-1/3 1/3 2(né)~ 13
Eop1 =2n" Z ' < 2n Z \1 51/3\5
=1

where in the last inequality we used 1/m’ « £ and n > m/.

Note that taking Uy = V(H) yields a (§ — &g, &, ng)-vortex in H. Suppose we have
already found a (§ — &_1,&,n;_1)-vortex Uy 2 --- 2 U;_; in H for some i < ¢+ 1. In
particular, do(H[U;_1]) = (0 — &_1)|U;_1]. Let U; € U;_; be a random subset of size n;.
By Theorem 5.4.4, with positive probability we have

d(zy, U;) = (6 — & —ny )|U] and dtal%)5><5“&>1“”5LB)(“5A)’

for every z,y € U;_;. Since &_; + ”;1/3

< &, we have found a (0 — &;, &, n;)-vortex for
H. In the end, we will have found a (0 — &,1,&, ng.1)-vortex for H. Since we have

m = ny,1 and we have established &,,; < &, we are done. O
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5.6 Cover-Down Lemma

5.6.1 Extending paths into cycles

More than once during our proof, we will be faced with the following situation: we have
a family of (not too many) edge-disjoint paths and we want to extend each of them into
a cycle of a given length in such a way that all obtained cycles are edge-disjoint. In this
subsection we will prove a lemma which will find such extensions for us.

Given a path P we say that a path or a cycle C is an extension of P if P < C.
Let H be a hypergraph, for a path P € H and a pair of vertices e € V(H)(2) we say that
P is of type r for e, where r = max{e n b(P),e nt(P)} (see definition of b(P) and ¢(P)
at the beginning of this chapter). The only possible types are 0, 1, or 2.

We say that a collection of edge-disjoint paths P in H is ~y-sparse if, for each
ee V(H)(Q) and each 7 € {0,1,2}, P has at most yn®>~" paths P of type r for e.

Lemma 5.6.1 (Extending Lemma). Let &, u,y > 0 and n,0,{' € N such that ¢ = 4,
=0 +2and1/n <y« pu<e1/l. Let Hy, Hy be two edge-disjoint hypergraphs on the
same vertex set V' of sizen. Let P = {Py,..., P} be an edge-disjoint collection of paths

on V' vertices in Hy such that
(a) P is y-sparse and

(b) for each P; € P, there exists at least 2en*™" copies of C’l@ in Hyw Hy which extend
P; using extra edges of Hy only.

Then, there exists a C’é?’)-decomposable subgraph F < Hy v Hs, such that
(i)p E(P)< F and

Proof. The idea is to pick, sequentially, an extension C; of P; into an ¢-cycle, chosen
uniformly at random among all the extensions which do not use edges already used by

Ci,...,C;_1. Since P is y-sparse and there are plenty of choices for C; in each step, we
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expect that in each step the random choices do not affect the codegree of the graph
formed by the unused edges in Hy by much. This will ensure that, even after removing
the edges used by C1,...,C;_1, there are still many extensions available for P;. If all
goes well, then we can continue the process until the end, thus achieving (7)z and (i7)p
by setting F' = |, .,, F(C;).

To formalise the above plan, we begin by noting that the removal of a sufficiently
sparse hypergraph from H,, there are still many extensions available for each P;. Given
G € Hy and 1 < i < t, let G;(G) be the set of G-avoiding cycle-extensions of P;, that is,
the copies of Ce(g) in H; u Hy which extend P; and use extra edges from H, ~\ G only.
By assumption, |%;(@)| = 2en’~*, thus Lemma 5.4.2 implies that

if G < H, is such that Ay(G) < un, then |%;(G)| = en‘~*. (5.6.1)

We now describe the random process which outputs edge-disjoint extensions C; of
P, for each 1 < i < t. In the case of success each C; will be an ¢-cycle extending P;. To
account for the case of failure, in our description we will allow the degenerate case in
which C; \ P; is empty.

For each 1 < i < t, assume we have already chosen C,C5,...,C;_1 € Hy U Hy
edge-disjoint graphs, and we describe the choice of C;. Let Gi—1 = J,<;-; E(Cj) \ E(F;)
correspond to the edges of Hy used by the previous choices of C}, which we need to
avoid when choosing C; (note that Gy is empty). If Ay(G;—1) < pn, then by (5.6.1) we
have |€;(Gi_1)| = en’~" and we take C; € €;(G;_1) uniformly at random. Otherwise, if
Ao(Giq) > pn, let C; = P,

In any case, the process outputs a collection C1, ..., C; of edge-disjoint cycles or
paths which extend P;. Our task now is to show that with positive probability, there is
a choice of C1, ..., C; such that Ay(G;) < pn. This would imply also that each C; was
an (-cycle. Formally, for each 1 < i < t, let S; be the event that Ay(G;) < pun. Thus it
is enough to show P[S;] > 0.

Fix e € V. For each 1 < i < t, let X;(e) be the random variable which takes
the value 1 precisely if e belongs to an edge of C; \. P;, and 0 otherwise. Equivalently,
X,(e) = 1if and only if e belong to the shadow 0(C; \ F;). Since Ay(C;) < 2 for each
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1 <1 <t, we have
de,(€) <2 X;(e). (5.6.2)

For each 1 <7 < t, define
, c
pi(e) := min {1, —nQ_r} ,
where r € {0,1,2} is such that P; is of type r for e, and ¢ := 4071

Claim 3. For each e e V® and 1 <i <t,
P[X;(e) = 1|X;(e), Xa(e), ..., Xi—1(e)] < pi(e).

Proof of the claim. Using conditional probabilities, we separate our analysis depending
on whether S;_; holds or not. Assume first that &;_; fails. Then the process declares
C; = P, thus C; \ P; is empty. Therefore X;(e) = 0 regardless of the values of
Xi(e),...,X;—1(e), and we have

IP[XZ(G) = 1|X1<6>, XQ(G), ce ,Xi_1(€>,8ic_1] =0< p:(G) .

Now assume that &;_; holds. Then the set G;_; of edges to be avoided while
constructing C; satisfies Ag(G;—1) < pn. By (5.6.1), C; will be an ¢-cycle extending P;
selected uniformly at random from the set %;(G,_1), which has size at least en‘~; and
this will happen no matter the values of Xj(e),..., X;_1(e).

If P; is of type 2 for e, then we are required to bound a probability by p;(e) = 1, which
holds trivially. Suppose now that P; is of type 0 for e, and suppose P; = vivy -+ - vpr.
For C; € €;(G;_1), C; ~ P; is a path of the form vy _qvpujus - up_pvive. We wish
to estimate the number of such paths where e € J(C; . P;). Since P; is of type 0
for e, then e € J(C; \ P;) can only happen if e = wju; for |j — k| < 2. There are
(-0 —1)— (£ -1 —2) < 20 choices for j, k. Having fixed those, there are two 2
possibilities for assigning e to {u;,ux}, and having fixed those, there are at most n
possibilities for each other u, with p ¢ {j, k}. All together, the number of C; which

extend P; and such that e € d(C; \ P;) is certainly at most 4/n‘~“~2. Thus we have

e N VA
P{Xi(e) = 1| X X oo Xis < =< —=—=pf
[ z(e) ’ 1(6)7 2(6)7 ) <4 1(6)781 1] ’%(szlﬂ en2 n2 D; (6)7
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as required. Finally, if P; is of type 1 for e, then similar (but simpler) calculations show

that P[X;(e) = 1| X (e), Xa(e), ..., X 1(e),Si—1] < GG S ¢ = pji(e), and we are

done. [ |

ent —t—1

Now, we use that P is y-sparse to argue >._, pi(e) is suitably small. Indeed, for
each r € {0,1,2}, let ¢, be the number of i € {1,...,¢} such that P; is of type r for e.

Since P is y-sparse, we have t,, < yn3~" for each r € {0, 1,2}. Therefore, we have

t
;pz‘(e) =t0%+t1% +to < yen + yen + yn < ;—On (5.6.3)
where the last inequality follows from the choice of c and v « p, €.
We now claim that
: 1 1
P> Xi(e) = En | <exp (~En). 5.6.4
[2 (© 3n] exp (~En (56.4)

Indeed, inequality (5.6.3) implies that 73'_, p¥(e) < un/3, so the bound follows from
Theorem 5.4.5 combined with Theorem 5.4.4.

For each e € V(H)?, let X, := St Xi(e). Let & be the event that max, X, < pn/3.
By using an union bound over all the (at most n?) possible choices of e and using (5.6.4),
we deduce that £ holds with probability at least 1 — o(1).

Now we can show that S; holds with positive probability. We shall prove that
P[S|€] = 1, which then will imply P[S;] = P[S;|E]P[E] = 1 —o(1). So assume & holds,
that is, max, X, < pun/3. Note that Sy holds deterministically, and suppose 1 < i < t is
the minimum such that S; fails to hold. Since S;_; holds, using (5.6.2) we deduce

i1
Ay(Gy) <2+ As(Giq) =2+ max dg, ,(e) <2 (1 + mgxxz X,(e))

j=1

< 2<1+m3XXe> <2<1+§n) < pn,

where in the second last inequality we used that £ holds, and in the last inequality we

used 1/n « p. Thus S; holds, a contradiction. O
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5.6.2 Well-behaved approximate cycle decompositions

In this section we show the existence of approximate cycle decomposition which are
‘well-behaved’, meaning that the subgraph left by the uncovered edges has small codegree.
The argument is different depending on the two settings considered by Theorem 2.3.1,
and we start with the former.

When ¢ is divisible by 3, the cycle C’f’) is 3-partite. By a well-known theorem
from Erdés [18, Theorem 1], we know that the Turdn number of C’ég) is degenerate, i.e.
edge-maximal Cég)-free hypergraphs on n vertices have at most o(n?®) edges. This allows
us to find an approximate decomposition of any hypergraph H with copies of Cég) if £ is
divisible by 3, simply by removing copies of Cé?’) greedily until o(n?) edges remain. This
argument alone does not provide us with the ‘well-behavedness’ condition we alluded to

earlier, but it is, however, possible to modify such a packing locally to guarantee such a

property holds.

Lemma 5.6.2 (Well-behaved approximate cycle decompositions, version 1). Let e,y > 0
and n,0 € N be such that ¢ = 9 is divisible by 3 and 1/n < e,7,1/¢. Let H be a
hypergraph on n vertices with d3(H) = (2/3 + ¢)n. Then H has a Cé3)—packing C such
that Ay(H ~ E(C)) < yn.

The proof of Lemma 5.6.2 is not difficult and follows the same lines as similar
results included in [8]. However it is somewhat long, thus we defer it to the end of this

subsection. Before we consider the second range of ¢, where £ > 107.

Lemma 5.6.3 (Well-behaved approximate cycle decomposition, version 2). Let e,y > 0
andn,l € N be such that £ = 107 and 1/n « €,v,1/(. Let H be a hypergraph on n vertices
with d3(H) = (2/3 + e)n. Then H has a Cf’)-packing C such that As(H < E(C)) < yn.

For Lemma 5.6.3 we exploit the connection of fractional graph decompositions with
their integral counterparts. Given a hypergraph H, let C,(H) be the family of all /-cycles
in H, and given X € E(H) let C;(H,X) < Cy(H) be those cycles which use the edge
X. A fractional C’ég)—decomposz'tion of a hypergraph H is a function w : C,(H) — [0, 1]
such that for every edge X € H we have Y ¢,y xyw(C) = 1. Joos and Kiithn [34]
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proved the existence of fractional C’ék)—decompositions under general conditions. We
state their results only in the particular case k = 3. A hypergraph H on n vertices is
(v, £)-connected if for every two ordered edges (s1, S, 83), (t1,t2,t3) € V(H)3?, there are

at least an®~!/(3!|E(H)|) walks with ¢ edges starting at (s1, 2, s3), ending at (¢, o, t3).

Theorem 5.6.4 (Joos and Kiihn [34]). For all a € (0,1), p € (0,1/3) and ¢ > 2,
there is ng such that the following holds for all n = ng. Suppose H is an (o, {p)-
connected hypergraph on n vertices with 540%O log %0 logi < (. Then there is a fractional
Cég)—decomposition w of H with

2|E(H)|

(1—M)W<w M

(©) = (L4 ) g

for all l-cycles C' in H.

To use Theorem 5.6.4 we show that hypergraphs with 62(H) > 2n/3 are (a, {o)-
connected for some suitable «, £y. The following argument is due to Reiher [34, Lemma
2.3]. We include its proof for completeness and because for 3-uniform hypergraphs we
get a better value of o, which turns out to increase the range of ¢ in which one can

apply Theorem 5.6.4.

Lemma 5.6.5. For each d = 1/2, every hypergraph H on n vertices and such that
62(H) = (d+ o(1))n is (d*(2d — 1)*,8)-connected.

Proof. Let V =V (H) and (s1, 8, 83), (1,12, t3) € V3 be two arbitrary ordered edges of
H. For z € V(H), let the function I, : V? — {0,1} be such that I,(z;,x5) = 1 if and
only if sessxixatyty is a path in the link graph of z in H. Let N = Ng(s9s3) N Ny (t1ts)
and note that |[N| > (2d — 1)n. Note that if 21, 2z € N (possibly equal) and (z;,x5) € V?
are such that I, (z1,29) = L,(z1,22) = 1, then $;s98321712920t1t2t3 is a walk from
(81, 82, 83) to (t1,ta,t3) using 8 edges, call such walks standard.

First, note that having fixed z € N, the number of pairs (x;,75) € V? such that
I.(x1,25) = 1 can be bounded as follows: choose 21 € Ny(s3z) arbitrarily (there are at
least dn choices) and then x5 € Ny (zx1) N Ny (zt;) (of which there are at least (2d —1)n
choices). Thus we have >}, 2 L (z1,22) = d(2d — 1)n? for all z € N.
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On the other hand, note that for a fixed (1, x2) with 1 # x5, the number of standard
walks which use (21, 22) is exactly (3)._y I.(21,22))* Thus the number of standard
walks is at least (using Jensen’s inequality in the first inequality, and |[N| = (2d — 1)n

in the third inequality)

Z <2 ]Z(xl,x2)> > n? (732 Z 2 ]Z(:z:))

(z1,22)eV2 \2eN ZEN (z1,22)
2
1
> n? (2 >ld(2d - 1)n2> > d*(2d — 1)*n*,

as required. 0

To prove Lemma 5.6.3 we combine the fractional matching of Theorem 5.6.4 with a
nibble-type matching argument. We use a result by Alon and Yuster [4] (but see also
Kahn [35] and Ehard, Glock and Joos [17] for variations and extensions). This result
states that every k-uniform hypergraph which is almost regular (for its 1-degree) and with
bounded maximum 2-degree contains a ‘well behaved’ matching with respect to a given
collection of subsets of vertices. The statement of the theorem is technical, but in our
context the conditions are easy to check. We define the parameter g(H) = Ay (H)/Ao(H)

for every k-uniform hypergraph H.

Theorem 5.6.6 (Alon and Yuster [4]). For every e > 0 there is a p > 0 such that for
every sufficiently large n the following holds. Let H be an n-vertex k-uniform hypergraph
and let Uy,...,U; € V(H) be subsets of vertices with logt < g(H)Y®*=3) and such
that |U;| = 5g(H)YG*3) log(g(H)t) for every 1 <i < t. Suppose that

(a) 6:1(H) = (1 - pw)Ai(H) and
(b) Ai(H) = (logn)"Ax(H),

then there is a matching M < E(H) covering at least (1 — e)|U;| vertices from U; for

every 1 <1 < t.

Proof of Lemma 5.6.5. Let a = 4 x 375 (as in Lemma 5.6.5 for d = 2/3) and £, = 8.

By Lemma 5.6.5, H is (a, {p)-connected. A numerical calculation shows that we can fix
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w € (0,1/3) such that 540%0 log & logi < 107 < ¢. Thus Theorem 5.6.4 informs us that
there exists a fractional Cég)—decomposition w of H with

2E(H)| _ |B(H)| _ 4n® _4x3

wW(C) < U+~ AT S BT S i

for all C € Cy(H).

Consider the auxiliary ¢-uniform hypergraph F' with vertex set E(H), and an edge
for each cycle in Cy(H) corresponding to its set of £ edges. Define a random subgraph
F' < F by keeping each edge C' with probability pc := n'/?w(C). By the bounds on
w(C) and 1/n « 1/¢ we have pc < 1 for all C € C/(H).

For each edge e € E(H) we have E[d(e)] = n'/? Ycecye W(C) = n'/2. Moreover,
since two distinct edges e, f € E(H) can participate together in at most O(n‘~*) (-
cycles in H, we have E[dp (e, f)] = O(n~?). Standard concentration inequalities (see
Theorem 5.4.4 (i) and (i)), imply that with high probability dz(e) = (1 + o(1))n'/? for
each e € V(F’) and that Ay(F’") = O(logn). This means that §;(F") = (1 —o(1))A(F"),
g(H) = Q(n'?/logn), and g(H) = O(n'/?).

For each 2-set wv of vertices of H, let U,, < V(F') correspond to the edges in H
containing uv. There are at most n? such sets and each has size at least 2n/3. Thus,
Theorem 5.6.6 yields a matching M in F’ such that at most yn vertices in V(F’) are
uncovered in each Uy,. The matching M in F’ < F translates to a C’ég)-packing Cin H
and the latter condition implies Ay(H \ E(C)) < yn, as desired. O

As mentioned before, we end this subsection with the proof of Lemma 5.6.2.

Proof of Lemma 5.6.2. The proof proceeds in three steps. First, we find H, € H by
including each edge with probability p, and in the remainder Hy = H \ H, we find
an almost perfect C’f’)—packing Co, let Ly = Hy ~ E(Cy) be the leftover edges. Second,
we correct the leftover Ly in the vertices incident with Q(n?) many edges of Ly by
constructing cycles with the help of the edges in H,,. This provides us with a new cycle
packing C; € Lo u H, whose new leftover L; = Hy~\ E(Cyu Cy) satisfies Aj(Ly) = o(n?).

Finally, we correct the new leftover L in a similar way, fixing the pairs incident to Q(n)
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edges in L;. We get a cycle packing Co < L; u H,, and Cy u C; U Cy will be the desired
cycle packing.

Step 1: Random slice and approximate decomposition. Note that 5&3)(1-]) > 3en. Now
let p = v/4, and let H, € H be obtained from H by including each edge independently
with probability p. Using concentration inequalities (e.g. Theorem 5.4.4) we see that

with non-zero probability
Ay (H,p) < 2pn and 5&3)(Hp) > 2epn. (5.6.5)

hold simultaneously for H,. From now on we suppose H, is fixed and satisfies (5.6.5).

Let Hy = H \ H,. In Hy, construct a Cf’)—packing by removing edge-disjoint cycles,
one by one, until no longer possible. We get a C’ég)—packing Co in Hy, let Fy = E(Cy).
By Erdés’ Theorem [18, Theorem 1] there exists ¢ > 0 such that Ly = Hy \ F has at
3—3c

most n edges.

Step 2: Eliminating bad vertices. Let By = {v e V : dr,(v) = n?"2¢}. Since |Lo| < n373,
by double-counting we have |By| < 3n'~*.

For each b € By, let G, be the subgraph of Ly(b) obtained after removing the vertices
of By. Note that Lo(b) — Gy has at most |By|n < 3n*~¢ edges. Now, let P, be a maximal
edge-disjoint collection of paths of length 3 in GG,. Since every graph on n vertices with
at least n + 1 edges contains a path of length 3, then G, — E(P,) has at most n edges.
All together, we deduce that the number of edges in Ly(b) — E(P,) satisfies

|Lo(b)| — |E(Py)| < 3n* 4+ n < 4n*°. (5.6.6)

Since G} contains at most n? edges, we certainly have |Py| < n% Let P, be a
collection of paths on five vertices obtained by replacing each vgvivovs in Py with the
path vouibvavs in Ly. Note that any two distinct Py, P, € P, are edge-disjoint, and
for two distinct b, € By, and P € Py, P’ € Py, since b’ ¢ V(G,) we have P, P’ are
edge-disjoint. Thus the union P = (J,. B, Pb 1s an edge-disjoint collection of paths on 5
vertices.

Select ', p/,¢" such that 1/n « ' « y « ¢ « ~,e,1/(. We wish to apply
Lemma 5.6.1 to extend P into cycles. We claim P is +'-sparse. Let S € V(H)(Q).
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Since |P| < |Bo|n? < 3n*7¢ < 4/n3, certainly P contains at most |P| < 7/n® paths of
type 0 for S. Now, note that for each b € By, P € P, can have at most 2n paths of type
1 for S, thus P has at most | By|2n < 6n2~¢ < v'n? paths of type 1 for S. Analogously,
for each b € By, P € P, can have at most 1 path of type 2 for S, thus P has at most
| Bo| < 3n'~¢ < +/n paths of type 2 for S. Thus P is '-sparse.

Recall that L is edge-disjoint with H,. Inequalities (5.6.5) together with p = /4
and &’ « 7, 1/¢, show that we can use Corollary 5.4.3 (with U = V(H)) and deduce that
for each P € P, there exists at least e'n‘~ copies of Cég) in Lo u H, which extend P,
using extra edges of H,, only.

We apply Lemma 5.6.1 with €', ¢/, v/, ¢, 5, Lo, H,, P playing the r6le of ¢, u, 7, ¢,
U, Hy, Ho, P respectively, to obtain a Cég)—decomposable graph Fy < Lo u H), such that
E(P) < Fy and

Ay(Fy N E(P)) < y'n. (5.6.7)

Since Fy, Iy are edge-disjoint, Fy U F} is Cég)—decomposable. Let Ly = Hy ~ (Fo U FY).
Note that if v ¢ By, then dr, (v) < dr,(v) < n*% by definition. Moreover, if v € By, then
each edge in E(P,) is in F, and hence (5.6.6) implies dz, (v) < |Lo(v)|—|E(P,)| < 4n*.

Therefore,
Al(Ll) < 471,270. (568)

Step 3: Eliminating bad pairs. Let f = ¢/2 and By = {zy e V® : d; (zy) = n'~f}.
From |Li| < |Lo| < n*73¢ < n*75 we deduce |B;| < n* *. Now consider B; as the
set of edges of a graph in V. Each edge of B; incident to a vertex = implies that x
belongs to at least n'~/ edges in L;, and each of those edges participates in at most
two of the edges in By incident to . So we have dp, (z) = in'~/dp, (z). Together with
inequality (5.6.8) we deduce A(B;) < 8n'~7.

A path P on Ly is B;-based if P = zxyw and xy € B;. Let Py be a maximal packing
of Bi-based paths. For all zy € By, it holds that dp, (xy) — dgp,)(zy) < 1. Otherwise it
would exist distinct z,w € N, gp,)(2y), and then zzyw would a Bi-based path not

in P, which contradicts its maximality.
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We claim P is y'-sparse. For each zy € By, let P,, < Py be the paths whose two
interior vertices are precisely zy. Clearly |P,,| < n and Py = Umye B, Py Let e € V@,
Since |Py| < 3]

type O for e in P,. Recall that if P = zzxyw is a path of type 1 for e, then we have

wyen, |Pryl < n|Bi| < n®™Y < 4/n?, there are at most 7'n® paths of
le n {z,z,y,w}| = 1. If xy € By satisfies e n {x,y} = &, then at most two paths in P,,
can be of type 1 for e and therefore there are at most 2|B;| < 2n?>~* paths of type 1
for e in P,. We estimate the contribution of the pairs zy € By such that |e n {z,y}| = 1.
Each such zy contributes with at most n paths of type 1 for e in P,,. By (5.6.8), the
number of such zy is at most 2A(B;) < 16n'~/, thus the total contribution of those
pairs is at most 16n2~/. All together, the total number of paths of type 1 for e in P
is at most 2n*~% + 160>~/ < v'n?. If e = {a, b} then P,; does not contain any path
of type 2 for e, by definition of the path types. Thus the only possible contributions
come from the pairs in P, , and P, for some z,y € V(H); and each one of those sets
contains at most 1 path of type 2 for e. Thus the total number of pairs of type 2 for e
in P, is at most 2A(B;) < 16n'~/ < 4/n. Thus P, is +'-sparse.

Let H, = H, \ (Fy u F). Inequalities (5.6.5) and (5.6.7), together with the hierar-
chies y/ « € « 7,1/¢, allow us to use Corollary 5.4.3 with U = V(H), thus for each

nt=* copies of C’ég) in Ly u H, which extend P using

P € P, there exists at least &’
extra edges of H, only. Apply Lemma 5.6.1 with the parameters &', ', ~', £, 4, L1, H,, P,
playing the roles of e, u,~, ¢, ¢, Hy, Hy, P respectively, to obtain a C’ég) -decomposable
Fy € Ly u H such that E(P,) S Fy and Ay(Fy \ E(Py)) < p'n.

We claim that Ay(Ly \ Fy) < n'~/. Indeed, if zy € By, dr, r,(vy) < dr, (vy) < nt=7f
follows by definition, otherwise, E(Py) € Fy implies dr, g, (zy) < dr, (zvy) —dp, (zy) < 1.
Since F, and Fyu F} are edge-disjoint, F' = Fyu Fy U F, is a C’é3)—decomposable subgraph
of H. We claim L = H \ F satisfies Ay(L) < yn. Indeed, an edge not covered by F is

either in H, or in Ly \ F5. Thus we have
AQ(L) < AQ(HP> + AQ(Ll AN FQ) < an + nl_f < n,

as required. O
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5.6.3 Proof of the Cover-Down Lemma

As a final tool, we borrow the following theorem of Thomassen [61] about path-

decompositions of graphs.

Theorem 5.6.7 ([61]). Any 171-edge-connected graph G such that |E(G)| is divisible

by 3 has a Ps-decomposition.

Proof of Lemma 5.3.3. Let v1,p1,p2 > 0 with 71 < p; < py € p,e. For i € {0,1,2,3},
say an edge e of H is of type i if |e n U| =i, and let H; © H be the edges of H which
are of type i. For i € {1,2}, let R; £ H; be defined by choosing edges independently
at random from H; with probability 3p;/2. By assumption, (553)(H ;U) = 3e|U| (see
definition at the beginning of Section 5.4.1).

By Theorem 5.4.4 we get that, for i € {1,2}, with non-zero probability, that

Ao (R;) < 2pin, (5.6.9)
0 (Ry U Ry u H[ULU) = 2epy|U], and (5.6.10)
08 (Ry U HIUY,U,G) = 2eps|U], (5.6.11)

where G < V(H )(2) corresponds to the pairs e such that e n U # &. From now on we
assume Ri, Ry are fixed with those properties.

Let H = H— H|U| — Ry — Rs. Recall that, by assumption, do(H) > (2/3 + 2¢)n and
|U| = |en|. By our choice of py,ps and (5.6.9), we deduce that d2(H') = (2/3 + £/2)n.

We consider two possible cases depending on the value of £. If £ > 9 is divisible
by 3, then we apply Lemma 5.6.2, otherwise by assumption ¢ > 107, and we can
apply Lemma 5.6.3. In any case, the output is a C’ég)—packing C in H' such that
Ay(H' W E(C)) < min. Let J = H' ~ E(C) be the edges in H' not covered by C, and
for each i € {0, 1,2} let J; be the edges of type i in J. We shall cover the edges in J
with cycles of length ¢ and for that we will proceed in three steps, covering the edges of
Jo, J1, and Jy in order.

Consider each edge in Jy as a path on three vertices vjvyv3, assigning to each

edge an arbitrary order and let P, be the collection of those paths. Observe that,
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due to the inequalities As(Jy) < As(J) < vin the collection Py is y3-sparse. Let
p1,€1 > 0 be such that 71 « p; < €1 € p1,e. Equation (5.6.10) and Corollary 5.4.3
imply that each path P € P, can be extended to at least 2e;n/~2 cycles C, such that
C~PC R URyuH[U] and V(C)\V(P) < U. Then an application of Lemma 5.6.1
with €1, p1,3, Jo, R1 U Ry U H[U], Py in place of €, u, ¢', Hy, Hy, P respectively, implies
that there is a CéB)—decomposable subgraph Fg such that Fy 2 Jy, and

AZ(FO AN Jo) < M. (5612)

By construction, Fy is edge-disjoint with the cycles in C, and then Fj, = E(C) U Fy is C’l@—
descomposable. Note that all edges not covered by F{ lie in (J; U J2) U (R U Re) u H[U].
Let J; = (J1 U Ry) N Fjand R, = (Ry u H[U]) \ F}. Let o, 12,9 > 0 be such that

P1 K7 K g K €9 K Po, €. Since J{ cJjuR cJu Rl, we have
Ax(J7) < Do) + Ao(Ry) < yn+ 2pin < Yam.

Since each edge in J] is of type 1 in H, we can consider each edge in J{ as a path
P = vyv9v3 where vy € U and vy,v3 ¢ U; and let P; be the collection of those paths.
Then Ay(J]) < von implies Py is ye-sparse. By (5.6.11) and (5.6.12), together with
Corollary 5.4.3, we deduce that each P € P; can be extended to at least 2eon’=3
cycles C, such that C ~~ P € R, and V(C) \ V(P) < U. Apply Lemma 5.6.1 with
€9, b2, V2, 3, J1, R, P1 in place of €, u,v, ¢, Hy, Hy,P to obtain a Cé?’)—decomposable
subgraph F such that F; 2 Jj, and

By construction, F; and Fj are edge-disjoint, and then F| = Fy U F{ is Cf)—decomposable.
Note that the edges not covered by F} lie in Jy, u Ry U H[U].

Let J5 = (J2 u Ry) . F|. Note that each edge in Jj is of type 2. For each
veV(H)\U, let G, = Jj(v)[U], that is, G, is the link graph of v in J) restricted
toU. Fix ve V(H)\ U. Given z,y € U, the equations (5.6.11) and (5.6.13) imply
that « and y have at least 2epy|U| — 2usn = 171 common neighbours in G, so G, is

171-edge-connected. Since v ¢ U, our assumption on H implies that the number of
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edges of H(v) is divisible by 3. Note that G, is exactly the link graph of H \ F] when
restricted to U. Therefore, and since F7 is Cég)—decomposable, the number of edges in
G, is divisible by 3 as well.

By Theorem 5.6.7, G, has a decomposition into paths P! = {P,..., P;}, each of
length 3. Observe that these paths yields to a collection of (3-uniform) paths in J; by
substituting each path P, = wjwowsw, in P, by the path wywovwsw,. Let P, be the
collection of paths obtained in this way. Observe that for u # v in V(H) \ U, P, and
P. are edge-disjoint. Let Py = UUGV(H)\U P,. Note that Py decomposes J;, into paths
on five vertices.

Let 73,63 > 0 be such that py « 73 € €3 € pz < u,e. Recall that |U| = |en]. Since
Jy € JyU Ry © F U Ry, we have Ay(J)) < Ag(Ry) + As(J) < 2pan+n < y3n, so Py is
vs-sparse. Let Hy = H[U| \ F|. We have F|[U] = F1|[U] u Fo[U]. By (5.6.12)-(5.6.13),
we have §o(HY) = 0o(H[U]) —2puen = (2/3+¢/2)|U|. By Corollary 5.4.3, we deduce each
P € P, can be extended to at least 2e5n/~° cycles C such that O\ P < HJ. Thus we can
apply Lemma 5.6.1 with e3, u3, 73, 5, J5, H}, Py playing the rdles of e, u,vs, ¢, Hy, Hy, P
respectively, to obtain a C’é?’)—decomposable subgraph Fy such that F» 2 J;, and

By construction, F» and F} are edge-disjoint, and then F' = F] U F} is C’és)—decomposable.

Moreover, all edges not contained in U are covered by F'. In fact, we have that
H—-H[U=EC)uJyu(JiuR)u(JauR)<SEC)UFyuF, uF,=F.

Finally, inequalities (5.6.12)—(5.6.14) yield that Ay(F[U]) < un, as required. O

5.7 Absorbing Lemma

In this section we prove Lemma 5.3.2. We need to show that, given a sufficiently
large H with 62(H) = (2/3 + ¢)n and a subgraph R € H on at most m vertices, there is
an CP)-absorber A for R on at most O(m?¢°) edges. We divide the proof in two main

parts.
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First, in Section 5.7.1 we shall find a bounded-size hypergraph A; < H, edge-
disjoint from R, which admits a C§3)—decomposition. This subgraph will be chosen
such that R U Ay contains a tour decomposition, that is, a decomposition in which all
subgraphs are tours (see Lemma 5.7.1). The second step is to transform the found tour
decomposition to a Cé?’)—decomposition (see details in Section 5.7.2). Finally, in Section

5.7.3 we combine both steps to prove Lemma 5.3.2.

5.7.1 Tour decomposition

The main goal of this subsection is to prove the following lemma.

Lemma 5.7.1. Let { > 7, e > 0, and n,m € IN be such that 1/n < &,1/m,1/¢. Let H
be a hypergraph on n vertices with d3(H) = (2/3 + e)n. Let R < H be C’ég)—divz’sz’ble on

at most m vertices. There exists a subgraph A, < H, edge-disjoint with R, such that
(i) Ay has at most 5m3(? edges,

(71) Ay U R spans at most m + 5m3(? vertices,

(7i) Ay has a C'é?’)—decomposz'tion, and

(iv) Ay U R has a tour decomposition.

Tour-trail decompositions

We consider decompositions T = {Cy,...,Cy, Py, ..., P} in which C; is a tour for
every i € [t] and P; is a trail for every j € [k]. In this case we say T is a tour-trail
decomposition. Note that every hypergraph has a tour-trail decomposition, since we can
consider every edge as a trail on three vertices (by giving it an arbitrary ordering).
For a trail P = ujus - - - ug_ju) we say that the ordered pairs (ug,u;) and (ug_1,u)
are the tails of P. Observe that the set of tails of a P depends on the edge-set of P
only, i.e. is independent of order in which we transverse the trail. We remark that the
tails differ from the starting and ending pairs of P (as defined in Chapter 1) since they

have different orderings.
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Given H and a tour-trail decomposition 7 = {C},Cs, ..., Cy, Pi, Ps, ..., P} of some
R < H, we define the residual digraph of T, denoted as D(T ), as the multidigraph on
the same vertex set as H, where the arcs correspond to the union of the tails of each
trail of 7, considered with repetitions. Thus D(T) has exactly 2k arcs, counted with
multiplicities, if and only if 7 has k trails. Outdegrees and indegrees of a vertex x in
D(T) are denoted by d*p()(x) and d™p(r(x) respectively, omitting subscripts from the

notation if the underlying digraph is clear from context.

Remark 5.7.2. Observe that if (z,y), (y,z) € E(Dy) then, there are trails P, and P;
in 7 that can be merged into a trail (if ¢ # j) or tour (if ¢ = j) which contains all the
edges contained in P; and P;. Thus there is another tour-trail decomposition 7" of R
with less trails than 7, obtained from 7 by removing F;, P; and adding the tour or trail

born from joining P; and Ps.

We construct A; in Lemma 5.7.1 as follows. We begin with an arbitrary tour-
trail decomposition 7y of R, and we will find an increasing sequence of subgraphs
g =T < Ty < --- < T, <€ H Each T; ~ T;_; will be sufficiently small, C’f’)—
decomposable and edge-disjoint from 7;_;. Moreover, each T; \ T;_; will be an edge-
disjoint union of ‘gadget’ of a prescribed family. More precisely, for each i > 0, each
T; v R will contain a tour-trail decomposition 7;, obtained from a previous tour-trail
decomposition 7;_; of T;_; U R. As an intermediate step (see Lemma 5.7.6), for some
k' < k we will find T} and a tour-trail decomposition 7 of T)y U R whose residual
digraph is Eulerian (with the appropriate definition for directed graphs). At the end,
we will have found a hypergraph T} and a tour-trail decomposition 7 of R u T} which
has an empty residual digraph. Thus 7} is actually a tour decomposition, and we finish

by setting A; = T.

Gadgets

In the following two lemmata we describe the aforementioned gadgets, and their main

properties.
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First, for a given tour-trail decomposition 7 of R € H and three distinct vertices
v1, U2, v3, the following lemma states that there is a subgraph S3 = S3(vq,v9,v3) € H
edge-disjoint with R and which contains a Cég)—decomposition. Moreover, there is
a tour-trail decomposition of R U S5 such that its residual digraph is exactly D(T)
with the additional arcs (vy,v2), (ve,v3), and twice the arc (vy,v3). We define the
multidigraph Ss(vy, v, v3) = {(v1,v3), (v1,v3), (U1, v2), (v2, v3)}.

For two multidigraphs Dy, Ds, we set the notation D; L1 Dy to mean the multigraph on

V(D1)uV (D) obtained by adding all the arcs of Dy to Dy, considering the multiplicities.

Lemma 5.7.3. Let £ > 7, ¢ > 0 and n,m € IN be such that 1/n < e,1/m,1/¢. Let H
be a hypergraph on n vertices with d2(H) = (2/3 + e)n. Given three distinct vertices
v1,v2,v3 € V(H), R< H on at most m vertices, and a tour-trail decomposition T of R
the following holds. There is a subgraph Sz = S3(v1,vs,v3) S H, edge-disjoint from R,

and a tour-trail decomposition Ts, = Ts,(T,v1,v2,v3) of R U Sy such that

(i)s, S3 contains at most 20 edges and S3 U R spans at most m + 20 — 3 vertices,
(7i)s, S3 has a C’ég)—decomposition, and
(iii)s, D(Ts,) = D(T) u Ss(v1,va,v3).

Proof. The minimum codegree condition on H implies that there is a vertex z € V(H)
that lies in N (v1v9) N N (v1v3) N N(v9v3). Considering the paths vyvsz and vzzvevy, two
applications of Lemma 5.4.1 yield the existence of two edge-disjoint cycles C and Cy of
length ¢, edge-disjoint with R, and such that vjvsx € E(Cy) and vzzve, zvov; € E(C)
(transversing the vertices in that order). Then S5 = C; U Cy, clearly satisfies (7)g, and
(ii)s,. Hence, we only need to prove the existence of a tour-trail decomposition 7g, of
R U S5 for which (iii)g, holds.

For this, consider the trail P; = vzvazvivs. Observe that E(S3) \ E(Py) consists
exactly in the edges of a trail P, whose tails are (vy,vy) and (v, v3). Indeed, the edges
contained in the set E(Cy) \ {vsvex, vazvy} form a trail between (ve,v1) and (vs,x),

that we may merge with the trail with edges in E(C}) \ {zvivs} from (vs, x) to (vy, vs).
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Therefore, Tg, = T U {P1, Py} is a tour-trail decomposition of R U S3. We deduce (i),
by noticing that the tails of P; and P, are (vy,v3) and (vy,v3), and (vy,ve) and (vy,v3)

respectively. O]

The following is our second gadget. It is designed in such a way that we can add a
small subgraph Cy < H to some R, such that R u Cy contains a tour-trail decomposition
in which the residual digraph has an extra directed four-cycle. We introduce the

notation C_;\4(,017 V2, U3, U4) = {(Uly UQ), (UQ, U3)a (U3a 1)4)7 (U47 Ul)}-

Lemma 5.7.4. Let { > 7, ¢ > 0 and n,m € N such that 1/n <« ¢,1/m,1/¢. Let H
be a hypergraph on n vertices with 6o(H) = (2/3 + ¢)n. Given four distinct vertices
V1, Vg, 03,04 € V(H), a subgraph R < H on at most m vertices, and a tour-trail decom-
position T of R the following holds. There is a subgraph Cy = Cy(vy,v9,v3,v4) € H,
edge-disjoint from R and a tour-trail decomposition Te, = Te, (T, v1, v2,v3,v4) of RU Cy

such that

(i)e, Ci has at most 40 edges and Cy U R spans at most m + 40 — 6 vertices,
(ii)c, Cy has a 6’53)-decomp05ition, and
(’i’ii)c4 D<7-C4) = D(T) (] 64(2}1,'112,1)3,1}4).

Proof. Two consecutive applications of Lemma 5.7.3 yield the existence of edge-disjoint
subgraphs Ss(vy, v, v3) and S3(vs, v4,v1). More precisely, first we apply Lemma 5.7.3 to
obtain S3(vy, v, v3) edge-disjoint from R. Then, we apply it again with R U S3(vy, va, v3)
in place of R to obtain Ss3(vs,vs,v;) edge disjoint from R U S3(vy,ve,v3) (here we
use 1/n « 1/m, to apply Lemma 5.7.3 to a larger subgraph with at most m + 2¢ — 6
vertices). It is not difficult to check that the subgraph Cy = S5(v1, va, v3) U S3(vs3, v4,v1)
satisfies (7)c, and (7)c,

Moreover, in the second application of Lemma 5.7.3 we obtain a tour-trail decomposi-
tion 77 of R u Cy equal to T = Tg, (7§3(T, V1, Vg, V3), U3, Uy, vl), whose residual digraph
is given by

—

D(T/) = D(T) [} 5:3(?)17’02,1}3) L 53<U3,U4,1)1>.
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Observe that D(7") contains both the arcs (vq,v3) and (vs, v1) twice. By Remark 5.7.2,

we can obtain a tour-trail decomposition 7¢, which satisfies (747 ). O

Directed Eulerian tour

Given a directed multigraph D, we can extend the definition of closed walk as sequence of
non-necessarily distinct vertices vy, . .., v, such that, for every 1 < i < ¢, the arc (v;, v;41)
is in D (understanding the indices modulo ¢). A closed walk in which all arcs are distinct
is called tour, and if every arc in D is covered exactly once, we say that it is an Fulerian
tour. Directed multigraphs which contain Eulerian tours are called Eulerian.

In order to prove Lemma 5.7.1 we first prove that there is a bounded Cég)—decomposable
subgraph T' < H, edge-disjoint with R, and such that R U T contains a tour-trail de-
composition T for which D(7) is Eulerian.

We say that a directed multigraph D is strongly connected if for every two distinct
vertices x,y € V(D) there is a closed walk which includes both. Similarly to the graph
case, it is well-known that a directed multigraph D is Eulerian if an only if D is strongly
connected and for every vertex x € V(D) we have d(z) = d*(z).

Now, we establish a crucial property of residual digraphs in 3-vertex-divisible hyper-

graphs.

Lemma 5.7.5. Let H = (V, E) be a 3-vertez-divisible hypergraph and let T be a tour-
trail decomposition of H with residual digraph D(T). For every x € V we have that

df(z) =d(z) (mod 3).

Proof. For every vertex « € V(H), we need to show that d*(z) — d(z) = 0 mod 3 in
the digraph D(T). Consider the auxiliary digraph F(7) obtained as follows: for every
trail or tour P = wyws - --wy in T, to F(T) add the arcs (w;, w;+1) and (w;4 9, w;41) for
every 1 < i < ¢ — 2 (and for tours, add (w1, wy), (wy, wy), (we, wy), (we, w) as well),
including all repetitions. In such a way (and since 7T is a decomposition) every edge of H

contributes with exactly two arcs to F'(T). It is straightforward to check D(T) < F(T)
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and, crucially, that

d*pery(x) —d pery () = dTpery(2) — dper (@),

so from now on we work with F'(7) only.

Let € V(H). Each edge zyz in H contributes with two arcs to F(7), which
can be of type {(z,y), (z,2)},{(y,z), (y,2)}, or {(2,2),(2,y)}. The edges of the first
type contribute with 2 to d*(z) — d~(x) in F(7). The edges of second and third type
contribute with —1 to d*(xz) — d(z) in F(T), which is congruent to 2 mod 3. Thus we
deduce d*(z) — d(z) = 2|dg(x)| mod 3. Since H is 3-vertex-divisible, this is congruent

to 0 mod 3, and we are done. O

As mentioned, we find a tour-trail decomposition in which the residual digraph is

Eulerian.

Lemma 5.7.6. Let { > 7, >0, and n,m € N be such that 1/n < €,1/m,1/¢. Let H
be 3-divisible hypergraph on n vertices with §(H) = (2/3 + e)n. Let R < H be Cf’)-
divisible in at most m wvertices. Then, there exists a subgraph T' < H, edge-disjoint

from R such that

i)y T has at most m3( edges and T U R spans at most m + m3( vertices,

O g

(i), T has a C’lg?’)—decomposz'tion, and

(7)., there is a tour-trail decomposition T, of T U R such that D(T,) is Eulerian.

Proof. We will prove that there is a subgraph T' < H, edge-disjoint with R, satisfying
(7)., and (7)., and such that T'U R has a tour-trail decomposition 7 whose residual

digraph satisfies

D(T) is strongly connected and for every x € V we have d pr(z) = d"pr)(2).
(5.7.1)

It is well-known this implies D(7) is Eulerian, and therefore (77 ),, will also follow.
Consider an arbitrary tour-trail decomposition 7y of R. Since R spans at most m

vertices, it has at most (’g) edges. Since each trail in 7, contributes with two arcs and
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uses at least one edge of R, we deduce that the number of arcs in D(7y), counting
repetitions, is at most 2|E(R)| < 2(7). Let U = V a subset of vertices disjoint from
V(R), since 1/n « 1/m we can assume that |U| = n/2.

Let Vi, Va, ..., Vi be the strongly connected components of D(7p), ignoring isolated
vertices. Observe that k < m. For each 1 < i < k, take an arbitrary vertex v; € V;,
and also take vertices z;,y; € U, all distinct. Now, apply Lemma 5.7.4 to obtain the
gadget Cy(v1, v, 21,y1) and the tour-trail decomposition 7’ of R u Cy whose residual
digraph is given by

D(T") = D(T) u 64(01,U2,$1>y1)-

Hence, in D(T”) the vertices v; and v, are strongly connected (and also the new
vertices x1,y1).

Since 1/n « 1/m and the four-cycle gadget spans at most 4¢ — 6 new vertices we
may assume that n is large enough for k£ — 2 extra iterative applications of Lemma 5.7.4.
Therefore we get edge-disjoint subgraphs Cy(v;, viy1, x;, ;) for every 1 < i < k. Con-
sider T} = Uz‘e[kq] Cy(vi, viv1, i, y;) and T; be the tour-trail decomposition of R u T}
given by the the last application of Lemma 5.7.4. By construction, it is easy to see
that D(77) is strongly connected. Moreover by (i), and (ii)c, it follows that T
is C’ég)—decomposable, has at most 4¢(k — 1) < 4(m — 1)¢ edges and R u T} spans at
most m + k(4¢ — 6) < m + 4(m — 1) vertices.

For the second part of statement (5.7.1) we proceed as follows. For an arbitrary tour-
trail decomposition 7" of a hypergraph G, define (7)) = >} .y g [d"p()(v) — d*p(7) (2)]-

Assume ®(77) is positive (otherwise we are done). Since 7 is obtained from 7Ty
adding only C; gadgets, and since d5 (v) = d*5, (v) we have that

o(7;) = a(7) < 2B <4 ('} ).

Let x € V such that d p(5;)(x) # d*p(rp)(x), which exists by assumption. Without
loss of generality we can assume d p(r;)(2) — d*perp)(2z) > 0, and hence we can find
y € V such that d*per)(y) — d perp)(y) > 0. Observe that by Lemma 5.7.5 we have

d oy (x) — d*pery (@) = 3ry and d*pery(y) — d pery(y) = 3ry for some ry, 1y € Z7*.
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Selecting any unused vertex u € U, an application of Lemma 5.7.3 yields the existence
of a subgraph S3(z,u,y) € H such that there is tour-trail decomposition 7” of the
hypergraph R U T} U S3(x, u,y) with residual digraph given by

D(T") = D(T:) u Ss(z,u, y).
Thus, we have that
d_D(T”) (ZL’) — d+D(’T”) (IL‘) = 3(T1 — 1) and d+D(T”) (y) — d_D(T”) (y) = 3(7’2 — 1),

This is to say, the absolute difference between the indegree and outdegree of x is reduced
by 3, similarly with y. Moreover, for every z € V ~\ {z,y} this difference is not altered,

that is,
d pern(2) — dpern(2) = dpemy (2) — d ooy (2)-

Therefore, we have ®(7") = ®(7;) — 6. We further note that D(T") is still strongly
connected.
As before, since 1/n « 1/m and Sz spans at most 2¢ — 3 new vertices, we may assume

that n is large enough to apply Lemma 5.7.3 iteratively (7;) times. In each step ®

m

3) applications of Lemma 5.7.3 we can obtain

decreases by 6, so after at most %(gj) < (
a subgraph Ty, < H, edge disjoint with R U T}, and such that R u T} U T, has a tour-trail
decomposition 7 with ®(7) = 0. In particular, T satisfies (5.7.1). It is easily checked

that =T, u Ty and T, = T satisfy (¢),, and (i7),, as well. O
Now we are ready to prove the main lemma of this subsection.

Proof of Lemma 5.7.1. Let T'< H be given by applying Lemma 5.7.6 and let 7, be a
tour-trail decomposition of R U T whose residual digraph is Eulerian. Observe that
since each trail in 7, contributes with two arcs in D(7T,), the number of arcs is even.
Let vvy - - - vgy be the sequence of the directed Eulerian tour in D(7;).

Let U < V be disjoint from V(R u T), and let C' = wujus - - - ug, be an arbitrary
sequence of vertices in U, where for all 1 < ¢ < 2k, u; # u;41 (here, and during the rest

of the proof, indices are understood modulo 2k). We will apply gadgets to T"u R to
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find a new tour-trail decomposition 7o such that D(7¢) consists precisely of a closed
walk in the sequence C'. First, we describe the construction for arbitrary C', then we
will give a particular choice of C' which will allow us to finish the proof.

Since 1/n « 1/m,1/¢ and the gadget C, contains at most 4/ — 6 new vertices we
may assume that n is large enough to apply Lemma 5.7.4 iteratively 2k < m + m3/¢
times. More precisely, assume that after ¢ — 1 applications of the Lemma 5.7.4 we have
obtained a sequence of subgraphs T < T, < --- < T;_; such that T;_; is edge-disjoint
with R uT. Then, we apply Lemma 5.7.4 with R U T u T;_; in the place of R to obtain
a suitable Cy-gadget, edge-disjoint from R U T U T;_;. We take the next subgraph 7;
simply as the union of 7;_; and the found gadget.

Let Ty = @, and for 1 < i < 2k, in the ¢th application of Lemma 5.7.4 we take
T, =Ty U Cy(Vig1, v, Ui, Uigr).
We obtain a trail-tour decomposition 75, whose residual digraph is given by

D(Tar) = D(T;) v |_| 64(Ui+17viaui>ui+1)-
ie[2k]
Observe that, for each 1 < i < 2k, D(73) contains both (v;,v;41) and (vi41,v;), the
first contributed by D(7;) and the second by 64(Ui+1, Vi, U, Uiy1). Similarly, for each
1 < i < 2k, two consecutive cycles will contribute with the edges (v;, w;) and (u;, v;).
Following Remark 5.7.2 we can find a tour-trail decomposition 7’ of R u T}, whose

residual digraph removes all of those edges. What remains are precisely the edges

(ui, uiq) for all 1 < i < 2k, so D(T”) is the closed walk C' as desired.

Now we fix a particular choice of C' to finish the proof. We select two distinct vertices
x,y € U and take C' such that, for each 1 <1 < 2k, u; = x for odd i, and u; = y if
¢ is even. Thus the closed walk C' consists of k arcs from x to y, and k arcs in the
opposite direction. By Remark 5.7.2 again, we can find a tour-trail decomposition 7" of
R U T}, with an empty residual digraph. It is easy to check that we are done by setting
Ay =Ty O
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5.7.2 From a tour decomposition to a cycle decomposition

In this section we prove the following lemma, which constructs an absorber given a

C’ég) -divisible remainder which has a tour decomposition.

Lemma 5.7.7. Let { > 7, ¢ > 0, and n,m € IN be such that 1/n < ¢,1/m,1/(. Let H
be a hypergraph on n vertices with 6,(H) > (2/3 + €)n. Let R < H be a C\)-divisible

edge-disjoint collection of tours spanning at most m vertices in total. Then, there is a

C’f’)—absorber Ay for R, such that Ay U R spans at most 10(7;)62 edges.

Given two subgraphs R; and Ry, we say that a subgraph T' € H edge-disjoint from R,
and Ry is a (Ry, Re)-transformer if T[V(R1)],T[V (Rs)] are empty and both T'u R,
and 7' U R, contain a C’f’)-decomposition. Observe that if Ry has a C’ég)—decomposition,

then T" U Ry is an absorber for R;.

Lemma 5.7.8. Let { > 7, >0, and n,m € IN be such that 1/n < ¢,1/m,1/¢. Let H
be a hypergraph on n vertices with do(H) = (2/3 +¢e)n. Let R < H be a tour and C < H
be a cycle. Suppose that R and C are edge-disjoint and have the same number of edges,
which is at most m. Then H contains an (R, C)-transformer L with at most m{ edges

and spanning at most m({ — 4) vertices.

Proof. Let ri,r9,...,7, and ¢y, ca, ..., ¢, the sequence of vertices of R and C respec-
tively (recall that while C' does not contain repetitions, R may contain).

In the following, all operations on the indices are modulo m. We define iteratively
the following paths P;, Q); for every i € [m]. Apply Lemma 5.4.1 to obtain a path P; on 5
vertices, edge-disjoint from R u C, from the pair (r;, 7;41) to the pair (¢;_1,¢;). Similarly,
we can obtain a path @); on ¢ — 5 vertices, from the pair (r;,7;_1) to the pair (¢;, ¢;_1),
edge disjoint from R u C, and with no interior vertex in common with the paths P;,
Py

We claim that L = J;c,,; (P v Qi) is the desired transformer. Indeed, observe that
the edges of P; and Q); together with the edge ;177,11 € E(R) form a cycle of length ¢,

thus R U L can be decomposed into those ¢-cycles. In the same way, the edges of P, ;
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and @); together with the edge ¢;_sc;_1¢; € E(C) form a cycle of length ¢, and therefore

all those cycles form a Cég)—decomposition of C'u L. O

For any k,¢ € IN we define B(k,¢) to be the hypergraph resulting from a cycle
of length k¢ with vertices in {vy,vs,..., vk} and identifying all vertices v; such that
i = 1 mod ¢ and all vertices v; such that j = 2mod ¢. This is to say that B(k,Y)
consists of k copies of cycles of length ¢ glued through exactly two vertices, and those
two vertices are consecutive in every cycle. Observe that B(k, /) is a tour and admits
a C’ég)—decomposition.

Now we are ready to prove Lemma 5.7.7.

Proof of Lemma 5.7.7. Consider the tours T1,Ts, ..., Ty in R and note that k£ < (?)/4
(each tour has at least 4 edges). First, we want to reduce the proof to the case in
which there is a single long tour. Suppose k > 2 and take a;, b; two consecutive vertices
in T; for i = {1,2}. We can apply Lemma 5.4.1 to find a path P, on 5 vertices with
tails (b1, a1) and (ag, by) which is edge-disjoint to R. Similarly, we can find P, on £ — 5
vertices with tails (a1,b1) and (by, as), edge-disjoint with R, and sharing no interior
vertex with P;. Starting in (ay, by) and then traversing sequentially 77, Py, Ty, and P,
one can check that 73 U T, U Py U P, forms a tour spanning at most |V (17 v Ty)| + £ —4
vertices. Moreover, it is easy to see that P, U P, is a cycle of length ¢. By repeating
this argument we can obtain A’ € H edge-disjoint from R, Cé?’) -decomposable, and
such that R' = R u A’ consists of a single tour spanning at most m + k(¢ — 4) vertices.

Observe that since R is C’ég)—divisible, then so is R'. Let m' be the number of edges

m m
"< <2 .
m (3)+M (3)5

Second, observe that by several applications of Lemma 5.4.1 we can find two edge-

in R’ and notice that

disjoint subgraphs B,C < H, vertex-disjoint to each other, both of them edge-disjoint
with R, and such that B is a copy of B(m//(,¢) and C' is a cycle of length m’ (observe
that ¢ divides m’ since R’ is C\”-divisible).

Now two suitable applications of Lemma 5.7.8 yield the result. More precisely,

first apply Lemma 5.7.8 with R’ in the role of R to obtain a (R, C)-transformer


https://www.youtube.com/watch?v=4oOWghSh3_Q
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L, € H with at most m/¢ edges. For the second application of Lemma 5.7.8 observe
that, since R’ U L; contain at most m/(¢ + 1) we may assume n is large enough so
that d2(H ~ (R' v L1)) = (2/3 + ¢/2)n. Hence, another application of Lemma 5.7.8
now with B in the role of R and H ~\ (R’ U L) in the rdle of H yields the existence of
a (B, C)-transformer Ly, € H edge disjoint with R" U L.

Putting all this together, and recalling that both A’ and B contain a C’f’)—decomposition,
we have that the hypergraphs

RuAUVL,uCuULy,uB and AuL,uCulLyuB

contain CéB)—decompositions. To finish the proof take Ay = A’ U L; uC U Ly U B and
observe that each of the hypergraphs A’, Ly, Ly, C, and B contain at most m’f < 2(7;) 0

edges. O

5.7.3 Proof of Lemma 5.3.2

We can finally give the short proof of Lemma 5.3.2.

Proof of Lemma 5.3.2. Given R € H, an application of Lemma 5.7.1 yields the existence
of A; € H edge disjoint from R such that

(i) A; has at most 5m?¢? edges,

(i7) A; U R spans at most m + 5m3¢? vertices,
(i) A; has a Cég)—decomposi‘cion, and
(iv) A; U R has a tour decomposition.

Then, we apply Lemma 5.7.7 to obtain Ay € H, which is an absorber of R u A;. It is
straightforward to check that A = A; U Ay has the desired properties. O
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5.8 Final remarks

A natural question is what happens for the values of ¢ not covered by our Theorem 2.3.1.
Our results do not cover C’ég)—decompositions for small values of £, i.e. £ < 8. As in the
graph case, for short cycles it is likely that the behaviour of the decomposition threshold
is different.
For ¢ = 4 the cycle Cig) is isomorphic to a tetrahedron K f’). Since every pair of
3

vertices in K ) has degree 2, the obvious necessary divisibility conditions in a host

hypergraph which admits a C’f)—decomposition are
(7) total number of edges divisible by 4,
(i7) every vertex degree divisible by 3, and

(7ii) every codegree divisible by 2.

Say that a hypergraph satisfying all three conditions is K f)—divisz’ble. We define 5}2
as the asymptotic minimum codegree threshold ensuring a K f’)—decomposition over
K f)—divisible hypergraphs (in analogy to 5(832 taken over Cé3)—divisible hypergraphs).

The following construction shows that dx® > 3/4.

Example 5.8.1. Let k > 1 be arbitrary, d = 6k + 2 and n = 12k + 9. Let G; be an
arbitrary d-reqular graph on n vertices. Let G be the graph on 2n wvertices obtained by
taking two vertex-disjoint copies of G1 and adding every edge between vertices belonging
to different copies, say those edges are crossing. Now, form a hypergraph H as follows.
Take a set Z on 2n wvertices and edges forming a complete 3-uniform graph on Z. Then
add two new vertices x1,xo. For each z € Z, add the edge x1x2z. Identify a copy of the

graph G in Z and, for each edge z1z5 of G add the edges zyzox1 and z1z3T5.

The hypergraph H has 2n + 2 = 24k + 20 vertices and §3(H) = d+n+1 = 18k + 12
(attained by any pair x1z with z € Z). It is tedious but straightforward to check H is
K f’)—divisible. To see H is not K ig)—decomposable, we prove that the link graph H ()
is not C§2)—decomposable. Note H(z1) is isomorphic to the graph G’ obtained from G
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by adding an extra universal vertex x. Suppose G’ has a triangle decomposition. There
are n? crossing edges in G, at most n of those can be covered with triangles using x.
Thus at least n(n — 1) crossing edges are covered with triangles which use one edge in a
copy of G; and two crossing edges. Thus we need at least n(n — 1)/2 edges in the two
copies of G, but this is a contradiction since those copies have dn < n(n — 1)/2 edges.

What is the smallest £y such that (58)’2 = 2/3 holds for all ¢ > ¢,7 The previous
example and Theorem 2.3.1 show that 5 < £y < 107. Observe that our Absorbing Lemma,
works for all ¢ > 7. The bottleneck is our use of Theorem 5.6.4 in the Cover-Down
Lemma. New ideas are needed to close the gap.

Another natural question asks for optimal codegree conditions for cycle decomposition
in k-uniform hypergraphs when £ > 4. It is not clear for us if Theorem 2.3.4 indicates the
emergence of a pattern where the necessary codegree to ensure cycle decompositions and

Euler tours on n-vertex k-uniform hypergraph is substantially larger than (1/2 + o(1))n.

Question 5.8.1. Let k£ > 4. Is there a constant n > 0 and a k-uniform hypergraph H

with 6p_1(H) = (% +n+ 0(1)) n not containing a cycle decomposition or an Euler tour?

Problem 5.8.2. Let k > 4, determine (5@ for sufficiently large £.
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Chapter 6

Appendix

6.1 English Summary

In this thesis we proved three results for 3-uniform dense hypergraphs. In each case, we
determined conditions for the existence of different kinds of substructures.

In the first one, we show that 3-uniform hypergraphs with the property that all
vertices have a quasirandom link graph with density bigger than 1/3 contain a clique
on five vertices. This result is asymptotically best possible. With this, we solved an
open problem left by Reiher, Rodl, and Schacht [55] about Turdn densities in uniformly
dense hypergraphs.

For the second problem, we study sufficient conditions for the existence of Hamilton
cycles in uniformly dense 3-uniform hypergraphs. Problems of this type were first
considered by Lenz, Mubayi, and Mycroft [41] for loose Hamilton cycles and Aigner-
Horev and Levy [2] considered it for tight Hamilton cycles for a fairly strong notion of
uniformly dense hypergraphs. We focus on tight cycles and obtain optimal results for a
weaker notion of uniformly dense hypergraphs. We show that if an n-vertex 3-uniform
hypergraph H = (V, E') has the property that for any set of vertices X and for any
collection P of pairs of vertices, the number of hyperedges composed by a pair belonging
to P and one vertex from X is at least (1/4+ 0(1))|X||P|—o(|V]?) and H has minimum
vertex degree at least Q(|V|?), then H contains a tight Hamilton cycle. A probabilistic
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construction shows that the constant 1/4 is optimal in this context.

Finally, we show that 3-uniform hypergraphs on n vertices whose codegree is at
least (2/3 + o(1))n can be decomposed into tight cycles subject to the trivial necessary
divisibility conditions. This result can be used to prove the existence of a tight Euler
tour under the same minimum codegree condition. We provide a construction showing
that our bounds are best possible up to the o(1) term. All together, our results address

recent open problems by Glock, Kiithn, and Osthus [29].

6.2 German Summary

In dieser Arbeit werden asymptotisch bestmogliche hinreichende Bedingungen untersucht,
welche die Existenz gegebener Unterstrukturen eszwingen.

Im ersten teil zeigen wir, dass 3-uniforme Hypergraphen mit der Eigenschaft, dass
alle Ecken einen quasi-zufélligen Linkgraphen mit einer Dichte grofier als 1/3 haben,
eine Clique auf fiinf Ecken enthalten. Dieses Ergebnis ist asymptotisch bestmoglich.
Dies beantwortet eine Frage von Reiher, R6dl und Schacht [55] iber Turdn-Dichten in
gleichméfig dichten Hypergraphen.

Fiir das zweite Problem untersuchen wir hinreichende Bedingungen fiir die Existenz
von Hamiltonkreisen in gleichméfig dichten 3-uniformen Hypergraphen. Probleme
dieser Art wurden zuerst von Lenz, Mubayi und Mycroft [41] fur lose Hamiltonkreisen
und von Aigner-Horev und Levy [2] fiir enge Hamiltonkreisen fiir eine ziemlich starke
Definition von gleichmafig dichten Hypergraphen untersucht. Wir konzentrieren uns
auf enge Kreise und erhalten optimale Ergebnisse fiir eine schwéchere Definition von
gleichméflig dichten Hypergraphen. Wir zeigen, dass wenn ein 3-uniformer Hypergraph
H = (V, E) mit n Ecken die Eigenschaft hat, dass fiir eine beliebige Menge von Ecken
X und fur eine beliebige Menge P von Eckenpaaren die Anzahl der Hyperkanten,
die aus einem zu P gehorenden Paar und einer Ecke von X zusammengesetzt sind,
mindestens (1/4 4+ o(1))|X||P| — o(]V|?) betrégt und H einen minimalen Eckengrad von

mindestens Q(|V]?) hat, dann enthilt H einen engen Hamiltonkreis. Eine probabilistische
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Konstruktion zeigt, dass die Konstante 1/4 in diesem Zusammenhang optimal ist.
Schliellich zeigen wir, dass 3-uniforme Hypergraphen auf n Ecken, deren Eckenpaar-
grad mindestens (2/3 + o(1))n ist, unter den trivialen notwendigen Teilbarkeitsbedin-
gungen in enge Kreise zerlegt werden konnen. Dieses Ergebnis kann verwendet werden,
um die Existenz einer engen Eulertour zu beweisen. Wir liefern auch eine Konstruktion,
die zeigt, dass unsere Schranken bis zum Term o(1) bestmoglich sind. Dies adressiert

ein offenes Problem von Glock, Kithn und Osthus [29].
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