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i 

ABTRACT 

Computational thinking (CT) is often promoted as the literacy of the 21st century 

and as the foundation of many concepts in computer science and related fields. 

Although most research has shown that including CT in computer science 

education has positive effects on programming, there are conflicting results. These 

inconsistencies may occur because of different frameworks, which lead to different 

ways of measuring that kind of thinking. This raises questions about the role of CT 

in programming, in particular, how is CT applied when solving a programming 

task (RQ1) and whether different measures of CT can be relevant predictors for 

programming quality (RQ2). 

Based on a literature review from two fields, computer science and psychology, a 

conceptual framework of CT is developed in this thesis. This conceptual 

framework builds the foundation for an instrument to observe CT behaviour. In 

order to answer the research questions, participants worked in pairs (n = 27) to 

solve a programming task in Scratch. The solving process were videotaped and 

analysed based on CT activities. In addition, participants’ Scratch projects were 

analyses based on programming quality criteria. A set of adjusted Bebras tasks 

were used as unplugged measure of CT. To control for confounding effects, a 

measure for nonverbal intelligence was completed by the participants as well. 

Results showed that not all CT associated behaviour was equally often apparent 

while participants were working on the programming task. Participants engaged 

only infrequently in decomposition or abstract thought about a problem. Instead, of 

thinking about the problem, they tried to create solutions from the beginning. 

Correlations and regression analysis also revealed that CT measures differ in their 

suitability for revealing the relationship with programming quality. Only the 

behaviour based measure of CT revealed that relationship. 

On this basis, it is recommended that educators should focus on different parts of 

CT in order to enhance that kind of thinking. In order to analyse the unique impact 

that CT might have on programming, instruments must be chosen with care. 
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1 INTRODUCTION 

1.1 Background and problem statement 

With steadily decreasing costs of data collection, storage, and processing on the one 

hand, and constantly increasing computer power on the other, digitalisation continues to 

shape our everyday lives (Organisation for Economic Cooperation and Development 

[OECD], 2017, p. 6). This is not without an impact to our society. The job market is 

developing so quickly that, in 2017, researchers from the Institute for the Future (IFTF) 

estimated that by 2030 up to 85% of today’s school children will work in jobs that have 

not yet been created (IFTF, 2017, p. 14). Because no other areas are growing more 

quickly than are science, technology, engineering, and mathematics (STEM), it is likely 

that most of these jobs will be in these and related fields (OECD, 2016b). 

This development also shifts the demand for required skills in two ways (OECD, 

2016b). First, ICT-related skills will be in greater in demand. This includes the need for 

ICT specialists such as programmers. Technology is quickly blending in more jobs than 

previously, so generic ICT-related skills have become more relevant for many different 

areas (Burning Glass, 2014). Programming-related skills have relevance for jobs that 

have not previously been related to programming. Medicine, academia, and product 

management all rely on technology to some extent. Second, with the development of 

digital technologies, automation of labour is increasing (Autor, Levy, & Murnane, 

2003). This does not influence all kinds of jobs to the same extent, however. Michaels, 

Natraj, and van Reenen (2014) stated that workers such as bank tellers and paralegals 

who perform routine tasks have decreased in demand in the past decades whereas 

nonroutine jobs are increasing. Employees should be able to generate and process 

complex information, think critically, and be flexible with new or ambiguous situations 

and open-ended problems (OECD, 2016a, 2016b). 

Several authors have proposed that computational thinking (CT) can address this 

shift in demand for the required skills (see, e.g., Denning, 2009; Falkner, 2016; Swaid, 

2015; Wing, 2006). A definition of CT is yet to materialise, and one of the tasks of this 

thesis is to clarify its scope and boundaries (see Chapter 2). For this introduction, CT 

can be regarded as the ability to reformulate problems in ways that computers can then 

be used to help in solving those problems (ISTE and CSTA, 2011). It is also seen as an 
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umbrella term for different kinds of (sub)skills such as the ability to decompose a 

problem, engage in abstract thinking, and design algorithmic solutions. These abilities 

are closely related to programming and are crucial for STEM-related fields. Swaid 

(2015) saw CT as the core aspect of STEM and recommended that educators include CT 

in their lectures. 

Lu and Fletcher (2009) went even one step further and described CT as the 

underlying understanding of programming and as something that should be taught 

before programming. They compared CT with basic skills in different areas. In English, 

for instance, learners first encounter basic language proficiency before writing an essay 

or discussing Shakespeare. In mathematics, basic arithmetic builds the foundation for 

more advanced mathematical approaches such as stating a proof. According to Lu and 

Fletcher, the same is true for programming and CT in which CT sets the foundation for 

programming and related skills in computer science (CS). Teaching CT means 

preparing for the new generation of programmers to fill gaps in the job market. 

Although CT has its origins in computer science, it is not bounded to only that field. 

Wing (2006) proposed CT as a fundamental skill not just for computer scientists but for 

everyone. Some scholars associate CT with an attitude of handling uncertainty and see 

it as a powerful tool especially for handling complex and open-ended problems (Barr & 

Stephenson, 2011). The taskforce on CT of the Computer Science Teachers Association 

(CSTA) provided several examples of how different areas—from biology to history—

can benefit from including CT in their curricula (CSTA, 2011). Williamson (2016) even 

linked the ability to think computationally with the effectiveness of political 

participation in the future. 

This is why many scholars perceive CT to be the literacy of the 21st century and 

something that should be taught from an early age (Bocconi et al., 2016; Gretter & 

Yadav, 2016; Tabesh, 2017). Indeed, CT has been considered in national curricula and 

has become more relevant in a number of countries, including some countries in the EU 

(Bocconi et al., 2016), Switzerland (Repenning, 2015), and Australia (Australian 

Curriculum, Assessment and Reporting Authority [ACARA], 2012). 

Because CT is promoted by so many authors as a versatile tool, and because it is 

included in a variety of national curricula, it is important to investigate its role when 

people are solving complex problems. It is seen as the foundation of programming and 
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related skills. This is why the investigation of the relationship of both domains is so 

important. 

Lye and Koh (2014) reviewed 27 articles about how programming in K-12 and 

higher education is implemented. Because there is no generally accepted definition of 

CT, these articles relied on differing perspectives and measures of CT, and this has led 

to inconsistent results. In general, however, Lye and Koh concluded that CT has 

positive effects on programming and could be used in regular classrooms. Moreover, 

Grover et al. developed the Foundation for Advancing Computational Thinking (FACT) 

for K-12 pupils, in which CT was used to promote programming (Grover, 2017; Grover, 

Pea, & Cooper, 2015). Although it must be noted that Grover used the term CT broadly 

and did not sharply differentiate CT from other elements in her approach, she concluded 

that CT was used effectively to enhance programming skills. 

In contrast, Araujo, Santos, Andrade, Guerrero, and Dagiene (2017) saw the 

relationship between CT and programming more critically. They used the Bebras task as 

a measure for CT. Correlations between the CS students’ performance in a set of Bebras 

tasks and their grades were only low to moderate. Moreover, performance in the Bebras 

task did not improve after students had been exposed to a programming course. It is 

possible that these conflicting results are caused by varying frameworks and ways of 

measuring CT. 

Lye and Koh (2014) also suggested that future studies should be using thinking-

aloud protocols and capturing on-screen programming activity to have a more in-depth 

perspective of the actual role of CT. This was partially done by Falloon (2016), who 

conducted a video study to investigate the impact of CT on an open-ended 

computational task. He recorded primary school students who worked in pairs on that 

kind of task. Results indicated different CT patterns, but the role of CT for 

programming was not further investigated. It is possible that different patterns of CT 

behaviour have different impacts on programming. This raises the question whether 

these thinking patterns are dependent on age and whether thinking patterns can be 

associated with programming quality. 

To provide an answer to this, Wu, Hu, Ruis, and Wang (2019) conducted a similar 

video study, but with students who were enrolled in an educational technology major. 

The students worked in a collaborative setting on a programming task. Based on their 

performance, participants were divided into two groups (low versus high performing) 
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and their CT behaviour was analysed. Results revealed that the low performance group 

appeared to be tinkering around whereas the high-performance group worked more 

systematically. However, it is unclear how Wu et al. took into account group 

performance having been based on pairs. 

Computational thinking is proposed as an important problem-solving approach for 

contemporary society and development of the world’s workforce. However, it is still 

unclear what kind of role CT plays when people solve programming problems. Prior 

research about CT has not clearly distinguished between CT as a problem-solving 

approach and programming skills, and there has not been control of any confounding 

effects. This may be due to the various conceptual frameworks about CT, which also 

leads to different ways in which it is measured. 

Nevertheless, despite the lack of a unified definition of CT, its significance is rather 

evident. Considering that CT has a border and general frame, it is a valid fundamental 

skill not only for computer users, but also for everybody, believed to take place in the 

basic skills (reading, writing and arithmetic) used by everyone in the near future (Wing, 

2006). Consequently, increasing numbers of researchers have been paying attention to 

CT, including, experts in the field of educational technology who have emphasized the 

importance of CT as 21st century skillset (Korkmaz & Bai, 2019). 

1.2 Purpose of the study and research questions 

In recent years, there have been efforts to measure CT skills, abilities, knowledge, 

competencies (Korkmaz & Bai, 2019). Measuring computational thinking is particularly 

important for the K-12 practice field that serves as the foundation of CT training 

activities and the evidence of the training results. However, there is no widely accepted 

standard for measuring CT, except for a CT Scale by Korkmaz, Çakir and Özden 

(2017), a 29-item CT scale that measures five factors, namely, creativity, cooperativity, 

algoritmic- critical thinking and problem solving. This scale adopts multidimensional 

and hierarchical setting methods, as well as, certain content elements of science of 

computer and problem solving process. Notably, CT is divided into nine dimensions, 

namely, data collection, data analysis, data presentation, problem, decomposition, 

abstract, automation, simulation and parallel algorithm and process (Korkmaz & Bai, 
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2019). The problem at hand is that there seems to be no variables for measuring 

programming quality relative to CT, such as in a form of scale or questionnaire. 

According to Wing (2006), CT requires extraction and decomposition in comparison 

to great complex systems or processes. These processes aid in selecting convenient 

representations for solving a problem or modeling in the parts related to the problem. 

Moreover, digital age individuals are expected to possess CT skills but currently, there 

is a dearth in evidence and knowledge about the extent to which these skills should be 

had, and the specific levels that allow adequate CT skills. These matters can be known 

through appropriate measurement and assessments. 

Wing (2008) posits CT complements thinking in mathematics and engineering and 

focuses on designing systems that aid in solving complex problems humans face (Wing, 

2008, Lu & Fletcher, 2009). The core CT concepts encompass (a) abstractions that serve 

as mental tools for computing and essential for solving problems, (b) layers or problems 

that have to be solved on different levels, and (c) relationships between layers and 

abstractions (Wing, 2008). The concept of abstraction and the ability to deal with 

different levels of abstractions, as well as to think algorithmically and understand the 

consequences of scale of big data, are fundamental to CT (Denning, 2009, Lu & 

Fletcher, 2009). Aho (2012) further explains that CT entails “thought processes 

involved in formulating problems so their solutions can be represented as computational 

steps and algorithms” (p. 832). On the other hand, according to Denning (2009), CT 

traces its history in computer science in 1950s when it was called algorithmic thinking, 

referring to “a mental orientation to formulating problems as conversions of some input 

to an output and looking for algorithms to perform the conversions” (p. 28). However, 

there are certain computer science educators who contend that programming is not 

essential in the teaching of CT (Lu & Fletcher, 2009). Lu and Fletcher (2009) even 

suggests that emphasizing programming could discourage students from getting 

interested in computer science. Overall, CT conceptually refers to “systematically, 

correctly, and efficiently process information and tasks” to solve complex problems (Lu 

& Fletcher, p. 261). It is important to note that despite the many albeit fragmented 

descriptions and definitions of CT, there is certainly a dearth in knowledge about how it 

should be measured especially in the context of programming and programming quality.   

Thus, for the present study, a programming task was designed in which participants 

worked together collaboratively. Different measures with different perspectives on CT 
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were used to observe what kind of instruments can predict programming quality most 

effectively. A test of nonverbal intelligence was used to control for potential 

confounding effects. In order to define the problem, the following two research 

questions were asked: 

RQ1:  How is computational thinking applied when solving a 

programming task? 

RQ2:  Can multimodal measures of computational thinking be 

relevant predictors for programming quality? 

1.3 Significance of the study 

There are three anticipated contributions that this study could make. First, researchers 

could benefit from the framework developed in this research because it helps to have a 

more precise understanding of CT. Even after more than a decade of intensive research 

about CT, there is no final agreement concerning what CT looks like. Researchers in 

different studies tend to refer to the same concepts but with different terms. The 

framework developed in this thesis is an attempt to reduce the confusion by defining 

what the terms mean in the context of CS. Because CT is considered to be a specific 

problem-solving approach and is therefore associated with specific cognitive concepts, 

psychological perspectives are considered as well, for instance, what it actually means 

to think abstractly. Second, use of different CT measures and an instrument for a 

theoretically close concept help to further shape CT as a construct. Because CT is not 

clearly defined, different measures can lead to different conclusions about CT. Using 

several different measures based on different frameworks helps identification of the 

facets that each measure focuses on. This will help researchers to choose the most 

appropriate instrument(s) for their research. Third, this study could be beneficial for CS 

educators who teach CT in order to promote programming. The results show what kinds 

of CT-associated behaviour might be most relevant for programming. The results also 

help to identify deficits in CT behaviour that can help educators focus on appropriate 

aspects of CT behaviour. 
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1.4 Structure of the thesis 

This thesis comprises five chapters. Following this introductory chapter, in Chapter 2, 

the conceptual framework is developed. In that chapter, reasons are considered about 

why there is no final definition but rather a general but vague agreement about CT and 

its most highly related components and skills. This general agreement will be identified 

based on different major works concerning the definition of CT. Furthermore, CT and 

its associated skills will be analysed from computer science as well as psychological 

perspectives to develop an action-based framework related to the assessment of CT. 

This should allow assumptions to be considered about how the different skills are 

related to each other. The chapter closes with presentation of a potential relationship 

with theoretically closely related concepts concerning nonverbal intelligence and 

programming (quality) and a short overview of how the research questions will be 

answered. 

Chapter 3 provides insight into the methods of the study. This includes an overview 

of the research design and procedure, but also provides justification for a video-based 

study having been seen as the best choice to address the research questions. 

Demographic information about the participants is presented. The instruments used to 

assess CT, nonverbal intelligence, and programming quality are presented as well as the 

results of the previously conducted pilot study. Finally, a detailed outline is provided 

about how the data were analysed and what implications were to be considered. 

The results are presented in Chapter 4. First, a general and descriptive overview of 

all measures is given to provide a holistic view of the results. Then, the two research 

questions are answered and further findings are presented. 

In Chapter 5, the discussion chapter, the results from Chapter 4 are discussed in 

relation to the conceptual framework developed in Chapter 2. This chapter also includes 

a critical evaluation and consideration of the limitations of the study. Based on the 

theoretical interpretation and limitations, suggestions are made for future research. The 

chapter closes with conclusions relevant the whole study. 
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2 CONCEPTUAL FRAMEWORK 

2.1 How to define computational thinking? 

Computational thinking has been widely and intensively discussed. So far there is no 

universal agreement concerning a definition. Therefore, the development of a definition 

of the construct as used in this thesis is presented in the following. 

2.1.1 The missing definition 

Since its first major appearance in 2006 by Wing, there has been much discussion about 

what is actually meant by CT. Wing (2006) described CT broadly as a general attitude 

rather than providing concrete examples concerning what CT is and what it is not. In the 

subsequent years, different authors proposed a variety of definitions and perspectives 

about what CT is and what components characterise it. Some authors have proposed a 

broad description of CT (Guzdial & Wing, 2011; Hu, 2011). However, most authors 

(e.g., Aho, 2012; Barr & Stephenson, 2011; NRC, 2010) have emphasised the need for a 

clear and distinctive description on the basis that precise use and understanding of the 

terminology of a concept is crucial to communicate ideas clearly with other people. 

Different kinds of definitions also lead to different ideas about how to measure such 

concept. Only a definition of a concept that most scholars can agree on makes 

standardised assessment possible. An agreed-upon definition is important for two 

reasons. First, results from different studies can be compared with each other, which 

makes further research possible. Second, standardised assessment facilitates monitoring 

of a concept. This is especially important for education where CT is often praised as a 

new literacy of the millennium as mentioned in the introduction. As participants of the 

US National Research Council (NRC) on CT concluded, if CT is part of a curriculum it 

requires assessment, and without agreement on a common definition it is difficult to 

develop appropriate tools for assessment (NRC, 2010, p. 57). This is also why it is 

important to try to make clear what CT means in this study. 

So far, tremendous work has been done in order to define CT. Nonetheless, new and 

alternative definitions of CT continue to appear. Regardless of the scope of a study 

(e.g., assessment of CT or its application in education), many researchers propose their 

own definitions and often use different terms for the same concepts. Kalelioğlu, 
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Gülbahar, and Kukul (2016, p. 591) stated that even 10 years after Wing’s seminal 

paper on CT there is still no commonly accepted definition of CT that has been 

“scientifically proven”. A reason for that might be the lack of a conceptual framework 

that could not only explain what kinds of skills can be seen as core concepts for CT, but 

also why and how those skills are used. Such a theoretical framework could be used as a 

solid foundation for further work on the concept and might have implications for 

standardised assessment and, furthermore, for development of curricula about CT. 

2.1.2 Definition of computational thinking 

In order to provide a clear and precise definition of CT, a conceptual framework about 

CT should comprise three steps. First, CT should be defined and its core components 

should be identified based on (1) systematic literature reviews and (2) major 

publications that summarise the opinions of experts. Although systematic reviews can 

already provide a valuable overview of a generally accepted consensus within a 

community, conclusions based on experts’ perspectives can provide an additional level 

of content validity (see, e.g., Newman, Lim, & Pineda, 2013; Zamanzadeh et al., 2015) 

about a construct such as CT, which is important for its assessment. This means that 

results based on workshops and task forces by distinguished experts in the field of 

computer science (education) as well as surveys of experts should be considered. In a 

second step, CT and its associated skills should be analysed from a CS-related point of 

view. There is no doubt that the origin of CT lies in the field of CS but little work has 

been done to provide explicit examples of how CT components are rooted in CS. As a 

result there is no resolution about what decomposition mean in CS, the shape of 

abstraction, and the role that algorithms play. Making these concepts clear would 

provide reasons why specific skills are mentioned most often in the literature and by 

experts. Third, CT should be analysed from a psychological point of view. CT is often 

proclaimed as the ability to “think like a computer scientist” (Wing, 2006, p. 35), which 

emphasises CT being foremost a cognitive ability along with its associated skills. 

However, since its first appearance, it seems unclear what this actually means. There are 

uncertainties about how a problem is decomposed, how abstraction works and what it 

means to think algorithmically. Scrutinising these skills would help us understand how 

they are applied and what they look like in concrete situations. 

To shed light on these concepts from different perspectives (e.g., what abstraction 

means in CS and what it means in psychology) also helps in identifying when 
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researchers use different terms but actually refer to the same concept and how different 

concepts might be related to each other. For example, Grover and Pea (2013) use 

decomposition and modularisation interchangeably when referring to structuring 

problems with CT. Angeli et al. (2016) used the term generalisation which would be 

described as pattern recognition in other works. Modelling and models are often 

associated with abstraction in the sense of models are abstract representations of the 

world (Hu, 2011). Abstracting and modelling are sometimes even used interchangeably  

(Denning et al., 1989). 

There are some frameworks that have been used to, at least partially, analyse CT 

from proposed perspectives. For instance, in a short overview, Barr and Stephenson 

(2011) linked some typical CT skills (e.g., decomposition and abstraction) and their 

meaning in different fields such as CS. However, this overview consisted of only a few 

keywords, so a deeper investigation of the relationship between CT-associated skills 

and their origin in CS is not possible. Others have referred to CT-associated skills as 

“mental tools and concepts from computer science” (NRC, 2010, p. 3) or have declared 

that “CT is the basic principle of computing science” (Shi, Liu, & Hendler, 2014, p. 

2512) and explained in a general sense how CT and its components are important for 

grasping CS concepts. However, again there was no detailed explanation concerning 

which components were being referred to and how they are specifically linked to CS. 

Another promising attempt was made by Kramer (2007), who explained why 

abstraction is a key concept in CS. His work is often referred to in order to provide 

reasons why the ability to abstract is one of the core skills in CT. Kramer linked 

abstraction as used in CS with its meaning in other fields such as art and cognitive 

development. Nonetheless, even this often-cited publication only scratches the surface 

of abstraction from a cognitive psychological perspective. In conclusion, there are some 

works that link CT skills with CS and psychological concepts, but in most work the 

analysis is insufficiently deep to provide a sound foundation for further research, for 

example, concerning standardised measurements. 

For the purpose of defining CT in this thesis, four systematic literature reviews about 

CT were selected by the investigator. These publications were the most recent ones at 

the time this study was conducted. These reviews were (in chronological order) Selby 

and Woollard (2014), Kalelioğlu et al. (2016), Bocconi et al. (2016), and Shute, Sun, 

and Asbell-Clarke (2017). All reviews contained the search terms “computational 

thinking” in different databases, as shown in Table 2.1. Bocconi et al. (2016, p. 9) did 
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not specifically state which databases were searched, but they mentioned “a wide range 

of data sources, including both academic and grey literature (e.g., journal papers, 

reports, blogs, etc.)”. They also analysed MOOCs and grassroots initiatives, and they 

surveyed ministries of education to obtain official documents (e.g., policy strategies and 

national reports), all with regard to CT. In addition to their literature review, they 

interviewed 14 policy makers, researchers, and practitioners from nine different 

countries. The total number and kind of documents in the reviews is shown in   
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Table 2.2. Selby and Woollard (2014) did not specify the total number, but according 

to their reference list they accessed more than 35 documents. Conclusions in all reviews 

were based on consistency of usage and interpretation across the retrieved literature, and 

those conclusions largely indicated consensus in the community at the time of the study 

with regard to CT. 

Table 2.1 

Overview of Databases in Review Articles 

Databases Reviews 

ACM Digital Library Selby et al. (2014); Kalelioğlu et al. (2016) 

Compendex Selby et al. (2014) 

EBSCOHOST  Kalelioğlu et al. (2016) 

Engineering Village Selby et al. (2014) 

ERIC Selby et al. (2014); Shute et al. (2017) 

Google Scholar Selby et al. (2014); Shute et al. (2017) 

IEEE Explore Selby et al. (2014); Kalelioğlu et al. (2016) 

JSTOR Shute et al. (2017) 

PsycINFO Selby et al. (2014); Shute et al. (2017) 

Science Direct Kalelioğlu et al. (2016) 

Springer Kalelioğlu et al. (2016) 

Web of Sciences Selby et al. (2014) ; Kalelioğlu et al. (2016) 
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Table 2.2  

Numbers and Kind of Documents Used in Reviews About CT 

Review Number and kind of documents 

Kalelioğlu et al. (2016) 125 articles 

Bocconi et al. (2016) > 350 articles published in conf. proceedings or 

 journals 

> 210 documents identified as grey literature 

3 curricula documents from England, France, 

 and Finland 

4 policy documents 

12 grassroots initiatives and MOOCs 

> 30 policy papers 

Shute et al. (2017) 45 articles 

 

As major works that reflect the opinion of computer science (education) experts, four 

publications were selected. These were (in chronological order) by the NRC (2010), 

Barr and Stephenson (2011), ISTE and CSTA (2011), and Corradini, Lodi, and Nardelli 

(2017). In February 2009, the NRC conducted a 2-day workshop with 37 experts 

including Peter Denning, Roy Pea, Mitchel Resnick, and Jeannette Wing in order to 

define the scope of CT. Their final report (NRC, 2010) is widely seen as one of the 

benchmarks in the field because it is repeatedly mentioned throughout the literature. A 

similar often-mentioned publication is the comprehensive article by Barr and 

Stephenson (2011) that summarises the opinions of 26 “thought leaders” (not 

specifically identified) of the Computer Science Teacher Association (CSTA) and the 

International Society for Technology Education (ISTE). In the same year, CSTA and 

ISTE also conducted a (joint) survey in order to find an operational definition of CT and 

to gather feedback from nearly 700 computer science teachers, researchers, and 

practitioners. A similar approach was used by Corradini et al. (2017) who analysed 

responses from nearly 1,000 teachers in an online survey concerning what they believed 

CT to be. 

As a result of the analysis of the proposed literature reviews and expert surveys, CT 

is defined in this thesis as a problem-solving approach that includes three skills 

identified as core concepts of CT. These skills are the ability to decompose a problem, 

the ability to engage in abstraction, and the ability to understand and design algorithms. 
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For a summary of the analysis, see Appendix A. All works made clear that CT is not 

necessarily limited to these skills but they are consistently mentioned throughout the 

literature and by experts and therefore identified as particularly relevant for CT. 

2.2 Core characteristics of computational skills 

In the following sections, the core characteristics of CT are analysed from both CS and 

psychological perspectives. In addition, didactical approaches in fields with a long 

tradition of problem-solving teaching will be presented. First, a general overview about 

problem solving will be presented, before decomposition, abstraction, and designing 

algorithms will be discussed. 

2.2.1 Problem solving in general 

In this section, a general definition of problem and different kinds of problems are 

presented. Based on that, the different problem-solving approaches and how to teach 

them are discussed. After that, a conclusion will be drawn about what this means for 

CT. 

2.2.1.1 Typology of problems 

The general ability to solve problems depends to some extent on the kind of problem at 

hand. Therefore, definitions and a categorisation of problems are presented first. 

Problems come in different forms and it is difficult to find a general definition for all 

kinds of problems. Yet, in the middle of the last century, Gestalt psychologist Karl 

Duncker (as cited in Gilhooly, 2012, p. 2) offered a definition that has remained suitable 

for most kinds of problems: “a problem exists when a living organism has a goal but 

does not know how this goal is to be reached.” Jonassen (2000) offered a similar 

definition in stating that a problem has two critical attributes. First, there is a noticeable 

difference between two situations: the current moment and a goal. Second, there is a 

social, cultural, or intellectual value in eliminating this difference. This means that if 

there is no one who perceives the difference between those two states or there is no one 

who is willing to eliminate it, there is any problem. Although different terms may have 

been used, this view about the definition of a problem is shared by several other authors 

of the field (e.g., Anderson, 2015, p. 183; Bransford & Stein, 1993, p. 7). In summary, a 
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problem can be generally thought of as a situation that is interpreted by someone as a 

challenge to be overcome. 

A further analysis of problems is made by Reitman (as cited in Gilhooly, 2012, p. 3), 

who pointed out that most, if not all, problems can be portioned into three states: initial 

state, goal condition, and a set of various actions to transform the problem from the 

starting state to the goal condition. If all states and actions of a problem are specified, 

the problem can be classified as being well defined; if not all of the states and actions of 

a problem are specified, that problem is classified as being ill defined. It is important to 

state that the word specified does not mean the problem is familiar to the person who 

faces it. Specified means that there is a clear and unambiguous state of start, goal, and 

transition that transforms one state to another. Completely well-defined problems are 

relatively rare; rather, they are the scope of formal sciences or can be seen in forms of 

games. In addition, the term well defined should not be confused with easy to solve. For 

example, chess is a well-defined problem with a clear starting and goal conditions and 

specified rules that determine which actions are permitted in order to achieve the goal. 

That does not mean, however, that winning a game of chess is easy. On the other hand, 

ill-defined problems are most likely difficult to solve because of their ambiguous nature. 

The goal is always to specify as many steps as possible. 

A slightly different classification of problems is made by Jonassen (1997) who 

distinguished between well- and ill-structured problems. For Jonassen, well-structured 

problems present all elements of a problem to the problem solver, require the 

application of a finite number of well-structured rules, and have comprehensible 

solutions where the relationship between decision choices and all problem states is 

known. Ill-structured problems, on the other hand, possess elements that are (at least 

partially) unknown to the problem solver; furthermore, multiple solutions are possible 

and there are multiple criteria for evaluating the solution. Also, some ill-structured 

problems may require judgments or expression of personal opinions or beliefs about the 

problem from the problem solver. So the distinction between well- and ill-structured 

problems can be seen in the degree of knowledge the problem solver has for every 

problem state. To put it simply, a well-structured problem has a well-known initial state, 

a well-known goal state, and a well-known limited number of logical operations to close 

the gap between initial state and goal state—and the opposite pertains for ill-structured 

problems. Jonassen also emphasised that the structure of a problem should be seen as 

continuum, with well and ill as end poles, rather than as a dichotomous categorisation. 
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Examples of different kind of problems, according to Jonassen, and their level of 

structure are seen in Table 2.3. 

Table 2.3 

Jonassen’s (1997) Typology of Problems 

Level of 

structure 
Kind of problem Description 

R
at

h
er

 i
ll

  
 ←

  
  

  
 →

  
 r

at
h
er

 w
el

l 

Logical Abstract tests of reasoning; examples are Rubric’s Cube or 

Tower of Hanoi 

Mathematical Algorithmic procedures in mathematics such as equation 

factoring or long division 

Math story Mathematical problems embedded in stories 

Rule-using Problems with several correct solutions in which the solver 

needs to choose the “best” one; examples are tax returns or 

some card games such as Bridge 

Decision making Similar to rule-using but better solutions are less obvious. 

Different options results in different consequences. Jonassen 

refers to “life decisions” as decision making problems. 

Trouble shooting / 

diagnosis 

Eliminating problems from a running system such as 

debugging in programming or fixing a car in mechanics 

Strategic 

performance 

Problems that demand high situational awareness and 

flexibility in the process of handling such as combat missions 

or tactics in some sports games 

Case analysis Analysing highly extraordinary cases for that domain; 

common in law or medicine 

Design Design problems often have ambiguous specifications of 

goals, no determined path to solution, and require knowledge 

from different domains 

Dilemma Similar to decision-making problems, but, because all 

solutions seem unsatisfactory, their outcome is highly 

unpredictable 

 

The difference between Reitman’s well/ill-defined problems and Jonassen’s well/ill-

structured problems lies in the specification of the problem states and the level of 

knowledge. A problem can be well defined but also ill structured to some extent. For 

instance, initial state, goal, and transition steps are all specified (problem is well 
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defined), but it is also possible to have multiple solutions to a problem (ill structured). 

To have a consistent and concise terminology throughout this thesis, problems are 

categorised based on Jonassen’s system of the level of problem-structure. 

2.2.1.2 Problem-solving models 

According to Anderson (2015) “problem solving is a goal-directed behaviour that often 

involves setting subgoals to enable the application of operators” (p. 182). For Anderson, 

operators are all actions that transform the initial problem state to another state. 

Different theories about problem solving use different terms and also suggest different 

steps, but, according to Pretz, Naples, and Sternberg (2003), these steps can be 

generally summarised to (1) recognising that there is a problem, (2) analysing and 

defining the problem, (3) forming a strategy and solution, (4) organising knowledge 

about the problem, (5) allocating resources and applying the solution, and finally (6) 

monitoring the progress and evaluating the outcome. 

According to Jonassen (1997) the problem-solving process also depends on the kind 

of problem, and some steps are more relevant than others depending on the extent of 

structure of the problem. For well-structured problems, Jonassen combined ideas from 

the theory of human problem solving (Simon & Newell, 1971), the model of the ideal 

problem-solver (Bransford & Stein, 1993), and Gick’s general problem-solving 

strategies (Gick, 1986). As a result, Jonassen identified three major steps: (1) 

representation of the problem space (understanding the problem, its constraints and 

goals), (2) search for a solution, and (3) implementation of solutions. These steps 

involve different kinds of strategies such as mapping the problem onto prior knowledge, 

recalling analogical problems, identifying relevant subgoals and steps, and simplifying 

the problem. These strategies play different roles at different stages but may also occur 

simultaneously. The third step also includes testing and evaluation of potential 

solutions. 

These three major steps of well-structured problem solving also play a role in 

Jonassen’s model for solving ill-structured problems, but they are more divided due to 

the higher level of uncertainty in all problem states. Overall, this results in a slightly 

more complex model: 

Step 1:  Representation of the problem space 
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As with well-structured problems, understanding a problem is the first step. 

However, domain and context knowledge now play a bigger role for ill-structured 

problems. 

Step 2:  Identifying and clearing alternatives 

Problem solvers may need to consider more than a single problem representation 

because of the variation of possible solutions. Each problem space must then be 

evaluated in order to decide which is the most relevant for the current situation. 

Step 3:  Generating possible solutions 

The process of generating multiple solutions is often creative and, according to 

Jonassen, it relies not only on prior experience but also on unrelated thoughts and 

emotions at this early stage. 

Step 4:  Viability of alternative solutions 

In order to choose the most valuable solution, solvers create an evaluation system 

based on their own beliefs and knowledge. This system may also include the 

opinions of others. 

Step 5:  Monitoring the problem space 

This involves metacognitive strategies such as planning or allocating resources. 

Step 6:  Implementing and monitoring solution(s) 

Possible solutions generated in Step 3 are implemented by the system generated in 

Step 4. In this respect, Jonassen emphasised the role of continuous performance 

assessment because of the ambiguous nature of ill-structured problems. 

Step 7:  Adapting solution(s) 

Only few ill-structured problems might be solved with a satisfactory outcome at 

first try. It is more likely that solutions must be adapted and the solver needs to go 

back to some prior steps. That gives the whole process a more iterative character 

than is the case for well-structured problems. 

Although slightly different terms might be used, similar steps are identified by others 

(see, e.g., Ge & Land, 2003). Jonassen (2000) further commented that the greatest 

difference between well- and ill-structured problems lies in their level of uncertainty 

and restricted knowledge (at least at the start of a problem-solving process). Although 

well-structured problems are more likely to be solved by a systematic search for 

solutions, the process for ill-structured problems is more “dialectical”. The degree of 

appropriateness of a possible solution might change over time, and external variables 

can play a greater role than for well-structured problems. This is why Jonassen referred 

to a “design process” when he described the overall solving procedure for ill-structured 

problems. 
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2.2.1.3 Problem-solving in mathematics 

Solving (mathematical) problems is a defining aspect of mathematics and mathematical 

didactics. The discussion of teaching mathematics with or through problem-solving is as 

old as the field itself. As CT emerged originally from CS and CS is closely linked to 

mathematics, some typical mathematical problem-solving strategies are presented. A 

good summary of this field is provided by Liljedahl et al. (2016). The focus of their 

work lies in heuristic methods and the phenomena of creativity and discovery in 

mathematics. These methods and phenomenon are discussed in more depth. 

In the 20th century, mathematical thinking and problem solving were highly 

associated with heurism and heuristic strategies (see, e.g., Hadamard, 1945). The term 

heuristic emerged from a story about the legendary Archimedes how he was struggling 

over a problem by the King of Syracuse. The King wanted to know whether his crown 

was indeed pure gold as the goldsmith claimed. Archimedes had problems to figure out 

how to answer this question until he went on day into his bathtub and observed that the 

volume of water, he displaced was equal to the volume of his body. He suddenly 

understood how he could apply this observation to his problem. Because he was so 

excited about it, he jumped straight out of the bathtub and ran naked home while 

screaming his wife’s name “Eureka”. 

This kind of sudden insight and the ability to apply a previous successful method to 

another situation are the core of heurism and heuristic strategies and methods. Such 

strategies highlight general terms and provide a general rule-of-thumb that may help to 

find a solution. For mathematical education this means to teach general problem-solving 

approaches to solve specific mathematical problems. 

Teaching heuristic methods is largely accepted in mathematical education. It is more 

discussed which kind of methods are more important and in which way they should be 

taught. Kilpatrick (1985) suggested a taxonomy to summarise such methods: 

Osmosis: by solving many similar problems (with minor changes) learners 

develop implicitly a general problem-solving strategy (inferential learning). 

Memorisation: by memorising correct steps needed to be done to solve a specific 

kind of problem (deductive leaning) 
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Imitation: by showing how someone solves the problem in an ideally way 

(social learning with an expert) 

Cooperation: by working on a problem together with others (social learning with 

peers). 

Reflection: by promoting to use metacognitive strategies. Rather than “learning 

by doing” the main idea in this method lies in “learning by thinking about 

doing”. What steps have been done in the past, what restrictions are there, what 

options are giving, and so on. 

Kilpatrick (1985) further stated that these methods are not independent from each other 

but can be combined.  

Applying and combining specific heuristic strategies is one way of teaching problem-

solving in mathematics. However, these methods come with specific conditions which 

are not always been met. Sometimes there are no similar problems, any steps to 

remember, or it is not possible to reflect on the problem with others. A more general 

and holistic way of looking at mathematical problems comes with the mental agility 

model (Liljedahl et al., 2016). 

Successful problem solvers tend to switch fast between perspectives. They can 

connect different components and see the relativity of circumstances. They show some 

level of mental agility. In general, typical signs for this kind of flexible thinking are 

(Bruder, 2000): 

Reduction: reducing a problem to its essential core aspects. For example, using 

visualisations and structuring aid like graphs or tables to abstract important 

information. 

Reversibility: reversing thought process by working through a problem from the 

end to the beginning and working backwards (e.g., using rough estimations for 

the possible result). 

Minding of aspects: see different aspects or sides of a problems at the same time, 

(e.g., taking a complex figure and breaking it down to more simple structures). 

Change of aspects: being able to switch perspectives of the problem that can 

prevent of getting stuck (e.g., proving geometric propositions by using vectors). 
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Using heuristic methods may compensate for less flexible and less successful 

problem-solver. The long-term goal of using heuristic methods in mathematical 

didactics is to teach how to break through some mental blocks. It can help to develop a 

different mindset before trying to solve a problem. 

To achieve a more flexible thinking through heuristic methods, Bruder (2000) 

suggested three phases of training: first, students need to get used to such methods by 

using giving specific hints in the task description. These hints refer to typical signs of 

flexible thinking, e.g., “look for similarities” or “detach and attach elements”. Second, 

students think out load while trying to solve the problem. They try to combine the hints 

with the referring sign like “when I solve a geometrical problem, I detach smaller and 

simpler parts like rectangles, triangles and circles.” In the third phase, students try to 

solve the task by applying the methods.  

Ironically, Archimedes, name giver of heurism, did not apply any specific (heuristic) 

method to solve his problem. Neither did Sir Isaac Newton in a similar famous story 

when the observation of falling apples lead to the sudden understanding of universal 

attraction. In both stories, no one was comparing they problems to others, memorising 

any steps, working with others, metathinking on the problems, and so on. They were not 

actively thinking about their problem or topic but busy with seemingly uncorrelated 

actions like submerging in a bathtub or just watching apples.  

According to Hadamard (1945), “the sudden and immediate appearance of a solution 

at the very moment of sudden awaking” (p. 8) is the third of four stages of the invention 

in the mathematical field. During the first stage, a person would constantly think about 

the problem and make countless unsuccessful attempts to solve the problem. This stage 

is marked by high mental effort. The many unsuccessful attempts and feeling of 

disappointment lead to the second stage. The person stops engaging with the problem 

and gains some distance (e.g., taking a bath or going for a walk in the park). The 

pressure of the solving eases, results are being “digested” (p. 63), false leads and 

assumptions do not occupy someone’s thought capacity anymore. This stage of 

incubation is defined by low (if any) mental effort while false leads and assumptions do 

not block the person’s whole thought capacity anymore. Incubation is then suddenly 

interrupted by the third stage: illumination. Illumination is usually accompanied with a 

mixture of positive emotions like relief and proud to have found a solution finally. 

Eventually comes the stage of verification in which the ideas of solutions are being 
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evaluated. Details are being worked out and the solutions become formally correct 

proofs and such. 

Hadamard (1945) emphasised how all these stages are interconnected to each other. 

Of course, discoveries can be made by just working on it without a break (only first 

stage). The same way some discoveries were produced just by chance (only second 

stage). However, more than often both are needed to lead the mathematician to an 

appropriate solution. 

In addition, CT is related to computation skill development in school mathematics 

(Li et al., 2020). Computation is a familiar idea to many people, particularly to parents 

and students in elementary school. Indeed, students are required to learn to compute 

with numbers (CCSSI, 2010; NRC, 2002). Computational skill is usually considered as 

important not only in a person’s day to day like, but also in preparing for, and in 

conducting, numerous professions, such as science, engineering, insurance, and finance, 

or other professions where numbers are used. Computation is also usually considered as 

a basic skill, and parents and the public would be seriously disappointed if children do 

not learn such basic skills through school education (Li et al., 2020). 

Computation has historically been loosely connected to thinking until such time that 

mathematics educators began realising the significance of students making sense of 

what they do when they are engaging in computation (Li & Schoenfeld, 2019). 

Combining the construct of computation with thinking in this restricted sense makes CT 

not new to mathematicians, mathematics educators, and teachers at all. In this regard, 

CT thus emphasizes the significance of thinking and understanding in, and for, 

performing computations. The CT construct is likely to have been readily accepted 

because of its importance to every student in learning mathematics. Nevertheless, 

mathematics educators now use alternative terms conveying the same meaning, such as 

“number sense” (Sowder 1992) and “symbol sense” (Arcavi 1994). Based on these, 

what is the relevance of CT to other individuals aside from students? Why must the 

significance of CT be advocated by computer scientists as important to everyone, when 

computation as used in mathematics is usually regarded as merely as basic skill? 
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2.2.1.4 What problem solving means for computational thinking 

Problem solving takes place in different steps. The earlier steps focus on the problem 

itself. This includes steps about understanding the problem as well as constraints and 

rules. Grasping the problem space or problem representation marks the beginning of the 

solving process. The last step is concerned with actual solutions. That may involve 

developing a solving strategy and implementing prospective solutions as well as 

monitoring and evaluating those prospective solutions. This general approach can be 

mapped onto the more specific problem process of CT. It is conceivable that the CT 

core skills focus on different aspects of the overall problem-solving process as well, and 

they also play different roles at different stages. This point will be elaborated on in the 

assessment model developed later within this thesis where the CT core skills will be 

discussed in more detail and will also be analysed using this perspective as a 

foundation. 

Problems also can be categorised based on their level of structure. Well-structured 

problems present all elements of the problem, have a limited number of well-known 

rules and constraints, and possess correct and convergent answers. In contrast, ill-

structured problems are less clear to the solver, have more uncertainty, and may have 

several possible solutions that need to be evaluated and eventually adapted during the 

whole process. Although the boundaries between those types of problem are sometimes 

unclear, the kind of problem has an impact on the kind of solution, as Jonassen’s model 

implies. The solving process for a well-structured problem appears to be more 

straightforward and streamlined, whereas ill-structured problems require a more 

complex solving process with iterative steps. 

At first glance, CT shares some similarities with features of problem-solving 

processes of well-structured problems. For instance, described strategies such as 

identifying subgoals, simplifying the problem, and recalling analogical problems, as 

well as implementing, testing, and evaluating solutions, can be seen as parallel 

descriptions for decomposition, the ability to abstract, and designing algorithmic 

solutions, respectively. This makes CT apparently better suited for well-structured 

problems. However, the literature about CT is rich with references about its usefulness 

for ill-structured problems. The jointly proposed definition from ISTE and CSTA 

lauded CT as the “the ability to deal with open ended problems” and declared that CT 

goes along with attitudes such as “confidence in dealing with complexity” (ISTE and 
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CSTA, 2011, p. 1). This view is widely adopted by many others (e.g., Barr & 

Stephenson, 2011; Bocconi et al., 2016, p. 16; Corradini et al., 2017; Kalelioğlu et al., 

2016; Selby & Woollard, 2014; Weintrop et al., 2016). Shute et al. (2017) even 

concluded that CT “relates not only to well-structured problems, but also to ill-

structured problems (i.e., complicated real-life problems in which solutions are neither 

definite nor measurable” (p. 2). 

To put everything together, CT is based mainly on typical solving strategies for well-

structured problems but is applied for ill-structured problems. This initially appears to 

be a contradiction, but it makes sense when looking at the field of CS and related areas 

like mathematics and mathematical didactics. Here, machines (e.g., computers) are used 

as tools to solve problems. Machines, however, are bounded to problem-solving 

methods for well-structured problems. Humans can handle multiple solutions and 

undefined constraints and can deal with ambiguous elements, but machines cannot. This 

makes CT a more holistic and flexible problem-solving approach, like the mental agility 

model. The mental agility model describes how successful problem-solvers can change 

quickly their view on the circumstances of problems before applying a solving method. 

CT describes the agile mental activity in formulating a problem so that a machine can 

help to solve it (Wing, 2008, 2011)—that is, to transform to some extent ill-structured 

problems into more structured ones. This way, it can be understood as a more 

elaborated heuristic strategy in comparison to some other typical problem-solving 

methods in neighbouring fields.  

In summary, CT should be seen as a problem-solving approach especially useful for 

open-ended problems with multiple possible solutions, but it involves strategies usually 

employed for well-structured problems. This should be taken into account in order to 

have an optimally cohesive measurement model. Ill-structured problems as well as well-

structured problems should be used to capture all facets of CT and to assist with 

understanding the full process of CT. 

2.2.2 Decomposition 

As defined earlier, the problem-solving process in CT is associated mainly with three 

skills: decomposing of problems, the ability to abstract, and creating algorithmic 

solutions, each of which will be discussed in the next sections. To do this, they are 

viewed from a CS perspective to provide an indication about why these abilities are 
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mentioned throughout the literature and are constantly emphasised by experts. Within 

the next subsections, the three skills are also analysed in terms of their meaning in 

psychology in order to acquire better insights about how they are applied in concrete 

situations.  

2.2.2.1 The role of decomposition in computer science 

In a very general sense, decomposition means to deconstruct or to factorise a complex 

system into its simpler parts (Booch, 1994, p. 14; MDESE, 2016, p. 50). Complex 

systems in CS can refer to different things and concepts on different levels and so the 

core idea of decomposition takes place in different forms (Najafi, Niu, & Najafi, 2011). 

Regardless of whether it refers to organising working project, the basis of whole 

programming paradigms, or as a vital concept in specific programming languages, 

decomposition plays a vital role in CS. 

On a macro-level, decomposition takes place as a crucial element in agile project 

management, which has its roots in software engineering and is still popular in this 

field. Agile management is an umbrella term for many different approaches such as 

Scrum and Extreme Programming, with the same methodological foundation. The core 

idea of these approaches is to be able to create first drafts of solutions or products 

quickly and to quickly adapt to changes during the working process (D. Cohen, 

Lindvall, & Costa, 2004, p. 8). That involves many circles in the production process and 

rounds in communication with different team members and stakeholders on until the 

final product is delivered. 

To cope with having these different steps, the original task must be broken into 

subtasks. In Scrum, for instance, the production process is divided into many relatively 

short working periods, called sprints, with successive meetings involving customers to 

obtain constant feedback. For sprints, it is important be able to define specific goals 

before the next meeting takes place. This is similar to the planning game in Extreme 

Programming in which the overall goal of a project is translated into user stories with 

different parts. Each part of the story focuses on different problems and requirements. 

This approach helps participants to organise responsibilities among the team members 

according to their capabilities (D. Cohen et al., 2004, pp. 13–15). These two examples 

show how the deconstruction of tasks or problems can be vital in the working process in 

software engineering. 
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At a lower level, decomposition can be interpreted as the core component of modular 

programming. Modularity can generally be seen in CS as the “development of 

autonomous processes that encapsulate a set of often-used commands performing a 

specific function and might be used in the same or different problems.” (Atmatzidou & 

Demetriadis, 2016, p. 664). The complex system here is the whole programming 

paradigm, which is decomposed in several smaller (partially independent) modules or 

packages. Boudreau, Tulach, and Wielenga (2007, p. 9) pointed out, that in a time of 

open-access software and programming languages, many kinds of software are no 

longer developed by a single developer or single team. Instead, many people all over the 

world contribute to it in forms of modular applications. This diversity leads to many 

solutions to different kinds of problems. Modules are isolated programs that contain a 

limited number of subroutines that relate to a very specific kind of problem. They 

usually work independently of each other and are organised in libraries. To use 

modules, programmers need to explicitly call them up. This modular design helps to 

prevent chaotic “spaghetti code”1 because only the subroutines needed for a particular 

problem are activated. 

For instance, R is a statistical programming language that is organised in modules. In 

general, R can be seen as a simple but very potent calculator in which the most 

fundamental mathematical operations are provided. Many statistical processes demand 

more sophisticated mathematical models. It would be tedious to near impossible for 

individual users to write every statistical routine. Instead, different users create different 

modules, called packages, with some of those packages being more advanced statistical 

procedures. So, instead of writing a function that would perform a hypothesis test such 

as an independent-samples t-test, the user needs only to load a package that includes 

that particular t-test. This applies to other statistical procedures. 

At an even deeper level, decomposition is implemented as one of the core concepts 

of another current popular programming paradigm. In object-oriented programming, 

clean isolation and reuse of code is a vital concern (Najafi et al., 2011) and is 

summarised in the concept called encapsulation. Encapsulation means that some 

features are excluded or encapsulated from the rest of the program (Dale, Weems, & 

 

1
  Spaghetti code refers to a set of code in which many GO-TO statements are used to transfer code actions to another 

place in the program as often occurs in programming languages such as FORTRAN or BASIC. This kind of code 

often appears to be as unsorted as a bunch of spaghetti and thus is difficult to read and should be avoided 

(Boudreau et al. (2007, p. 14). 
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Headington, 2004, p. 177). As a result, objects such as variables or operations do not 

communicate with each other, and neither do they directly or automatically influence 

each other. Instead, programmers need to explicitly indicate what objects in their 

program have access to each other. This way, the purpose of a program is deconstructed 

into different chunks of codes. This helps to prevent unwanted interactions from 

different parts of the program that could cause errors. For example, there might be a 

function, F1, that uses “x” as its name, and, coincidentally, “x” could also represent 

another function, F2. Without encapsulation, the argument in F2 would be interpreted as 

the function F1 but that might not be the original referent. Encapsulation reduces the 

impact of changes and makes it easier to keep control of functions. Altering parameters 

or deleting functions or methods does not have an impact across the whole program. 

That way, execution of codes is safer and more stable. Encapsulation shows how a 

program is decomposed into chunks of codes that not only work independently but also 

work together without unintentionally influencing each other. 

These examples demonstrate how the concept of decomposition appears in different 

aspects or stages of CS and associated areas from life-circle design and process 

modelling of projects to actual development and implementation of programs. 

Regardless of the level of action, people are constantly confronted with decomposing 

complex systems into smaller components. This underlines the impact of decomposition 

that also indicates why it is considered so often in the literature as such a crucial skill 

for CT. 

2.2.2.2 The role of decomposition in psychology 

Breaking down problems into smaller problems had been recommended as a general 

problem-solving strategy in psychology long before the appearance of CT (Anderson, 

2015, p. 182; Jonassen, 1997). The general idea behind problem decomposing is to 

divide the initial problem into smaller problems as long as they are sufficiently small 

that a potential solution seems obvious (Polson & Jeffries, 1985). A more specific 

example of a decomposition model was developed by F. J. Lee and Anderson (2001). It 

was loosely based on the goal, operators, methods, and selection rule (GOMS) model by  

Card, Moran, and Newell (1983). The GOMS is a cognitive model with the goal of 

predicting humans’ behaviour when they interact with computers to improve usability 

experiences. Lee and Anderson’s model is more general and focuses only on task 

analysis. In their model, they distinguish between three different layers of task 
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decomposition. The most general level is the unit task level, which is still closely linked 

to the overall task. At this level, the main task is divided into subgoals that can be 

achieved independent of each other. Next is the more specific functional level. At this 

level, the operations that are needed to achieve the subgoals are defined. The last level 

consists of primary cognitive goals up to motor actions such as a single keystroke—

which is why F. J. Lee and Anderson (2001) called this level the keystroke level. 

However, operations on this level are not confined to action made on keyboards. It is 

the most specific level and cannot be broken down any more. On this level, fundamental 

actions needed to achieve the sub goals on the functional level are described. 

The distinction between the different levels is important for illustrating the 

dependencies between them. At the two higher levels, the subgoals and tasks are only 

dependent on the level above. Regardless of the particular system or platform that any 

solution will be run on, goals on the unit task levels are dependent only on the overall 

main task, and the subgoals of the functional level are dependent only on the unit task 

level. No other knowledge is needed. Nevertheless, the system might have an impact on 

these subgoals. The keystroke level, as the lowest level, is highly dependent on the 

system in which the solution might be applied. This means that there must be 

knowledge about the operational platform before the steps needed at this level are 

identified. Operators need to know what kinds of actions are possible in general and 

whether any assumptions or conditions need to be met. 

As an example of a decomposition process, the overall task might be to write an 

essay about someone who overcomes his or her major fear. On the unit task level, three 

subgoals might be identified: (1) clarifying who the person is, (2) clarifying the specific 

fear, and (3) developing a plan for overcoming the fear. Each of these goals can be 

deconstructed at the functional level. Developing a plan, for instance, can be further 

deconstructed into developing (1.1) a beginning, (1.2) an end, and (1.3) a turning point. 

The words and phrases used to write the essay represent the keystroke level for this 

example because they can be seen as comprising the atomic unit. The specific words 

that can be used depend on the language the account will be written in. The language 

represents the system or platform here. The unit tasks and functional tasks are not 

dependent on the system. Regardless of the language, it is likely that the subgoals 

remain the same. Nonetheless, the language proficiency of the writer may have an 

influence on the subtasks. 
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F. J. Lee and Anderson (2001) suggest a top-down analysis for task decomposition, 

where given tasks are analysed as entities beginning at the top with the most general 

terms and going down to more specific goals where the most basic and simple 

operations are located. Breaking down a task in this way may have three benefits. 

First, it may help to gain a better overview. A large task can appear to be 

overwhelming and unclear. Too much information needs to be processed at once. On 

the other hand, several problem chunks can be ordered by different features including 

their priority or approximate time to achieve a solution. This provides an overview for 

the process. A better overview can also help to identify potential challenges in the later 

solution processes, thus making the overall process more robust. 

Second, it is possible to identify subgoals and tasks that can be achieved and solved 

independent of each other. This means that resources such as time, materials, and 

manpower can be allocated efficiently. For example, there might be two people with 

different strengths who work on the same task. If two subgoals on the unit task were 

identified, it will be probably more efficient if the people worked independently on the 

different tasks according to their skill level rather than simultaneously working on the 

same main goal. F. J. Lee and Anderson (2001) demonstrated how participants solved a 

complex air traffic controlling task significantly faster when they decomposed it into 

simpler subtasks. 

Third, different subproblems may result into different solving approaches, which can 

involve different levels of cognitive load. In mathematics, for example, some complex 

problems are broken down into simpler ones so that the required solving strategy shifts 

from a calculation strategy to a memory strategy (Bull & Espy, 2007, pp. 114–115). The 

Trachtenberg system (Trachtenberg, 1960) can be seen as such an example. With the 

Trachtenberg system, the complex and cognitively demanding problem of 

multiplication of two numbers larger than two digits can be broken down into a set of 

comparatively simple steps that include only addition and multiplication of numbers 

with only one digit. Both operations require significantly less cognitive effort. 

Although task decomposition has many benefits, there are some constraints. 

According to Polson and Jeffries (1985), the effectiveness of this strategy depends on 

the level of the problem-solvers’ knowledge about the problem. The more knowledge 

they have, the easier it is for them to formulate subtasks. However, Polson and Jeffries 

also emphasised it as being a generally useful strategy. 
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Decomposition as a strategy is more part of the problem-planning phase than the 

actual solving process. As Lee and Anderson’s model shows, decomposition is related 

to reformulating the problem in order to plan steps for the solution. Although 

decomposition depends on the level of knowledge the problem solver has about the 

problem, it can generally be regarded to be a powerful mental tool. 

2.2.2.3 What decomposition means for computational thinking 

Decomposition has been shown to be a concept that appears in different forms and at 

different stages in CS and related fields. From a psychological perspective, 

decomposition comprises methods in which problems or tasks are deconstructed into 

smaller chunks, as seen in F. Lee and Anderson's (2001) model of task decomposition. 

Decomposition is concerned with reformulating the problem itself rather than 

formulating a solution. Thus, it can be assumed that decomposition should take place at 

a very early stage of the process if problems are to be solved with CT. 

Concrete signs of decomposition derive from steps of problem deconstruction. For 

example, breaking originally complex problems into smaller and less complex ones and 

what the next steps could be in order to deal with these subproblems can be seen as part 

of decomposition. Also, how these steps are related to each other and the main problem 

can be seen as decomposition according to Lee and Anderson’s model. 

2.2.3 Abstraction 

In the literature, one of the most frequently mentioned skill relating to CT is the ability 

of abstract thinking. Abstraction appears in different forms in CS. After analysing these 

different forms below, the psychological meaning of abstraction is discussed. Then, a 

final conclusion is drawn about what abstraction means with relation to CT. 

2.2.3.1 The role of abstraction in computer sciences 

In computer science and related fields, abstraction is regarded to be a fundamental 

concept. CS is rich in references about abstraction, such as data abstraction or 

procedural abstraction, which are used to describe the separation of logical properties of 

data and a procedure, respectively (Dale & Walker, 1996, pp. 4–5). Denning et al. 

(1989) refer to abstraction as one of the main paradigms in their idea of computing as a 

discipline. They also consider abstraction to be the main focus in CS as well as in 
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software engineering. Aho and Ullman (2000) even declared CS to be a “science of 

abstraction”. This alone underpins the relevance of abstraction in CS. 

According to the Encyclopaedia of Database Systems, abstraction is defined as a 

concept that “allows developers to concentrate on the essential, relevant, or important 

parts of an applications” (Thalheim, 2009, p. 6). According to Ward (1995, p. 443), 

there are several different ideas of subforms and usages of abstraction, but the main 

ideas can be reduced to three core principles: 

1. Abstracting specification say what a program does without necessarily saying 

how it does it. 

2. Abstraction is a process of generalisation, removing restriction, eliminating 

detail, removing inessential information (such as algorithmic details). 

3. Abstract specifications have “more potential implications”, moving to a lower 

level means restricting the number of potential implementations. 

To summarise these points loosely, abstraction in CS implies reasoning about 

common structures in data or mathematical entities while certain properties that differ 

from instance to instance are ignored (Pease, Smaill, & Guhe, 2009), or, to say it 

differently, an abstract algorithm presents a solution without fully revealing how the 

result was achieved (Haberman, 2004). 

In programming, abstraction can also mean “giving things names” (Stein, 2002, p. 1). 

Things, in this case, may be algorithms, data, objects, and so on. These can be seen as 

computing entities. Behind these of entities lies considerable information that is usually 

not needed. Giving them names can help to abstract out the unnecessary information. 

An often-used example for abstraction in programming is the task of drawing a square 

(Wentworth, Elkner, Downey, & Meyers, 2012). Several steps must be followed and 

assumptions made to create a square, specifically, drawing four lines of the same length, 

all connected to each other; two lines are orthogonally connected to each other whereas 

the two opposite lines are parallel. Most humans know intuitively what a square is. 

They do not always need those detailed instructions. However, a computer does not 

have intuitions and therefore does not know what a square is. It always needs precise 

instructions. It would be very tedious and confusing for a programmer to always specify 

all these steps and assumptions just to get a computer to draw a square. Luckily there is 

no need to do this. Instead, programmers apply abstraction and write a function that 

includes those steps and they give it a name such as “square”. In this case, the word 
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“square” is an abstraction of a more detailed procedure hidden behind the word. This 

word or name is the only information the programmer is interested in. The function 

hides all the unnecessary details the programmers do not need to know to draw a square. 

Programmers only need to know which function they need to call on to complete the 

task by the name of the function. Of course, this could be done with different kinds of 

figures. For example, a triangle would require drawing three lines with all connected to 

each other at their corners. 

This opens the opportunity to complete more complex tasks with higher levels of 

abstraction. If the task is to draw a house, the intuitive idea of a house might be a square 

with a triangle on top. Instead of writing a new function with explicit steps, it is possible 

to use abstraction and to combine functions with each other to create a new one. The 

function “house” could consist of the functions “square” and “triangle”. This can lead to 

even more complex tasks such as creating villages (a collection of houses), and so on. 

Here the programmer operates on different levels or layers of abstraction and switches 

between them. 

Another example of the principle of different layers of abstraction is seen in the open 

system interconnection (OSI) model (Colburn & Shute, 2007). The OSI model is a 

framework for computer network architecture. It describes how communication is 

performed in seven layers within which data are exchanged between systems in 

different ways. Each level represents a different layer of abstraction. The layer with the 

lowest possible abstraction is the physical level where data are transmitted using electric 

currents that turn data into on and off (i.e., 1 and 0) binary states. Data are then 

processed into higher order layers of abstraction up to the level of end-user applications 

(e.g., a web page). 

Without abstraction, programmers would still have to program in machine code on a 

physical level. They would need to translate their data and instructions in binary form. 

Of course, it is not feasible for humans to do this. With abstraction, however, it is 

possible to convert information from binary form to a more complex level in a bottom-

up process. Programmers are not interested in exactly how the computer is carrying out 

the procedure and they do not need to know. Programmers only want to draw a square 

and sometimes a triangle on the top. 

Abstraction not only enables communication between humans and machines. It also 

provides opportunities for efficient and clean coding. A code that appears to be elegant 



CHAPTER 2 – CONCEPTUAL FRAMEWORK 
 

 

– 33 – 

1  Int getBalance( Signatory who ) throws InvalidAccessException 

2  { 

3      if ( !who == this.owner ) 

4      { 

5          throw new Invalid AccessException( who, this) 

6      } 

7      // else 

8      return this.balance; 

9  } 

and easy to read has a high level of abstraction. A well-written code does not produce 

convoluted solutions and does not provide more information or results than needed 

(Kramer, 2007). A high level of abstraction means a high level of generalisation. As 

Ward (1995, p. 450) described it, “a program S1 is an abstraction of another program S2 

if each of the possible execution sequences for S1 consists of a subsequence of possible 

execution sequences for S2”. Essentially, this means that the more concrete a 

specification becomes, the more degrees of freedom are lost. It also means that a more 

abstract code has greater possibility to be used and has a higher level of generalisation. 

A program has a high level of generalisation when it is easy to apply for different 

situations and therefore few specifications need to be altered. That helps to reduce 

unnecessary duplications of codes. Instead of repeating the same statement with 

different arguments, loops or recursion could be used. In that way, abstraction helps to 

reduce the amount of information that needs to be understood and it also reduces the 

level of complexity. That is why code written on a relatively high level of abstraction 

appears to be easier to read. As shown in Section 2.5.2.1, readability is seen as a 

hallmark of a good code. 

Stein (2002, pp. 5–6) provided an example how abstraction can make code more 

efficient and easier to read. Imagine there is a bank account with a method that shows: 

 

The first lines define the bank balance as an integer. The verification takes place with 

the throw command, which is linked to the crucial if command in the second line. If the 

owner cannot verify with a valid identification, the balance is not shown, but if it is 

correct (line 8), the balance will be shown. 
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1  Public Instrument withdraw( int amount, Signatory who ) throws 

2   InvalidAccessExcept 

3  { 

4      if ( !who == this.owner ) 

5      { 

6          throw new Invalid AccessException( who, this) 

7      } 

8      // else 

9      this.balance = this balance - amount; 

10     return new Cash ( amount ); 

11  } 

1  private void verifyAccess ( Signatory who ) throws 

2   InvalidAccessExcept 

3  { 

4      if ( !who == this.owner ) 

5      { 

6          throw new Invalid AccessException( who, this) 

7      } 

8  } 

Of course an account holder might also want to withdraw money, in which case the 

balance in the account would change as well. This is what a solution could look like: 

 

Compared with the routine before, the only changes appear in the first and ninth 

lines. The first line now defines a procedure where the balance is not shown but an 

amount of money as an integer can be withdrawn. As for the first routine, this is linked 

to an if command, which is exactly the same as the first one. In the ninth line, the 

balance is overwritten as a result of a subtraction of the original balance and the recently 

withdrawn amount of money, and is finally shown in line 10. 

This solution would work, but the solution appears to be convoluted with some 

redundancy and duplicates. In addition, if any changes needed to be made, both routines 

would have to be altered. That would slow the whole work process down. Instead, it is 

possible to abstract the common pattern here, which is the verification procedure: 
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1  Int getBalance( Signatory who ) throws InvalidAccessExcept 

2  { 

3      this.verifyAccess ( who ); 

4      return this balance; 

5  } 

6  public Instrument withdraw( int amount, Signatory who ) throws 

7   InvalidAccessExcept 

8  { 

9      this.verifyAccess ( who ); 

10     this.balance = this.balance – amount; 

11     return new Cash( amount ); 

This separated verification routine can be now implanted into a new routine where 

the routines for showing the balance and withdrawing the money are combined: 

 

This solution appears to be more concise and easier to understand because of the 

reduced redundancy of code. In addition, modification for the verification procedure can 

be done at one place instead of two, which makes this solution more efficient than the 

first one. This shows how abstraction makes code easier to read and optimises the work 

flow. 

These examples demonstrate how abstraction is applied in CS and why it has become 

such a vital concept. Abstraction can be seen as the core of some programming 

paradigms as well as in handling data and procedures. Code that is written “more 

abstractly” is also easier to read and understand, and it appears to be “more elegant”. In 

general, abstraction enables communication between machines and humans. CS would 

probably not exist without any kind of abstraction. This might also explain why 

abstraction is considered to be important for CT. 

2.2.3.2 The role of abstraction in psychology 

Although it has its roots in philosophy back to the time of Aristotle (Burgoon, 

Henderson, & Markman, 2013), empirical research about abstraction is traditionally 

located in psychology. It gained more attention during the cognitive revolution in the 

second half of the 20th century (see, e.g., Posner & Keele, 1968; Rosch, 1978). 

Unfortunately, even in this field the concept of abstraction lacks a final and clear 

definition (Barsalou, 2003). That leads to a situation where there are nearly as many 

theories about what abstraction is as there are methods and approaches for studying it. 
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Posner et al. (1968) described the ability to abstract as the ability to infer rules based 

on observations and to apply these rules to instances that the person has never 

encountered, for example, “when a man correctly recognizes an animal he has never 

seen before as a dog, he has manifested an ability to generalize from previous 

experience” (p. 353). Posner could show that participants generate a kind of scheme or 

concept of patterns (prototype) based on presented stimuli in a training session. These 

prototypes were easier and faster to recognise than were any other kind of pattern even 

though participants had not seen them before. That means that abstraction is strongly 

associated with learning. It is an efficient way of interpreting and storing information.  

In addition, the stimuli in the training session in Posner’s research (Posner, 1968) 

were all different. However, these differences were ignored, and instead participants 

implicitly focused on shared attributes. Posner concluded that participants had 

abstracted a concept, a mental representation, of something that they had not 

experienced before. They recognised a set of rules that determined what belonged 

together and what not. It is important to point out that abstraction does not involve 

learning about actual physical stimuli and attributes of things, but rather the 

relationship(s) between them (Posner, 1969). Although the stimuli in the training 

session were different, participants developed an idea of what all stimuli had in 

common (Posner & Keele, 1968). This makes abstraction crucial for learning. It is not 

memorising but inferring, which goes further in higher-order thinking. 

For Piaget, abstract thinking played a crucial role in cognitive development. He 

distinguished between two kinds of abstraction. Empirical abstractions are inferential 

projections based on former experiences. They are described as belonging to reality 

(Moessinger & Poulin-Dubois, 1981). This kind of abstraction refers to the processes of 

inferring and developing rules based on actual observation and comes close to Posner’s 

idea of abstraction. It is predominantly part of what Piaget called the concrete stage in 

his theory of development. The term concrete refers to the content of thinking, which is 

still bounded to an experience in the real world. Reflective abstraction, in contrast, 

mainly refers to metacognition such as thinking about one’s own thinking (Campbell & 

Bickhard, 1986, p. 88). It also describes the ability to think about “things” that are not 

physically bounded to the real world, such as laws, ideas of others, and symbols in 

general. Possible outcomes are derived from imagination and thoughts without regard to 

whether they had been actually experienced. This kind of abstract thinking becomes 

more dominant in the formal operational stage—the last stage of cognitive development 
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in Piaget’s theory (Siegler, DeLoache, & Eisenberg, 2014, pp. 134–145). That 

underlines how, according to Piaget, abstraction is part of the later stages of cognitive 

development and therefore part of higher-order thinking. Abstract and concrete thinking 

are the end poles of the same dimension. An abstract concept is only a thought process, 

a fuzzy image in the mind or a loose idea of something, and there is not necessarily a 

connection to the real world. In contrast, concrete means there is a manifestation in the 

real world that can be straightforwardly projected into the real world. This is why Piaget 

saw the ability of abstraction as part of higher-order thinking and even as the peak in 

human cognitive development. 

Abstraction is in particular associated with Rosch’s principle of categorisation 

(Rosch, 1978; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). In her theory, a 

category contains a number of objects that are considered as somehow equivalent (i.e., 

representatives of a category share the same features). Taxonomy refers to a system of 

how categories are related to each other by means of inclusiveness, and this is where 

abstraction comes into play: “The greater the inclusiveness of a category within a 

taxonomy, the higher the level of abstraction” (Rosch, Mervis, Gray, Johnson, & Boyes-

Braem, 1976, p. 383). The level of abstraction determines a specific level of 

inclusiveness. A category within a taxonomy of a higher level of abstraction contains 

more objects than does a category at a lower level because there are more objects 

considered to be equivalent because, in turn, there are fewer features that need to 

represent a category (i.e., the level of inclusiveness is higher). Thus, the most abstract 

level in a taxonomy is also the most inclusive level, and the least abstract or most 

concrete level is the least inclusive. 

An example of a categorical system with different layers of abstraction is shown in 

Table 2.4. The somewhat abstract level contains fewer objects than the highly abstract 

level, but more than the concrete level. The level of inclusiveness or abstraction is 

higher in the next more abstract level. That also means that objects in more abstract 

categories often appear to be more different among each other than they do in less 

abstract levels. However, these differences are (implicitly or explicitly) ignored and 

considered to be unnecessary details. That becomes more difficult the higher the level of 

abstraction becomes. Or, to put it differently, it becomes more difficult to recognise 

shared features the higher the level of abstraction becomes. In contrast, the more 

concrete a category becomes, the more similar the objects appear to be. This has an 

impact on how easy it is to imagine the objects and leads to the same conclusion Posner 
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made, albeit for different reasons: Concrete objects are easier to imagine than are 

abstract objects because fewer features need to be omitted. 

Table 2.4 

An Example of Different Layers of Abstraction 

Concrete Somewhat abstract Highly abstract 

Bob Human Living being 

Football Sports Free-time activity 

Preparing a report 

for next quarter 

Writing a text Working 

Holding hands Love Emotion 

White oak Tree Plant 

 

Abstraction does not only play a role in the categorisation of things. Other research 

investigated its role for memory (see, e.g., Hintzman, 1986, e.g.,), or how abstraction is 

connected to language (Barsalou, 1994, e.g.,). However, these works are based at least 

partially on the ideas of Posner, Piaget, and Rosch. They also are not crucial for the 

process of abstraction in the context of CT, and, as a result, they are not considered 

more deeply in this thesis. 

In summary, abstraction is a thought process that is used to achieve organised 

thinking (Shivhare & Kumar, 2016). In Posner’s theory, abstraction is associated with 

learning about rules or recognising patterns across observations. Piaget went one step 

further by arguing that reasoning is based on prior experiences at the beginning but 

develops to a more unbounded way of thinking. Patterns and rules are able to be learnt 

even without self-made observations but with thinking about thinking. For Rosch, 

abstraction is accompanied by the level of inclusiveness of features: the higher the level 

of abstraction, the higher the level of inclusiveness. That also means that some features 

are interpreted as important (for that level of abstraction) and others need to be ignored 

in order to fit within a specific level of a taxonomy. 

In conclusion, the ability for abstraction can be broken down into two processes. The 

first is the ability to distinguish between important information and unimportant details. 

The second is the ability to identify invariant features over different instances and to 

recognise patterns and rules. Although viewed differently within psychology, there is a 
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general acceptance that abstraction plays a role in learning (Burgoon, Henderson, & 

Markman, 2013). This includes the ability to infer patterns and rules, even without prior 

first-hand experience, as the result of a thinking process. In addition, all theories of 

abstraction emphasise that abstraction is part of higher-order thinking. Of course these 

theories are not without limitations and flaws, and Piaget’s scientific methods have been 

the target of considerable criticism (Lourenço & Machado, 1996). However, there is 

general support for Piaget’s findings, which underlines the importance and impact of his 

theories about abstraction as a cognitive process. 

2.2.3.3 What abstraction means for computational thinking 

As shown in the previous section, decomposition is clearly associated with the problem 

itself (i.e., reformulating the problem). This may not be as obvious for abstraction. The 

psychological analysis in this thesis revealed that abstraction comes in two components: 

neglecting unimportant details and recognising patterns. Both components can refer to 

the problem itself as well as to possible solutions. For instance, the initial problem as 

well as possible solutions can both be discussed in order to be simplified, and 

simplification can be interpreted as a sign of abstraction in the sense of neglecting 

unimportant details. On the other hand, mentally comparing different problems as well 

as different possible solutions can be seen as a process of identifying patterns 

throughout instances. Thus, it can be assumed that abstraction can take place at a very 

early stage of the problem solving process as well as in the middle stages. 

Some authors have referred to CT as the ability to look at the same problem from 

different layers of abstraction (Priami, 2007). This way, different and more insights 

about the original problems might be possible. In that sense, CT means neglecting 

unimportant details and recognising patterns in such way that emerged models of the 

reality can be interpreted by other humans or machines (Wing, 2008). This duality of 

abstraction should be taken into account when measuring CT. Abstracting in the sense 

of neglecting details can be seen in forms such as simplifying features crucial to the 

problems (i.e., the problem itself, possible solutions, constraints, rules, etc.). These are 

operations that show that the problem solver focuses on important elements of the 

problem through abstraction. Abstraction also means identifying similar structures in 

(sub)problems and possible solutions. If the problem solver detects patterns, this should 

be seen in some kind of a reaction of sudden realisation or enlightenment such as 

“aha moments” (Piaget, 1952,  p. 7; Posner & Keele, 1968), which are similar to 



CHAPTER 2 – CONCEPTUAL FRAMEWORK 
 

 

– 40 – 

Archimedes sudden insight while sitting in the bathtub. Such aha moments could be 

seen as aspects of abstraction in the sense of CT as well. 

2.2.4 Algorithmic design 

The last major core skill associated with CT that will be discussed in this thesis is the 

concept of algorithms and the ability to think in algorithms. As for the other skills, it 

will be first discussed what algorithms are and what their role is in CS and related 

fields. This includes the design and evaluation of algorithms. After that it will be 

revealed that our mind at least partially can be seen as organised in algorithms and what 

it means to think algorithmically. Conclusions will then be drawn about what the design 

of algorithms means for CT. 

2.2.4.1 The role of algorithmic design in computer sciences 

Although undoubtedly one of the most important concepts in computer science, there is 

a several decades-long dispute about what an algorithm is, and a formal definition is yet 

to be agreed on. There are, however, some characteristics that are mentioned more often 

than others and that will be the foundation for an operational definition used in this 

study. Cormen, Leiserson, Rivest, and Stein (2014, p. 4) described an algorithm as a 

“well-defined computational procedure that takes some values, or set of values, as input 

and produces some value, or set of values, as output.” This indicates that an algorithm is 

a tool to accomplish computational problems, although the word computational must be 

used very broadly in this context. Algorithms can be used to accomplish advanced tasks 

such as identifying human genes on the basis of several billion possible chemical pairs, 

or finding the shortest way to drive from one place to another, or accomplishing less 

complex task such as letting an avatar speak or walk when a specific key is pressed. All 

these tasks can be translated into computational problems regardless of whether the 

produced data are genes, distance coordinates, or electronic keyboard signals (Cormen 

et al., 2014, pp. 6–9). There are various versions of algorithms that all accomplish 

different kinds of computational tasks (see, for an overview, Sipser, 2013). 

In its most general way, an algorithm can be seen as a cooking recipe (Sipser, 2013) 

with the ingredients and quantities as inputs, a set of rules and sorted steps that describe 

what to do with the ingredients, and the finished meal as output. The really delicious 

part of an algorithm lies in the procedure that describes the set of rules that make the 

algorithm appear to be a black box. For the outcome, no knowledge is needed about 
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exactly how the data are used. The data are always processed automatically and 

autonomously once the algorithm has been activated. It does not matter who executes 

the algorithm. This is where the real power of an algorithm lies. Once an algorithm has 

been created, anyone can solve the same problem without thinking about it. The 

executer of an algorithm does not need to understand what the purpose of the algorithm 

is or exactly how it works. The executer needs only to follow the steps described in the 

algorithm mechanically. That makes computers perfectly suited for being algorithms. 

They blindly follow steps provided in the algorithm. 

Algorithms can be presented in different forms such as pseudocode (a set of rules 

written in plain language) or as a flowchart. Algorithms for computers are usually 

referred to as programs (Cormen et al., 2014, p. 6). A program is nothing other than an 

algorithm translated in a specific computer language. It is important to note that errors 

can occur during this translation, in which case the program will not behave as 

originally intended. Maybe the set of rules or the rules in the flowchart make sense, but 

the program does not work in the same way. These programming errors are called 

“bugs”2 and the process of fixing them is known as “debugging”. 

Bugs can occur in all phases of a program’s lifetime. Especially at the beginning, 

programs rarely work as originally intended. Programmers spend roughly more than one 

third of their time finding errors and validating code (O'Dell, 2017), so debugging plays 

a major role in software development. Debugging involves several steps, and although 

exact names might vary slightly throughout the literature they can be roughly described 

as reproducing, diagnosing, fixing, and, sometimes as fourth step, reflecting (Butcher, 

2009, pp. 17–18). Through the first three steps, test runs are conducted regularly. 

Therefore, constant evaluation can be seen as the foundation of the whole debugging 

process. Reproducing a bug on a reliable basis is the first goal. Being able to reproduce 

an error on demand provides insights about its cause and helps to rule out alternative 

explanations. After that, the second, “experimental phase”, begins. Butcher (2009, p. 

49) pointed out how diagnosis takes place within the debugger’s mind, not within a 

computer, and it refers to conducting little experiments. Experiments in this case might 

again be conceived of as test runs, but they have slightly changed parameters. Butcher 

stressed the importance of making only one change at a time in order to increase the 

accuracy of conclusions about the bug’s cause. After being sure about the origin of the 

 
2
 The term “bug” was most likely coined by Grace Hopper who observed how a moth flew into a 

computer causing some malfunctions (McFadden, 2018, September 13). 
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bug, fixing it is attempted and new tests are run. In the final step, a thoughtful debugger 

should reflect on how the bug was created and on how to install mechanisms to prevent 

similar bugs in the future. In addition, if bugs of the same kind appear frequently, it 

might be useful to reflect on one’s own behaviour to determine at what point in the 

programming process the errors were created. 

In summary, although not formally defined, algorithms can be seen as a set of 

(computational) steps. Algorithms appear in different forms, for example as written 

plain language style (e.g., spoken English), as flowcharts, or as coded programs. The 

design of algorithms plays a significant role in CS. As Cormen et al. (2014, p. 14) 

commented: “having a solid base of algorithmic knowledge and technique is one of the 

characteristics that separates the truly skilled programmer from the novices”. This also 

includes the maintenance and evaluation of algorithms and therefore debugging is 

naturally part of any algorithmic design process. This conclusion provides good reasons 

why understanding the concept of algorithms and thinking algorithmically appear to be 

so important for CT. 

2.2.4.2 The role of algorithmic design in psychology 

During the mid-1950s, many psychologists found themselves unsatisfied with 

behaviourism as the main approach in psychology at that time. Behaviourism followed 

the idea that psychology should be based solely on behaviour because behaviour is the 

only objective source of data. In the eyes of a behaviorist, the mind was something 

subjective and unobservable. Opposing pure behaviourism, some psychologists 

assumed that the human mind is a real “thing”, more than just a black box, but 

observable, and slowly the cognitive revolution in psychology began (Miller, 2003). To 

conceptualise their new ideas about how the human mind works, many cognitive 

psychologists were inspired by an equally new emergent field: computer science. 

Cognitive psychologists tended to compare the human mind with computational 

processes and they used a nomenclature nuanced by CS. For instance, Miller studied 

how human memory works (see, as a classic example, Miller, 1956). Together with his 

colleagues, he coined the term “working memory” for the short duration when 

information is temporarily stored and first processed (Miller, Galanter, & Pribram, 

1960, p. 65). This term was purposely chosen to be analogous to random access 

memory (RAM) in computers, which is seen to work in a similar fashion and is 

colloquially referred as “working memory” as well. The liaison between psychology 
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and computer science, together with linguistics (with special contributions from 

Chomsky) as well as neuroscience, anthropology, and philosophy, eventually resulted in 

a new, interdisciplinary research area: cognitive science (Miller, 2003). 

Not only were similar terms used to describe human thinking, but later psychologists 

proposed that our knowledge is stored in a way that corresponds to algorithms. In the 

late 1970s, Schank and Abelson presented their theory of scripts. Scripts are ideas of 

idealised events that follow stereotypic sequences of actions (Schank & Abelson, 1977). 

An often-used example is going to a restaurant (Figure 2.1). From the initial state “enter 

a restaurant” to the outcome “leave the restaurant” a set of rules guide the whole process 

in a way that is similar to an algorithm. An algorithm works as a black box where the 

operator does not need total knowledge about the situation but only follows the rules. 

Although this is not entirely true for scripts (e.g., most of us do not blindly follow a set 

of rules when we enter a restaurant), further studies suggested that scripts reduce 

people’s cognitive load in their working memory (Bower, Black, & Turner, 1979). In 

conclusion, even though scripts should not be seen as humans’ autopilot for behaviour, 

they are something like algorithmic systems that help us to deal with common events.
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Scripts are implicitly learnt over several similar instances and time. They are often 

deeply internalised so that people are not always aware that they follow specific 

procedures (Schank & Abelson, 1977). A set of rules for a sequence of behaviour that 

was not internalised but purposely designed for future actions is called a plan. Plans are 

more obvious and require more consciousness than do scripts. They are also actively 

created whereas scripts are usually not. Although scripts can be seen as implicit 

algorithms, plans are more explicit algorithms for behaviour and situations. 

Some cognitive scientists even conceptualised humans’ information processing 

mechanisms as algorithms. This view is seen especially in information processing 

theory (IPT). There are different kinds of IPTs, but they are all similar in that 

information is seen as input that must be processed through several steps in order to 

create an output. The content and context of the problem are not of interest, and neither 

are subjective elements such as people’s motivation or their perception of the problem. 

An effective example is the work of Newell, Shaw, and Simon (1958), which is also 

widely seen as the foundation for what is known today as artificial intelligence. Newell 

Enter a restaurant 

Is it 
crowded? 

Go to another 
restaurant 

Go to a 
free table 

Do they 
have want 
you want? 

Order, eat, and pay 

yes 

yes 

no 

no 

Leave the restaurant 

Figure 2.1. Script of going to a restaurant presented as flowchart (example 

inspired by Schank & Abelson, 1977). 
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et al. postulated a theory based on three conditions: (1) a number of memories, which 

contain symbolised information and are linked by various relations; (2) a definite 

number of primitive information processes, which operate on the information in the 

memories; and (3) a definite set of rules for combining these processes. Newell et al. 

transformed these conditions into a program called The Logic Theorist (LT) and 

compared its outcome with results from humans. Although the tasks they used to test 

LT were limited to mathematical proofs, they concluded that LT “is qualitatively like 

that of humans faced with the same task” (Newell et al., 1958, p. 155). Despite justified 

criticism, and acknowledging the limitations, of their work (see, e.g., Fetzer, 1998), 

Newell et al. succeeded in at least partially imitating the human mind based on the same 

logic as typified in algorithms. 

So far in this section, knowledge representation and information processing were 

discussed based on the idea of algorithms. To some extent, humans also think 

algorithmically. This can be seen in in forms of specific games. A classic example of 

such algorithmic game is Minesweeper. At the beginning of the game, the player is 

presented with a board of grey squares. The squares are either empty or have a mine 

underneath. By left clicking, the user reveals what is underneath. The first left click 

never reveals a mine but opens several neighbouring squares. Some of these squares 

have numbers that indicate how many neighbouring squares contain mines. The goal of 

the game is to reveal all empty squares without left-clicking on a square with a mine, 

which would instantly result into losing the game. As a little help for orientation, 

players can flag squares by right clicking when they think a mine could be lurking there. 

Refer to Figure 2.2. Each square has up to eight neighbouring squares, so the player 

needs to consider information from more than only one square to determine where 

mines are and where it is safe to left click. 

                   

Figure 2.2. An example of Minesweeper. At the left a typical initial state of a 

game is shown; in the middle there is a lost game where a mine was triggered; and 

on the right is a game in which all mines had been correctly identified. 
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1) Squares have two states {closed; revealed} 

 

2) IF left-click (for the first time) on square THEN 

 square is empty → change state to revealed 

AND change state of neighbouring squares to revealed 

IF they do not face at least 1 mine 

 

3) IF left-click on closed square THEN 

EITHER square is empty → change state to revealed 

AND change state of neighbouring squares to revealed 

IF they do not face at least 1 mine 

ELSE indicate the total number of mines they face 

 OR square has mine underneath → change state to revealed 

  AND game ends with FAIL 

 

4) IF right-click place flag 

 

5) IF all empty closed squares are revealed THEN 

game ends with SUCCESS 

           

The gameplay mechanics can be written in plain English or pseudo-code: 

 

Understanding the algorithm of the game mechanics is essential for winning the 

game. Probably the player needs some attempts to figure out how the gameplay works. 

For instance, a first-time player could think that every square with a number faces a 

mine. Of course this rule is not correct and the player needs some incorrect trials to 

realise the mistake. To put it differently, the mental algorithms must be debugged in 

some test sessions. As Simmons (1988) stated, debugging also means using reasoning 

techniques to handle problems. For instance, a player first states, and then tests, 

hypotheses about the origin and cause of the problems and how to logically eliminate 

them. Finally with experience, however, the player will probably understand the rules of 

this game and mentally designed an algorithm that can be followed for success. 

Earlier algorithms were defined as tools to accomplish transformation of information 

from an input state to an output state with a definite number of well-ordered steps. 

Regardless of who operates the algorithm, the output will be the same (as long as the 

input is the same). It was earlier stated that debugging is an evaluation process that is 

inseparable from the overall design of algorithms. Consequently, algorithmic thinking 

in the sense of being able to mentally design algorithms means being able to recognise 

what input is available or had been used (e.g., left click or right click, and different 

states of variables), what steps in what order are needed (e.g., taking the information of 
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several different squares into consideration), and what the outcome is (e.g., empty 

square means winning; mine means losing). Of course, this also incorporates testing and 

adapting drafts of algorithms (i.e., testing ideas for rules and algorithms). 

2.2.4.3 What algorithmic design means for computational thinking 

The process of designing an algorithm involves several steps. Every action indicating 

the creation of algorithms (e.g., writing pseudocode, creating a flowchart, or coding a 

program) can be seen as the initial step in algorithmic design. This also includes clues 

by which users actively try to follow certain sequences in order to solve a problem. In 

addition, all actions aimed for adjusting the algorithm based on testing can be seen as 

following steps and are identified as debugging and evaluating, respectively. In contrast 

to the other two CT core skills (decomposition and abstraction), the design of 

algorithms is considered to be only part of a solution. So, clues of algorithmic design 

are likely to be evident at a later stage of the whole CT process. 

2.3 Relationship of components 

In the earlier sections, CT was analysed from two different perspectives to justify why 

specific skills are more likely to be associated with CT than others and how these skills 

are applied in CT. Although much research has been done to define and assess CT, little 

work has been done in order to identify the relationship between the associated skills 

and at which state of the problem-solving process particular skills might be more likely 

to occur. 

All elements are interrelated and they all play a role at different times. To 

successfully apply an efficient step-by-step solution, it is necessary to recognise patterns 

in the problem. To do so, the problem has to be deconstructed into its elements. 

Similarities can be identified only if there are elements to compare with each other. In 

addition, subproblems and subsolutions can be handled independently. Not all elements 

of the initial problems have to be handled at the same time, but only the elements of the 

subproblem. This makes it easier to find patterns and to apply an efficient solution. 

Equally important is to focus on important information and to neglect details. It is 

possible to identify patterns only if distracting but unnecessary information is ignored. 

In addition, abstraction requires focusing on the main aspects of a problem and therefore 

only main aspects will be considered in the solution. Therefore, decomposition and 
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abstraction allow identifying patterns in the problem which leads to an efficient 

solution. This process is seen, for instance, in programming. Coding a function means to 

decompose a larger concept into a set of steps at the next level of abstraction  (Martin, 

2009, p. 36). 

Although these skills are linked to each other, it is also plausible that the different 

skills are more dominant or occur more often at different times. Decomposition is 

considered to be part of reformulating the problem and so is seen as part of the 

preparation process, whereas algorithmic design is seen as part of the process of 

implementing the solution. That means at the beginning of the overall problem-solving 

process, actions of decomposition should take place more often than at later stages, and 

the opposite is true for algorithmic design. Ideally, problem solvers first analyse and 

decompose the problem before formulating any algorithmic solutions. Unimportant 

details could be neglected when analysing the problem or when considering several 

possible solutions, and the same is true for recognising patterns, which can occur over 

different instances of (sub)problems or possible solutions. Therefore, different forms of 

abstractions could be equally distributed over the whole problem-solving process. 

2.4 Assessment of computational thinking 

The assessment of CT has been the goal for many studies and workshops over the last 

few years (Moreno-León & Robles, 2014) and many different approaches have been 

developed. Because CT is based on major CS concepts, it is no surprise that there are 

some studies in which programming languages such as Python (Brancaccio et al., 2015) 

or VPython (Aiken et al., 2012) have been used to assess CT. However, using a 

programming language is not without problems. Participants need to be literate in that 

specific programming language. If there is one misplaced comma or semicolon, the 

program will not work as intended. Of course, some languages are more sensitive and 

complex than others, but they all have in common that minor syntactical errors can have 

a huge impact on the outcome. In addition, the relationship between CT and 

programming ability is still debatable (this will be discussed in more detail in section 

2.5.2). That means using programming language, which requires considerable prior 

specific knowledge, might be not appropriate for assessing something more general 

such as CT. 
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An approach that requires less specific knowledge is use of pseudocode. Pseudocode 

fills the gap between informally describing, in plain language, what is happening in an 

algorithm and a coded algorithm written in a programming language (Roy, 2006). 

Pseudocode is not a single or precise system but rather a meta-language usually written 

in a spoken language such as English (Cormen et al., 2014, p. 17). The focus here lies 

more on semantics than on syntactics. That means it is more about knowing whether a 

“loop” or “if” command is needed in order to create a specific algorithm instead of 

knowing whether specific commands are separated by a comma or semicolon. This 

makes pseudocode less sensitive and more “forgiving” to the user and gives more 

freedom to observe more general thinking approaches such as CT. Pseudocode has been 

widely used for teaching programming and even for general problem solving long 

before CT emerged in the CS community (see, e.g., Olsen, 2005). So, it is plausible to 

use it as a method for assessing CT. Indeed, Davies (2008, p. 3) used pseudocode 

“emphazising computational thinking” and Grover, Pea, and Cooper (2015) used 

pseudocode along with other kind of assessment in their educational framework on CT 

to enhance programming skills. Although pseudocode is easier to understand than any 

programming language, some sort of specific knowledge is required. People still need to 

learn a set of vocabularies and a communication style (Roy, 2006). Especially for 

novices such as students with no or only little prior CS background, this appears to be a 

challenge and requires some preparation time. This is why two other approaches appear 

to be very promising when observing CT: using unplugged methods such as logical 

quizzes, and using programming environments. 

2.4.1 Using unplugged methods 

The term unplugged method, coined in the early 1990s, can be summarised as a 

collection of learning activities that teach computer science concepts without a 

computer (Bell & Vahrenhold, 2018; Rodriguez, Kennicutt, Rader, & Camp, 2017). 

These methods include haptic or kinaesthetic activities as well as logical quizzes. For 

instance, Curzon, McOwan, Plant, and Meagher (2014) created several different 

workshops in which students first learnt about the conceptual idea behind CT (i.e., what 

skills involve CT). In one of those workshops, the students applied these skills to 

analyse specific magic card tricks or to “program” a human robot. This included 

deconstructing the tasks in their core elements and finding algorithmic solutions. A 

similar task was used by (Rodriguez, Kennicutt, Rader, & Camp, 2017) in which 
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students needed to connect houses in a village by using a minimum numbers of stones. 

They also let students decipher a message by using binary code or explicitly naming the 

hidden “interaction rules” between a fruit vendor and a customer, showing that 

algorithms are part of everyday life (see “scripts” in Section 2.2.4.2). Brackmann et al. 

(2017) developed quizzes and tasks in which students needed to draw typical Tetris 

figures by only hearing the commands such as “start”, “up”, and “left” from another 

student to show algorithmic thinking.  

Despite the popularity of unplugged methods, the effects on learning are still unclear. 

Thies and Vahrenhold (2013) tested whether unplugged methods can be useful to teach 

CS concepts such as binary numbers, binary search, and sorting networks to 25 students 

aged 11 to 12. For that, they assigned the students to a treatment and control groups. 

Members of the treatment group were taught the CS concepts by unplugged methods 

involving activities and actions. For instance, binary search was introduced to the 

unplugged method group by playing the classic game Battleship. For the control group, 

the same concept was introduced in a classic textbook fashion. The results indicated that 

for none of the three introduced CS concepts the kind of method makes a difference in 

learning. The authors concluded that unplugged methods have at least no negative 

effects on learning. To put it differently, no positive effects were found either. 

2.4.1.1 The Bebras tasks 

Arguably, among the most influential unplugged methods for assessing CT are the 

Bebras3 tasks. These tasks are part of an annual international contest on informatics and 

CT, with over 2.6 million contestants4 from over 45 countries in 2018. The tasks 

originated in 2004 as a competition for children and young adults (school year levels 3 

to 12) in Lithuania (Dagienė, 2006). The tasks are mainly divided into five different age 

groups which vary slightly between the countries (Dagienė & Stupuriene, 2015). 

Studies show that these age categories parallel Piaget’s theory of cognitive development 

(Lutz, Berges, Hafemann, & Sticha, 2019). In general, there is a strong tendency to use 

concrete material (e.g., realistic pictures) for younger groups and more abstract material 

for older groups. Each age group is categorised into three levels of difficulty (easy, 

medium, and hard). Analyses also indicate that these assumed categories substantially 

match with the perception of difficulty by the participants (Bellettini et al., 2015). 

 
3 Bebras is the Lithuanian word for Beaver and was chosen to encourage younger participants. 
4 https://www.bebras.org/?q=statistics 
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Before a Bebras task is accepted for the contest, it has to go through an intensive 

validation process on different national and international levels (Dagienė & Stupuriene, 

2015, 2016). In the first step, a group of computer scientists and teachers of computer 

science create a draft of tasks. Nearly each country that participates in the Bebras 

contest has such a group of experts. The tasks are created based on the official 

guidelines for Bebras tasks. For instance, the problem should be clearly presented, easy 

to understand, and not be tricky; not be too easily solved (solutions should be attained 

between 1 and 4 min.); be at an appropriate difficulty level for the proposed age group; 

and be independent from any coding language but related to the CT concepts as 

described above (Dagienė & Futschek, 2008). In the second step, an annual workshop is 

held and experts selects the set of tasks being proposed and rejects, refines, or simply 

accepts those tasks for  use in that year’s contest (Dagienė & Stupuriene, 2015). 

Participants of this workshop are also computer scientists and teachers of computer 

science. This two-step process ensures a satisfying amount of content validity and 

provides a sound basis for assessing contestants’ CT skills. 

The main idea behind Bebras tasks is to create problems that require specific 

cognitive abilities rather than technical knowledge or coding experience (Dagienė & 

Stupuriene, 2015). This makes them promising for assessing CT and might be also the 

reason why they are not only being used in international challenges but are also 

intensively used in research (Dagienė & Stupuriene, 2016). According to the official 

guideline for creating Bebras tasks (Dagienė & Futschek, 2008), categorisation of the 

cognitive abilities is mostly congruent with the proposed CT major skills in this thesis. 

This is seen especially in the Australian versions of the Bebras challenge from 2014 and 

2015 (see, for an overview, Schulz & Hobson, 2015; Schulz, Hobson, & Zagami, 2016, 

respectively), which were also the most recent tasks at the time of data collection of this 

study. The cognitive abilities are classified in four categories, the first three of which are 

breaking down problems into parts, interpreting patterns and models, and designing and 

implementing algorithms, which all correspond to the major CT skills proposed in this 

thesis as decomposing a problem, the ability of abstraction, and algorithmic design, 

respectively. The fourth category, described as organising data logically, also shows 

similarities to algorithmic design as used in this thesis. 

 

 



CHAPTER 2 – CONCEPTUAL FRAMEWORK 
 

 

– 52 – 

An example of a typical Bebras task shows how CT skills must be applied to achieve 

a solution (Figure 2.3). The task is presented as a general problem in which someone 

wants to reach a target but cannot directly see it. To solve this problem, test takers have 

to think about several trials they have to make and think about where the arrow will 

land (decomposing the problem). To find the correct solution, contestants have to apply 

a binary search algorithm (applying algorithms). Abstraction in the sense of neglecting 

unimportant information may be involved here as well to be able to focus on the binary 

trials. Understanding binary search also includes some abstraction in the sense of 

pattern recognition. 

 

Figure 2.3. An example of as hard categorised Bebras task for school level year 11 and 

12 students 

 

To review the psychometric structure and features of the test, Araujo, Andrade, 

Guerrero, and Melo (2019) conducted a confirmatory factor analysis. They analysed 

answers from over 1,500 Lithuanian students to a set of the Bebras tasks used in 2015. 

They identified a two-factor solution. Factor one included skills such as decomposition, 

abstraction, and generalisation. Factor two was identified as comprising algorithmic 

thinking or reasoning. This result mostly fits the conceptual idea of CT as stated in this 

thesis with two perspectives, one focussing on reformulating the problem (i.e., 

decomposition and some abstraction) and the other focusing on the solution (i.e., some 

abstraction and algorithmic design). In summary, the Bebras tasks can be seen as a 
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promising way of assessing CT. First, the skills required to solve the logical quizzes fit 

to the identified major CT skills as described in this thesis. Second, the structure of 

these skills is compatible with structure as stated here. 

Using unplugged methods such as Bebras tasks is not without problems however. As 

discussed earlier, CT is highly associated with the use of technology and is especially 

suitable for ill-structured problems. The Bebras tasks, on the other hand, are well-

structured quizzes (i.e., there is always a single correct answer), intentionally having no 

association with technology. Thus, it is possible that not all facets of CT are covered 

when only using the Bebras tasks. In addition, it is not clear whether the Bebras tasks 

have a unidimensional structure and measure only CT. The Bebras tasks are deliberately 

developed to trigger CT-related skills such as decomposing, abstracting, and designing 

algorithmic solutions. However, it is not yet clear whether other cognitive constructs are 

measured as well. This is why another approach to assess CT should be considered as 

well. 

2.4.2 Using visual programming environments 

Visual programming environments (VPEs) are also a promising way to evoke and asses 

CT. VPEs are not based on any kind of written code or text. Instead, users “code” by 

assembling several different graphical elements representing specific functions. As with 

Lego® bricks, connectors on the blocks suggest how they should be put together. Blocks 

are shaped to fit together only in ways that make syntactic sense. This makes VPEs 

appear more like a puzzle-game than a programming language. This reduces the 

required knowledge about the environment to a minimum. Users only need to think 

about what commands generally make sense and not which blocks fit together. During 

the last decade several of those programming environments have emerged (see, for 

comprehensive overviews, Ching, Hsu, & Baldwin, 2018; Eguíluz, Garaizar, & 

Guenaga, 2018; Lye & Koh, 2014) and are favoured for assessing CT. For instance, 

Werner, Denner, and Campe (2012) designed three independent tasks in Alice in which 

participants needed to accomplished specific tasks to demonstrate CT-associated skills 

such as algorithmic thinking and abstraction. Werner et al. (2012) assessed the level of 

CT with a rubric-based scoring system that was designed for that purpose. Participants 

were highly motivated by this kind of task. Other popular approaches involve use of 

visual programming environments together with hardware applications such as BBC 
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micro:bit (Sentance, Waite, Hodges, MacLeod, & Yeomans, 2017), Arduino (García-

Peñalvo, Reimann, & Maday, 2018), or Calliope mini (Lübbers & Jansen, 2018).  

One reason for VPEs being popular might be because they are perfect to use for 

design problems when users can freely work on a problem. As mentioned earlier, design 

problems, in which multiple solutions might be equally favourable, are archetypal 

examples of ill-structured problems (Jonassen, 1997). CT was particularly discussed as 

the ability to reformulate and solve ill-structured problems, so it is no surprise that many 

studies about CT are based on such design tasks (e.g., creating a short story or game) 

using VPEs (see, for an overview, Lye & Koh, 2014). 

2.4.2.1 Scratch 

Among Alice, probably the most popular VPE for studying CT might be Scratch  

(Weintrop & Wilensky, 2018). Scratch emerged from a project by MIT’s Lifelong 

Kindergarten Lab in 2002. The first full version was then created under the lead of 

Mitchel Resnick in 2007 (Resnick et al., 2009). Since then, it has been continuously 

enhanced and it has inspired many other programming environments because of its 

sophisticated design and user-friendly interface (Eguíluz, Garaizar, & Guenaga, 2018). 

Seiter and Foreman (2013) designed a CT measurement based on Scratch. Their idea of 

CT is similar to the conceptualisation in this thesis, with decomposition, abstraction, 

and algorithms as major concepts. Brennan and Resnick (2012) even claimed they could 

measure long-term effects of both conceptual understanding and the application of CT 

skills using Scratch over time. Their assessment design also included different design 

tasks with different levels of difficulty. In addition, Grover et al. used Scratch among 

other things for the formative and summative assessment of CT in their FACT (Grover, 

2017; Grover, Pea, & Cooper, 2015), and Cernochova, Dorling, and Williams (2015) 

concluded that they successfully improved students’ CT skills using Scratch. Even for 

younger participants such as elementary school students, a modified and simplified 

version of Scratch (namely Scratch Jr) has been shown to be useful in order to observe 

CT development (Falloon, 2016; Portelance & Bers, 2015). Overall, Scratch appears to 

be a promising tool to measure CT because of its low level of required prior knowledge 

about the system and its extensive use in computer science education research (Lye & 

Koh, 2014). 

Another influential reason to use Scratch is Dr Scratch. Dr Scratch is an open web 

application in which projects created in Scratch can be autonomously analysed 
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according on their level of CT (Moreno-León & Robles, 2014). The analysis of a 

Scratch project using Dr Scratch is as simple as providing the URL of the project or 

uploading its saved file when working offline. The tool provides information regarding 

the development of (bad) programming habits (Moreno-León & Robles, 2015; Moreno-

León, Román-González, Harteveld, & Robles, 2017). Its view on CT is more attached 

on programming than other models of CT, e.g. the idea of CT used in this thesis. Dr 

Scratch assesses the code of the programs for the purpose of assigning a score on 

different aspects of this competence, including, abstraction, problem-decomposition, 

logical thinking, synchronization, parallelism, flow control, user interactivity and data 

representation (Moreno-León & Robles, 2015). Although phrasing is different, the core 

dimensions named in Dr Scratch are still linked to the aspects of CT as used in this 

thesis. Each of these dimensions are measured between 0 and 3 points, and an overall 

CT Score is assigned by summing up the partial scores. Meanwhile, with regard to 

errors and bad programming habits, for every evaluated project, Dr. Scratch searches for 

codes that are never executed, checks the correctness of message synchronization 

among characters, searches for object properties that are wrongly initialized, discerns 

codes that are repeated in the programs of the characters and points to objects that are 

not named in a personalized manner. Based on the score, the feedback provided by Dr 

Scratch is different. There are three levels of CT development created, namely, basic, 

developing, master, as shown in Table 2.5. The purpose of these three levels is to 

prevent overwhelming novice learners and offering all available information to 

experienced users. In the light of these, the feedback information that is basically, the 

number of tips and errors showed in the report, is incorporated at each level. 

Table 2.5 

Level of Development for Each CT Dimension (Moreno-León & Robles, 2015) 

CT aspect as 

used in this 

thesis 

Dimension in Dr 

Scratch 
Basic Developing Proficiency 

Abstraction & 

Decomposition 

Abstraction and 

problem 

decomposition 

More than one 

script and more 

than one sprite 

Definition of 

blocks 

Use of clones 

Parallelism Two scripts on 

green flag 

Two scripts on 

key pressed, two 

scripts on sprite 

clicked on the 

same sprite 

Two scripts on 

when I receive 

message, create 

close, two scripts 

when %s is > 

%s, two scripts 
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on when 

backdrop change 

to 

Algorithmic 

design 

Logical thinking If If else Logic operations 

Synchronisation Wait Broadcast, when 

I receive 

message, stop 

all, stop 

program, stop 

programs sprite 

Wait until, when 

backdrop change 

to, broadcast and 

wait 

Abstraction Flow control Sequence of 

blocks 

Repeat, forever Repeat until 

Decomposition User interactivity Green flag Key pressed, 

spite clicked, ask 

and wait, mouse 

blocks 

When % is >%s, 

video, audio 

Algorithmic 

design 

Data representation Modifiers of 

sprites 

properties 

Operations on 

variables 

Operations on 

lists 

 

There had been attempts of standardised assessment of CT before. For instance, 

Brennan and Resnick (2012) visualised how often particular code chunks were used by 

different user profiles. In 2013, Boe et al. designed Hairball, a tool that tries to detect 

errors in projects. However, both approaches had been used to provide valuable overall 

evaluations of projects but did not make any inferences the level of CT. Inspired by 

Hairball, Dr Scratch was created to fill this gap. It is one of the first of approaches that 

provides a score for CT based on quantitative analysis of Scratch projects. 

Nonetheless, it is critically to note that the developers did not clearly state how they 

chose their dimension for Dr Scratch and how dimensions are operationalised. That 

leads to the question whether all of the seven stated CT dimension in Dr Scratch are 

indeed crucial for indicating CT. For instance, flow control and user interactivity might 

rather crucial concepts for programming (Watt & Findlay, 2004) rather than for CT. In 

addition, it is not obvious how the decision was made how the usage of specific kinds of 

code chunks indicates a basic, developing or proficiency level. 

To validate their instrument, the developers compared the Dr Scratch metrics with 

classic software engineering metrics such as cyclomatic complexity and Halstead’s 

metrics. For more details, see McCabe (1976) and Halstead (1977), but, in short, both 

measures take into account variables such as the number of distinct operators in the 
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software and the overall complexity of a program (Moreno-León, Robles, & Román-

González, 2016). It must be noted, however, that Dr Scratch CT assessment solely 

based on coding elements as used in Scratch. Someone’s level of CT is based on how 

well they handle Scratch. To further validate, the developers compared Dr Scratch 

results with the judgment of computer science (education) experts (Moreno-León, 

Román-González, Harteveld, & Robles, 2017). They asked the experts to provide “an 

assessment for the technical mastery of the project” (p. 2791). High correlations 

between Dr Scratch scores and experts’ judgement indicate high convergent validity. 

However, it is possible that the experts rather evaluated the programming proficiency of 

the Scratch project rather the level of CT. 

For Armoni, Meerbaum-Salant and Ben-Ari (2015), Scratch is not “real” 

programming. They studied the use of the Scratch environment for teaching CS 

concepts to middle school students after investigating how these concepts were 

successfully learnt. In their 2015 study, they explored CS within the visual Scratch 

environment in middle school in comparison to CS within a professional textual 

programming language (C# or Java) in secondary school. Armoni et al. (2015) found 

that programming knowledge and experience of students who had learnt Scratch 

significantly facilitated learning the more advanced material in secondary school. 

Students who learnt CS through the visual Scratch environment in middle school learnt 

new topics more quickly, encountered less learning difficulties, and attained higher 

cognitive levels of understanding of most concepts. Moreover, these same students who 

learnt CS using Scratch had higher levels of motivation and self-efficacy in enrolling in 

advanced CS classes. Overall, Armoni et al. (2015) assert that because of these findings, 

teaching CS in general and visual programming are well-justified. In conclusion, Dr 

Scratch is a valuable tool for the assessment of Scratch projects, but the Dr Scratch CT-

mastery score might be biased toward programming ability of Scratch rather providing a 

holistic measurement of CT. 

2.4.2.2 Comparison between unplugged and plugged methods 

Interest in programming education has exponentially increased over the past decade 

(Hermans & Aivaloglou, 2017).  Indeed, the number of countries where schools are 

including programming and CT in the curricula of elementary schools, has rapidly 

increased. Introducing programming to education raises questions about how best to 

teach programming and CT, including the role of the computer, and whether teachers 
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should used plugged tools and instruments or unplugged methods where there is no 

need for computers. 

Hermans and Aivaloglou (2017) emphasise the need for children to be able to apply 

programming concepts using a computer, which means that it is necessary to know how 

plugged approaches and systems compare to unplugged ones. Therefore, they conducted 

a study to determine whether it is better to start with plugged lessons immediately, or 

first use unplugged materials. Specifically, they were interested in determining which 

method is more effective in (a) facilitating understanding of programming concepts, (b) 

motivating and supporting the students’ self-efficacy in programming tasks, and (c) 

motivating students to explore and use programming constructs in their assignments. To 

answer these research question, they conducted a two-phase experiment through which 

they compared starting with unplugged lessons with starting on the computer. 

The researchers taught 35 elementary school children aged eight to 12 years old who 

were designated to two different random groups for eight weeks. For the first four-week 

phase, 17 children were taught Scratch, while the remaining half (18 students) used 

unplugged materials only. Both the plugged and the unplugged lessons covered the 

same concepts of loops, conditionals, procedures, broadcasts, parallelisation, and 

variables. After the four weeks, both groups were provided with two weeks of Scratch 

lessons, so that that can practice Scratch programming at greater depth. In these lessons, 

the same concepts were covered as in the first phase. Meanwhile, for the unplugged 

group, a special lesson was taught to the students wherein they learnt to use unplugged 

to concepts in Scratch. After the two weeks, two more weeks followed wherein the 

children created their own games in Scratch. The experiments were concluded by 

administering a test to students in order to evaluate how correctly they used 

programming concepts in Scratch. The results of this study show that after a total of 

eight weeks, (a) there was no difference between the two groups in their mastery of 

programming concepts, (b) the unplugged first group demonstrated stronger self-

efficacy, and (c) they also used a wider vocabulary of Scratch blocks, including more 

blocks that were not explained in the course materials.   
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2.5 The relationship between computational thinking and other 

concepts 

There is a vigorous debate about what CT is, but there is little discussion about what CT 

is not. On the one hand, the concept of intelligence shares some remarkable overlap 

with CT. Programming, on the other hand, is often mentioned as a skill that eventually 

can emerge from CT because of some similarities. The conceptual overlaps between CT 

on one hand and intelligence and programming skills on the other, are investigated more 

extensively in the following sections.  

2.5.1 Intelligence as general problem-solving skill 

Because CT is a cognitive skill, it is important to investigate its relationship to 

potentially similar skills. What is broadly known as intelligence shares two properties 

that lead to the assumption of some conceptual overlaps. First, both concepts are 

considered as (general) problem-solving approaches, and second, in both concepts the 

ability of abstract thinking plays a predominant role. Both aspects are discussed in more 

detail immediately below. 

Although intelligence has historically been a controversial construct, many 

definitions propose intelligence as the ability to solve problems and to reason abstractly. 

Gardner, for example, described intelligence as a summary of such skills (Gardner, 

1983, pp. 60–61): 

A human intellectual competence must entail a set of skills of problem solving — 

enabling the individual to resolve genuine problems or difficulties that he or she 

encounters, and, when appropriate, to create an effective product — and must also 

entail  the potential for finding or creating problems — thereby laying the 

groundwork for the acquisition of new knowledge. 

In the following decade, a group of experts in research of intelligence and similar 

fields (Gottfredson, 1997, p. 13) signed a statement about intelligence: 

Intelligence is a very general mental capability that, among other things, involves 

the ability to reason, plan, solve problems, think abstractly, comprehend complex 

ideas, learn quickly and learn from experience. It is not merely book learning, a 

narrow academic skill, or test-taking smarts. Rather it reflects a broader and deeper 

capability for comprehending our surroundings — ‘catching on’, ‘making sense’ of 

things, or ‘figuring out’ what to do. 
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Later in the statement it is emphasised how intelligence is different from other 

psychological concepts such as creativity or personality and how intelligence is strongly 

connected to problem comprehension and problem solving. Although there is no official 

and final definition of intelligence, this statement has been often used as a benchmark 

for other researchers who also included or even emphasised problem solving and 

(abstract) reasoning. Jensen (2002, pp. 39–40), for instance, described intelligence as: 

an open-ended category for all those mental processes we view as cognitive, such 

as stimulus apprehension, perception, attention, discrimination, generalization, 

learning and learning-set acquisition, short-term and long-term memory, inference, 

thinking, relation education, inductive and deductive reasoning, insight, problem 

solving, and language. 

Nickerson (2011, p. 108) defined intelligence as “the ability to learn, to reason well, 

to solve problems, and to deal effectively with challenges — often unpredictable — that 

confront one in daily life.” In summary, many experts share the same view about how 

problem-solving abilities and abstract reasoning (among some other skills) together 

define intelligence. 

Furthermore, these views of experts overlap mostly with those of non-experts. 

Sternberg, Conway, Ketron, and Bernstein (1981) asked nearly 200 subjects in college 

libraries, at train stations, or at supermarket entrances about their idea of intelligence. 

They generally tended to believe that a concept of intelligence should include problem-

solving abilities. Sternberg asked 200 professors in art, business, philosophy, and 

physics to rate the characteristics of intelligence and their idea of an ideally intelligent 

person (Sternberg, 1985). Results differed little from previous studies and again naïve 

theories about intelligence consist of logical thinking (including good memory and good 

vocabulary). An intelligent person was mainly described as a good problem-solver and 

as someone who thinks reasonably. 

Sternberg (2004) also stated that implicit theories are culturally dependent to some 

extent. For instance, in Asian as well as African cultures, interpersonal social skills are 

more closely associated with intelligence than in western cultures. However, Sternberg 

also made clear that neither Asian nor African cultures base their ideas of intelligence 

only on social aspects. General cognitive abilities such as problem solving or reasoning 

are highly associated with intelligence regardless of the cultural background but social 

notions play a greater role in eastern and African cultures. Interestingly, this cultural 

influence has apparently a bigger impact when participants are supposed to describe 
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their own intellectual abilities instead of others. When Korean participants were asked 

to estimate other people’s intellectual abilities, they emphasised problem-solving ability 

higher than social skills (Lim, Plucker, & Im, 2002). 

It is important to note that a person who is considered to be intellectual is perceived 

as a general problem solver. Wechsler, who developed one of the most popular tests on 

intelligence, regarded intelligence as “aggregated” or “global” and that intelligence is 

composed of different abilities that are qualitatively different to some extent (Wechsler, 

1958, p. 7). This idea of intelligence as a general cognitive ability is mainly based on 

the findings of Spearman (1904). Investigating the relationship between different 

cognitive tests, Spearman noticed that all tests were positively correlated to a nearly 

equally large extent with each other. Spearman concluded that each test measures its 

own specific factor (s-factor) but also a general factor that is in common to all tests. He 

coined this commonality g-factor for general ability or general intelligence. 

Stadler, Becker, Gödker, Leutner and Greiff (2015) conducted a study to determine 

the empirical relationship between complex problem solving (CPS) and intelligence by 

meta-analytically summarizing the various research findings on the correlation of CPS 

and intelligence. The researchers also sought to determine the moderating factors that 

might help explain the contradicting findings. Showing that there is a considerable 

albeit far from perfect correlation between various measures of CPS and intelligence, 

Stadler et al. (2015) provide essential information on the construct validity and 

nomological classification of CPS. Following a definition by Buchner (according to 

Frensch & Funke, 1995, p. 14), where CPS is understood as: 

(…) the successful interaction with task environments that are dynamic (i.e., 

change as a function of the user's interventions and/or as a function of time) and in 

which some, if not all, of the environment's regularities can only be revealed by 

successful exploration and integration of the information gained in that process. 

According to this definition, it becomes obvious why CPS is usually compared to 

intelligence on a conceptual basis to (a) establish discriminant validity, or to (b) define 

individual attributes that help explain performance in CPS tasks (Stadler et al., 2015). 

On the one hand, some defining characteristics of CPS such as integrating information 

is part of nearly all definitions of intelligence (Sternberg & Berg, 1992). Meanwhile, the 

dynamic and transparent characteristics of complex problems are not well-established 

aspects of the present conceptualization of intelligence such as the Cattell–Horn–Caroll 

(CHC) theory of human intelligence (McGrew, 2009). This view of CPS can potentially 
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add to the understanding of human abilities (Stadler et al., 2015). These divergent 

theoretical views are evident in empirical findings on the relation between CPS and 

intelligence. Many studies have previously shown that although performance in CPS 

tasks greatly vary between individuals, psychological assessments of general 

intelligence cannot explain this variability (Rigas & Brehmer, 1999). 

Kluwe, Misiak, and Haider (1991) synthesized 11 previous studies on performance in 

CPS tasks and relationship between CPS and intelligence, and found that the majority of 

these studies fail to show a close relationship between intelligence scores and CPS 

performance measures. Consequently, some researchers began to suggest that CPS is a 

cognitive construct that is largely independent from intelligence (Stadler et al., 2015). 

Rigas and Brehmer (1999) explain this perspective according to the different-demands 

hypothesis. According to this hypothesis, the weak correlations researchers observed 

between measures of general intelligence and CPS performance, is explained by how 

CPS tasks demand performance of more complex mental processes than intelligence 

tests typically do, such as, the active interaction with the problem to acquire knowledge 

on the problem environment, which, in turn, leads to weak empirical correlations 

between the constructs. 

Wirth and Klieme (2003) conducted a study on the same constructs and found a 

correlation of r = .84 between a latent factor of different measures of CPS and general 

intelligence. The latent factor scores on MultiFlux, a newer measure of CPS showed a 

latent correlation of r = .75 with various aspects of the Berlin Model of Intelligence 

Structure (BIS) test, which is an established intelligence test (Kröner, Plass, & Leutner, 

2005). More recent investigations on relationships between CPS and intelligence also 

show moderate to strong latent correlations of the two constructs (Greiff, Wustenberg, 

Molnar, Fischer, Funke & Csapo, 2013; Sonnleitner et al., 2012; Wüstenberg, Stadler, 

Hautamäki, & Greiff, 2014; Wüstenberh, Greiff & Funke, 2012). Notably, these 

empirical investigation also show incremental value over and above measures of 

intelligence in predicting school grades (Wüstenberg et al., 2012) and job success 

(Danner, Hagemann, Schankin, Hager & Funke, 2011) despite strong correlations in 

other studies, and in support of the different demands hypothesis. 

Stadler et al. (2015) explain that inconsistent findings about the relationships 

between CPS and intelligence could be due to the conceptualization of intelligence. 

Nearly all theories of psychometric intelligence at this point in time include one or two 
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very broad, latent factors of general intelligence that capture a significant proportion of 

all cognitive abilities, including, abstract reasoning, memory, or factual knowledge 

(McGrew, 2009). From this viewpoint, researchers have undertaken studies on the 

relationships between CPS and intelligence and usually covered broad measures of 

general intelligence as well as, used different tasks to evaluate and measure cognitive 

abilities, such as, factual knowledge or general crystalized intelligence (McGrew, 2009).  

In contrast, subsequent studies focused more on specific sub-facets of intelligence, and 

in particular, reasoning, which was theoretically and empirically determined to be 

conceptually closest to CPS (Stadler et al., 2015). Reflecting on the different-demands 

hypothesis, broad measures of intelligence do address different aspects that may not be 

relevant for the successful solution to a complex problem, including, factual knowledge, 

thereby constraining the empirical relation between CPS and intelligence. However, 

evaluations that focus on reasoning reflect “the use of deliberate and controlled mental 

operations to solve novel problems that cannot be performed automatically” (McGrew, 

2009, p. 8) are conceptually more similar to CPS than very broad measures of general 

intelligence. This could result in considerably stronger correlations between CPS and 

intelligence (Greiff et al., 2013, Wittmann & Hattrup, 2004; Wittmann & Süß, 1999). 

Based on these, researchers’ conceptualisation of intelligence in a study may impact the 

relationship between CPS and intelligence found with higher correlations of CPS, and 

reasoning than of CPS and broad measures of general intelligence. 

Overall, theoretically, researchers have hypothesized the two constructs of CPS and 

intelligence to be everything from completely separate to identical (Stadler et al., 2015).  

Over the course of roughly four decades of research, empirical studies have been 

showing that either CPS and intelligence are totally different from each other, or CPS 

and intelligence are nearly identical in characteristics. The meta-analysis of 47 studies 

containing 60 independent samples and a total sample size of 13,740 participants, 

indicate a considerably strong correlation between CPS and intelligence with an average 

effect size of M(g) = .433 (Stadler et al., 2015). Moreover, the same researchers studied 

whether the operationalization of CPS and intelligence moderates this correlation. 

Although there have been no major correlation differences considering the 

operationalization of intelligence, the approach used for measuring CPS moderates the 

correlation of CPS and intelligence (Stadler et al., 2015). In particular, the most recent 

approach toward assessing CPS yields the strongest correlations between CPS and 

intelligence (Stadler et al., 2015). 
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2.5.1.1 Meaning of abstract thinking in theories about intelligence 

Some even consider the ability to abstract as being the distinction between human and 

nonhuman intelligence (Deacon, as cited in Gabora & Russon, 2011, p. 329). As 

Terman (1921, p. 128) stated: “An individual is intelligent in proportion as he is able to 

carry on abstract thinking.” This is why abstract reasoning plays a major role in 

developmental psychology and various theories of intelligence. 

Binet, for example, at the beginning of the 20th century developed one of the first 

intelligence tests (Mackintosh, 2011, p. 5). The purpose of this test was to identify 

children who were in need for special education and those who are not. To do this, 

Binet’s concept of intelligence consisted of different “higher order” thinking processes 

such as abstract thinking. Especially Piaget (1952, 1960) focused in his theory of 

intellectual development of children’s ability to think abstractly. According to Piaget, 

the ability to reason abstractly is a crucial element in the formal operational stage (the 

last stage of development in his theory). In addition, empirical studies could show how 

younger children have a lower ability for abstract thinking and they need more concrete 

examples for learning than do older children or teenagers. Younger children also tend to 

use concrete examples rather than abstract ones when they are instructed to explain 

concepts (Fischer & Kenny, 1986; Kitchener, Lynch, Fischer, & Wood, 1993). Brooks 

(1981) illustrated how younger children and children showing lower intelligent 

behaviour have difficulties recognising and learning from prototypical images. Because 

abstract reasoning is the crucial aspect of interpreting prototypes, Brooks further 

concluded that this ability was less developed in both groups. Using abstract thinking as 

an indicator for the development of human cognition underpins the strong relationship 

between abstract thinking and intelligence. 

This strong relationship also explains why the ability to abstract or abstract reasoning 

is often prominently incorporated in different theories about intelligence. Thurstone 

(1938) proposed seven human cognitive skills that he identified as “primary mental 

abilities”. Thurstone emphasised the independence of these abilities, but many of them 

are based on being capable of recognising patterns. For instance, the ability “inductive 

reasoning” includes recognising patterns in a sequence of numbers. This idea is similar 

to Gardner’s theory of multiple intelligences (Gardner, 1983). As Thurstone had done, 

Gardner claimed to have identified qualitatively independent abilities, and, as in 

Thurstone’s theory, many of those multiple intelligences have to do with abstract 
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thinking in the sense of recognising patterns. For instance, someone who has high 

“spatial intelligence” can quickly and easily interpret visual patterns. 

Probably the most prominent emphasis on the ability to abstract as a facet of 

intelligence may be seen in the work of Cattell and Horn (Cattell, 1963; Horn & Cattell, 

1967) with a major revision by Carroll (Carroll, 1993), resulting in one of the most 

popular theoretical frameworks about intelligence: the Cattell-Horn-Carroll theory 

(CHC). According to the CHC, human intelligence is organised in a three-stratum 

hierarchy with a list of 70 to nearly 100 narrow cognitive abilities at its lowest stratum  

(the number varies across the literature, see Flanagan & Dixon, 2014; McGrew, 2005). 

These specific abilities are factorised into eight broader abilities at the second stratum 

and the g-factor at the third-topmost stratum. One these eight abilities is the general or 

fluid reasoning factor g(f) (Carroll, 1993, pp. 196–200) that subordinates any kind of 

abstract thinking across a variety of domains including novel problems. It includes 

deductive reasoning (top-down inference; drawing a conclusion about a specific case 

based on a general statement) and inductive reasoning (bottom-up inference; drawing a 

conclusion about a general statement based on a specific case). Because little or no 

language is involved, g(f) is sometimes referred to as nonverbal intelligence. 

The close relationship between abstract thinking and general intelligence can be also 

seen empirically. Carroll (1993, p. 233) emphasised the high loading of g(f) on g 

throughout different studies, and Kvist and Gustafsson (2008) even demonstrated that 

there is basically no difference between g(f) and g for homogenous samples (i.e., when 

subjects have had equally good or bad opportunities to develop abilities). It would be an 

exaggeration to assume that abstract thinking and what is usually known as general 

intelligence should be regarded as the same concept. However, theoretically and 

empirically, abstract thinking can be seen as the core of human cognitive competence 

(Lohman & Lakin, 2011, p. 430). That also leads to the conclusion that abstract 

reasoning might be the best estimation of general intelligence if more sophisticated 

measurement of intelligence might not be possible or available (e.g., time issues). 

It is worth mentioning that not all definitions of intelligence refer explicitly to 

problem solving or abstract thinking. Humphrey, once chairman of the APA Task Force 

on ability and achievement testing (Lubinski, 2004), saw intelligence rather as “the 

resultant of the processes of acquiring, storing in memory, retrieving, combining, 

comparing, and using in new contexts information and conceptual skills” (Humphreys, 
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1979). Mayer and Salovey suggested with their idea of emotional intelligence (see, for 

an overview, Mayer, Salovey, Caruso, & Cherkasskiy, 2011) a new perspective on the 

whole concept that does not focus on abstract thinking and problem solving. 

Nevertheless, as shown here, an overwhelming number of theories about intelligence as 

well as naïve ideas indicate that problem solving and abstract thinking are regarded as 

crucial parts of human intellectual competence. 

2.5.1.2 Differences between computational thinking and intelligence 

Despite the similarities of CT and intelligence are still different concepts. First, 

intelligence has an assumed strong biological component in contrast to CT. Second, CT 

is more associated with technology than is intelligence. Third, the scope of problems in 

both concepts is different. 

Since its first appearance, it is assumed that intelligence has strong links to biological 

processes. Galton who was one of the first who worked on intelligence in the late 19th 

hundred was convinced that a more intelligent person has finer sensory discrimination 

and therefore is capable of storing and acting upon more sensory information 

(Mackintosh, 2011, pp. 3–4). Although we now know that not every kind of sensory 

perception is linked with intelligence, there is no doubt today that such linkages exist 

(Haier, 2011, p. 351). A number of imaging studies have shown how different 

intellectual activities are mapped onto our brain and how g has a high hereditary 

component (Toga & Thompson, 2005). However, a biological link has not yet been 

proposed for CT. Frameworks about CT emphasise that it is a skill that can be acquired 

over time and with practice by everyone (see, e.g., Brennan & Resnick, 2012; 

Lockwood & Mooney, 2018a; Wing, 2006). 

As seen in the definitions of intelligence provided above, no specific technology is 

involved when talking about intelligence. Intelligence is simply described as a 

characteristic of the human mind. This is different for CT which is often mentioned in 

conjunction with some sort of technology such as using computers to solve problems. 

Nevertheless, it is important to acknowledge that CT does not occur only in conjunction 

with technology, it is more strongly associated with the use of computers than is 

intelligence. 

In addition, Wenke and Frensch (2003) questioned the generality of intelligence. 

They had difficulties finding convincing empirical evidence that people who score high 
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on intelligence tests are also generally good problem solvers. Although it is not unusual 

to find high correlations when problems are simple and well-defined, Wenke and 

Frensch reported that correlations decline with an increase in the complexity of 

problems. They further stated the high correlations could be caused by the high 

similarities between the used instruments. Intelligence tests are traditionally based on 

well-structured problems seldom use complex and ill-structured problems. That leads to 

the conclusion that intelligence can be seen as the general ability to solve problems but 

only when the problems are well-structured. Correlations are lower when problems are 

more complex and ill-structured such as those that govern a fictional city (Dörner, 

Kreuzig, Reither, & Stäudel, 1983). On the other hand, as explained in section 2.2.1, CT 

is regarded to be an approach for solving ill-structured problems with methods usually 

used for well-structured problems. So the scope of CT is different. Although people 

with high intelligence scores might do well in solving well-structured problems, people 

with high CT levels might excel in solving complex problems. 

In summary, CT and intelligence show some conceptual overlaps. First, both are 

concerned with solving problems. Although both concepts are not associated with the 

same kind of problems, mutual dependencies are still conceivable. Second, the distinct 

role of abstraction is present in both concepts. Some theories about intelligence even do 

not distinguish between high intellectual performance and high abstract thinking, and in 

CT the ability to abstract is often considered as a keystone. Despite the difference, a 

study with the goal of observing the effects of CT should take these similarities into 

account and consider a measure of intelligence with a focus on abstract thinking. This 

way the unique attributes of CT can be analysed more precisely. 

In addition, algorithmic thinking could be a distinctive facet of CT whereas the 

ability of abstraction is not. Thus, a more distinct definition increases the divergent 

validity of CT and could lead to instruments with higher discriminate validity. On the 

other hand, the strong correlation between CT and intelligence could also be an 

indication that they two are naturally related. For example, CT may even be regarded as 

a component of general intelligence. Indeed, there are theories on intelligence based on 

the idea of several mental abilities or multiple intelligences, such as that of Gardner 

(1983). Spearman (1904) already explained that positive relationships between these 

different abilities can be summarized as a g(eneral) factor of intelligence. Here, CT 

could be a cognitive ability that may be classified as a g factor. The only possible 
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explanation as to why CT is not considered as a g intelligence is because it is new and 

its relation to other cognitive abilities is unclear. 

2.5.2 Programming quality 

CT is a cognitive skill and this is why some theoretical overlaps with other cognitive 

concepts such as intelligence can be assumed. CT also emerged from CS, so technology 

and computers play a role. Although there is a common understanding that CT and 

programming are not the same (Lockwood & Mooney, 2018a; Wing, 2006), it is 

conceivable that CT overlaps at least to some extent with CS-associated skills. 

Wing famously stated that CT is primarily about humans and not about machines. 

CT is “a way that humans, not computer, think” (Wing, 2006, p. 35) because obviously 

computers do not think. Additionally, participants of the NRC workshop concluded that 

technology is part of CT (NRC, 2010). From that perspective, CT means to find and 

apply the appropriate technology to reformulate a problem so that a computational 

solution is possible (Bocconi et al., 2016). CT involves asking “How would I get a 

computer to solve this problem?” (Wing, 2008). The computer can be understood as an 

agent for “computational thoughts”. The computer executes the human’s abstract 

cognitive procedures in concrete actions and arrives at the solution. It may be an 

exaggeration to say that CT depends on using computers, but it can be assumed that 

computers can play a crucial role for solving problems in the context of. 

One way to solve problems through computers is programming. The European 

Digital Competence Framework for Citizens defines programming as the ability to 

“plan and develop a sequence of understandable instructions for a computing system to 

solve a given problem or perform a specific task” (Vuorikari, Punie, Carretero, & van 

den Brande, 2016). This is similar to the definition published by the Massachusetts 

Department of Elementary and Secondary Education (MDESE), which referred to 

programming as “the craft of analysing problems and designing, writing, testing, and 

maintaining programs to solve them.” (MDESE, 2016, p. 56) Most people do not 

distinguish between programming and coding and use both interchangeably in daily 

conversation. Nonetheless, to be precise, coding has a narrower meaning than 

programming. Coding is the act of writing a computer program in a specific 

programming language (MDESE, 2016, p. 48). In this sense, coding means to 

implement a specific solution to a programming problem. For Bornat (as cited in Bruce 
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& McMahon, 2002, p. 23), knowing how to code means having knowledge about a 

specific programming language and how to write a line of code that is syntactically 

correct. Knowing how to program means having a broader knowledge about the 

principles of different programming languages. 

This is why CT is often strongly associated with programming. As for CT, 

programming is concerned with solving problems. The difference, however, lies in the 

kind of problems at hand. Although programming is concerned only with problems that 

can be solved using coding, CT is not limited to that. Its scope is wider and not strictly 

limited to CS-related problems (Lamprou & Repenning, 2018; Shute, Sun, & Asbell-

Clarke, 2017). As stated earlier, CT is a specific way of transforming and approaching a 

problem so that a computer can help to solve it. These problems can be programming 

tasks but also extend beyond that. Despite that, programming problems are always 

computational thinking problems (Figure 2.4). 

This is the assumed relationship in theory and so programming activities are 

sometimes used to teach CT (Ching, Hsu, & Baldwin, 2018; Lye & Koh, 2014) or CT is 

used to teach programming (Davies, 2008; Grover, 2017; Grover, Pea, & Cooper, 

2015). However, it is still unclear how CT is actually applied when solving 

programming problems and how much CT is actually involved in programming 

activities. Researchers have so far looked at both concepts separately but have not 

analysed the whole programming process and how much CT is actually involved. 
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Figure 2.4. Assumed conceptual relationship between CT, programming, and coding. 

 

 

2.5.2.1 Assessment of programming quality 

Assessment of programming skills has been shown to be difficult. Unlike intelligence, 

for which different well-developed tests exist, there are no standardised measurements 

for programming. There are some frameworks about marking programming skills, but 

they mainly focus on mistakes. For example, Tabanao and colleagues developed a 

system to analyse the kind of errors that occur when novice CS students compile their 

code in Java (Rodrigo, Tabanao, Lahoz, & Jadud, 2009; Tabanao, Rodrigo, & Jadud, 

2011). Luxton-Reilly et al. (2017) went one step further and drew conclusions about 

students’ knowledge about crucial CS concepts, but they also made their inferences 

based on wrong syntax or wrong commands in code. These approaches come in very 

handy when the goal is to simply focus on correct coding in a specific programming 

language, but, as described above, programming consists of more than that. Correct 

coding is only one facet of the ability to program. 

In his book Clean Code, Martin (2009) proposed the idea of programming as 

craftsmanship. Instead of focussing on a specific programming language, Martin gave 

an overview of general principles concerning what he called good programming 

practice. Based on that, several major aspects that distinguish good code from bad code 
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are derived. These principles allow a more holistic view about programming quality 

than is possible by looking only for someone’s erroneous code. 

Most programmers may think that “getting the code working” might be the most 

important task for a professional programmer. However, this is often not true. Of 

course, a code needs to work but the functionality might change over time and version 

of releases. The readability, on the other hand, has a profound effect on the ability of 

others to maintain the code. If the code is difficult to read, it is difficult to adjust its 

purpose and functions over time. As Martin (2009, p. 76) stated, “the coding style and 

readability set precedents that continues to affect maintainability and extensibility long 

after the original code has been changed beyond recognition”. The readability is an 

indicator for the future usage of the code. A code is readable if it is simple and clear, 

and if expressions are in a tight order. This also includes the formatting style. For 

example, functions related to each other (i.e., call themselves or have similar purposes) 

should be closely located. 

The readability of a code is also determined by its clearness of intention. If the 

intention is clear, it is simple to maintain and extend it not only for the original 

programmers but for other programmers as well. A good code “should clearly express 

the intent of its author. The clearer the author can make the code, the less time others 

will have to spend understanding it” (Martin, 2009, p. 175). One strategy to achieve this 

is to adhere the keep it simple and stupid (KISS) principle. The meaning of KISS is 

twofold. First, if there are more solutions for a problem, the simplest one is the best. 

This principle is comparable to similar principles in different disciplines such as 

Occkham’s razor in science in which the simplest model or theory is preferable. Second, 

it means one function should do only one thing. Several nested functions would do more 

than one thing. This causes the level of complexity to rise and so the level of readability 

decreases (Martin, 2009, pp. 35–36). 

A good code is an efficient code and a code is efficient when just the right number of 

expressions and commands are used and duplication of expressions and commands is 

avoided. This is meant by the once and only once or don’t repeat yourself (DRY) 

principles. Duplications inflate the code unnecessarily. It becomes more difficult to read 

and understand. Martin (2009, p. 289) called duplications “missed opportunity for 

abstractions” to a higher level. As described in more detail in Section 2.2.3.1, 

abstraction in codes creates the opportunity for freedom and independence. With a high 



CHAPTER 2 – CONCEPTUAL FRAMEWORK 
 

 

– 72 – 

abstract code, fewer manual changes are needed in later maintenance or extensions, and, 

with less manual interference, errors are less likely. 

2.5.2.2 Computational thinking and programming 

Computational thinking and programming are related to each other. “CT is that type 

of thinking used when programming on a computer or developing an application for 

another type of digital device” (Fraillon, Ainley, Schulz, Duckworth, and Friedman, 

2019, p. 3). CT is considered as a specific function for computer scientists for learning 

how to use a computer (Li et al., 2020). Prevailing views that associate CT with 

computers and/or programming may easily lead people to believe that CT is specifically 

for computer science professionals. In view of this, it would be more challenging for 

many to understand why CT is important to everyone and most professions. With a 

certainty programming, at least in the way it is perceived from the work of professional 

programmers, is perceived to be difficult (Li et al., 2020).  For example, to develop a 

software for a computer’s internal operations would be highly relevant for professionals 

in computer science, but out of reach to many others. Similarly, abstraction and 

modelling with the use of CT in many professional fields beyond computer science 

would be seen as unimportant and of marginal concern for most people. 

With emphasis on computing and programming in CT, it may be said that CT has not 

been highlighted in traditional school education wherein course requirements in 

computer science or programming are minimal or altogether absent. Wing (2006) must 

be credited with the understanding of CT as future-oriented and important to everyone. 

By directly associating CT and concepts that are essential to computer science, Wing 

(2006) substantially contributed to the current movement of computer science education 

for all in the United States (PITAC, 2005; White House, 2017). However, there are 

continuing challenges for teachers and education researchers who have been accosted 

with the difficulties in seeking to understand the meaning of CT, its assessment as well 

as usefulness for everyone (Denning, 2017). To note, accessing and using CT could be 

undermined in different ways by equally different expectations of training in computer 

science as a pre-condition. It cannot be overstated that computer science itself is no 

longer considered as the study of phenomena pertaining to computers but rather is 

understood as the study of computational information processing both natural and 

artificial (Denning, 2007). On the other hand, human thinking can also be defined 

according to specific models of information processing when undertaking different 
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tasks (Anderson, Bothell, Byrne, Douglass, Lebiere & Qin, 2004). The associations 

between computing and human thinking in information processing implies the 

possibility of taking the CT construct to a more generalizable level. 

In particular, CT needs to be regarded as a model of thinking, which makes CT more 

about thinking rather than computing (Denning, 2007). Because computing is the study 

of natural and artificial information processing, this means to say that CT pertains to the 

search for various ways to process information “that are always incrementally 

improvable in their efficiency, correctness, and elegance” (Denning, 2007). In turn, this 

necessitates improvement in using appropriate strategies, such as, abstraction and 

modelling, practice, skill acquisition and improvement. In this regard, there are various 

forms of information at varying levels of abstraction, and as such, seems like various 

representations that are customizable and used in different disciplines for problem 

solving, modelling, and system building (Li et al., 2020). In the same way that people 

design and can design, every person including students also process information, and 

the task of educators is to help them (Li et al., 2020). 

Even though programming and coding can be part of CT, the latter should not be 

constrained to computer science because as mentioned earlier, CT is widely applicable 

to diverse professional fields and in day-to-day living.  For instance, computational 

modelling is currently harnessed for summarizing and analysing data (as code in CT) in 

various ways to help forecast ongoing trends in the coronavirus crisis, in multiple 

countries (Li et al., 2020). In the event that there is no accurate data for coronavirus or 

CT, government agencies and health organisations cannot effectively monitor and 

manage the crisis and in turn, this can lead to massive loss of life (Li et al., 2020). 

Moreover, if there is no adequate attention to improving information processing 

efficiency and elegance, there could be a resulting loss in opportunities to nurture 

students’ CT and develop skills that prepare them to deal with global crises. Thus, it is 

utterly important that school curricula and instruction integrate CT in students’ subject 

content learning, rather than just limiting CT to computer science and mathematics. CT 

should be applied in other STEM disciplines and beyond (Li et al., 2020). 

It is also important to point out that although commonly used definitions of CT are 

emerging in literature, these new definitions tend to be ambiguous about how people 

acquire CT so that they can transform into computational thinkers. To clearly determine 

whether is truly a super-set of programming, as well as, its importance, it is helpful to 
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recall the definition of CT and what this form of thinking is and what it is not. To note, 

CT is the process through which a person conceptualises, which means it is not the 

process through which a person programs (Wing, 2006). In addition to this, CT defines 

a way of thinking at various levels of abstraction, rather than just the skill for 

programming. It cannot be emphasized enough that the CT process begins before the 

first line of code is even written (Wing, 2006). Second, CT is a basic functional skill 

rather than a mechanical one. Third, the term CT may contain the word “computer”, but 

this primarily pertains to the way humans think rather than the computer equipment. 

Computers do not think it is the people who does the thinking for computers, which 

means to say that it cannot be CT. Fourth, CT is not for a person to think like a 

computer but instead, thinking with a computer. Moreover, CT complements and blends 

mathematical and engineering thinking. Just as importantly, the products of CT are 

ideas and concepts used for approaching and solving problems, which also means that 

these are not artifacts (Wing, 2006). Overall, CT can be considered as a set of specific 

cognitive skills and problem-solving processes. 

Although CT is relatively new, the process described by Wing (2006) may be 

considered as a computationally-enhanced version of the well-established scientific 

method (Lamprou & Repenning,  2018). For instance, in accordance with Wing’s 

conceptualization, CT nay be regarded as combining mathematical-analytical thinking 

with natural sciences, engineering, and other disciplines. In other words, CT is 

conceptualised as thinking instead of a physical object that is the computer. CT is 

considered and utilised as a way of thinking that harnesses the computer as an 

instrument for supporting human thought processes, to envision the results of this 

thought process, as well as, to formulate a problem so that a computer supported 

solution may be introduced. Based on Wing’s (2006) definition, the CT process can be 

pictured into three stages. 
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Figure 2.5: Illustration of the CT Process Stages (Lamprou & Repenning,  2018). 

As seen in Figure 2.5 above, the first step of CT is formulating a problem which 

takes place through abstraction (Lamprou & Repenning, 2018). The individual 

formulates a question usually about how something works while visualising the problem 

using a diagram on a piece of paper. It is through abstraction that clearly demonstrates 

how CT does not have to be initiated through the use of a computer. The second stage is 

solution expression (automation), which is a “non-ambiguous expression of the solution 

so that the computer can carry it out through computer programming” (Lamprou & 

Repenning, 2018). The third stage is executing the solution and assessing it through 

Analysis, whereby the computer shows direct consequences of one’s own thinking. 

2.6 Summary 

The idea of thinking as a computer scientist has drawn much attention of many 

researchers. The attempt to consolidate this idea resulted in many different definitions, 

which leads to the perception of a CT being a fuzzy concept. So, the first step of the 

thesis thesis was to find a way to narrow this concept in a working definition to enable 

empirical assessment. To do this, systematic literature reviews and major publications 

with summaries of important experts were analysed to identify the repeatedly mentioned 

core characteristics and aspects of CT. 

Its three core aspects consist of decompose the problem into smaller sub-problems, 

abstract the problem as a way to simplify it, and designing an algorithmic solution. 

While the first two facets comprised the analysis of the problem, algorithmic design 

describes how the problem is actually being solved. Because CT neighbours many 
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different research fields and because of the vast number of different definitions, all 

aspects were discussed from different perspectives, i.e., psychology, education, and 

computer science, to have a better insight of what CT is and where it comes form. 

Computational thinking is widely seen as a way to solve different kinds of problems. 

Complex problems and especially the understanding of algorithmic solutions became 

more important in the last two decades. That is why it is important to investigate how 

CT is applied when solving such problems and to find ways to systematically observe it. 

This research lies the foundation of future training plans on CT.  
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3 METHODS 

3.1 Research questions 

This study had the goal to answer the two research questions. The first research question 

(“How is computational thinking applied when solving a programming task?”) as well 

as the second research question (“Can multimodal measures of computational thinking 

be relevant predictors for programming quality?”) can be both described as exploratory 

because no specific hypotheses were defined. The focus of RQ1 was what CT looked 

like and what CT skills are most dominant, whereas RQ2 was about to reveal the 

relationship between CT and programming quality. To address both questions different 

methods and measures were used. To answer RQ1, participants were filmed, their 

voices were recorded, and their screen activities were captured while solving a 

programming task. To answer RQ2, different measures for CT were used to see how 

much variance in programming quality could be explained. In addition, control 

variables such as nonverbal intelligence, sociodemographic information, and prior 

knowledge were assessed as well. 

3.2 Procedure 

3.2.1 Phase 1: Online study 

The study was divided into two phases. For the first phase, participants logged in on the 

university provided learning management system. One measure of CT was based on 

unplugged method. This (unplugged) CT measure, a measurement of nonverbal 

intelligence, some demographic data, and prior programming experience assessment 

were obtained from this learning management system. As unplugged CT measure, a set 

of adapted tasks from the Bebras contest was used. Nonverbal intelligence was assessed 

with the 3rd edition of the Test of Nonverbal Intelligence (TONI-3). The Bebras tasks 

and the TONI-3 are described in more detail in section 3.5. In addition, participants 

were asked to provide demographic information (e.g. age, gender) and whether they had 

any prior programming experience and whether were familiar with Scratch. 
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The participants received an email with general information about the study and an 

invitation link to the Bebras tasks and the TONI-3. Both tests were administered 

independently to give participants a break between the testing sessions. Participants had 

up to one week to complete all questions and tasks before the second phase began. 

3.2.2 Phase 2: In classroom programming task 

The second phase of data collection took place within university classrooms. Students 

were organised in pairs and were given the following task to work on in Scratch: 

“Program a story or a game where a hero has to overcome a 

challenge in order to defeat the villain(s).” 

This task can be categorised as a typical designing task. Participants are constraint by 

some limitations and multiple solutions are equally favourable, which makes this kind 

of task an “archetypical example of ill-structured problems” (Jonassen, 1997). As 

described before, ill-structured tasks should be used when investigating CT. To analyse 

when and how much time participants actually spent on CT-relevant behaviour while 

working on this task, a coding manual was design. The results participants created for 

this task is also further analysed with regard to their programming quality based on a 

rubric scheme and Dr Scratch. The CT behaviour coding manual, the programming 

quality rubric scheme, and Dr Scratch are explained in more detail in section 3.5. 

The reasons for working in pairs are described in more detail in section 3.3. The CT 

coding manual is dependent on observable clues compromising both verbal and 

nonverbal communication. To provoke such communication clues, a social setting 

needed to be created. It was anticipated that encouraging students to work in pairs 

would facilitate observation of CT. The programming pairs were formed based on their 

Bebras scores to minimise any effects due to large differences in competences. In total, 

37 programming pairs were formed. 

3.2.2.1 Scratch programming environment 

Scratch is a prominent VPE. It was officially recommended to teachers to enhance CT 

abilities (CSTA, 2011) and has been used in multiple studies (see, e.g., Brennan & 

Resnick, 2012; Moreno-León, Román-González, Harteveld, & Robles, 2017; Wang & 

Zhou). As such, Scratch provided an opportunity to both build upon previous studies 

and contribute to the growing body of research relating to its use. In addition, it was 
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expected that the participants had no or only little prior programming knowledge and 

Scratch is easy and rapid for novices to learn. Scratch also provides a considerable 

degree of flexibility and power to users, enabling them to respond to more ill-structured 

tasks such as the one used in this study. Accordingly, Scratch was chosen for this study. 

In Scratch, the user can chose between different sprites. Sprites can be dinosaurs, 

animals, or things. For every sprite, there is a different programming window so the 

users prepare their separately for each sprite. Codes are not written in Scratch; instead 

code chunks are being connected to each other by drag and drop. The code chunks are 

similar to Lego® blocks and can be connected only if the connections make sense. This 

is the biggest difference to normal programming languages. There is no possibility of 

syntax errors or illogical programming caused by simple lack of knowledge about the 

programming environment. A bunch of connected code chunks is usually called a script. 

An example of a Scratch project as created in this study is shown in Figure 3.1. 

 

Figure 3.1. A screenshot of a Scratch project. On the bottom left are shown the three 

different used sprites. A script of connected code chunks for the dinosaur sprite is 

shown on the right. The window in the top left shows the effects and actions of the 

codes. 

 

Code chunks are divided into 10 categories. These chunks have their own colour 

based on their category, which makes it easier to read the later programmed project 

(Figure 3.2). Motion code chunks are deep blue and make sprites move through the 
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space. Looks code chunks (dark purple) change appearance (or costumes) of sprites and 

activate chat or think bubbles. Sound code chunks (bright purple) enable sound effects. 

Brown event code chunks initiate the codes to run, and the category control (ochre) 

contains mostly if-then code chunks and loop commands. Bright blue sensing code 

chunks react in combination with the environment, for example touching a sprite of 

specific colour or position. Mathematical and logical operations can be performed with 

code chunks from operators (bright green), and data code chunks (orange) create a 

scoring system. There are some pen code chunks (dark green) that draw when used and 

there is the possibility to use customised code chunks (dark violet) if more blocks are 

used. However, the last two are infrequently used in general and were not used in this 

study as well. 

 

Figure 3.2. The categories of code chunks in Scratch. 

 

There is a qualitative difference in usage of motion, looks, sounds, and event code 

chunks on one hand, and control, sensing, operator and data code chunks on the other. 

Code chunks from the first category (which will be referred to as Level 1 chunks) can 

be easily connected to other chunks and cause outcomes by themselves. Code chunks 

from the second set (which will be referred to as Level 2 chunks) cannot be connected 

as simply as Level 1 chunks. Most of Level 2 chunks have to be connected to other 

chunks first or they cannot cause an outcome directly. Level 2 chunks are most 

comparable to functions in other programming environments or programming languages 

that need an extra argument to work, whereas Level 1 chunks do not need any 

arguments. These restrictions of usage make Level 2 chunks more complex and they 

are, therefore, cognitively more demanding than are Level 1 chunks. For instance, the 

sensing code chunk touching colour can only be integrated in four different control 

chunks that additionally need to be connected to a Level 1 chunk to work. The 

differentiation between Level 1 and Level 2 will be considered in the rubric scheme to 

assess the programming quality. 
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Before the actual task was assigned, students were given an opportunity, in a 40-

minute warm-up phase, to become familiarise to Scratch. Participants were not recorded 

during this warm-up and it was not part of later data analyses. The investigator 

recommended completing four tutorials prepared in Scratch: (1) Getting Started with 

Scratch, (2) Make it Fly, (3) Create a Story, and (4) Catch Game. The full complements 

of Level 1 and Level 2 chunks were introduced in these tutorials. Therefore, it was 

expected that all participants would have similar level of knowledge about Scratch by 

the time the programming task was commenced, and that they would also understand 

the principles of Scratch such as how to connect code chunks by means of drag and 

drop and how to program their avatars or sprites in general. 

Participants’ activities were captured with Open Broadcasting Software (OBS, 

version 18.0) while working on the programming task. Participants’ verbal interactions 

were recorded with a headset around their necks. Along with voice recording, built-in 

webcams filmed most of the participants’ upper buddy. This way, facial expressions and 

other nonverbal clues were observable so interactions were easier to interpret than with 

voice recordings alone. In addition, participants’ operations on screen were captured as 

well. 

Out of the 37 pairs, 1 pair did not give consent to be recorded, 5 pairs turned off 

(unintentionally) the microphone or shut down the recording software, and in 4 

instances the software froze while recording. There were complete and unproblematic 

recordings from 27 pairs, which were used for later analyses. 

3.3 Justification for video study 

Direct observation of behaviour is the best choice of methods when actions are the 

centre of the research question and self-report is not valid enough or not practical. The 

first is true when measuring performance is the aim the latter is true when an 

intervention is going (Chorney, McMurtry, Chambers, & Bakeman, 2015). Both are 

partially true for CT as seen in this study. CT is seen as a thinking product but also a 

product of actions. In addition, the goal of this study is to observe what kind of CT 

associated behaviour and skills people use while working on a programming task. 

Therefore, an observational video study seems to be the right choice. 
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Others used different approaches. Brennan and Resnick (2012) interviewed children 

about their Scratch projects. Brennan and Resnick emphasised the positive side of 

interviews that they provide a deeper insight in the thoughts and (intended) meaning 

behind these projects. They also, however, pointed out that the interviews were limited 

by what the children remembered, which was sometimes not correct. For example, some 

answered the question what they did when they stuck that they never got stuck, which is 

highly implausible. 

CT is a cognitive process and therefore difficult to observe directly. However, in 

verbal and nonverbal communication people express their thoughts and make them 

accessible to other people. They talk about what they want to do and what they intend to 

do. In other words, people talk about what they think. To certain degree, this is true for 

nonverbal communication as well. Facial expressions, body language, and gestures can 

provide to some extent clues about people’s intentions and thoughts. Accordingly, in 

order to study CT it seems appropriate to create a social situation in which people are 

encouraged to communicate verbally and nonverbally with each other. For this study, 

that kind of social situation was created by building programming-pairs so students 

were working collaboratively on a programming task. Moreover, the investigator of the 

study instructed the participants “to express their thoughts” and “to talk to each other”. 

To capture all CT-relevant moments during this social situation, participants were 

filmed while working on the task. As Knoblauch, Tuma, and Schnettler (2013) put it, 

videography is an especially useful tool to investigate communication and social 

interactions because no other means of recording is able to collect data in such detail. In 

video recordings, it is possible to pause and repeat single frames to unveil hidden micro 

interactions that show CT interaction patterns. For instance, before an algorithm is 

applied, the problem often needs to be put into chunks. Especially with video data, it is 

possible to identify these patterns. In this regard, Knoblauch et al. (2013) have called 

videography “the microscope of the social scientists”—something that provides a broad 

opportunity to analyse social interactions. 

Silverman (2013) has pointed out that video data can be analysed in two ways. On 

the one hand, a researcher can engage in “mapping the woods” to explore the data on 

the surface and identify empirical clues for theoretical concepts. On the other hand, a 

researcher can engage in “chopping the trees” and analyse a video by a fine-grained 
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sequential analysis based on a theory. To answer the research questions, both ways were 

needed. 

In order to address RQ1, the video data needed initial “mapping” to identify events 

that could be related to CT and that are not, for example, irrelevant chatting. In a second 

step, the CT-relevant data needed to be “chopped” with a coding scheme in which they 

could be classified in more detail so that the role they play for CT became clearer. The 

more detailed classification of CT events allowed the investigation of the relationship 

between CT and programming quality that provided an answer to RQ2. 

There are different ways to code the video material, which are defined by the level of 

inference a rater needs to make and the sampling method. If there is only little inference 

required then the coding scheme is referred as low inferential. Coded behaviour in low 

inferential schemes is mostly easy to observe, such as hands coming up during a lesson 

Low inferential coding schemes deal with behavioural clues or interactions between 

people in a short time period (i.e., a couple of minutes, or even seconds). In contrast to 

low inferential coding schemes, high inferential coding schemes provide a judgment 

involving a longer period of time, for example, a whole lesson. Codes are less closely 

related to an actual behaviour. The theoretical concept is an attribute, or a feature, or a 

set of different behaviours. The intensity of this attribute is judged on a rating scale. An 

example would be classroom climate during a school lesson, rated on a Likert-type 

scale. Codes of high inferential schemes are more complex and therefore they are more 

open to interpretation. Low- and high-inferential coding are both often used in video 

studies in education (Pauli & Reusser, 2006). For this study, CT is assumed to be a 

mixture of both with some elements being rather low and some being rather high 

inferential.  

There are two kinds of sampling methods for coding schemes: time sampling and 

event sampling. When using time-sampling, the whole session is divided into time 

intervals, usually 5–20 seconds (Lotz, Gabriel, & Lipowsky, 2013). Each interval is 

assigned to one distinct code of behaviour. If more than one critical behaviour clues are 

shown during the interval, the dominant behaviour is coded for the whole interval. Time 

sampling is used when there is already some prior knowledge about when the behaviour 

will occur. In contrast to time sampling, event sampling is based on the start and the end 

of a behaviour sequence. Event sampling makes it possible how often and for how long 

participants showed a specific behaviour (Bakeman & Quera, 2011, p. 27). Event 
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sampling is usually used when little is known about the occurrence of the construct. 

Because of the novelty of the coding scheme, CT will be coded based on event-

sampling. 

Meanwhile, it must be noted that an added data collection method for this study 

would have been the interview method of experts, instrument development, or 

validation study. However, such data collection is time consuming, as Brennan and 

Resnick (2012) emphasized. Apart from the time-intensive nature of such data 

collection, interviews would have to be repeated at several points over time to obtain a 

developmental portrait (Bresnan & Resnick, 2012). The goal of this study was to find 

out how CT might be applied during a programming task. An interview would have 

been disrupting the process and hindsight comments might be biased. In light of these 

points, a video-based study of this design is well justified. 

3.4 Participants 

Because CT is a highly discussed concept especially in computer science education, the 

sample for the main study consisted of 108 pre-service students completing a digital 

creativity and learning course at an Australian University, in March 2017. It must be 

noted that students’ convenor was also the author’s supervisor. However, participation 

in the study was voluntary regardless of the relationship to the investigator and 

convenor. Students’ participation and performance in the study were unrelated to their 

university assessments and the convenor was not present during any time of data 

collection. It is important to point out that the sample size and the selectiveness used for 

sampling may lead to an issue pertaining to non-generalization to the broader 

population from which the sample was derived. The goal of this study was to observe 

CT while working on a problem. This requires at least some level of CT and so a 

selective sample was drawn. A complete random sample would have likely resulted in a 

sample with very low level of CT. In comparison, a sample of skilled programmers or 

engineering students may have also confounded the results. Thus, a sample from 

students enrolled a digital creativity learning course was drawn. Because of these 

considerations and because of the lack of specific studies like the current one, made it 

difficult to plan the required sample size in beforehand and a post-hoc power-analysis is 

provided later. Moreover, the convenor was not present during data collection, thereby 

eliminating any risks for bias. 
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There were more female (n = 73; 68%) than male students (n = 33; 30%) among the 

participants (n = 2; 2% preferred not to say). On average, students were 23.9 (SD = 5.2) 

years old. Because the university in which the study was conducted has a significant 

number of international students, participants were asked about their English 

proficiency on a scale from 1 (poor) to 4 (native speaker). The vast majority of 

participants (n = 105; 97%) indicated that they spoke English fluently or were native 

speakers. To be sure all participants have the same level of programming knowledge, 

participants were asked on a scale from 1 (no prior experience) to 5 (professional level) 

how familiar they were with programming. Again, nearly all participants (97 %) had 

either no or only little prior programming experience. 

3.5 Instruments and measures 

3.5.1 The Bebras tasks  

To measure CT based on unplugged methods, participants solved an online version 

of adapted Bebras tasks. The Bebras contest itself is described by (Dagienė, 2006) in 

more detail. In total, 20 tasks were used and which were all chosen from the Australian 

versions of the Bebras contests from 2014 (Schulz & Hobson, 2015) and 2015 (Schulz, 

Hobson, & Zagami, 2016). Nine tasks were derived from the 2014 version and 11 from 

the 2015 version ( 

Table 3.1). The versions from 2014 and 2015 were the most recent ones at the time of 

creating the CT test for the present study (end of 2016) and both were freely accessible. 

Only Australian versions were considered because the study was conducted in Australia 

and it was hoped this would avoid any problems associated with linguistic phrases and 

idioms. 

One requirement was that the overall testing time for the Bebras tasks would not 

exceed 60 minutes. Based on the results of former studies (Dagienė, 2006; Dagienė & 

Futschek, 2008) and the pilot study, it was expected a person would need 3 minutes on 

average to solve one question. Therefore, 60 / 3 = 20 tasks seemed to be an adequate 

number. Moreover, in previous studies (Dolgopolovas, Jevsikova, Savulionienė & 

Dagienė, 2015; Lee, Lin, & Lin, 2014), the same number of tasks or even fewer had 

been used to assess participants’ level of CT. 
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The tasks were chosen from tasks relevant to oldest age group available for the 

original Bebras contests (i.e., adolescents 16 to 18 years of age; school levels 11 and 

12). As mentioned in section 3.4, the average age of participants in this study is 24 

years. Although there is a big gap in age, it was not expected that this difference would 

cause any problems (e.g., ceiling effects) for three reasons. First, no published evidence 

could be found that 16 and 24 year-olds differ significantly in cognitive skills such as 

the abilities to decompose a problem, use algorithmic thinking, and use abstract 

reasoning which all are needed to solve the Bebras tasks. Second, participants of the 

pilot study who were similar in age to the participants of the main study were asked 

how difficult they perceived the tasks. Their answers corresponded with the 

categorisation of the difficulty of the tasks. They tended to mark as easy the tasks that 

had been labelled easy, to mark as medium the tasks that had been labelled medium, and 

to mark as hard the tasks that had been labelled hard. Third, using the Bebras tasks to 

assess the level of CT for participants older than the suggested age group have been 

used in previous studies, for instance, for vocational students (Lee, Lin, & Lin, 2014) 

and novice engineering students (Araujo et al., 2017). In conclusion, it was not expected 

that the participants of the study would solve the Bebras tasks differently from the way 

in which the originally intended age group had done. 

There were three levels of difficulty: easy, medium, and hard. Participants received 

two, three, or four points when they solved tasks at each of these levels, respectively, 

and they did not lose any points when they gave incorrect answers. This scoring scheme 

relies on the recommendations for scoring in the Australian Bebras contest since 2014 

(Schulz & Hobson, 2015). The maximum achievable score was 57.  

Table 3.1 contains the CT tests for the present study based on a balanced mix of 

Bebras tasks from both Australian Bebras contest versions and levels of difficulty. 

Table 3.1 

The Distribution of CT Tasks by Origin and Level of Difficulty 

Level of difficulty Tasks from 2014 Tasks from 2015 Total 

Easy (2 points) 4 (8 p.) 4 (8 p.) 8 (16 p.) 

Medium hard (3 points) 3 (9 p.) 4 (12 p.) 7 (21 p.) 

Hard (4 points) 2 (8 p.) 3 (12 p.) 5 (20 p.) 

Total 9 (25 p.) 11 (32 p.) 20 (57 p.) 
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For the purpose of the present study, some of the Bebras tasks were revised slightly. 

Some Bebras tasks are presented with iconic beavers or other comic pictures, or 

instructions refer to beavers as in “beaver did … beaver went …” (see overview for 

original Bebras tasks in (Schulz, Hobson, & Zagami, 2016). This is not surprising 

because the Bebras contest was developed for school students from 8 to 18 years of age 

(school levels 3 to 12). This beaver theme was intended to keep younger contestants 

motivated during the test. Older contestants expressed problems with these beaver 

stories and preferred a neutral presentation of tasks (Vaníček, 2014). Therefore, the 

tasks were presented without any reference to beavers in order to be more appropriate 

for the sample in this study. An example of an original task and its revised version is 

shown in Figure 3.3 (see Appendix B for the complete set of tasks used). The structure 

of the task of the revised version is unchanged in that participants have to apply the 

same cognitive strategies to find the solution. Only the comic elements and the beaver 

references were changed or deleted. 

Task: Original (“Beaver the Alchemist”) 

Beaver the Alchemist can convert objects into new 

objects. He can convert: 

- two clovers into a coin 

- A coin and two clovers into a ruby 

- A ruby and a clover into a crown 

- A coin, a ruby, and a crown into a kitten 

After an object has been converted into another object, it 

disappears immediately. 

Task: Revised 

In the following you can see how objects convert into other 

objects. The rule is: 

- two squares convert into one circle 

- One circle and two squares convert into one 

hexagon 

- One hexagon and one square convert into one 

triangle 

- One circle, one hexagon, and one triangle convert 

into one cylinder 

After an object has been converted into another object, it 

disappears immediately.  

 

 

 

Question: How many clovers do Beaver the Alchemist 

need to create one kitten? 

Answer: 11 

Question: How many squares do you need to create one 

cylinder? 

Answer: 11 

Figure 3.3. Example an original Bebras task as used in the Australian Bebras contest 

2014 on left and its revised version on the right. 

 



CHAPTER 3 – METHODS 
 

 

– 88 – 

Although CT is considered as multifactorial with emphasis on the cognitive abilities 

as described in Román-González et al. (2017), this study seeks to determine (a) in RQ1, 

what CT looks like and what CT skills dominate among the participants; and (b) in 

RQ2, the relationship between CT and programming quality. As such, to answer RQ1, 

participants were filmed, their voices were recorded, and their screen activities were 

captured while they solved a programming task while to answer RQ2, different CT 

measures were used to determine the extent of variance in programming quality. 

Consequently, attention has been on the analyse/apply (through Bebras) and 

create/evaluate (through Dr Scratch) cognitive components of CT (Román-González et 

al., 2017). 

3.5.2 Test of nonverbal intelligence 

To measure participants’ nonverbal intelligence or general problem-solving skills, the 

Test of Nonverbal Intelligence (3rd edition; TONI-3) was selected, developed by Brown, 

Sherbeernou, and Johnson (1997). The TONI-3 is a culture fair test (i.e., minimally 

linguistically demanding). With a 15-minute average testing time, it is relatively fast to 

administer. The TONI-3 was developed to assess the cognitive aptitude of children and 

adults from 6 to 90 years of age, which lies in the range of the participants’ age. 

Moreover, the authors claim that the test is measurement of intelligence with a 

theoretical and psychometrical foundation. Nevertheless, the TONI-3 may be limited in 

terms of reliability and correlations with achievement measures. Because of this, it must 

be pointed out that future studies using this instrument may be undertaken to collect 

additional validity and reliability evidence and diverse samples.   

The focus of the test lies “on abstract reasoning and problem-solving” as cognitive 

concepts and although the developers pointed out the TONI-3 was not developed based 

on a specific theory, these concepts play a crucial role in several prominent theories of 

intelligence. Therefore, the TONI-3 score can be interpreted as one of Thurstone’s 

mental abilities, as one of Gardner’s multiple intelligences, or as facet of fluid 

intelligences or as facet of fluid intelligence described by Cattell, Horn, and Carroll. 

In general, the test material consists of two test forms, A and B. Both forms have 45 

equivalent abstract pictures as test items and five identical exercise items to ensure the 

participants understand the procedure and materials. For this study, test form A was 

used. Every item was divided into two parts, as shown in Figure 3.4. The first half of an 

item showed an uncompleted set of geometrical figures. In the second half, six similar 
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figures were provided. The participants had to choose one of the six figures from the 

second half that completed the set of figures of the first half. In some items (Figure 3.5), 

the task was slightly changed so that only one figure was presented and the participants 

had to choose one set out of four sets of figures that completed the row. Nevertheless, 

the task in all test items was always to identify patterns and to complete a set or a row of 

abstract figures, which is a typical test procedure for figural/ abstract problem-solving. 

 

 

Figure 3.4. Item number 27 from test form A; one figure completes a set of figures. 
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Figure 3.5. Item number 36 from test form A; a set of figures completes a row. 

 

The test was not timed. Participants could take time as much as they needed. The 

items were ordered by difficulty. The test began with the easiest tasks and progresses in 

level of difficulty. In the original test, this permitted having a ceiling item in the testing 

procedure to reduce the testing time for the participants. The ceiling item is defined as 

the last item of the last five attempted items in which the participant has made three 

mistakes. The testing continued until the ceiling item had been reached or until last item 

(item number 45) had been solved. Every correct identified figure scored one point and 

all points of all correct solved items until the ceiling item or the last item were added to 

yield a total score. Therefore, the raw scores ranged from 0 to 45. 

3.5.2.1 Psychometrics and usage in this study 

The raw scores can be transformed via norm samples into IQ scores with a mean of 100 

and a standard deviation 15. The reliability assessment shows that the TONI-3 is 

relatively stable over time with a retest-test reliability of rtt > .90 and the internal 

consistency of Cronbach’s α = .93 indicates it assesses a latent construct with a little 

measurement test error (Brown, Sherbeernou, & Johnson, 1997). 

The validity of the TONI-3 is also satisfactory. For the content validity, the original 

test material for the first version was reviewed by psychologists, psychometricians, and 

educators with expertise in experimental and developmental psychology (Brown, 

Sherbeernou, & Johnson, 1997). In addition, item response analyses methods were used 

to identify any biased items. High criterion validity is indicated by middle and high 

correlations between the TONI-3 and the figural part of other intelligence tests.  High 

correlation between the TONI-3 and school achievements indicated high construct 

validity Banks & Franzen, 2010; Brown, Sherbeernou, & Johnson, 1997). The validity 

coefficients are sufficiently high to indicate that the TONI-3 satisfactorily measures 

abstract problem-solving ability. 

To optimise the reliability and validity, the TONI-3 was used according to the 

manual as much as possible. Some changes still had to be made because the original test 

comes as a printed hardcopy and the IQ estimations in this study were completed online. 

First, the material from the book was scanned so it was possible to present it online. 

Second, during the original test setting, an examiner guides the participant through the 
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complete process. For instance, the examiner checks whether the participant has 

understood the test process and materials. There was no examiner in during the test 

session and participants were on their own while doing the test online. An exercise 

section was implemented to ensure the participants became familiar with the test 

situation despite an examiner not being present. In the exercise section, participants 

received immediately feedback about their initial solving attempts, as shown in Figure 

3.6. Nevertheless, this exercise section was separated from the actual testing section, so 

it was possible for the participants to simply skip the exercise section and it is not 

possible to determine whether or not this did actually happen. Apart from these changes, 

the TONI-3 was conducted and analysed based on the instructions in the manual. 

3.5.3 Programming quality rubric scheme 

For this study, to measure programming quality, a rubric scheme for participants’ 

solutions of the programming task in Scratch was developed. In general, a rubric 

scheme is a scoring tool for complex student work (Dawson, 2017). Such scheme 

usually contains qualitative and quantitative dimensions. The vertical dimension often 

represents the qualitative criteria of the attribute that is intended to be assessed. This is 

the content dimension. The quantitative levels are represented on the horizontal 

Figure 3.6. On the left, an example of an as correct solved marked item; on the right, an 

example of an as false solved marked item. 
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dimension. These indicate the extent to which each category has been achieved. This is 

the rating dimension. The two dimensions create a matrix where the advantage of rubric 

schemes lie. Each element of the matrix provides a concise definition for every criterion 

on each level. These descriptors make the judgment more transparent, clear, and fair. 

Scoring with a rubric is usually more consistent and more reliable than without one 

(Jonsson & Svingby, 2007). In addition, the gradations of quality over all criteria allow 

the strengths and weaknesses to be investigated in more detail as well calculating an 

overall score for the attribute. 

Measuring programming quality with a rubric is not a common approach but had 

been more popular over the years. Lister and Leaney (2003) suggested a more criterion-

references grading for programming to ensure a higher level of clarity. They did not 

develop a rubric scheme for specific test situations but made a general recommendation 

how to measure programming quality for novice students.  

More recent, Fagerlund, Häkkinen, Vesisenaho, Viiri (2020), developed a scheme 

with the specific purpose to analyse Scratch projects. Their scheme included two 

content related areas (vertical dimension). One area specifically analysed programming 

patterns such as “animation”, “speech and sound”, “collision”, “data manipulation”, and 

“user interaction”. The other area focused on computational thinking related concepts 

based on Brennan and Resnick (2012). They analysed over 300 Scratch projects by 57 

fourth graders with the purpose to have basis for educational feedback. However, 

Fagerlund et al. (2020) did not specifically mention the rating itself (horizontal 

dimension). 

In a similar recent study, Basu (2020) also developed a rubric scheme and a 

description with such horizontal rating dimensions. In the vertical dimension are 

concepts such as readability and correctness as well as specific kinds coding patterns 

such as use of loops and conditions. The rating dimensions states from 0 (“lack of use”) 

to 3 (“exceeding grade level proficiency”). Inter-rater reliability with CS teachers of 

90% or higher can be seen as sufficient and comparison between 160 Scratch projects 

from middle school students and their grades indicated a high criterion validity. In 

summary, Basu concluded that well developed rubric schemes provide valuable insights 

on programming skills. 

Therefore, a rubric scheme was also developed in this study. The first two vertical 

criteria, (1) richness of project and (2) variety of code usage, were developed to take 
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into account the kind of programming task. The task was ill-structured and open ended 

and so a variety of solutions are possible to develop. These two dimensions assess how 

much participants use the possibilities provided by Scratch. The other three vertical 

criteria, (3) organisation and tidiness, (4) functionality of code and (5) coding efficiency 

are mainly derived from good coding practice described in more detail in section 

2.5.2.1. To ensure content validity, all five criteria were discussed with two computer 

science education professionals. One was the supervisor of the author of this thesis who 

specialised in research of usage of technology for educational purposes and a retired 

computer science teacher with over 30 years of experience. These criteria were 

horizontally rated in five steps from 0 (not evident), 1 (poor), 2 (satisfactory), 3 (good), 

and 4 (excellent). In total, the rubric scheme has 25 descriptors. For more details, see 

Appendix C. 

3.5.3.1 Richness of project 

The criterion extent and richness of code was based on what and how much was 

happening in the final Scratch project. A Scratch project received lower scores when 

there was only one programmed element that did only one thing than did a Scratch 

project that included several different elements that did several things and that were 

related to each other. For instance, the level poor meant there was only one sprite that 

moved in one direction whereas level excellent meant there were more than two sprites 

that could move and change appearance after being triggered and that interact with each 

other. In general, a higher level Scratch project simply contained more sprites and code 

chunks. 

3.5.3.2 Variety of code usage 

The variety of code usage described how many different code chunks from different 

code chunks were used. Many different Level 2 chunks resulted in higher scores than 

only a few Level 1 chunks. Participants with a higher Level in this category used nearly 

all the opportunities that Scratch had to offer. For example, a Level poor Scratch project 

contains only sprites that move and make sound. To achieve Level excellent, a majority 

of chunks from Levels 1 and 2 needed to be used. 

3.5.3.3 Organisation and tidiness 

The organisation of the whole workspace played a role in the assessment of 

programming quality as well, in terms of how messy or clean the workspace appeared to 
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be. An often-mentioned feature of a good code is its readability (Martin, 2009). A code 

is easy to read when the coding environment is free of “dead scripts”. Dead scripts are 

pieces of code chunks that play no role for the whole program. Examples of dead scripts 

are comment-out, deactivated, or incomplete codes. Dead scripts unnecessarily fill the 

program console. This decreases the readability of the whole program because the user 

has to actively ignore these codes in order to understand the whole program. It is neither 

possible to comment out codes in Scratch, nor to deactivate codes. However, it is 

possible to have incomplete code chunks. A code chunk has an effect only when it can 

be initiated by an event chunk as shown in Figure 3.7. So, if a code chunk or if a 

sequence of code chunks were not connected to an event chunk they did not play a role 

for the whole program and were defined as dead scripts. In addition, the correct order 

enhances readability. Readability referred to whether the codes appeared where the 

reader would expect them and whether they were eventually align with the screen. The 

fewer code chunks a Scratch project had and the more it looked organised, the higher 

the readability and the higher the score. A Scratch project rated as poor had many dead 

scripts and looked messy. In contrast, a Scratch project rated as excellent had no dead 

scripts; they are organised and eventually aligned with the screen. In summary, the 

appearance of the whole workspace looked tidy and was easy to read for a higher level. 

 

Figure 3.7. An example of a valid list of connected codes with an event code at the 

beginning is shown on the left. On the right is shown an example of a dead script. 

 

3.5.3.4 Functionality of code 

Functionality is crucial for a code. In this study, functionality was assessed on the basis 

of two questions. First, was the intention of the Scratch program clear? Second, did the 

program work as intended? Some coding attempts were so basic that it was not even 

clear what the participants wanted to do. To achieve at least a poor level, the intention 

of the code needed be clear even if it did not necessary work. For example, several 

connected code chunks from the moving category very likely indicate that the 
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participants tried to program a sprite to move. It might not have worked because of 

other problems (e.g., no event chunk is connected to initiate the movement) but at least 

the intention was clear. If the intention was clear and if it worked, the next question was 

how well it worked and how smoothly the code ran. Most of the Scratch project might 

have worked without any error but a text box appeared and disappeared too quickly to 

read. Another example could be a reaction game where the user had to control a sprite 

and reacted to its environment, but it moved too slowly or the scoring system did not 

work properly (e.g. points were not counted correctly). These were examples of 

working Scratch projects with clear intentions but that did not run smoothly. For an 

excellent Scratch project, the reading time needed be reasonable, speed of moving 

elements needed be adequate, and the score systems needed to make sense and worked 

correctly. 

3.5.3.5 Coding efficiency 

The category efficiency described the usage of controlling code chunks and the number 

unnecessary duplications of codes. Duplication was unnecessary if an opportunity was 

missed for abstraction to a higher level. Duplications show a violation of the “Don’t 

repeat yourself” or “Once and only once” principles. So, for example, if a function 

needed to be repeated, instead of copy paste the same code several times, it would have 

been better to loop this code with the correct control function. The correct usage of 

these kinds of control functions required a higher level of abstraction in thinking, but 

the code would become more efficient and elegant. Figure 3.8 contains an example of 

two codes from two different Scratch projects. Both codes did the same in that they 

controlled movements in four directions of a sprite while using arrow keys. However, in 

the code script on the right, a forever code chunk was used to control all directions of 

movement whereas the code script on the left there were just copies of controlling codes 

for one direction four times. The script on the left shows duplications that could have 

been avoided. A poor Scratch project showed many duplicates, and few control chunks 

were used. In contrast, an excellent Scratch project did not have any duplicated chunk, 

and participants demonstrated a comprehensive and complete use of control chunks. 
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Figure 3.8. Two examples of the same function but coded differently. An example with 

unnecessary duplicates is shown on the left and a more efficient version is seen on the 

right. 

 

3.5.3.6 Weighted score of sum and reliability assessment 

Whereas organisation was fully independent from the other categories, the extent and 

richness, variety, functionality, and efficiency were partially dependent. For instance, a 

low score in extent and richness means participants did not use many code chunks. If 

there were few code chunks, it was impossible to have many different code chunks 

contributing to a higher score in variety. It was also very likely that the functionality of 

the Scratch project was limited and that it was coded efficiently. However, that was not 

true for higher scores. High scores in richness as well as in variety do not necessarily 

mean the Scratch project is well coded and runs smoothly. 

To have an overall judgment about the Scratch project, a weighted mean over all 

categories was calculated. The weighting represented the importance of each category 

for programming quality and is based on Martin (2009). Assessments in extent and 

richness, variety, and functionality equally contributed 20% to the final score. In 

efficiency, participants showed a higher level of thinking. In particular, it might be 

challenging for participants to see opportunities for using control code chunks that 

allowed increasing layers of abstraction. Efficiency represented programming quality at 

slightly higher level than the other categories. On the other hand, to keep the workplace 

tidy and aligned was not unimportant but seemed to be less essential to be a good 

programmer. It represented a programming quality slightly less than the others. 

Therefore, assessments in efficiency were weighted 30%, and organisation 10%, when 
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determining the final score. In total, the theoretical range of weighted means ranges 

from 0 to 5. 

To assess consistency of the program rubric scheme, the interrater reliability 

assessment between the investigator of the study and a former teacher of computer 

science with over 30 years of work experience was computed. The investigator of this 

study trained the former teacher for one hour with the programming rubric. All 

categories, levels, and descriptors were discussed in detail. In addition, typical examples 

of overall poor, satisfactory, good, and excellent Scratch project were reviewed. 

In total, 42 Scratch projects were assessed with the rubric scheme. To assess the 

interrater reliability, an intraclass correlation coefficient (ICC) for the weighted overall 

mean was calculated (Shrout & Fleiss, 1979). The ICC is used when the variable is 

metric, which is assumed for the weighted mean. The raters were set as fixed and only 

participants were set as a source of randomness that is referred as model 3 (Shrout & 

Fleiss, 1979). Because there was only one occasion of measurement, the form for the 

ICC was 1. As type for the ICC, absolute agreement was chosen because the assessment 

of the agreement between both raters was important and not how consistent the raters 

were (see, for more details regarding ICC for reliability assessment, Kim, 2013; 

Trevethan, 2017). Confidence interval for ICC(3,1) with type absolute agreement 

indicates that the rubric scheme is a sufficient reliable instrument, 95% CI [.87, .96]. 

The investigator rated the Scratch projects slightly more liberal (M = 2.13; SD = 0.97) 

than the former computer science teacher (M = 2.06; SD = 0.93) did. However, this 

difference was not significant, t(41) = |1.16|, p = .253. 

3.5.4 Dr Scratch 

To have an additional score for Scratch projects, Dr Scratch was used. Different to the 

developers’ intentions, Dr Scratch is not considered as an assessment of CT but rather 

an alternative measure for programming quality of Scratch in this study. The seven 

dimensions of CS relevant concepts (i.e., abstraction and problem decomposition, 

parallelism, logical thinking, synchronization, algorithmic notions of flow control, user 

interactivity and data representation) are judged as Not evident (worth 0 points), Basic 

(1 point), Developing (2 points), and Proficient (3 points) (Moreno-León, Robles, & 

Román-González, 2015). In order to obtain a general evaluation, all points will be 

summed to obtain an overall score, referred to as a mastery score. Mastery scores 
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between 8 and 14 are regarded as general developing; lower than 8 is regarded as 

generally basic, and more than 14 as general proficient. Scores are based on the number 

of dead scripts, correctness of messages synchronisation, object properties that are (not) 

correctly initialised, and (unnecessary) repeated code chunks (Moreno-León & Robles, 

2015).  

3.5.5 Computational thinking behaviour scheme 

In order to assess when and how much time participants spent on CT-relevant behaviour 

during the Scratch session, the computational thinking behaviour scheme (CTBS) was 

built. Besides of the literature about CT, the results of the pilot study were considered as 

well. The development of the coding manual is based on the general recommendations 

for developing and modifying a behavioural coding schemes by Chorney, McMurtry, 

Chambers, and Bakeman (2015). The CTBS is a low inferential coding scheme with 

high inferential elements, and the coding method is event-sampling. 

In this study the goal was to explore the way CT occurs and what attributes of CT are 

shown more often and what kind of patterns can be detected. These attributes are shown 

in specific behavioural clues. Some of these clues can be identified with rather low 

inference (e.g., algorithmic design) while other clues are more complex and require a 

higher inference (e.g., problem decomposition and thinking abstractly). Thus, the 

scheme can be regarded as a mixture of low and high inferential clues. Not all behaviour 

exhibited by the participants is coded, only actions and utterances that indicate CT. The 

CTBS is based on event sampling, which means it analysed how often and for how long 

specific behavioural clues occur and how long they last. 

The coded events in the CTBS can be understood as latent constructs, so it is not 

possible to observe them directly. However, it is possible to see the effect of someone’s 

thinking in their behaviour. The behaviour can be understood as the manifestation of 

these latent constructs. Therefore, statements and conclusions about latent variables can 

be made based on their manifest counterparts. Based on the behaviour we see we make 

conclusion about the intentions and thoughts. This is an example of inferential 

reasoning and does not come without any problems. Inferential reasoning always 

implies a level of uncertainty and false predictions. As we are not always right about 

our conclusions of someone’s thoughts based on just observing them, it is not possible 

to explain perfectly relationship between a latent variable and a manifest variable. This 
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is why identifying the correct manifest variables is crucial to make inferential 

statements about a latent variable with the highest validity possible. The manifestations 

of the latent components of CT as used in this study are described in the following. 

3.5.5.1 Computational thinking components 

Based on the literature review, four components were identified as main features of CT 

and which are the latent constructs in the CTBS: decomposition, abstraction as in 

ignoring unimportant details, abstraction as in recognising patterns, and designing and 

applying algorithms. Decomposition and both types of abstraction deal with the 

problem itself, whereas designing and applying algorithms are concerned with the 

solution to the problem. The CTBS includes behavioural clues as manifestations for 

these four components. Every kind of behaviour that indicates one of these four 

components is coded as an event. An event can be (1) an action of a single person (2) 

what a single person says or (3) be part of a discussion between people. Events are as 

mutually exclusive (i.e., every observed CT related behaviour can only be assigned to 

one code). In the following paragraphs, the behavioural clues of each latent construct 

are described in detail and the whole scheme is shown in Table 3.2. 

3.5.5.2 Decomposing 

In CT, a crucial part of handling a problem is dividing the problem into smaller chunks 

as a technique for reducing complexity. This is called the decomposition of a problem. 

The idea is that a couple of less complex problems are easier to solve than a single, 

more complex problem. Thus, any actions or spoken words that refer to putting the task 

into subtasks are coded as a clue for decomposition. This also includes being aware of 

the fact that there are several steps to make until a solution has been achieved, for 

instance, the steps suggested by Jonassen’s model for problem solving. One possible 

manifestation of decomposition is the discussion of the immediate next step to perform 

in order to accomplish the task. When participants ask what the next step(s) would be or 

when they explicitly state what to do next, they make clear that they divided the main 

task into subtasks and in which order they would like to complete them. For instance, an 

event is coded if a participant makes a clear order of tasks such as (1) which sprite 

should be the hero, (2) which sprite should be the villain, (3) what is the story about? 

This way, participants divide the main problem into sub-problems and sub tasks. In 

addition, a discussion of how story elements can be implemented as a code can be a clue 

for decomposition as well, for instance, when participants start talking about how they 
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want their sprites having specific features such as moving in one direction or shooting 

something. 

3.5.5.3 Abstraction I – neglecting details 

Another component of CT is abstraction with its two subprocesses. Clues indicating 

ignoring unimportant details but focus on relevant information can be seen when 

someone literally says to ignore something and to focus on something instead. 

Furthermore, rephrasing or simplifying the main task, sub-problems, functions, or the 

meaning of code chunks, can indicate deliberately neglecting of unimportant details as 

well. However, just reading the main tasks again or simply repeating what anyone said 

does not constitute ignoring unimportant details. Participants must show an 

understanding of what they simplified. An event is coded only when their rephrasing is 

clearly an attempt of simplification. 

3.5.5.4 Abstraction II - recognising patterns 

Recognising patterns, or the ability to identify similar characteristics across several 

items, can be seen as the other component of abstraction. An event of pattern 

recognition is coded when participants explicitly say something or show in another way 

that they understand or see a pattern. Saying or doing something that directly refers to 

patterns can be understood as clues for pattern recognition. In addition, clues when 

participants showed they were able to transfer what they learnt during the tutorial can be 

considered as pattern recognition as well. For instance, participants learnt how to use 

codes in a specific way in the tutorial. When they realised they can use the codes in a 

different way as well during the actual test session, it is coded as a pattern recognition 

event as well. This kind of realisation of patterns can be very sudden are called aha 

moments in this study. These transferred learning situations can be also seen when 

participants copy and paste code sequences and alter them subsequently. When 

participants use the same piece of code in different situations that must mean they 

identified similarities in these situations; therefore, this behaviour is coded as an event 

for pattern recognition as well. 

3.5.5.5 Designing and applying algorithms 

The components described immediately above focus on manipulation of the problem. 

The category designing and applying an algorithm focuses on the solution. Algorithm 

describes a sequence of operations. In a usual programming environment, an algorithm 
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comes in the form of written code. In Scratch, algorithms are not written in codes; 

rather, predefined code chunks are combined. Therefore, an event is coded as designing 

an algorithm when code chunks are connected. Applying of the algorithm is shown by 

executing it. Codes in Scratch can either be executed by double clicking the sequence of 

codes or by clicking on the green flag. Both actions will be coded as events for applying 

an algorithm. Only in rare cases does the freshly coded algorithm work as intended. 

More likely, participants need to adjust the code. This adjustment is defined as 

debugging in the CTBS. 
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Table 3.2 

Computational Thinking Behavioural Scheme 

CT components 

(latent variables) 

Behavioural clue 

(manifest variables) 

Decomposing 

Talking about the immediate next step 

Put problem into pieces / building sub tasks or problems 

Discussing if then relations of the story or game (is related to 

programming elements) 

Abstraction I – 

neglecting 

information 

Focusing on important information; neglecting unimportant 

details 

Simplifying anything (problem, sub problem, functions, code 

bocks, etc.) 

Abstraction II – 

pattern recognition 

Identifying similar characteristics (sub problems, functions, code 

blocks, etc.) 

Use of copy-paste 

Aha moments (must be related to an event when student 

understood relationship between things) 

Designing and 

applying an 

Algorithm 

Putting code chunks together 

Testing and judging algorithm  (i.e., clicking on run or double 

click on sequence or actively observing a running sequence) 

Debugging - try to find error and adjust algorithm 
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3.5.5.6 Reliability assessment 

The consistency of the CTBS was estimated by the interrater reliability between the 

investigator of the study and a second person. This person was a PhD student at the 

same department but was not involved in the study. This person was trained by the 

investigator during a practice session. The CTBS was discussed together and a video 

from the pilot study was used for practising. After that, five of the 27 videos were 

selected and the interrater reliability was assessed. The videos were chosen based on a 

mixture of high and low Bebras and Scratch scores in order to have a representative 

subsample of videos. This procedure is also based on the guide on developing and 

modifying behavioural coding scheme from Chorney et al. (2015). 

To estimate interrater reliability in this instance, κ coefficients for each of selected 

videos were computed (Cohen, 1960). Cohen’s κ is widely used to determine the degree 

of stability and agreement of two or more judges for nominal variables. It is similar to 

the frequency of agreement but adjusted for agreements, some of which can be expected 

to occur by chance alone. Cohen’s κ distinguishes only between agreement and 

disagreement and was not designed for an event-sampling design in video studies. This 

creates a problem. To have an agreement for two coded events, not only the content of 

the events must be the same (e.g. both identified an event as “debugging” or “discussing 

if then relation”) but also the onset and offset. Because it is virtually impossible two 

people start and stop an event at exactly the same time, an interval of tolerance can be 

defined between “still an agreement” and “already disagreement”. For this study, the 

tolerance for an agreement was set when both events overlapped at least 50% of the 

time. If two events did not overlap, it still counts as an agreement as long as their onsets 

differed by 5 seconds or less. Because no conventions or recommendations could be 

found in the literature known to the author, these settings are arbitrary. However, the 

author attempted to find a compromise between being overly rigorous and overly 

lenient in order to obtain valid results that could be regarded as valid. 

As a result, the range of the frequency of agreement lies between 66.67% and 

72.50%.  At least two third of the events were identified from both raters. In addition, 

the range of κ coefficients, from .58 to .67, indicates moderate reliability (Landis & 

Koch, 1977). For the most part, disagreement occurred without any systematic bias or 

recognisable patterns. However, sometimes the codes within a category had been 

mistaken. For example, events that indicated debugging were coded as an event when 
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participants had simply created the code, and vice versa. Because both codes are 

manifestations of the same latent construct (designing and applying an algorithm) this 

disagreement was not considered to be serious. 

3.6 Pilot study 

The pilot study was held two months before the main study, at the end of January 2017. 

Ten University students were randomly asked to participate. Most of the participants did 

not know each other but some were acquaintances and have met in the past. The average 

age of the participants was 26.10 years (SD = 4.93). Eight participants were male and 

eight had no prior programming experience. All participants spoke English fluently. 

Therefore it can be assumed that the sample for the pilot study was comparable to the 

sample of the main study. No one of the pilot sample was part of the main sample. 

The purpose of the pilot study was to test the procedure, some of the instruments, and 

the programming task. As for the main study, the pilot study was divided into two 

phases. In the first phase, participants solved the Bebras tasks online at home 

beforehand. In the first version, the Bebras tasks for the pilot study contained 13 items 

from the Australian version of the Bebras contest from 2014 and 13 tasks from 2015, 

(i.e., 26 tasks in total). Seven tasks were categorised as easy, 10 as medium, and nine as 

hard. The TONI-3 was not part of the pilot study because it is already a well-established 

instrument and there was therefore no need to test its usability. In the second phase, 

participants solved the programming task in classrooms at Macquarie University few 

days after they finished the online CT test. The programming tasks had to be completed 

in Scratch. So that all participants had the same level of knowledge about Scratch, the 

participants completed a 20 minutes tutorial before the actual task began. The 

instruction for the programming task was “Program a game or a story where a hero has 

to overcome a challenge in order to defeat the villain(s)”. 

For the Bebras tasks, participants had the opportunity to flag unclear tasks during the 

testing process. In addition, participants were asked to rate the level of difficulty of each 

task as easy, medium-hard, or hard. The average time a participant needed to complete 

the test was 81.25 minutes (SD = 16.87). With a total number of 26 tasks this means that 

on average participants needed slightly more than 3 minutes per item. On average, 

participants achieved a total score of 46.10% (SD = 11.32) from the maximum possible 



CHAPTER 3 – METHODS 
 

 

– 105 – 

score of 80 points. Some of the questions categorised as hard were challenging for most 

participants. Results for the Scratch programming tasks were less complex than 

expected. Many participants recreated the code they had seen in the tutorial before. 

Other codes and opportunities, which were not shown in the tutorial, were ignored and 

not used. Thus, the results of the programming tasks were less rich in terms of 

complexity than had been expected. Many actions indicating algorithmic design were 

observed and just little less often actions indicating decomposition was seen. 

Participants discussed quite intensively the task and how to approach it. However, any 

kind of utterance or actions with regards to abstraction was barely observed. The 

investigator concluded that the time for tutorials was not sufficient to give the 

participants an adequate overview of the possibilities in Scratch. 

To reduce the overall time of the test to 60 minutes and to avoid ceiling effects in the 

main study, some tasks needed to be removed. Selection of items to remove was based 

on two criteria. The first was usability of the tasks. Some tasks were unclear in their 

presentation or instruction and were flagged by some participants. The second criterion 

was solvability of the tasks. Some tasks were solved by only a few or none of the 

participants. Six of these items were deleted. The remaining 20 tasks were considered to 

be unambiguous and potentially solvable, and were therefore used as the final version of 

the CT test for the main study. In addition, the Scratch-tutorial time was doubled from 

20 to 40 minutes. The tutorial was created from introduction videos provided by 

Scratch. The programming tasks was slightly adjusted to “Program a story or a game 

where a hero has to overcome a challenge in order to defeat the villain(s)” because the 

new tutorials explained not only how to program a game but also a story. 

In addition, the CTBS was slightly changed as well. Some codes of some categories 

were renamed, for example, “discussing if then relations” was named “recognition of 

several steps” before. Moreover, the behavioural clue “talking about the immediate next 

step” was added to the category decomposition. Although any behaviour indicating 

abstraction was barely observed, the categories were kept for the main study because of 

theoretical importance of both facets. 
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3.7 Data analysis approach 

3.7.1 Units of analysis 

In phase 1, participant solved the Bebras tasks and completed TONI-3 online. That 

means that for each participant an individual value were obtained. In phase 2, 

participants were paired based their Bebras scores to solve the programming task in 

Scratch. That means that the remaining measures (i.e., the programming quality, the 

time they spent on CT-relevant behaviour, and the Dr Scratch score) were paired as 

well. That means that two participants always had identical values on these variables. 

These variables can be referred to as between-pair variables (Gonzalez & Griffin, 2012; 

Kenny, Kashy, & Cook, 2006). 

To have individual and paired data has implications for how the data are handled and 

analysed together. The Bebras score and the TONI-3-IQ can be analysed in two ways. 

First, variables can be analysed individually (i.e., the unit of analysis is each 

participant). Second, variables can be analysed pairwise (i.e., the unit of analysis is 

combined). In the latter case, the mean for the Bebras score and for the TONI-3-IQ is 

calculated for each pair. This variable is referred to as a within-pair variable and enables 

analysis of relationships with the other already paired variables. To assess how similar 

the values of the later combined variables indeed are, the level of “nonindependence” 

(Kenny, Kashy, & Cook, 2006, p. 26) is assessed by the Intraclass-Correlation-

Coefficient (ICC; not to be confused with ICC to estimate reliability). According to 

Kenny, Kashy, and Cook (2006), a high ICC indicates statistical nonindependence, 

meaning the scores within each pair are more similar than between the pairs. That 

would justify using the mean of the pairs for further analysis. A low ICC would indicate 

that the scores within each pair are not more similar than between the pairs. Under those 

circumstances, further analyses based on the mean over the pairs must be interpreted 

with caution. An explanation of ICC for nonindependence is provided in Appendix D. 

3.7.2 Addressing research question 1 

The first research question (RQ1) was: “How is CT applied when solving a 

programming task?” To address this question, participants were recorded while solving 

a task in Scratch. Recordings were then coded using the CTBS. Recordings were 

analysed based on the CTBS in INTERACT software (Mangold, 2018). This way, it 
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was analysed how often a specific CT-relevant behaviour was exhibited and for how 

long. 

In addition, coded events were analysed for any kind of specific patterns and whether 

it is possible to predict with a certain probability the occurrence of one CT-relevant 

behaviour given another CT-relevant behaviour. This kind of analysis is done by lag 

sequential analysis (LSA; Bakeman & Quera, 2012). LSAs are based on Markov chains 

and provide transition probabilities form one event to another in order to identify any 

typical sequences which may be more likely than others. To test whether transition 

probabilities are significant different from zero, Z-scores are calculated based on the 

difference between the empirical frequency and the expected probability. An 

explanation concerning how Z-scores are calculated is shown in Appendix E. Z-scores 

greater than 1.96 are regarded a statistically significant because the corresponding 

probability is less than .05 and consequently, indicate a pattern of actions of interest 

(Ivanouw, 2007). An example question for LSA would be, “Given a programming pair 

shows ‘debugging behaviour’, does this increase the probability of the pair showing 

‘testing behaviour’ next?”. 

3.7.3 Addressing research question 2 

The second research question (RQ2) was: “Can multimodal measurements of CT be 

relevant predictors for programming quality?” To address this question, the relationship 

between the two different measures for CT (Bebras score, and the time spent on CT-

relevant behaviour based on the computational thinking behaviour scheme) on one side 

and the programming quality (based on the programming rubric scheme) on the other 

side was analysed. Two kinds of analyses for the relationship were conducted. First, 

correlation coefficients for each CT measure and programming quality score were 

obtained. This revealed any linear relationship between each of the CT measures and 

programming quality alone. The correlation between programming quality and the 

measure of nonverbal intelligence (TONI-3-IQ) was obtained also to see whether 

programming quality shared variance with a measure for IQ as well. Second, it was 

analysed whether programming quality can be predicted by the different CT measures 

and TONI-3-IQ. This was done by conducting a multiple linear regression analysis. The 

regression analysis showed the (linear) relationship between programming quality and 

each predictor when the effect of all other predictors was held constant. Because Dr 

Scratch was considered as an evaluation for Scratch projects, the same analyses were 
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conducted with Dr Scratch mastery score as well. If any, positive correlations were 

expected and so all tests of significance for all analyses were conducted one-sided. 

3.7.4 Statistical analyses 

For most quantitative analyses, the free statistical programming language R (R Core 

Team, 2017) was used. Power analysis for regression were performed with G*Power 

(Faul, Erdfelder, Lang, & Buchner, 2007). Because of the small sample size, some 

analyses are based on both, parametric as well as non-parametric tests. Some of the 

measures were used for further analyses in regression models. Regression models rely 

on the assumption of normality; therefore, these measures were tested with the Shapiro-

Francia test (Royston, 1993; Shapiro & Francia, 1972) to determine whether their 

distributions differ significantly from normal. According to Yap and Sim (2011), the 

Shapiro-Francia test is the most powerful test among the most common tests for 

normality. Effect sizes are interpreted based on Cohen’s (1988) criteria. The threshold 

on significance for all tests used in this study was set at .05 based on the common 

convention. 

3.8 Research ethics approval 

Before the study was conducted and any data were collected, the research ethics 

committee from Macquarie University had to approve the procedure. To receive the 

approval, a number of principles had to be met: (1) describing of all potential 

participants and giving reasons for choosing them; (2) fair recruitment of participants 

without any pressure to participate; (3) minimising the risk of any harm to participants; 

(4) protecting participants’ privacy and confidential information; (5) obtaining 

participants’ consent; (6) fully debriefing participants and giving them appropriate 

information. 

The ethics committee were satisfied that all principles would be met and granted 

approval on 16 December 2016 (reference number 5201600918). Recruitment of 

participants for the pilot study commenced the same month. A research report 

concerning progress needed to be sent to the committee each year until completion of 

the research. A final progress report is due 2021. 
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4 RESULTS 

An overview of the descriptive results of Bebras tasks, TONI-3-IQ, programming 

quality, and Dr Scratch is first given before the research questions are being answered. 

The first research questions is then answered by an overview of the time participants 

spent on CT-relevant behaviour during programming task in Scratch, based on the 

CTBS and the LSA to reveal any patterns in the participants behaviour. The second 

research question is answered by correlations between programming quality and the 

different measures of CT. Also the results of the regression analysis with programming 

quality as outcome and the different CT measures and TONI-3-IQ as predictors are 

presented. The result chapter closes with correlation patterns between the different CT 

measures and TONI-IQ-3 as further analysis. 

4.1 Overview of measures 

The Bebras tasks as well as the TONI-3-IQ are obtained individually whereas the 

remaining measures are based on pairs. For the Bebras tasks and TONI-3-IQ that means 

that descriptive results of both measures are first presented as individual and then as 

paired scores. Results of remaining measures are based on pairs from the beginning. 

4.1.1 Bebras tasks 

4.1.1.1 Individual scores as the unit of analysis 

The maximum achievable score for the Bebras tasks (57) was set as 100 %. In total, 110 

students completed all tasks. One participant achieved 100 %; the lowest observed score 

was 21 %. The close range between mean, trimmed mean (10 %), and median indicated 

a normal distribution (Table 4.1). This was supported as well by visual inspection (see 

Appendix F) and the result of the Shapiro-Francia test with W’ = 0.99, p = .559. 

The average Bebras score did not raise any concerns that the test was too easy or too 

difficult. No ceiling or bottom effects could be found for any tasks (i.e., there was no 

items solved by everyone and there was no items solved by no one). There were three 

levels of difficulty for the Bebras tasks: easy, medium, and hard. As easy labelled tasks 

were expected to be solved more often than medium labelled tasks and medium labelled 

tasks were expected to be solved more often than hard tasks. Overall, this pattern could 
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be found in the results. However, as hard labelled tasks were slightly more often solved 

than expected. For a more detailed item analysis, see Appendix G. 

On average, participants were recorded as taking 198.74 min (SD = 635.01) to finish 

the Bebras tasks. The trimmed mean (10%) was 59.52 min and the median was 55.00 

min. The range to complete the whole test lay between 5 and 5607 min. The Shapiro-

Francia test revealed a significance deviation from the normal distribution, W’ = 0.26, p 

< .001, and skewness of v = 6.5 indicated that there were more extreme values on the 

right side of distribution than on the left (i.e., some participants were recorded as taking 

longer to finish the test). Because of skewed data, Spearman’s ρ were used to analyse 

the relation between achieved Bebras score and needed time. Analysis revealed a 

positive medium large and significant correlation, ρ = .40, p < .001, meaning the more 

time participants took to work on the Bebras test the higher their scores. 

Although the trimmed mean and the median were close to the expected maximum 

time of 60 min (see section 3.5.1), the other statistics indicate problems with extreme 

values. The fact that completion of the tasks was not supervised may be an explanation 

for these results. The very slow completion could be explained by participants taking 

breaks between. There are no assumptions breaks could have influenced the outcome of 

the test, so no participants were excluded from further analysis because they needed too 

long. 

4.1.1.2 Paired scores as the unit of analysis 

Based on their individual Bebras score, participants were organised in pairs to solve the 

programming task in Scratch together. To assess how close participants for each pairs 

generally were, the ICC over all 37 pairs was calculated. The significant ICC of .75, 

F(36,37) = 7.05, p < .001, indicated that the scores of both participants in each pair were 

indeed quite close to each other and can be interpreted as statistically “nonindependent” 

(Kenny, Kashy, & Cook, 2006, p. 26). This supported the approach to use the mean per 

pair for further analysis. The mean, the trimmed mean (10%), and the median of all 

pairs were only slightly higher than the values calculated individually (Table 4.1). 

Although the Shapiro-Francia test indicated a normal distribution, W’ = 0.97, p = .352, 

visual inspection leaded to the conclusion that this might not be the case (see Appendix 

F) and further analyses must be interpreted with caution. 
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Table 4.1 

Overview of Bebras Scores 

Individual Bebras scores Paired Bebras scores 

M (SD) 
Trimmed 

M (10 %) 
Mdn N M (SD) 

Trimmed 

M (10 %) 
Mdn N 

57.03 

(18.60) 
56.98 57.89 110 

58.93 

(17.17) 
58.71 61.84 37 

 

4.1.2 Test of Nonverbal Intelligence 

4.1.2.1 Individual scores as unit of analysis 

The TONI-3 was completed by 71 participants with a range for IQ from 76 to 140. As 

for the Bebras scores, TONI-3-IQ were normally distributed with nearly no difference 

between mean trimmed mean (10%), and the median (Table 4.2). In addition, the 

Shapiro-Francia test indicated a normal distribution, W’ = 0.97, p = .093, as well as the 

visual inspection did (see Appendix F). 

The general findings for the TONI-3-IQ were similar to the results of the Bebras 

tasks. Participants needed generally longer than expected. The expected maximum time 

to complete the TONI-3 is 15 minutes, but participants needed more than 10 min longer, 

M = 26.06 min (SD = 16.75). The non-normal right shifted distribution (W’ = 0.71, p < 

.001, v = 2.59) and the range from 5 to 103 min indicated that some participants may 

have taken breaks between working on different items. This may explain the 

surprisingly high average completion time. A significant positive and medium large 

correlation between TONI-3-IQ and needed time was found, ρ = .42, p < .001. Similar 

to the Bebras test that means the more time participants spent on the test the higher their 

TONI-3-IQ. As for the Bebras tasks, no participants were excluded from further because 

they needed longer than expected. Even though 5 min seemed to be quite fast, it is still 

plausible to finish the TONI-3 with a reasonable result in that time (Brown, 

Sherbeernou, & Johnson, 1997). Thus, no participants were excluded based on the 

TONI-3 test time. 

4.1.2.2 Paired scores as unit of analysis 

There are complete data of 33 pairs for the TONI-3. Although smaller than for the 

Bebras score, the significant ICC of .49, F(32,33) = 3.00, p = .001, indicated that the IQ 
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scores within pairs were quite close to each other and justified to use the mean over 

pairs for further analysis. The mean, trimmed mean (10%), and for the IQ over all pairs 

were all close to the results when the unit of analysis were individuals (Table 4.2). The 

visual inspection (see Appendix F) and Shapiro-Francia test, W’ = 0.97, p = .425, 

revealed no significant difference from normal. 

Table 4.2 

Overview of TONI-3-IQ 

Individual TONI-3-IQ Paired TONI-3-IQ 

M (SD) 
Trimmed 

M (10 %) 
Mdn N M (SD) 

Trimmed 

M (10 %) 
Mdn N 

112.49 

(14.17) 
113.12 113 71 

114.74 

(12.98) 
115.41 115 33 

 

4.1.3 Programming quality 

Because the programming assessment and Dr Scratch measurement were both based on 

the usage of different code chunks and sprites, a short overview of those Scratch metrics 

of al 37 pairs is given first. On average, pairs had M = 4.14 (SD = 2.32) sprites, used M 

= 44.73 (SD = 31.42) code chunks, and created M = 6.65 (SD = 5.18) scripts in the 

allocated time of roughly 40 min. Not all coding pairs used all kind of code chunks 

provided in Scratch. There were three pairs that did not use any kind of Level 2 chunks. 

In general, participants used significantly more Level 1 chunks (M = 28.81, SD = 19.25) 

than the Level 2 chunks (M = 17.32, SD = 14.07), t(33) = |5.79|, p < .001. 

As shown in Table 4.3, the full range of rating scale (0 to 4) was used by all 

programming pairs. The distributions of all five programming dimension had their 

centre at around 2 (satisfactory level). To be more specific, satisfactory means for the 

category extent and richness that overall there is “one thing” happening (i.e., sprites are 

mainly moving, changing, counting, switching, or making sounds). For the variety of 

code usage it means that on average the projects showed many different chunks but 

mainly Level 1 chunks and only few Level 2 chunks. A satisfactory Level for 

organisation means that the workspace of the projects looked tidy and scripts were 

organised, but there were some dead scripts as well. Satisfactory level for the dimension 

functionality means that Scratch projects worked as intended with only some minor 
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problems. For programming efficiency satisfactory means that a few code chunks and 

scripts were copied and the programming pairs used a few control code chunks overall. 

In total, the programming quality of all pairs over all dimensions was at a satisfactory 

level and visual inspection (see Appendix F) as well as the Shapiro-Francia test 

indicated that the weighted mean is normally distributed, W’ = 0.97, p = .369. 

Table 4.3 

Overview of Programming Quality Dimensions 

Programming 

dimensions 
M (SD) 

Trimmed 

M (10 %) 
Mdn 

Extension 1.86 (0.89) 1.81 2.0 

Variety 2.19 (1.02) 2.19 2.0 

Organisation 1.84 (0.87) 1.84 2.0 

Functionality 1.92 (0.95) 1.94 2.0 

Efficiency 2.08 (1.21) 2.10 2.0 

Weighted mean 2.00 (0.91) 2.03 2.2 

            Note. N(pairs) = 37 

 

4.1.4 Dr Scratch 

Descriptive statistics for all dimensions are shown in Table 4.4. The full range for 

assessment was used only for the dimensions synchronization and parallelism. In more 

detail, results for flow control indicated most pairs managed to use at least one kind of 

loop chunk to keep their workflow running more smoothly. Results for data 

representation indicated that most pairs coded actions for their sprites on a basic level 

(e.g., editing X- and Y-axes manually). Only a few pairs used a more developed 

approach such as sensing code chunks in combination with editing X- and Y-axes. 

Abstraction and problem decomposition for the most pairs were on a basic level as well. 

That means most pairs managed to have several scripts and more than one sprite but did 

not define their blocks and did not use clones. Many programming pairs used basic 

event code chunks such as “clicking green flag” to interact with the user, but most pairs 

actually used more developed approaches by ask and wait chunks or interacting chunks. 

Results for synchronization show a widespread use of different approaches. As many 

pairs used basic approaches (like using wait chunks) as higher advanced chunks (like 
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wait until and broadcast interactions). However, most pairs did not use any code chunks 

that implied any kind of synchronization in their coding. A similar broad result can be 

seen for parallelism where most pairs managed to achieve a basic level (i.e., two scripts 

were built with simple event code chunks). Only some pairs coded more than two 

scripts that ran for one sprite or coded even more advanced scripts with more codes 

running in parallel. Some pairs did not use any kind of parallelism in their coding. 

Finally, most pairs only used basic if-statements instead of more developed if-else 

statements, and no pair used logical operations. Many pairs did not use any of these 

code chunks, which caused a very low score for logical thinking. 

Overall, the average mastery score was 9.03 (SD = 2.70). Considering the range of 0 

to 24, the mean indicated a low but still developing level for the sample in general. 

Visual inspection (see Appendix F) and the Shapiro-Francia test revealed no significant 

difference from normal, W’ = 0.96, p = .210. 

Table 4.4 

Overview of Dr Scratch Dimension 

Dr Scratch dimension 
Absolute frequency of level 

M (SD) Mdn 
0 1 2 3 

Abstraction and 

problem decomposition 
2 35 - - 0.95 (0.23) 1 

Parallelism 5 21 4 7 1.35 (0.95) 1 

Logical thinking 15 20 2 - 0.65 (0.59) 1 

Synchronisation 14 11 1 11 1.24 (1.26) 1 

Flow control - 9 28 - 1.76 (0.43) 2 

User interactivity - 11 25 1 1.73 (0.51) 2 

Data representation 1 22 14 - 1.35 (0.54) 1 

Note. N(pairs) = 37 

4.2 Answering the first research question 

To synchronise all videos, the starting time for all videos was set when the investigator 

of the study said “Happy coding” in the recordings. The end time was set when the pairs 

saved their work at the end of the Scratch programming session and no further relevant 

activity was observed. Out of the 27 unproblematic and complete recordings, the 

longest video was 42 minutes and 54 seconds and the shortest video was 38 minutes and 
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19 seconds. The average video was 40 minutes and 5 seconds long. To control for the 

effect that video length varied slightly over the different pairs, the duration of each CT 

event were divided by the overall duration of the video to obtain the percentage over 

time. Overall, 18 hours were recorded, in which 1,438 CT-relevant activities were 

identified. 

It is notable that not all kinds of CT-relevant behaviour were observed (Table 4.5). 

No pair showed any behaviour that would indicate putting problems into pieces (part of 

decomposition) or identifying similar structures (part of pattern recognition). This is 

also true for any kind of behaviour that would indicate neglecting unimportant 

information. Pattern recognition could be identified only a few times during the whole 

recorded time and not for every pair. All expected behavioural clues for algorithmic 

design were seen in all recordings. Together, algorithmic design made ups to 75% of all 

coded events. Typical examples of coded events are seen in Table 4.6. 
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Table 4.5 

 

Overview of Coded Events and Time Spent on CT-relevant Behaviour 

CT component N (pairs) 

E 

(E/total number of 

event) 

Percentage of CT-relevant behaviour 

M (SD) Max – Min 

Decomposition 

Next step 26 110 (.08) 1.30 (0.78) 2.88 – .29 

Problem pieces - - - - 

Discussing if then 27 200 (.14) 7.41 (3.46) 16.00 – 2.00 

Overall 27 310 (.22) 7.77 (5.35) 22.61 – 1.03 

Abstraction – neglecting information 

Ignoring details - - - - 

Simplifying problems - - - - 

Overall - - - - 

Abstraction –pattern recognition 

Identifying similar structures - - - - 

Copy paste 12 30 (.02) 0.92 (0.98) 3.75 – .18 

Aha moments 10 26 (.02) 1.34 (0.90) 3.41 – .36 

Overall 17 53 (.04) 1.43 (1.05) 3.75 – .18 

Algorithmic design 

Putting code chunks 27 340 (.24) 21.01 (8.05) 35.21 – 3.42 

Testing 27 479 (.33) 7.88 (3.34) 16.23 – 2.63 

Debugging 27 253 (.18) 8.57 (5.82) 23.91 – .35 

Overall 27 1,072 (.75) 37.46 (12.26) 61.06 – 10.39 

CT overall 27  46.14 (14.96) 70.42 – 15. 74 

Coded events in total  1,438  

  Note: E = number of events 



CHAPTER 4 – RESULTS 
 

– 117 – 

In general, behaviour that indicated any kind of pattern recognition took less time 

than decomposing the problem or algorithm-designing behaviour. Just over the half of 

all 27 pairs showed any kind of recognising pattern behaviour. On average, pairs spent 

about one third of the Scratch session with putting code chunks together and nearly half 

of their time with any kind of CT-relevant behaviour. Visual inspection (see Appendix 

F) and the Shapiro-Francia test revealed no significant deviation from normality, W’ = 

0.97, p = .598, for the percentage of overall CT-relevant behaviour. 

It was expected that behaviour indicating problem decomposition would appear 

rather at the beginning of the session, when participants probably discussing the 

problem, while algorithmic design would be more dominant at the end of the session, 

when participants discussing possible solutions. For pattern recognition no specific 

accumulation of behaviour at any time was expected. To analyse what kind of CT 

behaviour occurs at which time during the Scratch session, the behaviour was visually 

mapped as seen in Figure 4.1. As expected, the beginning of the session any kind of 

problem decomposition was the most dominant behaviour along with non-CT relevant, 

such as private utterance (i.e., white areas in the Figure indicate no coded events). 

Interestingly, problem decomposition was not only showed at the beginning but 

throughout the whole session even at later stages. Contrary to expectations, algorithmic 

design was not only dominant at the end but throughout the whole session with some 

pairs started as early as minute one. As expected, pattern recognition was quite equally 

distributed over the whole session. As mentioned earlier, algorithmic designing was the 

most dominant behaviour from all observed behaviour for all pairs. There were long 

(i.e., putting code chunks together) as well as rather short periods (i.e., testing). This is 

different to behaviour indicating decomposition, which was mostly short events lasting 

only a couple of seconds. Exceptions of this are pair number 6 and 25. In both cases, 

participants intensively discussed the plot and mechanics of the game they intended to 

create. If pattern recognition was identified, it was only for a short period of time and it 

equally likely at the beginning, the middle, or end of the session as expected. 
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Table 4.6 

Typical Examples of Coded Events 

CT component Utterance or actions 

Decomposition 

Next step 

Pair 3: “Okay. Should we pick our hero and villain first?” 

Pair 4: “Okay! Next one. Who’s our villain gonna be?” 

Pair 13: “Oh! We need a sound effect now!” 

Discussing if then 

Pair 16: “When he says that [points on dialog bubble] we then wait [points on code chunk called wait] and 

that’s how we could do the delay, I think?” 

Pair 19: “Then it’s like when it gets to 10 points or something we add a second ghost and that’s like it gets 

to the second level and how the game could progress, I reckon.” 

Abstraction –

pattern recognition 

Copy paste Participants copy a chunk of code to reuse it somewhere else in their project 

Aha moments 

Pair 8: “Ah! When that one [points on a sprite] goes on that one [points on another sprite] the score goes 

like infinitely higher.” “Really? Oh!” 

Pair 9: “Oh, no! It happened because […] it’s set to when touching sprite1 then go to x. So when the 

purple [points on code chunk] is gone it has nothing to touch and it just keeps going! So we need to 

make to green one go!” 

Pair 10: “Oh! You know what? Because it’s not connected itself! It’s like the one.” 

Algorithmic design 

Code chunks Pairs put code chunks together 

Testing Pairs run their code  

Debugging Pairs alter their code after they realised their code does not work as intended 
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Coding pairs 

Figure 4.1. Distribution of any CT associated behaviour with green indicating decomposition, blue indicating abstraction, and red indicating 

algorithmic design. 
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It is worth mentioning that some pairs had more problems with Scratch than others. 

This resulted for some to delete everything in the middle of the session and created a 

new project. Also, some had difficulties with mathematical expressions. For instance, 

some pairs intensively discussed how to code their sprites so these are able to move in 

all direction. To do so there is a motion code chunk which refers to the Cartesian 

coordinate system using the parameter Y for moving up and down and X for moving 

right and left (Figure 4.2). Some pairs failed to make their sprites moving as they 

wanted because they lack the knowledge that X and Y stand for different directions. 

 

Figure 4.2. Motion code chunk using Y and X parameters. 

 

4.2.1.1 Lag sequential analysis of computational thinking behaviour 

To identify any patterns in behaviour, a lag sequential analysis (LSA) was conducted. 

LSA for overall CT components revealed that with any kind of CT-relevant behaviour it 

was very likely that it is followed by any kind of algorithmic design (XXX). This is no 

surprise due to the generally high occurrence of algorithmic design behaviour in the 

data. Although it is worth mentioning that only the self-occurrence (algorithmic design 

→ algorithmic design) was significant here. The only other significant sequence was the 

self-occurrence for decomposition. In nearly one third of the time, decomposition was 

followed by any other kind of decomposition (decomposition → decomposition). 

To have a deeper look, the relationships between the single behavioural clues were 

analysed as well (Table 4.8). Results showed that pairs nearly equally likely started to 

put code chunks together after they were talking about the immediate next step (next 

step → putting code chunks, .50)  or discussed if then relation regarding the mechanics 

of their Scratch project (if then → putting code chunks, .48). In up to 50 % of cases 

pairs showed any kind of decomposition, they started to work on their code afterwards. 

Pairs generally showed only occasionally copy paste behaviour and so its probability to 

observe was generally low. However, when it occurred, it was significantly likely to be 

after pairs were talking the immediate next step (next step → copy paste, .06). The clue 

“aha moments” was similar rarely as “copy paste”. It appeared with a low but 

significant probability after another “aha moment” in beforehand (aha moments → aha 
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moments, .08). In over one third of cases the pairs had “ah moments”, they were trying 

to debug their code (aha moments → debugging, .35). Pairs tended to test their code 

chunks every time they worked on it, either after they started to put them together 

(putting code chunk → testing, .69) or after they tried to debug it (debugging → testing, 

.82). Although debugging usually occurred after testing (testing → debugging, .44), 

pairs also significantly likely talked about the next immediate next step after they tested 

their code (testing → next step, .12). 

 

Table 4.7 

Transition Probability Over all CT-relevant Behaviour 

CT components 
Decomposition Abstraction – 

pattern recognition 

Algorithmic design 

Decomposition .32* .06 .62 

Abstraction –  

pattern recognition 
.13 .05 .82 

Algorithmic design .19 .04 .77* 

Note: *two-sided p < .05. 
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Table 4.8 

Transition Probability Over all CT-relevant Behavioural Clues 

CT component Behavioural clue 

Decomposition 
Abstraction – pattern 

recognition 
Algorithmic design 

Next step If then 
Aha 

moments 
Copy paste 

Putting code 

chunks 
Testing Debugging 

Decomposition 
Next step .14* .22* .03 .06* .50* .01 .04 

If then .11* .20* - .04 .48* .08 .09 

Abstraction – 

pattern recognition 

Aha moments .04 .12 .08* - .23 .19 .35* 

Copy paste - .10 - .03 .37 .47 .03 

Algorithmic design 

Putting code chunks .02 .09 .02 .02 .15 .69* .01 

Testing .12* .15 .03 .01 .24 .01 .44* 

Debugging .02 .04 - .01 .04 .82* .06 

Note: *two-sided p < .05. 
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4.3 Answering the second research question 

To analyse the relationship of programming quality and CT Pearson’s r were computed 

as a first step (Table 4.9). Significant positive correlations with programming quality 

were found for the unplugged CT measure (Bebras score) with a medium large effect 

size. Correlations between programming quality and time spent on CT-relevant 

behaviour overall and in particular of algorithmic design were found significant and 

positive with quite large effects. Remaining correlations with TONI-3 IQ and time spent 

on any other kind of CT-relevant behaviour were not statistically significant. 

Correlations between Scratch project evaluation (Dr Scratch mastery score) and 

remaining measures showed a similar pattern overall. Correlation between programming 

quality and Dr Scratch mastery score indicated a large positive and significant 

relationship, r = .64, p < .001. For visual inspection and correlations based on 

Spearman’s ρ see Appendix and I, respectively. 

Table 4.9 

Pearson’s r Correlations Between Programming Quality, Dr Scratch and Different 

Measures 

 

Programming 

quality 

Dr Scratch 

mastery score N 

(pairs) 
r p r p 

Bebras score .30 .038 .28 .048 37 

Time of CT-relevant behaviour 

(overall) 
.62 < .001 .61 < .001 27 

Time of decomposing .24 .113 .28 .079 27 

Time of pattern recognition .12 .326 -.17 .252 17 

Time of algorithmic design .63 < .001 .60 < .001 27 

IQ based on TONI-3 .23 .099 .13 .234 32 

   Note: one-sided p-values. 

 

Regardless of what kind of programming measure was used (programming quality or 

Dr Scratch), there is a small till medium large positive relationship with unplugged CT, 

which means the higher the score for unplugged CT assessment the higher the 

programming quality of the Scratch project. An even stronger relationship was found 
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for time. The longer and more often participants spent on CT-relevant behaviour (in 

particular working on their solutions) the better were their programming results. No 

such statement was possible for nonverbal IQ and programming. 

In a second step, two regression models were estimated with programming quality 

and Dr Scratch as outcome, respectively, and the CT measures and TONI-3 IQ as 

predictors. Standardised parameter estimations and tests of significance of the 

regression model are shown in Table 4.10. The regression models only partly supported 

the findings from the correlations with the relation between the Bebras score vanished 

for both programing outcomes, programming quality and Dr Scratch mastery score, 

even when taking into account the effect of TONI-3 IQ. Similar to the interpretation of 

the correlation, that means the more time participants spent on CT relevant behaviour 

the higher the programming quality of the Scratch project (when controlling for 

nonverbal IQ). 

Table 4.10 

Regression Models 

 Programming quality Dr Scratch mastery score 

Predictors β t-value (SE) p β t-value (SE) p 

Bebras score -0.41 -1.95 (1.24) .066 -0.14 -0.62 (4.27) .542 

Time of CT-relevant 

behaviour (overall) 
0.74 4.31 (0.01) < .001 0.70 3.86 (0.03) < .001 

TONI-3 IQ 0.36 1.82 (0.01) .084 0.11 0.53 (0.05) .599 

     

R² (R²adj) .50 (.42)  .44 (.36)  

F(3,20) 6.60 .003 5.29 .008 

Note: N = 24. The intercept is omitted for better overview. 

 

Post hoc analyses for both regression models were performed for power estimation. 

Based on the given parameters (N = 24, number of predictors = 3, effect size = R2
pro.qual  

= .50, R2
DrScratch  = .44, and α = .05), a power of > .99 for both models was achieved. 

Because of the small sample size, assumptions about linear multiple regressions such as 

homoscedasticity, multicollinearity, and residuals were rigorously checked (see 

Appendix J). No serious violations of any assumption could be found but the residuals 

when the outcome is programming quality are not normally distributed, 

W’(Y=programming quality) = 0.88, p = .011. In conclusion, the power of both 
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regression models were sufficiently high enough and the regression coefficients can be 

interpreted as “best linear regression estimations” (BLUE). 

4.4 Additional results 

Further analysis revealed a medium large positive and significant correlation for 

Bebras score and time, which means the higher participants scored on the test for 

unplugged CT the longer they spent on CT-relevant behaviour during the programming 

task, r(27) = ρ = .39, p = .022. 

Because of some (partially) conceptual overlaps between nonverbal intelligence and 

CT, the correlations between the TONI-3 IQ and CT measures were obtained as well 

(Table 4.11). As expected, the correlation between TONI-3 IQ and Bebras score was 

significant and positive with a medium and large effect sizes. The higher the 

participants’ nonverbal IQ the higher they scored on in unplugged CT. No correlation 

between TONI-3-IQ and any CT-relevant behaviour was significant. Because data for 

the Bebras score and TONI-3-IQ were originally obtained individually, correlations 

based on individual scores were computed as well. However, with r(71) = .53, p < .001, 

and ρ(71) = .57, p < .001, results were similar to paired ones and did not alter the 

overall interpretation that nonverbal IQ and unplugged CT are highly positively 

correlated. 

Table 4.11 

Pearson’s r for TONI-3-IQ and Different Measures 

 
TONI-3-IQ N 

(pairs) 
r p ρ p 

Bebras score .52 .002 .49 .002 33 

Time of CT-relevant behaviour 

(overall) 
.06 .767 .09 .346 24 

Time of decomposing .01 .963 -.06 .382 24 

Time of pattern recognition .38 .157 .35 .103 15 

Time of algorithmic design .05 .811 -.01 .981 24 

       Note: p-values are one-sided. 
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5 DISCUSSION 

5.1 Summary of the study 

In this study, the goal was to analyse the role of CT when working on a programming 

problem. Because there is still discussion about what CT actually is, the first task was to 

develop an operational definition and to identify the core elements and major skills 

associated with CT. To do this, major publications with the goal of defining CT by 

experts from CS (education) as well as systematic literature were considered. This led to 

the conclusion that CT is a problem-solving approach, including decomposing a 

problem, the ability to engage in abstraction, and the ability to understand and design 

algorithms in order to create a solution to a problem. Because CT emerged originally 

from CS and is also considered to be a thought process, the CT components were 

analysed based on their meaning in CS and psychology. This way an explanation was 

given concerning why these skills are considered to be crucial, what they could look 

like, and what kind of potential behavioural clues could indicate CT. 

In a next step, the relationship between these skills was discussed to determine at 

which time during the overall problem-solving process the CT-associated skills might 

be predominant. Moreover, the two most dominant methods for assessment with 

different perspective and implications on CT were discussed. The one were the Bebras 

tasks. The Bebras tasks are short quizzes, which claim to measure CT without using any 

kind of technology and thus are referred as “unplugged methods”. The other method 

was Scratch. Scratch is a visual programming environment, which claims to measure 

CT by providing an opportunity, in which users can work free and creatively on their 

projects. 

To answer the RQ1 (how CT is applied when solving a programming task) and RQ2 

(what kind of CT measurement might be relevant for predicting programming quality), 

participants solved a set of slightly altered Bebras tasks and worked together in pairs on 

a programming task in Scratch. The solving processes of the Scratch task were analysed 

based on the time participants spent on CT-relevant behaviour. Participants’ solutions 

were then evaluated and which CT measures were the best predictors for programming 

quality were identified. In addition, a measure for nonverbal intelligence was assessed 

to control for potential confounding effects. 
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5.2 Discussion of the first research question 

5.2.1 No or only barely abstract thinking 

Analysis of the recordings revealed that abstraction and to some extent problem 

decomposing were difficult to observe. Based on the literature review, two 

subcomponents of abstract thinking were identified: neglecting details and recognising 

patterns. Neglecting details was operationalised as any kind of behaviour that would 

indicate some kind of simplification of, or actively focussing on, (sub)problems, 

functions, codes, or solutions, or any other kind of entity. However, nothing like this 

was observed in the recordings and so there was no behaviour observed that would have 

indicated people were actively neglecting information while working on a problem. 

Recognising pattern was operationalised by actions or utterances referring to identifying 

similar characteristics of entities, copy and paste actions, and aha moments. No 

behaviour was found that would have directly indicated participants identified similar 

structures, and aha moments and copy-paste procedures were observed only rarely. 

There are various possible reasons for this. First, participants did not show any kind 

of this behaviour. Second, participants are able to problem decomposition and thinking 

abstractly but were not able to utilise it. On one hand, it seems unlikely that participants 

though abstractly to only a small extent. Abstract thinking is an inherent part of human 

cognition (Rosch, 1978). New experiences are constantly compared with prior 

knowledge to coordinate and consolidate new information. For example, humans are 

able to classify an unknown animal by simply comparing it with known animals (Piaget, 

1952). By doing so, given information is being evaluated whether it is important or 

unimportant for a particular categorisation. The same is true for the situation in the 

Scratch sessions. There are many instances in which participants could have abstracted 

information and recognised patterns, particularly because, in this study, participants 

completed a tutorial beforehand. It is very likely that they recognised at least some 

(sub)problems or (partial) solutions from that. 

On the other hand, it must be pointed out that participants were not directly 

instructed to use CT. Participants had no prior knowledge in programming or CS related 

concepts and were not familiar with Scratch. It is also very likely that the concept and 

associated components such as abstract thinking were unknown for the most 

participants, and, as a result, they did not actively engage in any CT-relevant behaviour. 
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Maybe participants were able to identify patterns over instances, but they were not able 

to utilise them for the current task. 

Vyn Dyne and Braun (2014) developed a CT workshop to prepare students for more 

advanced CS-relevant topics. The workshop was concerned with problem solving and 

covered topics such as decomposition, abstraction, analysis of trends and patterns, and 

algorithm development. These topics are similar to the CT components as used in this 

study. Results of later evaluation showed a significant improvement in analytical 

thinking and reasoning skills and logical thinking. No such improvement was found for 

students in a control group. Results implicate that CT does not occur naturally but must 

be trained. 

Touretzky, Marghitu, Ludi, Bernstein, and Ni (2013) also designed a framework to 

foster understanding of fundamental programming concepts. They did this by 

introducing different VPEs (i.e., Alice, NXT-G, and Kodu) to 31 students. All of the 

used VPEs have similar commands and provide similar opportunities to users but 

named differently. By using the same concepts in various VPEs and various names it 

was hoped students would abstract the essences of the mechanism from syntactic details 

like names. For instance, WHEN/DO in Kodu are SWITCH blocks in NXT-G and are 

IF/THEN commands in Kodu and they all can be seen as conditional commands (i.e., 

the essence of mechanism) even though they look different (syntactic details). Results 

suggested that students not only enjoyed learning in different VPEs but also managed to 

switch smoothly between them. Authors concluded that participants indeed recognised 

patterns over the different VPEs. So, different VPEs were used in order to enhance 

participants abstract thinking abilities, which was found to be a successful approach. 

Again, this result also indicated that abstraction does not occur naturally in such 

context. 

A similar approach was used by Basogain, Olabe, Olabe, and Rico (2018) in which 

several CT skills was taught in preparation courses for novice CS students. In one 

session, students needed to create a project in Scratch with four main scenes and two 

sub scenes. This approach is similar to the task used in the current study, in which 

participants needed to create a story or a game with different facets. The core idea of the 

task in the study of Basogain et al. (2018) was to introduce the students to a top-down 

design process in which students needed to decompose the main task in several sub 

tasks. Students were supposed to recognise that they needed to think from the goal 

backwards. In another session, abstract thinking was promoted by giving the students 
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the task to design a project in Scratch in which students needed to program their own 

customised code chunks with the goal to draw geometric patterns with various 

parameters. It was hoped that coding their own code chunks requires students to abstract 

the functionality of already implemented code chunks. Students would need to compare 

what they have and what they need and are so forced to neglect unimportant details but 

focus on the important information. Results showed that students indeed improved their 

grades and gained confidence in their CT skills during the time of the courses. 

It is important to improve students’ problem decomposition ability and context 

relevant abstract thinking because it has been shown that both have positive impacts on 

programming ability. Alaoutinen (2012) analysed different coding style by 145 CS 

students. One dimension described how information are processed with “being active” 

and “being reflective” as end poles. Active coders were described as someone who 

tends to need to actively doing something in order to processed information while 

reflective coders tend to think tasks through before they start to work (use more 

decomposition and think more abstractly). One result of the study was that reflective 

coders had better grades in programming. This underpins the role of decomposition and 

abstract thinking. In the current study, most pairs would be labelled as active coders 

based on Alaoutinen’s coding style taxonomy. It is possible that more decomposition 

and abstract thinking could have led to better programming quality. 

This leads to the conclusion that at least some crucial CT related skills (i.e., proper 

problem deconstruction and thinking abstractly in a programming session) do not 

appear naturally and need to be introduced and trained properly. One session might not 

be enough to observe them. 

5.2.2 Rushing to the solution 

A remarkable finding is that all kinds of CT associated behaviour were seen nearly 

equally distributed over the whole Scratch sessions. Based on the literature, it was 

concluded that decomposition is more associated with the problem itself whereas 

algorithmic design is more associated with finding and creating a solution. Abstract 

thinking, in contrast, was associated with both, the problem in a sense of recognising 

pattern in sub problems and the solving process in sense of recognising patterns in 

possible different solutions. Therefore, it was expected that any kind of behaviour 

associated with problem decomposition was more likely to appear at the beginning of 

the Scratch session while any kind of behaviour regarding possible solutions would 
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have been observed subsequently. Behaviour indicating abstract thinking was expected 

to see equally often over the whole programming task. However, as the visual 

inspection revealed, a slightly different pattern of CT associated behaviour was 

revealed. Although problem deconstruction was indeed seen more often and longer at 

the beginning, such behaviour was also frequently shown throughout the whole session. 

Also, actions indicating working on the solution (i.e., algorithmic design) started from a 

very early stage and were shown constantly until the end. Pairs also did not decompose 

the problem only at the beginning but over the whole session. In general, pairs did not 

spend much time discussing the problem in comparison to working on the solution. 

They spent over one third of the overall Scratch session with algorithmic-associated 

behaviour and spent much less time on decomposing and abstracting. Results indicated 

that pairs were working on the solution without much thinking about the task or the 

solution itself. 

This is a typical behaviour for novice programmers (McDonald, 2018). Novices tend 

to dive straight into the task without thinking what they want to accomplish. They think 

trial and error is an appropriate way to produce results. That leads to the idea that this is 

a more efficient way to produce a result rather spending time designing a computer 

program on paper in form of flow charts to organise their ideas and thoughts. However, 

McDonald (2018) further concluded that is always better to structure the program on 

paper first. He compared programming without a plan with constructing a building 

without blue prints. Of course it is possible to just pile a bunch of bricks and creating a 

house just by doing it. It will fulfil the purpose of giving shelter but it also may have 

some unfortunate features like skewed walls or a bathroom connected to the dining 

room. It is the same with programming. Of course it is possible to create a program by 

just writing some code or putting some code chunks together. It also may fulfil its 

purpose and work as intended. Nonetheless, as Martin (2009, pp. 200–201) emphasised 

the primary goal is not to get the program working. It is about planning ahead and 

knowing the goal of the program. This involves the CT crucial such as problem 

decomposition and abstract thinking. Novice programmers and people, who do not have 

any experience in programming like the participants in this study, lack these kinds of 

CT associated skills. 

Results of the LSA revealed that, when pairs showed any kind of decomposing 

behaviour, they usually then started to put code chunks together. The probability of 

discussing the next step was highest when they had tested their code immediately 
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beforehand. Also, when they worked on their solution it was very likely that their next 

behaviour would have something such as testing or debugging their code to do with the 

solution. In general, the circle of putting code chunks together, testing, debugging, and 

testing again showed participants were primarily focus on their coded solution. None of 

the pairs stated clearly what kind of steps they needed to make through the whole 

process. For instance, many steps suggested by Jonassen’s (2000) problem-solving 

model for ill-structured problems (representation of the problem-space; identifying and 

clearing alternatives, monitoring the problem space) were not observed. 

These results are comparable to results in prior studies. Falloon (2016) conducted a 

study to investigate what kind of CT processes of young children (5 to 6 years old) are 

mostly evident and how these processes are applied when working on a task that was 

similar to the task used in this study. The second most frequently exhibited behaviour 

was associated with debugging and testing. In addition, children were mostly occupied 

with the same kind of behavioural circle: creating, testing, debugging, and testing again. 

These results imply that this kind of behaviour might be typical people who have no 

prior knowledge about programming or CT. 

In conclusion, pairs rushed to the solution with little forward planning. Issues were 

most often discussed only when they arose. Participants worked on their code after aha 

moments and showed copy–paste behaviour mainly after discussing a subsequent step. 

Pairs often did not properly discuss what their goal was but started to work on a solution 

from the beginning. It is possible that this kind of behaviour might be typical for this 

kind of tasks if not instructed otherwise. 

5.2.3 Some prior mathematical knowledge required 

The participants of this study had no significant prior programming knowledge. Thus, to 

analyse CT during a programming session, the programming environment had be easy 

for novices to learn. Scratch seemed to be a good choice because of its low threshold 

and easy access. Although Scratch can be used without programming skills, it still relies 

on some knowledge of mathematics. For instance, some pairs failed to code their sprites 

as they might have wanted to because they did not know about the Cartesian coordinate 

system with X representing horizontal movements and Y representing vertical 

movements. This result bolsters the opinion of some who argue that CT overlaps, to at 

least some extent, with mathematics (Shute, Sun, & Asbell-Clarke, 2017). Others even 
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link CT directly to the knowledge of the Cartesian system (Mensing, Mak, Bird, & 

Billings, 2013). 

Specific knowledge is an important factor for successful problem solving, though 

(Bransford & Stein, 1993, p. 4). People’s ability of solving problems is strongly 

connected to the amount of knowledge about the area of the problem. Bransford and 

Stein (1993) further stated that the effect of general problem solving skills are often 

overestimated while the role of knowledge is underestimated. People tend to make 

inference of someone’s level of intelligence when observing failed or successful solving 

a problem although the reason might be simply lie in the level of knowledge. The same 

might be true about CT. As intelligence, CT is seen as a problem-solving approach not 

necessarily limited to a specific area. Failing or being successful in solving a 

programming problem does not only depend on the level of CT but also on the level 

knowledge a person has about the problem area. 

5.3 Discussion of the second research question 

Two different measures for CT were used to investigate the relationship between 

programming quality and CT. One measure, the Bebras tasks, is considered as 

unplugged method and is based on abstract problems with no obvious link to CS 

concepts. The other measure, the CTBS, focused on behaviour participants showed 

while solving a programming task. Both CT measures were positively correlated with 

each other with a medium large effect size. This indicates a certain level of convergent 

construct validity. Convergent construct validity refers to whether a test is measuring 

the construct it claims to be measuring (Cronbach & Meehl, 1955) and is established by 

comparing different measures of the same construct with each other as done in this 

study. Correlations between both CT measures indicate that they may tap the same 

construct, but it is possible that they do this from different perspectives. While the 

Bebras tasks capture the more abstract parts of CT the CTBS covers more the later stage 

of the solving process when people design and implement solutions. The “only” 

medium large effect size might reflect these different perspectives on the same 

construct. 

Both CT measures were positively correlated with programming quality. As a 

consequence, a general interpretation could be that the higher the level of CT the better 

the programming quality. However, this interpretation would be premature because the 
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regression analysis revealed that only one—the time participant spent on CT-relevant 

behaviour—was a significant predictor of programming quality when controlling for 

other variables such as the level of nonverbal intelligence and other CT measure. A 

second regression analysis with Dr Scratch mastery score as a measure for evaluation of 

Scratch projects supported this finding. Again, the reason why the two different CT 

measures predict programming differently well might lie in different perspectives the 

measures have on CT and the perspective might mediate the relationship with 

programming. 

The Bebras tasks might focus on the abstract parts of CT. Correlations between the 

Bebras score and the TONI-3-IQ were high regardless of whether the units of analysis 

were individual or paired scores or the correlations were based on Pearson’s r or 

Spearman’s ρ. As for the most instruments for nonverbal intelligence, TONI-3 is based 

on pictures in which participants need to identify similar instances and recognise 

patterns. Many of the Bebras tasks are designed in a similar fashion. The original idea 

behind the Bebras tasks was to create a test about CS concepts “independent from 

specific systems” to avoid contestants being dependent on prior knowledge of any 

specific IT system (Dagienė & Futschek, 2008, p. 22). This led to some items being 

similar to those of nonverbal intelligence tests. 

As found in some prior studies, this also caused confusion for some Bebras 

contestants. Vaníček (2014) asked participants for their opinions about the Bebras tasks. 

Some questioned the purpose and validity of the test, stating, “I wonder what the contest 

questions have to do with informatics. Maybe nothing at all?” If (at least some) Bebras 

tasks are similar to those of nonverbal intelligence tests and there is a high and 

significant positive correlation between both measures, it is possible that both tests 

measure similar constructs. This would explain why the relationship between the Bebras 

scores and programming quality vanished when controlled for TONI-3-IQ. The Bebras 

tasks are validated by several studies (Dagienė & Stupuriene, 2016; Dolgopolovas, 

Jevsikova, Savulionienė, & Dagienė, 2015; Lockwood & Mooney, 2018) but none of 

these studies controlled for any potential confounding effects on similar psychological 

constructs such as nonverbal intelligence. So far there is only one study in which the 

potential relationship between the Bebras tasks and nonverbal intelligence has been 

discussed with similar findings to this study (Román-González, Pérez-González, & 

Jiménez-Fernández, 2017). Thus, it is possible that the Bebras tasks indeed measure CT 

but mainly the facet of abstract thinking related to pattern recognition. 
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It is possible that this rather abstract part of CT alone is not a good predictor for 

programming ability because more cognitive effort is required to transfer the needed 

skills to apply in a different situation and setting. According to the authors of the Bebras 

tasks, participants need to apply the same cognitive abilities as needed for programming 

tasks such as problem deconstruction, thinking abstractly, and being able to understand, 

design, and evaluate algorithms (Dagienė & Sentance, 2016). However, the content of 

the Bebras tasks (as for the most unplugged methods) is very different from real 

programming tasks. Even though the same skills are required to solve both kinds of 

tasks, the Bebras tasks as well as the programming task in this study, it would require a 

high level of transferability from these abstract logical quizzes to real applied 

programming situations. This is similar to the conjecture playing Sudoku or other brain 

training games would generally improve cognitive abilities. However, that is likely not 

the case. 

Stojanoski, Lyons, Pearce, and Owen (2018) tested this hypothesis by designing an 

experiment with a treatment and a control group. Participants of both groups played a 

game with the goal to identify correct items with logical clues given as support. The 

task was adaptive, which means it increased its difficulty automatically along with the 

increasing capabilities of the participants in order to being constantly a challenge. The 

treatment group were trained in this game for over two weeks while participants of the 

control group played the game only in a pre and post session. To test for the 

transferability of what participants might have learnt during the test session, a second 

game was implemented. The gameplay mechanics and goal of both games were the 

same but the given clues for the second game were changed so slightly different 

cognitive abilities were required. With no surprise, participants of the treatment group 

scored higher in the trained game than participants of the control group, which means 

the cognitive ability required for this game has indeed improved. However, no such 

improvement was found for the non-trained test game. Performance of the treatment 

group was similar to the control group. A second experiment with a different game and 

altered game mechanics supported the original finding. Authors concluded that despite 

the improvement in the trained games, there is no evidence for any transferable gains in 

performance for untrained tests was found. The authors also emphasised how the overall 

design of the trained and test games was quite similar and still no transfers in rather 

simple cognitive abilities such as recognising and identifying could not be found. 

However, that does not mean that no transfer from any cognitive training is possible. 

Kelly et al. (2014) analysed in a meta-study randomised controlled trials about the 
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effectiveness and transferability of cognitive trainings. In total, 21 studies reported some 

sort of transfer effects but were constraint on rather simple cognitive abilities (i.e., 

executive functions such as processing speed, memory and recall measures). Results 

were found most reliable within the same cognitive domain but effects were rather 

small. With no surprise, the more different the trained tasks were to the tested situation 

the smaller the effects. Thus, it is unlikely that tests such as the Bebras tasks have much 

of an impact on programming. The comical, logical quizzes of the Bebras contests are 

very different from programming tasks. Using them the Bebras task or other unplugged 

methods might increase people’s motivation, but it is questionable whether the 

developed and improved skills can be useful generalised to other areas. 

In contrast to the Bebras tasks, the focus of the CTBS lies on participants’ actions. 

Correlations indicated that the more participant spent on CT associated behaviour the 

better the programming quality of their Scratch project. It must be pointed that this was 

mostly due to algorithmic design and algorithmic design is the more hands-on activity 

of CT. As stated before, participants were working on their code from the start of the 

session and so the interpretation would be the longer and the more participants coded 

the better. Even after controlling for other measures, this relationship was still 

significant and persisted in both regression models with programming quality and 

Scratch project evaluation as outcome, respectively. 

These results indicate that hands-on tasks are more useful to enhance CT skills than 

more abstract ones. Such hands-on practices can be designed in VPEs such as Scratch. 

Indeed, Scratch has been found to be an effective tool for teaching CS concepts and 

programming in the past. In a more recent study, Chen, Haduong, Brennan, Sonnert, 

and Sadler (2019) asked over 10,000 second and fourth years CS students about their 

experience with VPEs and their first “real” classic programming language. Results can 

be summarised that VPEs have positive effects on programming. Xu, Ritzhaupt, Tian, 

and Umapathy (2019) conducted a meta-analysis on 13 studies about the effect VPEs 

have on cognitive and affective student learning outcomes. Cognitive outcome were 

measured by achievement in sorts of problem-solving often based on Bloom’s 

taxonomy and improvement in programming skills. Even though effect sizes were 

generally small, results revealed a positive effect in favour of VPEs on cognitive 

measures. Also direct effects of using Scratch to teach programming has been found. 

Armoni, Meerbaum-Salant, and Ben-Ari (2015) investigated the effects of Scratch 

courses on the level of understanding of CS concepts such as conditional or repeated 
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executions and handling of variables. For this, high school students from four different 

schools were introduced with a Scratch preparation course for programming. Results 

can be described as small but in favour for Scratch. Students who had worked with 

Scratch had fewer difficulties and needed less time to learn new concepts and had a 

better understanding of the concepts. Scratch is a more hands-on tool than the more 

abstract tasks of the Bebras contest and therefore less cognitive effort is needed to 

transfer to solve programming tasks which might explain the strong relationship with 

the time participants spent on CT-relevant behaviour and programming ability.  

In conclusion, the answer to the question how CT and programming quality are 

related to each other should be simply it depends. To solve the Bebras task, the same 

CT-related skills are required as the CTBS has discovered during the programming 

session. However, the focus of the Bebras tasks lies more on the abstract parts of CT 

while the CTBS focus more the hands-on part. It turned out that, if the view on CT is 

rather focusing on the abstract parts, only a little relationship can be found, which 

vanished after a more behaviour-focused measure is taken into account. The reason for 

this might lie in the level of cognitive effort needed to transfer CT related skills. 

5.4 Practical implications 

Results of previous studies implied that CT must be trained to be useful in a 

programming situation and results of this study support this implication. Therefore, in 

the following an overview of a developing educational framework about CT skills is 

presented. 

CT involves different skills such as problem decomposition, thinking abstractly and 

algorithmic design. Results of the current study indicated that these skills should be 

taught in a programming setting in order to keep the level of transferability low. 

Unplugged methods alone might be not enough to teach CT effectively and should not 

be used as a stand-alone teaching unit (Bell & Vahrenhold, 2018). Instead, it should be 

embedded into the curriculum. If the goal is to use CT skills to solve programming tasks 

then CT should be included into programming curriculum. It should not be assumed that 

this alone would raise a general level of CT and people would be suddenly able to use 

CT in different settings. If, for example, CT is supposed to be a useful tool for other 

STEM areas such as biology or physics as Wing original stated (Wing, 2006) then it 

should be implemented in curriculum about biology and physics, respectively. 
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Not only the context plays a role but also the target group. Often the target group of 

CT are younger students. In this case, VPEs have been found to be an effective tool in 

order to enhance CT for programming purposes. However, Xu, Ritzhaupt, Tian, and 

Umapathy (2019) concluded that the effectiveness of VPEs depends how they are 

implemented in the educational setting emphasising the importance of the correct 

educational framework. Just letting students working in VPEs will barely increase their 

level of CT or enhance their level of understanding about programming concepts. Chen, 

Haduong, Brennan, Sonnert, and Sadler (2019) critically remarked that VPEs are not 

generally superior to classic programming languages with regards to learning 

programming, though. VPEs are more effective when introduced at an early age while 

no such positive effects were found when students were already teens or older. Based on 

these results, Chen et al. (2019) further questioned the recent trend of using VPEs to 

introduce programming concepts or teaching CT for university students.  

5.4.1 Problem solving 

Computational thinking is just one problem solving approach out of many. It is suited 

for a specific kind of problems. Thus, it is important to teach the scope but also its limits 

of CT and what kind of other problem solving strategies there are. CT is considered as 

problem-solving approach especially useful for ill-structured problems. So students first 

need to learn the taxonomy of problems and what it means to face an ill-structured 

problem in comparison to a well-structured one. A revised version of Jonassen’s (2000) 

model for solving ill-structured problems might be a first step. Jonassen’s model 

defined seven steps (1. representation of problem space, 2. identifying and clearing 

alternatives, 3. generating possible solutions, 4. viability of alternative solutions, 5. 

monitoring the problem space, 6. implementing and monitoring solutions, 7. adapting 

solutions), which can roughly be summarised in three stages: planning, implementing, 

and evaluation. 

Pairs in this study barely talked about the problem itself. This might be a sign they 

lack attention for the planning stage. During this stage, participants should first be sure 

to fully understand the problem and being clear about the overall goal. This is meant by 

representation of the problem space. The task in this story was to program a story or a 

game where a hero has to overcome a challenge in order to defeat the villain(s). A first 

step would be to clarify what these elements mean to the problem. What do villain, 

overcome a challenge, and hero mean in this context? Bransford and Stein (1993) also 
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emphasised the role of prior knowledge and experience especially for solving ill-

structured problems. So the planning phase also includes comparing similar problems in 

the past with the current situations. What are some similarities and what are the 

differences? This is when problem solver use abstract thinking and trying to identify 

similar structures while ignoring unimportant details like the context of the past 

problems. 

Usually there might be more than one possible solution for ill-structured problems. 

This can be overwhelming and can cause some confusion. Therefore, it is crucial to 

focus on one goal and one approach at a time. To decide what possible solution should 

be tried first an evaluation system should be created based on knowledge and own 

beliefs (Jonassen, 2000). For instance, if working on one possible solutions takes too 

long because unforeseeable problems occur, it might be wise to switch to another 

possible solution. Some pairs in this study did exactly this because they became 

frustrated with their first attempt. An evaluation system helps to identify faster suitable 

solutions and can guide through the whole process. 

In summary, in order to use CT effectively for programming, students need general 

knowledge about different types of problems and what solving steps are needed. This 

includes clarifying the problem representation and creating an evaluation system for 

possible solutions. Ill-structured problems usually have more than one possible solution, 

which means students need to be prepared that solutions might require adjustment and 

students should not fear to go back to prior steps of the process. 

5.4.2 Decomposition 

The core idea of problem decomposition is to identify the different levels a problem can 

have. Based on Lee and Anderson's (2001) model of task analysis, there are three main 

levels. At the unit-task level, the main goal is divided into several subgoals which can 

mainly be completed mostly independently. The level below is the functional level in 

which these subgoals are further deconstructed. The lowest level is the keystroke level 

which always represents the most atomic unit. Problem at this level cannot be further 

decomposed. The task used in this study could be divided into the following subtasks on 

the unit-level: (1) develop a plot, (2) create a hero, and (3) create a villain. These tasks 

can be further deconstructed into smaller chunks on the functional level. Developing a 

plot, for example, can be further deconstructed into developing (1.1) a beginning, (1.2) 

an end, (1.3) a challenge, and (1.4) a turning point. The usage of code chunks in Scratch 
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and creating coding sequences would be representing the keystroke level as the lowest 

one. 

In order to teach such problem deconstruction approach, the benefits should be 

emphasised such as reduction of complexity. Problems of the lower levels appear to be 

less complex and so less cognitive effort is needed to achieve a subgoal. In addition, it 

is possible that identified subgoals can be achieved independently, which may increase 

the efficiency of the overall problem-solving process. As mentioned before, knowledge 

plays a crucial role in any kind of problem solving. This is especially true for the lowest 

level in problem decomposition. The lowest possible level is always dependent on the 

system in which it is carried out, which also means that the problem solver has enough 

knowledge about the system in order to plan the steps on the lowest level. Or to put it 

differently, if a problem solver encounters some serious difficulties to plan throughout 

the problem-levels, this might be a sign that some more knowledge about the system is 

needed before attempting to create any solutions. 

Interestingly, problem decomposition has been perceived by students as one of the 

most difficult CT skill to master (Selby, 2015). Although the concept of problem 

decomposition seems often straight forward, students often struggle to use it effectively. 

Whether students are able to successfully deconstruct a problem appears to be 

dependent on the level of familiarity of the problem. Selby further stated that it is more 

likely students recognise the potential subgoals and different levels when students 

already know the solution or understand the problem well. Another reason why problem 

decomposition appears to be a challenge might be that the connections between the 

levels are not clear to the problem solver. Identifying subgoals on different levels is not 

enough. It is crucial to recognise how subgoals and levels are linked with each other. A 

problem solver needs to fully understand top-down process of decomposition. The 

results of this study show that was likely not always the case. Many students talked 

about the next immediate step to do but no serious top-down process was apparent. 

Selby’s results and results of this study imply that decomposition should be trained 

on familiar and maybe already solved problems. It might be then easier to understand 

for students what subgoals on which levels there are and how these are connected to 

each other. This way the full top-down problem decomposition process might come 

clear to the students. 



 

– 140 – 

5.4.3 Abstraction 

The core of abstract thinking is being able to understand the relationship between 

different instances. It means to be able to see through the unimportant details and to 

recognise the deeper lying structure what these instances have in common. One way to 

enhance this ability is using analogies (Anderson, 2015, pp. 188–191). Analogy can be 

described as a process in which specific operators are taken from one problem and are 

mapped onto a solution to another problem. A classic example of an analogy is 

Rutherford’s model about atoms in which electrons surround the nucleus of atoms the 

same way the planets surrounding the sun. Although the elements in both instances are 

different, the structure and relation of these elements remains the same. 

The underlying structure of abstract reasoning is logical reasoning and so Nickerson 

(2011) also promoted teaching (formal) logic in order to enhance abstract thinking 

abilities. Logic reasoning provides a clear sequence of arguments with is also crucial for 

understanding algorithmic solutions. In addition, programming concepts are also 

strongly based on logic such as Boolean algebra. Nickerson critically stated, though, 

that logic is difficult to teach and transfer of this concept is particularly low. To keep the 

transfer level low, teachers should create simple and short tasks in case learners are not 

familiar with formal logic. 

In general, abstract thinking has proven to be particularly tricky to teach because of 

its known high dependencies of context (Kelly et al., 2014). In case the goal is to 

improve abstract thinking in order to improve programming skills then using analogies 

and teaching formal logic alone will be barely effective. Although all are high 

correlated, Lohman and Lakin (2011) distinguished different forms of abstract 

reasoning like verbal reasoning, quantitative reasoning, and figural reasoning. Verbal 

reasoning is about the understanding of concepts and problems expressed in words, 

quantitative reasoning is about problems in numbers and figural reasoning is about the 

relation between geometrical forms. In that sense there might be also “computational 

thinking reasoning” which describes the ability to recognise patterns in algorithmic 

problems and solutions. To enhance the later one, exercises should be created in such 

programming setting (e.g., in VPEs or in actual programming languages).  

If learners spontaneously try to solve novel problems by using actively abstract 

thinking, it is possible they are guided by superficial similarities. Ross (1984) taught 

different problem-solving methods by using examples of problems such as estimating 
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the probability of two dice sum up to seven. Only when the test examples illustrated the 

same principle as needed (e.g., same principle of probability), participants were able to 

solve new problems. When it did not and participants tried to abstract the structure by 

themselves, they tended to focus on superficial similarities (e.g., using dice or not) and 

so they were not able to solve any new problems. Unsupervised training can lead to 

wrong conclusions by learners especially if learners are new to the field.  

The low level of abstract thinking of the participants in the current study also 

suggested that participants needed help to focus the crucial features so they would have 

been more capable of recognising patterns. Participants had no prior experience in 

programming or whatsoever and so it might have been difficult for them to focus on the 

crucial elements. Therefore, at least at the beginning of the learning process, a teacher 

should actively help learners to identify the crucial features of the learning material. For 

example, when introducing students to a new VPE and a warm-up phase is used in 

which learners learn the mechanics, teachers should encourage the students to actively 

point out similarities between the elements of the tutorial session and how the same 

code chunks can be used in different situations or how the same goal can be achieved by 

using different code chunks. This is similar to Touretzky, Marghitu, Ludi, Bernstein, 

and Ni (2013) who used different VPEs in order to teach the same concept. The name of 

the code chunks differed over the various VPE but the principle were all the same. This 

approach might enhance the abstract thinking abilities of learners. 

To avoid learners focus on the wrong details, the training material must be chosen 

wisely. That means the training and test items should not be too close to each other 

because that would be just repetition of familiar material (Ross, 1984). On the other 

hand, if both are too far away from each other learners might fail to recognise 

similarities. Participants of this study probably did not use much what they learnt in the 

warm-up phase probably because the link between the tutorials and the actual 

programming tasks was not clear enough to them. 

In summary, using analogies and teaching formal logic alone might be a good 

foundation for generally enhance abstract thinking but might not be enough to enhance 

abstract thinking in context of CT because of the low level of transferability of 

cognitive abilities. Especially at the beginning when material and concepts are new to 

learners, the learning process should not be unsupervised because novices tend to focus 

on superficial and not critically important similarities. There must be a right balance 

between the learning material at the beginning and the material at an advanced learning 
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stage. Materials must not be too similar and neither too different in order to provide 

learner the chance to recognise patterns. 

5.4.4 Algorithmic design 

Algorithmic design summarised the whole process of creating, testing and debugging a 

solution in CT. To be able to create an algorithmic solution learners need to know what 

algorithms are and how they work. Learners need to understand that an algorithm 

consists of different commands with different purposes and how these commands are 

semantically related to teach other. For instance, the general idea of a simple algorithm 

might be “when left click then move avatar 10 units right”. The general knowledge 

about algorithms is the first step. In a second step learners need to know how to 

implement their solutions. This implementation is highly dependent on the current used 

system. If an algorithm is supposed to be implemented in Scratch then learners not only 

need to understand the general sequences of commands but also how to create these 

commands in Scratch. How does “left click” look like in Scratch and what units are 

used to move the avatar to the right? The same is true for any other kind of used system. 

Domain specific knowledge is crucial for designing algorithmic solutions. 

There are several educational frameworks about CT and the focus of many of them 

lies on the algorithmic part of CT. For example, Grover et al. (2019; 2015) developed 

several educational framework on algorithmic problem solving. The core idea of their 

frameworks is always to teach CT and CS principle such as abstraction and problem 

decomposition with different tasks using VPEs (in most cases Scratch). For example, to 

teach the idea of loops a set of tasks is design and dived into different units. In one unit, 

students are supposed to create a spiral by using the loop-code chunk. In later units the 

task becomes more complex and different forms of loops (e.g., nested loops) are 

included or the code must be further altered by adding variables and conditional 

expressions (Grover, Jackiw, & Lundh, 2019). This step-by-step procedure gives 

students the opportunity to understand how the different code chunks are related to each 

other. 

When translating the general idea of an algorithm into the current system, it is very 

likely that mistakes are going to happen and programs do not work as intended. This is 

the reason why debugging and fixing sequences of codes often play a dominant role in 

most of educational frameworks (Grover, Jackiw, & Lundh, 2019; Grover, Pea, & 

Cooper, 2015; Voogt, Fisser, Good, Mishra, & Yadav, 2015). To practice debugging 
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skills there are often other than the own coding attempts are used. This has a specific 

reason. As every writer has his or her own style in writing so has every programmer his 

or her style in programming (Martin, 2009, p. xxii). When learners start to practice from 

scratch they quickly start to develop their own style. When practice only on the own 

codes they will learn to avoid certain mistakes they personally usually tend to do. When 

learners also see different styles of coding they encounter also different kinds of 

mistakes. Learners then need to understand the thoughts and intentions of the original 

designer. This is a way to improve reflecting skills (Grover, Pea, & Cooper, 2015), 

which might have a positive impact on debugging capabilities and might also enhance 

learners’ general understanding of algorithmic solutions. 

In summary, designing of algorithmic solution is dependent on the fundamental 

knowledge of how algorithms work but also about the current system in which an 

algorithm is supposed to be created. Teachers need to be sure that not only the concept 

and purpose of code chunks are understood by learners but also how these code chunks 

are related to each other. Only then an algorithmic solution can be designed. Debugging 

plays a crucial role and can be practiced by using malfunctioned codes. 

5.5 Critical evaluation of the study 

Within this section, this study is evaluated critically. Methodological and theoretical 

limitations are discussed, including the overall design of the study, the used instruments 

and the limited conceptual view on CT as seen in this study.  

5.5.1 Methodological 

5.5.1.1 Research design 

Because the goal of this study was to analyse students’ CT-associated performance 

while they solved a programming task, a video an observational video study seemed 

appropriate. Although video studies have many advantages, they also have some 

drawbacks. Participants could have acted differently because they knew they were being 

recorded. Some pairs actually made comments indicating that they were aware of the 

camera. However, none of this behaviour was prolonged for any of the participants. 

Soon after the recording had started they noticeably focused on the tasks. None of the 

participants mentioned the recording after minute 5, and none of the participants looked 
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straight into the camera or showed any other sign of awareness of the recording. Some 

pairs even discussed private issues with each other or were looking at their phone, 

which implied that they forgot about the camera. Thus, no serious concerns need be 

raised regarding the participants’ natural behaviour. 

The design of the study also led to the situation that different measures (Dr Scratch, 

programming ability, and CT-associated time) were based on Scratch. Although the 

focus of all instruments differed, this might have had an effect on the measures and 

should be considered when interpreting results. 

Students worked in pairs because it was hoped that this would provoke social 

interaction and make otherwise unobservable thoughts accessible. Moreover, pair-

programming settings have been used in prior studies in terms of measuring CT and 

programming knowledge for novices (Denner, Werner, Campe, & Ortiz, 2014; Wu, Hu, 

Ruis, & Wang, 2019). Nonetheless, this approach came with some challenges. 

The performance of pairs might be dependent on the people who work together and 

how they get along with each other (Hanks, Fitzgerald, McCauley, Murphy, & Zander, 

2011). Participants did not freely choose their partners but were paired according to 

their Bebras scores in order to prevent broad discrepancies in their levels of CT. It was 

assumed that huge differences could have negative effects on their performance during 

the Scratch session. Most participants did not know each other well. The 40-minute 

tutorial session before the actual tasks was the first time they worked together. It was 

hoped this was sufficient time for getting to know each other and bond. This appeared 

to be the case for most pairs, although some pairs talked or interacted with each other to 

only a small extent. 

Another challenge is the usage of paired values as unit of analysis. It is questionable 

whether there is something like common levels of CT, intelligence, or programming 

quality. Some might argue that the results and overall conclusion might have been 

different if all measures were obtained and analysed solely on an individual basis. 

However, it must be noted that the Bebras scores as well as TONI-3-IQ were originally 

obtained individually and paired later. This made it possible to run some analyses based 

on individual as well as paired scores and compare the results with each other. These 

results were similar. Despite these challenges, the use of dyads is justified by added 

findings on collaboration such as the study conducted by Denner et al. (2014). Notably, 

according to the findings of Denner et al. (2014), students that work collaboratively in 



 

– 145 – 

pairs attain considerably higher CT scores than students working alone. Just as 

importantly, working in pairs is advantageous for students with little programming 

experience (Denner et al., 2014). In addition, working in pairs is quite common in the 

field of programming. Analyse a programming product as a team effort secures a certain 

level of external validity. 

With a total sample of over 108 participants, the study reached a sufficient level of 

power for the calculated regression model, when expected effects lie in the “medium 

size” ranges (Cohen, 1988). However, some argue that post hoc power analyses are not 

particularly meaningful and misleading. Calculating post hoc power may seem to 

provide more statistical arguments but power is just an inverse function based on test 

probabilities and effect size (Aberson, 2019, p. 15). In case of rejecting the null 

hypotheses, it means power was sufficient to detect an effect by the given sample size 

and test probabilities. It is just a p-value in another shape. Therefore, post hoc power 

analysis adds no new information should not be overestimated.  

In addition, the sample size reduced dramatically for some analyses based on paired 

scores. Pairs for the programming task in Scratch were created only after both 

participants completed the Bebras tasks and the TONI-3, which resulted in 37 pairs. 

Due to technical problems (e.g., when a computer froze, turning off microphones or 

webcams by accident) resulting in 27 complete and unproblematic recordings, which 

further limits the generalisation of quantitative analyses. 

5.5.1.2 Instruments and measures 

Because participants were all Australians and to avoid problems with use and 

recognition of idioms, only the Australian version of the Bebras tasks from 2014 and 

2015 were used in this study. Although the conception and structure of the tasks do not 

differ much across the countries and years, it is possible that results might change with 

different Bebras tasks. It must be also noted that the Bebras tasks are originally 

designed elementary and high school students. There are studies in which CT of 

university students is measures by Bebras tasks but is this not a common approach. 

Based on the results of the pilot study, there were no reason of concerns and so the 

Bebras tasks available for the oldest age group were used in this study. However, results 

must be interpreted by caution. 

Fortunately, the nonverbal intelligence assessment did not raise any concerns. It is 

generally assumed that intelligence is normally distributed in the population with µ = 
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100 and σ = 15 (Sternberg, 2017). The TONI-3-IQ does not generally differ from the 

assumed population in shape and dispersion, which indicates a good fit. The reason why 

the average mean is nearly 1 SD higher than the general population might be explained 

by the fact that only university students have been observed. 

The TONI-3 was chosen because of its satisfactory psychometric properties, existing 

normative data relative to specified subgroups, and overall good conceptual fit. 

However, all items are geometric forms and figures in which participants need to 

identify patterns. Some argue that this is only one of several facets of nonverbal 

intelligence and figural reasoning alone might not be enough to sufficiently measure 

nonverbal intelligence (Wilhelm, 2005). Furthermore, the whole concept of intelligence 

was never without controversy. Scholars suggest use of diffuse concepts and terms such 

“cognitive abilities” instead of intelligence (Urbina, 2011, p. 35). This is because 

cognitive processes are easier to define and there is less heated discussion and there are 

fewer emotional associations with them. 

The CTBS was created for the purpose of this study. That means this instrument was 

not used in other studies yet. Interrater reliability assessments indicated a satisfactory 

level of agreement on the different CT-relevant behavioural clues but the results of the 

CTBS still must be interpreted with caution because some indicators of some CT-

relevant behaviour are dependent on the used environment. For instance, the CT 

component algorithmic design subordinates all utterance and actions with the purpose of 

designing an algorithmic solution to a problem. The programming task in this study was 

designs in Scratch in which the only way to create algorithmic solutions was to put code 

chunks together. If another programming environment would be used, other indicators 

could be identified. This limits the generalisation of the results of the study. 

In addition, it is also possible the CTBS was not sufficiently sensitive to assess 

abstract thinking on a satisfactory level. Indeed, the results of the pilot study indicated 

that observing abstract thinking might be a challenge. As for the main study, no 

behavioural clues indicating neglecting information were found in the pilot study and 

pattern recognition was observed only rarely. Because abstraction plays such crucial 

role in CT, the investigator of the study still decided to keep abstraction in the CTBS to 

be sure to catch any signs of abstraction in case there might be any. Abstract thinking 

has been described as a complex information process of higher-order thinking. The 

process of recognising patterns and especially neglecting unimportant information 

might primarily take place automatically, with people often being unaware of it 
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(Barsalou, 2003; Carlson & Dulany, 1985). If people are not aware of it, it is difficult to 

observe in social interactions and other measures of abstract thinking might be more 

sensitive. 

For the purpose of this study, a rubric scheme was developed to measure the 

programming quality of students’ Scratch projects. Quality concepts such as variety of 

used code chunks and coding efficiency. While rubric schemes became more popular 

over the last few years, there are also some critical voices. Menéndez-Varela and 

Gregori-Giralt (2016) investigated the validity of rubric-based performance assessments 

of 84 first year students studying Conservation–Restoration and Design. They compared 

scored based on a rubric with ratings of two teachers and three student tutors. They 

concluded that rubrics contribute to students’ learning performance. The strength of 

rubrics lies in promoting shared understanding of learning objectives and it is helpful 

when providing feedback. In that sense, rubrics are a good tool for formative 

assessment. However, rubrics reduce the complexity of a learning outcome. It depends 

on the topic of a course or projects whether such reduction may the usage of rubrics less 

favourable. Thus, Menéndez-Varela and Gregori-Giralt (2016) see rubrics as a scoring 

tool for summative assessment critically. 

Panadero and Jonsson (2020) came to a similar critical conclusion about rubrics. In a 

meta-analysis of 27 publications about rubrics, they identified several “themes” 

mentioned in these papers. Among them were “standardisation and narrowing the 

curriculum” and “limitations of criteria”. This shows how the biggest strength of the 

rubrics are also their biggest weakness. Reduction of complexity to achieve higher 

reliability may also result in less validity. Programming quality is a complex concept 

which has not been generally defined. Although the rubric score is based on the 

literature and checked by a former computer science teacher with several decades of 

experience, it is likely that there are criteria of programming, which were not included 

in the vertical dimensions of the current rubric. It is also possible the quantitative steps 

are too broad or too narrow. Theses biases may result in underestimating or 

overestimating true scores of programming quality. Therefore, conclusion about 

programming quality should be only made with similar definition and criteria used in 

this study and generalisation of the results must be made with caution. 

In this study, Dr Scratch was used as an instrument to evaluate Scratch projects but 

not to measure someone’s level of CT as it is usually used in the field. This decision 

was first made based on conceptual reasons. Dr Scratch predominantly relies on the use 
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of code chunks, which, in turn, has an effect on overall CT measurement. In prior 

studies, the developers of Dr Scratch emphasised its strong foundation in programming 

concepts (Moreno-León, Robles, & Román-González, 2016, 2017). In one of their 

studies, Román-González, Moreno-León, and Robles (2017) referred to Dr Scratch as 

“computational practices” based on Brennan and Resnick’s framework on CT. The 

category “Computational practices” comprised mainly concrete CT actions including 

testing and debugging (Brennan & Resnick, 2012). These are facets subordinated under 

the concepts of algorithmic design in this study. Hoover et al. (2016) compared CT 

assessment based on Dr Scratch with qualitative analysis of the Scratch projects. Their 

results also showed that Dr Scratch usually produces lower CT scores. In addition, the 

quite high correlation between Dr Scratch mastery score and programming quality as 

used in this study also supports this approach empirically. 

5.5.2 Conceptual consideration 

5.5.2.1 Limitation of the operationalisation 

There is still no sufficient theoretical framework for CT. The conceptual framework 

about CT as used in this thesis was developed based on systematic literature reviews 

and major publications of distinguished experts of computer science (education) 

experts. This resulted in a view on CT that has a strong view on skills and actions. Other 

CT frameworks may focus on other aspects. 

One example is International Computer and Information Literacy Study (ICILS; 

Fraillon et al., 2019). The study was conducted 2013 for the first time with the goal to 

examine students’ abilities to use computers and to investigate, create and communicate 

participate effectively in different environments like school, workplace or at home. The 

second and latest cycle in 2018 continued to examine students’ computer and 

information literacy but additionally investigated students’ CT. The authors defined CT 

as a two-dimensional construct: conceptualising problems and operational solution with 

three and two aspects, respectively. 

Conceptualising problems describes the ability to understand the problem before any 

kind of solution may be developed. It contains the following aspects: 

(1) Knowing about and understanding digital systems refers to the ability to 

understand a system by observing their interactions with other systems and how 

their components interact with each other. A person understands a sequence of 
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actions and how events are dependent and is able to use visuals tools like tree 

diagrams or flow charts to describe a system on a conceptual level. This also 

contains the ability to monitor a running system and make educated assumptions 

why a system may not work. 

(2) Formulating and analysing problems describes the ability to break down a 

complex problem into smaller and more manageable parts. It also contains the 

ability to specifying the characteristics of the problem so that a computational 

solution might be applied. 

(3) Collecting and representing relevant data may be relevant to make effective 

judgments. Analysing data can help to observe the behaviour of a system and to 

identify patterns or characteristics that are otherwise difficult to detect. This 

aspect also includes the use of simulations. 

The aspect of operational solutions describes all process associated with the solution 

itself. It includes the process of creating, implementing, and evaluating a computer-

based system to a problem. It contains two aspects: 

(1) Planning and evaluating solutions refers to the ability of thinking ahead and 

establishing parameters of a system that are needed to achieve the desired 

outcome. It also refers to the ability to implement and evaluate the solutions. 

This includes developing a test strategy and being able to make critical judgment 

and detect faulty solutions. 

(2) Developing algorithms, programs and interfaces focus on logical reasoning. 

It does not mean to be able to use specific programming languages but being 

able to think in steps and rules in order to solve a problem. It describes the 

underlying ability to design or debug simple algorithms and to create interfaces 

that allows interactions between users and (digital) systems. 

This short summary of the CT framework in ICILS shows some similarities but also 

some differences with the framework developed in this thesis. Both frameworks divide 

the CT process in two stages or strands, respectively. In both frameworks 

decomposition the problem plays a major role in the first stage while algorithmic design 

(or designing operational solutions) is part of the second stage. The ability of abstract 

thinking with neglecting unimportant information and pattern recognition is also part of 

both frameworks. The biggest difference, however, comes with the role of data 
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handling. Collecting and interpreting data are not considered as a single core aspect of 

CT in this thesis. Instead, it is seen as part of algorithmic design, i.e., the second stage 

of CT. This is different to ICILS in which collecting and representing relevant data is 

already part of conceptualising of the problem. Whether data handling is an independent 

core aspect of CT or part of another CT ability may have an impact on conclusion on 

the level of CT someone has. 

Another instance of different framework is shown in Brennan and Resnick (2012), 

who developed an educational framework based mainly by analysing Scratch projects 

and interviewing children using Scratch. In their framework CT is rather seen as a three-

dimensional construct: computational concepts (major concepts in programming such as 

parallelism), computational practices (typical actions programmers do such as testing 

and debugging), and computational perspectives (perceived relation between 

programmers and the technological world). This different kind of perspective on CT 

may result in different ways of measuring. 

Contemporary theories about CT are based on Wing’s comment in 2006. His view 

about CT popularised and shaped the general idea of CT even though she was not the 

first who mentioned CT. In 1980, Seymour Papert—one of the pioneers of CS 

education—coined the term in his work Mindstorm: Children, Computers, and 

Powerful Ideas (Papert, 1980). Indeed, the perceptions about CT have changed over 

time. 

Papert was a computer scientist and inspired by the automation processes of the 

1960s. He was quickly convinced that CS should become part of school education and 

developed LOGO, a programming language designed mainly for children. At this time 

he worked with Piaget who developed different learning theories, which can be 

summarised in the basic principles of constructivism (Tabesh, 2017). Inspired by 

Piaget’s work, Papert developed his own theory of learning, which is comes from the 

philosophical view of constructivism (Siegler, DeLoache, & Eisenberg, 2014, pp. 134–

136). Piaget’s constructivism suggested that learners construct their knowledge by 

comparing new information with prior experience, while Papert’s constructionism adds 

the idea that learning happens best when learners construct a product that is meaningful 

for them (Ackermann, 2001). The focus in both theories lies on the individual. 

Knowledge cannot be transmitted by a teacher. Instead, learners need to be active, it is 

something playful; it means exploring and tinkering around (Papert & Harel, 1991). 

This is the core aspect of constructionism and this is also Papert’s view about CT. For 
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him, CT is a way “to forge ideas” (Papert, 1996, p. 116). It also means tinkering around 

and conducting little “experiments”. In that sense, creativity would have probably 

played a bigger role for CT. This might mark the biggest difference between CT, as 

perceived by most scholars today, and as Papert saw it. 

CT as used in this thesis did not explicitly include creativity as a component for two 

reasons. First, it is not presented as major facet but it is mentioned only incidentally 

along with other minor concepts. Second, CT as used in this thesis has a focus on skills 

and behaviour whereas creativity is an umbrella term for different psychological 

concepts in the same way that intelligence is. However, if creativity would be seen as a 

major component, it also might change how CT is seen by teachers and learners. 

Overall, CT is a fuzzy concept with multifactorial views and dimensions. 

Notably, CT skills are learnt and/or developed (Palts & Pedaste, 2020). Indeed, CT 

skills can be developed according to three larger stages, namely, defining the problem, 

solving the problem, and analysing the solution. To define a problem, students learn 

how to formulate the problem, abstraction, problem reformulation, and decomposition. 

To solve the problem, students learn to collect and analyse data, algorithmic design, 

parallelization and iteration, and automation. To analyse the solution, students learn to 

generalize, test, and evaluate. Through these three stages, the students learn CT skills 

for problem-solving from start to finish. 

5.5.2.2 Computational thinking itself 

The whole concept of CT is not without any critics. Hemmendinger (2010) proposed 

four major critical points in his plea for modest concerning CT. His first point is that CT 

is nothing new. Philosophers have been thinking about thinking since philosophy exists. 

The same is true for CT relevant concepts like abstraction, which is traditionally 

associated with mathematics or psychology. So discussion is just old wine in new skins. 

Although Hemmendinger’s is correct that this kind of thinking not new, to put all these 

different skills and concepts under one umbrella term is a new approach and provides 

some new opportunities. The idea of computational thinking is to have a specific look at 

problems and it emphasizes the relationship between different skills like to decompose a 

problem to be able to find algorithm solutions. Results of this study revealed that this 

kind of thinking does not come naturally and particular training is needed. 

Second, CT would be just a way of thinking for a specific domain and so it is not 

special. Mathematicians use mathematical thinking, historians use historical thinking, 
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chemists use chemical thinking and so on. Just because these ways of thinking are 

useful in their kind of domains does not necessarily mean they are useful in any other 

domain. Why should not be the same true for CT as a domain specific way of thinking 

for CS? This point, however, is only partially true. Digital devices are everywhere and 

become more important in basically every part of our everyday life and so the way of 

thinking computationally becomes more important. Different to other styles of thinking, 

CT becomes more important for more people. The participants of this study, for 

examples, were not CS students but preservice teacher students and CT was included in 

their work course. This underpins how CT is considered as a skill for everyone and not 

just people with a major in CS. 

Third, advocating CT sometimes has an “imperialistic flavour” (Hemmendinger, 

2010, p. 4). Some people tend to perceive the world through theoretical glasses. 

Hemmendinger (2010) quotes an interview when a computer scientist analyses a video 

about a science lessons. The computer scientist makes analogies referring to CT and 

compares the science lesson with CT relevant aspects. Hemmendinger further argued 

that perception of this person might have been biased just because the person was a 

computer scientist. An artists or a chemist might had been seen the video in a different 

way. So it is questionable whether there is indeed so much CT everywhere or whether 

some people just have this kind of perception. The contradiction of this point would be 

that CT is not meant to see all problems the same way but to offer problem-solver one 

way to approach problems. CT is presented as a problem-solving approach, which based 

on the idea to break down a problem into smaller pieces (decomposing the problem) and 

apply an algorithmic procedure. Not every problem can be break down into smaller 

pieces and not all problems can be solved with an algorithm. One participant who 

discussed the relevance of CT in law in the workshop on the scope and nature of CT 

also argued that the application of CT has its limits when the problems are highly 

context dependent (NRC, 2010, pp. 38–39). The same problem or case in law may have 

different outcomes because of the unique and different circumstances. Even though, law 

tries to follow a logical and objective procedure such as CT does, it has also subjective 

components. These cannot be considered in a computational thinking way of problem 

solving. The same is true for questions of ethics or philosophy. The (ultimate) question 

of life, the universe, and everything should not be answered by a computer. However, 

CT is a strong tool to solve problem, which can be deconstructed and algorithmic 

solutions are possible. Participants of this study were observed how much and how long 

CT-related behaviour they show when solving an ill-structured programming problem. 
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That does not mean that they needed to solve this kind of problem always this way but 

for this particular problem CT was suitable. 

Fourth, CT might be not the right way to think about problems and it is rather 

“dumbing down” our thinking. Humans’ way of dealing with problems is simply 

different from computers. Whereas computers nearly always use step-by-step 

procedures, humans’ approach is more holistic and sometimes it feels artificial to 

specify control flow and explicit iterations or conditions. To teach this approach might 

not be beneficial, according to Hemmendinger (2010). It is, however, a 

misunderstanding to consider CT as replacement of other style of thinking or problem-

solving. Creativity and “out of the box thinking” are (still) something unique of 

humans’ mind that cannot be emulated by machines (Kaufman & Plucker, 2011). 

Creativity plays a role in solving ill-structured problems. CT is considered as useful for 

those kinds of problems and so the overall perception of CT should be more like a 

useful addition of approaching problems instead of seeing as dumbing down cognitive 

processes. It is more like as Leo Cherne noted in the late 70’s: “The computer is 

incredibly fast, accurate, and stupid. Man is unbelievable slow, inaccurate, and brilliant. 

The marriage of the two is a force beyond calculation.” (Shoemate, 2008). 

5.6 Future work 

So far it is not clear whether pairs did not show much decomposition and abstraction 

during the programming task because they were not trained in CT, or whether the 

instruments used were not sufficiently sensitive. To analyse this, future studies could 

involve preparing students with a workshop or course about CT based on the practical 

implication suggested in this thesis. Results might differ if participants were instructed 

about different methods to improve CT-associated skills such as task decomposition (as 

suggested, for example, in the model of F. Lee and Anderson’s, 2001) and trained in 

recognising patterns in different (sub)problems as well as (sub)solutions. Doing this 

would also help to clarify what impact CT has on programming. It is also important to 

note that according to Lewis and Shah (2015), pair programming interactions in a sixth-

grade CS enrichment program designed to promote equity reveals instances of inequity. 

They measured inequity through the documentation of students’ questions, commands, 

and total talk within four pairs. Data analysis indicates that less equitable pairs wanted 

to finish their tasks quickly, thereby leading to patterns of marginalization and 
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domination. However, in more equitable pairs, the emphasis on speed was not 

documented.  

In this study, Scratch was used to assess CT but also programming quality, which 

means that the measures are dependent to some extent to each other. Results showed 

that the relationship between CT and programming was also dependent on how close 

the CT measure was to programming elements. The CT measure based on Scratch had 

stronger relationships to programming quality than did the CT measure independent 

from Scratch. Although studies with similar goals had a similar approach (see, e.g., 

Kazimoglu, Kiernan, Bacon, & Mackinnon, 2012), it might cause problems if Scratch is 

used to measure both concepts. Visual programming environments such as Scratch are 

usually used to introduce CT or programming concepts to people who have no 

knowledge about programming, as was the case in this study. In future, researchers 

should take this into account and analyse how CT is applied when experienced 

programmers solve a programming task in a programming language such as Java or 

C++. The way programmers approach problems develops over time as they gain more 

knowledge (Teague & Lister, 2014). It is possible that the level of CT for experienced 

programmers differs from the level of novices, which might mediate the relationship 

between both concepts. 

Many analyses of this study were based on paired values which has different 

problematic theoretical and statistical implications. Even though it is not unusual to see 

CT as a concept which occurs in a collaborative setting (see, e.g., Falloon, 2016; Wu, 

Hu, Ruis, & Wang, 2019), this view is fairly uncommon for other concepts like 

programming quality and nonverbal intelligence. Some measures in this study were also 

available as individual scores which enabled less problematic analyses. However, future 

research should analyse all concepts also individually to have a more reliable view on 

the relationship of these concepts. 

It is also worth mentioning that the CTBS was based on event-sampling method. 

Event sampling is usually used when not much is known of the construct (Bakeman & 

Quera, 2011, p. 27). Because of the novelty of the coding scheme, this was the case of 

this study. However, the results of this study provided some information about duration, 

occurrence and relations between the different CT skills. In future studies, time-

sampling methods should be considered as well. When using time-sampling a specific 

time slot is divided into intervals (e.g., 5, 10, or 20 seconds) and the most dominant 
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behaviour is coded. This might provide some more details insights in the duration and 

occurrence of CT relevant behaviour. 

The results also revealed that CT overlaps conceptually as well as empirically with 

nonverbal intelligence (see also Boom, Bower, Arguel, Siemon & Scholkmann, 2018). 

This could be because the CT associated skills (task decomposition, abstract thinking, 

and algorithmic design) especially play a role for well-structured problems. Jonassen 

(1997) presented decomposing as a typical method to solve well-structured problems. 

Algorithms are useful when all problem states are clear and there are no ambiguous 

possibilities or several solutions are possible. Therefore, algorithms are useful 

especially for well-structured problems. Moreover, the solution to well-structured 

problems are usually associated with intelligence, especially with abstract thinking 

(Wenke & Frensch, 2003). High correlations between problem-solving and intelligence 

are found only if the problems are well structured. Interestingly, CT is often not 

associated with well-structured problems. Instead, CT is promoted by many scholars as 

an ability to deal with complexity and open-ended or ill-structured problems (see, e.g., 

Barr & Stephenson, 2011; Shute, Sun, & Asbell-Clarke, 2017). However, solutions to 

ill-structured problems are not associated with intelligence (Wenke & Frensch, 2003). 

Creativity is needed to deal with ill-structured problems because those problems have 

unknown elements, vaguely defined goals, different evaluation criteria, and a level of 

uncertainty (Jonassen, 1997; Kaufman & Plucker, 2011). The reason why CT is 

associated with ill-structured problems might be reminiscent of Papert’s original view 

of CT in which he associated CT more with tinkering around, exploring, and creativity 

as most scholars do today. Overall, this might lead to the conclusion that CT not only 

shares some properties with intelligence due to the associated skills but also with 

creativity due to its purpose. To further investigate these possibilities, more studies are 

needed. 

5.7 Conclusion 

CT is promoted as the literacy of the 21st century and is already implemented in various 

curricula all over the world. Some refer to CT even as the foundation programming and 

CS (Lu & Fletcher, 2009). Thus, the goal of this study was to analyse the role of CT for 

programming. Students with no prior significant knowledge about CT or programming 

were working in pairs on a programming task in Scratch. Results revealed that not all 
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facets of CT were equally apparent during the programming task. Any behaviour 

indicating decomposition and especially any behaviour indicating abstraction was 

barely found during the programming task. Instead, participants were spending most of 

the time with designing solutions without thinking much about the problems itself. 

There are many different frameworks how to implement CT in education even in 

curricula without any technical background (see, e.g., Perković, Settle, Hwang, & Jones, 

2010). However, there is the question where the biggest challenges and difficulties may 

occur when implementing CT. Based on the results of this study, it is clear that the most 

important part for any educational framework should lie on abstract thinking and the 

ability to decompose a problem. Nonetheless, future studies need to evaluate how large 

the impact of abstract thinking and the ability to decompose a problem on programming 

actually is. It is possible that the used instrument might not have been sensitive enough 

to capture all facets of abstract thinking. 

  



 

– 157 – 

 

6 REFERENCES 

ACARA (2012). The shape of the Australian curriculum: Technologies. Retrieved from 

http://www.acara.edu.au/verve/_resources/Shape_of_the_Australian_Curriculum_-

_Technologies_-_August_2012.pdf 

Aberson, C. L. (2019). Applied Power Analysis for the Behavioral Sciences (2nd ed.). 

Routledge. 

Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the 

difference? Future of learning group publication, 4(3), 438–448. 

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 

55(7), 832–835. https://doi.org/10.1093/comjnl/bxs074 

Aho, A. V., & Ullman, J. D. (2000). Foundations of computer science (6th ed.). 

Principles of computer science series. New York, NY: Computer Science Press.  

Aiken, J. M., Caballero, M. D., Douglas, S. S., Burk, J. B., Scanlon, E. M., 

Thoms, B. D., & Schatz, M. F. (2012). Understanding student computational 

thinking with computational modeling. In AIP Conference Proceedings, Physics 

Education Research Conference (pp. 46–49). AIP. https://doi.org/10.1063/1.4789648 

Alaoutinen, S. (2012). Evaluating the effect of learning style and student background on 

self-assessment accuracy. Computer Science Education, 22(2), 175–198. 

https://doi.org/10.1080/08993408.2012.692924 

Anderson, J. R. (2015). Cognitive psychology and its implications (8th). New York, 

NY: Worth Publishers. 

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). 

An integrated theory of the mind. Psychological Review, 111(4), 1036–1060. 

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. 

(2016). A K-6 Computational thinking curriculum framework: Implications for 

teacher knowledge. Educational Technology & Society, 9(3), 47–57. 

Araujo, A. L. S. O., Santos, J. S., Andrade, W. L., Guerrero, D. D. S., & Dagiene, V. 

(2017). Exploring computational thinking assessment in introductory programming 

courses. In I. F. i. E. Conference (Ed.), FIE 2017: Frontiers in Education, October 

18-21, 2017, Indianapolis, Indiana, USA : 2017 conference proceedings (pp. 1–9). 

Piscataway, NJ: IEEE. https://doi.org/10.1109/FIE.2017.8190652 

Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For 

the Learning of Mathematics, 14(3), 24–35. 

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “real” 

programming. ACM Transactions on Computing Education, 14(4), 1–15. 

https://doi.org/10.1145/2677087 



 

– 158 – 

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking 

skills through educational robotics: A study on age and gender relevant differences. 

Robotics and Autonomous Systems, 75, 661–670. 

https://doi.org/10.1016/j.robot.2015.10.008 

Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent 

technological change: An empirical exploration. The Quarterly Journal of 

Economics, 118, 1279–1333. https://doi.org/10.1162/003355303322552801 

Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for 

the behavioral sciences. Cambridge: Cambridge University Press. 

https://doi.org/10.1017/CBO9781139017343 

Bakeman, R., & Quera, V. (2012). Behavioral observation. In H. Cooper, P. M. Camic, 

D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of 

research methods in psychology, Vol 1: Foundations, planning, measures, and 

psychometrics (pp. 207–225). Washington, DC: American Psychological 

Association. https://doi.org/10.1037/13619-013 

Banks, S. H., & Franzen, M. D. (2010). Concurrent validity of the TONI-3. Journal of 

Psychoeducational Assessment, 28(1), 70–79. https://doi.org/10.1177 

/0734282909336935 

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is 

involved and what is the role of the computer science education community? ACM 

Inroads, 2(1), 48. https://doi.org/10.1145/1929887.1929905 

Barsalou, L. W. (1994). Flexibility, structure, and linguistic vagary in 

concepts: Manifestations of a compositional system of perceptual symbols. In A. F. 

Collins (Ed.), Theories of memory. Hove, UK: L. Erlbaum Associates. 

Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical 

Transactions of the Royal Society of London. Series B, Biological Sciences, 

358(1435), 1177–1187. https://doi.org/10.1098/rstb.2003.1319 

Bartels, R. (1982). The Rank Version of von Neumann's Ratio Test for Randomness. 

Journal of the American Statistical Association, 77(377), 40–46. 

https://doi.org/10.1080/01621459.1982.10477764 

Basogain, X., Olabe, M. Á., Olabe, J. C., & Rico, M. J. (2018). Computational thinking 

in pre-university blended learning classrooms. Computers in Human Behavior, 80, 

412–419. https://doi.org/10.1016/j.chb.2017.04.058 

Basu, S. (2019). Using Rubrics Integrating Design and Coding to Assess Middle School 

Students’ Open-Ended Block-Based Programming Projects. Proceedings of the 

50th ACM Technical Symposium on Computer Science Education, 1211–1217. 

https://doi.org/10.1145/3287324.3287412 

Bell, T., & Vahrenhold, J. (2018). Cs unplugged: How is it used, and does it work? In 

H.-J. Böckenhauer, D. Komm, & W. Unger (Eds.), Lecture notes in computer 

science Theoretical computer science and general issues: Vol. 11011. Adventures 

between lower bounds and higher altitudes: Essays dedicated to Juraj Hromkovič on 



 

– 159 – 

the occasion of his 60th birthday (pp. 497–521). Cham: Springer International 

Publishing. https://doi.org/10.1007/978-3-319-98355-4_29 

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., & Torelli, M. 

(2015). How challenging are Bebras tasks? In V. Dagienė, C. Schulte, & T. 

Jevsikova (Chairs), the 2015 ACM Conference, Vilnius, Lithuania. 

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., & 

Punie, Y. (2016). Developing computational thinking in compulsory education - 

Implications for policy and practice: JRC Science for Policy Report: Publications 

Office of the European Union.  

Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., & Franklin, D. (2013). Hairball: 

Lint-inspired static analysis of scratch projects. In R. McCauley (Ed.), Sigcse'13: 

Proceedings of the 44th ACM Technical Symposium on Computer Science 

Education; March 6 - 9, 2013, Denver, CO (pp. 215–220). New York, NY: ACM. 

https://doi.org/10.1145/2445196.2445265 

Booch, G. (1994). Object oriented design with applications (2nd ed.). 

Benjamin/Cummings series in Ada and software engineering. Redwood City, CA: 

Benjamin/Cummings.  

Boom, K.-D., Bower, M., Arguel, A., Siemon, J., & Scholkmann, A. (2018). 

Relationship between computational thinking and a measure of intelligence as a 

general problem-solving ability. In I. Polycarpou, J. C. Read, P. Andreou, & M. 

Armoni (Eds.), Proceedings of the 23rd Annual ACM Conference on Innovation 

and Technology in Computer Science Education - ITiCSE 2018 (pp. 206-211 TS-

CrossRef). ACM Press. https://doi.org/10.1145/3197091.3197104 

Boudreau, T., Tulach, J., & Wielenga, G. (2007). Rich client programming: Plugging 

into the NetBeans platform. Safari Books Online. Upper Saddle River, N.J.: Prentice 

Hall. Retrieved from http://proquest.tech.safaribooksonline.de/9780132354806  

Bower, G. H., Black, J. B., & Turner, T. J. (1979). Scripts in memory for text. Cognitive 

Psychology, 11(2), 177–220. https://doi.org/10.1016/0010-0285(79)90009-4 

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & 

Barone, D. (2017). Development of computational thinking skills through unplugged 

activities in primary school. In E. Barendsen & P. Hubwieser (Eds.), Proceedings of 

the 12th Workshop on Primary and Secondary Computing Education - WiPSCE '17 

(pp. 65–72). New York, NY: ACM Press. https://doi.org/10.1145/3137065.3137069 

Brancaccio, A., Marchisio, M., Palumbo, C., Pardini, C., Patrucco, A., & Zich, R. 

(2015). Problem posing and solving: Strategic Italian key action to enhance teaching 

and learning mathematics and informatics in the high school. In 2015 IEEE 39th 

Annual Computer Software and Applications Conference (COMPSAC) (pp. 845–

850). IEEE / Institute of Electrical and Electronics Engineers Incorporated. 

https://doi.org 

/10.1109/COMPSAC.2015.126 

Bransford, J., & Stein, B. S. (1993). The ideal problem solver: A guide for improving 

thinking, learning, and creativity (2nd. ed.). New York, NY: Freeman.  



 

– 160 – 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the 

development of computational thinking. In Proceedings of the 2012 annual meeting 

of the American Educational Research Association, Vancouver, Canada. 

Brodnik, A., & Lewin, C. (Eds.). (2015). Ifip TC3 Working Conference “A New Culture 

of Learning: Computing and next Generations". Vilnius, Lithuania. 

https://doi.org/10.13140/RG.2.1.2855.9206 

Brooks, P. H. (1981). The Abstraction of prototypes as an aspect of intellectual 

development. Intelligence, 5(3), 279–290. https://doi.org/10.1016/S0160-2896 

(81)90000-3 

Brown, L., Sherbeernou, R. J., & Johnson, S. K. (1997). Test of nonverbal intelligence-

3. Austin, TX: PRO-ED.  

Bruce, C., & McMahon, C. (2002). Contemporary developments in teaching and 

learning introductory programming: Towards a research proposal. QLD, Brisbane: 

Queensland University of Technology. 

Bruder, R. (2000). Eine akzentuierte Aufgabenauswahl und Vermitteln heuristischer 

Erfahrung –Wege zu einem anspruchsvollen Mathematikunterricht für alle. 

Bull, R., & Espy, K. A. (2007). Working memory, executive functioning, and children's 

mathematics. In S. J. Pickering (Ed.), Working memory and education (pp. 93–123). 

Amsterdam [etc.]: Elsevier. https://doi.org/10.1016/B978-012554465-8/50006-5 

Burgoon, E. M., Henderson, M. D., & Markman, A. B. (2013). There are many ways to 

see the forest for the trees: A tour guide for abstraction. Perspectives on 

Psychological Science : a Journal of the Association for Psychological Science, 8, 

501–520. https://doi.org/10.1177/1745691613497964 

Burning Glass (2014). STEM | Real-time insight into the market for entry-level STEM 

jobs. Burning Glass Technologies. Retrieved from http://burning-

glass.com/research/stem/ 

Butcher, P. (2009). Debug It!: Find, repair, & prevent bugs in your code. The 

pragmatic programmers. USA: Pragmatic Bookshelf.  

Campbell, R. L., & Bickhard, M. H. (Eds.). (1986). Human development: Contributions 

to human development: vol. 16. Knowing levels and developmental stages. Basel, 

München u.a.: Karger. https://doi.org/10.1159/issn.0301-4193 

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer 

interaction: Xa-GB. Hillsdale, NJ: Erlbaum.  

Carlson, R. A., & Dulany, D. E. (1985). Conscious attention and abstraction in concept 

learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

11(1), 45–58. https://doi.org/10.1037/0278-7393.11.1.45 

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. 

Cambridge: Cambridge University Press. Retrieved from https://doi.org/10.1017 

/CBO9780511571312  



 

– 161 – 

Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical 

experiment. Journal of Educational Psychology, 54(1), 1–22. 

https://doi.org/10.1037/h0046743 

Cernochova, M., Dorling, M., & Williams, L. (2015). Developing computational 

thinking skills through the literacy from Scratch project, an international 

collaboration. In A. Brodnik & C. Lewin (Eds.), IFIP TC3 Working Conference "A 

New Culture of Learning: Computing and next Generations" (pp. 40–50). Vilnius, 

Lithuania: Vilnius University. 

Chen, C., Haduong, P., Brennan, K., Sonnert, G., & Sadler, P. (2019). The effects of 

first programming language on college students’ computing attitude and 

achievement: a comparison of graphical and textual languages. Computer Science 

Education, 29(1), 23–48. https://doi.org/10.1080/08993408.2018.1547564 

Ching, Y.‑H., Hsu, Y.‑C., & Baldwin, S. (2018). Developing computational thinking 

with educational technologies for young learners. TechTrends, 62(6), 563–573. 

https://doi.org/10.1007/s11528-018-0292-7 

Chorney, J. M., McMurtry, C. M., Chambers, C. T., & Bakeman, R. (2015). Developing 

and modifying behavioral coding schemes in pediatric psychology: A practical guide. 

Journal of Pediatric Psychology, 40(1), 154–164. https://doi.org/10.1093/jpepsy 

/jsu099 

Cohen, D., Lindvall, M., & Costa, P. (2004). An Introduction to agile methods. In M. V. 

Zelkowitz (Ed.), Advances in computers: Vol. 62. Advances in software engineering 

(Vol. 62, pp. 1–66). San Diego, CA: Academic Press. https://doi.org/10.1016/S0065-

2458(03)62001-2 

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and 

Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177 

/001316446002000104 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). 

Hillsdale, NJ: L. Erlbaum Associates.  

Colburn, T., & Shute, G. (2007). Abstraction in computer science. Minds and Machines, 

17(2), 169–184. https://doi.org/10.1007/s11023-007-9061-7 

Common Core State Standards Initiative (CCSSI). (2010). Common core state standards 

for mathematics. Retrieved from http://www.corestandards.org/Math/Practice. 

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2014). Introduction to 

algorithms (3rd ed.). Cambridge, MA, London: MIT Press.  

Corradini, I., Lodi, M., & Nardelli, E. (2017). Conceptions and misconceptions about 

computational thinking among Italian primary school teachers. In J. Tenenberg, D. 

Chinn, J. Sheard, & L. Malmi (Eds.), Proceedings of the 2017 ACM Conference on 

International Computing Education Research - ICER '17 (pp. 136–144). New York, 

New York, USA: ACM Press. https://doi.org/10.1145/3105726.3106194 

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. 

Psychological Bulletin, 52, 281–302. https://doi.org/10.1037/h0040957 



 

– 162 – 

CSTA (2011). Computational thinking teacher resources. Csta.acm.org, 1–69. 

Retrieved from https://csta.acm.org/Curriculum/sub/CompThinking.html 

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014). Introducing teachers 

to computational thinking using unplugged storytelling. In C. Schulte, M. E. 

Caspersen, & J. Gal-Ezer (Eds.), Proceedings of the 9th Workshop in Primary and 

Secondary Computing Education on - WiPSCE '14 (pp. 89–92). New York, NY: 

ACM Press. https://doi.org/10.1145/2670757.2670767 

Dagienė, V. (2006). Information technology contests: Introduction to computer science 

in an attractive way. Informatics in Education, 5(1), 37–46. Retrieved from 

http://dl.acm.org/citation.cfm?id=1149707.1149711 

Dagienė, V., & Futschek, G. (2008). Bebras International Contest on Informatics and 

Computer Literacy: Criteria for good tasks. In R. T. Mittermeir & M. M. Sysło 

(Eds.), Informatics Education - Supporting Computational Thinking: Third 

International Conference on Informatics in Secondary Schools - Evolution and 

Perspectives, ISSEP 2008 Torun Poland, July 1-4, 2008 Proceedings (pp. 19–30). 

Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-

69924-8_2 

Dagienė, V., & Sentance, S. (2016). It’s computational thinking! Bebras Tasks in the 

curriculum. In A. Brodnik & F. Tort (Eds.), Lecture notes in computer science. 

informatics in schools: 9th International Conference on Informatics in Schools: 

Situation, Evolution, and Perspectives, Proceedings (Vol. 9973, pp. 28–39). Cham: 

Springer Verlag. https://doi.org/10.1007/978-3-319-46747-4_3 

Dagienė, V., & Stupuriene, G. (2015). Informatics education based on solving attractive 

tasks through a contest. KEYCIT 2014 - Key Competencies in Informatics and ICT. 

(7), 51–62. 

Dagienė, V., & Stupuriene, G. (2016). Bebras - A sustainable community building 

model for the concept based learning of informatics and computational thinking. 

Informatics in Education, 15(1), 25–44. https://doi.org/10.15388/infedu.2016.02 

Dale, N., & Walker, H. M. (1996). Abstract data types: Specifications, implementations, 

and applications. Lexington, MA: Heath.  

Dale, N., Weems, C., & Headington, M. R. (2004). Programming and problem solving 

with Java. Princeton, N.J.: Recording for the Blind & Dyslexic. 

Danner, D., Hagemann, D., Schankin, A., Hager, M., & Funke, J. (2011). Beyond IQ: A 

latent state-trait analysis of general intelligence, dynamic decision making, and 

implicit learning. Intelligence, 39(5), 323-334. 

Davies, S. (2008). The effects of emphasizing computational thinking in an introductory 

programming course. In 2008 IEEE Frontiers in Education Conference (FIE), 

Saratoga Springs, NY, USA. 

Dawson, P. (2017). Assessment rubrics: Towards clearer and more replicable design, 

research and practice. Assessment & Evaluation in Higher Education, 42, 347–360. 

https://doi.org/10.1080/02602938.2015.1111294 



 

– 163 – 

Denner, J., Werner, L., Campe, S. [Shannon], & Ortiz, E. (2014). Pair programming: 

Under what conditions is it advantageous for middle school students? Journal of 

Research on Technology in Education, 46, 277–296. https://doi.org/10.1080 

/15391523.2014.888272 

Denning, P. J. (2009). The profession of IT - Beyond computational thinking. 

Communications of the ACM, 52(6), 28–30. 

https://doi.org/10.1145/1516046.1516054 

Denning, P. J. (2017). Remaining trouble spots with computational thinking. 

Communications of the ACM, 60(6), 33–39. 

Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., & 

Young, P. R. (1989). Computing as a discipline. Communications of the ACM, 32(1), 

9–23. https://doi.org/10.1145/63238.63239 

Dolgopolovas, V., Jevsikova, T., Savulionienė, L., & Dagienė, V. (2015). On evaluation 

of computational thinking of software engineering novice students. In A. Brodnik & 

C. Lewin (Eds.), IFIP TC3 Working Conference "A New Culture of 

Learning: Computing and next Generations". Vilnius, Lithuania: Vilnius University. 

Dörner, D., Kreuzig, H. W., Reither, F., & Stäudel, T. (Eds.). (1983). Lohhausen: Vom 

Umgang mit Unbestimmtheit und Komplexität. Bern: Huber. 

Eguíluz, A., Garaizar, P., & Guenaga, M. (2018). An evaluation of open digital gaming 

platforms for developing computational thinking skills. In D. Cvetković (Ed.), 

Simulation and Gaming. InTech. https://doi.org/10.5772/intechopen.71339 

Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2020). Assessing 4th Grade 

Students’ Computational Thinking through Scratch Programming Projects. 

Informatics in Education, 19(4), 611–640. https://doi.org/10.15388/infedu.2020.27 

Falkner, K. (2016). SCIS | Computational thinking as the new literacy. Retrieved from 

http://www2.curriculum.edu.au/scis/connections/issue_95/articles/computational_thi

nking_as_the_new_literacy.html 

Falloon, G. (2016). An analysis of young students' thinking when completing basic 

coding tasks using Scratch Jnr. On the iPad. Journal of Computer Assisted Learning. 

Advance online publication. https://doi.org/10.1111/jcal.12155 

Faul, F., Erdfelder, E., Lang, A.‑G., & Buchner, A. (2007). G*Power 3: A flexible 

statistical power analysis program for the social, behavioral, and biomedical 

sciences. Behavior Research Methods, 39(2), 175–191. 

https://doi.org/10.3758/BF03193146 

Fetzer, J. H. (1998). People are not computers: (Most) thought processes are not 

computational procedures. Journal of Experimental & Theoretical Artificial 

Intelligence, 10, 371–391. https://doi.org/10.1080/095281398146653 

Fischer, K. W., & Kenny, S. L. (1986). The environmental conditions for discontinuities 

in the development of abstractions. In R. A. Mines & K. S. Kitchener (Eds.), Praeger 



 

– 164 – 

special studies Praeger scientific. Adult cognitive development: Methods and models 

(pp. 57–75). New York, NY: Praeger. 

Flanagan, D. P., & Dixon, S. G. (2014). The Cattell-Horn-Carroll theory of cognitive 

abilities. In C. R. Reynolds, K. J. Vannest, & E. Fletcher-Janzen (Eds.), 

Encyclopedia of special education: A reference for the education of children, 

adolescents, and adults with disabilities and other exceptional individuals (Vol. 121, 

p. 219). Hoboken, NJ: Wiley. https://doi.org/10.1002/9781118660584.ese0431 

Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T. (2019). EA 

International Computer and Information Literacy Study 2018: Assessment 

framework. International Association for the Evaluation of Educational 

Achievement (IEA). 

Frensch, P. A., & Funke, J. (Eds.). (1995). Complex problem solving. The European 

perspective. Hillsdale, NJ: Lawrence Erlbaum. 

Gabora, L., & Russon, A. (2011). The evolution of intelligence. In R. J. Sternberg & S. 

B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 328–350). 

Cambridge: Cambridge University Press. https://doi.org/10.1017 

/CBO9780511977244.018 

García-Peñalvo, F. J., Reimann, D., & Maday, C. (2018). Introducing coding and 

computational thinking in the schools: The TACCLE 3 – Coding Project experience. 

In M. S. Khine (Ed.), Computational thinking in the STEM disciplines: Foundations 

and research highlights (Vol. 55, pp. 213–226). Cham: Springer. 

https://doi.org/10.1007/978-3-319-93566-9_11 

Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York, 

NY: Basic Books.  

Ge, X., & Land, S. M. (2003). Scaffolding students’ problem-solving processes in an 

ill-structured task using question prompts and peer interactions. Educational 

Technology Research and Development, 51(1), 21–38. 

https://doi.org/10.1007/BF02504515 

Gick, M. L. (1986). Problem-solving strategies. Educational Psychologist, 21(1-2), 99–

120. https://doi.org/10.1080/00461520.1986.9653026 

Gilhooly, K. J. (2012). Human and machine problem solving: Dordrecht, The 

Netherlands: Springer.  

Gonzalez, R., & Griffin, D. (2012). Dyadic data analysis. In H. Cooper, P. M. Camic, 

D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of 

research methods in psychology, Vol 3: Data analysis and research publication 

(pp. 439–450). Washington DC: American Psychological Association. 

https://doi.org/10.1037/13621-022 

Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 

signatories, history, and bibliography. Intelligence, 24(1), 13–23. https://doi.org 

/10.1016/S0160-2896(97)90011-8 



 

– 165 – 

Gretter, S., & Yadav, A. (2016). Computational thinking and media & information 

literacy: An integrated approach to teaching twenty-first century skills. TechTrends, 

60, 510–516. https://doi.org/10.1007/s11528-016-0098-4 

Greiff, S., Wustenberg, S., Molnar, G., Fischer, A., Funke, J., & Csapo, B. (2013).  

Complex problem solving in educational settings ! something beyond g: Concept, 

assessment, measurement invariance, and construct validity. Journal of Educational 

Psychology, 105(2), 364-379. 

Grover, S. (2017). Assessing algorithmic and computational thinking in K-12: Lessons 

from a middle school classroom. In P. J. Rich & C. B. Hodges (Eds.), Emerging 

Research, Practice, and Policy on Computational Thinking (Vol. 31, pp. 269–288). 

Cham: Springer. https://doi.org/10.1007/978-3-319-52691-1_17 

Grover, S., Jackiw, N., & Lundh, P. (2019). Concepts before coding: non-programming 

interactives to advance learning of introductory programming concepts in middle 

school. Computer Science Education, 29(2-3), 106–135. https://doi.org/10.1080 

/08993408.2019.1568955 

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of 

the field. 

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended 

computer science course for middle school students. Computer Science Education, 

25, 199–237. https://doi.org/10.1080/08993408.2015.1033142 

Guzdial, M., & Wing, J. M. (2011). A definition of computational thinking from 

Jeannette Wing. Computing Education Blog. Retrieved from 

https://computinged.wordpress.com/2011/03/22/a-definition-of-computational-

thinking-from-jeanette-wing/ 

Haberman, B. (2004). High-school students' attitudes regarding procedural abstraction. 

Education and Information Technologies, 9, 131–145. https://doi.org/10.1023 

/B:EAIT.0000027926.99053.6f 

Hadamard, J. (1945). The psychology of invention in the mathematical field. New York, 

NY: Dover Publications. Retrieve from:  http://worrydream.com/refs/Hadamard%20-

%20The%20psychology%20of%20invention%20in%20the%20mathematical%20fiel

d.pdf 

Haier, R. J. (2011). Biological basis of intelligence. In R. J. Sternberg & S. B. Kaufman 

(Eds.), The Cambridge handbook of intelligence (pp. 351–368). Cambridge, UK: 

Cambridge University Press. https://doi.org/10.1017/CBO9780511977244.019 

Halstead, M. H. (1977). Elements of software science. Operating and programming 

systems series: Vol. 2. New York, NY: Elsevier.  

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair 

programming in education: A literature review. Computer Science Education, 21, 

135–173. https://doi.org/10.1080/08993408.2011.579808 

Hemmendinger, D. (2010). A plea for modesty. ACM Inroads, 1(2), 4. 

https://doi.org/10.1145/1805724.1805725 



 

– 166 – 

Hermans, F. & Aivaloglou, E. (2017). To Scratch or not to Scratch? A controlled 

experiment comparing plugged first and unplugged first programming lessons. In 

Proceedings of WiPSCE ’17, Nijmegen, Netherlands, November 8–10, 2017. doi: 

10.1145/3137065.3137072 

Hintzman, D. L. (1986). "Schema abstraction" in a multiple-trace memory model. 

Psychological Review, 93(4), 411–428. https://doi.org/10.1037/0033-295X.93.4.411 

Hoover, A. K., Barnes, J., Fatehi, B., Moreno-León, J., Puttick, G., Tucker-

Raymond, E., & Harteveld, C. (2016). Assessing computational thinking in students' 

game designs. In A. Cox, Z. O. Toups, R. L. Mandryk, P. Cairns, V. vanden Abeele, 

& D. Johnson (Eds.), Proceedings of the 2016 Annual Symposium on Computer-

Human Interaction in Play Companion Extended Abstracts - CHI PLAY Companion 

'16 (pp. 173–179). New York, New York, USA: ACM Press. 

https://doi.org/10.1145/2968120.2987750 

Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized 

intelligence. Acta Psychologica, 26, 107–129. https://doi.org/10.1016/0001-

6918(67)90011-X 

Hu, C. (2011). Computational thinking – What it might mean and what we might do 

about it. In G. Rößling, T. Naps, & C. Spannagel (Eds.), Proceedings of the 16th 

annual joint conference on Innovation and technology in computer science education 

- ITiCSE '11 (p. 223). New York, New York, NY: ACM Press. 

https://doi.org/10.1145 

/1999747.1999811 

Humphreys, L. G. (1979). The construct of general intelligence. Intelligence, 3(2), 105–

120. https://doi.org/10.1016/0160-2896(79)90009-6 

IFTF (2017). The next area of human machine partnership: Emerging 

technologies' impact on society & work in 2013. Palo Alto, CA: Institute for the 

Future.  

ISTE and CSTA (2011). Operational definition of computational thinking for k–12 

education. Retrieved from https://csta.acm.org/Curriculum/sub/CurrFiles 

/CompThinkingFlyer.pdf 

Ivanouw, J. (2007). Sequence analysis as a method for psychological research. Nordic 

Psychology, 59, 251–267. https://doi.org/10.1027/1901-2276.59.3.251 

Jensen, A. R. (2002). Psychomnetric g: Definition and substantiation. In R. J. Sternberg 

& E. L. Grigorenko (Eds.), The general factor of intelligence: How general is it? 

Jonassen, D. H. (1997). Instructional design models for well-structured and III-

structured problem-solving learning outcomes. Educational Technology Research 

and Development, 45(1), 65–94. https://doi.org/10.1007/BF02299613 

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational 

Technology Research and Development, 48(4), 63–85. https://doi.org/10.1007 

/BF02300500 



 

– 167 – 

Jonsson, A., & Svingby, G. (2007). The use of scoring rubrics: Reliability, validity and 

educational consequences. Educational Research Review, 2, 130–144. 

https://doi.org/10.1016/j.edurev.2007.05.002 

Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational 

thinking based on a systematic research review. Baltic Journal of Modern 

Computing, 4, 583–596. 

Kaufman, J. C., & Plucker, J. A. (2011). Intelligence and creativity. In R. J. Sternberg & 

S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 771–783). 

Cambridge: Cambridge University Press. https://doi.org/10.1017 

/CBO9780511977244.039 

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A serious game for 

developing computational thinking and learning introductory computer 

programming. Procedia - Social and Behavioral Sciences, 47, 1991–1999. 

https://doi.org/10.1016/j.sbspro.2012.06.938 

Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S. 

(2014). The impact of cognitive training and mental stimulation on cognitive and 

everyday functioning of healthy older adults: A systematic review and meta-analysis. 

Ageing Research Reviews, 15, 28–43. https://doi.org/10.1016/j.arr.2014.02.004 

Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic data analysis. Methodology 

in the social sciences. New York, NY: Guilford Press. Retrieved from 

http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10254823  

Kilpatrick, J. (1987). Problem formulating: Where do good problem come from? In A. 

H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 123–147). 

Hillsdale, NJ: Erlbaum. 

Kim, H.‑Y. (2013). Statistical notes for clinical researchers: Evaluation of measurement 

error 1: Using intraclass correlation coefficients. Restorative Dentistry & 

Endodontics, 38(2), 98–102. https://doi.org/10.5395/rde.2013.38.2.98 

Kitchener, K. S., Lynch, C. L., Fischer, K. W., & Wood, P. K. (1993). Developmental 

range of reflective judgment: The effect of contextual support and practice on 

developmental stage. Developmental Psychology, 29(5), 893–906. https://doi.org/10 

.1037/0012-1649.29.5.893 

Kluwe, R. H., Misiak, C., & Haider-Hasebrink, H. (1991). The control of complex 

systems and performance in intelligence tests. In H. A. H. Rowe (Ed.), Intelligence: 

Reconceptualization and measurement. (pp. 227–244). Lawrence Erlbaum 

Associates, Inc. 

Knoblauch, H., Tuma, R., & Schnettler, B. (2013). Video Analysis and videography. In 

U. Flick (Ed.), The SAGE handbook of qualitative data analysis (pp. 335–449). 

London: Sage. 

Korkmaz, Ö., & Bai, X. (2019). Adapting Computational Thinking Scale (CTS) for  

Chinese High School Students and Their Thinking Scale Skills Level. Participatory 

Educational Research, 6(1), 10–26. 

 



 

– 168 – 

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the  

computational thinking scales (CTS). Computers in Human Behavior, 72, 558–569. 

doi:10.1016/j.chb.2017.01.005 

Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 

50(4), 36–42. https://doi.org/10.1145/1232743.1232745 

Kvist, A. V., & Gustafsson, J.‑E. (2008). The relation between fluid intelligence and the 

general factor as a function of cultural background: A test of Cattell's investment 

theory. Intelligence, 36, 422–436. https://doi.org/10.1016/j.intell.2007.08.004 

Lamprou, A., & Repenning, A. (2018). Teaching how to teach computational thinking. 

In I. Polycarpou, J. C. Read, P. Andreou, & M. Armoni (Eds.), Proceedings of the 

23rd Annual ACM Conference on Innovation and Technology in Computer Science 

Education - ITiCSE 2018 (pp. 69–74). New York, New York, USA: ACM Press. 

https://doi.org/10.1145/3197091.3197120 

Landis, R., & Koch, G. G. (1977). The measurement of observer agreement for 

categorial data. Biometrics, 33, 159–174. 

Lee, F. J., & Anderson, J. R. (2001). Does learning a complex task have to be complex? 

A study in learning decomposition. Cognitive Psychology, 42, 267–316. 

https://doi.org/10.1006/cogp.2000.0747 

Lee, G., Lin, Y. T., & Lin, J. (Eds.) 2014. Assessment of computational thinking skill 

among high school and vocational school students in Taiwan. In J. Viteli and M. 

Leikomaa (Eds.), Proceedings of EdMedia 2014-World Conference on Education 

Media and Technology, pages 173-180. Tampere, Finland: Association for the 

Advancement of Computing in Education (AACE). 

Lim, W., Plucker, J. A., & Im, K. (2002). We are more alike than we think we are. 

Intelligence, 30, 185–208. https://doi.org/10.1016/S0160-2896(01)00097-6 

Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem Solving in 

Mathematics Education. Springer Nature. https://doi.org/10.1007/978-3-319-

40730-2 

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics 

as “given” in STEM education. International Journal of STEM Education, 6(44). 

https://doi.org/10.1186/s40594-019-0197-9. 

Lockwood, J., & Mooney, A. (2018a). Computational thinking in secondary education: 

Where does it fit? A systematic literary review. International Journal of Computer 

Science Education in Schools, 2(1). https://doi.org/10.21585/ijcses.v2i1.26 

Lockwood, J., & Mooney, A. (2018b). Developing a computational thinking test using 

Bebras problems. In A. Piotrkowicz, R. Dent-Spargo, S. Dennerlein, I. Koren, P. 

Antoniou, P. Bailey, . . . C. Pahl (Chairs), European Conference on Technology 

Enhanced Learning 2018, Leeds, United Kingdom. 

Lohman, D. F., & Lakin, J. M. (2011). Intelligence and reasoning. In R. J. Sternberg & 

S. B. Kaufman (Eds.), The Cambridge Handbook of Intelligence (pp. 419–441). 



 

– 169 – 

Cambridge: Cambridge University Press. https://doi.org/10.1017 

/CBO9780511977244.022 

Lotz, M., Gabriel, K., & Lipowsky, F. (2013). Niedrig und hoch inferente Verfahren der 

Unterrichtsbeobachtung: Analysen zu deren gegenseitiger Validierung. Zeitschrift für 

Pädagogik, 59, 357–380. Retrieved from http://nbn-resolving.de/urn:nbn:de:0111-

pedocs-119425 

Lourenço, O., & Machado, A. (1996). In defense of Piaget's theory: A reply to 10 

common criticisms. Psychological Review, 103(1), 143–164. https://doi.org/10.1037 

/0033-295X.103.1.143 

Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. In S. 

Fitzgerald (Ed.), Proceedings of the 40th ACM technical symposium on Computer 

science education. New York, NY: ACM. 

Lübbers T., & Jansen, M. (2018). Application of microcontrollers for fostering 

computational thinking by using the calliope system in school. In J. C. Yang, M. 

Chang, L.-H. Wong, & M. M. T. Rodrigo (Eds.), Proceedings of the 26th 

International Conference on Computers in Education. 2018 (pp. 500–505). Taoyuan 

County, Taiwan: Asia-Pacific Society for Computers in Education (APSCE). 

Lubinski, D. (2004). Obituary, Lloyd G. Humphreys: Quintessential Scientist 

(1913?2003). Intelligence, 32(3), 221–226. https://doi.org/10.1016/j.intell 

.2004.01.002 

Lutz, C., Berges, M., Hafemann, J., & Sticha, C. (2019). Piaget’s cognitive 

development in Bebras tasks - A descriptive analysis by age groups. In S. N. 

Pozdniakov & V. Dagienė (Eds.), Lecture notes in computer science. Informatics in 

schools. Fundamentals of computer science and software (Vol. 11169, pp. 259–270). 

[Place of publication not identified]: Springer. https://doi.org/10.1007/978-3-030-

02750-6_20 

Luxton-Reilly, A., Whalley, J., Becker, B. A., Cao, Y., McDermott, R., Mirolo, C., . . . 

Simon (2017). Developing assessments to determine mastery of programming 

fundamentals. In J. Sheard & Education, ACM Special Interest Group on Computer 

Science (Eds.), Proceedings of the 2017 ITiCSE Conference on Working Group 

Reports (pp. 47–69). [S.l.]: ACM. https://doi.org/10.1145/3174781.3174784 

Lister, R., & Leaney, J. (2003). Introductory Programming, Criterion-Referencing, and 

Bloom. Proceedings of the 34th SIGCSE Technical Symposium on Computer 

Science Education, 143–147. https://doi.org/10.1145/611892.611954 

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational 

thinking through programming: What is next for K-12? Computers in Human 

Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012 

Mackintosh, N. J. (2011). History of theories and measurement of intelligence. In R. J. 

Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 3–

19). Cambridge: Cambridge University Press. https://doi.org/10.1017 

/CBO9780511977244.002 



 

– 170 – 

Mangold. (2018). INTERACT - User guide: Mangold International GmbH (ed.). 

Retrieved from www.mangold-international.com 

Martin, R. C. (2009). Clean code: A handbook of agile software craftsmanship /  Robert 

C. Martin … [et al.]. Indianapolis, IN.: Prentice Hall.  

Mayer, J. d., Salovey, P., Caruso, D. R., & Cherkasskiy, L. (2011). Emotional 

intelligence. In R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of 

intelligence (pp. 528–549). Cambridge, UK: Cambridge University Press. 

https://doi.org/10.1017/CBO9780511977244.027 

McCabe, T. J. (1976). A complexity measure. In ICSE ’76, Proceedings of the 2nd 

International Conference on Software Engineering (407‐). Los Alamitos, CA: IEEE 

Computer Society Press. Retrieved from http://dl.acm.org/citation.cfm?id 

=800253.807712 

McDonald, C. (2018). Why Is teaching programming difficult? In J. Carter, M. 

O'Grady, & C. Rosen (Eds.), Higher education computer science: A manual of 

practical approaches (pp. 75–93). Cham: Springer. https://doi.org/10.1007/978-3-

319-98590-9_6 

McFadden, C. (2018, September 13). The origin of the term 'computer bug' [Blog post]. 

Retrieved from https://interestingengineering.com/the-origin-of-the-term-computer-

bug 

McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing 

on the shoulders of the giants of psychometric intelligence research. Intelligence, 

37(1), 1-10. 

McGrew, K. S. (2005). The Cattell-Horn-Carroll theory of cognitive abilities: Past, 

present, and future. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary 

intellectual assessment: Theories, tests, and issues (pp. 136–181). New York, NY: 

The Guilford Press. 

MDESE. (2016). Massachusetts digital literacy and computer science. Malden, MA.  

Menéndez-Varela, J.-L., & Gregori-Giralt, E. (2016). The contribution of rubrics to the 

validity of performance assessment: a study of the conservation–restoration and 

design undergraduate degrees. Assessment & Evaluation in Higher Education, 

41(2), 228–244. https://doi.org/10.1080/02602938.2014.998169 

Mensing, K., Mak, J., Bird, M., & Billings, J. (2013). Computational, model thinking 

and computer coding for U.S. Common Core Standards with 6 to 12 year old 

students. In A. Szakál (Ed.), 2013 IEEE 11th International Conference on Emerging 

eLearning Technologies and Applications (ICETA): 24-25 Oct. 2013, Stary 

Smokovec, the High Tatras, Slovaki (pp. 17–22). Piscataway, NJ: IEEE. 

https://doi.org/10.1109 

/ICETA.2013.6674397 

Michaels, G., Natraj, A., & van Reenen, J. (2014). Has ICT polarized skill demand?: 

Evidence from eleven countries over twenty-five years. Review of Economics and 

Statistics, 96(1), 60–77. https://doi.org/10.1162/REST_a_00366 



 

– 171 – 

Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our 

capacity for processing information. Psychological Review, 63(2), 81–97. 

Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in 

Cognitive Sciences, 7(3), 141–144. https://doi.org/10.1016/S1364-6613(03)00029-9 

Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of 

behavior: Holt, Rinehart and Winston, Inc.  

Moessinger, P., & Poulin-Dubois, D. (1981). Piaget on abstraction. Human 

Development, 24, 347–353. https://doi.org/10.1159/000272712 

Moreno-León, J., & Robles, G. (2014). Automatic detection of bad programming habits 

in scratch: A preliminary study. In IEEE Frontiers in Education Conference (FIE), 

2014: 22 - 25 Oct. 2014, Madrid, Spain (pp. 1–4). Piscataway, NJ: IEEE. 

https://doi.org/10.1109/FIE.2014.7044055 

Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A web tool to automatically 

evaluate Scratch projects. In J. Gal-Ezer, S. Sentance, & J. Vahrenhold (Eds.), 

Proceedings of the Workshop in Primary and Secondary Computing Education, 

London, United Kingdom, November 09 - 11, 2015 (pp. 132–133). New York, NY: 

ACM. https://doi.org/10.1145/2818314.2818338 

Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic 

analysis of Scratch projects to assess and foster computational thinking. RED-Revista 

de Educación a Distancia. 

Moreno-León, J., Robles, G., & Román-González, M. (2016). Comparing 

computational thinking development assessment scores with software complexity 

metrics. In Proceedings of 2016 IEEE Global Engineering Education Conference 

(EDUCON): Date and venue: 10-13 April 2016, Abu Dhabi, UAE (pp. 1040–1045). 

Piscataway, NJ: IEEE. https://doi.org/10.1109/EDUCON.2016.7474681 

Moreno-León, J., Robles, G., & Román-González, M. (2017). Towards data-driven 

learning paths to develop computational thinking with Scratch. IEEE Transactions 

on Emerging Topics in Computing, 1. https://doi.org/10.1109/TETC.2017.2734818 

Moreno-León, J., Román-González, M., Harteveld, C., & Robles, G. (2017). On the 

automatic assessment of computational thinking skills. In G. Mark, S. Fussell, C. 

Lampe, M. C. Schraefel, J. P. Hourcade, C. Appert, & D. Wigdor (Eds.), CHI'17: 

Extended abstracts: Proceedings of the 2017 ACM SIGCHI Conference on Human 

Factors in Computing Systems : May 6-11, 2017, Denver, CO (pp. 2788–2795). New 

York, NY: The Association for Computing Machinery. https://doi.org/10.1145 

/3027063.3053216 

Najafi, A., Niu, N., & Najafi, F. (2011). Multi-level decomposition approach for 

problem solving and design in software engineering. In K. Hoganson (Ed.), ACM 

Digital Library, Proceedings of the 49th Annual Southeast Regional Conference 

(p. 249). New York, NY: ACM. https://doi.org/10.1145/2016039.2016104 



 

– 172 – 

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human 

problem solving. Psychological Review, 65, 151–166. 

https://doi.org/10.1037/h0048495 

Newman, I., Lim, J., & Pineda, F. (2013). Content validity using a mixed methods 

approach. Journal of Mixed Methods Research, 7, 243–260. https://doi.org/10.1177 

/1558689813476922 

Nickerson, R. S. (2011). Developing intelligence through instruction. In R. J. Sternberg 

& S. B. Kaufman (Eds.), The Cambridge Handbook of Intelligence (pp. 107–129). 

Cambridge: Cambridge University Press. https://doi.org/10.1017 

/CBO9780511977244.007 

National Research Council (NRC). (2002). Helping children learn mathematics. 

Washington, DC: The National Academies Press. https://doi.org/10.17226/1043. 

National Research Council  (NRC). (2010). Report of a workshop on the scope and 

nature of computational thinking. National Research Council. Washington, D.C: 

National Academies Press.  

Retrieved from http://site.ebrary.com/lib/academiccompletetitles/home.action  

Nwadinigwe, I., & Naibi, L. (2013). The number of options in a multiple-choice test 

item and the psychometric characteristics. Journal of Education and Practice, 4(28). 

O'Dell, D. H. (2017). The debugging mind-set. Communications of the ACM, 60(6), 40–

45. https://doi.org/10.1145/3052939 

OECD (2016a). New skills for the digital economy. OECD Digital Economy Papers, 

258. https://doi.org/10.1787/5jlwnkm2fc9x-en 

OECD (2016b). Skills for a digital world: 2016 Ministerial Meeting on the Digital 

Economy Background Report. OECD Digital Economy Papers, 250. 

https://doi.org/10.1787/5jlwz83z3wnw-en 

OECD (Ed.) 2017. Key issues for digital transformation in the G20: Report prepared 

for a joint G20 German Presidency/ OECD conference. Berlin, Germany. 

Olsen, A. (2005). Using pseudocode to teach problem solving. Journal of Computing 

Sciences in Colleges, 21. 

Palts, T., & Pedaste, M. (2020). A Model for Developing Computational Thinking 

Skills. Informatics in Education, 19, 113–128. 

https://doi.org/10.15388/infedu.2020.06 

Panadero, E., & Jonsson, A. (2020). A critical review of the arguments against the use 

of rubrics. Educational Research Review, 30, 100329. 

https://doi.org/https://doi.org/10.1016/j.edurev.2020.100329 

Papert, S. (1980). Mindstorm: Children, computers, and powerful ideas. New York, 

NY: Basic Books.  

Papert, S. (1996). An exploration in the space of mathematics educations. International 

Journal of Computers for Mathematical Learning, 1(1). https://doi.org/10.1007 

/BF00191473 



 

– 173 – 

Papert, S., & Harel, I. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), 

Constructionism: Research reports and essays, 1985-1990. Norwood, NJ: Ablex. 

Pauli, C., & Reusser, K. (2006). Von international vergleichenden Video Surveys zur 

videobasierten Unterrichtsforschung und -entwicklung. Zeitschrift für Padagogik, 52. 

Pease, A., Smaill, A., & Guhe, M. (2009). Abstract or not abstract? Well, it depends … 

Behavioral and Brain Sciences, 32(3-4), 345–346. https://doi.org/10.1017 

/S0140525X09991063 

Perković, L., Settle, A., Hwang, S., & Jones, J. (2010). A framework for computational 

thinking across the curriculum. In R. Ayfer, J. Impagliazzo, & C. Laxer (Eds.), 

Proceedings of the fifteenth annual conference on Innovation and technology in 

computer science education - ITiCSE '10 (p. 123). New York, NY: ACM Press. 

https://doi.org/10.1145/1822090.1822126 

Piaget, J. (1952). The origins of intelligence in children. New York, NY: International 

Universities Press, Inc. https://doi.org/10.1037/11494-000 

Piaget, J. (1960). The Psychology of intelligence. New York, NY: Littlefield, Adams & 

Co.  

Polson, P., & Jeffries, R. (1985). Instruction in problem solving skills: An analysis of 

four approaches. In J. W. Segal (Ed.), Thinking and learning skills (pp. 417–455). 

Hillsdale, NJ: Erlbaum. 

Portelance, D. J., & Bers, M. U. (2015). Code and tell. In M. U. Bers & G. Revelle 

(Eds.), IDC 2015: ACM SIGCHI Interaction Design and Children : Tufts University, 

Boston, MA, USA, June 21-24, 2015 (pp. 271–274). New York, NY: ACM. 

https://doi.org/10.1145/2771839.2771894 

Posner, M. I. (1969). Abstraction and the process of recognition. In G. H. Bower, K. W. 

Spence, J. T. Spence, & D. L. Medin (Eds.), The psychology of learning and 

motivation: Advances in research and theory (Vol. 3, pp. 43–100). New York, NY: 

Academic Press. https://doi.org/10.1016/S0079-7421(08)60397-7 

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of 

Experimental Psychology, 77, 353–363. https://doi.org/10.1037/h0025953 

President’s Information Technology Advisory Committee (PITAC) (2005). 

Computational science: Ensuring America’s competitiveness (Report to the 

President, June 2005). Washington, DC: National Coordination Office for 

Information Technology Research and Development (NCO/IT R&D). 

Pretz, J. E., Naples, A. J., & Sternberg, R. J. (2003). Recognizing, defining, and 

representing problems. In J. E. Davidson & R. J. Sternberg (Eds.), The Psychology of 

problem solving (pp. 3–30). Cambridge, UK: Cambridge University Press. 

https://doi.org/10.1017/CBO9780511615771.002 

Priami, C. (Ed.). (2007). Journal subline: 4780 : Lecture notes in bioinformatics. 

Transactions on computational systems biology. Berlin: Springer. 

https://doi.org/10.1007/978-3-540-76639-1 

R Core Team. (2017). R. Vienna, Austria. Retrieved from https://www.R-project.org/ 



 

– 174 – 

Repenning, A. (2015). Computational thinking in der Lehrerbildung. Bern, Schweiz: 

Hasler-Stiftung.  

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., 

Rusk, N., . . . Silver, J. (2009). Scratch: Programming for all. Communications of the 

ACM, 52(11), 60. https://doi.org/10.1145/1592761.1592779 

Rigas, G., & Brehmer, B. (1999). Mental processes in intelligence tests and dynamic 

decision making tasks. In P. Juslin & H. Montgomery (Eds.), Judgement and 

decision making: NeoBrunswikian and process-tracing approaches (pp. 45-65). 

Hillsdale, NJ: Lawrence Erlbaum. 

Rodrigo, Tabanao, Lahoz, Jadud (2009). Analyzing online protocols to characterize 

novice Java programmers. Philippine Journal of Science, 138, 177–190. 

Rodriguez, B., Kennicutt, S., Rader, C., & Camp, T. (2017). Assessing computational 

thinking in CS unplugged activities. In M. E. Caspersen, S. H. Edwards, T. Barnes, 

& D. D. Garcia (Eds.), Proceedings of the 2017 ACM SIGCSE Technical Symposium 

on Computer Science Education - SIGCSE '17 (pp. 501–506). New York, NY: ACM 

Press. https://doi.org/10.1145/3017680.3017779 

Román-González, M., Moreno-León, J., & Robles, G. (2017). Complementary tools for 

computational thinking assessment. In S.-C. Kong, J. Sheldon, & R. K.-y. Li (Eds.), 

Proceedings of the 2017 International Conference on Computational Thinking 

Education (154-158). Hong Kong, China: The Education University of Hong Kong. 

Román-González, M., Pérez-González, J.‑C., & Jiménez-Fernández, C. (2017). Which 

cognitive abilities underlie computational thinking?: Criterion validity of the 

Computational Thinking Test. Computers in Human Behavior, 72, 678–691. 

https://doi.org/10.1016/j.chb.2016.08.047 

Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), 

Cognition and categorization (pp. 27–48). Hillsdale, NJ: Lawrence Erlbaum. 

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). 

Basic objects in natural categories. Cognitive Psychology, 8, 382–439. 

https://doi.org/10.1016/0010-0285(76)90013-X 

Ross, B. H. (1984). Remindings and their effects in learning a cognitive skill. Cognitive 

Psychology, 16, 371–416. https://doi.org/10.1016/0010-0285(84)90014-8 

Roy, G. G. (2006). Designing and explaining programs with a literate pseudocode. 

Journal on Educational Resources in Computing, 6(1), 1-es. https://doi.org/10.1145 

/1217862.1217863 

Royston, P. (1993). A pocket-calculator algorithm for the Shapiro-Francia test for non-

normality: An application to medicine. Statistics in Medicine, 12, 181–184. 

https://doi.org/10.1002/sim.4780120209 

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals and understanding: An 

inquiry into human knowledge structures. Artificial intelligence series. Hillsdale, NJ: 

L. Erlbaum Associates.  



 

– 175 – 

Schulz, K., & Hobson, S. (2015). Bebras Australia Computational Thinking Challenge 

Tasks and Solutions 2014. Brisbane, Australia: Digital Careers.  

Schulz, K., Hobson, S., & Zagami, J. (2016). Bebras Australia Computational Thinking 

Challenge - Tasks and Solution 2016. Brisbane, Australia: Digital Careers.  

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational 

thinking of primary grade students. In B. Simon (Ed.), Proceedings of the ninth 

annual international ACM conference on International computing education 

research (p. 59). New York, NY: ACM. https://doi.org/10.1145/2493394.2493403 

Selby, C. (2015). Relationships: Computational thinking, pedagogy of programming, 

and Bloom’s Taxonomy. In J. Gal-Ezer, S. Sentance, & J. Vahrenhold (Eds.), 

Proceedings of the Workshop in Primary and Secondary Computing Education, 

London, United Kingdom, November 09 - 11, 2015 (pp. 80–87). New York, NY: 

ACM. https://doi.org/10.1145/2818314.2818315 

Selby, C., & Woollard, J. (2014). Refining an understanding of computational thinking. 

Author’s original. Retrieved from http://eprints.soton.ac.uk/372410/ 

Sentance, S., Waite, J., Hodges, S., MacLeod, E., & Yeomans, L. (2017). Creating cool 

stuff. In M. E. Caspersen, S. H. Edwards, T. Barnes, & D. D. Garcia (Eds.), 

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science 

Education - SIGCSE '17 (pp. 531–536). New York, NY: ACM Press. 

https://doi.org/10.1145/3017680.3017749 

Shapiro, S. S., & Francia, R. S. (1972). An approximate analysis of variance test for 

normality. Journal of the American Statistical Association, 67(337), 215–216. 

https://doi.org/10.1080/01621459.1972.10481232 

Shi, W., Liu, M., & Hendler, P. (2014). Computational features of the thinking and the 

thinking attributes of computing: On computational thinking. Journal of Software, 

9(10). https://doi.org/10.4304/jsw.9.10.2507-2513 

Shivhare, R., & Kumar, C. A. (2016). On the cognitive process of abstraction. Procedia 

Computer Science, 89, 243–252. https://doi.org/10.1016/j.procs.2016.06.051 

Shoemate, B. (2008, November 30). Einstein never said that … [Blog post]. Retrieved 

from http://www.benshoemate.com/2008/11/30/einstein-never-said-that/ 

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater 

reliability. Psychological Bulletin, 86, 420–428. https://doi.org/10.1037/0033 

-2909.86.2.420 

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. 

Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017 

.09.003 

Siegler, R. S., DeLoache, J. S., & Eisenberg, N. (2014). How children develop (4th ed.). 

New York, NY: Worth.  

Silverman, D. (2013). A very short, fairly interesting and reasonably cheap book about 

qualitative research (2nd ed.). London, UK: Sage.  



 

– 176 – 

Simmons, R. (1988). A theory of debugging plans and interpretations. In Proceedings of 

the National Conference on Artificial Intelligence (AAAI) (pp. 94–99). 

Simon, H.A. (1973). The structure of ill structured problems. Artificial Intelligence 4(3-

4), 181–201. 

Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in 

1970. American Psychologist, 26, 145–159. https://doi.org/10.1037/h0030806 

Sipser, M. (2013). Introduction to the theory of computation (3rd ed.). Boston, MA: 

Thomson Course Technology.  

Sonnleitner, P., Brunner, M., Greiff, S., Funke, J., Keller, U., Martin, R., Hazotte, C., 

Mayer, H., & Latour, T. (2012). The Genetics Lab. Acceptance and psychometric 

characteristics of a computer-based microworld to assess complex problem solving. 

Psychological Test and Assessment Modeling, 54(1), 54-72. 

Sowder, J. (1992). Estimation and number sense. In D. Grouws (Ed.), Handbook for 

research on mathematics teaching and learning (pp. 371–389). New York: 

MacMillan. 

Spearman, C. (1904). "General intelligence," Objectively Determined and Measured. 

The American Journal of Psychology, 15(2), 201. https://doi.org/10.2307/1412107 

Stadler, M., Becker, N., Gödker, M., Leutner, D., & Greiff, S. (2015). Complex 

problem solving and intelligence: A meta-analysis. Intelligence, 53, 92-101. 

Stein, L. A. (2002). Introduction to interactive programming in Java: Morgan 

Kaufmann.  

Sternberg, R. J. (1985). Implicit theories of intelligence, creativity, and wisdom. 

Journal of Personality and Social Psychology, 49, 607–627. 

https://doi.org/10.1037/0022 

-3514.49.3.607 

Sternberg, R. J. (2004). Culture and intelligence. American Psychologist, 59, 325–338. 

https://doi.org/10.1037/0003-066X.59.5.325 

Sternberg, R. J. (2017). Human intelligence. Encyclopaedia Britannica. Retrieved from 

https://www.britannica.com/topic/human-intelligence-psychology/Development-of 

-intelligence#ref13354 

Sternberg, R. J., Conway, B. E., Ketron, J. L., & Bernstein, M. (1981). People's 

conceptions of intelligence. Journal of Personality and Social Psychology, 41(1), 

37–55. https://doi.org/10.1037/0022-3514.41.1.37 

Sternberg, R. J., & Berg, C. A. (Eds.). (1992). Intellectual development. Cambridge: 

Cambridge University Press. 

Stojanoski, B., Lyons, K. M., Pearce, A. A. A., & Owen, A. M. (2018). Targeted 

training: Converging evidence against the transferable benefits of online brain 

training on cognitive function. Neuropsychologia, 117, 541–550. 

https://doi.org/10.1016 

/j.neuropsychologia.2018.07.013 



 

– 177 – 

Swaid, S. I. (2015). Bringing computational thinking to STEM education. Procedia 

Manufacturing, 3, 3657–3662. https://doi.org/10.1016/j.promfg.2015.07.761 

Tabanao, E. S., Rodrigo, M. M. T., & Jadud, M. C. (2011). Predicting at-risk novice 

Java programmers through the analysis of online protocols. In K. Sanders (Ed.), 

Proceedings of the seventh international workshop on Computing education research 

(p. 85). New York, NY: ACM. https://doi.org/10.1145/2016911.2016930 

Tabesh, Y. (2017). Computational thinking: A 21st Century skill. Olympiads in 

Informatics, 11(2), 65–70. https://doi.org/10.15388/ioi.2017.special.10 

Teague, D., & Lister, R. (2014). Longitudinal think aloud study of a novice 

programmer. In J. Whalley (Ed.), Proceedings of the Sixteenth Australasian 

Computing Education Conference - Volume 148. Darlinghurst, Australia: Australian 

Computer Society, Inc. 

Terman, L. M. (1921). Intelligence and its measurement: A symposium--II. Journal of 

Educational Psychology, 12(3), 127–133. https://doi.org/10.1037/h0064940 

Thalheim, B. (2009). Abstraction. In L. Liu & M. T. Özsu (Eds.), Springer reference. 

Encyclopedia of database systems. New York, NY: Springer. 

Thies, R., & Vahrenhold, J. (2013). On plugging "unplugged" into CS classes. In R. 

McCauley (Ed.), Sigcse'13: Proceedings of the 44th ACM Technical Symposium on 

Computer Science Education; March 6 - 9, 2013, Denver, Colorado, USA. New 

York, NY: ACM. https://doi.org/10.1145/2445196.2445303 

Thompson, N. (2017). What is classical item difficulty (P value)? Retrieved from 

http://www.assess.com/classical-item-difficulty-p-value/ 

Thurstone, L. L. (1938). Primary mental abilities. Chicago, IL: University of Chicago 

Press.  

Toga, A. W., & Thompson, P. M. (2005). Genetics of brain structure and intelligence. 

Annual Review of Neuroscience, 28, 1–23. https://doi.org/10.1146/annurev.neuro.28 

.061604.135655 

Touretzky, D. S., Marghitu, D., Ludi, S., Bernstein, D., & Ni, L. (2013). Accelerating 

K-12 computational thinking using scaffolding, staging, and abstraction. In T. Camp, 

P. Tymann, J. D. Dougherty, & K. Nagel (Chairs), Proceeding of the 44th ACM 

technical symposium, Denver, Colorado, USA. 

Trachtenberg, J. (1960). The Trachtenberg Speed System of Basic Mathematics. Garden 

City, NY: Doubleday and Company, Inc.  

Trevethan, R. (2017). Intraclass correlation coefficients: Clearing the air, extending 

some cautions, and making some requests. Health Services and Outcomes Research 

Methodology, 17(2), 127–143. https://doi.org/10.1007/s10742-016-0156-6 

Urbina, S. (2011). Tests of intelligence. In R. J. Sternberg & S. B. Kaufman (Eds.), The 

Cambridge handbook of intelligence (pp. 20–38). Cambridge, UK: Cambridge 

University Press. https://doi.org/10.1017/CBO9780511977244.003 



 

– 178 – 

Van Dyne, M., & Braun, J. (2014). Effectiveness of a computational thinking (CS0) 

course on student analytical skills. In J. D. Dougherty, K. Nagel, A. Decker, & K. 

Eiselt (Chairs), SIGCSE '14 Proceedings of the 45th ACM technical symposium on 

Computer science education, Atlanta, Georgia, USA. 

Vaníček, J. (2014). Bebras Informatics Contest: Criteria for Good Tasks Revised. In Y. 

Gülbahar & E. Karataş (Eds.), Informatics in Schools. Teaching and Learning 

Perspectives: 7th International Conference on Informatics in Schools: Situation, 

Evolution, and Perspectives, ISSEP 2014, Istanbul, Turkey, September 22-25, 2014. 

Proceedings (pp. 17–28). Cham: Springer International Publishing. 

https://doi.org/10.1007/978-3-319-09958-3_3 

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking 

in compulsory education: Towards an agenda for research and practice. Education 

and Information Technologies, 20, 715–728. https://doi.org/10.1007/s10639-015-

9412-6 

Vuorikari, R., Punie, Y., Carretero, S., & van den Brande, L. (2016). DigComp 2.0: The 

digital competence framework for citizens. EUR, Scientific and technical research 

series: Vol. 27948. Luxembourg: Publications Office.  

Wang, X., & Zhou, Z. The research of situational teaching mode of programming in 

high school with Scratch. In 2011 6th IEEE Joint International Information 

Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China. 

Ward, M. (1995). A definition of abstraction. Journal of Software Maintenance: 

Research and Practice, 7, 443–450. https://doi.org/10.1002/smr.4360070606 

Watt, D. A., & Findlay, W. (2004). Programming language design concepts. 

Chichester, UK: John Wiley & Sons, Ltd.  

Wechsler, D. (1958). The measurement and appraisal of adult intelligence (4th ed.). 

Baltimore, MD: Williams & Wilkins Co. https://doi.org/10.1037/11167-000 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. 

(2016). Defining computational thinking for mathematics and science classrooms. 

Journal of Science Education and Technology, 25(1), 127–147. 

https://doi.org/10.1007/s10956-015-9581-5 

Weintrop, D., & Wilensky, U. (2018). How block-based, text-based, and hybrid 

block/text modalities shape novice programming practices. International Journal of 

Child-Computer Interaction. Advance online publication. https://doi.org/10.1016 

/j.ijcci.2018.04.005 

Wenke, D., & Frensch, P. A. (2003). Is success or failure at solving complex problems 

related to intellectual ability? In J. E. Davidson & R. J. Sternberg (Eds.), The 

Psychology of Problem Solving (pp. 87–126). Cambridge, UK: Cambridge 

University Press. https://doi.org/10.1017/CBO9780511615771.004 

Wentworth, P., Elkner, J., Downey, A. B., & Meyers, C. (2012). How to think like a 

computer scientist: Learning with Python 3.  



 

– 179 – 

Werner, L., Denner, J., & Campe, S. (2012). The Fairy Performance Assessment: 

Measuring computational thinking in middle school. In Sigcse Conference 

Committee (Ed.), Sigcse 12 Proceedings of the 43rd Acm Technical Symposium on 

Computer Science Education. New York, NY: Association for Computing 

Machinery. 

Werner, L. & Denning, J. (2009). Pair Programming in Middle School. Journal of 

Research on Technology in Education 42(1), 29–49. 

White House (2017). President Trump signs memorandum for STEM education 

funding. https://www.whitehouse.gov/articles/president-trump-signs-memorandum-

stem-education-funding/ 

Wilhelm, O. (2005). Measuring reasoning ability. In O. Wilhelm & R. W. Engle (Eds.), 

Handbook of understanding and measuring intelligence (pp. 373–392). Thousand 

Oaks, CA: Sage. https://doi.org/10.4135/9781452233529.n21 

Williamson, B. (2016). Political computational thinking: Policy networks, digital 

governance and ‘learning to code’. Critical Policy Studies, 10(1), 39–58. 

https://doi.org/10.1080/19460171.2015.1052003 

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–

35. https://doi.org/10.1145/1118178.1118215 

Wing, J. M. (2008). Computational thinking and thinking about computing. 

Philosophical transactions of the Royal Society A: Mathematical, physical and 

engineering sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118 

Wing, J. M. (2011). Research notebook: Computational thinking—What and why? 

Retrieved from https://www.cs.cmu.edu/link/research-notebook-computational-

thinking-what-and-why 

Wirth, J., & Klieme, E. (2003). Computer-based assessment of problem solving 

competence. Assessment in Education: Principles, Policy, & Practice, 10, 329-345. 

Wittmann, W. W., & Hattrup, K. (2004). The relationship between performance in 

dynamic systems and intelligence. Systems Research and Behavioral Science, 21(4), 

393-409. 

Wittmann, W., & Suß, H.-M. (1999). Investigating the paths between working memory, 

intelligence, knowledge, and complex problem-solving performances via Brunswik 

symmetry. In P. L. Ackerman, P. C. Kyllonen, & R. D. Roberts (Eds.), Learning and 

individual differences: Process, traits, and content determinants (pp. 77-108). 

Washington, DC: APA. 

Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational thinking in 

collaborative programming: A quantitative ethnography approach. Journal of 

Computer Assisted Learning, 35, 421–434. https://doi.org/10.1111/jcal.12348 

Wüstenberg, S., Stadler, M., Hautamäki, J., & Greiff, S. (2014). The role of strategy 

knowledge for the application of strategies in complex problem solving tasks. 

Technology, Knowledge and Learning, 19, 127-146. 



 

– 180 – 

Wüstenberg, S., Greiff, S., & Funke, J. (2012). Complex problem solving – more than 

reasoning? Intelligence, 40, 1-14. 

Xu, Z., Ritzhaupt, A. D., Tian, F., & Umapathy, K. (2019). Block-based versus text-

based programming environments on novice student learning outcomes: A meta-

analysis study. Computer Science Education, 29(2–3), 177–204. https://doi.org/10 

.1080/08993408.2019.1565233 

Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. 

Journal of Statistical Computation and Simulation, 81, 2141–2155. https://doi.org/10 

.1080/00949655.2010.520163 

Zamanzadeh, V., Ghahramanian, A., Rassouli, M., Abbaszadeh, A., Alavi-Majd, H., & 

Nikanfar, A.‑R. (2015). Design and implementation content validity study: 

Development of an instrument for measuring patient-centered communication. 

Journal of Caring Sciences, 4, 165–178. https://doi.org/10.15171/jcs.2015.017



Appendix A 
 

 

 

7 APPENDIX 

 

Appendix A: Summary of literature analysis to define CT 

 Problem solving Decomposing Abstracting Algorithmic design 

 Works based on experts’ opinions like workshops and online surveys 

NRC (2010) CT as mental tool to 

reformulate problems to 

solve it (p. 3); 

Problem Decomposition 

and modularisation (p. 3); 

Problem abstraction (p. 3); 

 

CT as an abstract thinking 

tool to handle complexity 

(p. 11); 

 

Abstraction as core for CT 

(p. 12); 

 

CT is the creation and 

managing of abstraction (p. 

16); 

Understanding of the 

complexity of algorithms (p. 

3); 

 

Knowing specific algorithms 

(p. 8); 

 

“The processes by which these 

algorithms are developed and 

tested involve computational 

thinking.” (p. 37); 

 

The solution they described are 
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being often “algorithmic” (e.g., 

p. 3 and 26) 

Corradini et al. (2017) Identified as “absolutely 

necessary in any definition 

of CT” 

Identified as “important 

category” for CT 

Identified as “important 

category” for CT” 

Algorithmic thinking and 

automation are both identified 

as “absolutely necessary in any 

definition of CT” 

 

Logical thinking is identified 

as “important for a definition” 

Barr et al. (2011) Highlighted CT as problem 

solving for complex 

problems 

See table: one of the core 

concepts and capabilities 

of CT; 

 

Declared decomposition as 

one working strategy in 

sense of CT; 

See table: one of the core 

concepts and capabilities of 

CT; 

 

Described as using 

abstraction to design 

solutions to problems as a 

core concept of CT as well 

as being able to “move 

between levels of 

abstraction”; 

See table: one of the core 

concepts and capabilities of CT 

(with automation; 

parallelisation) 

 

 

Understanding of algorithmic 

processes as vital for CT; 

 

Declared that CT is highly 

associated with algorithmic 
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Using abstraction in sense 

of repeated commands and 

iterations, in general, being 

able to generalise solutions 

for different problems and 

situations 

thinking; 

Creating algorithms as 

problems; 

 

Mentioned testing and 

debugging; 

ISTE and CSTA (2011) 

 

Declared CT as problem-

solving process; 

 

“Reformulating problems 

in a way that computers can 

help to solve them” 

 Using abstraction in order to 

handle data 

Being able to use algorithmic 

thinking to create automating 

solutions 
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 Systematic literature reviews 

Selby et al. (2014) Emphasised that the 

community mainly 

accepted CT as a thought 

process to deal with 

problems; 

They concluded that 

there is a consensus that CT 

is a type of problem solving 

but also pointed out that the 

term is not sufficiently 

defined. 

CT is about 

transforming difficult 

problems into ones that 

can be solved more easily 

and concludes that a 

definition of CT should 

include the concept of 

decomposition 

As they pointed out that 

many authors declared 

abstraction as a key 

competence they concluded 

that a definition of CT 

should include the concept 

of abstraction 

They conclude that there 

appears to be a consensus that 

CT incorporates aspects of the 

creation and use of algorithms; 

The idea of algorithm, 

incorporating the design 

process, is represented 

consistently in literature. They 

further conclude that a 

definition of CT should include 

something in a sense of 

algorithm design; 

 

Bocconi et al. (2016) Concludes that CT 

describes thought process 

which (re)-formulate 

problems in order to solve 

it computationally. 

Identifies it as core 

skills of CT (p. 18) 

Abstraction & 

generalization as core skills 

of CT (p. 18) 

Algorithmic thinking & 

automation & debugging as 

core skills of CT 

Kalelioğlu et al. 

(2016) 

Concluded that most 

definitions in the literature 

dwell on problem solving, 

understanding problems or 

formulating problems; 

 

35 % of 125 papers 

mentioned it 

6 % of 125 papers 

mentioned it 

49 % of 125 papers 

mentioned it 

28 % of 125 papers 

mentioned it 

Shute et al. (2017) “Conceptual foundation 

required to solve problems 

effectively and efficiently”; 

Identify decomposition 

as one of the most often 

components of CT; 

Identify abstraction as 

one of the most often 

components of CT; 

They state that CT means 

solving problems 

algorithmically and also state 
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CT means approaching 

problem in a systematic 

way 

 

state as one of the main 

facet of CT 

 

abstraction means 

finding patterns within 

problems and solutions and 

therefore being able to 

generalise solutions to 

similar problems. 

 

State as one of the main 

facet of CT 

They also state 

generalisation as one of the 

main facet of CT but this is 

considered as part of 

abstraction in this thesis. 

 

that algorithms and debugging 

are concepts more often 

associated with CT than others; 

 

Solutions are designs 

algorithmically. 

 

State as one of the main 

facet of CT. They also 

described debugging as main 

facet which is considered as 

part of algorithms here in this 

thesis. 
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Appendix B: List of complete set of revised Bebras tasks 

 

Task #1 – #115A1 

Age Group: 11 + 12 

Difficulty: A 

Introduction / Presentation 

In the following you see several images of stars. There is a specific system for labelling 

the stars according to their shape. Two numbers are needed for labelling. A number of 

dots for the star. A number indicating if a line from a dot is drawn to the nearest dot 

(number is 1), the second closest dot (the number is 2), etc. Here are four examples for 

this labelling system: 

 

 

Question & Answer 

According to this specific labelling system, how would you label the following star? 

 

 

9:3  

9:4  

10:4 X 

10:5  
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Task #2 – #215A2 

Age Group: 11 + 12 

Difficulty: A 

Introduction / Presentation 

An encryption machine transforms messages according to the following rule: 

 

BEAVER             REVAEB     VAEBRE             WBFCSF 

Question & Answer 

What is the actual message of PMGEP? 

RIVER  

KNOCK  

FLOOD X 

LODGE  

 



Appendix B 
 

 

 

Task #3 – #315A3 

Age Group: 11 + 12 

Difficulty: A 

Introduction / Presentation 

In the following picture you can see how different words are connected. 

 

 

 

 

 

 

 

The rule for the connection is that any two words are connected that differ by exactly 

one letter. 

Question & Answer 

According to this rule, how do you have to rearrange the words that they fit in this 

rearrange picture? 

 

 

 

 

 

 

 

CAT 

RAT 

BAT 

BAG 

CAR 

EAR 
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BA
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EA

R 

RA

T 

CA
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B 

BA

T 

BA

G 

EA

R 

CA

R 

CA

T 

RA
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C 

CA
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BA
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CA

R 

EA

R 

RA

T 

BA

G 

D 



Appendix B 
 

 

 

Task #4 - #415A4 

Age Group: 11 + 12 

Difficulty: A 

Introduction / Presentation 

In the following can you see how objects convert in other objects. The rule is: 

two squares convert into one circle 

One circle and two squares convert into one hexagon 

One hexagon and one square convert into one triangle 

One circle, one hexagon, and one triangle convert into one cone 

 

 

  

 

 

 

Question & Answer 

How many squares do you need to create one cone? 

A 5 

B 10 

C 11 

D 12 
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Task #5– #515B1 

Age Group: 11 + 12 

Difficulty: B 

Introduction / Presentation 

Imagine seven people who are active in an online social network called Selfiegram. 

Selfiegram only allows them to see the photos on their own and their friends’ pages. In 

the following diagram, if two persons are friends they are joined by a line. 

 

 

 

 

 

 

 

 

After a while everybody posts a picture of themselves on all of their friends’ pages. 

Question & Answer 

Which persons’ picture will be seen the most? 

A Ari 

B Bob 

C Chio 

D Dmitri 

E Ehab 

F Fritz 

G Gerald 

 

Ari 

    Chio 

   Ehab 

   Dmitri 

Bob 

   Gerald     Fritz 
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Task #6 – #615B2 

Age Group: 11 + 12 

Difficulty: B 

Introduction / Presentation 

The Stack Computer is loaded with boxes from a conveyer belt. The boxes are marked 

with a number or an operator, that is +, -, * or /. 

The computer is loaded until the top box is a box marked with an operator. This 

operator is then used on the two boxes below it. The three boxes are then fused into one 

single box and marked with the outcome of the calculation. 

In the stack Computer, calculations are entered in a different way to normal calculator. 

Examples: 

2 + 3 must be entered as 2 3 + 

10 - 2 must be entered as 10 2 – 

5 * 2 + 3 must be entered as 5 2 * 3 + 

5 + 2 * 3 must be entered as 5 2 3 * + 

(8 - 2) * (3 + 4) must be entered as 8 2 - 3 4 + * 

Question & Answers 

How should the following computation be entered: 4 * (8 + 3) - 2? 

Answer: 4 8 3 + * 2 - 

However, the following answers are also acceptable as they all produce the correct 

output: 

 4 3 8 + * 2 - 

 8 3 + 4 * 2 - 

 3 8 + 4 * 2 - 
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These inputs all lead to the same result, even though the order of the operators and 

operations are not the same as intended in the given expression. 
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Task #7 – #715B3 

Age Group: 11 + 12 

Difficulty: B 

Introduction / Presentation 

All members of a family have abilities. Imagine there is a rule for heritage as follows: 

A daughter inherits all her abilities from her mother 

A son inherits all his abilities from his father 

Each family member also has one extra ability 

The diagram below shows exemplary the relationship between family members. It also 

shows the extra ability for each person. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grandmother 

Maria 

singing 

Aunt Mary 

dancing 

Grandfather 

Jerry 

swimming 

Mother Jenny 

programming 

Sarah 

climbing 

Lisa 

writing 

Tom 

riding 

Charles 

reading 

Father Richard 

photography 

Grandmother 

Margot 

calculating 

Grandfather Josh 

painting 



Appendix B 
 

 

 

 

Examples: 

Mother Jennifer has inherited the ability to sing from grandmother Maria, and she also 

has the ability to program. 

Lisa inherits two abilities from her mother and also has the ability of writing. This 

means she can write, program and sing. 

Question & Answer 

Look at the diagram above. Which of these answers is true? 

A A. Tom’s abilities are riding, painting and photography 

B B. Sarah has abilities in reading, programming and singing 

C C. Tom inherits from Grandmother Margot the ability to 

calculate 

D D. Aunt Mary has abilities in dancing and swimming 
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Task #8 – #815B4 

Age Group: 11 + 12 

Difficulty: B 

Introduction / Presentation 

There are 10 plates in a row. There is one coin on each plate. 

The aim is to collect all coins. You start at plate 1 and take the coin. After each single 

coin you take, you either go two plates forward, or backwards three plates (see figure as 

an example). You are not allowed to go back on an already empty plate. 

 

 

 

 

Question & Answers 

If you collect all 10 coins, which coin do you collect last? 

2 3 4 5 6 7 8 9 10 

       X  

 

1 2 3 4 5 6 7 8 9 1

0 
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Task #9 – #915C1 

Age Group: 11 + 12 

Difficulty: C 

Introduction / Presentation 

A factory produces sets of 6 bowls of different sizes. A long conveyor belt moves the 

bowls one by one, from left to right. 

Bowl production places the 6 bowls of each set onto the conveyor belt in a random 

order. Before packing the bowls, they need to be sorted to look like this: 

 

 

 

To help with the sorting, the factory places workers along the conveyor belt. 

When a set of bowls passes a worker, they will swap any two neighbouring bowls 

which are in the wrong order. The worker will keep doing this until the set of 6 bowls 

has finished passing. 

See how the order of a set of bowls changes as it passes one worker: 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 

1 2 3 4 5 6 

1 2 3 4 5 6 
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Question & Answer 

How many workers should be put along the line to sort the set of bowls on the right? 

 

 

 

 

Answer: 4 

2 3 4 5 
1 

6 

2 3 4 5 
1 

6 

2 3 4 5 
1 

6 

1 2 3 4 5 6 

.?. 
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Task #10 – #1015C2 

Age Group: 11 + 12 

Difficulty: C 

Introduction / Presentation 

Arnaud would like to reach a target with his arrow. He can adjust the arc to shoot an 

arrow in a range between 0 m and 10 m. 

The position of the target is unknown, but after each shoot, his friend Marc tells Arnaud 

whether the arrow reached the ground before or after the target. 

 

Question & Answer 

Given that the target has width of 50 cm, what is the minimal number of arrows needed 

to be sure to hit the target, no matter where it is located? 

A 3 

B 4 

C 5 

D 6 

  

50 

cm 
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Task #11 – #1115C3 

Age Group: 11 + 12 

Difficulty: C 

Introduction / Presentation 

Imagine the Sydney Friday firework has a special meaning. Furthermore, there are two 

kinds of rockets and every composition of sequence of both rockets stands for a 

different word. In the following picture you see the meaning of five different sequences 

of rockets. 

 

For example, to send the message “food, log, food”, you have to shoot: 

 

Question & Answer 

How many different meanings can the following sequence of fireworks have? 

 

Answer: 4 
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Task #12 – #1215C4 

Age Group: 11 + 12 

Difficulty: C 

Introduction / Presentation 

A mobile is a piece of art that hangs from the ceiling. You may remember one hanging 

from the ceiling in your room. A mobile consists of sticks and figures. Each stick has a 

few points to which figures or other sticks may be attached. Also, each stick has a 

hanging point, from which it is attached to a stick further above (or to the ceiling). The 

following example mobile can be described using these numbers and brackets: 

(-3 (-1 1) (1 1)) (2 3) 

 

Question & Answer 

Which of the following mobiles could be constructed using these instructions? 

(-3 (-1 4) (2 (-1 1) (1 1))) (2 (-1 6) (2 3)) 

 

 

 

 

 

 

 

A B 

C D 
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Task #13 – #1315C5 

Age Group: 11 + 12 

Difficulty: C 

Introduction / Presentation 

Every Friday, six spies exchange all the information they have gathered during the 

week. A spy can never be seen with more than one other spy at the same time. So, they 

have to have several rounds of meetings where they meet up in pairs and share all the 

information they have at that point. 

The group of six spies needs only three rounds to distribute all their secrets: 

Before the meeting each spy holds a single piece of information. Spy 1 knows ‘a’, spy 2 

knows ‘b’, etc. In the first round spies 1 and 2 meet and exchange information so now 

both know ‘ab’. The diagrams show which spies meet in each round with a line. It also 

shows which pieces of information they all have. After three rounds all information has 

been distributed. 

 

Question & Answer 

Which of the following statement is true? 

After an international incident one spy has stopped attending the meetings. What is the 

minim number of rounds needed for the five remaining spies to exchange all 

information? 

 

Answer: 4 
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Task #14 – #1414A1 

Age Group: 11 + 12 

Difficulty: A 

Introduction / Presentation 

Imagine someone have come up with a language for describing how a piece of paper 

should be folded. The commands in this language are called FOLD. 

z = FOLD(x,y) for example means: 

Fold the piece of paper in such a way that side x and side y overlap. This way, a new 

side is created. We call this side z. 

An example with two consecutive commands: 

 

Imagine a rectangle-shaped piece of paper of which side b is twice as long as side a. 

 

You are allowed to turn the piece of paper over. 

The following sequence of commands is executed: 

e = FOLD(c,a) 

f = FOLD(c,d) 

g = FOLD(a,f) 
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Question & Answer 

What will the piece of paper look like afterwards? 
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Task #15 – #1514A2 

Age Group: 11 + 12 

Difficulty: A 

Introduction / Presentation 

For a group assignment a class is split up into four groups. Each group divides the 

different tasks between the group members. Three groups manage to finish the complete 

assignment but one group fails to do so. 

What happened? 

The most group members have to wait for other members before they can start with 

their own tasks. You see below a diagram for each group to show the dependencies 

between students in each group. A circle represents a student. An arrow from student 1 

to student 2 means that student 2 has to wait for student 1 to finish their tasks. 

Question & Answer 

Which diagram represents the group that did not finish the assignment? 
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Task #16 – #1614A3 

Age Group: 11 + 12 

Difficulty: A 

Introduction / Presentation 

A group a scientists have come up with a secret code for encrypting messages, no 

nobody else can read them. 

In their secret code, the vowels (A, E, I, O, U) and the punctuation remain unchanged. 

The consonants are replaced by the next consonant in the alphabet where Z becomes B. 

Question & Answer 

How would you write “GIVE ME A CALL” as a secret code? 

A GOVE MI E CELL 

B FITE LE A BAKK 

C HOWE NI E DEMM 

D HIWE NE A DAMM 
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Task #17 – #1714B1 

Age Group: 11 + 12 

Difficulty: B 

Introduction / Presentation 

Imagine data are stored in a cloud containing four servers. The image shows all the 

connections between the servers. 

 

To lower the risk of losing data, all data are stored on both STORE-1 and STORE-2. To 

increase the accessibility, all data are available through both PORT-1 and PORT-2. 

No data is stored on PORT-1 and PORT-2. 

Question & Answer 

Which statement is FALSE? 

A If STORE-1 and PORT-2 crash, all data become inaccessible. 

B If PORT-1 and PORT-2 crash, all data become inaccessible. 

C If STORE-1 and STORE-2 crash, all data are destroyed. 

D If PORT-1 and PORT-2 crash, all data are destroyed. 
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Task #18 – #1814B2 

Age Group: 11 + 12 

Difficulty: B 

Introduction / Presentation 

A paper strip is divided into 16 equal pieces: 

 

Such a strip be used for “half-sliding”. This is one by spotting the strip half and sliding 

the right half up: 

 

The two halves are also split in half and again, both right halves are slid up. 

This would be look like this: 

 

We do this again with the four-piece strips and, after that, with two piece strips. 

Question & Answer 

What will the final result look like? 
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Task #19 – #1914B3 

Age Group: 11 + 12 

Difficulty: B 

Introduction / Presentation 

Imagine you receive a message sent on a 6 x 6 grid. Unfortunately, part of the message 

has been destroyed (the red coloured squares). 

 

However, the additional squares help to determine the message. Each square in column 

6 is coloured such that the number of black squares in each row is even. Similarly, each 

square in row 6 is coloured such that the number of black squares in each column is 

even.  

Question & Answer 

Which of the following images could be the pattern underneath the red squares? 
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Task #20 – #2014C1 

Age Group: 11 + 12 

Difficulty: C 

Introduction / Presentation 

The wagons of the freight train from the Railroad company are placed in the order D-B-

C-A: 

 

The locomotive can move forwards and backwards and is able to pull and push an 

unlimited number of wagons. Connecting or de-connecting a wagon is called ONE 

railroad operation. Moving alone is not considered as a railroad operation. 

Question & Answer 

How many railroad operations are necessary to put the wagons in the order A-B-C-D-E? 

 

A 6 

B 8 

C 10 

D 12 
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Task #21 – #2114C2 

Age Group: 11 + 12 

Difficulty: C 

Introduction / Presentation 

Neighbourhoods in areas on maps can be presented as a diagram. In such a 

neighbourhood diagram each neighbourhood is represented by a node. 

A line between two nodes means that the two neighbourhoods share one or more 

borders. 

 

The diagram on the right shows the connections between seven neighbourhoods in a 

certain area. 

Question & Answer 

Which of the following maps is described by the diagram? 
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Task #22 – #2214A4 

Age Group: 11 + 12 

Difficulty: A 

Introduction / Presentation 

This picture shows an ancient ocarina in duck-shape. This duck-ocarina is a special 

musical instrument and has only six different tones. 

 

And: after a tone is played, only the same tone or the tone directly above or below it can 

be played. Therefore, a melody for the ancient ocarina can be written with only three 

different symbols: 

0 means “play the same tone again”. 

+ means “play the next tone above it”. 

 - means “play the next tone blow it”. 

Question & Answer 

Which of these melodies can NOT be played with this ocarina? 
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Task #23 – #2314B4 

Age Group: 11 + 12 

Difficulty: B 

Introduction / Presentation 

There is a robot to sort tree trunks. On the ground, there are several tree trunks of 

different lengths. 

 

The robot chooses a tree trunk following certain formula, lays it on top of the ramp and 

lets it roll down. He repeats this, until there are no more tree trunks on the ground as 

you can see in the following picture: 

 

Question & Answer 

Which formula does the robot use to decide in which order the tree trunks have to be 

placed on the ramp? 

A Take the longest tree trunk. 

B Take the shortest tree trunk. 

C Take the second longest tree trunk. If only one trunk remains, take that one. 

D Take the second shortest tree trunk. If only one trunk remains, take that one. 

E Take the longest tree trunk first and the shortest tree trunk last. 

F Take the shortest tree trunk first and the longest tree trunk last. 
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Task #24 – #2414B5 

Age Group: 11 + 12 

Difficulty: B 

Introduction / Presentation 

Imagine there are two types of text machines: 

 

A + machine (left) takes two pieces of text and joins them. A < machine (right) takes 

one piece of text and reverses it. By linking both machines to each other we get a more 

complex text machine (below). It needs three pieces of text (in grey ellipses) and writes 

text in the white ellipses. 

 

This complex machine needs three texts to work on (grey ellipses), processes them, and 

gives one text as the result of its work in the bottommost ellipse. 
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Question & Answer 

Which three text pieces do you need to put in this text machine in order to get the text 

INFORMATION in the lowest ellipse? 

A AMR OFNI TION 

B INF ORMA TION 

C AMR OFNI NOIT 

D FNI AMRO NOIT 
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Task #25 – #2514C3 

Age Group: 11 + 12 

Difficulty: C 

Introduction / Presentation 

The medical records of patients contain personal data, which should not be made public. 

For the publication of a research project, the hospital has made some data public, 

without mentioning the names of the patients. The table on the left shows a part of this 

list. 

Because of the upcoming elections, the city with postcode M1 1AA publishes a list with 

all constituents at the same time. This table on the right shows the constituents who are 

born on January 1st. 

 

Thanks to these two tables, you know for sure that one of the persons on the right has a 

disease and you also know which disease it is. 

Question & Answer 

What is the name of this person? 

A George Smith 

B Roman Peterson 

C Eve Miller 

D Isabelle Bourne 
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Task #26 – #2614C4 

Age Group: 11 + 12 

Difficulty: C 

Introduction / Presentation 

In forest (A) is an area where beavers fell trees for their dams. They transport the tree 

trunks to their new dam (D) - through an infrastructure of channels. 

The arrows represent the channels; the dots are points where the water splits up or 

comes together. 

Every channel has a restricted capacity. The numbers next to the channels show how 

many tree trunks can be transported through the channels in one minute, as you can see 

in the picture below. 

 

Question & Answer 

How many tree trunks can be transported from A to D at most in one minute? 

Answer: 7 
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Appendix C: Programming rubric scheme 

Programming 

Concept 

Not evident 

0 

Poor 

1 

Satisfactory 

2 

Good 

3 

Excellent 

4 

Extent / 

Richness 

(1.0 = 20 %) 

 

“What and 

how much is 

happening in 

the Scratch 

product?” 

• Overall picture: 

nothing is happening 

• Overall picture: There is 

something happening/ 

working, but it is not clear 

what 

• There are only up to a 

couple sprites and they 

have only up to a couple 

code chunks or do not 

have any 

• The program has barely 

moving, or changing, or 

counting, switching, or 

sound making elements 

• Overall picture: 1 thing is 

happening 

• There are only up to a 

couple and they have a few 

code chunks 

• The elements of the 

program are mainly 

moving, or changing, or 

counting, switching, or 

sound making elements 

• Overall picture: mainly 2 things 

are happening 

• There are quite many sprites and 

the most of them have a 

substantial code chunks 

• The elements of the program do 

mainly 2 things, for instance: 

→ moving and changing, or 

→ moving and counting, or 

→ making sound and changing 

• Overall picture: mainly > 2 

things are happening 

• There are a quite many 

sprites and all have a decent 

amount of code chunks 

• The elements of the 

program do > 2 things, for 

instance: 

→ moving and changing 

and counting, or 

→ moving and counting and 

making sound, or 

→ moving and switching 

and counting and making 

sound 

Variety / 

Scratch or 

Coding Usage 

(1.0 = 20%)  

 

“How much 

of Scratch do 

they use?” 

• No evident useful 

use of any code 

chunks 

• The program has up to a 

couple code chunks 

• Only low-level code 

chunks 

• No high-level code 

chunks 

• The program has a few 

code chunks 

• Many low-level code 

chunks but essentially of 

the same kind; not many 

different code chunks 

• Up to a couple high-level 

code chunks 

• Reasonable usage of 

Scratch’s possibilities 

• Overall picture: the program has 

several code chunks 

• Many different low-level code 

chunks 

→ A few motion and a few looks 

code chunks 

→ A few motion and a few looks 

and a few sound code chunks 

• A few more high-level code 

chunks but of the same kind; 

not many different code chunks 

• Reasonable usage of Scratch’s 

• Overall picture: the 

program has many code 

chunks 

• Many different low-level 

code chunks 

• Many different high-level 

code chunks 

• All main code chunks 

(motion, looks, sound, data, 

events, control, sensing, 

operators) are used 
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possibilities  

 

Programming 

Concept 

Not evident 

0 

Poor 

1 

Satisfactory 

2 

Good 

3 

Excellent 

4 

Organisatio

n 

(0.5 = 10%) 

 

“How messy 

or clean does 

the work space 

look?” 

• It looks very messy 

• No kind of 

organisation is 

evident 

• Many dead listings 

(relatively speaking 

to the total amount 

of listings) 

• It looks somehow messy 

• Up to a couple of listings 

are ordered 

• Listings are not in any 

meaningful order 

• Many dead listings 

(relatively speaking to the 

total amount of listings) 

• It looks somehow tidy 

• The most listings are 

ordered but not necessarily 

meaningfully 

• Several dead listings 

(relatively speaking to the 

total amount of listings) 

• It looks pretty tidy 

• All listings are in a meaningful 

order 

• Up to a couple or a few dead 

listings (relatively speaking to 

the total amount of listings) 

• It looks very organised 

• All listings are in 

meaningful order AND 

aligned with screen 

• No or only up to a couple 

dead listings (relatively 

speaking to the total 

amount of listings) 

Functionalit

y 

(1.0 = 20%) 

 

“How well 

do they use 

Scratch?”  

• The intention is 

unclear 

• Nothing works 

• The intention is clear, but 

the program does not 

work as intended, for 

instance: 

→ Sprites do not move 

correctly 

→ If it is a game, it is 

unplayable; if it is a 

story, the plot is 

unclear 

• The intention is clear; in 

general, the program 

works as intended but has 

some problems, for 

instance: 

→ You have to set some 

sprites manually 

→ Sprites which are 

supposed to be hidden 

are not hidden 

• The intention is clear; in general, 

the program works as intended 

but with some minor flaws, for 

instance: 

→ Sprites which are supposed to 

move can move but are 

moving too fast or too slow 

→ Appearing text is too fast; not 

enough time to read a text 

• The intention is clear; it 

works as intended without 

any flaws; for instance: 

→ The speed of moving 

sprites is reasonable 

→ There is enough time to 

read text 

→ Moving and shooting 

works as intended 

Efficiency 

(1.5 = 30%) 

 

“How well 

developed is 

their control 

flow?”  

• No evident use of 

efficient use of 

control code chunks 

• Many code chunks and 

listings are essentially 

copy-pasted (not only the 

similar kind but actually 

copy-pasted) 

• No or up to a couple 

control code chunks 

• A few code chunks and 

listings are copy-pasted 

• A few control code chunks 

• Up to a couple code chunks and 

listings are copy-pasted 

• Several control code chunks; 

reasonable usage of control 

chunks 

• No unnecessary 

duplications 

• Comprehensive and 

complete use of control 

code chunks 

• (If there are many 

iterations f chunks it can’t 

be “excellent”) 
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Glossary 

 

Scratch product: All sequences from all sprites together 

form the Scratch product. Students either programmed a story 

or a game. 

 

 

 

 

Low-level code chunk: Motion, Events, Looks, Sound coding 

chunks 
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High-level code chunk: Data, Sensing, Operators coding chunks. 

 

 

 

 

Sprite: An element in Scratch, which can be coded. Not all 

sprites are coded but were simply placed in the background. 

 

 

 

 

Control code chunk: 

 

 

 

 

Dead listing:  Connected code chunks, which do not work 

by themselves because there are not connected to an event 

chunk.  
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Appendix D: Explanation of ICC for within-variables 

Based on formula in Kenny et al. (2006, p. 34): 

The measurement of two members of pair i is donated as X1i and X2i. There are a total 

of k pairs. The overall average is donated as M. Let 

𝑑𝑖 = 𝑋1𝑖 − 𝑋2𝑖 

and 

𝑚𝑖 =
𝑋1𝑖 + 𝑋2𝑖

2
 

Thus, d represents the difference and m the average of both measurements per pair. 

The mean square between pairs is defined as 

𝑀𝑆𝐵 =
2 ∑(𝑚𝑖 − 𝑀)2

𝑘 − 1
 

and the mean square within pairs is defined as 

𝑀𝑆𝑊 =
∑ 𝑑𝑖

2

2𝑘
 

The ICC as used in this study is defined as 

𝐼𝐶𝐶 =
𝑀𝑆𝐵 − 𝑀𝑆𝑊

𝑀𝑆𝐵 + 𝑀𝑆𝑊
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Appendix E: Formula for Z-score for transition probability 

Based on Bakeman et al. (2011, p. 105): 

𝑅   number of rows (given) 

𝐶   number of columns (targets) 

𝑥𝑟𝑐 observed joint frequency for cell in 𝑟-th row and 𝑐-th column of a 

𝑅 × 𝐶 table 

𝑥∙𝑐   sum of the counts in the 𝑐-th column 

𝑥𝑟∙   sum of the counts in the 𝑟-th row 

𝑁 = 𝑥∙∙  number of counts total for a 𝑅 × 𝐶 table 

𝑝𝑐 =
𝑥∙𝑐

𝑁
  probability for the 𝑐-th column 

𝑝𝑟 =
𝑥𝑟∙

𝑁
  probability for the 𝑟-th row 

𝑒𝑟𝑐 = 𝑝𝑐 × 𝑥𝑟∙ expected frequency by chance 

𝑔𝑟   code for the 𝑟-th row (the given) 

𝑡𝑐   code for the 𝑐-th column (the target) 

𝑃(𝑡𝑐|𝑔𝑟) =
𝑥𝑟𝑐

𝑥𝑟∙
 conditional probability of 𝑡𝑐 given  𝑔𝑟 

𝑍𝑟𝑐 = 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =
𝑥𝑟𝑐 − 𝑒𝑟𝑐

√𝑒𝑟𝑐(1 − 𝑝𝑐)(1 − 𝑝𝑟)
 

The adjusted residuals follow a normal distribution and are, therefore, referred as Z-

scores. 
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Appendix F: Distributions of variables for visual inspection 

 

Figure F.1. Distribution of percentage of achieved scores in the Bebras tasks (units are individuals) 

 

Figure F.2. Distribution of percentage of achieved scores in the Bebras tasks (units are pairs) 
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Figure F.3. Distribution of IQ based on TONI-3 (units are individuals) 

 

Figure F.4. Distribution of IQ based on TONI-3 (units are pairs) 
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Figure F.5. Distribution of weighted means of programming quality rubric scheme (units are pair) 

 

Figure F.6. Distribution of achieved CT mastery score based on Dr Scratch (units are pairs) 
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Figure F.7. Distribution of percentage actions and saying linked to CT (units are pairs) 

 

 



Appendix G 
 

 

 

Appendix G: Detailed item analysis for task difficulty 

The average Bebras score did not raise any concerns that the test was too easy or too 

difficult, although it was slightly higher than 50 %. To check whether the Bebras tasks 

were indeed able to cover the whole spectrum of CT, the item difficulty index (D) for 

each Bebras task was examined. The item difficulty index shows the proportion of 

participants who managed solve the task and ranges between 0.00 and 1.00. According 

to Nwadinigwe and Naibi (2013) and Thompson (2017), an as hard labelled item has an 

expected probability to be solved (Δ) between .00 to .29, a medium-difficulty item lies 

between .39 and .69, and easy labelled items between .70 to 1.00. A large number of 

very easy items or a large number of very difficult items indicate floor and ceiling 

effects, respectively. Ceiling and floor effects reflect that the instrument did not cover 

the whole spectrum of the measured construct, which causes problems for further 

analyses. 

Table G.1 contains an overview of all used Bebras tasks and the theoretically 

expected probabilities for solving items labelled as easy, medium, and hard, and the 

actual frequency of participants who were able to solve these tasks. Comparing the 

expected probabilities and their empirical counterparts reveals that four tasks were 

solved by fewer participants than expected (i.e., these tasks were unexpectedly more 

difficult) and eight tasks were solved by more participants than expected (tasks were 

unexpectedly easier). Eight tasks were solved by an expected number of participants. 

The range of solved items lies between 36 % and 90 %. Overall, the Bebras tasks were 

slightly easier than expected. This is true especially for tasks labelled as hard. 

Nevertheless, the effect is not big enough to identify serious ceiling effects for any 

items. In conclusion, the whole spectrum of CT was sufficiently covered by the Bebras 

tasks for this sample. 
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Table G.1 

Overview of Solved Bebras Tasks 

# Name of Bebras task Δ D Δ - D 

 easy    

1 Drawing stars 

.70 – 1.00 

.81 0 

3 Word chains .90 0 

6 You won't find it .90 0 

11 Folding paper .36 + 

13 Group assignment .56 + 

14 Beavers secret code .82 0 

18 Bebrocarina .48 + 

 medium    

4 Beaver the alchemist 

.39 – .69 

.36 + 

7 Stack computer .72 - 

8 Super power family (hard) .84 - 

9 Kangaroo .59 0 

10 Beaver cloud .52 0 

19 Sorting tree trunks .78 - 

17 Popularity .57 0 

20 Text machine .62 0 

 hard    

2 Spies 

.00 – .29 

.49 - 

5 Reaching the target .45 - 

12 Fireworks (hard) .39 - 

15 Freight train .37 - 

16 Neighbourhoods .42 - 

Note. Δ = theoretical probability to solve this item. D = frequency how often this item was solved. A Difference of 0 

indicates that this task was solved by expected number of participants; + less often solved than expected; - more often 

solved than expected. 
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Appendix G: Scatterplots for programming quality and different measures 

 

 

Figure H.8. Scatterplot for programming quality and achieved Bebras score (within variable) with regression line and 

confidence band. 

 

Figure H.9. Scatterplot for programming quality and percentage of CT-relevant time with regression line and 

confidence band. 
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Figure H.10. Scatterplot for programming quality and percentage of algorithmic design relevant time with regression 

line and confidence band. 

 

Figure H.11. Scatterplot for programming quality and percentage of decomposing relevant time with regression line 

and confidence band. 
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Figure H.12. Scatterplot for programming quality and percentage of pattern recognition relevant time with regression 

line and confidence band. 

 

Figure H.13. Scatterplot for programming quality and Dr Scratch CT mastery score with regression line and 

confidence band. 



Appendix H 
 

 

 

 

Figure 0.14. Scatterplot for programming quality and IQ based on TONI-3 with regression line and confidence band 
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Appendix I: Non-parametric analysis 

Table I.1  

Spearman’s ρ Correlations Between Programming Quality, Dr Scratch and Different Measures 

 

Programming 

quality 

Dr Scratch 

mastery score 
N 

(pairs) 
ρ p ρ p 

Bebras score .32 .027 .29 .041 37 

Time of CT-relevant behaviour 

(overall) 
.65 <.001 .57 .001 27 

Time of decomposing .28 .077 .27 .089 27 

Time of pattern recognition .02 .951 -.42 .095 17 

Time of algorithmic design .63 <.001 .52 <.001 27 

IQ based on TONI-3 .29 .055 .19 .149 32 

            Note. one-sided p-values. 

ρprog.qual.&DrScr = .61, p < .001 



 

 

Appendix J: Assumptions for regression models 

 

1) Mean of the residuals is 0: 

𝐸(𝑌 = 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔 𝑞𝑢𝑎𝑙𝑖𝑡𝑦|𝑒̂) = 4.278533𝑒 − 17 ≈ 0 

𝐸(𝑌 = 𝐷𝑟 𝑆𝑐𝑟𝑎𝑡𝑐ℎ 𝑚𝑎𝑠𝑡𝑒𝑟𝑦|𝑒̂) = −1.150316𝑒 − 16 ≈ 0 

Conclusion: assumption met 

 

2) Homoscedasticity of residuals: 

Y = programming quality 

 

 

Y = Dr Scratch mastery score 

 

 



 

 

Conclusion: No real pattern for "Res vs Fitted" and "sqrt(STres) vs Fitted"; no 

heteroscedasticity; assumption met 

 

3) Residuals are not correlated (no autocorrelation): 

Y = programming quality 

 

Conclusion: No real pattern 

 

Y = Dr Scratch mastery score 

 

Conclusion: No real pattern 

 



 

 

In addition, Bartels (1982) test for randomness was performed. The null hypothesis 

stands for randomness. 

Bartels Statistics (Y = programming quality) = 0.04, p = .964 

Bartels Statistics (Y = Dr Scratch mastery score) = 0.88, p = .377 

Conclusion: Null hypothesis should be kept for both models; no autocorrelation; 

assumption met 

 

4) Residuals and predictors are not correlated: 

 
Residuals 

r p 

Bebras score .06 .715 

Time of CT-relevant behaviour (overall) .05 .793 

TONI-3 IQ .28 .16 

            Note. Y = programming quality 

 

 
Residuals 

r p 

Bebras score -.09 .597 

Time of CT-relevant behaviour (overall) -.11 .587 

TONI-3 IQ .17 .356 

            Note. Y = Dr Scratch mastery score 

 

Conclusion: no significant correlations between residuals and any predictors; 

assumption met 

 

5) Number of observations ≥ numbers of predictors: 

N = 24; predictors = 3 for each model 

Conclusion: N > k ; assumption met 



 

 

 

6) Variance of all predictors > 0: 

Var(Bebras score) = .03 > 0 

Var(Time of CT-relevant behaviour) = 223.66 > 0 

Var(TONI-3 IQ) = 168.47 > 0 

Conclusion: assumption met 

 

7) No (perfect) multicollinearity (VIF < 4): 

 Bebras score 
Time of CT-relevant 

behaviour 
TONI-3 IQ 

VIF 1.76 1.16 1.56 

 

Conclusion: no serious multicollinearity; assumption met 

 

8) Residuals are normally distributed 

Y = programming quality 

 

Conclusion: data approximately normally distributed 

 



 

 

 

Y = Dr Scratch mastery score 

 

Conclusion: data approximately normally distributed (higher deviation at end poles) 

In addition, Shapiro-Francia test was performed. The null hypothesis stands for normal 

distribution. 

W’(Y = programming quality) = 0.88, p = .011 

W’(Y = Dr Scratch mastery score) = 0.96, p = .489 

Conclusion: residuals for model(Y=programming quality) significant different from 

normal distribution. Assumption fully met for model(Y=Dr Scratch mastery score) but 

only partially met for model(Y=programming quality) 

 


