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Abstract

Synthetic Aperture Radar (SAR) is an active radar, which can obtain
high-resolution images under all-day and all-weather conditions. Because
of its various advantages, SAR has been widely used in military and civil
domains. SAR image interpretation is to acquire key information from
SAR images. However, SAR images are strongly a↵ected by speckle noise
and geometric distortion e↵ects. This makes the information extraction
from SAR images challenging to perform.

Traditional methods for SAR image interpretation require expert
knowledge and can easily cause overfitting problems. Recent advances
in deep learning have opened a wide door to analyze SAR images
automatically and e�ciently. This thesis focuses on developing deep
learning-based approaches for SAR image interpretation. Three aspects
are particularly investigated, including oceanic eddy detection, intertidal
sediments and habitats classification, and land cover classification. The
research data sources cover Ground Range Detected (GRD), multi-band
and multi-polarization SAR images, and optical data. The main scientific
contributions in this thesis are summarized as follows:

Firstly, this thesis realizes automatic oceanic eddy detection on
SAR images based on a novel Mask Edge Enhancement and IoU
Score Region-based Convolutional Neural Network (Mask-ES-RCNN)
framework. Since there are no existing SAR oceanic eddy instance
segmentation datasets, we build a SAR Oceanic Eddy Detection Dataset
(SOEDD) for developing deep learning-based methods. The Mask-ES-
RCNNmodel applies implicit learning of internal texture information and
adopts Mask IoU scoring to focus more on mask qualities. It outperforms
a Mask-RCNN baseline in terms of Average Precision (AP).

Secondly, this thesis proposes an UNet-based semantic segmentation
network with a Texture Enhancement Module (TE-UNet) for intertidal
sediments and habitats classification. The application of the texture
enhancement module improves the performances of the TE-UNet model
by enhancing the global texture information explicitly. Apart from
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intensity channels of SAR data, we also use polarimetric decomposition
results as inputs. Radarsat-2 (C band) and ALOS-2 (L band) SAR
images are concatenated in the channel dimension to realize multi-band
learning. A comparative experimental study proves the e↵ectiveness of a
multi-band and multi-polarization system for classification tasks in the
intertidal zone.

Finally, this thesis presents a SAR-Optical Fusion UNet model (SOF-
UNet) based on the existing largest dataset SEN12MS which provides
optical and SAR pairs to realize land cover classification. The two-stream
SOF-UNet consists of three parts: two encoders to extract features, a
shared decoder to upsample the feature maps, and specially designed
skip connections to fuse multi-modal features. The qualitative and
quantitative experimental results show that SOF-UNet has a promising
capability in identifying di↵erent land cover classes and can retain fine
details in the prediction maps.
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Zusammenfassung

Sythetic Aperture Radar (SAR) is ein aktives Radar, das unabhängig
von Tageszeit undWetterbedingungen hochauflösende Aufnahmen gener-
ieren kann. Aufgrund verschiedener Vorteile findet die Technik breite
Anwendung in zivilen und militärischen Bereichen. Ziel einer SAR-
Bildinterpretation ist die Extraktion anwendungsrelevanter Informa-
tionen aus den Aufnahmen. Allerdings ist SAR sehr anfällig für
Aufnahmefehler wie Speckle oder geometrische Verzerrungen, und diese
E↵ekte erschweren die Interpretation signifikant.

Klassische Methoden der SAR-Bildinterpretation setzen Expertenwis-
sen voraus und sind sehr anfällig für eine Überanpassung auf gegebene
Bilddaten. Aktuelle Fortschritte im Bereich des Deep Learning ermöglich-
en demgegenüber automatische und e�ziente Analysen von Bilddaten.
Diese Arbeit beschäftigt sich mit Ansätzen des Deep Learning zur
Interpretation von SAR-Aufnahmen. Die drei hier betrachteten An-
wendungsbereiche hierfür sind die Erkennung von Meereswirbeln, die
Klassifikation von Sedimenten und Habitaten in Gezeitenzonen sowie,
die Bestimmung von Landbedeckungklassen. Die Datensätze in diesem
Forschungsfeld fallen sehr vielfältig aus und beinhalten Ground Range
Detected (GRD), Multi-Band und Multi-Polarisation SAR Daten, und
optische Aufnahmen. Die wissenschaftlichen Beiträge dieser Arbeit
lassen sich in den folgenden drei Aspekten, analog zu den oben genannten
Anwendungsbereichen, zusammenfassen:

(1) Es wird ein System (Mask-ES-RCNN) zur automatischen Erken-
nung von Meereswirbeln vorgestellt, das auf neuartigem Mask Edge En-
hancement und IoU Score Region-based Convolutional Neural Network
basiert. Da zum Training eines solchen Systems eine ausreichende Daten-
basis benötigt wird, die bisher nicht existierte, wird ein neuer Datensatz
(SOEDD) von Instanz-segmentierten Meereswirbeln aufgebaut. Mask-
ES-RCNN nutzt das implizite Lernen von Texturinformationen und
ein Mask-IoU Scoring, um die Qualität der erkannten Bildmasken zu
verbessern. Das Modell erreicht eine höhere Genauigkeit als das zugrunde
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gelegte Mask RCNN Modell.
(2) Die Arbeit stellt ein neuronales Netz auf Basis von UNet mit einer

Erweiterung zur Verstärkung von Texturen vor, das zur semantischen
Segmentierung von Gezeitenzonen und Biotopen genutzt werden kann
(TE-UNet). Neben Intensitätswerten von SAR Aufnahmen, werden
auch polarimetrische Zerlegungen berücksichtigt. Radarsat-2 (C-Band)
und ALOS-2 (L-Band) Aufnahmen werden übereinandergelegt, um aus
Mehrbanddaten zu lernen. Eine vergleichende Studie demonstriert die
gesteigerte E↵ektivität bei Nutzung von Mehrbanddaten und verschiede-
nen Polarisationen für die Klassifikation von Gezeitenzonen.

(3) Zur Klassifikation von kombinieren optischen und SAR-Aufnahmen
wird ein auf UNet basierendes Modell (SOF-UNet) vorgestellt, das auf
den Datensatz SEN12MS angewendet wird. Das Modell nutzt zwei
Inferenzpfade und besteht aus zwei Encoder-Modulen zur Featureextrak-
tion, einem geteilten Decoder zum Upsampling der Featuremaps, sowie
speziellen Direktverbindungen (skip connections) zur Verschmelzung
multimodaler Features. Die qualitative wie quantitative Analyse der
Klassifikationsergebnisse zeigt ein vielversprechendes Potential des Mod-
ells, verschiedene Klassen von Bodenbedeckungen zuzuordnen und De-
tails in den Vorhersagemasken zu erhalten.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is one of the most commonly used earth
observation instruments on satellites. As an active microwave sensor,
SAR operates by illuminating the target area with electromagnetic
microwave pulses and measures the amplitude, polarization, and phase
information of the return signals. After substantial signal processing of
the collected data, the final SAR product is a two-dimensional image,
where each pixel in the image represents the reflectivity of a region at
the transmitted frequency [1].

SAR can achieve a high spatial resolution by utilizing the coherent
nature of the transmitted radar pulses. Compared with optical sensors,
the relatively long wavelengths and active imaging technique make SAR
acquire data under all weather and all illumination conditions. Further,
due to the sensitivity of the electromagnetic wave to dielectric and
geometric properties of the scatterers, polarization information of the
targets is also included in the echoes of SAR systems. Polarization
information is an indispensable description of targets reflecting unique
properties like surface roughness, structural symmetry, and orientation,
which is beneficial for the identification of targets on SAR images.
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1.1. Background and Motivation

Because of these advantages, SAR imagery is helpful in almost
any field that benefits from environmental monitoring. Its application
areas involve geographic mapping [2], resource surveying [3], climatic
change [4], autonomous driving [5], and many other civil fields. Besides,
SAR is also widely used in military applications, such as battlefield
situation assessment, military reconnaissance, and target detection [6].

SAR image interpretation is to acquire key information from SAR
images. It is a decisive step for the successful application of in-orbit
SAR satellites. The geometric and electromagnetic characteristics of
SAR data could provide distinctive information for image interpretation.
However, because of the side-looking imaging geometry and complex
backscattering mechanisms, SAR image quality is strongly a↵ected by
geometric distortion and speckle noise. Therefore, it is a very challenging
task to realize successful SAR image interpretation.

The early SAR systems only worked in a single frequency band and
at a single polarization. In recent years, SAR imaging technology
has been developed towards a high-resolution, multi-band, and multi-
polarization direction. Consequently, the information in SAR imagery
has been largely increasing with the fast development of SAR sensors.
The workload of manual SAR image interpretation exceeds the limit of
rapid manual judgment. The subjective and comprehension errors caused
by manual interpretation are also unavoidable. Hence, the research on
the automatic interpretation of SAR images is particularly important.

1.1.2 Deep Learning

Deep learning, which has attracted broad attention in recent years [7], is
a powerful tool focusing on Deep Neural Network (DNN). It refers to a
Neural Network (NN) involving usually more than two “hidden” layers
(they are called deep for this reason). A NN creates interconnected nodes,
which represent non-linear mappings connected by linear transforms.
The linear transform is performed on a matrix of weights, and the non-
linear mapping is referred to as the activation functions [8]. Unlike
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1.1. Background and Motivation

conventional algorithms, deep learning-based methods commonly employ
hierarchical architectures to extract feature representations exclusively
from input data. For example, a Convolutional Neural Network (CNN)
is capable of learning low-level and high-level features from input images
with stacks of convolutional and pooling layers [9].

DNN became an explicit research subject in the early 1990s [10], but
it was ignored at that time due to the di�culty of training. In 2012,
AlexNet, a CNN-based architecture, famously won the 2012 ImageNet
competition overwhelmingly [11]. This was mainly because of the use of
large-scale training data, Rectified Linear Units (ReLU), and Graphics
Processing Units (GPU) [12]. After the ImageNet competition, deep
learning techniques have been widely adopted and verified e↵ective for
di↵erent fields in artificial intelligence such as image processing, natural
language processing, and robotics [13].

In the wake of this success and thanks to the increased availability
of remote sensing data and computational resources, the remote-sensing
community has shifted its attention to deep learning since 2014 [14].
Concerning SAR applications, deep learning technology is gradually
applied in various intelligent SAR image interpretation tasks, such as
SAR object detection, SAR semantic segmentation, parameter inversion,
despeckling, specific applications in Interferometric SAR (InSAR), and
SAR-optical fusion [9].

1.1.3 Interdisciplinary Motivation

The objective of this thesis is at the intersection of two important trends:
deep learning, a driver of disruptive innovation, especially in computer
vision, and exploitation of SAR technologies and analysis, which is
expected to show strong growth in the remote sensing field. These
two trends meet up in a field, where data is both an opportunity and
a challenge. The aim of this interdisciplinary e↵ort is to utilize deep
learning technology for intelligent SAR image interpretation, even when
oriented to non-SAR professionals.
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1.1. Background and Motivation

Deep learning methods are considered as the main means for intel-
ligent SAR image interpretation in the future [9]. Traditional SAR
image interpretation technology is composed of multiple individual
steps. Taking SAR semantic segmentation as an example, we need to
perform feature extraction, feature selection, feature fusion, and classifier
selection separately [15]. Such complex procedures require much time
and energy, and also harm integral performance. In contrast, end-to-end
deep learning algorithms can automatically learn the most discriminative
information from SAR data and thus, the e�ciency can be improved
dramatically once a deep learning model is well trained. Moreover,
deep learning-based models have advantages of good expansibility and
adaptability [16], and can be easily adapted to new SAR targets and new
complicated applications.

However, there are also some challenges in this interdisciplinary
field. On one hand, SAR imagery su↵ers from a special type of
deterministic and multiplicative noise called speckle noise, which is
caused by incoherent imaging mechanism [17]. The geometric distortions
due to side-looking imaging further distort the interpretability of SAR
images [18]. These problems are even more serious on high spatial
resolution SAR imagery. On the other hand, the lack of balanced
and large-scale sets of SAR-derived labels further limits the accurate
interpretation.

For the moment, most of the existing deep learning methods in
the SAR field tailor the models designed for optical images, lacking
full consideration of SAR image characteristics [9]. Therefore, the
development of deep learning-based approaches specially designed for
SAR image interpretation is an open problem and forms the basis for the
research topic of this thesis.

1.1.4 Thesis Focus

Through addressing three specific problems, this thesis aims to develop
multiple e↵ective deep learning-based SAR interpretation models, mak-
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1.1. Background and Motivation

ing full use of the target properties and SAR image characteristics.

As shown in Figure 1.1, the research aspects in this thesis are
determined by geographical positions. For di↵erent Earth’s surface
types, we selected corresponding typical SAR image interpretation
tasks to accomplish. The three specific aspects are oceanic eddy
detection, intertidal sediments and habitats classification, and land cover
classification. They correspond to three SAR image interpretation tasks:
SAR object detection, SAR semantic segmentation, and SAR-optical
data fusion.

Figure 1.1: Three research aspects in the thesis. (a) presents the extent of the study area
delineated by two vertical red dashed lines. (b–d) are datasets examples for land cover
classification (SAR + Optical), intertidal sediments and habitats classification (multi-
band multi-pol SAR), and oceanic eddy detection (single-channel SAR), respectively.
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For these three aspects, the research data sources are increased from
single-channel Ground Range Detected (GRD) SAR products, multi-
band and multi-polarization SAR images, to multi-modal SAR and
optical data. Accordingly, the complexity and di�culty of the three
research aspects also increase. Specifically, we need to deal with more
classification types and more complex backgrounds. Notably, considering
the di↵erences in problem complexity and data source among these three
aspects, we design di↵erent specific models in this thesis, respectively.
The names and band types of satellites that show in Figure 1.1 will be
further introduced in Section 2.1.

1.2 Thesis Contributions

The main scientific contributions of this thesis are summarized as follows:

• Firstly, this thesis proposes a Mask Edge Enhancement and IoU
Score Region-based Convolutional Neural Network (Mask-ES-RCNN)
model for automatic oceanic eddy detection. We first construct a
new SAR Oceanic Eddy Detection Dataset (SOEDD) and develop
a Mask RCNN and Edge Enhancement model based on it. The
Mask RCNN and Edge Enhancement model uses edge detection
as an intuitive way to enhance texture information. However,
it is not an end-to-end deep learning model and the strategy to
incorporate prior knowledge is too simple. We, therefore, propose
the Mask-ES-RCNN model applying implicit learning of internal
texture information and scoring Mask IoU to focus more on mask
quality. The performance of the Mask-ES-RCNNmodel outperforms
the Mask RCNN baseline on the SOEDD.

• Secondly, this thesis presents a UNet-based model with a Texture
Enhancement Module (TE-UNet) for the classification of sediments
and habitats on the intertidal zone. The Texture Enhancement
Module (TEM) helps the model to learn global texture information
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explicitly. Both Radarsat-2 (C band) and ALOS-2 (L band) SAR
images are used as the inputs of TE-UNet. Apart from amplitude
information of SAR images, we also add polarimetric information to
TE-UNet by polarimetric decomposition. Extensive ablation studies
are investigated for multi-band and multi-polarization configura-
tions.

• Finally, this thesis develops a SAR-Optical Fusion UNet model
(SOF-UNet) based on the SEN12MS [19] dataset which provides
optical and SAR pairs for land cover classification. We first propose
an initial SAR-Optical Fusion Network (SOFNet), which provides
better segmentation results, compared with the methods that simply
superimpose SAR and optical images as input. However, the
contour lines of SOFNet predictions are very vague and lots of
details are ignored by the model. We then propose the SOF-UNet
model, which includes designed skip connections in the encoding and
decoding phase to keep more details of predictions and extract more
discriminative multi-modal features. The experiment results show
that this design has a promising capability to identify di↵erent land
cover classes. Symmetric Cross Entropy (SCE) loss is also verified
as useful in this frame.

1.3 Thesis Structure

The thesis structure is illustrated in Figure 1.2. The whole thesis
is structured into seven chapters. Chapter 1, 2 and 3 present the
introduction and theory basics of the thesis topic. Chapter 4, 5, and
6 present three di↵erent SAR image interpretation applications and
corresponding algorithms.

Chapter 1 presents the introduction to the thesis. Chapter 2
introduces the basics of remote sensing, and Chapter 3 summarizes the
challenges and recent advances in SAR image interpretation utilizing
deep learning technologies.

7



1.3. Thesis Structure

Figure 1.2: Organization of the thesis.

The following three chapters present each contribution of this thesis:

• Chapter 4 introduces ocean eddy detection by two models. The
Mask RCNN and Edge Enhancement model is an initial model on
the SOEDD. Inspired by this model, we design a multi-task learning
framework Mask-EM-RCNN.

• Chapter 5 introduces intertidal sediments and habitats classification
by TE-UNet model. We first design a pre-processing procedure on
SAR data, and put emphasis on the polarimetric SAR decompo-
sition process. The processed multi-band multi-polarization SAR
images are then used as the input of the TE-UNet model.

• Chapter 6 introduces land cover classification by two multi-modal
fusion networks. The SOFNet is a Deeplab V3 Plus-based two-
stream model. Since the SOFNet loses detailed information in
prediction maps, we further develop a SOF-UNet model to utilize
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more low-level features.

Finally, Chapter 7 summarizes the key ideas and approaches described
in the thesis. It presents the main achievements of this thesis, concludes
the inspirations and limitations of the presented work, and suggests
future research directions.
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Chapter 2

Basics of Remote Sensing

Remote sensing is devoted to gathering information from the Earth’s
surface at a distance [20], by means of electromagnetic energy or other
mediums. This chapter presents some basics of remote sensing that
we will use in the rest of the thesis, and puts emphasis on the basic
theory of SAR. In Section 2.1, we introduce optical and radar sensors
and corresponding common satellites. The working principle and theory
of polarimetric SAR sensors are described in Section 2.2 and Section 2.3,
respectively.

2.1 Remote Sensors

For the case of this thesis, remote sensors remotely collect data by
measuring the electromagnetic (EM) radiation at specific spectral ranges
(usually called bands). When they are deployed on satellites or mounted
on aircraft, they are called spaceborne and airborne remote sensors,
respectively. Spaceborne remote sensors orbit the Earth at heights of
500 to 800 km [21], providing data in a wide range of ground resolutions,
and at various polarizations and radar bands. In this thesis, we analyze
the spaceborne remote sensing data.

There are two types of remote sensors acquiring information in
fundamentally di↵erent ways. Optical sensors are passively imaging
systems. They can capture information on the physical and biogeo-
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chemical properties of the Earth’s surface. Radar sensors actively emit
EM-radiation and then measure the returning signals (also known as
backscatter), which depends on the three-dimensional structure of target
objects.

Figure 2.1 displays the di↵erent spectral regions of these two types of
sensors within the EM-spectrum. More details in this figure on optical
sensors and radar sensors are further described in Section 2.1.1 and
Section 2.1.2, respectively.

Figure 2.1: Spectral regions of optical sensors and radar sensors within the
electromagnetic spectrum. Image adapted from [22].

2.1.1 Optical Sensors

Optical sensors are sensitive to a spectrum ranging from visible to
infrared wavelengths, and they produce panchromatic, multispectral, or
hyperspectral images. The panchromatic sensors use a monospectral
channel detector to collect EM-radiation from a wide range of wave-
lengths, while multispectral and hyperspectral sensors collect information
using multiple channels. In general, hyperspectral data contain hundreds
of bands showing a high spectral resolution. Multispectral data contain
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fewer spectral bands than hyperspectral images, but more than panchro-
matic images [23].

A comparison among the common optical sensors is established in
Figure 2.2. The number of bands di↵ers from instrument to instrument,
but they still have lots of intersection sets. MODIS and ASTER are
both spaceborne imaging instruments on the Terra and Aqua platforms
launched in December 1999. They are the result from a collaboration of
the National Aeronautics and Space Administration (NASA) and Japan’s
Ministry of Economy Trade and Industry (METI). MODIS and ASTER
require data in 36 and 14 bands, respectively. Landsat 8 data is divided
into 11 bands. It is a joint e↵ort of NASA and the United States
Geological Survey (USGS), and carries the Operational Land Imager
(OLI) and the Thermal Infrared Sensor (TIRS) launched in February
2013. The European Sentinel-2 carries a payload of sensors working at
13 bands, including visible, near-infrared, and shortwave infrared sensors.
The Sentinel-2 satellite was launched in the frame of the European
Copernicus Program in June 2015. The band designations for optical
sensors in Figure 2.2 can help users to decide which spectral bands work
best to identify their features of interest for image interpretation.

Figure 2.2: Comparison of MODIS, ASTER, Landsat 8 and Sentinel-2 bands. Image
adapted from USGS Landsat Program [24].
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2.1.2 Radar Sensors

Radar sensors work in the region of wavelengths ranging from 1mm to
1m. Compared with optical sensors, they utilize longer wavelengths,
which allows “seeing” through clouds and rain. There are three common
spaceborne microwave sensors: radar altimeter, scatterometer, and SAR.
The radar altimeter and scatterometer are used to measure specific
parameters like Sea Surface Height (SSH) and Sea Surface Wind (SSW).
SAR sensors provide radar images of the Earth’s surface, which are
chosen in this thesis.

Di↵erent radar bands are marked with letters. Table 2.1 contains
the band with the associated frequency and wavelength. The wavelength
range is very important, since it determines the interaction between radar
signals and surfaces, as well as the penetration depth of the microwave
signals. The frequency bands explored in this thesis are C- and L-band.

Band Frequency (GHz) Wavelength (cm)

Ka 27-40 1.1-0.8

K 18-27 1.7-1.1

Ku 12-18 2.4-1.7

X 8-12 3.8-2.4

C 4-8 7.5-3.8

S 2-4 15-7.5

L 1-2 30-15

P 0.3-1 100-30

Table 2.1: Di↵erent bands in microwave remote sensing.

Table 2.2 gives some examples of commonly used spaceborne SAR
sensors, which are operating at present. They are Radarsat-2 (RS2)
from Canadian Space Agency (CSA), TerraSAR-X/TanDEM-X from
German Aerospace Center (DLR), ALOS PALSAR-2 (ALOS2) from
Japan Aerospace Exploration Agency (JAXA), Sentinel-1A/1B from
European Space Agency (ESA), and Gaofen-3 from China National Space
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Administration (CNSA). We use RS2, ALOS2, and Sentinel 1A/1B data
in the thesis. The parameters of polarimetric modes, spatial resolutions,
and coverage will be described in Section 2.2 and Section 2.3.

Mission/SAR Agency Launch Band Polarization Resolution(m) Coverage(km) Revisit(days)

Radarsat-2 CSA 2007 C Quad 9-100 25-170 24

TerraSAR-X/TanDEM-X DLR 2007(2010) X Quad 0.25-40 10-150 11

ALOS PALSAR-2 JAXA 2014 L Quad 1-100 25-490 14

Sentinel 1a/1b ESA 2014(2016) C Dual 5-100 80-400 12

Gaofen-3 CNSA 2016 C Quad 1-500 10-650 29

Table 2.2: List of operational typical spaceborne SAR systems.

2.2 Fundamentals of SAR Imaging

The principle of the active microwave imaging of SAR sensors makes
it fundamentally di↵erent from optical sensors. We describe the SAR
geometry and spatial resolution in Section 2.2.1. Then we introduce three
typical SAR acquisition modes, which will a↵ect the spatial resolution
and coverage in Section 2.2.2. In Section 2.2.3, the scattering mechanisms
of the SAR sensors are given.

2.2.1 SAR Geometry and Spatial Resolution

The geometry of a side-looking monostatic SAR system is sketched
in Figure 2.3. An antenna, placed on a moving platform, transmits
electromagnetic pulses in a side-looking direction towards the Earth’s
surface (side-looking system). The reflected signal, known as the echo,
is backscattered from the surface and received by the same antenna
(monostatic radar). The length and width of the antenna, indicated
by AL and AW , determine the size of the illuminated area on the ground.
A SAR sensor moves with constant speed Vs and at constant height h
above the ground. The flight direction of SAR is defined as azimuth
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(or along-track) direction, while the direction of radar illumination is
referred to as the range direction.

Figure 2.3: Schematic SAR acquisition geometry.

The spatial resolution in the ground range direction is define as:

rgr =
c0⌧

2 sin ✓
(2.1)

where c0 is the speed of light, ⌧ is the pulse duration, ✓ is the incidence
angle. A typical setting of these parameters (⌧ = 10µs, ✓ = 30�) [25]
produces a rgr equal to 3000m, which is not satisfactory to most SAR
applications. A pulse compression method is applied to improve the
resolution. The final formula of rgr is expressed as:

rgr =
c

2B sin ✓
(2.2)

where B is the pulse bandwidth. Typical values of rgr using pulse
compression are below ten meters.

16



2.2. Fundamentals of SAR Imaging

The spatial resolution in azimuth direction is defined as:

raz =
�

AL

R (2.3)

where � is the radar wavelength and R is the slant range between
the antenna and a ground resolution cell. A typical setting of these
parameters on airborne system (� = 0.03m,AL = 3m,R = 2000m) [25]
produces a raz equal to 20m. However, for the spaceborne SAR, the large
R in the space results in very coarse raz (above 10km). It is not feasible
to increase the size of the spaceborne antenna, so the synthetic aperture
technology is used, as shown in Figure 2.4. The small aperture radar
antenna is virtualized into a larger aperture radar antenna by utilizing
the motion of the antenna. We can finally receive the raz in the finer
resolution after signal processing according to the Doppler and phase
history:

raz =
AL

2
(2.4)

Figure 2.4: Formation of a synthetic antenna array.
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2.2.2 Acquisition Modes

Most SAR sensors can operate in di↵erent acquisition modes. The final
products of di↵erent modes vary in spatial resolution, coverage, and
polarimetric ways. Figure 2.5 illustrates three typical acquisition modes.

Figure 2.5: SAR acquisition modes: (a) Stripmap (b) ScanSAR (c) Spotlight.

Figure 2.5 (a) is the principle of Stripmap mode, which is also the
most commonly used mode. The antenna beam is pointing to a fixed
azimuth angle and then the ground swath is realized by a continuous
sequence of the pulse. The antenna usually gives the flexibility to select
an imaging swath by changing the incidence angle. Figure 2.5 (b) is the
wider swath ScanSAR mode and Figure 2.5 (c) is the higher resolution
Spotlight mode. ScanSAR mode achieves swath widening by the use
of an antenna beam that is electronically steerable. Each sub-swath is
illuminated by multiple pulses but in a shorter time than the Stripmap
mode. However, the azimuth resolution is degraded correspondingly. For
a better azimuth resolution, the Spotlight mode can be chosen. It adjusts
the antenna beam to continuously illuminate the same patch for a longer
time, thereby realizing a higher azimuthal resolution.
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2.2.3 Scattering Mechanisms

A SAR sensor measures the electromagnetic energy that is backscattered
from the targets. There are lots of factors that can a↵ect the radar
backscatter, and they can be divided into two categories.

The first category relates to the SAR parameters, such as the
frequency, polarization, and incident angle. If the frequency and
polarization parameters are fixed, the increasing incident angle causes the
decreasing backscatter intensity from a homogeneous surface. Therefore,
the intensity decreases gradually on SAR images from near range to far
range. This e↵ect must be taken into consideration during SAR image
interpretation.

The second category relates to the surface parameters, such as the
surface roughness, the surface geometry, and the dielectric constant of the
surface. There are three basic groups of scattering mechanisms that can
contribute to the returned signal: surface scattering, volume scattering,
and hard target scattering, as illustrated in Figure 2.6.

In general, a rougher surface results in a stronger backscatter intensity,
corresponding to a brighter area on SAR imagery. In the case of the ocean
surface, a smooth ocean surface causes low (or no) radar backscatter
(Figure 2.6 (a)), showing dark areas on the SAR image. For the areas
of moderate ocean surface roughness (Figure 2.6 (b)), such as areas in
moderate surface wind speed, they usually present as greyish areas. A
rough ocean surface (Figure 2.6 (c)) caused by high surface wind speed
or other factors results in bright areas.

Figure 2.6: Specular and di↵use surface scattering, depending on surface roughness.
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2.3 Polarimetric SAR Theory

SAR polarimetry is a widely used technique for the derivation of quali-
tative and quantitative physical information for di↵erent interpretation
tasks. Measuring the full scattering matrix allows distinguishing di↵erent
shapes, orientations, and dielectric properties of scatterers. In Section
2.3.1, we first introduce the basic concepts of electromagnetic polariza-
tion. The polarization scattering description is then shown in Section
2.3.2 to represent the polarization state. Based on the representations
in Section 2.3.2, we describe the polarimetric decomposition methods in
Section 2.3.3.

2.3.1 Electromagnetic Polarization

An electromagnetic wave consists of a magnetic and an electric field.
These two fields are perpendicular to each other and also to the
direction of wave propagation. Apart from frequency, amplitude, and
phase, an electromagnetic wave also contains polarization information.
Polarization is defined as the orientation of the oscillating electric field,
which can be described in terms of two orthogonal basis vectors [26].
Electromagnetic waves are generally elliptically polarized, with linear or
circular polarization as special cases [27]. Most of the SAR sensors use
linear polarization on both the transmitter and the receiver. There are
four linear polarization configurations in total:

• HH (co-polarization): horizontal transmission and horizontal recep-
tion;

• HV (cross-polarization): horizontal transmission and vertical recep-
tion;

• VH (cross-polarization): vertical transmission and horizontal recep-
tion;

• VV (co-polarization): vertical transmission and vertical reception.
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Historical SAR satellites carried single-polarized sensors, which sup-
port only one linear polarization. More recent sensors provide either dual-
polarization or quad-polarization capabilities. For quad-polarization
SAR systems, they can transmit H- and V-polarized waveforms and
receive both H and V simultaneously.

It is important to acquire the polarization information, because
di↵erent polarization channels interact di↵erently with the targets during
the scattering process. For example, the echo of co-polarization is
stronger than that of cross-polarization for low vegetation. Cross-
polarization is more sensitive to some tiny targets like cars, compared
with co-polarization.

2.3.2 Polarization Scattering Description

The basic concept of SAR polarimetry is given by the 2 ⇥ 2 complex
scattering matrix:

Er =


Er

H

Er

V

�
= [S] · Et =

eik0R

R
·

SHH SHV

SV H SV V

�
·

Et

H

Et

V

�
(2.5)

where Et is the two-dimensional transmitted wave vector, Er is the two-
dimensional received wave vector, R is the distance between the radar
antenna and the ground target, k0 is the radar wave number, [S] is the
polarization scattering matrix that describes how the scatterers modify
the incident electric field vector. The reciprocity theorem states that
SV H = SHV [25], which is adequate for SAR remote sensing from space.

Generally speaking, [S] is not only defined by the physical factors of
the target like materials and structures, but also highly related to SAR
parameters such as the relative position between radar and target and
SAR frequency.

For convenience, we often need to vectorize the target’s polarimetric
scattering matrix. Di↵erent orthogonal basis corresponds to di↵erent
polarization basis expression methods. There are two common polari-
metric basis Borgeaud ~kB and Pauli ~kP . Under the condition that the
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reciprocity theorem is satisfied, they are donated as:

~kB =
h
SHH ,

p
2SV H , SV V

iT
(2.6)

~kP =
1p
2
[SHH + SV V , SHH � SV V , 2SV H ]

T (2.7)

A polarimetric scattering matrix is used for the point target case.
Based on the polarimetric basis, we can formalize a 3 ⇥ 3 coherency or
covariance matrix to characterize the distributed scatterers.

The coherency matrix [C] based on Borgeaud ~kB is denoted as:

[C] = E

n
~kB · ~k†

B
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=

2
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The coherency matrix [T] based on Pauli ~kP is denoted as:

[T] = E
n
~kP · ~k†

P

o
=

2

4
T11 T12 T13

T ⇤
12

T22 T23

T ⇤
13

T ⇤
23

T33

3

5 (2.9)

T11 =
1

2
E {(SHH + SVV) (SHH + SVV)

⇤} (2.10)

T12 =
1

2
E {(SHH + SVV) (SHH � SVV)

⇤} (2.11)

T13 = E {(SHH + SVV) (SHV)
⇤} (2.12)

T22 =
1

2
E {(SHH � SVV) (SHH � SVV)

⇤} (2.13)

T23 = E {(SHH � SVV) (SHV)
⇤} (2.14)

T33 = 2E {(SHV) (SHV)
⇤} (2.15)
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where (·)† is the conjugate transpose operation, (·)⇤ is the complex
conjugate operation, E{·} is the average expectation, and | · | is the
amplitude of echos.

2.3.3 Polarimetric Decomposition

The purpose of polarimetric decomposition is to extract the physical
information of the target surface. Through polarimetric decomposition
methods, the scattering process of the target is decomposed into
several terms representing di↵erent scattering mechanisms, each of which
corresponds to a di↵erent physical meaning. These decomposition
components are further used in di↵erent SAR image interpretation
applications.

The polarimetric decomposition techniques are broadly classified into
two categories: Coherent Target Decomposition (CTD) and In-Coherent
Target Decomposition (ICTD). In the case of CTD, The scattering target
is required to be deterministic or stationary, and the scattered echoes are
coherent. For example, many man-made structures belong to such pure
targets. The first proposed and most common CTD method is Pauli
polarimetric decomposition based on Pauli basis ~kP [28].

However, in natural scenes, there are lots of distributed targets.
At this point, the scattering target can be non-deterministic and the
echoes are corresponding incoherent. These scatterers can be analyzed
by exploiting the coherency matrix [C] and the coherency matrix [T].
Freeman-Durden [29] and Cloude-Pottier [30] are two most famous and
widely used ICTD methods.
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Chapter 3

SAR Image Interpretation

In this chapter, two main challenges are described in Section 3.1. Based
on the basic deep learning concepts and models in Section 3.2, we finally
summarize the related work of deep learning in SAR image interpretation
in Section 3.3.

3.1 Challenges for SAR Image Interpretation

There are many factors that can a↵ect the interpretability of SAR images.
In this section, we focus on two main challenges resulting from the side-
looking and the coherent SAR imaging mechanism. The principles of
geometric distortions and speckle noise are described in Section 3.1.1
and Section 3.1.2, respectively.

3.1.1 Geometric Distortions

Geometric distortions are an inherent error of SAR images caused by
side-looking geometry and topographic relief [31]. These distortions can
be divided into di↵erent types. Figure 3.1 shows the origins and main
characteristics of most related geometric distortions: foreshortening,
layover, and shadow.

Figure 3.1(a) shows the geometric background of foreshortening. For
the slopes facing the SAR sensor, when the incident angle ✓ is larger
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than the local terrain slope angle �, the slopes have the shorter length in
SAR images (A0 to B0) compared with real flat terrain (the slope between
points A and B). The foreshortening e↵ect has the worst result, when ✓
equals �.

Figure 3.1: Main geometric distortions on SAR images with their dependence on
acquisition geometry: (a) foreshortening, (b) layover, and (c) shadow. Image adapted
from [32].

Figure 3.1(b) shows the geometric background of the layover. When
the local incident angle ✓ is smaller than the local terrain slope angle
�, the bottom and the top of such slopes are reversely imaged and their
flipped backscatter will overlay in SAR images (green, red, and gray
areas).

Both foreshortening and layover e↵ects decrease with increasing
incident angle ✓. However, a large ✓ will result in a shadow problem.
Figure 3.1(c) shows the geometric background of shadow. The area
behind the slope is not illuminated by the radar. Therefore, geometric
distortions caused by topography cannot be finally eliminated.

3.1.2 Speckle Noise

Speckle noise is formed because of the coherent imaging principle. Since
many elemental scatterers are located in one resolution cell, the final
scattering response from the resolution cell is the coherent sum of
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thousands of individual scattering events [32]. The mutual interference
results in a certain fluctuation in the amplitude and phase of the
synthesized EM wave vectors, which make the “salt-and-pepper” noise
(also called speckle noise) appear. In the actual SAR images, speckle
noise exists in the form of a multiplicative noise, which is manifested in
the image as a drastic change in the image intensity.

The appearance of speckle noise degrades the SAR image quality and
increases the di�culty of interpreting SAR images. Lots of e↵ective
speckle filters were developed during the past decades such as the refined
Lee filter and Wiener filter [33]. However, the removal of the speckle noise
means a reduction of spatial resolution to some extent. All speckle-noise
reduction methods try to find a balance between them.

Figure 3.2 shows an original SAR image and corresponding speckle
filter results. The original VV-polarization channel SAR image is
acquired by RS2 satellite (used in Chapter 5). A refined Lee filter with
a window size 7 × 7 is applied for speckle deductions. The results show
that this filter obtains e↵ective speckle noise removal, while preserving
the fine edges of the original image.

Figure 3.2: Comparison of an original SAR image (left) and corresponding speckle filter
results (right). SAR image ©MacDonald, Dettwiler and Associates Ltd. 2015.

27



3.2. Deep Learning Models

3.2 Deep Learning Models

In this section, we give a brief introduction to commonly used NN models,
with emphasis on CNN and Graph Convolutional Network (GCN) models
involved in this thesis. We then present some typical CNN models in
Section 3.2.2.

3.2.1 Neural Networks

NN was initially inspired by the human brain for perception and
cognition. It has been widely used in the computer vision field and
achieved remarkable results. NN can transform the input data into a new
feature space through nonlinear transformation, and can automatically
learn feature representations.

Currently, many deep learning models have been proposed like
CNN [34], GCN [35], Recurrent Neural Network (RNN) [36], and
Generative Adversarial Network (GAN) [37]. Among them, CNN is the
most widely used tool to abstract features.

Many networks employ pre-trained CNN on the ImageNet dataset as
feature extractors, such as VGGNet [38], AlexNet [11], and GoogLeNet [39].
Furthermore, di↵erent variants of CNN like 3-Dimensional Convolutional
Neural Network (3D-CNN) [40] and Spatial Convolutional Neural Net-
work (SCNN) [41] have been proposed to improve the learning ability
and adapt to di↵erent applications.

Recently, GCN has received increasing attention owing to its ability
in performing convolutions on arbitrarily structured graphs. Figure 3.3
shows the convolution design of CNN and GCN. The biggest di↵erence
between them is that CNN performs convolutions on a Euclidean space
like images, but GCN applies convolutions on a non-Euclidean space like
graphs. GCN aggregates information from the neighbors of each node,
which can be utilized to explore the relationship among objects.
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Figure 3.3: Comparison of convolution design between (a) CNN and (b) GCN. Image
adapted from [42].

3.2.2 CNN Models

Object detection and instance segmentation are two basic tasks in
computer vision. The former is object-level detection and the latter is
pixel-level extraction. We discuss the classic CNN models of these two
tasks in Section 3.2.2.1 and Section 3.2.2.2 separately.

3.2.2.1 Object Detection Models

Object detection is to determine, where objects are located (object
localization), and which category each object belongs to (object classifica-
tion) [43]. Deep learning has been successfully applied to object detection
tasks. In 2014, Girshick et al. [44] proposed a Region Convolutional
Neural Network (R-CNN) model using a selective search algorithm to
extract regional candidate boxes. Based on R-CNN, many improved
models have been designed, including Fast R-CNN [45], which learns
classification and bounding box regression tasks at the same time, YOLO
[46], which splits the input into a grid of cells to directly predict bounding
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box and classification, and Faster R-CNN [47], which uses a Region
Proposal Network (RPN) to generate region proposals. In 2017, Mask
R-CNN [48] was proposed and at that time it outperformed all existing
solutions in object detection tasks.

Figure 3.4 illustrates the overall structure of Mask R-CNN, which is
mainly composed of three parts: an RPN to extract the feature maps, a
network head to generate the target classification and localization, and
a network head for mask generation.

Figure 3.4: The overall structure of Mask R-CNN. Image adapted from [48].

3.2.2.2 Semantic Segmentation Models

The semantic image segmentation task is to classify each pixel of an image
into a class [49]. Modern deep learning methods usually employ a Fully
Convolutional Network (FCN) [50] to address this task. FCN consists
of two parts: a downsampling path to extract and interpret the context,
and an upsampling path for pixel localization. Following FCN, there are
two main architectures for semantic segmentation, namely DilatedFCN
and EncoderDecoder [51].

DilatedFCN applies dilated convolutions to capture multi-scale con-
text information on the final feature maps. For instance, PSP-Net [52]
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uses pooling operations at multiple grid scales and DeepLabV3 [53]
adopts Atrous Spatial Pyramid Pooling (ASPP) module.

EncoderDecoder consists of the encoding branch and a decoding
branch, which gradually recover the spatial information using skip
connections. UNet [54] and DeeplabV3 Plus [55] are two typical
representatives of this type.

Figure 3.5 displays the overall architecture of UNet. The corre-
sponding layers of the encoder and decoder network are connected by
skip connections, prior to pooling and subsequent to a de-convolution
operation, respectively.

Figure 3.6 shows the overall architecture of DeeplabV3 Plus. The
encoder network abstracts the multi-scale contextual information with
help of atrous convolutions, while the decoder module refines the
boundaries of the segmentation results. It combines the advantages
of DilatedFCN and EncoderDecoder by ASPP and one path of skip
connection.

Figure 3.5: The overall structure of UNet. Image adapted from [54].
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Figure 3.6: The overall structure of DeeplabV3 Plus. Image adapted from [55].

3.3 Deep Learning in SAR Image Interpretation

In this section, we choose three typical SAR image interpretation tasks
to demonstrate their notable developments, which correspond to three
di↵erent applications thereafter, in Chapter 4, Chapter 5, Chapter 6,
respectively.

3.3.1 SAR Object Detection

Most of the earlier work on SAR object detection applied deep learning
detection methods in the computer vision field with minor tweaks. The
first attempt can be found in SAR military vehicle detection on the
Moving and Stationary Target Acquisition and Recognition (MSTAR)
dataset [56]. MSTAR is one of the earliest datasets for SAR target
recognition collected by Sandia National Laboratory (SNL). This dataset
is publicly available and contains 10 classes of vehicles, plus one class
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of simple geometric targets. In [57], Chen et al. used a single layer
of convolutional neural network and trained the convolution kernel
on random samples using an unsupervised sparse auto-encoder. This
application shows the potential of deep learning in SAR images. After
that, more deep learning-based methods were developed on MSTAR.
Chen et al. [58] proposed a simple 5-layer CNN, A-ConvNets, to
automatically learn vehicle features from SAR images. Wagner et al. [59]
designed a network on MSTAR, combining a CNN and a Support Vector
Machine (SVM) to incorporate a prior knowledge. Feng et al. [60]
proposed a self-matching Class Activation Mapping (CAM) to visualize
what a CNN learns from SAR images to make a decision. However, due
to the limited samples and rather ideal scenarios of MSTAR, most of
these methods face the overfitting problem that the test accuracies are
above 99%.

Another SAR object detection application is ship detection. There are
several open SAR ship detection datasets developed in the past decades,
such as OpenSARShip [61], SAR-Ship-Dataset [62], and SSDD [63].
These ship detection datasets have a relatively large size of SAR images
and complex ocean backgrounds, which is of benefit for the development
of automatic SAR ship detection. Kang et al. [64] proposed an algorithm
combining CFAR with faster R-CNN. Zhang et al. [65] applied transfer
learning to the SAR ship detection field. In more recent works, Guo et
al. [66] used a feature pyramids fusion module and a head enhancement
module to improve ship detection performance. In [67], a two-stage
detection network SCLANet is proposed for SAR ship detection based
on consistency learning and adversarial learning.

For the vehicle detection and ship detection tasks, the targets manifest
as prominent bright areas on SAR images, which shows the potential to
make a large-scale labeled dataset. However, some of the targets on SAR
images like oil spills and oceanic eddies are very di�cult to be found and
labeled. The lack of high-quality standardized datasets heavily constrains
the development of these applications. Moreover, most of the existing
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SAR detection methods have not considered the specific characteristics
of SAR imagery, which shows the progressive space for improvements.

3.3.2 SAR Semantic Segmentation

The semantic segmentation of SAR images, namely the pixel-wise
classification of SAR images according to ground surface types, is one
of the most important SAR image interpretation applications.

Xie et al. [68] first used Stacked Sparse Autoencoder (SAE) as a
useful strategy to classify di↵erent surface types. Their method was
verified on a real Polarimetric Synthetic Aperture Radar (PolSAR)
image, which covered an agricultural area in Flevoland, the Netherlands.
The results showed the feasibility to represent features for surface
type classification. Geng et al. [69] then designed a deep supervised
and contractive neural network (DSCNN) for SAR image classification,
aiming to solve the problems of speckle noise. Three SAR images
acquired from TerraSAR-X (X-band), RS2 (C-band), and ALOS2 (L-
band) are applied in the experiments for urban area classification. More
recently, di↵erent variations of CNNs have started to be applied in
SAR semantic segmentation. Wu et al. [70] used an FCN based model
with transfer learning to realize PolSAR scene segmentation with small
training sets. Wang et al. [71] designed a deep neural network for scene
segmentation from high-resolution SAR Data. He et al. [72] embedded
low-dimensional representation learned by nonlinear manifold method
into Fully Convolutional Networks (FCN) model to learn deep spatial
features of PolSAR imagery, and then applied SVM for classification,
which proved the e↵ectiveness on Flevoland, Foulum, and San Francisco
datasets for the land cover classification task.

In general, the deep learning-based SAR semantic segmentation
methods have advanced considerably in the past decade. At first, they
focused on the applications of SAE and later they concentrated on CNN.
Like SAR object detection tasks, more specific SAR features and their
complex nature should be considered when we design the SAR semantic
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segmentation models.
There is an OpenSARUrban [73] dataset consisting of Sentinel-1 GRD

images, which can be considered the large-scale benchmark for urban
interpretation. But for other SAR semantic segmentation tasks, large
SAR datasets, especially PolSAR datasets, are still urgently needed.

3.3.3 SAR-optical Data Fusion

SAR-optical data fusion is becoming one of the most promising directions
of deep learning in remote sensing. There are lots of applications that
combined SAR and Optical data, for example, joint analysis of SAR and
optical images [74], matching SAR and optical images [75], automatic
SAR colorization [76], cloud removal from optical images [77], and SAR
and optical fusion semantic segmentation [78], etc.

For the SAR and optical fusion semantic segmentation task, we mainly
face two big challenges at present. The first challenge is the lack of
organized optical and SAR image segmentation datasets. SEN12MS is a
large-scale multi-modal land cover classification dataset [19]. However,
it is highly influenced by noisy data, resulting in di�culties to compare
di↵erent multi-modal fusion networks. Another challenge is the lack of
e↵ective fusion approaches for SAR and optical images. Most of the
SAR and optical fusion methods are still in the early stages [79, 80, 81].
Therefore, e↵ective strategies for SAR and optical data fusion still have
a lot of room to improve.
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Chapter 4

Mask-ES-RCNN: Mask Edge
Enhancement and IoU Score RCNN
for Oceanic Eddy Detection

4.1 Introduction

Oceanic eddies are self-sustaining rotary currents that are distributed
worldwide in the ocean [82]. Their horizontal spatial scales vary from
several hundred meters to several hundred kilometers [83]. They can
cover long distances before dissipating and play a significant role in the
mixing and transport of heat, salt, and biogeochemical tracers across the
global oceans [84, 85, 86]. Moreover, eddies may appear on shipping
routes and in o↵shore regions and consequently a↵ect human marine
activity [87]. Therefore, oceanic eddy detection is of great research
value. Under the influence of ocean currents, sea surface winds, and
bottom topography, oceanic eddies tend to be highly variable [88].
This changeable quality of oceanic eddies makes their detection a more
challenging task.

In the primary stage of their investigation, oceanic eddy data were
collected by in-situ measurements [89]. With the development of
satellite sensors, more and more studies have been conducted based
on remote sensing data like SAR, or satellite-derived parameters such
as Sea Surface Height (SSH), Sea Surface Temperature (SST), and
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Ocean Color/ Chlorophyll (CHL) [90]. SSH products use large spatio-
temporal interpolation between the areas crossed by satellite tracks,
resulting in low-resolution fields and uncertainty in inadequately sampled
areas [91]. Since many other ocean phenomena also impact the sea
surface temperature and surface ocean color, SST and CHL are prone
to propose false positives [92]. Therefore, SAR sensors may be most
e↵ective for the observation of oceanic eddies, due to the high spatial
resolution and the sensitivity of radar signals to natural surfactants on
the water surface [93].

Conventional methods of eddy detection on SAR images [86, 94] are
based on visual inspection and expert knowledge. These methods heavily
rely on labor, showing significant limitations in time and cost, as well as
their generalization ability. Several studies have employed deep learning
methods for automatic eddy detection on SAR images in recent years.
Huang et al. [92, 95] proposed a deep network named DeepEddy to
learn the features of ocean eddies based on the Principal Component
Analysis (PCA) filter convolution neural networks. But their method
only focused on the eddy classification task. It still needs a lot of time
and e↵ort to select potential candidates manually. Zhou et al. [96] used
a detection network called MFNN based on ResNet-50 [97] and ASPP
to detect five types of oceanic phenomena, including eddies. However,
their method does not identify each instance of an eddy and lacks in an
e↵ective utilization of the eddies’ specific characteristics. Furthermore,
a big challenge in automatic oceanic eddy detection is that the amount
of adequately labeled data is insu�cient. There are no open datasets
dedicated to SAR eddy detection, due to the di�culties of SAR data
procurement and interpretation.

To address the above dilemmas, we first build a dataset, namely
SOEDD. Then, an eddy detector based on Mask RCNN [48] and
edge enhancement is applied to get initial results. Inspired by the
initial model, an end-to-end detector called Mask-ES-RCNN is proposed,
aiming at detecting all eddies and their corresponding locations precisely.
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Existing deep learning techniques for SAR eddy detection neglect the
importance of learning the internal edge information of the eddies.
Instead, we enhance edge information to help our model learn features
more e�ciently. At the same time, we focus on the instance segmentation
mask qualities to help in improving the performances. The main
contributions of this chapter can be summarized as follows:

1. A SOEDD is constructed to promote the research in oceanic eddy
detection on SAR images using deep learning methods. The
experimental results of di↵erent deep learning methods on SOEDD
prove its ability and potential to achieve acceptable eddy detection
results under the condition of limited training samples;

2. A Mask RCNN and Edge Enhancement model is first proposed to
detect eddies on SOEDD. It applies Canny edge detection on the
input data to enhance texture information. The final performances
turn out to be better than the RCNN baseline;

3. A Mask-ES-RCNN model is further designed, based on the Mask
RCNN framework with two new branches. A new Edge Head is used
for implicit learning internal texture information of eddy instances.
A new Mask IoU Head focuses on promoting the eddy mask quality.
The combination of Edge Head and Mask IoU Head works well on
SOEDD using a multi-task strategy.

The remainder of this chapter is organized as follows. In Section 4.2,
we introduce the data collection and the SOEDD construction process.
Section 4.3 describes the Mask-RCNN and Edge Enhancement model.
The Mask-ES-RCNN architecture and experimental results are shown
in Section 4.4. Finally, we summarize the chapter with discussion and
insights in Section 4.5.
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4.2 Dataset

4.2.1 Data Collection

A SOEDD is collected from Sentinel-1A SAR data (C band) of the
Western Mediterranean Sea acquired from October 2014 to January
2015, always around 06:00 UTC and 18:00 UTC. Figure 4.1 shows the
location of the study area. The original SAR data were provided by
ESA’s Sentinels Scientific Data Hub [98] and were level 1 products. More
detailed information concerning the processing level can be found in [99].

In our work, all SAR images were downloaded as GRD products,
acquired in Interferometric Wide (IW) or Extra Wide (EW) swath mode.
On the sea surface, the backscatter of the cross-polarized channels (HV
and VH) is usually much lower than the co-polarized channels (VV
and HH) [100], sometimes even close to the noise floor of the SAR
system [101]. Therefore, we only used co-polarized SAR data to construct
the dataset.

Figure 4.1: The Western Mediterranean Sea. The red line outlines the region of interest.
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The eddies’ manual annotations were provided by Annika Buck.
We further make a correction of them by visual detection. Related
eddy visual interpretation methods are detailed described in her master
thesis [102]. Following [103], eddies manifest on SAR images due to
two mechanisms: wave damping due to surface films [104] and surface
roughening due to wave-current interaction [105]. The eddies that
become visible due to surface films are called “black” eddies, and show
up as dark areas or lines. The eddies that become visible due to wave-
current interaction are called “white” eddies and show as bright curved
lines [103]. Notably, only “black” eddy instances are included in the
SOEDD.

Eddies with a diameter less than the first baroclinic Rossby radius
of deformation are considered as submesoscale eddies, and more than
this radius are recognized as mesoscale eddies [106]. In the SOEDD,
most of them are submesoscale eddies (here we choose the radius to be
15km [107]).

The final manual annotations consist of the following key eddy
parameters: positional information (the center coordinate), geometric
information (one auxiliary coordinate at the outer edge, the maximum
and minimum diameter), attribute information (the direction of rotation,
the type “black” or “white”) and the SAR imaging information (date and
time).

4.2.2 Dataset Construction

Based on the collected data, we design our specific construction procedure
of SOEDD. For the downloaded SAR images, all of them are pre-
processed using the Sentinel Application Platform (SNAP) Toolbox
developed by ESA [108]. After applying orbit file and radiometric
calibration, geocoding and land masking are conducted to the SAR
images. According to the eddy coordinate information obtained from
manual annotation data, SAR image subsets with di↵erent numbers of
eddy instances included are exported from SNAP. After that, contrast-
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limited adaptive histogram equalization [109] is applied to all the subsets.
To keep as much information in the images as possible, we refrain
from applying any speckle filters to the SAR images. For the manual
annotations, we convert them automatically to COCO format [110] by
self-designed python scripts. This format is adopted to store bounding
box and pixel-wise classification information.

Our SOEDD is constructed for the instance segmentation task [111].
It consists of 160 training images and 40 testing images containing 260
and 62 eddy instances, respectively. In total, eddies in SOEDD with
diameters ranging from 1.3 km to 15.87 km were included. The size of
SAR images ranges from about 600⇥600 to 1200⇥1200 pixels. The size
distribution of all eddies is shown in Figure 4.2. Most of the eddies in
SOEDD appear in a near-circular shape with 100⇥ 100 to 600⇥ 600 size
in pixels according to their distributions statistics.

In Figure 4.3, we display three pairs of eddy samples with their original
SAR images and COCO format annotations. We assign di↵erent colors
for each eddy instance. The eddy samples vary from each other in terms
of shape structure, scale, and direction.

Figure 4.2: Data statistics of eddy samples in SOEDD: (a) Distribution of the ratio
between the bounding box width and height; (a) distribution of the bounding box width
and height.
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Figure 4.3: Three pairs of eddy samples in SOEDD: original SAR images (left) and
their annotations (right). SAR images ©ESA 2014 2015.
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4.3 Mask RCNN and Edge Enhancement

4.3.1 System Architecture

The inspiration of the Mask RCNN and Edge Enhancement model is
taken from the visual detection of the eddies. The “black” eddies become
visible on SAR images as dark areas or lines. An expert often focuses
primarily on the dark areas or lines and then gives a definitive decision
according to their linear structure and morphological characters. These
characters can be considered as part of texture information.

To make the networks perform in a similar way, we first extract edges
in the original images, thereby enhancing the importance of texture
features and filtering out irrelevant information simultaneously. This
method can be regarded as a simple way to integrate prior knowledge
into deep learning.

The whole training process of Mask RCNN and Edge Enhancement
is divided into two steps: First, edge features are extracted from the
original images, and second, both the detection results and the original
images are transferred into deep learning networks for training.

4.3.1.1 Edge Detection

We choose a classic edge detection algorithm named Canny edge
detection [112]. This is a multi-stage algorithm. First, a Gaussian
filter is applied to the SAR images. This filter is a typical linear
filtering technique, which is e↵ective in speckle noise reduction [113].
In Figure 4.4, the middle column shows the di↵erent e↵ects of filters of
three filter sizes. A filter of 11 × 11 pixel size is picked in order to achieve
the best results.

The filtered images are then used by the Sobel operator to derive
gradients. The Sobel operator uses one filter each for horizontal and
vertical directions, which is described as a first-order gradient operation.
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Figure 4.4: Eddy detection results with di↵erent filter sizes. SAR image acquired at 07
June, 2015, 05:36 UTC, 9.3 km ⇥ 9.3km ©ESA 2015.
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The filters are represented as:

Sx =
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1 2 1

3
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According to gradient magnitude and direction, finally, non-maximum
suppression and hysteresis thresholding are conducted. The results of
eddy edge detection are illustrated in the right column of Figure 4.4.

4.3.1.2 Network Architecture

The proposed network structure is shown in Figure 4.5. The framework
consists of five components: a Canny operator to extract edges, a Feature
Pyramid Network (FPN) [114] as the backbone, an RPN [47] to generate
proposals, a Fast RCNN for bounding box classification and regression,
and a mask branch for eddy instance segmentation.

The original input data is a SAR amplitude image (GRD format) from
a co-polarization channel. Doubling the original input and adding the
edge detection results, we generate a three-channel input. Based on this
input, the RPN generates a large number of first eddy proposals. The
Region of Interest (ROI) features of the eddy proposals are then fed into
the Fast RCNN and the Mask Branch to get more accurate bounding
boxes and eddy segmentation maps.

Since oceanic eddies vary in size, we apply an FPN backbone with
ResNet of depth 50. FPN uses the inherent multi-scale structure of
ResNet networks to construct a feature pyramid that has rich semantics
at all levels and facilitates the detection of eddies at di↵erent scales.

4.3.2 Experimental Setup

Experiments are conducted using an implementation of the reproduced
Mask RCNN based on the Keras framework with a TensorFlow back-
end [115]. For the RPN part, we set five scale {322, 642, 1282, 2562, 5122}
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Figure 4.5: Illustration of the architecture of Mask RCNN and Edge Enhancement.

anchors at five stages {P2, P3, P4, P5, P6}. According to the ratio statistics
of the SOEDD, aspect ratios {0.5, 1, 2} are adopted in the workflow.

All training work is carried out on an NVIDIA Pascal Titan X
GPU. The model is trained until convergence by using the SGD with
a momentum set as 0.9 and a weight decay set as 0.0001. All weights
are initialized by a Xavier initialization. The remaining configuration for
ResNet-50 was done following [48]. Under this setup, the training takes
up to 2 hours. For the testing phase, we use SoftNMS [116] and retain
the top-100 score detections for each image.

We adopt COCO metrics [110] for our experiments, for which we
conduct training and evaluation three times. The COCO-style Average
Precision (AP) score is calculated by taking the Mean AP (mAP) over
10 IoU thresholds, from 0.5 to 0.95, step 0.05 (0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, 0.9, 0.95). The APs at fixed IoU=0.5 and IoU=0.75 are
also used for reporting results respectively.

4.3.3 Results

A group of comparative experiments is designed on the SOEDD to
verify the e↵ectiveness of the proposed approach, mainly focusing on
evaluating the e↵ects of edge detection inputs. Specifically, we compare
the results obtained using a modified Mask RCNN framework with
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three di↵erent inputs: only the original SAR image (Original), only
the edge detection images (Edge), and the original images and edge
detection images together (Original + Edge). The corresponding results
shown in Table 4.1 are averaged values. These values indicate that the
Original+Edge input provided the best AP, about 2.3% higher and 14.4%
higher than Original and Edge, respectively.

Input AP AP0.5 AP0.75

Original 18.7 35.6 20.1

Egde 7.6 8.8 7.9

Original+Edge 21.0 38.5 22.2

Table 4.1: Eddy detection results on di↵erent inputs.

4.3.4 Discussion

In our Mask RCNN and Edge Enhancement model, we apply Canny
edge detection on the input data, which is a straightforward method
to enhance texture information. The final performances turn out to
be better than the Mask RCNN baseline in terms of all APs. This is
probably because the input channel of the edge detection map forces
the model to filter out useless information and to learn more texture-
related features, which are used as a prior knowledge for model learning
on limited SAR data.

This Mask RCNN and Edge Enhancement model is an attempt to
detect eddies in the SOEDD. According to the preliminary experimental
results, we can summarize the inspirations as follows:

1. Although the SOEDD has very limited training samples, we can still
receive acceptable eddy detection results using deep learning-based
methods on this dataset;

2. In theory, deep learning models will automatically extract all
e↵ective features without manual intervention. However, it is
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di�cult for deep learning models to extract essential features in
small datasets, so we could provide prior knowledge to help the
models learn better;

3. In the SOEDD case, combining Mask RCNN with texture features
acquired by edge detection, we finally achieve better performances.
This provides an idea to develop an end-to-end deep learning model
on SOEDD with the help of texture features.

4.4 Mask-ES-RCNN

The Mask RCNN and Edge Enhancement model has proven e↵ective on
SOEDD. But our purpose is to realize an end-to-end deep learning model
with prior knowledge. Edge detection is an intuitive way to enhance
texture information. However, it can only provide a limited guidance
function. The speckle noise and complex ocean background will cause
the poor quality detected edges. Other phenomena like oil spills will also
cause dark lines on SAR images. We need to design more flexible and
e↵ective strategies to incorporate prior knowledge.

An expert decides on the annotations of eddies based on the linear
structure and morphological characters of the dark areas or lines on SAR
images. However, it is extremely hard to annotate all of these dark
pixels as prior knowledge to help the model learn. We observe that
the internal dark areas or lines of eddies are highly related to the eddy
boundaries. If we enhance the importance of the boundary pixels, we can
implicitly learn the internal texture of eddies. Besides, it has been proven
that focusing on mask qualities improves the performance of instance
segmentation tasks [117].

Based on the multi-task learning concept [118], we propose a Mask-
ES-RCNN model to learn boundary information and mask qualities
simultaneously. It is inspired by the design of focusing on instance
boundary in [119] and mask scoring in [117]. In the following section, we
will introduce Mask-ES-RCNN in detail.

49



4.4. Mask-ES-RCNN

4.4.1 System Architecture

4.4.1.1 The Overall Architecture

The detailed architecture of Mask-ES-RCNN is shown in Figure 4.6, and
is composed of five parts: an FPN Backbone Network, an RCNN Head, a
Mask Head, an Edge Head, and a Mask IoU Head. We follow a common
segmentation formula in which an object detection module is utilized
before performing instance-wise segmentation on ROIs.

First, the input SAR images go forward through the FPN backbone
network to extract multi-level bottom-up augmented feature maps. ROI
Align is adopted for extracting the ROIs within the region proposals
from RPN and multi-level feature maps. Second, we perform proposal
classification, bounding box regression (using RCNN head), and mask
predicting (using mask head). After that, the predicted masks are sent
to both Mask IoU Head and Edge Head for predicting Mask IoU and
detecting boundary edges, respectively. Finally, the predicted Mask IoU
will be used in the testing phase to rescore the predicted masks.

Like Mask RCNN, Mask-ES-RCNN also adopts a multi-task learning
strategy. We include two additional boundary learning and mask IoU
regression tasks to help in better learning features. Following the function
design in Mask R-CNN, we add the losses for two new tasks. The total
loss is expressed as:

LMask�ES�RCNN = LRPN+LRCNN+LMask+↵LEdge+�LMask�IoU (4.2)

where LRPN , LRCNN , LMask are standard losses in Mask RCNN for RPN
module, RCNN Head and Mask Head, respectively. LEdge is the loss for
Edge Head, and LMask�IoU is the loss for Mask IoU Head. In the end, we
minimize the loss function consisting of these five parts to attain a good
performance in oceanic eddy detection.

4.4.1.2 The Edge Head

For the edge Head, we use edge detection filters (such as Sobel and
Laplacian) as identity kernel convolutions (kernel size=3).
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Figure 4.6: The network architecture of Mask-ES-RCNN. It consists of an FPN
Backbone, an RCNN Head, a Mask Head, a Mask IoU Head, and an Edge Head.

The Edge Head loss function LEdge based on the Sobel operator is
then expressed as:

LEdge =
1

n

nX

i=1

�
km̂i ⇤ Sx �mi ⇤ Sxk2F + km̂i ⇤ Sy �mi ⇤ Syk2F

�
(4.3)

where n represents the number of training samples in Mask Head (with
a threshold of IoU=0.5 between proposal box and the matched ground
truth), m̂i is the predicted mask, and mi is the matched ground-truth,
k · kF stands for the Frobenius norm.

The Laplacian operation is a second-order gradient operation, which
detects edges in an image with zero crossings. The Laplacian L(x, y) of
an image with pixel values I(x, y) is expressed as:

L(x, y) =
@2I(x, y)

@x2
+

@2I(x, y)

@y2
(4.4)
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The discrete Laplacian can be given as convolution with the following
kernel:

L =
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3

5 (4.5)

In our experiments, we use another version of Laplacian operator with
diagonal additional elements in the kernel:

L =
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3

5 (4.6)

The Edge Head loss function LEdge based on the Laplacian operator
is then expressed as:

LEdge =
1

n

nX

i=1

�
km̂i ⇤ L�mi ⇤ Lk2F

�
(4.7)

In image processing, images are usually smoothed before using
detection filters. We tried Gaussian smoothing before the filters, but
the results turned out to be of no help, so we dropped this design.

4.4.1.3 The Mask IoU Head

For the Mask IoU Head, we use both ROI feature maps and predicted
mask as input. After 4 convolutions (kernel=3) and 3 fully connected
layers, we finally get the Mask IoU values. For each instance, we use the
Mask IoU between the binary mask and the matched ground truth as
the Mask IoU target. The L2 loss is adopted for regressing Mask IoU,
which is defined as:

LMask�IoU =
1

n

nX

i=1

��� ˆmioui �mioui
���
2

(4.8)

where n represents the number of training samples in the Mask Head,
ˆmioui is the predicted mask IoU by Mask IoU Head and mioui is the

Mask IoU target.
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Following the scoring system [117], we also decompose the mask
scoring tasks into mask classification and mask IoU regression, defined
as:

scoremask = scorecls · scoreiou (4.9)

where scorecls is the classification score in RCNN Head and scoreiou is
the Mask Iou value in Mask IoU Head. We use scoremask as the final
confidence score to rank top-k target masks in the testing phase.

4.4.2 Experimental Setup

We set hyper-parameters mainly following on the Mask R-CNN baseline.
The base model is ResNet 50 and pre-trained on ImageNet, with
the standard FPN [114]. We randomly initialize all new layers by
drawing weights from a zero-mean Gaussian distribution with a standard
deviation of 0.001. Synchronized SGD is adopted as an optimizer with
momentum 0.9 and weight decay 0.0001. The training rate is 0.001 for all
experiments. It takes around 2 hours to complete training the network
with an NVIDIA Pascal Titan X GPU.

We resize the input images to have 512 pixels along the short axis
and 1024 along the long axis for both training and testing. We use
SoftNMS [116] and retain the top-100 score detections for each image.

4.4.3 Quantitative Results

A comparison of di↵erent detectors on SOEDD is shown in Table 4.2. The
Mask R-CNN framework serves as a state-of-the-art baseline. The Mask-
ES-RCNN achieves the best results in all AP , AP0.5, AP0.75 metrics.
Especially for AP0.5, when the evaluation method is not so strict, it can
exceed the baseline by 12.9% and Mask RCNN and Edge Enhancement
by 10%, respectively.

We conduct comparison experiments on Mask IoU Head, Edge Head,
and a combination of the two Heads, to verify the e↵ectiveness of our
proposed Mask-ES-RCNN. Table 4.3 shows the ablation study results.
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Method Backbone AP AP0.5 AP0.75

Mask RCNN ResNet-50-FPN 18.7 35.6 20.1

Mask RCNN and Edge Enhancement ResNet-50-FPN 21.0 38.5 22.2

Mask-ES-RCNN ResNet-50-FPN 24.8 48.5 27.1

Table 4.2: Eddy detection results using di↵erent methods.

Both the Mask IoU Head (including Mask re-score mechanism in the
test phase) and Edge Head improve our model compared with the Mask
R-CNN baseline. Further, if we combine the Mask IoU Head and Edge
Head, we can obtain better results than using any one of them alone. This
proves that multi-task learning help in learning useful representations
from the same input images, allowing the gradient from two tasks to
influence shared feature maps. Experiments with di↵erent weights of
Edge Head and Mask IoU Head are also conducted. We find that the
model achieves the best experiment results if we set these two Heads with
equal weight.

Backbone Mask IoU Head Laplace Head Sobel Head AP AP0.5 AP0.75

ResNet-50-FPN

18.7 35.6 20.1
p

23.3 45.0 25.1
p

22.9 44.9 24.8
p

23.6 46.7 25.9
p p

24.8 48.5 27.1

Table 4.3: Eddy detection results on di↵erent design choices of the Mask IoU Head and
Edge Head.

For the Edge Head, the influence of edge detection filters is analyzed.
Sobel filter outperforms the Laplacian filter in our model with a 0.7%
relative improvement in terms of AP. This situation might be explained
by the two filters structure of the Sobel filter, which means the eddy
orientation information can also be used during the back-propagation
process.
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4.4.4 Visualization Results

In addition to the accuracy evaluations, the visualization of detected
eddy samples also presents an overview of the e↵ectiveness of Mask-ES-
RCNN. We set the predicted eddy mask with confidence scores above 0.9
and an NMS with a threshold of 0.1 to remove duplication.

As shown in Figure 4.7, Mask-ES-RCNN shows the strong capacity
to detect SAR oceanic eddies varying in scale, rotational direction,
and morphological character. The model can successfully detect eddies
under the conditions of complex ocean background and indistinct texture
information, which are even very hard for experts to find.

Figure 4.7: Acceptable visualization results of Mask-ES-RCNN.

Figure 4.8 displays some unacceptable prediction results of Mask-ES-
RCNN to demonstrate further optimizing of the our model is still needed.
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Figure 4.8: Unacceptable visualization results of Mask-ES-RCNN: (a) densely packed
eddies; (b) common false alarms; (c) undetected eddy due to unusual morphological
character; (d) undetected eddy due to large aspect.

For densely packed eddy instances, as shown in Figure 4.8 (a), the
adjacent mask predictions will a↵ect each other, which results in poor
mask qualities. Dynamic refined network [120] and rotated bounding box
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[121] methods can be adopted to tackle this problem.
Figure 4.8 (b) gives typical examples of false alarms. If we observe

the inner texture features of blue and green instances, we can find the
false alarms have connected black spots (which are possibly caused by
wind or other natural phenomena) to confuse the deep learning model. It
is therefore recommended to use additional information like wind speed
together with SAR images to reduce the risk of false alarms.

In contrast, our model was unable to find eddies in some cases. In
Figure 4.8 (c), an ordinary aspect ratio eddy cannot be detected, because
of the unusual morphological character. As Figure 4.8 (d) illustrates,
the large eddy manifests in open surface structures which are hard for
current detectors to identify. For the missing detection problem, we may
increase the diversity of SOEDD or use a more realistic setting like few-
shot learning [122].

4.5 Summary

In this chapter, we construct the SOEDD for oceanic eddy detection on
SAR images. Two deep learning methods are proposed based on SOEDD.
The experimental results of the Mask RCNN and Edge Enhancement
model prove the potential to predict acceptable eddy detection results
from the SOEDD, as well as the e↵ectiveness of incorporating prior
knowledge on a small SAR dataset. The Mask-ES-RCNN model
outperforms the Mask RCNN and Edge Enhancement model on SOEDD
in terms of all APs. The combination of the Edge Head and Mask
IoU Head works well on the SAR eddy detection task. The Edge Head
realizes implicit learning of internal texture information and the Mask
IoU Head improves the quality of the predicted mask. They can be
further generalized to other target detection tasks on SAR images.

The performances will be further improved by enriching the dataset
both in size and scope, and by developing more suitable detection
algorithms on SAR images. We only use the GRD format of SAR
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images in SOEDD, but more information can be used to help the model
learn. For our eddy detection case, the bounding boxes are inherently
ambiguous. Therefore, in the future, we can propose a new evaluation
system instead of adopting common assessment methods.
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Chapter 5

TE-UNet: Texture Enhancement
UNet for Intertidal Sediments and
Habitats Classification

5.1 Introduction

The intertidal zone is the coastal area, where the ocean meets the land
within the tidal range. Intertidal environments have a complex mosaic of
surfaces, including barrier islands, sandy and mixed sediments, seagrass
meadows, etc [123]. Influenced by tidal processes, the intertidal zone
is exposed to highly dynamic conditions, and it shows high ecological
diversity and productivity [124].

Intertidal ecosystems can provide crucial ecological services such as
nutrient cycling [125], carbon storage [126], storm surge protection [127]
and nursery habitats for aquatic life [128]. Moreover, the intertidal
areas can also be reclaimed for commercial and recreational usage [129].
However, intertidal flats also represent a typical environmentally fragile
and sensitive zone, which can be easily a↵ected by global climate change,
sea-level rise, species invasion, and human activities [130]. In recent
years, the intertidal zone has been exposed to anthropogenic threats
such as (over-) fishing, high nutrient loads, oil and gas production, or
tourism [131], which makes it necessary to realize the intertidal cover
classification and continuous monitoring.
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In the early stages, the understanding of valuable coastal environments
is limited by the lack of data. In-situ observations of intertidal flats
are sparse since most of the areas are inaccessible [132]. Satellite
remote sensing provides an important resource for monitoring coastal
zones [131]. With the fast development of SAR sensors, multi-band
and multi-polarization SAR data has been applied for the classification
of the intertidal zone in some research [133, 130, 134, 135]. Gade et
al. [136] presented a method applied to dual-frequency, co-polarized
Spaceborne Imaging Radar-C/X-Band SAR (SIR-C/X-SAR) data for
sediments classification. Van Beijima et al. [133] investigated the use of
S-band and X-band quad-polarimetric SAR data to map natural coastal
salt marsh vegetation habitats. Wang et al. [132] proposed a classification
scheme for intertidal sediments and habitats and verified it for di↵erent
bands of SAR data (L-band, C-band, and X-band, respectively).

However, most existing methods adopt traditional machine learning
algorithms to develop classification schemes. It is di�cult for them
to adaptively capture features and learn classifiers from specific SAR
datasets [137]. At the same time, they only design and verify their models
on di↵erent bands of SAR data separately, which is not true “multi-
band”. Besides, existing models divide the surfaces of the intertidal
zone into very limited types. The coarse results usually cannot meet the
demands of end-users.

In recent years, the framework of deep learning has improved the state-
of-the-art in many computer vision tasks, as well as in remote sensing
applications [138, 139, 140, 15]. Compared with pre-defined features
using machine learning, the features from data-driven deep learning
models prove to be more robust under various influential factors [141,
142], which is especially useful for the dynamic intertidal zone. Therefore,
deep learning technology o↵ers promise for building new data-driven
models for sediments and habitats classification on intertidal flats.

Generally, several CNN-based semantic segmentation methods on
SAR images have been proposed [70, 71]. Although those methods can
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extract classification features from SAR images, the abundant texture
information can be further extracted, especially on small SAR datasets.
In the intertidal zone, texture features have proved to be very useful in
classifying sediments [143] and habitats [144] on intertidal flats.

Texture features are composed of local structural and global statistical
properties [145]. Deep learning models are good at extracting local
structural features like boundaries. However, there are no clear systems
to extract and utilize global statistical texture information for CNN
semantic segmentation. In [146], Zhu et al. proved that easily
computable textural features have general applicability for a wide
variety of image-classification computer vision tasks. Inspired by their
work, we design a TE-UNet model based on the UNet [54] framework,
taking statistical texture into consideration, when classifying intertidal
sediments and habitats on SAR imagery. We evaluate our proposed TE-
UNet model using full-polarization SAR data from Radarsat-2 (C band)
and ALOS-2 (L band).

In summary, there are four main advantages of the proposed TE-UNet
model:

1. Instead of only using four intensity channels (VV, VH, HV, and
HH) of quad-polarization SAR data, we also combine decomposition
results as TE-UNet inputs to utilize polarimetric information;

2. Radarsat-2 (C band) and ALOS-2 (L band) SAR images are con-
catenated in the channel dimension to realize multi-band learning
using TE-UNet;

3. Global statistical texture information is explicitly learned in the
TE-UNet architecture;

4. TE-UNet is used for fine-grained SAR image classification on
intertidal flats: sediments are further classified into bright sands
(beach) and other sediments; habitats are further classified as
bivalves, seagrass, and thin coverage of vegetation or bivalves.
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The remainder of this chapter is organized as follows: Section 5.2
introduces the details of the dataset, including the area of interest in
Section 5.2.1 and SAR data used herein in Section 5.2.2. In Section
5.3, we describe the whole processing chain diagram and the structural
details of the TE-UNet model. Verification methods and comprehensive
analyses of the model results are shown in Section 5.4. Finally, Section
5.5 concludes this chapter.

5.2 Dataset

5.2.1 Study Area

As shown in Figure 5.1, the study area is located in the northern part of
the German Wadden Sea, between the islands of Amrum and Föhr. This
area belongs to the world’s largest coherent intertidal area, the Wadden
Sea, stretching over more than 500km along the North Sea coasts of the
Netherlands, Denmark, and Germany [123, 147].

The sediments (pure or mixed with mud) are the dominating the
surface type of this area, and their distribution strongly depends on the
local hydrodynamic forces. Vegetated areas and bivalve beds (mainly
Pacific oysters and cockles, but also blue mussels) are also contained in
this region [135]. In order to realize the fine-grained classification, we
divide surfaces of the study area into six types: land, seagrass, bivalves,
bright sands (beach), water, sediments, and thin coverage of vegetation
or bivalves.

Figure 5.2 is the classification map in the study area (color coding).
The bright sands (beach), sediments, and bivalves classification infor-
mation is derived from Landsat-8 OLI data acquired in the years 2014-
2016 (© Brockmann Consult 2020). The classification of seagrass and
bivalves is based on SPOT-4 data acquired in August 2015 and April
2016 (© Brockmann Consult 2020). The bivalves locations in SPOT-4
are used to adjust derived information from Landsat-8 OLI.

We split the whole classification map (1187 × 1699 pixel) into three
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Figure 5.1: Area of interest (blue rectangle in the large map) on the German North Sea
coast, east of the island of Amrum and southwest of the island of Föhr.

parts. Figure 5.2 (a), (b) are used for training, and (c) is used for testing.
It indicates that we use around 70% of data for training and 30% of data
for testing. So there is no data leakage in the testing process. The
bivalves, seagrass, and thin coverage classes are very limited both in the
training and testing sites. The beach class only has small samples in the
testing sites while it accounts for a relatively high portion in the training
site. In theory, these imbalanced data and the distributional di↵erences
between training and testing datasets will have an adverse e↵ect on final
classification results.
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Figure 5.2: Classification map in the study area, which is split into three pieces: (c) is
used for training, (a) and (b) are reserved for testing.
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5.2.2 PolSAR Data

Two Single-Look Complex (SLC) SAR images of the study area are used.
Their pixel sizes range from 1 m × 1 m to 5 m × 5 m. Figure 5.3 shows
VV-polarization images of RS2 and ALOS2 acquired on 24 December
2015 and 29 February 2016, respectively. The beach and seagrass classes
appear as dark patches. This may be caused by remnant water, which
flattens the surface. The bivalves make the intertidal surface rougher, so
they show as bright patches. More information on the SAR data can be
found in Table 5.1.

Figure 5.3: SAR images of the study area acquired shortly after low tide: (a) RS2
VV-polarization channel, (b) ALOS2 VV-polarization channel. RS2: ©MacDonald,
Dettwiler and Associates Ltd. 2015; ALOS2: ©JAXA 2016.
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sensor/band date/time low tide time/water level water level

RS2/C 24 Dec 2015/05:43 UTC 05:25 UTC/-103 cm -94 cm

ALOS2/L 29 Feb 2016/23:10 UTC 23:46 UTC/-176 cm -171 cm

Table 5.1: SAR acquisition information. Water levels are measured at the tide station
in Amrum, Hafen (Wittdünn).

5.3 System Architecture

The classification systems are divided into two parts. The first part
is pre-processing of SAR and classification data. The second part is
to use the processed results to feed the TE-UNet model. We will give
detailed descriptions of these two parts in Section 5.3.1 and Section 5.3.2,
respectively.

5.3.1 Pre-processing Procedure

The flow diagram in Figure 5.4 shows the data processing flow in this
chapter. The pre-processing of SAR images and classification results is
displayed in blue blocks and green blocks separately. The training and
testing phases of TE-UNet are displayed in yellow blocks.

During the pre-processing phase of the PolSAR images, we first
apply the radiometric calibration on RS2 and ALOS2 quad-polarization
SAR data to convert the image pixel values from Digital Number
(DN) to a standard geophysical measurement unit of radar backscatter.
Next, polarization scattering matrices [S] are transformed to coherence
matrices [T]. We then apply a Multi-looking operation to suppress
speckle noises. After that, Slant to Ground Range conversion and Terrain
Correction is also conducted to remove geometry-dependent radiometric
distortions. A Refined Lee polarization filter with a window size 7 ×
7 (range direction × azimuth direction) is applied for further speckle
reduction. We then apply polarimetric decomposition algorithms to
extract polarized information.

Rational Polynomial Coe�cient (RPC) Orthorectification and resizing
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Figure 5.4: Processing diagram for TE-UNet.

operations are conducted on the classification data from SPOT-4 and
Landsat 8. We finally reproject both SAR and classification data to
the Universal Transverse Mercator (UTM) zone 32N system and realize
geo-registration under the same geographical coordinates. Finally, the
processed SAR data and classification map are divided into training sets
and testing sets for the TE-UNet model.
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5.3.2 SAR Polarimetric Decomposition

During the classification process, two classic polarimetric decomposition
algorithms are involved: Cloude-Pottier (CP) and Freeman-Durden
(FD). The rationale of polarimetric decomposition techniques is to
extract important information about the structure of the ground target,
the scattering mechanism of the return signals, and the apparent shift in
the phase of the signal from the target [148].

The CP polarimetric decomposition uses eigenvalues and eigenvectors
to describe the dominant scattering mechanisms of each target [30]. We
can use three parameters with physical meanings for CP decomposition
analysis:

1. Entropy to characterize scattering randomness (represented by H);

2. Anisotropy to measure the contribution of one scattering mecha-
nism to total scattering power (represented by AN);

3. Alpha angle to provide information, which scatter mechanism
dominates, ranging between 0 and 90 degrees (represented by ↵).

The FD polarimetric decomposition is a physically-based model,
which can be used to describe the polarimetric backscatter from naturally
occurring scatterers [29]. We can extract three orthogonal scattering
components of the FD model:

1. Volume scatter from a cloud of randomly oriented dipoles (repre-
sented by vol);

2. Double-bounce scatter from a pair of orthogonal surfaces with
di↵erent dielectric constants (represented by dbl);

3. First-order Bragg scatter from a moderately rough surface
(represented by odd).
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5.3.3 Texture Enhancement UNet

5.3.3.1 The Whole Architecture

Figure 5.5 illustrates the whole network architecture of TE-UNet, which
is based on the state-of-the-art model UNet [54]. This network is inspired
by the Statistical Texture Learning Network (STL-Net) for semantic
segmentation [146].

Figure 5.5: Illustration of the overall architecture of TE-UNet.

Recent deep learning-based semantic segmentation models focus on
learning high-level features. The abundant details and structural
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information in PolSAR images would be ignored in this framework.
Researchers started to use skip connections to preserve the low-level
features. However, the extracted low-level features are often of low
quality, especially for SAR images with speckle noise. Moreover, the
ambiguous texture details will be gradually ignored in the training
process of the model.

When we use the traditional methods to realize a SAR image
classification in the intertidal zone, global textural information like
intensity column diagrams will commonly be considered. Based on this
idea, TE-UNet is proposed by using TEM to preserve and transfer better
low-level features.

The TE-UNet consists of three parts: an encoder to extract features,
a decoder to generate a semantic segmentation mask, and a TEM module
to replace plain skip connection in the first layer to incorporate global
textual information.

There are four convolution layers in the encoding phase and four
corresponding deconvolution layers in the decoding phase, followed by
a 1 × 1 convolution to output the prediction mask. The feature maps
from the same scale encoder layer are directly received in the decoder
except for the first layer. We set F in Figure 5.5 to be 64. The details
of TEM will be introduced in the next part of this section.

5.3.3.2 Texture Enhancement Module

The TEM is used to enhance texture details by learning the global
distribution of low-level features. The inputs are the feature maps
from the first encoding layer. The outputs are directly sent to the
corresponding decoding layer.

We tried to concatenate the TEM output and the encoding feature
maps and then sent them to the decoding layer, but the results were
worse, even compared with UNet. The reason may be that we conduct
a TEM operation on encoding feature maps that are filled with local
textural information. The output of TEM has already captured enough
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low-level details. Only using the TEM output can keep the learned
textural features without adding noise, which is more e↵ective in our
limited SAR dataset. Therefore, the plain skip connection is not used in
TEM.

The input feature maps of TEM are denoted as A 2 RH⇥W⇥C .
H,W,C refer to the height, width, and channel numbers of feature maps,
respectively. After applying global average pooling on each feature map,
we get the global average feature map g 2 R1⇥1⇥C . The cosine similarity
between g and A is calculated on every pixel of the feature map and is
denoted as:

Si,j =
g ·Ai,j

kgk2 · kAi,jk2
(5.1)

where Ai,j represents each pixel in the feature maps Ai,j(i 2 [1,W ], j 2
[1, H]), and Si,j(i 2 [1,W ], j 2 [1, H]) represents the cosine similarity of
each pixel.

The S is devided into N parts equally: L = [L1, L2, . . . , LN ].
Si,j(i 2 [1,W ], j 2 [1, H]) is then quantized with N functions to get
the presentation of the quantization encoding matrix, E 2 RH⇥W⇥N :

Ei,n =

⇢
1� |Ln � Si| if � 0.5

N
 Ln � Si <

0.5

N

0 else
(5.2)

where n is the nth level of Ln. Then we concatenate L and the average
E on each feature map to get the quantization counting map, C 2 RN⇥2:

C = Concat

 
L,

P
HW

i=1
Ei,nP

N

n=1

P
HW

i=1
Ei,n

!
(5.3)

where Concat means concatenate operation in the channel dimension.
Since C encodes the relative statistics of A, the global average feature

map g is then concatenated to get the absolute relative statistics of
D.The g is upsampled to RN⇥C and the C are sent to MLP to increase
dimension. The final D can be expressed as:

D = Concat(MLP (C), g) (5.4)
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Like traditional histogram equalization methods, the statistics map
D needs to reconstruct quantization levels. This is realized by a Graph
Reasoning Module. We perform the relation reasoning via a simple GCN
in the interaction space:

X = Softmax
⇣
�1 (D)T · �2 (D)

⌘
(5.5)

L0 = �3(D) ·X (5.6)

where L0 is the resonstructed level, and �1,�2,�3 operations are con-
ducted by 1 × 1 convolution. The final output is the quantization
encoding map E on L0 realized by matrix multiplication:

R = L0 · E (5.7)

The reshaped RC2⇥H⇥W is the final output of the TEM.

5.4 Experiments

5.4.1 Experimental Setup

All experiments are implemented in PyTorch and conducted on a GeForce
RTX 2080 Ti GPU. We train the models by using the Adam optimizer
with a momentum set as 0.9 and a weight decay set as 0.0005. An initial
learning rate of 0.0001 is used. We use the common cross entropy loss
for the multi-class segmentation task.

During the training process, we randomly crop the training site
in Figure 5.3 (c) into patches of size 512 ⇥ 512. Random flipping
augmentation is performed on the training dataset. The models are
trained with a batch size of 4 and roughly 1⇥ 105 steps.

5.4.2 Evaluation Metrics

We evaluate the semantic segmentation results of di↵erent methods
based on five metrics: per-class F1 score, Mean F1 score (mF1), Mean
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Intersection over Union (mIoU), Average Accuracy (AA), and Overall
Accuracy (OA).

Comparing the reference classifications and prediction results, we can
get the confusion matrix:

P = {pij} 2 Nk⇥k (5.8)

where pij represents the number of pixels that belong to class i and are
identified as class j, k is the number of classes, which is equal to seven
in our work. Especially, pii is the number of pixels that are classified
correctly. The corresponding average precision (P ) and recall (R) can be
denoted as:

P =
1

k

kX

i=1

piiP
k

j=1
pji

, R =
1

k

kX

i=1

piiP
k

j=1
pij

(5.9)

The F1-score is a harmonic mean between P and R, which is useful
for imbalanced classes. We calculate it by:

mF1 = 2⇥ P ⇥R

P +R
(5.10)

The mIoU is one of the stringent metrics used for evaluation of image
segmentation that takes every pixel into account, and is expressed as :

mIoU =
1

k

kX

i=1

piiP
k

j=1
pij +

P
k

j=1
pji � pii

(5.11)

The OA is the ratio between the number of correctly classified pixels
to the total number of pixels in the testing set, and it is calculated as:

OA =

P
k

i=1
piiP

k

i=1

P
k

j=1
pij

(5.12)

The AA refers to the average result of accuracies in all classes:

AA =
1

k

kX

i=1

piiP
k

j=1,j 6=i
pij + pii

(5.13)
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5.4.3 Comparison Results

We compare our TE-UNet model with two popular state-of-the-art
semantic segmentation models, Deeplab V3 Plus [55] and UNet [54]. Two
frameworks specially designed for SAR images semantic segmentation
like HR-SARNet [71] and TL-FCN [70] are also used as control groups.
For a comparison, we keep the same hyper-parameters of TE-UNet like
learning rate, batch size, optimizer, etc.

Note that we use the 14-channel input for all models: 3 CP
components channels (H, AN, ↵) and 4 intensity channels (HH, HV, VH,
and VV) for both RS2 and ALOS2 SAR data. We choose this setting
according to the ablation study results in Section 5.4.4.

Table 5.2 summarizes the quantitative results of di↵erent models.
In general, we observe that our TE-UNet obtains the best results in
mF1,mIoU and AA, and is only slightly (0.30%) below Deeplab V3
Plus in terms of OA. Since we have very limited training and testing
pixel samples of classes seagrass, bivalves, beach, and thin coverage,
their metrics are not as good as those of land, water, and sediments.
Also note that the features for the low-accuracy classes are also more
di�cult to learn. Considering our sediments and habitats classification
as an extreme sample imbalance task, the AA metric can better reflect
the model capabilities, as compared to OA. In fact, the visualization
results in Figure 5.6 show that Deeplab V3 Plus is overfitting to classes
land, water, and sediments.

Model
F1(%)

mF1(%) mIoU(%) AA(%) OA(%)
land Seagrass Bivalves Beach Water Sediments Thin Coverage

DeeplabV3 Plus 97.49 18.09 0.28 3.37 79.73 78.74 0.00 39.67 34.02 40.21 84.25

UNet 96.39 13.83 3.18 15.09 79.65 77.23 3.09 41.21 34.41 42.87 83.04

HR-SARNet 96.31 18.39 10.05 3.99 78.91 78.32 0.00 40.85 34.27 41.80 83.14

TL-FCN 95.82 9.05 9.30 16.08 80.17 77.25 0.00 41.09 34.31 42.52 83.01

TE-UNet 97.11 18.87 2.30 18.49 79.63 77.75 1.49 42.23 35.43 43.69 83.95

Table 5.2: Comparison of quantitative results of di↵erent instance segmentation models
for intertidal sediments and habitats classification.
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Figure 5.6: Comparison of segmented maps obtained by di↵erent models on testing
areas. Pink rectangles highlight some locations, where the proposed TE-UNet model
produces finer segmentation predictions.

Compared with the basic framework UNet, our proposed TE-UNet
increases the mean metrics mF1,mIoU,AA and OA by 1.02%, 1.02%,
0.82%, and 0.91%, respectively, which proves the e↵ectiveness of the
texture enhancement module. We also note that the basic UNet
outperforms the complicated HR-SARNet and TL-FCN in terms of
mF1,mIoU , and AA. Our application is maybe not content with the
very high-resolution conditions in HR-SARNet. The new branches for
FCN in TL-FCN have also been invalid in our dataset.

In order to intuitively display the superiority of TE-UNet, we show
the prediction masks of the testing sites in Figure 5.6. Compared with
the UNet baseline, our proposed model seems to be capable of predicting
relatively smoothed but precise locations, which is likely an e↵ect of
TEM.

It is noteworthy that RS2 and ALOS2 images are acquired at
di↵erent times in di↵erent tide cycles, resulting in di↵erent environmental
backgrounds (e.g. wind speed, weather conditions) and water levels in
the same area. Apart from the frequency, these factors will also influence

75



5.4. Experiments

the radar backscatter recorded by RS2 and ALOS2 sensors.

5.4.4 Ablation Study

We comprehensively evaluate our TE-UNet model on di↵erent input
sources. For each band, the CPI (H, AN, ↵, HH, HV, VH, and VV)
data is adopted as input. We use the same hyper-parameters in all
experiments.

5.4.4.1 Multi-band Input

We first study the design choices of the RS2 (C band) and ALOS2 (L
band) multi-band input. There are five design choices in Table 5.3 and
Figure 5.7. The RS2 and ALOS2 are di↵erent 7-channel SAR data, the
“Training” keyword means that we use this kind of data as TE-UNet
input, and the “Testing” keyword means that we use this kind of data
for performance testing. The “+” operation between RS2 and ALOS2
means that we concatenate them in the channel dimension.

Training Dataset Testing Dataset
F1(%)

mF1(%) mIoU(%) AA(%) OA(%)
land Seagrass Bivalves Beach Water Sediments Thin Coverage

RS2 RS2 93.01 15.28 0.11 11.22 76.82 73.65 0.72 38.69 31.75 40.53 79.93

ALOS2 RS2 24.32 1.13 0.00 0.09 65.93 35.33 0.00 18.11 12.16 22.81 39.92

RS2 ALOS2 87.21 0.94 0.00 2.53 0.42 8.18 0.00 14.18 11.94 23.03 47.30

ALOS2 ALOS2 95.61 17.90 5.70 18.15 77.77 77.87 1.91 42.13 34.48 42.29 82.73

RS2+ALOS2 RS2+ALOS2 97.11 18.87 2.30 18.49 79.63 77.75 1.49 42.23 35.43 43.69 83.95

Table 5.3: Comparison of quantitative results of di↵erent train and test dataset inputs
for intertidal sediments and habitats classification.

The quantitative results are shown in Table 5.3. The “Training: RS2
+ ALOS2, Testing: RS2 + ALOS2” setting obtains the best results
in all average metrics, which proves that a combination of SAR data
from di↵erent bands indeed helps the model in learning. The ALOS2
data behaves much better compared with the RS2 data. A possible
explanation may be that the ALOS2 data (L band) emits longer waves
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whose penetration ability is stronger. This ability is very important to
classify cover types in the intertidal zone like thin coverage.

The results of the “Training: ALOS2, Testing: ALOS2” setting are
very close to our best results. Adding RS2 data makes the performance of
seagrass, bivalves, and thin coverage classes drop slightly. More complex
multi-band fusion networks can be designed for better feature extraction.
When the training and testing data are from di↵erent bands, a dramatic
drop happens in all the metrics. This result shows that SAR image
features of di↵erent bands reflect di↵erent backscatter mechanisms.

The visualization results of the five design choices are shown in
Figure 5.7. The seagrass, bivalves, and thin coverage classes nearly
disappear under training and testing for the RS2 setting. But the
classification of training and testing on the ALOS2 setting gets the
prediction maps closer to our proposed method. The models trained
and tested from di↵erent bands data confuse the dominating pixels and
lose the power of detecting classes bivalves and thin coverage.

5.4.4.2 Multi-polarization Input

We studied the design choices of a combination of multi-polarization SAR
input. There are seven design choices in Table 5.4 and Figure 5.8. The “I
or FD or CP” keyword means we only use either four intensity channels
(HH, HV, VH, and VV) or three FD components or three CP components
as the TE-UNet input. The FD and CP components are combined using
band concatenation as “FDCP” or unified with four intensity channels
separately as “FDI” or “CPI”. In the last control group, we used intensity
channels, FD components, and CP components together as “FDCPI”.

Table 5.4 displays quantitative results of seven comparison groups.
The “CPI” setting achieves the best metrics of all the average per-
formance among them. In theory, the “FDCPI” setting contains the
most information compared with other settings, but it only slightly
(0.29%) improves the sediment class metrics compared with “CPI”. One
possible reason is that the concatenation method is too simple for fusion

77



5.4. Experiments

Figure 5.7: Comparison of segmented maps obtained by di↵erent training datasets
and testing datasets on testing areas. Pink rectangles highlight some locations where
the proposed method (Training: RS2+ALOS2, Testing: RS2+ALOS2) produces finer
segmentation predictions.
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intensity and polarimetric decomposition information. This information
may interfere with each other during feature extractions.

In general, the di↵erent combinations of FD components, CP compo-
nents, and intensity channels improve the final average metrics compared
with using them alone.

Input
F1(%)

mF1(%) mIoU(%) AA(%) OA(%)
land Seagrass Bivalves Beach Water Sediments Thin Coverage

I 95.65 9.39 7.36 13.31 78.31 76.93 2.94 40.56 33.69 41.02 82.48

FD 96.25 10.73 5.40 8.09 77.18 77.36 2.63 39.66 33.24 39.64 82.93

CP 96.34 12.35 1.56 14.94 77.82 77.89 0.00 40.13 33.70 40.76 83.51

FDI 96.14 11.25 6.69 13.58 79.41 77.43 1.71 40.89 34.17 41.97 83.06

CPI 97.11 18.87 2.30 18.49 79.63 77.75 1.49 42.23 35.43 43.69 83.95

FDCP 94.47 18.16 11.86 14.18 66.03 72.94 0.26 39.70 31.47 42.74 78.07

FDCPI 96.34 14.44 3.09 16.13 78.97 78.04 1.03 41.15 34.40 41.99 83.55

Table 5.4: Comparison of quantitative results of di↵erent input combinations of
intensity channels (I), FD components (FD) and CP components (CP) for intertidal
sediments and habitats classification.

Figure 5.8 is the visualization results of the seven design choices.
The “CP” setting is good at identifying the sediment class, but fails
to detect thin coverage class, which is in complete agreement with the
quantitative results. The “FDCP” setting helps a lot to find the bivalve
areas. A possible interpretation is that polarization characteristics can
better reflect the features of specific classes like bivalves compared with
the intensity information. This result also proves the necessity of adding
di↵erent polarimetric decomposition components as the model inputs.

5.5 Summary

In this chapter, we propose a TE-UNet model for classification of
sediments and habitats in the intertidal zone. The experimental results
demonstrate that our model provides high-quality semantic segmentation
on multi-band and multi-polarization SAR images.
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Figure 5.8: Comparison of segmented maps obtained by di↵erent input channels on
testing areas. Pink rectangles highlight some locations where the proposed method
(Input: CPI channels) produces finer segmentation predictions.
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The application of the texture enhancement module improves the
performance by explicitly enhancing the global texture information
learning. Compared with the UNet baseline, TE-UNet improves the
classification accuracies in terms of all average metrics. The visualization
results also prove that TE-UNet can provide finer resolutions.

The comparative experimental study proves the e↵ectiveness and po-
tential of the multi-band and multi-polarization system for classification
tasks in the intertidal zone. For the multi-band input, TE-UNet learns
di↵erent features on SAR images from di↵erent bands. In general,
we can obtain better classification results on ALOS2 (L-band) data
compared with RS2 (C-band) data, due to the longer wavelength. But
if we combine these two bands, we can obtain the best results. For
the multi-frequency input, the CPI setting achieves the best average
performance among the seven comparison groups. CP components are
more e↵ective than FD components in our work. CP components and
intensity channels contain di↵erent features of the surface types of the
intertidal zone. Therefore, the combination of two of them finally
improves the classification performance compared with using them alone.

In future work, we will continue to carry out the design of the
texture enhancement. Besides, more suitable fusion mechanisms for
multi-band and multi-polarization SAR data can be designed. We
can add more polarimetric decomposition components like the DERD
parameter [134] to distinguish sediments and habitats on intertidal flats.
For future intertidal monitoring, the combination of multi-sensor (e.g.,
SAR and optical data) shows potential to improve the model performance
significantly.
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Chapter 6

SOF-UNet: SAR and Optical
Fusion UNet for Land Cover
Classification

6.1 Introduction

Land cover is the natural and man-made characteristics of the Earth’s
surface, including forest, grassland, water, human infrastructure and
etc [149]. Classification of land cover is often helpful in various applica-
tions like land use planning, climate change detection, natural disasters
prediction, and environmental protection [150, 151, 152]. Nowadays,
the application of remote sensing data for land cover classification has
received widespread attention [153]. With the increasing amount of large-
scale multi-sensor remote sensing imagery, it is quite urgent to realize
automatic land cover classification.

CNNs [34] have achieved tremendous success in the automatic im-
age segmentation task. Some classic segmentation architectures like
UNet [54] and DeeplabV3 Plus [55] are successfully applied in various
fields for accurate pixel-wise classification. Recently, more and more deep
learning-based methods have been developed for land cover classification
using remote sensing data [154, 155, 156, 157]. However, most of
these methods only use uni-modal data (optical or SAR). Extensive
research shows that the fusion of SAR data helps to discriminate di↵erent
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types of land cover classes, which are indistinguishable in optical data,
due to similar spectral characteristics of land features [158]. Hence,
synergistically combining these two types of data is an e↵ective way to
realize better land cover classification.

Many existing multi-modal fusion strategies for land cover classifica-
tion remain in the phase of adding and concatenation input bands [159],
which lacks the e↵ective use of multi-modal information. Meanwhile,
most researchers usually only verify their methods on limited datasets,
lacking generalization ability [152]. Therefore, we design our fusion model
based on the largest existing dataset, SEN12MS [19], which provides
optical and SAR pairs to realize the land cover classification task. There
are several studies on this public dataset [160, 161, 162, 163], but to
the best of our knowledge, this is the first work to apply multi-modal
technology on the SEN12MS dataset. It is noteworthy that in [163], the
UNet and Deeplab V3 Plus baselines won the traditional methods RF
and k-means in terms of AA by a comfortable margin on the SEN12MS
dataset.

In this chapter, a novel SOFNet model based on the DeeplabV3
Plus framework is proposed for multi-modal land cover classification.
Considering the low-resolution and noisy labels of SEN12MS, we also
apply the custom SCE loss function to alleviate this problem. The
SOFNet work provides better segmentation results compared with the
methods that simply superimpose SAR and optical images as the input.
However, based on the visualization results, we find that many fine-
grained details are lost in the SOFNet prediction maps. For this reason,
a new multi-modal framework called SOF-UNet is further put forward.
Compared with SOFNet, the SOF-UNet model preserves more fine
details and receives better classification results in general. In conclusion,
the following points show our main contributions:

1. A two-stream SOFNet model for multi-modal land cover classifica-
tion is proposed, which has two asymmetrically encoding branches
and a sharing decoding branch. ASPP modules are adopted
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to obtain multi-scale context information for better segmentation
results;

2. A novel two-stream SOF-UNet model is designed for finer multi-
modal land cover classification. The utilization of fusion skip
connections in the encoding and decoding phase improves the feature
fusion representational power of the network;

3. To deal with the problem of noisy labels, a custom SCE loss function
is proved to be useful in both SOFNet and SOF-UNet models on
the SEN12MS dataset.

The remainder of this chapter is organized as follows. In Section 6.2,
we give a detailed description of the training dataset, SEN12MS, and
the testing dataset, DFC2020. Section 6.3 and Section 6.4 introduce
the architecture designs of SOFNet and SOF-UNet, separately. Both
qualitative and quantitative results are provided to verify the proposed
methods. Conclusions and future work are drawn in Section 6.5.

6.2 Datasets

6.2.1 SEN12MS

The SEN12MS dataset was proposed by Schmitt et al. [19] to promote
research in SAR-optical image fusion using deep learning methods for
land cover classification. In total, it consists of 180662 patch triplets
(collected throughout 4 seasons and 252 scenes across the globe), in which
162556 patches are dedicated for training and 18106 patches used for
validation. Every triplet contains:

• Dual-polarized (VV and VH) Sentinel-1 SAR images;

• Multi-spectral (13 bands including RGB, infrared, etc.) Sentinel-2
optical images;

• MODIS land cover maps (simplified IGBP scheme).
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The locations of the regions of interest are displayed in Figure 6.1. In the
training process, Savanna labels are ignored for a specific geographical
reason. More details can be found in [163]. The size of all images is
cropped to 256 × 256 pixels. All the input images have a resolution of 10
m per pixel. MODIS labels natively have a resolution of 500 m per pixel,
but they are upsampled to a 10 m resolution. This resolution di↵erence
also results in the severe noisy label problem.

Figure 6.1: Regions of interests of the SEN12MS dataset. Image adapted from [19].

To conclude, there are mainly three challenges for land cover classifi-
cation on the SEN12MS dataset. The first challenge is the peculiarity of
the Savanna class. This class cannot directly be used for training, which
results in incomplete supervision. The second challenge is inaccurate and
inexact supervision. On the one hand, only coarse-grained MODIS label
information is available. On the other hand, the existing labels show
the class confusion problem, especially for the classes barren, grassland,
wetland, and shrubland. The last challenge is the multi-modal fusion
task for SAR and optical input, which is also the key problem we want
to solve in this chapter.
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6.2.2 DFC2020

The 2020 IEEE-GRSS Data Fusion Contest (DFC2020) dataset [164] is
used to test models in our work. It consists of 986 patch quadruplets and
5128 patch quadruplets, with a size of 256 × 256 pixels, for validation and
testing, respectively. Basically, DFC2020 shares the attributes with the
SEN12MS dataset, but it adds additional high-resolution semi-manually
labeled land cover maps (10 m per pixel) with the help of Google Earth
aerial imagery.

Figure 6.2 displays the 7 regions of interest of the DFC2020 dataset.
It can be found that the geolocation scenes in DFC2020 are not contained
in SEN12MS. In our experiments, only the DFC2020 validation dataset
is used to test.

Figure 6.2: Regions of interests of the DFC2020 dataset. Image adapted from [164].
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6.3 SAR-Optical Fusion Network

6.3.1 System Architecture

6.3.1.1 The Overall Architecture

The architecture of SOFNet is illustrated in Figure 6.3. It adopts the
EncoderDecoder segmentation structure, as described in Section 3.2.2.
Two di↵erent encoders are designed to extract optical and SAR features,
respectively. And then, a corresponding decoder is used for up-sampling
the feature maps. Inspired by the DeepLabV3 Plus network [55],
ASPP modules are adopted in the final layers of the backbones. Skip
concatenation operations of the feature maps are used in both encoder
and decoder processes to combine di↵erent levels of information. In this
chapter, all the Sentinel-1 SAR images are transformed into pseudo color
images for better visualization.

Figure 6.3: Illustration of the overall architecture of SOFNet.
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6.3.1.2 The Encoders

The two encoders in SOFNet are designed asymmetrically, considering
the di↵erences between the two modalities. For the dual-polarized SAR
images, we design a simpler feature extraction backbone. There are only
three convolution layers in total in the feature extracting process, but the
kernel sizes are larger than the optical convolution layers. This design is
based on the consideration that learning useful features from 2-band SAR
images is relatively easier compared to 13-band multi-spectral images.
Therefore, SAR images are used as the more complete information with
respect to optical images. For the optical images, after two convolution
operations, we adopt residual blocks to extract more information. Then,
the final features of the two branches are put into ASPP modules to learn
local-to-global context information. Note that batch normalization and
ReLU operations are always applied after each convolution.

We concatenate the outputs of ASPP modules from SAR and optical
branches one by one. Then, we add the features of the last but one layer of
the optical branch to add more low-level information. It is worth noting
that the concatenate operations, not the pixel-wise add operations, are
adopted on feature maps, because they can get better results in our
experiments.

6.3.1.3 The Decoder

After the fusion convolution operation of encoding outputs, 320 channels
feature maps are obtained in total. Then, they are put into transposed
convolution layers, to gradually restore the resolution of feature maps
to the original size. Only the last convolution layer does not use batch
normalization and ReLU operations.

Finally, four di↵erent layers of decoding are concatenated to process
together and put into the final convolution operation. We tried to use
low-level layers of the optical encoding branch, like DeeplabV3 Plus, but
it did not contribute to the improvements of the final results, so we
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deleted this skip connection in our model.

6.3.2 SCE Loss Function

The goal is to provide a loss function that finds the balance between
su�cient classification learning and noise tolerance. The categorical
Cross Entropy (CE) loss is the most famous loss function for classification
problems. It can converge rapidly and generalize to various problems.
However, in the case of noisy labels, lots of classes will be mixed
together on the feature distributions of CE loss, resulting in a decline
in performance. In [165], SCE loss was first proposed to solve noisy-
labeled classification problems. We modified it to be suitable for our
pixel-level land cover classification task. The CE loss can be designed
formally as:

lce = �
KX

k=1

q(k | x) log p(k | x) (6.1)

where q(k | x) and p(k | x) stand for the ground truth and the prediction
classification distributions on sample x of class k. Since the ground truth
distribution is not so reliable due to noise, a noise tolerance term is added:

lrce = �
KX

k=1

p(k | x) log q(k | x) (6.2)

The final loss function, lsce, consists of weighted cross entropy loss and
weighted reverse cross entropy loss:

lsce = ↵lce + �lrce (6.3)

lrce is noise tolerant, while lce is sensitive to noisy labels. But lce plays
a driving e↵ect on the convergence of the model. Notably, log q(k | x)
might cause the log 0 problem in the image segmentation task, so we let
log 0 equals to a constant A. The hyperparameters A, ↵ and � are also
correspondingly changed, according to the experiment results.
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6.3.3 Experiments

6.3.3.1 Implementation Details

We conduct our experiments on an NVIDIA Pascal Titan X GPU. The
initial learning rate is 0.001 and the training batch size is 16. We train our
model until convergence by using the Adam optimizer with a momentum
set as 0.9 and a weight decay set as 0.0005. All weights are initialized
by a Xavier initialization. For the SCE loss, the parameters A, ↵, and �
are assigned to be 0.1, 6, 3, respectively. Under this setup, the training
process takes up to nearly 3 hours and 20 minutes for one epoch. We
set the largest epoch as 20 and choose the best model according to the
results on the validation dataset.

6.3.3.2 Evaluation Metrics

We choose AA metric for evaluation considering the heavy-imbalanced-
classes problem in SEN12MS and DFC2020. AA is the average of each
accuracy per class, which is computed in the following formulas:

acci =

P
K

k=1
✓k
iiP

K

k=1
✓k
ii
+
P

K

k=1

P
N

j=1,j 6=i
✓k
ij

(6.4)

AA =
1

N

NX

i=1

acci (6.5)

where acci represents the accuracy for class i, ✓k
ii
represents the number

of pixels that class i correctly classified as class i in the k-th image, ✓k
ij

represents the number of pixels that class i wrongly classified as class j
in the k-th image, K and N are the numbers of test images and classes,
and are set as 986 and 8 in this chapter, respectively.

6.3.3.3 Results

A group of comparative experiments is designed to verify the e↵ectiveness
of SOFNet. The first step is to compare the segmentation results with
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state-of-the-art UNet and DeeplabV3 Plus image segmentation networks.
We apply the band concatenation operation of SAR and optical images
and then put the 15 channels input into UNet and DeeplabV3 Plus
separately to get the classification results. We also use the SCE loss
on these two models for a fair comparison.

As for the SOFNet architecture, we apply two experiments. Specifi-
cally, we delete the ASPP modules and only use the cross-entropy loss
to verify the functions of ASPP modules and SCE loss. All the detailed
results have been shown in Table 6.1.

Methods Forest Shrubland Grassland Wetland Cropland Urban Barren Water AA(%)

UNet (Band Concatenation)[54] 58.53 6.25 61.13 3.87 54.25 78.98 0.00 94.58 44.70

DeeplabV3+ (Band Concatenation)[55] 54.92 2.29 33.62 7.59 82.31 64.63 5.45 96.12 43.38

SOFNet (Without ASPP) 74.03 0.07 65.09 0.00 68.79 61.16 0.03 92.84 45.25

SOFNet (Cross Entropy) 71.84 0.08 66.31 0.00 68.15 72.33 0.03 94.56 46.66

SOFNet (Symmetric Cross Esntropy) 84.83 0.00 70.90 0.00 40.12 82.31 0.00 98.04 47.03

Table 6.1: Average accuracies on the DFC 2020 validation dataset for di↵erent methods
(Proposed: SOFNet).

These values indicate that SOFNet provides the best AA among all
the networks, about 2.33% higher and 3.65% higher than UNet and
DeeplabV3 networks, respectively. One possible explanation is that the
simple concatenation of the SAR and optical images as the input of the
network does not make full use of the relationship between multi-modal
data, and it may introduce redundant features during the training phase.

Without ASPP modules, the final AA result is 1.78% lower. This
verifies that the ASPP module learns spatial context information of
feature maps in the specific layer, which can help in the following
decoding process. Meanwhile, SCE loss works better than CE loss, which
proves that the SCE loss is more suitable in noisy label cases.

Example visualization results of SOFNet are shown in Figure 6.4. In
general, we can see that SOFNet is able to predict acceptable land cover
classification results. Sometimes the MODIS labels are very coarse, or
even missing, on target areas, but SOFNet is still able to generate fine
prediction maps. This provides a possible application that SOFNet can
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be used as a tool to complement and adjust the automatically derived
MODIS labels for land cover classification.

Figure 6.4: Visualization examples of SOFNet.

6.3.4 Discussion

The experiment results of SOFNet validate the e↵ectiveness and potential
of the multi-modal deep learning model in land cover classification. SCE
loss also proved e↵ective in this framework. However, comparing the
SOFNet predictions with DFC2020 high-resolution labels in Figure 6.4,
we can find that the contour lines of predictions are very vague, and
that many details are ignored by the model. One possible solution
is to supplement detailed information to the decoding branch through
skip connections. For the SEN12MS dataset, under the premise of low-
resolution and rough MODIS labels, rich texture information extracted
from SAR and optical high-resolution input images become even more
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important. If we discard the low-level features learned from input
images, we can no longer learn such information from corresponding low-
resolution labels.

For the SOFNet model, we try to fuse feature maps of the first and
second convolution layers (from SAR encoding branch, optical encoding
branch, or both of them) before decoding, but it is of no help to the final
performance. This may be because the semantic information obtained
through the ResNet backbone and ASPP modules are relatively abstract.
At the same time, adding very low-level features will not only bring little
help but will introduce a lot of noise. Therefore, we consider another
state-of-the-art segmentation network UNet. The UNet model has a
simple structure and takes into account both low-level and high-level
information. Hence, we then design a new UNet-based model SOF-UNet
for land cover classification.

6.4 SAR-Optical Fusion UNet

6.4.1 System Architecture

6.4.1.1 The Overall Architecture

The architecture of SOF-UNet is illustrated in Figure 6.5. It also belongs
to the EncoderDecoder segmentation structure. The network consists of
three parts: two encoders to extract features, one decoder to restore
the resolution, and specially designed skip connections for cross-modal
feature extraction and aggregation. The design of feature fusion skip
connections is inspired by FuseSeg [166] and RFNet [167]. Both of them
are used for road driving segmentation applications fusing LiDAR and
RGB data.

6.4.1.2 The Encoders

The optical and SAR encoder branches are almost the same except for the
input dimension (13 channels and 2 channels, respectively). The low-level

94



6.4. SAR-Optical Fusion UNet

Figure 6.5: Illustration of the overall architecture of SOF-UNet.

SAR feature maps contain rich contour and location information. We add
them to the RGB encoding branch to make the network focus on learning
more complementary features. After fusing feature maps five times,
we get high-level semantic information for decoding. In each encoding
module, every convolution layer is followed by batch normalization and
the nonlinear activation function Leaky-Rectified Linear Unit (Leaky
ReLU).

6.4.1.3 The Decoder

Four simple upsampling modules with skip connections are adopted in
the decoding phase. The ladder-style up-sampling modules have two
inputs: the concatenated SAR and low-resolution optical features and the
semantic features from an earlier layer of the encoder. Pixel-wise addition
fusion methods are adopted here to fuse these two inputs. Finally, we
blend them with two 3⇥3 convolutions. We also tried to concatenate SAR
low-level features, low-level optical features, and upsampled semantic
features, but the results turned out to be worse than the element-wise
summation, so we dropped this setting.
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6.4.2 Experiments

6.4.2.1 Implementation Details

We conduct our experiments on a GeForce GTX 1080 Ti GPU. In the
training stage, we set the batch size to 8 and the initial learning rate
to 0.0001. For the other configurations, we keep the same with SOFNet
including SCE parameters. It takes around 3 hours and 30 minutes to
finish one epoch under this setting. We run the model for 20 epochs and
choose the best model on the validation dataset to test.

6.4.2.2 Quantitative Results

For a fair comparison, we use the same SCE loss function and evaluation
metric with SOFNet. Table 6.2 displays the quantitative results for
the comparison. SOF-UNet yields the best results among the di↵erent
segmentation networks. We can see that our SOF-UNet outperforms
SOFNet by around 1.20% in terms of AA, although the performance on
the forest, grassland, and urban class drops a bit. The SOF-UNet tends
to be not so “biased” because of the “zero” accuracy for shrubland,
wetland, and barren disappearances. One possible explanation is that
low-level texture information learned in SOF-UNet is very important
to distinguish these three classes. The accuracy of water classification
increases to 98.89%. This is probably the reason why the water class
does not need so much semantic information as the urban class. More
basic textural information in SOF-UNet could be helpful.

For the ablation of our two-stream architecture, we also compare
SOF-UNet with UNet. We test UNet with three di↵erent inputs:
only 2-channel Sentinel-1 SAR images (Only S1), only 13-channel
Sentinel-2 multi-spectral images (Only S2), and 15-channel multi-modal
concatenation images (Band Concatenation). Initially, we found that the
Band Concatenation even results in a worse performance than Only S2.
But the SOF-UNet outperforms the Only S2 result, which verifies the
e↵ectiveness of the two-stream architecture.
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Methods Forest Shrubland Grassland Wetland Cropland Urban Barren Water AA(%)

Unet (Only S1) 90.68 0.00 0.17 0.00 77.37 71.45 2.15 92.65 41.81

Unet (Only S2) 73.01 0.82 77.03 4.92 44.38 82.19 0.00 90.05 46.55

Unet (Band Concatenation) 58.53 6.25 61.13 3.87 54.25 78.98 0.00 94.58 44.70

DeeplabV3 Plus (Band Concatenation) 54.92 2.29 33.62 7.59 82.31 64.63 5.45 96.12 43.38

SOFNet (Symmetric Cross Entropy) 84.83 0.00 70.90 0.00 40.12 82.31 0.00 98.04 47.03

SOF-UNet (Without Encoding Skip) 70.51 0.81 64.05 0.17 50.61 70.81 11.43 97.68 45.76

SOF-UNet (Without Decoding Skip) 65.23 1.56 66.91 0.23 46.78 70.96 12.06 97.94 45.21

SOF-UNet (Cross Entropy) 73.92 0.71 67.67 0.25 49.92 74.75 11.51 97.97 47.09

SOF-UNet (Symmetric Cross Entropy) 75.52 0.97 69.14 0.19 50.38 77.64 13.10 98.89 48.23

Table 6.2: Average accuracies on the DFC 2020 validation dataset for di↵erent methods
(Proposed: SOF-UNet).

For the ablation of the fusion strategy, we delete the fusion skip
connections in the encoding and decoding phases separately. Both of
the two variants provide lower performance. This indicates that multi-
modal fusion plays a significant role in our model. Meanwhile, SCE loss
also shows to be a superior choice here with regard to SOFNet.

6.4.2.3 Visualization Results

We show some acceptable results of SOFNet and SOF-UNet in Figure
6.6. In general, SOF-UNet predictions retain more texture information
like edge and boundary compared with SOFNet. They are closer to DFC
ground truth images to some extent. As shown in the last row, SOF-UNet
has a better ability to identify the barren class. Sometimes this class is
even identified as grassland in low-resolution training labels.

However, both SOFNet and SOF-UNet provide bad predictions in
some cases. Some examples are given in Figure 6.7. For wetland, barren,
and cropland pixels, most of them tend to be classified as grassland and
shrubland in SOFNet and SOF-UNet, respectively. For the SOFNet
model, it may be due to the overfitting of noisy MODIS labels. For the
SOF-UNet model, a possible reason could be the high textural similarity
between wetland, barren, cropland, and shrubland classes.
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Figure 6.6: Some acceptable prediction examples of SOFNet and SOF-UNet on the
DFC2020 validation dataset.

6.5 Summary

In this chapter, we present a SOF-UNet framework for land cover
classification of SAR and Optical data. SOF-UNet adopts a two-stream
encoder-decoder deep learning segmentation framework. The experiment
results show that this design has a promising capability to identify
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Figure 6.7: Some unacceptable prediction examples of SOFNet and SOF-UNet on the
DFC2020 validation dataset.

di↵erent land cover classes. The SCE loss is also verified useful in
this frame. Since both SAR and optical images contain rich textural
features, it is often helpful to use the skip connection operation to
preserve structure and boundary information in very low-level features.

Our results show clear improvements over the baseline approaches.
However, some weaknesses remain, since we mainly focus on multi-
modal fusion and haven’t applied any label refinement on noisy labels
using traditional methods or state-of-the-art weakly-supervised semantic
segmentation methods. These methods have been proved useful in the
2020 IEEE GRSS Data Fusion Contest [164]. Future experiments can
be conducted to combine our multi-modal fusion network and weakly
supervised semantic segmentation methods together to achieve better
performance.
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Chapter 7

Discussion and Future Work

In recent years, the research and development of SAR image interpre-
tation based on deep learning technology have received wide attention.
This thesis concentrates on designing deep learning models applied to
three specific SAR image interpretation tasks. They are oceanic eddy
detection, intertidal sediments and habitats classification, and land cover
classification. In this chapter, the main contributions in this thesis are
summarized in Section 9.1. We conclude the inspirations and limitations
in Section 9.2. Finally, three future research directions for SAR image
interpretation are given in Section 9.3.

7.1 Summary

This thesis has investigated the applicability of deep learning for SAR
image interpretation. To this end, three end-to-end deep learning models
are proposed to address three specific applications in the wide framework
of SAR image interpretation. These three models have both theoretical
significance and practical value in the SAR interpretation field. The main
contributions are listed as below:

1. The first contribution is the Mask-ES-RCNN model for automatic
SAR oceanic eddy detection. We first constructed the SOEDD to
develop deep learning-based SAR eddy detection methods. SOEDD
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was firstly verified with respect to its ability and potential to achieve
acceptable eddy detection results using our Mask RCNN and Edge
Enhancement model. Inspired by this model, a Mask-ES-RCNN
framework with two additional Edge Head and Mask IoU Heads was
proposed. This multi-task learning strategy made the model focus
on internal texture information of eddy instances and the qualities of
predicted masks at the same time. Mask-ES-RCNN outperformed
the Mask RCNN baseline on SOEDD in terms of all APs. The
experimental results verified the importance to incorporate prior
knowledge in deep learning models, especially for small-scale SAR
datasets.

2. The second contribution is the TE-UNet model for SAR intertidal
sediments and habitats classification. We proposed a UNet based
model with a TEM to explicitly learn global texture information
from SAR images. The experimental results proved the superiority
of the TE-UNet model compared with the state-of-art semantic
segmentation models. Meanwhile, comprehensive ablation studies
verified the e↵ectiveness and necessity to utilize multiple frequencies
and polarimetric information for classification tasks in the intertidal
zone.

3. The third contribution is the SOF-UNet model for land cover
classification of SAR and optical data. Based on the existing largest
dataset SEN12MS for SAR-optical fusion land cover classification,
the first proposed SOFNet model obtained preliminary classification
results. Inspired by the SOFNet model, we further developed a
SOF-UNet to utilize more low-level features. SOF-UNet used a
two-stream encoder-decoder framework with specially designed skip
connections for multi-modal features extraction and aggregation.
Compared with the SOFNet, SOF-UNet could retain more details
in the prediction maps and obtain better results in terms of AA.
The SCE loss was also verified useful in this frame.
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7.2 Conclusion

A distinct advantage of end-to-end deep learning-based methods is that
they can obtain SAR image interpretation results automatically and
e�ciently in comparison with the traditional methods. Concerning our
proposed deep learning-based models in this thesis, we mainly get the
following inspirations:

1. Multi-source inputs always tend to be helpful for final SAR image
interpretation results, such as multi-band SAR images, PolSAR
images, and SAR-optical pairs. Specific SAR image interpretation
models should be designed according to di↵erent data resources.

2. It is worth noting that we consider incorporating the texture
information of SAR images into proposed deep learning models
implicitly or explicitly. In particular, we adopt Edge Head for Mask-
ES-RCNN, TEM for TE-UNet, and designed skip connections for
SOF-UNet. This design concept, which is verified to be useful in
our proposed models, can be further adopted for other SAR image
interpretation applications.

However, the existing models are not always very reliable on process-
ing tasks. There are also some limitations of our systems:

1. The first limitation is the small-scale SAR image datasets. For
instance, we train and test our Mask-ES-RCNN model on SOEDD
which only contains 200 images with 322 eddy instances. Even if we
could collect large-scale original SAR images, it is still challenging
to label all of them, because of their complex properties. The small-
scale size of the labeled SAR dataset limits to some extent the
accuracy of the interpretation results.

2. Another problem is that we utilize limited information of SAR image
characteristics in our models. For example, we use CP polarimetric
decomposition components as input in TE-UNet to express polari-
metric information of SAR images. This transformation process will
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lose some information compared with the original coherence matrix
of SAR data.

3. For our models, we do not make full use of the temporal nature of
SAR images. This information is very important for SAR image
interpretation tasks, especially in highly dynamic environments.
Let’s take the intertidal zone as an example. Di↵erent times
correspond to di↵erent tides and thus present very di↵erent surface
types on SAR images [130]. Hence, the model’s performance can be
damaged if we ignore the surface changes on SAR images at di↵erent
times.

7.3 Future Work

Based on the results of the present research, there are many potential
ways to improve SAR image interpretation. We mainly discuss three
future research directions in this section: Complex-Valued Convolutional
Neural Network (CV-CNN), spatio-temporal combination, and multi-
modal fusion of more modalities. Detailed descriptions are found in the
following sections.

7.3.1 Complex-Valued Convolutional Neural Networks

The first direction is using CV-CNN [168] to deal with the complex-
valued coherence matrix of SAR data. Unlike the optical remote sensing
images, SAR images contain both amplitude and phase information. In
Section 5.3.2 we use polarimetric decomposition algorithms to extract
information from pre-processed SAR images. This is still not a complete
end-to-end method and some information may be lost during the pre-
processing progress. CV-CNN can take advantage of phase information
and realize SAR image interpretation tasks with less manual intervention.
Notably, specific SAR image characteristics like speckle noise and
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abundant texture features could be taken into consideration when we
design the CV-CNN-based interpretation models.

The CV-CNN replaces each convolutional layer in the network with
four real-valued convolutions that correspond to the individual real and
imaginary parts of the complex tensor and weight kernel [168]. Figure 7.1
illustrates the complex-valued convolutions structure.

Figure 7.1: Illustration of complex-valued convolutions. Image adapted from [168].
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If a complex kernel matrix K = KR + iKI is convolved with complex
data M = MR + iMI , the result can be expressed as:

K ⇤M = (KR + iKI) ⇤ (MR + iMI)

= KR ⇤MR + i2KI ⇤MI +KR ⇤ iMI + iKI ⇤MR

= KR ⇤MR �KI ⇤MI + i (KR ⇤MI +KI ⇤MR)

(7.1)

where ⇤ stands for the convolution operation, and KR, KI ,MR, and
MI are real-valued matrices. Correspondingly, other mathematical
operations of CV-CNN including upsampling, magnitude operation, and
softmax operation are also defined within the complex-valued domain.

7.3.2 Spatio-Temporal Combination

The second direction is the combination of spatial and temporal in-
formation of SAR images. As previously mentioned, SAR is an all-
day all-weather sensor, capable of capturing spatial information through
temporal backscatter. This could give the potential of fostering a deeper
understanding of how factors such as seasonality and environmental
changes can influence the targets. Moreover, the e↵ective use of frequency
domain information may help obtain better SAR image interpretation
results.

Three-dimensional 3D-CNN is a meaningful alternative to the 2D-
CNN in spatio-temporal analyses without collapsing the temporal di-
mension. Figure 7.2 shows the comparison of 2D-CNN and 3D-CNN
convolutions. Compared with 2D-CNN, the input of the 3D-CNN is a
cube stacked with multiple feature maps, which can extract features at
three scales at the same time [41]. Formally, the computation of 3D
convolution is described as:

O(x,y,z) =
CX

c=1

KtX

kt=1

KxX

kx=1

KyX

ky=1

W (t,kx,ky)

m
⇤ I(z+t,x+kx,y+ky)

c
(7.2)

where x, y and z are the spatial coordinates in an output cube. The
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kx, ky and kt are the kernel size in width, height and temporal dimensions,
respectively. C is the number of total channels.

Figure 7.2: Comparison of (a) 2D-CNN and (b) 3D-CNN convolution. In (b), the size
of the convolution kernel in the temporal dimension is 3, and the sets of connections are
color-coded, so that the shared weights are in the same color. Image adapted from [41].

7.3.3 Multi-Modal Fusion of More Modalities

The third direction is multi-modal fusion of more modalities. We used a
two-stream way with designed skip connections to fuse SAR and optical
data in Section 6.4. More complex fusion strategies can be further
developed on existing multi-modal data, incorporating multi-band and
multi-polarization SAR images. The multi-modal fusion models can also
be applied in the framework of CV-CNN and 3D-CNN.

Besides, we can also introduce more modalities and integrate them
with SAR images based on specific applications. For example, looking
back on our oceanic eddy detection task, surface wind speed is one
of the key variables to find the eddies. Too low local surface wind
speed values lead to low radar backscatter of SAR images, which makes
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“black” eddies less detectable. Too high wind speed values also cause
the disappearance of “black” eddies, because the surface films disappear
from the sea surfaces. Thus, the wind speed information can help detect
oceanic eddies faster and more accurately on SAR images.

In general, if the aforementioned methods are integrated into our deep
learning models, it is not too early to expect they can gradually improve
the SAR image interpretation results. Eventually, with the ongoing
development of this interdisciplinary research, we can bring the manner
of global monitoring to the next level, where, possibly by augmenting
with other real-time analyzing techniques with respect to climate change,
animal migration, natural disaster warning and etc., the earth’s resources
are better coordinated in terms of utilization as well as protection.
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Nomenclature

Abbreviations

3D-CNN 3-Dimensional Convolutional Neural Network

2D-CNN 2-Dimensional Convolutional Neural Network

AA Average Precision

ALOS2 ALOS PALSAR-2

ASPP Atrous Spatial Pyramid Pooling

CAM Class Activation Mapping

CHL Chlorophyll

CNN Convolutional Neural Network

CNSA China National Space Administration

CP Cloude Pottier

CSA Canadian Space Agency

CTD Coherent Target Decomposition

CV-CNN Complex-Valued Convolutional Neural Network

DLR German Aerospace Center

DN Digital Number

DNN Deep Neural Network
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DSCNN Deep Supervised and Contractive Neural Network

EM Electromagnetic

ESA European Space Agency

FCN Fully Convolutional Network

FD Freeman Durden

FPN Feature Pyramid Network

GAN Generative Adversarial Network

GCN Graph Convolutional Network

GRD Ground Range Detected

Leaky ReLU Leaky-Rectified Linear Unit

NN Neural Network

OA Overall Accuracy

OLI Operational Land Imager

PCA Principal Component Analysis

RNN Recurrent Neural Network

PolSAR Polarimetric Synthetic Aperture Radar

SAR Synthetic Aperture Radar

SCE Symmetric Cross Entropy

SNAP Sentinel Application Platform

SOEDD SAR Oceanic Eddy Detection Dataset

TIRS Thermal Infrared Sensor

ICTD In-Coherent Target Decomposition

InSAR Interferometric Synthetic Aperture Radar

IoU Intersection over Union

IW Interferometric Wide

JAXA Japan Aerospace Exploration Agency

mAP Mean Average Precision
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mF1 Mean F1 score

mIoU Mean Intersection over Union

METI Ministry of Economy Trade and Industry

NASA National Aeronautics and Space Administration

RCNN Region Convolutional Neural Network

RF Random Forest

ROI Region of Interest

RPN Region Proposal Network

RS2 Radarsat-2

SAE Stacked Sparse Autoencoder

SCNN Spatial Convolutional Neural Network

SLC Single-Look Complex

SNL Sandia National Laboratory

SST Sea Surface Temperature

SSH Sea Surface Height

SSW Sea Surface Wind

SOEDD SAR Oceanic Eddy Detection Dataset

SVM Support Vector Machine

SIR-C/X-SAR Spaceborne Imaging Radar-C/X SAR

TEM Texture Enhance Module

USGS United States Geological Survey

UTC Universal Time Coordinated
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Appendix B

Publications Originating from this
Thesis

B.1 Conferences

Di Zhang, Martin Gade, Jianwei Zhang. Eddy Detection on SAR
Images Based on Faster R-CNN, TerraSAR-X/TanDEM-X Science Team
Meeting, 2019 (Published, Poster)

Di Zhang, Martin Gade, Jianwei Zhang. SAR Eddy Detection Using
Mask-RCNN and Edge Enhancement, IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), 2020 (Published, Oral)

Di Zhang, Martin Gade, Jianwei Zhang. SOFNet: SAR-Optical Fusion
Network for Land Cover Classification, IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), 2021 (Published, Oral)

Di Zhang, Martin Gade, Jianwei Zhang. SOF-UNet: SAR and Optical
Fusion UNet for Land Cover Classification, IEEE International Geo-
science and Remote Sensing Symposium (IGARSS), 2022 (Submitted)
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B.2. Journal Articles

B.2 Journal Articles

Di Zhang, Martin Gade, Jianwei Zhang. Mask-ES-RCNN: Mask Edge
Enhancement and IoU Score RCNN for Oceanic Eddy Detection on SAR
Images, Remote Sensing, 2022 (Submitted)

Di Zhang, Martin Gade, Jianwei Zhang. TE-UNet: Texture Enhance-
ment UNet on Multi-band PolSAR Images for Intertidal Sediments and
Habitats Classification, Remote Sensing, 2022 (Submitted)
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