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Abstract

The state-resolved knowledge of molecular scattering dynamics is paramount
to the understanding and control of chemical reactions. The ideal approach to rig-
orously simulate such systems is a full-dimensional treatment with quantum me-
chanical calculations. Current generation of computers allows such calculations to
be carried out up to six atoms for zero total angular momentum. It is not likely that
the computational power will allow significant progress in the near future, as the
computational time grows exponentially with the number of degrees of freedom.
Thus, there is a demand for alternative methods that would allow the inclusion of
quantum effects while remaining computationally efficient.

This thesis consists of the development of such an approach. Inspired by the
success of the efficient ring polymer molecular dynamics (RPMD) approach applied
to quantum systems at thermal equilibrium, I extend the scope of RPMD to state-
selective chemistry.

I start by presenting the method development groundwork toward microcanon-
ical simulations of triatomic reactions using RPMD. I expose the steps to prepare
a specific initial vibrational state for a diatomic molecule. The assessment of the
method revolves around the computation of integral cross sections (ICS) in the ring
polymer phase space. I report an ansatz for the reciprocal temperature depending
on the characteristics of the reactions. The benchmark reactions Mu/H/D + H, with
H, either in its ground (v = 0) or first excited vibrational state (v = 1) are chosen
to test the method. Good agreement for the Mu/H/D + Hy(v = 0, 1) reactions with
exact quantum scattering calculations is found. It is shown that RPMD can describe
to a good approximation zero-point energy (ZPE) effects and tunneling effects for
these reactions while remaining computationally efficient.

Following these encouraging preliminary results, the robustness and applicabil-
ity of the method is further tested. I present a detailed review of the approach. The
reactions Mu/H/D/Cl/F+Hy(v = 0, 1) are considered over a wide range of colli-
sion energies. The accuracy and stability of the vibrational excitation scheme are
tested. It is found that the ICS results are strongly sensitive to the spring constant
of the ring polymers. A refined ansatz for the reciprocal temperature is suggested. I
observe a convergence of the ICS above a number of beads that depends on the char-
acteristics of the diatomic reactant. I show that the tunneling contributions to the

reactivity stem from the spatial extension of both ring polymer reactants. However,
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it is found that RPMD is unable to describe dynamical resonance effects. Shortcom-
ings in the vibrational excitation scheme at low collision energies are reported.
Finally, I further test the approach with larger and more intricate systems. In
particular, the reactions FH+CH, and its isotopic variants for the case of the ground
state CH, and CHDj3 and, in the presence of the C-H excited stretch in CHDs. Ac-
curate RPMD ICS results for most of the aforementioned reactions are reported.
It is found that the ZPE leakage problem usually present in classical dynamics is
prevented. It is found that the vibrational excitation scheme is accurate for most

purposes except for reactions involving a very low energy barrier.
Zusammenfussung:

Die Berechnung moglicher Zustdnde von einem Molekiil in einem Streuexperi-
ment ist von grofiter Bedeutung fiir das Verstandnis und die Kontrolle von chemis-
chen Reaktionen. Ein umfassender Ansatz solche Systeme zu berechnen ist durch
eine vollstindige dreidimensionale Behandlung des quantenmechanischen Prob-
lems gegeben. Aktuelle Computer erlauben die Simulation von bis zu sechs Atomen
mit der Einschrankung dass der Gesamtdrehimpuls des Systems Null betrdgt. Eine
Erweiterung der Simulation auf grofiere Systeme ist seitens der Rechenleistung von
konventionellen Computern in naher Zukunft nicht zu erwarten, insbesondere da
die Rechenzeit exponentiell mit den Freiheitsgraden des Systems ansteigt. Folgend
wird nach Alternativen gesucht, die eine effiziente quantenmechanische Behand-
lung des Problems erlauben.

Die vorliegende Arbeit beschreibt die Entwicklung eines solchen Ansatzes. An-
gelehnt an die erfolgreiche Methode der Ring-Polymer Molekulardynamik Simula-
tionen (ring polymer molecular dynamics (RPMD)) aber begrenzt auf Quantensys-
teme im thermischen Gleichgewicht wurde die RPMD Methode iiber die kanonis-
che Gesamtheit hinaus fiir die zustandsselektive Chemie erweitert.

Ich beginne mit der Entwicklung einer Methode fiir die mikrokanonische Simu-
lation eines dreiatomigen Systems unter RPMD. Ausgefiihrt werden die einzelnen
Schritte zur Erzeugung eines spezifischen Anfangsschwingungszustands in einem
zweiatomigen Molekiil. Die Bewertung der Methode erfolgt durch die Berech-
nung von integralen Querschnitten (integral cross sections (ICS)) im Ring polymer-
Phasenraum. Unter den Bedingungen der Reaktionen verfolge ich einen alterna-
tiven Ansatz der reziproken Temperatur. Ich wihle die Vergleichsreaktion Mu/H/D
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+ Hy mit H, entweder in seinem Grundzustand (v = 0) oder im ersten angeregten
Schwingungszustand (v = 1), um die Methode zu testen. Fiir die Reaktionen
Mu/H/D + Hy(v = 0,1) wird eine gute Ubereinstimmung mit exakten Berech-
nungen fiir den quantenmechanischen Streuquerschnitt gefunden. Es wird gezeigt,
dass RPMD in guter Ndherung Nullpunktsenergie (zero-point-energy (ZPE))- und
Tunneleffekte fiir diese Reaktionen beschreiben kann und dabei rechnerisch effizient
bleibt.

Nach den vielversprechenden vorldufigen Ergebnissen wird die Robustheit und
Anwendbarkeit der Methode tiefergehend analysiert. Der Ansatz wird im De-
tail erldutert. Die Reaktionen Mu/H/D/Cl/F+Hy(v = 0,1) werden tiber einen
breiten Bereich von Kollisionsenergien betrachtet. Die Genauigkeit und Stabilitat
der Schwingungsanregung wird {iberpriift. Es zeigt sich, dass die ICS-Ergebnisse
stark auf die Federkonstante der Ringpolymere reagieren. Es wird ein verfeinerter
Ansatz fiir die reziproke Temperatur vorgeschlagen. Ich beobachte die Konver-
genz der ICS oberhalb einer bestimmten Anzahl von Koordinaten abhidngig von der
Wirkung zwischen den zwei Atomen. Ich zeige, dass die Beitrdge zur Reaktivitat
durch Tunnelprozesse aus der rdumlichen Ausdehnung der beiden Ringpolymer-
Reaktanten stammen. Es zeigt sich jedoch, dass die RPMD nicht in der Lage ist,
dynamische Resonanzeffekte zu beschreiben. Die Unzuldnglichkeiten der
Schwingungsanregung bei niedrigen Kollisionsenergien werden besprochen.

Schlussendlich wird die Anwendung des RPMD Ansatzes tiber dreiatomige Sys-
teme hinaus auf grofiere und kompliziertere Systeme erweitert. Insbesondere die
FH+CH,-Reaktionen und ihre isotopischen Varianten fiir den Fall des Grundzus-
tands CH, und CHDj; sowie angeregten C-H-Dehnung in CHD;. Es werden genaue
RPMD ICS-Ergebnisse fiir die meisten der oben genannten Reaktionen préasentiert.
Es wird gezeigt, dass Verluste der Nullpunktsenergie wie sie iiblicherweise in der
klassischen Mechanik auftreten vermieden werden konnen. AufSerdem ist die Meth-
ode zur Schwingungsanregung fiir die meisten Zwecke genau, aufSer fiir Reaktio-

nen mit einer sehr niedrigen Anregungsenergie.
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Chapter 1

Introduction

The long-standing goals of physical chemistry include the detailed understanding
and control of chemical reactions. The detailed knowledge of the dynamics of reac-
tive collisions between atoms and molecules plays a key role in many research areas
such as condensed-phase molecular systems [1], combustion [2], atmospheric [3-5]
and interstellar chemistry [6-8], catalysis [9] and fundamental biological mecha-
nisms [10].

Theoretical computer simulations and scientific experiments play central roles
in the study of chemical processes. On the one hand, experiments provide tests of
theoretical models leading to evidences of their predictive power or otherwise their
inaccuracies. Also, manifestations of unexpected new phenomena not yet explained
can also be found via simulations [11].

On the other hand, simulation tools can provide detailed information on how
specific forms of energy (e.g., translational, vibrational, rotational and thermal) flow
as molecules and atoms collide in condensed and gas phase conditions. They are
capable of theoretically probing and monitoring on an atomistic degree of precision
the motion of reacting species and can provide detailed knowledge which otherwise
cannot be observed in experiments. Also, they can complement the experiments
whose design and interpretation require simulations [12].

Among the different phases in which chemical reactions occur, the gas phase
is of primary importance as the fruits of its study impact the theoretical concepts
and methods of investigation of reactions dynamics in the condensed phases and
interfaces (gas-liquid, gas-surface, surface-liquid). Indeed, molecular dynamics in
the gas phase lies at the core of chemistry as they encompass the most elementary
molecular steps and mechanisms which can occur during the course of chemical
reactions. Also, chemical processes can be observed independently in the gas phase
and compared to high level theoretical models. In addition, gas phase chemistry
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is important in many fields such as combusion, astrochemistry and atmospheric
chemistry [13-15]. The study of chemical reactions under equilibrium conditions
leads to information that is averaged over several initial states, hiding the reaction
details. Thus, being able to predict the dynamics and outcomes of state-resolved
bimolecular gas phase reactions is paramount to the understanding of the dynam-
ics which drive chemistry at the most fundamental level [16]. Through experiments
such information can be obtained via measuring the differential and integral cross
sections. These are the most detailed observables that can be measured experi-
mentally for chemical reactions [17]. They provide detailed information about the
dynamics, how and which specific initial states influence the reactivity and distribu-
tion of products states and which form of energy is the most effective at promoting
the reactivity. Recent progress in high resolution crossed molecular beam scattering
experiments now allows the detailed probing of the dynamics of various bimolecu-
lar gas phase reactions. For example, the products rovibrational state distribution,
state-resolved differential and integral cross sections, the structure of the transition
state, atomistic insights of the reactive mechanisms and energy flow can be investi-
gated [18-21]. An example is the F+CHDj reaction for which it was found that the
C-H stretch excitation favors the DF+CHD, product channel. Simulations were able
to explain the mechanisms behind the counter-intuitive finding. The ability of ex-
perimental apparatus to tackle reactive systems with increasing complexity creates
the need for theoretical tools to follow suit to back and interpret the experimental
findings [22-24]. Furthermore, accurate simulations of reactions which cannot yet
be probed with state-resolved precision by experiments are highly desirable.

As a consequence of the quantum nature of molecular reactive scattering events,
quantum effects can have a strong impact on the dynamics of chemical reactions
[25-29]. In spite of the fact that the quantum mechanical foundations underpinning
the theoretical treatment of chemical reactions are established, it is very difficult
to elucidate to which extent quantum effects govern the dynamics. Thus, their in-
clusion in computer simulations is necessary to achieve accurate predictions and a
fundamental understanding for a wide range of reactive systems [30]. However,
quantum simulations are very challenging due to the exponential scaling of their
computational cost with the number of nuclei and electrons.

Very often, nuclear and electronic dynamics can be solved separately by em-

ploying the Born-Oppenheimer (BO) approximation which is at the foundation of



most molecular reactive scattering simulations and has been pivotal for many ad-
vances in chemical physics [31]. It allows to first solve the electronic part of the
Schrodinger equation to extract the electronic ground-state adiabatic (or BO) po-
tential energy surface (PES). From the PES, a wealth of information about the nu-
clear dynamics can be obtained such as the locations and energies of the reaction
barrier, minimum energy paths and even valuable understanding of the reaction
mechanisms. There is a variety of chemical reactions (e.g., electrochemical, ion-
molecule and photochemical reactions in particular) where nonadiabatic electronic
transitions may occur and thus cannot be described with a single adiabatic PES [32].
This thesis focuses on gas phase neutral-neutral chemical reactions involving atoms
and molecules and involving only a single adiabatic PES.

In this context, the nuclear motion is left to be solved based on the PES corre-
sponding to the reaction of interest. The determination of such PESs is crucial for
the elucidation of simple chemical reactions as no matter how precise the propa-
gation of the nuclei might be, an inaccurate PES would hinder greatly any realistic
dynamics. Their deduction started with the use of semi empirical approximations
and progressed to more advanced first principle electronic structure methods [33].
However, it becomes increasingly difficult with the number of electrons to obtain
accurate PESs. Recent advances in ab-initio electronic structure calculations [34-37]
and fitting procedures [38—40] of ab-initio data has allowed the obtention of accu-
rate PESs for a wide range of chemical reactions within "chemical" accuracy. Nev-
ertheless, as quantum scattering simulations are still far away from tackling even
hexatomic systems, a great part of the challenge of simulating chemical reactive
mechanisms lies in the latter. Ideally, a quantum treatment of the nuclear coordi-
nates is in order due to the presence of nuclear quantum effects (NQEs). They can
be seen as the discrepancies between the results from the classical propagation of
the assumed point-like nuclei and quantum simulations based on the same PES.
One notable NQE present in chemical reactions is zero-point energy (ZPE) effects.
They arise from the zero-point energy contained in each vibration of the reactants,
the products and also in the molecular configurations during the reaction. Conse-
quently, reaction threshold energies can be very different from classical predictions
alongside the overall reactivity as ZPE effects enforce a certain minimum vibra-
tional energy which the products must have. Besides, ZPE cannot leak to other

vibrational degrees of freedom while energy can leak between vibrational modes in
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classical simulations. Another important NQE is tunneling which can allow reac-
tions to occur at energies below the barrier height. It is especially relevant for light
nuclei and at low temperatures as it is related to the wave nature of the atoms and
the tendency to penetrate into energy barriers [26].

The computational effort for quantum methods scales exponentially with re-
spect to the number of nuclei. It was not until the 1970s that the first rigorous
quantum calculations could be undertaken to tackle the dynamics of the simplest
chemical reactions. The first rigorous full-dimensional state-to-state quantum cal-
culations were published in 1976 for the H+Hj reaction using an analytical PES [41].
The accurate treatment of more complicated and general atom-diatom reactions
was only performed more than a decade later with more modern techniques and
computer technology [42]. Today, quantum treatment of atom-diatom reactions is
considered essentially solved as the simulations match state-of-the-art experimen-
tal results [43—46]. Later, only from the 1990s onwards could tetratomic reactions
be studied accurately without any dynamical approximations [17]. State-resolved
quantum simulations for the hexatomic H+CH, reaction were reported in 2014, al-
beit for a vanishing total angular momentum and still requiring months of com-
puter time [47]. This was achieved using the multi-configuration time-dependent
Hartreee (MCTDH) approach [48,49]. As of now, even with the advent of increas-
ingly powerful and faster computers, full-dimensional quantum simulations re-
main prohibitively expensive for systems consisting of more than five atoms. As
the number of degrees of freedom and product channels increases considerably
with the number of atoms, it is not expected that in the near future full-dimensional
quantum simulations will be achievable for hexatomic reactions and beyond.

The only alternative to retain quantum scattering simulations while rendering
the simulations feasible is to employ reduced dimensional models (RD) or to con-
strain the dynamics to fixed values of physical quantities such as the total angu-
lar momentum. Even though there are accurate RD approaches, they remain non-
systematic as they have to be developed for each system specifically [47,50-60, 60—
63]. Also, RD approaches will eventually face the same faith as full-dimensional
treatments with larger systems and inevitably become computationally infeasible
[38].

The nature of these impracticalities greatly incentivized the development of sim-
ulation techniques that remain numerically affordable and scalable. Classical and
quasiclassical trajectories (CT and QCT) methods constitute such approaches and



have been widely used to study chemical reactions. CT mainly consists in propagat-
ing the atoms with the classical equations of motions using an adiabatic PES. As a
consequence, the CT method does not describe state-resolved behaviour nor NQEs.
The QCT method employs classical dynamics and a specific initial states prepara-
tion that imposes quantal rovibrational energies for the reactants (producing the so-
called quasi-classical trajectories) [64-68]. This approach allows full-dimensional,
effective and detailed simulations, albeit with a classical description of the atoms
evolving on a potential energy surface. Along with being very efficient and concep-
tually simple simulation tools, classical dynamics can provide accurate and intu-
itive analysis of the mechanistic dynamics. Also, QCT simulations are prone to lead
to relatively accurate results for high energies and in the presence of heavy atoms
as NQEs can be less dominant. For various reactions, the QCT method provides
accurate quantitative products state and energy distrubutions. Other successes of
QCT include the exposure of the steering dynamics for the H+CHD; reaction, the
identification of "roaming" reactions and the cause of reactivity depression for the
reaction H+CD;, at high collision energies [69], just to name a few among a wealth
of mechanistic information [64-67,70,71]. However, QCT suffers from the absence
of intrinsic descriptions of nuclear quantum effects. In particular, but not limited
to, it can allow zero-point vibrational energies to leak into other unbound inter-
nal DOFs or vibrational modes, it neglects quantum tunneling and, it can lead to
product states which do not respect zero-point energy constraints. In the presence
of sizable polyatomic reactants, a large amount of ZPE can leak into the reaction
coordinates which can in turn lead to an underestimation of the reaction threshold
and overestimation of the overall reactivity [72,73]. Also, information about the
vibrational specificity of the target molecule can be greatly compromised, as seen
in methane dissociation on metals [74]. Recent developments have introduced ex-
tra procedures [75-77] which can to a certain degree mitigate the absence of ZPE
effects while keeping QCT efficient. Post-hoc procedures that discard ZPE violating
classical trajectories along with binning techniques have been developed to account
for ZPE effects. However, these procedures do not provide an inherent description
of quantum phenomena.

Since the 1980s, the path integral molecular dynamics approach (PIMD) has
allowed the inclusion of nuclear quantum effects in simulations of static thermo-

dynamical properties of quantum systems [78,79]. These simulations techniques



6 Chapter 1

are based on the so-called "classical isomorphism" between the quantum mechan-
ical partition function of particles and the classical partition function of necklaces
consisting of classical replicas (or beads) of the atoms joined by harmonic springs.
This approach allows via ensemble configurational averages for the accurate com-
putation of time-independent quantum thermal expectation values while retaining
computational efficiency and scalability, albeit in an extended phase space. Ficti-
cious momenta for the beads can also be introduced to employ molecular dynamics
as a sampling tool to facilitate the exploration of the configuration space. In 2004,
Manolopoulos et al. demonstrated using simulations that ring polymer molec-
ular dynamics (RPMD) can be used to compute approximate Kubo-transformed
real-time correlation functions (TCF) [80]. These dynamical quantities appear in
a variety of approximate treatments of real-time quantum dynamics. In particu-
lar RPMD was shown to provide consistently improved results over classical MD.
Ten years later, RPMD’s relevance for real-time dynamics was theoretically justi-
tied as an approximation to Matsubara dynamics [81,82]. RPMD has stood out in
the last two decades thanks to its various successful applications. Indeed, RPMD
has shown great potential by successfully computing thermal rate constants for a
variety of bimolecular reactions even at a much smaller computational cost than
accurate, fully converged quantum mechanical (QM) calculations [83-88]. Also,
RPMD can predicts accurately diffusion coefficients and to some degree vibrational
spectra [85,86,89-94]. For thermal equilibrium applications, RPMD is almost im-
mune to the shortcomings associated with the ZPE leakage from classical dynamics.
It captures ZPE constraints and describes tunneling contributions to the reactivity.
The classical, trajectory based nature of the simulation, albeit in the ring polymer
phase space, allows to probe directly the atomistic dynamics and extract detailed
dynamical knowledge. Despite of these accomplishments, RPMD cannot describe
real-time coherences and suffers from the spurious-mode effect when calculating
vibrational spectra above certain frequencies [91-93].

Up to recently, no information on state-selectivity nor microcanonical quantities
for chemical reactions could yet be retrieved. The energy dependence of cross sec-
tions, reaction probabilities and general state-resolved information remained out
of the scope of RPMD. Only the use of initial thermal states were so far justified
and considered. Very recently (2016), the theoretical justification of the introduc-
tion of specific non-equilibrium (NE) conditions within RPMD (NE-RPMD) was
reported [95]. The NE conditions consist of a sudden change of external potential



or an initial momentum impulse, i.e., a "kick". The latter NE condition provides a
pragmatic possibility to employ RPMD beyond the canonical ensemble and initial
thermal states. The possibility of extending RPMD towards the detailed study of
the dynamical properties of chemical reactions for which quantum treatments are
infeasible is a promising prospect.

In this thesis, this promising step is addressed and the work done towards ex-
tending the capabilities of NE-RPMD to initial state-resolved bimolecular reactions
is performed. It provides a new and efficient approach to include NQEs within
a full-dimensional treatment of reaction dynamics and prospectively enables the
computation of state-resolved microcanonical properties for molecular reactive sys-

tems containing many atoms.

Organization of the thesis

In Chapter 2 I begin by outlining the quasi-classical trajectory method and introduc-
ing the theoretical concepts behind the ring polymer molecular dynamics approach
and its recent developments. Chapter 3 describes succinctly the newly developed
approach and its first applications. Chapters 4 and 5 describe further generaliza-
tions and applications. Finally, Chapter 6 provides the conclusion and an outlook

to close the thesis.






Chapter 2

Theoretical framework

This chapter presents the basic theoretical background for understanding the method
developed during this thesis. First, as our approach depends on the Born-Oppenheimer
approximation, the concept of adiabatic potential energy surfaces (PES) is explained.
Subsequently, the main features of the quasi-classical trajectory method (QCT) are
explained, followed by a discussion about the applicability and robustness of QCT.
This is motivated for benchmark purposes as our results will be compared with
QCT predictions in Chapters 3, 4 and 5. Thereafter, I proceed by presenting the the-
oretical foundations and an overview of several properties of the path integral and
ring polymer molecular dynamics approaches (PIMD and RPMD). After that, I in-
troduce an extension of RPMD for non-equilibrium dynamics (NE-RPMD) that will
be used throughout this thesis. Finally, the current scope of RPMD and NE-RPMD
will be reviewed and discussed to get Chapter 3 underway.

In this chapter, the Cartesian coordinate system is characterized by the mutually
orthogonal unit vectors ey, e, and e,. The coordinate symbol X refers to the cen-
ter of mass of the molecule X. The dynamics are always assumed non-relativistic,
involving distinguishable particles or nuclei and evolving on a single adiabatic po-

tential denoted as V.

2.1 Adiabatic potential energy surface

Chemical dynamics is intrinsically of quantum nature [96] and therefore, the task
of modeling the physical processes occurring in chemical reactions would ideally
require the solution of the time-dependent Schrodinger equation for the electrons
and nuclei involved. This problem is impossibly difficult with the exception of the
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simplest systems such as the hydrogen atom [97,98]. Nevertheless, in many chem-
ical processes and practically without loss of accuracy, one can make this problem
considerably more feasible by employing the Born-Oppenheimer (BO) approxima-
tion [31].

The BO approximation relies on the assumption that the electronic motion and
the nuclear motion in molecules can be separated. This is in most cases valid as
the nuclei are much more massive than the electrons. With this assumption, the
electronic wavefunction should evolve from the reactant electronic configuration to
the product electronic configuration on a time scale that is much smaller compared
to the nuclear dynamics through the transition state. [99]. This way, the total wave
function ¥, can be expressed as a product of two wave functions. Specifically,
one wave function describes the nuclei, referred by X(f{), and another describes the
electrons, referred by ¥(R, 1), for the electronic coordinates  and the fixed nuclear

coordinates R, such that

A

Tt (R, ) = X(R)Y(R, 1), 2.1)

The BO approximation allows to solve ¢ (R, t) by first fixing the nuclear positions
R and then solving the electronic part independently. In practice, this amounts to
solving the electronic eigenstates for a large number of nuclear configurations. This
results in the determination of an effective adiabatic potential energy surface (PES)
depending solely on the nuclear coordinates R. Such PESs are specific for each
system and their electronic characteristics.

In this thesis and for the systems treated in Chapters 3, 4 and 5 the nuclei are
assumed to follow a single adiabatic PES associated to the electronic ground state.
This constitutes an excellent approximation for many reactive systems and collision
energies of chemical interest with almost no impact on the accuracy of the simula-
tions [100]. Detailed description of the BO approximation, its validity, generaliza-
tion and the problem of deriving corrections to it are thoroughly discussed in the
literature [101]. Various semi-empirical methods were originally employed to ob-
tain approximate description of these potentials, mostly until the 1990s [102]. The
construction of more accurate potential energy surface (PES) from accurate ab initio
calculations followed [103]. For the rest of the thesis, V refers to a single adiabatic
PES.

Assuming that an accurate PES is provided, propagating the nuclear motion can
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be computationally very expensive and remains infeasible if one wants to simulate
rigorously the quantum dynamics of chemical reactions involving more than five
atoms [47]. A widely employed alternative approach that scales appropriately with
the size of the system is the quasiclassical trajectory approach (QCT).

2.2 Quasiclassical trajectory method

Even though the dynamics of chemical processes take place on a microscopic scale
where quantum effects can be dominant, many such phenomenon can to a good
approximation be accurately simulated using classical dynamics [71,104,105]. His-
torically, the first classical simulations were performed for unimolecular and bi-
molecular systems [106]. For classical simulations, it is not clear how to initialize a
molecule in a specific rovibrational configuration and neither is the comparison of
the simulation results with the quantum mechanical counterpart. The most widely
employed method which allows comparisons to be made between classical and
quantum reactive scattering results is the quasiclassical trajectory method (QCT).
The first QCT applications to gas-phase triatomic reactions with the description of
quantal intramolecular vibrational dynamics date back to 1965 [64,107]. Upon the
determination of the PES, the first step in QCT simulations is the selection of ini-
tial conditions for the ensemble of trajectories to be computed depending on the

quantum states we want to mimic classically.

2.2.1 Initial conditions for QCT simulations
Vibrational motion initialization

In quantum mechanics, the bound eigenstates of a system can only have certain dis-
crete energy values. This is the case for the periodic motion of molecular vibrations.
An approximate quantization rule for a one-dimensional periodic system is given
by the well-kown Bohr-Sommerfeld quantization rule. It states that the correspond-

ing action variable (or integral variable) I statisfies

1 q>
i—/ dg\/2u[E —V(q)] = (v + 1/2)h (2.2)
T

a<
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where V' is the potential, i is the reduced mass, ¢ and ¢. are the turning points
of the motion and v is a non-negative integer. The establishment of this formula
is a delicate problem and has been considered in detail in the literature [108]. For
one-dimensional systems, Eq. (2.2) has been worked out for many types of poten-
tial to very good approximations [109]. For complex molecules that are in general
multidimensional non-separable systems, we have the following straightforward

generalization of Eq. (2.2)
Zi=(y;+1/2)h ,i=0,1,2,... (2.3)

where the Z;’s are the action variables or adiabatic invariants of the system and the
v;’s are non-negative integers. Thus, the direct generalization can only be carried
out by finding the action-angle variables of multidimensional non-separable sys-
tems. This is in general impossible without employing numerical methods or the
techniques of perturbation theory [109].

The QCT method circumvents this difficulty for complex molecules by initially
considering the harmonic approximation of the molecular potential. This way, the
quantization rule in Eq. (2.2) can be carried out exactly for each independent vibra-
tional motion. This forms the basis of the normal mode (NM) sampling procedure.

The separable harmonic Hamiltonian H” can be written as

~ (B, Q2
o _ ; (7 N T) | (2.4)
where P, (); are the mass-scaled momentum and position normal modes, w; is the
harmonic frequency of the ith mode and f the number of vibrational modes. The
[ angle variables (¢;, i = 1,..., f) correspond to the phases of the harmonic oscil-
lators and the f action variables to the contour integrals over the periodic motions
I; = § P,dQ; withi =1,..., f. Following the quantization scheme of Eq. (2.3) leads
to have for each mass-scaled normal modes the coordinates

0,1, 1/2 I, 1/2
P = ( ) cos ¢, Qi = ( ) sin ¢;, (2.5)
s

Qiﬂ'



Section 2.2 13

where ¢; € [0,27] is a random phase. Once the normal mode coordinates are sam-
pled, the Cartesian coordinates are obtained by inverse transformation. The pur-
pose of this sampling scheme is the determination of an ensemble of internal classi-
cal configurations corresponding to pre-selected vibrational eigenstates for the re-
actant molecules. The expression "quasiclassical” refers to this first step (also further
steps can be added later) in which the molecule internal motion is prepared. These
configurations will then be used as initial conditions for the vibrational motion. The
assumption that molecular zero-point and excited motion can be described by the
normal mode approximation holds in general to some extent [110]. It can be prob-
lematic in the presence of a strongly anharmonic potential and for higher excited
states where the difference between the harmonic and correct quantum energy is
large. These points and possible circumventions are discussed at the end of this
chapter.

The initialization of excited rotational states is not covered in this thesis. Proce-
dures to initialize quantal rotational motion accordingly with different degrees of
elaboration can be found in the literature [111,112].

Beyond the preparation of the vibrational states of the reactants, it is necessary
to prepare the initial relative momentum and relative position of the reactants in
order to study their reactive collisions.

Collision initialization

This thesis considers two reactants, a polyatomic molecule T and an atom X. The
center of mass of the reactant molecule T is fixed at the origin of the coordinate
system. The collision axis passes through the origin and points in the direction
of the z-axis with unit vector e,. The coordinate system is oriented such that the
vector joining the atom X and the center of mass of T lies in the x —y plane. For each
trajectory, T is randomly rotated around its center of mass and for a given impact
parameter b we have for the position coordinates of the center of mass of T denoted
Qr, and for the position coordinates of the atom X denoted Qx,

QT = 07 QX = bey - \/ p% — b? €x, (26)

where p, is the initial distance between X and the center of mass of T. The value
of py is required to be large enough so that the interaction potential between X and
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T is initially negligible. Smaller p, values can be used to save computing time if
suitable. This can be the case for high collision energies trajectories where the initial
asymptotic regime plays a smaller role in the dynamics.

The momentum of the center of mass of T denoted by P, and for the momen-

tum of the atom X denoted by P, are set so that

Ptot = PX + 1_DT =0 and Prel = ,uX,TVrel =V 2,UX,TECOI €x, (27)
where V' is the relative velocity between the reactants, uxr = % is the re-

duced mass of the combined system and E; is the initial collision energy between

the two reactants.

N

B

7

FIGURE 2.1: Illustration of the initial conditions for a triatomic system

A+BC. The orange arrows indicate the motion along the vibrational

mode. The red arrows indicate the translational motion of the reac-
tants.

Once the initialization of the reactants’ vibrational motion and collision is done,
the time evolution is governed solely by the classical equations of motion for the
point-like nuclei using the adiabatic PES V.

With the initial conditions defined as above, it is explained in the following sec-

tion how to compute integral cross sections employing QCT.
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2.2.2 Integral cross section

A major attribute of QCT is the efficient computation of reactivity dependencies
on the collisional energy, the initial state of the reactants and the final states of the
products. Such detailed information is contained in the integral cross section (ICS).
It can be measured in sophisticated molecular beam experiments and is one of the
most precise measurable quantity on chemical reactivity [17].

The reaction probability P, of X and T (averaged over the different orientations
of T) depends on the vibrational state of T labelled by the vector v, the impact
parameter b and the collision energy F.,. Having determined the fraction of re-
active trajectories N, among a total of N,y trajectories, we have P.(E,v,b) =
N, (Eco, ¥, b) /Niot(Ecol, v, b). The integral cross section o (Eq, V) is then calculated

as
bmax
0 (Eeol, V) = / P.(Ec,v,b) 2w bdb, (2.8)
0

where by, is the maximal impact parameter beyond which no reaction occurs.

As a more convenient alternative to the direct integration of Eq. (2.8), the ICS can
be evaluated using Monte Carlo techniques [113]. The simplest approach states that
if b? /b2, is sampled uniformly in the interval (0, 1) for each trajectory, Eq. (2.8) can

be computed as

Ny (Ecol,
0 (Beol,v) = wb2,. lim (—1’/)

max
Niot—r00 Ntot

(2.9)

_1
The error in computing the ICS using this formula is proportional to N*. It de-
creases rapidly at first and then in a slower fashion with Ny. Thus, to obtain an

accurate estimate is not too requiring compared to reaching high accuracy.

2.2.3 Product states considerations and binning techniques

The previous formula for the ICS in Eq. (2.9) does not consider the product states
characteristics (beyond the fact that a reaction has occurred or not). However, the
classical propagation of the nuclei ignores ZPE effects beyond the initial conditions.
As a consequence, reactive QCT trajectories lead to products states covering a con-
tinuous range of internal vibrational energy. These energies can be far from the
allowed quantum values and even below the zero-point energy value. To mitigate

these side effects, binning techniques that can "filter" the products states have been
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proposed. I briefly describe the two main binning techniques and their advantages
and limitations.

A common feature of these procedures is the determination of non-integer clas-
sical harmonic action number for each vibrational mode of the product molecules.
This procedure is by nature approximate and involves several steps. Briefly stated,
the angular momentum of the molecule is first removed. Then, for each trajectory,
a normal mode displacement within the harmonic approximation is extracted for
each vibrational mode. From the normal mode coordinates, a classical harmonic
action number v, is determined for each normal mode k. A detailed description of
this procedure can be found in the literature [76]. Finally, the closest integer quan-
tum number ny, for each v}, is assigned leading to a vector n.

For a given collision energy, the state-resolved probability for a collision to lead

to a product with vibrational state v, given the initial conditions v; is

Nr (Ecola v, — Vf)

PT<ECOlJVi_>Vf): N,
tot

(2.10)

The question now is what is the best way to compute P, (Ec,v; — v¢) given a
sample of product states each characterized by the non-integers v, labelled now as
V'. The straightforward approach is the so-called histogram binning (HB) procedure
which assumes that

N, (Bl Vi > Vf =)

pHB (Eeol, Vi > V) = N
tot

T

2.11)

The issue of HB is that PHP can be non-zero for energetically forbidden states and
does not account for the discrete values of the vibrational quantum numbers. A
widely used variant of the HB is the ZPE-corrected HB where products states with
internal energies below the zero-point value are simply discarded.

An alternative technique is the Gaussian binning approach (GB). It assigns a
Gaussian weight to each trajectory such that for each product p and each mode &
the closer is v, to its nearest integer, the larger is the associated weight. Details
of such binning processes vary considerably as they are prone to some arbitrari-
ness such as the width of the Gaussian weights and which products are considered.
Examples and applications are given in Refs. [75,76,114]. However, when the num-
ber of vibrational modes is large, converging the GB simulations requires a very

large number of trajectories as each trajectory is weighted by a product of Gaussian
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weights. Moreover, applications of the GB shows that it does not lead systemati-
cally to more accurate ICS compared to HB or ZPE-corrected HB. This is especially
the case around the reaction threshold energy [115].

2.2.4 Discussion

The quasiclassical trajectory method is one of the most popular tools to study molec-
ular reaction dynamics. On the condition that an accurate PES is available, QCT
allows for the efficient simulation of almost any chemical reaction owing to its fa-
vorable scalability with the number of atoms. Although nuclear quantum effects are
not described in the dynamics (besides the correct initial vibrational and rotational
quantum energies for the reactants), QCT can provide valuable atomistic insights
into the reaction dynamics. It is especially valuable in the presence of complex reac-
tions where QCT provided crucial insights into underlying mechanisms [69,71,116].
Moreover, QCT can yield reliable quantitative results if the spread of the nuclei co-
ordinates covered by wave packets is small. This is typically the case when the
collision energy is high and in the presence of heavy atoms [69,115].

QCT is relatively accurate for describing mode specificity for many polyatomic
reactions. The normal mode sampled excited states are to some extent robust so
that they usually live (on average) long enough for most practical purposes. How-
ever, substantial energy leakage can occur. This is problematic at very low collision
energies for which the propagation time is long. The recently introduced adiabatic
switching procedure for QCT has proven to lead to more accurate and stationary
initial states [117]. Nevertheless, the leakage of energy between vibrational modes
in the reactants is still present as the dynamics are classical. Also, zero-point energy
can flow to the reaction coordinates during the collision [118]. This is exemplified
in the reaction H+CH, and H+CHD3; where QCT overestimates the reactivity [119].

Additionally, the final rovibrational energies of the collision products can take
forbidden values. As discussed before, binning techniques can be used to mitigate
such outcomes. However, while being mostly ad-hoc, such procedures do not sys-
tematically improve the results even though they usually predict reaction thresh-
olds more accurately. On top of that, elaborate binning techniques such as GB be-
come very expensive for complex molecules to reach appreciable convergence [77].

Besides, tunneling effects which can be dominant at low energies and in the

presence of light atoms are absent in classical simulations. This fact coupled with
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the absence of ZPE effects can produce undesired falsely accurate results as ignoring
both effects can lead to error compensation [115].

Nuclear quantum effects are important factors to take into account when study-
ing chemical reactions. Even more so if we are after the detailed knowledge of
reactive mechanisms and state-selective reactivity information. Among prominent
NQEs, tunneling and ZPE effects are the most common and can have great impact
on the outcome of a wide range chemical reactions. Unfortunately, NQEs are ei-
ther very or prohibitively expensive to describe using full-dimensional or reduced-
dimensional quantum reactive scattering approaches for systems beyond 5 atoms.
In this regard, alternative and efficient approaches to describe NQEs in chemical

reactions are in high demand.

Path integral approaches provide an efficient way to describe approximately quan-
tum dynamics at thermal equilibrium (using RPMD) and in the presence of specific
non-equilibrium initial conditions (using NE-RPMD). The purpose of the rest of this
chapter is to present the basics of ring polymer molecular dynamics (RPMD) and
non-equilibrium ring polymer molecular dynamics (NE-RPMD). The conceptual-
ization of the work done in this thesis finds its origin in the following theoretical

content.
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2.3 Path integral description of quantum statistics

This section discusses in some details the main aspects of the path integral molecu-
lar dynamics (PIMD) approach. PIMD allows for the efficient computation of static
properties of quantum systems at equilibrium. The approach is based on the clas-
sical isomorphism allowing an exact path integral description of quantum systems
governed by the quantum Boltzmann operator. The following section serves as
a basis for the introduction of the ring polymer molecular dynamics (RPMD) ap-
proach.

2.3.1 The classical isomorphism

It is possible to map the expression of the quantum mechanical partition function
Z = tr[e*ﬁﬁ ] onto the expression of a classical partition function in an extended
phase space. For clarity we start by considering a non-relativistic atom in one spa-
tial dimension at inverse temperature 5 governed by a potential V. The properties
that will be derived here are directly generalizable to multiple particles in multiple

dimensions. The Hamiltonian reads

A2
H=L 4v@g=1+V. (2.12)
2m
The quantum partition function Z, with the trace operator expanded over the posi-

tion eigenstates, reads
Z=tle ) = [ dg(gle T4V, (2.13)

Using the Trotter identity [120]

e BTH) — Jim 7 with Q= e 3 Ve aTe 7, (2.14)

n—oo
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and inserting n — 1 times the identity operator I = [ dg|q){q| in the integrand of Eq.
(2.13) leads to the expression

Z = lim [ dg™ ---d¢™ <q(1)|Q|q(2)> <q(2)|Q|q(3)> <q(3)’ . |q(n)> <q(n)| 0 |q(1)>

n—o0
" (2.15)
— i 1 .. k+1
= lim [ dg [H(q 24" ]
k=1 g =g(n+1)

The superscript notation (k) will turn out to be practical when later multiple atoms
are considered. To evaluate’

(g¥ Qg ) = =5V (1) () [=5T| gt =V ) 2.16)

T = (%/(2m) is written via its spectral decomposition using momentum eigenstates
|p) so that

(a®]Qlg"+V) = / dp e /mm =5V W) () | ) (p | g0 2 0) - 2.17)

1/2
_ (%) exp {_27;;_:2 (¢ — q(k+1))2 B % (V (¢®) + V (¢*+V ))} .

(2.18)

Thus, the partition function Z (Eq. (2.13)) can be written as

mn \"" B <~ [mw; 2
7 — i U _Z E n (o (k) _ o (k+1) V (g™
- nh—l;lc}o <27r6h2) /dq R [ 2 (4 ) (4 )1

k=1

n/2
- 1 mmn —Bnén(a)
nh—>oo (QWﬁhz) /dqe

= lim Z,, (2.19)

n—oo

where q is the vector (¢, ... ,q(”))T with the notation ¢(" = ¢, w, = n/(Bh) =
n mw?2 2 .
1/(8.h) and ¢,(q) = >, <T" (¥ — g* )"+ v (q“”)). In Eq. (2.19) Z is ex-
pressed as a classical partition function involving an infinite dimensional phase
space. For finite n the paritition function Z,, converges to Z with an error of the
order |Z — Z,| = O(1/n?) [121]. This so-called classical isomorphism opens up the

'The Trotter formula introduces an error only of order (3/ n)® for each evaluation of the matrix
element in Eq. (2.16). In contrast, the high-temperature expansion error is of order 33.
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possibility to relate equilibrium quantum many-body theory to classical statistical
mechanics in an extended phase space. The quantum partition function expressed
in Eq. (2.19) and thermal expectation values for position dependent operators can

at this stage be computed employing Monte Carlo sampling techniques? [122].

The fictional classical system implied by ¢,,(q) can be interpreted as n replicas (also
termed beads) of the original system joined by harmonic springs together forming
a closed ring polymer like a necklace. The classical partition function Z, thus de-
scribes a ring polymer (RP) with a canonical distribution at n times the physical
temperature. The periodic condition on the beads reflects the fact that the trace op-
eration has to be performed for computing the partition function. The RP structure
arises in the discretized path integral classical description of the matrix elements of
the quantum Boltzmann operator ¢~ with each bead corresponding to a "slice" of

the Boltzmann operator arising with the factorization of the kinetic energy operator

in Eq. (2.17). The force constant of the springs is mw? = s=grz- Thus, the springs
become stiffer with higher temperature so that in the limit 5 — 0 the ring polymer
shrinks to a point particle. This leads to purely classical dynamics. The finite spa-
tial extension of the ring polymers accounts for the spatial fluctuations due to the

quantum mechanical fluctuation at finite temperature.

Once the isomorphism has been established, it is left to find how to calculate the
quantities of interest from the ring polymer coordinates. In a similar fashion as
done in the derivation of the partition function, it is possible to write for the expec-

tation value of a position dependent operator A(¢)

(AW@)) = 5 r [ A(q)| (2.20)

~Llu [(e—ﬂnﬁ)“ A@q) (e )”“k} (2.21)

n (o ¢] 1 n —_ 3 n
= Z_/dq(l)”'/dq( ><q<1> . ﬁnH‘q<2>>_”<q<>

2This constitutes the Path Integral Monte Carlo approach (PIMC).

NI =N
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Using the cyclic relabelling of the position coordinates, one obtains

A e
(A(@)) = lim - (2:%2) / dage— 9@ A, (q), (223)
where .
Ana) = =574 ("), (2.24)
k=1

is the path integral estimator (or simply estimator) of the operator A. In section 2.3.2
important estimators will be discussed. In practice, appreciable convergence is
achieved for a reasonable number of beads depending on the system, the tempera-
ture and the observable. In general, the lower the temperature and the higher the
frequencies of the physical potential, the higher is the needed number of beads to
converge Eq. (2.23). Fig. 2.2 illustrates the classical isomorphism for a single atom.

The present result states that static equilibrium properties can be computed (ex-
actly if n — oo) via a classical integral involving a configurational average over an
extended phase space with the effective potential ¢,,(q). In other words, the task of
computing Eq. (2.24) now amounts to generating configurations consistent with a
probability distribution oc e=#*» and averaging over the values that the estimator

takes over these configurations.

FIGURE 2.2
n==~6
n — oo
o »
Isomorphism
Classical Ring Quantum
particle polymer particle

In 1984, Parrinello and Rahman [78] suggested the introduction of artificial mo-

menta for each bead in order to allow the use of molecular dynamics (MD) as a
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sampling tool to explore the RP phase space. In other words, the statistical sampling
of the configurations of the classical problem established by ¢,,(q) can be performed
by generating ring polymer trajectories assuming ergodicity [123,124].

The momenta are introduced using the identity

() = (0)°
1= (%m,> / dp exp [—mkzw , (2.25)

1

where p is the vector (pV), ..., p(">)T and m' is some arbitrary mass associated to
the beads of the ring polymer. This expression is inserted into Eq. (2.19) and
Eq. (2.23) to yield

1
Z, = ) / dp / dgePHn(P.a), (2.26)

and

(@) = g (o) [ [ dac 00 A @) = (A 2)

where H), is

e — 2m/ 2 " ’
with ¢ = ¢+, Classical dynamics with the conjugate variables (¢, p®)) for
k = 1,...,n can be performed using H,, as the Hamiltonian of the dynamics to

sample the ring polymer phase space. The use of bead momenta leads to dynamics
in a ring polymer phase space consisting of f = 2 x D x N x n degrees of freedeom
(d.o.f.), where N is the number of atoms in the system and D is the number of
spatial dimensions. So far, the generated trajectories do not hold any real dynamical
meaning and are just a computational tool. The procedure is valid for any choice of
mass m/, albeit with differences in the efficiency of the sampling [125].

In this thesis, the mass is chosen such that m’ = m, where m is the actual physical
mass of the particle. It will be shown in Sec. 2.4 that this choice is linked to the ring
polymer molecular dynamics approach (RPMD). With this choice, H,, is the ring

polymer Hamiltonian and the corresponding distribution

1
— —BnHn(p,q) 2.29
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is the ring polymer Boltzmann distribution (or ring polymer distribution) for n
beads. From now on, averages with respect to the distribution p,, will be denoted
(.)n (cf. Eq. (2.27) with m' = m). The ring polymer trajectories are integrated from
the phase space points (q(0), p(0)) to (q(t), p(t)) using

dp(t) _ OH,(p(t).a(t)) q dq(t) O0H, (p(t),q(t))

S = 2.30
dt q(l) a dt ooty 230
ie.fork=1,....,n
dg™ _oH, (p,a) _ p"
B ® T
d(tk) o " o (k) (2.31)
dp _ _8Hn (p,q) = Cmw? [2 (k) (k+1) (k71)} _ M

with q© = gD = O,

The numerical implementation of the equations of motion in Eq. (2.31) will be
discussed in details in Sec. 2.4.3. The use of the ring polymer trajectories consti-
tutes the path integral molecular dynamics approach (PIMD) and is an attractive
alternative to Monte Carlo techniques. However, most ring polymer systems are
nonergodic® [126]. The RP dynamics can be attached to a thermostat* so that the
RP trajectories adequately and efficiently sample the phase space [121]. The imple-
mentation of the Langevin thermostat for PIMD is explained in Appendix B.

The generalization of the ring polymer Hamiltonian H,, to an arbitrary number

N of particle in three dimensions corresponding to the Hamiltonian

N a2
~ o p’L ~
H = Z oV () (2.32)
is
o i n (p(k))Q . 1m ( (k) (lc+1 n ZV< ))
np7q _i:1 P 2ml 2 W q7, z ql 7"'7qN
(2.33)

3The high frequency modes of the ring polymer are usually far out of resonance with the external
potential so that the energy exchange between the modes is very slow or non-existent.

“The periodic resampling of the bead momenta according to the RP Boltzmann distribution dur-
ing the propagation is the simplest example of such a procedure.
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where the three-dimensional vector qgk) refers to kth bead of the ith particle and
similarly for the momenta. This notation is used for the rest of the thesis. Fig. 2.3
illustrates how the interaction between two atoms is described via the interaction
between two corresponding ring polymers (the interaction via V' is represented by
a dotted line) according to Eq. (2.33). The internal spring interaction is represented
in the figure by the black springs. The ring polymer equations of motion lead each
bead of each atom to interact via the physical potential V' with the corresponding
bead (of same index) of the other atoms bijectively. Thus, a given bead interacts
through the physical potential with the V — 1 other corresponding beads while also
interacting through the spring term with its neighbouring beads of the same atom.

FIGURE 2.3: Sketch of the ring polymer representation (right) of a
quantum system (left) consisting of two interacting particles.
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It is worthwhile to note at this point that the usual quantities (e.g. the total en-
ergy, kinetic energy and action) can have different meaning in PIMD. In particular,
H,, does not correspond to the expression for the total energy of the ring polymer
system but to its action. In this thesis, it is sufficient to take note of the latter sub-
tlety. A detailed discussion about this shift of vocabulary can be found in section D
of Ref. [127]. The next section explains how to compute the energy in PIMD.
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2.3.2 Path integral estimators

In quantum mechanics, observables can be computed with operators but it is not ap-
parent how a specific operator can be expressed within the classical isomorphism.
To compute expectation values of an observable, the correct expression of its path
integral expression, the estimator, has to be derived and averaged according to the
ring polymer distribution. Thus, estimators play a key role in path integral calcula-
tions. Estimators are not unique and are strongly correlated to the choice of Hamil-
tonian employed to compute the static properties (e.g. using PIMD or PIMC). Also
different estimators can have the same average value but converge more or less
rapidly with the number of beads and sampled ring polymer configurations.

The simplest case is the estimator for the potential energy and more generally
any observable that depends strictly on the position of the atoms. This could be the
bond length or a molecular configuration. We have seen already the case of expec-
tation values of general position dependent operators in Sec. 2.3.1. The expectation
value of the potential (V/(¢)) reads

1 1 &

= lim (V,.(q))n,

n—oo

where V,(q) = 237,V (¢®) is the path integral estimator of the potential op-
erator V(§). The estimator of the potential energy turns out to be intuitive and
unambiguous.

The simplest form of the total energy estimator can be obtained via direct tem-

perature differentiation of the partition function

A —0InZ 1 /07
E=(H)=lim (— |~ —— | = 2.35
< > ”ggo < ol6] ) Zn ( op ) ’ ( )
yields
1
o —BnHn(p,q) 2.
FE HILnQO —(27rh)"Zn /dp/dqe En(p,q), (2.36)
with
1 & (p(’f))Q 1 o mw? k) (k1)) 2 1 —
—— _ = n _ - V (g™ . .
En(p,a) = — 5 nz 5 (¢ — ")+ - (¢") (2.37)
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The kinetic energy estimator can now be extracted using 7,, since &, = 7, + V,, we

have

n

1 (¥ 1 <~ mw? 2
Tu(p,q) = - > o h > 5 (¢® — g™+ )", (2.38)
k=1 k=1

Eq. (2.38) constitutes the so-called "primitive" kinetic energy estimator. These es-
timators are special because they are functions of both coordinate and momentum
coordinates and can be evaluated via cyclic (using ring polymers) path integrals.
More general momentum dependent coordinates are more complicated to derive
and generally involve open-chain ring polymers [127]. These are not discussed
here. Nevertheless, it is shown in the next chapter that they can be computed nat-
urally withing the framework of ring polymer molecular dynamics. The drawback
of the primitive energy estimator is that it converges very slowly. This is because
each averaged term in Eq. (2.38) scales linearly with n, thus leading the variance
to also grow linearly with n. The number of beads necessary to converge PIMD
results depend on the observable, the temperature and the system. A widely used
minimum value for n is Afwmax/2 Where wmax is the highest frequency present in
the physical system. This criterion can be interpreted as constraining the average
distance between neighboring beads to be shorter than the characteristic length of
the potential [128].

There are other equivalent (leading to the same average value) energy estimators
where the ill-behaved terms are eliminated and that converge much faster [129]. In
this thesis, only the primitive form of the energy estimator involving explicitely
the momentum coordinates &,(p, q) is considered. This is because the estimator
needs to account for non-equilibrium conditions which will be employed later in
Chapters 3, 4 and 5. Thus, only the most general (but also crude) momentum and
position dependent expression of the energy estimator can be used to account for
the non-equilibrium dynamics.

The kinetic energy estimator is rather counter-intuitive as it is the difference be-
tween the sum of all the kinetic energies of the beads U™ (p) = £ 37}, ®") and the

2m

energy contained in the springs UsP""8(g) = 1 77| ma (¢(*) — g(*+1D)2 Tt js possible
for the kinetic energy estimator to take negative values even though the averaged
values over many ring polymer configurations will always lead to positive values.
It is instructive to compute the average value of the kinetic energy estimator in the

case of the harmonic potential. For a one-dimensional system with a potential of
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the form V(g) = ™42 we have’

(UX™(p))n = 25 (2.39)
(U (q)) = 55— " coth(Bw2) + O(L /), (2.40)

so that (7,,), "=" % coth(Bw/2). It also possible to show® that (V,,), "=" % coth(Sw/2).
As one can see from Egs. (2.39) and (2.40), half of the quantum thermal energy is
contained in the springs. This is the simplest manifestation of the fact that the in-
ternal ring polymer structure accounts for the ZPE effects 7.

There exist relatively intuitive coordinates within the ring polymer phase space.
They are the so-called position and momentum " centroid" coordinates. The follow-
ing example illustrates the concept of centroid as it is helpful for the understanding

of the next Chapters.

Example : Several properties of the "free” ring polymer and its centroids.
In this example a free ring polymer (I’ = 0) in one spatial dimension consisting of n
beads at inverse temperature 3 with the physical mass m associated to the momenta
is considered. The centroid momentum and position vector coordinates g¢, p° read
=2 zn: g, pe= 1 zn: ). (2.41)
n <~ n

k=1

The averaged kinetic energy estimator for n beads in the free case is®

n (k))? mw?
(En)n = <% Z <(me) -3 "(q(k) _ q(k+1))2>>

(), -%

This implies that the entire energy of the free ring polymer is contained on average

(2.42)

in its centroid momentum. Also, it has the same average kinetic energy of a classical

particle at reciprocal temperature 5. The standard deviation of the position and

5See the fourth property of Appendix A for the proof.

®See the third property of Appendix A for the proof.

"Note that PIMD cannot be applied for arbitrary potentials as V(g) must be differentiable.
8See the second property in Appendix A for details.
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momentum of the beads is given by

" 1/2
/1 |2 ¢ .
Ag = <E; la® — q°| > ,Apt =1/ {((p)?), (2.43)

respectively. Ag can be interpreted as the average spatial extension of the ring poly-
mer. It is possible to show that for any number of beads

Aq:1 imﬁ, Ap® =+/m/p. (2.44)

It is observed that Ag is proportional to the thermal de Broglie wavelength \(5) =

%. This stems from the ring polymer description of the spatial spreading of a
thermal wave packet. One can interpret the centroid coordinates of the ring poly-
mer as the "most classical" coordinates in the ring polymer phase space. Indeed,
the momentum fluctuation term Ap° is equal to the average momentum of the free

classical point particle of mass m at inverse temperature 3.

2.4 Ring polymer molecular dynamics

In the previous section, we saw that PIMD involves artificial momenta to allow
the use of molecular dynamics simulations to sample ring polymer configurations.
The present section shows that, remarkably, the ring polymer phase space with the
choice of masses m; = m, associated to the momenta, can be used to compute ap-
proximately dynamical quantum properties for systems at thermal equilibrium. This
constitutes the ring polymer molecular dynamics (RPMD) approach. It will be ex-
plained how RPMD emerges as a practical approximation of Matsubara dynam-
ics. Matsubara dynamics was recently derived as a very general form of quantum-
Boltzmann-conserving classical dynamics theory that approximates Kubo-transformed
time-correlation functions (TCFs) [81]. This section begins by explaining the partic-
ularity of the Kubo-transformed TCFs and its connection to the classical isomor-
phism.
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2.4.1 Kubo-transformed time-correlation functions

So far, only static properties were discussed. The natural connection to dynamical
properties is made by stating that static equilibrium ensemble averages of a product
of two operators are equilibrium time-correlation functions (TCF) at ¢ = 0. TCFs
provide a link between theory and experiments for dynamical properties and arise
in linear response theory [130]. From the previous section, it is known that RPMD
is exact at t = 0 for the evaluation of the commonly used "standard" quantum TCF
Cap(t) of two position dependent operators, A and B, within a canonical ensemble
which reads

Cap(t) = %tr e PH Attt/ Be—ift/h| (2.45)

In general, for ¢ > 0 C45(t) takes complex values and does not satisfy the detailed-
balance condition (Cap(t) # Cpa(—t)) which has to be respected by an approach
employing classical dynamics. Consequently, RPMD cannot describe C45(t) for
t > 0. If RPMD approximates quantum dynamics, it naturally should approxi-
mate to some extent some kind of equilibrium quantum TCFs for ¢ > 0 or at least
in the vicinity of t = 0. A better suited candidate is the Kubo-transformed time-
correlation function [131] which also arises naturally in the quantum generalisation
of linear response theory [132]. The Kubo TCF, denoted as K 45(t), is an equivalent
symmetrized form of Eq. (2.45) and reads
1 /B o

Kap(t) = —5/0 d\ tr [e_(ﬂ_’\)HAe_AHeZHt/hBe_’Ht/h : (2.46)
K 4p5(t) only takes real values and satisfies the detailed-balance condition [81]. Also,
no information about the dynamics is lost by computing K 45(t) instead of Csp(t)
as both are related by their Fourier transforms Kp(w) and Cap(w) such that

~ wh — ~
CAB((,U) = %KAB(W). (247)
Moreover, it is possible to show that
lim (1) = lim (An(a) Ba(@) (2.48)

where .
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with A, (q) = 1 377 | A(¢™) and same for B,(q) [80].

Taking the dynamics of the ring polymers literally to compute K,5(t) for t > 0
such that

1
Kap(t) ~ W/dpo/dQOe_ﬁ"H"(po’qO)An (qo0) B (a(t)), (2.50)

with (pg,qo) the initial conditions was first considered in an ad hoc manner by
Manolopoulos and Craig in 2004 [80]. Their related paper reported simulation re-
sults showing that RPMD yields superior TCF results compared to classical simula-
tions. Subsequently, various applications of RPMD followed (thermal rates, diffu-
sion coefficients, vibrational spectra) [83,84].

Kubo TCFs of certain non-local operators such as the velocity operator can be
computed naturally within the RPMD approach. Appendix C illustrates the case of
the velocity autocorrelation function.

The subject of the next section is the theoretical derivation of RPMD that was
tirst established in 2015.

2.4.2 Theoretical justification of RPMD

The derivation of RPMD requires a certain amount of technicalities which have little
relevance for the rest of the thesis. Thus, this subsection discusses only qualitatively
the nature of the derivation and what information is provided from it. For the
shorter and self-contained detailed explanation, the reader is referred to the very
well written review of RPMD by Prof. Stuart C. Althorpe in Ref. [133]. For the
complete derivation of RPMD, the reader is referred to Refs. [81,82].

Recent works from Hele et al. have established a natural connection between
RPMD and Matsubara dynamics [82]. Matsubara dynamics approximates the quan-
tum Kubo-transformed time-correlation function K45(t) in Eq. (2.46). For simple
systems, Matsubara dynamics gives time-correlation functions which are in close
agreement with the exact quantum results [81]. In a nutshell, Matsubara dynamics
are classical dynamics that satisfies quantum Boltzmann statistics. However, it is
not a practical method for realistic systems due to the sign problem emerging from
the presence of the Matsubara phase. Removing parts of the Matsubara Liouvillian

in order to remove the Matsubara phase leads to RPMD. Thus, RPMD emerges as a
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practical approximation of Matsubara dynamics. What is learned from the deriva-
tion is now stated succinctly below. Starting with the beneficial properties, RPMD

1. is exact in the high temperature limit 5 — 0
2. is exact in the short time limit¢ — 0

3. is exact in the harmonic limit for linear operators

4. computes exactly Kip(t) = & tr [e“mlﬂ
The last point states that RPMD is consistent at all times with the quantum Boltz-
mann statistics.

As mentioned above, the derivation of RPMD relies on the speculative choice of
discarding parts of the Matsubara Liouvillian. Thus, it is difficult to forecast the er-
ror in the dynamics for realistic systems. Nevertheless, the derivation can shed light
on parts of the inherent drawbacks of RPMD. In particular, RPMD does not describe
interference effects because Matsubara dynamics are themselves classical. Also, it
can be shown that the discarded part of the Matsubara Liouvillian does not act di-
rectly on the centroids dynamics. Thus, with the exception of the harmonic regime
with linear operators, it is expected that with time this can lead to an appreciable er-
ror in the dynamics. Other consequences are that RPMD is expected to break down
more rapidly for non-linear operators and in the presence of strongly anharmonic
potentials. Indeed, strong anharmonicities in the potential and notably the non-
linear character of operators promote the coupling of the centroid and non-centroid
dynamics and thus should lead to more inaccuracies. In a nutshell, regarding the
disadvantageous properties, RPMD

1. does not describe interference effects and lacks phase information
2. loses accuracy in the presence of non-linear operators

3. is expected to accumulate errors with time.

The theoretical justification of RPMD does not provide clear information on the
extent of its accuracy. Thus, in the absence of a more complete theoretical backing,
the capabilities of RPMD can be benchmarked via applications.

Before discussing applications of RPMD, the details of the numerical implemen-
tation of the ring polymer equations of motion are explained in the following sec-
tion.
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2.4.3 Implementation of the propagation of the ring polymers

This section focusses on a one-dimensional system consisting of N atoms with
masses m,;. All the derivations below generalize immediately to multi-dimensional
systems.

To propagate the ring polymers the RP equations of motion given in Eq. (2.31)
with the ring polymer Hamiltonian given in Eq. (2.33) need to be integrated. How-
ever, the ring polymers’ internal motion can contain very high frequency modes
due to the spring constant w,, = n/(5h). Thus, a straightforward integration of Eq.
(2.31) can require a very small time step which would render the simulations im-
practical. To circumvent this problem, one can propagate the internal RP modes
separately by decoupling the spring terms dynamics [121]. The procedure is based
on the transformation of Cartesian coordinates to the RP normal mode coordinates
(see also Appendix A). This way, the ring polymer Hamiltonian can be split into a
free part H? and an interaction part V,,. The RP phase space evolves during the time
step At according to the propagator e~2'* where L = L, + Ly and L, and Ly are
the Liouvillians associated with H? and V,,, respectively. The propagator expanded
up to the second order in time reads

e—AtL — e—(At/Q)LVe—AtLoe—(At/Q)LV + O(At2 LV) (251)

This product splits the propagation into internal RP modes and external poten-
tial contributions [134]. To simplify the integration of the evolution generated by
HY(p,q) the transformation from the Cartesian bead representation (q,p) to the

normal mode representation (q, p) is performed
i = pCp and G =3 Oy (2.52)
j=1 j=1

where for an even number of beads the transformation matrix C' is

(

1/n, k=0
2/ncos(2mik/n), 1<k<n/2-1
¢, _ | VEmeostansh/m) n/ | 05)

V(-1 k=n/2

\\/Q/nsin(Zﬂjk;/n), n/24+1<k<n-1
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With the normal mode coordinates H?(p, q) reads

N el [~<k>]2 X

2
H)p.q) =Y _> + 5mi; [Qf )} : (2.54)
i=1 k=0
with
wr, = 2wy, sin(km/n). (2.55)

Note that in the normal representation, the sum over k runs from 0 to n— 1. It is now
possible to exploit the diagonalized form of the the free ring polymer Hamiltonian
to integrate the normal modes basis analytically and then include the integration
of the physical potential. In details, this is done by employing a modified Velocity-
Verlet algorithm [121] in accordance to the splitting of the propagator in Eq. (2.51).

The evolution algorithm for a single time step At consists of five operations that are

At OV (g:)
; g — —————, 2.56
PP 5 g, (2.56)
pj Zpicij qj < Z ¢:Cij, (2.57)
]?j . Ccos wj:At —mw; sinw; At ]?j 7 (2.58)
g [1/mw;] sinw; At cosw; At g
pi Y Ciup; 4+ Y Cyij, (2.59)
J J
At OV (g;
b o V), (2.60)
2 0Og

The first step involves the evolution of the ring polymer momenta during At/2
under the exclusive influence of V,,(q). The second step is a transformation to the
normal mode coordinates. The third step consists of an exact evolution during At
of the bead normal modes under the sole influence of H’(q,p). The fourth step
is an inverse transformation to the bead coordinates. The fifth step is the same as
the first one. The integration remains symplectic and conserves the phase-space
volume. Note that for n = 1 the algorithm reduces to the standard velocity Verlet
method for classical systems. For any number of beads the integration error term
remains of the order O(A#?). In practice, the extra steps to perform the normal mode
transformation and inverse transformation require negligible computational effort

compared to the evaluation of the potential energy surface V.
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To generate PIMD trajectories, it is possible to combine the above algorithmic
steps with a simple white noise Langevin thermostat. This amounts to add a few
computationally cheap extra steps. These steps are explained in Appendix B.

Fig. 2.4 illustrates the contrast beween RPMD and PIMD trajectories.

FIGURE 2.4: Representation of configurations generated via a ther-

mostatted RP trajectory (black upper line). Each configuration corre-

sponding to a point of the black line is a valid initial configuration to

use in RPMD. Real-time RP trajectories (yellow lower lines) starting

from these points are propagated without thermostat, strictly using
Eq. (2.31).

PIMD

PIMD I-\/-\J\/'\_,

RPMD  RpMD ~ RPMD  RPMD

The next section focuses on RPMD thermal rates results. In anticipation of the
study of reactive dynamics using RPMD in the next chapters, it is relevant to dis-
cuss earlier works studying thermally induced reaction rates using RPMD. Thermal
rates provide precise kinetic informations about chemical reactions and thereby are
a firm test of the RPMD approach. The following is also insightful in anticipation

of potential microcanonical extensions of RPMD.

2.4.4 RPMD for chemical reaction rates

RPMD has proven to be an efficient tool to compute accurately thermal rate coeffi-
cients for many chemical reactions for which quantum mechanical approaches are
computationally very expensive [88,135-138]. To illustrate the connection between
RPMD and thermal rate coefficients, we focus on one-dimensional bimolecular re-

actions. The exact formula for the thermal rate constant k() can be rewritten in
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terms of the Kubo-transformed flux-side time correlation function® so that

K(B) = 55y fim Kralt) (2.61)

with '
h=0(G—q") and F = %[ﬁ, h] (2.62)
the side operator and flux operator, respectively. 6(q) is the Heaviside step function.

q' is a dividing "surface" that separates reactant and product regions. The limit
t — "00” means that the system is propagated long enough to unequivocally define
the trajectories outcomes. Z,. () is the reactant partition function.

The computation of Eq. (2.61) using RPMD is a priori problematic and could
lead to noticable inaccuracies for the two following reasons. First, the operators h
and F are highly non-linear so that the condition of better accuracy with linear op-
erators is far removed. Second, the need to compute the long-time limit of K (¢)
is a priori prone to generate inaccuracies, since RPMD validity is expected to dete-
riorate with time.

In spite of these expected difficulties, studies have shown that RPMD yields ac-
curate thermal rate coefficients for various reactions even at very low temperatures.
In this context, it has been demonstrated that RPMD captures ZPE effects and pre-
vents ZPE leakage [139,140]. It also produces very satisfying results when tunneling
effects dominate the reactivity [141,142]. The success of the RPMD rate theory at
describing tunneling effects can be in part attributed to its connection to semiclassi-
cal instanton theory [135]. Moreover, RPMD yields accurate thermal rate results for
more complex reactions [143].

It is worthwhile to compare the expressions of the RPMD and classical thermal

rate constants. The corresponding classical expression of Eq. (2.62) is
1 - Do
KFi(t) = ﬁ/dpo/dqoe o 20) § (go — q') 0 (a(t) - q') ., (2.63)

with 4 (go — ¢') 2 (¢ is the Dirac delta function), 6 (¢(t) — ¢'), go, po and g(t) are the
classical analogues of the flux and side operators, initial position, initial momentum
and position of the atom at time ¢, respectively. To compute K¢ (¢) is to correlate

the position and velocity of the atom at time ¢ from an initial thermal equilibrium

This formalism allows for the extraction of kinetic properties without having to consider all
possible state-specific reaction probabilities.
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distribution in which the atoms are positioned at the dividing surface for the reac-
tion.
In RPMD, it reads

n—oo

, 1 _ . D6 (e
Kph(t) = lim W/dpo/d%e Inlintpo, ) § (g5 — q') EO 0(q(t)—q"), (264)

with ¢§, p§ and ¢°(t) defined similarly as in the classical case but considering the
centroid coordinates. It is observed that KX (¢) is similar to K& (¢). The only dif-

ferences are
¢ the classical coordinates are substituted in RPMD by the centroid coordinates

¢ the initial bead configurations are sampled according to the ring polymer
Boltzmann distribution with certain initial constraints on the position cen-

troids
* the ring polymer is propagated using the ring polymer equations of motion
* atleastn > Shwmax beads are needed to converge the calculations [128, 144]

Thus, it is possible to bridge classical and quantum results in the case of thermal
rates in a natural way by employing RPMD. These analogies between the classical
and RPMD calculations will in part motivate the content of Sec. 2.4.7 when intro-

ducing non-equilibrium initial conditions on the centroids.

Summary:

Previously in PIMD, the ring polymer trajectories were used as a sampling tool
to compute the values of static equilibrium properties. In RPMD, trajectories are
propagated from an initial equilibrium configuration without any thermalization
protocol (i.e. resampling the momenta or attaching a thermostat would uncorrelate
the dynamics) and are taken literally as real-time approximation of quantum dy-
namics. This leads to quantum-Boltzmann-conserving classical dynamics, albeit in
an extended ring polymer phase space. In several successful applications, RPMD
incorporates almost perfectly ZPE effects and to a good approximation tunneling
effects. The cost of RPMD is about n times the cost of the corresponding classical
simulation. The computational cost of RPMD scales much more slowly with the

number of atoms than any quantum mechanical treatment making it applicable to
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large systems. However, as discussed in the context of the derivation from Matsub-
ara dynamics, RPMD describes the dynamics only approximately.

So far, the use of RPMD has only been justified for thermal equilibrium conditions.
Thus, microcanonical magnitudes such as integral cross sections and its dependen-
cies on the rovibrational states of reactants and products have until recently not
been addressed with this method. In the next section, an extension of RPMD to
non-equilibrium conditions is introduced that is at the basis for the other chapters
of the thesis.

2.4.5 Non-equilibrium RPMD

The non-equilibrium time-dependent expectation value of the form
(B)(t) = tr | e PH H D1/ o—iHDt/h| (2.65)

with H© = HO is considered. To simplify the following discussion, we consider a
single atom in one spatial dimension. The argument can be directly generalized to

multiple atoms and dimensions.

The Hamiltonians

R 5 — Ap)2 i H>
HO = % +V(G) and HO =L 1v(g). (2.66)

2m

describe a momentum shift (or kick) as the eigenfunctions of the two Hamiltonians

are related by the factor e!4?4/"

. Fig. 2.5 illustrates the initial impulse applied to a
ring polymer.

By employing the same procedure as mentioned in Sec. 2.4.2 it is possible to re-
cover the RPMD approximation for the case of the Kubo-transformed non-equilibrium
TCF" and thereby also for the non-equilibrium time-dependent expectation value

~

(B)(t) [95]. Thus, we have

~

(B)(t) ~ ﬁ / dq / dpe 1 PIB, (p(t), q(t)) (267)

"No general transformation between Kubo-transformed non-equilibrium TCFs and standard
non-equilibrium TCFs has yet been established.
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where B, refers to the estimator of the operator B and

- (p(k)_Ap)g ~ [mwl g k1)) 2 k
Hflo)(p,q)=22—+2{—" (" = ¢**)" + V (4 ))], (2.68)

m 2
k=1 k=1

and the evolution of the coordinates (p(t), q(t)) is governed by

(¥
H(p,q) = Z ™) +Z [mw — gk D)? +V(q(k))]. (2.69)

k=1

Thus, the momentum shift Ap initially appearing in Eq. (2.66) is effectively trans-
lated in RPMD by an initial shift of the momentum centroid. An interesting fact
is that more general changes to the Hamiltonian (corresponding to more involved
non-equilibrium initial conditions) besides a momentum rescaling (p — ap) or a
sudden switch of potential would not lead to the usual form of the ring polymer

Hamiltonian H 7(10)

and the connection to Matsubara dynamics would not be main-
tained [95]. As in the equilibrium case, NE-RPMD is exact in the high temperature
limit. When applied to the calculations of non-equilibrium TCFs, NE-RPMD and
RPMD have in common their exactness for the limit ¢ = 0 (also for non-linear op-
erators) and for harmonic potentials (with linear operators). Also, the accuracy
of NE-RPMD has been shown to be similar to the one of RPMD when computing

TCFs [95].

p'—p‘+ Ap

74

Al

Kk e/

FIGURE 2.5: A ring polymer characterized by an arbitrary momentum
impulse Ap applied on its centroid. The sampling of the internal fluc-
tuations remains the same and depends on 3 and H,,.
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2.4.6 Status of

For thermal applications of RPMD, § is well-defined. Its value alongside the num-
ber of beads n and the external potential characterize completely the distribution
of the initial conditions. Also,  plays a particularly crucial role in the dynamics
since its value influences the harmonic springs between the beads. In the case of
an initial momentum impulse, Ap constitutes an extra parameter independent of
the ring polymer Boltzmann distribution. Consequently, the initial state becomes
non-thermal, with 3 only influencing the internal motion of the ring polymers. This
leads 5 to, a priori, hold the status of parameter as it cannot be interpreted as the
reciprocical temperature in that context. The consequences of the non-equilibrium
conditions on the status and values of 5 have not yet been understood.

There have been several applications of NE-RPMD employing the initial mo-
mentum kick and the sudden change of potential. However, several of these stud-
ies employ reasonable but not well-founded and fixed values for g [95, 145, 146].
This is problematic as NE-RPMD results are very sensitive to the choice of 3. Thus,
this adds a certain degree of arbitrariness to the simulations results. Several an-
sdtze consider matching 3 with the total initial energy of the system considered
(6 = 1/FE) [147]. However, it generally leads to very low f such that the ring
polymers’ behavior is almost classical. A recent work by Miller et al. addressed
the question of 3 in the case of a one dimensional Eckhart barrier potential model.
However, the reported 3 ansatz does not include vibrational aspects and relies on
an equilibrium expression of the energy estimator [148].

Desired attributes of 5

One expects that 3 should decrease if the initial momentum impulse is increased
since the dynamics progressively becomes more classical with higher momenta. In
the limit Ap — oo, 8 should vanish so that the ring polymers shrink to classical
point-like atoms. Also, assuming that Ap is finite, 5 should be sufficiently large to
describe the quantum statistics of the internal motion in molecules correctly. The

specific dependencies on the parameters of the problem remain unknown.
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2.4.7 Direct trajectory approach

As shown for the computation of thermal rates, RPMD can provide an efficient way
to bridge the gap between classical and quantum dynamics. With the justification
of the use of non-equilibrium initial conditions, a wide range of possibilities is now
available for exploration. NE-RPMD can be potentially exploited to approximately
include NQEs in various non-equilibrium chemical processes.

For thermal rates, the classical and RPMD approaches are in direct analogy (see
Egs. (2.63) and (2.64)). Thus, it is worthwhile to explore similar connections in
the context of non-equilibrium situations. In particular, this thesis considers re-
alistic systems with atoms and molecules that have specific positions, momenta,
vibrational states for a molecule, and that interact with each other via a collision.
The simplest case consists of atoms that are assumed to be initially far away from
each other (so that V(g) = 0) at the positions q; and having specific momenta p;.
With B(q) an operator having for its argument the position of the atoms g, the
NE-RPMD "direct trajectory" approach to compute the time-dependent expectation

A

value (B)(t) reads

lim / dpo / dgo e~ @0 B (q(1)) 5(q°(0) — q;) 6(p°(0) —py), (2.70)
n—oo (2wh)"Z,

with ¢¢(t) and p°(t) referring to the coordinates of the position and momentum cen-
troids at time ¢. HY\ accounts for the initial momenta impulses such that p°(t =
0) = p; and the coordinates g(t) are propagated using the ring polymer Hamilto-
nian A" for multiple atoms. dp, dqq is a phase space element over the initial (t = 0)
conditions. As shown in Appendix A, the internal energy of the individual and ini-
tially free ring polymer vanishes and the total energy reduces to the kinetic energy
of the centroids. Thus, the initial average state of the ring polymers can be defined
with the momentum impulses and initial positions of the centroids. This corrob-
orates the microcanonical classical description of the system at ¢ = 0. It follows a
physically intuitive practical approach to compute Eq. (2.70): the centroids of the
ring polymers are initialized accordingly, then the internal (non-centroid) bead mo-
tion is sampled according to the ring polymer Boltzmann distribution and lastly the
estimator values for B(q) at time ¢ are averaged over many ring polymer trajecto-
ries. This is in direct analogy with the calculation of non-equilibrium TCFs using
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RPMD with initial momentum kicks [95]. However, it is not straightforward to gen-
eralize this approach to model more complex systems comprised of molecules with

specific initial ro-vibrational states.

Discussion:

NE-RPMD considered as a tool to approximate to some undefined extent quantum
dynamics might appear plain compared to wave-function methodologies. Never-
theless, it might capture the essential quantum effects in several non-equilibrium
chemical processes. RPMD has been successfully applied in various regimes be-
tween its exact limits, and it shares the same theoretical grounds with its non-
equilibrium extension. Also, RPMD handles all degrees of freedom equally and
thus is full-dimensional. Thus, it is worthwhile to explore the capabilities of NE-
RPMD to model the dynamics of chemical reactions. In particular, it is worthwhile
to first look at reactions whose kinetics (thermal rate coefficients) are well-described
by RPMD.

The next Chapters (4, 5 and 6) consist of published papers that extended
non-equilibrium RPMD to the study of state-resolved reactive molecular dynamics.
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Chapter 3

Nuclear quantum effects in
state-selective scattering from ring

polymer molecular dynamics

This chapter is centered on the following publication, of which I am the first author,
and has been included verbatim:

"Nuclear quantum effects in state-selective scattering from ring polymer molecular
dynamics", Marjollet, A., Welsch, R., J. Chem. Phys. 152, 194113 (2020) [149].

It is reproduced with the permission of AIP Publishing for the purpose of this the-
sis. My contributions include the investigation and theoretical work, programming

the simulation tools, data analysis and writing the article.

This Chapter presents ICS results obtained by applying our developed NE-RPMD
approach to the triatomic Mu/H/D+Hj reactions with H, either in its ground (v =
0) or first vibrational excited state (v = 1). This work constitutes the first bench-
marking of the method and also the first extraction of ICS employing NE-RPMD.
The reactions H/D+H,(v = 0, 1), for which the exact quantum results and QCT
ICS results are very close over a wide range of collision energies, were chosen for
preliminary benchmarking purposes. Furthermore, the method is applied to the re-
action Mu+Hy(v = 0, 1) in which the ZPE and tunneling effects influence greatly the
ICS results in the case of the ground state and the first vibrational excited state H,
reactant, respectively. This is due to the Muonium being a very light atom (around
0.113 the mass of hydrogen). We report an ansatz for the choice of 5 based on
physically sound assumptions. We also analyze the the ring polymer reactants’
configurations around the transition state for the Mu+Hy(v = 1).
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3.1 Introduction

Bimolecular reactions in the gas phase or chemisorption of a molecule onto a sur-
face are important classes of reactions with relevance to many areas of chemistry,
e.g., atmospheric and interstellar chemistry, combustion and catalysis [2,8,150-152].
State-selective measurements and simulations of these processes provide a detailed
understanding of the reaction dynamics and help us understand the flow of energy
in chemical reactions. The detailed understanding of the reaction dynamics can
lead to efficient ways for controlling and steering these reactions. While impres-
sive measurements can already provide detailed information for polyatomic sys-
tems, [18,150,151,153-159] a full-dimensional quantum-dynamical description of
state-selective scattering remains a great challenge. The biggest system treated to-
day is the H+CH,—H,+CHj reaction [48,49,160-164] which was simulated employ-
ing the quantum transition state concept [165-171] and the multi-configurational
time-dependent Hartree approach [172-179] for the wavepacket propagation. How-
ever, these simulations are very involved and intricate, require many prerequisites,
e.g., a fitted potential energy (PES) surface that can be evaluated efficiently [38,47]
and an appropriate curvilinear coordinate system, [60] and take up many months
of simulation time for each specific reaction.

Therefore, most reactive scattering simulations employ the quasiclassical tra-
jectory (QCT) approach [64—66]. In this approach, all nuclei are treated classically
and evolve on an accurate PES or based on gradients obtained from on-the-fly ab
initio calculations [180]. Suitable initial conditions for each trajectory are chosen
to include the correct amount of zero-point energy (ZPE) and the correct amount
of additional energy for a vibrational (or rotational) excitation. This approach has
been very successful for the description of bimolecular and gas-surface reactions,
in particular, for energies well above the threshold. A great advantage of the QCT
approach is its numerical efficiency as only Newton’s equations of motion have to
be solved. This allows for the treatment of large systems and it is even possible to
perform QCT simulations while evaluating the potential energy and gradients on-
the-fly. However, QCT simulations suffer from the ZPE leakage problem and also
do not respect ZPE constraints of the products. Due to the classical nature of the
simulation, any ZPE put into a certain degree of freedom initially can artificially
leak out into other degrees of freedom, in particular the reaction coordinate, and
help to overcome the barrier. Additionally, in QCT the products can violate ZPE
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constraints by having less energy than the ZPE would require, which can lead to
many additional reactive trajectories. Both these problems can lead to an increased
reactivity in QCT compared to quantum simulation [181]. Furthermore, QCT sim-
ulations do not include tunneling effects, which can lead to underestimation of the
cross-section, in particular close to the threshold energy and in systems where pro-
tons are transferred as part of the reaction [115]. These problems can be manifest in
a single reaction when looking at the reactivity of different initial vibrational states.

Various methods have emerged that approximately include nuclear quantum
effects in classical-like simulations. Among the most used ones is the ring poly-
mer molecular dynamics (RPMD) approach [80, 87,128, 144]. RPMD is based on
the imaginary-time path-integral formalism that maps a quantum Boltzmann dis-
tribution onto a set of classical replicas in phase space joined by harmonic springs,
which is known as ring polymer. Dynamical quantities such as real-time correla-
tion functions, are obtained from classical dynamics in this extended ring polymer
phase space. RPMD is exact in the high-temperature, short-time and harmonic lim-
its. It incorporates ZPE effects and does not suffer from ZPE leakage [139,140,145].
Furthermore, it can incorporate some tunneling effects due to the extension of the
ring polymer that can stretch over a barrier and thus lower the effective barrier
height [182]. RPMD has been especially successful for the calculations of thermal
rate constants in the form of RPMD rate theory [83,84,128,144,182]. RPMD rate
theory is particularly efficient as it allows for the calculation of thermal rate constant
based on dynamics around the barrier region without the need to resolve the ini-
tial or final ro-vibrational states. Employing RPMD rate theory to various isotopo-
logues of the H+H, reaction, it was impressively shown that it incorporates ZPE
effects as well as tunneling [139,182]. The original RPMD formulation is restricted
to the simulation of equilibrium correlation functions. Recently, it was shown that
RPMD can be effectively used to calculate correlation functions and expectation
values associated with non-equilibrium initial conditions, e.g., for the case of an
initial momentum kick [95]. As the RPMD approach with equilibrium and non-
equilibrium initial conditions can be obtained from Matsubara dynamics [81] in
similar ways, both exhibit the same well-known properties, e.g., it being exact in
the high-temperature and classical limits, for dynamics in harmonic potentials and
conserving the average energy of the springs [95]. Further numerical tests showed

that one can expect similar accuracy of RPMD for calculations with equilibrium
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and non-equilibrium initial conditions [95]. Very recently, the non-equilibrium ini-
tial conditions have been used to obtain microcanonical rate constants from RPMD
simulations, [145, 148] however, initial state-selectivity could not be addressed in
these works.

In this manuscript we describe an efficient approach to combine QCT simula-
tions with the RPMD approach to obtain initial state-selective cross sections for
bimolecular and molecule-surface reactions, which include several non-classical ef-
fects. These advantages of the method are exemplified using isotopic variants of
the H+H, reaction. In particular, the Mu+H, reaction serves as a benchmark as it
highlights both the missing ZPE constraints as well as the missing tunneling con-
tributions in QCT simulations [115]. The RPMD approach respects ZPE constraints
and based on RPMD simulations of non-reactive polyatomic systems, we expect it
to not suffer from ZPE leakage. Furthermore, the method only slightly overesti-
mates the exact reactive cross section for Mu+H,(v = 1), where tunneling through
the v = 1 adiabatic barrier is present [115]. Section 3.2 describes the details of the
method. Section 3.3 presents results obtained for Mu/H/D+H,(v = 0, 1). Conclu-
sions and an outlook are given in Section 3.4.

3.2 Method

To perform state-selective scattering calculations within the RPMD approach we
follow the idea of quasiclassical trajectories (QCT). For illustrative purposes, let us
consider an atom+diatom reaction A+BC. The generalization to polyatomic reac-
tions is discussed further below. For the initialization of the diatomic molecule BC
we proceed in two steps, first we employ the harmonic approximation with w the
vibrational frequency of BC to sample the initial ring polymer configurations for
the vibrational normal mode of BC from the well-known Boltzmann distribution
of a harmonic system. Corresponding Cartesian coordinates for the beads are ob-
tained by inverse normal mode transformation. Sampling the normal mode guar-
antees that the molecule will not undergo spurious rotations or center of mass mo-
tion. These configurations represent a system containing the ZPE with additional
thermal energy. By employing the path integral approach we obtain correct initial
quantum fluctuations for the position and momentum normal mode of BC. To ob-
tain reliable scattering results, 3 = kBLT has to be chosen high enough in order to
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make the contribution of the additional thermal energy to the reaction dynamics
negligible. The choice of /3 is discussed below.

Vibrationally excited states are mimicked by modifying the initial position and
momentum of the ring polymer centroids, Q, P, to add the correct amount of vi-
brational energy since the initial sampling already contains the correct amount of
ZPE. This step is again inspired by the QCT approach. To this end, we add to the
mass scaled positions and momentum centroid of the ring polymer representing

the vibrational mode of BC the following quantities:

Kg = \/?COS(¢), Kp = V2vwsin(¢), (3.1)

where ¢ € [0, 27| is a random phase and v the vibrational quantum number. Follow-
ing this step, the mass scaled position and momentum fluctuations for each bead
k € [1,n] are

Bw w

ico’ch(—) + E, (P2, = —coth(%d) +vw. (3.2)

<Q72}>k B 2w 2 w 2

The initial ring polymer configurations of BC are then used in the scattering cal-
culations. To this end, we directly switch to the full PES. In order to avoid extra
fictitious vibrational energy introduced by the direct switching, we discard config-
urations with interatomic distances smaller than d.i,. dmin can be chosen based on
the initial distances of vibrationally excited BC in QCT simulations. Upon switch-
ing we have good stability of BC’s internal energy around its harmonic energy value
w(v + 3). This constitutes a reliable and consistent approximation in the case of a di-
atomic molecule with reasonable masses. This approach can be generalized to any
polyatomic molecule by employing the normal modes of the respective molecule.
Finally, the initial relative centroid velocities of BC are ’kicked’ towards A along the

X axis
Prel

Ve=V =—
B ¢ mp -+ mgc

(3.3)

where mp and m¢ are the masses of B and C, respectively, and the relative mo-
mentum set as Py = 2Bk, where E and o are the collision energy and the
reduced mass of the system, respectively, and & the unit vector along the x axis.
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The atom A is initialized far away from BC with the distance of the centroid of
A to the centroid of the center of mass of BC equal to

d(A,BC) = d(A, BC)qcr + Ri + max(R‘fB, R‘g), (3.4)

where d(A, BC)qcr is the distance that would be used for a standard QCT simula-
tion, and RY,i = A, B, C is the radius of gyration of the ring polymer for atom A, B
and C, respectively. The centroid of the ring polymer representing atom A is then
displaced away from the molecular axis of BC according to the impact parameter b
as in QCT. The initial centroid velocity of A is set to

v, = D (3.5)

ma

The initial non-centroid modes of the ring polymer for atom A are drawn from a
free ring polymer distribution along the direction of propagation «.

Integral cross sections for a given total energy Eiot = Feol + w(v + 3) are obtained
following the QCT approach as

Ngr(E
U(Etot) = 7Tb2 —R( tOt)

max N(Etot) ) (36)

where N (Ei) and Ng(FEi) are the number of total and reactive trajectories, respec-
tively, and bmax is chosen so that no reaction occurs for b > byax [66]. The number of
reactive trajectories is obtained by evaluating suitable distances criteria that distin-
guish the products.

(3 is set depending on the initially chosen collision energy (E.,) and the energy
added to BC by our vibrational excitation scheme (£, = wv) as

22t ~2) ]
=BT EY °7

where my, is the total mass of the system. The above choice of 5 corresponds to an
average of Jx and fgc. Here 55 and fpc are chosen such that the average relative
velocities of A and BC match the corresponding QCT values in the center of mass
reference frame. For higher collision energies, this can lead to low values of 3 re-
sulting in non-negligible effects due to the additional thermal energy. Therefore, we
set a lower cutoff value so that § = (_ if 5 < S_. A more detailed discussion of the
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choice and further tests of the robustness are beyond the scope of this manuscript
and will be part of a forthcoming publication. Possible generalizations of the ap-

proach are discussed at the end of the manuscript.

3.3 Results

As a benchmark system we choose the triatomic reaction of Mu/H/D + Hs(v=0,1).
In particular, the reaction of Mu+H, exemplifies the problems of QCT simulations.
For the reaction of Mu with Hj in its ground vibrational state, the ZPE constraints
problem is dominant and QCT simulations find a threshold of about 0.2 eV lower
than exact quantum dynamics simulations [115]. Yet, for the reaction of Mu with
vibrationally excited H,, QCT results find a threshold of about 0.15 eV higher than
exact quantum dynamics simulations due to the absence of any tunneling in the
QCT simulations [115]. We employ the BKMP2 PES [183], a modified Velocity-
Verlet integrator with a timestep of 0.02 fs, 40000 trajectories per collision energy,

p- =300 a.u. and a ratio of 5£H2 > 4, which guarantees convergence with the
number of beads. dp;, is set to 1.078 Bohr. The QCT distance between A and BC is
d(A, BC)gcr = 12 Bohr. Please note that the maximal impact parameter is typically
slightly higher in the RPMD simulations than in the QCT simulations. However, at
low collision energies close to the classical threshold it can be up to a factor of 1.5

higher than in the QCT simulations.
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FIGURE 3.1: Integral cross sections for the reaction of Mu/H/D +
Hy(v = 0) calculated using RPMD. Reference quantum dynamics re-
sults and QCT results are taken from Refs. [115] and [184].
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FIGURE 3.2: Integral cross sections for the reaction of Mu/H/D +
Hy(v = 1) calculated using RPMD. Reference quantum dynamics re-
sults and QCT results are taken from Refs. [115] and [184].
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First, we focus on the reactivity of Mu/H/D with Hj in its vibrational ground
state. Fig. 3.1 presents the integral cross section of the Mu/H/D + Hy(v=0) re-
actions. For the Mu+H, reaction (panel a), it can be seen that the proposed RPMD
scattering approach very well reproduces the exact QM calculations from Ref. [115].
The straight forward QCT calculations employing histogram binning (HB), i.e.,
treating every trajectory equally, however, show a much lower threshold for reac-
tivity compared to the QM calculations due to leakage of ZPE, which is well docu-
mented in literature [115]. Please note, that this problem can partly be circumvented
employing Gaussian binning (GB) [185,186] as seen in Fig. 3.1 a). GB diminishes the
contribution to the cross section for trajectories that violate the ZPE condition, i.e.,
where the resulting diatom has less internal energy than required from the quantum
mechanical ZPE. Yet, it can be seen that the GB results underestimate the cross sec-
tions away from the threshold, whereas the proposed approach closely reproduces
the exact results. In panels b) and c) of Fig. 3.1 it can be seen that RPMD can re-
produce the QM integral cross sections for the H+H;(v=0) and D+H,(v=0) reactions
very well. For these two cases the QCT simulations also perform well.

Second, we investigate the integral cross sections for the same reactions but em-
ploying vibrationally excited H,, v=1. The resulting cross sections are displayed in
Fig. 3.2. Again, the proposed RPMD scattering approach very well reproduces all
QM integral cross sections. For this case both QCT variants (HB, GB) cannot repro-
duce the exact QM results for the Mu+H, reaction and display a higher threshold
for reactivity. This is due to the missing tunneling contributions through the v =1
adiabatic barrier in the QCT calculations [115]. This problem is mitigated in the
RPMD simulations, as some quantum contributions are included due to the finite
extension of the ring polymers.
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FIGURE 3.3: Density of the ring polymer beads for the Mu+H(v = 1)

reaction for reactive trajectories at the time of barrier crossing at E., =

0.14 eV and for impact parameters b < 3 au. r refers to the Hy distance

and R to the distance of Mu to the center of mass of Hy. The PES for

the system is plotted for comparison with the remaining coordinates
relaxed.

The classically forbidden contributions in RPMD can be best seen by inspecting
plots of the ring polymer density during the barrier crossing given in Fig. 3.3. The
tigure displays the density of the beads for all reactive ring polymer trajectories for
a collision energy of 0.14 eV and impact parameters b < 3 au at about the time of
the barrier crossing. It can be clearly seen that the ring polymer "cuts the corner"
through a higher energy region to allow for reactivity. This region is never reached
by QCT trajectories due to insufficient energy in the system, yet in the extended ring
polymer phase space it is possible as the ring polymer is never completely located
in the higher energy region but some beads are always in the lower energy regions
on both sides of the barrier, which lowers the effective (i.e., averaged) energy of the

full ring polymer when corner cutting.
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3.4 Conclusion

In this manuscript, we focused on the description of triatomic systems and a first
approach to combine QCT with RPMD for state-selective scattering simulations
and many generalizations and extensions of the approach have to be left for fu-
ture work. First of all, the current approach to initiate the vibrational excitation is
described for triatomics, but is readily generalized to any polyatomic system in-
cluding gas-surface reactions. Even better inital energies are obtained in QCT by
employing the adiabatic switching procedure. This procedure cannot be general-
ized to the present approach right away and has to be left for further development.
Furthermore, the initialization of distinct rotational or ro-vibrational states and the
analysis of distinct ro-vibrational final states to obtain state-to-state cross sections
have to be left for future work. Lastly, also non-adiabatic effects can be important
in many bimolecular reactions [187,188]. Several approaches have been proposed
to include the treatment of non-adiabatic effects within RPMD [189-191]. It has to
be explored, which of these approaches performs best for reactive scattering prob-
lems. The presented approach for choosing 3 in the current context of microcanon-
ical RPMD and initial state-specificity is a first attempt, which can be reasonably
motivated and provides good results for integral cross sections. However, more de-
tailed investigation of its reliability and robustness as well as the investigation of
other approaches for choosing 3 should be pursued. To this end, one can, for exam-
ple, learn from the attempt to tune 3 for the computation of microcanonical rates
for the one-dimensional Eckart model potential [148]. While RPMD rate theory is
the preferred, much more efficient and direct way to obtain thermal rate constants,
we think that due to good agreement with the exact quantum simulations, one can
expect to also obtain reasonable thermal rate constants from calculations following
our approach. However, as we have to introduce several additional steps compared
to standard RPMD rate theory (e.g., non-equilibrium initial conditions), the results
will most likely not match perfectly.

In conclusion, we have presented an efficient way to obtain initial state-selective
cross-sections for bimolecular gas-phase and gas-surface reactions. The proposed
approach combines the ideas of quasiclassical trajectories with the ring polymer
molecular dynamics method. We showed that this combination is possible and
can alleviate several problems intrinsic to the QCT approach, i.e., the problem of
ZPE constraints and the neglect of tunneling contributions, which was discussed
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employing the prototypical Mu/H/D+H;(v=0,1) reactions. The new approach is
easily implemented, numerically efficient and significantly improves the accuracy

of QCT simulations.
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Chapter 4

State-selective cross sections from ring

polymer molecular dynamics

This chapter is centered on the following publication of which I am the first author,
and has been included verbatim:

"State-selective cross sections from ring polymer molecular dynamics", Marjollet,
A., Welsch, R., Int ] Quantum Chem. 121:e26447 (2021) [192].

It is reproduced with permission of the International Journal of Quantum Chem-
istry for the purpose of this thesis. My contributions include the investigation and
theoretical work, programming the simulation tools, data analysis and writing the

article.

This chapter presents the application of our developped NE-RPMD method to tri-
atomic reactions and provides an in-depth analysis of its applicability and robust-
ness for a wider range of collision energies and more reactions. The ansatz for
3 is also refined as to be better adapted for high collision energies. The stability
of the excited vibrational state is analyzed and compared with the exact quantum
value for the BMPK2 PES. To further explore its applicability, the method is ap-
plied for the computation of initial state-resolved integral cross sections for the F,
Cl+H,(v = 0, 1) reactions. The theoretical part behind the initialization is presented
in detail. This work constitutes the starting point from which NE-RPMD can be ex-
tended to more complex and intricate systems. In this chapter, the reduced Planck

constant % is set to 1.



58 Chapter 4

4.1 Introduction

The detailed study and understanding of reaction processes is a central challenge
of chemical physics and theoretical chemistry. Chemisorption of a molecule onto
a surface or bimolecular reactions in the gas phase are two important classes of
reactions studied. Their detailed understanding is of relevance in many areas,
e.g., atmospheric and interstellar chemistry, combustion and catalysis [2, 8, 68,150-
152,193-196]. The most detailed results, initial state-selected and fully quantum
state resolved reaction probabilities and cross sections, can be computed from full-
dimensional quantum dynamics simulations for reactions involving only few atoms.
The biggest system treated today is the H+CH, — Hy+CHj reaction [48, 49, 160,
161,163, 164]. To this end, the multi-configurational time-dependent Hartree ap-
proach [172,175-177,179,197] was employed for the wavepacket propagation and
reaction probabilities were obtained using the quantum transition state concept
[165-171,198]. However, these simulations are numerically very expensive and take
up many months of simulation time for each reaction. They also require fitted or
interpolated potential energy surfaces (PES) that can be evaluated efficiently and
dedicated curvilinear coordinate systems with complicated kinetic energy opera-
tors [38,47,60].

To avoid the high numerical cost of rigorous, full-dimensional quantum scat-
tering simulations, many reactive scattering calculations employ the quasiclassical
trajectory (QCT) approach [64-67,70,71]. QCT treats all nuclei classically evolving
on accurate PES or using gradients from on-the-fly ab initio calculations [180]. Ini-
tial conditions are chosen to mimic the quantum state under investigation. This is
done by adding the correct amount of zero-point energy (ZPE) and energy for ro-
vibrational excitations to the system. The QCT approach has been employed suc-
cessfully to study many bimolecular and gas-surface reactions in detail. Reactions
with many degrees of freedom, even including surface motion, as well as reaction
with several heavy atoms can be investigated and understood by employing QCT
simulations [71,105,116,199,200]. For example, effects such as the depression of
reactivity at high collision energies were studied in detail [69]. The most accurate
results are obtained for energies well above the threshold as tunneling is often not
important for these cases. Due to the purely classical dynamics involved, the QCT
approach is numerically very efficient and large systems can be treated. Yet, due
to the classical nature of the QCT simulations, quantum effects such as ZPE effects
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and tunneling are not systematically taken into account. Please note, that there exist
many advanced procedures for QCT which can remedy those effects [75-77]. How-
ever, QCT simulations can be inaccurate for particular cases where quantum effects
become important. For these cases, the inaccuracies can often be traced back to the
following three points. First, the classical nature of the simulations allows any zero-
point energy put into a certain degree of freedom initially to artificially leak out
into any other degree of freedom. If the energy leaks into the reaction coordinate
it can increase the reactivity in the QCT calculations. In certain cases this may lead
to an increase of the reactivity compared to rigorous quantum calculations [72,73].
Second, classical simulations do not respect ZPE constraints for the products which
can allow forbidden product outcomes and can lead to an overestimation of the re-
activity. Third, the QCT simulations do not include tunneling effects. This can lead
to an underestimation of the cross-sections, particularly when the reaction includes
a proton transfer and in the threshold region. Different problems can be manifest
in a single reaction when looking at the reactivity of different initial vibrational
states [201].

The approximate inclusion of nuclear quantum effects (NQE) like ZPE and tun-
neling into classical-like dynamics simulations has been a very active field of re-
search. Various efficient methods along this way have emerged. One of the widely
used approaches is the ring polymer molecular dynamics (RPMD) approach [80,
83-88]. In RPMD, an initial quantum Boltzmann distribution is represented by
an ensemble of discrete representations of the imaginary-time path integral, the
so-called ring polymer. Each ring polymer consists of classical replicas (termed
beads) of the system joined by harmonic springs. Real-time correlation functions
are then obtained from classical dynamics of these ring polymers, i.e., classical
dynamics in an extended ring polymer phase space. RPMD has several appeal-
ing features. It is exact in the short-time, classical and high-temperature limits
[80, 202]. Exact correlation functions can also be obtained for harmonic poten-
tials. ZPE effects are incorporated through the harmonic springs connecting the
beads and RPMD therefore respects ZPE constraints and does not suffer from ZPE
leakage [139,140, 145]. Also tunneling effects are incorporated due to the finite ex-
tension of the ring polymer, which can stretch over a barrier and therefore lower
its effective height [83, 84,135, 136, 143]. Originally, RPMD was formulated for
the calculation of real-time correlation functions associated with equilibrium ini-
tial conditions. This allowed the efficient calculation of thermal rate constants,
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[83,84,88,135-138, 143, 203-206] diffusion coefficients, [85,86,89,90] and, to some
extent, vibrational spectra [91-94]. Recently, an approach to obtain quantities as-
sociated with different non-equilibrium initial conditions, e.g., a momentum kick
or a vertical excitation, within the RPMD framework was proposed [95]. It was
shown that RPMD can be obtained from the more general Matsubara dynamics
framework [81,82]. Despite its success, RPMD also suffers from several drawbacks.
Due to the classical nature of the dynamics simulations, it cannot describe real-time
coherences. Furthermore, when calculating vibrational spectra it suffers from the
spurious-mode effect [91-93].

Very recently, the non-equilibrium initial conditions have been used to obtain
microcanonical rate constants from RPMD simulations, however, initial state se-
lectivity could not be addressed in these works [145,148]. We have proposed an
efficient approach that combines the RPMD approach with QCT simulations to ob-
tain initial state-selective cross sections for bimolecular reactions [149]. Initial state-
selective cross sections for the Mu/H/D+H;(»=0,1) reactions were calculated close
to the threshold energy. It was shown that the approach approximately incorporates
ZPE constraints and includes some tunneling contributions. In this manuscript we
explore the approach in more detail. In particular, we test the robustness of our
approach with respect to the choice of the ring polymer parameters (n, 3) and the vi-
brational excitation scheme. Integral cross-sections for the five X+H,, X=Mu,H,D,ECl
reactions are studied for Hj in its ground state as well as vibrationally excited state

and for a wide range of collision energies.

4.2 Theory

4.2.1 Quasiclassical trajectory method

QCT has been widely reviewed and thus we will only give a brief overview of the
approach here [65,68,196]. We focus on general triatomic systems A + BC(v, j) and
mostly follow Ref. [64]. The molecule BC is initially in a ro-vibrational state with
vibrational and rotational quantum numbers v and j, respectively. Quasiclassical
initial positions and momenta mimicking state (v, j) are obtained as follows: the
center of mass of BC is set at the origin of the coordinate system. The intramolecular
distance = |r|, where r is the vector between B and C, is set to either of the classical

turning-point values 7. or 7_ corresponding to the energy of the ro-vibrational state,
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E, ;. The total internal molecular momentum P = ppc(ve — vg), where ppc is the
reduced mass of BC, is set so that that P? = j(j+1)/r3 and P-r = 0. BC is arbitrarily
oriented along r x k where k is the unit vector along the x-axis. A vibrational
phase is added by propagating BC for a random fraction of its vibrational period
and finally BC is randomly oriented. The procedure described above is restricted
to diatomic molecules. For polyatomic molecules one can initialize the vibrational
state via normal mode sampling [117,207]. Initial position and momenta of each

mass-weighted normal mode are chosen as

Qi =1/ QV;—.'— ! cos(¢i), P =+/(2v; + 1)w; sin(¢;), (4.1)

where ; is the quantum vibrational number corresponding to the ith mode and

¢; € [0,27] a random phase. One can then adiabatically switch the system to the
tull potential for better vibrational state accuracy [117]. Cartesian coordinates are
then obtained by inverse normal mode transformation.

The atom A is initially placed at a fixed distance from the center of mass of BC.

The distance is chosen such that there is no interaction between A and BC. The

2
max

impact parameter b is chosen so that b?/b2  is uniformly sampled in [0, 1], where
bmax is the maximum impact parameter so that no reactions occur for any b > byax.
To initiate the reaction the relative momentum between A and BC is set as P,y =
V2uFEqk where Eo and pu are the collision energy and the reduced mass of the
system, respectively. The system is then propagated solving Newton’s equations of
motion.

Integral cross sections (ICSs) for a given total energy E are obtained as

NR(Eot)

Fiot) = w2 — 4.2
O_( tt) Wbmax N(Etot) ) ( )

where N and Ny are the number of total and reactive trajectories respectively [64].
The number of reactive trajectories is obtained by evaluating suitable distances cri-
teria that distinguish the products.
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4.2.2 Ring polymer molecular dynamics

RPMD is based on the ring polymer extended phase space used to represent imaginary-
time path integrals. For a quantum mechanical system the canonical partition func-
tion Z at inverse temperature § = 1/kg1T can be computed as

Z =tr [e‘ﬁﬁ} = dge Pt P9 — iy Ly (4.3)

n—oo

dp

n—0o0

with n the number of replicas in the ring polymer, 5, = §/n and the ring polymer
Hamiltonian HX' reads

N n n
m; n
H;'(q Z < T 2BQ(Q’“+1 - qi-“)Q) +3 Vigh,....dh), ¢ =aq}.
i=1 k=1 v k=1
(4.4)

where N is the number of atoms, ¢ and p! the position and momentum vectors of
the kth bead for the ith atom and V' the molecular potential interaction [78]. The
Boltzmann distribution in the ring polymer phase space can be effectively sampled
using molecular dynamics.
The quantum mechanical Kubo-transformed equilibrium real-time correlation func-
tion 5

Cap(t) = 5LZ/0 tr [e’\Hfle(ﬁ’\)gemtEeim dA, (4.5)

with A and B arbitrary operators, is approximated within RPMD as

CEI;( )= hm _/dQO/dpoe Bntly" (90,20 A (qO’ po)B (qt’ pt) (4.6)

with (gq,, p,) propagated with HX’ and

1 n
-1
where A(q%, ..., q%, pt,...,p%) is the classical function corresponding to A evalu-

ated at the kth bead coordinates. RPMD is exact in the short time, high temperature
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and harmonic oscillator limits. Additionally, it has been shown that RPMD can be
derived from Matsubara dynamics [81,82].

Recently, it has been shown that RPMD can be used to approximate non-equilibrium
correlation functions and expectation values [95], e.g. for cases with an initial mo-
mentum impulse or "kick". The non-equilibrium expectation value

A 1 NPy oA A
(A(t)) = Ztr (eﬁHOeZHItAeZHlt), (4.8)

with

is approximated as

n—o0

(A®) = lim - [ day [ dpge 1074, (g, ), (4.10)

with (g,, p,) propagated with AT}

4.3 Methodology

4.3.1 Initial state-selected scattering within RPMD
Initialization of BC

The initialization of BC mimicking the initial quantum state is done in two steps.
Please note, that for the initialization we employ the harmonic approximation for
the PES of isolated BC

o(Q) = %wQQz, (4.11)

where w and @ are the harmonic frequency and corresponding mass-weighted nor-
mal mode coordinate of BC. We will discuss the approach for a diatomic molecule
here. The generalization to polyatomic molecules is discussed further below.

In the first step, initial ring polymer configurations for the mass-weighted normal
mode are obtained by sampling the well-known thermal distribution for a harmonic

potential. Cartesian coordinates for the beads are obtained by inverse normal mode
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transformation. Sampling the normal mode guarantees that the molecule will not
undergo spurious rotations or center of mass motion and that it will have the correct
vibrational zero-point energy (ZPE). Yet due to sampling the initial Boltzmann dis-
tribution BC will have some additional thermal energy contributions. The thermal
contributions will be minimized by choosing a low initial temperature, i.e., high 3
value, for the RPMD simulations. The detailed choice of 5 will be discussed later
in Sec. 4.3.1. By employing the path integral approach we obtain correct mass-
weighted initial quantum fluctuations for the position ) and momentum P. For
each bead k € [1,n], we obtain

<Q2>k — %coth (%U) , (P2>k = gcoth <67w> , (4.12)

In the second step, to mimic a vibrationally excited state, we modify the initial posi-
tion and momentum of the ring polymers’ centroids to add the correct amount of vi-
brational energy. This step is inspired by the QCT approach described in Sec. 4.2.1.
Please note that the initial sampling already contains the correct amount of ZPE and
we only need to add additional vibrational energy. In this step we employ mass-
weighted normal modes (of the system) and ring polymer normal modes: Q*, P,
k € [0,n—1]. To the position and momentum centroids (k = 0) we add the following

quantities:
Kq =4/ 2w—y cos(¢), Kp=+V2vwsin(¢), (4.13)

with ¢ € [0,27] a random phase. The resulting effect can be analyzed employing

the primitive path integral energy estimator &, which reads

(&) = _8ln(Zn)

_1Nn ‘pﬂ2 1 ”2k k+1)2
~aey B (5) e

1

(4.14)

where N = 2 for the case of the diatomic molecule BC. Since we employ a har-
monic potential for the initialization, we can diagonalize the estimator employing

mass-weighted normal modes (of the system) and ring polymer normal modes. The
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estimator then reads

)_I

n—

b= 3" (5B + 5%~ @), (4.15)

=
Il

0

Adding the two quantities given in Eq. (4.13) to the path integral centroids, the path
integral energy estimation reads

n—1

go= - 3" (5P + broVikp) + S — D)@+ oviKe)l).  (416)
k=0

Separating the centroids contributions we obtain

,_.

n—

_l 1~k212_2~k2 i”o 2i2~0 2
6= 5 2 (R0 + 3 = D@D + 5 (B + ViR + (@R + VKo,
(4.17)
and when averaging over the initial distribution we obtain
- ~ 1
(&) = £+ (B Kp + W QRKQ)) + 5 (K + W KD), (4.18)
where the second term on the right hand side vanishes since Q% = (P% = o.
Therefore the averaged value of the energy estimator is
1
The mass-weighted position and momentum fluctuations for each bead k£ € [1,n]
are . 8 5
9 w 9 w w
= — — P = — _ .
Q) 5 coth( ) ) +w’ (P2) 2coth( 5 ) + vw, (4.20)

The initial ring polymer positions and velocities of BC are then used in the scat-
tering calculations. To this end, one can directly switch to the full PES, which can
depend on the anharmonicity of the full PES, or one can employ an adiabatic switch-
ing procedure to obtain more accurate initial configurations [117]. However for the
direct switching, in some cases the intramolecular distance of BC will be too small at
the time of the switch due to the anharmonicity of the full PES, therefore providing
non-negligible extra vibrational energy which can influence the reactivity at very

low collision energies. We discard those trajectories where the centroid distance for
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BC falls below d%;!, corresponding to the lower initial length of excited BC in QCT
at the time of the switch.This ad hoc discarding procedure is performed to limit the
inaccuracies from the direct switching approximation, but is not an intrinsic limita-
tion of the overall approach as discussed later. The center of mass motion of BC is
set following the QCT approach via a "kick" to the velocity centroids

_ _ P
VB = VC = - rel ’
mp + mc

(4.21)
which induces a center of mass motion without perturbing the internal dynamics of
BC. The centroid of the center of mass of BC is initially set at the origin of the coor-
dinate system. For the initialization of a polyatomic molecule the generalization is
straightforward. We sample in the same way each normal mode independently, set
its centroid center of mass at rest and its angular momentum to zero using a stan-
dard iterative modification to the velocities routinely employed in QCT simulations
VV-QxQ,
to each ring polymer centroid of the molecule to compute the angular velocity €2
with @ and V the centroid position and centroid velocity vector. Direct switching
is then performed. Employing adiabatic switching for polyatomic systems will be

the focus of a forthcoming study:.

Initialization of A

A is initialized far away from the position of BC with its non-centroid ring polymer
normal modes sampled from the free ring polymer distribution along the direction
of the initial QCT momentum kick «. Then the initial centroid position of A is
set similar as in QCT with an extra increment to the initial distance between the
reactants due the finite spatial extension of the ring polymers. The initial distance
between the centroid of A and the centroid of the center of mass of BC d(A,BC) is
set to

d(A,BC) = d(A,BC)qcr + R} + max (R, RY), (4.22)

where d(A, BC)qcr is the distance choice for QCT simulations and R}, R, R¢ are
the radiuses of gyration for the ring polymer of A, B and C, respectively. Lastly
the momentum centroid is then "kicked" following the QCT approach. The initial

centroid velocity is set to

V= D (4.23)

ma
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Reactions and cross sections

After initializing both reaction partners we propagate the system solving the clas-
sical equations of motions in the extended ring polymer phase space. Considering
the distances between the centroids of the ring polymers representing the different
atoms the trajectories are distinguished between reactive and non-reactive. Cross
sections are then obtained following the QCT approach (see Eq. (4.2)) as

vj(Erot) = Wb;ax%,

where N and Ny are the number of total and reactive trajectories, respectively, and
Eiot = Ecol + Ereac and Eie,c is the total internal energy of the reactants. In this work,
we focus on X+H, reactions and vibrational excitation and always set the angular
momentum of Hy, j, to zero and employ the harmonic approximation. Therefore
we have Fieoe = Ey, = wp,(v + 0.5). This constitutes a reliable and consistent
approximation in the case of a diatomic molecule as we shall see later with the

results for classical-like systems such as D + Hy(v = 0, 1).

Choice of

We touched on the importance of 3 for the current approach above. Here, we moti-
vate the choice of 3 for the present approach. The decision is guided by four main
considerations.

First, since the choice of 3 will influence the additional thermal energy in the initial-
ization of the molecule, it should therefore be high enough to limit those thermal
contributions. As the system is expected to behave classically when the collision
energy becomes large, 3 should reach a lower limit, 5_. Second, the dynamics of
the ring polymer will be influenced by the choice of 3 through the spring constants
and therefore 3 should be set such that the energy and momentum of each reactant
reflect the temperature associated with f.

Third, 8 should be inversely proportional to the additional energy we give to the
system in the initialization process through kicking the centroids, which comprise
initiating the collision process and adding vibrational excitation.

Fourth, when v = 0 we assume that (3 lies in the interval [34, Spc| for mpe > my
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(and inversely otherwise) with

Mot/ MBC Bac = amtot/ ma

5A = ) )
Ecol Ecol

(4.24)
where fy is obtained via equating |V x| with a typical thermal speed corresponding
to different values of o (a = % for the mean of the magnitude, o = % for the root
mean square and o = 1 for the most probable magnitude) at inverse temperature
Bx for a mass mx.

To obtain a common § for all the ring polymers, we choose 3 as an average of
both values,

b= %(BA + Bec), (4.25)

following a symmetry argument since in the center of mass frame we have |ps| =

IpBC|-
So far our choice of 5 for a given initial collision energy and vibrational state reads

o mtot/,LL .
2 (EchVw) ’ lf 5 > ﬁ_' (4.26)
B_, otherwise,

8=

3
)9
and f_ = 300) [149]. Inducing a lower cut-off for J is necessary for high collision

1}. This is the ansatz we used in our previous work (with v = 2

where o € {2
energies.

In our previous work 3_ was chosen to a fixed value so that the extra thermal
energy contributions remained within 1% of the ZPE of H,. This can result in an
abrupt cut-off. Nevertheless we can avoid this abrupt cut-off by imposing the ther-
mal contribution to the internal energy of the H, vibrational energy to be within
a few percent of the total energy instead of H,’s vibrational energy. This way
will monotonically decrease with the total energy instead of meeting a fixed cut-off
value. Doing so improves slightly the results for the H/D+Hy(rv = 1;j = 0) ICSs
around the threshold energy values. We limit the thermal contributions below p%
of the total energy and thus:

1 w — pEtot

p- = —log

4.27
w pEtot ( )

where Eiot = Eqo + En, and Ey, is the total internal energy of Hs. In this work, we
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focus on vibrational excitation and always set the angular momentum of H, to zero
and therefore have Fy, = wy, (v + 0.5).

This choice can lead to high values of 3 at very low collision energies for v = 0,
which is only desired for the cases where there is a large increase of ZPE from reac-
tants to products, i.e., for cases where there is a large decrease in "non-ZPE energy"
for a given total energy, e.g., for reactions like Mu+Hj,. In these cases one requires
a large value of [ to describe the product side of the reaction well. However, for
cases where the ZPE does not change much or where it decreases, the values of /3
employed are too large. We therefore correct our ansatz by only keeping the terms
2+ %—‘f from % for such systems when m, > mpc and v = 0. This modification is a
tirst attempt at obtaining a reliable and systematic choice of 5 for our approach and
will require further study and possibly adjustments. For vibrationally excited sys-
tems the change of ZPE is typically small compared to the vibrational energy added

to the system and thus we do not employ this modification. All things considered

we have:
B if B < p_ else
6 . 2-1-1:;[;0 +% if < 6 = Bi ! B ) Bi e
=0 = §T IIrmag =~ mpc, vzl = o Miot/1
94 MBC ) 2 (BEctvw)*
— if my > mpe, e
C

(4.28)
The /3 profiles for the systems studies in this manuscript are shown in Fig. 4.1. The
range of collision energies employed in this work is between 0.08 eV and 1.55 eV
and the centroid kick (see Eq. (4.13) with v = 1) vibrational excitation energy of H,
is 0.55 eV.

4.4 System details

We use our method to compute initial state-resolved integral cross sections (ICSs)
for the following triatomic systems: D+Hy(v = 0,1), H+Hy(v = 0,1), Mu+Hy (v =
0,1),Cl+Hy(r =0,1) and F + Hy(v = 0, 1), with the mass of Mu mass being 0.113
my. In all cases the angular momentum of Hj is set to zero and /3 is chosen accord-
ing to Eq. (4.28) (equivalently Eq. (4.26) for the systems Mu/H/D+H,) with v = 2.
The employed harmonic frequency of H, (wp,) is 4407 cm™'. For H, (BKMP2 PES)
the difference between the exact energies for the vibrational ground and excited
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states and their harmonic counterparts are around 20 cm™! and 250 cm ™!, respec-
tively. Thus only a very small error is introduced for the ground state while for the
excited state this error might play a small role around the threshold for the systems
Cl/F+H;(v = 1) which will be discussed in the results part. Unless explicitly speci-
tied otherwise, the number of beads n employed throughout this work is expressed
as an integer multiple of the dimensionless quantity [fwn, |, where [z| gives the
least integer greater or equal to x. [Sw] is often used in PIMD or RPMD simulations
as an indicator of the minimum value for n such that the approximation in Eq. (4.3)
can be justified. We set p = 0.01 for S_ so that the thermal contributions never ex-
ceed 1% of the total energy. For our simulations, the lowest value of 3 is reached
for v = 0 at Byt = 1.4 eV where 8 = f_ = 181. An upper limit for 5, (... = 1500,
is introduced for computational convenience. As for d;}, the lower intermolecular
distance corresponding to a vibrationally excited Hy, it is set to 1.078 bohr.

To study the D/H/Mu+Hj; systems we employ the BKMP2 PES [208]. The minimal
initial distance between the reactants is 10 bohr. The maximal impact parameter
in the QCT-RPMD simulations is typically about a factor of 1.3 for Mu+H, and 1.1
for D/H+H,; larger than in the respective QCT simulations at the lowest collision
energies when there is still reactivity in both cases. For each collision energy the
integral cross sections are computed via running 40000 trajectories per collision en-
ergy using a modified Velocity-Verlet integrator with a time step of 0.02 fs. To study
the systems Cl + H; and F + Hy; we employ the Capecchi-Werner (CW) PES and the
Li-Werner-Alexander-Lique (LWAL) PES, respectively [209,210]. As for the maxi-
mal impact parameters, in the QCT-RPMD simulations it is noticeably higher than
QCT for Cl+Hy(v = 1) by a factor of 1.5 at most and typically a factor of 1.15 for
F+H,(v = 0). The highest difference is found for the reaction F+H;(v = 1) where
QCT-RPMD trajectories at E,) = 0.3 eV can react for impact parameters as high as 8
bohr corresponding to a factor of 3 compared to QCT. The initial distance between
the reactants is set to 10 and 12 bohr for Cl/F+H,, respectively. The same number
of trajectories are run per collision energy with the same integrator, this time with a
time step of 0.05 fs. In Fig. 4.1 we plot the profiles of our choice of 3 for each system

and vibrational state of H, over the total energy.
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FIGURE 4.1: 8 values for each reactive system treated.

4,5 Results

In this section, we will discuss the results of the proposed approach for five different
triatomic reactions: Mu/H/D+H,(v = 0, 1) and CI/F+Hs(v = 0, 1) . Yet, before we
go into the details of the specific reactions, we will investigate the robustness of
our vibrational excitation scheme, the choice of 5 as well as the convergence with
the number of beads. To this end, we employ the Mu+H, (v = 0, 1) reaction as a test

case, as this reaction shows the biggest difference between exact quantum dynamics
and QCT.

4.5.1 Convergence studies

First, let us consider the robustness of the proposed scheme to mimic the vibrational
states v = 0,1 of H,. To this end, we investigate the time-evolution of the primitive
internal energy estimator averaged over the ring polymer configurations, initialized
as described in the "Initialization of BC" subsection and then propagated on the full
PES. In this case, the second reactant is placed very far away from H, such that

there is no interaction during the full simulation. The primitive internal energy
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estimators for Hs reads

RP I o~ () mi g k2 BN k k
(E,"(g,p)) = <HZ (W - Q—ﬁ%(qi - q;) ) + EZV(qla---,qN)>,

1 = (4.29)

where (...) is an average over the initial conditions. Here, we use 50 000 different
initial conditions. We consider the primitive estimator regardless of the slow con-
vergence since both virial variations are not suited for the v = 1 initialization due to
the absence of suitable kinetic term to take into account the centroid stretch in Eq.
(4.15). The time evolution (EXF(q, p))(t) is shown in Fig. 4.2. For the ground state
v = 0 (blue and green lines) we observe almost stable average energy upon switch-
ing to the full PES at ¢ = 0. As for the excited state v = 1, yellow lines, we observe
a small dependence on 3. For § = 200, we find a stable average energy around the
harmonic value. For § = 300 we find small jumps to lower energies at ¢ = 0. This
difference is due to the coupling of the beads with the now much more energetic
centroids and the abrupt nature of the potential switch for which the direct use of
the same estimator before and after the instantaneous switch makes the evaluation
of the energy approximate.
We also observe a very small energy damping coming from the centroids of around
3cm! every 10 fs, which is too slow to interfere with the reaction process in the
time frame of our simulations, typically which is less than 250 fs. The damping
also indicates that the leakage of energy from the centroid to the beads due to the
anharmonicity of the potential is very small. Second, we study the influence of 3
on the calculated cross sections. In Fig. 4.3 a) we display the integral cross sections
for Mu+H,(v = 0) in the vicinity the exact threshold energy for a fixed value of
. For each 3 the ICS curve behaves quite differently which indicates, as expected,
the necessity to select 5 depending on the total energy of the system. The fact that
the ICS calculated with 8 = 200 does not coincide with the one from QCT-HB cal-
culations is a confirmation that some non-classical effects are still encompassed for
this case even at higher collision energies. As we higher 3 the ICS curves match the
quantum threshold better for Ei,; < 0.9 eV and then tend to underestimate more
and more the reactivity for higher total energy. This indicates that higher 3 values
capture better the low energy reactivity and inversely so. A similar test for the sys-
tem Mu + Hy(v = 1) is shown in Fig. 4.3 b). The same qualitative behavior of the
ICS with respect to /3 is observed.
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FIGURE 4.2: Energy estimators (ERY) for Hy(v = 0, 1) as a function of
time. Reference values for the harmonic regime and exact energy levels
of Hy(v = 0, 1) are indicated as solid and dashed lines, respectively.

0.5 0.7
a) b)
& pB=200 0.6; & B=200
0.4 @ pB=400 ® p=400
& B =600 ¢ B=700
< ¢ B=700 0.5 B =600
S —— QCT-HB PCCP 14,14596 42012) —— QCT-HB PCCP 14,14596 (2012)
£03— om PCCP 14,145%6 (2012) 0.4l — QM PCCP 14,14596 (2012)
] .
E 0.2 0.3
©
g 0.2 .
£
0.1
0.1 b
0.01 0.0
0.6 0.7 0.8 0.9 1.0 1.1 1.2 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

Total energy (eV)
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where [Buw,,,, | refers to the least integer i such that i > fuw,,,. The

corresponding numbers of beads used for 5 = 200, 400, 600, 700 are 16,
32,48 and 56, respectively.
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Third, we test the convergence of the scattering results with the number of beads

employed. Fig. 4.4 a) and 4.4 b) present cross sections computed with different
values of § (8 = 200,700 and /5 according to Eq. (4.26) with o = %) for different
numbers of beads. We observe graphical convergence with n > 3n, resulting in less
than 100 beads for all cases considered here (see Table 4.1). The biggest differences
of about 23% can be observed around the threshold at E.,; =~ 1.05 eV for v = 0 and

also around the threshold for the v = 1 case with a difference of around 20% at

Ecol = 0.2 eV. The presence of convergence with the number of beads shows that the

method is consistent throughout its different steps.
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FIGURE 4.4: a) Mu + Hy(v = 0;j = 0) and b) Mu + Ha(v = 1;5 = 0)
QCT-RPMD ICSs for several fixed values of 5 and 3 chosen according
to Eq. (4.26) with a = % with varying number of beads given in Table

4.1, n,

[5WH2—| :
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Ewi(eV)| B n =|n = || Et(eV)| B n =|n =
3[Bwh,| | 6[Bw, | 3[Bwh,| | 6]Bw, |
0.50 1509 | 90 182 1.05 441 26 54
0.55 1236 | 74 148 1.10 414 24 50
0.60 1047 | 64 126 1.15 390 |24 48
0.65 908 | 54 110 1.20 369 | 22 44
0.70 802 | 48 96 1.25 350 |22 42
0.75 718 | 44 86 1.30 333 | 20 40
0.80 650 | 40 78 1.35 318 | 20 38
0.85 593 | 36 72 1.40 304 18 36
0.90 546 | 32 66 1.45 291 18 36
0.95 506 | 30 60 1.50 279 | 16 34
1.0 471 28 56 1.55 268 16 32

TABLE 4.1: The values of 3 (in Hartree ') and the number of beads, n,

employed in the Mu+Hj(v=0,1) simulations. f3 is chosen according to

Eq. (4.26) and the number of beads is set relative to $ and the vibra-

tional frequency of Hj, wy, to allow for systematic convergence tests
(see Fig. 4.4 and Sec. 4.4).

4.5.2 D/H/Mu+H,

These systems were studied in our previous work which dealt with the ICSs for the
corresponding systems around their thresholds [149]. Here we recomputed the ICSs
with a different 3, i.e., with the previous smooth energy dependent cut-off instead
of the abrupt 5_ = 300 cut-off, as well as a wider range of collision energies. First
we focus on the reactivity of H/D with H, in its vibrational ground state. The ICSs
for the two reactions are shown in Fig. 4.5. For those systems f reaches its cut-off
values [_(Eio) around the thresholds, i.e. for total energies of 0.62 eV (threshold at
0.57 eV) and 0.55 eV (threshold at 0.58 eV) for H and D, respectively. As in our pre-
vious paper, the QCT-RPMD ICSs match closely with the quantum ICSs around the
threshold and we now observed the same match for high collision energies up to
1.4 eV. The almost classical behavior of the ICSs for all collision energies above the
threshold is consistent with /3 reaching its lower cut-off value close to the threshold.
However, we like to point out that the Gaussian binning approach, which typically
increases accuracy of QCT simulations (see Mu+H; below), decreases the accuracy
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here. QCT-RPMD on the other hand does not have a need for specifically designed
binning schemes. The good agreement at higher collision energies justifies the pro-
posed cut-off scheme for 3 at high collision energies.
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For the calculation of ICSs for H/D with H, in its vibrational excited state, we have
B = B for all collision energies considered, which is consistent with QCT-HB ICSs
and QM ICSs being very similar for those energies. The ICSs are shown in Fig. 4.6.
In our previous work, we studied this reaction up to a total energy of 1.1 eV and
observed good agreements with QM results. We now match for total energies up
to 1.4 eV. As in our previous work, we see that RPMD accurately reproduces the
threshold energy. Only a slight underestimation for the H+H,(v = 1) reaction is
found. The ICSs at higher collision energies are very close to the QM results. This
indicates that the proposed ring polymer vibrational excitation scheme for H,(v =
1) works acceptably well from the threshold energies to reasonably high energies.
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We switch our focus on the reactivity of Mu with Hy(v = 0,1). For v = 0, quan-
tum effects govern the reactivity for the full energy range considered here. For v=1
quantum and QCT results start coming close at Fi,x = 2.2 eV. We studied these
two reactions in our previous paper for total energies close to the threshold. In this
study we extend the energy range as to see how RPMD performs at approximat-
ing NQE for higher collision energies. The corresponding ICSs are displayed in
Fig. 4.7. For the reaction of H, in its ground state (Fig. 4.7 a)), we restate that the
QCT-RPMD scattering results very well reproduce the exact QM ICSs calculations
around the threshold. The QCT calculations using histogram binning (HB), i.e.,
treating every trajectory equally, show a much lower reactivity threshold compared
to the QM calculations due to the absence of ZPE constraints [115,181,211]. This
problem can be partly avoided making use of Gaussian binning (GB) as it can be
seen in Fig. 4.7 [186]. GB lowers the contributions to the reactivity for trajectories
which violate the ZPE constraint when considering their products’ classical ener-
gies, i.e., more precisely, for which the products’ energies are far from the quantum
vibrational energies. QCT with GB predicts well the threshold energy but underes-
timates the cross section away from the threshold and for higher energies it starts
to overestimate the ICSs. For higher collision energies away from the threshold we
note that the RPMD results tend to underestimate the exact ICS. This is mostly no-
ticeable above a total energy of 1.1 eV. In Fig. 4.7 b), we show the RPMD results
for the same reaction but with H, vibrationally excited, v=1. Both QCT variants
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(HB and GB) cannot reproduce the exact QM results and display a higher threshold
for reactivity due to the absence of quantum effects contributing to the reactivity,
i.e., tunneling through the vibrationally adiabatic barrier [115]. As mentioned in
our previous paper, QCT-RPMD finds a similar threshold for the reaction as the
QM results, but slightly overestimates the reactivity for Eix < 0.95 eV. Our RPMD
vibrational excitation approach slightly underestimates the QM scattering results
for higher collision energies but approximates tunneling contributions to some ex-
tent and describes the exact quantum ICSs better than the different QCT variants.
This shows that our model with RPMD approximates the tunneling contribution
through the v = 1 vibrationally adiabatic barrier well as the finite extension of
the ring polymer allows to stretch over the barrier and reduce the effective barrier
height. Only a slight increase in computational cost is required and less than 60
beads are needed for convergence.

In order to study how the spatial extension of Mu accounts for the ZPE effects
we ran the same simulations using two different values of 3 for each reactant, i.e,
B = 10 au for Mu (shrinking the gyration radius of Mu to around 0.1 bohr) and
S = 200,400 au for Hy(v = 0) and Hy(v = 1), respectively. A comparison of these
results with QCT-HB is shown in Fig. 4.8. For Hy(v = 0) the QCT-HB results are
recovered with only a slight under-estimation of the ICSs past Ei,; = 1.1 eV. This
emphasizes the role of the spatial extension of the Mu ring polymer to describe the
ZPE effects for the energy range considered. Comparison with the 3 = 200 QCT-
RPMD ICS curve from Fig. 4.4 shows that the sampling of ring polymer Hj at high
enough f3 to avoid thermal contributions to the energy is essential at low collision
energies. For Hy(r = 1) we observe that a "point-like" Mu decreases the reactivity,
but the RPMD results still show a lower threshold than the QCT results. The spatial
extension of Mu only partly accounts for the NQE important for this reaction.
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4.5.3 Cl+H,

We now apply our method to study the reactivity of Cl with H in its vibrational
ground and first excited state. This reaction involves vibrational non-adiabaticity
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and the atom A is now much more massive [184]. This is the first time that the vibra-
tional effects for Cl+H, are studied using RPMD. This makes it a good benchmark
system to further test the applicability and the robustness of our method. Electron-
ically non-adiabatic effects and spin-orbit couplings are not considered. The results
for the RPMD ICSs compared with QCT-HB and the quantum dynamics results are
displayed in Fig. 4.9. For Cl+H,(v = 0) we observe a good match with the QM
results for all collision energies considered which is expected since QCT-HB only
slightly underestimates the reactivity. Yet, we find a small improvement over the
QCT results for all energies considered.
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QCT-RPMD ICSs for n = 6] fwp, |-

As for Cl+H, (v = 1) which involves vibrational non-adiabaticity effects helping at
overcoming the barrier, we observe that RPMD predicts correctly the threshold,
contrary to QCT which, just as with Mu+H,(r = 1), overestimates the thresh-
old [184]. RPMD reproduces the threshold correctly and predicts well the exact
quantum ICSs for Ei,; < 0.95 eV, while QCT-HB underestimates the ICSs for all en-
ergies considered. In this regime, RPMD describes the contribution of vibrational
excitation to the reactivity correctly, while QCT seems to be to a certain extent vi-
brationally adiabatic [184]. This correct prediction of the threshold behavior by
our approach has to be partially tempered and put into perspective considering
the presence of the direct switching approximation which can potentially lead to a
slight spurious shift of the threshold predicted by RPMD. Nevertheless, the RPMD

results would remain an improvement over the QCT predictions. Between 0.95 eV
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and 1.10 eV for the total energy we observe that RPMD results start to underesti-
mate the QM ICSs and tends towards the QCT-HB results. For higher total energies
(> 1.1 eV) QCT-RPMD ICSs coincide with QCT ICSs which hints that with the high
masses involved here RPMD becomes more classical at higher collision energies
contrary to Mu+H, (v = 0, 1) where RPMD approximated the quantum effects very
well even at similarly high energies.

454 F+H,

We now test our method with the important and notoriously intricate F+Hy(v =
0,1) benchmark reactions. The F+H, system has a very low barrier, a bent transition
state geometry and is governed by quantum effects at low energies such as tunnel-
ing and resonances [212,213]. The ICSs increase very quickly with collision energy,
and the considerable shift in the threshold between F+Hy(v = 0) and F+Hy(v = 1)
indicates vibrational adiabaticity and a low vibrational enhancement. The resulting
ICSs are displayed in Fig. 4.10.
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FIGURE 4.10: a) F + Hy(v = 0;j = 0) and b) F + Hy(v = 1;j = 0)
QCT-RPMD ICSs for n = 6 fwp, | and Smaez = 1500.

Overall agreement between QCT-RPMD and QM simulations is less good for this
case. For v = 0 and for total energies below 0.65 eV QCT-RPMD predicts slightly
higher reactivity than QCT but underestimates the reactivity from QM simulations.
It was partially expected since RPMD is not suited to describe quantum dynami-
cal resonance effects which are important in this system and known to enhance the
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tunneling at very low collision energies for this reaction [210,212]. For the v =1
case, QCT-RPMD also underestimates the reactivity, but does a bit better than QCT-
HB around the threshold capturing partially the enhancing quantum effects near
the threshold. It was shown, contrary to the v = 0 case, that no reactive resonance
occurs in the F+Hy(v = 1,j = 0) reaction with this work instead indicating that
the reaction mainly occurs via direct abstraction with a very strong dependence on
the nature of the quantum Hj-vibration [27]. Thus, it is a bit surprising that the
QCT-RPMD approach underestimates the reactivity considerably. However, as the
F+H,(v = 1) reaction is nearly barrierless it proceeds with minimal collision energy
(e.g., Ecol = 0.003 eV at the threshold). This low collision energy leads to signifi-
cantly increased propagation time and, therefore, the ring polymer H, vibrational
energy undergoes a damping which can lead to a loss of about 5% (0.04 eV) of its
energy. This loss is non-negligible for this reaction as the reactivity increases dras-
tically a low collision energies. The presence of the possible spurious shift of total
energy due to the direct switching approximation also needs to be acknowledged
when considering the threshold predictions of our approach. Those considerations
constitute a limit of our current approach for very low collision energies and can
contribute to QCT-RPMD underestimating the reactivity in this particular case. Ex-
tensions of the present approach to reduce those effects need to be investigated.

4.5.5 Discussion

So far our method describes well the exact quantum ICSs around the threshold
and medium collision energies for the reactive systems Cl/D/H/Mu+H,(v = 0, 1).
However, RPMD tends to underestimate the reactivity at higher collision energies.
We saw above in the previous convergence studies that ICSs around the threshold
are well reproduced by RPMD for low values of 3 and that RPMD ICSs tend to
differ more with different 5 values at higher collision energies. Our ansatz for 3 is
a first attempt at inferring the right physical choice for 5 but, as we mentioned for
the ICSs, seems to overestimate its values at high collision energies. Taking oo = 1
on the other hand renders better the ICSs at higher collision energies but fails to
reproduce the right shape of the threshold. We are currently working on a more
systematic choice of 3 in the framework of our method. To our best knowledge, the
only attempt at tuning / as a function of the energy was done with a single ring

polymer to compute microcanonical rate for the Eckart barrier with RPMD [148].



Section 4.5 83

Combining QCT and RPMD to describe initial-state selective quantities for triatomic
reactive systems was the first natural step. The method presented here can be
straightforwardly generalized to polyatomic molecule reactants and can also be
directly applied to the study of gas-surface reactions. The initialization of well-
defined vibrational initial states using an adiabatic switching procedure adapted
for RPMD is currently under investigation. In addition, the initialization of dis-
tinct rotational and ro-vibrational initial states on the basis of the previous step
and the latest QCT techniques adapted to RPMD will improve the applicability of
the approach. In future work, the resolution of final ro-vibrational states needs to
be worked out. To this end, one can also employ adapted successful QCT proce-
dures [66,214]. This will allow for the subsequent computation of the state-to-state

differential cross sections.

4.5.6 Conclusion

In this manuscript, we discussed the robustness, convergence and accuracy of a
very recently proposed method to approximately calculate quantum initial state-
selected reactive cross sections which combines QCT and RPMD. For testing we
focused on prototypical triatomic systems X+H,, X=Mu, H, D, Cl, F, with H in its
vibrational ground- or first-excited state and considering collision energies of up to
1.5 eV. We find that the proposed excitation scheme is robust and reasonably accu-
rate and that even for very light reaction partners, such as Muonium, less than 100
ring polymer beads are required for convergence.

Good agreement for the Mu/H/D + H,(v=0,1) reactions with exact quantum scat-
tering calculations is found over the whole collision energy range. In particular, the
case of Mu+H;,(v=0) shows that the proposed approach correctly describes the ZPE
constraints posed by the MuH product and the case of Mu+H;(v=1) shows that
the new approach can approximately describe tunneling through a vibrationally
non-adiabatic barrier. The latter feature is also confirmed by the good results for
the Cl+H;(v=1) reaction at lower collision energies. However, larger deviations are
found at higher collision energies, where the results coincide with cross sections
obtained from QCT.

QCT-RPMD for the F+H, reaction slightly improves over QCT simulations, but can-
not fully reproduce exact QM simulations. For low energies, this difference can par-
tially be due to reactive resonance effects in this reaction, but overall there are also
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some shortcomings in our vibrational excitation scheme at low collision energies,
which needs improvement. Ideas to improve the current approach in this regard
are under investigation. The method can be generalized to polyatomic systems,
is numerically efficient, easily implemented and shows encouraging improvement
over QCT simulations. Several extensions to include electronically non-adiabatic
effects and the resolution of final states are planned for future work.
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Chapter 5

Initial state-selected scattering for the
reactions H+CH,/CHD3; and F+CHD4
employing ring polymer molecular

dynamics

This chapter is centered on the following publication of which I am the first author,
and has been included verbatim:

"Initial state-selected scattering for the reactions H+CH,/CHD; and F+CHD; em-
ploying ring polymer molecular dynamics", Marjollet, A., Inhester, L., Welsch, R, J.
Chem. Phys. 156, 044101 (2022) [119].

It is reproduced with the permission of AIP Publishing for the purpose of this the-
sis. My contributions include the investigation and theoretical work, programming

the simulation tools, data analysis and writing the article.

In this chapter, the robustness and applicability of the approach is assessed for reac-
tions involving more atoms. In particular, the ground state reactions H+CH,/CHDs
are considered as strong ZPE leakage occurs when simulated using QCT. NE-RPMD
ICS are computed to assert the capicity of NE-RPMD at preventing the leakage.
The reliability of the vibrational excitation scheme is evaluated for the C-H stretch
excitation in CHDj;. The vibrational excitation model is further benchmarked by
computing the ICS for the reaction F/H+CHDj is the presence of the C-H stretch
excitation. The method is also applied to compute ICS for the more intricate ground
state F+CHDj; reaction. We analyze the NE-RPMD results and put them into per-

spective with the current state of the method.
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5.1 Introduction

One of the challenges of physical chemistry is to study in detail the dynamics of
chemical reactions. The detailed understanding of the underlying mechanisms is
important for many domains of research such as atmospheric [3-5] and interstellar
chemistry [6-8], combustion [2] and catalysis [9]. A key step in this direction of
study is to develop accurate reactive scattering methods in order to qualitatively
and quantitatively assess the influence of the reactants” rovibrational state on the
reaction dynamics [68,195]. In this context, nuclear quantum effects (NQEs) can
have great impact on the reaction dynamics [25-27,118,188,215].

Unfortunately, initial state-selected full-dimensional quantum scattering simu-
lations that incorporate NQEs are only computationally feasible for systems up to
6 atoms with a vanishing angular momentum, although significant development
in this direction has been achieved [47,48,60,163,169-171,216,217]. Consequently,
there is a demand to develop computationally efficient simulation methods which
take NQEs into account, at least approximately.

One possibility is to employ quantum simulations with constraints on the dy-
namics [47,50-52, 54-56, 58-63, 216, 218] to reduce the number of degrees of free-
dom and make the simulations practical. Those methods are called reduced dimen-
sional quantum dynamics simulations (RDQD). However, dynamical constraints
and their potential artifacts have to be elaborated for each system specifically and
it is rather challenging to assess their accuracy in describing the dynamics. This
renders the RDQD approach non-systematic in contrast to full-dimensional simu-
lations. Moreover, employing effective RDQD models to simulate systems such as
the title reactions are nonetheless very expensive and can take many months to be
completed [38,47].

Another very popular alternative is the so-called quasi classical trajectory method
(QCT) [64-68]. It circumvents the very high computational cost of quantum sim-
ulations by rendering the simulations classical, thus neglecting crucial aspects of
NQEs in the dynamics. The atoms are propagated with the classical equations of
motion on a potential energy surface (PES) employing initial conditions that mimic
quantum rotational-vibrational states. This approach has successfully revealed in-

sights into microscopic details of chemical reaction dynamics [69,71,105,116,199].
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QCT trajectories are often easier to interpret compared to RDQD wave packet cal-
culations. One of the main shortcomings of the QCT approach is the ZPE leak-
age problem. It originates from the fact that in classical dynamics the zero-point
energy (ZPE) contained in the vibrational modes of the molecules typically flows
from high to low frequency modes during the simulation. Consequently, parts of
the vibrational energy can flow into the reaction coordinates, leading to an artifi-
cial enhancement of the reactivity [72,73,211]. Moreover, the formation of prod-
ucts having less than their quantum ZPE value can occur, violating the ZPE con-
straints [77,114,115,118,181,211]. In addition, tunneling effects are also absent in
classical simulations. The neglect of these NQEs can lead to several inaccuracies
when computing energy thresholds, reaction probabilities, and integral cross sec-
tions.

A relatively recent approach that combines the advantage of being computa-
tionally efficient and at the same time takes NQEs into account is ring polymer
molecular dynamics (RPMD) [78, 80,81,83-88,95]. It has been shown that RPMD is
able to accurately compute thermal rate constants for many reactions [88,138,139,
203,204]. More recently, RPMD was also successfully applied to the calculations of
Kubo-transformed correlation functions for non-equilibrium initial conditions (NE-
RPMD) [95]. RPMD and NE-RPMD have been theoretically justified as approxima-
tions of Matsubara dynamics [81,82,95]. Various results for applications of RPMD
beyond the thermal equilibrium ensemble followed [145, 146, 148]. In our earlier
works [149,192], two of us developed a variant of NE-RPMD and applied it to re-
active collisions of various atoms with the hydrogen molecule H,. Here, we extend
the application of this method to more complex reactions.

To test newly developed methods, the computation of integral cross section
(ICS) constitutes a reliable and precise indicator for the accuracy of the simulations.
The ICS can be measured via challenging experiments and its variations with dif-
ferent isotopes and initial rovibrational states reveal important details about the
reaction dynamics [69,219-221].

The elementary reaction H + CHy; — H, + CHj together with its isotopic vari-
ants play an important role in combustion chemistry and in interstellar chemistry,
and has been the subject of extensive experimental [221-223] and theoretical stud-
ies [60,61,63,163,203,216,216-218,224-230]. This reaction involves a small number
of electrons and potential energy surfaces (PES) with quantitative level of accu-
racy were constructed via extensive high level ab initio calculations [226-229]. QCT
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simulations typically overestimate the reactivity for these reactions as classical dy-
namics ignore ZPE constraints and allow the ZPE to flow to the reaction coordi-
nates [77,118]. Also, the presence of tunneling effects due to the light H atoms are
not described in QCT. Various RDQD methods applied to tackle six-atom systems
have been developed to study the reaction [54-56,216]. In particular, it was shown
that restricting the non-reacting CHs group under C;, symmetry yields a quantita-
tive level of accuracy for the computation of ICS [51,52]. Also, the strong reactivity
enhancing effects of the vibrational excitation of the C-H stretch in CH, and CHD;
have been studied theoretically [47, 55,162,163, 218,228,231-235] and experimen-
tally [221,223]. Therefore, H + CH, and its isotopic variants constitute valuable
benchmark hexatomic reactions for NE-RPMD.

Another extensively studied reaction is F + CHD; — FH + CD; [58,71, 188,
199, 236-245]. Czaké and Bowman performed an in-depth QCT investigation of
the reaction employing a PES that does not incorporate spin-orbit (5O) coupling
effects [241,244]. Later, they realised that SO effects are relevant at low collision en-
ergies and presented an analytical spin-orbit-corrected PES [246]. For this system,
the most accurate PES (PWEM-SO) to date has been developed by Palma, Wester-
mann, Eisfeld, and Manthe by considering the spin-orbit coupling in the reactant
channel [244]. This intricate reaction has a very low barrier (~ 0.8 kcal/mol) and its
dynamics involve reactive resonances and are strongly affected by stereodynamics
forces at low collision energies [58, 244]. Morever, mode specificity of the reaction
dynamics sparked controversies between theoretical models and experimental re-
sults regarding the effects of the C-H excited stretch on the reactivity [238,240,247].
More precisely, recent experimental studies [240, 247] of the F + CHD; reaction
found that the excitation of the C-H vibration hinders the overall reactivity while
both recent QCT [199,244] and RDQD [58] simulations predict an overall enhance-
ment of the reactivity. These discrepancies are still unexplained and several spec-
ulations exist that ascribe them to shortcomings of the experiments [58,248] or the
theoretical models [58, 59, 244] (QCT, RDQD or the PES). NE-RPMD is capable of
approximating NQEs with full-dimensional calculations, thus having the advan-
tages of both QCT and RDQD to some extent. As such, comparing its ICS results
with those of QCT and RDQD for this reaction constitutes a good test to explore
the capabilities of NE-RPMD. Therefore, this reaction is well suited to benchmark
methods capable of approximating NQEs in full-dimensional calculations such as
NE-RPMD.
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In this paper we compare the accuracy of ICS computed with the NE-RPMD,
QCT, and RDQD methods for the aforementioned reactions. We compute initial
state-resolved ICS for the reactive collisions H + CH,, H + CHD3, and F + CHD3;. We
analyze the impact of NQEs for the reactivity and report to what degree they are in-
corporated in the respective simulations. We show that the NE-RPMD approach is
a promising and computationally efficient method to obtain state-resolved insights
for reactive collisions involving complex polyatomic molecules.

The structure of the paper is as follows: In section 5.2, we briefly outline the
ideas behind QCT and RPMD and give references for further details. Section 5.3 ex-
plains in detail the NE-RPMD approach to obtain the presented results. Section 5.4
consists of an analysis of the obtained ICS results for the title reactions with a dis-
cussion on the NQEs described by the approach. Finally, we summarize and give
our conclusions in Sec. 5.5.

5.2 Theory

In this section, we discuss the QCT method, RPMD (alongside NE-RPMD) and the
NE-RPMD approach we developed, which includes aspects of QCT used in the
context of NE-RPMD. Both the QCT and RPMD methods have been widely re-
viewed [64, 65, 68,78, 80, 81, 95], so we will only discuss the main aspects related
to the NE-RPMD approach. Details of NE-RPMD applied to triatomic systems are
given in Ref. [192], thus we only summarize the essential steps here.

521 QCT

In QCT, the atoms are modelled as classical point-like masses. A standard normal-
mode sampling [207] with semiclassical quantization conditions for each vibra-
tional mode is performed to mimic a given initial vibrational state for the reactants.
Specifically, positions and momenta are initialized such that the energy in each vi-
brational mode of the molecule is equal to the corresponding energy in the quan-
tum state employing the harmonic approximation of the potential energy surface.
The molecular vibrations are then propagated either by directly (or adiabatically)
switching to the full (i.e. non-harmonic) potential. The rotational motion of each

reactant is added using an iterative procedure as to limit spurious ro-vibrational
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couplings [66,214]. The relative motion between the reactants is then set accord-
ing to a fixed collision energy F, in the center-of-mass frame. The atoms are then
propagated using Newton’s equations of motion. This approach is very efficient,
systematic, and enables feasible simulations for systems with many atoms.

There exist various effective techniques to incorporate quantum effects in the
dynamics, such as discarding trajectories violating ZPE constraints or partially pre-
venting ZPE leakage. However, these techniques remain intrinsically ad-hoc [75,77,
114,249].

5.2.2 RPMD

The RPMD approach originally emerged from the isomorphism bridging the equi-
librium quantum partition function Z to the classical partition function of fictitious
ring polymers Z,, [78]. Each ring polymer consists of n classical replicas (in the fol-
lowing called beads) joined by harmonic springs. The corresponding ring polymer

Hamiltonian H, is derived from the expression of Z,, as

S (@) 1 L
Hu(pa) =) > ++§miwn<qi —q )
=1 k=1

n (5.1)
+y V(g o, al)
k=1

= H)(p,q) + Vu(q),

where N is the number of atoms, qgk) and pgk) are the position and momentum vec-
tors of the kth bead of the ith atom (with q§1> = q("+l)), V is the molecular potential,

)

m; is the ith atomic mass that is used for each bead of the corresponding atom,
and w, = 7 is the common frequency of each harmonic springs joining neighboring
beads [78]. For equilibrium conditions, the ring polymer phase space is sampled
according to the ring polymer Boltzmann distribution associated to H,, at tempera-
ture 3. This is done either via thermostatted propagation in imaginary time or by
employing Monte Carlo techniques [121]. The properly equilibrated ring polymers

then allow for computation of exact thermal quantum observables. For example,
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the thermal averaged energy can be computed by

0ln (Z,)
oo 9

N n (k) 2 9 5.2
= lim <l Z [M _ lmzwi (qgk) _ qgk71)> ] (5.2)
n 4

where (.) refers to averaging over the canonical ensemble and &, is referred as the
primitive energy estimator for a finite number of beads. Note the different sign in
front of the harmonic spring terms of the ring polymer in Eq. (5.2) in contrast to the
ring polymer Hamiltonian in Eq. (5.1).

ZPE effects and tunneling effects are incorporated through the ring polymer in-
ternal structure, which is parametrized by § and n [83,139]. This incorporation of
tunneling effects can be understood from the fact that parts of the ring polymer
may enter classically forbidden regions of the potential energy surface. The tunnel-
ing effects description in RPMD is further demonstrated in Ref. [135] for a model
system.

In 2014, RPMD was derived as an approximation to Matsubara dynamics in
the context of time-dependent Kubo-transformed correlation functions [81,82]. A
bit later in 2016, encouraging results for applications of RPMD to non-equilibrium
time-dependent correlation functions, for the specific NE cases of a momentum im-
pulse (or "kick") and a sudden mild shift of potential, were successfully carried
out. Non-equilibrium initial conditions employed in RPMD (NE-RPMD) can also
be derived from Matsubara dynamics for the case of a sudden change of poten-
tial or an initial centroid momentum "kick" [95]. The extent and the conditions
for which RPMD or NE-RPMD can describe real-time dynamics is not known pre-
cisely [81,82,95]. Here we employ non-equilibrium initial conditions by "kicking"
the reactants centroid momenta to initialize the collision. This approach is also em-
ployed for preparing initial conditions with specific vibrational mode excitation, as
described in the following section in detail.
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5.3 NE-RPMD method

5.3.1 Reactant initialization

The two reactants in the following are labelled as "T" for the target molecule (i.e.
CH,4 or CHD:3) and "X" for the colliding attacker atom (H or F). The entire system
consists of N atoms, and the target possesses 3(N — 1) degrees of freedom. Since T is
a non-linear molecule, its number of internal vibrational modes is N,, = 3(N —1)—6.
The PES of the target molecule alone placed far away from Xis referred to as Vi and
is a scalar function of the molecule’s N, internal coordinates. The initial momentum
and position of each bead are first sampled according to the harmonic approxima-
tion of Vy. To that end, the target bead coordinates are transformed into the N,
mass-weighted vibrational mode coordinates of the total potential (including the
molecular potential and the ring polymer harmonic springs potential). The result-
ing Hamiltonian of the ring polymer for the target molecule " reads

Ny, n—1

ERGETESE]). e

i=1 k=0

where wmt(i k) = 4w?sin®(2%) + Q2 with vibrational frequencies £ = (Qy,...,Qx,)
and Q! (k) P € [1, N,] are the ring polymer mass-weighted position and momen-

tum Vlbratlonal mode coordinates

3(N-1) n
O = 32 Wiy Y Cur (g = oj). 5.4)
j=1 a=1
and
3(N-1) L
PM _ Z )is Z Cot P, (5.5)

j=1
where C and L~ are the transformation matrices from the bead representation to
the ring polymer (internal) normal mode representation and the vibrational mode
coordinates, respectively. The coefficients of the matrix C' are chosen such that the
bead coordinates corresponding to the k = () index are computed with the coeffi-

cient C,g = i.e., the bead coordinates Q and momenta ]52-(0) are proportional to

\/7/
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the normal mode coordinate averaged over all beads (centroid normal mode coor-
dinate) [121]. The N, internal vibrational modes are sampled with the ring polymer
Boltzmann distribution corresponding to H". Provided that n is large enough
compared to S max;(§2;) and that 5 is not too low (this point is discussed in detail
later in the manuscript), the ring polymer ensemble is equivalent to the quantum
partition function for the vibrational ground state of T. To model the excited state
for the ith vibrational mode associated to vibrational quantum number v;, we add
the right amount of vibrational energy by kicking the ring polymer and shifting the
coordinates along a specific vibrational mode coordinate, analogously to the pro-

cedure in QCT. To that end, we shift the centroid bead coordinates and momenta
by
Q'™ = Q"+ VK Peos(9). (5.6)
P« P 4 /K[ sin(¢), (5.7)
where K ZQ =,/ QQL, KP = \/20;Q; and ¢, is a phase randomly chosen in [0, 27].
The resulting thermal averaged energy of T becomes
Ny

Br = Z <Qi(u,- n %) n 5Eth>, (5.8)

where

N N
~ [ B, Q, ~ 4
0Bm = E [?Coth( 5 > — 7} = g PR (5.9)

i=1 i=1

is an extra contribution to the internal energy. The contribution ¢ Ey, stems from the
Boltzmann sampling of the beads with finite values for 3. The sampling include
effectively the ZPE and the additional Boltzmann-weighted excited energies which
have to be distinguished with the excited energy from the shift in Eq. (5.6) and
Eq. (56.7). These additional energies can be kept arbitrarily low by setting 5 high
enough. The ring polymer attacker associated with atom X is initially placed far
away from T and its internal ring polymer normal modes are sampled according to
the free ring polymer Boltzmann distribution.
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5.3.2 Collision initialization

The average momentum of the ring polymer atom X is

n

o
Px=— P (5.10)

n
k=1

and the center of mass momentum of the ring polymer molecule T is

N-—1 1 n
pr=>_ > » (5.11)
k=1

=1 =

To prepare the initial conditions for the collision, we shift the bead’s momenta
of X and T such that

Px = — D7 (5-12)

and the relative collision momentum is

-Prel =\ QMX,TECOh (513)

MxMr_ s the reduced mass of the system and Mx and M are the total

Mx~+Mr
mass of X and T, respectively. Moreover, the position of the two reaction partners

where ux v =

are shifted orthogonal to the axis connecting X and T by a given impact parameter b.
The entire system is then propagated employing a modified velocity Verlet integra-
tion scheme [121]. No thermostat is attached to the system during the propagation.
The origin of time ¢ = 0 coincides in the simulations with the momentum "kick" of
the reactants at collision initialization.

5.3.3 Choice of

The spatial extension and dynamics of the ring polymers strongly depend on the
spring constant w, = %. While j is naturally defined as the reciprocal tempera-
ture for thermal equilibrium applications of RPMD, the status of /5 in the present
application of NE-RPMD is unclear [95]. Previously, we introduced an ansatz for
S in which 8 was chosen based on the average of the reciprocal kinetic energies of

the two reactants [192]. We also tweaked the ansatz so that 5 would be higher in
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the presence of strong ZPE constraints for the products and, furthermore, we intro-
duced the lower limit 3_ to keep the thermal energy contributions ¢ £y}, in Eq. (5.8)
low.

Here, we employ a somewhat simpler approach and set /5 equal to the previ-
ously employed lower limit 5_. More specifically, 5 is given by constraining ¢ Ey, to
be 5% of the total energy of the system, i.e., § solves the equation

Ny

§;

=1

N,
~ (1
Ecol + Z (5 + I/i> 91] . (514)
=1

Consequently, 5 only depends on the polyatomic reactants’ initial vibrational en-
ergy and the collision energy E. . The values for 3 for the different target molecules
used here are shown in Fig. 5.1. As can be seen, larger collision energies result in
lower values for . At larger collision energies, the resulting ring polymer becomes
therefore spatially more confined. This behavior reflects the expected tendency that
in general, for higher collision energies, tunneling effects become relatively less im-
portant. We note that other NQEs such as ZPE constraints can still be strongly
present in the dynamics for certain reactions also at high collision energies and that
these effects are still captured with NE-RPMD also at low 3 [26,192].

600
— CHDs3
550 === CHD3(v1=1)
— CHgy4
500
450
35
8
Q.
400
350
300
2307579 05 1.0 15 2.0

Collision energy (eV)

FIGURE 5.1: f3 values for each reactive system treated.
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5.3.4 Calculation of integral cross sections

In our simulations, we propagate the system up to a sufficiently long time after the
collision such that the reaction products can be distinguished. N trajectories are
simulated with different impact parameters b that has been sampled such that the
squared impact parameter b? is uniformly distributed between 0 and by,, where
bmax is the maximal value beyond which no reaction occurs.

From the set of QCT trajectories, we calculate the integral cross section as

0(Eeoi;vr) = b2, hm lim — Z IR (5.15)

N =00 “t—00” N

where the vector v refers to the initial vibrational quantum numbers of T, and I
is a function taking as argument the positions ¢/ (¢) of the atoms of the trajectory
i at time ¢ and returns 1 if a reaction occurred or 0 otherwise [64]. It is important
to note that QCT trajectories can lead to reaction products with internal energies
below their ZPE. Here, the QCT ICS results are computed by considering all prod-
uct outcomes after collision regardless of any ZPE violations. This approach is the
so-called histogram binning (HB) method. The comparison to the QCT (HB) calcu-
lations indicates the extent to which NQEs impact the dynamics. This way, we are
able to pinpoint how accurate the NQEs are described in NE-RPMD. From now on,
QCT with the histogram binning approach will be referred to simply as QCT.
Analogously, for the NE-RPMD simulations, the ICS are computed as follows

oremD (Eeol; V1) = ﬂbfnax lim lim —ZIR (5.16)

N—o0 “t—00” N

where gV)(t) are the centroid coordinates for trajectory i at time . Notably, in QCT
all trajectories have a fixed energy as defined by vy and E, whereas in NE-RPMD,
the initial sampling of the ring polymers lead to energy estimator values that follow
a distribution with finite width [250]. To compute ICS with NE-RPMD, we proceed
by associating the outcome of each trajectory (reaction or not) to the vibrational state
associated to the v;’s in Eq. (5.8), which define the sampling of the ring polymer’s
internal vibrational modes.
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5.4 Results

5.4.1 System details and computational details

The spin-orbit coupled adiabatic PWEM-SO [244] PES and the adiabatic PIP-NN
[230] PES are employed for the reactions F + CHD; and H + CH,/CHD:;, respec-
tively. All the simulations are carried out with no initial rotational motion for the
target molecule. The vibrational ground state is referred with the notation v = 0
which indicates that all vibrational quantum numbers are zero. The vibrational
mode corresponding to the symmetric C-H excited stretch in CHD3 has the vibra-
tional quantum number 1; and a harmonic frequency of {; = 3147 cm ™.
NE-RPMD simulation were run with n = 3[Swmax| Where [Bwmax | refers to the
smallest integer ¢ such that i > Bwmax and wmax is the highest harmonic frequency of
the polyatomic reactant. This is the number of beads beyond which we observe little
change for the ICS. The time step employed for the QCT and NE-RPMD simulations
is 0.02 fs. The initial distances between the reactants’ center of mass are 12 a, for
H + CH4/CHD; and 14 a, for F + CHD;. The maximal impact parameters found
for the NE-RPMD simulations are in most cases higher than in QCT. For the H +
CH,/CHD; ground state reactions bmax = 6 ao is employed, while we have byax = 8
ap in the presence of the excited C-H stretch in CHDj;. For the reaction F + CHD;,
bmax s set to 10 ay. For each collision energy and reactant vibrational state, 20,000
trajectories were used to compute the ICS. To benchmark our NE-RPMD approach,
we compare the NE-RPMD ICS results with our QCT results and with RDQD results
taken from the literature. For the reactions H + CH,/CHD; we compare our results
with RDQD ICS taken from Refs. [229, 234, 235] and, for the reaction F + CHD;
from Ref. [58]. The PIP-NN PES used in our calculations for the H + CH,/CHD;
reactions is an improved and optimized neural-network PES over the ZFWCZ PES
employed in Refs. [229,234]. The ZFWCZ and PIP-NN PESs lead to very similar
ICS results for the corresponding ground-state and symmetric C-H excited stretch
reactions [230,235]. The employed PWEM-SO PES to compute the QCT and NE-
RPMD results for the reaction F + CHDj; is the same one used as in Ref. [58].
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5.4.2 Stability of the centroid vibrational C-H stretch excitation

model

ZPE constraints, which in particular forbid the leakage of the zero-point vibrational
energy to other degrees of freedom, are described in RPMD intrinsically via the
internal ring polymer structure. Conversely, a potential issue when performing
initial excitation of a vibrational mode on a ring polymer polyatomic reactant via
"kicking" certain coordinates is the possible leakage of the excitation energy to other
modes on the time period it takes for the reactants to collide. This leakage occurs
because we are not involving the ring polymer spring terms while performing the
excitation, rather only the centroids [see Eq. (5.6)]. It is therefore crucial to monitor
how the energy in the excited vibrational mode evolves as a function of time which
requires a mapping of phase space coordinates to vibrational quantum states. For
QCT, the most straightforward assignment of quantum states is the determination
of the corresponding harmonic action numbers. This is done by employing a semi-
classical quantization of the vibrational modes in the harmonic regime as described
in Ref. [249]. Here, we employ an analogous procedure for the ring polymers to
assess the stability of the C-H stretch vibrational excitation.

We perform initial sampling corresponding to the C-H stretch excited state as
explained in subsection 5.3.1 employing the harmonic approximation of the poten-
tial. The ring polymer is then propagated employing the full potential. Computing
harmonic action numbers for each vibrational mode along the trajectory requires
evaluating the displacements of the molecule in terms of vibrational mode coordi-
nates. For this task, it is desirable to align the molecule at each time step of the
simulation via translations and rotations as closely as possible to an equilibrium
reference geometry. Following the procedure described in Ref. [251], we shift the
molecular coordinates to the center-of-mass frame and employ a rotation defined
by the rotation matrix C, such that ||, m;Cq;* x (q; — € ;") is minimized, with
q; referring to the ring polymer centroid position of the ith atom and q; refer-
ring to the position of the ith atom in the equilibrium reference geometry of the
molecule [252]. The ring-polymer phase space coordinates are then determined as

vibrational mode coordinates and momenta as described in Eq. (5.4) and Eq. (5.5).
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The energy for the ith vibrational mode is computed as

n—1
1 Tr=m12 (92 —w?) [ ~mm12
B = <lim - (— [P}’“)] + M[QE’“] )> (5.17)
n—oo N 2 2
k=0
and a real harmonic action number for each mode is obtained as
F. 1
P 1
=9 T3 (5.18)

In order to quantify the extent to which the excitation energy leaks to other
modes we have run 100 trajectories for the ring polymer CHDj3 (v, = 1) molecule,
and we have computed the harmonic action number for the C-H stretch mode
at each time step employing the procedure described above. The harmonic ac-
tion number is shown in Fig. 5.2 as function of time. For this simulation, we used
f = 450 as this value is representative of the 5 values employed for the collision
simulations in this work. We compare these results with the harmonic action num-
bers obtained from QCT simulations. An initial spike at ¢ = 0 can be seen for both,
QCT and NE-RPMD. This spike can be attributed to the anharmonicities in the full
potential, which are not considered in the preparation of the initial vibrational state.
We observe that for times ¢ < 250 fs after excitation, in which most of the reactions
studied here occur, more than 80 percents of the initial energy remains in the ini-
tially excited mode and only for longer times the harmonic action number becomes
lower than 0.8. For times ¢ < 400 fs, the harmonic action numbers obtained from the
QCT simulations tend to decay a bit faster than the ones obtained from NE-RPMD.
Overall, the harmonic action numbers obtained from the QCT and the NE-RPMD
evolve qualitatively similarly. We conclude that the simulations maintain the vibra-
tionally excited state for sufficiently long times. A propagation time of ¢ > 250 fs
becomes potentially problematic for reactions at very low collision energies. As we
will discuss later, leakage of excitation energy becomes a problem for the studied
F+CHDjs(v; = 1) reaction, where very low collision energies are sufficient to trigger

a reaction.
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FIGURE 5.2: Average harmonic action numbers for the normal modes

of CHD3 (1 = 1) as a function of integration time for QCT and NE-

RPMD. The time ¢t = 0 corresponds to the direct switch from the har-

monic to the full potential with which the molecule is then propagated.

The employed time step is 0.01 fs with 8 = 450 and the number of

beads is 3[ Swmax | Where wmax refers to the highest harmonic frequency
of CHD; (3147 cm™1).

54.3 H + CH; and H + CHDj in their ground state (v = 0)

In the following we discuss the collisions H + CH, and H + CHDj3, where the target
molecules are in their ro-vibrational ground states. Figure 5.3 shows the calculated
QCT and NE-RPMD ICS as a function of the collision energy for the reactions H +
CH; — H, + CHj; [Fig. 5.3 a)] and H + CHD; — H, + CD; [Fig. 5.3 b)]. We compare
this data with ICS calculated via RDQD from Ref. [234]. These results are based on
the reduced-dimensional model introduced by Palma and Clary [51] alongside the
centrifugal sudden approximation propagated using an established wave packet
method to study atom-methane reactions [234]. It has been demonstrated that the
frozen coordinates in this reduced-dimensional model act largely as spectators in
the reaction dynamics. The model has also been validated by demonstrating that
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ICS for the ground state reaction calculated via QCT are unaffected by the dimen-
sional reduction for a wide range of collision energies and different isotopic vari-
ants [118]. The ICS results from these RDQD simulations are therefore considered
to be quantitatively accurate.

1.6
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FIGURE 5.3: a) ICS for the reaction H + CHy (v = 0) — Hs + CHj3 and

b) H+ CHD;3(v = 0) — Hs + CD3 calculated with NE-RPMD (circles),

QCT (green solid line) and RDQD (black solid line). RDQD ICS are
taken from Refs. [229,234].
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For both reactions we observe that RDQD predicts almost the same reaction
thresholds at around 0.4 eV, below which the reactivity is zero. This is because both
reactions have the same ZPE corrected barrier and tunneling effects provide for
both reactions the same contributions [234]. The QCT thresholds for both reactions
are predicted at around 0.3 eV, which is substantially lower than in RDQD. The
lower threshold for QCT is explained by the presence of ZPE leakage that allows
vibrational energy to leak into the reaction coordinates and enables the reaction to
happen below the barrier height [118]. On a side note, the absence of tunneling
contributions in QCT, which increases the threshold, is overcompensated by the
ZPE leakage.

Remarkably, NE-RPMD predicts a reaction threshold approximately around 0.4
eV for H + CH, and approximately 0.45 eV for H + CHD; in good agreement
with RDQD. These results indicate that the ZPE leakage is well mitigated with NE-
RPMD. As the collision energy increases, the QCT ICS for the H + CH, — H, + CHj;
reaction increases more rapidly and also to larger values than the RDQD ICS. A sim-
ilar observation can be seen for H + CHD3; — H, + CD3. Overall, the RDQD cross
sections are much smaller compared to QCT, only reaching 0.3 a2 at most compared
to 1.3 a3 for QCT for H + CH, at 1 eV, while for H + CHD; at 1 eV QCT predicts an
ICS of 0.16 a3 and 0.075 aj for RDQD. This suggests that NQEs are relevant for the
whole range of collision energies considered above the reaction threshold. More
specifically, we attribute this discrepancy to violation of ZPE constraints in QCT
that leads to an overestimation of the reactivity. The ICS calculated from NE-RPMD
are much closer to those calculated from RDQD. For collision energies above the
threshold, NE-RPMD predicts somewhat larger ICS for H + CH; and marginally
lower ICS for H + CHD; compared to RDQD.

We conclude that NE-RPMD covers the major part of the ZPE effects relevant
for the two considered reactions. These encouraging results are reminiscent of the

previous successes of the method for triatomic systems [149,192].
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FIGURE 5.4: H+ CHD3(v; = 1;j = 0) — Hs + CD3 NE-RPMD ICSs
for n = 3[Swmax |- RDQD ICS are taken from Ref. [234].

We now turn to the ICS for the reaction H+CHD; — H; +CD; in the presence of the
C-H excited stretch. Figure 5.4 shows a comparison of ICS as a function of collision
energy calculated from NE-RPMD, QCT, and RDQD. As for the vibrational ground-
state, the RDQD ICS results are taken from Ref. [234]. Accordingly, they involve the
same reduced dimensional model as for the ground state reactions.

From the comparison with the ground state ICS (Fig. 5.3 b)), one can see that
all simulations consistently indicate that in the presence of the C-H stretch the
reactivity is increased substantially which is consistent with earlier simulations
[163,232-234]. The QCT simulations indicate a reaction threshold of E.,; ~ 0.2
eV. In contrast to the ground state reactions discussed in Fig. 5.3, where the reaction
threshold for QCT was lower than for RDQD, the reaction threshold for QCT is here
somewhat larger than the reaction threshold for RDQD of approximately 0.12 eV.
This suggests that the excitation energy deposited into the C-H vibrational stretch
mode cannot transfer as efficiently to the reaction coordinate in QCT as compared
to RDQD. Also, QCT simulations do not account for any tunneling contributions
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to the reactivity that may be responsible for the lowered reaction threshold. Inter-
estingly, NE-RPMD predicts a reaction threshold of approximately 0.08 eV which is
slightly lower than the one for RDQD. For collision energies up to 0.6 eV we observe
that NE-RPMD predicts ICS in good agreement with RDQD while QCT underesti-
mate slightly the reactivity. For collision energies from 0.6 eV to 1.4 eV, both QCT
and NE-RPMD ICS remain slightly above the RDQD ICS and NE-RPMD results
tend to merge with the QCT predictions at these higher collision energies.

In summary, we find that the NE-RPMD ICS follow the same qualitative trend as
RDQD for low collision energies and becomes close to QCT ICS at high collision en-
ergies. Compared to the ground state reaction, all simulation methods consistently
indicate a considerable reactivity enhancement (around 10 fold) caused by the C-H
stretch (v, = 1).

5.4.5 F+CHD3(V1 =0, 1)

Here we compare the ICS for the reactions F + CHD;(r; = 0,1) — FH + CD;3 com-
puted with QCT, RDQD, and NE-RPMD. The RDQD results were taken from Ref.
[58] and are based on the aforementioned Palma-Clary reduced-dimensionality model
(see Sec. 5.4.3). In addition to the dimensional reductions, a J-shifting approxima-
tion [50] was used to compute ICS in Ref. [34]. Because these approximations may
impact the resulting ICS, the comparison between RDQD and QCT and between
RDQD and NE-RPMD for this reaction should be taken with reservations. We stress
that the results for QCT and NE-RPMD have been computed using the same PES as
for the RDQD results from Ref. [58].

There have been many discussions about the intriguing discrepancies between
experimental results and the QCT and RDQD predictions regarding the influence of
the C-H stretch excitation on the dynamics of the F + CHD; reaction [58,71,238,244].
It is not yet clear what the cause of these discrepancies is and whether the exper-
iments or the simulations are lacking accuracy. One of the possible reasons for
disagreement is regarding the QCT simulations the imperfect treatment of quan-
tum effects such as ZPE and tunneling and regarding the RDQD model potential
effects of dimensionality reduction. In this context, the presented results may thus
provide additional information for investigating this discrepancy, since NE-RPMD
describe NQEs to some extent, but on the other hand does not rely on dimensional

reduction (as RDQD). Another possible cause of deviation are the limitations of the
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potential energy surface. In this work, we focus on assessing the performance of

our NE-RPMD approach for computing ICS and describing the quantum effects on
the PWEM-SO PES.
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FIGURE 5.5: a) F+ CHDs(v = 0;j = 0) - FH + CD3 and b) F +
CHDs3(vy = 1;j = 0) — FH + CD3 NE-RPMD ICSs for n = 3[Swmax |-
RDQD ICS are taken from Ref. [58].
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In contrast to the reactions considered in Fig. 5.3 and Fig. 5.4, ZPE constraints
are expected to be less relevant, because of the higher mass of the attacker atom. Ac-
cordingly, previous works based on QCT trajectories showed that reactivity trends
are unaffected by ad-hoc treatments regarding the ZPE of the products [241]. The
calculated ICS are shown in Fig. 5.5 as a function of collision energy and compared
with the earlier published RDQD results [58]. For the ground state reaction [Fig. 5.5
a)], the QCT reaction threshold is at around E.; = 0.03 eV, which corresponds
to the classical barrier for the PWEM-SO PES [244]. The RDQD reaction thresh-
old is considerably lower (< 0.010 eV); a complete decline of the ICS is not visible
within the range of collision energies considered here. QCT predicts much lower
ICS than RDQD for the entire range of collision energies. This has been attributed
to the relevance of tunneling contributions that are absent in QCT [58]. NE-RPMD
predicts similar ICS results as QCT, nevertheless slightly closer to the values pro-
vided by RDQD. We think the fact that RPMD yields ICS results only slightly larger
than QCT is related to the fact that certain reaction resonances in combination with
tunneling effects are not adequately described [58,212]. Also, the J-shifting approx-
imation employed to compute the RDQD results might lead to an overestimation of
the ICS. Thus, the extent to which RPMD describes NQE:s is difficult to assess here.
The situation is reminiscent of the previously studied F+H, reaction, where RPMD
tends to underestimate the reactivity [192]. A possible cause is the relatively low
employed 3 coupled with the high mass of F which limits the spatial extension of
the ring polymer corresponding to the F atom. This in turn can limit the description
of NQEs.

For the C-H stretch-excited case the calculated ICS are compared in Fig. 5.5 b).
Similar to what we have seen before for H + CHD;, vibrational excitation of the
C-H bond stretch increases the reactivity considerably. For the collision energies
considered here, we observe that the QCT ICS are considerably lower than their
RDQD counter-parts. NE-RPMD predicts slightly lower ICS as compared to QCT
except at higher collision energies (> 0.14 eV) where NE-RPMD ICS are a bit higher
than QCT. Compared to RDQD, NE-RPMD underestimates the reactivity consid-
erably. The modeling of the excited state reaction via NE-RPMD faces particular
difficulties, mainly due to the fact that the reaction is nearly barrierless. As a result,
the collision energies of interest involve a long simulation time and thus substan-

tial vibrational energy leakage (up to 40 % near the threshold) of the C-H stretch
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vibrational energy to the other vibrational modes, which are not as efficient at pro-
moting the reaction. In addition to the discussed causes for the discrepancies for the
ground and vibrational excited state, we note that the reaction involves resonance
effects that are not described in NE-RPMD and that can strongly affect the reaction
dynamics [58]. Those considerations constitute a limit of our NE-RPMD simula-
tions for very low collision energies and contribute to NE-RPMD underestimating

the reactivity.

5.5 Conclusions

The current work extends the scope of NE-RPMD to the study of state-resolved
reactive scattering dynamics for reactions involving more than 3 atoms. We have
compared the ICS results for the reactions H + CHy, H + CHD;3, and F + CHD;
with and without vibrational C-H stretch excitation in CHD3;. Good agreement for
the H+CH,/CHDs/CD, ground state reactions were found. We show that the NE-
RPMD simulations describe the dominant ZPE effects present in the dynamics for
a wide range of collision energies. However, we also see that NE-RPMD only per-
forms marginally better than QCT for the reaction F+CHD;, where relevant tunnel-
ing effects cannot be described with NE-RPMD.

For vibrationally excited states, we find that the NE-RPMD method can also give
accurate ICS that are similar to those obtained from much more involved RDQD
simulations. The centroid stretch excitation scheme employed to excite the C-H
stretch vibrational mode in CHD; was found to be robust and fairly accurate for
the time period of most of the simulations (if < 200 fs). When employed to study
the C-H excited H + CHD; reaction, good agreement with the RDQD ICS is found.
In summary, except for the reactive collision F+CHD3, where tunneling effects are
dominant, NE-RPMD simulations show good agreement with RDQD simulations,
especially for collision energies around the threshold. In contrast to the ground
state calculations, for the vibrational excited states the ICS calculated with the NE-
RPMD method show no significant improvement over those calculated with QCT
for reactions considered here. For the discrepancies that arise at larger collision
energy, one has to keep in mind that the dimensional reduction on which RDQD
results rely may not be strictly valid anymore. We can conclude that the NE-RPMD
method is able to overcome key limitations of the previously applied QCT method-

ologies at the cost of extra computational efforts which remain small in comparison
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to quantum scattering methodologies. NE-RPMD can be relatively easily built in
into existing MD codes and can be applied to considerably larger systems thanks
to its scalability. However, the current NE-RPMD method employs an inconsis-
tent and unclear choice for the 3 parameter. As such, our NE-RPMD approach as
it stands and the present choice of 5 can be seen as a possible starting point for
further refinements of the methods toward broader and consistent applications of

NE-RPMD for state-selective reactive scattering simulations.
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Chapter 6

Conclusions

In this thesis, I have developed and implemented a new method based on ring
polymer molecular dynamics using non-equilibrium initial conditions to simulate
state-resolved molecular reactive scattering events. The approach allows for the
description of specific initial vibrational states in the reactant molecules and the
computation of integral cross sections. The method is capable of describing impor-
tant nuclear quantum effects, such as tunneling and zero-point energy, present in
the dynamics of several benchmark reactions. Furthermore, compared to explicit
quantum simulations, the method is computationally efficient and scales favorably
such that it can be applied to a large number of atoms.

To pave the way for RPMD to tackle state-resolved dynamics, a key step is the
initialization of reactants in the ring polymer phase space. By employing at first the
harmonic approximation of the potential, I analytically derived and implemented
the sampling of the bead coordinates for the initialization of a molecule close to
its vibrational ground state. As the presence of the Boltzmann weighted vibra-
tional energies cannot be avoided in this framework, constraints on the internal
inverse "temperature" § were derived to achieve an accurate ground state descrip-
tion. The sampling scheme was found to be robust for H, and in the case of more
complex molecules such as CH, and CHDj3, with the resulting ground state ener-
gies being close to the exact values. I proceeded by developing a new sampling
method to describe excited vibrational states. To that end, I derived and employed
non-equilibrium initial conditions applied to specific centroid beads coordinates.
Through these coordinates, I added vibrational energy to mimic an excited vibra-
tional state. The employed benchmark molecules were the H, molecule in Chap-
ters 3 and 4, and the polyatomic CHD3; molecule in the presence of the C-H excited
stretch in Chapter 5. The first excited vibrational energy was found to be stable for

ring polymer Hy(v = 1) with only a small and very slow energy leakage from the
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centroid modes to the internal degrees of freedom. Also for CHD; the centroid ex-
citation scheme yields a C-H stretch excitation for most simulation purposes. How-
ever, as the excitation energy above the zero-point energy is contained in the cen-
troid coordinates and not the internal ring polymer fluctuations, it undergoes an
energy leakage similarly as in QCT.

Another issue for the description of non-equlibrium dynamics using RPMD is
the choice of the reciprocal temperature 5. I reported an ansatz in Chapter 3 for
§ interpreted as the internal inverse temperature of the ring polymers. The ansatz
depends on the initial non-equilibrium quantities while assuring good accuracy for
the sampling of the internal energies. I defined the initial conditions for the colli-
sion and reported a formula for the calculation of integral cross sections (ICS) for
NE-RPMD. Despite the formula for the NE-RPMD ICS being in effect the same as in
QCT, albeit considering the ring polymers centroid positions instead, investigations
of its validity were in order. Test ICS were first computed for the D+H, (v = 0) re-
action for which QCT and exact quantum (QM) results are very similar. NE-RPMD
ICS were found to match QM ICS. This was followed by other encouraging results
for the reaction H+Hy (v = 0) which corroborated the intuitive yet non-trivial for-
mula for the NE-RPMD ICS. The comparison with QCT and exact QM ICS results
for the systems Mu+H,(v = 0), for which ZPE effects are predominant, showed that
the NE-RPMD approach respects ZPE constraints. As for the v = 1 case, for which
the tunneling effect is predominant in the dynamics and enhances greatly the reac-
tivity, NE-RPMD ICS and energy threhsold were found to be in accordance with the
exact results. As to interpret the dynamical manifestations of the tunneling effects
in the ring polymer phase space, I have plotted the bead density plot at the time the
system reaches the transition state for the reaction Mu+H, (v = 1). I found that the
tunneling description in RPMD was characterized by a stretch of some of the beads
towards the products side which in turn drags the rest of the beads. This can allow
certain ring polymer trajectories to "corner-cut" their way through the PES, while
reactivity is classically forbidden. The systems Cl/F+H,(v = 0, 1) were considered
in Chapter 4. Good agreements with exact quantum ICS results and improvements
over QCT were found for Cl+H, (v = 0, 1). However, the ICS results for F+H, sug-
gest that NE-RPMD is unable to describe the tunneling and resonances effects for
this system.

The rest of the thesis is devoted to the application of the approach to more in-

tricate systems involving more atoms. Since strong ZPE leakage can occur in the
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presence of multiple vibrational modes in classical simulations, the exemplifying
ground state reactions H+CH,/CHD; were employed for benchmarking purposes.
I justified the use of a modified and more applicable 3 ansatz for the reactions
H,F+CH, in Chapter 5. The main drawback with this ansatz is that it can constrain
the radius of gyration of the ring polymers. As such, the descriptions of NQEs via
the ring polymer structure might be hindered in the simulations. Nevertheless, ring
polymer fluctuations are still present and should in turn describe approximately the
NQEs. There are other attempts to set 3 by other groups but none of them included
vibrational aspects and are therefore not within our approach [253,254]. I obtained
the NE-RPMD ICS results for these reactions and found a good agreement with their
RDQD counterparts. As QCT significantly overestimates the ICS here, I concluded
that NE-RPMD can prevent ZPE leakage. To further benchmark the dynamical rel-
evance of the centroid excitation scheme I applied it to compute the NE-RPMD ICS
for the H+CHD3(v; = 1) reaction. Since RDQD, QCT and NE-RPMD ICS were
found to match over a wide range of collision energies, the method was deemed ac-
curate. ICS results were subsequently computed for the system F+CHDj3(14 = 0, 1)
and similar qualitative conclusions were made as with the F+H, reaction, that is
NE-RPMD does not capture the enhancing NQEs contributing to the reactivity.

So far, including NQEs in the dynamics simulations of chemical reactions was
only possible for small systems by conducting expensive quantum simulations. The
new techniques developed in this thesis are computationally efficient and allow
the state-resolved simulations of reactions consisting of many atoms. Due to its
beneficial scalability, the number of degrees of freedom involved in the reaction
does not need to be truncated to include quantum effects (as done in RDQD). The
method presented in this work thus considerably increases the number of reactions
where NQEs can be incorporated for its detailed simulations. In these contexts,
the provided method prospectively might constitute an additional tool to extract
information on how initial conditions promote or inhibit reactions, the selective
breaking or making of chemical bonds, in other words steer chemical reactions into
desired product states. It constitutes a step towards developing our understand-
ing of molecular reactive dynamics for which NQEs are present but no quantum

treatment, even with a reduced-dimensional model, is possible.



112 Chapter 6

Outlook

The present approach as it stands can be potentially improved in accuracy by the
following considerations.

An apparent improvement would be to circumvent the direct switching from
the harmonic approximation of the potential to its exact form during the reactant
initialization. The current procedure can lead to inaccuracies in the presence of a
strongly anharmonic potential and for excited vibrational states where the differ-
ence between harmonic energies and exact energies tends to be higher. This prob-
lem is already partially addressed in QCT via employing the adiabatic switching
(AS) procedure [111]. The direct implementation of the AS procedure within RPMD
actually lowers the accuracy of the initialization. Nevertheless, I found that apply-
ing a time-dependent thermostat on the centroid momenta alongside the AS leads
to a slightly more accurate ground state initialization. However, for the excited
state, further investigation is needed.

As a further point, the current way to initialize a given vibrational excited state
proceeds by shifting the values of centroid coordinates (see Egs. (5.6)). The intrinsic
description of quantized vibrational motion in RPMD relies mainly on the internal
structure of the ring polymers. Thus, an apparent step forward is to perform the
excited vibrational state initialization involving both the non-centroid and centroid
ring polymer coordinates. This is in theory possible with the adapted use of "non-
equilibrium" path integral thermostats [255,256]. Once this is achieved it would be
interesting to see if the adiabatic switching in that case would be applicable and
effective.

Furthermore, the initialization of excited ro-vibrational states still needs to be
implemented and tested. As the description of quantal rotational motion is not
intrinsically described in RPMD, well-established QCT methodologies could be ap-
plied in RPMD [111]. However, the task is challenging as the energy differences
between different rotational states for a given vibrational state are in general very
small. In addition, the choice of 3 still needs to be made more systematically. Its
use and physical meaning for RPMD beyond the canonical ensemble has not yet
been clearly understood. § has a strong influence on the internal dynamics in the
ring polymers as well as on overall scattering dynamics. Its systematic determina-
tion would constitute a great progress towards a complete extension of RPMD to

molecular reactive scattering dynamics.
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Finally, it would be worthwhile to employ the presented approach to study dy-
namics involving large or many molecules for which no treatment of NQEs has been
possible so far. Potential applications can include the study of the X-ray induced
excitation-energy dependence of hydrogen bound configurations in water [257],
simulations of equilibration dynamics for proton-transfer in large molecules [258]
and direct trajectory simulations of the dissociation dynamics of complex molecules
[194,259,260].
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Appendix A

Properties and applications of the ring

polymer normal mode transformation

The ring polymer normal mode coordinates are employed several times throughout
the thesis. Their purpose is to diagonalize the free ring polymer Hamiltonian H
—~ 1

0 IR EPNCICINE ¥ SIS ST
H)p,q) =Y —(p )+;2mwn(q g0y, (A1)

2m
k=1

into the form of n uncoupled harmonic oscillators. The normal mode coordinates
are convenient and insightful for several purposes such a sampling, manipulating
intuitively the centroids and simplifying numerous expansions. The case for one
particle in one dimension presented here is straightforwardly generalized to any
dimension.

Transforming the ring polymer from the bead representation to the normal mode

representation,
k) = Zp(j)cjk and ¢" = Z ¢V Cly, (A.2)
j=1 j=1
where in the case of even n the elements of the orthogonal transformation matrix C
are
1/n, k=0
V2/ncos(2mjk/n), 1<k<n/2-1
Cir = (A3)

\/1/_n(_1>j7 k :n/2

\\/Q/nsin(Qﬂjk/n), n/2+1<k<n-—1




116 Appendix A

which yields
n—1 ~(
1
HY(p,q) < + 5 [97(’“)}2) , (A4)
k=0

with wy = 2w, sin(k7/n).

First property: It follows immediately from Eq. (A.3) and Eq. (A.2) for k =
that

1 1
PU = m XX ;p VnpS, (A.5)
and similarly for the position coordinate
A0 _ 1 L§~ ¢
GV =—=XxXnx— ¢\ = vng-. (A.6)
NLD n <

Second property: In the absence of external potential (V' = 0), we have

fork:—l,...,n—l
[ﬁ(k)f 1 2 [ ~(k) 2 n

1 n (k) 2 n—1
<[n Zz;;? ] > _ %<Zﬁ<k>> _ % (A.8)

Third property: If V(q) = 2mw?¢?, we have

<%m<wz+w2> [@<k>}2> =35 (A9)

Also in the harmonic case, we have for all n beads

(@) =~ ki (@) . (A.10)
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so that for any bead coordinate ¢ (cyclic invariance) we have

n—1

N~ b
<q >" ;mﬁ(wz+w2)

=0

Using the formula

i 1l __M coth(fw/2),

2 2
w w 2w
— Wk +

(A.11)

(A.12)

in the limit of infinite beads, the correct quantum position fluctuations are recovered

for each bead "
lim <q2>n =5 coth(Bw/2).

n—oo

Thus, the average potential energy estimator yields

n—1
lim <% > V<q<’f>>> =M coth(w/2).
k=0

n

Fourth property: Combining Eq. (A.9), Eq. (A.10) and Eq. (A.12) yields

n—1 B
nh_)ngo [<% %mwz [q(’f)]2> - %] = coth(fw/2).

(A.13)

(A.14)

(A.15)
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Appendix B

Path integral white noise Langevin

thermostat

Applying a white noise Langevin thermostat (WNLT) on an atom in one spatial

dimension and undergoing a potential V' yields the following equations of motion

PO - Ly e - L, (B2)

where 7 is the friction coefficient and £(t) is an uncorrelated, Gaussian distributed

random force with unit variance and zero mean such that

(€) =0, and (£(0)§(t)) = 4(t). (B.3)

It is known how to combine a WNLT with the velocity velocity Verlet algorithm
to sample the canonical distribution in classical statistical mechanics. Ring poly-
mer dynamics is classical dynamics in an extended phase space with a canonical
distribution at n times the physical temperature. Thus, it is possible to combine a
WNLT with the path integral velocity Verlet algorithm. Bussi and Parrinello have
shown [261] that this is amounts to adding the following steps before and after the
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Egs. (2.56-2.60) in Sec. 2.4.3

~(k 1
IERED ey

j=1
~(k k) ~(k Mg (k) ~(k
P p + 5—c§ e, (B4)
n—1
i ~(k
Pz(]) A\ chkpg )
k=0

For each mode k and atom ¢, f‘i(k) is a different uncorrelated and Gaussian-distributed
random force with unit variance and zero mean for each physical degree of freedom

and each ring polymer normal mode. The coefficients cgk) and cgk) are

(B = = (at/29™)

cgk) _ /1 - [cgk)r. (B.5)

The normal mode friction coefficients v*) are commonly chosen to give an optimal

sampling of the canonical distribution for the free ring polymer such that

/7, k=0
AR = /7o (B.6)

2wp. k>0

The parameter 7 is left to be tuned to sample the internal modes of the ring polymer
as efficiently as possible [121]. The main compromise for this simple thermostat is
that the friction coefficients may not be totally optimal for any potential , although
it should be very similar for the highest frequency internal modes which are usually
decoupled from the physical modes.
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Appendix C

Velocity autocorrelation function
computed with RPMD

The RPMD approximation of the position autocorrelation function is

1
qu(t) ~ W/dpo/dqoe_Ban(PmQO)qC(O) qc(t)’ (Cl)

where ¢° = 137" | ¢®). Taking the derivative with respect to time twice yields

d? d
@@C(O) qc(t>>n — dt dpo/dqoe BnHn(po, qo)q (O)U (t)

d
_ de/que BrnHn(Po, QO)q( £)ve(0)
(C.2)
/dpo/dqoe Ban Ppo, qo) C( t) C(O)
B / dpo [ dage W 0) (1),
with o = 4¢° = 237" | P— s the centroid velocity. The conservation of the ring

polymer Boltzmann factor

¢ BnHa(p(t), a(t)) — o—BnHn(Po, a0)

Liouville’s theorem
dpodao = dp(t) dq(t),

and the detailed balance condition have been employed to arrive at the final result
in Eq. (C.2). The same arguments apply to correlation functions involving more

general momentum dependant operators.
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