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Chapter 1

Introduction

We consider extremal problems for hypergraphs. A k-uniform hypergraph is an ordered

pair H “ pV,Eq where V is a (finite) set whose elements are called vertices and

where E Ď V pkq“te Ď V : |e| “ ku is a set of k-element subsets. The elements in E are

called edges. A 2-uniform hypergraph will be simply called graph and, since we focus

mainly on 3-uniform hypergraphs, unless stated otherwise, a hypergraph will always

be 3-uniform. Frequently we omit the parenthesis and the commas in the set notation,

e.g. we denote the edge tx, y, zu simply by xyz. Since isolated vertices (i.e. vertices

not contained in any edge) do not play an important rôle in the following problems

we frequently identify a hypergraph with its set of edges, and therefore, for instance

we may write E Ď H for a set of edges E and a hypergraph H. Given a k-uniform

hypergraph H and subset of vertices S Ď V pHq of size t we define the neighbourhood

and the t-degree of S by

NHpSq “ te : S Ď e P EpHqu and dHpSq “ |NHpSq| ,

respectively, and if H is clear from the context we omit it from the notation. For t “ 1

and t “ k ´ 1 the t-degree are called degree and codegree respectively. Moreover, we

denote the minimum t-degree among all sets of vertices of size t by δtpHq.

Given a vertex set V of size n, a k-uniform hypergraph whose edge set is exactly V pkq

is called complete k-uniform hypergraph and will be denoted by Kpkq
n (for k “ 2 we omit

7



8 CHAPTER 1. INTRODUCTION

the superindex and simply write Kn). Given a set of n ordered vertices v1, v2, . . . , vn,

the (tight)1 path P p3qn , is a hypergraph whose edges consist of all sets of three consecutive

vertices. In other words, the edge set is given by

EpP p3qn q“tvivi`1vi`2 : 1 ď i ď n´ 2u .

We frequently say that P p3qn is a pv1, v2q-pvn´1, vnq-path, and that pv1, v2q and pvn´1, vnq

are respectively the starting pair and ending pair of the path, and they are both

called ends. For simplicity we denote a path by listing its vertices. A (tight)1 cycle Cp3qn
is a path with the two additional edges v1vn´1vn and v1v2vn. We define paths and cycles

analogously for graphs and denote them by Pn and Cn respectively.

We consider three classical extremal problems in which the general question consists in

determining conditions for the existence of a substructure in a host graph or hypergraph.

For Turán-type problems this substructure consist in a hypergraph of fixed size, and we

normally look for a condition in the number of edges or density of the host hypergraph.

In contrast, in Dirac-type problems the structure is spanning, that is, it contains as

many vertices as the host hypergraph. Here a minimum degree condition is a common

parameter to consider. Finally, we consider decomposition problems in which the main

goal is to find a partition of all edges into parts with certain structure.

On all these three problems we obtained results for 3-uniform hypergraphs. In

particular, we determined the Turán density of complete hypergraphs of size five in

hypergraphs with quasirandom links (see Subsection 2.1 and in particular Theorem 2.1.3

and Corollary 2.1.5). Moreover, we obtained asymptotically optimal uniform density

conditions that enforce the existence of a Hamilton cycle in hypergraphs with mild

minimum degree conditions (see Subsection 2.2 and Theorem 2.2.2). Finally, we found

an asymptotically optimal minimum codegree condition that enforces the existence of a

decomposition into cycles of fixed length (see Subsection 2.3 and Theorem 2.3.1).

In the following three sections we present some of the basic concepts and prototypical

examples of Turán-type, Dirac-type, and decompositions problems. While for graphs,
1In the literature there are other definitions of ‘path’ or ‘cycle’ in hypergraphs (non necessarily

tight). In this work, unless stated otherwise, we assume all paths and cycles are tight.
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several results on these problems are already obtained, extensions of these results to k-

uniform hypergraphs are in general very difficult. We studied restrictions and variations

of these problems in hypergraphs with certain quasirandom properties. These properties

are discuss in detailed in Section 1.4.

1.1 Turán-type problems

Given a positive integer n and a hypergraph F , we define the extremal number expn, F q

as the maximum number of edges that a hypergraph on n vertices can have without

containing a copy of F as a subhypergraph. This is

expn, F q “ maxt|EpHq| : H is a hypergraph with |V pHq|“n and F Ę Hu ,

and moreover we define the Turán density of F as the limit

πpF q “ lim
nÑ8

expn, F q
`

n
3

˘ , (1.1.1)

which always exist since the sequence expn, F q{
`

n
3

˘

is non-increasing.

For graphs, expn, F q and πpF q are defined analogously, and due to the work of

Turán [63], Erdős and Stone [21], and many others we are able to determine the value

of the Turán density of any graph in terms of its chromatic number.2 In particular the

following beautiful formula (that first appeared in [59]) holds for every graph F

πpF q “
χpF q ´ 2
χpF q ´ 1 .

While that and many other related results were obtained for graphs, for hypergraphs

our knowledge about πpF q is very restricted. In fact, determining the Turán density of

K
p3q
4 remains a major open problem in the area and was already posed by Turán eighty

years ago [63]. Even for the hypergraph on four vertices and three edges, denoted by

K
p3q´
4 , the value its Turán density is still unknown. The best lower and upper bounds
2As usual, the chromatic number of a graph G is the minimum number of colours needed to colour

the vertices of G in such a way that all edges contain vertices of two different colours.
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obtained so far for these hypergraphs are given by

2
7 ď πpK

p3q´
4 q ď 0.2871 and 5

9 ď πpK
p3q
4 q ď 0.5616 .

The first lower bound comes from a construction by Frankl and Füredi [23] and the

second is attributed to Turán (see for example [20]). The upper bounds were obtained

through computer assisted proofs in [6, 49] based on the so called flag algebra method

introduced by Razborov in [48].

Since this problem turns out to be so difficult, several variations were studied. Here

we study a variant introduced by Erdős and Sós [19]. They suggested a version of this

problem in which the host hypergraphs have the restriction of being ‘uniformly dense’

among linear sized sets of vertices (see Definition 3.2.2). Our first contribution concerns

a variation of this original problem and we will describe it in detail in Section 2.1.

1.2 Dirac-type problems

For Turán-type problems we study conditions in hypergraphs that force the existence of

a subgraph of fixed size. In contrast, one can study necessary conditions for the existence

of a spanning subgraph. For example, Dirac [16] proved that for n ě 3 every graph G

with δ1pGq ě n{2 contains a cycle covering all vertices, or Hamilton cycle. This result is

best possible in terms of the minimum degree since a graph with its vertex set partitioned

into two classes of sizes tn{2u and rn{2s and containing all edges with both vertices in

the same class does not contain a Hamilton cycle. In the context of graphs many optimal

results of this kind were obtain. For instance, minimum degree conditions forcing the

existence of clique factors [30], F -factors [3], and powers of Hamilton cycles [39].

In contrast with Turán-type problems, there are some optimal results for hyper-

graphs extending Dirac’s theorem. In particular, Rödl, Ruciński, and Szemerédi [58]

proved an asymptotically optimal version of Dirac’s result. They proved that every

n-vertex hypergraph H with δ2pHq ě p
1
2 ` op1qqn yields a Hamilton cycle. For their

proof they introduced the so-called ‘Absorption Method’ (see a detailed description in

Subsection 4.1). Later, in [52] Reiher, Rödl, Schacht, and Szemerédi proved the same
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conclusion for every n-vertex hypergraph H with δ1pHq ě p
5
9 ` op1qq

`

n
2

˘

. This last result

is also asymptotically optimal.

As in the graph case the optimal constructions contain large ‘holes’, meaning, large

sets of vertices (or pairs of vertices) containing no edge. Lenz, Mubayi, and Mycroft

[41] studied conditions for the existence of spanning structures in ‘uniformly dense’

hypergraphs (see Definition 3.2.2) in which these kind of holes are forbidden. We follow

this lead and obtained asymptotically optimal conditions for the existence of Hamilton

cycles in different kind of ‘uniformly dense’ hypergraphs. We present our results in

Section 2.2.

1.3 Decomposition problems

Given a k-uniform hypergraph H, a decomposition of H is a collection of subhypergraphs

such that every edge of H is covered exactly once. When these subhypergraphs are

all isomorphic copies of a single hypergraph F we say that it is an F -decomposition,

and that H is F -decomposable. Finding conditions for the existence of decompositions

of hypergraphs is one of the oldest problems in combinatorics. In general, there are

divisibility conditions which are obviously needed. For example, it is easy to see that

for H to contain an F -decomposition, the number of edges of H has to be divisible by

|F |. Further, if all vertices in F have degree d, it is clear that all degrees in H have

to be divisible by d. We refer to these conditions as trivial divisibility conditions. In

recent years several new decompositions results have been proven and several major

open problems were resolved.

Kirkman [38] in 1847 proved that the complete graph Kn can be decomposed

into K3 for every odd n with
`

n
2

˘

being a multiple of 3. Wilson [64, 65] extended

this result by proving that for every fixed graph F , the complete graph Kn contains

an F -decomposition whenever the trivial divisibility conditions hold. More recently,

Keevash [36,37] generalised these results for k-uniform hypergraphs when n is sufficiently

large. Later, Glock, Kühn, Lo, and Osthus [28] proved the same theorem using a different
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method. With these results we have a very good understanding of F -decomposition

problems for complete k-uniform hypergraphs.

We study decomposition problems for hypergraphs with large codegree. We say that

a hypergraph is d-vertex-divisible when all vertices have degrees divisible by d. A 3-

vertex-divisible hypergraph H whose number of edges is divisible by ` satisfies all trivial

divisibility conditions for finding a Cp3q` -decomposition, and in such a case we say H

is Cp3q` -divisible. Moreover, given n, ` P N the Cp3q` -decomposition threshold δp3qC` pnq is the

minimum d such that every Cp3q` -divisible hypergraph H on n vertices with δ2pHq ě d

contains a Cp3q` -decomposition. Further, we define the following related parameter

δp3qC` “ lim sup
nÝÑ8

δp3qC` pnq

n
. (1.3.1)

For graphs, the parameters δC`pnq and δC` can be defined analogously. Nash-Williams [42]

showed that δC3pnq ě
3
4n, and proving that this inequality is optimal is one the most

famous conjectures in the area. For longer odd cycles very recently Joos and Kühn [34]

proved that δC` ÝÑ 1
2 as ` ÝÑ 8, while δC` ą 1

2 for every odd `.

For even cycles much more is known, and in fact Barber, Khün, Lo, and Osthus [8]

proved that δC2` “
1
2 for ` ě 3, and δC4 “

3
4 . Remarkably, Taylor [60] determined the

exact values of δC2`pnq for every ` ‰ 3 and n sufficiently large.

For hypergraphs not much is known about codegree conditions for F -decompositions.

From the general results obtained in [28] one can deduce that δp3qC` ă 1. In this thesis we

determine δp3qC` for all but finitely many values of ` (see Theorem 2.3.1 in Section 2.3).

1.4 Restrictions on the host hypergraphs

Chung, Graham, and Wilson [14] studied several equivalent quasirandom properties for

graphs. Based on one of those we introduce the following definition. We say a graph

is p%, dq-quasirandom if for every two sets of vertices X and Y satisfy that

epX, Y q“|tpx, yq P X ˆ Y : ex P EpGqu| “ d|X||Y | ˘ %|V pGq|2 . (1.4.1)
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For extremal problems it is natural to study densities that force certain graph properties,

and therefore, take graphs in which only the lower bound in (1.4.1) is consider. More

precisely, given %, d P p0, 1s, an n-vertex graph G is p%, dq-bidense if for every two sets

of vertices X, Y Ď V pGq we have

epX, Y q ě d|X||Y | ˘ %n2 . (1.4.2)

There are several notions that extend the previous definitions to k-uniform hyper-

graphs. We refer the reader to [1, 62] for a more general and detailed discussion on

quasirandomness in k-uniform hypergraphs. For 3-uniform hypergraphs the following is

a natural extension of (1.4.2).

Definition 1.4.1. Let %, d P p0, 1s and let H be a hypergraph on n vertices. We say

that H is p%, d, q-dense if for every three sets of vertices X, Y, Z we have

epX, Y, Zq “ |tpx, y, zq P X ˆ Y ˆ Z : xyz P EpHqu| ě d|X||Y ||Z| ´ %n3.

It is easy to see that sufficiently large p%, dq-bidense graphs contain a copy of every

fixed graph F . This can be done by picking a vertex of average degree and since, the

neighbourhood of that vertex is d-bidense as well, we can continue picking vertices

inductively in successive neighbourhoods. The following construction due to Rödl

[57] shows that this property does not hold for p%, d, q-dense hypergraphs (and it

also does not hold for the further extensions of (1.4.2) considered in Definition 1.4.3

below). In particular, it proves the existence of arbitrarily large -dense hypergraphs

not containing Kp3q
4 .

Example 1.4.2. Given a sufficiently large n, let V “ t1, 2, . . . , nu and for every

pair ij P V p2q assign the colour red or blue uniformly at random. We construct the

hypergraph H whose edges are all triplets i ă j ă k for which the colours ij and ik

are different. Since this happen with probability 1
2 a standard application of Azuma’s

inequality yields that for every % ą 0, H is asymptotically almost surely p%, 1{2, q-dense.

Moreover, observe that given four vertices i ă j ă k ă `, two of the three pairs ij, ik,

and i` have the same colour, and therefore one of the edges ijk, ij`, or ik` is not present

in H. This means that H does not contain Kp3q
4 .
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In this thesis we study following two further extensions of (1.4.2) for hypergraphs

(also considered in [2, 50,53,55] among others).

Definition 1.4.3. Let %, d P p0, 1s and let H be a hypergraph on n vertices. We say

that H is p%, d, q-dense if for every set of vertices X and every collection of ordered

pairs of vertices P Ď V ˆ V we have

epX,P q “ |tpx, py, zqq P X ˆ P : xyz P EpHqu| ě d|X||P | ´ %n3 .

We say that H is p%, d, q-dense if for every two collections of ordered pairs of

vertices P,Q Ď V ˆ V we have

epP,Qq “ |tppx, yq, py, zqq P P ˆQ : xyz P EpHqu| ě d|K pP,Qq| ´ %n3 , (1.4.3)

where K pP,Qq “ tppx, yq, py, zqq P P ˆQu.

Observe that is the weakest notion and is the strongest. In these definitions, the

symbols , , and refer to the different choices for the vertex sets X, Y , or Z and the

sets of pairs of vertices P or Q.

We are now ready to state the main result of this thesis.



Chapter 2

Main results

2.1 Turán densities in uniformly dense hypergraphs

As mentioned in Section 1.1 the problem of determining the Turán density πpF q (see

definition in (1.1.1)) is in general a difficult problem and, therefore, Erdős and Sós [19]

consider a restricted version for uniformly dense hypergraphs. In light of Definitions 1.4.1

and 1.4.3 we consider the corresponding notions of Turán densities.

Definition 2.1.1. Given a hypergraph F and ‹ P t , , u let

π‹pF q“suptd P r0, 1s : for every η ą 0 and n P N there exists an F -free,

pη, d, ‹q-dense hypergraph with at least n verticesu .

For a thorough discussion on Turán problems for uniformly dense hypergraphs we

refer the reader to [50].

The original question from Erdős and Sós [19] asks for determining π pKp3q´
4 q. By a

computer assisted proof Glebov, Kráľ, and Volec [25] answered this question by showing

π pK
p3q´
4 q“

1
4 .

The same result was obtained later by Reiher, Rödl, and Schacht [54] with a different

proof based on the regularity method for hypergraphs. For Kp3q
4 Example 1.4.2 shows

1
2 ď π pK

p3q
4 q

15
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and proving that this construction is optimal is a well known open problem (see for

example [50]).

For -density much more is known. In fact, Reiher, Rödl, and Schacht [55] obtained

a general upper bound for π pKp3q
t q, which turned out to be best possible for all t ď 16

except for t “ 5, 9, and 10.

Theorem 2.1.2 (Reiher, Rödl, and Schacht [55]). For every integer r ě 2 we have

π pK
p3q
2r q ď

r ´ 2
r ´ 1 .

Moreover, we have

0 “ π pK
p3q
4 q ,

1
3 ď π pK

p3q
5 q ď 1

2 “ π pK
p3q
6 q “ ¨ ¨ ¨ “ π pK

p3q
8 q ,

and 1
2 ď π pK

p3q
9 q ď π pK

p3q
10 q ď

2
3 “ π pK

p3q
11 q “ ¨ ¨ ¨ “ π pK

p3q
16 q .

We closed the gap for π pKp3q
5 q and showed that the lower bound is best possible.

Theorem 2.1.3 (Berger, Piga, Reiher, Rödl, and Schacht [10]). We have that

π pK
p3q
5 q “

1
3 .

Theorem 2.1.3 has a consequence for hypergraphs with quasirandom links. For a

hypergraph H and a vertex x, define the link graph of x, by the edges

Hpxq “ tyz P V p2q : xyz P EpHqu. (2.1.1)

One can check that if all the vertices of a hypergraph H have a pδ, dq-quasirandom link

graph (see (1.4.1)), then H is pfpδq, d, q-dense, where fpδq ÝÑ 0 as δ ÝÑ 0. In fact,

such hypergraphs would even satisfy in addition a matching upper bound for e pP,Qq

in (1.4.3) and, hence, having quasirandom links is a stronger property. However, the

lower bound construction for π pKp3q
5 q (see below) has quasirandom links with density

1{3 and, therefore, Theorem 2.1.3 yields an asymptotically optimal result for such

hypergraphs.
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Example 2.1.4. For a map ψ : V p2q ÝÑ Z{3Z, let Hψ “ pV,Eq be the hypergraph

defined by

xyz P E ðñ ψpxyq ` ψpxzq ` ψpzyq ” 1 pmod 3q . (2.1.2)

Observe that for any set of five different vertices U “ tu1, u2, u3, u4, u5u the following

equality follows by double counting
ÿ

uiujukPUp3q

ψpuiujq ` ψpuiukq ` ψpujukq “ 3
ÿ

uiujPUp2q

ψpuiujq .

Since the second sum is zero modulo 3 at least one of the ten triplets in the first sum

fails to satisfy (2.1.2). Consequently, Hψ is Kp3q
5 -free for every map ψ.

Moreover, if ψ is chosen uniformly at random, then following the lines of the proof

of [55, Proposition 13.1] shows that for every fixed δ ą 0 and sufficiently large |V |

with high probability the hypergraph Hψ has the property that all link graphs are

pδ, 1{3q-quasirandom.

Summarising the discussion above we arrive at the following corollary, which in light

of Example 2.1.4 is asymptotically best possible.

Corollary 2.1.5. For every ε ą 0 there exist δ ą 0 and an integer n0 such that every

hypergraph on at least n0 vertices with all link graphs being pδ, 1{3 ` εq-quasirandom

contains a copy of Kp3q
5 .

The proof of Theorem 2.1.3 is based on the regularity method for hypergraphs and

we explain the details of the proof in Chapter 3.

2.2 Hamilton cycles in uniformly dense hypergraphs

In this section we study conditions in uniformly dense hypergraph for the existence of a

Hamilton cycle. Observe that the notions of uniform density given in Definitions 1.4.1

and 1.4.3 cannot prevent the existence of an isolated vertex (which immediately forbids

the existence of a Hamilton cycle). Therefore, minimum degree conditions have to be

considered as well.
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In the case of graphs, this problem is degenerate in the sense that arbitrarily small

local density and a minimum degree at least Ωpnq is enough to force the existence of a

Hamilton cycle. More precisely, using a result from Chvátal and Erdős [15], it is not

hard to prove that for every α, d ą 0 there is an % ą 0 for which every large p%, dq-

bidense n-vertex graph with minimum degree at least αn contains a Hamilton cycle.

For hypergraphs, this line of research can be traced back to the work of Lenz, Mubayi

and Mycroft [41] who studied conditions in uniformly dense hypergraphs for loose

Hamilton cycles. For an even n P N and an n-vertex hypergraph H, a loose Hamilton

cycle is an ordering of the vertex set V pHq“tv1, . . . , vnu such that v2i´1v2iv2i`1 P EpHq

for every 1 ď i ď n
2 , where the indices are taken in Z{nZ. In [41] they proved that for

arbitrarily small d, α ą 0 there is an % ą 0 such that every sufficiently large p%, d, q-

dense n-vertex hypergraph with minimum degree αn2 contains a loose Hamilton cycle.

As this density condition is the weakest one, this theorem implies the same result for

the stronger notions and .

Aigner-Horev and Levy [2] proved the same conclusion for tight cycles instead of

loose cycles, but considering minimum codegree conditions instead of vertex degrees

and assuming the strongest density notion . More precisely, they proved that for

every d, α ą 0 there is a % ą 0 such that every sufficiently large p%, d, q-dense hypergraph

with minimum codegree αn contains a tight Hamilton cycle. It turns out that for the -

density an analogous result is not possible due the following counterexample.

Example 2.2.1. Let G be a random graph1 Gn´2,1{2 and define a hypergraph on the

same set of vertices for which a triple of vertices is a edge if it forms a triangle in G

or in G. Observe that every cycle in H uses edges such that either all of them induce

triangles in G or all of them induce triangles en G. Finally, add two new vertices x and y

in such a way that NHpxq “ EpGq and NHpyq “ EpGq. Then x is covered only by cycles

induced by triangles in G and y is covered only by cycles induced by triangles in G.

Hence H contains no tight Hamilton cycle. Moreover, if we add all the edges containing

1As usual Gn,p represents a n-vertex random graph for which every edge is taken independently at

random with probability p.
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the pair tx, yu then the hypergraph H only yields a Hamilton path, but not a Hamilton

cycle. One can show that for every % ą 0 with high probability H is p%, 1{4, q-dense

and it has minimum degree p1{4´ %q
`

n
2

˘

and even minimum codegree p1{4´ %qn.

We proved that the previous example is essentially best possible.

Theorem 2.2.2 (Araújo, Piga, and Schacht [5]). For every ε ą 0 there exist % ą 0 and n0

such that every p%, 1{4` ε, q-dense hypergraph H on n ě n0 vertices with δ1pHq ě ε
`

n
2

˘

contains a Hamilton cycle.

We also strengthen a result of Aigner-Horev and Levy [2] by showing that their

codegree assumption for tight Hamilton cycles in -dense hypergraphs can be relaxed

to a minimum vertex degree assumption.

Theorem 2.2.3 (Araújo, Piga, and Schacht [5]). For every d, α ą 0 there exist % ą 0

and n0 such that every p%, d, q-dense hypergraph H on n ě n0 vertices with δ1pHq ě α
`

n
2

˘

contains a Hamilton cycle.

Theorem 2.2.3 was conjectured in [2] and was obtained independently in [24]. We

mainly focus on the proof of Theorem 2.2.2, but the proof of Theorem 2.2.3 is based on

similar ideas. The details of the proofs of Theorems 2.2.2 and 2.2.3 are presented in

Chapter 4.

2.3 Minimum codegree conditions for cycle decom-

positions

We study minimum codegree conditions for decompositions of hypergraphs into cycles.

First, we determined δp3qC` for all but finitely many values of ` P N.

Theorem 2.3.1 (Piga and Sanhueza-Matamala [44]). Suppose ` satisfies one of the

following:

(i ) ` is divisible by 3 and it is at least 9, or
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(ii ) ` ě 107.

Then δp3qC` “ 2{3.

As seen in Section 1.3, the C`-decomposition thresholds for graphs depend on the

parity of `. In contrast, Theorem 2.3.1 implies that δp3qC` “
2
3 for all sufficiently large `,

regardless of whether the cycle is tripartite or not.

We also study conditions for cycle decompositions – not necessarily of the same

length–. The following is a simple corollary of Theorem 2.3.1.

Corollary 2.3.2. Any 3-vertex-divisible hypergraph H with δ2pHq ě p2{3 ` op1qq|H|

has a cycle decomposition.

Corollary 2.3.2 turned out to be best possible (see Theorem 2.3.4 below) and was

conjectured2 by Glock, Kühn, and Osthus [29, Conjecture 5.6].

A tour is a sequence of non-necessarily distinct vertices v1, . . . , v` such that, for

every 1 ď i ď ` the three consecutive vertices vivi`1vi`2 induce an edge (understanding

the indices modulo `) and moreover all of these edges are distinct. If a hypergraph H

contains a tour that covers each edge exactly once, we call it Euler tour and we say

that H is Eulerian.

With analogous definitions for graphs, Euler [22] famously proved that every Eule-

rian graph must be 2-vertex-divisible, and he stated (later proved by Hierholzer and

Wiener [31]) that connected and 2-vertex-divisible graphs are Eulerian. Analogously, it is

an easy observation that every Eulerian hypergraph must be 3-vertex-divisible. However,

the characterisation of Eulerian hypergraphs is not as simple as for graphs. In [32]

Jackson proved that Kp3q
n is Eulerian for every n such that the degrees are divisible by 3.

This was conjectured before by Chung, Diaconis, and Graham [13] and they even believe

it should be true for complete k-uniform hypergraphs for every k ě 2. Recently, Glock,

Joos, Kühn, and Osthus [26] proved this conjectured for sufficiently large n.

2In a previous version of their paper their conjectured that cycle decompositions should already

exists in hypergraphs with δ2pHq ě p1{2` op1qq|H|.
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In fact, from a more general result in [26] one can deduced a ‘minimum codegree’

version of their theorem: there exists c ą 0 such that any sufficiently large 3-vertex-

divisible hypergraph H with δ2pHq ě p1 ´ cq|H| is Eulerian. The constant c which

they obtained is fairly small and therefore improving the minimum codegree condition

becomes a natural problem. Their proof is based fundamentally on a reduction to the

problem of finding a cycle decomposition. In the same fashion, we can use Theorem 2.3.1

to improve the minimum codegree condition.

Corollary 2.3.3. Any 3-vertex-divisible hypergraph H with δ2pHqěp2{3` op1qq|H| is

Eulerian.

Glock, Joos, Kühn, and Osthus [26] conjectured that a minimum codegree condition

of p1{2` op1qq|H| should be enough to guarantee the existence of Euler tours. However,

Corollary 2.3.3 turned out to be asymptotically best possible (see Theorem 2.3.4 below).

We use the same construction to prove that Theorem 2.3.1 and Corollaries 2.3.2

and 2.3.3 are asymptotically best possible. Note that Cp3q` -decompositions, cycles

decompositions, and Eulerian tours are particular instances of decompositions into tours.

Hence, the following theorem imply a lower bound construction for all the aforementioned

results.

Theorem 2.3.4 (Piga and Sanhueza-Matamala [44]). Let ` ě 4 and n ě 3p` ` 3q

be divisible by 18. Then there exists a C`-divisible hypergraph H on n vertices which

satisfies δ2pHq ě p2n´ 15q{3, but does not admit a tour decomposition.

The proof of Theorem 2.3.1 is based in the so called iterative absorption method

and we present the details in Chapter 5. The proofs of Corollaries 2.3.2 and 2.3.3 and

Theorem 2.3.4 are included in Chapter 5 as well.



Chapter 3

Turán density of Kp3q5 in -dense

hypergraphs

The main goal of this chapter is proving Theorem 2.1.3. The proof is based on the

regularity method for hypergraphs and in the next section we recall the relevant concepts.

We follow the ideas in [50] to transfer Theorem 2.1.3 to a statement for reduced

hypergraphs A (see Proposition 3.1.3). The proof of Proposition 3.1.3 is based on a

further reduction to the case in which there exists an underlying bicolouring of the

pairs V p2q, which corresponds to a bicolouring of the vertices in the reduced hypergraph

A (see Proposition 3.1.5). We proved this proposition by analysing ‘holes’ in the

hypergraph (see Section 3.3). Finally, we show that in the context of Theorem 2.1.3

such bicoloured reduced hypergraphs yield a Kp3q
5 (see Proposition 3.1.6). Sections 3.3

and 3.4 are devoted to the proofs of Propositions 3.1.5 and 3.1.6. Finally in Section 3.5

we discuss related open problems and variations of the main problem.

The work corresponding to this chapter was done in collaboration with Berger,

Reiher, Rödl, and Schacht [10].

22
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3.1 Hypergraph regularity and bicoloured reduced

hypergraphs

Given a large hypergraph H “ pV,Eq, the regularity lemma for hypergraph provides a

vertex partition V1 Ÿ V2 Ÿ . . . Ÿ Vt “ V together with partitions P ij of the edges of the

complete bipartite graphs between all
`

t
2

˘

pairs of classes Vi, Vj. Each class P ij P P ij

is ε-regular in the sense of Szemerédi’s regularity lemma for graphs. Moreover, the

hypergraph H is “regular” among most triads, i.e., among most of the tripartite graphs

P ijk
αβγ “ P ij

α Y P
ik
β Y P

jk
γ

with P ij
α P P ij, P ik

β P P ik, and P jk
γ P Pjk. Roughly speaking, here “regular” means,

that the hyperedges of H match the same proportion of triangles for every tripartite

subgraph of such a triad.

Important structural properties of a hypergraph H after an application of the

hypergraph regularity lemma can be captured by the reduced hypergraph, which can

be viewed as a generalisation of the reduced graph in the context of Szemerédi’s

regularity lemma for graphs. Given a set of indices I and pairwise disjoint, non-empty

sets of vertices P ij for every pair of indices ij P Ip2q, let for every triple of distinct

indices ijk P Ip3q a tripartite hypergraph Aijk with vertex classes P ij, P ik, and Pjk be

given. We consider the disjoint union of all those hyperedges and, hence, we obtain

a
`

|I|
2

˘

-partite hypergraph A with

V pAq “
ď

¨

ijPIp2q

P ij and EpAq “
ď

¨

ijkPIp3q

EpAijk
q .

We say A is a reduced hypergraph with index set I, vertex classes P ij, and con-

stituents Aijk. In this work the index set I will often be an ordered set and we may

assume I Ď N.

An application of the hypergraph regularity lemma to a given hypergraph H naturally

defines a reduced hypergraph A in which the vertices P ij P P ij represent a set of pairs

between the vertex classes Vi and Vj. Moreover, a hyperedge P ij
α P

ik
β P

jk
γ in the reduced

hypergraph signifies that H is regular and dense on the triad P ijk
αβγ.



24 CHAPTER 3. TURÁN DENSITY OF K
p3q
5 IN -DENSE HYPERGRAPHS

As mentioned above the properties of the hypergraph H are often transferred to the

reduced hypergraph. We consider -dense and Kp3q
5 -free hypergraphs H and below we

discuss the corresponding properties for the reduced hypergraph A after an appropriate

application of the hypergraph regularity lemma.

Roughly speaking, the -density condition translates into a minimal codegree condi-

tion for almost all pairs of vertices from different vertex classes in almost all constituents

of the reduced graphs. However, one can always move to a large reduced hypergraph

in which all pairs of vertices from different vertex classes in the same constituent have

large codegree (see [50, Lemma 4.2] for details). This inspires the following definition

of pd, q-density for reduced hypergraphs.

Definition 3.1.1. For d P r0, 1s, we say that a reduced hypergraph A with index set I

is pd, q-dense, if for every ijk P Ip3q and all vertices P ij P P ij and P ik P P ik we have

d
`

P ij, P ik
˘

“
ˇ

ˇtP jk
P Pjk : P ijP ikP jk

P EpAijk
qu
ˇ

ˇ ě d |Pjk
| .

As discussed above (see [50, Section 5] for details), an appropriate application of the

hypergraph regularity lemma to a pη, d` ε, q-dense hypergraph H yields a pd` ε{2, q-

dense reduced hypergraphs A. The following definition allows us to transfer Kp3q
5 -freeness

of H to the reduced hypergraph A.

Definition 3.1.2. We say a reduced hypergraph A with index set I supports a

clique Kp3q
` if there is a `-element subset J Ď I and vertices P ij P P ij for every

ij P J p2q such that

P ijP ikP jk
P EpAijk

q

for all ijk P J p3q.

Note that, if the reduced hypergraph A defined from a hypergraph H through

an appropriate application of the regularity lemma supports a Kp3q
5 , then the embed-

ding/counting lemma yields a Kp3q
5 Ď H, Hence, Kp3q

5 -free hypergraphs H have reduced

hypergraphs that do not support Kp3q
5 .

The discussion above reduces the proof of Theorem 2.1.3 to the following statement

for reduced hypergraphs.
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Proposition 3.1.3. For every ε ą 0 every sufficiently large
`1

3 ` ε,
˘

-dense reduced

hypergraph A supports a Kp3q
5 .

For the proof of Proposition 3.1.3 we proceed by contradiction and assume that for

some ε ą 0 there are p1
3 ` ε, q-dense reduced hypergraphs of unbounded size that do

not support Kp3q
5 . This motivates the following notion.

Definition 3.1.4. For ε ą 0 we say a reduced hypergraph A is ε-wicked if it is p1
3`ε, q-

dense and fails to support a Kp3q
5 . In case ε is clear from the context or irrelevant, we

may sometimes suppress it and call ε-wicked reduced hypergraphs simply wicked.

Proposition 3.1.3 asserts that wicked reduced hypergraphs do not exist and the proof

is divided in two main parts. First we reduce the problem to the case in which the

reduced hypergraph A on some index set I can be bicoloured. By this we mean that

there is a colouring ϕ : V pAq ÝÑ tred, blueu of the vertices such that for every ij P Ip2q

we have

ϕ´1
predq X P ij

‰ ∅ and ϕ´1
pblueq X P ij

‰ ∅ (3.1.1)

and there are no hyperedges in A with all three vertices of the same colour. Given such

a colouring ϕ, we define the minimum monochromatic codegree density of A and ϕ by

τ2pA, ϕq “ min
ijkPIp3q

min
!dpP ij, P ikq

|Pjk|
: P ij

P P ij, P ik
P P ik, and ϕpP ij

q “ ϕpP ik
q

)

.

(3.1.2)

The following proposition reduceds Proposition 3.1.3 to bicoloured reduced hyper-

graphs.

Proposition 3.1.5. Given ε ą 0 and t P N, let A be a sufficiently large ε-wicked

reduced hypergraph. There exists a reduced hypergraph A‹ with index set of size at least t

not supporting a Kp3q
5 and a bicolouring ϕ of A‹ such that τ2pA‹, ϕq ě

1
3 `

ε
8 .

For the proof of Proposition 3.1.5 we mainly analyse holes in wicked reduced hyper-

graphs, i.e., subsets of vertices with very low density. It turns out that two essentially

disjoint holes can be used to define an appropriate colouring on a subhypergraph

of A (see Section 3.3). The next proposition completes the proof of Proposition 3.1.3
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by contradicting the conclusion of Proposition 3.1.5, which shows that large wicked

hypergraphs indeed do not exist.

Proposition 3.1.6. For every ε ą 0 every sufficiently large bicoloured reduced hyper-

graph A with τ2pA, ϕq ě 1
3 ` ε supports a Kp3q

5 .

The proof of Proposition 3.1.6 is deferred to Section 3.4.

3.2 Preliminaries

In this section we introduce some necessary definitions and properties for reduced

hypergraphs.

3.2.1 Transversals and cherries

We start with the following notion for reduced hypergraphs A with index set I.

For J Ď I we refer to a sequence of vertices QpJq “ pQijqijPJp2q with Qij P P ij

as a J-transversal. Similarly, for two disjoint subsets of indices K,L Ď I we say

that QpK,Lq “ pQk`qpk,`qPKˆL is a pK,Lq-transversal when Qk` P Pk`. For sub-

sets J‹ Ď J , K‹ Ď K, and L‹ Ď L we refer to the transversals QpJ‹q Ď QpJq and

QpK‹, L‹q Ď QpK,Lq (defined in the obvious way) as restricted transversal. Whenever

the sets J , K, L Ď I are clear from the context we may omit them and write transversal

to refer to J-transversals or to pK,Lq-transversals.

Since we are working with -dense reduced hypergraphs (see Definition 3.1.1) pairs

of vertices sharing one index will play an important rôle. More precisely, given indices

ijk P Ip3q with i ă j ă k and given vertices P ij P P ij, P ik P P ik, and P jk P Pjk we say

that the ordered pair pP ij, P ikq is a left cherry, the ordered pair pP ik, P jkq is a right

cherry, and the ordered pair pP ij, P jkq is a middle cherry. Often we refer to them simply

as cherries.

For indices ijk P Ip3q and a set of cherries C ijk Ď P ij ˆ P ik we say a transversal Q

avoids C ijk if the pair pQij, Qikq R C for Qij, Qik P Q. Furthermore, for J Ă I we say Q
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avoids a set of cherries C “
Ť

ijkPJp3q C
ijk, if it avoids C ijk for every ijk P J p3q. We

extend this definition to pK,Lq-transversals in an analogous way.

Lemma 3.2.1. For every t P N and δ ą 0 there is a µ ą 0 such that the following holds.

Suppose that A is a reduced hypergraph with an index set I of size |I| “ t and given

(a ) sets Qij Ď P ij of size at least δ|P ij| for every ij P Ip2q,

(b ) sets of left cherries L ijk Ď P ijˆP ik of size at most µ|P ij||P ik| for every ijk P Ip3q,

(c ) and sets of right cherries Rijk Ď P ik ˆ Pjk of size at most µ|P ik||Pjk| for every

ijk P Ip3q.

Then there is a transversal QpIq “ pQijqijPIp2q with Qij P Qij avoiding L “
Ť

ijkPIp3q L
ijk

and R “
Ť

ijkPIp3q R
ijk.

Lemma 3.2.1 follows from a simple counting argument.

Proof. Obviously by assumption (a ) there are δp
t
2q
ś

ijPIp2q |P ij| transversals with all

vertices in
Ť

ijPIp2q Qij . On the other hand, it follows from assumptions (b ) and (c ) that

at most 2
`

t
3

˘

µ
ś

ijPIp2q |P ij| of these transversals may contain a left or a right cherry

from L YR. Consequently, the lemma holds for sufficiently small µ “ µpt, δq.

3.2.2 Inhabited transversals in -dense reduced hypergraphs

We shall utilise the main result from [56] for -dense hypergraphs. As discussed in

Section 3.1 uniform density conditions translates to reduced hypergraphs through

an appropriate application of the regularity lemma for hypergraphs. The following

correspond to the notion of -density in the context of reduced hypergraphs (see,

e.g., [50, 56] for more details).

Definition 3.2.2. Let µ ą 0 and A be a reduced hypergraph on an index set I. We

say that A is pµ, q-dense, if for every ijk P Ip3q we have

epAijk
q ě µ |P ij

||P ik
||Pjk

| . (3.2.1)
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Further, for disjoint subsets of indices K,L,M Ď I we say that A is pµ, q-tridense

on K,L,M , if (3.2.1) holds for every triple pi, j, kq in K ˆ LˆM .

Note that by definition every pd, q-dense reduced hypergraph is also pd, q-dense.

The following result from [56, Lemma 3.1], states the existence of transversals containing

edges in -dense reduced hypergraphs.

Theorem 3.2.3. Let t P N, µ ą 0, and let A be a pµ, q-dense reduced hypergraph on

a sufficiently large index set I. There exist a set I‹ Ď I of size t and three transver-

sals QpI‹q, RpI‹q, and SpI‹q such that QijRikSjk P EpAq for every i ă j ă k in I‹.

Triples of transversals satisfying the conclusion of Theorem 3.2.3 will play an impor-

tant rôle here and we motivates the following definition.

Definition 3.2.4 (inhabited triple of transversals). Given a reduced hypergraph A with

index set I. We say a triple of transversals QpJqRpJqSpJq for some J Ď I is inhabited

if for every i ă j ă k in J we have QijRikSjk P EpAq.

Similarly, for pairwise disjoint sets of indices K, L, M Ď I, we say a triple of

transversals QpK,LqRpK,MqSpL,Mq is inhabited if for every k P K, ` P L, and m PM

we have Qk`RkmS`m P EpAq.

Here we will also need a version of Theorem 3.2.3 in which the resulting transversals

avoid given sets of forbidden cherries.

Lemma 3.2.5. For t P N and µ ą 0 there is µ1 ą 0 such that the following holds.

Let A be a pµ, q-dense reduced hypergraph on sufficiently large index set I and for

all i ă j ă k in I let L ijk Ď P ij ˆ P ik and Rijk Ď P ik ˆ Pjk be sets of left and right

cherries satisfying

|L ijk
| ď µ1|P ij

||P ik
| and |Rijk

| ď µ1|P ik
||Pjk

| .

There exist a set I‹ Ď I of size t and a triple of inhabited transversals QpI‹q, RpI‹q, and

SpI‹q avoiding the cherries L ijk and Rijk, for every ijk P Ip3q‹ .



3.2. PRELIMINARIES 29

For the proof of Lemma 3.2.5 we will consider random preimages of reduced hyper-

graphs.

Definition 3.2.6 (random preimages of reduced hypergraphs). Given a reduced hyper-

graph A with index set I and vertex classes P ij for ij P Ip2q and given an integer ` ě 1,

we fix
`

|I|
2

˘

disjoint sets P ij
‚ of size ` and consider the uniform probability space ApA, `q

of all mappings h from
Ť

ijPIp2q P ij
‚ to

Ť

ijPIp2q P ij satisfying

hpP ij
‚ q Ď P ij

for every ij P Ip2q.

With each such map h we associate a reduced hypergraph Ah with index set I and

vertex classes P ij
‚ for ij P Ip2q, where edges are defined by

P ij
‚ P

ik
‚ P

jk
‚ P EpAijk

h q , whenever hpP ij
‚ qhpP

ik
‚ qhpP

jk
‚ q P EpAijk

q

for all ijk P Ip3q and all P ij
‚ P P ij

‚ , P ik
‚ P P ik

‚ , and P jk
‚ P Pjk

‚ . In particular, h signifies a

homomorphism Ah ÝÑ A.

Below we pass to such a random preimage Ah of A for sufficiently large `, which

will allow us to deduce Lemma 3.2.5 for A by applying Theorem 3.2.3 to Ah.

Proof of Lemma 3.2.5. Given t P N and µ ą 0, let t1 be sufficiently large for an

application of Theorem 3.2.3 with t and µ
2 in place of t and µ. Further, we fix an integer

` and µ1 ą 0 to satisfy the hierarchy

µ, t´1
1 " `´1

" µ1.

Finally, let A be a reduced hypergraph as in the statement of Lemma 3.2.5 and we may

assume that its index set I is of size t1.

Similar as in the proof of [50, Lemma 4.2] we consider the probability space ApA, `q

from Definition 3.2.6 and we shall prove that with high probability the associated

reduced hypergraph Ah is pµ2 , q-dense and no cherry has its image in the sets L ijk

or Rijk.
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For every constituent Aijk
h the random variable epAijk

h q satisfies ErepA
ijk
h qs “ µ`3

and by Azuma’s inequality (see, e.g. [33, Corollary 2.27]) we obtain

P
`

Ah is not pµ2 , q-dense
˘

ď
ÿ

ijkPIp3q

P
`

epAijk
h q ă

µ
2 `

3˘
ď

ˆ

t1
3

˙

expp´µ2`
24 q .

Moreover, since L ijk ď µ1|P ij||P ik|, the probability that the image of some cherry lies

in those sets is bounded by

ÿ

ijkPIp3q

P
´

hpP ij
‚ qhpP

ik
‚ q P L ijk for some P ij

‚ P
ik
‚ P P ij

‚ ˆ P ik
‚

¯

ď

ˆ

t1
3

˙

µ1`2 .

The same inequality holds for the sets Rijk and note that by our choice of variables
ˆ

t1
3

˙

expp´µ2`
8 q ` 2

ˆ

t1
3

˙

µ1`2
ă 1.

Therefore, we can fix an h such that Ah is pµ2 , q-dense and no cherry has its image in

the sets L ijk or Rijk.

Applying Theorem 3.2.3 to Ah yields a set I‹ Ď I of size t and three transver-

sals QhpI‹q, RhpI‹q, and ShpI‹q such that Qij
hR

ik
h S

jk
h P EpAhq for every i ă j ă k in I‹.

It is easy to see that the transversals

QpI‹q “
`

hpQij
h q
˘

ijPI
p2q
‹
, RpI‹q “

`

hpRij
h q
˘

ijPI
p2q
‹
, and SpI‹q “

`

hpSijh q
˘

ijPI
p2q
‹

satisfy the desired properties and the lemma follows.

3.2.3 Partite versions

We will also need a slightly more technical variant of Theorem 3.2.3, which guarantees

the existence of inhabited triples of transversals in the intersection of multiple -tridense

reduced subhypergraphs.

Lemma 3.2.7. Let t, r P N, µ ą 0 there is an s P N such that the following is true.

Let A be a reduced hypergraph on index set I. Suppose that there are

(a ) disjoint subsets of indices K,L,M Ď I each of size s,
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(b ) sets X1, . . . , Xr of size s, and

(c ) for every r-tuple ~x P
ś

iPrrsXi a pµ, q-tridense subhypergraph A~x Ď A on K,L,M .

Then, there are

(i ) subsets K‹ Ď K,L‹ Ď L,M‹ ĎM of size t,

(ii ) subsets Yi Ď Xi of size t for every i P rrs, and

(iii ) there is a triple of transversals QpK‹, L‹qRpK‹,M‹qSpL‹,M‹q, which is inhabited

in A~y, for every ~y P
ś

iPrrs Yi.

The proof of Lemma 3.2.7 relies on repeated applications of the following auxiliary

lemma.

Lemma 3.2.8. Let t, r P N, µ ą 0 there is an s P N such that the following is true.

Let A be a reduced hypergraph on index set I. Suppose that there are

(a ) disjoint subsets of indices K,L Ď I each of size s,

(b ) sets X1, . . . , Xr of size s, and

(c ) for every r-tuple ~x P
ś

iPrrsXi, every k P K, and every ` P L we have a subset

Pkl
~x Ă Pkl of size at least µ|Pk`|.

Then, there are

(i ) subsets K 1 Ď K,L1 Ď L of size t,

(ii ) subsets X 1
i Ď Xi of size t for every i P rrs, and

(iii ) a transversal QpK 1, L1q such that for every ~x P
ś

iPrrsX
1
i and every k` P K 1 ˆ L1

we have that Qk` P Pk`
~x .

Proof. Given t, r P N, µ ą 0 we fix an integer s such that

t, r, µ´1
! s . (3.2.2)
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Let A be a reduced hypergraph as in the statement of the lemma and further let K 1 Ď K,

and L1 Ď L be arbitrary subsets of size t.

For every pK 1, L1q-transversal Q we consider the set

xpQq “
"

~x P
ź

iPrrs

Xi : Qk`
P Pk`

~x for all k` P K 1
ˆ L1

*

.

Summing over all pK 1, L1q-transversal Q assumption (c ) yields

ÿ

Q
|xpQq| “

ÿ

~xP
ś

iPrrsXi

ź

k`PK1ˆL1

ˇ

ˇPk`
~x

ˇ

ˇ ě µt
2 ź

k`PK1ˆL1

ˇ

ˇPk`
ˇ

ˇ

ź

iPrrs

ˇ

ˇXi

ˇ

ˇ .

Hence, we can fix a pK 1, L1q-transversal Q such that

|xpQq| ě µt
2 ź

iPrrs

ˇ

ˇXi

ˇ

ˇ .

We may view xpQq as an r-partite r-uniform hypergraph of density at least µt2 on vertex

classes of size s. Consequently, a result of Erdős [18] combined with the hierarchy (3.2.2)

yields subsets X 1
i Ď Xi of size t for every i P rrs such that

ź

iPrrs

X 1
i Ď xpQq ,

which concludes the proof of Lemma 3.2.8.

Next we derive Lemma 3.2.7.

Proof of Lemma 3.2.7. Given t, r P N, µ ą 0 we fix integers s, s1, and s2 such that

t, r, µ´1
! s2 ! s1 ! s

and let A be a reduced hypergraph as in the statement of the lemma.

We will prove the lemma by applying Lemma 3.2.8 three times, once for every pair

from K, L, and M .

For every k P K, ` P L, m PM , and every ~x P
ś

iPrrsXi we consider the set

Pk`
p~x,mq “

!

P k`
P Pk` :

ˇ

ˇNAk`m
~x
pP k`

q
ˇ

ˇ ą
µ
2 |P

km
||P`m

|

)

.
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Since A~x is pµ, q-tridense we have

epAk`m~x q ě µ|Pk`
||Pkm

||P`m
|

and a standard averaging argument implies
ˇ

ˇPk`
p~x,mq

ˇ

ˇ ě
µ
2

ˇ

ˇPk`
ˇ

ˇ .

Lemma 3.2.8 applied with s1, r ` 1, and µ
2 in place of t, r, and µ and with Xr`1 “M

yields subsets K 1 Ď K, L1 Ď L, M 1 ĎM , and X 1
i Ď Xi for every i P rrs, of size s1 and a

transversal QpK 1, L1q such that for every p~x,mq P
ś

iPrrsX
1
i ˆM

1 and every k` P K 1ˆL1

we have that Qk` P Pk`
p~x,mq.

For the second application of Lemma 3.2.8 we consider the set

Pkm
p~x,`q “

!

P km
P Pkm :

ˇ

ˇNAk`m
~x
pQk`, P km

q
ˇ

ˇ ě
µ
4 |P

`m
|

)

for every k P K 1, ` P L1, m P M 1, and every ~x P
ś

iPrrsX
1
i. By our choice of the

transversal QpK 1, L1q we have

|NAk`m
~x
pQk`

q| ě
µ
2 |P

km
||P`m

|

and, as before, this implies

|Pkm
p~x,`q| ě

µ
4 |P

km
| .

Again, we apply Lemma 3.2.8, now with s2, r` 1, and µ
4 in place of t, r, and µ and with

X 1
r`1 “ L1, to reach subsets K2 Ď K 1, L2 Ď L1,M2 ĎM 1, and X2

i Ď X 1
i, for every i P rrs,

of size s2 and a transversal RpK2,M2q such that for every p~x, `q P
ś

iPrrsX
2
i ˆ L

2 and

every km P K2 ˆM2 it is Rkm P Pkm
p~x,`q.

Last, we consider the set

P`m
p~x,kq “ NAk`m

~x
pQk`, Rkm

q

for every ` P L2, k P K2,m P M2, and every ~x P
ś

iPrrsX
2
i . By our choice of the

transversals QpK2, L2q and RpK2,M2q we have |P`m
p~x,kq| ě

µ
4 |P

`m|. The final application

of Lemma 3.2.8, with t, r ` 1, and µ
4 in place of t, r, and µ, yields t-sized subsets

K‹ Ď K2, L‹ Ď L2, M‹ Ď M2, and Yi Ď X2
i , for every i P rrs, and a transversal

SpL‹,M‹q such that for every ~y P
ś

iPrrs Yi and every k`m P K‹ˆL‹ˆM‹ we have that

Qk`RkmS`m P EpA~yq.
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3.3 Bicolouring wicked reduced hypergraphs

In this chapter we prove Proposition 3.1.5. The proof pivots on the analysis of holes

in a reduced hypergraph and develops its theory in § 3.3.1 –§ 3.3.5, before we deduce

Proposition 3.1.5 at the end of this section in § 3.3.6.

3.3.1 Holes and links in reduced hypergraphs

Given a reduced hypergraph A with index set I, a natural definition of a hole across

a subset of indices J Ď I and subsets of vertices Φij Ď P ij for ij P J p2q would maybe

require that for every ijk P J p3q the sets Φij, Φik, Φjk span no hyperedges in Aijk.

However, this notion is too restrictive for our analysis and we shall only require that

these sets induce hypergraphs of low density.

Definition 3.3.1. Given a reduced hypergraph A and a subset of indices J Ď I we say

that a subset of vertices Φ Ď V pAq is a µ-hole on J if Φij “ ΦXP ij is nonempty for all

ij P J p2q and

epΦij,Φik,Φjk
q ď µ|P ij

||P ik
||Pjk

|

for every ijk P J p3q.

The size of the hole is |J | and the smallest ς ą 0 such that |Φij| ě ς|P ij| for every

ij P J p2q is called the width of the hole. We refer to µ-holes with size at least t and with

width at least ς as pµ, t, ςq-holes.

Roughly speaking, for the proof of Proposition 3.1.5 we shall find two almost disjoint

holes with widths bigger than 1{3 on a large set of indices in a wicked reduced hypergraph.

These holes will be used to define the desired red{blue-colouring ϕ for Proposition 3.1.5.

Holes may induce a few hyperedges, however, cherries that are contained in too many

such hyperedges are considered to be exceptional. This leads to the following definition.

Definition 3.3.2. Given a µ-hole Φ on J , ε ą 0, and ijk in J p3q we say that a

cherry pP ij, P ikq P Φij ˆ Φik is ε-exceptional if
ˇ

ˇNpP ij, P ik
q X Φjk

ˇ

ˇ ě ε
ˇ

ˇΦjk
ˇ

ˇ .
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For indices i ă j ă k in J we denote by

L ijk
pΦ, εq Ď P ij

ˆ P ik , Rijk
pΦ, εq Ď P ik

ˆ Pjk , and M ijk
pΦ, εq Ď P ij

ˆ Pjk

the ε-exceptional left, right, and middle cherries and we set

L pΦ, εq “
ď

iăjăk

L ijk
pΦ, εq , RpΦ, εq “

ď

iăjăk

Rijk
pΦ, εq , and M pΦ, εq “

ď

iăjăk

M ijk
pΦ, εq .

It is easy to see that holes can only contain few exceptional cherries. More precisely,

for every µ-hole Φ on J and every ε ą 0 we have for all i ă j ă k in J

ε |Pjk
||L ijk

pΦ, εq| ď epΦij,Φik,Φjk
q ď µ |P ij

||P ik
||Pjk

|

and the same reasoning for R and M yields

ˇ

ˇL ijk
pΦ, εq

ˇ

ˇ ď
µ

ε

ˇ

ˇP ij
ˇ

ˇ

ˇ

ˇP ik
ˇ

ˇ ,
ˇ

ˇRijk
pΦ, εq

ˇ

ˇ ď
µ

ε

ˇ

ˇP ik
ˇ

ˇ

ˇ

ˇPjk
ˇ

ˇ ,

and
ˇ

ˇM ijk
pΦ, εq

ˇ

ˇ ď
µ

ε

ˇ

ˇP ij
ˇ

ˇ

ˇ

ˇPjk
ˇ

ˇ . (3.3.1)

The holes Φ studied here, arise from neighbourhoods NpP ik, P jkq, i.e., for appropri-

ately chosen P ik P P ij and P jk P P ij we set Φij “ NpP ik, P jkq. Note that in pd, q-dense

reduced hypergraphs, holes obtained this way will automatically have width at least d.

Given a pK,Lq-transversal Q, a subset K‹ Ď K, and an index ` P L we define the

Q-link of ` on K‹ by

ΛpQ, K‹, `q “
ď

kk1PK
p2q
‹

NpQk`, Qk1`
q .

The following lemma asserts that in -dense reduced hypergraphs that do not sup-

port Kp3q
5 the Q-links contain large holes.

Lemma 3.3.3. Let t P N, µ, d ą 0, let A be a pd, q-dense reduced hypergraph with

index set I that does not support a Kp3q
5 , and for sufficiently large disjoint subsets of

indices K,L Ď I let Q be a pK,Lq-transversal.

Then there exist K‹ Ď K and L‹ Ď L of size t such that ΛpQ, K‹, `q is a pµ, t, dq-hole

for every ` P L‹.
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Proof. Let q “
`

rµ´1s

2

˘

and define an auxiliary 2-colouring of the pairs pkk1k2, `q P Kp3qˆL

depending on whether

e
`

NpQk`, Qk1`
q, NpQk`, Qk2`

q, NpQk1`, Qk2`
q
˘

ą µ|Pkk1
||Pkk2

||Pk1k2
| (3.3.2)

or not. Since K and L are sufficiently large, the product Ramsey theorem (see e.g.

Proposition 9.1 in [46]) yields K1 Ď K with |K1| “ maxt3d´q, tu and L1 Ď L with

|L1| ě maxtµ´1, tu such that either (3.3.2) holds or it fails for every kk1k2 P K
p3q
1

and ` P L1. In fact, if (3.3.2) fails on Kp3q
1 ˆ L1, then K‹ “ K1 and L‹ “ L have the

desired properties. Consequently, we may assume (3.3.2) holds on Kp3q
1 ˆ L1.

Let L2 be a subset of L1 of size |L2| “ r2{µs and consider some ``1 P Lp2q2 . Since

we have |NpQk`, Qk`1q| ě d|P``1 | for every k P K1, there is a subset K2 Ď K1 of size at

least d|K1| such that
č

kPK2

NpQk`, Qk`1
q ‰ ∅ .

Repeating this argument iteratively q times for every pair in L2 we obtain nested

subsets K1 Ě K2 Ě ¨ ¨ ¨ Ě Kq such that

|Kq| ě dq|K1| ě 3 and
č

kPKq

NpQk`, Qk`1
q ‰ ∅ for every ``1 P Lp2q2 .

Consequently, there is some kk1k2 P Kp3q
q such that for every ``1 P Lp2q2 we can fix a

vertex P ``1 P P``1 satisfying

P ``1Qk`Qk`1 , P ``1Qk1`Qk1`1 , P ``1Qk2`Qk2`1
P EpAq. (3.3.3)

We infer from (3.3.2) that

ÿ

`PL2

e
`

NpQk`, Qk1`
q, NpQk`, Qk2`

q, NpQk1`Qk2`
q
˘

ą µ|L2||Pkk1
||Pkk2

||Pk1k2
| .

Consequently, there is an edge Rkk1Rkk2Rk1k2 P EpAkk1k2q such that for more than µ|L2|

indices ` P L2 we have

Rkk1Qk`Qk1`, Rkk2Qk`Qk2`, Rk1k2Qk1`Qk2`
P EpAq . (3.3.4)
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Hence, since µ|L2| ě 2 there are two indices `, `1 P L2 such that (3.3.4) holds also with

` replaced by `1. In view of (3.3.3), we arrive at the contradiction that P ``1 , together

with the six vertices Qκλ for κ P tk, k1, k2u and λ P t`, `1u, and with the three vertices

Rkk1 , Rkk2 , Rk1k2 support a Kp3q
5 in A.

Two consecutive applications of Lemma 3.3.3 yield the symmetric conclusion that

both links ΛpQ, K‹, `q and ΛpQ, L‹, kq are µ-holes for every ` P L‹ and k P K‹.

Corollary 3.3.4. Let t P N, µ, d ą 0, let A be a pd, q-dense reduced hypergraph with

index set I that does not support a Kp3q
5 , and for sufficiently large disjoint subsets of

indices K,L Ď I let Q be a pK,Lq-transversal.

Then there exist K‹ Ď K and L‹ Ď L of size t such that for every ` P L‹ and for

every k P K‹ the Q-links ΛpQ, K‹, `q and ΛpQ, L‹, kq are pµ, t, dq-holes.

Proof. For sufficiently large t1 “ t1pt, µ, dq a first application of Lemma 3.3.3 yields

subsets K 1 and L1 of size at least t1 such that ΛpQ, K 1, `q is a pµ, t1, dq-hole for every ` P

L1. A second application to the restricted transversal QpK 1, L1q (with the rôles of K

and L exchanged) then yields subsets L‹ Ď L1 and K‹ Ď K 1 of size t such that

additionally ΛpQ, L‹, kq is a pµ, t, dq-hole for every k P K‹.

3.3.2 Intersecting and disjoint links

Next we define concepts for pairs of links having a substantial intersection and of being

almost disjoint.

Definition 3.3.5. Let A be a reduced hypergraph with index set I, let K,L,M Ď I

be pairwise disjoint sets of indices, and let QpK,Lq and RpK,Mq be transversals.

For ` P L and m PM we say the links ΛpQ, K, `q and ΛpR, K,mq are δ-intersecting if

ˇ

ˇNpQk`, Qk1`
q XNpRkm, Rk1m

q
ˇ

ˇ ą δ
ˇ

ˇPkk1
ˇ

ˇ (3.3.5)

for all kk1 P Kp2q. If, on the other hand, (3.3.5) fails for all kk1 P Kp2q, then we say

ΛpQ, K, `q and ΛpR, K,mq are δ-disjoint.
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Moreover, we say a pair of transversals QpK,LqRpK,Mq has δ-intersecting links

(resp. δ-disjoint links) if ΛpQ, K, `q and ΛpR, K,mq are δ-intersecting (resp. δ-disjoint)

for every ` P L and m PM .

We remark that the notions of δ-intersecting and δ-disjoint do not complement each

other. However, by means of (the product version of) Ramsey’s theorem we can always

pass to subsets of K, L, and M for which one of the properties holds (see, e.g., proof of

Corollary 3.3.7 below).

The next lemma shows that in reduced hypergraphs that do not support Kp3q
5 at

most one pair from a triple of inhabited transversals can have an intersecting link.

Lemma 3.3.6. Let δ ą 0, let A be a reduced hypergraph with index set I, and for

sufficiently large disjoint sets K,L,M Ď I let QpK,LqRpK,MqSpL,Mq be an inhabited

triple of transversals. If both pairs of transversals QpK,LqRpK,Mq and QpK,LqSpL,Mq

have δ-intersecting links, then A supports a Kp3q
5 .

Proof. Fix m P M , a subset K‹ Ď K of size at least δ´1, and q “
`

rδ´1s

2

˘

. Take

arbitrary two distinct indices k, k1 P K‹. Since |NpQk`, Qk1`q XNpRkm, Rk1mq| ě δ|Pkk1 |

for every ` P L there is a subset L1 Ď L of size at least δ|L| such that
č

`PL1

NpQk`, Qk1`
q XNpRkm, Rk1m

q ‰ ∅. (3.3.6)

As the pair k, k1 was taken arbitrarily, we can repeat the argument iteratively q times

(for every pair in K‹) and find nested subsets L Ě L1 Ě L2 Ě ¨ ¨ ¨ Ě Lq such that (3.3.6)

with L1 replaced by Lq holds for every kk1 P Kp2q
‹ .

Moreover, we have |Lq| ě δq|L| and since L is sufficiently large, we have |Lq| ě 2 and

we can select ``1 P Lp2qq . Owing to (3.3.6) with L1 replaced by Lq, for every kk1 P K‹
there is a vertex P kk1 P Pkk1 such that

P kk1Qk`Qk1`, P kk1Qk`1Qk1`1 , P kk1RkmRk1m
P EpAq . (3.3.7)

Moreover, since QpK,LqSpL,Mq has δ-intersecting links and K‹ is of size at least δ´1

there exists kk1 P Kp2q
‹ such that

NpQk`, Qk`1
q XNpQk1`, Qk1`1

q XNpS`m, S`
1m
q ‰ ∅ .
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Therefore, there is a vertex P ``1 P NpQk`, Qk`1q XNpQk1`, Qk1`1q XNpS`m, S`
1mq Ď P``1

such that

P ``1Qk`Qk`1 , P ``1Qk1`Qk1`1 , P ``1S`mS`
1m
P EpAq . (3.3.8)

Moreover, since QpK,LqRpK,MqSpL,Mq is inhabited we have

Qk`RkmS`m, Qk`1RkmS`
1m, Qk1`Rk1mS`m, Qk1`1Rk1mS`

1m
P EpAq . (3.3.9)

Consequently, the ten hyperedges provided by (3.3.7)–(3.3.9) show that the vertices

P kk1 , P ``1 , together with Qk`, Qk`1 , Qk1`, Qk1`1 , Rkm, Rk1m, and S`m, S`1m support a Kp3q
5

on the five indices k, k1, `, `1, and m.

By means of the product Ramsey theorem (see e.g. Proposition 9.1 in [46]) we can

move from at most one pair with intersecting links (given by Lemma 3.3.6) to at least

two pairs with essentially disjoint links.

Corollary 3.3.7. Let t P N, δ ą 0, let A be a reduced hypergraph with index set I

that does not support Kp3q
5 , and let QpK,LqRpK,MqSpL,Mq be an inhabited triple of

transversals for sufficiently large disjoint sets K, L, M Ď I.

Then there exist subsets K‹ Ď K, L‹ Ď L, and M‹ Ď M each of size t such that

at most one pair of restricted transversals QpK‹, L‹qRpK‹,M‹q, QpK‹, L‹qSpL‹,M‹q,

RpK‹,M‹qSpL‹,M‹q has δ-intersecting links and all other pairs have δ-disjoint links.

Proof. Define a 2-colouring on the tuples pkk1, `,mq P Kp2q ˆ L ˆ M depending on

whether NpQk`, Qk1`q XNpRkm, Rk1mq ě δ|Pkk1 | or not.

Since K, L, and M are large enough, we can deduce from the product Ramsey

theorem that there exist large subsets K1 Ď K, L1 Ď L, and M1 Ď M for which the

pair of restricted transversals QpK1, L1qRpK1,M1q has δ-intersecting or δ-disjoint links.

We can repeat this argument and consider the triples in Lp2q1 ˆK1 ˆM1 to obtain

subsets K2 Ď K1, L2 Ď L1 and M2 ĎM1 such that the pair QpK2, L2qSpL2,M2q has δ-

intersecting or δ-disjoint links. Observe that these properties are closed under subsets

of indices and hence, we have that the pair QpK2, L2qRpK2,M2q has δ-intersecting

or δ-disjoint links.
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Using the Ramsey argument again yields subsets K‹ Ď K2, L‹ Ď L2, and M‹ ĎM2

such that all pairs of restricted transversals QpK‹, L‹q, RpK‹,M‹q, and SpL‹,M‹q

have δ-intersecting or δ-disjoint links. Since the initial sets K, L, and M are large

enough, we argue that K‹, L‹, and M‹ can be taken of size at least t.

Finally, applying Lemma 3.3.6 we observe that at most one of those pairs of transver-

sals has a δ-intersecting link, and hence, at least two of them have δ-disjoint links.

Finally, we may combine Corollaries 3.3.4 and 3.3.7. More precisely, after an

application of Corollary 3.3.7 and three consecutive applications of Corollary 3.3.4 we

arrive at the following statement.

Corollary 3.3.8. Let t P N, δ, µ, d ą 0, let A be a pd, q-dense reduced hypergraph

with index set I that does not support a Kp3q
5 , and for sufficiently large disjoint sets K,

L, M Ď I let QpK,LqRpK,MqSpL,Mq be an inhabited triple of transversals.

There exist subsets K‹ Ď K, L‹ Ď L, and M‹ ĎM of size at least t such that

(i ) at most one pair QpK‹, L‹qRpK‹,M‹q, QpK‹, L‹qSpL‹,M‹q, RpK‹,M‹qSpL‹,M‹q

of restricted transversals has δ-intersecting links and all other pairs have δ-disjoint

links

(ii ) and for every k P K‹, ` P L‹, and m P M‹ the links ΛpQ, K‹, `q, ΛpQ, L‹, kq,

ΛpR, K‹,mq, ΛpR,M‹, kq, ΛpS, L‹,mq, and ΛpS,M‹, `q are pµ, t, dq-holes.

3.3.3 Equivalent holes

Roughly speaking, in the next step for the proof of Proposition 3.1.5 we show that for

wicked reduced hypergraphs (see Definition 3.1.4), the set of holes with width bigger

than 1{3 splits into only two classes defined by δ-intersections. For that we transfer the

notion of δ-intersecting from links to holes.

Definition 3.3.9. Given a reduced hypergraph A with index set I, a subset J Ď I,

and µ, δ ą 0, we say two µ-holes Φ and Ψ on J are δ-intersecting if
ˇ

ˇΦij
XΨij

ˇ

ˇ ą δ
ˇ

ˇP ij
ˇ

ˇ (3.3.10)
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for all ij P J p2q. If, on the other hand, (3.3.10) fails for all ij P J p2q, then we say Φ and

Ψ are δ-disjoint.

For µ ą 0 and δ P p0, 1s the notion of δ-intersecting defines a reflexive and symmetric

relation on the µ-holes on J . However, maybe somewhat surprisingly, the next lemma

shows that this relation is also transitive on holes with width bigger than 1{3 in wicked

reduced hypergraphs, if one passes to an appropriate subset of J . This justifies the

shorthand notation

Φ ”δ,J Ψ

for δ-intersecting holes on J .

Lemma 3.3.10. For every ε ą 0 there exists µ ą 0 such that for every t P N the

following holds. Suppose A is an ε-wicked reduced hypergraph with index set I and for

sufficiently large J Ď I we are given pµ, |J |, 1{3` εq-holes Φ, Ψ, and Ω with

Φ ”ε,J Ψ and Ψ ”ε,J Ω .

Then there is a subset J‹ Ď J of size t such that Φ ”ε,J‹ Ω.

Proof. Given ε ą 0 we fix auxiliary integers t1, t2, t3 and we set µ to satisfy the hierarchy

ε´1
! t3 ! t2 ! t1, µ

´1 . (3.3.11)

Let t P N and let A be an ε-wicked reduced hypergraph with index set I and for

sufficiently large J Ď I let Φ, Ψ, and Ω be pµ, |J |, 1{3` εq-holes such that Φ and Ψ, as

well as, Ψ and Ω are ε-intersecting.

Consider an auxiliary 2-colouring of the pairs ij P J p2q depending on whether

|Φij
X Ωij

| ď ε|P ij
| (3.3.12)

or not. Since J is sufficiently large, there is a subset J1 Ď J of size maxtt1, tu such

that (3.3.12) either holds or fails for every ij P J p2q1 . If (3.3.12) fails, we set J‹ “ J1 and

are done. Consequently, we may assume that (3.3.12) holds for every ij P J p2q1 and from

which we shall derive a contradiction to the assumption that A does not support Kp3q
5 .
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First we note that for all i ă j ă k from J1 and every P ij P P ij and P jk P Pjk the

p1{3` ε, q-density of A and the given width of the holes Φ and Ω together with (3.3.12)

imply
ˇ

ˇNpP ij, P jk
q X pΦik

Y Ωik
q
ˇ

ˇ ě
ˇ

ˇNpP ij, P jk
q
ˇ

ˇ`
ˇ

ˇΦik
ˇ

ˇ`
ˇ

ˇΩik
ˇ

ˇ´
ˇ

ˇP ik
ˇ

ˇ´
ˇ

ˇΦik
X Ωik

ˇ

ˇ

ě 2ε
ˇ

ˇP ik
ˇ

ˇ . (3.3.13)

We define the reduced subhypergraph A1 Ď A on J1 with vertex set V pA1q “ V pAq

and with edges defined for every i ă j ă k in J1 by

EpAijk
1 q “ E

`

Aijk
rΦij

XΨij,Φik
Y Ωik,Ψjk

X Ωjk
s
˘

.

Since Φ and Ψ, as well as, Ψ and Ω are ε-intersecting, we infer from (3.3.13) for every

i ă j ă k in J1 that
ˇ

ˇEpAijk
1 q

ˇ

ˇ “
ÿ

P ijPΦijXΨij
P jkPΨjkXΩjk

ˇ

ˇNApP
ij, P jk

q X pΦik
Y Ωik

q
ˇ

ˇ ě 2ε3
|P ij

||Pjk
||Pjk

|

and, hence, A1 is p2ε3, q-dense.

We consider the ε-exceptional left and right cherries (see Definition 3.3.2) of the

holes Φ, Ψ, and Ω (restricted to J1), i.e., for every i ă j ă k in J1 we set

L ijk
“ L ijk

pΨ, εq YL ijk
pΩ, εq and Rijk

“ Rijk
pΦ, εq YRijk

pΨ, εq .

We infer from (3.3.1) that

|L ijk
| ď

2µ
ε
|P ij

||P ik
| and |Rijk

| ď
2µ
ε
|P ik

||Pjk
| .

By the choice of µ we can apply Lemma 3.2.5 to A1 with t2, 2ε3, and 2µ
ε
in place

of t, µ and µ1. This yields an J2 Ď J1 of size t2 and three transversals QpJ2q, RpJ2q,

and SpJ2q avoiding the exceptional cherries from L ijk and Rijk for every ijk P J p3q2 .

Furthermore, for every i ă j ă k in J2 we have

QijRikSjk P EpAijk
1 q “ E

`

Aijk
rΦij

XΨij,Φik
Y Ωik,Ψjk

X Ωjk
s
˘

. (3.3.14)

We fix disjoint subsets K,L,M Ď J2 such that K 1 and M 1 have size tt2{3u, L has

size t3, and for every pk, `,mq P KˆLˆM we have k ă ` ă m. Note that by definition
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RpK 1,M 1q Ď ΦY Ω and hence there exists a Π P tΦ,Ωu, which contains more then half

of RpK 1,M 1q. Therefore, an application of the Kővari-Sós-Turán Theorem (see [40])

leads to subsets K Ď K 1 and M ĎM 1, each of size t3, such that

Rkm
P Πkm for every k P K, and m PM . (3.3.15)

Owing to (3.3.14), the restricted transversals QpK,Lq, RpK,Mq, and SpL,Mq form

an inhabited triple in A. We derive a contradiction by Lemma 3.3.6 and for that we shall

show that two of the pairs QpK,LqRpK,Mq, QpK,LqSpL,Mq, and RpK,MqSpL,Mq

have ε-intersecting links.

First, we recall that, independent of the chosen Π, the pair QpK,LqSpL,Mq consists

of transversals inside the hole Ψ and both avoid the exceptional left and right cherries

from Ψ. Hence, for all k P K, ``1 P Lp2q, and m PM we have
ˇ

ˇNApQ
k`, Qk`1

q XΨ``2
ˇ

ˇ ă ε
ˇ

ˇP``1
ˇ

ˇ and
ˇ

ˇNApS
lm, S`

1m
q XΨ``1

ˇ

ˇ ă ε
ˇ

ˇP``1
ˇ

ˇ .

Consequently, the p1{3` ε, q-density of A and the width of Ψ imply
ˇ

ˇNApQ
k`, Qk`1

q XNApS
`m, S`

1m
q
ˇ

ˇ ą ε
ˇ

ˇP``1
ˇ

ˇ

for every k P K, ``1 P Lp2q, and m PM , i.e., the pair QpK,LqSpL,Mq has ε-intersecting

links.

If Π “ Φ, then QpK,Lq and RpK,Mq are both transversals in Φ (see (3.3.15)) and

both Q and R avoid the exceptional right cherries of Φ. As before, this implies that the

pair QpK,LqRpK,Mq has ε-intersecting links. Consequently, Lemma 3.3.6 gives rise to

the contradiction that A supports a Kp3q
5 .

Analogously, if Π “ Ω, then RpK,Mq and SpL,Mq are both transversals in Ω and

since both R and S avoid the exceptional left cherries of Ω, the pair of transversals

has ε-intersecting links, which leads to the same contradiciton.

Another application of Ramsey’s theorem leads to the following corollary.

Corollary 3.3.11. For every ε ą 0 there exists µ ą 0 such that for all integers t, r ě 2

the following holds. Suppose A is an ε-wicked reduced hypergraph with index set I and

for sufficiently large J Ď I we are given pµ, |J |, 1{3` εq-holes Φ1, . . . ,Φr.
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Then there is a subset J‹ Ď J of size t such that

(i ) for all %, %1 P rrs the holes Φ% and Φ%1 are either ε-intersecting or ε-disjoint on J‹

(ii ) and ”ε,J‹ is an equivalence relation on tΦ1, . . . ,Φru with at most two equivalence

classes.

Proof. For ε P p0, 1s let µ ą 0 be given by Lemma 3.3.10. For fixed t, r ě 2 let t1 ě t be

sufficiently large for an application of Lemma 3.3.10 with ε, µ, and with 2 in place of t.

For a given ε-wicked reduced hypergraph A and pµ, |J |, 1{3` εq-holes Φ1, . . . ,Φr we

impose that the size of J is larger than the 2p
r
2q-colour Ramsey number for graph cliques

on t1 vertices, i.e.,

|J | ÝÑ pt1q2|Ξ| for Ξ “
 

ξ “ pξ%%1q%%1Prrsp2q : ξ%%1 P t0, 1u for %%1 P rrsp2q
(

. (3.3.16)

We assign to a pair ij P J p2q the colour ξ “ pξ%%1qrrsp2q with ξ%%1 “ 1 signifying

ˇ

ˇΦij
% X Φij

%1

ˇ

ˇ ą ε
ˇ

ˇP ij
ˇ

ˇ

and ξ%%1 “ 0 otherwise. Owing to (3.3.16) there exists a subset J‹ Ď J of size at least

t1 ě t and a colour ξ‹ “ pξ‹%%1q%%1Prrsp2q such that all pairs of J‹ were assigned ξ‹. Note

that assertion (i ) follows directly from the definition of the colouring, i.e., Φ% and Φ%1

are ε-intersecting on J‹ if ξ‹%%1 “ 1 and ε-disjoint otherwise.

Obviously the relation ”ε,J‹ is reflexive and symmetric. Moreover, our choice of t1

allows us to invoke Lemma 3.3.10 and the transitivity follows from the definition of the

colouring. Since all holes have width at least 1{3` ε at least two among any choice of

three holes must share at least ε|P ij| vertices in P ij for any ij P J p2q‹ and, hence, ”ε,J‹
has at most two equivalence classes.

3.3.4 Unions of equivalent holes

The next lemma shows that the union of equivalent holes of width bigger than 1{3 is

still a hole on a suitable subset of the index set. This will be crucial in the proof of

Proposition 3.1.5. Roughly speaking, we will start with two disjoint holes of width



3.3. BICOLOURING WICKED REDUCED HYPERGRAPHS 45

bigger than 1{3 and then every other hole of width bigger than 1{3 can be united with

one of the two starting holes. We shall ensure that the union will be a larger hole and,

hence, after a bounded number of unions we arrive at two holes. These two holes can

be used later to define the two colouring ϕ asserted by Proposition 3.1.5 (see § 3.3.5 and

§ 3.3.6 for details).

Lemma 3.3.12. For every µ, ε ą 0 there exists ν ą 0 such that for every t P N the

following holds. Suppose A is an ε-wicked reduced hypergraph with index set I and for

a sufficiently large subset J Ď I we are given two pν, |J |, 1{3` εq-holes Φ and Ψ on J

such that Φ ”ε,J Ψ.

Then, there exists a subset J‹ Ď J of size at least t such that ΦYΨ is a µ-hole on J‹.

Proof. Let µ ą 0 and ε ą 0 be given. We may assume that ε ď 2{3 and we let µ‹ ą 0 be

a sufficiently small auxiliary constant so that Corollary 3.3.11 applies with ε. Moreover,

we fix integers t4 ď t3 ď t2 ď t1 and ν ą 0 so that

(1 ) t4 is sufficiently large to apply Corollary 3.3.11 with ε, µ‹, r “ 4, and 2 in place

of t,

(2 ) t3 is sufficiently large to apply Corollary 3.3.8 with t4, ε, µ‹, and 1{3` ε in place

of t, δ, µ, and d,

(3 ) t2 is sufficiently large and ν ď mintµ, µ‹u is sufficiently small so that Lemma 3.2.5

applies with 3t3, µ{8, and 2ν{ε in place of t, µ, and µ1,

(4 ) and t1 ÝÑ pt2q
3
8.

Finally, for t P N let J Ď I be sufficiently large so that

|J | ÝÑ pt1q32 for t1 “ maxtt, t1u .

Given pν, |J |, 1{3` εq-holes Φ and Ψ on J let

L “ L pΦ, εq YL pΨ, εq and R “ RpΦ, εq YRpΨ, εq
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be their ε-exceptional left and right cherries. For later reference we recall that (3.3.1)

yields

|L ijk
| ď

2ν
ε
|P ij

||P ik
| and |Rijk

| ď
2ν
ε
|P ik

||Pjk
| . (3.3.17)

We begin with an application of Ramsey’s theorem for hypergraphs and consider a

2-colouring of the triples ijk P J p3q depending on whether

epΦij
YΨij,Φik

YΨik,Φjk
YΨjk

q ą µ|P ij
||P ik

||Pjk
| (3.3.18)

or not. Owing to the size of J , there exists a subset J1 Ď J of size t1 ě maxtt, t1u such

that either (3.3.18) holds or fails for all ijk P J p3q1 . Note that in case it fails we would

be done and, hence, we may assume that (3.3.18) holds for every ijk P J p3q1 and in the

remainder we shall derive a contradiction from this assumption.

First we observe that inequality (3.3.18) implies that for at least one the eight

possible tuples pΠ1,Π2,Π3q P tΦ,Ψu3 we have

epΠij
1 ,Πik

2 ,Π
jk
3 q ą

µ

8 |P
ij
||P ik

||Pjk
| (3.3.19)

for every ijk P J p3q1 . Actually, since Φ and Ψ are ν-holes and ν ď µ inequality (3.3.19)

can neither hold for epΦij,Φik,Φjkq nor for epΨij,Ψik,Ψjkq. Thus, we may define an

auxiliary 6-colouring of the triples ijk in J p3q1 depending on which of the six available

tuples in tΦ,Ψu3 satisfies (3.3.19), where we fix some choice in an arbitrary way in

case several choices satisfy (3.3.19). In view of (4 ) there is a subset J2 Ď J1 of size t2
such that for every ijk P J p3q2 inequality (3.3.19) holds for epΠij

1 ,Πik
2 ,Π

jk
3 q for the same

tuple pΠ1,Π2,Π3q P tΦ,Ψu3 for every ijk P J p3q2 .

Consequently, the reduced subhypergraph A1 Ď A defined for every i ă j ă k

in J2 by

P ijP ikP jk
P EpA1

q ðñ P ijP ikP jk
P EpArΠij

1 ,Πik
2 ,Π

jk
3 sq (3.3.20)

is pµ{8, q-dense on J2. Due to (3.3.17) and our choice of t2 and ν in (3 ), Lemma 3.2.5 en-

sures a subset J3 Ď J2 of size 3t3 and an inhabited triple of transversals QpJ3qRpJ3qSpJ3q

where each transversal avoids the sets of exceptional left and right cherries L and R of

Φ and Ψ.
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Since QpJ3qRpJ3qSpJ3q is an inhabited triple, we have QijRikSjk P EpA1q for every

i ă j ă k in J3 and, therefore, the definition of A1 in (3.3.20) implies

Qij
P Π1 , Rik

P Π2 , and Sjk P Π3 (3.3.21)

for all i ă j ă k in J3.

Fix disjoint subsets of indices K3, L3,M3 Ď J3 each of size t3 and such that for

every pk, `,mq P KˆLˆM it holds that k ă ` ă m. Clearly, the restricted transver-

sals QpK3, L3q, RpK3,M3q, and SpL3,M3q still form an inhabited triple of transversals.

Therefore, the choice of t3 in (2 ) allows an application of Corollary 3.3.8, which yields

subsets K4 Ď K3, L4 Ď L3, andM4 ĎM3 each of size t4 satisfying properties (i ) and (ii )

of Corollary 3.3.8.

Next we shall show that all three pairs of restricted transversals QpK4, L4qRpK4,M4q,

QpK4, L4qSpL4,M4q, and RpK4,M4qSpL4,M4q have ε-intersecting links. However, this

contradicts property (i ) of Corollary 3.3.8, which allows only one pair of transversals

with ε-intersecting links and this contradiction concludes the proof of Lemma 3.3.12.

Below we show that the pair QpK4, L4qRpK4,M4q has an ε-intersecting link the proof

for the other pairs follows verbatim the same lines.

Fix some ` P L4 andm PM4. Property (ii ) of Corollary 3.3.8 tells us that ΛpQ, K4, `q

and ΛpR, K4,mq are pµ‹, t4, 1{3` εq-holes on K4. Moreover, since ν ď µ‹ also Φ and Ψ

are pµ‹, t4, 1{3` εq-holes on K4 and, therefore, the choice of t4 in (1 ) and an application

of Corollary 3.3.11 yields a subset K‹ Ď K4 of size at least two such that ”ε,K‹ defines

an equivalence relation with at most two equivalent classes on the µ‹-holes

ΛpQ, K‹, `q , ΛpR, K‹,mq , Π1 , and Π2 .

In view of (3.3.21) we have QpK‹, L4q Ď Π1 and RpK‹,M4q Ď Π2 and since Q and R

avoid the exceptional cherries from L and R we infer

|NpQk`, Qk1`
q X Πkk1

1 | ă ε|Pkk1
| and |NpRkm, Rk1m

q X Πkk1

2 | ă ε|Pkk1
|

for k, k1 P K‹. Consequently,

Π1 and ΛpQ, K‹, `q are ε-disjoint and Π2 and ΛpR, K‹,mq are ε-disjoint
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Either Π1 “ Π2 or by assumption of the lemma we have Π1 ”ε,K‹ Π2 and since ”ε,K‹
has only two equivalence classes, we arrive at

ΛpQ, K‹, `q ”ε,K‹ ΛpR, K‹,mq .

Therefore, property (i ) of Corollary 3.3.8 yields the same conclusion for K4 Ě K‹, i.e.,

ΛpQ, K4, `q and ΛpR, K4,mq are ε-intersecting. Finally, since ` P L4 andm PM4 were ar-

bitrary, we infer the promised assertion that the pair of transversals QpK4, L4qSpL4,M4q

has ε-intersecting links.

We finish this subsection with the following corollary that follows from the application

of Corollary 3.3.11 and Lemma 3.3.12. We will use it for the proof of the lemma presented

in the following section.

Corollary 3.3.13. For every µ, ε ą 0 there exists ν ą 0 such that for every t P N the

following holds. Suppose A is an ε-wicked reduced hypergraph with index set I and for

a sufficiently large subset J Ď I we are given three pν, |J |, 1{3` εq-holes Φ, Ψ, and Ω

such that Φ and Ψ are ε-disjoint.

Then, there exists a subset J‹ Ď J of size at least t such that one of the following holds

(A ) ΦY Ω is a pµ, t, 1{3` εq-hole ε-disjoint with Ψ

(B ) or ΨY Ω is a pµ, t, 1{3` εq-hole ε-disjoint with Φ.

Proof. Given µ and ε ą 0 we fix an auxiliary positive constant µ1 ď µ small enough to

apply Corollary 3.3.11 with ε. We fix ν ď µ1 to be small enough to apply Lemma 3.3.12

with ε and µ1. Finally, given t P N we fix positive integers t2 ď t1 such that: t2 is large

enough to apply Corollary 3.3.11 with t and r “ 3 and t1 is large enough to apply

Lemma 3.3.12 with t2 in place of t. Let A as in the lemma and consider a set J Ď I

large enough for an application of Corollary 3.3.11 with r “ 3 and t1 in place of t.

Apply Corollary 3.3.11 with r “ 3 to find a subset J1 Ď J of size t1 in which ”ε,J1

is an equivalence relation on tΦ,Ψ,Ωu with at most two equivalence classes. Since Φ

and Ψ are ε-disjoint without loss of generality we may assume

Ω ”ε,J1 Φ . (3.3.22)
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Moreover, part (i ) of Corollary 3.3.11 implies that Ω and Ψ are ε-disjoint on J1.

An application of Lemma 3.3.12 yields the existence of a set J2 Ď J1 of size t2 on

which

ΩY Φ is a pµ1, t2, 1{3` εq-hole.

Since Ψ is ε-disjoint with both Φ and Ω, we have that ΩY Φ and Ψ are 2ε-disjoint.

However, to prove (A ) we need an other application of Corollary 3.3.11 for the holes Φ, Ψ

and ΦYΩ. Through this application we obtain a subset J‹ Ď J2 of size t in which ”ε,J‹ is

an equivalence relation with at most two equivalent classes. Since Φ and Ψ are ε-disjoint

and obviously ΦY Ω ”ε,J‹ Ω alternative (A ) follows.

In the case in which Ω ”ε,J1 Ψ instead of (3.3.22) alternative (B ) follows with the

same argument.

3.3.5 Two large disjoint holes

In this section we establish the existence of two essentially disjoint holes such that

most cherries in each hole have a large neighbourhood in the other hole. For that we

consider the following sets of unwanted cherries. Given µ-holes Φ and Ψ on J , ε ą 0,

and indices ijk P J p3q a cherry pP ij, P ikq P P ij ˆ P ik is ε-bad if

pP ij, P ik
q P Φij

ˆ Φik and |NpP ij, P ik
qr Ψjk

| ě ε|Pjk
|

or pP ij, P ik
q P Ψij

ˆΨik and |NpP ij, P ik
qr Φjk

| ě ε|Pjk
| .

For i ă j ă k we denote the sets of all ε-bad left, middle, and right cherries by

I ijk
pΦ,Ψ, εq Ď P ij

ˆ P ik,C ijk
pΦ,Ψ, εq Ď P ij

ˆ Pjk, and D ijk
pΦ,Ψ, εq Ď P ik

ˆ Pjk,

where the letters I , C , and D come from the initials of the words “left”, “central”, and

“right” in Spanish.

The following lemma shows that given two disjoint holes Φ and Ψ of width at

least 1{3` ε it holds that (for a large subset of indices) either there are few bad cherries

or there is a third hole Ω of width 1{3` ε with a positive proportion of vertices outside

of Φ and Ψ. In the latter case an application of Corollary 3.3.13 yields two disjoint holes

Φ‹ and Ψ‹ whose sum of widths increased.
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Lemma 3.3.14. For every µ, ε ě γ ą 0 and t P N there is ν ą 0 such that the following

holds. Suppose A is an ε-wicked reduced hypergraph with index set I and for sufficiently

large J Ď I we are given ε-disjoint pν, |J |, 1{3` εq-holes Φ and Ψ.

Then, there exists a subset J‹ Ď J of size t such that one of the following holds

(A ) there exist two ε-disjoint pµ, t, 1{3` εq-holes Φ‹ and Ψ‹ such that

|Φij
‹ YΨij

‹ | ě |Φij
YΨij

| `
γ

2 |P
ij
|

for every ij P J p2q‹ ,

(B ) or for all i ă j ă k in J‹ the sets of γ-bad cherries satisfy

|I ijk
pΦ,Ψ, γq| ď µ|P ij

||P ik
|, |D ijk

pΦ,Ψ, γq| ď µ|P ik
||Pjk

|,

and |C ijk
pΦ,Ψ, γq| ď µ|P ij

||Pjk
|.

Proof. Given µ, ε ě γ ą 0, and t P N we fix auxiliary integers t1, . . . , t6, and we choose ν

to satisfy

ε´1, µ´1, γ´1, t ! t6 ! ¨ ¨ ¨ ! t1, ν
´1 .

Let A, J Ď I, Φ, and Ψ be as in the statement of the lemma. In particular we

have t1 ! |J |. Consequently, if (B ) fails to be true, an application of Ramsey’s theorem

with four colours tell us that there exists a subset J1 Ď J of size at least t1 such that

one of the following cases holds for every i ă j ă k in J1

|I ijk
pΦ,Ψ, γq| ą µ|P ij

||P ik
| , |D ijk

pΦ,Ψ, γq| ą µ|P ik
||Pjk

| ,

or |C ijk
pΦ,Ψ, γq| ą µ|P ij

||Pjk
| .

We analyse each case separately.

First Case: |I ijkpΦ,Ψ, γq| ą µ |P ij||P ik| for every i ă j ă k in J1.

Consider the sets of bad cherries restricted to the holes Φ and Ψ defined by

I ijk
Φ “ I ijk

pΦ,Ψ, γq X Φij
ˆ Φik and I ijk

Ψ “ I ijk
pΦ,Ψ, γq XΨij

ˆΨik
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for every i ă j ă k in J1. Note that |I ijk
Φ | ą

µ
2 |P

ij||P ik| or |I ijk
Ψ | ą

µ
2 |P

ij||P ik|. Then,

with out loss of generality, and through an other application of Ramsey’s theorem we

may assume that there is a set J2 Ď J1 of size at least t2 such that

|I ijk
Φ | ą

µ

2 |P
ij
||P ik

|, (3.3.23)

for every i ă j ă k in J2.

Consider an auxiliary reduced hypergraph A1 with V pA1q “ V pAq and with edges

defined for every i ă j ă k in J2 by

pP ij, P ik, P jk
q P EpA1

q ðñ pP ij, P ik
q P I ijk

Φ r L ijk
pΦ, γ{2q

and notice that A1 is not necessarily a subhypergraph of A.

Observe that for every i ă j ă k in J2, due to (3.3.1) we have

|L ijk
pΦ, γ{2q| ď 2ν

γ
|P ij

||P ik
| ď µ|P ij

||P ik
|,

which together with (3.3.23) yield that A1 is pµ, q-dense.

Moreover, since we have

|L ijk
pΦ, γ{2q| ď 2ν

γ
|P ij

||P ik
| and |Rijk

pΦ, γ{2q| ď 2ν
γ
|P ik

||Pjk
| ,

our choice of constants allows us to apply Lemma 3.2.5. Thus, we obtain a subset J3 Ď J2

of size t3 and transversals QpJ3q, RpJ3), and SpJ3q that avoid L pΦ, γ{2q and RpΦ, γ{2q

and form an inhabited triple of transversals in A1.

First, since the triple QRS is inhabited, we have QijRikSjk P EpA1q for every three

indices i ă j ă k in J3. This is to say

pQij, Rik
q P I ijk

Φ r L ijk
pΦ, γ{2q. (3.3.24)

We remark that the reduced hypergraph A1 and the transversal S are not relevant for

the rest of the proof.

By the definitions of I ijk
Φ and L ijkpΦ, γ{2q, (3.3.24) tell us that

|NpQij, Rik
qr Ψjk

| ě γ|Pjk
| and |NpQij, Rik

q X Φjk
| ă

γ

2 |P
jk
|.
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Moreover, we have that |NpQij, Rikq| ě p1{3` εq|Pjk| and therefore we obtain

|NpQij, Rik
qr pΦjk

YΨjk
q| ě

γ

2 |P
jk
| , (3.3.25)

for every i ă j ă k in J3.

Second, since the transversals Q and R avoid RpΦ, γ{2q we have that for every fixed

indices i ă j ă k ă ` in J3 the neighbourhoods

|NpQik, Qjk
q X Φij

| ď
γ

2 |P
ij
| ď

ε

2 |P
ij
| and |NpRi`, Rj`

q X Φij
| ď

γ

2 |P
ij
| ď

ε

2 |P
ij
| .

Since Φ has width 1{3` ε and by the -density, this implies that

|NpQik, Qjk
q XNpRi`, Rj`

q| ě ε|P ij
| . (3.3.26)

In order to prove (A ) we consider for every x ă i ă j in J3 the set

Ωij
x “ NpQxi, Rxj

q Ď P ij. (3.3.27)

Observe that if there is a subset J 1‹ Ď J3 of size at least t4 ` 1 and such that for every

x ă i ă j ă k in J 1‹ we have

epΩij
x ,Ωik

x ,Ωjk
x q ď ν|P ij

||P ik
||Pjk

|, (3.3.28)

then the set Ω “
Ť

iăjPJ 1‹rtx0u
Ωij
x0 with x0 “ min J 1‹ is a pν, t4, 1{3 ` εq-hole. An

application of Corollary 3.3.13 implies that there is a subset J‹ Ď J 1‹ of size at least t in

which ΩY Φ and Ψ or ΩYΨ and Φ are two ε-disjoint µ-holes. By taking Φ‹ “ ΦY Ω

and Ψ‹ “ Ψ in the first case or Φ‹ “ Φ and Ψ‹ “ ΨY Ω in the second, (3.3.25) implies

that (A ) follows.

Therefore, we may assume that (3.3.28) does not hold, and by an application of

Ramsey’s theorem for 4-uniform hypergraphs there is a set J4 Ď J3 of size at least t4
such that

epΩij
x ,Ωik

x ,Ωjk
x q ą ν|P ij

||P ik
||Pjk

| (3.3.29)

for every four indices x ă i ă j ă k in J4.
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Take disjoint subsets X4, K4, L4, and M4 of J4 each of them of size t|J4|{4u and

such that for every px, k, `,mq P X4 ˆK4 ˆ L4 ˆM4 we have x ă k ă ` ă m. Observe

that, for every fixed x P X4, even if we only consider the edges in the restricted

constituents Ak`mrΩk`
x ,Ωkm

x ,Ω`m
x s for every pk, `,mq P K4 ˆ L4 ˆ M4, the resulting

reduced hypergraph Ax is pν, q-tridense, because of (3.3.29). Then, an application

of Lemma 3.2.7 with r “ 1 yields the existence of subsets X5 Ď X4, K5 Ď K4, L5 Ď

L4, and M5 Ď M4 each of them of size t5, and transversals T pK5, L5q, UpK5,M5q,

and VpL5,M5q such that

T k`UkmV `m
P EpAxq, (3.3.30)

for every pk, `,mq P K5 ˆ L5 ˆM5 and x P X5. Observe that this means T k` P Ωk`
x ,

Ukm P Ωkm
x , and V `m P Ω`m

x . Moreover, recalling (3.3.27) we have

QxkRx`T k` P EpAxk`
q, QxkRxmUkm

P EpAxkm
q, and Qx`RxmV `m

P EpAx`m
q .

In other words all three triples of transversals

QpX5, K5qRpX5, L5qT pK5, L5q , QpX5, K5qRpX5,M5qUpK5,M5q ,

and QpX5, L5qRpX5,M5qVpL5,M5q

are inhabited. Note that here we consider restrictions of the transversals Q and R

on different subsets of indices. Moreover, from (3.3.30) we infer that the triple of

transversals

T pK5, L5qUpK5,M5qVpL5,M5q

is also inhabited.

We iteratively apply Corollary 3.3.8 four times to these triples of inhabited transver-

sals. After these four applications we obtain index sets X6, K6, L6, and M6 each of

them of size at least 2, which satisfy (i ) and (ii ) of Corollary 3.3.8 for all those four

inhabited triples of transversals.

We shall show that the two pairs of restricted transversals T pK6, L6qUpK6,M6q and

UpK6,M6qVpL6,M6q have ε-intersecting links which contradicts (i ) of Corollary 3.3.8

and concludes the proof.
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First we show that the pair T pK6, L6qUpK6,M6q has ε-intersecting links. Because

of (i ) we only need to prove that for some k, k1 P K6, ` P L6, and m PM6 we have

|NpT k`, T k
1`
q XNpUkm, Uk1m

q| ě ε|Pkk1
|. (3.3.31)

Fix k, k1 P K6, ` P L6, and m P M6, and consider QpX6, K6qRpX6, L6qT pK6, L6q.

Because of (3.3.26) we have that for every x, x1 P X6

|NpQxk, Qx1k
q XNpRx`, Rx1`

q| ě ε|Pxx1
|.

By (i ) of Corollary 3.3.8 this implies that the whole pair QpX6, K6qRpX6, L6q has ε-

intersecting links. Again by (i ) this can hold for at most one pair of transversals, and the

other two must have ε-disjoint links. Then, the pair QpX6, K6qT pK6, L6q has ε-disjoint

links, and for every x P X6 we have

|NpQxk, Qxk
q XNpT k`, T k

1`
q| ă ε|Pkk1

|,

and we may some fix x P X6.

With a similar argument for QpK6, X6qRpX6,M6qUpK6,M6q we obtain an analogous

inequality

|NpQxk, Qxk1
q XNpUkm, Uk1m

q| ă ε|Pkk1
|.

Finally since both neighbourhoods NpT k`, T k1`q and NpUkm, Uk1mq have small inter-

section with NpQxk, Qxk1q, and by the p , 1{3` εq-density condition, (3.3.31) follows.

The proof that the pair UpK6,M6qVpL6,M6q has ε-intersecting links follows among

the same lines, by considering the triples of transversals QpX6, K6qRpX6,M6qUpK6,M6q

and QpX6, L6qRpX6,M6qVpL6,M6q. This finishes the proof of the first case.

Second Case: |D ijkpΦ,Ψ, γ{2q| ą µ |P ik||Pjk| for every i ă j ă k in J1.

The proof is identical to the first case after simply reversing the order of the indices,

which exchanges the notions of left and right cherries.

Third Case: |C ijkpΦ,Ψ, γ{2q| ą µ |P ij||Pjk| for every i ă j ă k in J1.
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As before we consider the set of ε-bad cherries restricted to the different holes C ijk
Φ

and C ijk
Ψ and following the same Ramsey argument we find a subset J2 Ď J of size at

least t2 for which we may assume that

|C ijk
Φ | ą

µ

2 |P
ij
||Pjk

| ,

for every i ă j ă k in J2.

Again we define a reduced hypergraph A1 with V pA1q “ V pAq and this time the

edges are given by

pP ij, P ik, P jk
q P EpA1

q ðñ pP ij, P jk
q P C ijk

Φ r M ijk
pΦ, γ{2q,

for i ă j ă k in J2 (see Definition 3.3.2). Similarly as in the first case, by an application

of Lemma 3.2.5 we obtain a set J3 Ď J2 of size t3 and transversals Q and S which

satisfy pQij, Sjkq P C ijk
Φ r M ijkpΦ, γ{2q for every i ă j ă k in J3. This is to say, the

following variant of (3.3.25) holds

|NpQij, Sjkqr pΦik
YΨik

q| ě
γ

2 |P
ik
|. (3.3.32)

Moreover, because of Lemma 3.2.5 transversals Q and S avoid the exceptional

cherries from L pΦ, ε{4q and RpΦ, ε{4q. With this we can deduce the following version

of (3.3.26). For every i ă j ă k ă ` in J2 we have

|NpQij, Qik
q XNpSj`, Sk`q| ě ε|Pjk

| and |NpSik, Si`q XNpSjk, Sj`q| ě ε|Pk`
| .

(3.3.33)

For every i ă x ă j in J3 define the set of vertices

Ωij
x “ NpQix, Sxjq Ď P ij. (3.3.34)

Observe that if there is a subset J 1‹ Ď J3 of size at least t4 and such that for every five

indices i ă x ă j ă y ă k in J 1‹ we have

epΩij
x ,Ωik

x ,Ωjk
y q ď ν|P ij

||P ik
||Pjk

| (3.3.35)
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then, we can establish (A ) as follows: consider J2‹ to be every second element in J 1‹ and

let i` “ mintj ą i : j P J 1‹u. Thus, the set Ω “
Ť

iăjPJ2‹
Ωij
i` is a pν, t4, 1{3` εq-hole. As

in the first case, an application of Corollary 3.3.13 yields a set J‹ Ď J2‹ of size t in which

either ΦYΩ and Ψ or Φ and ΨYΩ are two ε-disjoint µ-holes. Because of (3.3.32) those

two holes signify that (A ) holds.

Therefore, we may assume that (3.3.35) does not hold, and by an application of

Ramsey’s theorem now for 5-uniform hypergraphs there exists a subset J4 Ď J3 such

that for every i ă x ă j ă y ă k in J4.

epΩij
x ,Ωik

x ,Ωjk
y q ą ν|P ij

||P ik
||Pjk

|. (3.3.36)

Take now sets of indices K4, X4, L4, Y4, and M4 of size tJ4{5u and such that for

every pk, x, `, y,mq P K4 ˆX4 ˆ L4 ˆ Y4 ˆM4 we have k ă x ă ` ă y ă m. By (3.3.36)

all reduced hypergraphs Apx,yq given by the restrictions Ak`m
px,yq “ Ak`mrΩk`

x ,Ωkm
x ,Ω`m

y s

are pν, q-tridense for every px, yq P X4 ˆ Y4. We can apply Lemma 3.2.7 this time

with r “ 2. This application yields the existence of subsets X5 Ď X4, Y5 Ď Y4, K5 Ď

K4, L5 Ď L4, and M5 Ď M4 each of size t5, and transversals T pK5, L5q, UpK5,M5q,

and VpL5,M5q such that for every pk, `,mq P K5ˆL5ˆM5 and px, yq P X ˆ Y we have

T k`UkmV `m P Ak`m
px,yq. In particular, the triple of transversals

T pK5, L5qUpK5,M5qVpL5,M5q (3.3.37)

is inhabited. Moreover, this implies that T k` P Ωk`
x , Ukm P Ωkm

x , and V `m P Ω`m
y , and

due to (3.3.34) we obtain the edges

QkxT k`Sx` P EpAkx`
q, QkxUkmSxm P EpAkxm

q, and Q`yV `mSym P EpA`ym
q.

This is to say, the triples of transversals

QpK5, X5qT pK5, L5qSpX5, L5q , QpK5, X5qUpK5,M5qSpX5,M5q ,

and QpL5, Y5qVpL5,M5qSpY5,M5q (3.3.38)

are all inhabited.
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Again, we apply Corollary 3.3.8 iteratively four times to the triples of transversals

from (3.3.37) and (3.3.38). Thus we obtain sets K6, X6, L6, Y6, and M6 each of

them of size at least t6, satisfying (i ) and (ii ) of Corollary 3.3.8 for those triples of

transversals. We show that the two pairs of restricted transversals T pK6, L6qUpK6,M6q

and UpK6,M6qVpL6,M6q have ε-intersecting links which as in the first case contradicts (i )

of Corollary 3.3.8 and concludes the proof.

The proof for the pair T pK6, L6qUpK6,M6q follows from the same arguments pre-

sented in the first case. However, for UpK6,M6qVpL6, V6q we proceed slightly different.

Because of (i ) of Corollary 3.3.8 it is enough to prove that for some k P K6

and m PM6 it holds that

ΛpU ,M6, kq ”ε,M6 ΛpV ,M6, `q . (3.3.39)

First, consider the triple QpK6, X6qUpK6,M6qSpK6,M6q, and observe that (3.3.33)

implies that

ΛpQ, X6, kq ”ε,X6 ΛpS, X6,mq

for every k P K6 andm PM6. This means that the pair of transversals QpK6, X6qSpX6,M6q

has ε-intersecting links. Because of (i ) of Corollary 3.3.8 at most one of the three pairs

of transversals can have ε-intersecting links, and the rest must have ε-disjoint links. In

particular, for every k P K6 and x P X6 we have

ΛpU ,M6, kq and ΛpS,M6, xq are ε-disjoint pµ, t6, 1{3` εq-holes. (3.3.40)

Reasoning analogously for the triple of transversals QpY6, L6qVpL6,M6qSpY6,M6q

we can deduce that for every ` P L6 and y P Y6

ΛpV ,M6, `q and ΛpS,M6, yq are ε-disjoint pµ, t6, 1{3` εq-holes. (3.3.41)

Moreover, because of (3.3.33), for every x P X6 and y P Y6 we obtain

ΛpS,M6, xq ”ε,M6 ΛpS,M6, yq. (3.3.42)

Observe that, by (ii ) of Corollary 3.3.8, all three relations (3.3.40), (3.3.41), and

(3.3.42) concern µ-holes in M6 of width at least 1{3 ` ε. Then, by an application
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of Lemma 3.3.11 with r “ 4 we obtain a subset M7 Ď M6 of size at least two such

that ”ε,M7 is an equivalence relation with at most two equivalence classes. Therefore,

since (3.3.40), (3.3.41), and (3.3.42) are closed under subsets of indices, we conclude

ΛpU ,M7, kq ”ε,M7 ΛpV ,M7, `q.

By (i ) of Corollary 3.3.8 this implies (3.3.39).

We can iteratively apply Lemma 3.3.14 to eventually arrive at alternative (B ). If

after an application of Lemma 3.3.14 to a pair of ε-disjoint ν-holes we conclude that (A )

holds, then we obtain two ε-disjoint µ-holes with µ ą ν and on a smaller set of indices,

but for which the sum of the widths is larger. With a suitable choice of constants we can

apply Lemma 3.3.14 again and repeat this procedure finitely many times. In each time

we increase the sum of the widths by γ{2 and therefore after at most 4γ´1 iterations

alternative (B ) must hold. Thus, we obtain the following corollary.

Corollary 3.3.15. For every µ, ε ě γ ą 0 and t P N there is ν ą 0 such that the

following holds. Suppose A is an ε-wicked reduced hypergraph with index set I and for

sufficiently large J Ď I we are given ε-disjoint pν, |J |, 1{3` εq-holes Φ and Ψ.

Then, there exists a subset J‹ Ď J of size t and ε-disjoint pµ, t, 1{3 ` εq-holes Φ‹
and Ψ‹ such that for all i ă j ă k in J‹ the sets of γ-bad cherries satisfy

|I ijk
pΦ‹,Ψ‹, γq| ď µ|P ij

||P ik
| , |D ijk

pΦ‹,Ψ‹, γq| ď µ|P ik
||Pjk

| ,

and |C ijk
pΦ‹,Ψ‹, γq| ď µ|P ij

||Pjk
| .

3.3.6 Bicolourisation

In this section we use the previous results on holes to find a suitable bipartition of the

vertices. Through this partition and some modifications of the hypergraph we construct

the bicoloured reduced hypergraph A‹ stated in Proposition 3.1.5.

Roughly speaking, A‹ will be the preimage of a random homomorphism (see Defini-

tion 3.2.6) from the given wicked reduced hypergraph A restricted to the symmetric
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difference of the two holes Φ‹ and Ψ‹ provided by Corollary 3.3.15. The bicolouring ϕ

of V pA‹q is defined through the holes Φ‹ and Ψ‹.

For the application of Corollary 3.3.15 we need to establish the existence of two

essentially disjoint holes. Those will be provided by Corollary 3.3.8. Moreover, the

inhabited triple of transversals required for the application of Corollary 3.3.8 will be

given by Theorem 3.2.3. Below we give the details of this proof.

Proof of Proposition 3.1.5. Given ε and t let γ, µ ą 0 and ` P N be such that

γ “
ε

12 and ε, t´1
" `´1

" µ " t´1
2 " t´1

1 .

Then, let ν be given by Corollary 3.3.15 and let t2 ě t to be large enough for such

an application. Let t1 to be sufficiently large to apply Corollary 3.3.8 with t “ t2,

δ “ ε, µ “ ν, and d “ 1{3` ε.

Recalling that by definition every pd, q-dense reduced hypergraphs is in particular

pd, q-dense, we let A be an ε-wicked reduced hypergraph with a sufficiently large index

set I, so that we can apply Theorem 3.2.3 with t “ 3t1 and µ “ 1{3`ε. Consequently, we

obtain a subset I1 Ď I of size 3t1 and an inhabited triple of transversals QpI1qRpI1qSpI1q.

Fix an arbitrary partition K1 ŸL1 ŸM1 of I1 with partition classes of size t1. Corol-

lary 3.3.8 applied to the inhabited triple of transversals QpK1, L1qRpK1,M1qSpL1,M1q

yields subsets K2 Ď K1, L2 Ď L1, and M2 Ď M1 of size t2 satisfying properties (i )

and (ii ) of the corollary.

Without loss of generality, we may assume that QpK2, L2qRpK2,M2q has ε-disjoint

links. Thus, by arbitrarily fixing ` P L2 and m P M2 we obtain ε-disjoint ν-holes Φ

and Ψ defined by

Φ “ ΛpQ, K2, `q and Ψ “ ΛpR, K2,mq .

Next, we apply Corollary 3.3.15 to obtain a set J3 Ď K2 of size t and ε-disjoint µ-

holes Φ‹ and Ψ‹ such that for every i ă j ă k in J3

|I ijk
pΦ‹,Ψ‹, γq| ď µ|P ij

||P ik
| , |D ijk

pΦ‹,Ψ‹, γq| ď µ|P ik
||Pjk

| ,

and |C ijk
pΦ‹,Ψ‹, γq| ď µ|P ij

||Pjk
| . (3.3.43)
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We define a bicoloured reduced hypergraph A1 which satisfies the minimum codegree

conditions required by the proposition, for almost every monochromatic pair. For every

pair ij P J p2q3 consider the colour classes

Rij
“ Φij

‹ r Ψij
‹ and Bij

“ Ψij
‹ r Φij

‹ ,

and let R “
Ť

ijPJ
p2q
3

Rij and B “
Ť

ijPJ
p2q
3

Bij. Define the reduced hypergraph A1 on

the index set J3 with vertex classes P ij
1 “ Rij YBij Ď P ij for every ij P J p2q3 and with

edges given by

EpA1q “ EpArRYBsqr pEpRq Y EpBqq .

Now we show that monochromatic cherries which are not γ-bad have large codegree

(in A1). For indices i ă j ă k in J3, consider a cherry pRij, Rikq P Rij ˆ Rik such

that pRij, Rikq R I ijkpΦ‹,Ψ‹, γq, then we have

|NApR
ij, Rik

qr Ψjk
‹ | ď γ|Pjk

|.

Consequently, since Φ‹ and Ψ‹ are ε-disjoint and using the -density condition we

conclude that

|NA1pR
ij, Rik

q| “|NApR
ij, Rik

q XBjk
|

ě|NApR
ij, Rik

q| ´ |NApR
ij, Rik

qr Ψjk
‹ | ´ |Φjk

‹ XΨjk
‹ |

ě

ˆ

1
3 ` ε

˙

|Pjk
| ´ γ|Pjk

| ´ |Φjk
‹ XΨjk

‹ |

“

ˆ

1
3 ` ε´ γ

˙

`

|Pjk
| ´ |Φjk

‹ XΨjk
‹ |
˘

´

ˆ

2
3 ´ ε` γ

˙

|Φjk
‹ XΨjk

‹ |

ě

ˆ

1
3 ` ε´ γ ´

ˆ

2
3 ´ ε` γ

˙

ε

1´ ε

˙

`

|Pjk
| ´ |Φjk

‹ XΨjk
‹ |
˘

q

ě

ˆ

1
3 `

ε

4

˙

|Pjk
1 | , (3.3.44)

where the last inequality comes from our choice of γ and from Pjk
1 Ď Pjk r pΦjk

‹ XΨjk
‹ q.

We can deduce analogous inequalities for cherries pRik, Rjkq R D ijkpΦ‹,Ψ‹, γq and

for cherries pRij, Rjkq R C ijkpΦ‹,Ψ‹, γq. Similarly, we obtain those bounds for non-bad

cherries in B. As a result, the reduced hypergraph A1 satisfies a minimum codegree

condition for all monochromatic pairs that are not γ-bad cherries.
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Finally, similar as in [50, Lemma 4.2] we define the reduced hypergraph A‹ by taking

preimages of a random homomorphism h P ApA1, `q (see Definition 3.2.6). We show

that there is a choice of h P ApA1, `q for which the associated reduced hypergraph Ah

with index set J3 and vertex set V pAhq “
Ť

ijPJ
p2q
3

P ij
‚ satisfies the desired properties.

First, observe that for any choice of the map h, since A1 Ď A does not support

a Kp3q
5 , neither does Ah. Moreover, the bicolouring V pA1q “ R YB of A1 induces a

bicolouring ϕh : V pAhq ÝÑ tred, blueu of Ah defined by

ϕhpP
ij
‚ q “ red ðñ hpP ij

‚ q P R and ϕhpP
ij
‚ q “ blue ðñ hpP ij

‚ q P B .

Therefore, it is left to prove that with positive probability we have

τ2pAh, ϕhq ě
1
3 `

ε

8 . (3.3.45)

For indices i ă j ă k in J3 and a cherry pP ij
‚ , P

ik
‚ q P P ij

‚ ˆ P ik
‚ let X “ X pP ij

‚ , P
ik
‚ q

be the event

ϕhpP
ij
‚ q “ ϕhpP

ik
‚ q and |NAh

pP ij
‚ , P

ik
‚ q| ă

´1
3 `

ε

8

¯

|Pjk
‚ | .

This is to say, X is the event in which the pair pP ij
‚ , P

jk
‚ q violates condition (3.3.45).

Note that for monochromatic pairs that are not γ-bad, (3.3.44) tells us that the expected

size of their neighbourhood is large. More precisely, if

ϕhpP
ij
‚ q “ ϕhpP

ik
‚ q and phpP ij

‚ q, hpP
ik
‚ qq R I ijk

pΦ‹,Ψ‹, γq

then,

E
`

|NAh
pP ij
‚ , P

ik
‚ q|

˘

ě

ˆ

1
3 `

ε

4

˙

|Pjk
‚ | .

Therefore, by Chernoff’s inequality, we obtain

P
`

X
ˇ

ˇϕhpP
ij
‚ q “ ϕhpP

ik
‚ q and phpP ij

‚ q, hpP
ik
‚ qq R I ijk

pΦ‹,Ψ‹, γq
˘

ď exp
`

´ ε2`
128

˘

.

Consequently, in view of (3.3.43) we can bound the probability of X by

PpX q “ |P ij
1 |
´1
|P ik

1 |
´1

ÿ

pP ij ,P ikqPPij1 ˆPik1

P
`

X
ˇ

ˇhpP ij
‚ q “ P ij and hpP ik

‚ q “ P ik
˘

ď µ` exp
`

´ ε2`
128

˘

.
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Analogous inequalities can be deduced for monochromatic cherries which are not in the

central bad cherries C ijkpΦ‹,Ψ‹, γq or the right bad cherries D ijkpΦ‹,Ψ‹, γq.

Finally, since there are at most 3`2`t
3

˘

cherries to consider, we arrive at

P

ˆ

τ2pAh, ϕhq ă
1
3 `

ε

8

˙

ď 3`2
ˆ

t

3

˙

´

µ` exp
`

´ ε2`
128

˘

¯

.

Owing to the hierarchy µ ! `´1 ! t´1 this probability is smaller than 1, and therefore

there is a map h P ApA1, `q for which Ah has the desired properties.

3.4 K
p3q
5 in bicoloured reduced hypergraphs

In this section we establish Proposition 3.1.6 and show that bicoloured reduced hy-

pergraphs with minimum monochromatic codegree density bigger than 1{3 support a

K
p3q
5 .

In the proof we shall use the following type of neighbourhoods in reduced hyper-

graphs A. For two vertices P , P 1 P V pAq and a subset U Ď V pAq we denote by

NUpP, P
1q the neighbourhood restricted to U . Similarly, for two subsets U , U 1 Ď V pAq

we write NUˆU 1pP q for the set of pairs in U ˆ U 1 that together with P form a hyperedge

in A, i.e.,

NUpP, P
1
q “ tU P U : PP 1U P EpAqu

and NUˆU 1pP q “ tpU,U
1
q P U ˆ U 1 : PUU 1 P EpAqu .

Proof of Proposition 3.1.6. Given ε ą 0 we fix a sufficiently small auxiliary constant ξ

with 0 ă ξ ! ε such that 1{6`ε
ξ

equals to some integer s. Moreover, let I be a sufficiently

large index set such that its cardinality satisfies the partition relation |I| ÝÑ p5q2s, i.e.,

it is as least as large as the s-colour Ramsey number for the graph clique K5. Let A be

a bicolored reduced hypergraph with index set I and vertex classes P ij for ij P Ip2q and

let ϕ : V pAq ÝÑ tred, blueu satisfy τ2pA, ϕq ě 1{3` ε.

For every ij P Ip2q set

Rij
“ ϕ´1

predq X P ij and %ij “
|Rij|

|P ij|
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and, analogously, we define Bij “ ϕ´1pblueq X P ij and βij “ |Bij|{|P ij|. In view

of (3.1.1), the assumption on τ2pA, ϕq implies that all %ij, βij P r1{3 ` ε, 2{3 ´ εs.

Splitting the interval r1{3` ε, 2{3´ εs into s intervals of length 2ξ, the size of I yields

a subset J Ď I of size 5 such that all βij with ij P J p2q are in the same interval. Let β

be the centre of this interval and set % “ 1´ β. We thus arrive at

βij “ β ˘ ξ and %ij “ %˘ ξ

for all ij P J p2q. Without loss of generality we may assume β ď %, which implies

1
3 ` ε ď β ´ ξ ă β ď

1
2 ď % ă %` ξ ď

2
3 ´ ε . (3.4.1)

For ijk P J p3q the codegree condition translates for red vertices Rij P Rij and

Rik P Rik to

|NBjkpR
ij, Rik

q| “ dpRij, Rjk
q ě

ˆ

1
3 ` ε

˙

|Pjk
|

ě

ˆ

1
3 ` ε

˙ˆ

1
β ` ξ

˙

|Bjk
| ě

ˆ

1
3β `

ε

2

˙

|Bjk
| , (3.4.2)

where we used ξ ! ε, β for the last inequality. Similarly, for blue vertices we have

|NRjkpB
ij, Bik

q| ě

ˆ

1
3% `

ε

2

˙

|Bjk
| . (3.4.3)

We may rename the indices in J and assume that J “ Z{5Z. We shall show that

A restricted to J supports a Kp3q
5 . For that we have to find ten vertices P ij P P ij one

for every ij P J p2q such that for all of the ten triples ijk P J p3q the vertices P ij, P ik,

and P jk span a hyperedge in the constituent Aijk. For every i P J “ Z{5Z we will

select P i,i`1 from Bi,i`1 and P i,i`2 from Ri,i`2. Since A contains no monochromatic

triples as hyperedges, it is easy to see that up to symmetry this choice for the colour

classes is unavoidable, as it corresponds to the unique 2-colouring of EpK5q with no

monochromatic triangle.

The rest of the proof is based on several averaging arguments relying on the minimum

degree condition. For generic vertices from R and B we shall use capital letters R and

B. In the process we will make appropriate choices to fix the ten special vertices that
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signify the supported Kp3q
5 . For those vertices we will use small letters r and b depending

on its colour.

We begin with the selection of r14 P R14. Applying (3.4.3) to all pairs of vertices

B15 P B15 and B45 P B45 implies that the total number of hyperedges in A145 crossing

the sets R14, B15, and B45 is at least

|B15
||B45

| ¨

ˆ

1
3% `

ε

2

˙

|R14
| .

Consequently, we can fix some vertex r14 P R14 such that

|NB15ˆB45pr14
q| ě

ˆ

1
3% `

ε

2

˙

|B15
||B45

| . (3.4.4)

The following claim fixes the four vertices b12, b34 and r13, r24.

Claim 1. There exist blue vertices b12 P B12, b34 P B34 and red vertices r13 P R13,

r24 P R24 such that

(i ) b12r14r24 and r13r14b34 are hyperedges in A

(ii ) and |NB23pb12, r13q XNB23pr24, b34q| ě
´

1´ 1
3β

¯

|B23|.

Proof. Owing to (3.4.2) for every R13 P R13 we have dpR13, r14q ě
` 1

3β `
ε
2

˘

|B34| and,

hence, there is a vertex b34 P B34 such that

|NR13pr14, b34
q| ě

ˆ

1
3β `

ε

2

˙

|R13
| ě

%

3β |P
13
| . (3.4.5)

Similarly, we can fix a vertex r24 P R24 such that

|NB23pr24, b34
q| ě

1
3% |B

23
| . (3.4.6)

Recalling that |R13| ď p%` ξq|P 13| for every B12 P B12 and B23 P B23 we have

ˇ

ˇNR13pB12, B23
q XNR13pr14, b34

q
ˇ

ˇ ě

ˆ

1
3 ` ε

˙

|P13
| `

ˇ

ˇNR13pr14, b34
q
ˇ

ˇ´ |R13
|

ě
ˇ

ˇNR13pr14, b34
q
ˇ

ˇ´

ˆ

%` ξ ´
1
3 ´ ε

˙

|P13
|

(3.4.5)
ě

ˆ

1´ 3β ` β

%

˙

ˇ

ˇNR13pr14, b34
q
ˇ

ˇ .
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Hence, the number of hyperedges crossingNB12pr14, r24q, NB23pr24, b34q, andNR13pr14, b34q

is at least

|NB12pr14, r24
q||NB23pr24, b34

q| ¨

ˆ

1´ 3β ` β

%

˙

|NR13pr14, b34
q| .

Consequently, there exist b12 P NB12pr14, r24q and r13 P NR13pr14, b34q such that

|NB23pb12, r13
q XNB23pr24, b34

q| ě

ˆ

1´ 3β ` β

%

˙

|NB23pr24, b34
q|

(3.4.6)
ě

ˆ

1
3% ´

β

%
`

β

3%2

˙

|B23
|

ě

ˆ

1´ 1
3β

˙

|B23
| ,

where the last inequality follows from the identity % “ 1´ β.

The next claim fixes the four vertices b15, b45 and r25, r35. Together with Claim 1 this

fixes all vertices except b23 and both claims guarantee those seven hyperedges supporting

a Kp3q
5 that do not involve b23.

Claim 2. There exist blue vertices b15 P B15, b45 P B45 and red vertices r25 P R25,

r35 P R35 such that b12b15r25, r13b15r35, r14b15b45, r24r25b45, and b34r35b45 are hyperedges

in A.

Proof. Consider the following sets of pairs in B15 ˆB45.

G1 “ tpB
15, B45

q P B15
ˆB45 : NR25pb12, B15

q XNR25pr24, B45
q ‰ ∅u

and G2 “ tpB
15, B45

q P B15
ˆB45 : NR35pb13, B15

q XNR35pb34, B45
q ‰ ∅u .

Note that for every B15 P B15 there is some R25 P NR25pb12, B15q and we have

|NB45pr24, R25
q|

(3.4.2)
ě

1
3β |B

45
| .

Clearly, tB15u ˆNB45pr24, R25q Ď G1 and, hence, we establish

|G1| ě
1

3β |B
15
||B45

| . (3.4.7)
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A symmetric argument yields the same bound for G2. Combining (3.4.7) and the same

bound for G2 with (3.4.4) leads to

|G1| ` |G2| ` |NB15ˆB45pr14
q| ě

ˆ

2
3β `

1
3% `

ε

2

˙

|B15
||B45

|
(3.4.1)
ą 2 |B15

||B45
| ,

Consequently, we can fix a pair pb15, b45q P G1 XG2 XNB15ˆB45pr14q. Moreover, having

fixed b15 and b45 this defines a vertex r25 P R25 from the non-empty intersection

considered in the definition of G1. Similarly, G2 leads to our choice of r35 P R35.

Since pb15, b45q P NB15ˆB45pr14q, the hyperedge r14b15b45 exists in A and the other

four hyperedges are a result of the definition of G1 and G2.

As mentioned above, Claims 1 and 2 fix all vertices except b23 P B23 and all

hyperedges not involving b23. For the three remaining hyperedges it suffices to show

NB23pb12, r13
q XNB23pr24, b34

q XNB23pr25, r35
q ‰ ∅ .

Claim 1 (ii ) and (3.4.2) imply

ˇ

ˇNB23pb12, r13
q XNB23pr24, b34

q XNB23pr25, r35
q
ˇ

ˇ

ě
ˇ

ˇNB23pb12, r13
q XNB23pr24, b34

q
ˇ

ˇ`
ˇ

ˇNB23pr25, r35
q
ˇ

ˇ´
ˇ

ˇB23ˇ
ˇ

(3.4.2)
ě

ˆ

1´ 1
3β `

1
3β `

ε

2 ´ 1
˙

|B23
| ą 0 .

Hence a choice for b23 P NB23pb12, r13q XNB23pr24, b34q XNB23pr25, r35q exists and, there-

fore, A restricted to J supports a Kp3q
5 .

3.5 Concluding Remarks

We close with a few related open problems and possible future directions for research.

3.5.1 Turán problems for cliques in -dense hypergraphs

In view of Theorems 2.1.2 and 2.1.3 for cliques Kp3q
` with ` ď 16 vertices only the cases

` “ 9 and 10 are still unresolved and closing the bounds
1
2 ď π pK

p3q
9 q ď π pK

p3q
10 q ď

2
3
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would be interesting.

Determining the value π pKp3q
` q for large values of ` might be a challenging problem

and one may first focus on the asymptotic behaviour. For every ` ě 3 Theorem 2.1.2

tells us

π pK
p3q
` q ď 1´ 1

log2p`q
. (3.5.1)

For a lower bound we consider the following well known random construction.

Example 3.5.1. For r ě 2 we consider random hypergraphsHϕ “ pV,Eϕq with the edge

set defined by the non-monochormatic triangles of a random r-colouring ϕ : V p2q ÝÑ rrs

for a sufficiently large vertex set V . It is easy to check that for any fixed η ą 0 with

high probability such hypergraphs Hϕ are pη, r´1
r
, q-dense. On the other hand, if ` is

at least as large as Rp3; rq, the r-colour Ramsey number for graph triangles, then every

such Hϕ is Kp3q
` -free.

Consequently, Example 3.5.1 yields

π pK
p3q
` q ě 1´ 1

r
, whenever ` ě Rp3; rq

and using the simple upper bound Rp3; rq ď 3 r! we arrive at

π pK
p3q
` q ě 1´ log2 log2p`q

log2p`q
(3.5.2)

for sufficiently large `. Comparing the bounds in (3.5.1) and (3.5.2) suggests the following

problem.

Problem 3.5.2. Determine the asymptotic behaviour of 1´ π pKp3q
` q.

3.5.2 Turán problems for hypergraphs with uniformly dense

links

As discussed in the introduction there is a small difference between Theorem 2.1.3 and

Corollary 2.1.5. Below we briefly elaborate on these differences.
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In this work we study -dense hypergraphs, which are defined by the lower bound

condition (1.4.3) in Definition 1.4.3. Requiring in addition a matching upper bound,

i.e., replacing (1.4.3) by

ˇ

ˇe pP,Qq ´ d |K pP,Qq|
ˇ

ˇ ď η|V |3 ,

leads to the notion of pη, d, q-quasirandom hypergraphs. Clearly, we can transfer the

definition of π pF q in Definition 2.1.1 and define the Turán-density π1 pF q by restricting

to -quasirandom hypergraphs H

π1 pF q “ suptd P r0, 1s : for every η ą 0 and n P N there exists an F -free,

pη, d, q-quasirandom hypergraph with at least n verticesu .

By definition we have π1 pF q ď π pF q for every hypergraph F and one may wonder if

this inequality is sometimes strict.

For Kp3q
5 it is easy to check that the lower bound construction in Example 2.1.4

yields Kp3q
5 -free pη, 1{3, q-quasirandom hypergraphs for every fixed η ą 0 and, hence,

π1 pK
p3q
5 q “ π pK

p3q
5 q “

1
3 .

On the other hand, the lower bound construction for Kp3q
6 from [55] is given by Exam-

ple 3.5.1 for r “ 2. In those hypergraphs Hϕ we can take P and Q to be the pairs in

colour 1 and 2 respectively and get

e pP,Qq “ |K pP,Qq| ,

i.e., they have relative density 1. Therefore, the hypergraphs Hϕ are only pη, 1{2, q-

dense, but not pη, 1{2, q-quasirandom. In fact, we are not aware of any matching

quasirandom lower bound construction for π pKp3q
6 q and it seems possible that π1 pKp3q

6 q

is strictly smaller than π pKp3q
6 q suggesting the following general problem.1

1We remark that for the concepts of -dense/quasirandom hypergraphs there is no difference for the

corresponding Turán-densities, as every -dense hypergraph contains large -quasirandom hypergraphs

of at least the same density.
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Problem 3.5.3. Characterise hypergraphs F with π1 pF q ă π pF q, if there are any.

Recalling the discussion after Theorem 2.1.3 we note that -dense and -quasirandom

hypergraphs can be characterised through properties of their link graphs. As mentioned

in Section 2.1 a hypergraph in which all links are quasirandom is -dense. More

generally, for every η ą 0 there exists some % ą 0 such that for every d P r0, 1s and

every sufficiently large hypergraph H, in which all but at most %|V | links are pd, %q-

quasirandom, is pη, d, q-quasirandom. In fact, the opposite implication holds with

the quantification of % and η exchanged, and therefore both properties are essentially

equivalent. Similarly, -density is equivalent, in the same sense as above, to the property

of having bidense (see definition in (1.4.2)) links for almost all vertices.

Finally, one may also consider hypergraphs having just p%, dq-dense link graphs,

where the lower bound (1.4.2) is only applied to the special cases X “ Y . On the

hypergraph level this would be equivalent to restricting to the cases P “ Q in (1.4.3) in

Definition 1.4.3. Based on this concept we define

π2pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists an F -free hypergraph

H “ pV,Eq with |V | ě n and all but at most %|V | vertices

have p%, dq-dense link graphs
(

for every hypergraph F . Since having p%, dq-dense link graphs is a weaker property we

have the trivial inequality

π2pF q ě π pF q

for every hypergraph F and one may ask for which hypergraphs F this inequality is

strict.

3.5.3 Turán problems for -dense hypergraphs with bounded

number of colours

In view of Proposition 3.1.6 one may consider a variant of π pF q restricted to large

hypergraphs H “ pV,Eq with “bounded colouring number” defined in the following
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sense: There is colouring of V p2q with a bounded number of colours such that for every

hyperedge e P E not all pairs in ep2q have same colour. Below we briefly discuss a

corresponding problem for reduced hypergraphs.

We say a reduced hypergraph A with index set I is r-coloured by ϕ : V pAq ÝÑ rrs

if there are no monochromatic hyperedges, i.e.,
ˇ

ˇtϕpxyq, ϕpxzq, ϕpyzq
ˇ

ˇ ě 2 for every

hyperedge xyz P EpAq. Moreover, such a colouring is balanced if |P ij| P rN for every

ij P Ip2q and
ˇ

ˇP ij
X ϕ´1

p%q
ˇ

ˇ “
|P ij|

r

for every % P rrs and ij P Ip2q. Given an (not necessarily balanced) r-colouring ϕ we

define the minimum codegree density

δ2pA, ϕq “ min
!

|NpP ij, P ikq X ϕ´1p%q|

|Pjk X ϕ´1p%q|
: ijk P Ip3q, P ij

P P ij, P ik
P P ik, % P rrs,

and
ˇ

ˇ

 

ϕpP ij
q, ϕpP ik

q, %
(
ˇ

ˇ ě 2
)

.

We remark that for a 2-colouring ϕ in the definition of δ2pA, ϕq we also consider pairs of

vertices pP ij, P ikq with different colours, which is one of the main differences compared to

the definition of τ2pA, ϕq in (3.1.2). In addition, we measure the codegree neighbourhood

with respect to the size of colour class ϕ´1p%q in Pjk instead of all of Pjk. For balanced

2-colourings ϕ we therefore have

2 ¨ τ2pA, ϕq ě δ2pA, ϕq . (3.5.3)

For integers r ě 1 and ` ě 3 we consider the following Turán-type parameter

πrd
,rpK

p3q
` q “ sup

 

d P r0, 1s : for every t P N there is a balanced r-coloured,

reduced hypergraph pA, ϕq with index set of size at least t

and δ2pA, ϕq ě d, which does not support Kp3q
`

(

.

Remark 3.5.4. For the corresponding parameter π ,rpK
p3q
` q one considers Kp3q

` -free

hypergraphs H “ pV,Eq for which there is a quasirandom r-colouring ϕ : V p2q ÝÑ rrs

such that the pairs of every hyperedge receive at least two different colours. In this
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context, the -density with respect ϕ is at least d, if for all colours %P , %Q, % P rrs with

|t%P , %Q, %u| ě 2 and all monochromatic sets of pairs P and Q with colours %P and %Q
at least, up to an additive error term of op|V |3q, a d proportion of the triangles xyz with

xy P P , xz P Q and ϕpyzq “ % are hyperedges in H. Defining π ,rpK
p3q
` q accordingly

and following the proof of [50, Theorem 3.3] then yields π ,rpK
p3q
` q “ πrd

,rpK
p3q
` q (see [9]

for details).

Given a balanced pr` 1q-coloured reduced hypergraph pA, ϕq we may simply remove

the vertices from ϕ´1pr ` 1q and we obtain a balanced r-coloured reduced hypergraph

with the same minimum codegree density. Consequently, for every r ě 1 and ` ě 3 we

have

πrd
,rpK

p3q
` q ě πrd

,r`1pK
p3q
` q .

Note that if δ2pA, ϕq ě d for some balanced r-colouring ϕ, then A is pd´ 1{r, q-dense

and, consequently, with the notation following [50, Theorem 3.3] we have

lim
rÝÑ8

πrd
,rpK

p3q
` q ď πrd

pK
p3q
` q .

In the other direction, considering random balanced r-colourings of reduced -dense

hypergraphs A that do not support Kp3q
` with monochromatic hyperedges removed,

establishes the opposite inequality and we arrive at

lim
rÝÑ8

πrd
,rpK

p3q
` q “ πrd

pK
p3q
` q .

In view of Remark 3.5.4 and [50, Theorem 3.3] this shows

lim
rÝÑ8

π ,rpK
p3q
` q “ π pK

p3q
` q . (3.5.4)

This way one may consider π ,rpK
p3q
` q as the multipartite version of π pKp3q

` q in the

similar spirit as the multipartite extremal problems for graphs and (3.5.4) can be

considered as a variant of [12, Theorem 1] in this context.

For small values of r we note that

π ,rpK
p3q
` q “ 1 , whenever ` ě Rp3; rq .
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In fact, this easily follows by considering the random hypergraphsHϕ from Example 3.5.1.

For r “ 1 and 2 we have π ,1pK
p3q
` q “ 1 for every ` ě 3 and π ,2pK

p3q
` q “ 1 for every

` ě 6. Moreover, one can show that

π ,2pK
p3q
4 q “ 0

(see [9] for details) and Proposition 3.1.6 combined with (3.5.3) and Remark 3.5.4 yields

π ,2pK
p3q
5 q “ πrd

,2pK
p3q
5 q ď

2
3 . (3.5.5)

We note that owing to more restrictive definition of δ2pA, ϕq compared to τ2pA, ϕq, the

upper bound of (3.5.5) can be proved more easily than the proof of Proposition 3.1.6 by

simply exploiting that every pair of vertices in Kp3q
5 has codegree three. A slightly more

refined argument allows us to improve this upper bound from 2{3 to the reciprocal of

the golden ratio. In the other direction we have a lower bound construction establishing

1
2 ď π ,2pK

p3q
5 q ă 0.618

(see [9]), which leaves the following problem open.

Problem 3.5.5. Determine π ,2pK
p3q
5 q.



Chapter 4

Hamilton cycles in uniformly dense

hypergraphs

In this chapter we present the proof of Theorem 2.2.2, which is based in the Absorption

Method. In the following section we introduce the method and its three main parts:

the Almost Covering Lemma (see Lemma 4.1.2), the Connecting Lemma (see Lemma

4.1.4), and the Absorbing Path Lemma (see Lemma 4.1.3). The proofs of those lemmata

are given in Sections 4.3, 4.4, and 4.5. In Section 4.2 we collect some preliminary

observations needed for the main proof. In Section 4.6 we discuss the necessary changes

to the main proof in order to prove Theorem 2.2.3. We close with a few concluding

remarks in Section 4.7.

The work corresponding to this chapter was done in collaboration with Araújo and

Schacht [5].

4.1 Absorption Method

In [58], Rödl, Ruciński and Szemerédi introduced the Absorption Method, which turned

out to be a very useful approach for embedding spanning cycles in hypergraphs. This

method reduces the problem to finding an almost spanning cycle with a small special

path in it, called the absorbing path. The absorbing path A can absorb any small set

73
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of vertices into a new bigger path, with the same ends as A, completing the almost

spanning cycle into a Hamilton cycle.

The almost spanning cycle will be composed from smaller paths, which will be

connected to longer paths. For that it would be useful if any given two pairs of

vertices px, yq and pw, zq, being the ends of such smaller paths, can be connected by a

short path. However, in view of the assumptions of Theorem 2.2.2, it is easy to see that

not any pair of pairs can be connected in this way (in particular, there could be pairs

with codegree zero). For that we introduce the following notion of connectable pairs and

we will show that for those pairs there actually exist connecting paths between them

(see Lemma 4.1.4 below).

Definition 4.1.1. Let H “ pV,Eq be a hypergraph. We say that px, yq P V ˆ V is

β-connectable in H if the set

Zxy “ tz P V : xyz P EpHq and dpyzq ě β|V |u,

has size at least β|V |. Moreover, we say that an pa, bq-pc, dq-path is β-connectable if the

pairs pb, aq and pc, dq are β-connectable.

Observe that the starting pair of the path is asked to be β-connectable in the inverse

direction that as it appears in the path.

The proof of Theorem 2.2.2 splits into three lemmata. Let H be a p%, 1{4`ε, q-dense

hypergraph on n vertices, with 1{n ! % ! ε. First we prove that such hypergraphs can

be almost covered by a collection of ‘few’ paths. We remark that this is even true under

the weaker assumption of non-vanishing -density. A straight forward proof is presented

in Section 4.3.

Lemma 4.1.2 (Almost Covering Lemma). For all d, γ P p0, 1s there exist %, β ą 0,

and n0 such that in every p%, d, q-dense hypergraph H on n ě n0 vertices there exists a

collection of at most 1{β disjoint β-connectable paths, that cover all but at most γ2n

vertices of H.

Next we discuss how to find an absorbing path, which contains a collection of several

smaller structures, called absorbers. For v P V , we call Av Ď H an absorber for v if
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both Av and Av Ytvu span paths with same ends (we say that Av absorbs v). The main

difficulty is to define the absorbers in such a way that we can prove that every vertex is

contained in many of them. In Section 4.5 we see that the absorbers considered here

are in fact more complicated and absorb sets of three vertices instead of one. This leads

to a divisibility issue which we consider separately in Lemma 4.5.4. Going further, we

can find a relatively small collection of paths which can absorb any sufficiently small

given set of vertices. After finding this collection we connect them together to form one

path with the absorption property described in the following lemma.

Lemma 4.1.3 (Absorbing Path Lemma). For every ε ą 0 there exist %, β, γ1 ą 0 and n0

such that the following is true for every positive γ ď γ1 and every p%, 1{4` ε, q-dense

hypergraph H “ pV,Eq on n ě n0 vertices with δ1pHq ě εn2.

For every R Ď V , with |R| ď 2γ2n, there exists a β-connectable path A with

V pAq Ď V rR and |V pAq| ď γn, such that for every U Ď V pHqr A with |U | ď 3γ2n,

the hypergraph HrV pAq Y U s has a Hamilton path with the same ends as A.

The set of vertices R in Lemma 4.1.3 will act as a reservoir of vertices that will be

used later for connecting the paths mentioned in Lemmata 4.1.2 and 4.1.3, without

interfering with the vertices already used by those paths.

The next lemma justifies Definition 4.1.1 and shows that between every two β-

connectable pairs there exist several short paths connecting them. As it was said before,

this is used for connecting the absorbers in the proof of Lemma 4.1.3. Moreover, observe

that all paths mentioned in Lemma 4.1.2 and 4.1.3 are β-connectable. This allows us to

connect them together into an almost spanning cycle and the absorbing path in this

cycle will absorb all the remaining vertices to complete the Hamilton cycle.

Lemma 4.1.4 (Connecting Lemma). For every ε, β ą 0 there exist %, α ą 0 and n0

such that for every p%, 1{4` ε, q-dense hypergraph H on n ě n0 vertices the following

holds.

For every pair of disjoint ordered β-connectable pairs of vertices px, yq, pw, zq P V ˆV

there exists an integer ` ď 15 such that the number of px, yq-pz, wq-paths with ` inner

vertices is at least αn`.



76 CHAPTER 4. HAMILTON CYCLES IN -DENSE HYPERGRAPHS

In view of the construction given in Example 2.2.1, one can see that the 1{4 in

the -density assumption in Lemma 4.1.4 cannot be dropped. In that example, there

are two classes of pairs that cannot be connected by a path (namely the pairs in G and

in G), even though they are β-connectable. Hence, -density of at least 1{4 is required

for Lemma 4.1.4.

Also Lemma 4.1.3 requires -density bigger than 1{4. In the proof of Lemma 4.1.3

this assumption will be crucial for connecting the so-called absorbers to a path, which

makes use of Lemma 4.1.4. Moreover, the type of absorbers used here, leads to a

‘divisibility issue’. This is addressed in Lemma 4.5.4 for which we also employ the same

density assumption.

We now deduce Theorem 2.2.2 from Lemmata 4.1.2 – 4.1.4.

Proof of Theorem 2.2.2. Given ε ą 0 we apply Lemma 4.1.3 and obtain %1, β1 and γ1.

Lemma 4.1.2 applied with d “ 1{4 and γ “ mintγ1, ε{2u yields %2 and β2. Applying

Lemma 4.1.4 with ε and

β “
1
8 mintβ1, β2u,

reveals α and %3. Finally we set

% “ mint%1, %2{8, %3u,

and let n be sufficiently large. Having fixed all constants, let H be a p%, 1{4` ε, q-dense

hypergraph on n vertices.

We consider a random set R Ď V , in which each vertex is present independently

with probability γ2. For every positive integer ` ď 15 consider two pairs px, yq, pw, zq P

V ˆ V between which there are at least αn` paths with ` inner vertices. Let Y “

Y p`, px, yq, pz, wqq count the number of such paths whose inner vertices are contained

in R. We point out that Y is a function determined by n independent random variables,

each of which can influence the value of Y by at most n`´1. Therefore a standard

application of Azuma’s inequality (see [33, Section 2.4]) implies that

P
ˆ

Y ď
γ2`

2 ¨ αn`
˙

“ expp´Ωpnqq ă 1
2 ¨

1
15n4 , (4.1.1)



4.1. ABSORPTION METHOD 77

for any fixed `, px, yq, and pw, zq. Moreover, by Markov’s inequality we have that

P
`

|R| ě 2γ2n
˘

ď
1
2 . (4.1.2)

Therefore there exists a realisation of R, which from now on will take over the

name R, that is not in the event considered in (4.1.2) and in any of the events considered

in (4.1.1) (all 4-tuples of vertices and values of `). Since γ1 ă γ, % ă %1, and |R| ă 2γ2n,

Lemma 4.1.3 ensures that we can find a β1-connectable absorbing path A of size smaller

than γn and which does not intersect R.

Let V 1 “ V r pV pAq Y Rq. Since |V pAq Y R| ď 3γn ď n{2, the induced hyper-

graph HrV 1s is p8%, 1{4` ε, q-dense. In particular, HrV 1s is p8δ, 1{4` ε, q-dense and

since 8% ď %2, Lemma 4.1.2 implies that there exists a collection of at most 1{β2 paths

with β2-connectable ends in HrV 1s that cover all but at most γ2n vertices.

Set t “ t1{β2 ` 1u and let pPiqiPrts be any cyclic ordering of such paths together with

the absorbing path. Assume that we were able to find connections in R between the

paths P1, P2, . . . , Pi, using inner vertices from R only. Moreover, we make sure that

each connection is made with at most 15 inner vertices. Let Ci be the path that begins

with P1 and ends in Pi using those connections. Therefore

|V pCiq XR| ď t ¨ 15 “ opnq.

Now, we want to show that we can connect Pi with Pi`1 to construct Ci`1. Observe

that all the paths from pP qiPrts are β-connectable. This follows from the choice β ď β1

for the absorbing path A. From the paths given by Lemma 4.1.2 we know that they

are β2-connectable in HrV 1s. Owing to β ď β2{2 and |V 1| ě n{2 the β-connectibility

follows.

Let pxi, yiq be the ending pair of Pi and pzi, wiq the starting pair Pi`1. Lemma 4.1.4

implies that, for some `i ď 15, there exist at least αn`i pxi, yiq-pzi, wiq-paths, each with `i
inner vertices. By the choice of R, the number of pxi, yiq-pzi, wiq paths of length `i ` 2

whose inner vertices lie in R is at least γ2αn`i{2. Since at most |V pCiqXR|n`i´1 “ opn`iq

such paths contain a vertex from Ci, for sufficiently large n large enough we can find

one path disjoint from Ci.
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Finally, consider Ct the final cycle obtained in this process, by connecting Pt to P1.

As Ct includes all the paths in the almost covering the number of vertices not covered

by Ct is at most

|V r V pCtq| ď |R| ` γ
2n ď 3γ2n.

This finishes the proof, since A can absorb these vertices into a new path with the same

endings.

4.2 Preliminary results and basic definitions

In this section we collect preliminary results and introduce necessary notation. Let η, d P

r0, 1s and let G “ pV1 Ÿ V2, Eq be a bipartite graph, we say that G is pη, dq-regular if

for every two sets of vertices X Ď V1 and Y Ď V2 we have

|epX, Y q ´ d|X||Y || ď η|V1||V2| .

It is easy to see that every dense graph contains a linear sized bipartite regular

subgraph, with almost the same density. That can be proved by a simple application

of Szemerédi’s Regularity Lemma or alternatively by a more direct density increment

argument (see [43]).

Lemma 4.2.1. For all η, d ą 0 there exists some µ ą 0 such that for every n-vertex

graph G with epGq ě dn2{2, there are disjoint sets V1, V2 Ď V pGq, with |V1| “ |V2| “ rµns

such that the bipartite induced subgraph GrV1, V2s is pη, d1q-regular for some d1 ě d.

For a hypergraph H “ pV,Eq recall its shadow BH is the subset of V p2q of those

pairs that are contained in some edge of H. For disjoint sets of vertices V1, V2 Ď V with

a slight abuse of notation we write BHrV1, V2s for the set of ordered pairs in V1 ˆ V2

that correspond to unordered pairs in the shadow, i.e.,

BHrV1, V2s “
 

pv1, v2q P V1 ˆ V2 : tv1, v2u P BH
(

.

Given %, d ą 0, a set of ordered pairs of vertices P P V 2, and a subset X Ď V we say

that H is p%, d, q-dense over pX,P q if for every subset of vertices X 1 Ď X and every
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subset of pairs P 1 Ď P we have

epX 1, P 1q ě d |X 1
||P 1| ´ % |X||P | ,

which is a version of -density restricted to P and X. For the next lemma we also need

the following concept of restricted vertex neighbourhood. Given a vertex v P V and a

set of ordered pairs P P V 2 we define its neighbourhood restricted to P by

Npv, P q “ tpx, yq P P : vxy P Eu .

Lemma 4.2.2. Let H “ pV,Eq be a hypergraph, X Ď V be a set of vertices, and

P Ď V 2. If H is p%, d, q-dense over pX,P q for some constants %, d ą 0, then
ˇ

ˇ

 

x P X : |Npx, P q| ă pd´?%q|P |
(
ˇ

ˇ ă
?
% |X| .

Proof. Let X 1 Ď X be the vertices with less than pd ´ ?%q|P | neighbour pairs in P .

The definition of X 1 and the p%, d, q-density of H over pX,P q provide the following

upper and lower bounds on epX 1, P q

d|X 1
||P | ´ %|X||P | ď epX 1, P q ď pd´

?
%q|P | ¨ |X 1

|

and the desired bound on |X 1| follows.

The following result asserts that every hypergraph contains a subhypergraph with

almost the same density and such that every pair of vertices with positive codegree has

at least Ωp|V |q neighbours. This fact can be proved by removing iteratively the edges

which contain a pair with small codegree and we omit the details.

Lemma 4.2.3. For every β ą 0 and every n-vertex hypergraph H there is a hyper-

graph Hβ Ď H on the same vertex set with epHβq ě epHq ´ βn3 such that for every

pair of vertices x, y either dHβpx, yq “ 0 or dHβpx, yq ě βn. In particular, if we

have dHβpx, yq ą 0, then px, yq is β-connectable in H.

Let F and F 1 be two hypergraphs. We say that F contains a homomorphic copy

of F 1 if there is a function ϕ : V pF 1q Ñ V pF q such that for every edge xyz P EpF 1q we

have that ϕpxqϕpyqϕpzq P EpF q. We denote this fact as F 1 hom
ÝÝÑ F and we recall the

following well known consequence from Erdős [18].
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Lemma 4.2.4. For every ξ ą 0 and k, ` P N there is ζ ą 0 and n0 P N such that the

following holds. Let F and F 1 be hypergraphs such that |V pF q| “ k and |V pF 1q| “ `

and F 1 hom
ÝÝÑ F . If a hypergraph H on n ą n0 vertices contains at least ξnk copies of F ,

then H contains ζn` copies of F 1.

We denote the hypergraph with four vertices and three edges by Kp3q´
4 . We refer to

the vertex of degree three as the apex. Glebov, Kráľ, and Volec [25] showed that -density

bigger than 1{4 yields the existence of a, in fact of many copies of, Kp3q´
4 .

Theorem 4.2.5 (Glebov, Kráľ & Volec, 2016). For every ε ą 0 there exist % and ξ ą 0

such that every sufficiently large p%, 1{4` ε, q-dense n-vertex hypergraph contains ξn4

copies of Kp3q´
4 .

4.3 Almost covering

In this section we present a very straightforward proof of Lemma 4.1.2.

Proof of Lemma 4.1.2. Given d, γ ą 0 take β and % such that

β “ % “
dγ6

13 .

We show that a maximal collection of β-connectable paths, each of which having at

least βn vertices, must cover all but at most γ2n vertices. We do that by showing that

every set X Ď V pHq with at least γ2n vertices contains a β-connectable path of size βn.

Indeed, the p%, d, q-density implies that in such a set X, we have

epXq ě
d|X|3

6 ´ %n3,

where we discounted the ordering of triples. In HrXs we remove, iteratively, every edge

that contains an (unordered) pair of vertices with codegree smaller than βn. In this

way, we remove at most βn3 edges and get a hypergraph with at least

epXq ´ βn3
ě
d|X|3

6 ´ %n3
´ βn3

ě

ˆ

dγ6

6 ´ %´ β

˙

n3,
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edges. Owing to the choice of β and % this hypergraph is not empty. Now a path

with βn vertices can be found in a greedy manner. Moreover, if px, yq is a pair contained

in such path, then we have that the set

Zxy “ tz P V : xyz P E and dpyzq ě βnu

has at least βn vertices.

4.4 Connecting Lemma

We dedicate this section to prove the Connecting Lemma (Lemma 4.1.4). The proof splits

into several lemmata. The Connecting Lemma asserts that every ordered connectable pair

can be connected to any other ordered connectable pair. In a first step in Lemmata 4.4.1

and 4.4.3 we show that there are many connections between large sets of unordered

pairs (without specifying the order of the ending pairs). In fact, these connection can

be achieved by paths consisting of only two edges, which we refer to as lemma:cherries

(see Definition 4.4.2 below). On the price of extending the length by at most two, in

Lemma 4.4.4 we establish that one can even fix the order of one of the sets of given

pairs. On the other hand, this is complemented by Lemma 4.4.7 showing that there are

many pairs of unordered pairs that can be connected in any orientation. We call such

pairs of pairs turnable (see Definition 4.4.5 below).

For the proof of the Connecting Lemma we can now start with any given connectable

pair px, yq and move to its second neighbourhood, which is a large set of ordered pairs.

From that set we shall reach many turnable pairs. Similarly, from any given ending

pair pz, wq we also reach many turnable pairs. These paths give the turnable pairs an

orientation, but since the turnable pairs can be connected in any orientation, we find

the desired px, yq-pz, wq-paths. The detailed presentation of this argument renders the

proof of the Connecting Lemma, which we defer to the end of this section.

Lemma 4.4.1. For all ξ, ε P p0, 1s there exist η, % ą 0 such that the following holds

for sufficiently large m.
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Suppose V1, V2, V3 are pairwise disjoint sets of size m and G “ pV1 Ÿ V2, P q is an

pη, ξq-regular bipartite graph. If H “ pV1 Ÿ V2 Ÿ V3, Eq is a 3-partite hypergraph that

is p%, 1{4` ε, q-dense over pV3, P q, then
ˇ

ˇBHrV1, V3s
ˇ

ˇ`
ˇ

ˇBHrV2, V3s
ˇ

ˇ ě p1` εqm2 .

Proof. Given ξ and ε we set

% “
´ ε

21

¯2
and η ď

ξε

36 .

Let G “ pV1 Ÿ V2, P q and H “ pV1 Ÿ V2 Ÿ V3, Eq be given. Since G is bipartite we may

view P as a subset of V1ˆ V2 and, hence, as a set of ordered pairs. Lemma 4.2.2 applied

to V3 and P ensures for the hypergraph H that there are at most ?%m vertices in V3

with less than p1{4` ε´?%q|P | neighbour pairs in P . We remove such vertices from V3

and let V 13 be the resulting subset of V3.

Consider a fixed vertex v3 P V
1

3 . By the definition of V 13 , we have

|Npv3, P q| ě

ˆ

1
4 ` ε´

?
%

˙

|P | ě

ˆ

1
4 `

15
16ε

˙

|P | . (4.4.1)

For i “ 1, 2 we consider the neighbourhood of v3 in BHrVi, V3s defined by

Nipv3q “
 

vi P Vi : pvi, v3q P BHrVi, V3s
(

and note that

|Npv3, P q| ď eG
`

N1pv3q, N2pv3q
˘

.

Consequently, the pη, ξq-regularity of G yields

|Npv3, P q| ď ξ|N1pv3q||N2pv3q| ` ηm
2 . (4.4.2)

Combining (4.4.1) and (4.4.2) with the lower bound on |P | provided by the regularity

of G we obtain

4ξ|N1pv3q||N2pv3q|ě
´

1` 15
4 ε

¯

|P |´4ηm2
ě

´

1` 15
4 ε

¯

pξ´ηqm2
´4ηm2

ě

´

1` 7
2ε
¯

ξm2 ,

where the last inequality makes use of the choice of η. Hence, the AM-GM inequality

tells us
`

|N1pv3q| ` |N2pv3q|
˘2
ě 4

ˇ

ˇN1pv3q
ˇ

ˇ

ˇ

ˇN2pv3q
ˇ

ˇ ě

´

1` 7
2ε
¯

m2
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and, consequently, we arrive at

|N1pv3q| ` |N2pv3q| ě
´

1` 7
2ε
¯1{2

m ě

´

1` 11
10ε

¯

m.

Finally, summing for all vertices v3 P V
1

3 we obtain the desired lower bound

ˇ

ˇBHrV1, V3s
ˇ

ˇ`
ˇ

ˇBHrV2, V3s
ˇ

ˇ ě
ÿ

v3PV 13

`

|N1pv3q| ` |N2pv3q|
˘

ě

´

1` 11
10ε

¯

m ¨ |V 13 |

ě

´

1` 11
10ε

¯

`

1´?%
˘

m2

ě p1` εqm2 ,

where we used the choice of % for last inequality.

Paths of length two will play a special rôle in our proof and the following notation

will be useful.

Definition 4.4.2. Given a hypergraph H “ pV,Eq and disjoint sets p, q P V p2q, we say

that the edges xyz, yzw P E form a pp, qq-cherry, if p “ tx, yu and q “ tz, wu.

Moreover, given two sets P , Q Ď V p2q, we say that edges e, e1 P E form a pP,Qq-

cherry, if they form a pp, qq-cherry for some disjoint sets p P P and q P Q.

The next lemma asserts that in -dense hypergraphs with density larger than 1{4

large sets of pairs induce many cherries.

Lemma 4.4.3. For every ξ, ε P p0, 1s there exist %, ν ą 0 such that the following holds

for every sufficiently large p%, 1{4` ε, q-dense hypergraph H “ pV,Eq. For all sets P ,

Q Ď V p2q of size at least 3ξn2 there are at least νn4 pP,Qq-cherries.

Proof. Given ξ and ε we apply Lemma 4.4.1 and we obtain η and %1. Without loss of

generality we may assume that η ď ξ{2. Moreover, Lemma 4.2.1 applied with η and

d “ ξ yields some µ ą 0 and we fix the desired constants % and ν by

% “
µ3ξ

250%
1 and ν “ 9%2µ4ε .
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Let H “ pV,Eq and P , Q Ď V p2q satisfy the assumptions of the lemma.

We consider a random balanced bipartition of AŸB of V and let PA “ tp P P : p Ď Au

and QB “ tq P Q : q Ď Bu. A standard application of Chebyshev’s inequality shows

that there exists a balanced partition of V such that |PA|, |QB| ě ξn2{2. We apply

Lemma 4.2.1 separately to the graphs pA,PAq and pB,QBq and obtain four pairwise

disjoint vertex sets A1, A2 Ď A and B1, B2 Ď B each of size m ě µn{2 such that the

induced bipartite graphs P rA1, A2s and QrB1, B2s are both η-regular with density at

least ξ.

Next for i “ 1, 2 we consider the 3-partite subhypergraph HrBi, P rA1, A2ss on

A1 Ÿ A2 ŸBi with the edge set

 

tx, y, zu P V p3q : x P Bi and ty, zu P EpP rA1, A2sq
(

.

Lemma 4.2.3 applied to HrBi, P rA1, A2ss with β “ % yields a subhypergraph H i,P
% . We

want to prove that H i,P
% is p%1, 1{4` ε, q-dense over pBi, P rA1, A2sq. Since we removed

at most %p3mq3 edges from HrBi, P rA1, A2ss the error term in the -density condition

of H i,P
% can add up to at most

%n3
` %p3mq3 ď 28%n3

ď %1 ¨ |Bi| ¨ epP rA1, A2sq .

This implies that H i,P
% is p%1, 1{4` ε, q-dense over pBi, P rA1, A2sq. Similarly, for i “ 1,

2 we also define the 3-partite hypergraph H i,Q
% with vertex partition B1 ŸB2 Ÿ Ai and

note that it is p%1, 1{4` ε, q-dense over pAi, QrB1, B2sq.

Applying Lemma 4.4.1 to the bipartite graph P rA1, A2s and the 3-partite hypergraph

H1,P
% implies

ˇ

ˇBH1,P
% rA1, B1s

ˇ

ˇ`
ˇ

ˇBH1,P
% rA2, B1s

ˇ

ˇ ě p1` εqm2.

Moreover, three further applications of Lemma 4.4.1 to P rA1, A2s with H2,P
% and to

QrB1, B2s with H1,Q
% and with H2,Q

% show that

2
ÿ

i“1

´

ˇ

ˇBH i,P
% rA1, Bis

ˇ

ˇ`
ˇ

ˇBH i,P
% rA2, Bis

ˇ

ˇ

¯

`

2
ÿ

i“1

´

ˇ

ˇBH i,Q
% rB1, Ais

ˇ

ˇ`
ˇ

ˇBH i,Q
% rB2, Ais

ˇ

ˇ

¯

ě4p1`εqm2.
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In particular, rearranging the terms shows that

2
ÿ

i“1

2
ÿ

j“1

´

ˇ

ˇBHj,P
% rAi, Bjs

ˇ

ˇ`
ˇ

ˇBH i,Q
% rBj, Ais

ˇ

ˇ

¯

ě 4p1` εqm2

and, hence, there are some indices i0, j0 P t1, 2u such that

ˇ

ˇBHj0,P
% rAi0 , Bj0s

ˇ

ˇ`
ˇ

ˇBH i0,Q
% rBj0 , Ai0s

ˇ

ˇ ě p1` εqm2 .

Consequently, the set of ordered pairs

R “
 

ty, zu P V p2q : py, zq P BHj0,P
% rAi0 , Bj0s and pz, yq P BH i0,Q

% rBj0 , Ai0s
(

has size at least εm2.

Finally, we note that every ty, zu P R has positive degree in both hypergraphs Hj0,P
%

and H i0,Q
% and, hence, these degrees are at least 3%m. Therefore, there are at least 9%2m2

distinct vertices x P A3´i0 and w P B3´j0 such that xyz and yzw form a pP,Qq-cherry.

Summing over all pairs in R yields at least

εm2
¨ 9%2m2

ě νn4

pP,Qq-cherries in H.

The following corollary allows us to find many connections between large sets of

unordered pairs and large sets of ordered pairs.

Lemma 4.4.4. For every ξ, ε P p0, 1s there exist ζ, % ą 0 such that the following holds

for every sufficiently large p%, 1{4` ε, q-dense n-vertex hypergraph H “ pV,Eq.

Let P Ď V ˆ V be a set of ordered pairs and let Q Ď V p2q be a set of unordered pairs,

each of size at least ξn2. There is an ` P t2, 4u such that there are at least ζn``2 paths

of length ` which start with an ordered pair from P and ends in (some ordering of) with

a pair from Q.

Proof. Given ξ and ε we apply Lemma 4.4.3 with ξ{6 and ε and obtain % and ν.

Lemma 4.2.4 applied for ν{2, 4, and 6 (in place of ξ, k, and ` in Lemma 4.2.4) yields
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the promised constant ζ ą 0. With out loss of generality we may assume that ζ ă ν{2

and let n be sufficiently large.

For a given set of ordered pairs P Ď V ˆV let P be the set of unordered pairs obtained

from P by ignoring the order. In particular, |P | ě |P |{2 ě ξn2{2 and Lemma 4.4.3

asserts that there are νn4 different pP ,Qq-cherries. That is to say there are νn4 paths

on four vertices of the form xyzw where tx, yu P P and tz, wu P Q.

If for ζn4 of those cherries we have that px, yq P P , then the lemma follows with

` “ 2. Hence, we may assume that for at least pν ´ ζqn4 ě νn4{2 of those paths we

(only) have py, xq P P . Consequently, Lemma 4.2.4 yields ζn6 blowups of these two edge

paths where the vertices y and z are doubled, i.e., H contains at least ζn6 6-tuples of

distinct vertices px, y1, y2, z1, z2, wq such that for every i, j P t1, 2u we have

pyi, xq P P , tzj, wu P Q , and xyizjw is a path with two edges.

In particular, every such 6-tuple induces a path y1xz1y2wz2 which starts with an ordered

pair from P and ends in an unordered pair from Q and this concludes the proof of the

lemma.

For establishing the Connecting Lemma (Lemma 4.1.4) we shall extend Lemma 4.4.4

in such a way that we can connect large sets P and Q, where both of them consist of

ordered pairs. For that certain blowups of Kp3q´
4 s will be useful and we introduce the

following notation.

Definition 4.4.5. We say a 7-tuple of distinct vertices pa1, a2, a3, b1, b2, c, dq P V
7 is a

turn in a hypergraph H “ pV,Eq if for every i P t1, 2, 3u and j P t1, 2u the set tai, bj, c, du

spans a copy of a Kp3q´
4 in H with ai being the apex.

Combining Theorem 4.2.5 and Lemma 4.2.4 shows that the hypergraphs with -

density bigger than 1{4 contain many turns. Moreover, we observe that in a turn T the

paths

a1b1ca2b2 , a1b1ca3db2a2 , b1a1cda2b2 , and b1a1cb2a2 (4.4.3)

with at most 3 inner vertices connect the pairs ta1, b1u and ta2, b2u in all four possible

orientations. This motivates the following definition.



4.4. CONNECTING LEMMA 87

Definition 4.4.6. For a hypergraph H “ pV,Eq we say two disjoint unordered pairs q,

q1 P V p2q are pϑ, Lq-turnable, if for every ordering pq1, q2q of q and every ordering pq11, q12q of

q1 there exists some positive integer ` ď L such that the number of pq1, q2q-pq11, q12q-paths

in H with ` inner vertices is at least ϑ|V |`.

It follows from (4.4.3) that pairs ta1, b1u and ta2, b2u that are contained in Ωp|V |3q

turns are pϑ, 3q-turnable for some sufficiently small ϑ ą 0. The following variation of

this fact, will be useful in the proof of the Connecting Lemma.

Lemma 4.4.7. For every ε P p0, 1s there exist ϑ, % ą 0 such that the following holds

for every sufficiently large p%, 1{4` ε, q-dense hypergraph H “ pV,Eq.

There exists a set Q Ď V p2q of size at least ϑ|V |2 such that for every q P Q there

exists a set Q1pqq Ď V p2q of size at least ϑ|V |2 such that q and q1 are pϑ, 3q-turnable for

every q1 P Q1pqq.

Proof. Let H “ pV,Eq be a sufficiently large p%, 1{4 ` ε, q-dense hypergraph on n

vertices. A combined application of Theorem 4.2.5 and Lemma 4.2.4 yields a set T Ď V 7

of at least ζn7 turns pa1, a2, a3, b1, b2, c, dq in H for some sufficiently small ζ “ ζpεq ą 0

and we shall deduce the conclusion of the lemma for

ϑ “
ζ

8 .

For every pair pa, bq P V ˆ V and i P t1, 2u let Tipa, bq be the set of such turns where

a and b play the rôles of ai and bi, respectively. We consider the set

T ‹
“
 

pa, a1, a3, b, b
1, c, dq P T : |T1pa, bq X T2pa

1, b1q| ě ζn3
{2
(

and note that |T ‹| ě ζn7{2. By a standard averaging argument there are at least ζn2{4

pairs pa, bq P V ˆ V for which we have

|T1pa, bq X T ‹
| ě

ζ

4n
5

and we denote the set of these ordered pairs by R. Note that for every pair pa, bq P R

there is a set R1pa, bq Ď V ˆ V with

|R1pa, bq| ě
ζ

4n
2 such that

ˇ

ˇT1pa, bq X T2pa
1, b1q

ˇ

ˇ ě
ζ

2n
3 (4.4.4)
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for every pa1, b1q P R1pa, bq. Finally, let Q be the set of unordered pairs derived from R,

i.e.,

Q “
 

tq1, q2u P V
p2q : pq1, q2q P R

(

and for every q “ tq1, q2u set

Q1pqq “
 

tq11, q
1
2u P V

p2q : pq11, q12q P R1pq1, q2q YR
1
pq2, q1q

(

.

Clearly,

|Q| ě
|R|

2 ě
ζ

8n
2
“ ϑn2 and Q1pqq

(4.4.4)
ě

ζ

8n
2
“ ϑn2

and the required number of paths for every orientation of q P Q and q1 P Q1pqq follows

from (4.4.3) and (4.4.4).

Roughly speaking, the proof of Lemma 4.1.4 follows from Lemmata 4.4.4 and 4.4.7.

The definition of connectable pairs allows us to move from the given ordered pairs

px, yq and pw, zq, that need to be connected, to large sets of ordered pairs P , P 1, by

considering their second neighbourhoods. Moreover, Lemma 4.4.7 yields sets Q Ď V p2q

and Q1pqq Ď V p2q for every q P Q of turnable pairs. Applying Lemma 4.4.4 first to P

and Q and then to P 1 and Q1pqq for all q P Q leads to the desired px, yq-pz, wq-paths.

Proof of Lemma 4.1.4. For given ε, β ą 0 let ϑ and %1 be the constants provided by

Lemma 4.4.7. We set

ξ “ mintϑ, β2
u

and Lemma 4.4.4 applied with ξ and ε yields ζ and %2. Finally, we define the promised

constants

% “ mint%1, %2u and α “
ζ2ϑ

13 .

Let H “ pV,Eq be a sufficiently large p%, 1{4 ` ε, q-dense hypergraph on n ver-

tices and let px, yq, pw, zq be two disjoint β-connectable pairs. Consider the second

neighbourhoods of these pairs defined by

P “ tpu, vq P V ˆ V : xyu, yuv P Eu and P 1 “ tpu1, v1q P V ˆ V : wzu1, zu1v1 P Eu .

(4.4.5)
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Owing to the β-connectability, both sets P and P 1 have size at least β2n2 ě ξn2.

Next, let Q Ď V p2q and Q1pqq Ď V p2q for every q P Q be the sets of size at least

ϑn2 ě ξn2 provided by Lemma 4.4.7. For every q P Q we denote by P4pqq (resp.

P6pqq) the number of pu, vq-pq1, q2q-paths having 4 (resp. 6) vertices and pu, vq P P and

tq1, q2u “ q. Moreover, we normalise these numbers by

ηP pqq “ max
!P4pqq

n4 ,
P6pqq

n6

)

and note that Lemma 4.4.4 applied to P and Q ensures
ÿ

qPQ

ηP pqq ě ζ . (4.4.6)

Analogously, we define P 14pq1q, P 16pq1q, and ηP 1pq1q for every q1 P
Ť

qPQQ
1pqq and Lemma 4.4.4

applied to P 1 and Q1pqq implies
ÿ

q1PQ1pqq

ηP 1pq
1
q ě ζ . (4.4.7)

for every q P Q. Recall, that the paths accounted for in (4.4.6) and (4.4.7) induce an

ordering of the vertices in q and in q1. However, by Lemma 4.4.7 the pairs q and q1

are pϑ, 3q-turnable for every q P Q and q1 P Q1pqq, which means that these pairs can be

connected for any possible orientation. Consequently, there is some ` with

5 ď ` ď maxt4, 6u `maxt1, 2, 3u `maxt4, 6u “ 15

such that the number of px, yq-pz, wq-walks in H is at least

n`

12 ¨
ÿ

qPQ

ηP pqq ¨ ϑ ¨
ÿ

q1PQ1pqq

ηP 1pq
1
q

(4.4.7)
ě

n`

12 ¨
ÿ

qPQ

ηP pqq ¨ ϑ ¨ ζ
(4.4.6)
ě

ζ2ϑ

12 n
` .

At most Opn`´1q of these walks might not be a path and, hence, the lemma follows for

sufficiently large n.

4.5 Absorbing path

We dedicate this section to the proof of Lemma 4.1.3. Similarly as in [52] the absorbers

we consider here have two parts. Moreover, we use an idea of Polcyn and Reiher [45],
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which reduces the abundant existence of absorbers to a degenerate Turán problem for

the price that we can only absorb exactly three vertices at each time.

Consider the complete 3-partite hypergraph Kp3q
3,3,3 with parts Ai “ txi, yi, ziu, for

every i “ 1, 2, 3. Note that this hypergraph contains the paths

x1x2x3y1y2y3z1z2z3 , (4.5.1)

and

x1x2x3z1z2z3 . (4.5.2)

This means that from every copy of Kp3q
3,3,3, ordered as a path like in (4.5.1), we may

remove the three inner vertices y1, y2, y3 to obtain a path with the same ends. Since we

only consider dense hypergraphs, we can guarantee that many copies Kp3q
3,3,3 exist. In

other words, in such a situation the path x1x2x3z1z2z3 could absorb the three vertices

y1, y2, and y3. However, not every triple might be contained in a Kp3q
3,3,3 and this will be

addressed by the second part of the absorbers used here.

Suppose we want to absorb some arbitrary vertices v1, v2, and v3. The idea, similarly

as in [52], is to exchange vi with yi contained in some Kp3q
3,3,3. Suppose we have found

a Kp3q
3,3,3 as described above, but additionally we find a path (as a graph) on four vertices

with edges from NHpviqXNHpyiq disjointly for each i “ 1, 2, 3. We argue that this whole

structure can absorb v1, v2, v3. Indeed, if aibicidi is a path on four vertices with edges

from NHpviq X NHpyiq, then both P pviq “ aibivicidi and P pyiq “ aibiyicidi are paths

in the hypergraph and with the same endings. Moreover, the minimum degree and

the uniform density imply that for each vertex v P V , most vertices of V have Ωpn2q

common neighbours with v, which is enough to find such paths.

Therefore, if we choose to absorb v1, v2, v3, we will consider the paths P pv1q, P pv2q,

and P pv3q and the path of Kp3q
3,3,3 as in (4.5.1). On the other hand, if we choose not to

absorb them, then we consider the paths P py1q, P py2q, and P py3q and the path of Kp3q
3,3,3

as in (4.5.2). We will also show that for each triple of vertices, we can find many of

these configurations, so that we can choose a small amount of them that still can absorb

every triple and also connect them into a single path. Observe that this absorbing path
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can only absorb sets of vertices with size divisible by three, an issue with which we deal

later. First we prove that for every triple there are many absorbers.

Definition 4.5.1. Let H “ pV,Eq be a hypergraph and pv1, v2, v3q P V
3. We say

A “ pK,P1, P2, P3q P V
9
ˆ V 4

ˆ V 4
ˆ V 4 ,

withK “ px1, x2, x3, y1, y2, y3, z1, z2, z3q and Pi “ pai, bi, ci, diq is an absorber for pv1, v2, v3q

if the ordered sets

(i ) x1x2x3y1y2y3z1z2z3, x1x2x3z1z2z3,

(ii ) aibivicidi and aibiyicidi for i “ 1, 2, 3

induce paths in H. All hyperedges of those paths that do not include a vertex

from tv1, v2, v3u are called internal edges of the absorber A.

Formally absorbers are defined to be four tuples. However, sometimes it will be

convenient to view them as 21-tuples of vertices.

Lemma 4.5.2. For all d, ε P p0, 1s there exist %, ξ ą 0 such that for sufficiently large n

the following holds.

For every p%, d, q-dense hypergraph H on n vertices with δ1pHq ě εn2 and every

triple T “pv1, v2, v3q P V pHq
3 of distinct vertices there are at least ξn21 absorbers for T .

Proof. Given d and ε we define some auxiliary constant ζ “ pd{2q27{3 and set

% “
1
36

ˆ

d

2

˙54

and ξ “
ζd9ε9

211 .

Let H “ pV,Eq be a p%, d, q-dense hypergraph on n vertices and consider some triple

of vertices T “ pv1, v2, v3q P V
3.

Three applications of Lemma 4.2.2 each with X “ V and for i P r3s with the set of

ordered pairs
 

pu,wq : tu,wu P NHpviq
(
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tells us, that there are at most 3?%n bad vertices v P V that may fail to satisfy

ˇ

ˇNHpvq XNHpviq
ˇ

ˇ ě pd´
?
%q
ˇ

ˇNHpviq
ˇ

ˇ ě pd´
?
%qδ1pHq ě

d

2εn
2 (4.5.3)

for some i P r3s. Moreover, the p%, d, q-density of H implies that the edge density of H

is at least d´ 2% ą d{2 and since the extremal number of any fixed 3-partite hypergraph

is opn3q we have Kp3q
3,3,3 Ď H for sufficiently large n. In fact, the standard proof of this

fact from [18] yields at least ppd{2q27´ op1qqn9 such copies. Consequently, for sufficiently

large n there are at least
ˆ

´d

2

¯27
´ op1q

˙

n9
´ 3?%n ¨ n8

ě ζn9

copies of Kp3q
3,3,3 in H that contain no bad vertex. Let K “ KT Ď V 9 be the set of these

K
p3q
3,3,3 in H.

Consider some K “ px1, x2, x3, y1, y2, y3, z1, z2, z3q P K. Since none of the vertices

of K is bad, for every vertex v from K inequality (4.5.3) holds for every i P r3s. In

particular, for every i P r3s we have |NHpyiq XNHpviq| ě dεn2{2 and it follows from [11]

that there exist at least ppdε{2q3 ´ op1qqn4 paths on four vertices with edges from

NHpyiq XNHpviq. Consequently, for sufficiently large n, there exist at least

|K| ¨
ˆ

´d3ε3

8 ´ op1q
¯

n4
˙3

ě ζn9
¨
d9ε9

210 n
12
ě 2ξn21

4-tuples A “ pK,P1, P2, P3q P V
9 ˆ V 4 ˆ V 4 ˆ V 4 with Pi inducing a path in NHpyiq X

NHpviq for i “ r3s. Such an A may only fail to be an absorber for T , if it contains some

vertex from T itself or if its 21 vertices are not distinct. However, since there are at

most Opn20q such “degenerate” A’s the lemma follows for sufficiently large n.

Note that for the proof of Lemma 4.5.2 positive -density was sufficient. However,

to address the aforementioned divisibility issue, we will show that the hypergraphs H

considered here contain a copy of C8p4q, the 4-blow-up of the cycle on 8 vertices. For

the proof of that, we make use of the assumption that the -density of H is bigger than

1{4.
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The C8p4q is formed by 8 cyclicly ordered independent sets tei, fi, gi, hiuiPr8s such

that the only edges are the ones with vertices from three consecutive such sets. Note

that C8p4q contains the path

e1e2 . . . e8f1f2 . . . f8g1g2 . . . g8h1h2 . . . h8. (4.5.4)

Moreover, by removing the sets tfiuiPr8s or tfi, giuiPr8s from the path in (4.5.4) leads to

paths with the same ends in C8p4q with 24 or 16 vertices, respectively. We also remark

that 16, 24 and 32 are congruent to 1, 0 and 2 modulo 3, respectively. Therefore, if we

connect such a path to the absorbing path, we can decide to remove some of the vertices

so that the size of the leftover set is divisible by 3.

Lemma 4.5.3. For all ε ą 0 there exist %, ϑ ą 0 such that every sufficiently large

p%, 1{4` ε, q-dense hypergraph H “ pV,Eq contains ϑ|V |32 copies of C8p4q.

Proof. Given ε ą 0 we apply Theorem 4.2.5 to obtain %1 and ξ. Then, the application of

Lemma 4.4.3 to ξ{6 and ε yields %2 and ν. Set % “ mint%1, %2u and let n be sufficiently

large.

Let H “ pV,Eq be a p%, 1{4 ` ε, q-dense hypergraph on n vertices. In view of

Lemma 4.2.4 it suffices to show that H contains ζn8 copies of C8 for some ζ ą 0.

Theorem 4.2.5 implies that H contains at least ξn4 copies of Kp3q´
4 . Let R be the set

of ordered pairs pa, xq such that both vertices are contained in at least ξn2{2 of these

K
p3q´
4 with a being the apex. By double counting we infer |R| ě ξn2{2.

For every pa, xq P R, let Pa,x Ď V p2q be those pairs ty, zu that span such a copy

of Kp3q´
4 together with a and x. An application of Lemma 4.4.3 to P “ Q “ Pa,x yields

at least νn4 pP,Qq-cherries, i.e., paths with 4 vertices starting and ending at a pair

from Pa,x.

Let F be the hypergraph with vertex set ta, x, y, y1, z, z1u such that the sets of

vertices ta, x, y, zu and ta, x, y1, z1u span copies of Kp3q´
4 with apex a and it contains

a pty, zu, ty1, z1uq-cherry. Observe that since y and z (resp. y1 and z1) play a symmetric

role in Kp3q´
4 , regardless of the orientation of the pairs ty, zu and ty1, z1u in the cherry
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the resulting hypergraph is isomorphic. Without loss of generality we will assume that

the cherry is a path of the form yzy1z1. By the reasoning above, H contains at least

|R| ¨ νn4
ě
ξ

2νn
6

copies of F . We argue that there is a homomorphism of C8 in F . Indeed, if we consider

the vertices of F in the following cyclic ordering

xayzy1z1ay1

one can check that every consecutive triple forms an edge in F . Since there are at

least Ωpn6q copies of F in H, then by Lemma 4.2.4 and taking ζ small enough, we have

that there are at least ζn8 copies of C8.

We are now ready to prove Lemma 4.1.3.

Proof of Lemma 4.1.3. Given ε ą 0 the constants appearing in this proof will satisfy

the following hierarchy

1 ą ε " ξ , ϑ " β " % , α " γ1 ě γ "
1
n
, (4.5.5)

where the auxiliary constants ξ, ϑ, and α are provided by Lemmata 4.5.2, 4.5.3, and 4.1.4

and it is easy to check that (4.5.5) complies with the quantification of these lemmata.

Let H be a p%, 1{4` ε, q-dense hypergraph with δ1pHq ě εn2 and let R be a subset of V

with at most 2γ2n vertices. Fix the subhypergraph Hβ Ď H provided by Lemma 4.2.3.

For T P V 3, let AT be the set of those absorbers for T in H that have no vertex

in R and all its 36 internal edges from Hβ. It follows from Lemma 4.5.2 applied with

d “ 1{4` ε and ε that

|AT | ě ξn21
´21 |R|n20

´6¨36
`

epHq´epHβq
˘

n18
ě ξn21

´42 γ2n21
´216 βn21 (4.5.5)

ě
ξ

2n
21 .

Let A “
Ť

T AT be the union over all triples T P V 3 and consider a random collection

of absorbers C Ď A in which each element of A is present independently with probability

p “
γ4{3n

2|A| .
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Since E|A| “ p|A|, Markov’s inequality ensures that

P
`

|C| ě γ4{3n
˘

ď
1
2 . (4.5.6)

Moreover, for every T P V 3 we have

E|C XAT | “ p|AT | ě
γ4{3n

2|A| ¨
ξn21

2 ě
γ4{3ξn

4
(4.5.5)
ě 4γ2n ,

Chernoff’s inequality combined with the union bound over all triples yields

P
`

DT P V 3 : |C XAT | ă 3γ2n
˘

ď op1q . (4.5.7)

Letting Y be the number of pairs of distinct absorbers A, A1 P C that share a vertex we

note

EY “ p2
¨ n21

¨ 212
¨ n20

“
γ8{3n2

4|A|2 ¨ 441n41
ď

441γ8{3n

ξ2

(4.5.5)
ď

γ2n

4
and by Markov’s inequality, we have

PpY ě γ2nq ď
1
4 . (4.5.8)

Consequently, with positive probability none of the bad events from (4.5.6), (4.5.7),

and (4.5.8) happen. In particular, there exists a realisation of C such that

|C| ă γ4{3n , |C XAT | ě 3γ2n for every T P V 3, and |Y pCq| ă γ2n .

For every pair of absorbers accounted in Y pCq we remove one of the involved absorbers

in an arbitrary way and obtain a subset B Ď C of pairwise vertex disjoint absorbers

satisfying

|B| ď |C| ă γ4{3n and |B XAT | ą |C XAT | ´ γ
2n ě 2γ2n for every T P V 3.

Recall that if the absorbing path would only contain the absorbers from B, then it could

only absorb sets U with a cardinality that is divisible by 3. We address this divisibility

issue by adding a copy of C8p4q to the path. Lemma 4.5.3 guarantees at least ϑn32

copies of C8p4q in H. Similarly, as for the estimate of AT , we infer that there is one
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such C8p4q which is vertex disjoint from the set R and from all absorbers from B and

which only contains edges from Hβ. In fact, this follows from

ϑn32
´ 32 |R|n31

´ 21 |B|n31
´ 6 ¨ epC8p4qq

`

epHq ´ epHβq
˘

n29

ě ϑn32
´ 64 γ2n32

´ 21 γ4{3n32
´ 3072 βn32 (4.5.5)

ą 0 .

Fix an ordering of the vertices of such a C8p4q that induces a path (see, e.g., (4.5.4))

and denote this path by PC .

In order to obtain the final absorbing path, each absorber pK,P1, P2, P3q P B will

be viewed as a collection of four paths: x1x2x3z1z2z3 and aibiyicidi, for i “ 1, 2, 3, as in

Definition 4.5.1. Therefore, together with joining PC we have to connect t “ 4|B| ` 1

paths to build the promised absorbing path A. For each of the connections we will

appeal to Lemma 4.1.4 and each application will require to add up at most 15 inner

vertices.

Let pPiqiPrts be an arbitrary enumeration of all these paths that need to be connected.

We continue in an inductive manner starting with A1 “ P1, let Aj be the already

constructed path containing Pi for every i ď j. Since every connection requires at most

15 inner vertices and the longest path in pPiqiPrts has 32 vertices we have

|V pAjq| `
t
ÿ

i“j`1
|V pPiq| ď 15pj ´ 1q ` 32t ď 47t ď 47

`

4|B| ` 1
˘

ď 47
`

4γ4{3n` 1
˘

ď γn .

(4.5.9)

Suppose now that we want to connect Pj , which ends in px, yq, to Pj`1, which starts

at pz, wq. Since all paths Pi with i P rts have its edges in Hβ, by Lemma 4.2.3 they

are β-connectable. Therefore, Lemma 4.1.4 implies that there are at least αn` paths,

with ` ď 15 inner vertices, connecting px, yq with pz, wq in H. Consequently, in view

of (4.5.9) and |R| ď 2γ2n our choice of γ in (4.5.5) shows that at least one of such

connecting paths must be vertex disjoint from

V pAjq Y
t
ď

i“j`1
V pPiq YR ,

which concludes the inductive step and proves the existence of the path Aj`1.
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Finally, let A “ At be the final path and let U Ď V r V pAq with |U | ď 3γ2n. First

we remove 0, 8 or 16 vertices from PC in A and reallocate them to U to get a set U 1 with

size divisible by three. Moreover |U 1| ď 3γ2n` 16 ď 3pγ2n` 6q and, hence, U 1 can be

split into at most γ2n` 6 disjoint triples. Since each triple has at least 2γ2n ą γ2n` 6

absorbers in A, we can greedily assign one for each and absorb all of them into A.

4.6 Proof of Theorem 2.2.3

In this section we discuss the few modifications necessary in the proof of Theorem 2.2.2

in order to prove Theorem 2.2.3. Recall that both theorems have the same minimum

vertex degree assumption. However, where Theorem 2.2.3 requires the given hypergraph

H to be -dense for some positive density, Theorem 2.2.2 requires -density bigger than

1{4. In other words, the uniform density assumptions of both theorems are incomparable.

The proof of Theorem 2.2.2 consist of three main parts, namely Lemmata 4.1.2 – 4.1.4.

Observe that Lemma 4.1.2 can be applied directly under the conditions of Theorem 2.2.3,

but for Lemmata 4.1.3 and 4.1.4 we have the assumption of -density at least 1{4 which

is not provided by Theorem 2.2.3.

We start with the discussion of the Connecting Lemma in the context of Theorem 2.2.3

in the next section and we defer the discussion of the adjustments for the Absorbing

Path Lemma (Lemma 4.1.3) to Section 4.6.2.

4.6.1 Connecting Lemma for Theorem 2.2.3

The following lemma will play the rôle of Lemma 4.1.4 in the proof of Theorem 2.2.2.

Lemma 4.6.1 (Connecting Lemma for -density conditions). For every d, β ą 0 there

exist %, α ą 0 and an n0 such that for every p%, d, q-dense hypergraph H on n ě n0

vertices the following holds.

For every ` P t5, 6, 7u and every pair of disjoint ordered β-connectable pairs px, yq,

pw, zq P V ˆ V , the number of px, yq-pz, wq-paths with ` inner vertices is at least αn`.
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Proof of Lemma 4.6.1 (sketch). We begin with the following observation. For sets of

pairs P , P 1 Ď V ˆ V each of size at least Ωpn2q we show that

there are at least Ωpn5
q p-p1-paths with one inner vertex and p P P , p1 P P 1. (4.6.1)

Note that every p%, d, q-dense hypergraph is p%, d, q-dense and in view of Lemma 4.2.2

applied to P and V there is a set X Ď V such that |X| “ Ωpnq and for every x P X

we have |Npx, P q| “ Ωpn2q. Similarly, another application of Lemma 4.2.2 to P 1 and X

yields a set X 1 Ď X of size Ωpnq such that

|Npx, P q| “ Ωpn2
q and |Npx,Qq| “ Ωpn2

q

for every x P X 1. Consequently, a standard averaging argument tells us that each of the

sets

Q “
 

pp2, xq P V ˆX
1 : |tp1 P V : pp1, p2q P P and p1p2x P Eu| “ Ωpnq

(

and

Q1 “
 

px, p11q P X
1
ˆ V : |tp12 P V : pp11, p12q P P 1 and xp11p12 P Eu| “ Ωpnq

(

has size Ωpn2q. Finally, the -density of H applied to Q and Q1 yields Ωpn5q p-p1-paths

starting in P and ending in P 1 with an inner vertex from X, i.e., it establishes (4.6.1).

For given connectable pairs px, yq and pw, zq letting P and P 1 be their second

neighbourhoods as defined in (4.4.5), yields the conclusion of Lemma 4.6.1 for ` “ 5.

For ` “ 6 we note that -density implies that there are Ωpn2q β1-connectable pairs

py, y1q with xyy1 P E for sufficiently small β1 “ β1pdq ą 0. Applying the same argument

as above for every such pair py, y1q proves the case ` “ 6. Finally, for ` “ 7 the same

reasoning applied to the connectable pairs py1, y2q with xyy1, yy1y2 P E concludes the

proof.

4.6.2 Absorbing Path Lemma for Theorem 2.2.3

Recall that the proof of Lemma 4.1.3 required -density bigger than 1{4 in only two

places:
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(i ) for the connection of the absorbers to a path and

(ii ) in Lemma 4.5.3 for addressing the divisibility issue of the size of the absorbable

sets,

while for the abundant existence of the absorbers -density d for any d ą 0 is sufficient

(see Lemma 4.5.2). As shown in Section 4.6.1 for the connecting lemma positive -density

suffices, which addresses (i ). Moreover, in Lemma 4.6.1 we are even free to choose the

length of the connecting paths, which renders the divisibility issue from (ii ) in this

context.

4.7 Concluding remarks

We briefly discuss a few open problems for 3-uniform hypergraphs and possible generali-

sations of Theorems 2.2.2 and 2.2.3 to k-uniform hypergraphs.

4.7.1 Problems for 3-uniform hypergraphs

Theorems 2.2.2 and 2.2.3 concern asymptotically optimal assumptions for uniformly

dense hypergraphs that guarantee the existence of Hamilton cycles. The following

notation will be useful for the further discussion.

Definition 4.7.1. Given ‹ P t , , u and a P t1, 2u. We say a pair of reals pd, αq

is p‹, aq-Hamilton if the following assertion holds:

For every ε ą 0 there exist % ą 0 and n0 such that every p%, d`ε, ‹q-dense hypergraph

H “ pV,Eq with |V | “ n ě n0 and δapHq ě pα ` εq
`

n
3´a

˘

contains a Hamilton cycle.

We remark that we can restrict our attention to Hamilton cycles, since the result

of Lenz, Mubayi, and Mycroft [41] asserts that already p0, 0q would be p‹, aq-Hamilton

for loose cycles for every choice of ‹ P t , , u and a P t1, 2u. For Hamilton cycles

Aigner-Horev and Levy [2] showed that p0, 0q is p , aq-Hamilton for a “ 2 and this was

extended by Gan and Han [24] and by Theorem 2.2.3 to a “ 1. It remains to characterise
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the minimal pairs pd, αq that are p‹, aq-Hamilton for the four combinations ‹ P t , u

and a P t1, 2u.

Example 2.2.1 shows that for pd, αq being p , 1q-Hamilton we must have

maxtd, αu ě 1
4 . (4.7.1)

On the other hand, Theorem 2.2.2 asserts that for d “ 1{4 already α “ 0 suffices. It

would be interesting to determine the smallest value α ,1 such that d “ 0 suffices. In

view of (4.7.1) we have α ,1 ě 1{4 and the result from [52] bounds α ,1 by 5{9. Since

all known lower bound constructions for that result are lacking to be -dense it seems

plausible that α ,1 ă 5{9.

Similarly, let α ,2 be the infimum over all α ě 0 such that p0, αq is p , 2q-Hamilton.

Here it follows from [58] that α ,2 ď 1{2. Moreover, Example 2.2.1 yields a hypergraph

with minimum codegree p1{4´ op1qqn that fails to contain a Hamilton cycle. Therefore,

we have α ,2 ě 1{4 and at this point we are not aware of any reason that excludes the

possibility that α ,2 matches this lower bound.

Problem 4.7.2. Determine α ,1 and α ,2.

For Hamilton cycles in -dense hypergraphs the problem appears to be more delicate

as the following unbalanced version of Example 2.2.1 shows. Instead of a uniformly chosen

bipartition of EpKn´2q we may colour the edges independently red with probability p

and blue with probability 1 ´ p. Let Hp be the resulting hypergraph, where the rest

of the construction is carried out in the same way as in Example 2.2.1. By symmetry

we may assume p ě 1{2 and for the same reasons as in Example 2.2.1 the hypergraph

Hp contains no Hamilton cycle. Moreover, for every fixed % ą 0 we have with high

probability that

δ1pHpq “
`

mint1´ p , p3
` p1´ pq3u ´ %

˘`

n
2

˘

and δ2pHpq “
`

p1´ pq2 ´ %
˘

n

and that Hp is p%, p3 ` p1 ´ pq3, q-dense. For p close to 1 this shows that there is

no d ă 1 such that pd, 0q is p , aq-Hamilton for a P t1, 2u. In particular, there is no

straightforward analogue of Theorem 2.2.2 in this setting.
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It would be intriguing if this construction is essentially optimal for every p ě 1{2. In

such an event it would imply a resolution of the following problems, where the lower

bound would be obtained from Hp for p “ 2{3 and p “ 1{2.

Problem 4.7.3. Is it true that:

(i ) p1{3, 1{3q is p , 1q-Hamilton?

(ii ) p1{4, 1{4q is p , 2q-Hamilton?

4.7.2 Possible generalisations to k-uniform hypergraphs

The notion of Hamilton cycles straight forwardly extends to k-uniform hypergraphs.

Moreover, the definition of uniformly dense hypergraphs is inspired from the theory of

quasirandom hypergraphs (see, e.g., [1, 62] and the references therein). Below we briefly

recall the generalisation of Definitions 3.2.2 and 1.4.3 for general k-uniform hypergraphs,

where we follow the presentation from [51].

Given a nonnegative integer k, a finite set V , and a set Q Ď rks we write V Q for

the set of all functions from Q to V . It will be convenient to identify the Cartesian

power V k with V rks by regarding any k-tuple á
v “ pv1, . . . , vkq as being the function

i ÞÝÑ vi. We denote by á
v ÞÝÑ

á
v |Q the projection from V k to V Q and the preimage of

any set GQ Ď V Q is denoted by

KkpGQq “
 á
v P V k : páv |Qq P GQ

(

.

We may think of GQ Ď V Q as a directed hypergraph (where vertices in the directed

hyperedges are also allowed to repeat). More generally, for a subset Q Ď Pprksq of the

power set of rks and a family G “ tGQ : Q P Qu with GQ Ď V Q for all Q P Q, we define

KkpG q “
č

QPQ
KkpGQq . (4.7.2)

Moreover, if H “ pV,Eq is a k-uniform hypergraph on V , then eHpG q denotes the

cardinality of the set

EHpG q “
 

pv1, . . . , vkq P KkpG q : tv1, . . . , vku P E
(

.
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Now we are ready to state the generalisation of Definitions 3.2.2 and 1.4.3.

Definition 4.7.4. Let %, d P p0, 1s, let H “ pV,Eq be a k-uniform hypergraph on n

vertices, and let Q Ď Pprksq be given. We say that H is p%, d,Qq-dense if for every

family G “ tGQ : Q P Qu associating with each Q P Q some GQ Ď V Q we have

eHpG q ě d |KkpG q| ´ %n
k .

It is easy to check that for k “ 3 the following subsets of Ppr3sq

Q “
 

t1u, t2u, t3u
(

, Q “
 

t1u, t2, 3u
(

, and Q “
 

t1, 2u, t1, 3u
(

correspond to -, -, and -dense hypergraphs. More precisely, for every ‹ P t , , u

we have that a 3-uniform hypergraph is p%, d, ‹q-dense if and only if it is p%, d,Q‹q-dense.

Example 2.2.1 straight forwardly extends to k-uniform hypergraphs. In fact, we may

consider a random bipartition G ŸG of the pk´1q-element subsets of an pn´2q-element

set and we define a k-uniform hypergraph containing only those hyperedges such that all

of its pk ´ 1q-element subsets are in the same partition class. Finally, we may add two

vertices x and y such that the pk´ 1q-uniform link of x is G and the pk´ 1q-uniform link

of y is G. We remark that for k “ 2 this construction leads to two disjoint cliques with

„ n{2 vertices, which is a lower bound construction for Dirac’s Theorem [16] in graphs.

It is easy to check that the resulting k-uniform hypergraph H does not contain a

Hamilton cycle and for every fixed % ą 0 it is p%, 21´k,Qq-dense for

Q “
 

Q P rkspk´2q : 1 P Q
(

Y
 

t2, . . . , ku
(

with high probability for sufficiently large n. Note that for k “ 3 we have Q “ Q and H

provides a lower bound for Theorem 2.2.2. It seems plausible that the hypergraph H is

essentially optimal for Q-dense hypergraphs also for k ą 3, i.e., that Q-dense k-uniform

n-vertex hypergraphs with density bigger than 21´k and minimum vertex degree Ωpnk´1q

contain a Hamilton cycle. This would be an interesting extension of Theorem 2.2.2 to

k-uniform hypergraphs.

Moreover, one can check that for

Q1
“
 

t1, . . . , k ´ 1u, t1, . . . , k ´ 2, ku
(
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the hypergraph H constructed above is not p%, d,Q1q-dense for any fixed d ą 0 and

sufficiently small % ą 0. Note that for k “ 3 we have Q1 “ Q and, in fact, Theorem 2.2.3

asserts that p%, d,Q1q-dense hypergraphs with minimum vertex degree Ωpn2q contain

a Hamilton cycle for any d ą 0 and sufficiently small %. We remark that the proof of

Theorem 2.2.3 discussed in Section 4.6 extends to k-uniform Q1-dense hypergraphs with

an appropriate minimum vertex degree condition.



Chapter 5

Codegree threshold for cycle

decompositions

The main goal of this chapter is proving Theorem 2.3.1, but the proofs of Theorem 2.3.4

and Corollaries 2.3.2 and 2.3.3 are included as well.

We start by proving Theorem 2.3.4 in Section 5.1 to then present the short proofs

for the Corollaries 2.3.2 and 2.3.3 in Section 5.2.

In Section 5.3 we prove Theorem 2.3.1 by using the technique of iterative absorption,

which we review there. The technique relies on three main lemmata, the Vortex Lemma,

Cover-Down Lemma, and Absorbing Lemma. After some useful tools (Section 5.4),

these three lemmata are proved in Sections 5.5, 5.6 and 5.7, respectively. We finish in

Section 5.8 with some remarks and open questions.

For this chapter we introduce the following definitions. A walk in a hypergraph H

is a path that might repeat vertices and a trail is a walk that does not repeat edges.

We recall that a tour is a cycle that might repeat vertices but not edges. We extend

all notations introduced for paths to walks. Given a walk W “ v1v2 . . . v` we define its

beginning bpW q and terminus tpW q as tv1, v2u and tv`´1, v`u respectively (note that this

is an unordered version of the starting and ending pairs defined at the beginning of

Chapter 1). Moreover, if C “ tC1, . . . , Cru is a collection of subgraphs of H, sometimes

we will let EpCq be the hypergraph whose edges are
Ť

1ďiďr EpCiq.

104
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The work corresponding to this chapter was done in collaboration with Sanhueza-

Matamala [44].

5.1 Lower bounds

In this section we prove Theorem 2.3.4. The following lemma captures divisibility

constraints that tours in hypergraphs must satisfy, and it will be the basis of our

constructions. For a hypergraph H, a subgraph W Ď H and vertex sets X, Y, Z in

V pHq, let W rX, Y, Zs be the set of edges xyz in EpW q such that x P X, y P Y ,

and z P Z.

Lemma 5.1.1. Let H be a hypergraph with a vertex partition tU0, U1, U2u, and such

that HrU0, U1, U2s “ ∅. If W is a tour in H then

|W rU1, U1, U2s| ” |W rU1, U2, U2s| pmod 3q

Proof. Let W “ w1w2 ¨ ¨ ¨wr, in cyclic order, and let P “ σ1 ¨ ¨ ¨ σr be a cyclic word over

the symbols t0, 1, 2u, where σi “ j if and only if wi P Uj. Since W is a tour, it does not

repeat edges. Thus we have that |W rU1, U1, U2s| is exactly the same as the number of

appearances of the patterns F1 “ t112, 121, 211u formed by three consecutive symbols

in P . Similarly, |W rU1, U2, U2s| is exactly counted by the number of appearances of

F2 “ t122, 212, 221u consecutively in P . In both cases we count the cyclic appearances

of the patterns, i.e. we also consider the patterns formed by σr´1σrσ1 and σrσ1σ2.

Define ΦpP q as follows. Scan the triples of consecutive symbols of P one by one, and

if they belong to F1 Y F2, we add the sum of the values of their symbols to ΦpP q. More

formally, let I Ď rrs be such that i P I if and only if σiσi`1σi`2 P F1 Y F2 (where the

indices are always understood modulo r, i.e. σr`1 “ σ1 and σr`2 “ σ2), and then

ΦpP q “
ÿ

iPI

pσi ` σi`1 ` σi`2q.

We aim to show that ΦpP q ” 0 mod 3. If I “ ∅, this is obvious, and if I “ rrs

then ΦpP q sums every symbol of P three times, and thus also ΦpP q ” 0. Thus we
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may assume I R t∅, rrsu. We write I as a disjoint union of intervals of consecutive

indices, minimising the number of intervals. Thus, without loss of generality (after

shifting W and P cyclically) we can assume I “ I1 Y ¨ ¨ ¨ Y Ik, so each Ij is of the

form taj, aj ` 1, . . . , bju for some aj ď bj and further we have a1 “ 1, bj ď aj`1 ´ 2

for all 1 ď j ă k, and bk ď r ´ 1. Setting Φj “
ř

iPIj
pσi ` σi`1 ` σi`2q we have

ΦpP q “
ř

1ďjďk Φj, so it is enough to show that Φj ” 0 mod 3 for each j.

Fix an arbitrary j P t1, . . . , ku. For brevity write a “ aj and b “ bj and let

Pj “ σaσa`1 ¨ ¨ ¨ σb`1σb`2. We claim that Pj begins with two repeated symbols. Since

Ik Ď I, we have σaσa`1σa`2 P F1 Y F2, thus in particular σa and σa`1 must be in t1, 2u.

If σa ‰ σa`1, then we would have σaσa`1 “ 12 or σaσa`1 “ 21. In any case, it cannot

happen that σa´1 P t1, 2u, since then that would imply that a´ 1 P I, contradicting the

choice of Ik. Thus σa´1 “ 0, and therefore σa´1σaσa`1 “ 012 or σa´1σaσa`1 “ 021. But

this implies that W contains an edge in HrU0, U1, U2s, a contradiction. Thus Pj begins

with two repeated symbols, and an analogous argument implies that Pj also ends with

two repeated symbols.

If a “ b, then we would have σaσa`1σa`2 “ 111 or σaσa`1σa`2 “ 222, then implying

a R I, a contradiction. Thus a ă b, and therefore Pj must have the form Pj “ xxQjyy,

where x, y P t1, 2u and Qj is a (possibly empty) word. It is easy to see that every symbol

in Qj is counted three times in Φ. Thus we have

Φj “
ÿ

aďiďb

pσi ` σi`1 ` σi`2q “ x` 2x` 3
˜

ÿ

a`2ďiďb
σi

¸

` 2y ` y ” 0 mod 3,

and this implies ΦpP q ” 0 mod 3, as discussed before.

Finally, note that, for j P t1, 2u, if σiσi`1σi`2 P Fj, then σi ` σi`1 ` σi`2 ” j mod 3.

Thus ΦpP q ” |W rU1, U1, U2s| ` 2|W rU1, U2, U2s| mod 3. But since ΦpP q ” 0 mod 3 and

2 ” ´1 mod 3, we deduce |W rU1, U1, U2s| ” |W rU1, U2, U2s| mod 3, as desired.

To prove Theorem 2.3.4, we will consider alterations of the following hypergraph.

Definition 5.1.2. Let n be divisible by 18 and write n “ 18k. Consider the hypergraph

Hn on n vertices, whose vertex set is partitioned into three clusters V0, V1, V2 whose
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sizes are n0, n1, n2 respectively, and are defined by

n0 “ 6k, n1 “ 6k ´ 2, and n2 “ 6k ` 2. (5.1.1)

Given a vertex x P V pHnq, the label lpxq of x is i if and only if x P Vi. The edge set of

Hn is

EpHnq “ txyz : lpxq ` lpyq ` lpzq ı 0 mod 3u.

In words, every 3-set is present as an edge in Hn, except for those which are entirely

contained in one of the clusters Vi or have non-empty intersection with all three clusters.

Usually n will always be clear from context, and for a cleaner notation we will just write

H “ Hn in the remainder of this section.

We begin our analysis by noting the hypergraph H has large minimum codegree.

Lemma 5.1.3. Let n P 18N. Then δ2pHq ě p2n´ 12q{3.

Proof. Let x, y P V pHq, and set p “ lpxq ` lpyq. By the definition of H, a vertex z

will form an edge together with xy whenever p ` lpzq ı 0 mod 3. This is equivalent

to lpzq ” 1 ´ p mod 3 or lpzq ” 2 ´ p mod 3. Thus, if i, j P t0, 1, 2u are such that

i ” 1 ´ p mod 3 and j ” 2 ´ p mod 3, then Npxyq “ pVi Y Vjq r tx, yu. A quick case

analysis reveals that |Npxyq| is minimised whenever x P V0, y P V1 and in such a case

dHpxyq “ n0 ` n1 ´ 2 “ 12k ´ 4. Thus δ2pHq “ 12k ´ 4 “ p2n´ 12q{3, as required.

We note that identities (5.1.1) imply that n0, n1, and n2 are even and that for all

i P t0, 1, 2u we have

ni ” i pmod 3q, (5.1.2)

Given pi, j, kq P t0, 1, 2u3, write Hijk “ HrVi, Vj, Vks.

Lemma 5.1.4. Let n P 18N. Then

(i) for every x P V pHq, dHpxq ” 1 mod 3 and

(ii) |H112| ı |H122| mod 3.
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Proof. We begin by noting that
`

m
2

˘

” 2mpm´ 1q mod 3 holds for all integers m. Thus
`

m
2

˘

” 1 mod 3 if m ” 2 mod 3, and
`

m
2

˘

” 0 mod 3 otherwise.

Now let x P V0. Then the pairs yz such that xyz P H are those such that

1. y P V0 r txu and z P V1 Y V2, of which there are pn0 ´ 1qpn1 ` n2q many,

2. yz Ď V1, of which there are
`

n1
2

˘

many, and

3. yz Ď V2, of which there are
`

n2
2

˘

many.

Thus we have dHpxq “ pn0 ´ 1qpn1 ` n2q `
`

n1
2

˘

`
`

n2
2

˘

. Together with (5.1.2), we have

that dHpxq ” 0` 0` 1 ” 1 mod 3. Analogous calculations show that

dHpyq ” 0` 0` 1 ” 1 mod 3 for y P V1 and

dHpzq ” 1` 0` 0 ” 1 mod 3 for z P V2,

thus (i) holds.

Finally, the sizes of |H112| and |H122| are
`

n1
2

˘

n2 and
`

n2
2

˘

n1 respectively, which then

are easily seen to be equivalent to 0 and 1 modulo 3, respectively, which implies (ii).

Since H is not quite 3-vertex-divisible, our counterexample will consist actually of a

slight alteration of H obtained by removing some sparse subgraph.

Lemma 5.1.5. Let n P 18N. Then there exists a perfect matching F Ď HrpH112YH122q.

Proof. Let k be such that n “ 18k. Let a, b be two distinct vertices in V2, and let

V 11 “ V1 Y ta, bu and V 12 “ V2 r ta, bu. Note that |V0| “ |V 11 | “ |V 12 | “ 6k. Let

V0 “ tx1, . . . , x6ku, V 11 “ ty1, . . . , y6ku and V 12 “ tz1, . . . , z6ku, with y1 “ a and y2 “ b.

Then

F “ ty2i´1y2ix2i´1 : 1 ď i ď 3ku Y tz2i´1z2ix2i : 1 ď i ď 3ku

is a perfect matching in which every edge intersects V0 in exactly one vertex. Thus F

has no edge in H112 YH122, as required.

We are now ready to show Theorem 2.3.4.
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Proof of Theorem 2.3.4. Consider the hypergraph H “ Hn given in Definition 5.1.2,

and consider the perfect matching F Ď H r pH112 YH122q given by Lemma 5.1.5. Let

`1 P t4, . . . , ` ` 3u be such that |EpH ´ F q| ` `1 ” 0 mod `. Since n “ 18k ě 3p` ` 3q,

we have |V0| “ 6k ě `` 3 ě `1. To H ´ F , we add a cycle C of length `1, edge-disjoint

from H ´ F , which is entirely contained in V0. We claim the hypergraph

H 1
“ pH r F q Y C

has all of the desired properties.

We first check H 1 is Cp3q` -divisible. We start by checking H 1 is 3-vertex-divisible.

Indeed, let x P V pH 1q be arbitrary. We have dHpxq ” 1 mod 3 by Lemma 5.1.4(i), we

have dF pxq “ 1 since F is a perfect matching, and dCpxq ” 0 mod 3 since C is a cycle

on `1 ě 4 vertices. Thus dH 1pxq ” 1 ´ 1 ` 0 ” 0 mod 3 for all x P V pH 1q, as required.

Moreover, the number of edges of H 1 is |EpH 1q| “ |EpH ´F q| ` `1, which was chosen to

be divisible by `, so indeed H 1 is Cp3q` -divisible.

Now we check H 1 has large codegree. It suffices to show H ´ F has large codegree.

Removing a perfect matching from H decreases the codegree of every pair at most by 1,

thus by Lemma 5.1.3, we have δ2pH ´ F q ě δ2pHq ´ 1 ě p2n´ 12q{3´ 1 “ p2n´ 15q{3.

Now we prove H 1 does not have a tour decomposition. Since F Ď H r pH112YH122q

and C Ď V0 we have

H 1
rV1, V1, V2s “ H112 and H 1

rV1, V2, V2s “ H122 .

For a contradiction, suppose that W 1, . . . ,W r are tours forming a tour decomposition

in H 1. For a walk W , let W112 “ H112XEpW q, and let W122 “ H122XEpW q. Since the

tours are edge-disjoint and cover all edges of H 1, we have
ř

1ďiďr |W
i
112| “ |H112| and

ř

1ďiďr |W
i
122| “ |H122|. Moreover, Lemma 5.1.1 implies that |W i

112| ” |W
i
122| mod 3 for

each 1 ď i ď r. Therefore, |H112| ” |H122| mod 3, but this contradicts Lemma 5.1.4(ii).

Remark 5.1.6. For sufficiently large values of n, we can make our example vertex-

regular instead of Cp3q` -divisible. This is needed, for instance, when we are looking at
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decompositions into spanning vertex-disjoint collections of cycles, such as Hamilton

cycles.

Start from H “ Hn, and remove F as before to get to H 1 “ H ´ F which is

3-vertex-divisible. Every vertex in Vi has the same degree di, for all i P t0, 1, 2u, and a

calculation reveals that d1 “ d0 ´ 9 and d2 “ d0 ´ 3. Then, adding three edge-disjoint

Hamilton cycles to HrV1s and one Hamilton cycle to HrV2s leaves a hypergraph H˚ in

which every vertex has degree d0. It can be similarly proved that H˚ does not admit

any tour decomposition.

5.2 Proof of Corollaries 2.3.2 and 2.3.3

In this short section we deduce Corollaries 2.3.2 and 2.3.3 from Theorem 2.3.1.

Proof of Corollary 2.3.2. Let m be the number of edges of H, and write it as m “ 9q`r

for some q ě 1 and 0 ď r ă 9. Find a cycle C of length 9` r in H: this can be done

greedily (see Section 5.4.1 for details). Then, H 1 “ H ´ C is a 3-divisible graph, its

minimum codegree is δ2pH
1q ě δ2pHq ´ 2 ě p2{3 ` ε{2qn, and its number of edges

is m ´ p9 ` rq “ 9pq ´ 2q, which is divisible by 9. By Theorem 2.3.1, H 1 has a

C9-decomposition, together with C this is a cycle decomposition of H.

For the proof of Corollary 2.3.3 we use the strategy of Glock, Joos, Kühn, and

Osthus [26]. Crucial part of their argument is (using our terminology) to first find a

trail W which is spanning i.e. every 2-tuple of distinct vertices of H is contained as

a sequence of consecutive vertices of W , but at the same time it is sparse (it satisfies

∆2pW q “ opnq, where ∆2pHq denotes the maximum codegree of H among all pairs of

vertices).

Here we state their lemma only for 3-uniform hypergraphs. A hypergraph H on

n vertices is α-connected if for all distinct v1, v2, v4, v5 P V pHq, there exist at least αn

vertices v3 P V pHq such that v1v2v3v4v5 is a walk in H.
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Lemma 5.2.1 ([26, Lemma 5]). Suppose n P N is sufficiently large in terms of α.

Suppose H is an α-connected hypergraph on n vertices. Then H contains a spanning

trail W satisfying ∆2pW q ď log3 n.

Proof of Corollary 2.3.3. Take n0 such that 1{n0 ! ε. Since δ2pHq ě p2{3`εqn, then H

is ε-connected. By Lemma 5.2.1 there exists a spanning trail W “ w1 ¨ ¨ ¨wr satisfying

∆2pW q ď log3 n. Use the ε-connected property of H to close W to a tour, using three

extra vertices, while avoiding edges previously used by W (using that ∆2pW q ď log3 n).

The resulting W 1 “ w1 ¨ ¨ ¨wr`3 is a spanning tour which satisfies ∆2pW
1q ď 2 log3 n.

Let H 1 “ H ´ W 1. Since W 1 is a tour and H is 3-vertex-divisible, H 1 is 3-vertex-

divisible as well. Since ∆2pW
1q ď 2 log3 n ď εn{2 and δ2pHq ě p2{3 ` εqn, we deduce

δ2pH
1q ě p2{3` ε{2qn. Since n is sufficiently large, Corollary 2.3.2 implies that H 1 has a

cycle decomposition. Fix one of those cycles C “ v1v2 ¨ ¨ ¨ vm and note that the ordered

pair pv1, v2q must appear consecutively in some part of W 1 (since W 1 is spanning). We

may write W 1 “ W 1
1v1v2W

1
2 and extend W 1 by taking W 1

1v1v2 ¨ ¨ ¨ vmv1v2W
1
2, which is still

an spanning tour, but now uses the edges of C in addition to those of W 1. Attaching

the cycles of the decomposition one by one to W 1, we obtain the desired Euler tour.

5.3 Iterative absorption: proof of Theorem 2.3.1

Our proof of Theorem 2.3.1 follows the strategy of iterative absorption introduced

by Barber, Kühn, Lo, and Osthus [8] and further developed by Glock, Kühn, Lo,

Montgomery, and Osthus [27] to study decomposition thresholds in graphs. We base

our outline in the exposition of Barber, Glock, Kühn, Lo, Montgomery, and Osthus [7].

The method of iterative absorption is based on three main lemmata, originally called

the the Vortex Lemma, Absorbing Lemma, and the Cover-Down Lemma. We will

introduce these lemmata first while explaining the global strategy, then we will use them

to prove Theorem 2.3.1. The proof of these lemmata will take up the rest of the chapter.

A sequence of nested subsets of vertices U0 Ě U1 Ě ¨ ¨ ¨ Ě U` is called a pδ, ξ,mq-vortex

in H if satisfies the following properties.
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(V1 ) U0 “ V pHq,

(V2 ) for each 1 ď i ď `, |Ui| “ tξ|Ui´1|u,

(V3 ) |U`| “ m,

(V4 ) dpx, Uiq “ |Npx, Uq| ě δ
`

|Ui|
2

˘

for each 1 ď i ď ` and x P Ui´1, and

(V5 ) dpxy, Uiq “ |Npxy, Uq| ě δ|Ui| for each 1 ď i ď ` and xy P U p2qi´1,

where Npx, Uq and Npxy, Uq correspond to the restricted neighbourhoods

Npx, Uq“tyz P U p2q : xyz P EpHqu ,

Npxy, Uq“tz P U : xyz P EpHqu .

The existence of vortices for suitable parameters δ, ξ, and m is stated in the Vortex

Lemma.

Lemma 5.3.1 (Vortex Lemma). Let ξ, δ ą 0 and m1 P N be such that 1{m1 ! ξ. Let H

be a hypergraph on n ě m1 vertices with δ2pHq ě δ. Then H has a pδ ´ ξ, ξ,mq-vortex,

for some tξm1u ď m ď m1.

The main idea is to use the properties of the vortex to find a suitable Cp3q` -packing,

i.e. a collection of edge-disjoint Cp3q` Ď H. We will find a packing covering most edges of

H, and moreover the non-covered edges will lie entirely in U`. The Absorbing Lemma

will provide us with a small structure that we put aside at the beginning, and that

will be used to deal with the small remainder left by our Cp3q` -packing. If R Ď H is a

subgraph of H, a Cp3q` -absorber for R is a subgraph A Ď H, edge-disjoint from R, such

that both A and AYR are Cp3q` -decomposable.

Lemma 5.3.2 (Absorbing Lemma). Let ` ě 7, ε ą 0, and n,m P N such that

1{n ! ε, 1{m, 1{`. Let H be a hypergraph on n vertices with δ2pHq ě p2{3 ` εqn. Let

R Ď H be Cp3q` -divisible on at most m vertices. Then there exists a Cp3q` -absorber for R

in H with at most p2m`q9 edges.
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Finally, we construct the desired Cp3q` -packing step by step through the nested sets

of the vortex. More precisely, suppose Ui Ě Ui`1 are two consecutive sets in a vortex of

H. The Cover-Down Lemma allows us to find a Cp3q` -packing which covers every edge of

HrUis, except maybe for some in HrUi`1s. Thus the desired packing will be found via

iterative applications.

Lemma 5.3.3 (Cover-Down Lemma). Let ` ě 9 be divisible by 3 or at least 107, let

ε, µ ą 0, and let n P N with 1{n ! µ, ε ! 1{`. Suppose H is a hypergraph on n vertices,

and U Ď V pHq with |U | “ tεnu, which satisfy

(CD1) δ2pHq ě p2{3` 2εqn,

(CD2) dHpx, Uq ě p2{3` εq
`

|U |
2

˘

for each x P V pHq,

(CD3) dHpxy, Uq ě p2{3` εq|U | for each xy P V pHqp2q, and

(CD4) dHpxq is divisible by 3 for each x P V pHqr U .

Then H has a C
p3q
` -decomposable subhypergraph F such that H ´ HrU s Ď F , and

∆2pF rU sq ď µn.

Assuming lemmata 5.3.2–5.3.3, we prove Theorem 2.3.1.

Proof of Theorem 2.3.1. It is enough to show that for every ε ą 0, there exists n0 such

that every Cp3q` -divisible hypergraph H on n ě n0 vertices with δ2pHq ě p2{3 ` 8εqn

admits a Cp3q` -decomposition. Given ε and `, we fix m1, n0 such that

1{n0 ! 1{m1
! ε, 1{`. (5.3.1)

Let H on n ě n0 vertices as before, we are done if we show H has a Cp3q` -decomposition.

Step 1: Setting the vortex and the absorbers. By Lemma 5.3.1, H has a p2{3` 7ε, ε,mq-

vortex U0 Ě ¨ ¨ ¨ Ě U`, for some m such that tεm1u ď m ď m1.

Let L be the family of all Cp3q` -divisible hypergraphs which are subgraphs of HrU`s.

Since |U`| “ m, clearly |L | ď 2p
m
3 q. Pick an arbitrary hypergraph L P L . Since m ď m1

and (5.3.1), a suitable application of Lemma 5.3.2 yields a Cp3q` -absorber AL Ď HrHrU1s
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of L with at most p4m`q9 edges. Since 1{n ! 1{m, ε, 1{`, removing the edges of AL
only barely affects the codegree of H, thus we can repeat the argument to obtain an

absorber AL1 Ď H r HrU1s for some L1 ‰ L, edge-disjoint from AL. Since the total

number of L P L is tiny with respect to n, we can iterate this argument to obtain

edge-disjoint Cp3q` -absorbers AL Ď H r HrU1s for each L P L . Moreover, each AL

contains at most p4m`q9 edges, and hence, the union A “
Ť

LPL AL Ď H r HrU1s

contains at most |L |p4m`q9 ď 2p
m
3 qp4m`q9 ď εn edges. By construction, we have A is

C
p3q
` -decomposable and for every L P L , LY A is Cp3q` -decomposable.

Let H 1 “ H r A and observe that δ2pH
1q ě p2{3 ` 7εqn and U0 Ě ¨ ¨ ¨ Ě U` is a

p2{3` 6ε, ε,mq-vortex for H 1 (for this, it is crucial that A Ď H rHrU1s). Notice that

since A and H are Cp3q` -divisible, we get that H 1 is Cp3q` -divisible.

Step 2: The cover-down. Now we aim to find a Cp3q` -packing in H 1 using every edge of

H 1 rH 1rU`s. Let U``1 “ ∅. For each 0 ď i ď ` we shall find Hi Ď H 1rUis such that

(ai) H 1 ´Hi has a Cp3q` -decomposition,

(bi) δ2pHiq ě p2{3` 4εq|Ui|,

(ci) dHipx, Ui`1q ě p2{3` 5εq
`

|Ui`1|
2

˘

for all x P Ui,

(di) dHipxy, Ui`1q ě p2{3` 5εq|Ui`1| for all x, y P Ui, and

(ei) HirUi`1s “ H 1rUi`1s.

For i “ 0 this can be done by setting H0 “ H 1. Now suppose Hi satisfying (ai)–(ei)

is given for some 0 ď i ă `, we wish to construct Hi`1 satisfying (ai`1)–(ei`1). Let

H 1
i “ Hi rHirUi`2s. By (bi)–(di) and |Ui`2| ď ε|Ui`1| ď ε2|Ui|, we have

(CD1) δ2pH
1
iq ě δ2pHiq ´ |Ui`2| ě p2{3` 3εq|Ui|,

(CD2) dH 1ipx, Ui`1q ě dHipx, Ui`1q´ |Ui`2|p|Ui`1|´1q ě p2{3`3εq
`

|Ui`1|
2

˘

, for each x P Ui,

(CD3) dH 1ipxy, Ui`1q ě dH 1ipxy, Ui`1q ´ |Ui`2| ě p2{3` 4εq|Ui`1| for each x, y P Ui, and

(CD4) dH 1ipxq is divisible by 3 for each x P Ui r Ui`1.
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This allows us to apply Lemma 5.3.3 with ε, ε4, |Ui|, H
1
i, Ui`1 playing the rôles of

ε, µ, n,H, U . We get a Cp3q` -decomposable subgraph Fi Ď H 1
i such thatH 1

irH 1
irUi`1s Ď Fi

and that ∆2pFirUi`1sq ď ε4|Ui|. Let Hi`1 “ HirUi`1s r Fi, we prove it satisfies the

required properties.

Clearly Fi is Cp3q` -divisible and Fi Ď H 1
i Ď Hi. Therefore (ai) implies that the

hypergraph H 1´Hi`1 “ pH
1´HiqYFi has a Cp3q` -decomposition, and thus (ai`1) holds.

Moreover, from (di) and since ∆2pFirUi`1sq ď ε4|Ui| ď ε2|Ui`1|, we prove (bi`1) by

noticing that δ2pHi`1q ě p2{3` 5εq|Ui`1| ´ ε
2|Ui`1| ě p2{3` 4εq|Ui`1|,

By the properties of p2{3` 6ε, ε,mq-vortices, we have dH 1px, Ui`2q ě p2{3` 6εq
`

|Ui|
2

˘

for each x P Ui`1, together with ∆2pFirUi`1sq ď ε2|Ui`1| and (ei) we deduce (ci`1) holds,

and (di`1) can be verified similarly. Finally, since Fi Ď H 1
i “ Hi rHirUi`1s, we have

FirUi`2s is empty and therefore Hi`1rUi`2s “ HirUi`2s “ H 1rUi`2s, which verifies (ei`1).

Now H` Ď H 1rU`s is such that H 1 rH` has a Cp3q` -decomposition.

Step 3: Finish. Since both H 1 and H 1 rH` are Cp3q` -divisible, we deduce H` Ď H 1rU`s

is Cp3q` -divisible. Therefore, H` P L and by construction of A we know that H` Y A

is Cp3q` -decomposable. Since H is the edge-disjoint union of H 1 rH` and H` Y A, and

both of them have Cp3q` -decompositions, we deduce H has a Cp3q` -decomposition, as

desired.

5.4 Useful tools

We collect various results to be used during the proof of Lemmatas 5.3.2–5.3.3.

5.4.1 Counting path extensions

The following lemma find short trails between prescribed pairs of vertices. For a

hypergraph H, a set of vertices U Ď V pHq, and a set of pairs G Ď V pHqp2q let

δ
p3q
2 pH;U,Gq be the minimum of |Npe1qXNpe2qXNpe3qXU | over all possible choices of

e1, e2, e3 P G. This is the size of the minimum joint neighbourhood in U of three distinct

pairs in G. Also, let δp3q2 pH;Uq “ δ
p3q
2 pH,U, V pHq

p2q
q and δp3q2 pHq “ δ

p3q
2 pH;V pHqq.
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Lemma 5.4.1. Let ε ą 0 and n, ` P N be such that ` ě 5 and 1{n ! ε, 1{`. Let H

be a hypergraph on n vertices, U Ď V pHq, and G Ď V pHqp2q such that the set of pairs

tuv P V pHqp2q : u P Uu Ď G. Suppose δp3q2 pH;U,Gq ě 2εn. Then, for every two disjoint

pairs v1v2 and v`´1v` in G there exist at least pεnq`´4 many pv1, v2q-pv`´1, v`q-paths on `

vertices, whose internal vertices are in U .

Proof. Every pair of vertices in G has at least 2εn neighbours in U . For each 1 ď i ď `´3,

since tuv P V pHqp2q : u P Uu Ď G we can build a path v1v2 ¨ ¨ ¨ vi such that tvi´1, viu P G

by choosing vertices in U greedily. Due to δp3q2 pH;U,Gq ě 2εn we are able to finish the

path by choosing v`´2 as a common neighbour in U of the pairs v`´4v`´3, v`´3v`´1 and

v`´1v`, all of which belong to G. At any step we only need to avoid choosing one of the

vertices already chosen so far, which are at most ` ď εn. Thus in each step there are at

least εn possible choices, which gives the desired bound.

In the particular for a hypergraph H with δ2pHq ě p2{3` εqn a simple application

of Lemma 5.4.1 with U “ V pHq and G “ V pHqp2q implies the existence of many trails

of length ` ě 5 between arbitrary pairs of vertices.

Sometimes we want find many paths which also avoid a small prescribed set of

vertices or edges, for instance to extend paths into cycles. This is accomplished as

follows.

Lemma 5.4.2. Let ε, µ ą 0 and n, ` P N be such that ` ě 5 and 1{n ! µ ! ε, 1{`.

Suppose that v1, v2, v`´1, v` P V pHq and there are at least 2εn`´4 many pv1, v2q-pv`´1, v`q-

paths on ` vertices in H. Let F Ď H with ∆2pF q ď µn. Then there are at least εn`´4

many pv1, v2q-pv`´1, v`q-paths on ` vertices in H r F .

Proof. The number of pv1, v2q-pv`´1, v`q-paths on ` vertices such that v1v2v3 P F is at

most dF pv1v2qn
`´5 ď ∆2pF qn

`´5 ď µn`´4. Similar bound are obtained for the paths of

the same form such that v`´2v`´1v` P F , v3v4v5 P F , or v`´3v`´2v`´1 P F . Finally, the

paths such that vjvj`1vj`2 P F for some 3 ď j ď `´ 4 is at most |EpF q|n`´7 ď µn`´4.

All together, the number of paths destroyed by passing from H to H r F is at most

p`´ 2qµn`´4 ď εn`´4, where the last inequality uses µ ! ε.
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The following is an immediate corollary of Lemma 5.4.1 and Lemma 5.4.2.

Corollary 5.4.3. Let ε ą 0 and n, `, `1 P N be such that 1{n ! µ ! ε ! ε1, 1{`, 1{`1 and

` ě `1 ` 1. Let H be a hypergraph on n vertices, U Ď V pHq and G Ď V pHqp2q such

that tuv P V pHqp2q : u P Uu Ď G. Suppose δp3q2 pH;U,Gq ě 2ε1n. Let P be a path on `1

vertices in H, whose two endpoints are in G. Then there are at least εn`´`1 many cycles

C on ` vertices which contain P and such that V pCqr V pP q Ď U .

Note that for a hypergraph H with δ2pHq ě p2{3 ` εqn and a set W Ď V pHq

with |W | ă εn{2, a simple application of Corollary 5.4.3 with U “ V pHq rW and

with G “ V pHqp2q yields the existence of many cycles containing one fix path P and

avoiding the set of vertices W .

5.4.2 Probabilistic tools

We shall use the following concentration inequalities [33, Corollary 2.3, Corollary 2.4,

Remark 2.5, Theorem 2.10].

Theorem 5.4.4. Let X be a random variable which is a sum of n independent t0, 1u-

random variables, or hypergeometric with parameters n,N,M .

(i ) If x ě 7ErXs, then PrX ě xs ď expp´xq,

(ii ) Pr|X ´ ErXs| ě ts ď 2 expp´2t2{nq, and

(iii ) Pr|X ´ ErXs| ě ts ď 2 expp´t2{p3ErXsqq.

The following lemma allows us to bound the tail probabilities of sums of sequentially-

dependent t0, 1u-random variables by comparing them with binomial random variables.

We use the probability-theoretic notion of conditioning in a sequence of random variables,

which in our application will take the following form. If X1, . . . , Xi are random variables,

we denote by PrXi “ 1|X1, . . . , Xi´1s ď pi the fact that the probability of Xi “ 1 is

always at most pi, even after conditioning on any possible output of X1, . . . , Xi´1.
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Theorem 5.4.5. Let X1, . . . , Xt be Bernoulli random variables (not necessarily indepen-

dent) such that for each 1 ď i ď t we have PrXi “ 1|X1, . . . , Xi´1s ď pi. Let Y1, . . . , Yt

be independent Bernoulli random variables such that PrYi “ 1s “ pi for all 1 ď i ď t. If

X “
řt
i“1Xi and Y “

řt
i“1 Yi, then PrX ě ks ď PrY ě ks for all k P t0, 1, . . . , tu.

The proof of Theorem 5.4.5 was given by Jain [47, Lemma 7] in the particular case

where pi “ p for all 1 ď i ď t. The slightly more general statement of Theorem 5.4.5

follows by mimicking that proof (which goes by induction on t), so we omit it.

5.5 Vortex Lemma

We prove Lemma 5.3.1 by selecting random subsets (cf. [7, Lemma 3.7]).

Proof of Lemma 5.3.1. Let n0 “ n and ni “ tξni´1u for all i ě 1. In particular, note

ni ď ξin. Let ` be the largest i such that ni ě m1 and let m “ n``1. Note that

tξm1u ď m ď m1.

Let ξ0 “ 0 and, for all i ě 1, define ξi “ ξi´1 ` 2pξinq´1{3. Thus we have

ξ``1 “ 2n´1{3
ÿ̀

i“1
pξ´1{3

q
i
ď 2n´1{3

8
ÿ

i“1
pξ´1{3

q
i
ď

2pnξq´1{3

1´ ξ´1{3 ď ξ,

where in the last inequality we used 1{m1 ! ξ and n ě m1.

Note that taking U0 “ V pHq yields a pδ ´ ξ0, ξ, n0q-vortex in H. Suppose we have

already found a pδ ´ ξi´1, ξ, ni´1q-vortex U0 Ě ¨ ¨ ¨ Ě Ui´1 in H for some i ď ` ` 1. In

particular, δ2pHrUi´1sq ě pδ ´ ξi´1q|Ui´1|. Let Ui Ď Ui´1 be a random subset of size ni.

By Theorem 5.4.4, with positive probability we have

dpxy, Uiq ě pδ ´ ξi´1 ´ n
´1{3
i q|Ui| and dpx, Uiq ě pδ ´ ξi´1 ´ n

´1{3
i q

ˆ

|Ui|

2

˙

,

for every x, y P Ui´1. Since ξi´1 ` n
´1{3
i ď ξi, we have found a pδ ´ ξi, ξ, niq-vortex for

H. In the end, we will have found a pδ ´ ξ``1, ξ, n``1q-vortex for H. Since we have

m “ n``1 and we have established ξ``1 ď ξ, we are done.
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5.6 Cover-Down Lemma

5.6.1 Extending paths into cycles

More than once during our proof, we will be faced with the following situation: we have

a family of (not too many) edge-disjoint paths and we want to extend each of them into

a cycle of a given length in such a way that all obtained cycles are edge-disjoint. In this

subsection we will prove a lemma which will find such extensions for us.

Given a path P we say that a path or a cycle C is an extension of P if P Ď C.

Let H be a hypergraph, for a path P Ď H and a pair of vertices e P V pHqp2q we say that

P is of type r for e, where r “ maxteX bpP q, eX tpP qu (see definition of bpP q and tpP q

at the beginning of this chapter). The only possible types are 0, 1, or 2.

We say that a collection of edge-disjoint paths P in H is γ-sparse if, for each

e P V pHqp2q and each r P t0, 1, 2u, P has at most γn3´r paths P of type r for e.

Lemma 5.6.1 (Extending Lemma). Let ε, µ, γ ą 0 and n, `, `1 P N such that `1 ě 4,

` ě `1 ` 2 and 1{n ! γ ! µ ! ε, 1{`. Let H1, H2 be two edge-disjoint hypergraphs on the

same vertex set V of size n. Let P “ tP1, . . . , Ptu be an edge-disjoint collection of paths

on `1 vertices in H1 such that

(a ) P is γ-sparse and

(b ) for each Pi P P, there exists at least 2εn`´`1 copies of Cp3q` in H1YH2 which extend

Pi using extra edges of H2 only.

Then, there exists a Cp3q` -decomposable subgraph F Ď H1 YH2, such that

(i )F EpPq Ď F and

(ii )F ∆2pF r EpPqq ď µn.

Proof. The idea is to pick, sequentially, an extension Ci of Pi into an `-cycle, chosen

uniformly at random among all the extensions which do not use edges already used by

C1, . . . , Ci´1. Since P is γ-sparse and there are plenty of choices for Ci in each step, we
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expect that in each step the random choices do not affect the codegree of the graph

formed by the unused edges in H2 by much. This will ensure that, even after removing

the edges used by C1, . . . , Ci´1, there are still many extensions available for Pi. If all

goes well, then we can continue the process until the end, thus achieving (i )F and (ii )F
by setting F “

Ť

1ďiďtEpCiq.

To formalise the above plan, we begin by noting that the removal of a sufficiently

sparse hypergraph from H2, there are still many extensions available for each Pi. Given

G Ď H2 and 1 ď i ď t, let CipGq be the set of G-avoiding cycle-extensions of Pi, that is,

the copies of Cp3q` in H1 YH2 which extend Pi and use extra edges from H2 rG only.

By assumption, |Cip∅q| ě 2εn`´`1 , thus Lemma 5.4.2 implies that

if G Ď H2 is such that ∆2pGq ď µn, then |CipGq| ě εn`´`
1 . (5.6.1)

We now describe the random process which outputs edge-disjoint extensions Ci of

Pi for each 1 ď i ď t. In the case of success each Ci will be an `-cycle extending Pi. To

account for the case of failure, in our description we will allow the degenerate case in

which Ci r Pi is empty.

For each 1 ď i ď t, assume we have already chosen C1, C2, . . . , Ci´1 Ď H1 Y H2

edge-disjoint graphs, and we describe the choice of Ci. Let Gi´1 “
Ť

1ďjăiEpCjqrEpPjq

correspond to the edges of H2 used by the previous choices of Cj, which we need to

avoid when choosing Ci (note that G0 is empty). If ∆2pGi´1q ď µn, then by (5.6.1) we

have |CipGi´1q| ě εn`´`
1 and we take Ci P CipGi´1q uniformly at random. Otherwise, if

∆2pGi´1q ą µn, let Ci “ Pi.

In any case, the process outputs a collection C1, . . . , Ct of edge-disjoint cycles or

paths which extend Pi. Our task now is to show that with positive probability, there is

a choice of C1, . . . , Ct such that ∆2pGtq ď µn. This would imply also that each Ci was

an `-cycle. Formally, for each 1 ď i ď t, let Si be the event that ∆2pGiq ď µn. Thus it

is enough to show PrSts ą 0.

Fix e P V p2q. For each 1 ď i ď t, let Xipeq be the random variable which takes

the value 1 precisely if e belongs to an edge of Ci r Pi, and 0 otherwise. Equivalently,

Xipeq “ 1 if and only if e belong to the shadow BpCi r Piq. Since ∆2pCiq ď 2 for each
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1 ď i ď t, we have

dGipeq ď 2
i
ÿ

j“1
Xjpeq. (5.6.2)

For each 1 ď i ď t, define

p˚i peq :“ min
!

1, c

n2´r

)

,

where r P t0, 1, 2u is such that Pi is of type r for e, and c :“ 4`ε´1.

Claim 3. For each e P V p2q and 1 ď i ď t,

PrXipeq “ 1|X1peq, X2peq, . . . , Xi´1peqs ď p˚i peq .

Proof of the claim. Using conditional probabilities, we separate our analysis depending

on whether Si´1 holds or not. Assume first that Si´1 fails. Then the process declares

Ci “ Pi, thus Ci r Pi is empty. Therefore Xipeq “ 0 regardless of the values of

X1peq, . . . , Xi´1peq, and we have

PrXipeq “ 1|X1peq, X2peq, . . . , Xi´1peq,Sc
i´1s “ 0 ď p˚i peq .

Now assume that Si´1 holds. Then the set Gi´1 of edges to be avoided while

constructing Ci satisfies ∆2pGi´1q ď µn. By (5.6.1), Ci will be an `-cycle extending Pi
selected uniformly at random from the set CipGi´1q, which has size at least εn`´`1 ; and

this will happen no matter the values of X1peq, . . . , Xi´1peq.

If Pi is of type 2 for e, then we are required to bound a probability by p˚i peq “ 1, which

holds trivially. Suppose now that Pi is of type 0 for e, and suppose Pi “ v1v2 ¨ ¨ ¨ v`1 .

For Ci P CipGi´1q, Ci r Pi is a path of the form v`1´1v`1u1u2 ¨ ¨ ¨u`´`1v1v2. We wish

to estimate the number of such paths where e P BpCi r Piq. Since Pi is of type 0

for e, then e P BpCi r Piq can only happen if e “ ujuk for |j ´ k| ď 2. There are

p` ´ `1 ´ 1q ´ p` ´ `1 ´ 2q ď 2` choices for j, k. Having fixed those, there are two 2

possibilities for assigning e to tuj, uku, and having fixed those, there are at most n

possibilities for each other up with p R tj, ku. All together, the number of Ci which

extend Pi and such that e P BpCi r Piq is certainly at most 4`n`´`1´2. Thus we have

PrXipeq “ 1|X1peq, X2peq, . . . , Xi´1peq,Si´1s ď
4`n`1´`´2

|CipGi´1q|
ď

4`
εn2 “

c

n2 “ p˚i peq,
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as required. Finally, if Pi is of type 1 for e, then similar (but simpler) calculations show

that PrXipeq “ 1|X1peq, X2peq, . . . , Xi´1peq,Si´1s ď
6n`1´`´1

|CipGi´1q|
ď c

n
“ p˚i peq, and we are

done. �

Now, we use that P is γ-sparse to argue
řt
i“1 p

˚
i peq is suitably small. Indeed, for

each r P t0, 1, 2u, let tr be the number of i P t1, . . . , tu such that Pi is of type r for e.

Since P is γ-sparse, we have tr ď γn3´r for each r P t0, 1, 2u. Therefore, we have

t
ÿ

i“1
p˚i peq “ t0

c

n2 ` t1
c

n
` t2 ď γcn` γcn` γn ď

µ

30n . (5.6.3)

where the last inequality follows from the choice of c and γ ! µ, ε.

We now claim that

P

«

t
ÿ

i“1
Xipeq ě

µ

3n
ff

ď exp
´

´
µ

3n
¯

. (5.6.4)

Indeed, inequality (5.6.3) implies that 7
řt
i“1 p

˚
i peq ď µn{3, so the bound follows from

Theorem 5.4.5 combined with Theorem 5.4.4.

For each e P V pHqp2q, let Xe :“
řt
i“1Xipeq. Let E be the event that maxeXe ď µn{3.

By using an union bound over all the (at most n2) possible choices of e and using (5.6.4),

we deduce that E holds with probability at least 1´ op1q.

Now we can show that St holds with positive probability. We shall prove that

PrSt|Es “ 1, which then will imply PrSts ě PrSt|EsPrEs ě 1´ op1q. So assume E holds,

that is, maxeXe ď µn{3. Note that S0 holds deterministically, and suppose 1 ď i ď t is

the minimum such that Si fails to hold. Since Si´1 holds, using (5.6.2) we deduce

∆2pGiq ď 2`∆2pGi´1q “ 2`max
e
dGi´1peq ď 2

˜

1`max
e

i´1
ÿ

j“1
Xipeq

¸

ď 2
´

1`max
e
Xe

¯

ď 2
´

1` µ

3n
¯

ď µn,

where in the second last inequality we used that E holds, and in the last inequality we

used 1{n ! µ. Thus Si holds, a contradiction.
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5.6.2 Well-behaved approximate cycle decompositions

In this section we show the existence of approximate cycle decomposition which are

‘well-behaved’, meaning that the subgraph left by the uncovered edges has small codegree.

The argument is different depending on the two settings considered by Theorem 2.3.1,

and we start with the former.

When ` is divisible by 3, the cycle Cp3q` is 3-partite. By a well-known theorem

from Erdős [18, Theorem 1], we know that the Turán number of Cp3q` is degenerate, i.e.

edge-maximal Cp3q` -free hypergraphs on n vertices have at most opn3q edges. This allows

us to find an approximate decomposition of any hypergraph H with copies of Cp3q` if ` is

divisible by 3, simply by removing copies of Cp3q` greedily until opn3q edges remain. This

argument alone does not provide us with the ‘well-behavedness’ condition we alluded to

earlier, but it is, however, possible to modify such a packing locally to guarantee such a

property holds.

Lemma 5.6.2 (Well-behaved approximate cycle decompositions, version 1). Let ε, γ ą 0

and n, ` P N be such that ` ě 9 is divisible by 3 and 1{n ! ε, γ, 1{`. Let H be a

hypergraph on n vertices with δ2pHq ě p2{3` εqn. Then H has a Cp3q` -packing C such

that ∆2pH r EpCqq ď γn.

The proof of Lemma 5.6.2 is not difficult and follows the same lines as similar

results included in [8]. However it is somewhat long, thus we defer it to the end of this

subsection. Before we consider the second range of `, where ` ě 107.

Lemma 5.6.3 (Well-behaved approximate cycle decomposition, version 2). Let ε, γ ą 0

and n, ` P N be such that ` ě 107 and 1{n ! ε, γ, 1{`. Let H be a hypergraph on n vertices

with δ2pHq ě p2{3` εqn. Then H has a Cp3q` -packing C such that ∆2pH r EpCqq ď γn.

For Lemma 5.6.3 we exploit the connection of fractional graph decompositions with

their integral counterparts. Given a hypergraph H, let C`pHq be the family of all `-cycles

in H, and given X P EpHq let C`pH,Xq Ď C`pHq be those cycles which use the edge

X. A fractional Cp3q` -decomposition of a hypergraph H is a function ω : C`pHq Ñ r0, 1s

such that for every edge X P H we have
ř

CPC`pH,Xq ωpCq “ 1. Joos and Kühn [34]
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proved the existence of fractional Cpkq` -decompositions under general conditions. We

state their results only in the particular case k “ 3. A hypergraph H on n vertices is

pα, `q-connected if for every two ordered edges ps1, s2, s3q, pt1, t2, t3q P V pHq3, there are

at least αn`´1{p3!|EpHq|q walks with ` edges starting at ps1, s2, s3q, ending at pt1, t2, t3q.

Theorem 5.6.4 (Joos and Kühn [34]). For all α P p0, 1q, µ P p0, 1{3q and ` ě 2,

there is n0 such that the following holds for all n ě n0. Suppose H is an pα, `0q-

connected hypergraph on n vertices with 540 `0
α

log `0
α

log 1
µ
ď `. Then there is a fractional

C
p3q
` -decomposition ω of H with

p1´ µq2|EpHq|∆pHq` ď ωpCq ď p1` µq2|EpHq|
δpHq`

for all `-cycles C in H.

To use Theorem 5.6.4 we show that hypergraphs with δ2pHq ě 2n{3 are pα, `0q-

connected for some suitable α, `0. The following argument is due to Reiher [34, Lemma

2.3]. We include its proof for completeness and because for 3-uniform hypergraphs we

get a better value of α, which turns out to increase the range of ` in which one can

apply Theorem 5.6.4.

Lemma 5.6.5. For each d ě 1{2, every hypergraph H on n vertices and such that

δ2pHq ě pd` op1qqn is pd2p2d´ 1q4, 8q-connected.

Proof. Let V “ V pHq and ps1, s2, s3q, pt1, t2, t3q P V
3 be two arbitrary ordered edges of

H. For z P V pHq, let the function Iz : V 2 Ñ t0, 1u be such that Izpx1, x2q “ 1 if and

only if s2s3x1x2t1t2 is a path in the link graph of z in H. Let N “ NHps2s3q XNHpt1t2q

and note that |N | ą p2d´ 1qn. Note that if z1, z2 P N (possibly equal) and px1, x2q P V
2

are such that Iz1px1, x2q “ Iz2px1, x2q “ 1, then s1s2s3z1x1x2z2t1t2t3 is a walk from

ps1, s2, s3q to pt1, t2, t3q using 8 edges, call such walks standard.

First, note that having fixed z P N , the number of pairs px1, x2q P V
2 such that

Izpx1, x2q “ 1 can be bounded as follows: choose x1 P NHps3zq arbitrarily (there are at

least dn choices) and then x2 P NHpzx1qXNHpzt1q (of which there are at least p2d´1qn

choices). Thus we have
ř

px1,x2qPV 2 Izpx1, x2q ě dp2d´ 1qn2 for all z P N .
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On the other hand, note that for a fixed px1, x2q with x1 ‰ x2, the number of standard

walks which use px1, x2q is exactly p
ř

zPN Izpx1, x2qq
2. Thus the number of standard

walks is at least (using Jensen’s inequality in the first inequality, and |N | ě p2d´ 1qn

in the third inequality)

ÿ

px1,x2qPV 2

˜

ÿ

zPN

Izpx1, x2q

¸2

ě n2

˜

1
n2

ÿ

zPN

ÿ

px1,x2qPV 2

Izpxq

¸2

ě n2

˜

1
n2

ÿ

zPN

dp2d´ 1qn2

¸2

ě d2
p2d´ 1q4n4,

as required.

To prove Lemma 5.6.3 we combine the fractional matching of Theorem 5.6.4 with a

nibble-type matching argument. We use a result by Alon and Yuster [4] (but see also

Kahn [35] and Ehard, Glock and Joos [17] for variations and extensions). This result

states that every k-uniform hypergraph which is almost regular (for its 1-degree) and with

bounded maximum 2-degree contains a ‘well behaved’ matching with respect to a given

collection of subsets of vertices. The statement of the theorem is technical, but in our

context the conditions are easy to check. We define the parameter gpHq “ ∆1pHq{∆2pHq

for every k-uniform hypergraph H.

Theorem 5.6.6 (Alon and Yuster [4]). For every ε ą 0 there is a µ ą 0 such that for

every sufficiently large n the following holds. Let H be an n-vertex k-uniform hypergraph

and let U1, . . . , Ut Ď V pHq be subsets of vertices with log t ď gpHq1{p3k´3q and such

that |Ui| ě 5gpHq1{p3k´3q logpgpHqtq for every 1 ď i ď t. Suppose that

(a ) δ1pHq ě p1´ µq∆1pHq and

(b ) ∆1pHq ě plog nq7∆2pHq ,

then there is a matching M Ď EpHq covering at least p1 ´ εq|Ui| vertices from Ui for

every 1 ď i ď t.

Proof of Lemma 5.6.3. Let α “ 4 ˆ 3´6 (as in Lemma 5.6.5 for d “ 2{3) and `0 “ 8.

By Lemma 5.6.5, H is pα, `0q-connected. A numerical calculation shows that we can fix
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µ P p0, 1{3q such that 540 `0
α

log `0
α

log 1
µ
ď 107 ď `. Thus Theorem 5.6.4 informs us that

there exists a fractional Cp3q` -decomposition ω of H with

ωpCq ď p1` µq2|EpHq|
δ2pHq`

ď 4 |EpHq|
δ2pHq`

ď
4n3

δ2pHq`
ď

4ˆ 3`
n`´3

for all C P C`pHq.

Consider the auxiliary `-uniform hypergraph F with vertex set EpHq, and an edge

for each cycle in C`pHq corresponding to its set of ` edges. Define a random subgraph

F 1 Ď F by keeping each edge C with probability pC :“ n1{2ωpCq. By the bounds on

ωpCq and 1{n ! 1{` we have pC ď 1 for all C P C`pHq.

For each edge e P EpHq we have ErdF 1peqs “ n1{2 ř
CPC`pH,eq ωpCq “ n1{2. Moreover,

since two distinct edges e, f P EpHq can participate together in at most Opn`´4q `-

cycles in H, we have ErdF 1pe, fqs “ Opn´1{2q. Standard concentration inequalities (see

Theorem 5.4.4 (i ) and (iii )), imply that with high probability dF 1peq “ p1`op1qqn1{2 for

each e P V pF 1q and that ∆2pF
1q “ Oplog nq. This means that δ1pF

1q ě p1´op1qq∆1pF
1q,

gpHq “ Ωpn1{2{ log nq, and gpHq “ Opn1{2q.

For each 2-set uv of vertices of H, let Uuv Ď V pF q correspond to the edges in H

containing uv. There are at most n2 such sets and each has size at least 2n{3. Thus,

Theorem 5.6.6 yields a matching M in F 1 such that at most γn vertices in V pF 1q are

uncovered in each Uuv. The matching M in F 1 Ď F translates to a Cp3q` -packing C in H

and the latter condition implies ∆2pH r EpCqq ď γn, as desired.

As mentioned before, we end this subsection with the proof of Lemma 5.6.2.

Proof of Lemma 5.6.2. The proof proceeds in three steps. First, we find Hp Ď H by

including each edge with probability p, and in the remainder H0 “ H r Hp we find

an almost perfect Cp3q` -packing C0, let L0 “ H0 r EpC0q be the leftover edges. Second,

we correct the leftover L0 in the vertices incident with Ωpn2q many edges of L0 by

constructing cycles with the help of the edges in Hp. This provides us with a new cycle

packing C1 Ď L0YHp whose new leftover L1 “ H0 rEpC0YC1q satisfies ∆1pL1q “ opn2q.

Finally, we correct the new leftover L1 in a similar way, fixing the pairs incident to Ωpnq
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edges in L1. We get a cycle packing C2 Ď L1 YHp, and C0 Y C1 Y C2 will be the desired

cycle packing.

Step 1: Random slice and approximate decomposition. Note that δp3q2 pHq ě 3εn. Now

let p “ γ{4, and let Hp Ď H be obtained from H by including each edge independently

with probability p. Using concentration inequalities (e.g. Theorem 5.4.4) we see that

with non-zero probability

∆2pHpq ď 2pn and δp3q2 pHpq ě 2εpn. (5.6.5)

hold simultaneously for Hp. From now on we suppose Hp is fixed and satisfies (5.6.5).

Let H0 “ H rHp. In H0, construct a Cp3q` -packing by removing edge-disjoint cycles,

one by one, until no longer possible. We get a Cp3q` -packing C0 in H0, let F0 “ EpC0q.

By Erdős’ Theorem [18, Theorem 1] there exists c ą 0 such that L0 “ H0 r F0 has at

most n3´3c edges.

Step 2: Eliminating bad vertices. Let B0 “ tv P V : dL0pvq ě n2´2cu. Since |L0| ď n3´3c,

by double-counting we have |B0| ď 3n1´c.

For each b P B0, let Gb be the subgraph of L0pbq obtained after removing the vertices

of B0. Note that L0pbq´G0 has at most |B0|n ď 3n2´c edges. Now, let Pb be a maximal

edge-disjoint collection of paths of length 3 in Gb. Since every graph on n vertices with

at least n` 1 edges contains a path of length 3, then Gb ´ EpPbq has at most n edges.

All together, we deduce that the number of edges in L0pbq ´ EpPbq satisfies

|L0pbq| ´ |EpPbq| ď 3n2´c
` n ď 4n2´c. (5.6.6)

Since Gb contains at most n2 edges, we certainly have |Pb| ď n2. Let Pb be a

collection of paths on five vertices obtained by replacing each v0v1v2v3 in Pb with the

path v0v1bv2v3 in L0. Note that any two distinct P1, P2 P Pb are edge-disjoint, and

for two distinct b, b1 P B0, and P P Pb, P 1 P Pb1 , since b1 R V pGbq we have P, P 1 are

edge-disjoint. Thus the union P “
Ť

bPB0
Pb is an edge-disjoint collection of paths on 5

vertices.

Select γ1, µ1, ε1 such that 1{n ! γ1 ! µ1 ! ε1 ! γ, ε, 1{`. We wish to apply

Lemma 5.6.1 to extend P into cycles. We claim P is γ1-sparse. Let S P V pHqp2q.
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Since |P | ď |B0|n
2 ď 3n3´c ď γ1n3, certainly P contains at most |P | ď γ1n3 paths of

type 0 for S. Now, note that for each b P B0, P P Pb can have at most 2n paths of type

1 for S, thus P has at most |B0|2n ď 6n2´c ď γ1n2 paths of type 1 for S. Analogously,

for each b P B0, P P Pb can have at most 1 path of type 2 for S, thus P has at most

|B0| ď 3n1´c ď γ1n paths of type 2 for S. Thus P is γ1-sparse.

Recall that L0 is edge-disjoint with Hp. Inequalities (5.6.5) together with p “ γ{4

and ε1 ! γ, 1{`, show that we can use Corollary 5.4.3 (with U “ V pHq) and deduce that

for each P P P, there exists at least ε1n`´5 copies of Cp3q` in L0 YHp which extend Pi
using extra edges of Hp only.

We apply Lemma 5.6.1 with ε1, µ1, γ1, `, 5, L0, Hp, P playing the rôle of ε, µ, γ, `,

`1, H1, H2, P respectively, to obtain a Cp3q` -decomposable graph F1 Ď L0YHp such that

EpPq Ď F1 and

∆2pF1 r EpPqq ď µ1n. (5.6.7)

Since F0, F1 are edge-disjoint, F0 Y F1 is Cp3q` -decomposable. Let L1 “ H0 r pF0 Y F1q.

Note that if v R B0, then dL1pvq ď dL0pvq ă n2´2c by definition. Moreover, if v P B0, then

each edge in EpPvq is in F1, and hence (5.6.6) implies dL1pvq ď |L0pvq|´|EpPvq| ď 4n2´c.

Therefore,

∆1pL1q ď 4n2´c. (5.6.8)

Step 3: Eliminating bad pairs. Let f “ c{2 and B1 “ txy P V
p2q : dL1pxyq ě n1´fu.

From |L1| ď |L0| ď n3´3c ď n3´6f we deduce |B1| ď n2´4f . Now consider B1 as the

set of edges of a graph in V . Each edge of B1 incident to a vertex x implies that x

belongs to at least n1´f edges in L1, and each of those edges participates in at most

two of the edges in B1 incident to x. So we have dL1pxq ě
1
2n

1´fdB1pxq. Together with

inequality (5.6.8) we deduce ∆pB1q ď 8n1´f .

A path P on L1 is B1-based if P “ zxyw and xy P B1. Let P2 be a maximal packing

of B1-based paths. For all xy P B1, it holds that dL1pxyq ´ dEpP2qpxyq ď 1. Otherwise it

would exist distinct z, w P NL1rEpP2qpxyq, and then zxyw would a B1-based path not

in P2 which contradicts its maximality.
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We claim P2 is γ1-sparse. For each xy P B1, let Pxy Ď P2 be the paths whose two

interior vertices are precisely xy. Clearly |Pxy| ď n and P2 “
Ť

xyPB1
Pxy. Let e P V p2q.

Since |P2| ď
ř

xyPB1
|Pxy| ď n|B1| ď n3´4f ď γ1n3, there are at most γ1n3 paths of

type 0 for e in P2. Recall that if P “ zxyw is a path of type 1 for e, then we have

|eX tz, x, y, wu| “ 1. If xy P B1 satisfies eX tx, yu “ ∅, then at most two paths in Pxy

can be of type 1 for e and therefore there are at most 2|B1| ď 2n2´4f paths of type 1

for e in P2. We estimate the contribution of the pairs xy P B1 such that |eX tx, yu| “ 1.

Each such xy contributes with at most n paths of type 1 for e in Pxy. By (5.6.8), the

number of such xy is at most 2∆pB1q ď 16n1´f , thus the total contribution of those

pairs is at most 16n2´f . All together, the total number of paths of type 1 for e in P2

is at most 2n2´4f ` 16n2´f ď γ1n2. If e “ ta, bu then Pa,b does not contain any path

of type 2 for e, by definition of the path types. Thus the only possible contributions

come from the pairs in Pa,x and Pb,y for some x, y P V pHq; and each one of those sets

contains at most 1 path of type 2 for e. Thus the total number of pairs of type 2 for e

in P2 is at most 2∆pB1q ď 16n1´f ď γ1n. Thus P2 is γ1-sparse.

Let H 1
p “ Hp r pF0 Y F1q. Inequalities (5.6.5) and (5.6.7), together with the hierar-

chies µ1 ! ε1 ! γ, 1{`, allow us to use Corollary 5.4.3 with U “ V pHq, thus for each

P P P2, there exists at least ε1n`´4 copies of Cp3q` in L1 Y H 1
p which extend P using

extra edges of H 1
p only. Apply Lemma 5.6.1 with the parameters ε1, µ1, γ1, `, 4, L1, H

1
p,P2

playing the rôles of ε, µ, γ, `, `1, H1, H2,P respectively, to obtain a Cp3q` -decomposable

F2 Ď L1 YH
1
p such that EpP2q Ď F2 and ∆2pF2 r EpP2qq ď µ1n.

We claim that ∆2pL1rF2q ď n1´f . Indeed, if xy P B1, dL1rF2pxyq ď dL1pxyq ď n1´f

follows by definition, otherwise, EpP2q Ď F2 implies dL1rF2pxyq ď dL1pxyq´dF2pxyq ď 1.

Since F2 and F0YF1 are edge-disjoint, F “ F0YF1YF2 is a Cp3q` -decomposable subgraph

of H. We claim L “ H r F satisfies ∆2pLq ď γn. Indeed, an edge not covered by F is

either in Hp or in L1 r F2. Thus we have

∆2pLq ď ∆2pHpq `∆2pL1 r F2q ď 2pn` n1´f
ď γn ,

as required.
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5.6.3 Proof of the Cover-Down Lemma

As a final tool, we borrow the following theorem of Thomassen [61] about path-

decompositions of graphs.

Theorem 5.6.7 ([61]). Any 171-edge-connected graph G such that |EpGq| is divisible

by 3 has a P3-decomposition.

Proof of Lemma 5.3.3. Let γ1, p1, p2 ą 0 with γ1 ! p1 ! p2 ! µ, ε. For i P t0, 1, 2, 3u,

say an edge e of H is of type i if |eX U | “ i, and let Hi Ď H be the edges of H which

are of type i. For i P t1, 2u, let Ri Ď Hi be defined by choosing edges independently

at random from Hi with probability 3pi{2. By assumption, δp3q2 pH;Uq ě 3ε|U | (see

definition at the beginning of Section 5.4.1).

By Theorem 5.4.4 we get that, for i P t1, 2u, with non-zero probability, that

∆2pRiq ď 2pin, (5.6.9)

δ
p3q
2 pR1 YR2 YHrU s;Uq ě 2εp1|U |, and (5.6.10)

δ
p3q
2 pR2 YHrU s;U,Gq ě 2εp2|U |, (5.6.11)

where G Ď V pHqp2q corresponds to the pairs e such that eX U ‰ ∅. From now on we

assume R1, R2 are fixed with those properties.

Let H 1 “ H´HrU s´R1´R2. Recall that, by assumption, δ2pHq ě p2{3`2εqn and

|U | “ tεnu. By our choice of p1, p2 and (5.6.9), we deduce that δ2pH
1q ě p2{3` ε{2qn.

We consider two possible cases depending on the value of `. If ` ě 9 is divisible

by 3, then we apply Lemma 5.6.2, otherwise by assumption ` ě 107, and we can

apply Lemma 5.6.3. In any case, the output is a C
p3q
` -packing C in H 1 such that

∆2pH
1 r EpCqq ď γ1n. Let J “ H 1 r EpCq be the edges in H 1 not covered by C, and

for each i P t0, 1, 2u let Ji be the edges of type i in J . We shall cover the edges in J

with cycles of length ` and for that we will proceed in three steps, covering the edges of

J0, J1, and J2 in order.

Consider each edge in J0 as a path on three vertices v1v2v3, assigning to each

edge an arbitrary order and let P0 be the collection of those paths. Observe that,
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due to the inequalities ∆2pJ0q ď ∆2pJq ď γ1n the collection P0 is γ1-sparse. Let

µ1, ε1 ą 0 be such that γ1 ! µ1 ! ε1 ! p1, ε. Equation (5.6.10) and Corollary 5.4.3

imply that each path P P P0 can be extended to at least 2ε1n
`´3 cycles C, such that

C r P Ď R1 YR2 YHrU s and V pCqr V pP q Ď U . Then an application of Lemma 5.6.1

with ε1, µ1, 3, J0, R1 YR2 YHrU s,P0 in place of ε, µ, `1, H1, H2,P respectively, implies

that there is a Cp3q` -decomposable subgraph F0 such that F0 Ě J0, and

∆2pF0 r J0q ď µ1n. (5.6.12)

By construction, F0 is edge-disjoint with the cycles in C, and then F 10 “ EpCqYF0 is Cp3q` -

descomposable. Note that all edges not covered by F 10 lie in pJ1YJ2qYpR1YR2qYHrU s.

Let J 11 “ pJ1YR1qrF 10 and R12 “ pR2YHrU sqrF 10. Let γ2, µ2, ε2 ą 0 be such that

p1 ! γ2 ! µ2 ! ε2 ! p2, ε. Since J 11 Ď J1 YR1 Ď J YR1, we have

∆2pJ
1
1q ď ∆2pJq `∆2pR1q ď γn` 2p1n ď γ2n.

Since each edge in J 11 is of type 1 in H, we can consider each edge in J 11 as a path

P “ v1v2v3 where v2 P U and v1, v3 R U ; and let P1 be the collection of those paths.

Then ∆2pJ
1
1q ď γ2n implies P1 is γ2-sparse. By (5.6.11) and (5.6.12), together with

Corollary 5.4.3, we deduce that each P P P1 can be extended to at least 2ε2n
`´3

cycles C, such that C r P Ď R12 and V pCq r V pP q Ď U . Apply Lemma 5.6.1 with

ε2, µ2, γ2, 3, J 11, R12,P1 in place of ε, µ, γ, `1, H1, H2,P to obtain a C
p3q
` -decomposable

subgraph F1 such that F1 Ě J 11, and

∆2pF1 r J1q ď µ2n. (5.6.13)

By construction, F1 and F 10 are edge-disjoint, and then F 11 “ F1YF
1
0 is C

p3q
` -decomposable.

Note that the edges not covered by F 11 lie in J2 YR2 YHrU s.

Let J 12 “ pJ2 Y R2q r F 11. Note that each edge in J 12 is of type 2. For each

v P V pHq r U , let Gv “ J 12pvqrU s, that is, Gv is the link graph of v in J 12 restricted

to U . Fix v P V pHq r U . Given x, y P U , the equations (5.6.11) and (5.6.13) imply

that x and y have at least 2εp2|U | ´ 2µ2n ě 171 common neighbours in Gv, so Gv is

171-edge-connected. Since v R U , our assumption on H implies that the number of
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edges of Hpvq is divisible by 3. Note that Gv is exactly the link graph of H r F 11 when

restricted to U . Therefore, and since F 11 is Cp3q` -decomposable, the number of edges in

Gv is divisible by 3 as well.

By Theorem 5.6.7, Gv has a decomposition into paths P 1
v “ tP1, . . . , Ptu, each of

length 3. Observe that these paths yields to a collection of (3-uniform) paths in J 12 by

substituting each path Pi “ w1w2w3w4 in P 1
v by the path w1w2vw3w4. Let Pv be the

collection of paths obtained in this way. Observe that for u ‰ v in V pHqr U , Pv and

Pu are edge-disjoint. Let P2 “
Ť

vPV pHqrU Pv. Note that P2 decomposes J 12 into paths

on five vertices.

Let γ3, ε3 ą 0 be such that p2 ! γ3 ! ε3 ! µ3 ! µ, ε. Recall that |U | “ tεnu. Since

J 12 Ď J2YR2 Ď F YR2, we have ∆2pJ
1
2q ď ∆2pR2q`∆2pJq ď 2p2n`γ1n ď γ3n, so P2 is

γ3-sparse. Let H 1
2 “ HrU srF 11. We have F 11rU s “ F1rU s YF0rU s. By (5.6.12)–(5.6.13),

we have δ2pH
1
2q ě δ2pHrU sq´2µ2n ě p2{3`ε{2q|U |. By Corollary 5.4.3, we deduce each

P P P2 can be extended to at least 2ε2n
`´5 cycles C such that CrP Ď H 1

2. Thus we can

apply Lemma 5.6.1 with ε3, µ3, γ3, 5, J 12, H 1
2,P2 playing the rôles of ε, µ, γ3, `

1, H1, H2,P

respectively, to obtain a Cp3q` -decomposable subgraph F2 such that F2 Ě J 12, and

∆2pF2 XH
1
2q ď µ3n. (5.6.14)

By construction, F2 and F 11 are edge-disjoint, and then F “ F 11YF2 is Cp3q` -decomposable.

Moreover, all edges not contained in U are covered by F . In fact, we have that

H ´HrU s “ EpCq Y J0 Y pJ1 YR1q Y pJ2 YR2q Ď EpCq Y F0 Y F1 Y F2 “ F.

Finally, inequalities (5.6.12)–(5.6.14) yield that ∆2pF rU sq ď µn, as required.

5.7 Absorbing Lemma

In this section we prove Lemma 5.3.2. We need to show that, given a sufficiently

large H with δ2pHq ě p2{3` εqn and a subgraph R Ď H on at most m vertices, there is

an Cp3q` -absorber A for R on at most Opm9`9q edges. We divide the proof in two main

parts.
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First, in Section 5.7.1 we shall find a bounded-size hypergraph A1 Ď H, edge-

disjoint from R, which admits a Cp3q` -decomposition. This subgraph will be chosen

such that R Y A1 contains a tour decomposition, that is, a decomposition in which all

subgraphs are tours (see Lemma 5.7.1). The second step is to transform the found tour

decomposition to a Cp3q` -decomposition (see details in Section 5.7.2). Finally, in Section

5.7.3 we combine both steps to prove Lemma 5.3.2.

5.7.1 Tour decomposition

The main goal of this subsection is to prove the following lemma.

Lemma 5.7.1. Let ` ě 7, ε ą 0, and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H

be a hypergraph on n vertices with δ2pHq ě p2{3` εqn. Let R Ď H be Cp3q` -divisible on

at most m vertices. There exists a subgraph A1 Ď H, edge-disjoint with R, such that

(i ) A1 has at most 5m3`2 edges,

(ii ) A1 YR spans at most m` 5m3`2 vertices,

(iii ) A1 has a Cp3q` -decomposition, and

(iv ) A1 YR has a tour decomposition.

Tour-trail decompositions

We consider decompositions T “ tC1, . . . , Ct, P1, . . . , Pku in which Ci is a tour for

every i P rts and Pj is a trail for every j P rks. In this case we say T is a tour-trail

decomposition. Note that every hypergraph has a tour-trail decomposition, since we can

consider every edge as a trail on three vertices (by giving it an arbitrary ordering).

For a trail P “ u1u2 ¨ ¨ ¨uk´1uk we say that the ordered pairs pu2, u1q and puk´1, ukq

are the tails of P . Observe that the set of tails of a P depends on the edge-set of P

only, i.e. is independent of order in which we transverse the trail. We remark that the

tails differ from the starting and ending pairs of P (as defined in Chapter 1) since they

have different orderings.
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Given H and a tour-trail decomposition T “ tC1, C2, . . . , Ct, P1, P2, . . . , Pku of some

R Ď H, we define the residual digraph of T , denoted as DpT q, as the multidigraph on

the same vertex set as H, where the arcs correspond to the union of the tails of each

trail of T , considered with repetitions. Thus DpT q has exactly 2k arcs, counted with

multiplicities, if and only if T has k trails. Outdegrees and indegrees of a vertex x in

DpT q are denoted by d`DpT qpxq and d´DpT qpxq respectively, omitting subscripts from the

notation if the underlying digraph is clear from context.

Remark 5.7.2. Observe that if px, yq, py, xq P EpDT q then, there are trails Pi and Pj
in T that can be merged into a trail (if i ‰ jq or tour (if i “ j) which contains all the

edges contained in Pi and Pj. Thus there is another tour-trail decomposition T 1 of R

with less trails than T , obtained from T by removing Pi, Pj and adding the tour or trail

born from joining P1 and P2.

We construct A1 in Lemma 5.7.1 as follows. We begin with an arbitrary tour-

trail decomposition T0 of R, and we will find an increasing sequence of subgraphs

∅ “ T0 Ď T1 Ď ¨ ¨ ¨ Ď Tk Ď H. Each Ti r Ti´1 will be sufficiently small, Cp3q` -

decomposable and edge-disjoint from Ti´1. Moreover, each Ti r Ti´1 will be an edge-

disjoint union of ‘gadget’ of a prescribed family. More precisely, for each i ą 0, each

Ti Y R will contain a tour-trail decomposition Ti, obtained from a previous tour-trail

decomposition Ti´1 of Ti´1 YR. As an intermediate step (see Lemma 5.7.6), for some

k1 ă k we will find Tk1 and a tour-trail decomposition Tk1 of Tk1 Y R whose residual

digraph is Eulerian (with the appropriate definition for directed graphs). At the end,

we will have found a hypergraph Tk and a tour-trail decomposition Tk of R Y Tk which

has an empty residual digraph. Thus Tk is actually a tour decomposition, and we finish

by setting A1 “ Tk.

Gadgets

In the following two lemmata we describe the aforementioned gadgets, and their main

properties.



5.7. ABSORBING LEMMA 135

First, for a given tour-trail decomposition T of R Ď H and three distinct vertices

v1, v2, v3, the following lemma states that there is a subgraph S3 “ S3pv1, v2, v3q Ď H

edge-disjoint with R and which contains a C
p3q
` -decomposition. Moreover, there is

a tour-trail decomposition of R Y S3 such that its residual digraph is exactly DpT q

with the additional arcs pv1, v2q, pv2, v3q, and twice the arc pv1, v3q. We define the

multidigraph ~S3pv1, v2, v3q “ tpv1, v3q, pv1, v3q, pv1, v2q, pv2, v3qu.

For two multidigraphs D1, D2, we set the notation D1\D2 to mean the multigraph on

V pD1qYV pD2q obtained by adding all the arcs of D2 to D1, considering the multiplicities.

Lemma 5.7.3. Let ` ě 7, ε ą 0 and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H

be a hypergraph on n vertices with δ2pHq ě p2{3 ` εqn. Given three distinct vertices

v1, v2, v3 P V pHq, R Ď H on at most m vertices, and a tour-trail decomposition T of R

the following holds. There is a subgraph S3 “ S3pv1, v2, v3q Ď H, edge-disjoint from R,

and a tour-trail decomposition TS3 “ TS3pT , v1, v2, v3q of R Y S3 such that

(i )S3 S3 contains at most 2` edges and S3 YR spans at most m` 2`´ 3 vertices,

(ii )S3 S3 has a Cp3q` -decomposition, and

(iii )S3 DpTS3q “ DpT q \ ~S3pv1, v2, v3q.

Proof. The minimum codegree condition on H implies that there is a vertex x P V pHq

that lies in Npv1v2qXNpv1v3qXNpv2v3q. Considering the paths v1v3x and v3xv2v1, two

applications of Lemma 5.4.1 yield the existence of two edge-disjoint cycles C1 and C2 of

length `, edge-disjoint with R, and such that v1v3x P EpC1q and v3xv2, xv2v1 Ď EpC2q

(transversing the vertices in that order). Then S3 “ C1 Y C2, clearly satisfies (i )S3 and

(ii )S3 . Hence, we only need to prove the existence of a tour-trail decomposition TS3 of

R Y S3 for which (iii )S3 holds.

For this, consider the trail P1 “ v3v2xv1v3. Observe that EpS3q r EpP1q consists

exactly in the edges of a trail P2 whose tails are pv1, v2q and pv1, v3q. Indeed, the edges

contained in the set EpC2q r tv3v2x, v2xv1u form a trail between pv2, v1q and pv3, xq,

that we may merge with the trail with edges in EpC1qr txv1v3u from pv3, xq to pv1, v3q.
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Therefore, TS3 “ T YtP1, P2u is a tour-trail decomposition of RYS3. We deduce (iii )S3

by noticing that the tails of P1 and P2 are pv2, v3q and pv1, v3q, and pv1, v2q and pv1, v3q

respectively.

The following is our second gadget. It is designed in such a way that we can add a

small subgraph C4 Ď H to some R, such that RYC4 contains a tour-trail decomposition

in which the residual digraph has an extra directed four-cycle. We introduce the

notation ~C4pv1, v2, v3, v4q “ tpv1, v2q, pv2, v3q, pv3, v4q, pv4, v1qu.

Lemma 5.7.4. Let ` ě 7, ε ą 0 and n,m P N such that 1{n ! ε, 1{m, 1{`. Let H

be a hypergraph on n vertices with δ2pHq ě p2{3 ` εqn. Given four distinct vertices

v1, v2, v3, v4 P V pHq, a subgraph R Ď H on at most m vertices, and a tour-trail decom-

position T of R the following holds. There is a subgraph C4 “ C4pv1, v2, v3, v4q Ď H,

edge-disjoint from R and a tour-trail decomposition TC4 “ TC4pT , v1, v2, v3, v4q of RYC4

such that

(i )C4 C4 has at most 4` edges and C4 YR spans at most m` 4`´ 6 vertices,

(ii )C4 C4 has a Cp3q` -decomposition, and

(iii )C4 DpTC4q “ DpT q \ ~C4pv1, v2, v3, v4q.

Proof. Two consecutive applications of Lemma 5.7.3 yield the existence of edge-disjoint

subgraphs S3pv1, v2, v3q and S3pv3, v4, v1q. More precisely, first we apply Lemma 5.7.3 to

obtain S3pv1, v2, v3q edge-disjoint from R. Then, we apply it again with RYS3pv1, v2, v3q

in place of R to obtain S3pv3, v4, v1q edge disjoint from R Y S3pv1, v2, v3q (here we

use 1{n ! 1{m, to apply Lemma 5.7.3 to a larger subgraph with at most m ` 2` ´ 6

vertices). It is not difficult to check that the subgraph C4 “ S3pv1, v2, v3q YS3pv3, v4, v1q

satisfies (i )C4 and (ii )C4

Moreover, in the second application of Lemma 5.7.3 we obtain a tour-trail decomposi-

tion T 1 of RYC4 equal to T 1 “ TS3

`

TS3pT , v1, v2, v3q, v3, v4, v1
˘

, whose residual digraph

is given by

DpT 1
q “ DpT q \ ~S3pv1, v2, v3q \ ~S3pv3, v4, v1q.
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Observe that DpT 1q contains both the arcs pv1, v3q and pv3, v1q twice. By Remark 5.7.2,

we can obtain a tour-trail decomposition TC4 which satisfies (iii )C4 .

Directed Eulerian tour

Given a directed multigraph D, we can extend the definition of closed walk as sequence of

non-necessarily distinct vertices v1, . . . , v` such that, for every 1 ď i ď `, the arc pvi, vi`1q

is in D (understanding the indices modulo `). A closed walk in which all arcs are distinct

is called tour, and if every arc in D is covered exactly once, we say that it is an Eulerian

tour. Directed multigraphs which contain Eulerian tours are called Eulerian.

In order to prove Lemma 5.7.1 we first prove that there is a bounded Cp3q` -decomposable

subgraph T Ă H, edge-disjoint with R, and such that R Y T contains a tour-trail de-

composition T for which DpT q is Eulerian.

We say that a directed multigraph D is strongly connected if for every two distinct

vertices x, y P V pDq there is a closed walk which includes both. Similarly to the graph

case, it is well-known that a directed multigraph D is Eulerian if an only if D is strongly

connected and for every vertex x P V pDq we have d´pxq “ d`pxq.

Now, we establish a crucial property of residual digraphs in 3-vertex-divisible hyper-

graphs.

Lemma 5.7.5. Let H “ pV,Eq be a 3-vertex-divisible hypergraph and let T be a tour-

trail decomposition of H with residual digraph DpT q. For every x P V we have that

d`pxq ” d´pxq pmod 3q.

Proof. For every vertex x P V pHq, we need to show that d`pxq ´ d´pxq ” 0 mod 3 in

the digraph DpT q. Consider the auxiliary digraph F pT q obtained as follows: for every

trail or tour P “ w1w2 ¨ ¨ ¨w` in T , to F pT q add the arcs pwi, wi`1q and pwi`2, wi`1q for

every 1 ď i ď ` ´ 2 (and for tours, add pw`´1, w`q, pw1, w`q, pw`, w1q, pw2, w1q as well),

including all repetitions. In such a way (and since T is a decomposition) every edge of H

contributes with exactly two arcs to F pT q. It is straightforward to check DpT q Ď F pT q
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and, crucially, that

d`DpT qpxq ´ d
´
DpT qpxq “ d`F pT qpxq ´ d

´
F pT qpxq,

so from now on we work with F pT q only.

Let x P V pHq. Each edge xyz in H contributes with two arcs to F pT q, which

can be of type tpx, yq, px, zqu, tpy, xq, py, zqu, or tpz, xq, pz, yqu. The edges of the first

type contribute with 2 to d`pxq ´ d´pxq in F pT q. The edges of second and third type

contribute with ´1 to d`pxq ´ d´pxq in F pT q, which is congruent to 2 mod 3. Thus we

deduce d`pxq ´ d´pxq ” 2|dHpxq| mod 3. Since H is 3-vertex-divisible, this is congruent

to 0 mod 3, and we are done.

As mentioned, we find a tour-trail decomposition in which the residual digraph is

Eulerian.

Lemma 5.7.6. Let ` ě 7, ε ą 0, and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H

be 3-divisible hypergraph on n vertices with δpHq ě p2{3 ` εqn. Let R Ď H be Cp3q` -

divisible in at most m vertices. Then, there exists a subgraph T Ď H, edge-disjoint

from R such that

(i )œ T has at most m3` edges and T YR spans at most m`m3` vertices,

(ii )œ T has a Cp3q` -decomposition, and

(iii )œ there is a tour-trail decomposition Tœ of T YR such that DpTœq is Eulerian.

Proof. We will prove that there is a subgraph T Ď H, edge-disjoint with R, satisfying

(i )œ and (ii )œ, and such that T Y R has a tour-trail decomposition T whose residual

digraph satisfies

DpT q is strongly connected and for every x P V we have d´DpT qpxq “ d`DpT qpxq.

(5.7.1)

It is well-known this implies DpT q is Eulerian, and therefore (iii )œ will also follow.

Consider an arbitrary tour-trail decomposition T0 of R. Since R spans at most m

vertices, it has at most
`

m
3

˘

edges. Since each trail in T0 contributes with two arcs and
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uses at least one edge of R, we deduce that the number of arcs in DpT0q, counting

repetitions, is at most 2|EpRq| ď 2
`

m
3

˘

. Let U Ď V a subset of vertices disjoint from

V pRq, since 1{n ! 1{m we can assume that |U | ě n{2.

Let V1, V2, . . . , Vk be the strongly connected components of DpT0q, ignoring isolated

vertices. Observe that k ď m. For each 1 ď i ď k, take an arbitrary vertex vi P Vi,

and also take vertices xi, yi P U , all distinct. Now, apply Lemma 5.7.4 to obtain the

gadget C4pv1, v2, x1, y1q and the tour-trail decomposition T 1 of R Y C4 whose residual

digraph is given by

DpT 1
q “ DpT q \ ~C4pv1, v2, x1, y1q.

Hence, in DpT 1q the vertices v1 and v2 are strongly connected (and also the new

vertices x1, y1).

Since 1{n ! 1{m and the four-cycle gadget spans at most 4` ´ 6 new vertices we

may assume that n is large enough for k´ 2 extra iterative applications of Lemma 5.7.4.

Therefore we get edge-disjoint subgraphs C4pvi, vi`1, xi, yiq for every 1 ď i ă k. Con-

sider T1 “
Ť

iPrk´1sC4pvi, vi`1, xi, yiq and T1 be the tour-trail decomposition of R Y T1

given by the the last application of Lemma 5.7.4. By construction, it is easy to see

that DpT1q is strongly connected. Moreover by (i )C4 and (ii )C4 it follows that T1

is Cp3q` -decomposable, has at most 4`pk ´ 1q ď 4pm ´ 1q` edges and R Y T1 spans at

most m` kp4`´ 6q ď m` 4pm´ 1q` vertices.

For the second part of statement (5.7.1) we proceed as follows. For an arbitrary tour-

trail decomposition T of a hypergraph G, define ΦpT q “
ř

vPV pHq |d
´
DpT qpvq´d

`
DpT qpxq|.

Assume ΦpT1q is positive (otherwise we are done). Since T1 is obtained from T0

adding only C4 gadgets, and since d´~C4
pxq “ d`~C4

pxq we have that

ΦpT1q “ ΦpT0q ď 2|EpDpT0qq| ď 4
ˆ

m

3

˙

.

Let x P V such that d´DpT1qpxq ‰ d`DpT1qpxq, which exists by assumption. Without

loss of generality we can assume d´DpT1qpxq ´ d`DpT1qpxq ą 0, and hence we can find

y P V such that d`DpT1qpyq ´ d´DpT1qpyq ą 0. Observe that by Lemma 5.7.5 we have

d´DpT1qpxq ´ d`DpT1qpxq “ 3r1 and d`DpT1qpyq ´ d´DpT1qpyq “ 3r2 for some r1, r2 P Z
`.
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Selecting any unused vertex u P U , an application of Lemma 5.7.3 yields the existence

of a subgraph S3px, u, yq Ď H such that there is tour-trail decomposition T 2 of the

hypergraph R Y T1 Y S3px, u, yq with residual digraph given by

DpT 2
q “ DpT1q \ ~S3px, u, yq.

Thus, we have that

d´DpT 2qpxq ´ d
`
DpT 2qpxq “ 3pr1 ´ 1q and d`DpT 2qpyq ´ d

´
DpT 2qpyq “ 3pr2 ´ 1q,

This is to say, the absolute difference between the indegree and outdegree of x is reduced

by 3, similarly with y. Moreover, for every z P V r tx, yu this difference is not altered,

that is,

d´DpT 2qpzq ´ d
`
DpT 2qpzq “ d´DpT1qpzq ´ d

`
DpT1qpzq.

Therefore, we have ΦpT 2q “ ΦpT1q ´ 6. We further note that DpT 2q is still strongly

connected.

As before, since 1{n ! 1{m and S3 spans at most 2`´3 new vertices, we may assume

that n is large enough to apply Lemma 5.7.3 iteratively
`

m
3

˘

times. In each step Φ

decreases by 6, so after at most 4
6

`

m
3

˘

ď
`

m
3

˘

applications of Lemma 5.7.3 we can obtain

a subgraph T2 Ď H, edge disjoint with RYT1, and such that RYT1YT2 has a tour-trail

decomposition T with ΦpT q “ 0. In particular, T satisfies (5.7.1). It is easily checked

that T “ T1 Y T2 and Tœ “ T satisfy (i )œ and (ii )œ as well.

Now we are ready to prove the main lemma of this subsection.

Proof of Lemma 5.7.1. Let T Ď H be given by applying Lemma 5.7.6 and let Tœ be a

tour-trail decomposition of R Y T whose residual digraph is Eulerian. Observe that

since each trail in Tœ contributes with two arcs in DpTœq, the number of arcs is even.

Let v1v2 ¨ ¨ ¨ v2k be the sequence of the directed Eulerian tour in DpTœq.

Let U Ď V be disjoint from V pR Y T q, and let C “ u1u2 ¨ ¨ ¨u2k be an arbitrary

sequence of vertices in U , where for all 1 ď i ď 2k, ui ‰ ui`1 (here, and during the rest

of the proof, indices are understood modulo 2k). We will apply gadgets to T Y R to
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find a new tour-trail decomposition TC such that DpTCq consists precisely of a closed

walk in the sequence C. First, we describe the construction for arbitrary C, then we

will give a particular choice of C which will allow us to finish the proof.

Since 1{n ! 1{m, 1{` and the gadget C4 contains at most 4` ´ 6 new vertices we

may assume that n is large enough to apply Lemma 5.7.4 iteratively 2k ď m `m3`

times. More precisely, assume that after i´ 1 applications of the Lemma 5.7.4 we have

obtained a sequence of subgraphs T1 Ď T2 Ď ¨ ¨ ¨ Ď Ti´1 such that Ti´1 is edge-disjoint

with RY T . Then, we apply Lemma 5.7.4 with RY T Y Ti´1 in the place of R to obtain

a suitable C4-gadget, edge-disjoint from R Y T Y Ti´1. We take the next subgraph Ti
simply as the union of Ti´1 and the found gadget.

Let T0 “ ∅, and for 1 ď i ď 2k, in the ith application of Lemma 5.7.4 we take

Ti “ Ti´1 Y C4pvi`1, vi, ui, ui`1q.

We obtain a trail-tour decomposition T2k whose residual digraph is given by

DpT2kq “ DpTœq \
ğ

iPr2ks

~C4pvi`1, vi, ui, ui`1q.

Observe that, for each 1 ď i ď 2k, DpT2kq contains both pvi, vi`1q and pvi`1, viq, the

first contributed by DpTœq and the second by ~C4pvi`1, vi, ui, ui`1q. Similarly, for each

1 ď i ď 2k, two consecutive cycles will contribute with the edges pvi, uiq and pui, viq.

Following Remark 5.7.2 we can find a tour-trail decomposition T 1 of R Y Tk whose

residual digraph removes all of those edges. What remains are precisely the edges

pui, ui`1q for all 1 ď i ď 2k, so DpT 1q is the closed walk C as desired.

Now we fix a particular choice of C to finish the proof. We select two distinct vertices

x, y P U and take C such that, for each 1 ď i ď 2k, ui “ x for odd i, and ui “ y if

i is even. Thus the closed walk C consists of k arcs from x to y, and k arcs in the

opposite direction. By Remark 5.7.2 again, we can find a tour-trail decomposition T 1 of

R Y Tk with an empty residual digraph. It is easy to check that we are done by setting

A1 “ Tk.
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5.7.2 From a tour decomposition to a cycle decomposition

In this section we prove the following lemma, which constructs an absorber given a

C
p3q
` -divisible remainder which has a tour decomposition.

Lemma 5.7.7. Let ` ě 7, ε ą 0, and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H

be a hypergraph on n vertices with δ2pHq ě p2{3 ` εqn. Let R Ď H be a Cp3q` -divisible

edge-disjoint collection of tours spanning at most m vertices in total. Then, there is a

C
p3q
` -absorber A2 for R, such that A2 YR spans at most 10

`

m
3

˘

`2 edges.

Given two subgraphs R1 and R2, we say that a subgraph T Ď H edge-disjoint from R1

and R2 is a pR1, R2q-transformer if T rV pR1qs, T rV pR2qs are empty and both T Y R1

and T YR2 contain a Cp3q` -decomposition. Observe that if R2 has a Cp3q` -decomposition,

then T YR2 is an absorber for R1.

Lemma 5.7.8. Let ` ě 7, ε ą 0, and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H

be a hypergraph on n vertices with δ2pHq ě p2{3` εqn. Let R Ď H be a tour and C Ď H

be a cycle. Suppose that R and C are edge-disjoint and have the same number of edges,

which is at most m. Then H contains an pR,Cq-transformer L with at most m` edges

and spanning at most mp`´ 4q vertices.

Proof. Let r1, r2, . . . , rm and c1, c2, . . . , cm the sequence of vertices of R and C respec-

tively (recall that while C does not contain repetitions, R may contain).

In the following, all operations on the indices are modulo m. We define iteratively

the following paths Pi, Qi for every i P rms. Apply Lemma 5.4.1 to obtain a path Pi on 5

vertices, edge-disjoint from RYC, from the pair pri, ri`1q to the pair pci´1, ciq. Similarly,

we can obtain a path Qi on `´ 5 vertices, from the pair pri, ri´1q to the pair pci, ci´1q,

edge disjoint from R Y C, and with no interior vertex in common with the paths Pi,

Pi´1.

We claim that L “
Ť

iPrms pPi YQiq is the desired transformer. Indeed, observe that

the edges of Pi and Qi together with the edge ri´1riri`1 P EpRq form a cycle of length `,

thus R Y L can be decomposed into those `-cycles. In the same way, the edges of Pi´1
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and Qi together with the edge ci´2ci´1ci P EpCq form a cycle of length `, and therefore

all those cycles form a Cp3q` -decomposition of C Y L.

For any k, ` P N we define Bpk, `q to be the hypergraph resulting from a cycle

of length k` with vertices in tv1, v2, . . . , vk`u and identifying all vertices vi such that

i ” 1 mod ` and all vertices vj such that j ” 2 mod `. This is to say that Bpk, `q

consists of k copies of cycles of length ` glued through exactly two vertices, and those

two vertices are consecutive in every cycle. Observe that Bpk, `q is a tour and admits

a Cp3q` -decomposition.

Now we are ready to prove Lemma 5.7.7.

Proof of Lemma 5.7.7. Consider the tours T1, T2, . . . , Tk in R and note that k ď
`

m
3

˘

{4

(each tour has at least 4 edges). First, we want to reduce the proof to the case in

which there is a single long tour. Suppose k ě 2 and take ai, bi two consecutive vertices

in Ti for i “ t1, 2u. We can apply Lemma 5.4.1 to find a path P1 on 5 vertices with

tails pb1, a1q and pa2, b2q which is edge-disjoint to R. Similarly, we can find P2 on `´ 5

vertices with tails pa1, b1q and pb2, a2q, edge-disjoint with R, and sharing no interior

vertex with P1. Starting in pa1, b2q and then traversing sequentially T1, P1, T2, and P2,

one can check that T1Y T2YP1YP2 forms a tour spanning at most |V pT1Y T2q| ` `´ 4

vertices. Moreover, it is easy to see that P1 Y P2 is a cycle of length `. By repeating

this argument we can obtain A1 Ď H edge-disjoint from R, Cp3q` -decomposable, and

such that R1 “ R Y A1 consists of a single tour spanning at most m` kp`´ 4q vertices.

Observe that since R is Cp3q` -divisible, then so is R1. Let m1 be the number of edges

in R1 and notice that

m1
ď

ˆ

m

3

˙

` k` ď 2
ˆ

m

3

˙

` .

Second, observe that by several applications of Lemma 5.4.1 we can find two edge-

disjoint subgraphs B,C Ď H, vertex-disjoint to each other, both of them edge-disjoint

with R1, and such that B is a copy of Bpm1{`, `q and C is a cycle of length m1 (observe

that ` divides m1 since R1 is Cp3q` -divisible).

Now two suitable applications of Lemma 5.7.8 yield the result. More precisely,

first apply Lemma 5.7.8 with R1 in the rôle of R to obtain a pR1, Cq-transformer

https://www.youtube.com/watch?v=4oOWghSh3_Q
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L1 Ď H with at most m1` edges. For the second application of Lemma 5.7.8 observe

that, since R1 Y L1 contain at most m1p` ` 1q we may assume n is large enough so

that δ2pH r pR1 Y L1qq ě p2{3 ` ε{2qn. Hence, another application of Lemma 5.7.8

now with B in the rôle of R and H r pR1 Y L1q in the rôle of H yields the existence of

a pB,Cq-transformer L2 Ď H edge disjoint with R1 Y L1.

Putting all this together, and recalling that bothA1 andB contain a Cp3q` -decomposition,

we have that the hypergraphs

R Y A1 Y L1 Y C Y L2 YB and A1 Y L1 Y C Y L2 YB

contain Cp3q` -decompositions. To finish the proof take A2 “ A1 Y L1 Y C Y L2 YB and

observe that each of the hypergraphs A1, L1, L2, C, and B contain at most m1` ď 2
`

m
3

˘

`2

edges.

5.7.3 Proof of Lemma 5.3.2

We can finally give the short proof of Lemma 5.3.2.

Proof of Lemma 5.3.2. Given R Ď H, an application of Lemma 5.7.1 yields the existence

of A1 Ď H edge disjoint from R such that

(i ) A1 has at most 5m3`2 edges,

(ii ) A1 YR spans at most m` 5m3`2 vertices,

(iii ) A1 has a Cp3q` -decomposition, and

(iv ) A1 YR has a tour decomposition.

Then, we apply Lemma 5.7.7 to obtain A2 Ď H, which is an absorber of R Y A1. It is

straightforward to check that A “ A1 Y A2 has the desired properties.
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5.8 Final remarks

A natural question is what happens for the values of ` not covered by our Theorem 2.3.1.

Our results do not cover Cp3q` -decompositions for small values of `, i.e. ` ď 8. As in the

graph case, for short cycles it is likely that the behaviour of the decomposition threshold

is different.

For ` “ 4 the cycle Cp3q4 is isomorphic to a tetrahedron K
p3q
4 . Since every pair of

vertices in K
p3q
4 has degree 2, the obvious necessary divisibility conditions in a host

hypergraph which admits a Cp3q4 -decomposition are

(i ) total number of edges divisible by 4,

(ii ) every vertex degree divisible by 3, and

(iii ) every codegree divisible by 2.

Say that a hypergraph satisfying all three conditions is Kp3q
4 -divisible. We define δp3qK4

as the asymptotic minimum codegree threshold ensuring a Kp3q
4 -decomposition over

K
p3q
4 -divisible hypergraphs (in analogy to δp3qC` taken over Cp3q` -divisible hypergraphs).

The following construction shows that δKp3q4
ě 3{4.

Example 5.8.1. Let k ě 1 be arbitrary, d “ 6k ` 2 and n “ 12k ` 9. Let G1 be an

arbitrary d-regular graph on n vertices. Let G be the graph on 2n vertices obtained by

taking two vertex-disjoint copies of G1 and adding every edge between vertices belonging

to different copies, say those edges are crossing. Now, form a hypergraph H as follows.

Take a set Z on 2n vertices and edges forming a complete 3-uniform graph on Z. Then

add two new vertices x1, x2. For each z P Z, add the edge x1x2z. Identify a copy of the

graph G in Z and, for each edge z1z2 of G add the edges z1z2x1 and z1z2x2.

The hypergraph H has 2n` 2 “ 24k` 20 vertices and δ2pHq “ d`n` 1 “ 18k` 12

(attained by any pair x1z with z P Z). It is tedious but straightforward to check H is

K
p3q
4 -divisible. To see H is not Kp3q

4 -decomposable, we prove that the link graph Hpx1q

is not Cp2q3 -decomposable. Note Hpx1q is isomorphic to the graph G1 obtained from G
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by adding an extra universal vertex x. Suppose G1 has a triangle decomposition. There

are n2 crossing edges in G, at most n of those can be covered with triangles using x.

Thus at least npn´ 1q crossing edges are covered with triangles which use one edge in a

copy of G1 and two crossing edges. Thus we need at least npn´ 1q{2 edges in the two

copies of G1, but this is a contradiction since those copies have dn ă npn´ 1q{2 edges.

What is the smallest `0 such that δp3qC` “ 2{3 holds for all ` ě `0? The previous

example and Theorem 2.3.1 show that 5 ď `0 ď 107. Observe that our Absorbing Lemma

works for all ` ě 7. The bottleneck is our use of Theorem 5.6.4 in the Cover-Down

Lemma. New ideas are needed to close the gap.

Another natural question asks for optimal codegree conditions for cycle decomposition

in k-uniform hypergraphs when k ě 4. It is not clear for us if Theorem 2.3.4 indicates the

emergence of a pattern where the necessary codegree to ensure cycle decompositions and

Euler tours on n-vertex k-uniform hypergraph is substantially larger than p1{2` op1qqn.

Question 5.8.1. Let k ě 4. Is there a constant η ą 0 and a k-uniform hypergraph H

with δk´1pHq ě
`1

2 ` η ` op1q
˘

n not containing a cycle decomposition or an Euler tour?

Problem 5.8.2. Let k ě 4, determine δpkqC` for sufficiently large `.
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Chapter 6

Appendix

6.1 English Summary

In this thesis we proved three results for 3-uniform dense hypergraphs. In each case, we

determined conditions for the existence of different kinds of substructures.

In the first one, we show that 3-uniform hypergraphs with the property that all

vertices have a quasirandom link graph with density bigger than 1{3 contain a clique

on five vertices. This result is asymptotically best possible. With this, we solved an

open problem left by Reiher, Rödl, and Schacht [55] about Turán densities in uniformly

dense hypergraphs.

For the second problem, we study sufficient conditions for the existence of Hamilton

cycles in uniformly dense 3-uniform hypergraphs. Problems of this type were first

considered by Lenz, Mubayi, and Mycroft [41] for loose Hamilton cycles and Aigner-

Horev and Levy [2] considered it for tight Hamilton cycles for a fairly strong notion of

uniformly dense hypergraphs. We focus on tight cycles and obtain optimal results for a

weaker notion of uniformly dense hypergraphs. We show that if an n-vertex 3-uniform

hypergraph H “ pV,Eq has the property that for any set of vertices X and for any

collection P of pairs of vertices, the number of hyperedges composed by a pair belonging

to P and one vertex from X is at least p1{4` op1qq|X||P |´ op|V |3q and H has minimum

vertex degree at least Ωp|V |2q, then H contains a tight Hamilton cycle. A probabilistic
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construction shows that the constant 1{4 is optimal in this context.

Finally, we show that 3-uniform hypergraphs on n vertices whose codegree is at

least p2{3` op1qqn can be decomposed into tight cycles subject to the trivial necessary

divisibility conditions. This result can be used to prove the existence of a tight Euler

tour under the same minimum codegree condition. We provide a construction showing

that our bounds are best possible up to the op1q term. All together, our results address

recent open problems by Glock, Kühn, and Osthus [29].

6.2 German Summary

In dieser Arbeit werden asymptotisch bestmögliche hinreichende Bedingungen untersucht,

welche die Existenz gegebener Unterstrukturen eszwingen.

Im ersten teil zeigen wir, dass 3-uniforme Hypergraphen mit der Eigenschaft, dass

alle Ecken einen quasi-zufälligen Linkgraphen mit einer Dichte größer als 1{3 haben,

eine Clique auf fünf Ecken enthalten. Dieses Ergebnis ist asymptotisch bestmöglich.

Dies beantwortet eine Frage von Reiher, Rödl und Schacht [55] über Turán-Dichten in

gleichmäßig dichten Hypergraphen.

Für das zweite Problem untersuchen wir hinreichende Bedingungen für die Existenz

von Hamiltonkreisen in gleichmäßig dichten 3-uniformen Hypergraphen. Probleme

dieser Art wurden zuerst von Lenz, Mubayi und Mycroft [41] für lose Hamiltonkreisen

und von Aigner-Horev und Levy [2] für enge Hamiltonkreisen für eine ziemlich starke

Definition von gleichmäßig dichten Hypergraphen untersucht. Wir konzentrieren uns

auf enge Kreise und erhalten optimale Ergebnisse für eine schwächere Definition von

gleichmäßig dichten Hypergraphen. Wir zeigen, dass wenn ein 3-uniformer Hypergraph

H “ pV,Eq mit n Ecken die Eigenschaft hat, dass für eine beliebige Menge von Ecken

X und für eine beliebige Menge P von Eckenpaaren die Anzahl der Hyperkanten,

die aus einem zu P gehörenden Paar und einer Ecke von X zusammengesetzt sind,

mindestens p1{4` op1qq|X||P | ´ op|V |3q beträgt und H einen minimalen Eckengrad von

mindestens Ωp|V |2q hat, dann enthältH einen engen Hamiltonkreis. Eine probabilistische
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Konstruktion zeigt, dass die Konstante 1{4 in diesem Zusammenhang optimal ist.

Schließlich zeigen wir, dass 3-uniforme Hypergraphen auf n Ecken, deren Eckenpaar-

grad mindestens p2{3` op1qqn ist, unter den trivialen notwendigen Teilbarkeitsbedin-

gungen in enge Kreise zerlegt werden können. Dieses Ergebnis kann verwendet werden,

um die Existenz einer engen Eulertour zu beweisen. Wir liefern auch eine Konstruktion,

die zeigt, dass unsere Schranken bis zum Term op1q bestmöglich sind. Dies adressiert

ein offenes Problem von Glock, Kühn und Osthus [29].
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