
The Relationship Between Programming
Quality and Different Measures of

Computational Thinking

Joint PhD

A dissertation submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

urn:nbn:de:gbv:18-ediss-101131

at the

Universität Hamburg

Fakultät für Erziehungswissenschaft

and

Macquarie University

Faculty of Human Sciences

Submitted

11/07/2019

by

Kay-Dennis Boom

SUPERVISORS

Principal Supervisor: Jens Siemon (Universität Hamburg)

First Associate Supervisor: Matt Bower (Macquarie University)

Second Associate Supervisor: Amaël Arguel (Macquarie University)

Date of defence

28/02/2020

i

ABTRACT

Computational thinking (CT) is often promoted as the literacy of the 21st century

and as the foundation of many concepts in computer science and related fields.

Although most research has shown that including CT in computer science

education has positive effects on programming, there are conflicting results. These

inconsistencies may occur because of different frameworks, which lead to different

ways of measuring that kind of thinking. This raises questions about the role of CT

in programming, in particular, how is CT applied when solving a programming

task (RQ1) and whether different measures of CT can be relevant predictors for

programming quality (RQ2).

Based on a literature review from two fields, computer science and psychology, a

conceptual framework of CT is developed in this thesis. This conceptual

framework builds the foundation for an instrument to observe CT behaviour. In

order to answer the research questions, participants worked in pairs (n = 27) to

solve a programming task in Scratch. The solving process were videotaped and

analysed based on CT activities. In addition, participants’ Scratch projects were

analyses based on programming quality criteria. A set of adjusted Bebras tasks

were used as unplugged measure of CT. To control for confounding effects, a

measure for nonverbal intelligence was completed by the participants as well.

Results showed that not all CT associated behaviour was equally often apparent

while participants were working on the programming task. Participants engaged

only infrequently in decomposition or abstract thought about a problem. Instead, of

thinking about the problem, they tried to create solutions from the beginning.

Correlations and regression analysis also revealed that CT measures differ in their

suitability for revealing the relationship with programming quality. Only the

behaviour based measure of CT revealed that relationship.

On this basis, it is recommended that educators should focus on different parts of

CT in order to enhance that kind of thinking. In order to analyse the unique impact

that CT might have on programming, instruments must be chosen with care.

ii

Acknowledgements

Undertaking this PhD study was a life-changing experience and I met many people who

influenced me and my work.

I would like to thank my supervisor, Matt Bower, for his patience and guidance through

the whole journey. The discussions with him were always a source of great inspiration

and encouragement. I am very grateful to had him as my supervisor.

I also would like to thank my associate supervisor, Amaël Arguel, for his critical

comments. Because of him, I revaluated my view on specific topics such as intelligence

and certain statistical approaches. He reminded me to be always critical about what you

think you know.

Of course, many thanks to my principal supervisor, Jens Siemon, who encouraged me to

undertake this joint PhD program in the first place. He taught me many things about the

research process in general and what it means to have the “big picture” in mind.

Without him, this thesis would not have been possible.

I greatly appreciate the support I received from my editor, Robert Trevethan. Thank

you, Robert, for all your professional advice.

Many thanks also to my German colleague Sören Schütt and my Australian colleague

Mark Gronow. You kept me encouraged through some difficult days and you always

had some time spare for a quick office chat. I would not have enjoyed my journey that

much without you.

iii

CONTENTS

1 INTRODUCTION ... 1

1.1 Background and problem statement .. 1

1.2 Purpose of the study and research questions ... 4

1.3 Significance of the study ... 6

1.4 Structure of the thesis .. 7

2 CONCEPTUAL FRAMEWORK .. 8

2.1 How to define computational thinking? .. 8

2.1.1 The missing definition .. 8

2.1.2 Definition of computational thinking ... 9

2.2 Core characteristics of computational skills ... 14

2.2.1 Problem solving in general ... 14

2.2.1.1 Typology of problems .. 14

2.2.1.2 Problem-solving models ... 17

2.2.1.3 Problem-solving in mathematics .. 19

2.2.1.4 What problem solving means for computational thinking 23

2.2.2 Decomposition .. 24

2.2.2.1 The role of decomposition in computer science 25

2.2.2.2 The role of decomposition in psychology .. 27

2.2.2.3 What decomposition means for computational thinking 30

2.2.3 Abstraction ... 30

2.2.3.1 The role of abstraction in computer sciences 30

2.2.3.2 The role of abstraction in psychology .. 35

2.2.3.3 What abstraction means for computational thinking 39

2.2.4 Algorithmic design ... 40

2.2.4.1 The role of algorithmic design in computer sciences 40

2.2.4.2 The role of algorithmic design in psychology 42

2.2.4.3 What algorithmic design means for computational thinking 47

2.3 Relationship of components .. 47

2.4 Assessment of computational thinking ... 48

2.4.1 Using unplugged methods .. 49

2.4.1.1 The Bebras tasks ... 50

iv

2.4.2 Using visual programming environments... 53

2.4.2.1 Scratch ... 54

2.4.2.2 Comparison between unplugged and plugged methods 57

2.5 The relationship between computational thinking and other concepts 59

2.5.1 Intelligence as general problem-solving skill ... 59

2.5.1.1 Meaning of abstract thinking in theories about intelligence 64

2.5.1.2 Differences between computational thinking and intelligence 66

2.5.2 Programming quality .. 68

2.5.2.1 Assessment of programming quality .. 70

2.5.2.2 Computational thinking and programming 72

2.6 Summary ... 75

3 METHODS ... 77

3.1 Research questions .. 77

3.2 Procedure .. 77

3.2.1 Phase 1: Online study ... 77

3.2.2 Phase 2: In classroom programming task ... 78

3.2.2.1 Scratch programming environment .. 78

3.3 Justification for video study .. 81

3.4 Participants .. 84

3.5 Instruments and measures ... 85

3.5.1 The Bebras tasks ... 85

3.5.2 Test of nonverbal intelligence .. 88

3.5.2.1 Psychometrics and usage in this study ... 90

3.5.3 Programming quality rubric scheme... 91

3.5.3.1 Richness of project ... 93

3.5.3.2 Variety of code usage ... 93

3.5.3.3 Organisation and tidiness ... 93

3.5.3.4 Functionality of code .. 94

3.5.3.5 Coding efficiency ... 95

3.5.3.6 Weighted score of sum and reliability assessment 96

3.5.4 Dr Scratch ... 97

3.5.5 Computational thinking behaviour scheme .. 98

3.5.5.1 Computational thinking components .. 99

3.5.5.2 Decomposing .. 99

3.5.5.3 Abstraction I – neglecting details ... 100

v

3.5.5.4 Abstraction II - recognising patterns .. 100

3.5.5.5 Designing and applying algorithms .. 100

3.5.5.6 Reliability assessment .. 103

3.6 Pilot study ... 104

3.7 Data analysis approach ... 106

3.7.1 Units of analysis ... 106

3.7.2 Addressing research question 1 .. 106

3.7.3 Addressing research question 2 .. 107

3.7.4 Statistical analyses .. 108

3.8 Research ethics approval ... 108

4 RESULTS ... 109

4.1 Overview of measures ... 109

4.1.1 Bebras tasks .. 109

4.1.1.1 Individual scores as the unit of analysis ... 109

4.1.1.2 Paired scores as the unit of analysis ... 110

4.1.2 Test of Nonverbal Intelligence ... 111

4.1.2.1 Individual scores as unit of analysis ... 111

4.1.2.2 Paired scores as unit of analysis ... 111

4.1.3 Programming quality .. 112

4.1.4 Dr Scratch ... 113

4.2 Answering the first research question ... 114

4.2.1.1 Lag sequential analysis of computational thinking behaviour 120

4.3 Answering the second research question .. 123

4.4 Additional results .. 125

5 DISCUSSION ... 126

5.1 Summary of the study ... 126

5.2 Discussion of the first research question .. 127

5.2.1 No or only barely abstract thinking .. 127

5.2.2 Rushing to the solution ... 129

5.2.3 Some prior mathematical knowledge required ... 131

5.3 Discussion of the second research question .. 132

5.4 Practical implications .. 136

5.4.1 Problem solving .. 137

5.4.2 Decomposition .. 138

vi

5.4.3 Abstraction ... 140

5.4.4 Algorithmic design ... 142

5.5 Critical evaluation of the study ... 143

5.5.1 Methodological ... 143

5.5.1.1 Research design .. 143

5.5.1.2 Instruments and measures .. 145

5.5.2 Conceptual consideration ... 148

5.5.2.1 Limitation of the operationalisation ... 148

5.5.2.2 Computational thinking itself ... 151

5.6 Future work ... 153

5.7 Conclusion .. 155

6 REFERENCES .. 157

7 APPENDIX .. 181

CHAPTER 1 – INTRODUCTION

– 1 –

1 INTRODUCTION

1.1 Background and problem statement

With steadily decreasing costs of data collection, storage, and processing on the one

hand, and constantly increasing computer power on the other, digitalisation continues to

shape our everyday lives (Organisation for Economic Cooperation and Development

[OECD], 2017, p. 6). This is not without an impact to our society. The job market is

developing so quickly that, in 2017, researchers from the Institute for the Future (IFTF)

estimated that by 2030 up to 85% of today’s school children will work in jobs that have

not yet been created (IFTF, 2017, p. 14). Because no other areas are growing more

quickly than are science, technology, engineering, and mathematics (STEM), it is likely

that most of these jobs will be in these and related fields (OECD, 2016b).

This development also shifts the demand for required skills in two ways (OECD,

2016b). First, ICT-related skills will be in greater in demand. This includes the need for

ICT specialists such as programmers. Technology is quickly blending in more jobs than

previously, so generic ICT-related skills have become more relevant for many different

areas (Burning Glass, 2014). Programming-related skills have relevance for jobs that

have not previously been related to programming. Medicine, academia, and product

management all rely on technology to some extent. Second, with the development of

digital technologies, automation of labour is increasing (Autor, Levy, & Murnane,

2003). This does not influence all kinds of jobs to the same extent, however. Michaels,

Natraj, and van Reenen (2014) stated that workers such as bank tellers and paralegals

who perform routine tasks have decreased in demand in the past decades whereas

nonroutine jobs are increasing. Employees should be able to generate and process

complex information, think critically, and be flexible with new or ambiguous situations

and open-ended problems (OECD, 2016a, 2016b).

Several authors have proposed that computational thinking (CT) can address this

shift in demand for the required skills (see, e.g., Denning, 2009; Falkner, 2016; Swaid,

2015; Wing, 2006). A definition of CT is yet to materialise, and one of the tasks of this

thesis is to clarify its scope and boundaries (see Chapter 2). For this introduction, CT

can be regarded as the ability to reformulate problems in ways that computers can then

be used to help in solving those problems (ISTE and CSTA, 2011). It is also seen as an

CHAPTER 1 – INTRODUCTION

– 2 –

umbrella term for different kinds of (sub)skills such as the ability to decompose a

problem, engage in abstract thinking, and design algorithmic solutions. These abilities

are closely related to programming and are crucial for STEM-related fields. Swaid

(2015) saw CT as the core aspect of STEM and recommended that educators include CT

in their lectures.

Lu and Fletcher (2009) went even one step further and described CT as the

underlying understanding of programming and as something that should be taught

before programming. They compared CT with basic skills in different areas. In English,

for instance, learners first encounter basic language proficiency before writing an essay

or discussing Shakespeare. In mathematics, basic arithmetic builds the foundation for

more advanced mathematical approaches such as stating a proof. According to Lu and

Fletcher, the same is true for programming and CT in which CT sets the foundation for

programming and related skills in computer science (CS). Teaching CT means

preparing for the new generation of programmers to fill gaps in the job market.

Although CT has its origins in computer science, it is not bounded to only that field.

Wing (2006) proposed CT as a fundamental skill not just for computer scientists but for

everyone. Some scholars associate CT with an attitude of handling uncertainty and see

it as a powerful tool especially for handling complex and open-ended problems (Barr &

Stephenson, 2011). The taskforce on CT of the Computer Science Teachers Association

(CSTA) provided several examples of how different areas—from biology to history—

can benefit from including CT in their curricula (CSTA, 2011). Williamson (2016) even

linked the ability to think computationally with the effectiveness of political

participation in the future.

This is why many scholars perceive CT to be the literacy of the 21st century and

something that should be taught from an early age (Bocconi et al., 2016; Gretter &

Yadav, 2016; Tabesh, 2017). Indeed, CT has been considered in national curricula and

has become more relevant in a number of countries, including some countries in the EU

(Bocconi et al., 2016), Switzerland (Repenning, 2015), and Australia (Australian

Curriculum, Assessment and Reporting Authority [ACARA], 2012).

Because CT is promoted by so many authors as a versatile tool, and because it is

included in a variety of national curricula, it is important to investigate its role when

people are solving complex problems. It is seen as the foundation of programming and

CHAPTER 1 – INTRODUCTION

– 3 –

related skills. This is why the investigation of the relationship of both domains is so

important.

Lye and Koh (2014) reviewed 27 articles about how programming in K-12 and

higher education is implemented. Because there is no generally accepted definition of

CT, these articles relied on differing perspectives and measures of CT, and this has led

to inconsistent results. In general, however, Lye and Koh concluded that CT has

positive effects on programming and could be used in regular classrooms. Moreover,

Grover et al. developed the Foundation for Advancing Computational Thinking (FACT)

for K-12 pupils, in which CT was used to promote programming (Grover, 2017; Grover,

Pea, & Cooper, 2015). Although it must be noted that Grover used the term CT broadly

and did not sharply differentiate CT from other elements in her approach, she concluded

that CT was used effectively to enhance programming skills.

In contrast, Araujo, Santos, Andrade, Guerrero, and Dagiene (2017) saw the

relationship between CT and programming more critically. They used the Bebras task as

a measure for CT. Correlations between the CS students’ performance in a set of Bebras

tasks and their grades were only low to moderate. Moreover, performance in the Bebras

task did not improve after students had been exposed to a programming course. It is

possible that these conflicting results are caused by varying frameworks and ways of

measuring CT.

Lye and Koh (2014) also suggested that future studies should be using thinking-

aloud protocols and capturing on-screen programming activity to have a more in-depth

perspective of the actual role of CT. This was partially done by Falloon (2016), who

conducted a video study to investigate the impact of CT on an open-ended

computational task. He recorded primary school students who worked in pairs on that

kind of task. Results indicated different CT patterns, but the role of CT for

programming was not further investigated. It is possible that different patterns of CT

behaviour have different impacts on programming. This raises the question whether

these thinking patterns are dependent on age and whether thinking patterns can be

associated with programming quality.

To provide an answer to this, Wu, Hu, Ruis, and Wang (2019) conducted a similar

video study, but with students who were enrolled in an educational technology major.

The students worked in a collaborative setting on a programming task. Based on their

performance, participants were divided into two groups (low versus high performing)

CHAPTER 1 – INTRODUCTION

– 4 –

and their CT behaviour was analysed. Results revealed that the low performance group

appeared to be tinkering around whereas the high-performance group worked more

systematically. However, it is unclear how Wu et al. took into account group

performance having been based on pairs.

Computational thinking is proposed as an important problem-solving approach for

contemporary society and development of the world’s workforce. However, it is still

unclear what kind of role CT plays when people solve programming problems. Prior

research about CT has not clearly distinguished between CT as a problem-solving

approach and programming skills, and there has not been control of any confounding

effects. This may be due to the various conceptual frameworks about CT, which also

leads to different ways in which it is measured.

Nevertheless, despite the lack of a unified definition of CT, its significance is rather

evident. Considering that CT has a border and general frame, it is a valid fundamental

skill not only for computer users, but also for everybody, believed to take place in the

basic skills (reading, writing and arithmetic) used by everyone in the near future (Wing,

2006). Consequently, increasing numbers of researchers have been paying attention to

CT, including, experts in the field of educational technology who have emphasized the

importance of CT as 21st century skillset (Korkmaz & Bai, 2019).

1.2 Purpose of the study and research questions

In recent years, there have been efforts to measure CT skills, abilities, knowledge,

competencies (Korkmaz & Bai, 2019). Measuring computational thinking is particularly

important for the K-12 practice field that serves as the foundation of CT training

activities and the evidence of the training results. However, there is no widely accepted

standard for measuring CT, except for a CT Scale by Korkmaz, Çakir and Özden

(2017), a 29-item CT scale that measures five factors, namely, creativity, cooperativity,

algoritmic- critical thinking and problem solving. This scale adopts multidimensional

and hierarchical setting methods, as well as, certain content elements of science of

computer and problem solving process. Notably, CT is divided into nine dimensions,

namely, data collection, data analysis, data presentation, problem, decomposition,

abstract, automation, simulation and parallel algorithm and process (Korkmaz & Bai,

CHAPTER 1 – INTRODUCTION

– 5 –

2019). The problem at hand is that there seems to be no variables for measuring

programming quality relative to CT, such as in a form of scale or questionnaire.

According to Wing (2006), CT requires extraction and decomposition in comparison

to great complex systems or processes. These processes aid in selecting convenient

representations for solving a problem or modeling in the parts related to the problem.

Moreover, digital age individuals are expected to possess CT skills but currently, there

is a dearth in evidence and knowledge about the extent to which these skills should be

had, and the specific levels that allow adequate CT skills. These matters can be known

through appropriate measurement and assessments.

Wing (2008) posits CT complements thinking in mathematics and engineering and

focuses on designing systems that aid in solving complex problems humans face (Wing,

2008, Lu & Fletcher, 2009). The core CT concepts encompass (a) abstractions that serve

as mental tools for computing and essential for solving problems, (b) layers or problems

that have to be solved on different levels, and (c) relationships between layers and

abstractions (Wing, 2008). The concept of abstraction and the ability to deal with

different levels of abstractions, as well as to think algorithmically and understand the

consequences of scale of big data, are fundamental to CT (Denning, 2009, Lu &

Fletcher, 2009). Aho (2012) further explains that CT entails “thought processes

involved in formulating problems so their solutions can be represented as computational

steps and algorithms” (p. 832). On the other hand, according to Denning (2009), CT

traces its history in computer science in 1950s when it was called algorithmic thinking,

referring to “a mental orientation to formulating problems as conversions of some input

to an output and looking for algorithms to perform the conversions” (p. 28). However,

there are certain computer science educators who contend that programming is not

essential in the teaching of CT (Lu & Fletcher, 2009). Lu and Fletcher (2009) even

suggests that emphasizing programming could discourage students from getting

interested in computer science. Overall, CT conceptually refers to “systematically,

correctly, and efficiently process information and tasks” to solve complex problems (Lu

& Fletcher, p. 261). It is important to note that despite the many albeit fragmented

descriptions and definitions of CT, there is certainly a dearth in knowledge about how it

should be measured especially in the context of programming and programming quality.

Thus, for the present study, a programming task was designed in which participants

worked together collaboratively. Different measures with different perspectives on CT

CHAPTER 1 – INTRODUCTION

– 6 –

were used to observe what kind of instruments can predict programming quality most

effectively. A test of nonverbal intelligence was used to control for potential

confounding effects. In order to define the problem, the following two research

questions were asked:

RQ1: How is computational thinking applied when solving a

programming task?

RQ2: Can multimodal measures of computational thinking be

relevant predictors for programming quality?

1.3 Significance of the study

There are three anticipated contributions that this study could make. First, researchers

could benefit from the framework developed in this research because it helps to have a

more precise understanding of CT. Even after more than a decade of intensive research

about CT, there is no final agreement concerning what CT looks like. Researchers in

different studies tend to refer to the same concepts but with different terms. The

framework developed in this thesis is an attempt to reduce the confusion by defining

what the terms mean in the context of CS. Because CT is considered to be a specific

problem-solving approach and is therefore associated with specific cognitive concepts,

psychological perspectives are considered as well, for instance, what it actually means

to think abstractly. Second, use of different CT measures and an instrument for a

theoretically close concept help to further shape CT as a construct. Because CT is not

clearly defined, different measures can lead to different conclusions about CT. Using

several different measures based on different frameworks helps identification of the

facets that each measure focuses on. This will help researchers to choose the most

appropriate instrument(s) for their research. Third, this study could be beneficial for CS

educators who teach CT in order to promote programming. The results show what kinds

of CT-associated behaviour might be most relevant for programming. The results also

help to identify deficits in CT behaviour that can help educators focus on appropriate

aspects of CT behaviour.

CHAPTER 1 – INTRODUCTION

– 7 –

1.4 Structure of the thesis

This thesis comprises five chapters. Following this introductory chapter, in Chapter 2,

the conceptual framework is developed. In that chapter, reasons are considered about

why there is no final definition but rather a general but vague agreement about CT and

its most highly related components and skills. This general agreement will be identified

based on different major works concerning the definition of CT. Furthermore, CT and

its associated skills will be analysed from computer science as well as psychological

perspectives to develop an action-based framework related to the assessment of CT.

This should allow assumptions to be considered about how the different skills are

related to each other. The chapter closes with presentation of a potential relationship

with theoretically closely related concepts concerning nonverbal intelligence and

programming (quality) and a short overview of how the research questions will be

answered.

Chapter 3 provides insight into the methods of the study. This includes an overview

of the research design and procedure, but also provides justification for a video-based

study having been seen as the best choice to address the research questions.

Demographic information about the participants is presented. The instruments used to

assess CT, nonverbal intelligence, and programming quality are presented as well as the

results of the previously conducted pilot study. Finally, a detailed outline is provided

about how the data were analysed and what implications were to be considered.

The results are presented in Chapter 4. First, a general and descriptive overview of

all measures is given to provide a holistic view of the results. Then, the two research

questions are answered and further findings are presented.

In Chapter 5, the discussion chapter, the results from Chapter 4 are discussed in

relation to the conceptual framework developed in Chapter 2. This chapter also includes

a critical evaluation and consideration of the limitations of the study. Based on the

theoretical interpretation and limitations, suggestions are made for future research. The

chapter closes with conclusions relevant the whole study.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 7 –

2 CONCEPTUAL FRAMEWORK

2.1 How to define computational thinking?

Computational thinking has been widely and intensively discussed. So far there is no

universal agreement concerning a definition. Therefore, the development of a definition

of the construct as used in this thesis is presented in the following.

2.1.1 The missing definition

Since its first major appearance in 2006 by Wing, there has been much discussion about

what is actually meant by CT. Wing (2006) described CT broadly as a general attitude

rather than providing concrete examples concerning what CT is and what it is not. In the

subsequent years, different authors proposed a variety of definitions and perspectives

about what CT is and what components characterise it. Some authors have proposed a

broad description of CT (Guzdial & Wing, 2011; Hu, 2011). However, most authors

(e.g., Aho, 2012; Barr & Stephenson, 2011; NRC, 2010) have emphasised the need for a

clear and distinctive description on the basis that precise use and understanding of the

terminology of a concept is crucial to communicate ideas clearly with other people.

Different kinds of definitions also lead to different ideas about how to measure such

concept. Only a definition of a concept that most scholars can agree on makes

standardised assessment possible. An agreed-upon definition is important for two

reasons. First, results from different studies can be compared with each other, which

makes further research possible. Second, standardised assessment facilitates monitoring

of a concept. This is especially important for education where CT is often praised as a

new literacy of the millennium as mentioned in the introduction. As participants of the

US National Research Council (NRC) on CT concluded, if CT is part of a curriculum it

requires assessment, and without agreement on a common definition it is difficult to

develop appropriate tools for assessment (NRC, 2010, p. 57). This is also why it is

important to try to make clear what CT means in this study.

So far, tremendous work has been done in order to define CT. Nonetheless, new and

alternative definitions of CT continue to appear. Regardless of the scope of a study

(e.g., assessment of CT or its application in education), many researchers propose their

own definitions and often use different terms for the same concepts. Kalelioğlu,

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 9 –

Gülbahar, and Kukul (2016, p. 591) stated that even 10 years after Wing’s seminal

paper on CT there is still no commonly accepted definition of CT that has been

“scientifically proven”. A reason for that might be the lack of a conceptual framework

that could not only explain what kinds of skills can be seen as core concepts for CT, but

also why and how those skills are used. Such a theoretical framework could be used as a

solid foundation for further work on the concept and might have implications for

standardised assessment and, furthermore, for development of curricula about CT.

2.1.2 Definition of computational thinking

In order to provide a clear and precise definition of CT, a conceptual framework about

CT should comprise three steps. First, CT should be defined and its core components

should be identified based on (1) systematic literature reviews and (2) major

publications that summarise the opinions of experts. Although systematic reviews can

already provide a valuable overview of a generally accepted consensus within a

community, conclusions based on experts’ perspectives can provide an additional level

of content validity (see, e.g., Newman, Lim, & Pineda, 2013; Zamanzadeh et al., 2015)

about a construct such as CT, which is important for its assessment. This means that

results based on workshops and task forces by distinguished experts in the field of

computer science (education) as well as surveys of experts should be considered. In a

second step, CT and its associated skills should be analysed from a CS-related point of

view. There is no doubt that the origin of CT lies in the field of CS but little work has

been done to provide explicit examples of how CT components are rooted in CS. As a

result there is no resolution about what decomposition mean in CS, the shape of

abstraction, and the role that algorithms play. Making these concepts clear would

provide reasons why specific skills are mentioned most often in the literature and by

experts. Third, CT should be analysed from a psychological point of view. CT is often

proclaimed as the ability to “think like a computer scientist” (Wing, 2006, p. 35), which

emphasises CT being foremost a cognitive ability along with its associated skills.

However, since its first appearance, it seems unclear what this actually means. There are

uncertainties about how a problem is decomposed, how abstraction works and what it

means to think algorithmically. Scrutinising these skills would help us understand how

they are applied and what they look like in concrete situations.

To shed light on these concepts from different perspectives (e.g., what abstraction

means in CS and what it means in psychology) also helps in identifying when

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 10 –

researchers use different terms but actually refer to the same concept and how different

concepts might be related to each other. For example, Grover and Pea (2013) use

decomposition and modularisation interchangeably when referring to structuring

problems with CT. Angeli et al. (2016) used the term generalisation which would be

described as pattern recognition in other works. Modelling and models are often

associated with abstraction in the sense of models are abstract representations of the

world (Hu, 2011). Abstracting and modelling are sometimes even used interchangeably

(Denning et al., 1989).

There are some frameworks that have been used to, at least partially, analyse CT

from proposed perspectives. For instance, in a short overview, Barr and Stephenson

(2011) linked some typical CT skills (e.g., decomposition and abstraction) and their

meaning in different fields such as CS. However, this overview consisted of only a few

keywords, so a deeper investigation of the relationship between CT-associated skills

and their origin in CS is not possible. Others have referred to CT-associated skills as

“mental tools and concepts from computer science” (NRC, 2010, p. 3) or have declared

that “CT is the basic principle of computing science” (Shi, Liu, & Hendler, 2014, p.

2512) and explained in a general sense how CT and its components are important for

grasping CS concepts. However, again there was no detailed explanation concerning

which components were being referred to and how they are specifically linked to CS.

Another promising attempt was made by Kramer (2007), who explained why

abstraction is a key concept in CS. His work is often referred to in order to provide

reasons why the ability to abstract is one of the core skills in CT. Kramer linked

abstraction as used in CS with its meaning in other fields such as art and cognitive

development. Nonetheless, even this often-cited publication only scratches the surface

of abstraction from a cognitive psychological perspective. In conclusion, there are some

works that link CT skills with CS and psychological concepts, but in most work the

analysis is insufficiently deep to provide a sound foundation for further research, for

example, concerning standardised measurements.

For the purpose of defining CT in this thesis, four systematic literature reviews about

CT were selected by the investigator. These publications were the most recent ones at

the time this study was conducted. These reviews were (in chronological order) Selby

and Woollard (2014), Kalelioğlu et al. (2016), Bocconi et al. (2016), and Shute, Sun,

and Asbell-Clarke (2017). All reviews contained the search terms “computational

thinking” in different databases, as shown in Table 2.1. Bocconi et al. (2016, p. 9) did

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 11 –

not specifically state which databases were searched, but they mentioned “a wide range

of data sources, including both academic and grey literature (e.g., journal papers,

reports, blogs, etc.)”. They also analysed MOOCs and grassroots initiatives, and they

surveyed ministries of education to obtain official documents (e.g., policy strategies and

national reports), all with regard to CT. In addition to their literature review, they

interviewed 14 policy makers, researchers, and practitioners from nine different

countries. The total number and kind of documents in the reviews is shown in

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 12 –

Table 2.2. Selby and Woollard (2014) did not specify the total number, but according

to their reference list they accessed more than 35 documents. Conclusions in all reviews

were based on consistency of usage and interpretation across the retrieved literature, and

those conclusions largely indicated consensus in the community at the time of the study

with regard to CT.

Table 2.1

Overview of Databases in Review Articles

Databases Reviews

ACM Digital Library Selby et al. (2014); Kalelioğlu et al. (2016)

Compendex Selby et al. (2014)

EBSCOHOST Kalelioğlu et al. (2016)

Engineering Village Selby et al. (2014)

ERIC Selby et al. (2014); Shute et al. (2017)

Google Scholar Selby et al. (2014); Shute et al. (2017)

IEEE Explore Selby et al. (2014); Kalelioğlu et al. (2016)

JSTOR Shute et al. (2017)

PsycINFO Selby et al. (2014); Shute et al. (2017)

Science Direct Kalelioğlu et al. (2016)

Springer Kalelioğlu et al. (2016)

Web of Sciences Selby et al. (2014) ; Kalelioğlu et al. (2016)

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 13 –

Table 2.2

Numbers and Kind of Documents Used in Reviews About CT

Review Number and kind of documents

Kalelioğlu et al. (2016) 125 articles

Bocconi et al. (2016) > 350 articles published in conf. proceedings or

 journals

> 210 documents identified as grey literature

3 curricula documents from England, France,

 and Finland

4 policy documents

12 grassroots initiatives and MOOCs

> 30 policy papers

Shute et al. (2017) 45 articles

As major works that reflect the opinion of computer science (education) experts, four

publications were selected. These were (in chronological order) by the NRC (2010),

Barr and Stephenson (2011), ISTE and CSTA (2011), and Corradini, Lodi, and Nardelli

(2017). In February 2009, the NRC conducted a 2-day workshop with 37 experts

including Peter Denning, Roy Pea, Mitchel Resnick, and Jeannette Wing in order to

define the scope of CT. Their final report (NRC, 2010) is widely seen as one of the

benchmarks in the field because it is repeatedly mentioned throughout the literature. A

similar often-mentioned publication is the comprehensive article by Barr and

Stephenson (2011) that summarises the opinions of 26 “thought leaders” (not

specifically identified) of the Computer Science Teacher Association (CSTA) and the

International Society for Technology Education (ISTE). In the same year, CSTA and

ISTE also conducted a (joint) survey in order to find an operational definition of CT and

to gather feedback from nearly 700 computer science teachers, researchers, and

practitioners. A similar approach was used by Corradini et al. (2017) who analysed

responses from nearly 1,000 teachers in an online survey concerning what they believed

CT to be.

As a result of the analysis of the proposed literature reviews and expert surveys, CT

is defined in this thesis as a problem-solving approach that includes three skills

identified as core concepts of CT. These skills are the ability to decompose a problem,

the ability to engage in abstraction, and the ability to understand and design algorithms.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 14 –

For a summary of the analysis, see Appendix A. All works made clear that CT is not

necessarily limited to these skills but they are consistently mentioned throughout the

literature and by experts and therefore identified as particularly relevant for CT.

2.2 Core characteristics of computational skills

In the following sections, the core characteristics of CT are analysed from both CS and

psychological perspectives. In addition, didactical approaches in fields with a long

tradition of problem-solving teaching will be presented. First, a general overview about

problem solving will be presented, before decomposition, abstraction, and designing

algorithms will be discussed.

2.2.1 Problem solving in general

In this section, a general definition of problem and different kinds of problems are

presented. Based on that, the different problem-solving approaches and how to teach

them are discussed. After that, a conclusion will be drawn about what this means for

CT.

2.2.1.1 Typology of problems

The general ability to solve problems depends to some extent on the kind of problem at

hand. Therefore, definitions and a categorisation of problems are presented first.

Problems come in different forms and it is difficult to find a general definition for all

kinds of problems. Yet, in the middle of the last century, Gestalt psychologist Karl

Duncker (as cited in Gilhooly, 2012, p. 2) offered a definition that has remained suitable

for most kinds of problems: “a problem exists when a living organism has a goal but

does not know how this goal is to be reached.” Jonassen (2000) offered a similar

definition in stating that a problem has two critical attributes. First, there is a noticeable

difference between two situations: the current moment and a goal. Second, there is a

social, cultural, or intellectual value in eliminating this difference. This means that if

there is no one who perceives the difference between those two states or there is no one

who is willing to eliminate it, there is any problem. Although different terms may have

been used, this view about the definition of a problem is shared by several other authors

of the field (e.g., Anderson, 2015, p. 183; Bransford & Stein, 1993, p. 7). In summary, a

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 15 –

problem can be generally thought of as a situation that is interpreted by someone as a

challenge to be overcome.

A further analysis of problems is made by Reitman (as cited in Gilhooly, 2012, p. 3),

who pointed out that most, if not all, problems can be portioned into three states: initial

state, goal condition, and a set of various actions to transform the problem from the

starting state to the goal condition. If all states and actions of a problem are specified,

the problem can be classified as being well defined; if not all of the states and actions of

a problem are specified, that problem is classified as being ill defined. It is important to

state that the word specified does not mean the problem is familiar to the person who

faces it. Specified means that there is a clear and unambiguous state of start, goal, and

transition that transforms one state to another. Completely well-defined problems are

relatively rare; rather, they are the scope of formal sciences or can be seen in forms of

games. In addition, the term well defined should not be confused with easy to solve. For

example, chess is a well-defined problem with a clear starting and goal conditions and

specified rules that determine which actions are permitted in order to achieve the goal.

That does not mean, however, that winning a game of chess is easy. On the other hand,

ill-defined problems are most likely difficult to solve because of their ambiguous nature.

The goal is always to specify as many steps as possible.

A slightly different classification of problems is made by Jonassen (1997) who

distinguished between well- and ill-structured problems. For Jonassen, well-structured

problems present all elements of a problem to the problem solver, require the

application of a finite number of well-structured rules, and have comprehensible

solutions where the relationship between decision choices and all problem states is

known. Ill-structured problems, on the other hand, possess elements that are (at least

partially) unknown to the problem solver; furthermore, multiple solutions are possible

and there are multiple criteria for evaluating the solution. Also, some ill-structured

problems may require judgments or expression of personal opinions or beliefs about the

problem from the problem solver. So the distinction between well- and ill-structured

problems can be seen in the degree of knowledge the problem solver has for every

problem state. To put it simply, a well-structured problem has a well-known initial state,

a well-known goal state, and a well-known limited number of logical operations to close

the gap between initial state and goal state—and the opposite pertains for ill-structured

problems. Jonassen also emphasised that the structure of a problem should be seen as

continuum, with well and ill as end poles, rather than as a dichotomous categorisation.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 16 –

Examples of different kind of problems, according to Jonassen, and their level of

structure are seen in Table 2.3.

Table 2.3

Jonassen’s (1997) Typology of Problems

Level of

structure
Kind of problem Description

R
at

h
er

 i
ll

 ←

 →

 r

at
h
er

 w
el

l

Logical Abstract tests of reasoning; examples are Rubric’s Cube or

Tower of Hanoi

Mathematical Algorithmic procedures in mathematics such as equation

factoring or long division

Math story Mathematical problems embedded in stories

Rule-using Problems with several correct solutions in which the solver

needs to choose the “best” one; examples are tax returns or

some card games such as Bridge

Decision making Similar to rule-using but better solutions are less obvious.

Different options results in different consequences. Jonassen

refers to “life decisions” as decision making problems.

Trouble shooting /

diagnosis

Eliminating problems from a running system such as

debugging in programming or fixing a car in mechanics

Strategic

performance

Problems that demand high situational awareness and

flexibility in the process of handling such as combat missions

or tactics in some sports games

Case analysis Analysing highly extraordinary cases for that domain;

common in law or medicine

Design Design problems often have ambiguous specifications of

goals, no determined path to solution, and require knowledge

from different domains

Dilemma Similar to decision-making problems, but, because all

solutions seem unsatisfactory, their outcome is highly

unpredictable

The difference between Reitman’s well/ill-defined problems and Jonassen’s well/ill-

structured problems lies in the specification of the problem states and the level of

knowledge. A problem can be well defined but also ill structured to some extent. For

instance, initial state, goal, and transition steps are all specified (problem is well

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 17 –

defined), but it is also possible to have multiple solutions to a problem (ill structured).

To have a consistent and concise terminology throughout this thesis, problems are

categorised based on Jonassen’s system of the level of problem-structure.

2.2.1.2 Problem-solving models

According to Anderson (2015) “problem solving is a goal-directed behaviour that often

involves setting subgoals to enable the application of operators” (p. 182). For Anderson,

operators are all actions that transform the initial problem state to another state.

Different theories about problem solving use different terms and also suggest different

steps, but, according to Pretz, Naples, and Sternberg (2003), these steps can be

generally summarised to (1) recognising that there is a problem, (2) analysing and

defining the problem, (3) forming a strategy and solution, (4) organising knowledge

about the problem, (5) allocating resources and applying the solution, and finally (6)

monitoring the progress and evaluating the outcome.

According to Jonassen (1997) the problem-solving process also depends on the kind

of problem, and some steps are more relevant than others depending on the extent of

structure of the problem. For well-structured problems, Jonassen combined ideas from

the theory of human problem solving (Simon & Newell, 1971), the model of the ideal

problem-solver (Bransford & Stein, 1993), and Gick’s general problem-solving

strategies (Gick, 1986). As a result, Jonassen identified three major steps: (1)

representation of the problem space (understanding the problem, its constraints and

goals), (2) search for a solution, and (3) implementation of solutions. These steps

involve different kinds of strategies such as mapping the problem onto prior knowledge,

recalling analogical problems, identifying relevant subgoals and steps, and simplifying

the problem. These strategies play different roles at different stages but may also occur

simultaneously. The third step also includes testing and evaluation of potential

solutions.

These three major steps of well-structured problem solving also play a role in

Jonassen’s model for solving ill-structured problems, but they are more divided due to

the higher level of uncertainty in all problem states. Overall, this results in a slightly

more complex model:

Step 1: Representation of the problem space

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 18 –

As with well-structured problems, understanding a problem is the first step.

However, domain and context knowledge now play a bigger role for ill-structured

problems.

Step 2: Identifying and clearing alternatives

Problem solvers may need to consider more than a single problem representation

because of the variation of possible solutions. Each problem space must then be

evaluated in order to decide which is the most relevant for the current situation.

Step 3: Generating possible solutions

The process of generating multiple solutions is often creative and, according to

Jonassen, it relies not only on prior experience but also on unrelated thoughts and

emotions at this early stage.

Step 4: Viability of alternative solutions

In order to choose the most valuable solution, solvers create an evaluation system

based on their own beliefs and knowledge. This system may also include the

opinions of others.

Step 5: Monitoring the problem space

This involves metacognitive strategies such as planning or allocating resources.

Step 6: Implementing and monitoring solution(s)

Possible solutions generated in Step 3 are implemented by the system generated in

Step 4. In this respect, Jonassen emphasised the role of continuous performance

assessment because of the ambiguous nature of ill-structured problems.

Step 7: Adapting solution(s)

Only few ill-structured problems might be solved with a satisfactory outcome at

first try. It is more likely that solutions must be adapted and the solver needs to go

back to some prior steps. That gives the whole process a more iterative character

than is the case for well-structured problems.

Although slightly different terms might be used, similar steps are identified by others

(see, e.g., Ge & Land, 2003). Jonassen (2000) further commented that the greatest

difference between well- and ill-structured problems lies in their level of uncertainty

and restricted knowledge (at least at the start of a problem-solving process). Although

well-structured problems are more likely to be solved by a systematic search for

solutions, the process for ill-structured problems is more “dialectical”. The degree of

appropriateness of a possible solution might change over time, and external variables

can play a greater role than for well-structured problems. This is why Jonassen referred

to a “design process” when he described the overall solving procedure for ill-structured

problems.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 19 –

2.2.1.3 Problem-solving in mathematics

Solving (mathematical) problems is a defining aspect of mathematics and mathematical

didactics. The discussion of teaching mathematics with or through problem-solving is as

old as the field itself. As CT emerged originally from CS and CS is closely linked to

mathematics, some typical mathematical problem-solving strategies are presented. A

good summary of this field is provided by Liljedahl et al. (2016). The focus of their

work lies in heuristic methods and the phenomena of creativity and discovery in

mathematics. These methods and phenomenon are discussed in more depth.

In the 20th century, mathematical thinking and problem solving were highly

associated with heurism and heuristic strategies (see, e.g., Hadamard, 1945). The term

heuristic emerged from a story about the legendary Archimedes how he was struggling

over a problem by the King of Syracuse. The King wanted to know whether his crown

was indeed pure gold as the goldsmith claimed. Archimedes had problems to figure out

how to answer this question until he went on day into his bathtub and observed that the

volume of water, he displaced was equal to the volume of his body. He suddenly

understood how he could apply this observation to his problem. Because he was so

excited about it, he jumped straight out of the bathtub and ran naked home while

screaming his wife’s name “Eureka”.

This kind of sudden insight and the ability to apply a previous successful method to

another situation are the core of heurism and heuristic strategies and methods. Such

strategies highlight general terms and provide a general rule-of-thumb that may help to

find a solution. For mathematical education this means to teach general problem-solving

approaches to solve specific mathematical problems.

Teaching heuristic methods is largely accepted in mathematical education. It is more

discussed which kind of methods are more important and in which way they should be

taught. Kilpatrick (1985) suggested a taxonomy to summarise such methods:

Osmosis: by solving many similar problems (with minor changes) learners

develop implicitly a general problem-solving strategy (inferential learning).

Memorisation: by memorising correct steps needed to be done to solve a specific

kind of problem (deductive leaning)

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 20 –

Imitation: by showing how someone solves the problem in an ideally way

(social learning with an expert)

Cooperation: by working on a problem together with others (social learning with

peers).

Reflection: by promoting to use metacognitive strategies. Rather than “learning

by doing” the main idea in this method lies in “learning by thinking about

doing”. What steps have been done in the past, what restrictions are there, what

options are giving, and so on.

Kilpatrick (1985) further stated that these methods are not independent from each other

but can be combined.

Applying and combining specific heuristic strategies is one way of teaching problem-

solving in mathematics. However, these methods come with specific conditions which

are not always been met. Sometimes there are no similar problems, any steps to

remember, or it is not possible to reflect on the problem with others. A more general

and holistic way of looking at mathematical problems comes with the mental agility

model (Liljedahl et al., 2016).

Successful problem solvers tend to switch fast between perspectives. They can

connect different components and see the relativity of circumstances. They show some

level of mental agility. In general, typical signs for this kind of flexible thinking are

(Bruder, 2000):

Reduction: reducing a problem to its essential core aspects. For example, using

visualisations and structuring aid like graphs or tables to abstract important

information.

Reversibility: reversing thought process by working through a problem from the

end to the beginning and working backwards (e.g., using rough estimations for

the possible result).

Minding of aspects: see different aspects or sides of a problems at the same time,

(e.g., taking a complex figure and breaking it down to more simple structures).

Change of aspects: being able to switch perspectives of the problem that can

prevent of getting stuck (e.g., proving geometric propositions by using vectors).

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 21 –

Using heuristic methods may compensate for less flexible and less successful

problem-solver. The long-term goal of using heuristic methods in mathematical

didactics is to teach how to break through some mental blocks. It can help to develop a

different mindset before trying to solve a problem.

To achieve a more flexible thinking through heuristic methods, Bruder (2000)

suggested three phases of training: first, students need to get used to such methods by

using giving specific hints in the task description. These hints refer to typical signs of

flexible thinking, e.g., “look for similarities” or “detach and attach elements”. Second,

students think out load while trying to solve the problem. They try to combine the hints

with the referring sign like “when I solve a geometrical problem, I detach smaller and

simpler parts like rectangles, triangles and circles.” In the third phase, students try to

solve the task by applying the methods.

Ironically, Archimedes, name giver of heurism, did not apply any specific (heuristic)

method to solve his problem. Neither did Sir Isaac Newton in a similar famous story

when the observation of falling apples lead to the sudden understanding of universal

attraction. In both stories, no one was comparing they problems to others, memorising

any steps, working with others, metathinking on the problems, and so on. They were not

actively thinking about their problem or topic but busy with seemingly uncorrelated

actions like submerging in a bathtub or just watching apples.

According to Hadamard (1945), “the sudden and immediate appearance of a solution

at the very moment of sudden awaking” (p. 8) is the third of four stages of the invention

in the mathematical field. During the first stage, a person would constantly think about

the problem and make countless unsuccessful attempts to solve the problem. This stage

is marked by high mental effort. The many unsuccessful attempts and feeling of

disappointment lead to the second stage. The person stops engaging with the problem

and gains some distance (e.g., taking a bath or going for a walk in the park). The

pressure of the solving eases, results are being “digested” (p. 63), false leads and

assumptions do not occupy someone’s thought capacity anymore. This stage of

incubation is defined by low (if any) mental effort while false leads and assumptions do

not block the person’s whole thought capacity anymore. Incubation is then suddenly

interrupted by the third stage: illumination. Illumination is usually accompanied with a

mixture of positive emotions like relief and proud to have found a solution finally.

Eventually comes the stage of verification in which the ideas of solutions are being

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 22 –

evaluated. Details are being worked out and the solutions become formally correct

proofs and such.

Hadamard (1945) emphasised how all these stages are interconnected to each other.

Of course, discoveries can be made by just working on it without a break (only first

stage). The same way some discoveries were produced just by chance (only second

stage). However, more than often both are needed to lead the mathematician to an

appropriate solution.

In addition, CT is related to computation skill development in school mathematics

(Li et al., 2020). Computation is a familiar idea to many people, particularly to parents

and students in elementary school. Indeed, students are required to learn to compute

with numbers (CCSSI, 2010; NRC, 2002). Computational skill is usually considered as

important not only in a person’s day to day like, but also in preparing for, and in

conducting, numerous professions, such as science, engineering, insurance, and finance,

or other professions where numbers are used. Computation is also usually considered as

a basic skill, and parents and the public would be seriously disappointed if children do

not learn such basic skills through school education (Li et al., 2020).

Computation has historically been loosely connected to thinking until such time that

mathematics educators began realising the significance of students making sense of

what they do when they are engaging in computation (Li & Schoenfeld, 2019).

Combining the construct of computation with thinking in this restricted sense makes CT

not new to mathematicians, mathematics educators, and teachers at all. In this regard,

CT thus emphasizes the significance of thinking and understanding in, and for,

performing computations. The CT construct is likely to have been readily accepted

because of its importance to every student in learning mathematics. Nevertheless,

mathematics educators now use alternative terms conveying the same meaning, such as

“number sense” (Sowder 1992) and “symbol sense” (Arcavi 1994). Based on these,

what is the relevance of CT to other individuals aside from students? Why must the

significance of CT be advocated by computer scientists as important to everyone, when

computation as used in mathematics is usually regarded as merely as basic skill?

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 23 –

2.2.1.4 What problem solving means for computational thinking

Problem solving takes place in different steps. The earlier steps focus on the problem

itself. This includes steps about understanding the problem as well as constraints and

rules. Grasping the problem space or problem representation marks the beginning of the

solving process. The last step is concerned with actual solutions. That may involve

developing a solving strategy and implementing prospective solutions as well as

monitoring and evaluating those prospective solutions. This general approach can be

mapped onto the more specific problem process of CT. It is conceivable that the CT

core skills focus on different aspects of the overall problem-solving process as well, and

they also play different roles at different stages. This point will be elaborated on in the

assessment model developed later within this thesis where the CT core skills will be

discussed in more detail and will also be analysed using this perspective as a

foundation.

Problems also can be categorised based on their level of structure. Well-structured

problems present all elements of the problem, have a limited number of well-known

rules and constraints, and possess correct and convergent answers. In contrast, ill-

structured problems are less clear to the solver, have more uncertainty, and may have

several possible solutions that need to be evaluated and eventually adapted during the

whole process. Although the boundaries between those types of problem are sometimes

unclear, the kind of problem has an impact on the kind of solution, as Jonassen’s model

implies. The solving process for a well-structured problem appears to be more

straightforward and streamlined, whereas ill-structured problems require a more

complex solving process with iterative steps.

At first glance, CT shares some similarities with features of problem-solving

processes of well-structured problems. For instance, described strategies such as

identifying subgoals, simplifying the problem, and recalling analogical problems, as

well as implementing, testing, and evaluating solutions, can be seen as parallel

descriptions for decomposition, the ability to abstract, and designing algorithmic

solutions, respectively. This makes CT apparently better suited for well-structured

problems. However, the literature about CT is rich with references about its usefulness

for ill-structured problems. The jointly proposed definition from ISTE and CSTA

lauded CT as the “the ability to deal with open ended problems” and declared that CT

goes along with attitudes such as “confidence in dealing with complexity” (ISTE and

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 24 –

CSTA, 2011, p. 1). This view is widely adopted by many others (e.g., Barr &

Stephenson, 2011; Bocconi et al., 2016, p. 16; Corradini et al., 2017; Kalelioğlu et al.,

2016; Selby & Woollard, 2014; Weintrop et al., 2016). Shute et al. (2017) even

concluded that CT “relates not only to well-structured problems, but also to ill-

structured problems (i.e., complicated real-life problems in which solutions are neither

definite nor measurable” (p. 2).

To put everything together, CT is based mainly on typical solving strategies for well-

structured problems but is applied for ill-structured problems. This initially appears to

be a contradiction, but it makes sense when looking at the field of CS and related areas

like mathematics and mathematical didactics. Here, machines (e.g., computers) are used

as tools to solve problems. Machines, however, are bounded to problem-solving

methods for well-structured problems. Humans can handle multiple solutions and

undefined constraints and can deal with ambiguous elements, but machines cannot. This

makes CT a more holistic and flexible problem-solving approach, like the mental agility

model. The mental agility model describes how successful problem-solvers can change

quickly their view on the circumstances of problems before applying a solving method.

CT describes the agile mental activity in formulating a problem so that a machine can

help to solve it (Wing, 2008, 2011)—that is, to transform to some extent ill-structured

problems into more structured ones. This way, it can be understood as a more

elaborated heuristic strategy in comparison to some other typical problem-solving

methods in neighbouring fields.

In summary, CT should be seen as a problem-solving approach especially useful for

open-ended problems with multiple possible solutions, but it involves strategies usually

employed for well-structured problems. This should be taken into account in order to

have an optimally cohesive measurement model. Ill-structured problems as well as well-

structured problems should be used to capture all facets of CT and to assist with

understanding the full process of CT.

2.2.2 Decomposition

As defined earlier, the problem-solving process in CT is associated mainly with three

skills: decomposing of problems, the ability to abstract, and creating algorithmic

solutions, each of which will be discussed in the next sections. To do this, they are

viewed from a CS perspective to provide an indication about why these abilities are

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 25 –

mentioned throughout the literature and are constantly emphasised by experts. Within

the next subsections, the three skills are also analysed in terms of their meaning in

psychology in order to acquire better insights about how they are applied in concrete

situations.

2.2.2.1 The role of decomposition in computer science

In a very general sense, decomposition means to deconstruct or to factorise a complex

system into its simpler parts (Booch, 1994, p. 14; MDESE, 2016, p. 50). Complex

systems in CS can refer to different things and concepts on different levels and so the

core idea of decomposition takes place in different forms (Najafi, Niu, & Najafi, 2011).

Regardless of whether it refers to organising working project, the basis of whole

programming paradigms, or as a vital concept in specific programming languages,

decomposition plays a vital role in CS.

On a macro-level, decomposition takes place as a crucial element in agile project

management, which has its roots in software engineering and is still popular in this

field. Agile management is an umbrella term for many different approaches such as

Scrum and Extreme Programming, with the same methodological foundation. The core

idea of these approaches is to be able to create first drafts of solutions or products

quickly and to quickly adapt to changes during the working process (D. Cohen,

Lindvall, & Costa, 2004, p. 8). That involves many circles in the production process and

rounds in communication with different team members and stakeholders on until the

final product is delivered.

To cope with having these different steps, the original task must be broken into

subtasks. In Scrum, for instance, the production process is divided into many relatively

short working periods, called sprints, with successive meetings involving customers to

obtain constant feedback. For sprints, it is important be able to define specific goals

before the next meeting takes place. This is similar to the planning game in Extreme

Programming in which the overall goal of a project is translated into user stories with

different parts. Each part of the story focuses on different problems and requirements.

This approach helps participants to organise responsibilities among the team members

according to their capabilities (D. Cohen et al., 2004, pp. 13–15). These two examples

show how the deconstruction of tasks or problems can be vital in the working process in

software engineering.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 26 –

At a lower level, decomposition can be interpreted as the core component of modular

programming. Modularity can generally be seen in CS as the “development of

autonomous processes that encapsulate a set of often-used commands performing a

specific function and might be used in the same or different problems.” (Atmatzidou &

Demetriadis, 2016, p. 664). The complex system here is the whole programming

paradigm, which is decomposed in several smaller (partially independent) modules or

packages. Boudreau, Tulach, and Wielenga (2007, p. 9) pointed out, that in a time of

open-access software and programming languages, many kinds of software are no

longer developed by a single developer or single team. Instead, many people all over the

world contribute to it in forms of modular applications. This diversity leads to many

solutions to different kinds of problems. Modules are isolated programs that contain a

limited number of subroutines that relate to a very specific kind of problem. They

usually work independently of each other and are organised in libraries. To use

modules, programmers need to explicitly call them up. This modular design helps to

prevent chaotic “spaghetti code”1 because only the subroutines needed for a particular

problem are activated.

For instance, R is a statistical programming language that is organised in modules. In

general, R can be seen as a simple but very potent calculator in which the most

fundamental mathematical operations are provided. Many statistical processes demand

more sophisticated mathematical models. It would be tedious to near impossible for

individual users to write every statistical routine. Instead, different users create different

modules, called packages, with some of those packages being more advanced statistical

procedures. So, instead of writing a function that would perform a hypothesis test such

as an independent-samples t-test, the user needs only to load a package that includes

that particular t-test. This applies to other statistical procedures.

At an even deeper level, decomposition is implemented as one of the core concepts

of another current popular programming paradigm. In object-oriented programming,

clean isolation and reuse of code is a vital concern (Najafi et al., 2011) and is

summarised in the concept called encapsulation. Encapsulation means that some

features are excluded or encapsulated from the rest of the program (Dale, Weems, &

1
 Spaghetti code refers to a set of code in which many GO-TO statements are used to transfer code actions to another

place in the program as often occurs in programming languages such as FORTRAN or BASIC. This kind of code

often appears to be as unsorted as a bunch of spaghetti and thus is difficult to read and should be avoided

(Boudreau et al. (2007, p. 14).

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 27 –

Headington, 2004, p. 177). As a result, objects such as variables or operations do not

communicate with each other, and neither do they directly or automatically influence

each other. Instead, programmers need to explicitly indicate what objects in their

program have access to each other. This way, the purpose of a program is deconstructed

into different chunks of codes. This helps to prevent unwanted interactions from

different parts of the program that could cause errors. For example, there might be a

function, F1, that uses “x” as its name, and, coincidentally, “x” could also represent

another function, F2. Without encapsulation, the argument in F2 would be interpreted as

the function F1 but that might not be the original referent. Encapsulation reduces the

impact of changes and makes it easier to keep control of functions. Altering parameters

or deleting functions or methods does not have an impact across the whole program.

That way, execution of codes is safer and more stable. Encapsulation shows how a

program is decomposed into chunks of codes that not only work independently but also

work together without unintentionally influencing each other.

These examples demonstrate how the concept of decomposition appears in different

aspects or stages of CS and associated areas from life-circle design and process

modelling of projects to actual development and implementation of programs.

Regardless of the level of action, people are constantly confronted with decomposing

complex systems into smaller components. This underlines the impact of decomposition

that also indicates why it is considered so often in the literature as such a crucial skill

for CT.

2.2.2.2 The role of decomposition in psychology

Breaking down problems into smaller problems had been recommended as a general

problem-solving strategy in psychology long before the appearance of CT (Anderson,

2015, p. 182; Jonassen, 1997). The general idea behind problem decomposing is to

divide the initial problem into smaller problems as long as they are sufficiently small

that a potential solution seems obvious (Polson & Jeffries, 1985). A more specific

example of a decomposition model was developed by F. J. Lee and Anderson (2001). It

was loosely based on the goal, operators, methods, and selection rule (GOMS) model by

Card, Moran, and Newell (1983). The GOMS is a cognitive model with the goal of

predicting humans’ behaviour when they interact with computers to improve usability

experiences. Lee and Anderson’s model is more general and focuses only on task

analysis. In their model, they distinguish between three different layers of task

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 28 –

decomposition. The most general level is the unit task level, which is still closely linked

to the overall task. At this level, the main task is divided into subgoals that can be

achieved independent of each other. Next is the more specific functional level. At this

level, the operations that are needed to achieve the subgoals are defined. The last level

consists of primary cognitive goals up to motor actions such as a single keystroke—

which is why F. J. Lee and Anderson (2001) called this level the keystroke level.

However, operations on this level are not confined to action made on keyboards. It is

the most specific level and cannot be broken down any more. On this level, fundamental

actions needed to achieve the sub goals on the functional level are described.

The distinction between the different levels is important for illustrating the

dependencies between them. At the two higher levels, the subgoals and tasks are only

dependent on the level above. Regardless of the particular system or platform that any

solution will be run on, goals on the unit task levels are dependent only on the overall

main task, and the subgoals of the functional level are dependent only on the unit task

level. No other knowledge is needed. Nevertheless, the system might have an impact on

these subgoals. The keystroke level, as the lowest level, is highly dependent on the

system in which the solution might be applied. This means that there must be

knowledge about the operational platform before the steps needed at this level are

identified. Operators need to know what kinds of actions are possible in general and

whether any assumptions or conditions need to be met.

As an example of a decomposition process, the overall task might be to write an

essay about someone who overcomes his or her major fear. On the unit task level, three

subgoals might be identified: (1) clarifying who the person is, (2) clarifying the specific

fear, and (3) developing a plan for overcoming the fear. Each of these goals can be

deconstructed at the functional level. Developing a plan, for instance, can be further

deconstructed into developing (1.1) a beginning, (1.2) an end, and (1.3) a turning point.

The words and phrases used to write the essay represent the keystroke level for this

example because they can be seen as comprising the atomic unit. The specific words

that can be used depend on the language the account will be written in. The language

represents the system or platform here. The unit tasks and functional tasks are not

dependent on the system. Regardless of the language, it is likely that the subgoals

remain the same. Nonetheless, the language proficiency of the writer may have an

influence on the subtasks.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 29 –

F. J. Lee and Anderson (2001) suggest a top-down analysis for task decomposition,

where given tasks are analysed as entities beginning at the top with the most general

terms and going down to more specific goals where the most basic and simple

operations are located. Breaking down a task in this way may have three benefits.

First, it may help to gain a better overview. A large task can appear to be

overwhelming and unclear. Too much information needs to be processed at once. On

the other hand, several problem chunks can be ordered by different features including

their priority or approximate time to achieve a solution. This provides an overview for

the process. A better overview can also help to identify potential challenges in the later

solution processes, thus making the overall process more robust.

Second, it is possible to identify subgoals and tasks that can be achieved and solved

independent of each other. This means that resources such as time, materials, and

manpower can be allocated efficiently. For example, there might be two people with

different strengths who work on the same task. If two subgoals on the unit task were

identified, it will be probably more efficient if the people worked independently on the

different tasks according to their skill level rather than simultaneously working on the

same main goal. F. J. Lee and Anderson (2001) demonstrated how participants solved a

complex air traffic controlling task significantly faster when they decomposed it into

simpler subtasks.

Third, different subproblems may result into different solving approaches, which can

involve different levels of cognitive load. In mathematics, for example, some complex

problems are broken down into simpler ones so that the required solving strategy shifts

from a calculation strategy to a memory strategy (Bull & Espy, 2007, pp. 114–115). The

Trachtenberg system (Trachtenberg, 1960) can be seen as such an example. With the

Trachtenberg system, the complex and cognitively demanding problem of

multiplication of two numbers larger than two digits can be broken down into a set of

comparatively simple steps that include only addition and multiplication of numbers

with only one digit. Both operations require significantly less cognitive effort.

Although task decomposition has many benefits, there are some constraints.

According to Polson and Jeffries (1985), the effectiveness of this strategy depends on

the level of the problem-solvers’ knowledge about the problem. The more knowledge

they have, the easier it is for them to formulate subtasks. However, Polson and Jeffries

also emphasised it as being a generally useful strategy.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 30 –

Decomposition as a strategy is more part of the problem-planning phase than the

actual solving process. As Lee and Anderson’s model shows, decomposition is related

to reformulating the problem in order to plan steps for the solution. Although

decomposition depends on the level of knowledge the problem solver has about the

problem, it can generally be regarded to be a powerful mental tool.

2.2.2.3 What decomposition means for computational thinking

Decomposition has been shown to be a concept that appears in different forms and at

different stages in CS and related fields. From a psychological perspective,

decomposition comprises methods in which problems or tasks are deconstructed into

smaller chunks, as seen in F. Lee and Anderson's (2001) model of task decomposition.

Decomposition is concerned with reformulating the problem itself rather than

formulating a solution. Thus, it can be assumed that decomposition should take place at

a very early stage of the process if problems are to be solved with CT.

Concrete signs of decomposition derive from steps of problem deconstruction. For

example, breaking originally complex problems into smaller and less complex ones and

what the next steps could be in order to deal with these subproblems can be seen as part

of decomposition. Also, how these steps are related to each other and the main problem

can be seen as decomposition according to Lee and Anderson’s model.

2.2.3 Abstraction

In the literature, one of the most frequently mentioned skill relating to CT is the ability

of abstract thinking. Abstraction appears in different forms in CS. After analysing these

different forms below, the psychological meaning of abstraction is discussed. Then, a

final conclusion is drawn about what abstraction means with relation to CT.

2.2.3.1 The role of abstraction in computer sciences

In computer science and related fields, abstraction is regarded to be a fundamental

concept. CS is rich in references about abstraction, such as data abstraction or

procedural abstraction, which are used to describe the separation of logical properties of

data and a procedure, respectively (Dale & Walker, 1996, pp. 4–5). Denning et al.

(1989) refer to abstraction as one of the main paradigms in their idea of computing as a

discipline. They also consider abstraction to be the main focus in CS as well as in

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 31 –

software engineering. Aho and Ullman (2000) even declared CS to be a “science of

abstraction”. This alone underpins the relevance of abstraction in CS.

According to the Encyclopaedia of Database Systems, abstraction is defined as a

concept that “allows developers to concentrate on the essential, relevant, or important

parts of an applications” (Thalheim, 2009, p. 6). According to Ward (1995, p. 443),

there are several different ideas of subforms and usages of abstraction, but the main

ideas can be reduced to three core principles:

1. Abstracting specification say what a program does without necessarily saying

how it does it.

2. Abstraction is a process of generalisation, removing restriction, eliminating

detail, removing inessential information (such as algorithmic details).

3. Abstract specifications have “more potential implications”, moving to a lower

level means restricting the number of potential implementations.

To summarise these points loosely, abstraction in CS implies reasoning about

common structures in data or mathematical entities while certain properties that differ

from instance to instance are ignored (Pease, Smaill, & Guhe, 2009), or, to say it

differently, an abstract algorithm presents a solution without fully revealing how the

result was achieved (Haberman, 2004).

In programming, abstraction can also mean “giving things names” (Stein, 2002, p. 1).

Things, in this case, may be algorithms, data, objects, and so on. These can be seen as

computing entities. Behind these of entities lies considerable information that is usually

not needed. Giving them names can help to abstract out the unnecessary information.

An often-used example for abstraction in programming is the task of drawing a square

(Wentworth, Elkner, Downey, & Meyers, 2012). Several steps must be followed and

assumptions made to create a square, specifically, drawing four lines of the same length,

all connected to each other; two lines are orthogonally connected to each other whereas

the two opposite lines are parallel. Most humans know intuitively what a square is.

They do not always need those detailed instructions. However, a computer does not

have intuitions and therefore does not know what a square is. It always needs precise

instructions. It would be very tedious and confusing for a programmer to always specify

all these steps and assumptions just to get a computer to draw a square. Luckily there is

no need to do this. Instead, programmers apply abstraction and write a function that

includes those steps and they give it a name such as “square”. In this case, the word

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 32 –

“square” is an abstraction of a more detailed procedure hidden behind the word. This

word or name is the only information the programmer is interested in. The function

hides all the unnecessary details the programmers do not need to know to draw a square.

Programmers only need to know which function they need to call on to complete the

task by the name of the function. Of course, this could be done with different kinds of

figures. For example, a triangle would require drawing three lines with all connected to

each other at their corners.

This opens the opportunity to complete more complex tasks with higher levels of

abstraction. If the task is to draw a house, the intuitive idea of a house might be a square

with a triangle on top. Instead of writing a new function with explicit steps, it is possible

to use abstraction and to combine functions with each other to create a new one. The

function “house” could consist of the functions “square” and “triangle”. This can lead to

even more complex tasks such as creating villages (a collection of houses), and so on.

Here the programmer operates on different levels or layers of abstraction and switches

between them.

Another example of the principle of different layers of abstraction is seen in the open

system interconnection (OSI) model (Colburn & Shute, 2007). The OSI model is a

framework for computer network architecture. It describes how communication is

performed in seven layers within which data are exchanged between systems in

different ways. Each level represents a different layer of abstraction. The layer with the

lowest possible abstraction is the physical level where data are transmitted using electric

currents that turn data into on and off (i.e., 1 and 0) binary states. Data are then

processed into higher order layers of abstraction up to the level of end-user applications

(e.g., a web page).

Without abstraction, programmers would still have to program in machine code on a

physical level. They would need to translate their data and instructions in binary form.

Of course, it is not feasible for humans to do this. With abstraction, however, it is

possible to convert information from binary form to a more complex level in a bottom-

up process. Programmers are not interested in exactly how the computer is carrying out

the procedure and they do not need to know. Programmers only want to draw a square

and sometimes a triangle on the top.

Abstraction not only enables communication between humans and machines. It also

provides opportunities for efficient and clean coding. A code that appears to be elegant

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 33 –

1 Int getBalance(Signatory who) throws InvalidAccessException

2 {

3 if (!who == this.owner)

4 {

5 throw new Invalid AccessException(who, this)

6 }

7 // else

8 return this.balance;

9 }

and easy to read has a high level of abstraction. A well-written code does not produce

convoluted solutions and does not provide more information or results than needed

(Kramer, 2007). A high level of abstraction means a high level of generalisation. As

Ward (1995, p. 450) described it, “a program S1 is an abstraction of another program S2

if each of the possible execution sequences for S1 consists of a subsequence of possible

execution sequences for S2”. Essentially, this means that the more concrete a

specification becomes, the more degrees of freedom are lost. It also means that a more

abstract code has greater possibility to be used and has a higher level of generalisation.

A program has a high level of generalisation when it is easy to apply for different

situations and therefore few specifications need to be altered. That helps to reduce

unnecessary duplications of codes. Instead of repeating the same statement with

different arguments, loops or recursion could be used. In that way, abstraction helps to

reduce the amount of information that needs to be understood and it also reduces the

level of complexity. That is why code written on a relatively high level of abstraction

appears to be easier to read. As shown in Section 2.5.2.1, readability is seen as a

hallmark of a good code.

Stein (2002, pp. 5–6) provided an example how abstraction can make code more

efficient and easier to read. Imagine there is a bank account with a method that shows:

The first lines define the bank balance as an integer. The verification takes place with

the throw command, which is linked to the crucial if command in the second line. If the

owner cannot verify with a valid identification, the balance is not shown, but if it is

correct (line 8), the balance will be shown.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 34 –

1 Public Instrument withdraw(int amount, Signatory who) throws

2 InvalidAccessExcept

3 {

4 if (!who == this.owner)

5 {

6 throw new Invalid AccessException(who, this)

7 }

8 // else

9 this.balance = this balance - amount;

10 return new Cash (amount);

11 }

1 private void verifyAccess (Signatory who) throws

2 InvalidAccessExcept

3 {

4 if (!who == this.owner)

5 {

6 throw new Invalid AccessException(who, this)

7 }

8 }

Of course an account holder might also want to withdraw money, in which case the

balance in the account would change as well. This is what a solution could look like:

Compared with the routine before, the only changes appear in the first and ninth

lines. The first line now defines a procedure where the balance is not shown but an

amount of money as an integer can be withdrawn. As for the first routine, this is linked

to an if command, which is exactly the same as the first one. In the ninth line, the

balance is overwritten as a result of a subtraction of the original balance and the recently

withdrawn amount of money, and is finally shown in line 10.

This solution would work, but the solution appears to be convoluted with some

redundancy and duplicates. In addition, if any changes needed to be made, both routines

would have to be altered. That would slow the whole work process down. Instead, it is

possible to abstract the common pattern here, which is the verification procedure:

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 35 –

1 Int getBalance(Signatory who) throws InvalidAccessExcept

2 {

3 this.verifyAccess (who);

4 return this balance;

5 }

6 public Instrument withdraw(int amount, Signatory who) throws

7 InvalidAccessExcept

8 {

9 this.verifyAccess (who);

10 this.balance = this.balance – amount;

11 return new Cash(amount);

This separated verification routine can be now implanted into a new routine where

the routines for showing the balance and withdrawing the money are combined:

This solution appears to be more concise and easier to understand because of the

reduced redundancy of code. In addition, modification for the verification procedure can

be done at one place instead of two, which makes this solution more efficient than the

first one. This shows how abstraction makes code easier to read and optimises the work

flow.

These examples demonstrate how abstraction is applied in CS and why it has become

such a vital concept. Abstraction can be seen as the core of some programming

paradigms as well as in handling data and procedures. Code that is written “more

abstractly” is also easier to read and understand, and it appears to be “more elegant”. In

general, abstraction enables communication between machines and humans. CS would

probably not exist without any kind of abstraction. This might also explain why

abstraction is considered to be important for CT.

2.2.3.2 The role of abstraction in psychology

Although it has its roots in philosophy back to the time of Aristotle (Burgoon,

Henderson, & Markman, 2013), empirical research about abstraction is traditionally

located in psychology. It gained more attention during the cognitive revolution in the

second half of the 20th century (see, e.g., Posner & Keele, 1968; Rosch, 1978).

Unfortunately, even in this field the concept of abstraction lacks a final and clear

definition (Barsalou, 2003). That leads to a situation where there are nearly as many

theories about what abstraction is as there are methods and approaches for studying it.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 36 –

Posner et al. (1968) described the ability to abstract as the ability to infer rules based

on observations and to apply these rules to instances that the person has never

encountered, for example, “when a man correctly recognizes an animal he has never

seen before as a dog, he has manifested an ability to generalize from previous

experience” (p. 353). Posner could show that participants generate a kind of scheme or

concept of patterns (prototype) based on presented stimuli in a training session. These

prototypes were easier and faster to recognise than were any other kind of pattern even

though participants had not seen them before. That means that abstraction is strongly

associated with learning. It is an efficient way of interpreting and storing information.

In addition, the stimuli in the training session in Posner’s research (Posner, 1968)

were all different. However, these differences were ignored, and instead participants

implicitly focused on shared attributes. Posner concluded that participants had

abstracted a concept, a mental representation, of something that they had not

experienced before. They recognised a set of rules that determined what belonged

together and what not. It is important to point out that abstraction does not involve

learning about actual physical stimuli and attributes of things, but rather the

relationship(s) between them (Posner, 1969). Although the stimuli in the training

session were different, participants developed an idea of what all stimuli had in

common (Posner & Keele, 1968). This makes abstraction crucial for learning. It is not

memorising but inferring, which goes further in higher-order thinking.

For Piaget, abstract thinking played a crucial role in cognitive development. He

distinguished between two kinds of abstraction. Empirical abstractions are inferential

projections based on former experiences. They are described as belonging to reality

(Moessinger & Poulin-Dubois, 1981). This kind of abstraction refers to the processes of

inferring and developing rules based on actual observation and comes close to Posner’s

idea of abstraction. It is predominantly part of what Piaget called the concrete stage in

his theory of development. The term concrete refers to the content of thinking, which is

still bounded to an experience in the real world. Reflective abstraction, in contrast,

mainly refers to metacognition such as thinking about one’s own thinking (Campbell &

Bickhard, 1986, p. 88). It also describes the ability to think about “things” that are not

physically bounded to the real world, such as laws, ideas of others, and symbols in

general. Possible outcomes are derived from imagination and thoughts without regard to

whether they had been actually experienced. This kind of abstract thinking becomes

more dominant in the formal operational stage—the last stage of cognitive development

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 37 –

in Piaget’s theory (Siegler, DeLoache, & Eisenberg, 2014, pp. 134–145). That

underlines how, according to Piaget, abstraction is part of the later stages of cognitive

development and therefore part of higher-order thinking. Abstract and concrete thinking

are the end poles of the same dimension. An abstract concept is only a thought process,

a fuzzy image in the mind or a loose idea of something, and there is not necessarily a

connection to the real world. In contrast, concrete means there is a manifestation in the

real world that can be straightforwardly projected into the real world. This is why Piaget

saw the ability of abstraction as part of higher-order thinking and even as the peak in

human cognitive development.

Abstraction is in particular associated with Rosch’s principle of categorisation

(Rosch, 1978; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). In her theory, a

category contains a number of objects that are considered as somehow equivalent (i.e.,

representatives of a category share the same features). Taxonomy refers to a system of

how categories are related to each other by means of inclusiveness, and this is where

abstraction comes into play: “The greater the inclusiveness of a category within a

taxonomy, the higher the level of abstraction” (Rosch, Mervis, Gray, Johnson, & Boyes-

Braem, 1976, p. 383). The level of abstraction determines a specific level of

inclusiveness. A category within a taxonomy of a higher level of abstraction contains

more objects than does a category at a lower level because there are more objects

considered to be equivalent because, in turn, there are fewer features that need to

represent a category (i.e., the level of inclusiveness is higher). Thus, the most abstract

level in a taxonomy is also the most inclusive level, and the least abstract or most

concrete level is the least inclusive.

An example of a categorical system with different layers of abstraction is shown in

Table 2.4. The somewhat abstract level contains fewer objects than the highly abstract

level, but more than the concrete level. The level of inclusiveness or abstraction is

higher in the next more abstract level. That also means that objects in more abstract

categories often appear to be more different among each other than they do in less

abstract levels. However, these differences are (implicitly or explicitly) ignored and

considered to be unnecessary details. That becomes more difficult the higher the level of

abstraction becomes. Or, to put it differently, it becomes more difficult to recognise

shared features the higher the level of abstraction becomes. In contrast, the more

concrete a category becomes, the more similar the objects appear to be. This has an

impact on how easy it is to imagine the objects and leads to the same conclusion Posner

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 38 –

made, albeit for different reasons: Concrete objects are easier to imagine than are

abstract objects because fewer features need to be omitted.

Table 2.4

An Example of Different Layers of Abstraction

Concrete Somewhat abstract Highly abstract

Bob Human Living being

Football Sports Free-time activity

Preparing a report

for next quarter

Writing a text Working

Holding hands Love Emotion

White oak Tree Plant

Abstraction does not only play a role in the categorisation of things. Other research

investigated its role for memory (see, e.g., Hintzman, 1986, e.g.,), or how abstraction is

connected to language (Barsalou, 1994, e.g.,). However, these works are based at least

partially on the ideas of Posner, Piaget, and Rosch. They also are not crucial for the

process of abstraction in the context of CT, and, as a result, they are not considered

more deeply in this thesis.

In summary, abstraction is a thought process that is used to achieve organised

thinking (Shivhare & Kumar, 2016). In Posner’s theory, abstraction is associated with

learning about rules or recognising patterns across observations. Piaget went one step

further by arguing that reasoning is based on prior experiences at the beginning but

develops to a more unbounded way of thinking. Patterns and rules are able to be learnt

even without self-made observations but with thinking about thinking. For Rosch,

abstraction is accompanied by the level of inclusiveness of features: the higher the level

of abstraction, the higher the level of inclusiveness. That also means that some features

are interpreted as important (for that level of abstraction) and others need to be ignored

in order to fit within a specific level of a taxonomy.

In conclusion, the ability for abstraction can be broken down into two processes. The

first is the ability to distinguish between important information and unimportant details.

The second is the ability to identify invariant features over different instances and to

recognise patterns and rules. Although viewed differently within psychology, there is a

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 39 –

general acceptance that abstraction plays a role in learning (Burgoon, Henderson, &

Markman, 2013). This includes the ability to infer patterns and rules, even without prior

first-hand experience, as the result of a thinking process. In addition, all theories of

abstraction emphasise that abstraction is part of higher-order thinking. Of course these

theories are not without limitations and flaws, and Piaget’s scientific methods have been

the target of considerable criticism (Lourenço & Machado, 1996). However, there is

general support for Piaget’s findings, which underlines the importance and impact of his

theories about abstraction as a cognitive process.

2.2.3.3 What abstraction means for computational thinking

As shown in the previous section, decomposition is clearly associated with the problem

itself (i.e., reformulating the problem). This may not be as obvious for abstraction. The

psychological analysis in this thesis revealed that abstraction comes in two components:

neglecting unimportant details and recognising patterns. Both components can refer to

the problem itself as well as to possible solutions. For instance, the initial problem as

well as possible solutions can both be discussed in order to be simplified, and

simplification can be interpreted as a sign of abstraction in the sense of neglecting

unimportant details. On the other hand, mentally comparing different problems as well

as different possible solutions can be seen as a process of identifying patterns

throughout instances. Thus, it can be assumed that abstraction can take place at a very

early stage of the problem solving process as well as in the middle stages.

Some authors have referred to CT as the ability to look at the same problem from

different layers of abstraction (Priami, 2007). This way, different and more insights

about the original problems might be possible. In that sense, CT means neglecting

unimportant details and recognising patterns in such way that emerged models of the

reality can be interpreted by other humans or machines (Wing, 2008). This duality of

abstraction should be taken into account when measuring CT. Abstracting in the sense

of neglecting details can be seen in forms such as simplifying features crucial to the

problems (i.e., the problem itself, possible solutions, constraints, rules, etc.). These are

operations that show that the problem solver focuses on important elements of the

problem through abstraction. Abstraction also means identifying similar structures in

(sub)problems and possible solutions. If the problem solver detects patterns, this should

be seen in some kind of a reaction of sudden realisation or enlightenment such as

“aha moments” (Piaget, 1952, p. 7; Posner & Keele, 1968), which are similar to

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 40 –

Archimedes sudden insight while sitting in the bathtub. Such aha moments could be

seen as aspects of abstraction in the sense of CT as well.

2.2.4 Algorithmic design

The last major core skill associated with CT that will be discussed in this thesis is the

concept of algorithms and the ability to think in algorithms. As for the other skills, it

will be first discussed what algorithms are and what their role is in CS and related

fields. This includes the design and evaluation of algorithms. After that it will be

revealed that our mind at least partially can be seen as organised in algorithms and what

it means to think algorithmically. Conclusions will then be drawn about what the design

of algorithms means for CT.

2.2.4.1 The role of algorithmic design in computer sciences

Although undoubtedly one of the most important concepts in computer science, there is

a several decades-long dispute about what an algorithm is, and a formal definition is yet

to be agreed on. There are, however, some characteristics that are mentioned more often

than others and that will be the foundation for an operational definition used in this

study. Cormen, Leiserson, Rivest, and Stein (2014, p. 4) described an algorithm as a

“well-defined computational procedure that takes some values, or set of values, as input

and produces some value, or set of values, as output.” This indicates that an algorithm is

a tool to accomplish computational problems, although the word computational must be

used very broadly in this context. Algorithms can be used to accomplish advanced tasks

such as identifying human genes on the basis of several billion possible chemical pairs,

or finding the shortest way to drive from one place to another, or accomplishing less

complex task such as letting an avatar speak or walk when a specific key is pressed. All

these tasks can be translated into computational problems regardless of whether the

produced data are genes, distance coordinates, or electronic keyboard signals (Cormen

et al., 2014, pp. 6–9). There are various versions of algorithms that all accomplish

different kinds of computational tasks (see, for an overview, Sipser, 2013).

In its most general way, an algorithm can be seen as a cooking recipe (Sipser, 2013)

with the ingredients and quantities as inputs, a set of rules and sorted steps that describe

what to do with the ingredients, and the finished meal as output. The really delicious

part of an algorithm lies in the procedure that describes the set of rules that make the

algorithm appear to be a black box. For the outcome, no knowledge is needed about

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 41 –

exactly how the data are used. The data are always processed automatically and

autonomously once the algorithm has been activated. It does not matter who executes

the algorithm. This is where the real power of an algorithm lies. Once an algorithm has

been created, anyone can solve the same problem without thinking about it. The

executer of an algorithm does not need to understand what the purpose of the algorithm

is or exactly how it works. The executer needs only to follow the steps described in the

algorithm mechanically. That makes computers perfectly suited for being algorithms.

They blindly follow steps provided in the algorithm.

Algorithms can be presented in different forms such as pseudocode (a set of rules

written in plain language) or as a flowchart. Algorithms for computers are usually

referred to as programs (Cormen et al., 2014, p. 6). A program is nothing other than an

algorithm translated in a specific computer language. It is important to note that errors

can occur during this translation, in which case the program will not behave as

originally intended. Maybe the set of rules or the rules in the flowchart make sense, but

the program does not work in the same way. These programming errors are called

“bugs”2 and the process of fixing them is known as “debugging”.

Bugs can occur in all phases of a program’s lifetime. Especially at the beginning,

programs rarely work as originally intended. Programmers spend roughly more than one

third of their time finding errors and validating code (O'Dell, 2017), so debugging plays

a major role in software development. Debugging involves several steps, and although

exact names might vary slightly throughout the literature they can be roughly described

as reproducing, diagnosing, fixing, and, sometimes as fourth step, reflecting (Butcher,

2009, pp. 17–18). Through the first three steps, test runs are conducted regularly.

Therefore, constant evaluation can be seen as the foundation of the whole debugging

process. Reproducing a bug on a reliable basis is the first goal. Being able to reproduce

an error on demand provides insights about its cause and helps to rule out alternative

explanations. After that, the second, “experimental phase”, begins. Butcher (2009, p.

49) pointed out how diagnosis takes place within the debugger’s mind, not within a

computer, and it refers to conducting little experiments. Experiments in this case might

again be conceived of as test runs, but they have slightly changed parameters. Butcher

stressed the importance of making only one change at a time in order to increase the

accuracy of conclusions about the bug’s cause. After being sure about the origin of the

2
 The term “bug” was most likely coined by Grace Hopper who observed how a moth flew into a

computer causing some malfunctions (McFadden, 2018, September 13).

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 42 –

bug, fixing it is attempted and new tests are run. In the final step, a thoughtful debugger

should reflect on how the bug was created and on how to install mechanisms to prevent

similar bugs in the future. In addition, if bugs of the same kind appear frequently, it

might be useful to reflect on one’s own behaviour to determine at what point in the

programming process the errors were created.

In summary, although not formally defined, algorithms can be seen as a set of

(computational) steps. Algorithms appear in different forms, for example as written

plain language style (e.g., spoken English), as flowcharts, or as coded programs. The

design of algorithms plays a significant role in CS. As Cormen et al. (2014, p. 14)

commented: “having a solid base of algorithmic knowledge and technique is one of the

characteristics that separates the truly skilled programmer from the novices”. This also

includes the maintenance and evaluation of algorithms and therefore debugging is

naturally part of any algorithmic design process. This conclusion provides good reasons

why understanding the concept of algorithms and thinking algorithmically appear to be

so important for CT.

2.2.4.2 The role of algorithmic design in psychology

During the mid-1950s, many psychologists found themselves unsatisfied with

behaviourism as the main approach in psychology at that time. Behaviourism followed

the idea that psychology should be based solely on behaviour because behaviour is the

only objective source of data. In the eyes of a behaviorist, the mind was something

subjective and unobservable. Opposing pure behaviourism, some psychologists

assumed that the human mind is a real “thing”, more than just a black box, but

observable, and slowly the cognitive revolution in psychology began (Miller, 2003). To

conceptualise their new ideas about how the human mind works, many cognitive

psychologists were inspired by an equally new emergent field: computer science.

Cognitive psychologists tended to compare the human mind with computational

processes and they used a nomenclature nuanced by CS. For instance, Miller studied

how human memory works (see, as a classic example, Miller, 1956). Together with his

colleagues, he coined the term “working memory” for the short duration when

information is temporarily stored and first processed (Miller, Galanter, & Pribram,

1960, p. 65). This term was purposely chosen to be analogous to random access

memory (RAM) in computers, which is seen to work in a similar fashion and is

colloquially referred as “working memory” as well. The liaison between psychology

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 43 –

and computer science, together with linguistics (with special contributions from

Chomsky) as well as neuroscience, anthropology, and philosophy, eventually resulted in

a new, interdisciplinary research area: cognitive science (Miller, 2003).

Not only were similar terms used to describe human thinking, but later psychologists

proposed that our knowledge is stored in a way that corresponds to algorithms. In the

late 1970s, Schank and Abelson presented their theory of scripts. Scripts are ideas of

idealised events that follow stereotypic sequences of actions (Schank & Abelson, 1977).

An often-used example is going to a restaurant (Figure 2.1). From the initial state “enter

a restaurant” to the outcome “leave the restaurant” a set of rules guide the whole process

in a way that is similar to an algorithm. An algorithm works as a black box where the

operator does not need total knowledge about the situation but only follows the rules.

Although this is not entirely true for scripts (e.g., most of us do not blindly follow a set

of rules when we enter a restaurant), further studies suggested that scripts reduce

people’s cognitive load in their working memory (Bower, Black, & Turner, 1979). In

conclusion, even though scripts should not be seen as humans’ autopilot for behaviour,

they are something like algorithmic systems that help us to deal with common events.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 44 –

Scripts are implicitly learnt over several similar instances and time. They are often

deeply internalised so that people are not always aware that they follow specific

procedures (Schank & Abelson, 1977). A set of rules for a sequence of behaviour that

was not internalised but purposely designed for future actions is called a plan. Plans are

more obvious and require more consciousness than do scripts. They are also actively

created whereas scripts are usually not. Although scripts can be seen as implicit

algorithms, plans are more explicit algorithms for behaviour and situations.

Some cognitive scientists even conceptualised humans’ information processing

mechanisms as algorithms. This view is seen especially in information processing

theory (IPT). There are different kinds of IPTs, but they are all similar in that

information is seen as input that must be processed through several steps in order to

create an output. The content and context of the problem are not of interest, and neither

are subjective elements such as people’s motivation or their perception of the problem.

An effective example is the work of Newell, Shaw, and Simon (1958), which is also

widely seen as the foundation for what is known today as artificial intelligence. Newell

Enter a restaurant

Is it
crowded?

Go to another
restaurant

Go to a
free table

Do they
have want
you want?

Order, eat, and pay

yes

yes

no

no

Leave the restaurant

Figure 2.1. Script of going to a restaurant presented as flowchart (example

inspired by Schank & Abelson, 1977).

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 45 –

et al. postulated a theory based on three conditions: (1) a number of memories, which

contain symbolised information and are linked by various relations; (2) a definite

number of primitive information processes, which operate on the information in the

memories; and (3) a definite set of rules for combining these processes. Newell et al.

transformed these conditions into a program called The Logic Theorist (LT) and

compared its outcome with results from humans. Although the tasks they used to test

LT were limited to mathematical proofs, they concluded that LT “is qualitatively like

that of humans faced with the same task” (Newell et al., 1958, p. 155). Despite justified

criticism, and acknowledging the limitations, of their work (see, e.g., Fetzer, 1998),

Newell et al. succeeded in at least partially imitating the human mind based on the same

logic as typified in algorithms.

So far in this section, knowledge representation and information processing were

discussed based on the idea of algorithms. To some extent, humans also think

algorithmically. This can be seen in in forms of specific games. A classic example of

such algorithmic game is Minesweeper. At the beginning of the game, the player is

presented with a board of grey squares. The squares are either empty or have a mine

underneath. By left clicking, the user reveals what is underneath. The first left click

never reveals a mine but opens several neighbouring squares. Some of these squares

have numbers that indicate how many neighbouring squares contain mines. The goal of

the game is to reveal all empty squares without left-clicking on a square with a mine,

which would instantly result into losing the game. As a little help for orientation,

players can flag squares by right clicking when they think a mine could be lurking there.

Refer to Figure 2.2. Each square has up to eight neighbouring squares, so the player

needs to consider information from more than only one square to determine where

mines are and where it is safe to left click.

Figure 2.2. An example of Minesweeper. At the left a typical initial state of a

game is shown; in the middle there is a lost game where a mine was triggered; and

on the right is a game in which all mines had been correctly identified.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 46 –

1) Squares have two states {closed; revealed}

2) IF left-click (for the first time) on square THEN

 square is empty → change state to revealed

AND change state of neighbouring squares to revealed

IF they do not face at least 1 mine

3) IF left-click on closed square THEN

EITHER square is empty → change state to revealed

AND change state of neighbouring squares to revealed

IF they do not face at least 1 mine

ELSE indicate the total number of mines they face

 OR square has mine underneath → change state to revealed

 AND game ends with FAIL

4) IF right-click place flag

5) IF all empty closed squares are revealed THEN

game ends with SUCCESS

The gameplay mechanics can be written in plain English or pseudo-code:

Understanding the algorithm of the game mechanics is essential for winning the

game. Probably the player needs some attempts to figure out how the gameplay works.

For instance, a first-time player could think that every square with a number faces a

mine. Of course this rule is not correct and the player needs some incorrect trials to

realise the mistake. To put it differently, the mental algorithms must be debugged in

some test sessions. As Simmons (1988) stated, debugging also means using reasoning

techniques to handle problems. For instance, a player first states, and then tests,

hypotheses about the origin and cause of the problems and how to logically eliminate

them. Finally with experience, however, the player will probably understand the rules of

this game and mentally designed an algorithm that can be followed for success.

Earlier algorithms were defined as tools to accomplish transformation of information

from an input state to an output state with a definite number of well-ordered steps.

Regardless of who operates the algorithm, the output will be the same (as long as the

input is the same). It was earlier stated that debugging is an evaluation process that is

inseparable from the overall design of algorithms. Consequently, algorithmic thinking

in the sense of being able to mentally design algorithms means being able to recognise

what input is available or had been used (e.g., left click or right click, and different

states of variables), what steps in what order are needed (e.g., taking the information of

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 47 –

several different squares into consideration), and what the outcome is (e.g., empty

square means winning; mine means losing). Of course, this also incorporates testing and

adapting drafts of algorithms (i.e., testing ideas for rules and algorithms).

2.2.4.3 What algorithmic design means for computational thinking

The process of designing an algorithm involves several steps. Every action indicating

the creation of algorithms (e.g., writing pseudocode, creating a flowchart, or coding a

program) can be seen as the initial step in algorithmic design. This also includes clues

by which users actively try to follow certain sequences in order to solve a problem. In

addition, all actions aimed for adjusting the algorithm based on testing can be seen as

following steps and are identified as debugging and evaluating, respectively. In contrast

to the other two CT core skills (decomposition and abstraction), the design of

algorithms is considered to be only part of a solution. So, clues of algorithmic design

are likely to be evident at a later stage of the whole CT process.

2.3 Relationship of components

In the earlier sections, CT was analysed from two different perspectives to justify why

specific skills are more likely to be associated with CT than others and how these skills

are applied in CT. Although much research has been done to define and assess CT, little

work has been done in order to identify the relationship between the associated skills

and at which state of the problem-solving process particular skills might be more likely

to occur.

All elements are interrelated and they all play a role at different times. To

successfully apply an efficient step-by-step solution, it is necessary to recognise patterns

in the problem. To do so, the problem has to be deconstructed into its elements.

Similarities can be identified only if there are elements to compare with each other. In

addition, subproblems and subsolutions can be handled independently. Not all elements

of the initial problems have to be handled at the same time, but only the elements of the

subproblem. This makes it easier to find patterns and to apply an efficient solution.

Equally important is to focus on important information and to neglect details. It is

possible to identify patterns only if distracting but unnecessary information is ignored.

In addition, abstraction requires focusing on the main aspects of a problem and therefore

only main aspects will be considered in the solution. Therefore, decomposition and

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 48 –

abstraction allow identifying patterns in the problem which leads to an efficient

solution. This process is seen, for instance, in programming. Coding a function means to

decompose a larger concept into a set of steps at the next level of abstraction (Martin,

2009, p. 36).

Although these skills are linked to each other, it is also plausible that the different

skills are more dominant or occur more often at different times. Decomposition is

considered to be part of reformulating the problem and so is seen as part of the

preparation process, whereas algorithmic design is seen as part of the process of

implementing the solution. That means at the beginning of the overall problem-solving

process, actions of decomposition should take place more often than at later stages, and

the opposite is true for algorithmic design. Ideally, problem solvers first analyse and

decompose the problem before formulating any algorithmic solutions. Unimportant

details could be neglected when analysing the problem or when considering several

possible solutions, and the same is true for recognising patterns, which can occur over

different instances of (sub)problems or possible solutions. Therefore, different forms of

abstractions could be equally distributed over the whole problem-solving process.

2.4 Assessment of computational thinking

The assessment of CT has been the goal for many studies and workshops over the last

few years (Moreno-León & Robles, 2014) and many different approaches have been

developed. Because CT is based on major CS concepts, it is no surprise that there are

some studies in which programming languages such as Python (Brancaccio et al., 2015)

or VPython (Aiken et al., 2012) have been used to assess CT. However, using a

programming language is not without problems. Participants need to be literate in that

specific programming language. If there is one misplaced comma or semicolon, the

program will not work as intended. Of course, some languages are more sensitive and

complex than others, but they all have in common that minor syntactical errors can have

a huge impact on the outcome. In addition, the relationship between CT and

programming ability is still debatable (this will be discussed in more detail in section

2.5.2). That means using programming language, which requires considerable prior

specific knowledge, might be not appropriate for assessing something more general

such as CT.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 49 –

An approach that requires less specific knowledge is use of pseudocode. Pseudocode

fills the gap between informally describing, in plain language, what is happening in an

algorithm and a coded algorithm written in a programming language (Roy, 2006).

Pseudocode is not a single or precise system but rather a meta-language usually written

in a spoken language such as English (Cormen et al., 2014, p. 17). The focus here lies

more on semantics than on syntactics. That means it is more about knowing whether a

“loop” or “if” command is needed in order to create a specific algorithm instead of

knowing whether specific commands are separated by a comma or semicolon. This

makes pseudocode less sensitive and more “forgiving” to the user and gives more

freedom to observe more general thinking approaches such as CT. Pseudocode has been

widely used for teaching programming and even for general problem solving long

before CT emerged in the CS community (see, e.g., Olsen, 2005). So, it is plausible to

use it as a method for assessing CT. Indeed, Davies (2008, p. 3) used pseudocode

“emphazising computational thinking” and Grover, Pea, and Cooper (2015) used

pseudocode along with other kind of assessment in their educational framework on CT

to enhance programming skills. Although pseudocode is easier to understand than any

programming language, some sort of specific knowledge is required. People still need to

learn a set of vocabularies and a communication style (Roy, 2006). Especially for

novices such as students with no or only little prior CS background, this appears to be a

challenge and requires some preparation time. This is why two other approaches appear

to be very promising when observing CT: using unplugged methods such as logical

quizzes, and using programming environments.

2.4.1 Using unplugged methods

The term unplugged method, coined in the early 1990s, can be summarised as a

collection of learning activities that teach computer science concepts without a

computer (Bell & Vahrenhold, 2018; Rodriguez, Kennicutt, Rader, & Camp, 2017).

These methods include haptic or kinaesthetic activities as well as logical quizzes. For

instance, Curzon, McOwan, Plant, and Meagher (2014) created several different

workshops in which students first learnt about the conceptual idea behind CT (i.e., what

skills involve CT). In one of those workshops, the students applied these skills to

analyse specific magic card tricks or to “program” a human robot. This included

deconstructing the tasks in their core elements and finding algorithmic solutions. A

similar task was used by (Rodriguez, Kennicutt, Rader, & Camp, 2017) in which

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 50 –

students needed to connect houses in a village by using a minimum numbers of stones.

They also let students decipher a message by using binary code or explicitly naming the

hidden “interaction rules” between a fruit vendor and a customer, showing that

algorithms are part of everyday life (see “scripts” in Section 2.2.4.2). Brackmann et al.

(2017) developed quizzes and tasks in which students needed to draw typical Tetris

figures by only hearing the commands such as “start”, “up”, and “left” from another

student to show algorithmic thinking.

Despite the popularity of unplugged methods, the effects on learning are still unclear.

Thies and Vahrenhold (2013) tested whether unplugged methods can be useful to teach

CS concepts such as binary numbers, binary search, and sorting networks to 25 students

aged 11 to 12. For that, they assigned the students to a treatment and control groups.

Members of the treatment group were taught the CS concepts by unplugged methods

involving activities and actions. For instance, binary search was introduced to the

unplugged method group by playing the classic game Battleship. For the control group,

the same concept was introduced in a classic textbook fashion. The results indicated that

for none of the three introduced CS concepts the kind of method makes a difference in

learning. The authors concluded that unplugged methods have at least no negative

effects on learning. To put it differently, no positive effects were found either.

2.4.1.1 The Bebras tasks

Arguably, among the most influential unplugged methods for assessing CT are the

Bebras3 tasks. These tasks are part of an annual international contest on informatics and

CT, with over 2.6 million contestants4 from over 45 countries in 2018. The tasks

originated in 2004 as a competition for children and young adults (school year levels 3

to 12) in Lithuania (Dagienė, 2006). The tasks are mainly divided into five different age

groups which vary slightly between the countries (Dagienė & Stupuriene, 2015).

Studies show that these age categories parallel Piaget’s theory of cognitive development

(Lutz, Berges, Hafemann, & Sticha, 2019). In general, there is a strong tendency to use

concrete material (e.g., realistic pictures) for younger groups and more abstract material

for older groups. Each age group is categorised into three levels of difficulty (easy,

medium, and hard). Analyses also indicate that these assumed categories substantially

match with the perception of difficulty by the participants (Bellettini et al., 2015).

3 Bebras is the Lithuanian word for Beaver and was chosen to encourage younger participants.
4 https://www.bebras.org/?q=statistics

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 51 –

Before a Bebras task is accepted for the contest, it has to go through an intensive

validation process on different national and international levels (Dagienė & Stupuriene,

2015, 2016). In the first step, a group of computer scientists and teachers of computer

science create a draft of tasks. Nearly each country that participates in the Bebras

contest has such a group of experts. The tasks are created based on the official

guidelines for Bebras tasks. For instance, the problem should be clearly presented, easy

to understand, and not be tricky; not be too easily solved (solutions should be attained

between 1 and 4 min.); be at an appropriate difficulty level for the proposed age group;

and be independent from any coding language but related to the CT concepts as

described above (Dagienė & Futschek, 2008). In the second step, an annual workshop is

held and experts selects the set of tasks being proposed and rejects, refines, or simply

accepts those tasks for use in that year’s contest (Dagienė & Stupuriene, 2015).

Participants of this workshop are also computer scientists and teachers of computer

science. This two-step process ensures a satisfying amount of content validity and

provides a sound basis for assessing contestants’ CT skills.

The main idea behind Bebras tasks is to create problems that require specific

cognitive abilities rather than technical knowledge or coding experience (Dagienė &

Stupuriene, 2015). This makes them promising for assessing CT and might be also the

reason why they are not only being used in international challenges but are also

intensively used in research (Dagienė & Stupuriene, 2016). According to the official

guideline for creating Bebras tasks (Dagienė & Futschek, 2008), categorisation of the

cognitive abilities is mostly congruent with the proposed CT major skills in this thesis.

This is seen especially in the Australian versions of the Bebras challenge from 2014 and

2015 (see, for an overview, Schulz & Hobson, 2015; Schulz, Hobson, & Zagami, 2016,

respectively), which were also the most recent tasks at the time of data collection of this

study. The cognitive abilities are classified in four categories, the first three of which are

breaking down problems into parts, interpreting patterns and models, and designing and

implementing algorithms, which all correspond to the major CT skills proposed in this

thesis as decomposing a problem, the ability of abstraction, and algorithmic design,

respectively. The fourth category, described as organising data logically, also shows

similarities to algorithmic design as used in this thesis.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 52 –

An example of a typical Bebras task shows how CT skills must be applied to achieve

a solution (Figure 2.3). The task is presented as a general problem in which someone

wants to reach a target but cannot directly see it. To solve this problem, test takers have

to think about several trials they have to make and think about where the arrow will

land (decomposing the problem). To find the correct solution, contestants have to apply

a binary search algorithm (applying algorithms). Abstraction in the sense of neglecting

unimportant information may be involved here as well to be able to focus on the binary

trials. Understanding binary search also includes some abstraction in the sense of

pattern recognition.

Figure 2.3. An example of as hard categorised Bebras task for school level year 11 and

12 students

To review the psychometric structure and features of the test, Araujo, Andrade,

Guerrero, and Melo (2019) conducted a confirmatory factor analysis. They analysed

answers from over 1,500 Lithuanian students to a set of the Bebras tasks used in 2015.

They identified a two-factor solution. Factor one included skills such as decomposition,

abstraction, and generalisation. Factor two was identified as comprising algorithmic

thinking or reasoning. This result mostly fits the conceptual idea of CT as stated in this

thesis with two perspectives, one focussing on reformulating the problem (i.e.,

decomposition and some abstraction) and the other focusing on the solution (i.e., some

abstraction and algorithmic design). In summary, the Bebras tasks can be seen as a

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 53 –

promising way of assessing CT. First, the skills required to solve the logical quizzes fit

to the identified major CT skills as described in this thesis. Second, the structure of

these skills is compatible with structure as stated here.

Using unplugged methods such as Bebras tasks is not without problems however. As

discussed earlier, CT is highly associated with the use of technology and is especially

suitable for ill-structured problems. The Bebras tasks, on the other hand, are well-

structured quizzes (i.e., there is always a single correct answer), intentionally having no

association with technology. Thus, it is possible that not all facets of CT are covered

when only using the Bebras tasks. In addition, it is not clear whether the Bebras tasks

have a unidimensional structure and measure only CT. The Bebras tasks are deliberately

developed to trigger CT-related skills such as decomposing, abstracting, and designing

algorithmic solutions. However, it is not yet clear whether other cognitive constructs are

measured as well. This is why another approach to assess CT should be considered as

well.

2.4.2 Using visual programming environments

Visual programming environments (VPEs) are also a promising way to evoke and asses

CT. VPEs are not based on any kind of written code or text. Instead, users “code” by

assembling several different graphical elements representing specific functions. As with

Lego® bricks, connectors on the blocks suggest how they should be put together. Blocks

are shaped to fit together only in ways that make syntactic sense. This makes VPEs

appear more like a puzzle-game than a programming language. This reduces the

required knowledge about the environment to a minimum. Users only need to think

about what commands generally make sense and not which blocks fit together. During

the last decade several of those programming environments have emerged (see, for

comprehensive overviews, Ching, Hsu, & Baldwin, 2018; Eguíluz, Garaizar, &

Guenaga, 2018; Lye & Koh, 2014) and are favoured for assessing CT. For instance,

Werner, Denner, and Campe (2012) designed three independent tasks in Alice in which

participants needed to accomplished specific tasks to demonstrate CT-associated skills

such as algorithmic thinking and abstraction. Werner et al. (2012) assessed the level of

CT with a rubric-based scoring system that was designed for that purpose. Participants

were highly motivated by this kind of task. Other popular approaches involve use of

visual programming environments together with hardware applications such as BBC

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 54 –

micro:bit (Sentance, Waite, Hodges, MacLeod, & Yeomans, 2017), Arduino (García-

Peñalvo, Reimann, & Maday, 2018), or Calliope mini (Lübbers & Jansen, 2018).

One reason for VPEs being popular might be because they are perfect to use for

design problems when users can freely work on a problem. As mentioned earlier, design

problems, in which multiple solutions might be equally favourable, are archetypal

examples of ill-structured problems (Jonassen, 1997). CT was particularly discussed as

the ability to reformulate and solve ill-structured problems, so it is no surprise that many

studies about CT are based on such design tasks (e.g., creating a short story or game)

using VPEs (see, for an overview, Lye & Koh, 2014).

2.4.2.1 Scratch

Among Alice, probably the most popular VPE for studying CT might be Scratch

(Weintrop & Wilensky, 2018). Scratch emerged from a project by MIT’s Lifelong

Kindergarten Lab in 2002. The first full version was then created under the lead of

Mitchel Resnick in 2007 (Resnick et al., 2009). Since then, it has been continuously

enhanced and it has inspired many other programming environments because of its

sophisticated design and user-friendly interface (Eguíluz, Garaizar, & Guenaga, 2018).

Seiter and Foreman (2013) designed a CT measurement based on Scratch. Their idea of

CT is similar to the conceptualisation in this thesis, with decomposition, abstraction,

and algorithms as major concepts. Brennan and Resnick (2012) even claimed they could

measure long-term effects of both conceptual understanding and the application of CT

skills using Scratch over time. Their assessment design also included different design

tasks with different levels of difficulty. In addition, Grover et al. used Scratch among

other things for the formative and summative assessment of CT in their FACT (Grover,

2017; Grover, Pea, & Cooper, 2015), and Cernochova, Dorling, and Williams (2015)

concluded that they successfully improved students’ CT skills using Scratch. Even for

younger participants such as elementary school students, a modified and simplified

version of Scratch (namely Scratch Jr) has been shown to be useful in order to observe

CT development (Falloon, 2016; Portelance & Bers, 2015). Overall, Scratch appears to

be a promising tool to measure CT because of its low level of required prior knowledge

about the system and its extensive use in computer science education research (Lye &

Koh, 2014).

Another influential reason to use Scratch is Dr Scratch. Dr Scratch is an open web

application in which projects created in Scratch can be autonomously analysed

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 55 –

according on their level of CT (Moreno-León & Robles, 2014). The analysis of a

Scratch project using Dr Scratch is as simple as providing the URL of the project or

uploading its saved file when working offline. The tool provides information regarding

the development of (bad) programming habits (Moreno-León & Robles, 2015; Moreno-

León, Román-González, Harteveld, & Robles, 2017). Its view on CT is more attached

on programming than other models of CT, e.g. the idea of CT used in this thesis. Dr

Scratch assesses the code of the programs for the purpose of assigning a score on

different aspects of this competence, including, abstraction, problem-decomposition,

logical thinking, synchronization, parallelism, flow control, user interactivity and data

representation (Moreno-León & Robles, 2015). Although phrasing is different, the core

dimensions named in Dr Scratch are still linked to the aspects of CT as used in this

thesis. Each of these dimensions are measured between 0 and 3 points, and an overall

CT Score is assigned by summing up the partial scores. Meanwhile, with regard to

errors and bad programming habits, for every evaluated project, Dr. Scratch searches for

codes that are never executed, checks the correctness of message synchronization

among characters, searches for object properties that are wrongly initialized, discerns

codes that are repeated in the programs of the characters and points to objects that are

not named in a personalized manner. Based on the score, the feedback provided by Dr

Scratch is different. There are three levels of CT development created, namely, basic,

developing, master, as shown in Table 2.5. The purpose of these three levels is to

prevent overwhelming novice learners and offering all available information to

experienced users. In the light of these, the feedback information that is basically, the

number of tips and errors showed in the report, is incorporated at each level.

Table 2.5

Level of Development for Each CT Dimension (Moreno-León & Robles, 2015)

CT aspect as

used in this

thesis

Dimension in Dr

Scratch
Basic Developing Proficiency

Abstraction &

Decomposition

Abstraction and

problem

decomposition

More than one

script and more

than one sprite

Definition of

blocks

Use of clones

Parallelism Two scripts on

green flag

Two scripts on

key pressed, two

scripts on sprite

clicked on the

same sprite

Two scripts on

when I receive

message, create

close, two scripts

when %s is >

%s, two scripts

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 56 –

on when

backdrop change

to

Algorithmic

design

Logical thinking If If else Logic operations

Synchronisation Wait Broadcast, when

I receive

message, stop

all, stop

program, stop

programs sprite

Wait until, when

backdrop change

to, broadcast and

wait

Abstraction Flow control Sequence of

blocks

Repeat, forever Repeat until

Decomposition User interactivity Green flag Key pressed,

spite clicked, ask

and wait, mouse

blocks

When % is >%s,

video, audio

Algorithmic

design

Data representation Modifiers of

sprites

properties

Operations on

variables

Operations on

lists

There had been attempts of standardised assessment of CT before. For instance,

Brennan and Resnick (2012) visualised how often particular code chunks were used by

different user profiles. In 2013, Boe et al. designed Hairball, a tool that tries to detect

errors in projects. However, both approaches had been used to provide valuable overall

evaluations of projects but did not make any inferences the level of CT. Inspired by

Hairball, Dr Scratch was created to fill this gap. It is one of the first of approaches that

provides a score for CT based on quantitative analysis of Scratch projects.

Nonetheless, it is critically to note that the developers did not clearly state how they

chose their dimension for Dr Scratch and how dimensions are operationalised. That

leads to the question whether all of the seven stated CT dimension in Dr Scratch are

indeed crucial for indicating CT. For instance, flow control and user interactivity might

rather crucial concepts for programming (Watt & Findlay, 2004) rather than for CT. In

addition, it is not obvious how the decision was made how the usage of specific kinds of

code chunks indicates a basic, developing or proficiency level.

To validate their instrument, the developers compared the Dr Scratch metrics with

classic software engineering metrics such as cyclomatic complexity and Halstead’s

metrics. For more details, see McCabe (1976) and Halstead (1977), but, in short, both

measures take into account variables such as the number of distinct operators in the

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 57 –

software and the overall complexity of a program (Moreno-León, Robles, & Román-

González, 2016). It must be noted, however, that Dr Scratch CT assessment solely

based on coding elements as used in Scratch. Someone’s level of CT is based on how

well they handle Scratch. To further validate, the developers compared Dr Scratch

results with the judgment of computer science (education) experts (Moreno-León,

Román-González, Harteveld, & Robles, 2017). They asked the experts to provide “an

assessment for the technical mastery of the project” (p. 2791). High correlations

between Dr Scratch scores and experts’ judgement indicate high convergent validity.

However, it is possible that the experts rather evaluated the programming proficiency of

the Scratch project rather the level of CT.

For Armoni, Meerbaum-Salant and Ben-Ari (2015), Scratch is not “real”

programming. They studied the use of the Scratch environment for teaching CS

concepts to middle school students after investigating how these concepts were

successfully learnt. In their 2015 study, they explored CS within the visual Scratch

environment in middle school in comparison to CS within a professional textual

programming language (C# or Java) in secondary school. Armoni et al. (2015) found

that programming knowledge and experience of students who had learnt Scratch

significantly facilitated learning the more advanced material in secondary school.

Students who learnt CS through the visual Scratch environment in middle school learnt

new topics more quickly, encountered less learning difficulties, and attained higher

cognitive levels of understanding of most concepts. Moreover, these same students who

learnt CS using Scratch had higher levels of motivation and self-efficacy in enrolling in

advanced CS classes. Overall, Armoni et al. (2015) assert that because of these findings,

teaching CS in general and visual programming are well-justified. In conclusion, Dr

Scratch is a valuable tool for the assessment of Scratch projects, but the Dr Scratch CT-

mastery score might be biased toward programming ability of Scratch rather providing a

holistic measurement of CT.

2.4.2.2 Comparison between unplugged and plugged methods

Interest in programming education has exponentially increased over the past decade

(Hermans & Aivaloglou, 2017). Indeed, the number of countries where schools are

including programming and CT in the curricula of elementary schools, has rapidly

increased. Introducing programming to education raises questions about how best to

teach programming and CT, including the role of the computer, and whether teachers

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 58 –

should used plugged tools and instruments or unplugged methods where there is no

need for computers.

Hermans and Aivaloglou (2017) emphasise the need for children to be able to apply

programming concepts using a computer, which means that it is necessary to know how

plugged approaches and systems compare to unplugged ones. Therefore, they conducted

a study to determine whether it is better to start with plugged lessons immediately, or

first use unplugged materials. Specifically, they were interested in determining which

method is more effective in (a) facilitating understanding of programming concepts, (b)

motivating and supporting the students’ self-efficacy in programming tasks, and (c)

motivating students to explore and use programming constructs in their assignments. To

answer these research question, they conducted a two-phase experiment through which

they compared starting with unplugged lessons with starting on the computer.

The researchers taught 35 elementary school children aged eight to 12 years old who

were designated to two different random groups for eight weeks. For the first four-week

phase, 17 children were taught Scratch, while the remaining half (18 students) used

unplugged materials only. Both the plugged and the unplugged lessons covered the

same concepts of loops, conditionals, procedures, broadcasts, parallelisation, and

variables. After the four weeks, both groups were provided with two weeks of Scratch

lessons, so that that can practice Scratch programming at greater depth. In these lessons,

the same concepts were covered as in the first phase. Meanwhile, for the unplugged

group, a special lesson was taught to the students wherein they learnt to use unplugged

to concepts in Scratch. After the two weeks, two more weeks followed wherein the

children created their own games in Scratch. The experiments were concluded by

administering a test to students in order to evaluate how correctly they used

programming concepts in Scratch. The results of this study show that after a total of

eight weeks, (a) there was no difference between the two groups in their mastery of

programming concepts, (b) the unplugged first group demonstrated stronger self-

efficacy, and (c) they also used a wider vocabulary of Scratch blocks, including more

blocks that were not explained in the course materials.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 59 –

2.5 The relationship between computational thinking and other

concepts

There is a vigorous debate about what CT is, but there is little discussion about what CT

is not. On the one hand, the concept of intelligence shares some remarkable overlap

with CT. Programming, on the other hand, is often mentioned as a skill that eventually

can emerge from CT because of some similarities. The conceptual overlaps between CT

on one hand and intelligence and programming skills on the other, are investigated more

extensively in the following sections.

2.5.1 Intelligence as general problem-solving skill

Because CT is a cognitive skill, it is important to investigate its relationship to

potentially similar skills. What is broadly known as intelligence shares two properties

that lead to the assumption of some conceptual overlaps. First, both concepts are

considered as (general) problem-solving approaches, and second, in both concepts the

ability of abstract thinking plays a predominant role. Both aspects are discussed in more

detail immediately below.

Although intelligence has historically been a controversial construct, many

definitions propose intelligence as the ability to solve problems and to reason abstractly.

Gardner, for example, described intelligence as a summary of such skills (Gardner,

1983, pp. 60–61):

A human intellectual competence must entail a set of skills of problem solving —

enabling the individual to resolve genuine problems or difficulties that he or she

encounters, and, when appropriate, to create an effective product — and must also

entail the potential for finding or creating problems — thereby laying the

groundwork for the acquisition of new knowledge.

In the following decade, a group of experts in research of intelligence and similar

fields (Gottfredson, 1997, p. 13) signed a statement about intelligence:

Intelligence is a very general mental capability that, among other things, involves

the ability to reason, plan, solve problems, think abstractly, comprehend complex

ideas, learn quickly and learn from experience. It is not merely book learning, a

narrow academic skill, or test-taking smarts. Rather it reflects a broader and deeper

capability for comprehending our surroundings — ‘catching on’, ‘making sense’ of

things, or ‘figuring out’ what to do.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 60 –

Later in the statement it is emphasised how intelligence is different from other

psychological concepts such as creativity or personality and how intelligence is strongly

connected to problem comprehension and problem solving. Although there is no official

and final definition of intelligence, this statement has been often used as a benchmark

for other researchers who also included or even emphasised problem solving and

(abstract) reasoning. Jensen (2002, pp. 39–40), for instance, described intelligence as:

an open-ended category for all those mental processes we view as cognitive, such

as stimulus apprehension, perception, attention, discrimination, generalization,

learning and learning-set acquisition, short-term and long-term memory, inference,

thinking, relation education, inductive and deductive reasoning, insight, problem

solving, and language.

Nickerson (2011, p. 108) defined intelligence as “the ability to learn, to reason well,

to solve problems, and to deal effectively with challenges — often unpredictable — that

confront one in daily life.” In summary, many experts share the same view about how

problem-solving abilities and abstract reasoning (among some other skills) together

define intelligence.

Furthermore, these views of experts overlap mostly with those of non-experts.

Sternberg, Conway, Ketron, and Bernstein (1981) asked nearly 200 subjects in college

libraries, at train stations, or at supermarket entrances about their idea of intelligence.

They generally tended to believe that a concept of intelligence should include problem-

solving abilities. Sternberg asked 200 professors in art, business, philosophy, and

physics to rate the characteristics of intelligence and their idea of an ideally intelligent

person (Sternberg, 1985). Results differed little from previous studies and again naïve

theories about intelligence consist of logical thinking (including good memory and good

vocabulary). An intelligent person was mainly described as a good problem-solver and

as someone who thinks reasonably.

Sternberg (2004) also stated that implicit theories are culturally dependent to some

extent. For instance, in Asian as well as African cultures, interpersonal social skills are

more closely associated with intelligence than in western cultures. However, Sternberg

also made clear that neither Asian nor African cultures base their ideas of intelligence

only on social aspects. General cognitive abilities such as problem solving or reasoning

are highly associated with intelligence regardless of the cultural background but social

notions play a greater role in eastern and African cultures. Interestingly, this cultural

influence has apparently a bigger impact when participants are supposed to describe

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 61 –

their own intellectual abilities instead of others. When Korean participants were asked

to estimate other people’s intellectual abilities, they emphasised problem-solving ability

higher than social skills (Lim, Plucker, & Im, 2002).

It is important to note that a person who is considered to be intellectual is perceived

as a general problem solver. Wechsler, who developed one of the most popular tests on

intelligence, regarded intelligence as “aggregated” or “global” and that intelligence is

composed of different abilities that are qualitatively different to some extent (Wechsler,

1958, p. 7). This idea of intelligence as a general cognitive ability is mainly based on

the findings of Spearman (1904). Investigating the relationship between different

cognitive tests, Spearman noticed that all tests were positively correlated to a nearly

equally large extent with each other. Spearman concluded that each test measures its

own specific factor (s-factor) but also a general factor that is in common to all tests. He

coined this commonality g-factor for general ability or general intelligence.

Stadler, Becker, Gödker, Leutner and Greiff (2015) conducted a study to determine

the empirical relationship between complex problem solving (CPS) and intelligence by

meta-analytically summarizing the various research findings on the correlation of CPS

and intelligence. The researchers also sought to determine the moderating factors that

might help explain the contradicting findings. Showing that there is a considerable

albeit far from perfect correlation between various measures of CPS and intelligence,

Stadler et al. (2015) provide essential information on the construct validity and

nomological classification of CPS. Following a definition by Buchner (according to

Frensch & Funke, 1995, p. 14), where CPS is understood as:

(…) the successful interaction with task environments that are dynamic (i.e.,

change as a function of the user's interventions and/or as a function of time) and in

which some, if not all, of the environment's regularities can only be revealed by

successful exploration and integration of the information gained in that process.

According to this definition, it becomes obvious why CPS is usually compared to

intelligence on a conceptual basis to (a) establish discriminant validity, or to (b) define

individual attributes that help explain performance in CPS tasks (Stadler et al., 2015).

On the one hand, some defining characteristics of CPS such as integrating information

is part of nearly all definitions of intelligence (Sternberg & Berg, 1992). Meanwhile, the

dynamic and transparent characteristics of complex problems are not well-established

aspects of the present conceptualization of intelligence such as the Cattell–Horn–Caroll

(CHC) theory of human intelligence (McGrew, 2009). This view of CPS can potentially

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 62 –

add to the understanding of human abilities (Stadler et al., 2015). These divergent

theoretical views are evident in empirical findings on the relation between CPS and

intelligence. Many studies have previously shown that although performance in CPS

tasks greatly vary between individuals, psychological assessments of general

intelligence cannot explain this variability (Rigas & Brehmer, 1999).

Kluwe, Misiak, and Haider (1991) synthesized 11 previous studies on performance in

CPS tasks and relationship between CPS and intelligence, and found that the majority of

these studies fail to show a close relationship between intelligence scores and CPS

performance measures. Consequently, some researchers began to suggest that CPS is a

cognitive construct that is largely independent from intelligence (Stadler et al., 2015).

Rigas and Brehmer (1999) explain this perspective according to the different-demands

hypothesis. According to this hypothesis, the weak correlations researchers observed

between measures of general intelligence and CPS performance, is explained by how

CPS tasks demand performance of more complex mental processes than intelligence

tests typically do, such as, the active interaction with the problem to acquire knowledge

on the problem environment, which, in turn, leads to weak empirical correlations

between the constructs.

Wirth and Klieme (2003) conducted a study on the same constructs and found a

correlation of r = .84 between a latent factor of different measures of CPS and general

intelligence. The latent factor scores on MultiFlux, a newer measure of CPS showed a

latent correlation of r = .75 with various aspects of the Berlin Model of Intelligence

Structure (BIS) test, which is an established intelligence test (Kröner, Plass, & Leutner,

2005). More recent investigations on relationships between CPS and intelligence also

show moderate to strong latent correlations of the two constructs (Greiff, Wustenberg,

Molnar, Fischer, Funke & Csapo, 2013; Sonnleitner et al., 2012; Wüstenberg, Stadler,

Hautamäki, & Greiff, 2014; Wüstenberh, Greiff & Funke, 2012). Notably, these

empirical investigation also show incremental value over and above measures of

intelligence in predicting school grades (Wüstenberg et al., 2012) and job success

(Danner, Hagemann, Schankin, Hager & Funke, 2011) despite strong correlations in

other studies, and in support of the different demands hypothesis.

Stadler et al. (2015) explain that inconsistent findings about the relationships

between CPS and intelligence could be due to the conceptualization of intelligence.

Nearly all theories of psychometric intelligence at this point in time include one or two

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 63 –

very broad, latent factors of general intelligence that capture a significant proportion of

all cognitive abilities, including, abstract reasoning, memory, or factual knowledge

(McGrew, 2009). From this viewpoint, researchers have undertaken studies on the

relationships between CPS and intelligence and usually covered broad measures of

general intelligence as well as, used different tasks to evaluate and measure cognitive

abilities, such as, factual knowledge or general crystalized intelligence (McGrew, 2009).

In contrast, subsequent studies focused more on specific sub-facets of intelligence, and

in particular, reasoning, which was theoretically and empirically determined to be

conceptually closest to CPS (Stadler et al., 2015). Reflecting on the different-demands

hypothesis, broad measures of intelligence do address different aspects that may not be

relevant for the successful solution to a complex problem, including, factual knowledge,

thereby constraining the empirical relation between CPS and intelligence. However,

evaluations that focus on reasoning reflect “the use of deliberate and controlled mental

operations to solve novel problems that cannot be performed automatically” (McGrew,

2009, p. 8) are conceptually more similar to CPS than very broad measures of general

intelligence. This could result in considerably stronger correlations between CPS and

intelligence (Greiff et al., 2013, Wittmann & Hattrup, 2004; Wittmann & Süß, 1999).

Based on these, researchers’ conceptualisation of intelligence in a study may impact the

relationship between CPS and intelligence found with higher correlations of CPS, and

reasoning than of CPS and broad measures of general intelligence.

Overall, theoretically, researchers have hypothesized the two constructs of CPS and

intelligence to be everything from completely separate to identical (Stadler et al., 2015).

Over the course of roughly four decades of research, empirical studies have been

showing that either CPS and intelligence are totally different from each other, or CPS

and intelligence are nearly identical in characteristics. The meta-analysis of 47 studies

containing 60 independent samples and a total sample size of 13,740 participants,

indicate a considerably strong correlation between CPS and intelligence with an average

effect size of M(g) = .433 (Stadler et al., 2015). Moreover, the same researchers studied

whether the operationalization of CPS and intelligence moderates this correlation.

Although there have been no major correlation differences considering the

operationalization of intelligence, the approach used for measuring CPS moderates the

correlation of CPS and intelligence (Stadler et al., 2015). In particular, the most recent

approach toward assessing CPS yields the strongest correlations between CPS and

intelligence (Stadler et al., 2015).

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 64 –

2.5.1.1 Meaning of abstract thinking in theories about intelligence

Some even consider the ability to abstract as being the distinction between human and

nonhuman intelligence (Deacon, as cited in Gabora & Russon, 2011, p. 329). As

Terman (1921, p. 128) stated: “An individual is intelligent in proportion as he is able to

carry on abstract thinking.” This is why abstract reasoning plays a major role in

developmental psychology and various theories of intelligence.

Binet, for example, at the beginning of the 20th century developed one of the first

intelligence tests (Mackintosh, 2011, p. 5). The purpose of this test was to identify

children who were in need for special education and those who are not. To do this,

Binet’s concept of intelligence consisted of different “higher order” thinking processes

such as abstract thinking. Especially Piaget (1952, 1960) focused in his theory of

intellectual development of children’s ability to think abstractly. According to Piaget,

the ability to reason abstractly is a crucial element in the formal operational stage (the

last stage of development in his theory). In addition, empirical studies could show how

younger children have a lower ability for abstract thinking and they need more concrete

examples for learning than do older children or teenagers. Younger children also tend to

use concrete examples rather than abstract ones when they are instructed to explain

concepts (Fischer & Kenny, 1986; Kitchener, Lynch, Fischer, & Wood, 1993). Brooks

(1981) illustrated how younger children and children showing lower intelligent

behaviour have difficulties recognising and learning from prototypical images. Because

abstract reasoning is the crucial aspect of interpreting prototypes, Brooks further

concluded that this ability was less developed in both groups. Using abstract thinking as

an indicator for the development of human cognition underpins the strong relationship

between abstract thinking and intelligence.

This strong relationship also explains why the ability to abstract or abstract reasoning

is often prominently incorporated in different theories about intelligence. Thurstone

(1938) proposed seven human cognitive skills that he identified as “primary mental

abilities”. Thurstone emphasised the independence of these abilities, but many of them

are based on being capable of recognising patterns. For instance, the ability “inductive

reasoning” includes recognising patterns in a sequence of numbers. This idea is similar

to Gardner’s theory of multiple intelligences (Gardner, 1983). As Thurstone had done,

Gardner claimed to have identified qualitatively independent abilities, and, as in

Thurstone’s theory, many of those multiple intelligences have to do with abstract

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 65 –

thinking in the sense of recognising patterns. For instance, someone who has high

“spatial intelligence” can quickly and easily interpret visual patterns.

Probably the most prominent emphasis on the ability to abstract as a facet of

intelligence may be seen in the work of Cattell and Horn (Cattell, 1963; Horn & Cattell,

1967) with a major revision by Carroll (Carroll, 1993), resulting in one of the most

popular theoretical frameworks about intelligence: the Cattell-Horn-Carroll theory

(CHC). According to the CHC, human intelligence is organised in a three-stratum

hierarchy with a list of 70 to nearly 100 narrow cognitive abilities at its lowest stratum

(the number varies across the literature, see Flanagan & Dixon, 2014; McGrew, 2005).

These specific abilities are factorised into eight broader abilities at the second stratum

and the g-factor at the third-topmost stratum. One these eight abilities is the general or

fluid reasoning factor g(f) (Carroll, 1993, pp. 196–200) that subordinates any kind of

abstract thinking across a variety of domains including novel problems. It includes

deductive reasoning (top-down inference; drawing a conclusion about a specific case

based on a general statement) and inductive reasoning (bottom-up inference; drawing a

conclusion about a general statement based on a specific case). Because little or no

language is involved, g(f) is sometimes referred to as nonverbal intelligence.

The close relationship between abstract thinking and general intelligence can be also

seen empirically. Carroll (1993, p. 233) emphasised the high loading of g(f) on g

throughout different studies, and Kvist and Gustafsson (2008) even demonstrated that

there is basically no difference between g(f) and g for homogenous samples (i.e., when

subjects have had equally good or bad opportunities to develop abilities). It would be an

exaggeration to assume that abstract thinking and what is usually known as general

intelligence should be regarded as the same concept. However, theoretically and

empirically, abstract thinking can be seen as the core of human cognitive competence

(Lohman & Lakin, 2011, p. 430). That also leads to the conclusion that abstract

reasoning might be the best estimation of general intelligence if more sophisticated

measurement of intelligence might not be possible or available (e.g., time issues).

It is worth mentioning that not all definitions of intelligence refer explicitly to

problem solving or abstract thinking. Humphrey, once chairman of the APA Task Force

on ability and achievement testing (Lubinski, 2004), saw intelligence rather as “the

resultant of the processes of acquiring, storing in memory, retrieving, combining,

comparing, and using in new contexts information and conceptual skills” (Humphreys,

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 66 –

1979). Mayer and Salovey suggested with their idea of emotional intelligence (see, for

an overview, Mayer, Salovey, Caruso, & Cherkasskiy, 2011) a new perspective on the

whole concept that does not focus on abstract thinking and problem solving.

Nevertheless, as shown here, an overwhelming number of theories about intelligence as

well as naïve ideas indicate that problem solving and abstract thinking are regarded as

crucial parts of human intellectual competence.

2.5.1.2 Differences between computational thinking and intelligence

Despite the similarities of CT and intelligence are still different concepts. First,

intelligence has an assumed strong biological component in contrast to CT. Second, CT

is more associated with technology than is intelligence. Third, the scope of problems in

both concepts is different.

Since its first appearance, it is assumed that intelligence has strong links to biological

processes. Galton who was one of the first who worked on intelligence in the late 19th

hundred was convinced that a more intelligent person has finer sensory discrimination

and therefore is capable of storing and acting upon more sensory information

(Mackintosh, 2011, pp. 3–4). Although we now know that not every kind of sensory

perception is linked with intelligence, there is no doubt today that such linkages exist

(Haier, 2011, p. 351). A number of imaging studies have shown how different

intellectual activities are mapped onto our brain and how g has a high hereditary

component (Toga & Thompson, 2005). However, a biological link has not yet been

proposed for CT. Frameworks about CT emphasise that it is a skill that can be acquired

over time and with practice by everyone (see, e.g., Brennan & Resnick, 2012;

Lockwood & Mooney, 2018a; Wing, 2006).

As seen in the definitions of intelligence provided above, no specific technology is

involved when talking about intelligence. Intelligence is simply described as a

characteristic of the human mind. This is different for CT which is often mentioned in

conjunction with some sort of technology such as using computers to solve problems.

Nevertheless, it is important to acknowledge that CT does not occur only in conjunction

with technology, it is more strongly associated with the use of computers than is

intelligence.

In addition, Wenke and Frensch (2003) questioned the generality of intelligence.

They had difficulties finding convincing empirical evidence that people who score high

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 67 –

on intelligence tests are also generally good problem solvers. Although it is not unusual

to find high correlations when problems are simple and well-defined, Wenke and

Frensch reported that correlations decline with an increase in the complexity of

problems. They further stated the high correlations could be caused by the high

similarities between the used instruments. Intelligence tests are traditionally based on

well-structured problems seldom use complex and ill-structured problems. That leads to

the conclusion that intelligence can be seen as the general ability to solve problems but

only when the problems are well-structured. Correlations are lower when problems are

more complex and ill-structured such as those that govern a fictional city (Dörner,

Kreuzig, Reither, & Stäudel, 1983). On the other hand, as explained in section 2.2.1, CT

is regarded to be an approach for solving ill-structured problems with methods usually

used for well-structured problems. So the scope of CT is different. Although people

with high intelligence scores might do well in solving well-structured problems, people

with high CT levels might excel in solving complex problems.

In summary, CT and intelligence show some conceptual overlaps. First, both are

concerned with solving problems. Although both concepts are not associated with the

same kind of problems, mutual dependencies are still conceivable. Second, the distinct

role of abstraction is present in both concepts. Some theories about intelligence even do

not distinguish between high intellectual performance and high abstract thinking, and in

CT the ability to abstract is often considered as a keystone. Despite the difference, a

study with the goal of observing the effects of CT should take these similarities into

account and consider a measure of intelligence with a focus on abstract thinking. This

way the unique attributes of CT can be analysed more precisely.

In addition, algorithmic thinking could be a distinctive facet of CT whereas the

ability of abstraction is not. Thus, a more distinct definition increases the divergent

validity of CT and could lead to instruments with higher discriminate validity. On the

other hand, the strong correlation between CT and intelligence could also be an

indication that they two are naturally related. For example, CT may even be regarded as

a component of general intelligence. Indeed, there are theories on intelligence based on

the idea of several mental abilities or multiple intelligences, such as that of Gardner

(1983). Spearman (1904) already explained that positive relationships between these

different abilities can be summarized as a g(eneral) factor of intelligence. Here, CT

could be a cognitive ability that may be classified as a g factor. The only possible

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 68 –

explanation as to why CT is not considered as a g intelligence is because it is new and

its relation to other cognitive abilities is unclear.

2.5.2 Programming quality

CT is a cognitive skill and this is why some theoretical overlaps with other cognitive

concepts such as intelligence can be assumed. CT also emerged from CS, so technology

and computers play a role. Although there is a common understanding that CT and

programming are not the same (Lockwood & Mooney, 2018a; Wing, 2006), it is

conceivable that CT overlaps at least to some extent with CS-associated skills.

Wing famously stated that CT is primarily about humans and not about machines.

CT is “a way that humans, not computer, think” (Wing, 2006, p. 35) because obviously

computers do not think. Additionally, participants of the NRC workshop concluded that

technology is part of CT (NRC, 2010). From that perspective, CT means to find and

apply the appropriate technology to reformulate a problem so that a computational

solution is possible (Bocconi et al., 2016). CT involves asking “How would I get a

computer to solve this problem?” (Wing, 2008). The computer can be understood as an

agent for “computational thoughts”. The computer executes the human’s abstract

cognitive procedures in concrete actions and arrives at the solution. It may be an

exaggeration to say that CT depends on using computers, but it can be assumed that

computers can play a crucial role for solving problems in the context of.

One way to solve problems through computers is programming. The European

Digital Competence Framework for Citizens defines programming as the ability to

“plan and develop a sequence of understandable instructions for a computing system to

solve a given problem or perform a specific task” (Vuorikari, Punie, Carretero, & van

den Brande, 2016). This is similar to the definition published by the Massachusetts

Department of Elementary and Secondary Education (MDESE), which referred to

programming as “the craft of analysing problems and designing, writing, testing, and

maintaining programs to solve them.” (MDESE, 2016, p. 56) Most people do not

distinguish between programming and coding and use both interchangeably in daily

conversation. Nonetheless, to be precise, coding has a narrower meaning than

programming. Coding is the act of writing a computer program in a specific

programming language (MDESE, 2016, p. 48). In this sense, coding means to

implement a specific solution to a programming problem. For Bornat (as cited in Bruce

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 69 –

& McMahon, 2002, p. 23), knowing how to code means having knowledge about a

specific programming language and how to write a line of code that is syntactically

correct. Knowing how to program means having a broader knowledge about the

principles of different programming languages.

This is why CT is often strongly associated with programming. As for CT,

programming is concerned with solving problems. The difference, however, lies in the

kind of problems at hand. Although programming is concerned only with problems that

can be solved using coding, CT is not limited to that. Its scope is wider and not strictly

limited to CS-related problems (Lamprou & Repenning, 2018; Shute, Sun, & Asbell-

Clarke, 2017). As stated earlier, CT is a specific way of transforming and approaching a

problem so that a computer can help to solve it. These problems can be programming

tasks but also extend beyond that. Despite that, programming problems are always

computational thinking problems (Figure 2.4).

This is the assumed relationship in theory and so programming activities are

sometimes used to teach CT (Ching, Hsu, & Baldwin, 2018; Lye & Koh, 2014) or CT is

used to teach programming (Davies, 2008; Grover, 2017; Grover, Pea, & Cooper,

2015). However, it is still unclear how CT is actually applied when solving

programming problems and how much CT is actually involved in programming

activities. Researchers have so far looked at both concepts separately but have not

analysed the whole programming process and how much CT is actually involved.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 70 –

Figure 2.4. Assumed conceptual relationship between CT, programming, and coding.

2.5.2.1 Assessment of programming quality

Assessment of programming skills has been shown to be difficult. Unlike intelligence,

for which different well-developed tests exist, there are no standardised measurements

for programming. There are some frameworks about marking programming skills, but

they mainly focus on mistakes. For example, Tabanao and colleagues developed a

system to analyse the kind of errors that occur when novice CS students compile their

code in Java (Rodrigo, Tabanao, Lahoz, & Jadud, 2009; Tabanao, Rodrigo, & Jadud,

2011). Luxton-Reilly et al. (2017) went one step further and drew conclusions about

students’ knowledge about crucial CS concepts, but they also made their inferences

based on wrong syntax or wrong commands in code. These approaches come in very

handy when the goal is to simply focus on correct coding in a specific programming

language, but, as described above, programming consists of more than that. Correct

coding is only one facet of the ability to program.

In his book Clean Code, Martin (2009) proposed the idea of programming as

craftsmanship. Instead of focussing on a specific programming language, Martin gave

an overview of general principles concerning what he called good programming

practice. Based on that, several major aspects that distinguish good code from bad code

Computational
thinking

Programming

Coding

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 71 –

are derived. These principles allow a more holistic view about programming quality

than is possible by looking only for someone’s erroneous code.

Most programmers may think that “getting the code working” might be the most

important task for a professional programmer. However, this is often not true. Of

course, a code needs to work but the functionality might change over time and version

of releases. The readability, on the other hand, has a profound effect on the ability of

others to maintain the code. If the code is difficult to read, it is difficult to adjust its

purpose and functions over time. As Martin (2009, p. 76) stated, “the coding style and

readability set precedents that continues to affect maintainability and extensibility long

after the original code has been changed beyond recognition”. The readability is an

indicator for the future usage of the code. A code is readable if it is simple and clear,

and if expressions are in a tight order. This also includes the formatting style. For

example, functions related to each other (i.e., call themselves or have similar purposes)

should be closely located.

The readability of a code is also determined by its clearness of intention. If the

intention is clear, it is simple to maintain and extend it not only for the original

programmers but for other programmers as well. A good code “should clearly express

the intent of its author. The clearer the author can make the code, the less time others

will have to spend understanding it” (Martin, 2009, p. 175). One strategy to achieve this

is to adhere the keep it simple and stupid (KISS) principle. The meaning of KISS is

twofold. First, if there are more solutions for a problem, the simplest one is the best.

This principle is comparable to similar principles in different disciplines such as

Occkham’s razor in science in which the simplest model or theory is preferable. Second,

it means one function should do only one thing. Several nested functions would do more

than one thing. This causes the level of complexity to rise and so the level of readability

decreases (Martin, 2009, pp. 35–36).

A good code is an efficient code and a code is efficient when just the right number of

expressions and commands are used and duplication of expressions and commands is

avoided. This is meant by the once and only once or don’t repeat yourself (DRY)

principles. Duplications inflate the code unnecessarily. It becomes more difficult to read

and understand. Martin (2009, p. 289) called duplications “missed opportunity for

abstractions” to a higher level. As described in more detail in Section 2.2.3.1,

abstraction in codes creates the opportunity for freedom and independence. With a high

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 72 –

abstract code, fewer manual changes are needed in later maintenance or extensions, and,

with less manual interference, errors are less likely.

2.5.2.2 Computational thinking and programming

Computational thinking and programming are related to each other. “CT is that type

of thinking used when programming on a computer or developing an application for

another type of digital device” (Fraillon, Ainley, Schulz, Duckworth, and Friedman,

2019, p. 3). CT is considered as a specific function for computer scientists for learning

how to use a computer (Li et al., 2020). Prevailing views that associate CT with

computers and/or programming may easily lead people to believe that CT is specifically

for computer science professionals. In view of this, it would be more challenging for

many to understand why CT is important to everyone and most professions. With a

certainty programming, at least in the way it is perceived from the work of professional

programmers, is perceived to be difficult (Li et al., 2020). For example, to develop a

software for a computer’s internal operations would be highly relevant for professionals

in computer science, but out of reach to many others. Similarly, abstraction and

modelling with the use of CT in many professional fields beyond computer science

would be seen as unimportant and of marginal concern for most people.

With emphasis on computing and programming in CT, it may be said that CT has not

been highlighted in traditional school education wherein course requirements in

computer science or programming are minimal or altogether absent. Wing (2006) must

be credited with the understanding of CT as future-oriented and important to everyone.

By directly associating CT and concepts that are essential to computer science, Wing

(2006) substantially contributed to the current movement of computer science education

for all in the United States (PITAC, 2005; White House, 2017). However, there are

continuing challenges for teachers and education researchers who have been accosted

with the difficulties in seeking to understand the meaning of CT, its assessment as well

as usefulness for everyone (Denning, 2017). To note, accessing and using CT could be

undermined in different ways by equally different expectations of training in computer

science as a pre-condition. It cannot be overstated that computer science itself is no

longer considered as the study of phenomena pertaining to computers but rather is

understood as the study of computational information processing both natural and

artificial (Denning, 2007). On the other hand, human thinking can also be defined

according to specific models of information processing when undertaking different

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 73 –

tasks (Anderson, Bothell, Byrne, Douglass, Lebiere & Qin, 2004). The associations

between computing and human thinking in information processing implies the

possibility of taking the CT construct to a more generalizable level.

In particular, CT needs to be regarded as a model of thinking, which makes CT more

about thinking rather than computing (Denning, 2007). Because computing is the study

of natural and artificial information processing, this means to say that CT pertains to the

search for various ways to process information “that are always incrementally

improvable in their efficiency, correctness, and elegance” (Denning, 2007). In turn, this

necessitates improvement in using appropriate strategies, such as, abstraction and

modelling, practice, skill acquisition and improvement. In this regard, there are various

forms of information at varying levels of abstraction, and as such, seems like various

representations that are customizable and used in different disciplines for problem

solving, modelling, and system building (Li et al., 2020). In the same way that people

design and can design, every person including students also process information, and

the task of educators is to help them (Li et al., 2020).

Even though programming and coding can be part of CT, the latter should not be

constrained to computer science because as mentioned earlier, CT is widely applicable

to diverse professional fields and in day-to-day living. For instance, computational

modelling is currently harnessed for summarizing and analysing data (as code in CT) in

various ways to help forecast ongoing trends in the coronavirus crisis, in multiple

countries (Li et al., 2020). In the event that there is no accurate data for coronavirus or

CT, government agencies and health organisations cannot effectively monitor and

manage the crisis and in turn, this can lead to massive loss of life (Li et al., 2020).

Moreover, if there is no adequate attention to improving information processing

efficiency and elegance, there could be a resulting loss in opportunities to nurture

students’ CT and develop skills that prepare them to deal with global crises. Thus, it is

utterly important that school curricula and instruction integrate CT in students’ subject

content learning, rather than just limiting CT to computer science and mathematics. CT

should be applied in other STEM disciplines and beyond (Li et al., 2020).

It is also important to point out that although commonly used definitions of CT are

emerging in literature, these new definitions tend to be ambiguous about how people

acquire CT so that they can transform into computational thinkers. To clearly determine

whether is truly a super-set of programming, as well as, its importance, it is helpful to

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 74 –

recall the definition of CT and what this form of thinking is and what it is not. To note,

CT is the process through which a person conceptualises, which means it is not the

process through which a person programs (Wing, 2006). In addition to this, CT defines

a way of thinking at various levels of abstraction, rather than just the skill for

programming. It cannot be emphasized enough that the CT process begins before the

first line of code is even written (Wing, 2006). Second, CT is a basic functional skill

rather than a mechanical one. Third, the term CT may contain the word “computer”, but

this primarily pertains to the way humans think rather than the computer equipment.

Computers do not think it is the people who does the thinking for computers, which

means to say that it cannot be CT. Fourth, CT is not for a person to think like a

computer but instead, thinking with a computer. Moreover, CT complements and blends

mathematical and engineering thinking. Just as importantly, the products of CT are

ideas and concepts used for approaching and solving problems, which also means that

these are not artifacts (Wing, 2006). Overall, CT can be considered as a set of specific

cognitive skills and problem-solving processes.

Although CT is relatively new, the process described by Wing (2006) may be

considered as a computationally-enhanced version of the well-established scientific

method (Lamprou & Repenning, 2018). For instance, in accordance with Wing’s

conceptualization, CT nay be regarded as combining mathematical-analytical thinking

with natural sciences, engineering, and other disciplines. In other words, CT is

conceptualised as thinking instead of a physical object that is the computer. CT is

considered and utilised as a way of thinking that harnesses the computer as an

instrument for supporting human thought processes, to envision the results of this

thought process, as well as, to formulate a problem so that a computer supported

solution may be introduced. Based on Wing’s (2006) definition, the CT process can be

pictured into three stages.

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 75 –

Figure 2.5: Illustration of the CT Process Stages (Lamprou & Repenning, 2018).

As seen in Figure 2.5 above, the first step of CT is formulating a problem which

takes place through abstraction (Lamprou & Repenning, 2018). The individual

formulates a question usually about how something works while visualising the problem

using a diagram on a piece of paper. It is through abstraction that clearly demonstrates

how CT does not have to be initiated through the use of a computer. The second stage is

solution expression (automation), which is a “non-ambiguous expression of the solution

so that the computer can carry it out through computer programming” (Lamprou &

Repenning, 2018). The third stage is executing the solution and assessing it through

Analysis, whereby the computer shows direct consequences of one’s own thinking.

2.6 Summary

The idea of thinking as a computer scientist has drawn much attention of many

researchers. The attempt to consolidate this idea resulted in many different definitions,

which leads to the perception of a CT being a fuzzy concept. So, the first step of the

thesis thesis was to find a way to narrow this concept in a working definition to enable

empirical assessment. To do this, systematic literature reviews and major publications

with summaries of important experts were analysed to identify the repeatedly mentioned

core characteristics and aspects of CT.

Its three core aspects consist of decompose the problem into smaller sub-problems,

abstract the problem as a way to simplify it, and designing an algorithmic solution.

While the first two facets comprised the analysis of the problem, algorithmic design

describes how the problem is actually being solved. Because CT neighbours many

CHAPTER 2 – CONCEPTUAL FRAMEWORK

– 76 –

different research fields and because of the vast number of different definitions, all

aspects were discussed from different perspectives, i.e., psychology, education, and

computer science, to have a better insight of what CT is and where it comes form.

Computational thinking is widely seen as a way to solve different kinds of problems.

Complex problems and especially the understanding of algorithmic solutions became

more important in the last two decades. That is why it is important to investigate how

CT is applied when solving such problems and to find ways to systematically observe it.

This research lies the foundation of future training plans on CT.

CHAPTER 3 – METHODS

– 77 –

3 METHODS

3.1 Research questions

This study had the goal to answer the two research questions. The first research question

(“How is computational thinking applied when solving a programming task?”) as well

as the second research question (“Can multimodal measures of computational thinking

be relevant predictors for programming quality?”) can be both described as exploratory

because no specific hypotheses were defined. The focus of RQ1 was what CT looked

like and what CT skills are most dominant, whereas RQ2 was about to reveal the

relationship between CT and programming quality. To address both questions different

methods and measures were used. To answer RQ1, participants were filmed, their

voices were recorded, and their screen activities were captured while solving a

programming task. To answer RQ2, different measures for CT were used to see how

much variance in programming quality could be explained. In addition, control

variables such as nonverbal intelligence, sociodemographic information, and prior

knowledge were assessed as well.

3.2 Procedure

3.2.1 Phase 1: Online study

The study was divided into two phases. For the first phase, participants logged in on the

university provided learning management system. One measure of CT was based on

unplugged method. This (unplugged) CT measure, a measurement of nonverbal

intelligence, some demographic data, and prior programming experience assessment

were obtained from this learning management system. As unplugged CT measure, a set

of adapted tasks from the Bebras contest was used. Nonverbal intelligence was assessed

with the 3rd edition of the Test of Nonverbal Intelligence (TONI-3). The Bebras tasks

and the TONI-3 are described in more detail in section 3.5. In addition, participants

were asked to provide demographic information (e.g. age, gender) and whether they had

any prior programming experience and whether were familiar with Scratch.

CHAPTER 3 – METHODS

– 78 –

The participants received an email with general information about the study and an

invitation link to the Bebras tasks and the TONI-3. Both tests were administered

independently to give participants a break between the testing sessions. Participants had

up to one week to complete all questions and tasks before the second phase began.

3.2.2 Phase 2: In classroom programming task

The second phase of data collection took place within university classrooms. Students

were organised in pairs and were given the following task to work on in Scratch:

“Program a story or a game where a hero has to overcome a

challenge in order to defeat the villain(s).”

This task can be categorised as a typical designing task. Participants are constraint by

some limitations and multiple solutions are equally favourable, which makes this kind

of task an “archetypical example of ill-structured problems” (Jonassen, 1997). As

described before, ill-structured tasks should be used when investigating CT. To analyse

when and how much time participants actually spent on CT-relevant behaviour while

working on this task, a coding manual was design. The results participants created for

this task is also further analysed with regard to their programming quality based on a

rubric scheme and Dr Scratch. The CT behaviour coding manual, the programming

quality rubric scheme, and Dr Scratch are explained in more detail in section 3.5.

The reasons for working in pairs are described in more detail in section 3.3. The CT

coding manual is dependent on observable clues compromising both verbal and

nonverbal communication. To provoke such communication clues, a social setting

needed to be created. It was anticipated that encouraging students to work in pairs

would facilitate observation of CT. The programming pairs were formed based on their

Bebras scores to minimise any effects due to large differences in competences. In total,

37 programming pairs were formed.

3.2.2.1 Scratch programming environment

Scratch is a prominent VPE. It was officially recommended to teachers to enhance CT

abilities (CSTA, 2011) and has been used in multiple studies (see, e.g., Brennan &

Resnick, 2012; Moreno-León, Román-González, Harteveld, & Robles, 2017; Wang &

Zhou). As such, Scratch provided an opportunity to both build upon previous studies

and contribute to the growing body of research relating to its use. In addition, it was

CHAPTER 3 – METHODS

– 79 –

expected that the participants had no or only little prior programming knowledge and

Scratch is easy and rapid for novices to learn. Scratch also provides a considerable

degree of flexibility and power to users, enabling them to respond to more ill-structured

tasks such as the one used in this study. Accordingly, Scratch was chosen for this study.

In Scratch, the user can chose between different sprites. Sprites can be dinosaurs,

animals, or things. For every sprite, there is a different programming window so the

users prepare their separately for each sprite. Codes are not written in Scratch; instead

code chunks are being connected to each other by drag and drop. The code chunks are

similar to Lego® blocks and can be connected only if the connections make sense. This

is the biggest difference to normal programming languages. There is no possibility of

syntax errors or illogical programming caused by simple lack of knowledge about the

programming environment. A bunch of connected code chunks is usually called a script.

An example of a Scratch project as created in this study is shown in Figure 3.1.

Figure 3.1. A screenshot of a Scratch project. On the bottom left are shown the three

different used sprites. A script of connected code chunks for the dinosaur sprite is

shown on the right. The window in the top left shows the effects and actions of the

codes.

Code chunks are divided into 10 categories. These chunks have their own colour

based on their category, which makes it easier to read the later programmed project

(Figure 3.2). Motion code chunks are deep blue and make sprites move through the

CHAPTER 3 – METHODS

– 80 –

space. Looks code chunks (dark purple) change appearance (or costumes) of sprites and

activate chat or think bubbles. Sound code chunks (bright purple) enable sound effects.

Brown event code chunks initiate the codes to run, and the category control (ochre)

contains mostly if-then code chunks and loop commands. Bright blue sensing code

chunks react in combination with the environment, for example touching a sprite of

specific colour or position. Mathematical and logical operations can be performed with

code chunks from operators (bright green), and data code chunks (orange) create a

scoring system. There are some pen code chunks (dark green) that draw when used and

there is the possibility to use customised code chunks (dark violet) if more blocks are

used. However, the last two are infrequently used in general and were not used in this

study as well.

Figure 3.2. The categories of code chunks in Scratch.

There is a qualitative difference in usage of motion, looks, sounds, and event code

chunks on one hand, and control, sensing, operator and data code chunks on the other.

Code chunks from the first category (which will be referred to as Level 1 chunks) can

be easily connected to other chunks and cause outcomes by themselves. Code chunks

from the second set (which will be referred to as Level 2 chunks) cannot be connected

as simply as Level 1 chunks. Most of Level 2 chunks have to be connected to other

chunks first or they cannot cause an outcome directly. Level 2 chunks are most

comparable to functions in other programming environments or programming languages

that need an extra argument to work, whereas Level 1 chunks do not need any

arguments. These restrictions of usage make Level 2 chunks more complex and they

are, therefore, cognitively more demanding than are Level 1 chunks. For instance, the

sensing code chunk touching colour can only be integrated in four different control

chunks that additionally need to be connected to a Level 1 chunk to work. The

differentiation between Level 1 and Level 2 will be considered in the rubric scheme to

assess the programming quality.

CHAPTER 3 – METHODS

– 81 –

Before the actual task was assigned, students were given an opportunity, in a 40-

minute warm-up phase, to become familiarise to Scratch. Participants were not recorded

during this warm-up and it was not part of later data analyses. The investigator

recommended completing four tutorials prepared in Scratch: (1) Getting Started with

Scratch, (2) Make it Fly, (3) Create a Story, and (4) Catch Game. The full complements

of Level 1 and Level 2 chunks were introduced in these tutorials. Therefore, it was

expected that all participants would have similar level of knowledge about Scratch by

the time the programming task was commenced, and that they would also understand

the principles of Scratch such as how to connect code chunks by means of drag and

drop and how to program their avatars or sprites in general.

Participants’ activities were captured with Open Broadcasting Software (OBS,

version 18.0) while working on the programming task. Participants’ verbal interactions

were recorded with a headset around their necks. Along with voice recording, built-in

webcams filmed most of the participants’ upper buddy. This way, facial expressions and

other nonverbal clues were observable so interactions were easier to interpret than with

voice recordings alone. In addition, participants’ operations on screen were captured as

well.

Out of the 37 pairs, 1 pair did not give consent to be recorded, 5 pairs turned off

(unintentionally) the microphone or shut down the recording software, and in 4

instances the software froze while recording. There were complete and unproblematic

recordings from 27 pairs, which were used for later analyses.

3.3 Justification for video study

Direct observation of behaviour is the best choice of methods when actions are the

centre of the research question and self-report is not valid enough or not practical. The

first is true when measuring performance is the aim the latter is true when an

intervention is going (Chorney, McMurtry, Chambers, & Bakeman, 2015). Both are

partially true for CT as seen in this study. CT is seen as a thinking product but also a

product of actions. In addition, the goal of this study is to observe what kind of CT

associated behaviour and skills people use while working on a programming task.

Therefore, an observational video study seems to be the right choice.

CHAPTER 3 – METHODS

– 82 –

Others used different approaches. Brennan and Resnick (2012) interviewed children

about their Scratch projects. Brennan and Resnick emphasised the positive side of

interviews that they provide a deeper insight in the thoughts and (intended) meaning

behind these projects. They also, however, pointed out that the interviews were limited

by what the children remembered, which was sometimes not correct. For example, some

answered the question what they did when they stuck that they never got stuck, which is

highly implausible.

CT is a cognitive process and therefore difficult to observe directly. However, in

verbal and nonverbal communication people express their thoughts and make them

accessible to other people. They talk about what they want to do and what they intend to

do. In other words, people talk about what they think. To certain degree, this is true for

nonverbal communication as well. Facial expressions, body language, and gestures can

provide to some extent clues about people’s intentions and thoughts. Accordingly, in

order to study CT it seems appropriate to create a social situation in which people are

encouraged to communicate verbally and nonverbally with each other. For this study,

that kind of social situation was created by building programming-pairs so students

were working collaboratively on a programming task. Moreover, the investigator of the

study instructed the participants “to express their thoughts” and “to talk to each other”.

To capture all CT-relevant moments during this social situation, participants were

filmed while working on the task. As Knoblauch, Tuma, and Schnettler (2013) put it,

videography is an especially useful tool to investigate communication and social

interactions because no other means of recording is able to collect data in such detail. In

video recordings, it is possible to pause and repeat single frames to unveil hidden micro

interactions that show CT interaction patterns. For instance, before an algorithm is

applied, the problem often needs to be put into chunks. Especially with video data, it is

possible to identify these patterns. In this regard, Knoblauch et al. (2013) have called

videography “the microscope of the social scientists”—something that provides a broad

opportunity to analyse social interactions.

Silverman (2013) has pointed out that video data can be analysed in two ways. On

the one hand, a researcher can engage in “mapping the woods” to explore the data on

the surface and identify empirical clues for theoretical concepts. On the other hand, a

researcher can engage in “chopping the trees” and analyse a video by a fine-grained

CHAPTER 3 – METHODS

– 83 –

sequential analysis based on a theory. To answer the research questions, both ways were

needed.

In order to address RQ1, the video data needed initial “mapping” to identify events

that could be related to CT and that are not, for example, irrelevant chatting. In a second

step, the CT-relevant data needed to be “chopped” with a coding scheme in which they

could be classified in more detail so that the role they play for CT became clearer. The

more detailed classification of CT events allowed the investigation of the relationship

between CT and programming quality that provided an answer to RQ2.

There are different ways to code the video material, which are defined by the level of

inference a rater needs to make and the sampling method. If there is only little inference

required then the coding scheme is referred as low inferential. Coded behaviour in low

inferential schemes is mostly easy to observe, such as hands coming up during a lesson

Low inferential coding schemes deal with behavioural clues or interactions between

people in a short time period (i.e., a couple of minutes, or even seconds). In contrast to

low inferential coding schemes, high inferential coding schemes provide a judgment

involving a longer period of time, for example, a whole lesson. Codes are less closely

related to an actual behaviour. The theoretical concept is an attribute, or a feature, or a

set of different behaviours. The intensity of this attribute is judged on a rating scale. An

example would be classroom climate during a school lesson, rated on a Likert-type

scale. Codes of high inferential schemes are more complex and therefore they are more

open to interpretation. Low- and high-inferential coding are both often used in video

studies in education (Pauli & Reusser, 2006). For this study, CT is assumed to be a

mixture of both with some elements being rather low and some being rather high

inferential.

There are two kinds of sampling methods for coding schemes: time sampling and

event sampling. When using time-sampling, the whole session is divided into time

intervals, usually 5–20 seconds (Lotz, Gabriel, & Lipowsky, 2013). Each interval is

assigned to one distinct code of behaviour. If more than one critical behaviour clues are

shown during the interval, the dominant behaviour is coded for the whole interval. Time

sampling is used when there is already some prior knowledge about when the behaviour

will occur. In contrast to time sampling, event sampling is based on the start and the end

of a behaviour sequence. Event sampling makes it possible how often and for how long

participants showed a specific behaviour (Bakeman & Quera, 2011, p. 27). Event

CHAPTER 3 – METHODS

– 84 –

sampling is usually used when little is known about the occurrence of the construct.

Because of the novelty of the coding scheme, CT will be coded based on event-

sampling.

Meanwhile, it must be noted that an added data collection method for this study

would have been the interview method of experts, instrument development, or

validation study. However, such data collection is time consuming, as Brennan and

Resnick (2012) emphasized. Apart from the time-intensive nature of such data

collection, interviews would have to be repeated at several points over time to obtain a

developmental portrait (Bresnan & Resnick, 2012). The goal of this study was to find

out how CT might be applied during a programming task. An interview would have

been disrupting the process and hindsight comments might be biased. In light of these

points, a video-based study of this design is well justified.

3.4 Participants

Because CT is a highly discussed concept especially in computer science education, the

sample for the main study consisted of 108 pre-service students completing a digital

creativity and learning course at an Australian University, in March 2017. It must be

noted that students’ convenor was also the author’s supervisor. However, participation

in the study was voluntary regardless of the relationship to the investigator and

convenor. Students’ participation and performance in the study were unrelated to their

university assessments and the convenor was not present during any time of data

collection. It is important to point out that the sample size and the selectiveness used for

sampling may lead to an issue pertaining to non-generalization to the broader

population from which the sample was derived. The goal of this study was to observe

CT while working on a problem. This requires at least some level of CT and so a

selective sample was drawn. A complete random sample would have likely resulted in a

sample with very low level of CT. In comparison, a sample of skilled programmers or

engineering students may have also confounded the results. Thus, a sample from

students enrolled a digital creativity learning course was drawn. Because of these

considerations and because of the lack of specific studies like the current one, made it

difficult to plan the required sample size in beforehand and a post-hoc power-analysis is

provided later. Moreover, the convenor was not present during data collection, thereby

eliminating any risks for bias.

CHAPTER 3 – METHODS

– 85 –

There were more female (n = 73; 68%) than male students (n = 33; 30%) among the

participants (n = 2; 2% preferred not to say). On average, students were 23.9 (SD = 5.2)

years old. Because the university in which the study was conducted has a significant

number of international students, participants were asked about their English

proficiency on a scale from 1 (poor) to 4 (native speaker). The vast majority of

participants (n = 105; 97%) indicated that they spoke English fluently or were native

speakers. To be sure all participants have the same level of programming knowledge,

participants were asked on a scale from 1 (no prior experience) to 5 (professional level)

how familiar they were with programming. Again, nearly all participants (97 %) had

either no or only little prior programming experience.

3.5 Instruments and measures

3.5.1 The Bebras tasks

To measure CT based on unplugged methods, participants solved an online version

of adapted Bebras tasks. The Bebras contest itself is described by (Dagienė, 2006) in

more detail. In total, 20 tasks were used and which were all chosen from the Australian

versions of the Bebras contests from 2014 (Schulz & Hobson, 2015) and 2015 (Schulz,

Hobson, & Zagami, 2016). Nine tasks were derived from the 2014 version and 11 from

the 2015 version (

Table 3.1). The versions from 2014 and 2015 were the most recent ones at the time of

creating the CT test for the present study (end of 2016) and both were freely accessible.

Only Australian versions were considered because the study was conducted in Australia

and it was hoped this would avoid any problems associated with linguistic phrases and

idioms.

One requirement was that the overall testing time for the Bebras tasks would not

exceed 60 minutes. Based on the results of former studies (Dagienė, 2006; Dagienė &

Futschek, 2008) and the pilot study, it was expected a person would need 3 minutes on

average to solve one question. Therefore, 60 / 3 = 20 tasks seemed to be an adequate

number. Moreover, in previous studies (Dolgopolovas, Jevsikova, Savulionienė &

Dagienė, 2015; Lee, Lin, & Lin, 2014), the same number of tasks or even fewer had

been used to assess participants’ level of CT.

CHAPTER 3 – METHODS

– 86 –

The tasks were chosen from tasks relevant to oldest age group available for the

original Bebras contests (i.e., adolescents 16 to 18 years of age; school levels 11 and

12). As mentioned in section 3.4, the average age of participants in this study is 24

years. Although there is a big gap in age, it was not expected that this difference would

cause any problems (e.g., ceiling effects) for three reasons. First, no published evidence

could be found that 16 and 24 year-olds differ significantly in cognitive skills such as

the abilities to decompose a problem, use algorithmic thinking, and use abstract

reasoning which all are needed to solve the Bebras tasks. Second, participants of the

pilot study who were similar in age to the participants of the main study were asked

how difficult they perceived the tasks. Their answers corresponded with the

categorisation of the difficulty of the tasks. They tended to mark as easy the tasks that

had been labelled easy, to mark as medium the tasks that had been labelled medium, and

to mark as hard the tasks that had been labelled hard. Third, using the Bebras tasks to

assess the level of CT for participants older than the suggested age group have been

used in previous studies, for instance, for vocational students (Lee, Lin, & Lin, 2014)

and novice engineering students (Araujo et al., 2017). In conclusion, it was not expected

that the participants of the study would solve the Bebras tasks differently from the way

in which the originally intended age group had done.

There were three levels of difficulty: easy, medium, and hard. Participants received

two, three, or four points when they solved tasks at each of these levels, respectively,

and they did not lose any points when they gave incorrect answers. This scoring scheme

relies on the recommendations for scoring in the Australian Bebras contest since 2014

(Schulz & Hobson, 2015). The maximum achievable score was 57.

Table 3.1 contains the CT tests for the present study based on a balanced mix of

Bebras tasks from both Australian Bebras contest versions and levels of difficulty.

Table 3.1

The Distribution of CT Tasks by Origin and Level of Difficulty

Level of difficulty Tasks from 2014 Tasks from 2015 Total

Easy (2 points) 4 (8 p.) 4 (8 p.) 8 (16 p.)

Medium hard (3 points) 3 (9 p.) 4 (12 p.) 7 (21 p.)

Hard (4 points) 2 (8 p.) 3 (12 p.) 5 (20 p.)

Total 9 (25 p.) 11 (32 p.) 20 (57 p.)

CHAPTER 3 – METHODS

– 87 –

For the purpose of the present study, some of the Bebras tasks were revised slightly.

Some Bebras tasks are presented with iconic beavers or other comic pictures, or

instructions refer to beavers as in “beaver did … beaver went …” (see overview for

original Bebras tasks in (Schulz, Hobson, & Zagami, 2016). This is not surprising

because the Bebras contest was developed for school students from 8 to 18 years of age

(school levels 3 to 12). This beaver theme was intended to keep younger contestants

motivated during the test. Older contestants expressed problems with these beaver

stories and preferred a neutral presentation of tasks (Vaníček, 2014). Therefore, the

tasks were presented without any reference to beavers in order to be more appropriate

for the sample in this study. An example of an original task and its revised version is

shown in Figure 3.3 (see Appendix B for the complete set of tasks used). The structure

of the task of the revised version is unchanged in that participants have to apply the

same cognitive strategies to find the solution. Only the comic elements and the beaver

references were changed or deleted.

Task: Original (“Beaver the Alchemist”)

Beaver the Alchemist can convert objects into new

objects. He can convert:

- two clovers into a coin

- A coin and two clovers into a ruby

- A ruby and a clover into a crown

- A coin, a ruby, and a crown into a kitten

After an object has been converted into another object, it

disappears immediately.

Task: Revised

In the following you can see how objects convert into other

objects. The rule is:

- two squares convert into one circle

- One circle and two squares convert into one

hexagon

- One hexagon and one square convert into one

triangle

- One circle, one hexagon, and one triangle convert

into one cylinder

After an object has been converted into another object, it

disappears immediately.

Question: How many clovers do Beaver the Alchemist

need to create one kitten?

Answer: 11

Question: How many squares do you need to create one

cylinder?

Answer: 11

Figure 3.3. Example an original Bebras task as used in the Australian Bebras contest

2014 on left and its revised version on the right.

CHAPTER 3 – METHODS

– 88 –

Although CT is considered as multifactorial with emphasis on the cognitive abilities

as described in Román-González et al. (2017), this study seeks to determine (a) in RQ1,

what CT looks like and what CT skills dominate among the participants; and (b) in

RQ2, the relationship between CT and programming quality. As such, to answer RQ1,

participants were filmed, their voices were recorded, and their screen activities were

captured while they solved a programming task while to answer RQ2, different CT

measures were used to determine the extent of variance in programming quality.

Consequently, attention has been on the analyse/apply (through Bebras) and

create/evaluate (through Dr Scratch) cognitive components of CT (Román-González et

al., 2017).

3.5.2 Test of nonverbal intelligence

To measure participants’ nonverbal intelligence or general problem-solving skills, the

Test of Nonverbal Intelligence (3rd edition; TONI-3) was selected, developed by Brown,

Sherbeernou, and Johnson (1997). The TONI-3 is a culture fair test (i.e., minimally

linguistically demanding). With a 15-minute average testing time, it is relatively fast to

administer. The TONI-3 was developed to assess the cognitive aptitude of children and

adults from 6 to 90 years of age, which lies in the range of the participants’ age.

Moreover, the authors claim that the test is measurement of intelligence with a

theoretical and psychometrical foundation. Nevertheless, the TONI-3 may be limited in

terms of reliability and correlations with achievement measures. Because of this, it must

be pointed out that future studies using this instrument may be undertaken to collect

additional validity and reliability evidence and diverse samples.

The focus of the test lies “on abstract reasoning and problem-solving” as cognitive

concepts and although the developers pointed out the TONI-3 was not developed based

on a specific theory, these concepts play a crucial role in several prominent theories of

intelligence. Therefore, the TONI-3 score can be interpreted as one of Thurstone’s

mental abilities, as one of Gardner’s multiple intelligences, or as facet of fluid

intelligences or as facet of fluid intelligence described by Cattell, Horn, and Carroll.

In general, the test material consists of two test forms, A and B. Both forms have 45

equivalent abstract pictures as test items and five identical exercise items to ensure the

participants understand the procedure and materials. For this study, test form A was

used. Every item was divided into two parts, as shown in Figure 3.4. The first half of an

item showed an uncompleted set of geometrical figures. In the second half, six similar

CHAPTER 3 – METHODS

– 89 –

figures were provided. The participants had to choose one of the six figures from the

second half that completed the set of figures of the first half. In some items (Figure 3.5),

the task was slightly changed so that only one figure was presented and the participants

had to choose one set out of four sets of figures that completed the row. Nevertheless,

the task in all test items was always to identify patterns and to complete a set or a row of

abstract figures, which is a typical test procedure for figural/ abstract problem-solving.

Figure 3.4. Item number 27 from test form A; one figure completes a set of figures.

CHAPTER 3 – METHODS

– 90 –

Figure 3.5. Item number 36 from test form A; a set of figures completes a row.

The test was not timed. Participants could take time as much as they needed. The

items were ordered by difficulty. The test began with the easiest tasks and progresses in

level of difficulty. In the original test, this permitted having a ceiling item in the testing

procedure to reduce the testing time for the participants. The ceiling item is defined as

the last item of the last five attempted items in which the participant has made three

mistakes. The testing continued until the ceiling item had been reached or until last item

(item number 45) had been solved. Every correct identified figure scored one point and

all points of all correct solved items until the ceiling item or the last item were added to

yield a total score. Therefore, the raw scores ranged from 0 to 45.

3.5.2.1 Psychometrics and usage in this study

The raw scores can be transformed via norm samples into IQ scores with a mean of 100

and a standard deviation 15. The reliability assessment shows that the TONI-3 is

relatively stable over time with a retest-test reliability of rtt > .90 and the internal

consistency of Cronbach’s α = .93 indicates it assesses a latent construct with a little

measurement test error (Brown, Sherbeernou, & Johnson, 1997).

The validity of the TONI-3 is also satisfactory. For the content validity, the original

test material for the first version was reviewed by psychologists, psychometricians, and

educators with expertise in experimental and developmental psychology (Brown,

Sherbeernou, & Johnson, 1997). In addition, item response analyses methods were used

to identify any biased items. High criterion validity is indicated by middle and high

correlations between the TONI-3 and the figural part of other intelligence tests. High

correlation between the TONI-3 and school achievements indicated high construct

validity Banks & Franzen, 2010; Brown, Sherbeernou, & Johnson, 1997). The validity

coefficients are sufficiently high to indicate that the TONI-3 satisfactorily measures

abstract problem-solving ability.

To optimise the reliability and validity, the TONI-3 was used according to the

manual as much as possible. Some changes still had to be made because the original test

comes as a printed hardcopy and the IQ estimations in this study were completed online.

First, the material from the book was scanned so it was possible to present it online.

Second, during the original test setting, an examiner guides the participant through the

CHAPTER 3 – METHODS

– 91 –

complete process. For instance, the examiner checks whether the participant has

understood the test process and materials. There was no examiner in during the test

session and participants were on their own while doing the test online. An exercise

section was implemented to ensure the participants became familiar with the test

situation despite an examiner not being present. In the exercise section, participants

received immediately feedback about their initial solving attempts, as shown in Figure

3.6. Nevertheless, this exercise section was separated from the actual testing section, so

it was possible for the participants to simply skip the exercise section and it is not

possible to determine whether or not this did actually happen. Apart from these changes,

the TONI-3 was conducted and analysed based on the instructions in the manual.

3.5.3 Programming quality rubric scheme

For this study, to measure programming quality, a rubric scheme for participants’

solutions of the programming task in Scratch was developed. In general, a rubric

scheme is a scoring tool for complex student work (Dawson, 2017). Such scheme

usually contains qualitative and quantitative dimensions. The vertical dimension often

represents the qualitative criteria of the attribute that is intended to be assessed. This is

the content dimension. The quantitative levels are represented on the horizontal

Figure 3.6. On the left, an example of an as correct solved marked item; on the right, an

example of an as false solved marked item.

CHAPTER 3 – METHODS

– 92 –

dimension. These indicate the extent to which each category has been achieved. This is

the rating dimension. The two dimensions create a matrix where the advantage of rubric

schemes lie. Each element of the matrix provides a concise definition for every criterion

on each level. These descriptors make the judgment more transparent, clear, and fair.

Scoring with a rubric is usually more consistent and more reliable than without one

(Jonsson & Svingby, 2007). In addition, the gradations of quality over all criteria allow

the strengths and weaknesses to be investigated in more detail as well calculating an

overall score for the attribute.

Measuring programming quality with a rubric is not a common approach but had

been more popular over the years. Lister and Leaney (2003) suggested a more criterion-

references grading for programming to ensure a higher level of clarity. They did not

develop a rubric scheme for specific test situations but made a general recommendation

how to measure programming quality for novice students.

More recent, Fagerlund, Häkkinen, Vesisenaho, Viiri (2020), developed a scheme

with the specific purpose to analyse Scratch projects. Their scheme included two

content related areas (vertical dimension). One area specifically analysed programming

patterns such as “animation”, “speech and sound”, “collision”, “data manipulation”, and

“user interaction”. The other area focused on computational thinking related concepts

based on Brennan and Resnick (2012). They analysed over 300 Scratch projects by 57

fourth graders with the purpose to have basis for educational feedback. However,

Fagerlund et al. (2020) did not specifically mention the rating itself (horizontal

dimension).

In a similar recent study, Basu (2020) also developed a rubric scheme and a

description with such horizontal rating dimensions. In the vertical dimension are

concepts such as readability and correctness as well as specific kinds coding patterns

such as use of loops and conditions. The rating dimensions states from 0 (“lack of use”)

to 3 (“exceeding grade level proficiency”). Inter-rater reliability with CS teachers of

90% or higher can be seen as sufficient and comparison between 160 Scratch projects

from middle school students and their grades indicated a high criterion validity. In

summary, Basu concluded that well developed rubric schemes provide valuable insights

on programming skills.

Therefore, a rubric scheme was also developed in this study. The first two vertical

criteria, (1) richness of project and (2) variety of code usage, were developed to take

CHAPTER 3 – METHODS

– 93 –

into account the kind of programming task. The task was ill-structured and open ended

and so a variety of solutions are possible to develop. These two dimensions assess how

much participants use the possibilities provided by Scratch. The other three vertical

criteria, (3) organisation and tidiness, (4) functionality of code and (5) coding efficiency

are mainly derived from good coding practice described in more detail in section

2.5.2.1. To ensure content validity, all five criteria were discussed with two computer

science education professionals. One was the supervisor of the author of this thesis who

specialised in research of usage of technology for educational purposes and a retired

computer science teacher with over 30 years of experience. These criteria were

horizontally rated in five steps from 0 (not evident), 1 (poor), 2 (satisfactory), 3 (good),

and 4 (excellent). In total, the rubric scheme has 25 descriptors. For more details, see

Appendix C.

3.5.3.1 Richness of project

The criterion extent and richness of code was based on what and how much was

happening in the final Scratch project. A Scratch project received lower scores when

there was only one programmed element that did only one thing than did a Scratch

project that included several different elements that did several things and that were

related to each other. For instance, the level poor meant there was only one sprite that

moved in one direction whereas level excellent meant there were more than two sprites

that could move and change appearance after being triggered and that interact with each

other. In general, a higher level Scratch project simply contained more sprites and code

chunks.

3.5.3.2 Variety of code usage

The variety of code usage described how many different code chunks from different

code chunks were used. Many different Level 2 chunks resulted in higher scores than

only a few Level 1 chunks. Participants with a higher Level in this category used nearly

all the opportunities that Scratch had to offer. For example, a Level poor Scratch project

contains only sprites that move and make sound. To achieve Level excellent, a majority

of chunks from Levels 1 and 2 needed to be used.

3.5.3.3 Organisation and tidiness

The organisation of the whole workspace played a role in the assessment of

programming quality as well, in terms of how messy or clean the workspace appeared to

CHAPTER 3 – METHODS

– 94 –

be. An often-mentioned feature of a good code is its readability (Martin, 2009). A code

is easy to read when the coding environment is free of “dead scripts”. Dead scripts are

pieces of code chunks that play no role for the whole program. Examples of dead scripts

are comment-out, deactivated, or incomplete codes. Dead scripts unnecessarily fill the

program console. This decreases the readability of the whole program because the user

has to actively ignore these codes in order to understand the whole program. It is neither

possible to comment out codes in Scratch, nor to deactivate codes. However, it is

possible to have incomplete code chunks. A code chunk has an effect only when it can

be initiated by an event chunk as shown in Figure 3.7. So, if a code chunk or if a

sequence of code chunks were not connected to an event chunk they did not play a role

for the whole program and were defined as dead scripts. In addition, the correct order

enhances readability. Readability referred to whether the codes appeared where the

reader would expect them and whether they were eventually align with the screen. The

fewer code chunks a Scratch project had and the more it looked organised, the higher

the readability and the higher the score. A Scratch project rated as poor had many dead

scripts and looked messy. In contrast, a Scratch project rated as excellent had no dead

scripts; they are organised and eventually aligned with the screen. In summary, the

appearance of the whole workspace looked tidy and was easy to read for a higher level.

Figure 3.7. An example of a valid list of connected codes with an event code at the

beginning is shown on the left. On the right is shown an example of a dead script.

3.5.3.4 Functionality of code

Functionality is crucial for a code. In this study, functionality was assessed on the basis

of two questions. First, was the intention of the Scratch program clear? Second, did the

program work as intended? Some coding attempts were so basic that it was not even

clear what the participants wanted to do. To achieve at least a poor level, the intention

of the code needed be clear even if it did not necessary work. For example, several

connected code chunks from the moving category very likely indicate that the

CHAPTER 3 – METHODS

– 95 –

participants tried to program a sprite to move. It might not have worked because of

other problems (e.g., no event chunk is connected to initiate the movement) but at least

the intention was clear. If the intention was clear and if it worked, the next question was

how well it worked and how smoothly the code ran. Most of the Scratch project might

have worked without any error but a text box appeared and disappeared too quickly to

read. Another example could be a reaction game where the user had to control a sprite

and reacted to its environment, but it moved too slowly or the scoring system did not

work properly (e.g. points were not counted correctly). These were examples of

working Scratch projects with clear intentions but that did not run smoothly. For an

excellent Scratch project, the reading time needed be reasonable, speed of moving

elements needed be adequate, and the score systems needed to make sense and worked

correctly.

3.5.3.5 Coding efficiency

The category efficiency described the usage of controlling code chunks and the number

unnecessary duplications of codes. Duplication was unnecessary if an opportunity was

missed for abstraction to a higher level. Duplications show a violation of the “Don’t

repeat yourself” or “Once and only once” principles. So, for example, if a function

needed to be repeated, instead of copy paste the same code several times, it would have

been better to loop this code with the correct control function. The correct usage of

these kinds of control functions required a higher level of abstraction in thinking, but

the code would become more efficient and elegant. Figure 3.8 contains an example of

two codes from two different Scratch projects. Both codes did the same in that they

controlled movements in four directions of a sprite while using arrow keys. However, in

the code script on the right, a forever code chunk was used to control all directions of

movement whereas the code script on the left there were just copies of controlling codes

for one direction four times. The script on the left shows duplications that could have

been avoided. A poor Scratch project showed many duplicates, and few control chunks

were used. In contrast, an excellent Scratch project did not have any duplicated chunk,

and participants demonstrated a comprehensive and complete use of control chunks.

CHAPTER 3 – METHODS

– 96 –

Figure 3.8. Two examples of the same function but coded differently. An example with

unnecessary duplicates is shown on the left and a more efficient version is seen on the

right.

3.5.3.6 Weighted score of sum and reliability assessment

Whereas organisation was fully independent from the other categories, the extent and

richness, variety, functionality, and efficiency were partially dependent. For instance, a

low score in extent and richness means participants did not use many code chunks. If

there were few code chunks, it was impossible to have many different code chunks

contributing to a higher score in variety. It was also very likely that the functionality of

the Scratch project was limited and that it was coded efficiently. However, that was not

true for higher scores. High scores in richness as well as in variety do not necessarily

mean the Scratch project is well coded and runs smoothly.

To have an overall judgment about the Scratch project, a weighted mean over all

categories was calculated. The weighting represented the importance of each category

for programming quality and is based on Martin (2009). Assessments in extent and

richness, variety, and functionality equally contributed 20% to the final score. In

efficiency, participants showed a higher level of thinking. In particular, it might be

challenging for participants to see opportunities for using control code chunks that

allowed increasing layers of abstraction. Efficiency represented programming quality at

slightly higher level than the other categories. On the other hand, to keep the workplace

tidy and aligned was not unimportant but seemed to be less essential to be a good

programmer. It represented a programming quality slightly less than the others.

Therefore, assessments in efficiency were weighted 30%, and organisation 10%, when

CHAPTER 3 – METHODS

– 97 –

determining the final score. In total, the theoretical range of weighted means ranges

from 0 to 5.

To assess consistency of the program rubric scheme, the interrater reliability

assessment between the investigator of the study and a former teacher of computer

science with over 30 years of work experience was computed. The investigator of this

study trained the former teacher for one hour with the programming rubric. All

categories, levels, and descriptors were discussed in detail. In addition, typical examples

of overall poor, satisfactory, good, and excellent Scratch project were reviewed.

In total, 42 Scratch projects were assessed with the rubric scheme. To assess the

interrater reliability, an intraclass correlation coefficient (ICC) for the weighted overall

mean was calculated (Shrout & Fleiss, 1979). The ICC is used when the variable is

metric, which is assumed for the weighted mean. The raters were set as fixed and only

participants were set as a source of randomness that is referred as model 3 (Shrout &

Fleiss, 1979). Because there was only one occasion of measurement, the form for the

ICC was 1. As type for the ICC, absolute agreement was chosen because the assessment

of the agreement between both raters was important and not how consistent the raters

were (see, for more details regarding ICC for reliability assessment, Kim, 2013;

Trevethan, 2017). Confidence interval for ICC(3,1) with type absolute agreement

indicates that the rubric scheme is a sufficient reliable instrument, 95% CI [.87, .96].

The investigator rated the Scratch projects slightly more liberal (M = 2.13; SD = 0.97)

than the former computer science teacher (M = 2.06; SD = 0.93) did. However, this

difference was not significant, t(41) = |1.16|, p = .253.

3.5.4 Dr Scratch

To have an additional score for Scratch projects, Dr Scratch was used. Different to the

developers’ intentions, Dr Scratch is not considered as an assessment of CT but rather

an alternative measure for programming quality of Scratch in this study. The seven

dimensions of CS relevant concepts (i.e., abstraction and problem decomposition,

parallelism, logical thinking, synchronization, algorithmic notions of flow control, user

interactivity and data representation) are judged as Not evident (worth 0 points), Basic

(1 point), Developing (2 points), and Proficient (3 points) (Moreno-León, Robles, &

Román-González, 2015). In order to obtain a general evaluation, all points will be

summed to obtain an overall score, referred to as a mastery score. Mastery scores

CHAPTER 3 – METHODS

– 98 –

between 8 and 14 are regarded as general developing; lower than 8 is regarded as

generally basic, and more than 14 as general proficient. Scores are based on the number

of dead scripts, correctness of messages synchronisation, object properties that are (not)

correctly initialised, and (unnecessary) repeated code chunks (Moreno-León & Robles,

2015).

3.5.5 Computational thinking behaviour scheme

In order to assess when and how much time participants spent on CT-relevant behaviour

during the Scratch session, the computational thinking behaviour scheme (CTBS) was

built. Besides of the literature about CT, the results of the pilot study were considered as

well. The development of the coding manual is based on the general recommendations

for developing and modifying a behavioural coding schemes by Chorney, McMurtry,

Chambers, and Bakeman (2015). The CTBS is a low inferential coding scheme with

high inferential elements, and the coding method is event-sampling.

In this study the goal was to explore the way CT occurs and what attributes of CT are

shown more often and what kind of patterns can be detected. These attributes are shown

in specific behavioural clues. Some of these clues can be identified with rather low

inference (e.g., algorithmic design) while other clues are more complex and require a

higher inference (e.g., problem decomposition and thinking abstractly). Thus, the

scheme can be regarded as a mixture of low and high inferential clues. Not all behaviour

exhibited by the participants is coded, only actions and utterances that indicate CT. The

CTBS is based on event sampling, which means it analysed how often and for how long

specific behavioural clues occur and how long they last.

The coded events in the CTBS can be understood as latent constructs, so it is not

possible to observe them directly. However, it is possible to see the effect of someone’s

thinking in their behaviour. The behaviour can be understood as the manifestation of

these latent constructs. Therefore, statements and conclusions about latent variables can

be made based on their manifest counterparts. Based on the behaviour we see we make

conclusion about the intentions and thoughts. This is an example of inferential

reasoning and does not come without any problems. Inferential reasoning always

implies a level of uncertainty and false predictions. As we are not always right about

our conclusions of someone’s thoughts based on just observing them, it is not possible

to explain perfectly relationship between a latent variable and a manifest variable. This

CHAPTER 3 – METHODS

– 99 –

is why identifying the correct manifest variables is crucial to make inferential

statements about a latent variable with the highest validity possible. The manifestations

of the latent components of CT as used in this study are described in the following.

3.5.5.1 Computational thinking components

Based on the literature review, four components were identified as main features of CT

and which are the latent constructs in the CTBS: decomposition, abstraction as in

ignoring unimportant details, abstraction as in recognising patterns, and designing and

applying algorithms. Decomposition and both types of abstraction deal with the

problem itself, whereas designing and applying algorithms are concerned with the

solution to the problem. The CTBS includes behavioural clues as manifestations for

these four components. Every kind of behaviour that indicates one of these four

components is coded as an event. An event can be (1) an action of a single person (2)

what a single person says or (3) be part of a discussion between people. Events are as

mutually exclusive (i.e., every observed CT related behaviour can only be assigned to

one code). In the following paragraphs, the behavioural clues of each latent construct

are described in detail and the whole scheme is shown in Table 3.2.

3.5.5.2 Decomposing

In CT, a crucial part of handling a problem is dividing the problem into smaller chunks

as a technique for reducing complexity. This is called the decomposition of a problem.

The idea is that a couple of less complex problems are easier to solve than a single,

more complex problem. Thus, any actions or spoken words that refer to putting the task

into subtasks are coded as a clue for decomposition. This also includes being aware of

the fact that there are several steps to make until a solution has been achieved, for

instance, the steps suggested by Jonassen’s model for problem solving. One possible

manifestation of decomposition is the discussion of the immediate next step to perform

in order to accomplish the task. When participants ask what the next step(s) would be or

when they explicitly state what to do next, they make clear that they divided the main

task into subtasks and in which order they would like to complete them. For instance, an

event is coded if a participant makes a clear order of tasks such as (1) which sprite

should be the hero, (2) which sprite should be the villain, (3) what is the story about?

This way, participants divide the main problem into sub-problems and sub tasks. In

addition, a discussion of how story elements can be implemented as a code can be a clue

for decomposition as well, for instance, when participants start talking about how they

CHAPTER 3 – METHODS

– 100 –

want their sprites having specific features such as moving in one direction or shooting

something.

3.5.5.3 Abstraction I – neglecting details

Another component of CT is abstraction with its two subprocesses. Clues indicating

ignoring unimportant details but focus on relevant information can be seen when

someone literally says to ignore something and to focus on something instead.

Furthermore, rephrasing or simplifying the main task, sub-problems, functions, or the

meaning of code chunks, can indicate deliberately neglecting of unimportant details as

well. However, just reading the main tasks again or simply repeating what anyone said

does not constitute ignoring unimportant details. Participants must show an

understanding of what they simplified. An event is coded only when their rephrasing is

clearly an attempt of simplification.

3.5.5.4 Abstraction II - recognising patterns

Recognising patterns, or the ability to identify similar characteristics across several

items, can be seen as the other component of abstraction. An event of pattern

recognition is coded when participants explicitly say something or show in another way

that they understand or see a pattern. Saying or doing something that directly refers to

patterns can be understood as clues for pattern recognition. In addition, clues when

participants showed they were able to transfer what they learnt during the tutorial can be

considered as pattern recognition as well. For instance, participants learnt how to use

codes in a specific way in the tutorial. When they realised they can use the codes in a

different way as well during the actual test session, it is coded as a pattern recognition

event as well. This kind of realisation of patterns can be very sudden are called aha

moments in this study. These transferred learning situations can be also seen when

participants copy and paste code sequences and alter them subsequently. When

participants use the same piece of code in different situations that must mean they

identified similarities in these situations; therefore, this behaviour is coded as an event

for pattern recognition as well.

3.5.5.5 Designing and applying algorithms

The components described immediately above focus on manipulation of the problem.

The category designing and applying an algorithm focuses on the solution. Algorithm

describes a sequence of operations. In a usual programming environment, an algorithm

CHAPTER 3 – METHODS

– 101 –

comes in the form of written code. In Scratch, algorithms are not written in codes;

rather, predefined code chunks are combined. Therefore, an event is coded as designing

an algorithm when code chunks are connected. Applying of the algorithm is shown by

executing it. Codes in Scratch can either be executed by double clicking the sequence of

codes or by clicking on the green flag. Both actions will be coded as events for applying

an algorithm. Only in rare cases does the freshly coded algorithm work as intended.

More likely, participants need to adjust the code. This adjustment is defined as

debugging in the CTBS.

CHAPTER 3 – METHODS

– 102 –

Table 3.2

Computational Thinking Behavioural Scheme

CT components

(latent variables)

Behavioural clue

(manifest variables)

Decomposing

Talking about the immediate next step

Put problem into pieces / building sub tasks or problems

Discussing if then relations of the story or game (is related to

programming elements)

Abstraction I –

neglecting

information

Focusing on important information; neglecting unimportant

details

Simplifying anything (problem, sub problem, functions, code

bocks, etc.)

Abstraction II –

pattern recognition

Identifying similar characteristics (sub problems, functions, code

blocks, etc.)

Use of copy-paste

Aha moments (must be related to an event when student

understood relationship between things)

Designing and

applying an

Algorithm

Putting code chunks together

Testing and judging algorithm (i.e., clicking on run or double

click on sequence or actively observing a running sequence)

Debugging - try to find error and adjust algorithm

CHAPTER 3 – METHODS

– 103 –

3.5.5.6 Reliability assessment

The consistency of the CTBS was estimated by the interrater reliability between the

investigator of the study and a second person. This person was a PhD student at the

same department but was not involved in the study. This person was trained by the

investigator during a practice session. The CTBS was discussed together and a video

from the pilot study was used for practising. After that, five of the 27 videos were

selected and the interrater reliability was assessed. The videos were chosen based on a

mixture of high and low Bebras and Scratch scores in order to have a representative

subsample of videos. This procedure is also based on the guide on developing and

modifying behavioural coding scheme from Chorney et al. (2015).

To estimate interrater reliability in this instance, κ coefficients for each of selected

videos were computed (Cohen, 1960). Cohen’s κ is widely used to determine the degree

of stability and agreement of two or more judges for nominal variables. It is similar to

the frequency of agreement but adjusted for agreements, some of which can be expected

to occur by chance alone. Cohen’s κ distinguishes only between agreement and

disagreement and was not designed for an event-sampling design in video studies. This

creates a problem. To have an agreement for two coded events, not only the content of

the events must be the same (e.g. both identified an event as “debugging” or “discussing

if then relation”) but also the onset and offset. Because it is virtually impossible two

people start and stop an event at exactly the same time, an interval of tolerance can be

defined between “still an agreement” and “already disagreement”. For this study, the

tolerance for an agreement was set when both events overlapped at least 50% of the

time. If two events did not overlap, it still counts as an agreement as long as their onsets

differed by 5 seconds or less. Because no conventions or recommendations could be

found in the literature known to the author, these settings are arbitrary. However, the

author attempted to find a compromise between being overly rigorous and overly

lenient in order to obtain valid results that could be regarded as valid.

As a result, the range of the frequency of agreement lies between 66.67% and

72.50%. At least two third of the events were identified from both raters. In addition,

the range of κ coefficients, from .58 to .67, indicates moderate reliability (Landis &

Koch, 1977). For the most part, disagreement occurred without any systematic bias or

recognisable patterns. However, sometimes the codes within a category had been

mistaken. For example, events that indicated debugging were coded as an event when

CHAPTER 3 – METHODS

– 104 –

participants had simply created the code, and vice versa. Because both codes are

manifestations of the same latent construct (designing and applying an algorithm) this

disagreement was not considered to be serious.

3.6 Pilot study

The pilot study was held two months before the main study, at the end of January 2017.

Ten University students were randomly asked to participate. Most of the participants did

not know each other but some were acquaintances and have met in the past. The average

age of the participants was 26.10 years (SD = 4.93). Eight participants were male and

eight had no prior programming experience. All participants spoke English fluently.

Therefore it can be assumed that the sample for the pilot study was comparable to the

sample of the main study. No one of the pilot sample was part of the main sample.

The purpose of the pilot study was to test the procedure, some of the instruments, and

the programming task. As for the main study, the pilot study was divided into two

phases. In the first phase, participants solved the Bebras tasks online at home

beforehand. In the first version, the Bebras tasks for the pilot study contained 13 items

from the Australian version of the Bebras contest from 2014 and 13 tasks from 2015,

(i.e., 26 tasks in total). Seven tasks were categorised as easy, 10 as medium, and nine as

hard. The TONI-3 was not part of the pilot study because it is already a well-established

instrument and there was therefore no need to test its usability. In the second phase,

participants solved the programming task in classrooms at Macquarie University few

days after they finished the online CT test. The programming tasks had to be completed

in Scratch. So that all participants had the same level of knowledge about Scratch, the

participants completed a 20 minutes tutorial before the actual task began. The

instruction for the programming task was “Program a game or a story where a hero has

to overcome a challenge in order to defeat the villain(s)”.

For the Bebras tasks, participants had the opportunity to flag unclear tasks during the

testing process. In addition, participants were asked to rate the level of difficulty of each

task as easy, medium-hard, or hard. The average time a participant needed to complete

the test was 81.25 minutes (SD = 16.87). With a total number of 26 tasks this means that

on average participants needed slightly more than 3 minutes per item. On average,

participants achieved a total score of 46.10% (SD = 11.32) from the maximum possible

CHAPTER 3 – METHODS

– 105 –

score of 80 points. Some of the questions categorised as hard were challenging for most

participants. Results for the Scratch programming tasks were less complex than

expected. Many participants recreated the code they had seen in the tutorial before.

Other codes and opportunities, which were not shown in the tutorial, were ignored and

not used. Thus, the results of the programming tasks were less rich in terms of

complexity than had been expected. Many actions indicating algorithmic design were

observed and just little less often actions indicating decomposition was seen.

Participants discussed quite intensively the task and how to approach it. However, any

kind of utterance or actions with regards to abstraction was barely observed. The

investigator concluded that the time for tutorials was not sufficient to give the

participants an adequate overview of the possibilities in Scratch.

To reduce the overall time of the test to 60 minutes and to avoid ceiling effects in the

main study, some tasks needed to be removed. Selection of items to remove was based

on two criteria. The first was usability of the tasks. Some tasks were unclear in their

presentation or instruction and were flagged by some participants. The second criterion

was solvability of the tasks. Some tasks were solved by only a few or none of the

participants. Six of these items were deleted. The remaining 20 tasks were considered to

be unambiguous and potentially solvable, and were therefore used as the final version of

the CT test for the main study. In addition, the Scratch-tutorial time was doubled from

20 to 40 minutes. The tutorial was created from introduction videos provided by

Scratch. The programming tasks was slightly adjusted to “Program a story or a game

where a hero has to overcome a challenge in order to defeat the villain(s)” because the

new tutorials explained not only how to program a game but also a story.

In addition, the CTBS was slightly changed as well. Some codes of some categories

were renamed, for example, “discussing if then relations” was named “recognition of

several steps” before. Moreover, the behavioural clue “talking about the immediate next

step” was added to the category decomposition. Although any behaviour indicating

abstraction was barely observed, the categories were kept for the main study because of

theoretical importance of both facets.

CHAPTER 3 – METHODS

– 106 –

3.7 Data analysis approach

3.7.1 Units of analysis

In phase 1, participant solved the Bebras tasks and completed TONI-3 online. That

means that for each participant an individual value were obtained. In phase 2,

participants were paired based their Bebras scores to solve the programming task in

Scratch. That means that the remaining measures (i.e., the programming quality, the

time they spent on CT-relevant behaviour, and the Dr Scratch score) were paired as

well. That means that two participants always had identical values on these variables.

These variables can be referred to as between-pair variables (Gonzalez & Griffin, 2012;

Kenny, Kashy, & Cook, 2006).

To have individual and paired data has implications for how the data are handled and

analysed together. The Bebras score and the TONI-3-IQ can be analysed in two ways.

First, variables can be analysed individually (i.e., the unit of analysis is each

participant). Second, variables can be analysed pairwise (i.e., the unit of analysis is

combined). In the latter case, the mean for the Bebras score and for the TONI-3-IQ is

calculated for each pair. This variable is referred to as a within-pair variable and enables

analysis of relationships with the other already paired variables. To assess how similar

the values of the later combined variables indeed are, the level of “nonindependence”

(Kenny, Kashy, & Cook, 2006, p. 26) is assessed by the Intraclass-Correlation-

Coefficient (ICC; not to be confused with ICC to estimate reliability). According to

Kenny, Kashy, and Cook (2006), a high ICC indicates statistical nonindependence,

meaning the scores within each pair are more similar than between the pairs. That

would justify using the mean of the pairs for further analysis. A low ICC would indicate

that the scores within each pair are not more similar than between the pairs. Under those

circumstances, further analyses based on the mean over the pairs must be interpreted

with caution. An explanation of ICC for nonindependence is provided in Appendix D.

3.7.2 Addressing research question 1

The first research question (RQ1) was: “How is CT applied when solving a

programming task?” To address this question, participants were recorded while solving

a task in Scratch. Recordings were then coded using the CTBS. Recordings were

analysed based on the CTBS in INTERACT software (Mangold, 2018). This way, it

CHAPTER 3 – METHODS

– 107 –

was analysed how often a specific CT-relevant behaviour was exhibited and for how

long.

In addition, coded events were analysed for any kind of specific patterns and whether

it is possible to predict with a certain probability the occurrence of one CT-relevant

behaviour given another CT-relevant behaviour. This kind of analysis is done by lag

sequential analysis (LSA; Bakeman & Quera, 2012). LSAs are based on Markov chains

and provide transition probabilities form one event to another in order to identify any

typical sequences which may be more likely than others. To test whether transition

probabilities are significant different from zero, Z-scores are calculated based on the

difference between the empirical frequency and the expected probability. An

explanation concerning how Z-scores are calculated is shown in Appendix E. Z-scores

greater than 1.96 are regarded a statistically significant because the corresponding

probability is less than .05 and consequently, indicate a pattern of actions of interest

(Ivanouw, 2007). An example question for LSA would be, “Given a programming pair

shows ‘debugging behaviour’, does this increase the probability of the pair showing

‘testing behaviour’ next?”.

3.7.3 Addressing research question 2

The second research question (RQ2) was: “Can multimodal measurements of CT be

relevant predictors for programming quality?” To address this question, the relationship

between the two different measures for CT (Bebras score, and the time spent on CT-

relevant behaviour based on the computational thinking behaviour scheme) on one side

and the programming quality (based on the programming rubric scheme) on the other

side was analysed. Two kinds of analyses for the relationship were conducted. First,

correlation coefficients for each CT measure and programming quality score were

obtained. This revealed any linear relationship between each of the CT measures and

programming quality alone. The correlation between programming quality and the

measure of nonverbal intelligence (TONI-3-IQ) was obtained also to see whether

programming quality shared variance with a measure for IQ as well. Second, it was

analysed whether programming quality can be predicted by the different CT measures

and TONI-3-IQ. This was done by conducting a multiple linear regression analysis. The

regression analysis showed the (linear) relationship between programming quality and

each predictor when the effect of all other predictors was held constant. Because Dr

Scratch was considered as an evaluation for Scratch projects, the same analyses were

CHAPTER 3 – METHODS

– 108 –

conducted with Dr Scratch mastery score as well. If any, positive correlations were

expected and so all tests of significance for all analyses were conducted one-sided.

3.7.4 Statistical analyses

For most quantitative analyses, the free statistical programming language R (R Core

Team, 2017) was used. Power analysis for regression were performed with G*Power

(Faul, Erdfelder, Lang, & Buchner, 2007). Because of the small sample size, some

analyses are based on both, parametric as well as non-parametric tests. Some of the

measures were used for further analyses in regression models. Regression models rely

on the assumption of normality; therefore, these measures were tested with the Shapiro-

Francia test (Royston, 1993; Shapiro & Francia, 1972) to determine whether their

distributions differ significantly from normal. According to Yap and Sim (2011), the

Shapiro-Francia test is the most powerful test among the most common tests for

normality. Effect sizes are interpreted based on Cohen’s (1988) criteria. The threshold

on significance for all tests used in this study was set at .05 based on the common

convention.

3.8 Research ethics approval

Before the study was conducted and any data were collected, the research ethics

committee from Macquarie University had to approve the procedure. To receive the

approval, a number of principles had to be met: (1) describing of all potential

participants and giving reasons for choosing them; (2) fair recruitment of participants

without any pressure to participate; (3) minimising the risk of any harm to participants;

(4) protecting participants’ privacy and confidential information; (5) obtaining

participants’ consent; (6) fully debriefing participants and giving them appropriate

information.

The ethics committee were satisfied that all principles would be met and granted

approval on 16 December 2016 (reference number 5201600918). Recruitment of

participants for the pilot study commenced the same month. A research report

concerning progress needed to be sent to the committee each year until completion of

the research. A final progress report is due 2021.

CHAPTER 4 – RESULTS

– 109 –

4 RESULTS

An overview of the descriptive results of Bebras tasks, TONI-3-IQ, programming

quality, and Dr Scratch is first given before the research questions are being answered.

The first research questions is then answered by an overview of the time participants

spent on CT-relevant behaviour during programming task in Scratch, based on the

CTBS and the LSA to reveal any patterns in the participants behaviour. The second

research question is answered by correlations between programming quality and the

different measures of CT. Also the results of the regression analysis with programming

quality as outcome and the different CT measures and TONI-3-IQ as predictors are

presented. The result chapter closes with correlation patterns between the different CT

measures and TONI-IQ-3 as further analysis.

4.1 Overview of measures

The Bebras tasks as well as the TONI-3-IQ are obtained individually whereas the

remaining measures are based on pairs. For the Bebras tasks and TONI-3-IQ that means

that descriptive results of both measures are first presented as individual and then as

paired scores. Results of remaining measures are based on pairs from the beginning.

4.1.1 Bebras tasks

4.1.1.1 Individual scores as the unit of analysis

The maximum achievable score for the Bebras tasks (57) was set as 100 %. In total, 110

students completed all tasks. One participant achieved 100 %; the lowest observed score

was 21 %. The close range between mean, trimmed mean (10 %), and median indicated

a normal distribution (Table 4.1). This was supported as well by visual inspection (see

Appendix F) and the result of the Shapiro-Francia test with W’ = 0.99, p = .559.

The average Bebras score did not raise any concerns that the test was too easy or too

difficult. No ceiling or bottom effects could be found for any tasks (i.e., there was no

items solved by everyone and there was no items solved by no one). There were three

levels of difficulty for the Bebras tasks: easy, medium, and hard. As easy labelled tasks

were expected to be solved more often than medium labelled tasks and medium labelled

tasks were expected to be solved more often than hard tasks. Overall, this pattern could

CHAPTER 4 – RESULTS

– 110 –

be found in the results. However, as hard labelled tasks were slightly more often solved

than expected. For a more detailed item analysis, see Appendix G.

On average, participants were recorded as taking 198.74 min (SD = 635.01) to finish

the Bebras tasks. The trimmed mean (10%) was 59.52 min and the median was 55.00

min. The range to complete the whole test lay between 5 and 5607 min. The Shapiro-

Francia test revealed a significance deviation from the normal distribution, W’ = 0.26, p

< .001, and skewness of v = 6.5 indicated that there were more extreme values on the

right side of distribution than on the left (i.e., some participants were recorded as taking

longer to finish the test). Because of skewed data, Spearman’s ρ were used to analyse

the relation between achieved Bebras score and needed time. Analysis revealed a

positive medium large and significant correlation, ρ = .40, p < .001, meaning the more

time participants took to work on the Bebras test the higher their scores.

Although the trimmed mean and the median were close to the expected maximum

time of 60 min (see section 3.5.1), the other statistics indicate problems with extreme

values. The fact that completion of the tasks was not supervised may be an explanation

for these results. The very slow completion could be explained by participants taking

breaks between. There are no assumptions breaks could have influenced the outcome of

the test, so no participants were excluded from further analysis because they needed too

long.

4.1.1.2 Paired scores as the unit of analysis

Based on their individual Bebras score, participants were organised in pairs to solve the

programming task in Scratch together. To assess how close participants for each pairs

generally were, the ICC over all 37 pairs was calculated. The significant ICC of .75,

F(36,37) = 7.05, p < .001, indicated that the scores of both participants in each pair were

indeed quite close to each other and can be interpreted as statistically “nonindependent”

(Kenny, Kashy, & Cook, 2006, p. 26). This supported the approach to use the mean per

pair for further analysis. The mean, the trimmed mean (10%), and the median of all

pairs were only slightly higher than the values calculated individually (Table 4.1).

Although the Shapiro-Francia test indicated a normal distribution, W’ = 0.97, p = .352,

visual inspection leaded to the conclusion that this might not be the case (see Appendix

F) and further analyses must be interpreted with caution.

CHAPTER 4 – RESULTS

– 111 –

Table 4.1

Overview of Bebras Scores

Individual Bebras scores Paired Bebras scores

M (SD)
Trimmed

M (10 %)
Mdn N M (SD)

Trimmed

M (10 %)
Mdn N

57.03

(18.60)
56.98 57.89 110

58.93

(17.17)
58.71 61.84 37

4.1.2 Test of Nonverbal Intelligence

4.1.2.1 Individual scores as unit of analysis

The TONI-3 was completed by 71 participants with a range for IQ from 76 to 140. As

for the Bebras scores, TONI-3-IQ were normally distributed with nearly no difference

between mean trimmed mean (10%), and the median (Table 4.2). In addition, the

Shapiro-Francia test indicated a normal distribution, W’ = 0.97, p = .093, as well as the

visual inspection did (see Appendix F).

The general findings for the TONI-3-IQ were similar to the results of the Bebras

tasks. Participants needed generally longer than expected. The expected maximum time

to complete the TONI-3 is 15 minutes, but participants needed more than 10 min longer,

M = 26.06 min (SD = 16.75). The non-normal right shifted distribution (W’ = 0.71, p <

.001, v = 2.59) and the range from 5 to 103 min indicated that some participants may

have taken breaks between working on different items. This may explain the

surprisingly high average completion time. A significant positive and medium large

correlation between TONI-3-IQ and needed time was found, ρ = .42, p < .001. Similar

to the Bebras test that means the more time participants spent on the test the higher their

TONI-3-IQ. As for the Bebras tasks, no participants were excluded from further because

they needed longer than expected. Even though 5 min seemed to be quite fast, it is still

plausible to finish the TONI-3 with a reasonable result in that time (Brown,

Sherbeernou, & Johnson, 1997). Thus, no participants were excluded based on the

TONI-3 test time.

4.1.2.2 Paired scores as unit of analysis

There are complete data of 33 pairs for the TONI-3. Although smaller than for the

Bebras score, the significant ICC of .49, F(32,33) = 3.00, p = .001, indicated that the IQ

CHAPTER 4 – RESULTS

– 112 –

scores within pairs were quite close to each other and justified to use the mean over

pairs for further analysis. The mean, trimmed mean (10%), and for the IQ over all pairs

were all close to the results when the unit of analysis were individuals (Table 4.2). The

visual inspection (see Appendix F) and Shapiro-Francia test, W’ = 0.97, p = .425,

revealed no significant difference from normal.

Table 4.2

Overview of TONI-3-IQ

Individual TONI-3-IQ Paired TONI-3-IQ

M (SD)
Trimmed

M (10 %)
Mdn N M (SD)

Trimmed

M (10 %)
Mdn N

112.49

(14.17)
113.12 113 71

114.74

(12.98)
115.41 115 33

4.1.3 Programming quality

Because the programming assessment and Dr Scratch measurement were both based on

the usage of different code chunks and sprites, a short overview of those Scratch metrics

of al 37 pairs is given first. On average, pairs had M = 4.14 (SD = 2.32) sprites, used M

= 44.73 (SD = 31.42) code chunks, and created M = 6.65 (SD = 5.18) scripts in the

allocated time of roughly 40 min. Not all coding pairs used all kind of code chunks

provided in Scratch. There were three pairs that did not use any kind of Level 2 chunks.

In general, participants used significantly more Level 1 chunks (M = 28.81, SD = 19.25)

than the Level 2 chunks (M = 17.32, SD = 14.07), t(33) = |5.79|, p < .001.

As shown in Table 4.3, the full range of rating scale (0 to 4) was used by all

programming pairs. The distributions of all five programming dimension had their

centre at around 2 (satisfactory level). To be more specific, satisfactory means for the

category extent and richness that overall there is “one thing” happening (i.e., sprites are

mainly moving, changing, counting, switching, or making sounds). For the variety of

code usage it means that on average the projects showed many different chunks but

mainly Level 1 chunks and only few Level 2 chunks. A satisfactory Level for

organisation means that the workspace of the projects looked tidy and scripts were

organised, but there were some dead scripts as well. Satisfactory level for the dimension

functionality means that Scratch projects worked as intended with only some minor

CHAPTER 4 – RESULTS

– 113 –

problems. For programming efficiency satisfactory means that a few code chunks and

scripts were copied and the programming pairs used a few control code chunks overall.

In total, the programming quality of all pairs over all dimensions was at a satisfactory

level and visual inspection (see Appendix F) as well as the Shapiro-Francia test

indicated that the weighted mean is normally distributed, W’ = 0.97, p = .369.

Table 4.3

Overview of Programming Quality Dimensions

Programming

dimensions
M (SD)

Trimmed

M (10 %)
Mdn

Extension 1.86 (0.89) 1.81 2.0

Variety 2.19 (1.02) 2.19 2.0

Organisation 1.84 (0.87) 1.84 2.0

Functionality 1.92 (0.95) 1.94 2.0

Efficiency 2.08 (1.21) 2.10 2.0

Weighted mean 2.00 (0.91) 2.03 2.2

 Note. N(pairs) = 37

4.1.4 Dr Scratch

Descriptive statistics for all dimensions are shown in Table 4.4. The full range for

assessment was used only for the dimensions synchronization and parallelism. In more

detail, results for flow control indicated most pairs managed to use at least one kind of

loop chunk to keep their workflow running more smoothly. Results for data

representation indicated that most pairs coded actions for their sprites on a basic level

(e.g., editing X- and Y-axes manually). Only a few pairs used a more developed

approach such as sensing code chunks in combination with editing X- and Y-axes.

Abstraction and problem decomposition for the most pairs were on a basic level as well.

That means most pairs managed to have several scripts and more than one sprite but did

not define their blocks and did not use clones. Many programming pairs used basic

event code chunks such as “clicking green flag” to interact with the user, but most pairs

actually used more developed approaches by ask and wait chunks or interacting chunks.

Results for synchronization show a widespread use of different approaches. As many

pairs used basic approaches (like using wait chunks) as higher advanced chunks (like

CHAPTER 4 – RESULTS

– 114 –

wait until and broadcast interactions). However, most pairs did not use any code chunks

that implied any kind of synchronization in their coding. A similar broad result can be

seen for parallelism where most pairs managed to achieve a basic level (i.e., two scripts

were built with simple event code chunks). Only some pairs coded more than two

scripts that ran for one sprite or coded even more advanced scripts with more codes

running in parallel. Some pairs did not use any kind of parallelism in their coding.

Finally, most pairs only used basic if-statements instead of more developed if-else

statements, and no pair used logical operations. Many pairs did not use any of these

code chunks, which caused a very low score for logical thinking.

Overall, the average mastery score was 9.03 (SD = 2.70). Considering the range of 0

to 24, the mean indicated a low but still developing level for the sample in general.

Visual inspection (see Appendix F) and the Shapiro-Francia test revealed no significant

difference from normal, W’ = 0.96, p = .210.

Table 4.4

Overview of Dr Scratch Dimension

Dr Scratch dimension
Absolute frequency of level

M (SD) Mdn
0 1 2 3

Abstraction and

problem decomposition
2 35 - - 0.95 (0.23) 1

Parallelism 5 21 4 7 1.35 (0.95) 1

Logical thinking 15 20 2 - 0.65 (0.59) 1

Synchronisation 14 11 1 11 1.24 (1.26) 1

Flow control - 9 28 - 1.76 (0.43) 2

User interactivity - 11 25 1 1.73 (0.51) 2

Data representation 1 22 14 - 1.35 (0.54) 1

Note. N(pairs) = 37

4.2 Answering the first research question

To synchronise all videos, the starting time for all videos was set when the investigator

of the study said “Happy coding” in the recordings. The end time was set when the pairs

saved their work at the end of the Scratch programming session and no further relevant

activity was observed. Out of the 27 unproblematic and complete recordings, the

longest video was 42 minutes and 54 seconds and the shortest video was 38 minutes and

CHAPTER 4 – RESULTS

– 115 –

19 seconds. The average video was 40 minutes and 5 seconds long. To control for the

effect that video length varied slightly over the different pairs, the duration of each CT

event were divided by the overall duration of the video to obtain the percentage over

time. Overall, 18 hours were recorded, in which 1,438 CT-relevant activities were

identified.

It is notable that not all kinds of CT-relevant behaviour were observed (Table 4.5).

No pair showed any behaviour that would indicate putting problems into pieces (part of

decomposition) or identifying similar structures (part of pattern recognition). This is

also true for any kind of behaviour that would indicate neglecting unimportant

information. Pattern recognition could be identified only a few times during the whole

recorded time and not for every pair. All expected behavioural clues for algorithmic

design were seen in all recordings. Together, algorithmic design made ups to 75% of all

coded events. Typical examples of coded events are seen in Table 4.6.

CHAPTER 4 – RESULTS

– 116 –

Table 4.5

Overview of Coded Events and Time Spent on CT-relevant Behaviour

CT component N (pairs)

E

(E/total number of

event)

Percentage of CT-relevant behaviour

M (SD) Max – Min

Decomposition

Next step 26 110 (.08) 1.30 (0.78) 2.88 – .29

Problem pieces - - - -

Discussing if then 27 200 (.14) 7.41 (3.46) 16.00 – 2.00

Overall 27 310 (.22) 7.77 (5.35) 22.61 – 1.03

Abstraction – neglecting information

Ignoring details - - - -

Simplifying problems - - - -

Overall - - - -

Abstraction –pattern recognition

Identifying similar structures - - - -

Copy paste 12 30 (.02) 0.92 (0.98) 3.75 – .18

Aha moments 10 26 (.02) 1.34 (0.90) 3.41 – .36

Overall 17 53 (.04) 1.43 (1.05) 3.75 – .18

Algorithmic design

Putting code chunks 27 340 (.24) 21.01 (8.05) 35.21 – 3.42

Testing 27 479 (.33) 7.88 (3.34) 16.23 – 2.63

Debugging 27 253 (.18) 8.57 (5.82) 23.91 – .35

Overall 27 1,072 (.75) 37.46 (12.26) 61.06 – 10.39

CT overall 27 46.14 (14.96) 70.42 – 15. 74

Coded events in total 1,438

 Note: E = number of events

CHAPTER 4 – RESULTS

– 117 –

In general, behaviour that indicated any kind of pattern recognition took less time

than decomposing the problem or algorithm-designing behaviour. Just over the half of

all 27 pairs showed any kind of recognising pattern behaviour. On average, pairs spent

about one third of the Scratch session with putting code chunks together and nearly half

of their time with any kind of CT-relevant behaviour. Visual inspection (see Appendix

F) and the Shapiro-Francia test revealed no significant deviation from normality, W’ =

0.97, p = .598, for the percentage of overall CT-relevant behaviour.

It was expected that behaviour indicating problem decomposition would appear

rather at the beginning of the session, when participants probably discussing the

problem, while algorithmic design would be more dominant at the end of the session,

when participants discussing possible solutions. For pattern recognition no specific

accumulation of behaviour at any time was expected. To analyse what kind of CT

behaviour occurs at which time during the Scratch session, the behaviour was visually

mapped as seen in Figure 4.1. As expected, the beginning of the session any kind of

problem decomposition was the most dominant behaviour along with non-CT relevant,

such as private utterance (i.e., white areas in the Figure indicate no coded events).

Interestingly, problem decomposition was not only showed at the beginning but

throughout the whole session even at later stages. Contrary to expectations, algorithmic

design was not only dominant at the end but throughout the whole session with some

pairs started as early as minute one. As expected, pattern recognition was quite equally

distributed over the whole session. As mentioned earlier, algorithmic designing was the

most dominant behaviour from all observed behaviour for all pairs. There were long

(i.e., putting code chunks together) as well as rather short periods (i.e., testing). This is

different to behaviour indicating decomposition, which was mostly short events lasting

only a couple of seconds. Exceptions of this are pair number 6 and 25. In both cases,

participants intensively discussed the plot and mechanics of the game they intended to

create. If pattern recognition was identified, it was only for a short period of time and it

equally likely at the beginning, the middle, or end of the session as expected.

CHAPTER 4 – RESULTS

– 118 –

Table 4.6

Typical Examples of Coded Events

CT component Utterance or actions

Decomposition

Next step

Pair 3: “Okay. Should we pick our hero and villain first?”

Pair 4: “Okay! Next one. Who’s our villain gonna be?”

Pair 13: “Oh! We need a sound effect now!”

Discussing if then

Pair 16: “When he says that [points on dialog bubble] we then wait [points on code chunk called wait] and

that’s how we could do the delay, I think?”

Pair 19: “Then it’s like when it gets to 10 points or something we add a second ghost and that’s like it gets

to the second level and how the game could progress, I reckon.”

Abstraction –

pattern recognition

Copy paste Participants copy a chunk of code to reuse it somewhere else in their project

Aha moments

Pair 8: “Ah! When that one [points on a sprite] goes on that one [points on another sprite] the score goes

like infinitely higher.” “Really? Oh!”

Pair 9: “Oh, no! It happened because […] it’s set to when touching sprite1 then go to x. So when the

purple [points on code chunk] is gone it has nothing to touch and it just keeps going! So we need to

make to green one go!”

Pair 10: “Oh! You know what? Because it’s not connected itself! It’s like the one.”

Algorithmic design

Code chunks Pairs put code chunks together

Testing Pairs run their code

Debugging Pairs alter their code after they realised their code does not work as intended

CHAPTER 4 – RESULTS

– 119 –

Coding pairs

Figure 4.1. Distribution of any CT associated behaviour with green indicating decomposition, blue indicating abstraction, and red indicating

algorithmic design.

CHAPTER 4 – RESULTS

– 120 –

It is worth mentioning that some pairs had more problems with Scratch than others.

This resulted for some to delete everything in the middle of the session and created a

new project. Also, some had difficulties with mathematical expressions. For instance,

some pairs intensively discussed how to code their sprites so these are able to move in

all direction. To do so there is a motion code chunk which refers to the Cartesian

coordinate system using the parameter Y for moving up and down and X for moving

right and left (Figure 4.2). Some pairs failed to make their sprites moving as they

wanted because they lack the knowledge that X and Y stand for different directions.

Figure 4.2. Motion code chunk using Y and X parameters.

4.2.1.1 Lag sequential analysis of computational thinking behaviour

To identify any patterns in behaviour, a lag sequential analysis (LSA) was conducted.

LSA for overall CT components revealed that with any kind of CT-relevant behaviour it

was very likely that it is followed by any kind of algorithmic design (XXX). This is no

surprise due to the generally high occurrence of algorithmic design behaviour in the

data. Although it is worth mentioning that only the self-occurrence (algorithmic design

→ algorithmic design) was significant here. The only other significant sequence was the

self-occurrence for decomposition. In nearly one third of the time, decomposition was

followed by any other kind of decomposition (decomposition → decomposition).

To have a deeper look, the relationships between the single behavioural clues were

analysed as well (Table 4.8). Results showed that pairs nearly equally likely started to

put code chunks together after they were talking about the immediate next step (next

step → putting code chunks, .50) or discussed if then relation regarding the mechanics

of their Scratch project (if then → putting code chunks, .48). In up to 50 % of cases

pairs showed any kind of decomposition, they started to work on their code afterwards.

Pairs generally showed only occasionally copy paste behaviour and so its probability to

observe was generally low. However, when it occurred, it was significantly likely to be

after pairs were talking the immediate next step (next step → copy paste, .06). The clue

“aha moments” was similar rarely as “copy paste”. It appeared with a low but

significant probability after another “aha moment” in beforehand (aha moments → aha

CHAPTER 4 – RESULTS

– 121 –

moments, .08). In over one third of cases the pairs had “ah moments”, they were trying

to debug their code (aha moments → debugging, .35). Pairs tended to test their code

chunks every time they worked on it, either after they started to put them together

(putting code chunk → testing, .69) or after they tried to debug it (debugging → testing,

.82). Although debugging usually occurred after testing (testing → debugging, .44),

pairs also significantly likely talked about the next immediate next step after they tested

their code (testing → next step, .12).

Table 4.7

Transition Probability Over all CT-relevant Behaviour

CT components
Decomposition Abstraction –

pattern recognition

Algorithmic design

Decomposition .32* .06 .62

Abstraction –

pattern recognition
.13 .05 .82

Algorithmic design .19 .04 .77*

Note: *two-sided p < .05.

CHAPTER 4 – RESULTS

– 122 –

Table 4.8

Transition Probability Over all CT-relevant Behavioural Clues

CT component Behavioural clue

Decomposition
Abstraction – pattern

recognition
Algorithmic design

Next step If then
Aha

moments
Copy paste

Putting code

chunks
Testing Debugging

Decomposition
Next step .14* .22* .03 .06* .50* .01 .04

If then .11* .20* - .04 .48* .08 .09

Abstraction –

pattern recognition

Aha moments .04 .12 .08* - .23 .19 .35*

Copy paste - .10 - .03 .37 .47 .03

Algorithmic design

Putting code chunks .02 .09 .02 .02 .15 .69* .01

Testing .12* .15 .03 .01 .24 .01 .44*

Debugging .02 .04 - .01 .04 .82* .06

Note: *two-sided p < .05.

CHAPTER 4 – RESULTS

– 123 –

4.3 Answering the second research question

To analyse the relationship of programming quality and CT Pearson’s r were computed

as a first step (Table 4.9). Significant positive correlations with programming quality

were found for the unplugged CT measure (Bebras score) with a medium large effect

size. Correlations between programming quality and time spent on CT-relevant

behaviour overall and in particular of algorithmic design were found significant and

positive with quite large effects. Remaining correlations with TONI-3 IQ and time spent

on any other kind of CT-relevant behaviour were not statistically significant.

Correlations between Scratch project evaluation (Dr Scratch mastery score) and

remaining measures showed a similar pattern overall. Correlation between programming

quality and Dr Scratch mastery score indicated a large positive and significant

relationship, r = .64, p < .001. For visual inspection and correlations based on

Spearman’s ρ see Appendix and I, respectively.

Table 4.9

Pearson’s r Correlations Between Programming Quality, Dr Scratch and Different

Measures

Programming

quality

Dr Scratch

mastery score N

(pairs)
r p r p

Bebras score .30 .038 .28 .048 37

Time of CT-relevant behaviour

(overall)
.62 < .001 .61 < .001 27

Time of decomposing .24 .113 .28 .079 27

Time of pattern recognition .12 .326 -.17 .252 17

Time of algorithmic design .63 < .001 .60 < .001 27

IQ based on TONI-3 .23 .099 .13 .234 32

 Note: one-sided p-values.

Regardless of what kind of programming measure was used (programming quality or

Dr Scratch), there is a small till medium large positive relationship with unplugged CT,

which means the higher the score for unplugged CT assessment the higher the

programming quality of the Scratch project. An even stronger relationship was found

CHAPTER 4 – RESULTS

– 124 –

for time. The longer and more often participants spent on CT-relevant behaviour (in

particular working on their solutions) the better were their programming results. No

such statement was possible for nonverbal IQ and programming.

In a second step, two regression models were estimated with programming quality

and Dr Scratch as outcome, respectively, and the CT measures and TONI-3 IQ as

predictors. Standardised parameter estimations and tests of significance of the

regression model are shown in Table 4.10. The regression models only partly supported

the findings from the correlations with the relation between the Bebras score vanished

for both programing outcomes, programming quality and Dr Scratch mastery score,

even when taking into account the effect of TONI-3 IQ. Similar to the interpretation of

the correlation, that means the more time participants spent on CT relevant behaviour

the higher the programming quality of the Scratch project (when controlling for

nonverbal IQ).

Table 4.10

Regression Models

 Programming quality Dr Scratch mastery score

Predictors β t-value (SE) p β t-value (SE) p

Bebras score -0.41 -1.95 (1.24) .066 -0.14 -0.62 (4.27) .542

Time of CT-relevant

behaviour (overall)
0.74 4.31 (0.01) < .001 0.70 3.86 (0.03) < .001

TONI-3 IQ 0.36 1.82 (0.01) .084 0.11 0.53 (0.05) .599

R² (R²adj) .50 (.42) .44 (.36)

F(3,20) 6.60 .003 5.29 .008

Note: N = 24. The intercept is omitted for better overview.

Post hoc analyses for both regression models were performed for power estimation.

Based on the given parameters (N = 24, number of predictors = 3, effect size = R2
pro.qual

= .50, R2
DrScratch = .44, and α = .05), a power of > .99 for both models was achieved.

Because of the small sample size, assumptions about linear multiple regressions such as

homoscedasticity, multicollinearity, and residuals were rigorously checked (see

Appendix J). No serious violations of any assumption could be found but the residuals

when the outcome is programming quality are not normally distributed,

W’(Y=programming quality) = 0.88, p = .011. In conclusion, the power of both

CHAPTER 4 – RESULTS

– 125 –

regression models were sufficiently high enough and the regression coefficients can be

interpreted as “best linear regression estimations” (BLUE).

4.4 Additional results

Further analysis revealed a medium large positive and significant correlation for

Bebras score and time, which means the higher participants scored on the test for

unplugged CT the longer they spent on CT-relevant behaviour during the programming

task, r(27) = ρ = .39, p = .022.

Because of some (partially) conceptual overlaps between nonverbal intelligence and

CT, the correlations between the TONI-3 IQ and CT measures were obtained as well

(Table 4.11). As expected, the correlation between TONI-3 IQ and Bebras score was

significant and positive with a medium and large effect sizes. The higher the

participants’ nonverbal IQ the higher they scored on in unplugged CT. No correlation

between TONI-3-IQ and any CT-relevant behaviour was significant. Because data for

the Bebras score and TONI-3-IQ were originally obtained individually, correlations

based on individual scores were computed as well. However, with r(71) = .53, p < .001,

and ρ(71) = .57, p < .001, results were similar to paired ones and did not alter the

overall interpretation that nonverbal IQ and unplugged CT are highly positively

correlated.

Table 4.11

Pearson’s r for TONI-3-IQ and Different Measures

TONI-3-IQ N

(pairs)
r p ρ p

Bebras score .52 .002 .49 .002 33

Time of CT-relevant behaviour

(overall)
.06 .767 .09 .346 24

Time of decomposing .01 .963 -.06 .382 24

Time of pattern recognition .38 .157 .35 .103 15

Time of algorithmic design .05 .811 -.01 .981 24

 Note: p-values are one-sided.

– 126 –

5 DISCUSSION

5.1 Summary of the study

In this study, the goal was to analyse the role of CT when working on a programming

problem. Because there is still discussion about what CT actually is, the first task was to

develop an operational definition and to identify the core elements and major skills

associated with CT. To do this, major publications with the goal of defining CT by

experts from CS (education) as well as systematic literature were considered. This led to

the conclusion that CT is a problem-solving approach, including decomposing a

problem, the ability to engage in abstraction, and the ability to understand and design

algorithms in order to create a solution to a problem. Because CT emerged originally

from CS and is also considered to be a thought process, the CT components were

analysed based on their meaning in CS and psychology. This way an explanation was

given concerning why these skills are considered to be crucial, what they could look

like, and what kind of potential behavioural clues could indicate CT.

In a next step, the relationship between these skills was discussed to determine at

which time during the overall problem-solving process the CT-associated skills might

be predominant. Moreover, the two most dominant methods for assessment with

different perspective and implications on CT were discussed. The one were the Bebras

tasks. The Bebras tasks are short quizzes, which claim to measure CT without using any

kind of technology and thus are referred as “unplugged methods”. The other method

was Scratch. Scratch is a visual programming environment, which claims to measure

CT by providing an opportunity, in which users can work free and creatively on their

projects.

To answer the RQ1 (how CT is applied when solving a programming task) and RQ2

(what kind of CT measurement might be relevant for predicting programming quality),

participants solved a set of slightly altered Bebras tasks and worked together in pairs on

a programming task in Scratch. The solving processes of the Scratch task were analysed

based on the time participants spent on CT-relevant behaviour. Participants’ solutions

were then evaluated and which CT measures were the best predictors for programming

quality were identified. In addition, a measure for nonverbal intelligence was assessed

to control for potential confounding effects.

– 127 –

5.2 Discussion of the first research question

5.2.1 No or only barely abstract thinking

Analysis of the recordings revealed that abstraction and to some extent problem

decomposing were difficult to observe. Based on the literature review, two

subcomponents of abstract thinking were identified: neglecting details and recognising

patterns. Neglecting details was operationalised as any kind of behaviour that would

indicate some kind of simplification of, or actively focussing on, (sub)problems,

functions, codes, or solutions, or any other kind of entity. However, nothing like this

was observed in the recordings and so there was no behaviour observed that would have

indicated people were actively neglecting information while working on a problem.

Recognising pattern was operationalised by actions or utterances referring to identifying

similar characteristics of entities, copy and paste actions, and aha moments. No

behaviour was found that would have directly indicated participants identified similar

structures, and aha moments and copy-paste procedures were observed only rarely.

There are various possible reasons for this. First, participants did not show any kind

of this behaviour. Second, participants are able to problem decomposition and thinking

abstractly but were not able to utilise it. On one hand, it seems unlikely that participants

though abstractly to only a small extent. Abstract thinking is an inherent part of human

cognition (Rosch, 1978). New experiences are constantly compared with prior

knowledge to coordinate and consolidate new information. For example, humans are

able to classify an unknown animal by simply comparing it with known animals (Piaget,

1952). By doing so, given information is being evaluated whether it is important or

unimportant for a particular categorisation. The same is true for the situation in the

Scratch sessions. There are many instances in which participants could have abstracted

information and recognised patterns, particularly because, in this study, participants

completed a tutorial beforehand. It is very likely that they recognised at least some

(sub)problems or (partial) solutions from that.

On the other hand, it must be pointed out that participants were not directly

instructed to use CT. Participants had no prior knowledge in programming or CS related

concepts and were not familiar with Scratch. It is also very likely that the concept and

associated components such as abstract thinking were unknown for the most

participants, and, as a result, they did not actively engage in any CT-relevant behaviour.

– 128 –

Maybe participants were able to identify patterns over instances, but they were not able

to utilise them for the current task.

Vyn Dyne and Braun (2014) developed a CT workshop to prepare students for more

advanced CS-relevant topics. The workshop was concerned with problem solving and

covered topics such as decomposition, abstraction, analysis of trends and patterns, and

algorithm development. These topics are similar to the CT components as used in this

study. Results of later evaluation showed a significant improvement in analytical

thinking and reasoning skills and logical thinking. No such improvement was found for

students in a control group. Results implicate that CT does not occur naturally but must

be trained.

Touretzky, Marghitu, Ludi, Bernstein, and Ni (2013) also designed a framework to

foster understanding of fundamental programming concepts. They did this by

introducing different VPEs (i.e., Alice, NXT-G, and Kodu) to 31 students. All of the

used VPEs have similar commands and provide similar opportunities to users but

named differently. By using the same concepts in various VPEs and various names it

was hoped students would abstract the essences of the mechanism from syntactic details

like names. For instance, WHEN/DO in Kodu are SWITCH blocks in NXT-G and are

IF/THEN commands in Kodu and they all can be seen as conditional commands (i.e.,

the essence of mechanism) even though they look different (syntactic details). Results

suggested that students not only enjoyed learning in different VPEs but also managed to

switch smoothly between them. Authors concluded that participants indeed recognised

patterns over the different VPEs. So, different VPEs were used in order to enhance

participants abstract thinking abilities, which was found to be a successful approach.

Again, this result also indicated that abstraction does not occur naturally in such

context.

A similar approach was used by Basogain, Olabe, Olabe, and Rico (2018) in which

several CT skills was taught in preparation courses for novice CS students. In one

session, students needed to create a project in Scratch with four main scenes and two

sub scenes. This approach is similar to the task used in the current study, in which

participants needed to create a story or a game with different facets. The core idea of the

task in the study of Basogain et al. (2018) was to introduce the students to a top-down

design process in which students needed to decompose the main task in several sub

tasks. Students were supposed to recognise that they needed to think from the goal

backwards. In another session, abstract thinking was promoted by giving the students

– 129 –

the task to design a project in Scratch in which students needed to program their own

customised code chunks with the goal to draw geometric patterns with various

parameters. It was hoped that coding their own code chunks requires students to abstract

the functionality of already implemented code chunks. Students would need to compare

what they have and what they need and are so forced to neglect unimportant details but

focus on the important information. Results showed that students indeed improved their

grades and gained confidence in their CT skills during the time of the courses.

It is important to improve students’ problem decomposition ability and context

relevant abstract thinking because it has been shown that both have positive impacts on

programming ability. Alaoutinen (2012) analysed different coding style by 145 CS

students. One dimension described how information are processed with “being active”

and “being reflective” as end poles. Active coders were described as someone who

tends to need to actively doing something in order to processed information while

reflective coders tend to think tasks through before they start to work (use more

decomposition and think more abstractly). One result of the study was that reflective

coders had better grades in programming. This underpins the role of decomposition and

abstract thinking. In the current study, most pairs would be labelled as active coders

based on Alaoutinen’s coding style taxonomy. It is possible that more decomposition

and abstract thinking could have led to better programming quality.

This leads to the conclusion that at least some crucial CT related skills (i.e., proper

problem deconstruction and thinking abstractly in a programming session) do not

appear naturally and need to be introduced and trained properly. One session might not

be enough to observe them.

5.2.2 Rushing to the solution

A remarkable finding is that all kinds of CT associated behaviour were seen nearly

equally distributed over the whole Scratch sessions. Based on the literature, it was

concluded that decomposition is more associated with the problem itself whereas

algorithmic design is more associated with finding and creating a solution. Abstract

thinking, in contrast, was associated with both, the problem in a sense of recognising

pattern in sub problems and the solving process in sense of recognising patterns in

possible different solutions. Therefore, it was expected that any kind of behaviour

associated with problem decomposition was more likely to appear at the beginning of

the Scratch session while any kind of behaviour regarding possible solutions would

– 130 –

have been observed subsequently. Behaviour indicating abstract thinking was expected

to see equally often over the whole programming task. However, as the visual

inspection revealed, a slightly different pattern of CT associated behaviour was

revealed. Although problem deconstruction was indeed seen more often and longer at

the beginning, such behaviour was also frequently shown throughout the whole session.

Also, actions indicating working on the solution (i.e., algorithmic design) started from a

very early stage and were shown constantly until the end. Pairs also did not decompose

the problem only at the beginning but over the whole session. In general, pairs did not

spend much time discussing the problem in comparison to working on the solution.

They spent over one third of the overall Scratch session with algorithmic-associated

behaviour and spent much less time on decomposing and abstracting. Results indicated

that pairs were working on the solution without much thinking about the task or the

solution itself.

This is a typical behaviour for novice programmers (McDonald, 2018). Novices tend

to dive straight into the task without thinking what they want to accomplish. They think

trial and error is an appropriate way to produce results. That leads to the idea that this is

a more efficient way to produce a result rather spending time designing a computer

program on paper in form of flow charts to organise their ideas and thoughts. However,

McDonald (2018) further concluded that is always better to structure the program on

paper first. He compared programming without a plan with constructing a building

without blue prints. Of course it is possible to just pile a bunch of bricks and creating a

house just by doing it. It will fulfil the purpose of giving shelter but it also may have

some unfortunate features like skewed walls or a bathroom connected to the dining

room. It is the same with programming. Of course it is possible to create a program by

just writing some code or putting some code chunks together. It also may fulfil its

purpose and work as intended. Nonetheless, as Martin (2009, pp. 200–201) emphasised

the primary goal is not to get the program working. It is about planning ahead and

knowing the goal of the program. This involves the CT crucial such as problem

decomposition and abstract thinking. Novice programmers and people, who do not have

any experience in programming like the participants in this study, lack these kinds of

CT associated skills.

Results of the LSA revealed that, when pairs showed any kind of decomposing

behaviour, they usually then started to put code chunks together. The probability of

discussing the next step was highest when they had tested their code immediately

– 131 –

beforehand. Also, when they worked on their solution it was very likely that their next

behaviour would have something such as testing or debugging their code to do with the

solution. In general, the circle of putting code chunks together, testing, debugging, and

testing again showed participants were primarily focus on their coded solution. None of

the pairs stated clearly what kind of steps they needed to make through the whole

process. For instance, many steps suggested by Jonassen’s (2000) problem-solving

model for ill-structured problems (representation of the problem-space; identifying and

clearing alternatives, monitoring the problem space) were not observed.

These results are comparable to results in prior studies. Falloon (2016) conducted a

study to investigate what kind of CT processes of young children (5 to 6 years old) are

mostly evident and how these processes are applied when working on a task that was

similar to the task used in this study. The second most frequently exhibited behaviour

was associated with debugging and testing. In addition, children were mostly occupied

with the same kind of behavioural circle: creating, testing, debugging, and testing again.

These results imply that this kind of behaviour might be typical people who have no

prior knowledge about programming or CT.

In conclusion, pairs rushed to the solution with little forward planning. Issues were

most often discussed only when they arose. Participants worked on their code after aha

moments and showed copy–paste behaviour mainly after discussing a subsequent step.

Pairs often did not properly discuss what their goal was but started to work on a solution

from the beginning. It is possible that this kind of behaviour might be typical for this

kind of tasks if not instructed otherwise.

5.2.3 Some prior mathematical knowledge required

The participants of this study had no significant prior programming knowledge. Thus, to

analyse CT during a programming session, the programming environment had be easy

for novices to learn. Scratch seemed to be a good choice because of its low threshold

and easy access. Although Scratch can be used without programming skills, it still relies

on some knowledge of mathematics. For instance, some pairs failed to code their sprites

as they might have wanted to because they did not know about the Cartesian coordinate

system with X representing horizontal movements and Y representing vertical

movements. This result bolsters the opinion of some who argue that CT overlaps, to at

least some extent, with mathematics (Shute, Sun, & Asbell-Clarke, 2017). Others even

– 132 –

link CT directly to the knowledge of the Cartesian system (Mensing, Mak, Bird, &

Billings, 2013).

Specific knowledge is an important factor for successful problem solving, though

(Bransford & Stein, 1993, p. 4). People’s ability of solving problems is strongly

connected to the amount of knowledge about the area of the problem. Bransford and

Stein (1993) further stated that the effect of general problem solving skills are often

overestimated while the role of knowledge is underestimated. People tend to make

inference of someone’s level of intelligence when observing failed or successful solving

a problem although the reason might be simply lie in the level of knowledge. The same

might be true about CT. As intelligence, CT is seen as a problem-solving approach not

necessarily limited to a specific area. Failing or being successful in solving a

programming problem does not only depend on the level of CT but also on the level

knowledge a person has about the problem area.

5.3 Discussion of the second research question

Two different measures for CT were used to investigate the relationship between

programming quality and CT. One measure, the Bebras tasks, is considered as

unplugged method and is based on abstract problems with no obvious link to CS

concepts. The other measure, the CTBS, focused on behaviour participants showed

while solving a programming task. Both CT measures were positively correlated with

each other with a medium large effect size. This indicates a certain level of convergent

construct validity. Convergent construct validity refers to whether a test is measuring

the construct it claims to be measuring (Cronbach & Meehl, 1955) and is established by

comparing different measures of the same construct with each other as done in this

study. Correlations between both CT measures indicate that they may tap the same

construct, but it is possible that they do this from different perspectives. While the

Bebras tasks capture the more abstract parts of CT the CTBS covers more the later stage

of the solving process when people design and implement solutions. The “only”

medium large effect size might reflect these different perspectives on the same

construct.

Both CT measures were positively correlated with programming quality. As a

consequence, a general interpretation could be that the higher the level of CT the better

the programming quality. However, this interpretation would be premature because the

– 133 –

regression analysis revealed that only one—the time participant spent on CT-relevant

behaviour—was a significant predictor of programming quality when controlling for

other variables such as the level of nonverbal intelligence and other CT measure. A

second regression analysis with Dr Scratch mastery score as a measure for evaluation of

Scratch projects supported this finding. Again, the reason why the two different CT

measures predict programming differently well might lie in different perspectives the

measures have on CT and the perspective might mediate the relationship with

programming.

The Bebras tasks might focus on the abstract parts of CT. Correlations between the

Bebras score and the TONI-3-IQ were high regardless of whether the units of analysis

were individual or paired scores or the correlations were based on Pearson’s r or

Spearman’s ρ. As for the most instruments for nonverbal intelligence, TONI-3 is based

on pictures in which participants need to identify similar instances and recognise

patterns. Many of the Bebras tasks are designed in a similar fashion. The original idea

behind the Bebras tasks was to create a test about CS concepts “independent from

specific systems” to avoid contestants being dependent on prior knowledge of any

specific IT system (Dagienė & Futschek, 2008, p. 22). This led to some items being

similar to those of nonverbal intelligence tests.

As found in some prior studies, this also caused confusion for some Bebras

contestants. Vaníček (2014) asked participants for their opinions about the Bebras tasks.

Some questioned the purpose and validity of the test, stating, “I wonder what the contest

questions have to do with informatics. Maybe nothing at all?” If (at least some) Bebras

tasks are similar to those of nonverbal intelligence tests and there is a high and

significant positive correlation between both measures, it is possible that both tests

measure similar constructs. This would explain why the relationship between the Bebras

scores and programming quality vanished when controlled for TONI-3-IQ. The Bebras

tasks are validated by several studies (Dagienė & Stupuriene, 2016; Dolgopolovas,

Jevsikova, Savulionienė, & Dagienė, 2015; Lockwood & Mooney, 2018) but none of

these studies controlled for any potential confounding effects on similar psychological

constructs such as nonverbal intelligence. So far there is only one study in which the

potential relationship between the Bebras tasks and nonverbal intelligence has been

discussed with similar findings to this study (Román-González, Pérez-González, &

Jiménez-Fernández, 2017). Thus, it is possible that the Bebras tasks indeed measure CT

but mainly the facet of abstract thinking related to pattern recognition.

– 134 –

It is possible that this rather abstract part of CT alone is not a good predictor for

programming ability because more cognitive effort is required to transfer the needed

skills to apply in a different situation and setting. According to the authors of the Bebras

tasks, participants need to apply the same cognitive abilities as needed for programming

tasks such as problem deconstruction, thinking abstractly, and being able to understand,

design, and evaluate algorithms (Dagienė & Sentance, 2016). However, the content of

the Bebras tasks (as for the most unplugged methods) is very different from real

programming tasks. Even though the same skills are required to solve both kinds of

tasks, the Bebras tasks as well as the programming task in this study, it would require a

high level of transferability from these abstract logical quizzes to real applied

programming situations. This is similar to the conjecture playing Sudoku or other brain

training games would generally improve cognitive abilities. However, that is likely not

the case.

Stojanoski, Lyons, Pearce, and Owen (2018) tested this hypothesis by designing an

experiment with a treatment and a control group. Participants of both groups played a

game with the goal to identify correct items with logical clues given as support. The

task was adaptive, which means it increased its difficulty automatically along with the

increasing capabilities of the participants in order to being constantly a challenge. The

treatment group were trained in this game for over two weeks while participants of the

control group played the game only in a pre and post session. To test for the

transferability of what participants might have learnt during the test session, a second

game was implemented. The gameplay mechanics and goal of both games were the

same but the given clues for the second game were changed so slightly different

cognitive abilities were required. With no surprise, participants of the treatment group

scored higher in the trained game than participants of the control group, which means

the cognitive ability required for this game has indeed improved. However, no such

improvement was found for the non-trained test game. Performance of the treatment

group was similar to the control group. A second experiment with a different game and

altered game mechanics supported the original finding. Authors concluded that despite

the improvement in the trained games, there is no evidence for any transferable gains in

performance for untrained tests was found. The authors also emphasised how the overall

design of the trained and test games was quite similar and still no transfers in rather

simple cognitive abilities such as recognising and identifying could not be found.

However, that does not mean that no transfer from any cognitive training is possible.

Kelly et al. (2014) analysed in a meta-study randomised controlled trials about the

– 135 –

effectiveness and transferability of cognitive trainings. In total, 21 studies reported some

sort of transfer effects but were constraint on rather simple cognitive abilities (i.e.,

executive functions such as processing speed, memory and recall measures). Results

were found most reliable within the same cognitive domain but effects were rather

small. With no surprise, the more different the trained tasks were to the tested situation

the smaller the effects. Thus, it is unlikely that tests such as the Bebras tasks have much

of an impact on programming. The comical, logical quizzes of the Bebras contests are

very different from programming tasks. Using them the Bebras task or other unplugged

methods might increase people’s motivation, but it is questionable whether the

developed and improved skills can be useful generalised to other areas.

In contrast to the Bebras tasks, the focus of the CTBS lies on participants’ actions.

Correlations indicated that the more participant spent on CT associated behaviour the

better the programming quality of their Scratch project. It must be pointed that this was

mostly due to algorithmic design and algorithmic design is the more hands-on activity

of CT. As stated before, participants were working on their code from the start of the

session and so the interpretation would be the longer and the more participants coded

the better. Even after controlling for other measures, this relationship was still

significant and persisted in both regression models with programming quality and

Scratch project evaluation as outcome, respectively.

These results indicate that hands-on tasks are more useful to enhance CT skills than

more abstract ones. Such hands-on practices can be designed in VPEs such as Scratch.

Indeed, Scratch has been found to be an effective tool for teaching CS concepts and

programming in the past. In a more recent study, Chen, Haduong, Brennan, Sonnert,

and Sadler (2019) asked over 10,000 second and fourth years CS students about their

experience with VPEs and their first “real” classic programming language. Results can

be summarised that VPEs have positive effects on programming. Xu, Ritzhaupt, Tian,

and Umapathy (2019) conducted a meta-analysis on 13 studies about the effect VPEs

have on cognitive and affective student learning outcomes. Cognitive outcome were

measured by achievement in sorts of problem-solving often based on Bloom’s

taxonomy and improvement in programming skills. Even though effect sizes were

generally small, results revealed a positive effect in favour of VPEs on cognitive

measures. Also direct effects of using Scratch to teach programming has been found.

Armoni, Meerbaum-Salant, and Ben-Ari (2015) investigated the effects of Scratch

courses on the level of understanding of CS concepts such as conditional or repeated

– 136 –

executions and handling of variables. For this, high school students from four different

schools were introduced with a Scratch preparation course for programming. Results

can be described as small but in favour for Scratch. Students who had worked with

Scratch had fewer difficulties and needed less time to learn new concepts and had a

better understanding of the concepts. Scratch is a more hands-on tool than the more

abstract tasks of the Bebras contest and therefore less cognitive effort is needed to

transfer to solve programming tasks which might explain the strong relationship with

the time participants spent on CT-relevant behaviour and programming ability.

In conclusion, the answer to the question how CT and programming quality are

related to each other should be simply it depends. To solve the Bebras task, the same

CT-related skills are required as the CTBS has discovered during the programming

session. However, the focus of the Bebras tasks lies more on the abstract parts of CT

while the CTBS focus more the hands-on part. It turned out that, if the view on CT is

rather focusing on the abstract parts, only a little relationship can be found, which

vanished after a more behaviour-focused measure is taken into account. The reason for

this might lie in the level of cognitive effort needed to transfer CT related skills.

5.4 Practical implications

Results of previous studies implied that CT must be trained to be useful in a

programming situation and results of this study support this implication. Therefore, in

the following an overview of a developing educational framework about CT skills is

presented.

CT involves different skills such as problem decomposition, thinking abstractly and

algorithmic design. Results of the current study indicated that these skills should be

taught in a programming setting in order to keep the level of transferability low.

Unplugged methods alone might be not enough to teach CT effectively and should not

be used as a stand-alone teaching unit (Bell & Vahrenhold, 2018). Instead, it should be

embedded into the curriculum. If the goal is to use CT skills to solve programming tasks

then CT should be included into programming curriculum. It should not be assumed that

this alone would raise a general level of CT and people would be suddenly able to use

CT in different settings. If, for example, CT is supposed to be a useful tool for other

STEM areas such as biology or physics as Wing original stated (Wing, 2006) then it

should be implemented in curriculum about biology and physics, respectively.

– 137 –

Not only the context plays a role but also the target group. Often the target group of

CT are younger students. In this case, VPEs have been found to be an effective tool in

order to enhance CT for programming purposes. However, Xu, Ritzhaupt, Tian, and

Umapathy (2019) concluded that the effectiveness of VPEs depends how they are

implemented in the educational setting emphasising the importance of the correct

educational framework. Just letting students working in VPEs will barely increase their

level of CT or enhance their level of understanding about programming concepts. Chen,

Haduong, Brennan, Sonnert, and Sadler (2019) critically remarked that VPEs are not

generally superior to classic programming languages with regards to learning

programming, though. VPEs are more effective when introduced at an early age while

no such positive effects were found when students were already teens or older. Based on

these results, Chen et al. (2019) further questioned the recent trend of using VPEs to

introduce programming concepts or teaching CT for university students.

5.4.1 Problem solving

Computational thinking is just one problem solving approach out of many. It is suited

for a specific kind of problems. Thus, it is important to teach the scope but also its limits

of CT and what kind of other problem solving strategies there are. CT is considered as

problem-solving approach especially useful for ill-structured problems. So students first

need to learn the taxonomy of problems and what it means to face an ill-structured

problem in comparison to a well-structured one. A revised version of Jonassen’s (2000)

model for solving ill-structured problems might be a first step. Jonassen’s model

defined seven steps (1. representation of problem space, 2. identifying and clearing

alternatives, 3. generating possible solutions, 4. viability of alternative solutions, 5.

monitoring the problem space, 6. implementing and monitoring solutions, 7. adapting

solutions), which can roughly be summarised in three stages: planning, implementing,

and evaluation.

Pairs in this study barely talked about the problem itself. This might be a sign they

lack attention for the planning stage. During this stage, participants should first be sure

to fully understand the problem and being clear about the overall goal. This is meant by

representation of the problem space. The task in this story was to program a story or a

game where a hero has to overcome a challenge in order to defeat the villain(s). A first

step would be to clarify what these elements mean to the problem. What do villain,

overcome a challenge, and hero mean in this context? Bransford and Stein (1993) also

– 138 –

emphasised the role of prior knowledge and experience especially for solving ill-

structured problems. So the planning phase also includes comparing similar problems in

the past with the current situations. What are some similarities and what are the

differences? This is when problem solver use abstract thinking and trying to identify

similar structures while ignoring unimportant details like the context of the past

problems.

Usually there might be more than one possible solution for ill-structured problems.

This can be overwhelming and can cause some confusion. Therefore, it is crucial to

focus on one goal and one approach at a time. To decide what possible solution should

be tried first an evaluation system should be created based on knowledge and own

beliefs (Jonassen, 2000). For instance, if working on one possible solutions takes too

long because unforeseeable problems occur, it might be wise to switch to another

possible solution. Some pairs in this study did exactly this because they became

frustrated with their first attempt. An evaluation system helps to identify faster suitable

solutions and can guide through the whole process.

In summary, in order to use CT effectively for programming, students need general

knowledge about different types of problems and what solving steps are needed. This

includes clarifying the problem representation and creating an evaluation system for

possible solutions. Ill-structured problems usually have more than one possible solution,

which means students need to be prepared that solutions might require adjustment and

students should not fear to go back to prior steps of the process.

5.4.2 Decomposition

The core idea of problem decomposition is to identify the different levels a problem can

have. Based on Lee and Anderson's (2001) model of task analysis, there are three main

levels. At the unit-task level, the main goal is divided into several subgoals which can

mainly be completed mostly independently. The level below is the functional level in

which these subgoals are further deconstructed. The lowest level is the keystroke level

which always represents the most atomic unit. Problem at this level cannot be further

decomposed. The task used in this study could be divided into the following subtasks on

the unit-level: (1) develop a plot, (2) create a hero, and (3) create a villain. These tasks

can be further deconstructed into smaller chunks on the functional level. Developing a

plot, for example, can be further deconstructed into developing (1.1) a beginning, (1.2)

an end, (1.3) a challenge, and (1.4) a turning point. The usage of code chunks in Scratch

– 139 –

and creating coding sequences would be representing the keystroke level as the lowest

one.

In order to teach such problem deconstruction approach, the benefits should be

emphasised such as reduction of complexity. Problems of the lower levels appear to be

less complex and so less cognitive effort is needed to achieve a subgoal. In addition, it

is possible that identified subgoals can be achieved independently, which may increase

the efficiency of the overall problem-solving process. As mentioned before, knowledge

plays a crucial role in any kind of problem solving. This is especially true for the lowest

level in problem decomposition. The lowest possible level is always dependent on the

system in which it is carried out, which also means that the problem solver has enough

knowledge about the system in order to plan the steps on the lowest level. Or to put it

differently, if a problem solver encounters some serious difficulties to plan throughout

the problem-levels, this might be a sign that some more knowledge about the system is

needed before attempting to create any solutions.

Interestingly, problem decomposition has been perceived by students as one of the

most difficult CT skill to master (Selby, 2015). Although the concept of problem

decomposition seems often straight forward, students often struggle to use it effectively.

Whether students are able to successfully deconstruct a problem appears to be

dependent on the level of familiarity of the problem. Selby further stated that it is more

likely students recognise the potential subgoals and different levels when students

already know the solution or understand the problem well. Another reason why problem

decomposition appears to be a challenge might be that the connections between the

levels are not clear to the problem solver. Identifying subgoals on different levels is not

enough. It is crucial to recognise how subgoals and levels are linked with each other. A

problem solver needs to fully understand top-down process of decomposition. The

results of this study show that was likely not always the case. Many students talked

about the next immediate step to do but no serious top-down process was apparent.

Selby’s results and results of this study imply that decomposition should be trained

on familiar and maybe already solved problems. It might be then easier to understand

for students what subgoals on which levels there are and how these are connected to

each other. This way the full top-down problem decomposition process might come

clear to the students.

– 140 –

5.4.3 Abstraction

The core of abstract thinking is being able to understand the relationship between

different instances. It means to be able to see through the unimportant details and to

recognise the deeper lying structure what these instances have in common. One way to

enhance this ability is using analogies (Anderson, 2015, pp. 188–191). Analogy can be

described as a process in which specific operators are taken from one problem and are

mapped onto a solution to another problem. A classic example of an analogy is

Rutherford’s model about atoms in which electrons surround the nucleus of atoms the

same way the planets surrounding the sun. Although the elements in both instances are

different, the structure and relation of these elements remains the same.

The underlying structure of abstract reasoning is logical reasoning and so Nickerson

(2011) also promoted teaching (formal) logic in order to enhance abstract thinking

abilities. Logic reasoning provides a clear sequence of arguments with is also crucial for

understanding algorithmic solutions. In addition, programming concepts are also

strongly based on logic such as Boolean algebra. Nickerson critically stated, though,

that logic is difficult to teach and transfer of this concept is particularly low. To keep the

transfer level low, teachers should create simple and short tasks in case learners are not

familiar with formal logic.

In general, abstract thinking has proven to be particularly tricky to teach because of

its known high dependencies of context (Kelly et al., 2014). In case the goal is to

improve abstract thinking in order to improve programming skills then using analogies

and teaching formal logic alone will be barely effective. Although all are high

correlated, Lohman and Lakin (2011) distinguished different forms of abstract

reasoning like verbal reasoning, quantitative reasoning, and figural reasoning. Verbal

reasoning is about the understanding of concepts and problems expressed in words,

quantitative reasoning is about problems in numbers and figural reasoning is about the

relation between geometrical forms. In that sense there might be also “computational

thinking reasoning” which describes the ability to recognise patterns in algorithmic

problems and solutions. To enhance the later one, exercises should be created in such

programming setting (e.g., in VPEs or in actual programming languages).

If learners spontaneously try to solve novel problems by using actively abstract

thinking, it is possible they are guided by superficial similarities. Ross (1984) taught

different problem-solving methods by using examples of problems such as estimating

– 141 –

the probability of two dice sum up to seven. Only when the test examples illustrated the

same principle as needed (e.g., same principle of probability), participants were able to

solve new problems. When it did not and participants tried to abstract the structure by

themselves, they tended to focus on superficial similarities (e.g., using dice or not) and

so they were not able to solve any new problems. Unsupervised training can lead to

wrong conclusions by learners especially if learners are new to the field.

The low level of abstract thinking of the participants in the current study also

suggested that participants needed help to focus the crucial features so they would have

been more capable of recognising patterns. Participants had no prior experience in

programming or whatsoever and so it might have been difficult for them to focus on the

crucial elements. Therefore, at least at the beginning of the learning process, a teacher

should actively help learners to identify the crucial features of the learning material. For

example, when introducing students to a new VPE and a warm-up phase is used in

which learners learn the mechanics, teachers should encourage the students to actively

point out similarities between the elements of the tutorial session and how the same

code chunks can be used in different situations or how the same goal can be achieved by

using different code chunks. This is similar to Touretzky, Marghitu, Ludi, Bernstein,

and Ni (2013) who used different VPEs in order to teach the same concept. The name of

the code chunks differed over the various VPE but the principle were all the same. This

approach might enhance the abstract thinking abilities of learners.

To avoid learners focus on the wrong details, the training material must be chosen

wisely. That means the training and test items should not be too close to each other

because that would be just repetition of familiar material (Ross, 1984). On the other

hand, if both are too far away from each other learners might fail to recognise

similarities. Participants of this study probably did not use much what they learnt in the

warm-up phase probably because the link between the tutorials and the actual

programming tasks was not clear enough to them.

In summary, using analogies and teaching formal logic alone might be a good

foundation for generally enhance abstract thinking but might not be enough to enhance

abstract thinking in context of CT because of the low level of transferability of

cognitive abilities. Especially at the beginning when material and concepts are new to

learners, the learning process should not be unsupervised because novices tend to focus

on superficial and not critically important similarities. There must be a right balance

between the learning material at the beginning and the material at an advanced learning

– 142 –

stage. Materials must not be too similar and neither too different in order to provide

learner the chance to recognise patterns.

5.4.4 Algorithmic design

Algorithmic design summarised the whole process of creating, testing and debugging a

solution in CT. To be able to create an algorithmic solution learners need to know what

algorithms are and how they work. Learners need to understand that an algorithm

consists of different commands with different purposes and how these commands are

semantically related to teach other. For instance, the general idea of a simple algorithm

might be “when left click then move avatar 10 units right”. The general knowledge

about algorithms is the first step. In a second step learners need to know how to

implement their solutions. This implementation is highly dependent on the current used

system. If an algorithm is supposed to be implemented in Scratch then learners not only

need to understand the general sequences of commands but also how to create these

commands in Scratch. How does “left click” look like in Scratch and what units are

used to move the avatar to the right? The same is true for any other kind of used system.

Domain specific knowledge is crucial for designing algorithmic solutions.

There are several educational frameworks about CT and the focus of many of them

lies on the algorithmic part of CT. For example, Grover et al. (2019; 2015) developed

several educational framework on algorithmic problem solving. The core idea of their

frameworks is always to teach CT and CS principle such as abstraction and problem

decomposition with different tasks using VPEs (in most cases Scratch). For example, to

teach the idea of loops a set of tasks is design and dived into different units. In one unit,

students are supposed to create a spiral by using the loop-code chunk. In later units the

task becomes more complex and different forms of loops (e.g., nested loops) are

included or the code must be further altered by adding variables and conditional

expressions (Grover, Jackiw, & Lundh, 2019). This step-by-step procedure gives

students the opportunity to understand how the different code chunks are related to each

other.

When translating the general idea of an algorithm into the current system, it is very

likely that mistakes are going to happen and programs do not work as intended. This is

the reason why debugging and fixing sequences of codes often play a dominant role in

most of educational frameworks (Grover, Jackiw, & Lundh, 2019; Grover, Pea, &

Cooper, 2015; Voogt, Fisser, Good, Mishra, & Yadav, 2015). To practice debugging

– 143 –

skills there are often other than the own coding attempts are used. This has a specific

reason. As every writer has his or her own style in writing so has every programmer his

or her style in programming (Martin, 2009, p. xxii). When learners start to practice from

scratch they quickly start to develop their own style. When practice only on the own

codes they will learn to avoid certain mistakes they personally usually tend to do. When

learners also see different styles of coding they encounter also different kinds of

mistakes. Learners then need to understand the thoughts and intentions of the original

designer. This is a way to improve reflecting skills (Grover, Pea, & Cooper, 2015),

which might have a positive impact on debugging capabilities and might also enhance

learners’ general understanding of algorithmic solutions.

In summary, designing of algorithmic solution is dependent on the fundamental

knowledge of how algorithms work but also about the current system in which an

algorithm is supposed to be created. Teachers need to be sure that not only the concept

and purpose of code chunks are understood by learners but also how these code chunks

are related to each other. Only then an algorithmic solution can be designed. Debugging

plays a crucial role and can be practiced by using malfunctioned codes.

5.5 Critical evaluation of the study

Within this section, this study is evaluated critically. Methodological and theoretical

limitations are discussed, including the overall design of the study, the used instruments

and the limited conceptual view on CT as seen in this study.

5.5.1 Methodological

5.5.1.1 Research design

Because the goal of this study was to analyse students’ CT-associated performance

while they solved a programming task, a video an observational video study seemed

appropriate. Although video studies have many advantages, they also have some

drawbacks. Participants could have acted differently because they knew they were being

recorded. Some pairs actually made comments indicating that they were aware of the

camera. However, none of this behaviour was prolonged for any of the participants.

Soon after the recording had started they noticeably focused on the tasks. None of the

participants mentioned the recording after minute 5, and none of the participants looked

– 144 –

straight into the camera or showed any other sign of awareness of the recording. Some

pairs even discussed private issues with each other or were looking at their phone,

which implied that they forgot about the camera. Thus, no serious concerns need be

raised regarding the participants’ natural behaviour.

The design of the study also led to the situation that different measures (Dr Scratch,

programming ability, and CT-associated time) were based on Scratch. Although the

focus of all instruments differed, this might have had an effect on the measures and

should be considered when interpreting results.

Students worked in pairs because it was hoped that this would provoke social

interaction and make otherwise unobservable thoughts accessible. Moreover, pair-

programming settings have been used in prior studies in terms of measuring CT and

programming knowledge for novices (Denner, Werner, Campe, & Ortiz, 2014; Wu, Hu,

Ruis, & Wang, 2019). Nonetheless, this approach came with some challenges.

The performance of pairs might be dependent on the people who work together and

how they get along with each other (Hanks, Fitzgerald, McCauley, Murphy, & Zander,

2011). Participants did not freely choose their partners but were paired according to

their Bebras scores in order to prevent broad discrepancies in their levels of CT. It was

assumed that huge differences could have negative effects on their performance during

the Scratch session. Most participants did not know each other well. The 40-minute

tutorial session before the actual tasks was the first time they worked together. It was

hoped this was sufficient time for getting to know each other and bond. This appeared

to be the case for most pairs, although some pairs talked or interacted with each other to

only a small extent.

Another challenge is the usage of paired values as unit of analysis. It is questionable

whether there is something like common levels of CT, intelligence, or programming

quality. Some might argue that the results and overall conclusion might have been

different if all measures were obtained and analysed solely on an individual basis.

However, it must be noted that the Bebras scores as well as TONI-3-IQ were originally

obtained individually and paired later. This made it possible to run some analyses based

on individual as well as paired scores and compare the results with each other. These

results were similar. Despite these challenges, the use of dyads is justified by added

findings on collaboration such as the study conducted by Denner et al. (2014). Notably,

according to the findings of Denner et al. (2014), students that work collaboratively in

– 145 –

pairs attain considerably higher CT scores than students working alone. Just as

importantly, working in pairs is advantageous for students with little programming

experience (Denner et al., 2014). In addition, working in pairs is quite common in the

field of programming. Analyse a programming product as a team effort secures a certain

level of external validity.

With a total sample of over 108 participants, the study reached a sufficient level of

power for the calculated regression model, when expected effects lie in the “medium

size” ranges (Cohen, 1988). However, some argue that post hoc power analyses are not

particularly meaningful and misleading. Calculating post hoc power may seem to

provide more statistical arguments but power is just an inverse function based on test

probabilities and effect size (Aberson, 2019, p. 15). In case of rejecting the null

hypotheses, it means power was sufficient to detect an effect by the given sample size

and test probabilities. It is just a p-value in another shape. Therefore, post hoc power

analysis adds no new information should not be overestimated.

In addition, the sample size reduced dramatically for some analyses based on paired

scores. Pairs for the programming task in Scratch were created only after both

participants completed the Bebras tasks and the TONI-3, which resulted in 37 pairs.

Due to technical problems (e.g., when a computer froze, turning off microphones or

webcams by accident) resulting in 27 complete and unproblematic recordings, which

further limits the generalisation of quantitative analyses.

5.5.1.2 Instruments and measures

Because participants were all Australians and to avoid problems with use and

recognition of idioms, only the Australian version of the Bebras tasks from 2014 and

2015 were used in this study. Although the conception and structure of the tasks do not

differ much across the countries and years, it is possible that results might change with

different Bebras tasks. It must be also noted that the Bebras tasks are originally

designed elementary and high school students. There are studies in which CT of

university students is measures by Bebras tasks but is this not a common approach.

Based on the results of the pilot study, there were no reason of concerns and so the

Bebras tasks available for the oldest age group were used in this study. However, results

must be interpreted by caution.

Fortunately, the nonverbal intelligence assessment did not raise any concerns. It is

generally assumed that intelligence is normally distributed in the population with µ =

– 146 –

100 and σ = 15 (Sternberg, 2017). The TONI-3-IQ does not generally differ from the

assumed population in shape and dispersion, which indicates a good fit. The reason why

the average mean is nearly 1 SD higher than the general population might be explained

by the fact that only university students have been observed.

The TONI-3 was chosen because of its satisfactory psychometric properties, existing

normative data relative to specified subgroups, and overall good conceptual fit.

However, all items are geometric forms and figures in which participants need to

identify patterns. Some argue that this is only one of several facets of nonverbal

intelligence and figural reasoning alone might not be enough to sufficiently measure

nonverbal intelligence (Wilhelm, 2005). Furthermore, the whole concept of intelligence

was never without controversy. Scholars suggest use of diffuse concepts and terms such

“cognitive abilities” instead of intelligence (Urbina, 2011, p. 35). This is because

cognitive processes are easier to define and there is less heated discussion and there are

fewer emotional associations with them.

The CTBS was created for the purpose of this study. That means this instrument was

not used in other studies yet. Interrater reliability assessments indicated a satisfactory

level of agreement on the different CT-relevant behavioural clues but the results of the

CTBS still must be interpreted with caution because some indicators of some CT-

relevant behaviour are dependent on the used environment. For instance, the CT

component algorithmic design subordinates all utterance and actions with the purpose of

designing an algorithmic solution to a problem. The programming task in this study was

designs in Scratch in which the only way to create algorithmic solutions was to put code

chunks together. If another programming environment would be used, other indicators

could be identified. This limits the generalisation of the results of the study.

In addition, it is also possible the CTBS was not sufficiently sensitive to assess

abstract thinking on a satisfactory level. Indeed, the results of the pilot study indicated

that observing abstract thinking might be a challenge. As for the main study, no

behavioural clues indicating neglecting information were found in the pilot study and

pattern recognition was observed only rarely. Because abstraction plays such crucial

role in CT, the investigator of the study still decided to keep abstraction in the CTBS to

be sure to catch any signs of abstraction in case there might be any. Abstract thinking

has been described as a complex information process of higher-order thinking. The

process of recognising patterns and especially neglecting unimportant information

might primarily take place automatically, with people often being unaware of it

– 147 –

(Barsalou, 2003; Carlson & Dulany, 1985). If people are not aware of it, it is difficult to

observe in social interactions and other measures of abstract thinking might be more

sensitive.

For the purpose of this study, a rubric scheme was developed to measure the

programming quality of students’ Scratch projects. Quality concepts such as variety of

used code chunks and coding efficiency. While rubric schemes became more popular

over the last few years, there are also some critical voices. Menéndez-Varela and

Gregori-Giralt (2016) investigated the validity of rubric-based performance assessments

of 84 first year students studying Conservation–Restoration and Design. They compared

scored based on a rubric with ratings of two teachers and three student tutors. They

concluded that rubrics contribute to students’ learning performance. The strength of

rubrics lies in promoting shared understanding of learning objectives and it is helpful

when providing feedback. In that sense, rubrics are a good tool for formative

assessment. However, rubrics reduce the complexity of a learning outcome. It depends

on the topic of a course or projects whether such reduction may the usage of rubrics less

favourable. Thus, Menéndez-Varela and Gregori-Giralt (2016) see rubrics as a scoring

tool for summative assessment critically.

Panadero and Jonsson (2020) came to a similar critical conclusion about rubrics. In a

meta-analysis of 27 publications about rubrics, they identified several “themes”

mentioned in these papers. Among them were “standardisation and narrowing the

curriculum” and “limitations of criteria”. This shows how the biggest strength of the

rubrics are also their biggest weakness. Reduction of complexity to achieve higher

reliability may also result in less validity. Programming quality is a complex concept

which has not been generally defined. Although the rubric score is based on the

literature and checked by a former computer science teacher with several decades of

experience, it is likely that there are criteria of programming, which were not included

in the vertical dimensions of the current rubric. It is also possible the quantitative steps

are too broad or too narrow. Theses biases may result in underestimating or

overestimating true scores of programming quality. Therefore, conclusion about

programming quality should be only made with similar definition and criteria used in

this study and generalisation of the results must be made with caution.

In this study, Dr Scratch was used as an instrument to evaluate Scratch projects but

not to measure someone’s level of CT as it is usually used in the field. This decision

was first made based on conceptual reasons. Dr Scratch predominantly relies on the use

– 148 –

of code chunks, which, in turn, has an effect on overall CT measurement. In prior

studies, the developers of Dr Scratch emphasised its strong foundation in programming

concepts (Moreno-León, Robles, & Román-González, 2016, 2017). In one of their

studies, Román-González, Moreno-León, and Robles (2017) referred to Dr Scratch as

“computational practices” based on Brennan and Resnick’s framework on CT. The

category “Computational practices” comprised mainly concrete CT actions including

testing and debugging (Brennan & Resnick, 2012). These are facets subordinated under

the concepts of algorithmic design in this study. Hoover et al. (2016) compared CT

assessment based on Dr Scratch with qualitative analysis of the Scratch projects. Their

results also showed that Dr Scratch usually produces lower CT scores. In addition, the

quite high correlation between Dr Scratch mastery score and programming quality as

used in this study also supports this approach empirically.

5.5.2 Conceptual consideration

5.5.2.1 Limitation of the operationalisation

There is still no sufficient theoretical framework for CT. The conceptual framework

about CT as used in this thesis was developed based on systematic literature reviews

and major publications of distinguished experts of computer science (education)

experts. This resulted in a view on CT that has a strong view on skills and actions. Other

CT frameworks may focus on other aspects.

One example is International Computer and Information Literacy Study (ICILS;

Fraillon et al., 2019). The study was conducted 2013 for the first time with the goal to

examine students’ abilities to use computers and to investigate, create and communicate

participate effectively in different environments like school, workplace or at home. The

second and latest cycle in 2018 continued to examine students’ computer and

information literacy but additionally investigated students’ CT. The authors defined CT

as a two-dimensional construct: conceptualising problems and operational solution with

three and two aspects, respectively.

Conceptualising problems describes the ability to understand the problem before any

kind of solution may be developed. It contains the following aspects:

(1) Knowing about and understanding digital systems refers to the ability to

understand a system by observing their interactions with other systems and how

their components interact with each other. A person understands a sequence of

– 149 –

actions and how events are dependent and is able to use visuals tools like tree

diagrams or flow charts to describe a system on a conceptual level. This also

contains the ability to monitor a running system and make educated assumptions

why a system may not work.

(2) Formulating and analysing problems describes the ability to break down a

complex problem into smaller and more manageable parts. It also contains the

ability to specifying the characteristics of the problem so that a computational

solution might be applied.

(3) Collecting and representing relevant data may be relevant to make effective

judgments. Analysing data can help to observe the behaviour of a system and to

identify patterns or characteristics that are otherwise difficult to detect. This

aspect also includes the use of simulations.

The aspect of operational solutions describes all process associated with the solution

itself. It includes the process of creating, implementing, and evaluating a computer-

based system to a problem. It contains two aspects:

(1) Planning and evaluating solutions refers to the ability of thinking ahead and

establishing parameters of a system that are needed to achieve the desired

outcome. It also refers to the ability to implement and evaluate the solutions.

This includes developing a test strategy and being able to make critical judgment

and detect faulty solutions.

(2) Developing algorithms, programs and interfaces focus on logical reasoning.

It does not mean to be able to use specific programming languages but being

able to think in steps and rules in order to solve a problem. It describes the

underlying ability to design or debug simple algorithms and to create interfaces

that allows interactions between users and (digital) systems.

This short summary of the CT framework in ICILS shows some similarities but also

some differences with the framework developed in this thesis. Both frameworks divide

the CT process in two stages or strands, respectively. In both frameworks

decomposition the problem plays a major role in the first stage while algorithmic design

(or designing operational solutions) is part of the second stage. The ability of abstract

thinking with neglecting unimportant information and pattern recognition is also part of

both frameworks. The biggest difference, however, comes with the role of data

– 150 –

handling. Collecting and interpreting data are not considered as a single core aspect of

CT in this thesis. Instead, it is seen as part of algorithmic design, i.e., the second stage

of CT. This is different to ICILS in which collecting and representing relevant data is

already part of conceptualising of the problem. Whether data handling is an independent

core aspect of CT or part of another CT ability may have an impact on conclusion on

the level of CT someone has.

Another instance of different framework is shown in Brennan and Resnick (2012),

who developed an educational framework based mainly by analysing Scratch projects

and interviewing children using Scratch. In their framework CT is rather seen as a three-

dimensional construct: computational concepts (major concepts in programming such as

parallelism), computational practices (typical actions programmers do such as testing

and debugging), and computational perspectives (perceived relation between

programmers and the technological world). This different kind of perspective on CT

may result in different ways of measuring.

Contemporary theories about CT are based on Wing’s comment in 2006. His view

about CT popularised and shaped the general idea of CT even though she was not the

first who mentioned CT. In 1980, Seymour Papert—one of the pioneers of CS

education—coined the term in his work Mindstorm: Children, Computers, and

Powerful Ideas (Papert, 1980). Indeed, the perceptions about CT have changed over

time.

Papert was a computer scientist and inspired by the automation processes of the

1960s. He was quickly convinced that CS should become part of school education and

developed LOGO, a programming language designed mainly for children. At this time

he worked with Piaget who developed different learning theories, which can be

summarised in the basic principles of constructivism (Tabesh, 2017). Inspired by

Piaget’s work, Papert developed his own theory of learning, which is comes from the

philosophical view of constructivism (Siegler, DeLoache, & Eisenberg, 2014, pp. 134–

136). Piaget’s constructivism suggested that learners construct their knowledge by

comparing new information with prior experience, while Papert’s constructionism adds

the idea that learning happens best when learners construct a product that is meaningful

for them (Ackermann, 2001). The focus in both theories lies on the individual.

Knowledge cannot be transmitted by a teacher. Instead, learners need to be active, it is

something playful; it means exploring and tinkering around (Papert & Harel, 1991).

This is the core aspect of constructionism and this is also Papert’s view about CT. For

– 151 –

him, CT is a way “to forge ideas” (Papert, 1996, p. 116). It also means tinkering around

and conducting little “experiments”. In that sense, creativity would have probably

played a bigger role for CT. This might mark the biggest difference between CT, as

perceived by most scholars today, and as Papert saw it.

CT as used in this thesis did not explicitly include creativity as a component for two

reasons. First, it is not presented as major facet but it is mentioned only incidentally

along with other minor concepts. Second, CT as used in this thesis has a focus on skills

and behaviour whereas creativity is an umbrella term for different psychological

concepts in the same way that intelligence is. However, if creativity would be seen as a

major component, it also might change how CT is seen by teachers and learners.

Overall, CT is a fuzzy concept with multifactorial views and dimensions.

Notably, CT skills are learnt and/or developed (Palts & Pedaste, 2020). Indeed, CT

skills can be developed according to three larger stages, namely, defining the problem,

solving the problem, and analysing the solution. To define a problem, students learn

how to formulate the problem, abstraction, problem reformulation, and decomposition.

To solve the problem, students learn to collect and analyse data, algorithmic design,

parallelization and iteration, and automation. To analyse the solution, students learn to

generalize, test, and evaluate. Through these three stages, the students learn CT skills

for problem-solving from start to finish.

5.5.2.2 Computational thinking itself

The whole concept of CT is not without any critics. Hemmendinger (2010) proposed

four major critical points in his plea for modest concerning CT. His first point is that CT

is nothing new. Philosophers have been thinking about thinking since philosophy exists.

The same is true for CT relevant concepts like abstraction, which is traditionally

associated with mathematics or psychology. So discussion is just old wine in new skins.

Although Hemmendinger’s is correct that this kind of thinking not new, to put all these

different skills and concepts under one umbrella term is a new approach and provides

some new opportunities. The idea of computational thinking is to have a specific look at

problems and it emphasizes the relationship between different skills like to decompose a

problem to be able to find algorithm solutions. Results of this study revealed that this

kind of thinking does not come naturally and particular training is needed.

Second, CT would be just a way of thinking for a specific domain and so it is not

special. Mathematicians use mathematical thinking, historians use historical thinking,

– 152 –

chemists use chemical thinking and so on. Just because these ways of thinking are

useful in their kind of domains does not necessarily mean they are useful in any other

domain. Why should not be the same true for CT as a domain specific way of thinking

for CS? This point, however, is only partially true. Digital devices are everywhere and

become more important in basically every part of our everyday life and so the way of

thinking computationally becomes more important. Different to other styles of thinking,

CT becomes more important for more people. The participants of this study, for

examples, were not CS students but preservice teacher students and CT was included in

their work course. This underpins how CT is considered as a skill for everyone and not

just people with a major in CS.

Third, advocating CT sometimes has an “imperialistic flavour” (Hemmendinger,

2010, p. 4). Some people tend to perceive the world through theoretical glasses.

Hemmendinger (2010) quotes an interview when a computer scientist analyses a video

about a science lessons. The computer scientist makes analogies referring to CT and

compares the science lesson with CT relevant aspects. Hemmendinger further argued

that perception of this person might have been biased just because the person was a

computer scientist. An artists or a chemist might had been seen the video in a different

way. So it is questionable whether there is indeed so much CT everywhere or whether

some people just have this kind of perception. The contradiction of this point would be

that CT is not meant to see all problems the same way but to offer problem-solver one

way to approach problems. CT is presented as a problem-solving approach, which based

on the idea to break down a problem into smaller pieces (decomposing the problem) and

apply an algorithmic procedure. Not every problem can be break down into smaller

pieces and not all problems can be solved with an algorithm. One participant who

discussed the relevance of CT in law in the workshop on the scope and nature of CT

also argued that the application of CT has its limits when the problems are highly

context dependent (NRC, 2010, pp. 38–39). The same problem or case in law may have

different outcomes because of the unique and different circumstances. Even though, law

tries to follow a logical and objective procedure such as CT does, it has also subjective

components. These cannot be considered in a computational thinking way of problem

solving. The same is true for questions of ethics or philosophy. The (ultimate) question

of life, the universe, and everything should not be answered by a computer. However,

CT is a strong tool to solve problem, which can be deconstructed and algorithmic

solutions are possible. Participants of this study were observed how much and how long

CT-related behaviour they show when solving an ill-structured programming problem.

– 153 –

That does not mean that they needed to solve this kind of problem always this way but

for this particular problem CT was suitable.

Fourth, CT might be not the right way to think about problems and it is rather

“dumbing down” our thinking. Humans’ way of dealing with problems is simply

different from computers. Whereas computers nearly always use step-by-step

procedures, humans’ approach is more holistic and sometimes it feels artificial to

specify control flow and explicit iterations or conditions. To teach this approach might

not be beneficial, according to Hemmendinger (2010). It is, however, a

misunderstanding to consider CT as replacement of other style of thinking or problem-

solving. Creativity and “out of the box thinking” are (still) something unique of

humans’ mind that cannot be emulated by machines (Kaufman & Plucker, 2011).

Creativity plays a role in solving ill-structured problems. CT is considered as useful for

those kinds of problems and so the overall perception of CT should be more like a

useful addition of approaching problems instead of seeing as dumbing down cognitive

processes. It is more like as Leo Cherne noted in the late 70’s: “The computer is

incredibly fast, accurate, and stupid. Man is unbelievable slow, inaccurate, and brilliant.

The marriage of the two is a force beyond calculation.” (Shoemate, 2008).

5.6 Future work

So far it is not clear whether pairs did not show much decomposition and abstraction

during the programming task because they were not trained in CT, or whether the

instruments used were not sufficiently sensitive. To analyse this, future studies could

involve preparing students with a workshop or course about CT based on the practical

implication suggested in this thesis. Results might differ if participants were instructed

about different methods to improve CT-associated skills such as task decomposition (as

suggested, for example, in the model of F. Lee and Anderson’s, 2001) and trained in

recognising patterns in different (sub)problems as well as (sub)solutions. Doing this

would also help to clarify what impact CT has on programming. It is also important to

note that according to Lewis and Shah (2015), pair programming interactions in a sixth-

grade CS enrichment program designed to promote equity reveals instances of inequity.

They measured inequity through the documentation of students’ questions, commands,

and total talk within four pairs. Data analysis indicates that less equitable pairs wanted

to finish their tasks quickly, thereby leading to patterns of marginalization and

– 154 –

domination. However, in more equitable pairs, the emphasis on speed was not

documented.

In this study, Scratch was used to assess CT but also programming quality, which

means that the measures are dependent to some extent to each other. Results showed

that the relationship between CT and programming was also dependent on how close

the CT measure was to programming elements. The CT measure based on Scratch had

stronger relationships to programming quality than did the CT measure independent

from Scratch. Although studies with similar goals had a similar approach (see, e.g.,

Kazimoglu, Kiernan, Bacon, & Mackinnon, 2012), it might cause problems if Scratch is

used to measure both concepts. Visual programming environments such as Scratch are

usually used to introduce CT or programming concepts to people who have no

knowledge about programming, as was the case in this study. In future, researchers

should take this into account and analyse how CT is applied when experienced

programmers solve a programming task in a programming language such as Java or

C++. The way programmers approach problems develops over time as they gain more

knowledge (Teague & Lister, 2014). It is possible that the level of CT for experienced

programmers differs from the level of novices, which might mediate the relationship

between both concepts.

Many analyses of this study were based on paired values which has different

problematic theoretical and statistical implications. Even though it is not unusual to see

CT as a concept which occurs in a collaborative setting (see, e.g., Falloon, 2016; Wu,

Hu, Ruis, & Wang, 2019), this view is fairly uncommon for other concepts like

programming quality and nonverbal intelligence. Some measures in this study were also

available as individual scores which enabled less problematic analyses. However, future

research should analyse all concepts also individually to have a more reliable view on

the relationship of these concepts.

It is also worth mentioning that the CTBS was based on event-sampling method.

Event sampling is usually used when not much is known of the construct (Bakeman &

Quera, 2011, p. 27). Because of the novelty of the coding scheme, this was the case of

this study. However, the results of this study provided some information about duration,

occurrence and relations between the different CT skills. In future studies, time-

sampling methods should be considered as well. When using time-sampling a specific

time slot is divided into intervals (e.g., 5, 10, or 20 seconds) and the most dominant

– 155 –

behaviour is coded. This might provide some more details insights in the duration and

occurrence of CT relevant behaviour.

The results also revealed that CT overlaps conceptually as well as empirically with

nonverbal intelligence (see also Boom, Bower, Arguel, Siemon & Scholkmann, 2018).

This could be because the CT associated skills (task decomposition, abstract thinking,

and algorithmic design) especially play a role for well-structured problems. Jonassen

(1997) presented decomposing as a typical method to solve well-structured problems.

Algorithms are useful when all problem states are clear and there are no ambiguous

possibilities or several solutions are possible. Therefore, algorithms are useful

especially for well-structured problems. Moreover, the solution to well-structured

problems are usually associated with intelligence, especially with abstract thinking

(Wenke & Frensch, 2003). High correlations between problem-solving and intelligence

are found only if the problems are well structured. Interestingly, CT is often not

associated with well-structured problems. Instead, CT is promoted by many scholars as

an ability to deal with complexity and open-ended or ill-structured problems (see, e.g.,

Barr & Stephenson, 2011; Shute, Sun, & Asbell-Clarke, 2017). However, solutions to

ill-structured problems are not associated with intelligence (Wenke & Frensch, 2003).

Creativity is needed to deal with ill-structured problems because those problems have

unknown elements, vaguely defined goals, different evaluation criteria, and a level of

uncertainty (Jonassen, 1997; Kaufman & Plucker, 2011). The reason why CT is

associated with ill-structured problems might be reminiscent of Papert’s original view

of CT in which he associated CT more with tinkering around, exploring, and creativity

as most scholars do today. Overall, this might lead to the conclusion that CT not only

shares some properties with intelligence due to the associated skills but also with

creativity due to its purpose. To further investigate these possibilities, more studies are

needed.

5.7 Conclusion

CT is promoted as the literacy of the 21st century and is already implemented in various

curricula all over the world. Some refer to CT even as the foundation programming and

CS (Lu & Fletcher, 2009). Thus, the goal of this study was to analyse the role of CT for

programming. Students with no prior significant knowledge about CT or programming

were working in pairs on a programming task in Scratch. Results revealed that not all

– 156 –

facets of CT were equally apparent during the programming task. Any behaviour

indicating decomposition and especially any behaviour indicating abstraction was

barely found during the programming task. Instead, participants were spending most of

the time with designing solutions without thinking much about the problems itself.

There are many different frameworks how to implement CT in education even in

curricula without any technical background (see, e.g., Perković, Settle, Hwang, & Jones,

2010). However, there is the question where the biggest challenges and difficulties may

occur when implementing CT. Based on the results of this study, it is clear that the most

important part for any educational framework should lie on abstract thinking and the

ability to decompose a problem. Nonetheless, future studies need to evaluate how large

the impact of abstract thinking and the ability to decompose a problem on programming

actually is. It is possible that the used instrument might not have been sensitive enough

to capture all facets of abstract thinking.

– 157 –

6 REFERENCES

ACARA (2012). The shape of the Australian curriculum: Technologies. Retrieved from

http://www.acara.edu.au/verve/_resources/Shape_of_the_Australian_Curriculum_-

Technologies-_August_2012.pdf

Aberson, C. L. (2019). Applied Power Analysis for the Behavioral Sciences (2nd ed.).

Routledge.

Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the

difference? Future of learning group publication, 4(3), 438–448.

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal,

55(7), 832–835. https://doi.org/10.1093/comjnl/bxs074

Aho, A. V., & Ullman, J. D. (2000). Foundations of computer science (6th ed.).

Principles of computer science series. New York, NY: Computer Science Press.

Aiken, J. M., Caballero, M. D., Douglas, S. S., Burk, J. B., Scanlon, E. M.,

Thoms, B. D., & Schatz, M. F. (2012). Understanding student computational

thinking with computational modeling. In AIP Conference Proceedings, Physics

Education Research Conference (pp. 46–49). AIP. https://doi.org/10.1063/1.4789648

Alaoutinen, S. (2012). Evaluating the effect of learning style and student background on

self-assessment accuracy. Computer Science Education, 22(2), 175–198.

https://doi.org/10.1080/08993408.2012.692924

Anderson, J. R. (2015). Cognitive psychology and its implications (8th). New York,

NY: Worth Publishers.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004).

An integrated theory of the mind. Psychological Review, 111(4), 1036–1060.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J.

(2016). A K-6 Computational thinking curriculum framework: Implications for

teacher knowledge. Educational Technology & Society, 9(3), 47–57.

Araujo, A. L. S. O., Santos, J. S., Andrade, W. L., Guerrero, D. D. S., & Dagiene, V.

(2017). Exploring computational thinking assessment in introductory programming

courses. In I. F. i. E. Conference (Ed.), FIE 2017: Frontiers in Education, October

18-21, 2017, Indianapolis, Indiana, USA : 2017 conference proceedings (pp. 1–9).

Piscataway, NJ: IEEE. https://doi.org/10.1109/FIE.2017.8190652

Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For

the Learning of Mathematics, 14(3), 24–35.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “real”

programming. ACM Transactions on Computing Education, 14(4), 1–15.

https://doi.org/10.1145/2677087

– 158 –

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking

skills through educational robotics: A study on age and gender relevant differences.

Robotics and Autonomous Systems, 75, 661–670.

https://doi.org/10.1016/j.robot.2015.10.008

Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent

technological change: An empirical exploration. The Quarterly Journal of

Economics, 118, 1279–1333. https://doi.org/10.1162/003355303322552801

Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for

the behavioral sciences. Cambridge: Cambridge University Press.

https://doi.org/10.1017/CBO9781139017343

Bakeman, R., & Quera, V. (2012). Behavioral observation. In H. Cooper, P. M. Camic,

D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of

research methods in psychology, Vol 1: Foundations, planning, measures, and

psychometrics (pp. 207–225). Washington, DC: American Psychological

Association. https://doi.org/10.1037/13619-013

Banks, S. H., & Franzen, M. D. (2010). Concurrent validity of the TONI-3. Journal of

Psychoeducational Assessment, 28(1), 70–79. https://doi.org/10.1177

/0734282909336935

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is

involved and what is the role of the computer science education community? ACM

Inroads, 2(1), 48. https://doi.org/10.1145/1929887.1929905

Barsalou, L. W. (1994). Flexibility, structure, and linguistic vagary in

concepts: Manifestations of a compositional system of perceptual symbols. In A. F.

Collins (Ed.), Theories of memory. Hove, UK: L. Erlbaum Associates.

Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical

Transactions of the Royal Society of London. Series B, Biological Sciences,

358(1435), 1177–1187. https://doi.org/10.1098/rstb.2003.1319

Bartels, R. (1982). The Rank Version of von Neumann's Ratio Test for Randomness.

Journal of the American Statistical Association, 77(377), 40–46.

https://doi.org/10.1080/01621459.1982.10477764

Basogain, X., Olabe, M. Á., Olabe, J. C., & Rico, M. J. (2018). Computational thinking

in pre-university blended learning classrooms. Computers in Human Behavior, 80,

412–419. https://doi.org/10.1016/j.chb.2017.04.058

Basu, S. (2019). Using Rubrics Integrating Design and Coding to Assess Middle School

Students’ Open-Ended Block-Based Programming Projects. Proceedings of the

50th ACM Technical Symposium on Computer Science Education, 1211–1217.

https://doi.org/10.1145/3287324.3287412

Bell, T., & Vahrenhold, J. (2018). Cs unplugged: How is it used, and does it work? In

H.-J. Böckenhauer, D. Komm, & W. Unger (Eds.), Lecture notes in computer

science Theoretical computer science and general issues: Vol. 11011. Adventures

between lower bounds and higher altitudes: Essays dedicated to Juraj Hromkovič on

– 159 –

the occasion of his 60th birthday (pp. 497–521). Cham: Springer International

Publishing. https://doi.org/10.1007/978-3-319-98355-4_29

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., & Torelli, M.

(2015). How challenging are Bebras tasks? In V. Dagienė, C. Schulte, & T.

Jevsikova (Chairs), the 2015 ACM Conference, Vilnius, Lithuania.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., &

Punie, Y. (2016). Developing computational thinking in compulsory education -

Implications for policy and practice: JRC Science for Policy Report: Publications

Office of the European Union.

Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., & Franklin, D. (2013). Hairball:

Lint-inspired static analysis of scratch projects. In R. McCauley (Ed.), Sigcse'13:

Proceedings of the 44th ACM Technical Symposium on Computer Science

Education; March 6 - 9, 2013, Denver, CO (pp. 215–220). New York, NY: ACM.

https://doi.org/10.1145/2445196.2445265

Booch, G. (1994). Object oriented design with applications (2nd ed.).

Benjamin/Cummings series in Ada and software engineering. Redwood City, CA:

Benjamin/Cummings.

Boom, K.-D., Bower, M., Arguel, A., Siemon, J., & Scholkmann, A. (2018).

Relationship between computational thinking and a measure of intelligence as a

general problem-solving ability. In I. Polycarpou, J. C. Read, P. Andreou, & M.

Armoni (Eds.), Proceedings of the 23rd Annual ACM Conference on Innovation

and Technology in Computer Science Education - ITiCSE 2018 (pp. 206-211 TS-

CrossRef). ACM Press. https://doi.org/10.1145/3197091.3197104

Boudreau, T., Tulach, J., & Wielenga, G. (2007). Rich client programming: Plugging

into the NetBeans platform. Safari Books Online. Upper Saddle River, N.J.: Prentice

Hall. Retrieved from http://proquest.tech.safaribooksonline.de/9780132354806

Bower, G. H., Black, J. B., & Turner, T. J. (1979). Scripts in memory for text. Cognitive

Psychology, 11(2), 177–220. https://doi.org/10.1016/0010-0285(79)90009-4

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., &

Barone, D. (2017). Development of computational thinking skills through unplugged

activities in primary school. In E. Barendsen & P. Hubwieser (Eds.), Proceedings of

the 12th Workshop on Primary and Secondary Computing Education - WiPSCE '17

(pp. 65–72). New York, NY: ACM Press. https://doi.org/10.1145/3137065.3137069

Brancaccio, A., Marchisio, M., Palumbo, C., Pardini, C., Patrucco, A., & Zich, R.

(2015). Problem posing and solving: Strategic Italian key action to enhance teaching

and learning mathematics and informatics in the high school. In 2015 IEEE 39th

Annual Computer Software and Applications Conference (COMPSAC) (pp. 845–

850). IEEE / Institute of Electrical and Electronics Engineers Incorporated.

https://doi.org

/10.1109/COMPSAC.2015.126

Bransford, J., & Stein, B. S. (1993). The ideal problem solver: A guide for improving

thinking, learning, and creativity (2nd. ed.). New York, NY: Freeman.

– 160 –

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. In Proceedings of the 2012 annual meeting

of the American Educational Research Association, Vancouver, Canada.

Brodnik, A., & Lewin, C. (Eds.). (2015). Ifip TC3 Working Conference “A New Culture

of Learning: Computing and next Generations". Vilnius, Lithuania.

https://doi.org/10.13140/RG.2.1.2855.9206

Brooks, P. H. (1981). The Abstraction of prototypes as an aspect of intellectual

development. Intelligence, 5(3), 279–290. https://doi.org/10.1016/S0160-2896

(81)90000-3

Brown, L., Sherbeernou, R. J., & Johnson, S. K. (1997). Test of nonverbal intelligence-

3. Austin, TX: PRO-ED.

Bruce, C., & McMahon, C. (2002). Contemporary developments in teaching and

learning introductory programming: Towards a research proposal. QLD, Brisbane:

Queensland University of Technology.

Bruder, R. (2000). Eine akzentuierte Aufgabenauswahl und Vermitteln heuristischer

Erfahrung –Wege zu einem anspruchsvollen Mathematikunterricht für alle.

Bull, R., & Espy, K. A. (2007). Working memory, executive functioning, and children's

mathematics. In S. J. Pickering (Ed.), Working memory and education (pp. 93–123).

Amsterdam [etc.]: Elsevier. https://doi.org/10.1016/B978-012554465-8/50006-5

Burgoon, E. M., Henderson, M. D., & Markman, A. B. (2013). There are many ways to

see the forest for the trees: A tour guide for abstraction. Perspectives on

Psychological Science : a Journal of the Association for Psychological Science, 8,

501–520. https://doi.org/10.1177/1745691613497964

Burning Glass (2014). STEM | Real-time insight into the market for entry-level STEM

jobs. Burning Glass Technologies. Retrieved from http://burning-

glass.com/research/stem/

Butcher, P. (2009). Debug It!: Find, repair, & prevent bugs in your code. The

pragmatic programmers. USA: Pragmatic Bookshelf.

Campbell, R. L., & Bickhard, M. H. (Eds.). (1986). Human development: Contributions

to human development: vol. 16. Knowing levels and developmental stages. Basel,

München u.a.: Karger. https://doi.org/10.1159/issn.0301-4193

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer

interaction: Xa-GB. Hillsdale, NJ: Erlbaum.

Carlson, R. A., & Dulany, D. E. (1985). Conscious attention and abstraction in concept

learning. Journal of Experimental Psychology: Learning, Memory, and Cognition,

11(1), 45–58. https://doi.org/10.1037/0278-7393.11.1.45

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies.

Cambridge: Cambridge University Press. Retrieved from https://doi.org/10.1017

/CBO9780511571312

– 161 –

Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical

experiment. Journal of Educational Psychology, 54(1), 1–22.

https://doi.org/10.1037/h0046743

Cernochova, M., Dorling, M., & Williams, L. (2015). Developing computational

thinking skills through the literacy from Scratch project, an international

collaboration. In A. Brodnik & C. Lewin (Eds.), IFIP TC3 Working Conference "A

New Culture of Learning: Computing and next Generations" (pp. 40–50). Vilnius,

Lithuania: Vilnius University.

Chen, C., Haduong, P., Brennan, K., Sonnert, G., & Sadler, P. (2019). The effects of

first programming language on college students’ computing attitude and

achievement: a comparison of graphical and textual languages. Computer Science

Education, 29(1), 23–48. https://doi.org/10.1080/08993408.2018.1547564

Ching, Y.‑H., Hsu, Y.‑C., & Baldwin, S. (2018). Developing computational thinking

with educational technologies for young learners. TechTrends, 62(6), 563–573.

https://doi.org/10.1007/s11528-018-0292-7

Chorney, J. M., McMurtry, C. M., Chambers, C. T., & Bakeman, R. (2015). Developing

and modifying behavioral coding schemes in pediatric psychology: A practical guide.

Journal of Pediatric Psychology, 40(1), 154–164. https://doi.org/10.1093/jpepsy

/jsu099

Cohen, D., Lindvall, M., & Costa, P. (2004). An Introduction to agile methods. In M. V.

Zelkowitz (Ed.), Advances in computers: Vol. 62. Advances in software engineering

(Vol. 62, pp. 1–66). San Diego, CA: Academic Press. https://doi.org/10.1016/S0065-

2458(03)62001-2

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and

Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177

/001316446002000104

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).

Hillsdale, NJ: L. Erlbaum Associates.

Colburn, T., & Shute, G. (2007). Abstraction in computer science. Minds and Machines,

17(2), 169–184. https://doi.org/10.1007/s11023-007-9061-7

Common Core State Standards Initiative (CCSSI). (2010). Common core state standards

for mathematics. Retrieved from http://www.corestandards.org/Math/Practice.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2014). Introduction to

algorithms (3rd ed.). Cambridge, MA, London: MIT Press.

Corradini, I., Lodi, M., & Nardelli, E. (2017). Conceptions and misconceptions about

computational thinking among Italian primary school teachers. In J. Tenenberg, D.

Chinn, J. Sheard, & L. Malmi (Eds.), Proceedings of the 2017 ACM Conference on

International Computing Education Research - ICER '17 (pp. 136–144). New York,

New York, USA: ACM Press. https://doi.org/10.1145/3105726.3106194

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests.

Psychological Bulletin, 52, 281–302. https://doi.org/10.1037/h0040957

– 162 –

CSTA (2011). Computational thinking teacher resources. Csta.acm.org, 1–69.

Retrieved from https://csta.acm.org/Curriculum/sub/CompThinking.html

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014). Introducing teachers

to computational thinking using unplugged storytelling. In C. Schulte, M. E.

Caspersen, & J. Gal-Ezer (Eds.), Proceedings of the 9th Workshop in Primary and

Secondary Computing Education on - WiPSCE '14 (pp. 89–92). New York, NY:

ACM Press. https://doi.org/10.1145/2670757.2670767

Dagienė, V. (2006). Information technology contests: Introduction to computer science

in an attractive way. Informatics in Education, 5(1), 37–46. Retrieved from

http://dl.acm.org/citation.cfm?id=1149707.1149711

Dagienė, V., & Futschek, G. (2008). Bebras International Contest on Informatics and

Computer Literacy: Criteria for good tasks. In R. T. Mittermeir & M. M. Sysło

(Eds.), Informatics Education - Supporting Computational Thinking: Third

International Conference on Informatics in Secondary Schools - Evolution and

Perspectives, ISSEP 2008 Torun Poland, July 1-4, 2008 Proceedings (pp. 19–30).

Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-

69924-8_2

Dagienė, V., & Sentance, S. (2016). It’s computational thinking! Bebras Tasks in the

curriculum. In A. Brodnik & F. Tort (Eds.), Lecture notes in computer science.

informatics in schools: 9th International Conference on Informatics in Schools:

Situation, Evolution, and Perspectives, Proceedings (Vol. 9973, pp. 28–39). Cham:

Springer Verlag. https://doi.org/10.1007/978-3-319-46747-4_3

Dagienė, V., & Stupuriene, G. (2015). Informatics education based on solving attractive

tasks through a contest. KEYCIT 2014 - Key Competencies in Informatics and ICT.

(7), 51–62.

Dagienė, V., & Stupuriene, G. (2016). Bebras - A sustainable community building

model for the concept based learning of informatics and computational thinking.

Informatics in Education, 15(1), 25–44. https://doi.org/10.15388/infedu.2016.02

Dale, N., & Walker, H. M. (1996). Abstract data types: Specifications, implementations,

and applications. Lexington, MA: Heath.

Dale, N., Weems, C., & Headington, M. R. (2004). Programming and problem solving

with Java. Princeton, N.J.: Recording for the Blind & Dyslexic.

Danner, D., Hagemann, D., Schankin, A., Hager, M., & Funke, J. (2011). Beyond IQ: A

latent state-trait analysis of general intelligence, dynamic decision making, and

implicit learning. Intelligence, 39(5), 323-334.

Davies, S. (2008). The effects of emphasizing computational thinking in an introductory

programming course. In 2008 IEEE Frontiers in Education Conference (FIE),

Saratoga Springs, NY, USA.

Dawson, P. (2017). Assessment rubrics: Towards clearer and more replicable design,

research and practice. Assessment & Evaluation in Higher Education, 42, 347–360.

https://doi.org/10.1080/02602938.2015.1111294

– 163 –

Denner, J., Werner, L., Campe, S. [Shannon], & Ortiz, E. (2014). Pair programming:

Under what conditions is it advantageous for middle school students? Journal of

Research on Technology in Education, 46, 277–296. https://doi.org/10.1080

/15391523.2014.888272

Denning, P. J. (2009). The profession of IT - Beyond computational thinking.

Communications of the ACM, 52(6), 28–30.

https://doi.org/10.1145/1516046.1516054

Denning, P. J. (2017). Remaining trouble spots with computational thinking.

Communications of the ACM, 60(6), 33–39.

Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., &

Young, P. R. (1989). Computing as a discipline. Communications of the ACM, 32(1),

9–23. https://doi.org/10.1145/63238.63239

Dolgopolovas, V., Jevsikova, T., Savulionienė, L., & Dagienė, V. (2015). On evaluation

of computational thinking of software engineering novice students. In A. Brodnik &

C. Lewin (Eds.), IFIP TC3 Working Conference "A New Culture of

Learning: Computing and next Generations". Vilnius, Lithuania: Vilnius University.

Dörner, D., Kreuzig, H. W., Reither, F., & Stäudel, T. (Eds.). (1983). Lohhausen: Vom

Umgang mit Unbestimmtheit und Komplexität. Bern: Huber.

Eguíluz, A., Garaizar, P., & Guenaga, M. (2018). An evaluation of open digital gaming

platforms for developing computational thinking skills. In D. Cvetković (Ed.),

Simulation and Gaming. InTech. https://doi.org/10.5772/intechopen.71339

Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2020). Assessing 4th Grade

Students’ Computational Thinking through Scratch Programming Projects.

Informatics in Education, 19(4), 611–640. https://doi.org/10.15388/infedu.2020.27

Falkner, K. (2016). SCIS | Computational thinking as the new literacy. Retrieved from

http://www2.curriculum.edu.au/scis/connections/issue_95/articles/computational_thi

nking_as_the_new_literacy.html

Falloon, G. (2016). An analysis of young students' thinking when completing basic

coding tasks using Scratch Jnr. On the iPad. Journal of Computer Assisted Learning.

Advance online publication. https://doi.org/10.1111/jcal.12155

Faul, F., Erdfelder, E., Lang, A.‑G., & Buchner, A. (2007). G*Power 3: A flexible

statistical power analysis program for the social, behavioral, and biomedical

sciences. Behavior Research Methods, 39(2), 175–191.

https://doi.org/10.3758/BF03193146

Fetzer, J. H. (1998). People are not computers: (Most) thought processes are not

computational procedures. Journal of Experimental & Theoretical Artificial

Intelligence, 10, 371–391. https://doi.org/10.1080/095281398146653

Fischer, K. W., & Kenny, S. L. (1986). The environmental conditions for discontinuities

in the development of abstractions. In R. A. Mines & K. S. Kitchener (Eds.), Praeger

– 164 –

special studies Praeger scientific. Adult cognitive development: Methods and models

(pp. 57–75). New York, NY: Praeger.

Flanagan, D. P., & Dixon, S. G. (2014). The Cattell-Horn-Carroll theory of cognitive

abilities. In C. R. Reynolds, K. J. Vannest, & E. Fletcher-Janzen (Eds.),

Encyclopedia of special education: A reference for the education of children,

adolescents, and adults with disabilities and other exceptional individuals (Vol. 121,

p. 219). Hoboken, NJ: Wiley. https://doi.org/10.1002/9781118660584.ese0431

Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T. (2019). EA

International Computer and Information Literacy Study 2018: Assessment

framework. International Association for the Evaluation of Educational

Achievement (IEA).

Frensch, P. A., & Funke, J. (Eds.). (1995). Complex problem solving. The European

perspective. Hillsdale, NJ: Lawrence Erlbaum.

Gabora, L., & Russon, A. (2011). The evolution of intelligence. In R. J. Sternberg & S.

B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 328–350).

Cambridge: Cambridge University Press. https://doi.org/10.1017

/CBO9780511977244.018

García-Peñalvo, F. J., Reimann, D., & Maday, C. (2018). Introducing coding and

computational thinking in the schools: The TACCLE 3 – Coding Project experience.

In M. S. Khine (Ed.), Computational thinking in the STEM disciplines: Foundations

and research highlights (Vol. 55, pp. 213–226). Cham: Springer.

https://doi.org/10.1007/978-3-319-93566-9_11

Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York,

NY: Basic Books.

Ge, X., & Land, S. M. (2003). Scaffolding students’ problem-solving processes in an

ill-structured task using question prompts and peer interactions. Educational

Technology Research and Development, 51(1), 21–38.

https://doi.org/10.1007/BF02504515

Gick, M. L. (1986). Problem-solving strategies. Educational Psychologist, 21(1-2), 99–

120. https://doi.org/10.1080/00461520.1986.9653026

Gilhooly, K. J. (2012). Human and machine problem solving: Dordrecht, The

Netherlands: Springer.

Gonzalez, R., & Griffin, D. (2012). Dyadic data analysis. In H. Cooper, P. M. Camic,

D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of

research methods in psychology, Vol 3: Data analysis and research publication

(pp. 439–450). Washington DC: American Psychological Association.

https://doi.org/10.1037/13621-022

Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52

signatories, history, and bibliography. Intelligence, 24(1), 13–23. https://doi.org

/10.1016/S0160-2896(97)90011-8

– 165 –

Gretter, S., & Yadav, A. (2016). Computational thinking and media & information

literacy: An integrated approach to teaching twenty-first century skills. TechTrends,

60, 510–516. https://doi.org/10.1007/s11528-016-0098-4

Greiff, S., Wustenberg, S., Molnar, G., Fischer, A., Funke, J., & Csapo, B. (2013).

Complex problem solving in educational settings ! something beyond g: Concept,

assessment, measurement invariance, and construct validity. Journal of Educational

Psychology, 105(2), 364-379.

Grover, S. (2017). Assessing algorithmic and computational thinking in K-12: Lessons

from a middle school classroom. In P. J. Rich & C. B. Hodges (Eds.), Emerging

Research, Practice, and Policy on Computational Thinking (Vol. 31, pp. 269–288).

Cham: Springer. https://doi.org/10.1007/978-3-319-52691-1_17

Grover, S., Jackiw, N., & Lundh, P. (2019). Concepts before coding: non-programming

interactives to advance learning of introductory programming concepts in middle

school. Computer Science Education, 29(2-3), 106–135. https://doi.org/10.1080

/08993408.2019.1568955

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of

the field.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended

computer science course for middle school students. Computer Science Education,

25, 199–237. https://doi.org/10.1080/08993408.2015.1033142

Guzdial, M., & Wing, J. M. (2011). A definition of computational thinking from

Jeannette Wing. Computing Education Blog. Retrieved from

https://computinged.wordpress.com/2011/03/22/a-definition-of-computational-

thinking-from-jeanette-wing/

Haberman, B. (2004). High-school students' attitudes regarding procedural abstraction.

Education and Information Technologies, 9, 131–145. https://doi.org/10.1023

/B:EAIT.0000027926.99053.6f

Hadamard, J. (1945). The psychology of invention in the mathematical field. New York,

NY: Dover Publications. Retrieve from: http://worrydream.com/refs/Hadamard%20-

%20The%20psychology%20of%20invention%20in%20the%20mathematical%20fiel

d.pdf

Haier, R. J. (2011). Biological basis of intelligence. In R. J. Sternberg & S. B. Kaufman

(Eds.), The Cambridge handbook of intelligence (pp. 351–368). Cambridge, UK:

Cambridge University Press. https://doi.org/10.1017/CBO9780511977244.019

Halstead, M. H. (1977). Elements of software science. Operating and programming

systems series: Vol. 2. New York, NY: Elsevier.

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair

programming in education: A literature review. Computer Science Education, 21,

135–173. https://doi.org/10.1080/08993408.2011.579808

Hemmendinger, D. (2010). A plea for modesty. ACM Inroads, 1(2), 4.

https://doi.org/10.1145/1805724.1805725

– 166 –

Hermans, F. & Aivaloglou, E. (2017). To Scratch or not to Scratch? A controlled

experiment comparing plugged first and unplugged first programming lessons. In

Proceedings of WiPSCE ’17, Nijmegen, Netherlands, November 8–10, 2017. doi:

10.1145/3137065.3137072

Hintzman, D. L. (1986). "Schema abstraction" in a multiple-trace memory model.

Psychological Review, 93(4), 411–428. https://doi.org/10.1037/0033-295X.93.4.411

Hoover, A. K., Barnes, J., Fatehi, B., Moreno-León, J., Puttick, G., Tucker-

Raymond, E., & Harteveld, C. (2016). Assessing computational thinking in students'

game designs. In A. Cox, Z. O. Toups, R. L. Mandryk, P. Cairns, V. vanden Abeele,

& D. Johnson (Eds.), Proceedings of the 2016 Annual Symposium on Computer-

Human Interaction in Play Companion Extended Abstracts - CHI PLAY Companion

'16 (pp. 173–179). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2968120.2987750

Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized

intelligence. Acta Psychologica, 26, 107–129. https://doi.org/10.1016/0001-

6918(67)90011-X

Hu, C. (2011). Computational thinking – What it might mean and what we might do

about it. In G. Rößling, T. Naps, & C. Spannagel (Eds.), Proceedings of the 16th

annual joint conference on Innovation and technology in computer science education

- ITiCSE '11 (p. 223). New York, New York, NY: ACM Press.

https://doi.org/10.1145

/1999747.1999811

Humphreys, L. G. (1979). The construct of general intelligence. Intelligence, 3(2), 105–

120. https://doi.org/10.1016/0160-2896(79)90009-6

IFTF (2017). The next area of human machine partnership: Emerging

technologies' impact on society & work in 2013. Palo Alto, CA: Institute for the

Future.

ISTE and CSTA (2011). Operational definition of computational thinking for k–12

education. Retrieved from https://csta.acm.org/Curriculum/sub/CurrFiles

/CompThinkingFlyer.pdf

Ivanouw, J. (2007). Sequence analysis as a method for psychological research. Nordic

Psychology, 59, 251–267. https://doi.org/10.1027/1901-2276.59.3.251

Jensen, A. R. (2002). Psychomnetric g: Definition and substantiation. In R. J. Sternberg

& E. L. Grigorenko (Eds.), The general factor of intelligence: How general is it?

Jonassen, D. H. (1997). Instructional design models for well-structured and III-

structured problem-solving learning outcomes. Educational Technology Research

and Development, 45(1), 65–94. https://doi.org/10.1007/BF02299613

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational

Technology Research and Development, 48(4), 63–85. https://doi.org/10.1007

/BF02300500

– 167 –

Jonsson, A., & Svingby, G. (2007). The use of scoring rubrics: Reliability, validity and

educational consequences. Educational Research Review, 2, 130–144.

https://doi.org/10.1016/j.edurev.2007.05.002

Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational

thinking based on a systematic research review. Baltic Journal of Modern

Computing, 4, 583–596.

Kaufman, J. C., & Plucker, J. A. (2011). Intelligence and creativity. In R. J. Sternberg &

S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 771–783).

Cambridge: Cambridge University Press. https://doi.org/10.1017

/CBO9780511977244.039

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A serious game for

developing computational thinking and learning introductory computer

programming. Procedia - Social and Behavioral Sciences, 47, 1991–1999.

https://doi.org/10.1016/j.sbspro.2012.06.938

Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S.

(2014). The impact of cognitive training and mental stimulation on cognitive and

everyday functioning of healthy older adults: A systematic review and meta-analysis.

Ageing Research Reviews, 15, 28–43. https://doi.org/10.1016/j.arr.2014.02.004

Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic data analysis. Methodology

in the social sciences. New York, NY: Guilford Press. Retrieved from

http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10254823

Kilpatrick, J. (1987). Problem formulating: Where do good problem come from? In A.

H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 123–147).

Hillsdale, NJ: Erlbaum.

Kim, H.‑Y. (2013). Statistical notes for clinical researchers: Evaluation of measurement

error 1: Using intraclass correlation coefficients. Restorative Dentistry &

Endodontics, 38(2), 98–102. https://doi.org/10.5395/rde.2013.38.2.98

Kitchener, K. S., Lynch, C. L., Fischer, K. W., & Wood, P. K. (1993). Developmental

range of reflective judgment: The effect of contextual support and practice on

developmental stage. Developmental Psychology, 29(5), 893–906. https://doi.org/10

.1037/0012-1649.29.5.893

Kluwe, R. H., Misiak, C., & Haider-Hasebrink, H. (1991). The control of complex

systems and performance in intelligence tests. In H. A. H. Rowe (Ed.), Intelligence:

Reconceptualization and measurement. (pp. 227–244). Lawrence Erlbaum

Associates, Inc.

Knoblauch, H., Tuma, R., & Schnettler, B. (2013). Video Analysis and videography. In

U. Flick (Ed.), The SAGE handbook of qualitative data analysis (pp. 335–449).

London: Sage.

Korkmaz, Ö., & Bai, X. (2019). Adapting Computational Thinking Scale (CTS) for

Chinese High School Students and Their Thinking Scale Skills Level. Participatory

Educational Research, 6(1), 10–26.

– 168 –

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the

computational thinking scales (CTS). Computers in Human Behavior, 72, 558–569.

doi:10.1016/j.chb.2017.01.005

Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM,

50(4), 36–42. https://doi.org/10.1145/1232743.1232745

Kvist, A. V., & Gustafsson, J.‑E. (2008). The relation between fluid intelligence and the

general factor as a function of cultural background: A test of Cattell's investment

theory. Intelligence, 36, 422–436. https://doi.org/10.1016/j.intell.2007.08.004

Lamprou, A., & Repenning, A. (2018). Teaching how to teach computational thinking.

In I. Polycarpou, J. C. Read, P. Andreou, & M. Armoni (Eds.), Proceedings of the

23rd Annual ACM Conference on Innovation and Technology in Computer Science

Education - ITiCSE 2018 (pp. 69–74). New York, New York, USA: ACM Press.

https://doi.org/10.1145/3197091.3197120

Landis, R., & Koch, G. G. (1977). The measurement of observer agreement for

categorial data. Biometrics, 33, 159–174.

Lee, F. J., & Anderson, J. R. (2001). Does learning a complex task have to be complex?

A study in learning decomposition. Cognitive Psychology, 42, 267–316.

https://doi.org/10.1006/cogp.2000.0747

Lee, G., Lin, Y. T., & Lin, J. (Eds.) 2014. Assessment of computational thinking skill

among high school and vocational school students in Taiwan. In J. Viteli and M.

Leikomaa (Eds.), Proceedings of EdMedia 2014-World Conference on Education

Media and Technology, pages 173-180. Tampere, Finland: Association for the

Advancement of Computing in Education (AACE).

Lim, W., Plucker, J. A., & Im, K. (2002). We are more alike than we think we are.

Intelligence, 30, 185–208. https://doi.org/10.1016/S0160-2896(01)00097-6

Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem Solving in

Mathematics Education. Springer Nature. https://doi.org/10.1007/978-3-319-

40730-2

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics

as “given” in STEM education. International Journal of STEM Education, 6(44).

https://doi.org/10.1186/s40594-019-0197-9.

Lockwood, J., & Mooney, A. (2018a). Computational thinking in secondary education:

Where does it fit? A systematic literary review. International Journal of Computer

Science Education in Schools, 2(1). https://doi.org/10.21585/ijcses.v2i1.26

Lockwood, J., & Mooney, A. (2018b). Developing a computational thinking test using

Bebras problems. In A. Piotrkowicz, R. Dent-Spargo, S. Dennerlein, I. Koren, P.

Antoniou, P. Bailey, . . . C. Pahl (Chairs), European Conference on Technology

Enhanced Learning 2018, Leeds, United Kingdom.

Lohman, D. F., & Lakin, J. M. (2011). Intelligence and reasoning. In R. J. Sternberg &

S. B. Kaufman (Eds.), The Cambridge Handbook of Intelligence (pp. 419–441).

– 169 –

Cambridge: Cambridge University Press. https://doi.org/10.1017

/CBO9780511977244.022

Lotz, M., Gabriel, K., & Lipowsky, F. (2013). Niedrig und hoch inferente Verfahren der

Unterrichtsbeobachtung: Analysen zu deren gegenseitiger Validierung. Zeitschrift für

Pädagogik, 59, 357–380. Retrieved from http://nbn-resolving.de/urn:nbn:de:0111-

pedocs-119425

Lourenço, O., & Machado, A. (1996). In defense of Piaget's theory: A reply to 10

common criticisms. Psychological Review, 103(1), 143–164. https://doi.org/10.1037

/0033-295X.103.1.143

Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. In S.

Fitzgerald (Ed.), Proceedings of the 40th ACM technical symposium on Computer

science education. New York, NY: ACM.

Lübbers T., & Jansen, M. (2018). Application of microcontrollers for fostering

computational thinking by using the calliope system in school. In J. C. Yang, M.

Chang, L.-H. Wong, & M. M. T. Rodrigo (Eds.), Proceedings of the 26th

International Conference on Computers in Education. 2018 (pp. 500–505). Taoyuan

County, Taiwan: Asia-Pacific Society for Computers in Education (APSCE).

Lubinski, D. (2004). Obituary, Lloyd G. Humphreys: Quintessential Scientist

(1913?2003). Intelligence, 32(3), 221–226. https://doi.org/10.1016/j.intell

.2004.01.002

Lutz, C., Berges, M., Hafemann, J., & Sticha, C. (2019). Piaget’s cognitive

development in Bebras tasks - A descriptive analysis by age groups. In S. N.

Pozdniakov & V. Dagienė (Eds.), Lecture notes in computer science. Informatics in

schools. Fundamentals of computer science and software (Vol. 11169, pp. 259–270).

[Place of publication not identified]: Springer. https://doi.org/10.1007/978-3-030-

02750-6_20

Luxton-Reilly, A., Whalley, J., Becker, B. A., Cao, Y., McDermott, R., Mirolo, C., . . .

Simon (2017). Developing assessments to determine mastery of programming

fundamentals. In J. Sheard & Education, ACM Special Interest Group on Computer

Science (Eds.), Proceedings of the 2017 ITiCSE Conference on Working Group

Reports (pp. 47–69). [S.l.]: ACM. https://doi.org/10.1145/3174781.3174784

Lister, R., & Leaney, J. (2003). Introductory Programming, Criterion-Referencing, and

Bloom. Proceedings of the 34th SIGCSE Technical Symposium on Computer

Science Education, 143–147. https://doi.org/10.1145/611892.611954

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational

thinking through programming: What is next for K-12? Computers in Human

Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012

Mackintosh, N. J. (2011). History of theories and measurement of intelligence. In R. J.

Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 3–

19). Cambridge: Cambridge University Press. https://doi.org/10.1017

/CBO9780511977244.002

– 170 –

Mangold. (2018). INTERACT - User guide: Mangold International GmbH (ed.).

Retrieved from www.mangold-international.com

Martin, R. C. (2009). Clean code: A handbook of agile software craftsmanship / Robert

C. Martin … [et al.]. Indianapolis, IN.: Prentice Hall.

Mayer, J. d., Salovey, P., Caruso, D. R., & Cherkasskiy, L. (2011). Emotional

intelligence. In R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of

intelligence (pp. 528–549). Cambridge, UK: Cambridge University Press.

https://doi.org/10.1017/CBO9780511977244.027

McCabe, T. J. (1976). A complexity measure. In ICSE ’76, Proceedings of the 2nd

International Conference on Software Engineering (407‐). Los Alamitos, CA: IEEE

Computer Society Press. Retrieved from http://dl.acm.org/citation.cfm?id

=800253.807712

McDonald, C. (2018). Why Is teaching programming difficult? In J. Carter, M.

O'Grady, & C. Rosen (Eds.), Higher education computer science: A manual of

practical approaches (pp. 75–93). Cham: Springer. https://doi.org/10.1007/978-3-

319-98590-9_6

McFadden, C. (2018, September 13). The origin of the term 'computer bug' [Blog post].

Retrieved from https://interestingengineering.com/the-origin-of-the-term-computer-

bug

McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing

on the shoulders of the giants of psychometric intelligence research. Intelligence,

37(1), 1-10.

McGrew, K. S. (2005). The Cattell-Horn-Carroll theory of cognitive abilities: Past,

present, and future. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary

intellectual assessment: Theories, tests, and issues (pp. 136–181). New York, NY:

The Guilford Press.

MDESE. (2016). Massachusetts digital literacy and computer science. Malden, MA.

Menéndez-Varela, J.-L., & Gregori-Giralt, E. (2016). The contribution of rubrics to the

validity of performance assessment: a study of the conservation–restoration and

design undergraduate degrees. Assessment & Evaluation in Higher Education,

41(2), 228–244. https://doi.org/10.1080/02602938.2014.998169

Mensing, K., Mak, J., Bird, M., & Billings, J. (2013). Computational, model thinking

and computer coding for U.S. Common Core Standards with 6 to 12 year old

students. In A. Szakál (Ed.), 2013 IEEE 11th International Conference on Emerging

eLearning Technologies and Applications (ICETA): 24-25 Oct. 2013, Stary

Smokovec, the High Tatras, Slovaki (pp. 17–22). Piscataway, NJ: IEEE.

https://doi.org/10.1109

/ICETA.2013.6674397

Michaels, G., Natraj, A., & van Reenen, J. (2014). Has ICT polarized skill demand?:

Evidence from eleven countries over twenty-five years. Review of Economics and

Statistics, 96(1), 60–77. https://doi.org/10.1162/REST_a_00366

– 171 –

Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our

capacity for processing information. Psychological Review, 63(2), 81–97.

Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in

Cognitive Sciences, 7(3), 141–144. https://doi.org/10.1016/S1364-6613(03)00029-9

Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of

behavior: Holt, Rinehart and Winston, Inc.

Moessinger, P., & Poulin-Dubois, D. (1981). Piaget on abstraction. Human

Development, 24, 347–353. https://doi.org/10.1159/000272712

Moreno-León, J., & Robles, G. (2014). Automatic detection of bad programming habits

in scratch: A preliminary study. In IEEE Frontiers in Education Conference (FIE),

2014: 22 - 25 Oct. 2014, Madrid, Spain (pp. 1–4). Piscataway, NJ: IEEE.

https://doi.org/10.1109/FIE.2014.7044055

Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A web tool to automatically

evaluate Scratch projects. In J. Gal-Ezer, S. Sentance, & J. Vahrenhold (Eds.),

Proceedings of the Workshop in Primary and Secondary Computing Education,

London, United Kingdom, November 09 - 11, 2015 (pp. 132–133). New York, NY:

ACM. https://doi.org/10.1145/2818314.2818338

Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic

analysis of Scratch projects to assess and foster computational thinking. RED-Revista

de Educación a Distancia.

Moreno-León, J., Robles, G., & Román-González, M. (2016). Comparing

computational thinking development assessment scores with software complexity

metrics. In Proceedings of 2016 IEEE Global Engineering Education Conference

(EDUCON): Date and venue: 10-13 April 2016, Abu Dhabi, UAE (pp. 1040–1045).

Piscataway, NJ: IEEE. https://doi.org/10.1109/EDUCON.2016.7474681

Moreno-León, J., Robles, G., & Román-González, M. (2017). Towards data-driven

learning paths to develop computational thinking with Scratch. IEEE Transactions

on Emerging Topics in Computing, 1. https://doi.org/10.1109/TETC.2017.2734818

Moreno-León, J., Román-González, M., Harteveld, C., & Robles, G. (2017). On the

automatic assessment of computational thinking skills. In G. Mark, S. Fussell, C.

Lampe, M. C. Schraefel, J. P. Hourcade, C. Appert, & D. Wigdor (Eds.), CHI'17:

Extended abstracts: Proceedings of the 2017 ACM SIGCHI Conference on Human

Factors in Computing Systems : May 6-11, 2017, Denver, CO (pp. 2788–2795). New

York, NY: The Association for Computing Machinery. https://doi.org/10.1145

/3027063.3053216

Najafi, A., Niu, N., & Najafi, F. (2011). Multi-level decomposition approach for

problem solving and design in software engineering. In K. Hoganson (Ed.), ACM

Digital Library, Proceedings of the 49th Annual Southeast Regional Conference

(p. 249). New York, NY: ACM. https://doi.org/10.1145/2016039.2016104

– 172 –

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human

problem solving. Psychological Review, 65, 151–166.

https://doi.org/10.1037/h0048495

Newman, I., Lim, J., & Pineda, F. (2013). Content validity using a mixed methods

approach. Journal of Mixed Methods Research, 7, 243–260. https://doi.org/10.1177

/1558689813476922

Nickerson, R. S. (2011). Developing intelligence through instruction. In R. J. Sternberg

& S. B. Kaufman (Eds.), The Cambridge Handbook of Intelligence (pp. 107–129).

Cambridge: Cambridge University Press. https://doi.org/10.1017

/CBO9780511977244.007

National Research Council (NRC). (2002). Helping children learn mathematics.

Washington, DC: The National Academies Press. https://doi.org/10.17226/1043.

National Research Council (NRC). (2010). Report of a workshop on the scope and

nature of computational thinking. National Research Council. Washington, D.C:

National Academies Press.

Retrieved from http://site.ebrary.com/lib/academiccompletetitles/home.action

Nwadinigwe, I., & Naibi, L. (2013). The number of options in a multiple-choice test

item and the psychometric characteristics. Journal of Education and Practice, 4(28).

O'Dell, D. H. (2017). The debugging mind-set. Communications of the ACM, 60(6), 40–

45. https://doi.org/10.1145/3052939

OECD (2016a). New skills for the digital economy. OECD Digital Economy Papers,

258. https://doi.org/10.1787/5jlwnkm2fc9x-en

OECD (2016b). Skills for a digital world: 2016 Ministerial Meeting on the Digital

Economy Background Report. OECD Digital Economy Papers, 250.

https://doi.org/10.1787/5jlwz83z3wnw-en

OECD (Ed.) 2017. Key issues for digital transformation in the G20: Report prepared

for a joint G20 German Presidency/ OECD conference. Berlin, Germany.

Olsen, A. (2005). Using pseudocode to teach problem solving. Journal of Computing

Sciences in Colleges, 21.

Palts, T., & Pedaste, M. (2020). A Model for Developing Computational Thinking

Skills. Informatics in Education, 19, 113–128.

https://doi.org/10.15388/infedu.2020.06

Panadero, E., & Jonsson, A. (2020). A critical review of the arguments against the use

of rubrics. Educational Research Review, 30, 100329.

https://doi.org/https://doi.org/10.1016/j.edurev.2020.100329

Papert, S. (1980). Mindstorm: Children, computers, and powerful ideas. New York,

NY: Basic Books.

Papert, S. (1996). An exploration in the space of mathematics educations. International

Journal of Computers for Mathematical Learning, 1(1). https://doi.org/10.1007

/BF00191473

– 173 –

Papert, S., & Harel, I. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.),

Constructionism: Research reports and essays, 1985-1990. Norwood, NJ: Ablex.

Pauli, C., & Reusser, K. (2006). Von international vergleichenden Video Surveys zur

videobasierten Unterrichtsforschung und -entwicklung. Zeitschrift für Padagogik, 52.

Pease, A., Smaill, A., & Guhe, M. (2009). Abstract or not abstract? Well, it depends …

Behavioral and Brain Sciences, 32(3-4), 345–346. https://doi.org/10.1017

/S0140525X09991063

Perković, L., Settle, A., Hwang, S., & Jones, J. (2010). A framework for computational

thinking across the curriculum. In R. Ayfer, J. Impagliazzo, & C. Laxer (Eds.),

Proceedings of the fifteenth annual conference on Innovation and technology in

computer science education - ITiCSE '10 (p. 123). New York, NY: ACM Press.

https://doi.org/10.1145/1822090.1822126

Piaget, J. (1952). The origins of intelligence in children. New York, NY: International

Universities Press, Inc. https://doi.org/10.1037/11494-000

Piaget, J. (1960). The Psychology of intelligence. New York, NY: Littlefield, Adams &

Co.

Polson, P., & Jeffries, R. (1985). Instruction in problem solving skills: An analysis of

four approaches. In J. W. Segal (Ed.), Thinking and learning skills (pp. 417–455).

Hillsdale, NJ: Erlbaum.

Portelance, D. J., & Bers, M. U. (2015). Code and tell. In M. U. Bers & G. Revelle

(Eds.), IDC 2015: ACM SIGCHI Interaction Design and Children : Tufts University,

Boston, MA, USA, June 21-24, 2015 (pp. 271–274). New York, NY: ACM.

https://doi.org/10.1145/2771839.2771894

Posner, M. I. (1969). Abstraction and the process of recognition. In G. H. Bower, K. W.

Spence, J. T. Spence, & D. L. Medin (Eds.), The psychology of learning and

motivation: Advances in research and theory (Vol. 3, pp. 43–100). New York, NY:

Academic Press. https://doi.org/10.1016/S0079-7421(08)60397-7

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of

Experimental Psychology, 77, 353–363. https://doi.org/10.1037/h0025953

President’s Information Technology Advisory Committee (PITAC) (2005).

Computational science: Ensuring America’s competitiveness (Report to the

President, June 2005). Washington, DC: National Coordination Office for

Information Technology Research and Development (NCO/IT R&D).

Pretz, J. E., Naples, A. J., & Sternberg, R. J. (2003). Recognizing, defining, and

representing problems. In J. E. Davidson & R. J. Sternberg (Eds.), The Psychology of

problem solving (pp. 3–30). Cambridge, UK: Cambridge University Press.

https://doi.org/10.1017/CBO9780511615771.002

Priami, C. (Ed.). (2007). Journal subline: 4780 : Lecture notes in bioinformatics.

Transactions on computational systems biology. Berlin: Springer.

https://doi.org/10.1007/978-3-540-76639-1

R Core Team. (2017). R. Vienna, Austria. Retrieved from https://www.R-project.org/

– 174 –

Repenning, A. (2015). Computational thinking in der Lehrerbildung. Bern, Schweiz:

Hasler-Stiftung.

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A.,

Rusk, N., . . . Silver, J. (2009). Scratch: Programming for all. Communications of the

ACM, 52(11), 60. https://doi.org/10.1145/1592761.1592779

Rigas, G., & Brehmer, B. (1999). Mental processes in intelligence tests and dynamic

decision making tasks. In P. Juslin & H. Montgomery (Eds.), Judgement and

decision making: NeoBrunswikian and process-tracing approaches (pp. 45-65).

Hillsdale, NJ: Lawrence Erlbaum.

Rodrigo, Tabanao, Lahoz, Jadud (2009). Analyzing online protocols to characterize

novice Java programmers. Philippine Journal of Science, 138, 177–190.

Rodriguez, B., Kennicutt, S., Rader, C., & Camp, T. (2017). Assessing computational

thinking in CS unplugged activities. In M. E. Caspersen, S. H. Edwards, T. Barnes,

& D. D. Garcia (Eds.), Proceedings of the 2017 ACM SIGCSE Technical Symposium

on Computer Science Education - SIGCSE '17 (pp. 501–506). New York, NY: ACM

Press. https://doi.org/10.1145/3017680.3017779

Román-González, M., Moreno-León, J., & Robles, G. (2017). Complementary tools for

computational thinking assessment. In S.-C. Kong, J. Sheldon, & R. K.-y. Li (Eds.),

Proceedings of the 2017 International Conference on Computational Thinking

Education (154-158). Hong Kong, China: The Education University of Hong Kong.

Román-González, M., Pérez-González, J.‑C., & Jiménez-Fernández, C. (2017). Which

cognitive abilities underlie computational thinking?: Criterion validity of the

Computational Thinking Test. Computers in Human Behavior, 72, 678–691.

https://doi.org/10.1016/j.chb.2016.08.047

Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.),

Cognition and categorization (pp. 27–48). Hillsdale, NJ: Lawrence Erlbaum.

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976).

Basic objects in natural categories. Cognitive Psychology, 8, 382–439.

https://doi.org/10.1016/0010-0285(76)90013-X

Ross, B. H. (1984). Remindings and their effects in learning a cognitive skill. Cognitive

Psychology, 16, 371–416. https://doi.org/10.1016/0010-0285(84)90014-8

Roy, G. G. (2006). Designing and explaining programs with a literate pseudocode.

Journal on Educational Resources in Computing, 6(1), 1-es. https://doi.org/10.1145

/1217862.1217863

Royston, P. (1993). A pocket-calculator algorithm for the Shapiro-Francia test for non-

normality: An application to medicine. Statistics in Medicine, 12, 181–184.

https://doi.org/10.1002/sim.4780120209

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals and understanding: An

inquiry into human knowledge structures. Artificial intelligence series. Hillsdale, NJ:

L. Erlbaum Associates.

– 175 –

Schulz, K., & Hobson, S. (2015). Bebras Australia Computational Thinking Challenge

Tasks and Solutions 2014. Brisbane, Australia: Digital Careers.

Schulz, K., Hobson, S., & Zagami, J. (2016). Bebras Australia Computational Thinking

Challenge - Tasks and Solution 2016. Brisbane, Australia: Digital Careers.

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational

thinking of primary grade students. In B. Simon (Ed.), Proceedings of the ninth

annual international ACM conference on International computing education

research (p. 59). New York, NY: ACM. https://doi.org/10.1145/2493394.2493403

Selby, C. (2015). Relationships: Computational thinking, pedagogy of programming,

and Bloom’s Taxonomy. In J. Gal-Ezer, S. Sentance, & J. Vahrenhold (Eds.),

Proceedings of the Workshop in Primary and Secondary Computing Education,

London, United Kingdom, November 09 - 11, 2015 (pp. 80–87). New York, NY:

ACM. https://doi.org/10.1145/2818314.2818315

Selby, C., & Woollard, J. (2014). Refining an understanding of computational thinking.

Author’s original. Retrieved from http://eprints.soton.ac.uk/372410/

Sentance, S., Waite, J., Hodges, S., MacLeod, E., & Yeomans, L. (2017). Creating cool

stuff. In M. E. Caspersen, S. H. Edwards, T. Barnes, & D. D. Garcia (Eds.),

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science

Education - SIGCSE '17 (pp. 531–536). New York, NY: ACM Press.

https://doi.org/10.1145/3017680.3017749

Shapiro, S. S., & Francia, R. S. (1972). An approximate analysis of variance test for

normality. Journal of the American Statistical Association, 67(337), 215–216.

https://doi.org/10.1080/01621459.1972.10481232

Shi, W., Liu, M., & Hendler, P. (2014). Computational features of the thinking and the

thinking attributes of computing: On computational thinking. Journal of Software,

9(10). https://doi.org/10.4304/jsw.9.10.2507-2513

Shivhare, R., & Kumar, C. A. (2016). On the cognitive process of abstraction. Procedia

Computer Science, 89, 243–252. https://doi.org/10.1016/j.procs.2016.06.051

Shoemate, B. (2008, November 30). Einstein never said that … [Blog post]. Retrieved

from http://www.benshoemate.com/2008/11/30/einstein-never-said-that/

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater

reliability. Psychological Bulletin, 86, 420–428. https://doi.org/10.1037/0033

-2909.86.2.420

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.

Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017

.09.003

Siegler, R. S., DeLoache, J. S., & Eisenberg, N. (2014). How children develop (4th ed.).

New York, NY: Worth.

Silverman, D. (2013). A very short, fairly interesting and reasonably cheap book about

qualitative research (2nd ed.). London, UK: Sage.

– 176 –

Simmons, R. (1988). A theory of debugging plans and interpretations. In Proceedings of

the National Conference on Artificial Intelligence (AAAI) (pp. 94–99).

Simon, H.A. (1973). The structure of ill structured problems. Artificial Intelligence 4(3-

4), 181–201.

Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in

1970. American Psychologist, 26, 145–159. https://doi.org/10.1037/h0030806

Sipser, M. (2013). Introduction to the theory of computation (3rd ed.). Boston, MA:

Thomson Course Technology.

Sonnleitner, P., Brunner, M., Greiff, S., Funke, J., Keller, U., Martin, R., Hazotte, C.,

Mayer, H., & Latour, T. (2012). The Genetics Lab. Acceptance and psychometric

characteristics of a computer-based microworld to assess complex problem solving.

Psychological Test and Assessment Modeling, 54(1), 54-72.

Sowder, J. (1992). Estimation and number sense. In D. Grouws (Ed.), Handbook for

research on mathematics teaching and learning (pp. 371–389). New York:

MacMillan.

Spearman, C. (1904). "General intelligence," Objectively Determined and Measured.

The American Journal of Psychology, 15(2), 201. https://doi.org/10.2307/1412107

Stadler, M., Becker, N., Gödker, M., Leutner, D., & Greiff, S. (2015). Complex

problem solving and intelligence: A meta-analysis. Intelligence, 53, 92-101.

Stein, L. A. (2002). Introduction to interactive programming in Java: Morgan

Kaufmann.

Sternberg, R. J. (1985). Implicit theories of intelligence, creativity, and wisdom.

Journal of Personality and Social Psychology, 49, 607–627.

https://doi.org/10.1037/0022

-3514.49.3.607

Sternberg, R. J. (2004). Culture and intelligence. American Psychologist, 59, 325–338.

https://doi.org/10.1037/0003-066X.59.5.325

Sternberg, R. J. (2017). Human intelligence. Encyclopaedia Britannica. Retrieved from

https://www.britannica.com/topic/human-intelligence-psychology/Development-of

-intelligence#ref13354

Sternberg, R. J., Conway, B. E., Ketron, J. L., & Bernstein, M. (1981). People's

conceptions of intelligence. Journal of Personality and Social Psychology, 41(1),

37–55. https://doi.org/10.1037/0022-3514.41.1.37

Sternberg, R. J., & Berg, C. A. (Eds.). (1992). Intellectual development. Cambridge:

Cambridge University Press.

Stojanoski, B., Lyons, K. M., Pearce, A. A. A., & Owen, A. M. (2018). Targeted

training: Converging evidence against the transferable benefits of online brain

training on cognitive function. Neuropsychologia, 117, 541–550.

https://doi.org/10.1016

/j.neuropsychologia.2018.07.013

– 177 –

Swaid, S. I. (2015). Bringing computational thinking to STEM education. Procedia

Manufacturing, 3, 3657–3662. https://doi.org/10.1016/j.promfg.2015.07.761

Tabanao, E. S., Rodrigo, M. M. T., & Jadud, M. C. (2011). Predicting at-risk novice

Java programmers through the analysis of online protocols. In K. Sanders (Ed.),

Proceedings of the seventh international workshop on Computing education research

(p. 85). New York, NY: ACM. https://doi.org/10.1145/2016911.2016930

Tabesh, Y. (2017). Computational thinking: A 21st Century skill. Olympiads in

Informatics, 11(2), 65–70. https://doi.org/10.15388/ioi.2017.special.10

Teague, D., & Lister, R. (2014). Longitudinal think aloud study of a novice

programmer. In J. Whalley (Ed.), Proceedings of the Sixteenth Australasian

Computing Education Conference - Volume 148. Darlinghurst, Australia: Australian

Computer Society, Inc.

Terman, L. M. (1921). Intelligence and its measurement: A symposium--II. Journal of

Educational Psychology, 12(3), 127–133. https://doi.org/10.1037/h0064940

Thalheim, B. (2009). Abstraction. In L. Liu & M. T. Özsu (Eds.), Springer reference.

Encyclopedia of database systems. New York, NY: Springer.

Thies, R., & Vahrenhold, J. (2013). On plugging "unplugged" into CS classes. In R.

McCauley (Ed.), Sigcse'13: Proceedings of the 44th ACM Technical Symposium on

Computer Science Education; March 6 - 9, 2013, Denver, Colorado, USA. New

York, NY: ACM. https://doi.org/10.1145/2445196.2445303

Thompson, N. (2017). What is classical item difficulty (P value)? Retrieved from

http://www.assess.com/classical-item-difficulty-p-value/

Thurstone, L. L. (1938). Primary mental abilities. Chicago, IL: University of Chicago

Press.

Toga, A. W., & Thompson, P. M. (2005). Genetics of brain structure and intelligence.

Annual Review of Neuroscience, 28, 1–23. https://doi.org/10.1146/annurev.neuro.28

.061604.135655

Touretzky, D. S., Marghitu, D., Ludi, S., Bernstein, D., & Ni, L. (2013). Accelerating

K-12 computational thinking using scaffolding, staging, and abstraction. In T. Camp,

P. Tymann, J. D. Dougherty, & K. Nagel (Chairs), Proceeding of the 44th ACM

technical symposium, Denver, Colorado, USA.

Trachtenberg, J. (1960). The Trachtenberg Speed System of Basic Mathematics. Garden

City, NY: Doubleday and Company, Inc.

Trevethan, R. (2017). Intraclass correlation coefficients: Clearing the air, extending

some cautions, and making some requests. Health Services and Outcomes Research

Methodology, 17(2), 127–143. https://doi.org/10.1007/s10742-016-0156-6

Urbina, S. (2011). Tests of intelligence. In R. J. Sternberg & S. B. Kaufman (Eds.), The

Cambridge handbook of intelligence (pp. 20–38). Cambridge, UK: Cambridge

University Press. https://doi.org/10.1017/CBO9780511977244.003

– 178 –

Van Dyne, M., & Braun, J. (2014). Effectiveness of a computational thinking (CS0)

course on student analytical skills. In J. D. Dougherty, K. Nagel, A. Decker, & K.

Eiselt (Chairs), SIGCSE '14 Proceedings of the 45th ACM technical symposium on

Computer science education, Atlanta, Georgia, USA.

Vaníček, J. (2014). Bebras Informatics Contest: Criteria for Good Tasks Revised. In Y.

Gülbahar & E. Karataş (Eds.), Informatics in Schools. Teaching and Learning

Perspectives: 7th International Conference on Informatics in Schools: Situation,

Evolution, and Perspectives, ISSEP 2014, Istanbul, Turkey, September 22-25, 2014.

Proceedings (pp. 17–28). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-319-09958-3_3

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking

in compulsory education: Towards an agenda for research and practice. Education

and Information Technologies, 20, 715–728. https://doi.org/10.1007/s10639-015-

9412-6

Vuorikari, R., Punie, Y., Carretero, S., & van den Brande, L. (2016). DigComp 2.0: The

digital competence framework for citizens. EUR, Scientific and technical research

series: Vol. 27948. Luxembourg: Publications Office.

Wang, X., & Zhou, Z. The research of situational teaching mode of programming in

high school with Scratch. In 2011 6th IEEE Joint International Information

Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China.

Ward, M. (1995). A definition of abstraction. Journal of Software Maintenance:

Research and Practice, 7, 443–450. https://doi.org/10.1002/smr.4360070606

Watt, D. A., & Findlay, W. (2004). Programming language design concepts.

Chichester, UK: John Wiley & Sons, Ltd.

Wechsler, D. (1958). The measurement and appraisal of adult intelligence (4th ed.).

Baltimore, MD: Williams & Wilkins Co. https://doi.org/10.1037/11167-000

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.

(2016). Defining computational thinking for mathematics and science classrooms.

Journal of Science Education and Technology, 25(1), 127–147.

https://doi.org/10.1007/s10956-015-9581-5

Weintrop, D., & Wilensky, U. (2018). How block-based, text-based, and hybrid

block/text modalities shape novice programming practices. International Journal of

Child-Computer Interaction. Advance online publication. https://doi.org/10.1016

/j.ijcci.2018.04.005

Wenke, D., & Frensch, P. A. (2003). Is success or failure at solving complex problems

related to intellectual ability? In J. E. Davidson & R. J. Sternberg (Eds.), The

Psychology of Problem Solving (pp. 87–126). Cambridge, UK: Cambridge

University Press. https://doi.org/10.1017/CBO9780511615771.004

Wentworth, P., Elkner, J., Downey, A. B., & Meyers, C. (2012). How to think like a

computer scientist: Learning with Python 3.

– 179 –

Werner, L., Denner, J., & Campe, S. (2012). The Fairy Performance Assessment:

Measuring computational thinking in middle school. In Sigcse Conference

Committee (Ed.), Sigcse 12 Proceedings of the 43rd Acm Technical Symposium on

Computer Science Education. New York, NY: Association for Computing

Machinery.

Werner, L. & Denning, J. (2009). Pair Programming in Middle School. Journal of

Research on Technology in Education 42(1), 29–49.

White House (2017). President Trump signs memorandum for STEM education

funding. https://www.whitehouse.gov/articles/president-trump-signs-memorandum-

stem-education-funding/

Wilhelm, O. (2005). Measuring reasoning ability. In O. Wilhelm & R. W. Engle (Eds.),

Handbook of understanding and measuring intelligence (pp. 373–392). Thousand

Oaks, CA: Sage. https://doi.org/10.4135/9781452233529.n21

Williamson, B. (2016). Political computational thinking: Policy networks, digital

governance and ‘learning to code’. Critical Policy Studies, 10(1), 39–58.

https://doi.org/10.1080/19460171.2015.1052003

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–

35. https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing.

Philosophical transactions of the Royal Society A: Mathematical, physical and

engineering sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118

Wing, J. M. (2011). Research notebook: Computational thinking—What and why?

Retrieved from https://www.cs.cmu.edu/link/research-notebook-computational-

thinking-what-and-why

Wirth, J., & Klieme, E. (2003). Computer-based assessment of problem solving

competence. Assessment in Education: Principles, Policy, & Practice, 10, 329-345.

Wittmann, W. W., & Hattrup, K. (2004). The relationship between performance in

dynamic systems and intelligence. Systems Research and Behavioral Science, 21(4),

393-409.

Wittmann, W., & Suß, H.-M. (1999). Investigating the paths between working memory,

intelligence, knowledge, and complex problem-solving performances via Brunswik

symmetry. In P. L. Ackerman, P. C. Kyllonen, & R. D. Roberts (Eds.), Learning and

individual differences: Process, traits, and content determinants (pp. 77-108).

Washington, DC: APA.

Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational thinking in

collaborative programming: A quantitative ethnography approach. Journal of

Computer Assisted Learning, 35, 421–434. https://doi.org/10.1111/jcal.12348

Wüstenberg, S., Stadler, M., Hautamäki, J., & Greiff, S. (2014). The role of strategy

knowledge for the application of strategies in complex problem solving tasks.

Technology, Knowledge and Learning, 19, 127-146.

– 180 –

Wüstenberg, S., Greiff, S., & Funke, J. (2012). Complex problem solving – more than

reasoning? Intelligence, 40, 1-14.

Xu, Z., Ritzhaupt, A. D., Tian, F., & Umapathy, K. (2019). Block-based versus text-

based programming environments on novice student learning outcomes: A meta-

analysis study. Computer Science Education, 29(2–3), 177–204. https://doi.org/10

.1080/08993408.2019.1565233

Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests.

Journal of Statistical Computation and Simulation, 81, 2141–2155. https://doi.org/10

.1080/00949655.2010.520163

Zamanzadeh, V., Ghahramanian, A., Rassouli, M., Abbaszadeh, A., Alavi-Majd, H., &

Nikanfar, A.‑R. (2015). Design and implementation content validity study:

Development of an instrument for measuring patient-centered communication.

Journal of Caring Sciences, 4, 165–178. https://doi.org/10.15171/jcs.2015.017

Appendix A

7 APPENDIX

Appendix A: Summary of literature analysis to define CT

 Problem solving Decomposing Abstracting Algorithmic design

 Works based on experts’ opinions like workshops and online surveys

NRC (2010) CT as mental tool to

reformulate problems to

solve it (p. 3);

Problem Decomposition

and modularisation (p. 3);

Problem abstraction (p. 3);

CT as an abstract thinking

tool to handle complexity

(p. 11);

Abstraction as core for CT

(p. 12);

CT is the creation and

managing of abstraction (p.

16);

Understanding of the

complexity of algorithms (p.

3);

Knowing specific algorithms

(p. 8);

“The processes by which these

algorithms are developed and

tested involve computational

thinking.” (p. 37);

The solution they described are

Appendix A

being often “algorithmic” (e.g.,

p. 3 and 26)

Corradini et al. (2017) Identified as “absolutely

necessary in any definition

of CT”

Identified as “important

category” for CT

Identified as “important

category” for CT”

Algorithmic thinking and

automation are both identified

as “absolutely necessary in any

definition of CT”

Logical thinking is identified

as “important for a definition”

Barr et al. (2011) Highlighted CT as problem

solving for complex

problems

See table: one of the core

concepts and capabilities

of CT;

Declared decomposition as

one working strategy in

sense of CT;

See table: one of the core

concepts and capabilities of

CT;

Described as using

abstraction to design

solutions to problems as a

core concept of CT as well

as being able to “move

between levels of

abstraction”;

See table: one of the core

concepts and capabilities of CT

(with automation;

parallelisation)

Understanding of algorithmic

processes as vital for CT;

Declared that CT is highly

associated with algorithmic

Appendix A

Using abstraction in sense

of repeated commands and

iterations, in general, being

able to generalise solutions

for different problems and

situations

thinking;

Creating algorithms as

problems;

Mentioned testing and

debugging;

ISTE and CSTA (2011)

Declared CT as problem-

solving process;

“Reformulating problems

in a way that computers can

help to solve them”

 Using abstraction in order to

handle data

Being able to use algorithmic

thinking to create automating

solutions

Appendix A

 Systematic literature reviews

Selby et al. (2014) Emphasised that the

community mainly

accepted CT as a thought

process to deal with

problems;

They concluded that

there is a consensus that CT

is a type of problem solving

but also pointed out that the

term is not sufficiently

defined.

CT is about

transforming difficult

problems into ones that

can be solved more easily

and concludes that a

definition of CT should

include the concept of

decomposition

As they pointed out that

many authors declared

abstraction as a key

competence they concluded

that a definition of CT

should include the concept

of abstraction

They conclude that there

appears to be a consensus that

CT incorporates aspects of the

creation and use of algorithms;

The idea of algorithm,

incorporating the design

process, is represented

consistently in literature. They

further conclude that a

definition of CT should include

something in a sense of

algorithm design;

Bocconi et al. (2016) Concludes that CT

describes thought process

which (re)-formulate

problems in order to solve

it computationally.

Identifies it as core

skills of CT (p. 18)

Abstraction &

generalization as core skills

of CT (p. 18)

Algorithmic thinking &

automation & debugging as

core skills of CT

Kalelioğlu et al.

(2016)

Concluded that most

definitions in the literature

dwell on problem solving,

understanding problems or

formulating problems;

35 % of 125 papers

mentioned it

6 % of 125 papers

mentioned it

49 % of 125 papers

mentioned it

28 % of 125 papers

mentioned it

Shute et al. (2017) “Conceptual foundation

required to solve problems

effectively and efficiently”;

Identify decomposition

as one of the most often

components of CT;

Identify abstraction as

one of the most often

components of CT;

They state that CT means

solving problems

algorithmically and also state

Appendix A

CT means approaching

problem in a systematic

way

state as one of the main

facet of CT

abstraction means

finding patterns within

problems and solutions and

therefore being able to

generalise solutions to

similar problems.

State as one of the main

facet of CT

They also state

generalisation as one of the

main facet of CT but this is

considered as part of

abstraction in this thesis.

that algorithms and debugging

are concepts more often

associated with CT than others;

Solutions are designs

algorithmically.

State as one of the main

facet of CT. They also

described debugging as main

facet which is considered as

part of algorithms here in this

thesis.

Appendix B

Appendix B: List of complete set of revised Bebras tasks

Task #1 – #115A1

Age Group: 11 + 12

Difficulty: A

Introduction / Presentation

In the following you see several images of stars. There is a specific system for labelling

the stars according to their shape. Two numbers are needed for labelling. A number of

dots for the star. A number indicating if a line from a dot is drawn to the nearest dot

(number is 1), the second closest dot (the number is 2), etc. Here are four examples for

this labelling system:

Question & Answer

According to this specific labelling system, how would you label the following star?

9:3

9:4

10:4 X

10:5

Appendix B

Task #2 – #215A2

Age Group: 11 + 12

Difficulty: A

Introduction / Presentation

An encryption machine transforms messages according to the following rule:

BEAVER REVAEB VAEBRE WBFCSF

Question & Answer

What is the actual message of PMGEP?

RIVER

KNOCK

FLOOD X

LODGE

Appendix B

Task #3 – #315A3

Age Group: 11 + 12

Difficulty: A

Introduction / Presentation

In the following picture you can see how different words are connected.

The rule for the connection is that any two words are connected that differ by exactly

one letter.

Question & Answer

According to this rule, how do you have to rearrange the words that they fit in this

rearrange picture?

CAT

RAT

BAT

BAG

CAR

EAR

Appendix B

E

AR

RA

T

CA

T

BA

T

BA

G

CA

R

A

BA

G

BA

T

EA

R

RA

T

CA

R

CA

T

B

BA

T

BA

G

EA

R

CA

R

CA

T

RA

T

C

CA

T

BA

T

CA

R

EA

R

RA

T

BA

G

D

Appendix B

Task #4 - #415A4

Age Group: 11 + 12

Difficulty: A

Introduction / Presentation

In the following can you see how objects convert in other objects. The rule is:

two squares convert into one circle

One circle and two squares convert into one hexagon

One hexagon and one square convert into one triangle

One circle, one hexagon, and one triangle convert into one cone

Question & Answer

How many squares do you need to create one cone?

A 5

B 10

C 11

D 12

Appendix B

Task #5– #515B1

Age Group: 11 + 12

Difficulty: B

Introduction / Presentation

Imagine seven people who are active in an online social network called Selfiegram.

Selfiegram only allows them to see the photos on their own and their friends’ pages. In

the following diagram, if two persons are friends they are joined by a line.

After a while everybody posts a picture of themselves on all of their friends’ pages.

Question & Answer

Which persons’ picture will be seen the most?

A Ari

B Bob

C Chio

D Dmitri

E Ehab

F Fritz

G Gerald

Ari

 Chio

 Ehab

 Dmitri

Bob

 Gerald Fritz

Appendix B

Task #6 – #615B2

Age Group: 11 + 12

Difficulty: B

Introduction / Presentation

The Stack Computer is loaded with boxes from a conveyer belt. The boxes are marked

with a number or an operator, that is +, -, * or /.

The computer is loaded until the top box is a box marked with an operator. This

operator is then used on the two boxes below it. The three boxes are then fused into one

single box and marked with the outcome of the calculation.

In the stack Computer, calculations are entered in a different way to normal calculator.

Examples:

2 + 3 must be entered as 2 3 +

10 - 2 must be entered as 10 2 –

5 * 2 + 3 must be entered as 5 2 * 3 +

5 + 2 * 3 must be entered as 5 2 3 * +

(8 - 2) * (3 + 4) must be entered as 8 2 - 3 4 + *

Question & Answers

How should the following computation be entered: 4 * (8 + 3) - 2?

Answer: 4 8 3 + * 2 -

However, the following answers are also acceptable as they all produce the correct

output:

 4 3 8 + * 2 -

 8 3 + 4 * 2 -

 3 8 + 4 * 2 -

Appendix B

These inputs all lead to the same result, even though the order of the operators and

operations are not the same as intended in the given expression.

Appendix B

Task #7 – #715B3

Age Group: 11 + 12

Difficulty: B

Introduction / Presentation

All members of a family have abilities. Imagine there is a rule for heritage as follows:

A daughter inherits all her abilities from her mother

A son inherits all his abilities from his father

Each family member also has one extra ability

The diagram below shows exemplary the relationship between family members. It also

shows the extra ability for each person.

Grandmother

Maria

singing

Aunt Mary

dancing

Grandfather

Jerry

swimming

Mother Jenny

programming

Sarah

climbing

Lisa

writing

Tom

riding

Charles

reading

Father Richard

photography

Grandmother

Margot

calculating

Grandfather Josh

painting

Appendix B

Examples:

Mother Jennifer has inherited the ability to sing from grandmother Maria, and she also

has the ability to program.

Lisa inherits two abilities from her mother and also has the ability of writing. This

means she can write, program and sing.

Question & Answer

Look at the diagram above. Which of these answers is true?

A A. Tom’s abilities are riding, painting and photography

B B. Sarah has abilities in reading, programming and singing

C C. Tom inherits from Grandmother Margot the ability to

calculate

D D. Aunt Mary has abilities in dancing and swimming

Appendix B

Task #8 – #815B4

Age Group: 11 + 12

Difficulty: B

Introduction / Presentation

There are 10 plates in a row. There is one coin on each plate.

The aim is to collect all coins. You start at plate 1 and take the coin. After each single

coin you take, you either go two plates forward, or backwards three plates (see figure as

an example). You are not allowed to go back on an already empty plate.

Question & Answers

If you collect all 10 coins, which coin do you collect last?

2 3 4 5 6 7 8 9 10

 X

1 2 3 4 5 6 7 8 9 1

0

Appendix B

Task #9 – #915C1

Age Group: 11 + 12

Difficulty: C

Introduction / Presentation

A factory produces sets of 6 bowls of different sizes. A long conveyor belt moves the

bowls one by one, from left to right.

Bowl production places the 6 bowls of each set onto the conveyor belt in a random

order. Before packing the bowls, they need to be sorted to look like this:

To help with the sorting, the factory places workers along the conveyor belt.

When a set of bowls passes a worker, they will swap any two neighbouring bowls

which are in the wrong order. The worker will keep doing this until the set of 6 bowls

has finished passing.

See how the order of a set of bowls changes as it passes one worker:

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Appendix B

Question & Answer

How many workers should be put along the line to sort the set of bowls on the right?

Answer: 4

2 3 4 5
1

6

2 3 4 5
1

6

2 3 4 5
1

6

1 2 3 4 5 6

.?.

Appendix B

Task #10 – #1015C2

Age Group: 11 + 12

Difficulty: C

Introduction / Presentation

Arnaud would like to reach a target with his arrow. He can adjust the arc to shoot an

arrow in a range between 0 m and 10 m.

The position of the target is unknown, but after each shoot, his friend Marc tells Arnaud

whether the arrow reached the ground before or after the target.

Question & Answer

Given that the target has width of 50 cm, what is the minimal number of arrows needed

to be sure to hit the target, no matter where it is located?

A 3

B 4

C 5

D 6

50

cm

Appendix B

Task #11 – #1115C3

Age Group: 11 + 12

Difficulty: C

Introduction / Presentation

Imagine the Sydney Friday firework has a special meaning. Furthermore, there are two

kinds of rockets and every composition of sequence of both rockets stands for a

different word. In the following picture you see the meaning of five different sequences

of rockets.

For example, to send the message “food, log, food”, you have to shoot:

Question & Answer

How many different meanings can the following sequence of fireworks have?

Answer: 4

Appendix B

Task #12 – #1215C4

Age Group: 11 + 12

Difficulty: C

Introduction / Presentation

A mobile is a piece of art that hangs from the ceiling. You may remember one hanging

from the ceiling in your room. A mobile consists of sticks and figures. Each stick has a

few points to which figures or other sticks may be attached. Also, each stick has a

hanging point, from which it is attached to a stick further above (or to the ceiling). The

following example mobile can be described using these numbers and brackets:

(-3 (-1 1) (1 1)) (2 3)

Question & Answer

Which of the following mobiles could be constructed using these instructions?

(-3 (-1 4) (2 (-1 1) (1 1))) (2 (-1 6) (2 3))

A B

C D

Appendix B

Task #13 – #1315C5

Age Group: 11 + 12

Difficulty: C

Introduction / Presentation

Every Friday, six spies exchange all the information they have gathered during the

week. A spy can never be seen with more than one other spy at the same time. So, they

have to have several rounds of meetings where they meet up in pairs and share all the

information they have at that point.

The group of six spies needs only three rounds to distribute all their secrets:

Before the meeting each spy holds a single piece of information. Spy 1 knows ‘a’, spy 2

knows ‘b’, etc. In the first round spies 1 and 2 meet and exchange information so now

both know ‘ab’. The diagrams show which spies meet in each round with a line. It also

shows which pieces of information they all have. After three rounds all information has

been distributed.

Question & Answer

Which of the following statement is true?

After an international incident one spy has stopped attending the meetings. What is the

minim number of rounds needed for the five remaining spies to exchange all

information?

Answer: 4

Appendix B

Task #14 – #1414A1

Age Group: 11 + 12

Difficulty: A

Introduction / Presentation

Imagine someone have come up with a language for describing how a piece of paper

should be folded. The commands in this language are called FOLD.

z = FOLD(x,y) for example means:

Fold the piece of paper in such a way that side x and side y overlap. This way, a new

side is created. We call this side z.

An example with two consecutive commands:

Imagine a rectangle-shaped piece of paper of which side b is twice as long as side a.

You are allowed to turn the piece of paper over.

The following sequence of commands is executed:

e = FOLD(c,a)

f = FOLD(c,d)

g = FOLD(a,f)

Appendix B

Question & Answer

What will the piece of paper look like afterwards?

Appendix B

Task #15 – #1514A2

Age Group: 11 + 12

Difficulty: A

Introduction / Presentation

For a group assignment a class is split up into four groups. Each group divides the

different tasks between the group members. Three groups manage to finish the complete

assignment but one group fails to do so.

What happened?

The most group members have to wait for other members before they can start with

their own tasks. You see below a diagram for each group to show the dependencies

between students in each group. A circle represents a student. An arrow from student 1

to student 2 means that student 2 has to wait for student 1 to finish their tasks.

Question & Answer

Which diagram represents the group that did not finish the assignment?

Appendix B

Task #16 – #1614A3

Age Group: 11 + 12

Difficulty: A

Introduction / Presentation

A group a scientists have come up with a secret code for encrypting messages, no

nobody else can read them.

In their secret code, the vowels (A, E, I, O, U) and the punctuation remain unchanged.

The consonants are replaced by the next consonant in the alphabet where Z becomes B.

Question & Answer

How would you write “GIVE ME A CALL” as a secret code?

A GOVE MI E CELL

B FITE LE A BAKK

C HOWE NI E DEMM

D HIWE NE A DAMM

Appendix B

Task #17 – #1714B1

Age Group: 11 + 12

Difficulty: B

Introduction / Presentation

Imagine data are stored in a cloud containing four servers. The image shows all the

connections between the servers.

To lower the risk of losing data, all data are stored on both STORE-1 and STORE-2. To

increase the accessibility, all data are available through both PORT-1 and PORT-2.

No data is stored on PORT-1 and PORT-2.

Question & Answer

Which statement is FALSE?

A If STORE-1 and PORT-2 crash, all data become inaccessible.

B If PORT-1 and PORT-2 crash, all data become inaccessible.

C If STORE-1 and STORE-2 crash, all data are destroyed.

D If PORT-1 and PORT-2 crash, all data are destroyed.

Appendix B

Task #18 – #1814B2

Age Group: 11 + 12

Difficulty: B

Introduction / Presentation

A paper strip is divided into 16 equal pieces:

Such a strip be used for “half-sliding”. This is one by spotting the strip half and sliding

the right half up:

The two halves are also split in half and again, both right halves are slid up.

This would be look like this:

We do this again with the four-piece strips and, after that, with two piece strips.

Question & Answer

What will the final result look like?

Appendix B

Task #19 – #1914B3

Age Group: 11 + 12

Difficulty: B

Introduction / Presentation

Imagine you receive a message sent on a 6 x 6 grid. Unfortunately, part of the message

has been destroyed (the red coloured squares).

However, the additional squares help to determine the message. Each square in column

6 is coloured such that the number of black squares in each row is even. Similarly, each

square in row 6 is coloured such that the number of black squares in each column is

even.

Question & Answer

Which of the following images could be the pattern underneath the red squares?

Appendix B

Task #20 – #2014C1

Age Group: 11 + 12

Difficulty: C

Introduction / Presentation

The wagons of the freight train from the Railroad company are placed in the order D-B-

C-A:

The locomotive can move forwards and backwards and is able to pull and push an

unlimited number of wagons. Connecting or de-connecting a wagon is called ONE

railroad operation. Moving alone is not considered as a railroad operation.

Question & Answer

How many railroad operations are necessary to put the wagons in the order A-B-C-D-E?

A 6

B 8

C 10

D 12

Appendix B

Task #21 – #2114C2

Age Group: 11 + 12

Difficulty: C

Introduction / Presentation

Neighbourhoods in areas on maps can be presented as a diagram. In such a

neighbourhood diagram each neighbourhood is represented by a node.

A line between two nodes means that the two neighbourhoods share one or more

borders.

The diagram on the right shows the connections between seven neighbourhoods in a

certain area.

Question & Answer

Which of the following maps is described by the diagram?

Appendix B

Task #22 – #2214A4

Age Group: 11 + 12

Difficulty: A

Introduction / Presentation

This picture shows an ancient ocarina in duck-shape. This duck-ocarina is a special

musical instrument and has only six different tones.

And: after a tone is played, only the same tone or the tone directly above or below it can

be played. Therefore, a melody for the ancient ocarina can be written with only three

different symbols:

0 means “play the same tone again”.

+ means “play the next tone above it”.

 - means “play the next tone blow it”.

Question & Answer

Which of these melodies can NOT be played with this ocarina?

Appendix B

Task #23 – #2314B4

Age Group: 11 + 12

Difficulty: B

Introduction / Presentation

There is a robot to sort tree trunks. On the ground, there are several tree trunks of

different lengths.

The robot chooses a tree trunk following certain formula, lays it on top of the ramp and

lets it roll down. He repeats this, until there are no more tree trunks on the ground as

you can see in the following picture:

Question & Answer

Which formula does the robot use to decide in which order the tree trunks have to be

placed on the ramp?

A Take the longest tree trunk.

B Take the shortest tree trunk.

C Take the second longest tree trunk. If only one trunk remains, take that one.

D Take the second shortest tree trunk. If only one trunk remains, take that one.

E Take the longest tree trunk first and the shortest tree trunk last.

F Take the shortest tree trunk first and the longest tree trunk last.

Appendix B

Task #24 – #2414B5

Age Group: 11 + 12

Difficulty: B

Introduction / Presentation

Imagine there are two types of text machines:

A + machine (left) takes two pieces of text and joins them. A < machine (right) takes

one piece of text and reverses it. By linking both machines to each other we get a more

complex text machine (below). It needs three pieces of text (in grey ellipses) and writes

text in the white ellipses.

This complex machine needs three texts to work on (grey ellipses), processes them, and

gives one text as the result of its work in the bottommost ellipse.

Appendix B

Question & Answer

Which three text pieces do you need to put in this text machine in order to get the text

INFORMATION in the lowest ellipse?

A AMR OFNI TION

B INF ORMA TION

C AMR OFNI NOIT

D FNI AMRO NOIT

Appendix B

Task #25 – #2514C3

Age Group: 11 + 12

Difficulty: C

Introduction / Presentation

The medical records of patients contain personal data, which should not be made public.

For the publication of a research project, the hospital has made some data public,

without mentioning the names of the patients. The table on the left shows a part of this

list.

Because of the upcoming elections, the city with postcode M1 1AA publishes a list with

all constituents at the same time. This table on the right shows the constituents who are

born on January 1st.

Thanks to these two tables, you know for sure that one of the persons on the right has a

disease and you also know which disease it is.

Question & Answer

What is the name of this person?

A George Smith

B Roman Peterson

C Eve Miller

D Isabelle Bourne

Appendix B

Task #26 – #2614C4

Age Group: 11 + 12

Difficulty: C

Introduction / Presentation

In forest (A) is an area where beavers fell trees for their dams. They transport the tree

trunks to their new dam (D) - through an infrastructure of channels.

The arrows represent the channels; the dots are points where the water splits up or

comes together.

Every channel has a restricted capacity. The numbers next to the channels show how

many tree trunks can be transported through the channels in one minute, as you can see

in the picture below.

Question & Answer

How many tree trunks can be transported from A to D at most in one minute?

Answer: 7

Appendix C

Appendix C: Programming rubric scheme

Programming

Concept

Not evident

0

Poor

1

Satisfactory

2

Good

3

Excellent

4

Extent /

Richness

(1.0 = 20 %)

“What and

how much is

happening in

the Scratch

product?”

• Overall picture:

nothing is happening

• Overall picture: There is

something happening/

working, but it is not clear

what

• There are only up to a

couple sprites and they

have only up to a couple

code chunks or do not

have any

• The program has barely

moving, or changing, or

counting, switching, or

sound making elements

• Overall picture: 1 thing is

happening

• There are only up to a

couple and they have a few

code chunks

• The elements of the

program are mainly

moving, or changing, or

counting, switching, or

sound making elements

• Overall picture: mainly 2 things

are happening

• There are quite many sprites and

the most of them have a

substantial code chunks

• The elements of the program do

mainly 2 things, for instance:

→ moving and changing, or

→ moving and counting, or

→ making sound and changing

• Overall picture: mainly > 2

things are happening

• There are a quite many

sprites and all have a decent

amount of code chunks

• The elements of the

program do > 2 things, for

instance:

→ moving and changing

and counting, or

→ moving and counting and

making sound, or

→ moving and switching

and counting and making

sound

Variety /

Scratch or

Coding Usage

(1.0 = 20%)

“How much

of Scratch do

they use?”

• No evident useful

use of any code

chunks

• The program has up to a

couple code chunks

• Only low-level code

chunks

• No high-level code

chunks

• The program has a few

code chunks

• Many low-level code

chunks but essentially of

the same kind; not many

different code chunks

• Up to a couple high-level

code chunks

• Reasonable usage of

Scratch’s possibilities

• Overall picture: the program has

several code chunks

• Many different low-level code

chunks

→ A few motion and a few looks

code chunks

→ A few motion and a few looks

and a few sound code chunks

• A few more high-level code

chunks but of the same kind;

not many different code chunks

• Reasonable usage of Scratch’s

• Overall picture: the

program has many code

chunks

• Many different low-level

code chunks

• Many different high-level

code chunks

• All main code chunks

(motion, looks, sound, data,

events, control, sensing,

operators) are used

Appendix C

possibilities

Programming

Concept

Not evident

0

Poor

1

Satisfactory

2

Good

3

Excellent

4

Organisatio

n

(0.5 = 10%)

“How messy

or clean does

the work space

look?”

• It looks very messy

• No kind of

organisation is

evident

• Many dead listings

(relatively speaking

to the total amount

of listings)

• It looks somehow messy

• Up to a couple of listings

are ordered

• Listings are not in any

meaningful order

• Many dead listings

(relatively speaking to the

total amount of listings)

• It looks somehow tidy

• The most listings are

ordered but not necessarily

meaningfully

• Several dead listings

(relatively speaking to the

total amount of listings)

• It looks pretty tidy

• All listings are in a meaningful

order

• Up to a couple or a few dead

listings (relatively speaking to

the total amount of listings)

• It looks very organised

• All listings are in

meaningful order AND

aligned with screen

• No or only up to a couple

dead listings (relatively

speaking to the total

amount of listings)

Functionalit

y

(1.0 = 20%)

“How well

do they use

Scratch?”

• The intention is

unclear

• Nothing works

• The intention is clear, but

the program does not

work as intended, for

instance:

→ Sprites do not move

correctly

→ If it is a game, it is

unplayable; if it is a

story, the plot is

unclear

• The intention is clear; in

general, the program

works as intended but has

some problems, for

instance:

→ You have to set some

sprites manually

→ Sprites which are

supposed to be hidden

are not hidden

• The intention is clear; in general,

the program works as intended

but with some minor flaws, for

instance:

→ Sprites which are supposed to

move can move but are

moving too fast or too slow

→ Appearing text is too fast; not

enough time to read a text

• The intention is clear; it

works as intended without

any flaws; for instance:

→ The speed of moving

sprites is reasonable

→ There is enough time to

read text

→ Moving and shooting

works as intended

Efficiency

(1.5 = 30%)

“How well

developed is

their control

flow?”

• No evident use of

efficient use of

control code chunks

• Many code chunks and

listings are essentially

copy-pasted (not only the

similar kind but actually

copy-pasted)

• No or up to a couple

control code chunks

• A few code chunks and

listings are copy-pasted

• A few control code chunks

• Up to a couple code chunks and

listings are copy-pasted

• Several control code chunks;

reasonable usage of control

chunks

• No unnecessary

duplications

• Comprehensive and

complete use of control

code chunks

• (If there are many

iterations f chunks it can’t

be “excellent”)

Appendix C

Glossary

Scratch product: All sequences from all sprites together

form the Scratch product. Students either programmed a story

or a game.

Low-level code chunk: Motion, Events, Looks, Sound coding

chunks

Appendix C

High-level code chunk: Data, Sensing, Operators coding chunks.

Sprite: An element in Scratch, which can be coded. Not all

sprites are coded but were simply placed in the background.

Control code chunk:

Dead listing: Connected code chunks, which do not work

by themselves because there are not connected to an event

chunk.

Appendix C

Appendix D

Appendix D: Explanation of ICC for within-variables

Based on formula in Kenny et al. (2006, p. 34):

The measurement of two members of pair i is donated as X1i and X2i. There are a total

of k pairs. The overall average is donated as M. Let

𝑑𝑖 = 𝑋1𝑖 − 𝑋2𝑖

and

𝑚𝑖 =
𝑋1𝑖 + 𝑋2𝑖

2

Thus, d represents the difference and m the average of both measurements per pair.

The mean square between pairs is defined as

𝑀𝑆𝐵 =
2 ∑(𝑚𝑖 − 𝑀)2

𝑘 − 1

and the mean square within pairs is defined as

𝑀𝑆𝑊 =
∑ 𝑑𝑖

2

2𝑘

The ICC as used in this study is defined as

𝐼𝐶𝐶 =
𝑀𝑆𝐵 − 𝑀𝑆𝑊

𝑀𝑆𝐵 + 𝑀𝑆𝑊

Appendix E

Appendix E: Formula for Z-score for transition probability

Based on Bakeman et al. (2011, p. 105):

𝑅 number of rows (given)

𝐶 number of columns (targets)

𝑥𝑟𝑐 observed joint frequency for cell in 𝑟-th row and 𝑐-th column of a

𝑅 × 𝐶 table

𝑥∙𝑐 sum of the counts in the 𝑐-th column

𝑥𝑟∙ sum of the counts in the 𝑟-th row

𝑁 = 𝑥∙∙ number of counts total for a 𝑅 × 𝐶 table

𝑝𝑐 =
𝑥∙𝑐

𝑁
 probability for the 𝑐-th column

𝑝𝑟 =
𝑥𝑟∙

𝑁
 probability for the 𝑟-th row

𝑒𝑟𝑐 = 𝑝𝑐 × 𝑥𝑟∙ expected frequency by chance

𝑔𝑟 code for the 𝑟-th row (the given)

𝑡𝑐 code for the 𝑐-th column (the target)

𝑃(𝑡𝑐|𝑔𝑟) =
𝑥𝑟𝑐

𝑥𝑟∙
 conditional probability of 𝑡𝑐 given 𝑔𝑟

𝑍𝑟𝑐 = 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =
𝑥𝑟𝑐 − 𝑒𝑟𝑐

√𝑒𝑟𝑐(1 − 𝑝𝑐)(1 − 𝑝𝑟)

The adjusted residuals follow a normal distribution and are, therefore, referred as Z-

scores.

Appendix F

Appendix F: Distributions of variables for visual inspection

Figure F.1. Distribution of percentage of achieved scores in the Bebras tasks (units are individuals)

Figure F.2. Distribution of percentage of achieved scores in the Bebras tasks (units are pairs)

Appendix F

Figure F.3. Distribution of IQ based on TONI-3 (units are individuals)

Figure F.4. Distribution of IQ based on TONI-3 (units are pairs)

Appendix F

Figure F.5. Distribution of weighted means of programming quality rubric scheme (units are pair)

Figure F.6. Distribution of achieved CT mastery score based on Dr Scratch (units are pairs)

Appendix F

Figure F.7. Distribution of percentage actions and saying linked to CT (units are pairs)

Appendix G

Appendix G: Detailed item analysis for task difficulty

The average Bebras score did not raise any concerns that the test was too easy or too

difficult, although it was slightly higher than 50 %. To check whether the Bebras tasks

were indeed able to cover the whole spectrum of CT, the item difficulty index (D) for

each Bebras task was examined. The item difficulty index shows the proportion of

participants who managed solve the task and ranges between 0.00 and 1.00. According

to Nwadinigwe and Naibi (2013) and Thompson (2017), an as hard labelled item has an

expected probability to be solved (Δ) between .00 to .29, a medium-difficulty item lies

between .39 and .69, and easy labelled items between .70 to 1.00. A large number of

very easy items or a large number of very difficult items indicate floor and ceiling

effects, respectively. Ceiling and floor effects reflect that the instrument did not cover

the whole spectrum of the measured construct, which causes problems for further

analyses.

Table G.1 contains an overview of all used Bebras tasks and the theoretically

expected probabilities for solving items labelled as easy, medium, and hard, and the

actual frequency of participants who were able to solve these tasks. Comparing the

expected probabilities and their empirical counterparts reveals that four tasks were

solved by fewer participants than expected (i.e., these tasks were unexpectedly more

difficult) and eight tasks were solved by more participants than expected (tasks were

unexpectedly easier). Eight tasks were solved by an expected number of participants.

The range of solved items lies between 36 % and 90 %. Overall, the Bebras tasks were

slightly easier than expected. This is true especially for tasks labelled as hard.

Nevertheless, the effect is not big enough to identify serious ceiling effects for any

items. In conclusion, the whole spectrum of CT was sufficiently covered by the Bebras

tasks for this sample.

Appendix G

Table G.1

Overview of Solved Bebras Tasks

Name of Bebras task Δ D Δ - D

 easy

1 Drawing stars

.70 – 1.00

.81 0

3 Word chains .90 0

6 You won't find it .90 0

11 Folding paper .36 +

13 Group assignment .56 +

14 Beavers secret code .82 0

18 Bebrocarina .48 +

 medium

4 Beaver the alchemist

.39 – .69

.36 +

7 Stack computer .72 -

8 Super power family (hard) .84 -

9 Kangaroo .59 0

10 Beaver cloud .52 0

19 Sorting tree trunks .78 -

17 Popularity .57 0

20 Text machine .62 0

 hard

2 Spies

.00 – .29

.49 -

5 Reaching the target .45 -

12 Fireworks (hard) .39 -

15 Freight train .37 -

16 Neighbourhoods .42 -

Note. Δ = theoretical probability to solve this item. D = frequency how often this item was solved. A Difference of 0

indicates that this task was solved by expected number of participants; + less often solved than expected; - more often

solved than expected.

Appendix H

Appendix G: Scatterplots for programming quality and different measures

Figure H.8. Scatterplot for programming quality and achieved Bebras score (within variable) with regression line and

confidence band.

Figure H.9. Scatterplot for programming quality and percentage of CT-relevant time with regression line and

confidence band.

Appendix H

Figure H.10. Scatterplot for programming quality and percentage of algorithmic design relevant time with regression

line and confidence band.

Figure H.11. Scatterplot for programming quality and percentage of decomposing relevant time with regression line

and confidence band.

Appendix H

Figure H.12. Scatterplot for programming quality and percentage of pattern recognition relevant time with regression

line and confidence band.

Figure H.13. Scatterplot for programming quality and Dr Scratch CT mastery score with regression line and

confidence band.

Appendix H

Figure 0.14. Scatterplot for programming quality and IQ based on TONI-3 with regression line and confidence band

Appendix I

Appendix I: Non-parametric analysis

Table I.1

Spearman’s ρ Correlations Between Programming Quality, Dr Scratch and Different Measures

Programming

quality

Dr Scratch

mastery score
N

(pairs)
ρ p ρ p

Bebras score .32 .027 .29 .041 37

Time of CT-relevant behaviour

(overall)
.65 <.001 .57 .001 27

Time of decomposing .28 .077 .27 .089 27

Time of pattern recognition .02 .951 -.42 .095 17

Time of algorithmic design .63 <.001 .52 <.001 27

IQ based on TONI-3 .29 .055 .19 .149 32

 Note. one-sided p-values.

ρprog.qual.&DrScr = .61, p < .001

Appendix J: Assumptions for regression models

1) Mean of the residuals is 0:

𝐸(𝑌 = 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔 𝑞𝑢𝑎𝑙𝑖𝑡𝑦|�̂�) = 4.278533𝑒 − 17 ≈ 0

𝐸(𝑌 = 𝐷𝑟 𝑆𝑐𝑟𝑎𝑡𝑐ℎ 𝑚𝑎𝑠𝑡𝑒𝑟𝑦|�̂�) = −1.150316𝑒 − 16 ≈ 0

Conclusion: assumption met

2) Homoscedasticity of residuals:

Y = programming quality

Y = Dr Scratch mastery score

Conclusion: No real pattern for "Res vs Fitted" and "sqrt(STres) vs Fitted"; no

heteroscedasticity; assumption met

3) Residuals are not correlated (no autocorrelation):

Y = programming quality

Conclusion: No real pattern

Y = Dr Scratch mastery score

Conclusion: No real pattern

In addition, Bartels (1982) test for randomness was performed. The null hypothesis

stands for randomness.

Bartels Statistics (Y = programming quality) = 0.04, p = .964

Bartels Statistics (Y = Dr Scratch mastery score) = 0.88, p = .377

Conclusion: Null hypothesis should be kept for both models; no autocorrelation;

assumption met

4) Residuals and predictors are not correlated:

Residuals

r p

Bebras score .06 .715

Time of CT-relevant behaviour (overall) .05 .793

TONI-3 IQ .28 .16

 Note. Y = programming quality

Residuals

r p

Bebras score -.09 .597

Time of CT-relevant behaviour (overall) -.11 .587

TONI-3 IQ .17 .356

 Note. Y = Dr Scratch mastery score

Conclusion: no significant correlations between residuals and any predictors;

assumption met

5) Number of observations ≥ numbers of predictors:

N = 24; predictors = 3 for each model

Conclusion: N > k ; assumption met

6) Variance of all predictors > 0:

Var(Bebras score) = .03 > 0

Var(Time of CT-relevant behaviour) = 223.66 > 0

Var(TONI-3 IQ) = 168.47 > 0

Conclusion: assumption met

7) No (perfect) multicollinearity (VIF < 4):

 Bebras score
Time of CT-relevant

behaviour
TONI-3 IQ

VIF 1.76 1.16 1.56

Conclusion: no serious multicollinearity; assumption met

8) Residuals are normally distributed

Y = programming quality

Conclusion: data approximately normally distributed

Y = Dr Scratch mastery score

Conclusion: data approximately normally distributed (higher deviation at end poles)

In addition, Shapiro-Francia test was performed. The null hypothesis stands for normal

distribution.

W’(Y = programming quality) = 0.88, p = .011

W’(Y = Dr Scratch mastery score) = 0.96, p = .489

Conclusion: residuals for model(Y=programming quality) significant different from

normal distribution. Assumption fully met for model(Y=Dr Scratch mastery score) but

only partially met for model(Y=programming quality)

