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Abstract

The class-agnostic discovery of objects in images, known as object proposal generation, is a
fundamental task in computer vision. To discover objects, object proposal generation methods
produce boxes or pixel-precise segmentation masks as object proposals. These object proposals
support systems for object detection or other tasks by focusing the processing on potential
objects. Although a trivial task for humans, the class-agnostic discovery of objects in images is
challenging for computer vision systems due to the complexity of natural scenes and the large
variety of objects. Therefore, object proposal generation is far from being solved. This thesis
improves object proposal generation in complex scenes and focuses on two major limitations.
First, we address the challenging discovery of small objects that are often missed by existing
systems. Second, we propose methods that generate precise objects proposals by improving
the adherence of the pixel-precise segmentation masks to the object boundaries. To tackle
these problems and highlight the widespread applicability of the proposed solutions, we make
major contributions to three areas: object proposal generation, superpixel segmentation, and
their applications to real-world tasks.

The first part of the thesis proposes two novel object proposal generation methods based
on Convolutional Neural Networks (CNNs). First, we address the challenging problem of
reliably discovering small objects that are frequently missed by other methods. To alleviate
this problem, we propose a new object proposal generation system called AttentionMask.
AttentionMask uses the concept of visual attention to focus processing on relevant image
areas and contains a new module for discovering small objects. This results in a highly
efficient approach and improves the results on small objects and objects of all sizes. However,
the generated object proposals are coarse and do not adhere well to the object boundaries,
similar to other CNN-based methods. To improve the adherence of the object proposals to
the object boundaries, we propose Superpixel-based AttentionMask (SAM) as an extension of
AttentionMask. SAM utilizes highly precise superpixels used in traditional object proposal
generation methods to refine AttentionMask’s coarse object proposals in an innovative, end-to-
end learned framework. This refinement leads to substantially more precise object proposals
compared to all existing CNN-based object proposal generation methods and improves the
overall results.

In the second part of this thesis, we further improve the adherence of object proposals generated
with SAM to the object boundaries. To this end, we propose two superpixel segmentation
methods. Both methods generate high-quality superpixel segmentations and reduce the
oversegmentation, which negatively impacts the performance of SAM. The first approach
extends arbitrary superpixel segmentation methods by utilizing edge detection results to
adapt the amount of oversegmentation to the level of detail found in different image areas.
The second approach, DeepFH, augments the RGB-based superpixel segmentation method
by Felzenszwalb and Huttenlocher (FH) with CNN-based features learned in a pixel-affinity
framework. Since FH limits the oversegmentation by design, the same applies to DeepFH.
Both proposed approaches improve the quality of the superpixel segmentations w.r.t. its
original versions in multiple directions. For the object proposal generation task, we show
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that SAM combined with DeepFH superpixel segmentations outperforms all existing object
proposal generation approaches.

The third part of this thesis applies AttentionMask to three challenging, relevant real-world
tasks. In the first task, we combine AttentionMask with a tailored classifier to detect airline
logos in images. This task is difficult due to a strong influence of adversarial weather
effects on the images that challenge the robustness of AttentionMask and the classifier.
Second, we utilize AttentionMask in the context of medical instrument segmentation in
images acquired during minimally invasive surgeries. This task also poses challenges to the
robustness of AttentionMask since effects like smoke or poor illumination severely degrade
the images. Finally, we use AttentionMask to localize apples in images depicting complex
orchard environments within an agricultural context. The major challenges in this task
are the substantial amount of clutter imposed by leaves and the small relative size of the
apples. Overall, we show that AttentionMask produces strong detection, segmentation, and
localization results on the three tasks. The results also highlight AttentionMask’s versatile
applicability and its strong robustness.

In summary, we advance the state-of-the-art in object proposal generation by substantially
improving the discovery of small objects and by also improving the discovery of objects
across all sizes. Moreover, we bridge the gap between CNN-based and traditional superpixel-
based object proposal generation methods to produce precise object proposals with strong
overall results. These contributions result in high-quality object proposals generated by
our systems. To support this process and highlight the general versatility of the systems,
we also make contributions to the fields of superpixel segmentation and three application
areas.



Zusammenfassung

Die klassenunabhängige Objektentdeckung in Bildern (engl. object proposal generation oder ob-
ject discovery) ist von grundlegender Bedeutung für verschiedene Bereiche der Bildverarbeitung.
So kann ein System zur Objektentdeckung durch die Erzeugung von Objektkandidaten in Form
von Boxen oder präzisen Masken den Suchraum für nachfolgende, komplexe Anwendungen
wie die Objekterkennung (engl. object detection) verkleinern und so eine beschleunigte Verar-
beitung ermöglichen. Für Menschen ist die klassenunabhängige Entdeckung von Objekten
auch in komplexen Szenen mit verschiedensten Objekten mühelos. Bildverarbeitungssysteme
stellt diese Aufgabe hingegen vor große Herausforderungen. Daher befasst sich die vorliegende
Arbeit mit der Verbesserung der klassenunabhängigen Objektentdeckung. Der Fokus liegt
dabei sowohl auf der herausfordernden Entdeckung kleiner Objekte, die von existierenden
Systemen zumeist nicht gefunden werden, als auch auf der präzisen Segmentierung der ent-
deckten Objekte. Dazu werden im Rahmen dieser Arbeit methodische Beiträge in den beiden
Bereichen Objektentdeckung und Superpixelsegmentierung vorgestellt. Ferner zeigen weitere
Beiträge zu verschiedenen Applikationen die weitreichenden Anwendungsmöglichkeiten der
im Rahmen dieser Arbeit präsentierten Methoden.

Der erste Teil der vorliegenden Arbeit stellt zwei neue Systeme zur Objektentdeckung auf
Basis von Convolutional Neural Networks (CNNs) vor. Zum einen wird die anspruchsvolle
Entdeckung kleiner Objekte, die von bestehenden Systemen oft nicht erkannt werden, durch
das System AttentionMask adressiert. Dazu nutzt AttentionMask das Konzept der visuellen
Aufmerksamkeit zur fokussierten Verarbeitung und führt ein neues Modul zur Entdeckung
kleiner Objekte ein. Diese Neuerungen führen zu einer effizienten Verarbeitung bei gleichzeitig
verbesserten Ergebnissen für die Entdeckung kleiner Objekte sowie Objekte aller Größen. Die
so erzeugten Objektkandidaten sind jedoch wie bei anderen CNN-basierten Systemen un-
präzise, d.h. die entsprechenden Segmentierungsmasken folgen nur recht grob den eigentlichen
Objektkonturen. Daher greift das zweite vorgeschlagene System, Superpixel-based Attention-
Mask (SAM), dieses Problem auf und passt die groben Objektkandidaten von AttentionMask
besser an die eigentlichen Objektkonturen an. Dazu verbindet SAM das CNN-basierte Atten-
tionMask mit präzisen Superpixelsegmentierungen, die häufig in klassischen Objektentdeck-
ungssystemen Verwendung finden, zu einem kombinierten, trainierbaren System. Durch diese
innovative Kombination ist SAM in der Lage, die Erzeugung präziser Objektkandidaten zu
erlernen, die besser an die eigentlichen Objektkonturen angepasst sind. In der Folge übertrifft
SAM die Ergebnisse aller vorherigen Objektentdeckungssysteme.

Im zweiten Teil dieser Arbeit werden zwei neue Verfahren zur Superpixelsegmentierung
vorgestellt, die noch präzisere Objektkandidaten ermöglichen. Beide Verfahren zielen dabei
nicht nur auf eine hohe Qualität der Superpixelsegmentierungen ab, sondern auch auf eine
reduzierte Übersegmentierung, was eine positive Wirkung auf die Ergebnisse von SAM hat.
Dazu wird im Rahmen dieser Arbeit zum einen ein neues, flexibles Rahmenwerk präsentiert.
Es ermöglicht auf Basis von Kantendetektionsergebnissen beliebigen Verfahren zur Super-
pixelsegmentierung die Generierung von Superpixeln auf relevante, komplexe Bildbereiche
zu fokussieren. Dies führt zu einer verminderten Übersegmentierung bei gleichbleibender
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oder verbesserter Segmentierungsqualität. Zum anderen wird in dieser Arbeit das neue
Superpixelsegmentierungsverfahren DeepFH präsentiert. DeepFH erweitert das RGB-basierte
Verfahren von Felzenszwalb und Huttenlocher (FH) um gelernte, CNN-basierte Merkmale. Da
FH bereits die Übersegmentierung limitiert, ermöglicht DeepFH durch semantisch reichhaltige
Merkmale eine Verbesserung der Segmentierungsqualität bei gleichbleibend niedriger Überseg-
mentierung. In Kombination mit SAM führen beide vorgeschlagenen Systeme zu präziseren
Objektkandidaten und verbessern die Ergebnisse von SAM in Bezug auf die ursprünglichen
Superpixelsegmentierungen. Die Kombination von SAM und DeepFH übertrifft dabei zudem
die Ergebnisse aller anderen existierenden Objektentdeckungssysteme.

Der dritte Teil dieser Arbeit präsentiert den Einsatz von AttentionMask im Kontext von
drei komplexen, relevanten Anwendungen. Im Rahmen der ersten Anwendung wird At-
tentionMask mit einem spezialisierten Klassifikator kombiniert, um Logos von Airlines auf
Flugzeugleitwerken zu erkennen. Die Schwierigkeiten dieser Anwendung gehen dabei vor allem
mit der durch Wettereinflüsse reduzierten Bildqualität einher. In der zweiten Anwendung wird
AttentionMask genutzt, um die Segmentierung von medizinischen Instrumenten in Bilddaten
von minimalinvasiven Operationen zu adressieren. Ähnlich wie in der vorherigen Anwendung
sind auch hier die Bilder durch äußere Einflüsse wie Rauch, Blut oder suboptimale Beleuch-
tung beeinträchtigt. Zuletzt wird AttentionMask in einem agrarwirtschaftlichen Kontext zur
Lokalisierung von Äpfeln an Apfelbäumen in komplexen Plantagenumgebungen angewendet.
Die Lokalisierung wird vornehmlich erschwert durch die große Menge an Blättern, die eine
komplexe Bildkomposition zur Folge haben, sowie die geringe relative Größe der Äpfel. Insge-
samt ist AttentionMask in der Lage, im Rahmen aller drei Anwendungen vielversprechende
und hochwertige Ergebnisse zu erzeugen. Zudem heben die drei Anwendungen die vielseitige
Anwendbarkeit sowie die Robustheit von AttentionMask hervor.

Zusammenfassend verbessern die im Rahmen dieser Arbeit vorgestellten methodischen Beiträge
und Verfahren die klassenunabhängige Entdeckung von Objekten in einem erheblichen Maße.
Dies wird vor allem durch eine verbesserte Entdeckung kleiner Objekte sowie durch präzisere
Segmentierungsmasken der Objektkandidaten erreicht. Zudem verknüpfen die Beiträge dieser
Arbeit klassische Superpixel-basierte und moderne CNN-basierte Techniken zur Objektentdeck-
ung, was zu einer Aggregation der jeweiligen Stärken und hochqualitativen Objektkandidaten
führt. Um diese Verknüpfung zu unterstützen und die vielseitige Anwendbarkeit der Methoden
zu demonstrieren, werden im Rahmen dieser Arbeit des Weiteren Beiträge zur Superpixelseg-
mentierung sowie zu drei Anwendungsgebieten präsentiert.
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Chapter 1

Introduction

Table of Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Limitations of the State-of-the-art . . . . . . . . . . . . . . . . . . 4

1.2.1 Object Proposal Generation . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Superpixel Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Scope and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Motivation

Imagine it is Christmas time and you are invited to your company’s Christmas party. Plates
with Christmas cookies like in Fig. 1.1(a) are everywhere, and several cookies are unfamiliar
to you. Which cookie fits your vegan diet? How about the small brown one? Let us suppose
this scenario happens in 2050, and computationally powerful smart glasses [Lee and Hui, 2018]
similar to today’s Microsoft HoloLens 2 are ubiquitous. An app on your smart glasses tracks
your gaze and discovers the objects in view as demonstrated in Fig. 1.1(b) for two example
objects. This discovery of objects is class-agnostic and does not depend on prior knowledge
about the objects. Once the app has discovered the objects, it selects the attended object
based on gaze data (red cross in Fig. 1.1). Finally, the app compares the attended object to a
database of known objects to gain information about it. In our scenario, a brief description
of the cookie, typical ingredients, and other nutrition facts are displayed (see Fig. 1.1(d)).
Hence, the brown cookie will not fit your vegan diet.

This scenario sounds fictional, although most components are already available, and similar
systems were proposed in simplified contexts [Toyama et al., 2012; Barz and Sonntag, 2016;
Barz et al., 2021]. Smart glasses [Lee and Hui, 2018] are a common technique with multiple
applications across healthcare [Tepper et al., 2017], robotics [Quintero et al., 2018], or
education [Altmeyer et al., 2020]. Several smart glasses such as Microsoft’s HoloLens 2 also
feature an eye-tracker that estimates the wearer’s gaze. Retrieving images of individual objects
is a well-studied topic in computer vision [Zheng et al., 2017]. Another fundamental task in this
scenario is the precise1, class-agnostic discovery of objects in images to determine the attended
object. The result of this object discovery is a pixel-precise segmentation mask per object since

1Precise in this context means that the segmentation mask for a discovered object adheres well to the
discovered object’s boundary.
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(a) Plate with cookies (b) Two discovered cookies with masks

(c) Two discovered cookies with boxes

Most likely a lard biscuit with 
cocoa (97%):
Traditional German biscuit

Typical ingredients: Flour, sugar, 
lard, cocoa, salt

Vegan? No
Lactose-free? Yes
Gluten-free? No
Nut-free? Yes

(d) Attended cookie with displayed information

Figure 1.1: Example view of a plate with cookies (a) seen through smart glasses and two cookies discovered
with masks (b) or boxes (c). The masks allow a better estimation of the attended cookie since
they do not overlap substantially. Once the cookies are discovered and the attended cookie is
selected based on gaze data (red cross), information about the attended cookie is displayed to
the user (d). We will revisit this example in Ch. 10 to showcase the results of this thesis (see
Fig. 10.1).

boxes may not allow a distinct localization of the attended object (see red cross in Fig. 1.1(b)
and Fig. 1.1(c)). Additionally, the object classes are unknown in such a scenario, leading to
a strong demand for generalization. In this thesis, we focus on the described class-agnostic
discovery of objects in images, which corresponds to the object proposal generation task in
computer vision.

For humans, the precise, class-agnostic discovery of objects is effortless, even for 5-months-
old infants [von Hofsten and Spelke, 1985]. Similarly, patients with visual form agnosia2,
who are unable to recognize objects reliably, can still perceive them and interact with
them [Milner and Heywood, 1989; Goodale et al., 1991]. Hence, humans have a high-level
idea of objects, independent of recognizing the object class. Although it is still largely
unknown how this process works in humans [Cavanagh, 2011], multiple theories try to explain
the perception of objects in human vision. According to the Gestalt theory [Wertheimer,
1922] and the coherence theory [Rensink, 2000], rules of perceptual organization combine
basic perceptual units. While Gestalt theory includes local and global cues like symmetry,

2Visual form agnosia [Benson and Greenberg, 1969] is a variation of visual agnosia that prevents patients
from recognizing the shape of an object. Hence, they are largely unable to reproduce, match, or describe
an object’s shape. As a consequence, the patients are unable to recognize objects reliably [Benson and
Greenberg, 1969].
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coherence theory focuses more on local cues like contour continuation [Rensink and Enns,
1995]. Following Rensink [2000], focused attention3 links such groups of basic perceptual units
to create the object perception. However, Rensink [2000] does not provide a relation to the
anatomy of the human brain [Cavanagh, 2011].

In computer vision, Sonka et al. [2014] argue that the general task is ‘to duplicate the effect
of human vision by electronically perceiving and understanding an image’. Since the process
of discovering objects is not even fully understood in humans, it is unsurprising that the
discovery of objects is far from being solved in computer vision. A significant problem here
and in related computer vision tasks is the extraction of high-level semantics from the pixels’
intensity or color values. For instance, the type of cookie per pixel is initially unknown to
a computer vision system in the introductory example. Those high-level semantics have
to be extracted from hand-crafted features [Lowe, 2004; Dalal and Triggs, 2005] or learned
from data [Krizhevsky et al., 2012; Ren et al., 2016]. Despite promising results in image
classification on clean images [Ioffe and Szegedy, 2015; He et al., 2016a], the results for more
complex tasks under previously unseen conditions are below human-level performance [Geirhos
et al., 2018b; Liu et al., 2020].

As briefly mentioned above, the computer vision task that corresponds to the class-agnostic
discovery of objects is called object proposal generation4. The goal of object proposal generation
methods is to extract every object in the image as a bounding box or a pixel-precise segmenta-
tion mask (see Sec. 2.2.1). Unlike object detection or instance segmentation, object proposal
generation is not limited to pre-selected object classes or the object classes seen in training.
Hence, object proposal generation methods encode general object properties like contrast or a
closed boundary [Alexe et al., 2010; Zitnick and Dollár, 2014].

Creating a pixel-precise segmentation mask per discovered object, i.e., segmenting the ob-
ject from its background, is essential in object proposal generation. Most object proposal
generation methods create a pixel-level foreground-background segmentation per discovered
object [Carreira and Sminchisescu, 2011; Hu et al., 2017a] or utilize superpixels [Ren and
Malik, 2003] as an intermediate concept [Uijlings et al., 2013; Manén et al., 2013]. Superpixels
are groups of spatially connected pixels sharing a common property like color or texture (see
Sec. 2.1) and usually cover object parts. Many approaches for superpixel segmentation exist in
the literature [Stutz et al., 2018], which are also widely used in computer vision tasks unrelated
to object proposal generation [Perazzi et al., 2012; Mostajabi et al., 2015]. Several object
proposal generation systems combine multiple superpixels to discover complex objects with
pixel-precise segmentation masks [Uijlings et al., 2013; Manén et al., 2013]. This combination
leads to a close connection between object proposal generation and superpixel segmentation.
Hence, we will cover both topics in this thesis.

Besides the introductory example, which we will revisit in Ch. 10, various computer vision
applications utilize object proposal generation methods for the class-agnostic discovery of
objects. Originally, object proposals were designed to focus object detection systems on
relevant image areas that likely contain objects [Alexe et al., 2010; Girshick, 2015; Ren et al.,
2016]. This focused processing prevents object detection systems from processing a multitude
of windows5 extracted from the image that might cover objects [Dalal and Triggs, 2005;

3Focused attention is the process of selectively bringing information ‘into conscious awareness’ [MacKay-Brandt,
2011].

4In robotics, object proposal generation is sometimes known as object discovery [Frintrop, 2014].
5Even small images of size 320× 240 lead to more than one billion potential windows [Lampert et al., 2009].
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(a) Input image (b) Pinheiro et al.
[2016]

(c) Hu et al. [2017a] (d) Ground truth

Figure 1.2: Results of the object proposal generation systems by Pinheiro et al. [2016] (b) and Hu et al.
[2017a] (c) on an input image (a) with eleven small birds. (d) depicts the ground truth from Lin
et al. [2014]. The systems miss most birds due to their small size. Filled colored contours denote
discovered objects, while not filled red contours denote missed objects. The circled region is
enlarged for visualization. Input image and annotations taken from the COCO dataset [Lin et al.,
2014].

Felzenszwalb et al., 2009]. Other computer vision tasks that utilize object proposals include
instance segmentation [Hariharan et al., 2014; He et al., 2017a], visual grounding [Rohrbach
et al., 2016; Plummer et al., 2018], fine-grained classification [Zhang et al., 2014; He et al., 2018],
object tracking [Ošep et al., 2018; Fan and Ling, 2019], or tasks with weak supervision [Bilen
and Vedaldi, 2016; Tang et al., 2018]. Similarly, diverse robotics applications employ object
proposal generation methods [Chu et al., 2018; Xie et al., 2021]. In such robotics applications,
the class-agnostic setting in object proposal generation is of great importance since previously
unknown environments and unseen objects are major challenges [Sünderhauf et al., 2018; Xie
et al., 2021].

1.2 Limitations of the State-of-the-art

As mentioned above, there is an application-driven demand for methods that generate
precise object proposals for arbitrary objects. Suitable superpixel segmentation methods
can support this process and improve object proposal generation results. Following the brief
introduction of both concepts, we will review some of their major limitations that motivate
this thesis.

1.2.1 Object Proposal Generation

Research on object proposal generation has produced several systems either utilizing hand-
crafted features [Uijlings et al., 2013; Zitnick and Dollár, 2014; Pont-Tuset et al., 2017] or
Convolutional Neural Networks (CNNs) [Pinheiro et al., 2015, 2016; Hu et al., 2017a]. Despite
the success of those methods, major limitations still remain.

First, discovering small objects6 is a major challenge in object proposal generation [Zitnick
and Dollár, 2014; Pinheiro et al., 2016; Pont-Tuset et al., 2017] as shown in Fig. 1.2. Most
small birds are missed (see red contours) by the approaches of Pinheiro et al. [2016] and Hu
et al. [2017a], which generate very good results on larger objects though. Since small objects

6Small objects cover less than 322 pixels in the input image [Lin et al., 2014]. This definition is based on the
images of the COCO dataset [Lin et al., 2014] that have an average size of 578× 484 pixels (2014 release).
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(a) Input image (b) Pont-Tuset et al. [2017] (c) Hu et al. [2017a]

Figure 1.3: Two examples for the trade-off between precise proposals with low recall (b) and coarse proposals
with high recall (c). The proposals in (b) are the result of the superpixel-based approach by Pont-
Tuset et al. [2017], while the proposals in (c) were generated with the CNN-based system of Hu
et al. [2017a]. Filled colored contours denote discovered objects, while not filled red contours
denote missed objects. Input images and annotations taken from the COCO dataset [Lin et al.,
2014].

are frequently encountered in real-world images due to their original size or the distance to
the camera, these misses strongly impede the overall performance. The degraded performance
on small objects is mainly related to coarse superpixels or the inherent downsampling process
in CNNs. Both effects remove spatial details from the representation of the image, which
prevents subsequent parts of the approaches from discovering small objects. Besides the
object size, it is largely unknown which object properties negatively influence the object
proposal generation results. This lack of knowledge about such object properties is the second
limitation of object proposal generation approaches.

Third, existing object proposal generation systems are unable to discover most objects entirely
and to segment them precisely. This trade-off between precise proposals with low recall
and coarse proposals with high recall is a major challenge in object proposal generation.
Traditional7 systems based on superpixels usually generate precise proposals but frequently
miss objects or create proposals covering only object parts (low recall). In contrast, systems
utilizing CNNs discover more objects entirely (high recall) but tend to generate coarse proposals
due to the inherent downsampling process in CNNs that removes spatial details. Both effects
are visible in Fig. 1.3. For instance, Pont-Tuset et al. [2017] use superpixels to generate precise
proposals for the people in the foreground of the baseball example while missing the people in
the background. In contrast, the CNN-based system by Hu et al. [2017a] discovers all people
entirely but only generates coarse segmentation masks that do not adhere well to the peoples’
boundaries.

Object proposal generation systems usually generate more proposals than there are objects
in the image. The large amount of proposals leads to a high recall and is often preferable
for subsequent applications that can not compensate for missed objects [Zitnick and Dollár,

7The term traditional denotes computer vision systems that do not utilize deep learning.
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2014; Hosang et al., 2015]. To choose only the most promising n proposals, systems generate
a ranking of the proposals. However, the quality of the ranking is often questionable [Hosang
et al., 2015; Pinheiro et al., 2016; Pont-Tuset et al., 2017] since a generalized object description
is difficult to model or learn. Therefore, many proposals are needed to discover all objects
compensating for the impaired ranking, which is the fourth limitation of object proposal
generation systems.

In summary, the discovery of small objects, the trade-off between high recall and precise
proposals, the lack of knowledge about challenging object properties, and the ranking of
proposals are the most important limitations in object proposal generation. In this thesis,
we focus on the first two limitations while also investigating challenging object properties in
object proposal generation. We identified these limitations as the most important ones for
the recall-driven [Zitnick and Dollár, 2014; Hosang et al., 2015] object proposal generation
task.

1.2.2 Superpixel Segmentation

Similar to the object proposal generation approaches, existing superpixel segmentation methods
suffer from several limitations that impact their performance and usability in real-world
applications. We will focus our discussion on limitations arising when utilizing superpixels for
object proposal generation.

First, many superpixel segmentation methods generate superpixels that are uniformly dis-
tributed across the images [Van den Bergh et al., 2012; Achanta et al., 2012; Yao et al., 2015].
Although these approaches produce good results on segmentation benchmarks [Stutz et al.,
2018], they ignore the different levels of detail in an image and increase the oversegmenta-
tion8 in semantically uniform areas like objects (see Fig. 1.4). Since recombining several
superpixels into one object proposal is challenging, object proposal generation methods prefer
superpixel segmentations with less oversegmentation [Uijlings et al., 2013; Manén et al., 2013;
Martín García et al., 2015]. However, such superpixel segmentations lack general segmentation
quality [Stutz et al., 2018]. This lack of high-quality superpixel segmentations with low overseg-
mentation is the first limitation of superpixel segmentation methods.

Additionally, most superpixel segmentation methods use simple color or gradient features [Felzen-
szwalb and Huttenlocher, 2004; Achanta et al., 2012; Van den Bergh et al., 2012]. Few methods
employ semantically rich CNN-based features to learn application-specific superpixel segmen-
tations [Tu et al., 2018; Jampani et al., 2018; Yang et al., 2020]. Moreover, these CNN-based
methods produce a large amount of oversegmentation. Hence, another limitation is the lack of
CNN-based superpixel segmentation methods with low oversegmentation for improved object
proposal generation results.

Finally, most superpixel segmentations lack a grid topology. In a grid topology, every
superpixel would have a fixed number of neighbors in a fixed spatial layout similar to pixels
in an image. The lack of such a fixed layout makes a natural integration of superpixels
into CNNs challenging and impedes the combination of both techniques. Few works have
tried to circumvent the problem [He et al., 2015; Gadde et al., 2016; Kwak et al., 2017;

8Oversegmentation denotes the effect of splitting a region of the desired segmentation into several superpixels.
We measure the oversegmentation in terms of Oversegmentation Error (OE) [Stutz et al., 2018] as described
in Sec. 2.1.3.
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(a) Achanta et al. [2012] (b) Yao et al. [2015] (c) Felzenszwalb and Hutten-
locher [2004]

Figure 1.4: Superpixel segmentations with approximately 100 superpixels using the methods of Achanta et al.
[2012] (a), Yao et al. [2015] (b), and Felzenszwalb and Huttenlocher [2004] (c). While many
superpixels are wasted in sky or wall regions producing increased oversegmentation in (a) and (b),
the result in (c) exhibits less oversegmentation. The reduced oversegmentation leads to a more
detailed segmentation of the roof and allows to capture the small windows. Input image taken
from the BSD dataset [Martin et al., 2001].

He et al., 2017b; Park et al., 2017], but no general-purpose solution has been presented so
far.

Overall, the main limitations of superpixel segmentation methods for object proposal generation
are the substantial amount of oversegmentation and the lack of suitable CNN-based approaches
within this context. We tackle both limitations in this thesis to improve object proposal
generation.

1.3 Scope and Contributions

This thesis advances object proposal generation across all object sizes and addresses several
limitations in object proposal generation and superpixel segmentation discussed above. We
focus on substantially improving the discovery of small objects and increasing the adherence
of the proposals’ segmentation masks to the object boundaries. This will lead to high-quality
object proposals and is expected to boost subsequent applications like object detection
substantially [Hosang et al., 2015]. To support the generation of precise segmentation masks,
we also present novel superpixel segmentation methods that limit oversegmentation. Finally,
we showcase the versatility and robustness of our systems in three challenging, relevant
real-world applications. The most important contributions and the major areas of this thesis
are visualized in Fig. 1.5. In the following, we will briefly summarize the major contributions
and their relation to the publications associated with this thesis.

Object Proposal Generation

AttentionMask We utilize the concept of human visual attention to develop the new
CNN-based object proposal generation system AttentionMask. A learned attention focuses
the processing on relevant image areas and leads to a more efficient utilization of the limited
resources on modern GPUs. Based on the more efficient processing pipeline, we add a dedicated
module for discovering small objects that are frequently missed by other methods. The results
show that AttentionMask outperforms previous methods in discovering small objects and
objects across all sizes while maintaining high computational efficiency. AttentionMask is one
of our major methodological contributions and the foundation for our other contributions.
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Figure 1.5: Overview of the most important contributions of this thesis assigned to the three major areas
superpixel segmentation (red), object proposal generation (yellow), and applications (green). The
stars link the contributions to the chapters of this thesis.

We present AttentionMask in Ch. 4, which is based on and extends our publication Wilms
and Frintrop [2018].

Superpixel-based AttentionMask Since CNN-based object proposal generation methods
lead to coarse object proposals that do not adhere well to the object boundaries, we introduce
our innovative Superpixel-based AttentionMask (SAM) approach as an extended version of
AttentionMask. SAM utilizes high-resolution superpixels and learned features to refine initial
coarse AttentionMask proposals. This effectively combines the high recall of CNN-based
systems and the ability of superpixel-based approaches to generate precise proposal masks.
Our evaluation shows that SAM with FH superpixels [Felzenszwalb and Huttenlocher, 2004]
improves the overall object proposal generation results and leads to substantially more precise
proposal masks than all previously published CNN-based methods. SAM is another major
methodological contribution of this thesis. We present SAM in Ch. 5, which is based on
and extends our publications Wilms and Frintrop [2020] as well as Wilms and Frintrop
[2021].

Extended Evaluation To assess current object proposal generation systems in more detail
and to better understand existing difficulties, we conduct an extended evaluation. This
evaluation constitutes the first ever analysis of object proposal generation results w.r.t. the
influence of object properties beyond object size. Based on the results, we identify four
novel challenges in object proposal generation. We present our extended evaluation in
Ch. 8.
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Superpixel Segmentation

Edge-adaptive Superpixel Segmentation We present a flexible edge-adaptive super-
pixel segmentation framework to enhance our object proposal generation system SAM. The
framework enables arbitrary superpixel segmentation methods to adapt the distribution of
superpixels across the image to the levels of detail in different image areas. To estimate the
detail levels, we propose to use the density of edge detection results as a highly effective sur-
rogate measure. Hence, our novel framework allows superpixel segmentation methods to limit
oversegmentation that negatively impacts the performance of SAM. We show that utilizing
such adapted superpixel segmentations improves the results of SAM compared to non-adaptive
superpixel segmentations. We present our edge-adaptive superpixel segmentation framework
and the integration with SAM in Ch. 6, which is based on and extends our publication Wilms
and Frintrop [2017].

DeepFH Superpixel Segmentation To further improve the superpixel segmentations
utilized in our object proposal generation system SAM, we propose the DeepFH superpixel
segmentation approach. DeepFH is based on the FH superpixel segmentation method [Felzen-
szwalb and Huttenlocher, 2004], which is utilized by the original formulation of SAM. We
extend FH by learning semantically rich CNN-based features in an auxiliary pixel affinity
framework. Combining the learned features with the general processing of FH leads to super-
pixel segmentations that utilize CNN-based features but exhibit less oversegmentation than
existing CNN-based approaches. Our evaluation shows an improved superpixel segmentation
quality compared to FH. At the same time, the combination of SAM and DeepFH leads to
high-quality object proposals outperforming all existing object proposal generation methods.
We present DeepFH and its integration with SAM in Ch. 7, which is based on and extends
our publication Wilms and Frintrop [2021].

Applications

Airline Logo Detection To showcase the strengths of AttentionMask, we propose an
airline logo detection system based on AttentionMask and a specifically tailored classifier
to reliably detect airline logos in challenging real-world images. Our evaluation shows that
this tailored system is better suited for such a specialized task than application-agnostic
object detectors. To increase the robustness w.r.t. the effects of adverse weather conditions
in real-world data, we also propose a new learning-free data augmentation scheme that
substantially boosts the performance in the absence of suitable training data. We present
our airline logo detection system in Sec. 9.1, which is based on our publication Wilms et al.
[2020].

Medical Instrument Segmentation We, furthermore, equip AttentionMask with a ded-
icated post-processing module to address the challenging task of medical instrument seg-
mentation in images acquired during minimally invasive surgeries. The results showcase
AttentionMask’s flexibility and indicate strong generalization and robustness abilities. Hence,
AttentionMask is a very promising foundation for the segmentation of medical instruments
during surgeries. We present our medical instrument segmentation system in Sec. 9.2, which
is based on our publication Wilms et al. [2022a].
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Apple Localization in Orchard Environments As a final application, we utilize Atten-
tionMask to localize apples in complex orchard environments. To locate the small or tiny
apples for agricultural applications, we employ a tiling strategy to process an input image in
multiple parts. Additionally, we propose a variation of AttentionMask featuring a new module
for discovering tiny objects. The results show strong improvements for both approaches over
the original AttentionMask and other systems. We present our apple localization system in
Sec. 9.3, which is based on our publication Wilms et al. [2022b].

1.4 Outline

The remainder of this thesis is divided into nine chapters (see also Fig. 1.5). In Ch. 2, we
present the task definition, datasets, and evaluation measures for superpixel segmentation
as well as object proposal generation. Subsequently, we discuss related literature on both
topics in more detail in Ch. 3. AttentionMask, our first major methodological contribution,
is presented on Ch. 4. This is followed by our second major methodological contribution
SAM in Ch. 5. Focusing on superpixel segmentations, Ch. 6 introduces our edge-adaptive
superpixel segmentation framework, while Ch. 7 presents our DeepFH superpixel segmentation
method. Both chapters also show the combination of the new superpixel segmentations
with SAM. After introducing the different object proposal generation systems, our extended
evaluation is presented in Ch. 8. The three applications of AttentionMask constitute Ch. 9.
Chapter 10 concludes the thesis with a summary of the main findings, a discussion of the
presented systems’ strengths and weaknesses, and an outlook on potential future research
directions.
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To develop methods for object proposal generation and superpixel segmentation as sketched
in the introduction, some foundations like the task definition, standard datasets, and eval-
uation measures are necessary for both tasks. Section 2.1 discusses these foundations for
superpixel segmentation, while Sec. 2.2 presents the same topics in the context of object
proposal generation. Foundations on CNN backbones utilized in this thesis are discussed in
Appendix A.

2.1 Foundations on Superpixel Segmentation

Superpixels are one possible building block for object proposal generation systems and led
to precise proposals in the past as described in the introduction. Since we present methods
for superpixel segmentation and heavily utilize superpixels in this thesis, we introduce terms
and general concepts relevant in the context of superpixel segmentation. First, in Sec. 2.1.1,
we define superpixels and the superpixel segmentation task. Second, we introduce datasets
for superpixel segmentation commonly used in the literature and this thesis in Sec. 2.1.2. To
conclude this section, we present common evaluation measures for assessing the quality of
superpixel segmentations in Sec. 2.1.3.

2.1.1 Superpixel Segmentation Task

Before defining the superpixel segmentation task, we generally introduce the segmentation of
an image. Given an image with height h and width w, we define the set of pixels in the image
Ω as

Ω = {(x, y) : 1 ≤ x ≤ h ∧ 1 ≤ y ≤ w} ⊂ Z2. (2.1)
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(a) Input image (b) Less detailed segmentation (c) More detailed segmentation

(d) Undersegmentation (e) Oversegmentation

Figure 2.1: Input image (a) with two possible desired segmentations (b) and (c) covering different levels of
detail. Both desired segmentations are ground truth annotations from the Berkeley Segmentation
Dataset [Martin et al., 2001]. Given the desired segmentation in (b), an example of underseg-
mentation is visible in (d), while (e) depicts an example of oversegmentation. Input image and
annotations taken from the Berkeley Segmentation Dataset [Martin et al., 2001].

An image segmentation is a grouping of the image pixels Ω into regions S1, S2, . . . . We denote
a segmentation consisting of n regions as S = {S1, . . . , Sn}. However, not every grouping of
Ω is a segmentation. Following [Gonzalez and Woods, 2018], the grouping S of the image
pixels Ω is a segmentation if S satisfies three conditions:

1. Si ∩ Sj = ∅ for all pairs of regions in S.

2. Ω =
⋃
Si∈S Si.

3. Si is a connected1 set of pixels.

Therefore, every pixel is assigned to exactly one region while no region is split into sepa-
rate parts. Note that Gonzalez and Woods [2018] enforce two additional conditions on a
segmentation. However, these conditions are content- or task-specific and unnecessary for a
segmentation.

Since this definition only covers the necessary aspects of a segmentation, all four groupings in
Fig. 2.1(b) - Fig. 2.1(e) are segmentations. However, not all the segmentations are equally
useful, depending on the task. Given the task of segmenting the car from the background,
the segmentation in Fig. 2.1(b) would yield a perfect result. In contrast, if the task demands
a segmentation of the car’s components like doors, windows, and tires, the segmentation in
Fig. 2.1(c) is more suitable.

Images are usually arrays of intensity or color values, which makes inferring semantics about
certain image regions difficult. For humans, it seems effortless to group the image pixels
to form an object or stuff regions as outlined in the introduction. In contrast, computer

1The pixels are either 4-connected or 8-connected.
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vision systems need multiple complicated processing steps to infer the semantics of the pixels
in an image [He et al., 2017a; Chen et al., 2017]. Thus, it is usually impossible to directly
infer the final segmentation like in Fig. 2.1(b) or Fig. 2.1(c) using simple color or edge-based
heuristics [Felzenszwalb and Huttenlocher, 2004; Levinshtein et al., 2009; Achanta et al., 2012].
Therefore, the generated segmentation will most likely either be too coarse (see Fig. 2.1(d))
or too fine (see Fig. 2.1(e)).

The first effect is known as undersegmentation, which results in regions covering multiple
objects or stuff areas. Hence the result does not comply with the desired segmentation. Given
the simple car segmentation task above, this undersegmentation is visible in Fig. 2.1(d), as
multiple regions cover both the car and the background. In contrast, oversegmentation is the
opposite effect. A region of the desired segmentation is split into several regions. In the context
of the simple car segmentation task, Fig. 2.1(e) shows a typical oversegmentation since multiple
superpixels cover the car. Note that the definition of over- and undersegmentation depends
on the desired segmentation. Additionally, both effects will be measurable (see Sec. 2.1.3) in
a typical segmentation. Still, one usually dominates the other.

Representing an image as an oversegmentation leads to an abstraction of the image from
tens of thousands or millions of pixels to hundreds or a few thousand regions. For instance,
Fig. 2.1(e) shows an example with 933 regions capturing almost all relevant boundaries but
splitting objects like the car into many regions. Nevertheless, the segmentation of the car
as one region remains possible [Ren and Malik, 2003; Gould et al., 2008]. Ren and Malik
[2003] coin the regions of such an oversegmentation superpixels, as they represent multiple
pixels. The oversegmentation, in this case, is known as the superpixels segmentation S with
superpixels S1, S2, . . . [Liu et al., 2011; Yao et al., 2015].

In addition to the definition above, Ren and Malik [2003] demand the superpixels to be
uniform w.r.t. a certain quality. This property is automatically satisfied given a reasonable
superpixel segmentation method. Some authors add more constraints to the definition of
superpixels. For instance, Stutz et al. [2018] demand a controllable number of superpixels,
while Ren and Malik [2003] and Achanta et al. [2012] demand a spatially uniform distribution
of superpixels. As discussed in the introduction, these additional constraints might not be
useful for subsequent applications. For instance, to properly segment the car in Fig. 2.1, a
detailed oversegmentation of the uniform background is not necessary.

Since superpixels are the result of an oversegmentation, their shape is not given by the sensor’s
technical properties, like in the case of pixels. A superpixel’s shape is purely driven by the
image content and the superpixel segmentation method. Hence, superpixels can represent
arbitrarily shaped image areas. Combined with the reduced number of basic entities, it enables
faster processing based on superpixels while retaining accurate results. Therefore, several
computer vision systems utilize superpixels across different applications [Perazzi et al., 2012;
Uijlings et al., 2013; Mostajabi et al., 2015].

Overall, an oversegmentation assigns the image pixels to regions while maintaining the relevant,
task-specific structures of the image. The regions of this oversegmentation or superpixel
segmentation are called superpixels and allow an abstract but precise representation of the
image content with less basic entities compared to the image pixels.
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2.1.2 Superpixel Segmentation Datasets

To train and evaluate superpixel segmentation methods, common datasets are inevitable.
Such datasets define regions in an image that should be distinguished or boundaries that
a superpixel segmentation should contain. In general, datasets used for evaluating and
training superpixel segmentation methods consist of images with at least one manually created
segmentation. Some datasets are explicitly designed for evaluating superpixel segmentation
methods [Martin et al., 2001; Gould et al., 2009], while others were originally designed for
a specific task [Yamaguchi et al., 2012; Cordts et al., 2016]. This difference in purpose
leads to different styles of annotations. In the dataset proposed by Martin et al. [2001], the
annotators are only instructed to segment the image into regions, which leads to a diverse set of
annotations. In contrast, Yamaguchi et al. [2012] propose a dataset for clothing parsing2, which
leads to a clear definition of object classes that should be segmented. Hence, the background or
objects of classes that the authors did not define were not segmented.

The most common dataset used in superpixel segmentation is the Berkeley Segmentation
Dataset (BSD) [Martin et al., 2001]. Most other datasets are used by a few authors or in
application-specific contexts. In the following, we describe the five datasets utilized in the
benchmark of Stutz et al. [2018] in more detail since they are used in this thesis. Stutz
et al. [2018] argue that this selection of datasets incorporates different application areas
of superpixel segmentation methods like indoor scenes, outdoor scenes, and scenes with
people.

Berkeley Segmentation Dataset

The Berkeley Segmentation Dataset (BSD) [Martin et al., 2001] contains 200 training images,
100 validation images, and 200 test images of size 481 × 321 (version BSD-500). The
images depict natural scenes with at least one object, leading to a large variety of scenes.
Human annotators were asked to segment the images into regions representing things without
more detailed instructions for generating annotations. Per image, annotations created by
five different annotators are available to reflect different granularities. Figure 2.2 shows two
example images from the BSD test set with two annotations each. The difference in granularity
between the two depicted annotations per example is visible in the faces (upper example) and
the houses (lower example).

Stanford Background Dataset

Gould et al. [2009] proposed the Stanford Background Dataset (SBD) with 238 training images
and 477 test images (split proposed by Stutz et al. [2018]) of around 320× 240 pixels. The
images were collected from different datasets [Criminisi, 2004; Hoiem et al., 2007; Everingham
et al., 2010; Russell et al., 2008] and contain outdoor scenes with at least one prominent object.
In comparison to the BSD dataset, the images are more complex. Gould et al. [2009] created
the dataset to decompose an image into semantically meaningful parts and reason about
their geometry. Therefore, the annotations focus on entire objects and stuff regions. In

2Clothing parsing is the task of classifying and segmenting the garments that a person wears [Yamaguchi
et al., 2012].
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(a) Dataset images (b) Less detailed annotations (c) More detailed annotations

Figure 2.2: Two example images (a) of the BSD dataset [Martin et al., 2001] with annotations of different
granularity. The annotations in (b) capture entire objects, while the annotations in (c) also
segment individual object parts. Base images and annotations taken from the BSD dataset [Martin
et al., 2001].

(a) Dataset images (b) Annotations

Figure 2.3: Two example images (a) with annotations (b) from the SBD dataset [Gould et al., 2009]. The
annotations are detailed but do not segment object parts. Base images and annotations taken
from the SBD dataset [Gould et al., 2009].

contrast to the BSD dataset, only one annotation per image is available. Figure 2.3 shows
two examples of the SBD test dataset with annotations. It is visible from both examples
that the annotations are detailed, although they do not capture object parts as in the BSD
dataset.

Fashionista Dataset

Yamaguchi et al. [2012] collected the Fashionista Dataset (Fash) with 222 training images
and 463 test images (split proposed by Stutz et al. [2018]). The 400 × 600 images were
published by users on a fashion website3 and show people presenting their outfits in front
of various backgrounds. Since Yamaguchi et al. [2012] focus on clothing parsing, the task
during annotation was to segment 53 different types of garments or accessories as well as
hair and skin. For skin areas, different body parts like hands and legs are not separated
when touching (see right example in Fig. 2.4(b)). The background is not segmented further,
even if it contains objects. Thus, the dataset is relatively simple compared to the datasets

3CHICTOPIA: https://www.chictopia.com

https://www.chictopia.com
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(a) Dataset images (b) Annotations

Figure 2.4: Two example images (a) and annotations (b) from Fash dataset [Yamaguchi et al., 2012]. The
background is not annotated, since the annotations focus on the person, the garments, and the
accessories. Base images and annotations taken from the Fash dataset [Yamaguchi et al., 2012].

(a) Dataset images (b) Annotations

Figure 2.5: Two example images (a) with annotations (b) from the NYU dataset [Silberman et al., 2012]. The
images show typical scene compositions of the dataset, covering cluttered indoor environments
with poor lighting conditions (left scene) and missing annotations of background objects (right
scene). Base images and annotations taken from the NYU dataset [Silberman et al., 2012].

BSD and SBD. Like the SBD dataset, the Fash dataset provides only one annotation per
image. Figure 2.4 visualizes two example images with annotations from the Fash dataset,
showing the focus of the annotations on the peoples’ garments and ignoring background
regions.

NYU Depth Dataset V2

Silberman et al. [2012] proposed the NYU Depth Dataset V2 (NYU) that comprises RGB-D
images of indoor scenes. Silberman et al. [2012] aim to provide a dataset for studying relations
of objects in scenes from lived-in rooms that might be cluttered or provide suboptimal lighting
conditions. Overall, the dataset contains 1449 images of size 640 × 480 covering a variety
of apartments and public indoor places. We use 399 images for testing and 199 images for
training in this thesis as proposed by Stutz et al. [2018]. Similar to the Fash dataset, the
annotation process focused on segmenting objects. Figure 2.5 shows two example images with
annotations from the NYU test set. The poor lighting conditions are well visible in the left
example of Fig. 2.5, while the right example shows a cluttered scene with many unannotated
objects on the shelf in the background.

SUN RGB-D Dataset

Similar to the NYU dataset, Song et al. [2015] provide the SUN RGB-D Dataset (SUN) with
10.335 RGB-D images. The images were collected from various datasets [Silberman et al., 2012;
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(a) Dataset images (b) Annotations

Figure 2.6: Two example images (a) and annotations (b) from the SUN dataset [Song et al., 2015] showing
typical cluttered indoor scenes. The annotations highlight typical problems, including imprecise
or missing annotations and merged instances. Base images and annotations taken from the SUN
dataset [Song et al., 2015].

Xiao et al., 2013; Janoch et al., 2013] and have sizes between 561× 427 and 730× 530 pixels.
Following the split of Stutz et al. [2018], we use 400 images for testing and 200 images for
training in this thesis, which are not included in the NYU dataset. The challenges w.r.t. clutter
and lighting conditions are similar to the NYU dataset. The SUN dataset provides annotations
for objects of roughly 800 classes. However, the segmentation quality is worse compared to
the other datasets, since several objects are only coarsely segmented. Figure 2.6 shows two
example images of the dataset with annotations. From the left example in Fig. 2.6, it is
visible that some objects like the pillows or the sofa are only coarsely captured. Furthermore,
instances of the same class are not always distinguished when overlapping on the image plane,
like the pillows in the left scene. Similar to the NYU dataset, some objects are not annotated,
like the statues or the boxes in the right scene in Fig. 2.6.

2.1.3 Superpixel Segmentation Evaluation

Evaluation measures are necessary to assess the quality of superpixel segmentation methods
w.r.t. the annotated ground truth. In general, superpixels should adhere to all annotated
boundaries in an image and, in an ideal case, not add additional, artificial boundaries. Over
time, various measures for evaluating a superpixel segmentation S given a ground truth
annotation G have been proposed. Note that G is a segmentation of the image similar to S but
was generated manually. The most commonly used measure is Boundary Recall (BR) [Martin
et al., 2004] that assesses how many boundary pixels4 of G are covered with the boundary
pixels of S given a certain tolerance. We discuss BR in more detail below. An extension of this
is the Mean Distance to Edge (MDE) [Benesova and Kottman, 2014] that measures the distance
between each boundary pixel in G and the closest boundary pixel in S.

To determine how many artificial boundaries a superpixel segmentation introduces, Martin
et al. [2004] propose Boundary Precision (BP). In this context, artificial boundaries denote
boundaries that are not included in the ground truth annotation. The Oversegmentation
Error (OE) [Stutz et al., 2018] measures a similar effect by calculating the amount of
oversegmentation in S as detailed below. To determine the opposite quality of a superpixel
segmentation, Levinshtein et al. [2009] first proposed the Undersegmentation Error (UE). UE
measures the amount of undersegmentation by assessing the leakage of superpixels across the
boundaries of G (see below). Also assessing the undersegmentation, Achievable Segmentation

4Boundary pixels are pixels of a region in a segmentation that are 4-connected or 8-connected to at least one
pixel on another region of the segmentation.
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Accuracy (ASA) [Liu et al., 2011] models G with the superpixels in S and measures the
leakage of the superpixels across the boundaries in G.

Throughout this thesis, we use Boundary Recall (BR), Undersegmentation Error (UE), and
Oversegmentation Error (OE). These measures are commonly used (BR and UE) and cover all
qualities of superpixel segmentations, while most other measures are redundant (BR is similar
to MDE, OE is similar to BP, and UE is similar ASA). We also use the Overall Segmentation
Quality (OSQ) as a combination of BR and UE following Stutz et al. [2018]. For a fair
comparison of superpixel segmentation methods, we compare the superpixel segmentations
based on the average number of superpixels across the dataset. Otherwise, a practically
irrelevant superpixel segmentation with one pixel per superpixel would also recall all annotated
boundaries. If multiple annotations are available, we follow Stutz et al. [2018] and pick the
worst value per measure and image for averaging. In the following we discuss the measures
used in this thesis in more detail.

Boundary Recall

Boundary Recall (BR) [Martin et al., 2004] measures how many boundary pixels of the ground
truth annotation G are covered by the boundary pixels of the superpixel segmentation S
given a tolerance ε. To compute BR, we define True Positives (TP(S,G, ε)) as the boundary
pixels of G, whose L1 distance to any boundary pixel in S is smaller than ε. Similarly, False
Negatives (FN(S,G, ε)) are boundary pixels of G, whose L1 distance to any boundary pixel
in S is greater or equal ε. TP and FP are visualized in Fig. 2.7(c), where the blue line is the
annotation boundary. The parts of the boundary covered by a superpixel boundary within
a distance of ε are marked green (TP), while those not covered are marked red (FN). Thus,
given a superpixel segmentation S, a ground truth annotation G, and a tolerance ε, BR is
defined as

BR(S,G, ε) = TP(S,G, ε)
TP(S,G, ε) + FN(S,G, ε) . (2.2)

A larger BR denotes better results since more annotated boundaries are captured. However, a
superpixel segmentation with every superpixel representing exactly one pixel would score a
perfect BR, although being useless for subsequent processing. Following Stutz et al. [2018],
we set ε = b0.5 + 0.0025 ·

√
h2 + w2c for an image of height h and width w to adapt the BR

to the image size.

Undersegmentation Error

The Undersegmentation Error (UE), first introduced by Levinshtein et al. [2009], measures
the leakage of the superpixels in S across the boundaries of the ground truth annotation G.
Hence, UE assesses the error introduced by undersegmentation in S w.r.t. G. Figure 2.7(d)
visualizes an example for the UE given the superpixel segmentation S in Fig. 2.7(a) and the
ground truth annotation G in Fig. 2.7(b). Superpixel S2 (bluish, top center in Fig. 2.7(d))
leaks across the blue contour between the regions G1 and G2 of the ground truth annotation.
Similarly, superpixel S5 (green, center in Fig. 2.7(d)) leaks across the blue contour and into
G1. Both cases are undersegmentation errors.

To measure the errors, different definitions [Achanta et al., 2012; Neubert and Protzel, 2012;
Van den Bergh et al., 2012] exist since the original formulation by Levinshtein et al. [2009]
creates UEs that are not bound to the range [0, 1]. Additionally, Achanta et al. [2012] and
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(a) Superpixel segmentation S (b) Ground truth G

(c) Boundary Recall (BR) (d) Undersegmentation
Error (UE)

(e) Oversegmentation Er-
ror (OE)

Figure 2.7: Superpixel segmentation S consisting of eight superpixels S1, . . . , S8 (a) and ground truth anno-
tation G with regions G1 and G2 (b). (c) shows the Boundary Recall (BR) for S given G as the
part of the ground truth boundary between G1 and G2 (solid blue contour) that is covered by
superpixel boundaries in S within a tolerance of ε. These parts of the boundary are highlighted
in green. (d) presents the Undersegmentation Error (UE) as the leakage of S2 into G2 and S5
into G1 (hatched areas). Similarly, (e) denotes the Oversegmentation Error (OE) as the areas of
G1 and G2 that are not covered by the superpixel with the largest overlap (hatched areas).

others pointed out that the definition of Levinshtein et al. [2009] strongly penalizes superpixels
leaking only slightly across the annotated boundaries. Circumventing both problems, Neubert
and Protzel [2012] propose a UE that accumulates the smaller part of the intersection and
the difference of Sj and Gi. This corresponds to the hatched areas in Fig. 2.7(d). We
follow this definition of Neubert and Protzel [2012] in this thesis. Hence, UE is defined
as:

UE(S,G) = 1
h · w

∑
Gi∈G

∑
Sj∈S

min{‖Sj ∩Gi‖, ‖Sj \Gi‖}. (2.3)

Since UE describes an error, smaller values for UE denote better superpixel segmenta-
tion results. Similar to BR, a superpixel segmentation with one superpixel per pixel
would score a perfect UE but lead to severe oversegmentation, making it practically use-
less.

Overall Segmentation Quality

Since BR and UE measure different properties of a superpixel segmentation, a combined
measure is useful to assess the segmentation quality with a single number. For this purpose,
Stutz et al. [2018] propose the Overall Segmentation Quality (OSQ) as a weighted sum of BR
and the inverse of UE:

OSQ(S,G, ε) = γ BR(S,G, ε) + (1− γ)(1−UE(S,G)). (2.4)
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We follow Stutz et al. [2018] and set γ = 0.5 while following the same calculation for ε as
described for BR. Overall, OSQ reflects both the recall of boundary pixels and the errors
induced by undersegmentation in a unified measure. We will use OSQ throughout the thesis
to optimize the parameters of superpixel segmentation methods.

Oversegmentation Error

In contrast to BR and UE, the Oversegmentation Error (OE) [Stutz et al., 2018] assesses
the errors introduced by oversegmentation. To measure this error, for each region Gi ∈ G,
the superpixel Sj ∈ S with the largest overlap is identified. In the example in Fig. 2.7(e), G1
has the largest overlap with S1, while G2 has the largest overlap with S5. The remainder
of G1 or G2, i.e., the part of G1 or G2 not covered by S1 or S5, are the oversegmentation
errors (hatched areas in Fig. 2.7(e). Thus, for an image with h · w pixels, the OE is defined
as

OE(S,G) = 1
h · w

∑
Gi∈G

min
Sj∈S
{‖Gi‖ − ‖Sj ∩Gi‖}. (2.5)

Since OE denotes an error, small values correspond to better results. OE is rarely used
for evaluating superpixel segmentations, since the goal of a superpixel segmentation is to
oversegment the image. However, for certain applications it is important to compare the
strength of oversegmentation (see Ch. 5 - Ch. 7).

2.2 Foundations on Object Proposal Generation

The second major task we address in this thesis is object proposal generation. In the introduc-
tion, we briefly described the object proposal generation task as the discovery of arbitrary ob-
jects in an image. This section provides details on the task (see Sec. 2.2.1), relevant datasets (see
Sec. 2.2.2), and dedicated evaluation measures (see Sec. 2.2.3).

2.2.1 Object Proposal Generation Task

The object proposal generation task was first5 introduced by Alexe et al. [2010]. They described
the task in the context of object detection. Instead of processing all possible windows of an
image, object detection systems, which localize and classify objects, should only process image
patches that fully contain one object. This selection of relevant locations (windows or masks),
called object proposals, is known as the object proposal generation task. Figure 2.8 shows an
example for an object proposal generation result on an image with large background areas. The
object proposals (boxes in Fig. 2.8(b), masks in Fig. 2.8(c)) cover only objects or object parts
and reduce the search space for subsequent methods while also removing false positives [Alexe
et al., 2012]. Hence, a suitable object proposal generation method increases the efficiency
of subsequent object detectors [Alexe et al., 2012] and improves the results [Girshick, 2015].
Since the original formulation by Alexe et al. [2010], other applications have utilized object

5Earlier approaches [Russell et al., 2006; Malisiewicz and Efros, 2007; Gu et al., 2009] followed a similar basic
idea, reducing the number of possible windows for object detection. However, they proposed simply taking
individual superpixels or all possible small groups of superpixels as proposals without further classification,
feature-based merging, or ranking of proposals.
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(a) Input image (b) Box-based object proposal
generation result

(c) Mask-based object pro-
posal generation result

(d) Object detection result (e) Instance segmentation re-
sult

Figure 2.8: Input image (a) with manually generated results for box-based (b) or mask-based (c) object
proposal generation. The results discover the four major objects (person, racket, and two sports
balls) and some object parts (head, leg, arm, racket strings) without further classification. In
contrast, the manually generated object detection (d) and instance segmentation (e) results
include classifications of the objects and are fixed to a set of pre-selected or learned classes. Input
image taken from the COCO dataset [Lin et al., 2014].

proposals such as instance segmentation [Hariharan et al., 2014; He et al., 2017a], visual
grounding [Rohrbach et al., 2016; Plummer et al., 2018], fine-grained classification [Zhang
et al., 2014; He et al., 2018], object tracking [Ošep et al., 2018; Fan and Ling, 2019], or tasks
with weak supervision [Bilen and Vedaldi, 2016; Tang et al., 2018].

Formally, object proposal generation is the task of

1. composing a region (object proposal) for every object in the image

2. with as few regions (object proposals) as possible and

3. additionally, producing a ranking of the regions (object proposals).

The regions or object proposals are either bounding boxes (see Fig. 2.8(b)) or pixel-precise
segmentation masks (see Fig. 2.8(c)). We denote the different formulations as box-based and
mask-based object proposal generation. The mask-based object proposals precisely segment
the object and allow an analysis of the object’s shape in subsequent applications [Vicente
et al., 2011]. In contrast, box-based proposals only allow a rough estimation of the object’s
location and extent. As mentioned in the last part of the task definition, a ranking of the
object proposals is required. This ranking allows for prioritized processing in case of limited
computational resources and is used for evaluation purposes. To generate a ranking, object
proposal generation systems produce an objectness score per object proposal. The objectness
score is usually in the interval of [0, 1] and reflects the chance of an object proposal to
fully contain one object [Alexe et al., 2010]. Alternatively, some methods limit the number
of object proposals using parameters [Krähenbühl and Koltun, 2014; Rantalankila et al.,
2014].
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Object proposals aim to discover all objects in an image as described above. This is also
independent of the object classes represented in the training set and makes object proposal
generation a class-agnostic task. Thus, a general definition of the term object is necessary.
Additionally, it is also necessary to differentiate objects from other structured background
elements like sky or street surface, often coined stuff [Forsyth et al., 1996]. For defining objects,
different definitions exist [von Hofsten and Spelke, 1985; Forsyth et al., 1996; Alexe et al., 2010].
We follow the definition of von Hofsten and Spelke [1985] from psychology and refer to objects
as ‘manipulable units with internal coherence and external boundaries’.

The class-agnostic setting of the object proposal generation task with the high-level definition
of objects also distinguishes it from related computer vision tasks like object detection and
instance segmentation. Object detection [Ren et al., 2016; Redmon et al., 2016] describes the
task of localizing and classifying all objects in an image but is fixed to pre-selected object
classes or the object classes seen in training. The localization in object detection operates on
the level of boxes as visible from the example in Fig. 2.8(d). Instance segmentation [Hariharan
et al., 2014; He et al., 2017a] is a similar task and differs from object detection only in
the localization based on pixel-precise masks (see Fig. 2.8(e)). Hence, object detection and
instance segmentation are similar to object proposal generation. However, those tasks are not
class-agnostic, since they are fixed to a set of object classes.

2.2.2 Object Proposal Generation Datasets

Similar to the datasets for superpixel segmentation, we present commonly used datasets for
training and evaluating object proposal generation methods. In general, datasets for object
proposal generation need annotations for all objects or objects of a pre-defined set of object
classes per image. Note that object proposal generation systems do not utilize the class
information. As mentioned above, the annotations are either boxes or pixel-precise masks.
Due to the substantial manual effort to create mask annotations, most datasets focus on
boxes.

The most commonly used datasets in object proposal generation [Alexe et al., 2010; Gidaris
and Komodakis, 2016; Pinheiro et al., 2016] are the datasets from the PASCAL Visual
Object Classes (PASCAL VOC) challenges [Everingham et al., 2010] with box and some
mask annotations as well as the Microsoft Common Objects in Context (COCO) dataset [Lin
et al., 2014] with box and mask annotations. Since this thesis focuses on object proposal
generation with pixel-precise masks utilizing CNNs, the PASCAL VOC datasets are not large
enough. The largest PASCAL VOC dataset with mask-based annotations covers only 6929
objects (training set and validation set of the 2012 release), while the COCO dataset comprises
896,782 objects with mask-based annotations (training set and validation set of the 2014
release). Hence, we utilize the COCO dataset and the recently introduced Large Vocabulary
Instance Segmentation (LVIS) dataset [Gupta et al., 2019] in this thesis. The following sections
describe these two datasets in more detail. Besides the mentioned datasets, few authors
use other datasets like variations of the ImageNet dataset [Russakovsky et al., 2015] or the
previously introduced datasets NYU and SUN, among others.

Microsoft Common Object in Context Dataset

Lin et al. [2014] proposed the Microsoft Common Objects in Context (COCO) dataset
for various recognition tasks, including object detection, keypoint detection, or panoptic
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segmentation. The dataset contains 328,000 images with mask and box annotations for objects
of 80 classes. The classes cover indoor and outdoor objects, including animals, vehicles, or
food. The complexity of the images in the COCO dataset is high, with few iconic object views
and many annotated small objects. On average, each image contains 7.27 annotated objects,
while an annotated object covers 4.33% of the image (training set and validation set of the
2014 release).

The 2014 release used throughout this thesis has 82,783 images for training. Additionally,
40,504 images for validation were released, including annotations. Since the annotations
for the original test data are not publicly available, it is best practice to use the first 5000
validation images for testing [Pinheiro et al., 2016; Hu et al., 2017a]. Thus, we denote the
first 5000 images of the original validation set as the test set. From the remaining original
validation images, we randomly select 5000 images as our validation set following [Hu et al.,
2017a]. Across the dataset, the images have varying sizes and aspect ratios, with an average
height of 484 pixels and an average width of 578 pixels (2014 release).

The object masks in the COCO dataset were manually annotated by first identifying an
instance and later creating the mask annotations. The masks consist of a coarse polygon,
which leads to imprecise annotations that do not adhere to all details of the object boundaries.
Figure 2.9 shows two example images with annotations from the COCO dataset. It is visible
from the annotations in the left example that the coarse polygons lead to a sometimes poor
quality of the annotated masks. For instance, the mask annotating the zebra in the back does
not cover the zebra’s head. The right example highlights the high complexity of the dataset
with multiple different annotated and unannotated objects.

Since the COCO dataset is complex and sufficiently large for training and evaluating
deep learning-based systems, we use the 2014 release of the COCO dataset in this the-
sis.

Large Vocabulary Instance Segmentation Dataset

To foster instance segmentation research, Gupta et al. [2019] present the complex Large
Vocabulary Instance Segmentation (LVIS) dataset. The dataset consists of the images from
the COCO dataset and adds more precise and diverse annotations based on a multi-stage
annotation and verification pipeline. The more precise annotations allow a better assessment
of precise object segmentations in tasks like instance segmentation or object proposal gen-
eration [Gupta et al., 2019]. The precise annotations are highlighted by the left example
in Fig. 2.10(b), which depicts the same example as Fig. 2.9(b). Compared to the COCO
annotations, the zebras are precisely captured, including both heads and even details like the
ears.

Moreover, Gupta et al. [2019] do not limit the annotations to 80 object classes but use a
common vocabulary of 1723 object classes to annotate the LVIS dataset. This large set of
object classes makes the LVIS dataset more general and challenging than the COCO dataset.
Since it is difficult to annotate objects of 1723 classes consistently throughout thousands
of images, coherence is only enforced within each image. Moreover, frequently occurring
classes are removed from several images to balance the distribution of classes to some extent.
As a result, frequently occurring classes like person are not annotated in every image. The
more detailed annotations are visible in the right scene in Fig. 2.10(b). Compared to the
annotations in the COCO dataset (see Fig. 2.9(b)), the LVIS annotations cover significantly
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(a) Dataset images (b) Annotations

Figure 2.9: Example images from the COCO dataset [Lin et al., 2014] (a) with mask annotations (b). The
left example shows typical coarse polygon annotations that do not adhere well to the object
boundaries. The right example shows a typical complex scene. Nevertheless, only objects from the
pre-defined classes are annotated. Base image and annotations taken from the COCO dataset [Lin
et al., 2014].

(a) Dataset images (b) Annotations

Figure 2.10: Images from the LVIS dataset [Gupta et al., 2019] (a), which are taken from the COCO
dataset, with more precise and complete annotations (b). Compared to the COCO dataset (see
Fig. 2.9(b)), the annotations in the LVIS dataset capture the object boundaries more precisely (left
scene) and cover more objects (right scene). Base image and annotations taken from the LVIS
dataset [Gupta et al., 2019].

more objects. For instance, individual pillows, lamps, and paintings, which are not part of
the 80 classes in the COCO dataset, are precisely annotated.

Since the images are identical to the COCO dataset, the image statistics are also identical.
However, due to the new annotations, 12.29 objects are annotated on average per image.
Moreover, the average relative size per annotation drops to 1.74%. Hence, each image contains
more objects that are much smaller compared to the COCO dataset. The LVIS dataset also
uses a different split of images leading to 100,170 training images, 19,809 validation images,
and 19,822 test images without publicly available annotations. We use the first 5000 images
of the LVIS validation set in this thesis to evaluate precise object proposals in Ch. 5 - Ch. 7
and denote it as the LVIS test set. Another 5000 images of the original LVIS validation set
comprise our LVIS validation set, similar to the COCO dataset.

2.2.3 Object Proposal Generation Evaluation

In Sec. 2.1.3, we discussed evaluation measures that determine how well a superpixel segmen-
tation matches annotated boundaries. Although these measures are also helpful for analyzing
the quality of object proposals (see Ch. 5 - Ch. 7), the problem in object proposal generation
is generally different. First, object proposal generation systems typically produce hundreds or
thousands of object proposals. To cope with this, only the proposal that best matches an
annotated object is evaluated. For a fair comparison, the set of proposals considered for this
match is truncated at certain levels (e.g., the first 10, 100, or 1000 proposals). Second, we
want to assess two main qualities of object proposals. On the one hand, we want to measure
how many annotated objects are discovered by the proposals. On the other hand, we also want
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(a) IoU = 0.0 (b) IoU ≈ 0.1 (c) IoU ≈ 0.5 (d) IoU ≈ 0.5

(e) IoU ≈ 0.7 (f) IoU ≈ 0.8 (g) IoU ≈ 0.9 (h) IoU ≈ 0.9

Figure 2.11: Visualization of different Intersection over Union (IoU) levels between a proposal (red) and
the annotated object (green). The intersection of the annotated object with the proposals is
highlighted in blue. The proposals in (a) and (b) do not discover the object (IoU < 0.5). In
contrast, the proposals in (c) and (d) roughly discover the entire object or parts of the object in
more detail. The proposals in (e), (f), and (g) refine the proposal from (d), leading to higher
IoU values. Note that the proposal in (g) almost perfectly discovers the object while achieving
only an IoU of 0.9. Similarly, the proposal in (h), which misses both feet and a hand, also has
an IoU of 0.9. Base image and annotation taken from the LVIS dataset [Gupta et al., 2019].

to assess how precisely the proposals segment the objects6. Note that precision7 is generally
not an important measure for object proposals [Zitnick and Dollár, 2014; Hosang et al., 2015],
since the generation of proposals usually serve as a pre-processing step.

The qualities mentioned above, how many objects are discovered and how well they are
segmented, are closely related. This relation becomes apparent when assessing which proposals
in Fig. 2.11 discover the annotated object (tennis player). A common measure to decide if a
proposal region P ⊆ Ω discovers an annotated object region O ⊆ Ω is the overlap assessed by
the Intersection over Union (IoU), defined as

IoU(P,O) = |P ∩O|
|P ∪O|

. (2.6)

The IoU calculates the overlap independent of the proposal’s size and the object’s size. Given
the IoU, we can define the set of true positives TPt for an image as the number of annotated
objects discovered by at least one proposal with an IoU of at least t. Similarly, the set of false
negatives FNt is defined as the number of annotated objects that are not discovered by at
least one proposal with an IoU of at least t. Overall, we define the Recall (Rec(t)) given TPt
and FNt as

Rec(t) = TPt
TPt + FNt

. (2.7)

Everingham et al. [2010] suggest a threshold of t = 0.5 as a lower bound for a proposal to
discover an object successfully. As visible from the images in Fig. 2.11, an IoU of 0.5 means
that the object is only roughly discovered. Hence, many authors not only report the Rec(0.5)

6Assessing the segmentation is independent of the type of proposal (masks or boxes).
7Precision in this context assesses how many object proposals discover objects.



26 Chapter 2 Foundations

Table 2.1: Overview of different variations of the Average Recall (AR) w.r.t. the number of proposals analyzed
and the size of the considered annotated objects.

Variation Number of
proposals

Size (a) of
considered objects

in pixels

Description

AR@10 10 all AR for the first 10 proposals com-
pared to annotated objects of all sizes.

AR@100 100 all AR for the first 100 proposals com-
pared to annotated objects of all sizes.

AR@1000/
AR@1k

1000 all AR for the first 1000 proposals com-
pared to annotated objects of all sizes.

ARS@100 100 a < 322 AR for the first 100 proposals com-
pared to small annotated objects.

ARM@100 100 322 ≤ a ≤ 962 AR for the first 100 proposals com-
pared to medium annotated objects.

ARL@100 100 962 < a AR for the first 100 proposals com-
pared to large annotated objects.

but take the concept one step further and plot curves with t in the interval of [0.5, 1] [Endres
and Hoiem, 2010; Krähenbühl and Koltun, 2014; Zitnick and Dollár, 2014]. This allows a
better analysis of how well the proposals adhere to actual the object boundaries. Hosang et al.
[2015] propose to integrate Rec(t) over the interval [0.5, 1], which leads to one convenient
number for comparison, given a fixed number of proposals. Thus, [Hosang et al., 2015] define
the Average Recall (AR) as8

AR = 2
∫ 1

0.5
Rec(t) dt. (2.8)

Hosang et al. [2015] also show that the AR correlates with the results of object detection systems
using these proposals. Overall, AR measures both qualities of object proposals: the number
of discovered objects and the segmentation quality of the proposals.

AR is usually reported for 10, 100, and 1000 proposals to compare object proposal generation
results for different numbers of proposals (AR@10, AR@100, and AR@1000). Moreover,
size-specific ARs for the first 100 proposals (ARS@100, ARM@100, and ARL@100) assess the
quality of proposals w.r.t. the annotated objects of specific size ranges. Following Lin et al.
[2014], small objects (S) have an absolute area of less than 322 pixels, while large objects (L)
have an area of more than 962 pixels. The remaining objects are of medium size (M). Note
that these absolute areas were defined for the images of the COCO dataset and may not be
reasonable for datasets using other images. Similar to other authors [Pinheiro et al., 2015,
2016; Hu et al., 2017a], we report AR throughout this thesis since it covers both qualities of
object proposals and is correlated with subsequent object detection results. Table 2.1 presents
an overview of the different AR variations reported in this thesis.

Besides AR, the Average Best Overlap (ABO) [Endres and Hoiem, 2010; Hosang et al., 2015]
was frequently used to evaluate object proposal generation systems [Uijlings et al., 2013;

8In practice, the integral is approximated by a sum at the steps 0.5, 0.55, 0.6, . . . , 0.95 for t.
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Krähenbühl and Koltun, 2014; Pont-Tuset et al., 2017]. ABO measures the best overlap in
terms of IoU between a set of proposals and an annotated object. Subsequently, the best
overlap is averaged over all annotated objects in the image. However, Hosang et al. [2015]
show that ABO is identical to AR if the best overlap for an annotated object is set to 0 in
case it is below 0.5. Hence, we do not report ABO in this thesis.
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The contributions of this thesis focus on superpixel segmentation and object proposal gener-
ation. To better understand the context of the contributions, we review relevant literature
in the fields of superpixel segmentation (see Sec. 3.1) and object proposal generation (see
Sec. 3.2). We also discuss the strengths and limitations of several approaches. Some of these
limitations were already mentioned in Sec.1.2 and will be addressed in the subsequent chapters
of the thesis.

3.1 Literature on Superpixel Segmentation

This section discusses various approaches to generate superpixel segmentations on static
2D color or intensity images. The discussion only includes approaches that aim to gener-
ate superpixel segmentations or oversegmentations. Hence, we exclude early approaches
on image segmentation [Haralick and Shapiro, 1985] or approaches on semantic segmenta-
tion [Chen et al., 2016a, 2017] and instance segmentation [Hariharan et al., 2014; He et al.,
2017a].

Since Ren and Malik [2003] defined the term superpixel in 2003, many superpixel segmentation
approaches were proposed. To give a structured overview, we follow the general taxonomy
of Achanta et al. [2012] that divides superpixel segmentation methods into gradient ascent-
based methods and graph-based methods. Gradient ascent-based methods start from an
initial segmentation and subsequently improve this segmentation in one or multiple steps.
Graph-based methods represent the image as a graph and apply cuts to the graph or merge
parts of the graph to generate superpixels. Furthermore, we add the class of CNN-based
methods to reflect recent advances in this area. Figure 3.1 visualizes this taxonomy with its
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Watershed

Mode Seeking

Contour Evolution

Energy Optimization

Clustering

Gradient Ascent-based

CNN-based

Graph-based

Cutting

Seams

Merging

Ch. 7
Ch. 6

Figure 3.1: Overview of our taxonomy for superpixel segmentation methods with sub-categories inspired
by Achanta et al. [2012] and Stutz et al. [2018]. The stars locate our contributions of Ch. 6
and Ch. 7 within the taxonomy. While the contribution in Ch. 6 adapts energy optimization
and clustering methods, the contribution in Ch. 7 links graph-based merging and CNN-based
methods.

Table 3.1: Overview of the superpixel segmentation methods most frequently utilized in this thesis: ETPS [Yao
et al., 2015], SLIC [Achanta et al., 2012], FH [Felzenszwalb and Huttenlocher, 2004], SEAL [Tu et al.,
2018], SSN [Jampani et al., 2018], and SpxFCN [Yang et al., 2020]. Oversegmentation denotes the
amount of oversegmentation that the methods produce. Number of superpixels describes the ability
of methods to produce a desired number of superpixels. Runtime indicates the average runtime on
images from the BSD dataset based on Stutz et al. [2018]. The number of stars represents a rating
from high runtime/oversegmentation (∗) to low runtime/oversegmentation (∗∗∗).

Method Class Overseg-
mentation

Number of
superpixels

Runtime Used in

ETPS Gradient → Energy ∗ 3 ∗∗ Ch. 5 & Ch. 6
SLIC Gradient→ Clustering ∗ 3 ∗∗ Ch. 5 & Ch. 6
FH Graph → Merging ∗∗∗ 7 ∗∗ Ch. 5 & Ch. 7
SEAL CNN ∗ 3 ∗ Ch. 7
SSN CNN ∗∗ 3 ∗∗ Ch. 7
SpxFCN CNN ∗ 7 ∗∗∗ Ch. 7

sub-categories. The stars in Fig. 3.1 locate our contributions in Ch. 6 and Ch. 7 w.r.t. the
taxonomy.

In the following three sections, we give a brief overview of the most relevant and influential
approaches in the literature. Moreover, we will discuss fundamental approaches for this thesis
in more detail. Table 3.1 presents an overview of these fundamental approaches with key
properties and a classification w.r.t. our taxonomy. The presentation of the literature on
superpixel segmentation methods closes with a discussion in Sec. 3.1.4.

3.1.1 Gradient Ascent-based Superpixel Segmentation

Gradient ascent-based methods for superpixel segmentation start from an initial segmentation
that is refined in multiple steps. Following Stutz et al. [2018], we subdivide gradient ascent-
based approaches into methods based on watersheds, mode seeking, contour evolution, energy
optimization, and clustering. We will discuss each class in more detail in the subsequent
sections.
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Watersheds

The principle of watershed-based segmentation methods is inspired by topography and the flow
of raindrops or water into catchment basins. In this analogy, the catchment basins are the final
superpixels. Vincent and Soille [1991] and Meyer [1994] presented two classic formulations
for oversegmentation based on watersheds before the emergence of superpixels. Vincent and
Soille [1991] recursively enlarge catchment basins from their minima or markers. A dam
is constructed as a watershed leading to a superpixel boundary whenever two catchment
basins touch. Alternatively, Meyer [1994] assigns pixels to minima or markers based on the
path of the steepest slope using topographical distance. All pixels assigned to one minimum
or marker form a superpixel. A common problem when using the watershed principle for
superpixel segmentation are non-compact superpixels [Levinshtein et al., 2009; Achanta et al.,
2012]. To enforce compactness, different authors [Neubert and Protzel, 2014; Hu et al., 2015]
propose compactness constraints based on the Euclidean distance between pixels and minima
or markers.

Mode Seeking

Mode seeking-based superpixel segmentation methods interpret the image pixels as a Probabil-
ity Density Function (PDF) in a feature space of a joint spatial and color domain [Comaniciu
and Meer, 2002]. Within the PDF, the pixels are linked to modes that form clusters and
ultimately lead to superpixels. Mode seeking-based superpixel segmentation methods start by
estimating a density. Based on this density, each data point (pixel) moves towards the modes
of the density function utilizing the gradient information. Comaniciu and Meer [2002] propose
using mean shift [Fukunaga and Hostetler, 1975] for this mode seeking. In mean shift, each
data point is updated until convergence by taking the weighted mean of its neighborhood and
moving the point accordingly. Sheikh et al. [2007] extend the concept to medoid shifts by
replacing the mean with the median. Improving medoid shift, Vedaldi and Soatto [2008] reduce
the computational complexity and integrate a parameter for controlling the amount of over-
or undersegmentation.

Contour Evolution

Superpixel segmentation methods based on contour evolution iteratively grow superpixels
from seeds, similar to a diffusion process. The velocity at which superpixel contours evolve
is based on a flow representing the image complexity. In uniform areas, the flow is high.
In areas with edges, the flow is low. Levinshtein et al. [2009] start from regularly placed
seeds and calculate the flow around seeds or contour pixels based on the gradient magnitude
and the distance to other superpixels. This leads to inefficient processing and non-compact
superpixels. Variations of the original concept exist [Wang et al., 2013a; Buyssens et al.,
2014], which adapt the flow computation and include color homogeneity or compactness
constraints.

Energy Optimization

Approaches that use an energy optimization framework to generate superpixel segmentations
start from a regular grid of superpixels. Subsequently, they evolve this initial superpixel
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segmentation by optimizing an energy function. One of the seminal approaches in this
category is the Superpixels Extracted via Energy-Driven Sampling (SEEDS) [Van den Bergh
et al., 2015]. The energy function in SEEDS favors superpixels of homogeneous color and
regular shape. For optimization, a hill-climbing strategy is used that reassigns blocks of
pixels or pixels from one superpixel to an adjacent one in a coarse to fine manner. This
optimization refines the initial segmentation and leads to superpixels adhering to the image
contents. However, the superpixels lack compactness and produce a substantial amount of
oversegmentation.

Using a similar coarse to fine optimization, Yao et al. [2015] present the Extended Topology
Preserving Segmentation (ETPS)1 that extends the energy function of SEEDS. Besides
homogeneous color and a regular shape per superpixel, the energy function also preserves the
topology and enforces a minimum size. These additional constraints improve the results but
also increase the amount of oversegmentation. We will discuss ETPS in more detail below
since we modify ETPS in Ch. 6. Extending ETPS, Lee et al. [2017] add a term to the energy
function that estimates the likelihood of a boundary between superpixels based on a codebook
of boundary patches.

ETPS Borrowing the idea of SEEDS to utilize a hierarchical optimization, Yao et al.
[2015] propose Extended Topology Preserving Segmentation (ETPS). The optimization in
ETPS is based on an energy function similar to SEEDS. However, ETPS includes explicit terms
to control the topology (no disconnected superpixels), the size (uniformly sized superpixels),
and a second shape regularization term. Overall, the energy function E in ETPS consists of
five parts given a superpixel segmentation S = {S1, . . . Sn}:

E(S) =
∑
Si∈S

Ec(Si) + γs
∑
Si∈S

Es(Si) + γbEb(S) + Et(S) + Em(S) (3.1)

with weights γp and γb to balance the influence of the different terms. Et and Em do not need
weights, since they either evaluate to 0 or ∞ as described below. The first term (Ec) controls
the color homogeneity of each superpixel by calculating the squared Euclidean distance between
the mean color value of a superpixel µc,Si and the color value of each pixel IRGB(p) : Ω → R3

within the superpixel. Thus, Ec is defined as

Ec(Si) =
∑

p∈Si

‖IRGB(p)− µc,Si‖22. (3.2)

The second term (Es) controls the spatial extent by calculating the squared Euclidean distance
between the center of a superpixel µs,Si and each pixel p within the superpixel:

Es(Si) =
∑

p∈Si

‖p− µp,Si‖22. (3.3)

The term Eb controls the compactness of the superpixels by counting how many pixels
have an 8-neighborhood consisting of pixels belonging to more than one superpixel. If
any superpixel in S is disconnected, Et imposes an infinite cost to preserve the topology.
Similarly, Em imposes infinite cost if any superpixel in S is smaller than a specific minimum
size.

1We use the name proposed by Stutz et al. [2018].
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(a) Input image (b) Coarse block-level reassign-
ment

(c) Fine pixel-level reassign-
ment

Figure 3.2: Example of the hierarchical optimization in ETPS for a simple input image (a) with six superpixels
denoted by colors in (b) and (c). First, coarse block-level reassignments are considered, like
reassigning the red block in (b) from the yellow superpixel to the violet or the blue superpixel.
On the finest level, individual pixels are considered, like the red pixel highlighted in (c). The
circled region in (c) is enlarged for visualization.

For optimizing the energy function E, ETPS enforces a hierarchical approach starting from
a regular grid of equally sized superpixels. Following SEEDS, the hierarchical optimization
reassigns blocks of pixels (see Fig.3.2(b)) or individual pixels (see Fig. 3.2(c)) from one
superpixel to an adjacent one. Subsequently, the energy function is evaluated given the
new assignment. If the reassignment reduces the energy, the assignment is kept. Different
from SEEDS, ETPS utilizes a queue to reassign blocks along current superpixel bound-
aries systematically. Once the queue is empty, and all blocks are processed, the following
hierarchy level with finer blocks is processed. After all hierarchy levels are processed, com-
pact superpixels emerge that are uniformly distributed across the image, which supports
oversegmentation.

Clustering

Clustering-based superpixel segmentation methods also start from an initial segmentation
and iteratively refine the superpixels. Achanta et al. [2012] started one prominent line of work
with their Simple Linear Iterative Clustering (SLIC). We will discuss SLIC below in more
detail since we modify it in Ch. 6. In a nutshell, SLIC applies a k-means clustering to the
image pixels in a 5D feature space composed of three color values and the spatial coordinates.
Overall, a pre-defined number of superpixels with tunable compactness emerge. Since the
superpixels are uniformly distributed across the image, SLIC superpixel segmentations exhibit
a large amount of oversegmentation. Several works follow up on SLIC to improve the original
formulation. Enriching the feature space, Li and Chen [2015] map the original 5D feature space
into a 10D feature space using the Fourier series. Achanta and Süsstrunk [2017] improve the
computational efficiency of SLIC by limiting the number of iterations to one utilizing an online
updating of cluster centers. Enforcing smaller superpixels in image areas with details, Liu et al.
[2016b] apply SLIC on a 2D manifold of the original SLIC features.

Apart from SLIC and its variations, several other clustering-based methods exist. Wang and
Wang [2012] extend the centroidal Voronoi tessellation with color features and a compactness
term to generate superpixel segmentations. Focusing on efficient processing, Shen et al.
[2016] utilize the DBSCAN clustering method based on color, spatial coordinates, and a size
constraint. Ban et al. [2018] use a Gaussian mixture model over spatial and color features to
create superpixel segmentations.
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(a) Initial seed placement (b) Local k-means (c) Original k-means

Figure 3.3: Initial placement of k seeds (black dots) in regular intervals of size t on an image in SLIC (a) as
well as a comparison of the local k-means (b) and the original k-means clustering (c). While the
local k-means utilized in SLIC has a restricted search region (red area) around a seed (green),
the original k-means clustering considers the entire image as the search region. Figure adapted
from Achanta et al. [2012].

SLIC Simple Linear Iterative Clustering (SLIC) proposed by Achanta et al. [2012] utilizes
a local k-means clustering of pixels in a 5D feature space based on the color values and the
spatial coordinates of pixels. SLIC starts by placing a pre-determined number of seeds in
regular intervals on the image. The distance on the x- or y-axes between the k seed points is
defined as

t =

√
h · w
k

(3.4)

for an image with height h and width w (see Fig. 3.3(a)). To avoid seeds on edges, the seeds are
moved to the pixel with the lowest gradient magnitude within the 8-neighborhood.

Based on these seeds as cluster centers, SLIC applies a local k-means clustering. For each seed
or cluster center, the distance in the 5D feature space is computed w.r.t. all pixels with an
L1-distance of less or equal t on the image plane. The spatially restricted calculation speeds
up the processing compared to the original k-means. Figure 3.3 visualizes a comparison with
the original k-means, highlighting the smaller search region (red area). Subsequently, each
pixel is assigned to the cluster center with the smallest distance. The cluster centers are
updated in the 5D feature space by taking the mean value per feature as the original k-means.
This procedure is repeated iteratively to adapt the initial superpixels to the image content.
Termination is reached once the cluster centers have converged.

An essential part of SLIC is the 5D feature space. Given a pixel p from the set of image pixels Ω,
the feature space consists of the LAB values from the CIELAB color space (ILAB(p) : Ω → R3)
as well as the pixel’s x- and y-coordinates (p). Since the distances between the LAB values
and the spatial distance are on different scales, the overall distance in the feature space is
a weighted sum of two distances. The spatial distance δs of two pixels pi,pj ∈ Ω is the
Euclidean distance:

δs = ‖pi − pj‖2. (3.5)

Similarly, the distance between the LAB color values of the two pixels pi,pj ∈ Ω is defined
as the Euclidean distance between the vectors of color values:

δc = ‖ILAB(pi)− ILAB(pj)‖2. (3.6)

To balance the distances, normalization coefficients are used. δs is normalized using t since
it approximately limits the spatial distance within each cluster. In contrast, no proper
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normalization coefficient can be derived for δc, since the colors may vary significantly between
superpixels and images. Therefore, a parameterm is introduced that normalizes δc and controls
the importance of the spatial distance δs and the distance in color space δc. The overall
distance δ in the 5D feature space used for clustering is defined as

δ =

√(
δc
m

)2
+
(
δs
t

)2
. (3.7)

As a result,m allows the user to control the compactness of the superpixels.

After termination of the clustering, a post-processing eliminates disconnected superpixels by
assigning them to one of their neighboring superpixels. Overall, SLIC efficiently generates
uniformly distributed superpixels with good segmentation quality and a large amount of
oversegmentation. Additionally, the user controls the number of generated superpixels (k)
and the superpixels’ compactness (m).

3.1.2 Graph-based Superpixel Segmentation

In contrast to gradient ascent-based approaches, which start from an initial superpixel
segmentation or seeds, graph-based approaches generate components in an image graph to
create superpixels. The image graph represents image pixels as nodes and the adjacency of
pixels as edges. The edges are weighted, representing the similarity of the two linked pixels.
Components (superpixels) are generated by cutting the graph, adding seams, or merging
vertices. We will discuss these three types of graph-based superpixel segmentation approaches
in more detail below.

Cutting

Graph cuts seek a partition of the image graph to generate a superpixel segmentation. Shi and
Malik [2000] propose normalized cuts to generate this partition. Normalized cuts extend the
minimum cut in graph theory, which minimizes the accumulated weight of the edges removed
to create a cut in the graph. Shi and Malik [2000] add a normalization term to this weight
accumulation to prevent a strong size imbalance between the superpixels generated by one cut.
To create a pre-defined number of superpixels, normalized cut is applied recursively. Despite
the simple idea behind normalized cuts, the runtime is high compared to other superpixel
segmentation methods [Stutz et al., 2018].

Veksler et al. [2010] formulate energy functions over the pixel graph to assign each node/pixel
to one of four half-overlapping patches. Subsequently, they utilize an efficient graph cut-
based framework to optimize the assignment. However, the method is still slow compared to
other superpixel segmentation methods [Stutz et al., 2018]. To increase the computational
efficiency, Zhang et al. [2011a] replace the four half-overlapping patches per pixel with half-
overlapping horizontal or vertical stripes to create a two-class problem. After solving the
problem for horizontal and vertical stripes, the results are overlayed, and the final superpixels
emerge.
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Seams

Seam-based superpixel segmentation methods adapt the idea of seam carving [Avidan and
Shamir, 2007]. Hence, those methods identify paths (seams) from top to bottom or left to
right in the image that split the image. Moore et al. [2008] follow this principle and create
superpixels with a regular grid topology similar to the image pixels. To keep the topology,
Moore et al. [2008] seek non-overlapping horizontal or vertical seams through the image graph
that follow the strongest edges. Subsequently, the final superpixel segmentation is created
from overlaying the horizontal and vertical seams. Moore et al. [2010] reduce this formulation
by creating only one seam in a multi-layer graph representing the image. For keeping the
topology, constraints are encoded similar to Moore et al. [2008]. Overall, the seam-based
approaches focus on preserving the regular grid topology, which impairs the segmentation
quality compared to other modern approaches.

Merging

Another sub-class of graph-based approaches merge vertices (pixels) of the image graph to cre-
ate superpixels. Felzenszwalb and Huttenlocher [2004] proposed the most influential approach
in this category. The Felzenszwalb and Huttenlocher (FH) superpixel segmentation method
utilizes the difference in intensity or color between pairs of adjacent pixels as edge weights.
Subsequently, the vertices (pixels) or groups of vertices are merged until a termination criterion
is reached. A more detailed explanation is given below since FH is utilized and extended in
Ch. 5 and Ch. 7. Luengo et al. [2016] combine the concept of FH with minimum cuts in an
iterative framework alternating merging and cutting of superpixels.

Another line of work on merging-based superpixel segmentation methods applies random
walks on the image graph. Liu et al. [2011] use the entropy of random walks to create Entropy
Rate Superpixel Segmentations (ERS), leading to compact superpixels of uniform size. Shen
et al. [2014] use random walks to estimate a pixels’ association to pre-defined seeds. After
assigning each pixel to a seed based on the shortest random walk, the seeds are relocated,
non-uniform superpixels are split, and a new iteration starts.

FH Felzenszwalb and Huttenlocher [2004] proposed the Felzenszwalb and Huttenlocher (FH)
superpixel segmentation method, which greedily merges vertices (pixels) in the image graph.
Reaching this goal, FH starts by setting up the image graph G = (V,E) with a vertex vi ∈ V
for each pixel and an edge (vi, vj) ∈ E linking the vertices that represent adjacent pixels.
Additionally, each edge ei ∈ E is weighted (w(ei) : E → R+) based on the intensity or color
difference of the linked pixels. To control the merging of the components (pixels or groups of
pixels), Felzenszwalb and Huttenlocher [2004] use the fundamental properties of superpixels.
First, a superpixel should have a low internal difference (homogeneous). Second, adjacent
superpixels should have a substantial external difference (cover different things). The internal
difference of a component C ⊂ V in FH is the largest edge weight within the minimal spanning
tree (MST) of C (see Fig. 3.4(b) for an example):

Int(C) = max
e∈MST(C)

w(e). (3.8)
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(a) Image graph (b) Intermediate step with two components

Figure 3.4: Example of an iteration in the merging process of FH with two components denoted with red
and green (b). The 12 vertices in the image graph (a) represent the 12 image pixels with their
respective pixel intensities, while the values along the edges in (b) denote the intensity differences.
Given the components and edge weights, FH updates the minimal spanning trees of the two
components marked by the red and green edges. Subsequently, the smallest remaining edge not
assigned to a component is determined (blue). Since this edge connects the red and the green
components, the internal difference (Int) for both components and the external difference (Ext)
between the components are computed. Given Eq. 3.10 with k = 1, the components are not
merged, since the external difference (Ext( , ) = 0.4) is larger than the combination of the internal
differences (MInt( , ) = 0.37).

For assessing the external difference between two components C1, C2 ⊂ V , FH uses the smallest
weight of any edge connecting C1 and C2 (blue edge in Fig. 3.4(b)):

Ext(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w((vi, vj)). (3.9)

Given both internal differences and the external difference of two components C1 and C2, FH
combines them into one condition D(C1, C2) to control the merging (true means components
are merged):

D(C1, C2) =
{

false Ext(C1, C2) > MInt(C1, C2),
true else.

(3.10)

MInt(C1, C2) combines the internal differences of the components utilizing the parameter
k:

MInt(C1, C2) = min
(

Int(C1) + k

|C1|
, Int(C2) + k

|C2|

)
. (3.11)

Given the two internal differences, MInt only considers the smaller one and adds a constant k
normalized by the cardinality of the respective component. Thus, if the components are small,
the offset is larger, allowing more dissimilar components to merge early. Once the components
grow, merging takes only place if the components are almost uniform.

The merging process itself is carried out greedily. FH sorts all edges in G in ascending order
given their weights and iteratively evaluates the condition D for each edge. If D evaluates
to true, the components linked by the edge are merged into one component. Ultimately,
each component in G represents one superpixel. Felzenszwalb and Huttenlocher [2004] show
that the resulting superpixel segmentation is neither too fine nor too coarse, given the
condition D. Additionally, the order of edges in merging is irrelevant as long as it is non-
decreasing.
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Since neither component of FH includes a size or compactness constraint, the size and
compactness of the superpixel might vary. This lack of compactness or size constraints results
in a reduced oversegmentation compared to other methods. Moreover, there is only indirect
control over the number of superpixels by varying the only parameter k, which controls the
maximum difference between the internal and external differences. Therefore, the number of
superpixels primarily depends on the image content.

3.1.3 CNN-based Superpixel Segmentation

As discussed in the introduction, few CNN-based approaches on superpixel segmentation
were published. The approaches generally follow one of three directions. Tu et al. [2018]
and Jampani et al. [2018] introduce CNN-based extensions of the traditional superpixel
segmentation methods ERS [Liu et al., 2011] and SLIC [Achanta et al., 2012]. In contrast,
Yang et al. [2020] and Wang et al. [2021c] approach the generation of superpixel segmentations
as a per-pixel classification task. In this formulation, a CNN assigns each pixel to one of the
initial superpixels. Using a different formulation, Zhu et al. [2021] extract CNN-based feature
embeddings for clustering pixels in an unsupervised framework. Since we propose a CNN-based
superpixel segmentation method in Ch. 7, we present the closely related works of Tu et al. [2018],
Jampani et al. [2018], and Yang et al. [2020] in more detail below.

SEAL Tu et al. [2018] propose the system SEAL (Segmentation-Aware Loss), which extends
the graph-based approach by Liu et al. [2011] utilizing a CNN. Liu et al. [2011] use the entropy
of random walks on the image graph for creating superpixels. The edge weights in the image
graph represent the difference between pixels in terms of intensity values. SEAL learns these
weights as affinities using a simple CNN with ten convolutional layers given the image and the
result of an edge detector. Based on the learned edge weights, SEAL applies the framework
of Liu et al. [2011] to generate superpixels.

The major contribution of Tu et al. [2018] is learning the edge weights as affinities. Tu et al.
[2018] argue that using binary cross-entropy loss for learning the affinities does not fit the
superpixel segmentation task. For instance, a single misclassified pixel can lead to severe
undersegmentation errors. To prevent this, SEAL incorporates the superpixel segmentation
result using the current affinities into the training by calculating an undersegmentation error
for each superpixel as a weight. The weight emphasizes pixels along the annotated boundaries
that lead to a high undersegmentation error and is used as in the binary cross-entropy
loss. Hence, the error is calculated w.r.t. the superpixel segmentation task. Overall, the
superpixels share the characteristics of Liu et al. [2011] but adhere better to the object
boundaries.

SSN Similar to SEAL, the Superpixel Sampling Networks (SSN) [Jampani et al., 2018]
is a CNN-based variation of a traditional superpixel segmentation method. Jampani et al.
[2018] adapt SLIC [Achanta et al., 2012] by transferring it into a fully differentiable version
that allows end-to-end training. Since SLIC applies a local k-means algorithm, it is not
differentiable due to the hard association of one pixel to exactly one cluster. SSN overcomes
this by using soft associations between each pixel and the cluster centers. To increase efficiency,
the computations are limited to the surrounding 9 cluster centers/superpixels for each pixel,
similar to the original formulation in SLIC. A hard relation is derived from the soft associations
to create the final superpixels.
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Figure 3.5: Overview of the system SpxFCN. SpxFCN assigns each pixel to one of the 9 initial superpixels
around it. In the example on the left, the highlighted pixel is assigned to one of the numbered
superpixels. Note that the numbers are relative to the location of the classified pixel. Therefore,
the classification result (right) of the encoder-decoder CNN (middle) is always in the range
0, 1, 2, . . . , 8 indicating the relative assignment. Hence, the highlighted pixel is assigned to the
upper superpixel (1). Input image taken from the BSD dataset [Martin et al., 2001].

The differentiable character of SSN allows Jampani et al. [2018] to augment the LAB color
features with end-to-end learned CNN-based features. To this end, SSN uses a CNN for
feature extraction that is linked with the differentiable SLIC to provide the learned input
features. The feature extractor has a lightweight design with only seven convolutional layers.
The loss function of SSN combines cross-entropy and a compactness loss that enforces spatially
compact superpixels. Overall, SSN generates superpixels utilizing deep features in an end-
to-end framework to increase the segmentation quality. Despite a strong methodological
similarity with SLIC, the superpixels have a slightly different structure with less compactness
and a lower amount of oversegmentation.

SpxFCN Yang et al. [2020] propose an end-to-end trainable CNN for superpixel segmen-
tation (SpxFCN). Unlike SEAL or SSN, SpxFCN does not adapt an existing superpixel
segmentation method. Instead, SpxFCN assigns each pixel to an initial superpixel grid cell
in a classification framework. These superpixel grid cells are similar to the initial setup in
superpixel segmentation methods like SLIC [Achanta et al., 2012]. To increase efficiency, each
pixel is only assigned to one of the nine closest superpixels similar to SSN. Figure 3.5 visualizes
the basic classification principle. To determine the classification result, SpxFCN consists of a
standard encoder-decoder architecture with ten convolutional layers in the encoder and skip
connections between the encoder and the decoder.

To train SpxFCN, Yang et al. [2020] propose a loss function that enforces proximate pixels
with the same user-defined property (e.g., color or semantic label) to be assigned to the
same superpixel. Overall, SpxFCN presents an end-to-end trainable superpixel segmentation
network. Similar to the other CNN-based superpixel generation networks, the generated
superpixels are not as compact as for methods like SLIC. However, the adherence to the
annotated boundaries is better as Yang et al. [2020] show.

3.1.4 Discussion

This section presented superpixel segmentation methods using various approaches. Gradient
ascent-based methods start from an initial segmentation or seeds that mostly result in compact,
uniformly distributed superpixels with substantial oversegmentation. In contrast, the majority
of graph-based methods produce less oversegmentation. Due to the construction of most
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Figure 3.6: Overview of our taxonomy for object proposal generation systems based on Hosang et al. [2015].
The star locates our contributions of Ch. 4 and Ch. 5 within the taxonomy. Both chapters present
contributions in the area of CNN-based object proposal generation with masks.

methods, only the intensity or color-based cut or merging criteria are relevant [Shi and
Malik, 2000; Felzenszwalb and Huttenlocher, 2004], while a uniform spatial distribution is
not enforced. The third class includes CNN-based methods that learn features to generate
superpixel segmentations. The approaches either augment existing methods with CNNs [Tu
et al., 2018; Jampani et al., 2018] or propose novel concepts [Yang et al., 2020; Wang et al.,
2021c; Zhu et al., 2021]. Due to the construction, most CNN-based superpixel segmentation
methods still exhibit a substantial amount of oversegmentation.

Overall, there exists a large body of literature on superpixel segmentation methods. Many
approaches perform well on benchmark datasets but produce a large amount of oversegmenta-
tion (e.g., SLIC, ETPS, and SSN). In contrast, most methods that limit the oversegmentation
suffer from inferior results on benchmark datasets (e.g., FH). However, such methods are
essential for object proposal generation as discussed in the introduction. Hence, methods are
missing that combine high segmentation quality with low oversegmentation. We will bridge
this gap with our contributions in Ch. 6 and Ch. 7.

3.2 Literature on Object Proposal Generation

This section reviews the major object proposal generation systems proposed since the seminal
work of Alexe et al. [2010]. Hosang et al. [2015] presented the first overview of the young object
proposal generation field and proposed a taxonomy for object proposal generation systems
to simplify the discussion. The taxonomy discriminates traditional approaches generating
an objectness score for a set of windows (window scoring-based) and approaches grouping
pixels or superpixels to form object proposals (grouping-based). Furthermore, we add the
class of CNN-based object proposal generation systems to the taxonomy, with sub-classes
for box-based and mask-based proposals. Figure 3.6 presents our taxonomy and some of the
important methods. The star in Fig. 3.6 locates our contributions in Ch. 4 and Ch. 5 within
our taxonomy.

The following sections discuss the most important approaches for each of the classes in the
taxonomy. The discussion will focus on mask-based proposals and CNN-based approaches, as
they are most related to our contributions in Ch. 4 and Ch. 5. Finally, Sec. 3.2.4 will summarize
and discuss the literature on object proposal generation methods. Note that as object proposal
generation is class-agnostic, we do not discuss approaches from related fields like object
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detection or instance segmentation. Additionally, we only discuss approaches focusing on
static 2D images and omit early methods [Russell et al., 2006; Malisiewicz and Efros, 2007;
Gu et al., 2009] that utilize individual superpixels or all possible small groups of superpixels
as proposals. These methods barely serve as baselines nowadays.

3.2.1 Window Scoring-based Object Proposal Generation

Window scoring-based object proposal generation systems consider a large set of windows (usu-
ally thousands of windows) and efficiently generate an objectness score per window. In their
seminal works [Alexe et al., 2010, 2012], Alexe et al. use multiscale saliency to extract 100,000
windows at promising locations. They generate an objectness score per window, integrating
the window’s color contrast as well as edge, superpixel, and saliency information in a Bayesian
framework. Chang et al. [2011] extend the approach of Alexe et al. [2010] by jointly learning
per superpixel saliency and per window objectness. The joint learning leads to better object
proposals since the tasks are closely related [Chang et al., 2011].

Rahtu et al. [2011] extract windows based on superpixel segmentations and a learned prior.
For regressing objectness scores, they utilize superpixel boundary information and symmetry.
Similarly, Cheng et al. [2014] propose their efficient system BING (binarized gradient magnitude
information based on a learned strategy to extract windows and gradient information. However,
as Zhao et al. [2014] show, the success of BING is mainly due to a sophisticated window
extraction and pruning strategy rather than the gradient information. Zhang et al. [2011b] use
an efficient cascade of classifiers to propose windows of different sizes and aspect ratios
based on gradient features. To generate objectness scores, Zhang et al. [2011b] utilize edge
features.

Using learned edge detection results, the system Edge Boxes [Dollár and Zitnick, 2013, 2014]
efficiently evaluates up to millions of initial windows per image. Subsequently, Edge Boxes
groups edges based on proximity and orientation to form contours. If several contours are
located entirely within a window, Edge Boxes assigns a high objectness score to the window
and vice versa. Concentrating the window extraction in Edge Boxes to the most interesting
and diverse set of windows, Sun and Batra [2015] propose a branch and bound strategy.
Taking a similar approach to Edge Boxes, Ma et al. [2017] use occlusion edges and compare
the strength of edges crossing the boundaries of a window with the strength of edges close to
but inside the boundaries of a window.

3.2.2 Grouping-based Object Proposal Generation

Grouping-based object proposal generation methods combine superpixels or pixels to form
object proposals. As a result, the proposals are segmentation masks, although most authors
still evaluate based on boxes. We follow Hosang et al. [2015] and discuss two different variations.
First, we present grouping-based object proposal generation systems, which group superpixels
with different strategies and features. Second, we review systems using graph cuts on pixel or
superpixel graphs.
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Superpixel Grouping

An early approach that groups superpixels to generate object proposals is Selective Search [van
de Sande et al., 2011]. Starting from an initial superpixel segmentation [Felzenszwalb and
Huttenlocher, 2004], Selective Search merges superpixels or superpixel groups greedily, yielding
a hierarchy of superpixel segmentations. Merging is executed based on SIFT-like features [Lowe,
2004] and size to force small superpixels to merge early. All superpixels across the stages of
the hierarchy comprise the set of proposals. To diversify the proposals further, the initial
superpixel segmentation is generated on multiple color spaces and with different parameters.
Uijlings et al. [2013] enhance Selective Search with additional color and shape features as
well as more color spaces. Several other extensions of Selective Search were presented. While
Yanulevskaya et al. [2014] add more features and learn a classifier for merging, Wang et al.
[2015] propose a multi-branch merging strategy with complementary classifiers. Extending
the concept of Selective Search further, Xiao et al. [2015] propose a new adaptive distance
metric for feature comparison. Since Selective Search lacks an objectness score, Lu et al.
[2015] introduce a score based on closed contours.

Various other approaches based on grouping superpixels exist. Arbeláez et al. [2014] propose
Multiscale Combinatorial Grouping (MCG). MCG merges superpixels across hierarchical
superpixel segmentations, resulting in object proposals. We will discuss this approach in
more detail below since it generates very competitive mask-based object proposals. Extending
MCG, Maninis et al. [2016] propose Convolutional Oriented Boundaries (COB), generating
object proposals with the same framework as MCG. However, the hierarchy of superpixel
segmentations is generated utilizing CNN-based boundary detection results. We classify
COB as a grouping-based approach since the proposal generation is conducted without
deep learning (see MCG). Using one superpixel graph rather than a hierarchy, Manén et al.
[2013] generate proposals based on minimum spanning trees employing Prim’s algorithm. To
diversify the proposal set and not cover the entire image, the initial vertex and the termination
are randomized. Krähenbühl and Koltun [2014] use the edge strength between superpixels
and a geodesic distance in the superpixel graph to construct object proposals as level sets
between foreground and background seeds. For selecting foreground and background seeds, a
classifier based on several features is proposed. In contrast, Lauri and Frintrop [2017] use a
statistical approach to sample object proposals from a superpixel segmentation based on the
distance dependent Chinese restaurant process.

Another line of grouping-based object proposal generation systems strongly relies on saliency.
Frintrop et al. [2014] and Martín García et al. [2015] utilize saliency to locate objects and
fuse superpixels in highly salient areas to form object proposals. For ranking the proposals,
saliency and shape information are utilized. Werner et al. [2015] also use saliency to guide the
initial seed selection in a framework similar to Manén et al. [2013] and rank the proposals
based on Gestalt principles [Wertheimer, 1922].

MCG Multiscale Combinatorial Grouping (MCG) [Arbeláez et al., 2014; Pont-Tuset et al.,
2017] generates object proposals based on hierarchies of superpixel segmentations. Each
superpixel segmentation hierarchy is generated in an efficient normalized cut framework
utilizing low- and mid-level features. The hierarchy represents the different strengths of edges
between superpixels as depth. Hence, two superpixels separated in the upper hierarchy are more
likely to represent different ground truth regions. To cover objects of all sizes, MCG uses three
scale-specific superpixel segmentation hierarchies, which are combined into a fourth hierarchy.
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Since the hierarchies of superpixel segmentations do not cover the objects directly, MCG uses
a combinatorial grouping approach to generate object proposals.

The combinatorial grouping considers all possible proposals based on combinations of n
superpixels across all levels of each superpixel segmentation hierarchy. The depth in the
hierarchy initially ranks the proposals. Hence, proposals consisting of superpixels with
strong contours are preferred. This combinatorial grouping is applied to all four superpixel
segmentations hierarchies with n ∈ {1, 2, 3, 4} leading to 16 pools of proposals. Given the 16
pools, MCG learns to select the proposals across the pools using a Pareto front optimization
scheme. Finally, all selected proposals are ranked using simple size, shape, and contour
features like compactness and aspect ratio in a learned linear regression framework. Due to the
large number of possible combinations during grouping, MCG lacks computational efficiency
while generating precise object proposals [Hosang et al., 2015].

Graph Cuts

Graph cut-based methods for object proposal generation apply the idea of graph cuts on
pixel or superpixel level. Carreira and Sminchisescu [2010, 2011] proposed the first approach
for object proposal generation using graph cuts. To diversify the proposals, they use a
parametric minimum cut formulation on pixel level, which calculates cuts with various
parameter values. Multiple foreground seeds are used for the minimum cut, while pixels
along the image border always represent the background. Endres and Hoiem [2010, 2013] use
a parametric minimum cut on the superpixel graph and capture long range dependencies
between superpixels. Several other authors also use the parametric minimum cut framework
on the superpixel graph. Humayun et al. [2014] increase the efficiency by sharing computation
between the minimum cut solutions of different seeds, Lee et al. [2014] utilize mid-level features
like contour closure and symmetry, and Humayun et al. [2015] enforce more object proposals
of medium size.

Combining global and local minimum cuts on the superpixel graph, Krähenbühl and Koltun
[2015] generate object proposals at different granularities. While global minimum cuts focus
on prominent objects, local minimum cuts are applied to parts of the graph based on a
location cue. Also considering global and local information, Rantalankila et al. [2014] mix
Selective Search with parametric minimum cuts. Based on the superpixel hierarchy in Selective
Search, they choose an intermediate level as the base level for further processing. From this
level, superpixel merging based on local decisions similar to Selective Search and parametric
minimum cuts based on global decisions are applied in parallel to generate a diverse set of
proposals.

3.2.3 CNN-based Object Proposal Generation

Unlike the previously discussed approaches that use hand-crafted features, the CNN-based
object proposal generation systems learn features and the generation of object proposals in an
end-to-end framework. In the following, we give an overview of box-based and mask-based
object proposal generation systems utilizing CNNs.
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Box Proposals

One of the first CNN-based object proposal generation systems was proposed by Erhan et al.
[2014], which use an AlexNet [Krizhevsky et al., 2012] to generate a fixed number of proposals.
The proposal box coordinates and the objectness scores are directly inferred from the backbone
network without window extraction employing fully connected layers. During training, Erhan
et al. [2014] assign annotated objects to the generated proposals dynamically as part of the
loss calculation, leading to an end-to-end trainable system. Other early systems only generate
an objectness score based on CNNs for numerous windows [Ghodrati et al., 2015, 2017] or
Edge Boxes proposals [Kuo et al., 2015; Novotny and Matas, 2015] without a CNN-based
bounding box regression.

Extending the work of Erhan et al. [2014], Ren et al. [2016] propose Region Proposal Net-
work (RPN). The RPN is integrated into the Fast R-CNN object detector [Girshick, 2015] and
enables learning object proposal generation and subsequent object detection in one framework.
To generate an arbitrary number of proposals, the RPN uses a sliding window approach with
windows of different sizes and aspect ratios (anchor boxes) on top of a backbone network. The
RPN regresses a box from each window and generates an objectness score using fully connected
layers. Several extensions to the original formulation have been proposed. For instance, Kong
et al. [2016] use features from multiple layers of the backbone to enhance the localization
ability, while Lu et al. [2018] and Wang et al. [2019] learn the parameters of the anchor boxes
with location, size, or aspect ratio priors for improved results.

In contrast to the previous approaches, Gidaris and Komodakis [2016] introduce AttractioNet
and propose an iterative scheme to refine anchor boxes. Instead of directly regressing
the box coordinates like Erhan et al. [2014] or Ren et al. [2016], AttractioNet regresses
probability vectors for each box covering the box and a search area around it. The probability
vectors represent the probability of each row or column in the search area being part of the
object. By iteratively applying this procedure, initial coarse anchor boxes can adapt their
position, size, and aspect ratio to the image content, minimizing the influence of the initial
boxes.

Mask Proposals

For mask-based object proposals, few CNN-based systems exist. Generally, they follow either
the multi-shot concept or the one-shot concept [Hu et al., 2017a]. Systems using the multi-shot
concept extract windows from an image pyramid as visualized in Fig. 3.7(a). Subsequently,
an objectness score and a segmentation mask are generated for each window utilizing a CNN
like in DeepMask [Pinheiro et al., 2015] and SharpMask [Pinheiro et al., 2016]. DeepMask
uses a backbone network and adds two heads for segmentation and objectness scoring, while
SharpMask extends the concept by refining the initial coarse proposals. We discuss both
systems in more detail below. Qiao et al. [2017] also use the multi-shot concept and extend
SharpMask with a small network to learn application-specific downsampling factors for the
image pyramid.

Applying a system on overlapping windows across different image pyramid levels like in
the multi-shot concept is redundant and computationally inefficient. Therefore, Hu et al.
[2017a] propose the one-shot concept for object proposal generation. In the one-shot concept,
the backbone network processes an image only once. The construction of the pyramid is moved
to the feature space as visualized in Fig. 3.7(b). Since the extraction of windows is conducted
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(a) Multi-shot object proposal generation (b) One-shot object proposal generation

Figure 3.7: Comparison of multi-shot object proposal generation (a) and one-shot object proposal genera-
tion (b) according to Hu et al. [2017a]. In the multi-shot concept overlapping windows (green)
from an image pyramid are extracted and processed individually by the backbone network (yellow)
and the head (red) for segmentation and objectness scoring. In contrast, the image is only
processed once by the backbone network (yellow) in the one-shot concept, yielding a feature
pyramid (blue). From this pyramid, windows (green) are extracted and individually processed by
the head (red). Input image taken from the COCO dataset [Lin et al., 2014]

in feature space, the features generated by the backbone network are shared between all
windows. Hu et al. [2017a] introduce FastMask, the first object proposal generation system
following this concept. We present FastMask in more detail below since it serves as the base
for our system presented in Ch. 4.

Dai et al. [2016] propose the hybrid system InstanceFCN, which incorporates ideas from both
concepts and is inspired by semantic segmentation systems. InstanceFCN has two branches
on top of a backbone network that processes the entire image at multiple resolutions like in
the multi-shot concept. One branch generates an objectness score per pixel, while the other
classifies the relative position2 of each pixel w.r.t. the object center. For instance, an object
pixel left of the object center is classified as left. To generate proposals, InstanceFCN extracts
and evaluates several windows on the relative position prediction in a one-shot manner. Each
window comprises nine sub-cells representing the nine relative positions. If a substantial
amount of predictions match the relative position represented by the overlapping sub-cells,
InstanceFCN generates a proposal from the locations of the matching predictions. Hence,
InstanceFCN processes an image multiple times in the backbone like the multi-shot approaches
but extracts windows in feature space like one-shot approaches.

DeepMask Pinheiro et al. [2015] presented the first CNN-based system for mask-based
object proposal generation called DeepMask. DeepMask generates an image pyramid with
rescaled versions of the input image and applies a CNN in a sliding window fashion following
the multi-shot concept. The CNN consists of a backbone network, VGG-11 [Simonyan and
Zisserman, 2015] in the original definition by Pinheiro et al. [2015], with two branches on top
of the backbone as visualized in Fig. 3.8(a). The first branch creates the segmentation mask
based on a convolutional layer and a fully connected layer by assigning the pixels to the classes
object and non-object. All pixels belonging to the class object constitute the object proposal,
which is generated on a coarse spatial resolution3 (56× 56) given features with an even lower
spatial resolution (14× 14). In parallel, based on the final feature map of the backbone, a
second branch generates the objectness score for the input window.

2The relative positions are discretized in center, left, top-left, top, top-right, right, bottom-right, bottom, and
bottom-left.

3The input window is of size 224× 224.
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(a) DeepMask (b) SharpMask

Figure 3.8: System overview of DeepMask [Pinheiro et al., 2015] (a) and SharpMask [Pinheiro et al., 2016] (b).
Given an input image window, DeepMask generates a segmentation and an objectness score
from the final feature map of the backbone network (yellow). Due to the reduced output size
(56× 56) compared to the input (224× 224), the proposals are coarse and do not adhere well to
the object boundaries. SharpMask uses the same backbone (yellow) and a similar processing for
the objectness score. However, for generating the segmentation mask, refinement modules (pink)
are introduced that gradually upsample the coarse features with features from earlier layers. As
a result, the final segmentation mask has the same spatial resolution as the input window and
captures more details of the objects. Input image window taken from the COCO dataset [Lin
et al., 2014].

During training, only windows that wholly contain a centered object are considered positive
samples. An object is centered if the center of the object is within 16 pixels of window’s center.
To be regarded as wholly contained, the object’s longer dimension has to be between 48% and
68% of the respective window dimension. If an object does not fulfill these conditions, it is a
negative sample. To train the mask generation branch, only positive samples are utilized since
negative samples would only consist of single class entries (background). For the objectness
branch, both positive and negative samples are used. The overall loss function combines
binary logistic regression losses for the objectness score and the per-pixel classifier in the mask
prediction branch. Note that the loss for the per-pixel classifiers is normalized by the number
of pixels in the predicted segmentation.

The image pyramid in DeepMask consists of seven layers with downsampling factors ranging
from 2−2 to 21. From each level, windows of size 224 × 224 with a stride of 16 pixels are
extracted. Apart from this model, which we refer to as DeepMask, Pinheiro et al. [2016] defined
the DeepMaskZoom model with an additional pyramid level 2−2.5. For fair comparison and
better results, all DeepMask models in this thesis utilize a ResNet-50 backbone without the
conv5 stage (see Appendix A.2).

SharpMask The main drawback of DeepMask are the coarse segmentation masks. The
downsampling process in the backbone network leads to a feature map of size 14× 14 given
an input window of size 224 × 224. Based on this 14 × 14 feature map, the 224 × 224
segmentation mask for the proposal is generated, which leads to a coarse segmentation mask
due to interpolation. SharpMask [Pinheiro et al., 2016] utilizes a guided upsampling of the
coarse features to segment proposals on input window resolution. This process is visualized in
Fig. 3.8(b) and replaces the segmentation branch of DeepMask.

The guided upsampling employs refinement modules (pink blocks in Fig. 3.8(b)) that con-
catenate the upsampled, semantically rich features from the deeper layer with the features
from the previous layer that have a higher spatial resolution. Four refinement modules are
applied successively to recover features at input window resolution, utilizing different features
from the backbone. Based on the final feature map, the segmentation mask is created with
pixel-wise classifiers similar to DeepMask. SharpMask only refines proposals with a high



3.2 Literature on Object Proposal Generation 47

Figure 3.9: Overview of the one-shot system FastMask [Hu et al., 2017a]. The backbone network processes
the entire input image only once (yellow). The resulting feature map is further downsampled
using neck modules (orange), yielding a feature pyramid. Across the pyramid levels, all possible
windows of a fixed size are extracted (green windows). Subsequently, a segmentation mask and
an objectness score are generated for each window. Within the segmentation process, foreground
attention (FG Attention) is utilized to prune background features. For clarity, we omit the
pyramid levels S24, S48, S96, and S192. Input image taken from the COCO dataset [Lin et al.,
2014].

objectness score to increase efficiency. Overall, this leads to an encoder-decoder architecture
for the segmentation branch as visualized in Fig. 3.8(b), while the objectness scoring branch
remains as in DeepMask.

Besides the refinement modules, Pinheiro et al. [2016] replace DeepMask’s VGG-11 backbone
with a ResNet-50 backbone without the final conv5 stage (see Appendix A.2). Removing
the conv5 stage keeps the number of downsampling operations constant w.r.t. the previously
used VGG-11 backbone. Due to the encoder-decoder structure, Pinheiro et al. [2016] also
reduce the input window size to 160 × 160. Similar to DeepMaskZoom, Pinheiro et al.
[2016] propose a variation of SharpMask denoted as SharpMaskZoom with 8 image pyramid
levels.

FastMask Hu et al. [2017a] propose the one-shot object proposal generation system Fast-
Mask. The key methodological change compared to DeepMask and SharpMask is that the
backbone network processes the entire image only once. Hence, FastMask utilizes a feature
pyramid within the network following the one-shot concept. This transition from an image
pyramid to a feature pyramid is visible in Fig. 3.7 and increases FastMask’s computational
efficiency while generating competitive results.

Similar to SharpMask, FastMask uses the same reduced ResNet-50 backbone. On top of the
backbone, FastMask consists of a feature pyramid that uses the output of the backbone as
the base level (see Fig. 3.9). This base level has a spatial resolution that is downsampled
by a factor of 16 w.r.t. the input image. Thus, we call this pyramid level S16. From this
level, additional pyramid levels, S32, S64, and S128 with respective downsampling factors, are
created using residual neck modules (orange blocks in Fig. 3.9). The residual neck modules
successively downsample the feature map utilizing average pooling, convolutional layers, and a
skip connection. Each pyramid level contains a feature map for extracting objects of different
sizes. From the feature maps at the different pyramid levels, FastMask extracts all possible
10× 10 windows (green boxes in Fig. 3.9). Extracting fixed-size windows from feature maps
of different resolutions (pyramid levels) leads to windows representing areas of different sizes
in the input image. While 10 × 10 windows extracted from S16 represent small objects in
the image, 10× 10 windows extracted from S128 represent large objects. In addition to the
pyramid levels S16, S32, S64, and S128, FastMask also includes the pyramid levels S24, S48,
S96, and S192 to improve the results.
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(a) Window in the image (b) Foreground attention (c) Segmentation mask

Figure 3.10: Examples showing the foreground attention in FastMask that separates the centered object from
other objects and the background. The first column (a) shows the windows of the input image
that are processed in FastMask’s foreground attention module as feature representations. From
the foreground attention in the second column (b), it is visible that the high-attention areas
roughly capture the central sheep. Depending on the extracted window, FastMask attends to
the sheep in the front (upper row) or the sheep in the back (lower row). The final column (c)
shows the resulting segmentation masks, which only capture the respective central object. Input
image windows taken from the COCO dataset [Lin et al., 2014].

All extracted windows compose a batch of possible proposals areas that are further processed
in FastMask’s head module. First, for every window an objectness score is generated using
simple, fully connected layers similar to DeepMask and SharpMask (bottom right in Fig. 3.9).
Second, for windows with a high objectness score, FastMask generates a segmentation mask
in two steps. The first step roughly segments the centered object and prunes the background
with a learned foreground attention. Figure 3.10 shows examples of the foreground attention
indicating its strength to separate the central object from other objects and the background.
Subsequently, FastMask generates a 40 × 40 segmentation mask based on the foreground
attention and the 10× 10 feature map of an extracted window. The foreground attention and
the final segmentation mask are generated with per-pixel classifiers similar to DeepMask and
SharpMask. Outside the network, the segmentation masks are upsampled and inserted into
the image at their respective position.

To train FastMask, the three losses for the objectness (Lobjn), the foreground attention4 (Latt),
and the segmentation mask (Lseg) are utilized. All losses are cross-entropy losses. However,

4The ground truth for the foreground attention is the bounding box around the annotated object within the
extracted window.



3.2 Literature on Object Proposal Generation 49

the losses for the foreground attention and the segmentation mask are normalized by the
number of pixels in the window. Hence, the overall loss function is

L = Lobjn + Latt + Lseg. (3.12)

Similar to DeepMask and SharpMask, FastMask regards windows that wholly contain a
centered object which fits the pyramid level as positive samples. For an object to fit a specific
pyramid level, the object’s height and width must be between 4 and 8 pixels on the respective
pyramid level. Thus, for an object to fit S128, the object’s height and width must be between
4 ·128 = 512 pixels and 8 ·128 = 1024 pixels in the input image. The rules for wholly contained
objects and centered objects are similar to DeepMask and SharpMask. If one of the three
conditions is not fulfilled, the window is considered a negative sample. This leads to a training
strategy focusing on hard negative samples.

3.2.4 Discussion

We reviewed several object proposal generation approaches from three main classes. The
window scoring-based approaches like Edge Boxes [Zitnick and Dollár, 2014] and BING [Cheng
et al., 2014] efficiently generate box proposals by assessing a multitude of windows. However,
those methods are unable to precisely capture the objects due to a missing refinement of
the initial windows. Grouping-based approaches merge pixels or superpixels and produce
detailed segmentation masks. To capture complex multi-colored objects, systems like Selective
Search [Uijlings et al., 2013] use various features. This leads to a large pool of proposals and
impedes the computational efficiency [Uijlings et al., 2013; Arbeláez et al., 2014]. In general,
all box-based or mask-based approaches not utilizing CNNs have problems discovering small
or medium objects. These problems arise due to the lack of small windows or too coarse
superpixel segmentations. Additionally, most systems have problems generating proposal for
entire complex objects, as already outlined in the introduction.

CNN-based approaches exist for both box-based and mask-based object proposal generation.
Since the box-based approaches like RPN [Ren et al., 2016] are unable to produce segmentation
masks by definition, we focus on the mask-based approaches. These systems are able to
mitigate several typical problems of traditional systems, like capturing entire objects or a
more efficient processing. However, the discovery of small objects remains challenging for
CNN-based systems due to the downsampling process in CNNs. This downsampling process
also leads to coarse proposals that do not adhere well to the object boundaries. Finally, apart
from FastMask, most CNN-based approaches use an exhaustive sliding window approach,
which is still computationally inefficient.

Since the CNN-based approaches produce superior results compared to the other classes,
we focus on improving these systems in this thesis. Specifically, our proposed systems in
Ch. 4 - Ch. 7 will follow the efficient one-shot concept of FastMask. Since discovering small
objects is still challenging, we address this problem in Ch. 4. To bridge the gap between
traditional superpixel grouping approaches and CNN-based methods, we will present a system
that combines the advantages of both worlds in Ch. 5 - Ch. 7.
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As discussed in the introduction, the discovery of small objects is a main limitation of modern
CNN-based object proposal generation systems [Pinheiro et al., 2015, 2016; Hu et al., 2017a].
This limitation is reasonable since even for humans, it is more challenging to discover small
objects than large ones. For instance, the small tennis balls in Fig. 4.1 are harder to discover
than the large tennis player. However, small objects like pens, paper-clips, or a computer mouse
are ubiquitous. Similarly, more than 40% of the objects in the complex COCO dataset [Lin
et al., 2014] are small due to their original size or the distance to the camera. As discussed
previously, the discovery of small objects is challenging in CNN-based systems due to the
inherent downsampling process in CNNs. This downsampling process is necessary to extract
semantically rich features but also removes detailed spatial information from feature maps
that are necessary to discover small objects.

Most CNN-based object proposal generation systems that produce masks extract windows
from a pyramid to discover objects of different sizes (see. Sec. 3.2.3). Therefore, adding
another level to the bottom of the pyramid for approaches like SharpMaskZoom and Deep-
MaskZoom [Pinheiro et al., 2016] would be a simple solution. However, the new pyramid level
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(a) FastMask (b) AttentionMask (c) Ground truth

Figure 4.1: Results of FastMask [Hu et al., 2017a] (a) and our proposed AttentionMask (b) for an image with
objects of different sizes. Comparing the results to the ground truth (c) shows that AttentionMask
captures both small tennis balls (green arrows), while FastMask misses both of them (red arrows).
This is the result of the new module for discovering small objects in AttentionMask. Filled colored
contours denote discovered objects, while not filled red contours denote missed objects. Note that
only the best fitting proposal (highest IoU) is visualized per annotated object. Input image and
annotations taken from the COCO dataset [Lin et al., 2014].

would lead to a significant growth of possible windows and further increase the inefficiency
of multi-shot approaches like DeepMask and SharpMask. Hence, we move to the efficient
one-shot concept of FastMask [Hu et al., 2017a]. Adding a level to the bottom of the feature
pyramid in FastMask poses three problems. First, the overall number of possible windows
is almost four times larger, exceeding the memory available on modern GPUs1. Second, if
enough GPU memory is available, most windows would only contain background. This is
visible from the example in Fig. 4.2 that depicts a collage of every other window extracted
from the base level of FastMask’s feature pyramid. Although most windows cover background
area, each window is processed in FastMask. Finally, since a ResNet-50 with four stages is
utilized as the backbone, there is no natural location for adding another pyramid level in
FastMask.

Humans face a similar problem in terms of efficiency since the retina generates around 250,000
times more data than we can consciously perceive2 [Pierce and Karlin, 1957; Zhaoping, 2014].
To handle this imbalance, humans use visual attention to steer the capacity efficiently to
relevant areas of the visual field and ignore the rest [Pashler, 1997]. For instance, in the
model of Rensink [2000], only attention combines low-level proto-objects to form an object
perception. This general capability of attention was also replicated by computational attention
systems [Itti et al., 1998; Harel et al., 2006; Frintrop et al., 2015] and showed promising results
in tasks like image thumbnailing [Marchesotti et al., 2009] or object tracking [Mahadevan and
Vasconcelos, 2012].

Therefore, we exploit the concept of visual attention for object proposal generation. Specifically,
we propose scale-specific objectness attention, visualized in Fig. 4.3, as an integral part of our
novel, efficient object proposal generation system AttentionMask. AttentionMask follows the
one-shot concept by extracting and processing windows from a feature pyramid to discover
objects. The novel scale-specific objectness attention focuses the window extraction on
promising areas within each level of the feature pyramid. Since large objects and small
objects appear at different locations, an independent attention map is generated per pyramid
level (scale-specific) as visible in Fig. 4.3. Additionally, the attention is designed to focus

1By modern GPUs, we refer to GPUs with 12 GB memory like the NVIDIA GeForce GTX TITAN X.
2Zhaoping [2014] argues that the retina emits 107 bits

s while Pierce and Karlin [1957] show in experiments
that humans can consciously perceive around 40 bits

s during fast reading.
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Figure 4.2: Visualization of the windows extracted from the base pyramid level of FastMask [Hu et al., 2017a]
for discovering small objects. Most windows cover background areas and could easily be pruned
early in the system to increase computational efficiency. For clarity, the visualization omits every
other window in the horizontal and the vertical direction. Therefore, only a quarter of the actually
extracted windows are shown. Base image taken from the COCO dataset [Lin et al., 2014].

Figure 4.3: Overview of our object proposal generation system AttentionMask. First, a feature pyramid is
constructed similar to FastMask, based on features from a backbone network (yellow). Scale-
specific objectness attention is calculated at each pyramid level to highlight relevant regions for
a selective window extraction. Using this efficient processing and the freed GPU resources, we
add the module S8 to the feature pyramid as the new base level for an improved discovery of
small objects. The final segmentation and objectness scoring are similar to FastMask and other
systems. Input image taken from the COCO dataset [Lin et al., 2014].
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on all objects of a specific pyramid level to comply with the class-agnostic processing in
object proposal generation. Utilizing this scale-specific objectness attention in a one-shot
approach allows computationally efficient processing with less memory consumption by pruning
irrelevant windows early. Moreover, the pruning of windows also reduces false positives. In a
second step, we exploit the more efficient processing pipeline and add a new module to the
system for discovering small objects (pyramid level S8 in Fig. 4.3). This step is only possible
due to the computationally efficient, attention-based processing.

This chapter presents our novel object proposal generation system AttentionMask based on our
publication Wilms and Frintrop [2018]. We briefly discuss the use of attention in humans and
computer vision in Sec. 4.1. Subsequently, we introduce the architecture of AttentionMask in
Sec. 4.2 and discuss the training regime in Sec. 4.3. Highlighting the quality of AttentionMask
to discover objects of all sizes, including small objects, we present a detailed evaluation on
the complex COCO dataset [Lin et al., 2014] in Sec. 4.4. Finally, Sec. 4.5 discusses the main
findings, contributions, and limitations of the system.

4.1 Attention in Humans and Computer Vision

As discussed above, humans use visual attention [Pashler, 1997] to direct their limited
processing resources to relevant locations of the visual field. The process behind steering the
attention is not entirely understood yet. However, psychological models exist that seek to
represent the process and explain experimental findings [Treisman and Gelade, 1980; Wolfe
et al., 1989; Rensink, 2000]. For instance, Treisman and Gelade [1980] argue that various
features are extracted from the visual input. Subsequently, the saliency per location and
feature is fused across different scales and features. The result is often referred to as a saliency
map [Koch and Ullman, 1985] and highlights locations in the visual field that humans will
likely attend to.

This general idea also serves as an inspiration for computational attention systems [Itti et al.,
1998; Harel et al., 2006; Frintrop et al., 2015; Kruthiventi et al., 2017], which aim to mimic the
effects of human visual attention. These models typically produce a saliency map that guides
the processing of several computer vision systems addressing diverse tasks [Marchesotti et al.,
2009; Mahadevan and Vasconcelos, 2012; Frintrop et al., 2014]. Besides the computational
attention systems, recent CNN-based computer vision systems utilize attention in a purely
data-driven and task-dependent framework [Xu et al., 2015; Yang et al., 2016; Chen et al.,
2016a; Kong et al., 2017; Anderson et al., 2018]. Attention in these systems is learned end-
to-end inside the CNN to reduce the computational load or prune distracting visual input.
For instance, Yang et al. [2016] derive attention from an input question in visual question
answering to prune visual features unrelated to the question in a CNN-based framework.
Similarly, Chen et al. [2016a] learn attention to prune features of irrelevant scales for semantic
segmentation, while Kong et al. [2017] select promising locations for object detection utilizing
attention.

Overall, there is a long way from human visual attention to the data-drive and task-dependent
attention utilized in CNNs. Our proposed scale-specific objectness attention is similar to the
learned, data-driven attention used in CNNs, since we not only focus on salient regions but
on all objects of a specific size. Hence, it is also different from object proposal generation
approaches that locate salient regions and subsequently discover objects in these regions [Alexe
et al., 2010; Frintrop et al., 2014; Martín García et al., 2015; Werner et al., 2015]. Most
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Figure 4.4: Detailed system figure of the proposed AttentionMask system. The backbone network (yellow)
and the neck modules (orange) process the input image, yielding a feature pyramid. The backbone
network is split into two parts, which allows the integration of the new pyramid level S8. At each
pyramid level, one of our novel Scale-specific Objectness Attention Modules (SOAMs) extracts the
scale-specific objectness attention for the selective window extraction. Thus, windows are only
extracted from the feature maps (blue boxes) at high-attention locations. This leads to a batch of
feature windows (green windows), omitting unnecessary background windows (red windows). For
each extracted window, an objectness score is calculated, and a segmentation mask is generated
utilizing foreground attention. Note that we omit the pyramid levels S24, S48, S96, and S192 for
clarity. Input image taken from the COCO dataset [Lin et al., 2014].

similar to our scale-specific objectness attention are Chen et al. [2016a] and Kong et al. [2017]
since they learn attention to focus on relevant scales and locations within a feature pyramid.
However, we apply this principle to object proposal generation and utilize it to improve the
discovery of small objects.

4.2 Attention-based Object Proposals

This section presents the architecture of our novel object proposal generation system Atten-
tionMask (see Fig. 4.4). As briefly introduced above, AttentionMask follows the one-shot
concept and therefore consists of a backbone network with a feature pyramid on top, described
in Sec. 4.2.1. For each level of the pyramid, we efficiently calculate our new scale-specific
objectness attention (SOAMs in Fig. 4.4) and extract fixed-size windows from high-attention
areas of each pyramid level. We describe the scale-specific objectness attention generation
and the window extraction in Sec. 4.2.2. To improve the discovery of small objects, we add a
dedicated module (S8 in Fig. 4.4) as the new base level to the feature pyramid. The integration
of this new module is detailed in Sec. 4.2.3, while the objectness scoring and segmentation are
described in Sec. 4.2.4.

4.2.1 Backbone and Feature Pyramid

AttentionMask starts with a backbone network that extracts semantically rich features from
the input image. Following Pinheiro et al. [2016] and Hu et al. [2017a], we use a ResNet-50 [He
et al., 2016a] without the final conv5 stage as the backbone (see Appendix A.2). The final
stage is omitted to remove one downsampling operation from the backbone and preserve
spatial details in the final feature map. Hence, the base of the feature pyramid, the backbone
network’s output, is a feature map that is downsampled by a factor 16 compared to the input
images. We coin this pyramid level S16. Three more pyramid levels are derived from this base
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level using residual neck modules [Hu et al., 2017a] (orange modules in Fig. 4.4). The neck
modules downsample the feature map by a factor of 2 using average pooling with convolutional
layers and a skip connection yielding pyramid levels S32, S64, and S128 as visualized in Fig. 4.4.
Those feature maps are downsampled by a factor of 32, 64, and 128 compared to the input
image.

To improve the discovery of objects, we use four optional, intermediate pyramid levels similar
to FastMask [Hu et al., 2017a]. The additional levels represent the image downsampled by
a factor of 24, 48, 96, and 192. Hence, those levels are integrated between the previously
described pyramid levels or after the final pyramid level. Technically, the intermediate pyramid
levels are produced by duplicating the conv4 stage of the backbone network and replacing the
stride 2 convolution with a stride 3 convolution. This change in stride leads to the pyramid
level S24. Subsequently, S48, S96, and S192 are derived from S24 using multiple neck modules
as described above.

Overall, the backbone network leads to a feature pyramid with up to 8 levels. The pyramid
levels are denoted as Sn with n expressing the downsampling factor w.r.t. the input image. At
each pyramid level, a feature map with semantically rich features exists.

4.2.2 Scale-specific Objectness Attention

To discover objects of different sizes in the one-step concept, we extract fixed-size windows
from locations across all levels of the feature pyramid. However, unlike FastMask, we do not
extract all possible windows, since it is computationally expensive and leads to the extraction
of many background windows as described above. Therefore, we integrate a Scale-specific
Objectness Attention Module (SOAM) at each pyramid level of AttentionMask as visualized in
Fig. 4.4. The SOAMs calculate the scale-specific objectness attention and highlight locations
within each pyramid level that likely feature objects of sizes matching the pyramid level.
Figure 4.5 shows example outputs of the SOAMs at the pyramid levels S8, S16, S32, S64, and
S128. Red colors indicate high attention areas, while blue colors denote low attention areas.
Based on these results, we extract 10 × 10 windows of the feature maps at high-attention
locations with a new selective window extraction module. This selective extraction omits
large background areas and reduces the computational load for the subsequent objectness
scoring and segmentation steps.

To generate the scale-specific objectness attention, the SOAMs use a lightweight structure with
only two convolutional layers (see Fig. 4.6). The first convolutional layer applies 128 kernels
of size 3× 3 with ReLU, while the second convolutional layer applies two 4× 4 kernels with a
subsequent softmax. Generally, we tackle the problem in a semantic segmentation framework
with the classes object and non-object for each location between four pixels of a pyramid level.
The locations are between pixels since we extract windows with even side lengths (10× 10)
following FastMask. Accordingly, the architecture of the SOAMs uses unusual 4× 4 kernels in
the second convolutional layer. The presented SOAM architecture provides the best results
on the overall object proposal generation task. This is visible from the results in Tab. 4.1,
which compares different SOAM architectures. The lower part of Tab. 4.1 also shows that
using only one SOAM across all pyramid levels degrades the results. The one SOAM would
generate an attention map covering objects of all sizes. As a result, large objects covering
most of the image lead to unnecessarily extracted windows on the lower levels of the pyramid.
This increases the runtime and induces additional false positives.
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(a) Input image (b) S8 (c) S16

(d) S32 (e) S64 (f) S128

Figure 4.5: Scale-specific objectness attention maps for the pyramid levels S8 (see Sec. 4.2.3), S16,S32,S64,
and S128 (b) - (f), given the input image (a). The scale-specific objectness attention maps at
different pyramid levels highlight objects or object parts of different sizes. For instance, the
map at pyramid level S16 highlights the racket, while the map at pyramid level S128 highlights
the player. All scale-specific objectness attention maps are upsampled to input image size for
improved visibility. Red areas indicate high attention, while blue areas indicate low attention.
Input image taken from the COCO dataset [Lin et al., 2014].

Figure 4.6: Architecture of the lightweight Scale-specific Objectness Attention Module (SOAM) that extracts
the scale-specific objectness attention at every pyramid level Si of AttentionMask’s feature
pyramid to guide the subsequent window extraction.

Table 4.1: Variations of the SOAM architecture. The first column describes the architecture variations with
the number of kernels per layer and the kernel sizes in parentheses. AR@100 denotes the Average
Recall for the first 100 proposals on our COCO validation dataset. We utilize AttentionMaskval
with the respective SOAM architecture without S8. The GPU runtime only includes the processing
of the network’s forward pass. The chosen architecture is highlighted in bold font.

Architecture AR@100↑ GPU runtime↓

2(4× 4) 0.258 0.20s
128(3× 3)− 2(4× 4) 0.261 0.21s
128(3× 3)− 128(3× 3)− 2(4× 4) 0.260 0.23s
256(3× 3)− 2(4× 4) 0.261 0.23s

2(4× 4), one SOAM for all pyramid levels 0.216 0.25s
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(a) Splitting the backbone net-
work

(b) conv4 stage with dilated
convolution

(c) Reverse connection

Figure 4.7: Three architectures for adding the new pyramid level S8 to AttentionMask. (a): The backbone
network is split to generate S8 from conv3 features. (b): Dilated convolution prevents further
downsampling in the conv4 stage and leads to S8 at the end of the backbone network. (c): A
reverse connection [Kong et al., 2017] upsamples the conv4 features and integrates the earlier
conv3 features with higher spatial resolution.

Note that the foreground attention proposed in FastMask and also utilized in AttentionMask
solves a different problem. As described in Sec. 3.2.3, the foreground attention limits the
influence of features within an extracted window that do not belong to the central object.
Hence, the general idea of pruning the background is similar. However, the foreground
attention is utilized at a different system stage. Moreover, foreground attention is a soft
attention that weights features, while scale-specific objectness attention is a hard attention
that excludes windows.

In a nutshell, the SOAMs focus the window extraction on promising areas of each pyramid level.
As a result, fewer windows are extracted, resulting in a computationally efficient processing
pipeline and fewer false positives. Each of the extracted windows will subsequently serve as
the base for generating one object proposal.

4.2.3 Discovery of Small Objects

The previously introduced SOAMs lead to an efficient processing pipeline with reduced runtime
and memory consumption on the GPU by omitting the extraction of background windows.
We utilize this efficient processing and the freed GPU resources to discover objects that are
too small for the pyramid level S16

3, like the two tennis balls in Fig. 4.1. To this end, we
propose a new base level S8 with downsampling factor 8 for AttentionMask’s feature pyramid.
Thus, the resolution of the base level in the feature pyramid increases by a factor of 2. If we
consider an input image of size 800× 600, the addition of S8 without the previously proposed
SOAMs would lead to 7500 additionally extracted windows. This is almost 3 times more than
the number of extracted windows from all other pyramid levels together. Hence, adding S8 to
the system without the SOAMs is impossible due to memory limitations on modern GPUs as
discussed above.

To add S8 to the feature pyramid, we split the backbone between the stages conv3 and conv4
as visualized in Fig. 4.4 and in more detail in Fig. 4.7(a). Since the result of stage conv3 is only

3Objects are too small if they do not fit the size definition of S16 during training. The lower limit for an
object’s horizontal and vertical dimensions to fit S16 is 64 pixels at input image size.
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Table 4.2: Architectures for adding S8 to AttentionMask based on splitting the backbone network, dilated
convolution, and a reverse connection. The first column describes the architecture variations.
AR@100 denotes the Average Recall for the first 100 proposals on our COCO validation dataset.
We utilize AttentionMaskval with the respective S8 integration (see Fig. 4.7 for visualizations). The
GPU runtime only includes the processing of the network’s forward pass. The chosen architecture
is highlighted in bold font.

Architecture AR@100↑ GPU runtime↓

Splitting the backbone network 0.287 0.21s
Dilated convolution 0.292 0.30s
Reverse connection 0.285 0.26s

downsampled by a factor of 8 w.r.t. the input image, we can use these features directly for S8.
However, using features from earlier stages of the backbone might degrade the results, since they
are not as semantically rich as the features from the final stage (conv4 ). Therefore, we compare
our proposed approach with two other strategies. First, we replace the strided convolution at
the beginning of backbone’s conv4 stage with a dilated convolution (dilation factor 2). This
dilated convolution extends the receptive field without reducing the spatial resolution and is
frequently applied in semantic segmentation [Chen et al., 2015a; Yu and Koltun, 2016; Chen
et al., 2017]. Hence, the result of the backbone network is only downsampled by a factor
of 8 (see Fig. 4.7(b)). Second, we upsample the features of the conv4 stage using a reverse
connection proposed by Kong et al. [2017] to create S8 from S16. The reverse connection
combines deconvolved features from the conv4 stage and features from the conv3 stage as
visualized in Fig. 4.7(c). The results in Tab. 4.2 comparing the three approaches indicate
that our proposed approach exhibits the best trade-off between computational efficiency and
effectiveness. Note that the dilated convolution approach is not applicable with 8 or 9 pyramid
levels due to memory limitations on modern GPUs4.

Overall, adding the new pyramid level S8 allows AttentionMask to discover smaller objects that
are missed by systems like FastMask due to methodological limitations. To combine efficiency
and effectiveness, we split the backbone network to integrate S8 into the feature pyramid.
Note that the addition of S8 without reducing the number of extracted windows utilizing our
novel SOAMs would be impossible due to limited GPU resources.

4.2.4 Objectness and Segmentation

The previously described steps extract 10× 10 windows across all levels of AttentionMask’s
feature pyramid guided by the SOAMs. The extracted windows constitute a batch for further
processing (green windows in Fig. 4.4). For each window, the objectness scoring module
generates an objectness score utilizing three fully connected layers in a binary classification
framework as in FastMask. Subsequently, the windows with the n highest objectness scores
are segmented, leading to the final object proposals. We follow FastMask for creating the
segmentation masks and first generate the foreground attention to focus on the central object.
Guided by the foreground attention, we use two fully connected layers to generate segmentation
masks of size 40× 40 independent of the objects’ sizes. These masks are further upsampled to

4We tested this configuration on a 12 GB GPU with the framework Caffe.
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Table 4.3: Versions of AttentionMask with different pyramid levels S8 - S196. 3 denotes that the pyramid
level is included, while 7 marks the omission of the level.

Number of Pyramid levels
Version pyramid levels S8 S16 S24 S32 S48 S64 S96 S128 S192

AttentionMaskval 5 3 3 7 3 7 3 7 3 7

AttentionMask128
8 8 3 3 3 3 3 3 3 3 7

AttentionMask192
8 9 3 3 3 3 3 3 3 3 3

AttentionMask192
16 8 7 3 3 3 3 3 3 3 3

size 160× 160. The foreground attention task and the segmentation task are formulated as
binary classifications of each pixel inside the windows.

Overall, the output of AttentionMask is a batch of up to n object proposals with pixel-
precise segmentation masks and objectness scores. For our experiments, we set n =
1000.

4.2.5 AttentionMask Versions

In this chapter, we use four different versions of AttentionMask (see Tab. 4.3). The versions
differ in the pyramid levels utilized for window extraction. The model AttentionMaskval
only uses the five main pyramid levels S8, S16, S32, S64, and S128. This model is exclusively
utilized for ablation experiments and justifying design choices. AttentionMask128

8 additionally
includes S24, S48, and S96, yielding a feature pyramid with eight levels. This is the standard
AttentionMask version and will be used in the subsequent chapters as AttentionMask unless
otherwise noted. Adding the pyramid level S192 to the feature pyramid, like in FastMask, leads
to AttentionMask192

8 , a model with nine pyramid levels. This is one level more than Deep-
MaskZoom, SharpMaskZoom and FastMask utilize. Finally, we propose AttentionMask192

16 ,
which corresponds to FastMask but uses our novel SOAMs. All three versions with eight or
nine pyramid levels are evaluated in Sec. 4.4.

4.3 Training

After describing the architecture of AttentionMask, we discuss the end-to-end training regime.
First, we describe the ground truth selection for the four different types of ground truth
necessary to train AttentionMask in Sec. 4.3.1. Subsequently, Sec. 4.3.2 presents the individual
and overall loss functions. Finally, we present the hyperparameters and the overall training
process in Sec. 4.3.3.

4.3.1 Ground Truth Selection

AttentionMask needs ground truth for the objectness scoring module, the foreground attention
module, the segmentation module, and the SOAMs. For the ground truth utilized in the
first three modules, we follow FastMask [Hu et al., 2017a]. Hence, an extracted window
is regarded as a positive sample for the objectness score and relevant for the foreground
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Table 4.4: Comparison of different strategies to handle the imbalance between positive and negative samples
in the ground truth for training the SOAMs. AR@100 denotes the Average Recall for the first
100 proposals on our COCO validation dataset. We utilize AttentionMaskval with the respective
strategy. The chosen strategy is highlighted in bold font.

Strategy AR@100↑

No handling of class imbalance 0.186
Class weighting with the inverse class probability 0.279
Negative sample mining 1 : 3 [Kong et al., 2017] 0.287

attention and segmentation tasks if it wholly contains a centered, annotated object. Centered
means that the object’s center is on one of the four central pixels of the 10 × 10 window.
Additionally, the annotated object’s size must fit the pyramid level of the window. To fit the
pyramid level, we demand that the annotated object’s height and width are 4 to 8 pixels at
the respective pyramid level. All windows that satisfy these conditions constitute a pool of
positive samples for the objectness score. From the pool of positive samples, up to p samples
are randomly chosen and utilized in the training process. Similarly, p negative samples are
chosen to train the objectness scoring module. A sample is negative if exactly one of the three
conditions above does not apply [Hu et al., 2017a]. We follow FastMask and set p = 32 in our
experiments.

To train the objectness scoring module, only the label object (positive sample) or no ob-
ject (negative sample) is necessary per sample. In contrast, the annotated object mask for each
positive sample is necessary to train the foreground attention module and the segmentation
module. The foreground attention is trained with the bounding box around the annotated
object mask as a rough segmentation. Only the actual segmentation module is trained
with the precise annotated object mask. All pixels in the 10× 10 (foreground attention) or
160×160 (segmentation) window that belong to the object (box or mask) are positive samples,
while the remaining pixels are negative samples. Overall, training these three modules is
similar to FastMask.

For training the SOAMs, we select the ground truth based on a similar selection process
as outlined above. However, only the size of the annotated object has to fit the pyramid
level. The other two conditions are irrelevant, since no windows are used. Hence, all locations
of a pyramid level that belong to at least one annotated object that fits the pyramid level
are positive samples. The remaining pixels constitute a pool of negative samples. Due to
the high imbalance between the positive and negative samples (1 : 138 across all pyramid
levels for the COCO training set), we use negative sample mining similar to Kong et al.
[2017]. This strategy reduces the imbalance to 1 : 3 or less by randomly selecting negative
samples and is more effective compared to class weighting or ignoring the imbalance (see
Tab. 4.4).

4.3.2 Loss Function

AttentionMask utilizes ground truth for four different modules in the network: the objectness
scoring module, the foreground attention module, the segmentation module, and the proposed
SOAMs. To select loss functions for the four modules, we follow FastMask and use binary
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cross-entropy loss as well as normalized binary cross-entropy loss. The binary cross-entropy
without normalization is defined as

L(p, g) = p · − log(g) + (1− p) · − log(1− g), (4.1)

with the prediction p and the ground truth g. Since generating the objectness score is framed as
a binary classification task per window, we use the binary cross-entropy loss following Hu et al.
[2017a] and define the loss for the objectness scoring module Lobjn as

Lobjn(pobjn, gobjn) = L(pobjn, gobjn). (4.2)

While gobjn represents the label for the windows (0/1), pobjn is the predicted objectness.

Similarly, the losses for the foreground attention module Latt and the segmentation module
Lseg are defined using binary cross-entropy loss. In both cases, the binary cross-entropy loss
is calculated for each location in the output. We follow Hu et al. [2017a] and normalize the
summed loss across the window by the window’s size to scale the loss. This normalization
leads to the normalized binary cross-entropy loss. Hence, the foreground attention loss Latt
for a foreground attention ground truth gatt(x, y) and the predicted foreground attention
patt(x, y) is defined as

Latt(patt, gatt) = 1
102

10∑
x=1

10∑
y=1

L(patt(x, y), gatt(x, y)). (4.3)

Note that the foreground attention is always computed on 10× 10 windows. The loss for the
segmentation masks Lseg, which is calculated based on 160×160 windows, is defined accordingly
for an annotated object’s segmentation mask gseg(x, y) and the predicted segmentation mask
pseg(x, y) as

Lseg(pseg, gseg) = 1
1602

160∑
x=1

160∑
y=1

L(pseg(x, y), gseg(x, y)). (4.4)

Since the SOAMs also solve a per-pixel binary classification task, we utilize normalized binary
cross-entropy loss for the SOAMs. Unlike for the previous losses, the size of the output
attention map hi and wi is not fixed and differs between SOAMs and images. Moreover, to
incorporate the negative sample mining, which balances positive and negative samples, we set
the loss of the ignored locations to 0 using the indicator function 1samples(x, y). Overall, the
loss LSOAMi for the SOAM at pyramid level Si is defined as

LSOAMi(pSOAMi , gSOAMi) = 1
hi · wi

hi∑
x=1

wi∑
y=1

1samples(x, y)L(pSOAMi(x, y), gSOAMi(x, y)). (4.5)

The ground truth and the prediction for the SOAM at pyramid level Si are denoted as gSOAMi

and pSOAMi .

Combining the losses Lobjn, Latt, Lseg, and the losses LSOAMi for the different pyramid levels,
we use a weighted sum for optimized results. Hence, the overall loss for AttentionMask
is

L = wobjnLobjn + wattLatt + wsegLseg + wSOAM
∑
i

LSOAMi . (4.6)
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The weights wobjn, watt, wseg, and wSOAM balance the influence of the individual losses. In
the experiments, we use the following values: wobjn = 0.5, watt = 1.25, wseg = 1.25, and
wSOAMi = 0.25.

4.3.3 Hyperparameters and Solver

To train AttentionMask based on the ground truth and losses introduced above, we use
stochastic gradient descent with a learning rate of 0.0001, a momentum of 0.9, a weight
decay of 0.00005, and batch size 1. We set the batch size to 1 following FastMask since we
create a batch of extracted windows within the network. Hence, the batch size is 1 at the
beginning of the network. However, for the later modules, it is higher and equals the number
of extracted windows for one training image (up to 64). To improve the final results, we
reduce the learning rate by a factor of 1

10 once the validation loss does not improve for three
consecutive epochs.

Overall, we train AttentionMask for 17 epochs on the COCO training dataset. The backbone
network is initialized with ImageNet weights [He et al., 2016a], while the rest of the network is
learned from scratch. To compensate for the different initial weights, we multiply the learning
rate for the layers learned from scratch with a factor of 10.

4.4 Experiments

This section evaluates our proposed AttentionMask system and compares it to nine state-of-
the-art object proposal generation approaches. The evaluation protocol follows previous work
on object proposal generation [Pinheiro et al., 2015, 2016; Hu et al., 2017a]. All systems train
on the training set of the COCO dataset [Lin et al., 2014], while we generate the reported
results on the challenging COCO test dataset (see Sec. 2.2.2). To compare the different
systems, we use Average Recall (AR, see Sec. 2.2.3) for different numbers of proposals to
assess how many objects are discovered and how precisely they are captured. Moreover, we
utilize variations of AR focusing on different object sizes for a more detailed analysis (see
Tab. 2.1).

We compare the three AttentionMask versions AttentionMask128
8 , AttentionMask192

8 , and
AttentionMask192

16 to seven object proposal generation methods that create segmentation
masks and eight methods generating boxes. For mask proposals, we compare to the CNN-
based methods FastMask [Hu et al., 2017a], which has many architectural similarities with
AttentionMask, SharpMaskZoom [Pinheiro et al., 2016], SharpMask [Pinheiro et al., 2016],
DeepMaskZoom [Pinheiro et al., 2015, 2016], and InstanceFCN [Dai et al., 2016]. Moreover,
we compare to MCG [Arbeláez et al., 2014; Pont-Tuset et al., 2017] and COB [Maninis et al.,
2016, 2017], which do not use CNNs for proposal generation. All methods have recently shown
strong results on the COCO dataset. The evaluation based on box proposals compares the
AttentionMask versions to the same systems except for InstanceFCN5. Instead, we additionally
compare to the methods BING [Cheng et al., 2014] and Edge Boxes [Zitnick and Dollár, 2014],
which do not use CNNs but generate object proposals efficiently. See Sec. 3.2 for an in-depth

5Neither official code nor results on box proposals are publicly available.
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Table 4.5: Results on the COCO test dataset using pixel-precise segmentation mask proposals in terms of six
Average Recall (AR) measures and the runtime. ARS , ARM , and ARL denote results on small,
medium, and large objects. See Tab. 2.1 for details on the AR variations. Bold font highlights
the best results, while italic font indicates the second-best results. †: Not including generation of
edge maps. ∗: GPU-only runtime. The runtime for InstanceFCN is taken from Hu et al. [2017a].

Method AR@10↑ AR@100↑ AR@1k↑ ARS@100↑ ARM@100↑ ARL@100↑ Runtime↓

MCG 0.077 0.186 0.299 0.041 0.182 0.435 45s
COB 0.104 0.233 0.383 0.065 0.243 0.501 45s†

DeepMaskZoom 0.151 0.286 0.371 0.093 0.389 0.466 1.35s∗

SharpMask 0.154 0.278 0.360 0.035 0.399 0.513 1.03s∗

SharpMaskZoom 0.156 0.304 0.401 0.099 0.412 0.495 2.02s∗

InstanceFCN 0.166 0.317 0.392 - - - 1.50s∗

FastMask 0.169 0.313 0.406 0.106 0.406 0.517 0.33s∗

AttentionMask128
8 0.180 0.349 0.444 0.162 0.421 0.560 0 .22 s∗

AttentionMask192
8 0.183 0.355 0.450 0.157 0.426 0.590 0 .22 s∗

AttentionMask192
16 0.176 0.336 0.412 0.097 0.438 0.594 0.21s∗

discussion of the different methods. All results except for InstanceFCN were generated in a
controlled environment with an NVIDIA GeForce GTX TITAN X.

In the following sections, we first discuss the quantitative and qualitative results for the
pixel-precise mask proposals in Sec. 4.4.1 and the quantitative results for the box proposals
in Sec. 4.4.2. Subsequently, we give a detailed analysis of AttentionMask’s GPU runtime
and compare it to the other CNN-based systems in Sec. 4.4.3. Finally, Sec. 4.4.4 discusses
the influence of the new pyramid level S8 and the SOAMs in more detail. Note that
we already evaluated design choices like the architecture of the SOAMs in Sec. 4.2 and
Sec. 4.3.

4.4.1 Results with Pixel-precise Mask Proposals

Quantitative Results

Table 4.5 presents the quantitative results of the different systems generating pixel-precise
segmentation mask proposals on the challenging COCO test dataset. The results show that
the AttentionMask versions outperform all other systems, including FastMask, in terms of all
six AR measures and the runtime. AttentionMask128

8 , the standard version of AttentionMask,
improves by 11.5% over FastMask and 14.8% over SharpMaskZoom in terms of AR@100. This
improvement is driven by the enhanced performance on small objects (ARS@100) based on
the new pyramid level S8. In terms of ARS@100 the improvements are 52.8% (FastMask)
and 63.6% (SharpMaskZoom). However, AttentionMask128

8 outperforms the other systems
also on medium and large objects by utilizing our SOAMs. Hence, the introduction of
the SOAMs already improves the performance. This is supported by the improvement of
AttentionMask192

16 over FastMask (7.3% in terms of AR@100) that use identical pyramid
levels.

Comparing AttentionMask to SharpMask, DeepMaskZoom, InstanceFCN, MCG, and COB
shows even more significant improvements. Compared to SharpMask, which does not utilize
an extra pyramid level for smaller objects, the improvement on small objects (ARS@100)
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Figure 4.8: Recall (Rec) of selected object proposal generation systems for the first 10 proposals (a), 100
proposals (b), and 1000 proposals (c) across different IoU values on the COCO test dataset.

is 363% (AttentionMask128
8 ). MCG and COB, the only methods not utilizing CNNs during

object proposal generation in this evaluation, exhibit considerably lower numbers across most
AR values. The strong results of AttentionMask compared to all other methods are also
visible from the plots in Fig. 4.8, which show the Recall (Rec) for 10, 100, and 1000 proposals
across different IoU levels. Similar to the results in Tab. 4.5, AttentionMask128

8 outperforms
all other methods across almost all IoU levels. Overall, AttentionMask discovers 76% of the
objects with the first 1000 object proposals (Rec(0.5) in Fig. 4.8(c)).

Focusing on the three versions of AttentionMask, the results in Tab. 4.5 show improved
results on small objects if the new pyramid level S8 is utilized. AttentionMask192

8 outperforms
AttentionMask192

16 by 61.9% in terms of ARS@100, highlighting the strong influence of S8
for discovering small objects. Adding S192 to the feature pyramid leads to improved results
on large objects (+5.3%, AttentionMask128

8 vs. AttentionMask192
8 ). However, the results

on small objects decrease by 3.1% since the new proposals replace existing ones. Similar
effects are visible for medium and large objects when comparing AttentionMask192

8 with
AttentionMask192

16 . Overall, utilizing a fair setup with eight pyramid levels similar to other
systems (FastMask, SharpMaskZoom, DeepMaskZoom), AttentionMask128

8 exhibits the best
results.

Qualitative Results

Figure 4.9 shows qualitative results of AttentionMask128
8 , FastMask, and SharpMaskZoom

on images from the COCO test set to complement the quantitative results. The results
indicate that AttentionMask discovers more small objects than the other systems, which is
in line with the previous findings. For instance, the sheep in the first row and the birds
in the second row are hard to recognize for humans as well. Nevertheless, AttentionMask
discovers all the objects, while FastMask and SharpMaskZoom miss most small sheep and
birds. Similarly, the two tennis balls in the third row are not discovered by FastMask and
SharpMaskZoom, despite the simple background. AttentionMask captures both tennis balls
utilizing S8.

Rows four and five show examples with more complex scene compositions, including a high
level of clutter. In the cluttered classroom environment (fourth row), AttentionMask discovers
almost all students, chairs, and laptops, while FastMask and SharpMaskZoom miss most
small chairs and some smaller laptops. In the fifth row, AttentionMask discovers almost
all small glasses on the shelf in a cluttered kitchen environment. In contrast, FastMask
and SharpMaskZoom discover at most one instance. However, AttentionMask misses one
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Input image SharpMaskZoom FastMask AttentionMask128
8 Ground truth

Figure 4.9: Qualitative results of SharpMaskZoom [Pinheiro et al., 2016], FastMask [Hu et al., 2017a], and
AttentionMask128

8 on images of the COCO test dataset. Filled colored contours denote discovered
objects, while not filled red contours denote missed objects. Note that only the best fitting
proposal (highest IoU) is visualized per annotated object. Input images and annotations taken
from the COCO dataset [Lin et al., 2014].

of the larger chairs in this example. In general, large objects are not an area of concern
for AttentionMask as the results in Tab. 4.5 indicate. This observation is supported by the
final row, where AttentionMask discovers the small passengers on the platform and the large
train.

Across the results in Fig. 4.9, AttentionMask discovers most small objects that FastMask and
SharpMaskZoom miss. Despite these strong results, all three presented systems generate object
proposals that do not adhere well to the object boundaries. The loosely fitting object proposals
for the tennis player in the third row highlight this weak boundary adherence. We will discuss
this problem and possible solutions in more detail in Ch. 5 - Ch. 7.

4.4.2 Results with Bounding Box Proposals

The focus of this thesis is on pixel-precise object proposals. Still, we show quantitative results
of the evaluation using box proposals on the COCO test set in Tab. 4.6. To generate a
box proposal from a mask proposal, we generate a bounding box around the mask proposal.
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Table 4.6: Results on the COCO test dataset using bounding box proposals in terms of six Average Recall (AR)
measures and the runtime. ARS , ARM , and ARL denote results on small, medium, and large
objects. See Tab. 2.1 for details on the AR variations. For mask-based proposals, the bounding
box per proposal is used. Bold font highlights the best results, while italic font indicates the
second-best results. †: Not including generation of edge maps. ∗: GPU-only runtime.

Method AR@10↑ AR@100↑ AR@1k↑ ARS@100↑ ARM@100↑ ARL@100↑ Runtime↓

BING 0.037 0.084 0.163 - - - 0.20s
Edge Boxes 0.074 0.178 0.338 0.017 0.138 0.505 0.31s
MCG 0.101 0.246 0.398 0.051 0.232 0.591 45s
COB 0.127 0.278 0.462 0.077 0.280 0.615 45s

DeepMaskZoom 0.191 0.378 0.511 0.141 0.493 0.617 1.35s∗

SharpMask 0.198 0.367 0.490 0.063 0.514 0.674 1.03s∗

SharpMaskZoom 0.202 0.397 0.533 0.147 0.519 0.648 2.02s∗

FastMask 0.227 0.430 0.568 0.175 0.549 0.692 0.33s∗

AttentionMask128
8 0.214 0.426 0.570 0.210 0.508 0.673 0.22s∗

AttentionMask192
8 0.221 0.435 0.576 0.206 0.512 0.710 0.22s∗

AttentionMask192
16 0.219 0.425 0.554 0.148 0.542 0.726 0 .21 s∗

Overall, AttentionMask shows a good performance on the complex COCO test dataset.
AttentionMask192

8 outperforms all other methods in terms of AR@100 and AR@1000 while
trailing only FastMask in AR@10. Similar to the results based on masks, AttentionMask128

8 and
AttentionMask192

8 outperform all other systems on small objects. However, the improvement
from FastMask to AttentionMask is only 20.0% compared to 52.8% in the case of masks.
Depending on the AttentionMask version, the results for medium and large objects are slightly
above or below FastMask. Compared to the computationally efficient methods BING and
Edge Boxes, which do not utilize CNNs, AttentionMask192

8 leads to substantial improvements
in terms of AR@100 (+418% and +144%).

4.4.3 Evaluation of the GPU Runtime

Besides the results for discovering objects, Tab. 4.5 and Tab. 4.6 also present the runtimes
for multiple systems. The runtimes indicate that the three AttentionMask versions are
the fastest systems evaluated for generating mask proposals. This is also visible from the
plot in Fig. 4.10(a), which compares the GPU runtimes of the CNN-based systems. As
expected, AttentionMask is considerably faster than the multi-shot approaches DeepMaskZoom,
SharpMask, and SharpMaskZoom (up to 90.0% faster). Moreover, AttentionMask128

8 is 33%
faster than FastMask while discovering more objects. Similar results are visible for box
proposals. Only BING is slightly faster than AttentionMask. However, BING discovers
substantially fewer objects.

Furthermore, we investigate which parts of AttentionMask contribute to the improved runtime
compared to FastMask. To this end, Fig. 4.10(b) presents the GPU runtimes of different
parts inside FastMask and AttentionMask192

16 , the version of AttentionMask most similar
to FastMask. The results show that the runtime for the window extraction is significantly
reduced (-76.6%) using the selective window extraction based on the SOAMs. Similarly, the
selective window extraction also reduces the runtime for objectness scoring and segmentation
by 39.0%. Due to their lightweight design, the SOAMs themselves contribute only slightly to
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Figure 4.10: Detailed analysis of the GPU runtime. (a): Comparison of the GPU runtime across the CNN-
based object proposal generation systems from Tab. 4.5. (b): Detailed analysis FastMask’s and
AttentionMask192

16 ’s GPU runtime with contributions of the different system parts. The parts
comprise the feature extraction in the backbone and the feature pyramid construction (Back-
bone), the SOAMs, the window extraction (Extraction), and the segmentation and objectness
scoring (Heads).
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(b) Rec(0.5) for small objects

Figure 4.11: Detailed analysis of the discovery of small objects. (a): Comparison of different CNN-based
object proposal generation approaches in terms of Average Recall for small objects (ARS) across
various numbers of proposals. (b): Recall (Rec(0.5)) of different CNN-based object proposal
generation systems for small objects (IoU ≥ 0.5, 1000 proposals). Both results were generated
on the COCO test set.

the runtime. Overall, adding the small overhead for the SOAMs, AttentionMask exhibits a
significant speedup for the entire system (36.8% faster).

4.4.4 Ablation Studies

To better understand the influence of the new pyramid level S8 and the SOAMs, we carry out
two ablation studies described below.

Influence of the Pyramid Level S8

The previous results show that the new pyramid level S8 substantially improves the results on
small objects. Figure 4.11(a) presents the results in terms of ARS for 1 to 1000 proposals on
the COCO test dataset to investigate this improvement in more detail. The results indicate
that AttentionMask128

8 improves the discovery of small objects across various numbers of
proposals. As the number of proposals grows, the gap between AttentionMask and the other
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(a) Input image (b) AttentionMask128
8

Figure 4.12: Qualitative result of AttentionMask128
8 (b) on an input image from the COCO dataset with 13 tiny

bird (a). Despite the generally strong performance on small objects, AttentionMask128
8 discovers

only one birds. Filled colored results denote discovered objects, while not filled red contours
denote missed objects. Note that only the best fitting proposal (highest IoU) is visualized per
annotated object. Input images and annotations taken from the COCO dataset [Lin et al., 2014].

systems increases. This is highlighted by an improvement of 66.4% over FastMask on 1000
proposals. To better assess the number of discovered small objects, Fig. 4.11(b) presents the
results in terms of Rec(0.5) on the COCO test set. The results show that AttentionMask128

8
utilizing S8 outperforms all other systems and discovers 61.3% of the small objects. In contrast,
FastMask discovers only 45.2% of the small objects. These results again highlight the positive
influence of S8 for the discovery of small objects.

Despite the good overall results on small objects, several small objects are still missed by
AttentionMask128

8 as the results in Fig. 4.11 indicate. Hence, besides generally difficult object
characteristics like an elongated shape or low contrast (see Ch. 8), the small size of objects
still poses a challenge. For instance, tiny objects like the birds in Fig. 4.12 are missed by
AttentionMask128

8 . Since the birds are smaller than 80 pixels, they are technically too small
for the size condition of S8 during training. Hence, the network can not learn to discover these
objects. We will discuss the effect of tiny objects on the results of object proposal generation
methods in more detail in Sec. 8.2.1.

Influence of the Scale-specific Objectness Attention Modules

To conclude the evaluation, we discuss the influence of the proposed SOAMs on the results of
AttentionMask. As previously discussed, only the increased efficiency utilizing the SOAMs
allows the addition of S8 and the strong results on small objects. Furthermore, the SOAMs
reduce the number of false positives as the comparison between FastMask and AttentionMask192

16
in Tab. 4.5 indicates (+ 6.8% in AR@100). The main difference between the two systems is
the addition of the SOAMs in AttentionMask192

16 . To investigate this effect in more detail, we
determine how many windows were correctly recalled by the SOAMs and how many windows
were pruned. The results in Tab. 4.7 show that the SOAMs prune the majority of windows.
On S8, which contributes the majority of all windows, 93.9% of the windows are not extracted.
Nevertheless, more than 78% of the positive window samples are recalled for S8. Across the
pyramid levels S32,S64, and S128, the recall is even above 90%. Hence, pruning windows based
on the SOAMs leads to few missed objects while removing many possible false positives and
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Figure 4.13: Scale-specific objectness attention maps in AttentionMask128
8 for two input images from the

COCO dataset. The attention maps are extracted from the pyramid levels S8,S16,S32,S64, and
S128, highlighting small to large objects. The scale-specific objectness attention maps in the
upper examples strongly focus on objects or object parts. In contrast, the scale-specific objectness
attention maps in the lower example do not properly cover the suitcases. All scale-specific
objectness attention maps are upsampled to input image size for improved visibility. Red areas
indicate high attention, while blue areas indicate low attention. Input images taken from the
COCO dataset [Lin et al., 2014].
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Table 4.7: Detailed analysis of the SOAMs’ effect on the window extraction per pyramid level. The window
recall measures the relative number of extracted windows from all positive samples, while pruned
windows denotes the relative number of windows pruned given all possible windows. The results
were generated on the COCO test set.

Pyramid level Windows recalled↑ Windows pruned↑

S8 0.781 0.939
S16 0.831 0.924
S32 0.982 0.640
S64 0.969 0.594
S128 0.918 0.704

allowing better utilization of the limited GPU resources to improve the discovery of small
objects.

To investigate the strengths and the scale-specific nature of the SOAMs, we already presented
sample outputs in Fig. 4.5. Figure 4.13 presents additional scale-specific objectness attention
maps, the results of the SOAMs, on more cluttered scenes. These qualitative results generally
indicate that the SOAMs capture most objects on the correct pyramid levels. For instance,
in the upper example, the first scale-specific objectness attention map (S8) covers the small
objects on the fireplace or object parts, while the final two maps (S64 and S128) cover the
armchairs and the sofa. Hence, the SOAMs are not distracted by the clutter in the image. The
lower example in Fig. 4.13 shows mixed results. While the people are properly captured on S16
to S64, most suitcases on the shelf are not highlighted at the correct pyramid level. Although
the final scale-specific objectness attention map (S128) covers the entire shelf, discovering the
individual medium suitcases is hardly possible from S128 due to the size mismatch. Overall, few
examples for missed objects or size mismatches exist, while most objects and object parts are
properly highlighted by our scale-specific objectness attention maps.

4.5 Discussion

In this chapter, we proposed our novel CNN-based object proposal generation system Atten-
tionMask. AttentionMask follows the one-shot concept and extracts windows from an internal
feature pyramid representing the input image at multiple scales to discover objects. Unlike
previous systems, AttentionMask utilizes our new scale-specific objectness attention to focus
the window extraction on relevant parts of the feature pyramid. This focused, attention-based
processing increases the computational efficiency and frees up GPU resources for a more
detailed analysis of small objects. To this end, we add a new pyramid level S8 to the base of
the feature pyramid to improve the discovery of small objects. Without our more efficient
processing pipeline utilizing attention, the addition of S8 and the improved results on small
objects would not be possible. As a result, AttentionMask addresses a major limitation
of object proposal generation systems discussed in the introduction, the discovery of small
objects.

Our detailed evaluation showed that AttentionMask outperforms all mask-based state-of-
the-art object proposal generation systems on the complex COCO dataset. On the very
challenging small objects, AttentionMask outperforms state-of-the-art systems by at least
52.8% while the improvements across all object sizes are at least 7.9%. These improvements
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showcase the benefit of our new scale-specific objectness attention and the additional pyramid
level S8. Moreover, the focused processing based on the scale-specific objectness attention
leads to the fastest runtime among mask-based state-of-the-art object proposal generation
methods.

Despite the improved results on small objects, some limitations remain. First, discovering
tiny objects covering only a few pixels is still challenging due to the downsampling process
inside the CNN. Second, the generated proposals do not adhere well to the object boundaries,
similar to other CNN-based systems. As mentioned in the introduction, this is one of the
major limitations of CNN-based object proposal generation systems. Finally, the ranking
of the object proposals is suboptimal as discussed in the introduction. This limitation is
highlighted by the difference in AR between the first 10 proposals and the first 1000 proposals
across all systems.

Overall, this chapter introduced our novel and efficient object proposal generation system
AttentionMask that outperforms all previous systems while reducing the runtime and explicitly
addressing the limitation of discovering small objects. Some of the remaining limitations like
the coarse object proposals will be tackled in the subsequent three chapters. Applications of At-
tentionMask in complex, real-world scenarios will be presented in Ch. 9.
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The previous chapter introduced our efficient object proposal generation system AttentionMask.
Despite significant improvements in terms of Average Recall (AR), AttentionMask mostly
generates coarse proposals. A typical example of this is visible in Fig. 5.1(e). Although
the AttentionMask proposal discovers the airplane, the segmentation mask does not adhere
precisely to the object boundaries. The issue exists in all CNN-based systems and can be
considered as a trade-off between CNN-based systems [Pinheiro et al., 2015, 2016; Hu et al.,
2017a] and traditional systems that do not utilize CNNs [Uijlings et al., 2013; Krähenbühl and
Koltun, 2014; Pont-Tuset et al., 2017]. While the CNN-based systems capture most objects
entirely, the traditional systems generate precise proposals but miss more objects or object
parts (see Fig. 5.1). We already presented this trade-off in the introduction as one of the
major limitations in object proposal generation.

The main reason behind the coarse proposals in CNN-based systems is the downsampling
process in the backbone CNN that removes spatial information necessary to generate precise
proposals. However, this downsampling process is integral in CNNs to generate semantically
rich features without exceeding memory limitations. For instance, in DeepMask [Pinheiro
et al., 2015], the input image is downsampled four times in the backbone to generate a feature
map that is downsampled by a factor of 16 w.r.t. the input image. The approaches following
the efficient one-shot concept suffer even more from this problem due to the additional
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(a) MCG (b) DeepMask

(c) SharpMask (d) FastMask

(e) AttentionMask (f) SAM

Figure 5.1: Results of the five object proposal generation systems MCG [Pont-Tuset et al., 2017] (a), Deep-
Mask [Pinheiro et al., 2015] (b), SharpMask [Pinheiro et al., 2016] (c), FastMask [Hu et al.,
2017a] (d), and our previously introduced AttentionMask (e). Moreover, (f) shows the result
of our new object proposal generation system Superpixel-based AttentionMask (SAM). The
proposal produced by MCG adheres well to the object boundaries while missing parts of the
airplane. The proposals by the CNN-based systems DeepMask, SharpMask, FastMask, and
AttentionMask discover the entire object but only loosely fit the object boundaries. Applying our
superpixel-based refinement as part of SAM leads to a proposal discovering the entire airplane
and precisely segmenting it, including fine details like the landing gear or the wings tips. Input
image taken from LVIS dataset [Gupta et al., 2019].
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downsampling in the internal feature pyramid. As a result, in FastMask [Hu et al., 2017a]
and AttentionMask, all segmentation masks are generated based on 10× 10 feature maps that
are upsampled as described in Sec. 3.2.3 and Sec. 4.2.4. Consequently, small objects and large
objects are segmented based on feature maps of the same spatial resolution, which leads to
coarse, imprecise proposals for larger objects.

A common solution to this problem would be using an encoder-decoder architecture like in
semantic segmentation [Lin et al., 2017a; Chen et al., 2017] or salient object detection [Li
and Yu, 2016; Qin et al., 2019]. The decoder guides the upsampling of semantically rich but
coarse features with higher resolution features from earlier network layers in those systems.
In object proposal generation, Pinheiro et al. [2016] utilize this approach in SharpMask.
However, SharpMask uses the computationally inefficient multi-shot concept. Additionally,
the refined proposals are still imprecise as visible around the landing gear and airplane’s nose
in Fig. 5.1(c).

Conditional Random Fields (CRFs) are another approach for refining coarse results that is
commonly used in semantic segmentation [Chen et al., 2017; Chan et al., 2019] and salient
object detection [Li and Yu, 2016; Hou et al., 2017]. CRFs typically utilize low-level information
like color at input image resolution to post-process coarse initial results [Li and Yu, 2016; Chen
et al., 2017; Chan et al., 2019]. However, different from semantic segmentation or salient object
detection, hundreds of proposals per image need refinement in object proposal generation.
Since CRF-based post-processing is computationally intensive [Ke et al., 2018], an application
to hundreds of proposals is infeasible. Other approaches to improve low-resolution results use
dilated convolutions [Yu and Koltun, 2016; Chen et al., 2017] or iterative refinements [Zhang
et al., 2019a; Kirillov et al., 2020]. Still, both concepts are computationally demanding if
applied to large networks or hundreds of proposals per image. Therefore, a method is needed
that refines the object proposals while sharing computation between the proposals of an image
to increase efficiency.

Inspired by earlier work on object proposal generation not utilizing CNNs [Uijlings et al., 2013;
Krähenbühl and Koltun, 2014; Pont-Tuset et al., 2017], we propose to use superpixels [Ren
and Malik, 2003] introduced in Sec. 2.1.1 for refining coarse initial proposals. Superpixels are
useful for precisely segmenting objects since they can be shared between the proposals of an
image to increase efficiency and capture complex object shapes while reducing the number of
basic entities in an image. Moreover, they can be shared between the proposals of an image
to increase efficiency. For instance, MCG [Pont-Tuset et al., 2017] generates precise object
proposals using superpixel segmentations. However, those proposals miss several objects or
object parts as visible from the result in Fig. 5.1(a).

This leads to our new object proposal generation system Superpixel-based AttentionMask (SAM).
In SAM, the coarse AttentionMask proposals roughly discover entire objects, while a superpixel-
based refinement utilizes precise superpixels to increase the boundary adherence of the initial,
coarse proposals. Hence, SAM presents an innovative combination of traditional superpixel-
based and modern CNN-based object proposal generation approaches. To combine CNNs
with superpixels, we aggregate features across superpixels in a superpixel pooling frame-
work [Mostajabi et al., 2015; He et al., 2017b; Kwak et al., 2017; Park et al., 2017]. Starting
from the coarse AttentionMask proposals, SAM generates precise superpixel segmentations
and extracts CNN features from AttentionMask’s backbone as visible in Fig. 5.2. Using the
superpixels, SAM pools a feature vector for each superpixel based on the coarse proposal and
learned features in our superpixel-based refinement module (see Fig. 5.2). Subsequently, the
superpixels within and around each coarse proposal are classified as part of the object proposal
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Figure 5.2: Visualization of the core building blocks of our object proposal generation system Superpixel-based
AttentionMask (SAM). SAM starts by applying AttentionMask (red box) introduced in Ch. 4
to generate coarse object proposals. In parallel, superpixel segmentations are generated (yellow
box), and features are extracted from AttentionMask’s backbone network (green box). Our
novel superpixel-based refinement module (top) combines the three streams applying superpixel
pooling and superpixel classification. This leads to refined proposals (top right) based on coarse
AttentionMask results (top left). Input image taken from the LVIS dataset [Gupta et al., 2019].

or the background. This superpixel classification yields the refined proposals that precisely
capture entire objects by combining CNN and superpixel information.

In this chapter, we present or novel object proposal generation system SAM based on our
publications Wilms and Frintrop [2020] as well as Wilms and Frintrop [2021]. First, in Sec. 5.1
we review relevant literature on the non-trivial integration of superpixels into CNNs. Second,
we discuss the innovative architecture of SAM utilizing superpixel pooling and a superpixel
classifier within our novel superpixel-based refinement module in Sec. 5.2. Additionally, we
present a four-stage post-processing to further improve the results. Subsequently, Sec. 5.3
presents the end-to-end training of SAM. In Sec. 5.4, we evaluate SAM on the challenging
LVIS dataset [Gupta et al., 2019] and discuss the effects of the superpixel-based refinement.
Additionally, ablation studies present insights on the choice of the superpixel segmentation
method for this task. We discuss the contributions and limitations of SAM as well as major
findings in Sec. 5.5 to conclude the chapter.

5.1 Superpixels in CNNs

The combination of superpixels and CNNs is non-trivial. Superpixels are a precise representa-
tion of the image content capturing arbitrarily complex shapes. The arbitrary shapes can
lead to a highly irregular topology of the superpixel segmentation1 with a varying number
of neighbors per superpixel. Moreover, the relative spatial locations between neighboring

1The superpixel segmentation methods by Moore et al. [2008] and Moore et al. [2010] enforce a regular
grid-topology, but lack segmentation quality.
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superpixels are not fixed. In contrast, images have a regular grid topology with four or eight
neighbors per pixel, except for the image borders. Given the lack of a regular topology and
missing relative location information in superpixel segmentations, CNNs that apply n × n
kernels can not directly work on superpixels.

Few approaches have been presented to circumvent this problem and integrate superpixels into
CNNs. He et al. [2015] change the input structure by extracting a feature vector per superpixel
and calculating the contrast between all superpixels in the image. Subsequently, they apply a
CNN with 1D-convolutions on the results in a salient object detection framework. However,
the contrast-based representation focuses on the salient object detection task. Inspired by
graph convolutional networks [Kipf and Welling, 2017], Suzuki et al. [2018] propose superpixel
convolutions based on the adjacency matrix of the superpixel segmentation. For the rows
of the adjacency matrix, a weight vector is learned as a circulant matrix. Subsequently, the
convolution is applied on the adjacency matrix, and the results are restored as a pixel-wise
feature map. Although this approach integrates superpixels into CNNs, it loses all spatial
information between them and prefers a regular superpixel topology.

A different class of approaches uses windows around superpixels to classify superpixels with
a CNN in tasks like salient object detection [Zhao et al., 2015; Tang and Wu, 2016; Lee
et al., 2016], depth estimation [Liu et al., 2015] or semantic segmentation [Zhao et al., 2017].
Using windows rather than the superpixel itself is beneficial since the input shape of CNNs
is rectangular. However, the window-based processing removes all detailed segmentation
information for feature extraction inside CNNs.

Chen et al. [2016b] and Hu et al. [2017b] use superpixels to post-process initial blurry pixel-
precise results outside the CNN. Different to those approaches, Gadde et al. [2016] propose a
Gaussian superpixel-based bilateral filtering at arbitrary intermediate steps of a CNN. Hence,
the Gaussian bilateral filtering is applied on features inside the CNN rather than the network’s
results. The filtering is based on superpixels and their color information to enforce similar
features in visually similar and proximate superpixels.

Another line of work uses superpixel pooling for superpixel-based feature aggregation in
semantic segmentation [Mostajabi et al., 2015; Kwak et al., 2017; He et al., 2017b; Park
et al., 2017]. Superpixel pooling generates a feature vector for each superpixel based on a
feature map and a superpixel segmentation. The feature vector represents the average, the
maximum, or a random pixel per feature across the superpixel. Thus, the output of the
superpixel pooling is a feature vector per superpixel, which will be further processed by the
network. This makes superpixel pooling an intermediate concept between standard n × n
pooling and global pooling as Fig. 5.3 demonstrates. In contrast to global pooling, superpixel
pooling distinguishes between different image areas. However, these areas are not defined by
fixed n× n windows as in standard pooling but follow superpixels and allow arbitrary shapes.
This makes superpixel pooling a flexible alternative to the other pooling strategies. Similar
to other pooling strategies, backpropagation through superpixel pooling is straightforward.
Overall, superpixel pooling allows an end-to-end integration of superpixels into CNNs that is
not limited to the input level or the level of predictions.

In general, four streams of integrating superpixels into CNNs exist. First, the CNN structure
is changed to work directly on superpixels, leading to a loss of spatial information early
in the network. Second, superpixels are used to extract windows as inputs for the CNN,
which removes detailed segmentation information. Third, superpixels are used to enhance
dense CNN predictions without end-to-end integration. Finally, the feature aggregation by
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Figure 5.3: Three variations of average pooling on a 4× 4 feature map with RGB values. Since the pooling
grid is fixed, the standard 2× 2 average pooling (a) with stride 2 leads to mixing the RGB values.
The global average pooling (b) extracts the average per color channel across the entire image,
losing all spatial information. As an intermediate concept, superpixel average pooling (c) extracts
the average color per superpixel. Given a high-quality superpixel segmentation, the regions are
not mixed, and the three resulting elements contain only superpixel-specific information.

superpixel pooling generates a feature representation of each superpixel and allows end-to-
end processing of these features. Hence, the superpixel pooling enables the most native
integration of superpixels into arbitrary stages of CNNs without loosing spatial information or
segmentation details early in the network. Note that after the superpixels pooling, the spatial
information of the superpixels might be lost. However, this only happens after initial feature
generation in the CNN backbone.

5.2 Superpixel-based AttentionMask

This section presents the architecture of our novel object proposal generation system Superpixel-
based AttentionMask (SAM) that refines coarse object proposals utilizing superpixels in a
superpixel pooling framework. Figure 5.4 shows an overview of SAM that consists of two main
parts. First, three base streams (red, yellow, and green blocks in Fig. 5.4) generate coarse
AttentionMask proposals (red block), precise superpixel segmentations (yellow block), and
per-pixel features from AttentionMask’s backbone (green block). As described in Sec. 5.2.1,
the streams are synchronized by the SOAMs that guide the window extraction across the
pyramids and stacks. The second part of SAM, described in Sec. 5.2.2, consists of our novel
superpixel-based refinement module. This module refines each coarse AttentionMask proposal
utilizing the precise superpixel segmentations and the extracted features. In this innovative
process, we utilize superpixel average pooling twice to generate a superpixelized version of the
upsampled coarse proposal and extract per superpixel features. Based on this information, a
novel superpixel classifier assigns the superpixels to the object proposal or the background.
This leads to highly precise object proposals generated by SAM, which are further enhanced
using a four-stage post-processing described in Sec. 5.2.3.
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Figure 5.4: Overview of our object proposal generation system SAM. SAM consists of three base streams for
generating coarse AttentionMask object proposals (red block), superpixel segmentations (yellow
block), and learned features (green block). For each coarse proposal, the respective windows
are extracted from the other streams based on the SOAM outputs (see colored windows across
the streams). Finally, the three streams are combined in our novel superpixel-based refinement
module utilizing superpixel pooling and a superpixel classifier. This results in refined proposals
that better adhere to the object boundaries. Figure 5.5 presents a more detailed visualization of
our superpixel-based refinement module. Input image taken from the LVIS dataset [Gupta et al.,
2019].
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Table 5.1: Number of superpixels per superpixel segmentation for each of AttentionMask’s feature pyramid
levels in SAM. Since S8 and S16 capture small objects, more superpixels are used and vice versa.

Pyramid level S8 S16 S24 S32 S48 S64 S96 S128

Number of superpixels 8000 4000 3000 2000 1500 1000 750 500

5.2.1 Base Streams

SAM is based on three streams as visualized in Fig. 5.4. The first stream (red box in
Fig. 5.4) consists of AttentionMask, including the feature pyramid, and generates coarse
object proposals as described in Ch. 4. Different to Ch. 4, SAM uses AttentionMask with
the conv1 -conv4 stages of the smaller ResNet-34 [He et al., 2016a] as backbone to save GPU
memory for the subsequent refinement. The change of the backbone network leads to a slight
drop in performance as we will show in Sec. 5.4.1.

The second base stream in SAM (yellow box in Fig. 5.4) creates precise superpixel segmentations
of the input image for each pyramid level of AttentionMask’s feature pyramid. All superpixel
segmentations are generated on input image resolution for a precise refinement yielding a
stack of superpixel segmentations rather than a pyramid. The number of superpixels varies
from 8000 for the pyramid level S8 to 500 for the pyramid level S128. The intermediate levels
are segmented accordingly with different numbers of superpixels as Tab. 5.1 summarizes.
Using different numbers of superpixels per pyramid level is motivated by the size of the
objects that fit the different pyramid levels. More superpixels increase the chance of capturing
small objects, while fewer superpixels lead to fewer subsequent classifications for larger
objects. As superpixel segmentation method, we choose the Felzenszwalb and Huttenlocher
method (FH) [Felzenszwalb and Huttenlocher, 2004] described in Sec. 3.1.2. FH produces less
oversegmentation than other methods and is utilized in several object proposal generation
systems [Alexe et al., 2010; van de Sande et al., 2011; Frintrop et al., 2014]. We will show the
benefit of using FH with SAM in Sec. 5.4.3.

As a third stream, SAM contains a feature extractor (green box in Fig. 5.4). The extractor
creates a feature representation from the input image for each of AttentionMask’s pyramid
levels. These feature representations (turquoise boxes in Fig. 5.4) yield a stack and serve
as the base for pooling superpixel features in the superpixel-based refinement module. To
generate features per pyramid level, SAM applies a 1 × 1 convolution with 256 kernels to
the final feature map of the conv2 stage from AttentionMask’s backbone. Subsequently, the
features are upsampled to match the resolution of the superpixel segmentations. Utilizing
features from the conv2 stage of the backbone is beneficial compared to other stages as the
results in Tab. 5.2 indicate.

The three streams of SAM are linked by the SOAMs from AttentionMask. The SOAMs
highlight areas with objects of relevant size per feature pyramid level and focus the extraction
of windows on these areas. From the feature pyramid, fixed-size 10×10 windows are extracted
in SAM as described in Sec. 4.2.2 for AttentionMask. For the superpixel segmentation and
feature extraction streams, the SOAMs are utilized as well to synchronize the extraction.
However, instead of extracting fixed-size 10× 10 windows, the window size is adapted to the
input image resolution. Hence, a 10 × 10 window in pyramid level S8 leads to an 80 × 80
window for the superpixel segmentation or the feature extraction stream (e.g., brown frames
in Fig. 5.4). This upsampling is necessary to extract the same area across all three streams
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Table 5.2: Comparison of the feature extraction from different stages of the ResNet-34 backbone in SAM.
The stages are described in the first column. AR denotes the Average Recall for the first 10, 100,
or 1000 proposals on the LVIS validation dataset. We use SAM with only five pyramid levels and
the features from the respective stage. The chosen architecture is highlighted in bold font.

ResNet stage AR@10↑ AR@100↑ AR@1000↑

conv1 0.101 0.219 0.315
conv2 0.100 0.221 0.320
conv3 0.099 0.219 0.318
conv4 0.100 0.219 0.317

and allows to preserve spatial details in the superpixel segmentation and feature extraction
streams.

Overall, for each coarse AttentionMask proposal of size 10 × 10, SAM extracts a window
from the respective superpixel segmentation and the respective feature map. The superpixel
segmentation and feature map windows represent the 10 × 10 proposals on input image
resolution to preserve spatial details.

5.2.2 Superpixel-based Refinement Module

Based on the windows of the three base streams, our novel superpixel-based refinement module
connects the three streams and creates a refined proposal. This process is visualized in more
detail in Fig. 5.5. First, we upsample the coarse 10× 10 AttentionMask proposal to input
image resolution. The upsampling leads to a blurry proposal as visible in the top left in
Fig. 5.5. To recover the sharp boundaries, we apply superpixel average pooling to the blurry
proposal based on the superpixel segmentation window. This leads to a superpixelized version
of the proposal with sharp boundaries called mask prior (top center in Fig. 5.5). The mask
prior contains the average proposal value2 across each superpixel and already gives a good
approximation of the object boundaries.

Instead of directly binarizing the mask prior to generate the refined proposal, we augment
the mask prior with semantically rich learned features utilizing the extracted feature map
window (bottom right in Fig. 5.5). Similar to the mask prior, we apply superpixel average
pooling on the feature map window with the same superpixel segmentation as before. Hence,
we create a 256D feature vector for each superpixel in the mask prior (bottom center in
Fig. 5.5). In contrast to the previous superpixel pooling on the upsampled proposal, this
second superpixel pooling is technically shared between all proposals of a pyramid level, since
the features maps and the superpixel segmentations do not change. To combine the mask prior
and the feature vector, we use simple concatenation per superpixel (top center in Fig. 5.5).
The concatenation is favorable compared to weighting the features with the respective mask
prior values, as the results in Tab. 5.3 indicate. The concatenation leads to the final 257D
feature vector representation for each superpixel.

2The values of the coarse object proposal represent the initial likelihood of a pixel belonging to the object
according to AttentionMask.
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Figure 5.5: Detailed visualization of the proposed superpixel-based refinement module in SAM using the
outputs of the three streams (red, yellow, and green) from Fig. 5.4. The coarse AttentionMask
proposal is upsampled and superpixelized using superpixel pooling to eliminate the blurred and
imprecise boundaries (top left). Subsequently, a feature vector per superpixel is generated using
superpixel pooling on the learned features extracted from AttentionMask’s backbone (bottom
center). The mask prior and the extracted features are combined using concatenated (top center).
Finally, our superpixel classifier assigns each superpixel to the object proposal or the background,
yielding a precise object proposal (top right). Input image taken from the LVIS dataset [Gupta
et al., 2019].

Table 5.3: Comparison of concatenation and weighting for fusing the mask prior and the learned superpixel
feature vector in SAM. The strategies are described in the first column. AR denotes the Average
Recall for the first 10, 100, or 1000 proposals on the LVIS validation dataset. We use SAM with
only five pyramid levels and apply the respective fusion strategy in the superpixel-based refinement
module. The chosen strategy is highlighted in bold font.

Strategy AR@10↑ AR@100↑ AR@1000↑

Concatenation 0.100 0.221 0.320
Weighting 0.039 0.061 0.097

Figure 5.6: Architecture of the proposed superpixel classifier in SAM. The input is a batch of superpixels,
where each superpixel is represented by the mask prior (grayish superpixel) and the learned
features (turquoise superpixels). The four-layer classifier assigns each superpixel individually to
the object proposal (white) or the background (black).
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Table 5.4: Comparison of architectures for the proposed superpixel classifier in SAM. The first column
describes the architecture in terms of the number of neurons per fully connected layer. We compare
models with three to five layers and up to 512 neurons per layer. The final layer has 1 neuron in
all architectures corresponding to the binary classification result. AR denotes the Average Recall
for the first 10, 100, or 1000 proposals on the LVIS validation dataset. We use SAM with only five
pyramid levels and the respective architecture for the superpixel classifier. The chosen architecture
is highlighted in bold font.

Architecture AR@10↑ AR@100↑ AR@1000↑

128− 128− 128− 1 0.097 0.218 0.317
256− 256− 1 0.098 0.218 0.316
256− 256− 256− 1 0.100 0.221 0.320
256− 256− 256− 256− 1 0.100 0.219 0.317
512− 512− 512− 1 0.098 0.216 0.313

Finally, the superpixel classifier assigns each superpixel to the object proposal or the back-
ground based on the 257D feature vector (top right in Fig. 5.5). This classification is conducted
individually for each superpixel. Hence, no interaction between superpixels takes place at this
stage. The classifier itself, visualized in Fig. 5.6, is a simple network with four fully connected
layers. This design is efficient and yields better results compared to architectures with more or
fewer kernels and layers (see Tab. 5.4). Note that some superpixels may not be included in the
superpixel segmentation window. These superpixels are directly assigned to the background
for computational reasons.

Overall, the superpixel-based refinement module in SAM leads to refined object proposals
based on an innovative combination of coarse initial AttentionMask proposals, superpixel
segmentations, and learned features.

5.2.3 Post-processing of Refined Proposals

We further improve the refined proposals with a four-stage post-processing. The post-processing
unifies the results and removes superpixel segmentation artifacts as well as duplicate proposals.
As a first stage, we apply bilateral filtering [Tomasi and Manduchi, 1998] on the superpixel
level similar to the superpixel-based guided filtering in Hu et al. [2017b] or the inter-superpixel
voting in Chen et al. [2016b]. The bilateral filtering adapts the classification result of edge
superpixels, i.e., superpixels with an ambiguous classification score3. All neighbors and
second-order neighbors are gathered for an edge superpixel. Subsequently, bilateral filtering is
applied to the classification scores based on the mean RGB color value per superpixel. Hence,
adjacent superpixels with similar colors will have unified classification scores and capture
uniformly colored object parts entirely.

The second and third stages of the post-processing in SAM are morphological opening and
closing to remove typical antenna-like artifacts of the proposals, visualized in Fig. 5.7. These
artifacts either reach from the proposal into the background or vice-versa and are introduced

3The classification score, the superpixel classifier’s output, is ambiguous if it is neither close to 0 nor close
to 1. We use a lower limit of 0.25 and an upper limit of 0.4 to describe ambiguous superpixels. Both values
were determined empirically.
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(a) Input image (b) W/o opening and closing (c) With opening and closing

Figure 5.7: Comparison of results produced by SAM without (b) and with (c) morphological post-processing
based on opening and closing. Applying opening and closing removes the antenna-like artifacts
highlighted by the arrows. Filled colored contours denote discovered objects, while not filled
red contours denote missed objects. Note that only the best fitting proposal (highest IoU) is
visualized per annotated object. Input image and annotations taken from LVIS dataset [Gupta
et al., 2019].

by FH along single-pixel edges with uniform color. The opening with a 3 × 3 structuring
element removes the antennas reaching out from the proposal. In contrast, the closing with
the same structuring element fills the antennas reaching out from the background into the
proposal. Finally, Non-Maximum Suppression (NMS) with IoU threshold 0.95 is applied to the
results to remove near-duplicates. Near-duplicates are more likely to occur when constructing
object proposals based on superpixels since proposals that vary by a few pixels will be mapped
to the same combination of superpixels in SAM.

Overall, the proposed post-processing improves the quantitative and qualitative results of
SAM as we will discuss in Sec. 5.4.3.

5.3 Training

After discussing the architecture of SAM, we present the end-to-end training strategy. Since
SAM is based on AttentionMask, we will only discuss the changes in training compared to
AttentionMask and refer the reader to Sec. 4.3 for the remaining parts of the training procedure.
The first novelty in training SAM is the optimization of the superpixel segmentations, which
is conducted outside the network (see Sec. 5.3.1). Based on the superpixel segmentations,
the training targets for the SAM’s superpixel classifier are generated from the pixel-precise
annotations as outlined in Sec. 5.3.2. Finally, the loss function of SAM and the overall training
strategy are presented in Sec. 5.3.3.

5.3.1 Superpixel Segmentation Optimization

We utilize FH [Felzenszwalb and Huttenlocher, 2004] to generate a superpixel segmentation for
each level of the feature pyramid in SAM. FH originally has one parameter, k (see Eq. 3.11 in
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Sec. 3.1.2), which controls the maximum difference between components for merging. To gen-
erate the best possible superpixel segmentations, we optimize k for each number of superpixels
from Tab. 5.1 on the LVIS validation set with precisely annotated objects [Gupta et al., 2019].
While optimizing k, we only consider superpixel segmentations that roughly match (±10%)
the desired number of superpixels across the validation set.

For the optimization, we transform the object annotations of the LVIS validation dataset to
create a segmentation dataset. Hence, for every annotated object in an image, we create a
binary segmentation as ground truth for this image. Additionally, we assign each of these
ground truth segmentations to one or more pyramid levels in SAM according to the size
constraints from AttentionMask’s training strategy. This assignment leads to different ground
truth segmentations per pyramid level. Since most images do not feature objects matching
every pyramid level, we remove these images from the set of images for the respective pyramid
levels. In contrast, some images include multiple objects matching the same pyramid level,
leading to multiple ground truth segmentations similar to the BSD dataset [Martin et al.,
2001].

After creating the ground truth segmentations, we optimize k and the superpixels’ minimum
size4 based on the Overall Segmentation Quality (OSQ) following Stutz et al. [2018]. Overall,
eight sets of parameters are generated for the eight pyramid levels in SAM. Note that we
conducted the same optimization for the other superpixel segmentation methods utilized in
our ablation studies in Sec. 5.4.3.

5.3.2 Superpixel-precise Ground Truth

In AttentionMask, the targets for the segmentation module are the pixel-precise object
annotations from the dataset. This is different for the superpixel classifier in SAM. Since the
classifier assigns entire superpixels to an object proposal or the background, the pixel-precise
annotations have to be transformed to the level of superpixels. This process is non-trivial,
as the superpixel segmentations do not capture all annotated object boundaries. Hence,
minor undersegmentation errors, superpixels covering object and background, exist in the
segmentations.

To approximate a pixel-precise annotation with the superpixels of a given superpixel segmen-
tation, we propose an iterative scheme inspired by Chen et al. [2015b]. We start by calculating
the overlap of each superpixel with the pixel-precise annotation. All superpixels that do not
overlap with the annotated object are immediately assigned to the background (negative
samples). Subsequently, we assign the superpixel that has the highest overlap with the pixel-
precise annotation to the superpixel-precise annotation (positive samples). The remaining
superpixels are processed in descending order of their overlap. If a superpixel increases the
IoU between the superpixel-precise annotation and the pixel-precise annotation, we add it to
the superpixel-precise annotation. This greedy processing leads to a superpixel-precise approx-
imation (positive samples) of the pixel-precise annotation given a superpixel segmentation.
As discussed above, the approximation does not perfectly match the pixel-precise annotation
but exhibits a high quality as visible from the examples in Fig. 5.8.

4The superpixels’ minimum size is an additional parameter of the FH implementation used by Stutz et al.
[2018].
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(a) Pixel-precise annotations (b) Superpixel-precise annotations

Figure 5.8: Original pixel-precise annotations (a) and our approximated superpixel-precise annotations (b)
for two objects annotated in the LVIS dataset [Gupta et al., 2019]. We use FH [Felzenszwalb and
Huttenlocher, 2004] to generate the superpixel segmentations. Note that the superpixel-precise
annotations do not perfectly match the pixel-precise annotations due to undersegmentation errors
in the superpixel segmentations. Base images and annotations taken from the LVIS dataset [Gupta
et al., 2019].

Overall, the proposed transformation leads to the ground truth for the superpixel classifier
in SAM. Note that the superpixel-precise ground truth is different for each pyramid level in
SAM and changes for each superpixel segmentation method.

5.3.3 Loss Function and Training Strategy

Since SAM is based on AttentionMask, most of the overall training procedure stays unchanged.
Only, the feature extractor and the superpixel classifier are added as learned components since
the superpixel segmentations are generated outside the network. The superpixel classifier is
directly trained using the superpixel-precise annotations described previously and the binary
cross-entropy loss as the loss function. In contrast, the feature extraction is indirectly learned
based on the superpixel classifier. Adding the new loss for the superpixel classifier Lspx leads
to SAM’s overall loss

L = wspxLspx + wobjnLobjn + wattLatt + wsegLseg + wSOAM
∑
i

LSOAMi , (5.1)

based on AttentionMask’s loss in Eq. 4.6. The weight wspx balances the influence of the
superpixel classifier loss similar to the other weights and is set to 1 in our experiments. The
other weights remain unchanged compared to Sec. 4.3.2.

To initialize the ResNet-34-based backbone, we use ImageNet weights [He et al., 2016a]. The
feature extractor, the superpixel classifier, and the remaining components are initialized from
scratch. Similar to AttentionMask, we multiply the learning rate for the layers learned from
scratch with a factor of 10. Overall, we train SAM end-to-end for 15 epochs with a learning
rate of 0.0001, a momentum of 0.9, a weight decay of 0.00005, and batch size 1. As training
data, we use the COCO training dataset [Lin et al., 2014] despite the imprecise annotations
to allow a fair comparison to other systems.

5.4 Experiments

In this section, we compare SAM to state-of-the-art approaches in object proposal gener-
ation. The evaluation follows the setup in Sec. 4.4 and most object proposal generation
literature [Pinheiro et al., 2015, 2016; Hu et al., 2017a]. Hence, we train each system on the
COCO dataset [Lin et al., 2014] and assess the quality of the proposals in terms of Average
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(a) Best proposal per
annotated object

(b) Annotated objects (c) Segmentation from
proposals

(d) Segmentation from
annotated objects

Figure 5.9: Example for generating segmentations from the object proposals (a) and the annotated objects (b).
The best matching proposals per annotated object (IoU ≥ 0.5) are joined to form a segmenta-
tion (c). Similarly, the annotations of discovered objects are joined to comprise the ground truth
segmentation (d). Note that overlapping proposals lead to more than two regions as highlighted by
the turquoise arrow in (c). Missed objects (IoU < 0.5) are omitted from both segmentations (see
pink arrows). Base images and annotations taken from the LVIS dataset [Gupta et al., 2019].

Recall (AR, see Sec. 2.2.3) for different numbers of proposals and object sizes. Unlike existing
evaluations, we evaluate not only on the challenging COCO test set but also on the complex
LVIS test set [Gupta et al., 2019]. Evaluating on the LVIS dataset is important since it
contains more precise annotations as discussed in Sec. 2.2.2. The precise annotations allow
us to properly assess the adherence of the proposals to the boundaries of annotated objects.
Nevertheless, we use the standard COCO dataset for training to allow a fair comparison. Note
that we only evaluate pixel-precise proposals and omit box proposals, since we focus on the
precise segmentation of objects in this chapter.

Besides the AR-based evaluation, we evaluate the generated proposals using Boundary
Recall (BR) and Undersegmentation Error (UE) known from the evaluation of superpixel
segmentations (see Sec. 2.1.3). To evaluate object proposals using BR and UE, we create a
segmentation and a ground truth based on a system’s object proposals. First, we select the
best fitting proposal per discovered, annotated object (IoU ≥ 0.5). Subsequently, the binary
segmentations of the selected proposals are joined across an image to generate the segmentation.
Similarly, we join the annotated segmentation masks of the discovered objects, leading to the
ground truth segmentation. Figure 5.9 depicts an example of this process, including the joint
segmentation for the proposals (see Fig. 5.9(c)) and the annotated objects (see Fig. 5.9(d)).
Finally, we evaluate the two joined segmentations using BR and UE to assess the adherence
of the proposals to the annotated objects independent of the number of discovered objects.
This is different from AR, which jointly measures how many objects are discovered and how
well they are segmented.

Since we use FH superpixels in SAM, we denote our system as SAM+FH in the evaluation.
We compare SAM+FH to AttentionMask (AttentionMask128

8 ) from Ch. 4 and a variation of
AttentionMask using the same ResNet-34 backbone as in SAM. Additionally, we compare
to MCG [Arbeláez et al., 2014; Pont-Tuset et al., 2017] and COB [Maninis et al., 2016,
2017], which do not suffer from the inherent downsampling process within CNNs during
object proposal generation. Finally, we compare SAM+FH to the CNN-based systems
DeepMask [Pinheiro et al., 2015], SharpMask [Pinheiro et al., 2016], and FastMask [Hu et al.,
2017a]. We do not include InstanceFCN [Dai et al., 2016] in the evaluation, since neither code
nor results on the LVIS dataset are publicly available.

In the following, we first discuss the quantitative and qualitative results on the LVIS dataset
featuring the precise annotations (see Sec. 5.4.1). Subsequently, Sec. 5.4.2 presents the
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Table 5.5: Results on the LVIS test dataset using pixel-precise segmentation mask proposals in terms of six
Average Recall (AR) measures. ARS , ARM , and ARL denote results on small, medium, and large
objects. See Tab. 2.1 for details on the AR variations. Bold font highlights the best results, while
italic font indicates the second-best results.

Method Backbone AR@10↑ AR@100↑ AR@1k↑ ARS@100↑ ARM@100↑ ARL@100↑

MCG - 0.048 0.131 0.237 0.031 0.204 0.462
COB - 0.054 0.148 0.281 0.043 0.235 0.477

DeepMask ResNet-50 0.069 0.147 0.214 0.014 0.314 0.430
SharpMask ResNet-50 0.073 0.154 0.229 0.014 0.327 0.460
FastMask ResNet-50 0.069 0.161 0.256 0.055 0.296 0.386
AttentionMask ResNet-50 0.073 0.189 0.284 0.081 0.312 0.446

AttentionMask ResNet-34 0.076 0.185 0.271 0.083 0.305 0.423
SAM+FH ResNet-34 0.092 0.206 0.290 0.094 0.335 0.471

quantitative results on the COCO dataset with less precise annotations. Finally, three ablation
studies in Sec. 5.4.3 show the influence of the superpixel segmentation method, the superpixel
segmentation style, and the post-processing on the results of SAM+FH.

5.4.1 Results on the LVIS Dataset

General Object Proposal Generation Results

First, we present the general object proposal generation results in terms of AR on the complex
LVIS test set. The results in Tab. 5.5 indicate that SAM+FH outperforms all other object
proposal generation systems in terms of AR across all object sizes (AR@10, AR@100, and
AR@1000). This is also visible from the plot in Fig. 5.10(a) depicting the AR across various
numbers of proposals. Compared to AttentionMask using the ResNet-50 backbone, the AR@10
improves by 26.0%, while the AR@1000 still increases by 2.1%. Hence, SAM+FH compensates
for the smaller backbone that leads to a drop in performance and even improves the results.
Compared to AttentionMask using the smaller ResNet-34 backbone, the improvement of
SAM+FH is even more significant (+7.0% in terms of AR@1000). This highlights the
advantage of the superpixel-based refinement in SAM+FH since all other major components
are identical to this AttentionMask variation. Note that the improvements in terms of AR
over both AttentionMask variations are evident across all individual object sizes (+6.6% to
+16.0%) as ARS@100, ARM@100, and ARL@100 indicate.

SAM+FH also surpasses all other object proposal generation systems in terms of most AR
measures. While outperforming FastMask by 13.3% in terms of AR@1000, SAM+FH surpasses
SharpMask and DeepMask by 26.6% and 35.5%. The results of the systems w.r.t. to the
object sizes differ from the results on the COCO dataset discussed in Sec. 4.4.1. For instance,
DeepMask and SharpMask outperform FastMask on medium and large objects (ARM@100
and ARL@100). This behavior was not visible from the results on the COCO dataset due
to the imprecise annotations. Since DeepMask and SharpMask follow the two-shot concept
with less downsampling, the proposals are more precise compared to the one-shot systems like
FastMask and AttentionMask. SAM+FH still outperforms DeepMask and SharpMask on large
objects (+9.5% and +2.4%). The results in Tab. 5.5 also show that the proposals generated
by MCG and COB without utilizing CNNs during object proposal generation are competitive
on the LVIS dataset. For instance, COB outperforms DeepMask, SharpMask, and FastMask
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Figure 5.10: Detailed quantitative results on the LVIS test set. (a): Average Recall (AR) across various
numbers of object proposals for the eight object proposal generation systems evaluated in this
section. (b): Recall (Rec) of the eight object proposal generation systems for objects discovered
with an IoU of at least 0.8 (100 proposals). R-50 and R-34 denote variations of AttentionMask
based on ResNet-50 and ResNet-34 backbones. Note that the y-axes are truncated at 0.4 (a)
and 0.3 (b) for improved visibility.

on AR@1000. This is due to the precise segmentations using superpixels. However, the lack
of a high-quality ranking prevents MCG and COB from outperforming those systems on less
than 500 proposals (see Fig. 5.10(a)). Still, COB outperforms even SAM+FH on large objects
since it does not suffer from the inherited downsampling in CNNs.

Quality of the Segmentation Masks

After discussing the general object proposal generation results in terms of AR, we focus on the
quality of the proposals’ segmentation masks. Figure 5.10(b) gives a more detailed overview
of the Recall (Rec) for the first 100 proposals across different IoU levels above 0.8. Hence,
all IoU levels in Fig. 5.10(b) lead to proposals that precisely capture the objects. Up to an
IoU of 0.95 (Rec(0.95)), SAM+FH constantly outperforms all other systems. Especially on
more precise IoU levels, the relative improvement of SAM+FH is substantial. For instance,
SAM+FH outperforms AttentionMask by 21.1% at an IoU of 0.9 (Rec(0.9)). Above an IoU
of 0.95, MCG and COB surpass all CNN-based approaches, including SAM+FH. However,
Rec is generally low in this range (up to 0.009).

To evaluate the quality of the segmentation masks in more detail, we use BR and UE to assess
the segmentation quality independent of the number of discovered objects as discussed above.
Table 5.6 presents the results of this analysis across all object sizes and for each object size (S,
M, and L) individually. The results show that SAM+FH outperforms all other CNN-based
systems in terms of BR and UE. Hence, object proposals generated by SAM+FH adhere
better to the boundaries of the annotated objects based on utilizing superpixels. While the
improvement for small objects is low (+2.9% in terms of BR compared to AttentionMask),
proposals for medium and large objects strongly benefit from the refinement. For instance,
SAM+FH outperforms AttentionMask by 12.7% and 43.2% in terms of BR on medium and
large objects. This is due to the stronger effects of the downsampling process on medium and
large objects in CNNs. Similar to Fig. 5.10(b), the results show that MCG and COB generate
more precise object proposals than the CNN-based systems including SAM+FH. However,
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Table 5.6: Detailed results on the LVIS test dataset using pixel-precise segmentation mask proposals in
terms of Boundary Recall (BR) and Undersegmentation Error (UE). BRS/UES , BRM/UEM , and
BRL/UEL denote results on small, medium, and large objects. Bold font highlights the best
results, while italic font indicates the second-best results.

Method Backbone BR↑ UE↓ BRS↑ UES↓ BRM↑ UEM↓ BRL↑ UEL↓

MCG - 0.685 0.073 0.833 0.004 0.709 0.023 0.614 0.089
COB - 0.734 0.059 0.823 0.005 0.738 0.021 0.686 0.068

DeepMask ResNet-50 0.488 0.087 0.727 0.006 0.622 0.024 0.308 0.109
SharpMask ResNet-50 0.561 0.080 0.782 0.005 0.681 0.023 0.383 0.100
FastMask ResNet-50 0.510 0.084 0.794 0.006 0.622 0.023 0.318 0.107
AttentionMask ResNet-50 0.568 0.070 0.840 0.005 0.644 0.020 0.389 0.091

AttentionMask ResNet-34 0.547 0.075 0.832 0.005 0.637 0.020 0.356 0.099
SAM+FH ResNet-34 0.681 0.068 0.864 0.004 0.726 0.019 0.557 0.090

as the AR-based results indicate (see Tab. 5.5), MCG and COB discover fewer objects than
SAM+FH.

Qualitative Results

The qualitative results in Fig. 5.11 support the general findings of the quantitative results.
Across all results in Fig. 5.11, SAM+FH proposals adhere better to the annotated objects
and capture fine details or complete the object shapes. For instance, the first two rows show
that neither FastMask nor AttentionMask is able to precisely capture details like the animals’
snout, ears, or individual legs. SAM+FH captures such details utilizing superpixels. This is
highlighted by precise segmentations of the ears in both examples and the tiny legs in the second
example. Similarly, the results in the rows three and four also show an improved adherence of
the proposals generated by SAM+FH to the annotated objects. Even small details of the fire
hydrant or the tennis player’s pants are mostly captured precisely.

Rows five and six show typical examples of SAM+FH completing object shapes. FastMask
and AttentionMask only partially capture the airplane as well as the kite due to missing
small details like the tail of the kite. SAM+FH completes the initial coarse proposals and
captures most details using precise superpixels. The final two rows depict examples of very
challenging scenes. The scene in the seventh row is highly complex with partially overlapping
objects. Nevertheless, SAM+FH refines the objects and precisely captures most object corners
using superpixels. In contrast, the proposals generated by FastMask and AttentionMask
suffer from smoothed object corners, despite a high contrast and simple shapes. The smooth
shapes are due to the interpolation of the coarse proposals. The last row shows an example
of small objects. While the proposals of SAM+FH capture the tiny snouts, tails, and most
fins of the seahorses, FastMask and AttentionMask propose blob-like proposals that miss
several details. These findings are in line with the results in Tab. 5.5 and Tab. 5.6 on small
objects.

Despite the generally high quality of the proposals generated by SAM+FH, few typical
errors remain. For instance, undersegmentation errors in the superpixel segmentations pose a
problem for SAM+FH. Such errors lead to proposals that partially cover both object and
background or multiple objects as visible for the monitors in the seventh example in Fig. 5.11.
Due to FH’s subpar segmentation quality in terms of UE, several proposals across the test set
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Input image FastMask AttentionMask SAM+FH Ground truth

Figure 5.11: Qualitative results of FastMask [Hu et al., 2017a], AttentionMask based on a ResNet-50 (see
Ch. 4), and SAM+FH on images of the LVIS test dataset. The arrows highlight prominent
differences between the systems. Filled colored contours denote discovered objects, while not
filled red contours denote missed objects. Note that only the best fitting proposal (highest
IoU) is visualized per annotated object. Input images and annotations taken from the LVIS
dataset [Gupta et al., 2019].
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Table 5.7: Results on the COCO test dataset using pixel-precise segmentation mask proposals in terms of
six Average Recall (AR) measures. ARS , ARM , and ARL denote results on small, medium, and
large objects. See Tab. 2.1 for details on the AR variations. Bold font highlights the best results,
while italic font indicates the second-best results.

Method Backbone AR@10↑ AR@100↑ AR@1k↑ ARS@100↑ ARM@100↑ ARL@100↑

MCG - 0.077 0.186 0.299 0.041 0.182 0.435
COB - 0.104 0.233 0.383 0.065 0.243 0.501

DeepMaskZoom ResNet-50 0.151 0.286 0.371 0.093 0.389 0.466
SharpMask ResNet-50 0.154 0.278 0.360 0.035 0.399 0.513
SharpMaskZoom ResNet-50 0.156 0.304 0.401 0.099 0.412 0.495
InstanceFCN ResNet-50 0.166 0.317 0.392 - - -
FastMask ResNet-50 0.169 0.313 0.406 0.106 0.406 0.517
AttentionMask ResNet-50 0.180 0.349 0.444 0.162 0.421 0.560

AttentionMask ResNet-34 0.174 0.332 0.420 0.154 0.401 0.534
SAM+FH ResNet-34 0.193 0.346 0.421 0.164 0.411 0.561

are affected by such errors. Another typical source of errors are misclassified superpixels as
visible around the pants of the tennis player in the fourth row. A superpixel adjacent to the
crotch of the pants is misclassified as part of the proposal. Similarly, one hoof of the larger
cow in the first example and the tip of the fire hydrant in the third example are missed by
SAM+FH due to misclassified superpixels.

Overall, the qualitative results showcase that the proposals generated by SAM+FH adhere
better to the object boundaries compared to FastMask and AttentionMask despite few errors.
This supports the findings of the quantitative evaluations based on AR, BR, and UE. The
remaining errors are related to undersegmentation errors in the FH superpixel segmentations
or misclassifications of individual superpixels.

5.4.2 Results on the COCO Dataset

For completeness, we briefly discuss the results of SAM+FH on the COCO test set, which
features imprecise annotations. Table 5.7 presents the results of this evaluation, which is
similar to Sec. 4.4.1. As expected, SAM+FH does not generally outperform AttentionMask,
since the imprecise annotations dismiss the more precise object proposals created by SAM+FH.
As a result, only in terms of AR@10 SAM+FH outperforms AttentionMask across all object
sizes, which is attributed to the superpixel-driven NMS. Additionally, the results are almost
identical when comparing AttentionMask with the ResNet-34 backbone and SAM+FH in
terms of AR@1000. Hence, without NMS, both systems perform almost at an identical level.
However, the overall results show that SAM+FH outperforms most other object proposal
generation systems since it is based on AttentionMask.

5.4.3 Ablation Studies

After discussing the overall results for SAM+FH, we present three ablations studies that
analyze the influence of the superpixel segmentation method, the style of the superpixel
segmentations, and the proposed post-processing. Additional ablation studies regarding design
decisions were already presented in Sec. 5.2 and Sec. 5.3.
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Table 5.8: Results of SAM+FH using different numbers of superpixels and FH superpixel segmentations
enhanced with all boundaries from the annotated objects (with GT). We use SAM+FH with only
five pyramid levels and generate the results on the LVIS validation set. AR denotes the Average
Recall for the first 10, 100, or 1000 proposals. Bold font highlights the best result without the
boundaries from the annotated objects, while italic font indicates the best results utilizing the
boundaries from the annotated objects.

Superpixel segmentation Number of superpixels AR@10↑ AR@100↑ AR@1000↑

FH 8000− 500 0.100 0.221 0.320
FH 4000− 250 0.098 0.213 0.310

FH with GT 8000− 500 0.108 0.235 0.340
FH with GT 4000− 250 0.117 0.259 0.361

Superpixel Segmentation Methods

The choice of a proper superpixel segmentation is critical when applying SAM+FH. As
described in Sec. 5.2.1, we use 8000 to 500 FH superpixels for the different levels of the
feature pyramid in SAM. First, we evaluate the number of superpixels per pyramid level. The
upper part of Tab. 5.8 shows the results using 8000 - 500 FH superpixels and 4000 - 250
FH superpixels. As expected, more superpixels lead to improved performance. However, the
difference is small, with an improvement of at most 3.8%. Utilizing even more superpixels, e.g.,
16000 - 1000, is impossible due to the limited memory on the GPU5. In a related experiment,
we add all boundaries from the annotated objects to the superpixel segmentations and evaluate
our system again. The results of this experiment in the lower part of Tab. 5.8 indicate that
the presence of all annotated object boundaries leads to better results with less superpixels.
This implies that a strong oversegmentation is not beneficial for SAM.

Moving to different superpixel segmentation methods, we evaluate the influence of seven
methods on SAM: FH [Felzenszwalb and Huttenlocher, 2004], ETPS [Yao et al., 2015],
WS [Meyer, 1994], ERS [Liu et al., 2011], SLIC [Achanta et al., 2012], NC [Shi and Malik,
2000], and SEEDS [Van den Bergh et al., 2015]. The results in Tab. 5.9 show that FH leads
to the best results ahead of ETPS. This is in contrast to the findings of Stutz et al. [2018]
on general superpixel segmentation. In Stutz et al. [2018], FH is ranked in the lower third
of 28 evaluated methods. Specifically, FH is ranked behind all other methods evaluated in
this experiment. Moreover, SEEDS, which is highly ranked in Stutz et al. [2018], produces
subpar results when applied in SAM. These results are related to the different segmentations
styles and the amount of oversegmentation as we will examine in the subsequent ablation
study.

Superpixel Segmentation Quality

To further investigate the preferred superpixel segmentation style of SAM, we evaluate the
superpixel segmentation methods utilized in the previous ablation study in terms of BR, UE,
and Oversegmentation Error (OE) on the LVIS validation set. As ground truth, we use the
joined binary segmentations of the annotated objects. The evaluation in terms of BR in

5We assume a 12 GB GPU here.
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Table 5.9: Results of SAM using different superpixel segmentation methods. The superpixel segmentation
methods are FH [Felzenszwalb and Huttenlocher, 2004], ETPS [Yao et al., 2015], WS [Meyer, 1994],
ERS [Liu et al., 2011], SLIC [Achanta et al., 2012], NC [Shi and Malik, 2000], and SEEDS [Van
den Bergh et al., 2015]. We use SAM with only five pyramid levels and generate the results on the
LVIS validation set. AR denotes the Average Recall for the first 10, 100, or 1000 proposals. Bold
font highlights the best results, while italic font indicates the second-best results.

Superpixel segmentation Number of superpixels AR@10↑ AR@100↑ AR@1000↑

FH 8000− 500 0.100 0.221 0.320
ETPS 8000− 500 0.097 0.214 0.311
WS 8000− 500 0.096 0.212 0.303
ERS 8000− 500 0.090 0.208 0.309
SLIC 8000− 500 0.089 0.200 0.296
NC 8000− 500 0.093 0.197 0.272
SEEDS 8000− 500 0.082 0.182 0.266
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Figure 5.12: Quantitative results of seven superpixel segmentation methods on the LVIS validation set in
terms of Boundary Recall (BR) (a), Undersegmentation Error (UE) (b), and Oversegmentation
Error (OE) (c) across 500 to 8000 superpixels. The superpixel segmentation methods are
FH [Felzenszwalb and Huttenlocher, 2004], ETPS [Yao et al., 2015], WS [Meyer, 1994], ERS [Liu
et al., 2011], SLIC [Achanta et al., 2012], NC [Shi and Malik, 2000], and SEEDS [Van den Bergh
et al., 2015].

Fig. 5.12(a) and UE in Fig. 5.12(b) reveals similar results as in Stutz et al. [2018] since ETPS
and ERS outperform most other methods. However, the evaluation in terms of OE shows
that WS and mainly FH outperform the other methods, although the results are generally
on a high level6. The results for FH and WS are in line with the fact that both methods
produce less oversegmentation than other methods by design. Linking these results with the
results of SAM utilizing different superpixel segmentations (see Tab. 5.9) indicates that SAM
prefers superpixel segmentations with a lower OE. These findings are supported by the results
of SAM utilizing superpixel segmentations augmented with the boundaries of the annotated
objects. Those results (see Tab. 5.8) also revealed that less oversegmentation is helpful for
improved performance. Overall, a low OE with a good segmentation quality in terms of BR
and UE are essential for strong results of SAM.

The effects of a low OE are also visible in Fig. 5.13 that presents superpixel segmentations
of three LVIS images generated with FH, ETPS, and SLIC. As expected, FH leads to

6The generally high level of OE is due to the definition of OE (see Sec. 2.1.3) and the existence of a dominant
background region in the created ground truth.
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Input image FH ETPS SLIC

Figure 5.13: Qualitative superpixel segmentation results produced by FH [Felzenszwalb and Huttenlocher,
2004], ETPS [Yao et al., 2015], and SLIC [Achanta et al., 2012] for three images from the LVIS
validation set [Gupta et al., 2019].

superpixels that are non-uniformly distributed across the images with large superpixels
covering homogeneous foreground (first row) or background (second row) areas. Thus, the
FH superpixel segmentations exhibit less oversegmentation. Hence, major parts of the image
are easily classified as object or background. The third row shows an example of a highly
textured image. Nevertheless, the FH superpixel segmentation shows the desired behavior of
a limited amount of oversegmentation (see white sheep) compared to ETPS or SLIC. Overall,
the difference in oversegmentation between FH, ETPS, and SLIC, which leads to the different
results in SAM, is well visible.

Influence of the Post-processing

As a final ablation study, we examine the effect of the four-stage post-processing in SAM.
The first part of Tab. 5.10 presents the results of SAM+FH without the post-processing and
the results after successively adding each post-processing stage. These results show that
the post-processing improves the performance of SAM+FH by 21.1% in terms of AR@10.
Additionally, as the intermediate results indicate, all four stages lead to improvements.
Especially the bilateral filtering on superpixel-level and the near-duplicate removal lead
to substantial improvements. While the bilateral filtering improves the results across all
numbers of proposals, the near-duplicate removal only improves the AR for 10 and 100
proposals. Hence, removing potential near-duplicates might accidentally dismiss proposals
that better fit an annotated object than the remaining proposals. Note that the morphological
operations mainly have a positive effect on the qualitative results as the example in Fig. 5.7
revealed.
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Table 5.10: Results of the proposed superpixel-based post-processing stages in SAM+FH (upper part). The
results applying the post-processing on a pixel-level are given in the lower part of the table. All
results are generated on the LVIS test set. AR denotes the Average Recall for the first 10, 100, or
1000 proposals. Bold font highlights the best results.

Post-processing AR@10↑ AR@100↑ AR@1000↑

None 0.076 0.183 0.275
Bilateral filtering 0.079 0.190 0.288
+ Opening 0.079 0.191 0.292
+ Closing 0.079 0.192 0.293
+ Near-duplicate removal 0.092 0.206 0.290

All pixel-based 0.087 0.194 0.272

Since all post-processing stages are applicable on the level of pixels, we present the results
of the four-stage post-processing on pixel-level in the lower part of Tab. 5.10. Although the
pixel-level post-processing improves the initial results, the post-processing on the superpixel-
level leads to a better performance. This is mainly due to the bilateral filtering that re-assigns
entire superpixels.

5.5 Discussion

This chapter introduced our novel object proposal generation system SAM as an extension
of AttentionMask. SAM addresses the problem of coarse object proposals generated by
CNN-based systems with an innovative combination of superpixels and the coarse CNN-based
proposals. Starting from the coarse AttentionMask proposals, SAM utilizes CNN-based
features, superpixel segmentations, superpixel pooling, and a new superpixel classifier to
create refined proposals. These proposals adhere better to the object boundaries while
maintaining a high recall. Thus, SAM combines the advantages of CNN-based systems
with the advantages of traditional superpixel-based object proposal generation systems in an
innovative manner.

The evaluation on the challenging LVIS dataset showed that SAM with FH superpix-
els (SAM+FH) outperforms AttentionMask by up to 26.0% across all object sizes. An
even more substantial improvement is visible compared to other modern object proposal gen-
eration systems. By assessing the segmentation quality of the proposals, we revealed that the
proposals generated by SAM+FH adhere better to the object boundaries compared to all other
CNN-based systems. Additionally, multiple ablation studies unveiled that the choice of the
superpixel segmentation method in SAM is crucial. Based on multiple experiments, we showed
that a superpixel segmentation with less oversegmentation like FH leads to the best overall
results, despite a subpar segmentation quality in terms of BR and UE.

This leads to a major limitation of SAM+FH. Since FH’s segmentation quality in terms of BR
and UE is worse compared to other methods like ETPS and SLIC, several undersegmentation
errors remain in the superpixel segmentations. These errors restrict the overall performance
of SAM+FH, since it is impossible to capture object boundaries that are missed by the
superpixels. Hence, improved superpixel segmentations combining low oversegmentation with a
good segmentation quality are desirable. In addition to the imperfect superpixel segmentations,
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some limitations inherited from AttentionMask, like the impaired discovery of tiny objects or
the suboptimal ranking, remain. However, the ranking of object proposals slightly improved
due to the near-duplicate removal based on superpixels.

Overall, we introduced our novel, innovative object proposal generation system SAM in this
chapter that substantially improves the adherence of object proposals to the object boundaries.
However, the performance of SAM is restricted by the quality of the FH superpixel segmenta-
tions, which we will address in Ch. 6 and Ch. 7 from different directions.
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Edge-adaptive Superpixel Segmentations
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The previous chapter introduced our innovative object proposal generation system SAM
and showed that superpixels are helpful to refine coarse CNN-based object proposals. The
evaluation of SAM revealed that superpixel segmentation methods producing a limited amount
of oversegmentation, i.e., exhibiting a low Oversegmentation Error (OE), lead to best results
in SAM. Therefore, modern superpixel segmentation methods that perform well on superpixel
segmentation benchmarks [Stutz et al., 2018] like ETPS [Yao et al., 2015] or SLIC [Achanta
et al., 2012] did not outperform older methods like FH [Felzenszwalb and Huttenlocher, 2004].
These findings align with the characteristics of ETPS and SLIC that ignore the different levels
of detail in an image and uniformly distribute superpixels across the image. As a result, SLIC
and ETPS lead to more oversegmentation than FH.

This segmentation style of SLIC and ETPS is rooted in the uniform initialization of the
methods. For instance, SLIC starts from initial seeds placed on a regular grid across the image.
Many superpixel seeds are placed in uniform areas like the sky in Fig. 6.1(a), while less uniform
areas are covered with the same seed resolution. Hence, the initialization does not reflect the
different levels of detail in an image. Although SLIC allows superpixels to shift their position to
adapt to the image content, these shifts only occur if the pixels around a seed are non-uniform.
As a result, uniform areas are heavily oversegmented (high OE), while details like the contours
of the boats in Fig. 6.1 are missed, leading to undersegmentation errors (see red arrows).
Overall, SLIC wastes superpixels in uniform areas. Hence, the same number of superpixels
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(a) SLIC (b) EA-SLIC (c) Ground truth

Figure 6.1: Superpixel segmentation results of SLIC [Achanta et al., 2012] (a) and our proposed edge-adaptive
framework using SLIC denoted as EA-SLIC (b) as well as the ground truth (c). While the SLIC
superpixels are almost uniformly distributed across the image, our edge-adaptive framework allows
SLIC to generate more superpixels in image areas with more details. As a result, fewer superpixels
cover the background, while the boundaries of the boats are covered with more superpixels. This
leads to less oversegmentation and a better segmentation quality compared to SLIC. The red
arrows denote missed boundaries (undersegmentation errors), while the green arrows highlight
the successful recognition of those boundaries. Input image and annotation taken from the SBD
dataset [Gould et al., 2009].

would allow a better segmentation of details given a non-uniform superpixel distribution (see
Fig. 6.1(b)). Similar problems exist in other superpixel segmentation methods [Yao et al.,
2015; Van den Bergh et al., 2015; Lee et al., 2017].

Few strategies have been introduced to adapt the uniform distribution of superpixels or
supervoxels in segmentation methods [Weikersdorfer et al., 2013; Kanezaki and Harada,
2015; Gao et al., 2017; Zhang et al., 2021]. The strategies adapt the uniform initialization
to the levels of detail found in different image areas based on depth [Weikersdorfer et al.,
2013], color [Kanezaki and Harada, 2015], or saliency [Gao et al., 2017; Zhang et al., 2021]
information. Since we focus on segmenting objects, we propose a new edge-adaptive strategy.
Our edge-adaptive superpixel segmentation framework uses edge detection results to estimate
the level of detail for adapting the uniform distribution. Edge detection results fit our object
proposal-centered workflow better since edges usually surround objects marking their physical
embodiment. In contrast, objects may not be salient or colorful, while depth data is unavailable
for most datasets in object proposal generation.

Utilizing the edge detection results in our novel edge-adaptive strategy, we follow Gao et al.
[2017] and cluster the image pixels based on the density of strong edges. For each cluster, we
adapt the superpixel resolution1 to the level of detail based on the edge density. Hence, areas
around objects that exhibit a higher edge density are covered with more superpixels, while
uniform areas lead to fewer superpixels (see Fig. 6.1(b)). This edge-adaptive strategy allows
arbitrary superpixel segmentation methods like SLIC or ETPS to reduce the oversegmentation
while maintaining a strong segmentation quality. As a result, the reduced oversegmentation
makes them better suited for application in SAM.

This chapter presents our novel edge-adaptive superpixel segmentation framework based
on our publication Wilms and Frintrop [2017]. First, we briefly discuss related approaches
for adapting segmentation methods in Sec. 6.1. Section 6.2 introduces our edge-adaptive
framework for arbitrary superpixel segmentations based on the clustering of edge detection

1Superpixel resolution denotes the number of superpixels per unit of area. If the superpixel resolution varies
across the image, the superpixel segmentation exhibits a non-uniform spatial distribution of superpixels.
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results. Subsequently, we evaluate the edge-adaptive superpixel segmentation framework
utilizing SLIC and ETPS on the superpixel segmentation task in Sec. 6.3. This is followed
by an evaluation of SAM with the edge-adaptive superpixel segmentations in Sec. 6.4. We
conclude this chapter with a discussion of the advantages and limitations of the proposed
framework w.r.t. to both applications in Sec. 6.5.

6.1 Related Work on Adapting Segmentations

Few approaches were proposed to adapt the uniform distribution of segmentation methods
based on depth [Weikersdorfer et al., 2013], color [Kanezaki and Harada, 2015], or saliency [Gao
et al., 2017; Zhang et al., 2021] information. All four approaches adjust the uniform distribution
of superpixels or supervoxels by adapting the uniform initialization of the segmentation
methods. For instance, Weikersdorfer et al. [2013] use depth information of RGB-D data to
adapt the initialization of a SLIC-like segmentation method. Areas far from the camera are
segmented with more superpixels than closer areas. The adapted initialization is generated by
applying a blue-noise sampling method to the depth information. This leads to a non-uniform
distribution of initial seed locations for the SLIC-like segmentation of Weikersdorfer et al.
[2013].

Utilizing color information, Kanezaki and Harada [2015] adapt the initial seeding of the SLIC-
like supervoxel segmentation method VCCS (Voxel Cloud Connectivity Segmentation) [Papon
et al., 2013] for point clouds. Originally, VCCS applies a uniform seeding similar to SLIC.
However, since not every location in a scene is occupied by a voxel in a point cloud, the
seeds are moved into the closest voxel of the point cloud. Finally, seed points that are too
close to each other are merged. Kanezaki and Harada [2015] change this initial seeding by
clustering the voxels based on their RGB values and applying the original seeding to each
cluster individually. Since the seeds move to the closest voxel for each cluster, regions with
multiple colors will have voxels in multiple clusters, leading to more seeds. Finally, the seeds
of all clusters are merged to create the non-uniform overall seeding that leads to a non-uniform
distribution of supervoxels.

Gao et al. [2017] and Zhang et al. [2021] utilize saliency to adapt the uniform initialization
of different methods. Also tackling the segmentation of point clouds with VCCS, Gao et al.
[2017] apply k-means clustering to the voxels based on saliency information. Subsequently,
each cluster in the point cloud receives an individual seeding resolution. Highly salient
clusters receive a denser seeding and vice versa. Focusing on RGB images, Zhang et al.
[2021] adapt the seeding of a SLIC variation. The seed generation is based on an iterative
method that selects the most salient point as seed and subsequently inhibits the seed and
its neighborhood. This process is iteratively applied until the maximum number of seeds is
reached. Like Gao et al. [2017], this leads to a denser seed resolution in highly salient areas
and vice versa. Overall, both approaches lead to a non-uniform distribution of superpixels or
supervoxels.

In general, three different types of prior information have been utilized to adapt the initial-
ization of superpixel or supervoxel segmentation methods. However, neither of the three
types properly estimates the level of detail for an object centered processing. In this context,
detailed segmentations of object boundaries and crowded images regions are needed to im-
prove subsequent results. While Weikersdorfer et al. [2013] densely segment all distant areas
independent of the level of detail, the saliency-based approaches [Gao et al., 2017; Zhang et al.,
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2021] concentrate the generation of superpixels on salient areas only. Utilizing color [Kanezaki
and Harada, 2015] is closest to match the mentioned criteria. However, the approach also
focuses on textures within objects and misses objects of similar color that are separated by an
edge. In contrast to these methods, our edge-adaptive superpixel segmentation framework is
more general and captures the level of detail by focusing on object boundaries and crowded
image regions.

6.2 Edge-adaptive Superpixel Segmentation Framework

After reviewing related approaches, we present our novel edge-adaptive superpixel segmen-
tation framework. Figure 6.2 visualizes the overall structure of the framework. First, as
described in Sec. 6.2.1, we extract strong edges from the input image by applying the SE
edge detector [Dollár and Zitnick, 2013, 2014] and a thresholding step. Subsequently, we
generate an edge density that represents the number of strong edges around each pixel and
guides the adaptation of the superpixel distribution in our framework. Image areas with high
edge density are segmented with more superpixels and vice versa. To identify such image
areas, we cluster the edge density using k-means. For each cluster, we apply a superpixel
segmentation method with an adapted superpixel resolution as detailed in Sec. 6.2.2. Finally,
we join the superpixel segmentations from the different clusters and adjust the overall number
of superpixels if necessary (see Sec. 6.2.3). This joining combines the different superpixel
resolutions into one final superpixel segmentation. To generate the best results, we optimize
the framework’s parameters as discussed in Sec. 6.2.4.

6.2.1 Edge Detection and Processing

Our proposed edge-adaptive superpixel segmentation framework starts by extracting edges
from the input image. For the extraction of edges, we utilize the Structured Edges (SE)
edge detector [Dollár and Zitnick, 2013, 2014]. SE generates edges using a structured
random forest predicting edge maps for small tiles of the input image. Compared to other
approaches like Canny [Canny, 1986], gPb [Arbeláez et al., 2010], HED [Xie and Tu, 2015],
or COB [Maninis et al., 2016, 2017], SE edges yield better results in the edge-adaptive
superpixel segmentation framework. This is visible from the results in Fig. 6.3 that show
a slightly better performance of SE over other methods in terms of Overall Segmentation
Quality (OSQ).

To remove weak edge pixels that are unlikely to belong to an edge, we binarize the edge
detection result using a threshold τ . This binarization makes the subsequent edge density
independent of the edge likelihood. Treating all non-weak edge pixels equally is reasonable
since strong edges will be captured by a superpixel segmentation method anyway. Hence,
more superpixels are not necessary in these areas. The result of the first two steps is the
binarized edge map as visualized in the upper part of Fig. 6.2.

To generate an edge density at each pixel, we apply a Gaussian filter to the binarized edge
map (top right in Fig. 6.2). Hence, the edge density is the weighted average of the surrounding
edge pixels. To adjust the size of the neighborhood, we optimize the standard deviation σ of
the Gaussian filter as outlined in Sec. 6.2.4. Additional edge density examples are visualized
in the second column of Fig. 6.4. Those examples showcase that the edge density focuses on
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Figure 6.2: Overview of the proposed edge-adaptive superpixel segmentation framework. First, strong edges
are extracted from the image using the Structured Edges (SE) [Dollár and Zitnick, 2013, 2014]
edge detector and a binarization step. This leads to an edge map that is subsequently smoothed
to generate the edge density. Second, based on the edge density values, the pixels are clustered
with k-means clustering (here k = 3) to separate image areas of different edge densities (blue,
red, and green). Finally, the input image is segmented within each cluster using a cluster-specific
superpixel density. This step leads to partial superpixel segmentations with different superpixel
resolutions (blue, red, and green superpixel segmentations) that are combined and post-processed
yielding the final superpixel segmentation. Note that the edge map is dilated for improved
visibility. Input image taken from the SBD dataset [Gould et al., 2009].
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Figure 6.3: Results of our edge-adaptive superpixel segmentation framework with SLIC [Achanta et al., 2012]
using different edge detection methods: Sobel, Canny [Canny, 1986], gPb [Arbeláez et al., 2010],
SE [Dollár and Zitnick, 2013, 2014], HED [Xie and Tu, 2015], and COB [Maninis et al., 2016,
2017]. For Sobel-based edge detection, we utilize the gradient magnitude based on both Sobel
filters. The results are evaluated in terms of Boundary Recall (BR) (a), Undersegmentation
Error (UE) (b), and the combined Overall Segmentation Quality (OSQ) (c) on the validation set
of the BSD dataset [Martin et al., 2001].

Input image Edge density Clustering Final superpixel
segmentation

Figure 6.4: Intermediate results of our proposed edge-adaptive superpixel segmentation framework for three
input images. The edge density (second column) is visualized as a map on top of the image and
shows areas of high edge density, while low edge density regions are black. The third column
presents the result of the k-means clustering based on the edge density and encodes the class
membership of the pixels with different colors. Blue areas represent low edge density regions,
red areas denote medium edge density regions, and green areas are high edge density regions.
The final superpixel segmentation (fourth column) represents the combination of the superpixel
segmentations with different superpixel resolutions according to the edge density. The color-coding
of the superpixel segmentations is identical to the clustering. Input images taken from the SBD
dataset [Gould et al., 2009].
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the boundaries of the main objects while pruning uniform background areas (e.g., the sky) or
highly textured areas (e.g., the water).

Based on edge density, we follow Gao et al. [2017] and apply k-means clustering to group
pixels of similar edge density. Note that the areas may be disconnected, since strong edges may
appear at several locations across the image (see third column in Fig. 6.4). The clusterings
in Fig. 6.4 show that the cluster with the high edge density pixels (green cluster) mainly
covers areas with numerous edges and fine details. Overall, each cluster represents pixels of
similar edge density and will receive a unique superpixel resolution. This prevents a uniform
distribution of superpixels across the image.

6.2.2 Adapting Superpixel Segmentations

Given the clustering, we estimate a superpixel resolution for each of the k clusters and segment
each cluster individually using the estimated superpixel resolution. In general, high edge
density should lead to a dense superpixel resolution and vice versa. To calculate the superpixel
resolution per cluster, the user must provide the desired number of superpixels across the
entire image n and the number of superpixels for the cluster with the lowest superpixel
resolution n1. Note that n1 refers to the number of superpixels if the superpixel segmentation
would cover the entire image. Since only limited image areas are segmented per cluster, the
numbers of superpixels per cluster ni with i = 1, . . . , k add up n based on the relative size of
the cluster (ai) in a weighted sum:

n =
k∑
i=1

aini. (6.1)

The relative size of a cluster ai is defined as the percentage of image pixels that are part of
the cluster. Note that not fixing n1 or the number of superpixels for the cluster with the
highest superpixel resolution nk leads to ambiguous results.

To calculate the number of superpixels for all clusters, we first transform Eq. 6.1 and replace
ni with an interpolation between n1 and nk:

n =
k∑
i=1

ai

(
n1 + (nk − n1)w(i)

w(k)

)
. (6.2)

The weight function w(i) controls the interpolation and allows to exponentially increase the
number of superpixels based on the average edge density per cluster ei:

w(i) =

1− b
ei−e1
ek−e1 if b < 1,

b
ei−e1
ek−e1 − 1 else.

(6.3)

The exponential increase enables us to focus the generation of superpixels on the cluster with the
highest edge density. The parameter b is optimized as described in Sec. 6.2.4.

Given Eq. 6.2, we can derive the number of superpixels for the cluster with the highest
superpixel resolution nk by simple transformations as

nk =
n1
∑k
i=1 ai

(
1− w(i)

w(k)

)
− n

−
∑k
i=1 ai

w(i)
w(k)

. (6.4)
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(a) Joining (b) Step-wise overlay

Figure 6.5: Qualitative results of our edge-adaptive superpixel segmentation framework with SLIC [Achanta
et al., 2012] using joining (a) and the step-wise overlay (b) to combine the superpixel segmentations
from different clusters. Input images taken from the SBD dataset [Gould et al., 2009].

Since nk in Eq. 6.2 is now fixed, we calculate the number of superpixels for the intermediate
clusters as an interpolation between n1 and nk utilizing w(i):

ni = n1 + (nk − n1)w(i)
w(k) . (6.5)

Based on the number of superpixels per cluster (ni), we employ an arbitrary superpixel
segmentation method per cluster using ni. For simplicity, we apply the superpixel segmentation
method to the entire image, while a parallel application to the clusters is possible for several
methods like SLIC [Irving, 2016].

Overall, this stage leads to k superpixel segmentations with k different superpixel resolutions.
This is highlighted in Fig. 6.2 (colored boxes) and the fourth column of Fig. 6.4 by the
different colors of the partial superpixel segmentations. Green denotes the finest superpixel
segmentation for the cluster with the highest superpixel resolution in both figures. In contrast,
blue denotes the coarsest superpixel segmentation for the cluster with the lowest superpixel
resolution. Note that Fig. 6.2 and Fig. 6.4 only show three clusters for visualization purposes.
In general, we optimize k as described in Sec. 6.2.4.

6.2.3 Post-processing

To generate a final superpixel segmentation, we join the superpixel segmentations of the
different clusters. The joining assigns the superpixel label from the respective cluster to each
pixel. As a result of the joining, artificial contours occur along the cluster boundaries in
the final superpixel segmentation as visible in Fig. 6.5(a). However, this simple technique
leads to better results than a step-wise overlay of superpixels as Fig. 6.6 indicates. The
step-wise overlay starts with the coarsest superpixel segmentation and iteratively overlays
the segmentation with complete superpixels from finer clusters. Hence, superpixels from finer
clusters partially overlay coarser superpixels across the cluster boundaries. Figure 6.5 presents
a qualitative comparison between both approaches. The artificial contours introduced by the
joining are well visible, while the step-wise overlay leads to more oversegmentation in uniform
areas, e.g., around the boat in the left scene.

As a result of the joining, several superpixels along the cluster boundaries are split into
multiple parts. Moreover, most superpixel segmentation methods are unable to generate
the desired number of superpixels precisely. To correct these artifacts, we first relabel all
disconnected superpixel parts in the joined superpixel segmentation as independent superpixels.
Subsequently, we apply a post-processing similar to SLIC and merge adjacent superpixels until
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Figure 6.6: Quantitative results of our edge-adaptive superpixel segmentation framework with SLIC [Achanta
et al., 2012] using joining and step-wise overlay to combine the superpixel segmentations from
different clusters. The results are evaluated in terms of Boundary Recall (BR) (a), Underseg-
mentation Error (UE) (b), and the combined Overall Segmentation Quality (OSQ) (c) on the
validation set of the BSD dataset [Martin et al., 2001].
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Figure 6.7: Results of our edge-adaptive superpixel segmentation framework with SLIC [Achanta et al.,
2012] using the absolute size and the cluster-specific relative size to select candidates for merging
superpixels during post-processing. The results are evaluated in terms of Boundary Recall (BR) (a),
Undersegmentation Error (UE) (b), and the combined Overall Segmentation Quality (OSQ) (c)
on the validation set of the BSD dataset [Martin et al., 2001].

the desired number of superpixels n is reached. The merging process considers superpixels in
order of increasing absolute size and fuses the superpixel with its most similar neighbor based
on RGB color difference. This color-based merging differs from SLIC, where the neighbor
is randomly selected. Using the absolute size to sort the superpixels will mainly merge
superpixels from the cluster with the highest superpixel resolution. Therefore, we also consider
merging based on relative size w.r.t. the average superpixel size of a cluster. However, as the
results in Fig. 6.7 indicate, choosing the absolute size improves results.

The result of the post-processing is the final superpixel segmentation with n superpixels of
various sizes (see bottom right of Fig. 6.2) that are non-uniformly distributed across the image.
This leads to superpixel segmentations that adapt to the different levels of detail in the image
and exhibit less oversegmentation. Note that we can apply our edge-adaptive superpixel
segmentation framework to arbitrary superpixel segmentation methods that generate a desired
number of superpixels.

6.2.4 Parameter Optimization

Our proposed edge-adaptive superpixel segmentation framework introduces six new parameters.
We optimize them jointly with the parameters of the chosen superpixel segmentation method
on the training set of a segmentation dataset in the framework of Stutz et al. [2018]. The
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Table 6.1: Overview of the parameters in the proposed edge-adaptive superpixel segmentation framework
with ranges of values for optimization.

Parameter Range of values Description

n Given Overall number of superpixels.
n1 { 1

10n,
2
10n,

3
10n,

4
10n} Number of superpixels for the cluster with the

lowest superpixel resolution.
k {2, 3, 4, 5, 6} Number of clusters for k-means clustering.
b {0.75, 2} Base of the weighting function w(i) in Eq. 6.3.
τ {0.1, 0.2} Threshold for binarizing the edge detection re-

sult.
σ {2, 5, 10, 20} Standard deviation for creating the edge den-

sity.

parameter optimization utilizes a grid search and assesses the segmentation quality based on
Overall Segmentation Quality (OSQ) following Stutz et al. [2018]. The parameters to optimize
based on a desired number of superpixels n are the number of superpixels for the cluster with
the lowest superpixel resolution n1, the number of clusters k, the threshold for binarizing
the edge detection result τ , the standard deviation for creating the edge density σ, and the
base b of the weighting function w(i) in Eq. 6.3. Table 6.1 lists all parameters as well as the
respective ranges of values. Note that we optimize all parameters for each combination of n,
the superpixel segmentation method, and the dataset individually.

6.3 Superpixel Segmentation Results

First, we evaluate our edge-adaptive superpixel segmentation framework on the general
superpixel segmentation task. This evaluation follows Stutz et al. [2018] utilizing the five
challenging datasets BSD [Martin et al., 2001], SBD [Gould et al., 2009], Fash [Yamaguchi
et al., 2012], NYU [Silberman et al., 2012], and SUN [Song et al., 2015] (see Sec. 2.1.2). We
test our framework with the superpixel segmentation methods SLIC [Achanta et al., 2012]
and ETPS [Yao et al., 2015]. Both methods lead to a large amount of oversegmentation and
perform well in the benchmark of Stutz et al. [2018] as well as in SAM (see Sec. 5.4.3). We
denote the edge-adaptive variations as EA-SLIC and EA-ETPS.

We compare EA-SLIC and EA-ETPS to original SLIC and ETPS, respectively. To show
the upper limit of EA-SLIC and EA-ETPS, we replace the edge detection result with the
ground truth edges and denote these variations as GT-SLIC and GT-ETPS. Additionally,
we apply the saliency-based adaptation method of Gao et al. [2017] to images by replacing
the edge maps in our framework with the saliency maps of Frintrop et al. [2015]. We coin
these variations Sal-SLIC and Sal-ETPS. For the datasets NYU and SUN, which offer RGB-
D information, we also compare EA-SLIC to the depth-based adaptation method DASP
proposed by Weikersdorfer et al. [2013]. Since DASP uses a variation of SLIC, a comparison to
EA-ETPS is not relevant. Note that DASP is the only method that utilizes depth information
in this evaluation. A comparison to Kanezaki and Harada [2015] and Zhang et al. [2021] is
impossible, since no code is publicly available. For a comparison of SLIC and ETPS with
other superpixel segmentation methods, we refer to Stutz et al. [2018].
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To assess the quality of the generated superpixel segmentations, we use Boundary Recall (BR),
Undersegmentation Error (UE), and Oversegmentation Error (OE) (see Sec. 2.1.3) on the test
sets of the five datasets. The parameter optimization for all variations of our edge-adaptive
superpixel segmentation framework is conducted as described in Sec. 6.2.4. Similarly, we
optimize the parameters of original SLIC and ETPS for every combination of the dataset and
the number of superpixels individually.

In the following, we discuss the results of our edge-adaptive superpixel segmentation framework
with SLIC (Sec. 6.3.1) and ETPS (Sec. 6.3.2) across all five datasets. Subsequently, we present
the influence of the framework’s parameters in Sec. 6.3.3. Note that we already presented
ablation studies on design decisions in Sec. 6.2. For the results of the edge-adaptive superpixel
segmentations with SAM, see Sec. 6.4.

6.3.1 Results using SLIC

Quantitative Results

Figure 6.8 presents the results of the SLIC-based methods and DASP in terms of BR, UE,
and OE on the five datasets BSD, SBD, Fash, NYU, and SUN. Compared to SLIC and
Sal-SLIC, our EA-SLIC outperforms both methods across all five datasets in terms of BR (left
column in Fig. 6.8). The improvement of EA-SLIC over SLIC ranges from 5.1% on the BSD
dataset to 9.1% on the SBD dataset. These improvements show that EA-SLIC captures more
boundaries by focusing the generation of superpixels in relevant areas. The same effect is
visible in the complex environments of the datasets NYU and SUN. If the detected edges
in EA-SLIC perfectly represent the annotations (GT-SLIC), the improvements over SLIC
are even up to 17.0% (SUN dataset). Comparing EA-SLIC to Sal-SLIC adapting Gao et al.
[2017] reveals that EA-SLIC outperforms Sal-SLIC by 5.6% on average across the datasets
in terms of BR. Note that Gao et al. [2017] originally developed their approach for point
cloud data, not RGB images. On the datasets NYU and SUN, we can also compare EA-
SLIC to the depth-adaptive method DASP. Similar to the findings in Stutz et al. [2018],
DASP does not even reach the performance of SLIC in terms of BR, despite utilizing depth
information.

Comparing the different methods in terms of UE across the five datasets (central column in
Fig. 6.8) reveals mixed results. Except for the SBD dataset, SLIC exhibits a lower UE than
EA-SLIC and Sal-SLIC. However, the absolute difference is low with a maximum difference of
0.013 for EA-SLIC and 0.018 for Sal-SLIC (both on the BSD dataset). Comparing SLIC to
GT-SLIC utilizing ground truth edges shows a substantial improvement of 33.6% for GT-SLIC
in terms of UE across the datasets. Hence, the performance of the edge-adaptive superpixel
segmentations is strongly bound to the quality of the edge detection results. For instance, if
the edge detection misses annotated edges, the area around the edge will be covered with large
superpixels, leading to substantial undersegmentation errors. In contrast to the BR-based
results, DASP produces competitive results in terms of UE.

Finally, the results in terms of OE across the five datasets (right column in Fig. 6.8) show
the intended effect of reducing the oversegmentation in SLIC. Across all datasets, the OE
improves by 4.5% on average from SLIC to EA-SLIC. Thus, the edge-adaptive superpixel
segmentation framework decreases the effects of oversegmentation in uniform areas. Sal-SLIC
leads to an improved OE as well (-1.5% on average). Providing ground truth edge detection
results (GT-SLIC) strongly improves the OE (-12.5% on average) across the five datasets.
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Figure 6.8: Quantitative superpixel segmentation results of our proposed EA-SLIC with SE edge detec-
tion results [Dollár and Zitnick, 2013, 2014], GT-SLIC utilizing ground truth edges, Sal-SLIC
adapting Gao et al. [2017], and SLIC [Achanta et al., 2012]. The results in terms of Boundary
Recall (BR, left), Undersegmentation Error (UE, center), and Oversegmentation Error (OE,
right) are generated on the datasets BSD [Martin et al., 2001] (first row), SBD [Gould et al.,
2009] (second row), Fash [Yamaguchi et al., 2012] (third row), NYU [Silberman et al., 2012] (fourth
row), and SUN [Song et al., 2015] (fifth row).
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Note that EA-SLIC outperforms GT-SLIC for 500 superpixels on the BSD dataset since
GT-SLIC utilizes one of the multiple annotations per image (see Sec. 2.1.2) but still evaluates
against all annotations of different granularity. DASP also reduces the OE compared to SLIC
and leads to similar quantitative results as Sal-SLIC.

Overall, the quantitative results reveal an improved performance of EA-SLIC in terms of
BR and a slight decrease in terms of UE compared to SLIC. Using the OSQ measure to
combine BR and UE shows that EA-SLIC improves the segmentation quality of SLIC by 3.0%.
Moreover, we showed the positive impact of our edge-adaptive framework in terms of OE
without a loss in segmentation quality. Compared to the other adaptation methods (Sal-SLIC
and DASP), EA-SLIC improves in almost all measures and datasets. Hence, our edge-adaptive
superpixel segmentation framework is generally more suitable for adapting SLIC, although
the results are strongly bound to the edge detection performance.

Qualitative Results

Figure 6.9 depicts qualitative results of SLIC, Sal-SLIC, and EA-SLIC on images from the
datasets BSD, SBD, Fash, and NYU. These qualitative results allow a better understanding
of the previously discussed quantitative results. In general, the results for EA-SLIC (third
column) showcase the non-uniform distribution of superpixels across the image, which is
different from SLIC (first column). For instance, in the first row, the sky is covered by
three superpixels in the EA-SLIC result, while SLIC uses 27 superpixels. This effect is
even visible for complex images with strongly textured areas like the grass in the third
row.

Focusing on the segmentation quality, the results reveal improvements for EA-SLIC over
SLIC and Sal-SLIC. In the example in the first row, the passengers are only segmented from
the background using EA-SLIC. In contrast, SLIC uses many superpixels to oversegment
sky, water, or mountain areas. The second row shows a typical problem of SLIC, where
the arms and legs of the woman have a weak contrast w.r.t. the background, leading to
missed boundaries. Since the SE edge detector captures those boundaries, EA-SLIC generates
more superpixels here and segments the arms and legs. The final three examples show more
textured or cluttered scenes revealing that EA-SLIC is robust to those effects as well. Hence,
weak background edges or textured objects do not prevent EA-SLIC from capturing the
relevant boundaries and outperforming SLIC. Examples are visible along the boundary of
the tiger (third row) or the blanket (final row). Focusing on complex objects, the chairs in
the fourth row are better captured by EA-SLIC as well due to the strong edge responses.
In contrast, SLIC misses several of the chairs’ boundaries. Thus, EA-SLIC has a strong
positive effect on the segmentation quality as previously shown by the results in terms of
BR.

Nevertheless, the quantitative results revealed a slight drop in terms of UE, which is also
visible in some of the results in Fig. 6.9. Most prominently, the woman’s belt in the example
in the second row is not captured well by EA-SLIC. This results from missing edge responses
on the upper boundary of the belt, leading to larger superpixels. Hence, undersegmentation
errors are introduced that are not visible in SLIC. Another example is visible in the first row,
where EA-SLIC does not properly capture the contour between the mountain parts due to
missing edge responses. SLIC captures parts of the boundary reducing the undersegmentation
errors. However, SLIC does not recognize the boundary explicitly but instead captures it by
limiting the superpixel size.
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SLIC Sal-SLIC EA-SLIC Ground truth

Figure 6.9: Qualitative superpixel segmentation results of SLIC [Achanta et al., 2012], Sal-SLIC adapting Gao
et al. [2017], and the proposed EA-SLIC on images from the test sets of the datasets SBD [Gould
et al., 2009] (first row), Fash [Yamaguchi et al., 2012] (second row), BSD [Martin et al., 2001] (third
row), and SUN [Song et al., 2015] (fourth and fifth row). All results within a row contain a similar
number of superpixels. The red arrows denote missed boundaries (undersegmentation errors),
while the green arrows highlight the successful recognition of those boundaries. Input images
and annotations taken from the datasets BSD [Martin et al., 2001], SBD [Gould et al., 2009],
Fash [Yamaguchi et al., 2012], and SUN [Song et al., 2015].
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Finally, we review the differences between EA-SLIC and Sal-SLIC. In general, Sal-SLIC
shifts the focus of the superpixel creation toward salient regions. For instance, in the second
row, EA-SLIC strongly focuses on the woman’s outer boundaries and some boundaries of
the garments. In contrast, Sal-SLIC focuses on the salient, dark blue dress that has a high
contrast w.r.t. the background. Hence, the dress itself is segmented with many superpixels.
As a result, the legs are covered with fewer superpixels, leading to missed boundaries. In
general, Sal-SLIC does not necessarily focus on the relevant boundaries, leading to impaired
results compared to EA-SLIC.

Overall, the qualitative results support and explain the quantitative results. Most prominently,
the difference between SLIC and EA-SLIC in OE and BR is visible in the images. However,
stronger undersegmentation errors induced by the focused processing and missed edges in
EA-SLIC are also visible. Additionally, Fig. 6.9 reveals the different foci of Sal-SLIC and
EA-SLIC.

6.3.2 Results using ETPS

Quantitative Results

Similar to the evaluation of EA-SLIC, Fig. 6.10 presents the results of ETPS, our EA-ETPS,
Sal-ETPS, and GT-ETPS in terms of BR, UE, and OE on the five datasets BSD, SBD,
Fash, NYU, and SUN. In terms of BR, EA-ETPS outperforms ETPS only on the most
complex datasets NYU (+0.6%) and SUN (+1.7%). On the other datasets, the results are
similar (Fash) or slightly worse (BSD and SBD). This behavior is different from EA-SLIC,
where improvements in terms of BR occur across all datasets. However, all results in Fig. 6.10
are on a higher level compared to the SLIC-based results. Similar to SLIC-based results,
GT-ETPS outperforms ETPS and EA-ETPS on three of the five datasets by up to 5.4%.
Only on the BSD dataset with the multiple annotations and the simple Fash dataset no major
improvement is visible for GT-ETPS compared to ETPS.

The results in terms of UE show that ETPS slightly outperforms EA-ETPS across most
datasets (-0.004 on average), similar to the SLIC-based results. Overall, the segmentation
quality in terms of OSQ slightly drops by 0.3% from ETPS to EA-ETPS across all datasets.
Note that better edge detection results would improve the results of ETPS by up to 2.6% in
terms of OSQ (GT-ETPS vs. ETPS across all datasets). Similar to the results of EA-SLIC,
EA-ETPS improves the OE by 3.9% across all datasets compared to ETPS. For GT-ETPS,
this improvement is even 8.6%. Hence, EA-ETPS and GT-ETPS successfully reduce the
oversegmentation in ETPS. Moving from EA-ETPS and GT-ETPS to Sal-ETPS leads to
degraded results across most datasets in terms of both BR and UE. Overall, the drop in
OSQ compared to ETPS is 1.9% on average across all datasets. Similarly, for OE, the
improvements (2.1% across all datasets) are below the level of EA-ETPS. Nevertheless,
Sal-ETPS improves the OE compared to ETPS.

Overall, the results show that the segmentation quality is almost constant between ETPS
and EA-ETPS, while Sal-ETPS reduces the segmentation quality. Given better edge de-
tection results, even an improved segmentation quality is possible. Moreover, EA-ETPS
successfully reduces the oversegmentation in ETPS. Hence, EA-ETPS is a good candidate for
application in SAM due to the strong segmentation quality and the limited oversegmenta-
tion.
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Figure 6.10: Quantitative superpixel segmentation results of our proposed EA-ETPS with SE edge detection
results [Dollár and Zitnick, 2013, 2014], GT-ETPS utilizing ground truth edges, Sal-ETPS
adapting Gao et al. [2017], and ETPS [Yao et al., 2015]. The results in terms of Boundary
Recall (BR, left), Undersegmentation Error (UE, center), and Oversegmentation Error (OE,
right) are generated on the datasets BSD [Martin et al., 2001] (first row), SBD [Gould et al.,
2009] (second row), Fash [Yamaguchi et al., 2012] (third row), NYU [Silberman et al., 2012] (fourth
row), and SUN [Song et al., 2015] (fifth row).
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Qualitative Results

Figure 6.11 shows qualitative results of ETPS (first column), Sal-ETPS (second columns),
and EA-ETPS (third column) on five images from the datasets BSD, Fash, NYU, and SUN.
The general impression is similar compared to the SLIC-based results. EA-ETPS leads to
a reduced oversegmentation error by non-uniformly distributing the superpixels across the
image. However, the difference to ETPS is not as big as in the case of SLIC, since ETPS
by itself leads to slightly less oversegmentation than SLIC. Still, the example in the first
row highlights the strength of EA-ETPS to capture uniform areas with few superpixels by
focusing the generation of superpixels on the image contours. Similar effects are visible in
the other examples, e.g., on the street surface in the second row or the tabletops in the final
row.

Improvements in terms of the segmentation quality are less evident as the quantitative results
in terms of BR and UE implied. Additional boundaries are captured in low-contrast areas as
visible in the first three examples. In the first image, the boundary of the woman’s right arm is
better captured by EA-ETPS since it generates more superpixels around the edges. The same
holds true for the low-contrast boundaries in the examples in rows two and three (woman’s
left hand and sheep’s horn). Moreover, small objects like the toothbrush or the tap in the
fourth row are better captured by EA-ETPS since they are surrounded by a boundary, leading
to an increased edge density. The final row shows an extreme case of low-contrast objects that
only EA-ETPS captures. The chair legs are barely visible to the human eye. However, the
edge detection results allow EA-ETPS to focus the generation of superpixels on these areas
and capture the boundaries of the chair legs.

Besides these additionally captured boundaries, few typical undersegmentation errors are
visible, similar to EA-SLIC. For instance, EA-ETPS misses parts of the upper boundary of
the balustrade in the second row. Similarly, the right corner of the sink cabinet in row four is
missed as well. These misses are similar to the behavior of EA-SLIC and arise from insufficient
edge detection results.

Comparing the results of EA-ETPS and Sal-ETPS reveals several similarities. However,
Sal-ETPS still misses details along the object boundaries by focusing on salient areas. For
instance, Sal-ETPS focuses on the woman’s hair in the first row that has a high contrast to the
surrounding instead of focusing on the woman’s right arm that ETPS misses. Similarly, the
woman’s skirt in the second row is salient, leading to a more detailed superpixel segmentation
of this area. Hence, fewer superpixels cover details like the head or the low-contrast leg.
Missing those low-contrast boundaries is similar to Sal-SLIC.

In general, the qualitative differences between ETPS and EA-ETPS are not as strong as in
the case of SLIC and EA-SLIC. This is also supported by the quantitative results. Still, few
typical improvements are visible in low-contrast areas or around small objects. Nevertheless,
additional undersegmentation errors occur as well. EA-ETPS reduces the oversegmentation
in ETPS as the non-uniform distribution of superpixels across the images demonstrates.
This non-uniform distribution fits the quantitative results in terms of OE. Comparing the
qualitative results of EA-ETPS and Sal-ETPS reveals the different focus of Sal-ETPS leads
to missed low-contrast boundaries, similar to Sal-SLIC.
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ETPS Sal-ETPS EA-ETPS Ground truth

Figure 6.11: Qualitative superpixel segmentation results of ETPS [Yao et al., 2015], Sal-ETPS adapting Gao
et al. [2017], and the proposed EA-ETPS on images from the test sets of the datasets Fash [Yam-
aguchi et al., 2012] (first row), BSD [Martin et al., 2001] (second and third row), NYU [Silberman
et al., 2012] (fourth row), and SUN [Song et al., 2015] (fifth row). All results within a row contain
a similar number of superpixels. The red arrows denote missed boundaries (undersegmentation
errors), while the green arrows highlight the successful recognition of those boundaries. Input
images and annotations taken from the datasets BSD [Martin et al., 2001], Fash [Yamaguchi
et al., 2012], NYU [Silberman et al., 2012], and SUN [Song et al., 2015].
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6.3.3 Influence of the Parameters

After presenting the results of EA-SLIC and EA-ETPS, we analyze the influence of the
framework’s parameters on the results. Our edge-adaptive superpixel segmentation framework
has six parameters presented in Tab. 6.1. The parameters are the desired number of superpixels
n, the number of superpixels for the cluster with the lowest superpixel resolution n1, the
number of clusters k, the base b of the weighting function in Eq. 6.3, the threshold τ for
binarizing the edge detection results, and the standard deviation σ for creating the edge density.
The subsequent analysis shows how sensitive the results are w.r.t. changes of the parameters.
To assess the sensitivity to one parameter, we change this parameter in a pre-defined range
and keep all other parameters constant. We set n = 250 in all experiments and apply EA-SLIC
on the BSD validation dataset, similar to the ablation studies presented in Sec. 6.2. The
results of EA-SLIC and the original SLIC in terms of BR, UE, and OSQ per parameter are
visualized in Fig. 6.12.

First, we analyze the influence of n1, the number of superpixels for the cluster with the
lowest superpixel resolution. The parameter n1 is essential in determining the number of
superpixels in all clusters. We set n1 to values between 10% and 40% of the overall number
of superpixels (n). The results in the first row of Fig. 6.12 show that the BR is almost
constant with varying n1. However, the UE increases strongly for lower values of n1. Since
low values for n1 lead to few superpixels in the cluster representing the background, missed
boundaries lead to strong undersegmentation errors. Therefore, our edge-adaptive superpixel
segmentation framework is sensitive to the value of n1.

The second row in Fig. 6.12 shows the results for different numbers of clusters k. In terms of
BR, many clusters (≥ 5) lead to impaired results. The reason for these results is the growing
number of disconnected superpixels after joining the individual segmentations. As a result,
the post-processing merges the disconnected superpixels and removes segmentation details,
leading to undersegmentation errors. This drop also considerably impedes the OSQ for larger
k’s. Thus, the edge-adaptive superpixel segmentation framework is sensitive w.r.t. the choice
of k.

Third, we analyze the influence of b, the base of the weighting function in Eq. 6.3. The
weighting function controls the growth rate for the number of superpixels between the clusters.
As the results in the third row of Fig. 6.12 imply, the differences in terms of BR, UE, and OSQ
for values between 0.25 and 4 are minimal. Hence, the edge-adaptive superpixel segmentation
framework is robust w.r.t. the choice of b.

To ignore weak edge detection results, we suppress results below a threshold τ . The fourth
row in Fig. 6.12 shows the results for values between 0 and 0.4. A value of 0 implies that
we use all edge detection results, while high values for τ lead to using high-confidence edge
responses only. The results indicate that using all edge detection results and using only a few
leads to subpar performances. In the case of τ = 0, high edge densities exist across most of
the image. In contrast, high values for τ lead to missing important contours in the image.
This is visible from the decreasing BR and the increasing UE. Hence, the results drop below
SLIC in terms of OSQ for values of τ above 0.2. Therefore, the edge-adaptive superpixel
segmentation framework is sensitive w.r.t. the choice of τ .

Finally, we investigate the sensitivity of the edge-adaptive superpixel segmentation framework
to σ. The parameter σ determines the size of the neighborhood for calculating the edge
density. Hence, small values for σ lead to small neighborhoods and vice versa. As the results
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Figure 6.12: Quantitative superpixel segmentation results of SLIC and EA-SLIC with varying parameters on
the BSD dataset with 250 superpixels. The different rows highlight the influence of EA-SLIC’s
parameters n1 (first row), k (second row), b (third row), τ (fourth row), and σ (fifth row) on
the results in terms of Boundary Recall (BR, left), Undersegmentation Error (UE, center), and
Overall Segmentation Quality (OSQ, right).
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in the final row of Fig. 6.12 show, our framework is sensitive to the choice of σ. The BR
increases strongly for moderate values of σ, while the UE only drops at high levels of σ. Note
that EA-SLIC converges to SLIC with large values for σ, since neighborhoods become similar
across the image.

This analysis identified four important parameters for our edge-adaptive superpixel segmenta-
tion framework. The framework is sensitive to the choice of n1, k, τ , and σ implying their
great importance. A suboptimal choice of the four parameters can even lead to segmentation
performances below the original SLIC baseline. Hence, for strong superpixel segmentation
results, a thorough optimization of these parameters is necessary.

6.4 Object Proposal Generation Results

We now apply the edge-adaptive superpixel segmentations in our superpixel-based object
proposal generation system SAM (see Ch. 5). As discussed in Sec. 5.4.3, SAM prefers superpixel
segmentations with a low OE. The previous evaluation has shown that our edge-adaptive
framework improves the OE for SLIC and ETPS while largely maintaining or improving the
segmentation quality. Since ETPS leads to the second-best results when applied in SAM, we
choose the EA-ETPS superpixel segmentation for application in SAM instead of FH. Applying
the edge-adaptive superpixel segmentation framework to FH is impossible, since FH does
not generate a desired number of superpixels. However, FH already limits the amount of
oversegmentation by design.

The evaluation framework for the object proposal generation task stays unchanged compared
to Sec. 5.4. Thus, we only evaluate pixel-precise proposals on the challenging LVIS test set
with precise annotations, while training on the COCO training dataset for a fair comparison.
To optimize EA-ETPS for the new data, we follow the same optimization as described in
Sec. 6.2.4 on the LVIS validation set. We evaluate the overall object proposal generation results
in terms of Average Recall (AR) across different numbers of proposals and object sizes. The
AR assess how many objects are discovered and how well they are segmented (see Sec. 2.2.3).
Moreover, we use the BR- and UE-based evaluation to assess the segmentation quality of
the generated object proposals as introduced in Sec. 5.4. We compare the results of SAM
utilizing EA-ETPS superpixel segmentations (SAM+EA-ETPS) to the original formulation
of SAM with FH superpixels denoted as SAM+FH (see Ch. 5), AttentionMask (see Ch. 4),
DeepMask [Pinheiro et al., 2015], SharpMask [Pinheiro et al., 2016], and FastMask [Hu
et al., 2017a]. Besides those CNN-based systems, we also compare to MCG [Arbeláez et al.,
2014; Pont-Tuset et al., 2017] and COB [Maninis et al., 2016, 2017], which do not utilize
CNNs during proposal generation and therefore generate precise object proposals. Since
we use the identical evaluation framework as in Sec. 5.4, the results of all methods except
SAM+EA-ETPS stay unchanged.

We start our evaluation by assessing the superpixel segmentation results for FH, EA-ETPS, and
ETPS on the LVIS validation dataset in Sec. 6.4.1. Moreover, Sec. 6.4.1 presents the results of
SAM utilizing these superpixel segmentation on the LVIS validation dataset. Subsequently, in
Sec. 6.4.2, we present the qualitative and quantitative results of SAM+EA-ETPS on the LVIS
test dataset compared to other object proposal generation systems.
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Figure 6.13: Quantitative results of three superpixel segmentation methods on the LVIS validation set in
terms of Boundary Recall (BR) (a), Undersegmentation Error (UE) (b), and Oversegmentation
Error (OE) (c) across 500 to 8000 superpixels. The superpixel segmentation methods are
FH [Felzenszwalb and Huttenlocher, 2004], ETPS [Yao et al., 2015], and our proposed EA-ETPS.

Table 6.2: Results of SAM (see Ch. 5) using three different superpixel segmentation methods to create
superpixels. The superpixel segmentation methods are FH [Felzenszwalb and Huttenlocher, 2004],
ETPS [Yao et al., 2015], and our proposed EA-ETPS. We use SAM with only five pyramid levels
and generate the results on the LVIS validation set. AR denotes the Average Recall for the first
10, 100, or 1000 proposals. Bold font highlights the best results.

Superpixel segmentation Number of superpixels AR@10↑ AR@100↑ AR@1000↑

EA-ETPS 8000− 500 0.101 0.224 0.323
FH (Ch. 5) 8000− 500 0.100 0.221 0.320
ETPS 8000− 500 0.097 0.214 0.311

6.4.1 Influence of the Superpixel Segmentations

Figure 6.13 presents the superpixel segmentation results of ETPS, EA-ETPS, and FH on
the complex LVIS validation set in terms of BR, UE, and OE. The results show that the
segmentation quality in terms of BR improves using EA-ETPS compared to ETPS. Hence,
more object boundaries are captured while the UE stays constant. This is similar to the results
of EA-ETPS and ETPS on the complex datasets NYU and SUN in Sec. 6.3.2. Moreover,
as visible from the results in Fig. 6.13(c), the OE for EA-ETPS is reduced compared to
ETPS. This is similar to the results in Sec. 6.3.2. Recall that this was the main goal of
applying EA-ETPS in the context of SAM. However, the level of FH in terms of OE is not
reached.

To assess the effect of the improved EA-ETPS superpixel segmentations, we utilize them
in SAM. Table 6.2 present the results of SAM with EA-ETPS, ETPS, and FH superpixel
segmentations on the LVIS validation set. The results show that EA-ETPS outperforms ETPS
by 4.2% on average across the different AR values. Based on the findings from Ch. 5, we
attribute this to the lower OE and higher BR results of the EA-ETPS superpixel segmentations.
Comparing EA-ETPS and FH reveals that both are on a similar level with small improvements
for EA-ETPS (+1.1% on average). Hence, despite the significant difference between EA-ETPS
and FH in terms of BR, the FH superpixel segmentations are still competitive in this framework.
This is mainly due to the still substantially lower OE. Overall, EA-ETPS improves the results
of SAM on the LVIS validation set compared to the original ETPS.
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Table 6.3: Results on the LVIS test dataset using pixel-precise segmentation mask proposals in terms of six
Average Recall (AR) measures. ARS , ARM , and ARL denote results on small, medium, and large
objects. See Tab. 2.1 for details on the AR variations. The systems in the first part of the table do
not use CNNs to generate proposals. The second part of the table contains systems based on a
ResNet-50 backbone, while the systems in the third part utilize a ResNet-34 backbone. Bold font
highlights the best results, while italic font indicates the second-best results.

Method AR@10↑ AR@100↑ AR@1000↑ ARS@100↑ ARM@100↑ ARL@100↑

MCG 0.048 0.131 0.237 0.031 0.204 0.462
COB 0.054 0.148 0.281 0.043 0.235 0.477

DeepMask 0.069 0.147 0.214 0.014 0.314 0.430
SharpMask 0.073 0.154 0.229 0.014 0.327 0.460
FastMask 0.069 0.161 0.256 0.055 0.296 0.386
AttentionMask (Ch. 4) 0.073 0.189 0.284 0.081 0.312 0.446

AttentionMask (Ch. 4) 0.076 0.185 0.271 0.083 0.305 0.423
SAM+FH (Ch. 5) 0.092 0.206 0.290 0.094 0.335 0.471
SAM+EA-ETPS 0.092 0.204 0.293 0.093 0.337 0.462

6.4.2 Results on the LVIS Dataset

Quantitative Results

The previous results indicated that EA-ETPS positively influences the segmentation quality
in terms of BR, UE, and OE, which leads to improved results for SAM+EA-ETPS. Therefore,
we present the results of SAM+EA-ETPS compared to other object proposal generation
methods on the challenging LVIS test set in Tab. 6.3. The results show that SAM+EA-ETPS
performs at a similar level compared to SAM+FH. Hence, SAM+EA-ETPS outperforms all
CNN-based methods not using the superpixel-based refinement across all ARs. COB is the
only system that outperforms SAM+EA-ETPS on large objects (+3.2%), similar to SAM+FH.
Comparing SAM+EA-ETPS and SAM+FH further, reveals that the results are similar with
a slight advantage for SAM+EA-ETPS in terms of AR@1000 and ARM@100. However, the
differences are not substantial and confirm the previous findings from Sec. 6.4.1 on the LVIS
validation dataset.

Similar to the results in terms of AR, the results in Tab. 6.4 based on BR and UE show
significant similarities between the segmentation quality of SAM+EA-ETPS and SAM+FH
proposals. The average differences between the methods are 0.002 (BR) and 0.001 (UE).
Similar to SAM+FH, SAM+EA-ETPS outperforms all CNN-based systems not utilizing
our superpixel-based refinement. Compared to MCG and COB, which do not utilize CNNs
to generate object proposals, SAM+EA-ETPS leads to mostly impaired results similar to
SAM+FH. However, MCG and COB discover fewer objects leading to substantially lower
results in terms of AR across all object sizes (see Tab. 6.3). Overall, the results in Tab. 6.3 and
Tab. 6.4 show that our edge-adaptive superpixel segmentation framework allows SAM+EA-
ETPS to perform on par with SAM+FH.

Qualitative Results

Following the quantitative results, we present qualitative results of AttentionMask, SAM+FH,
and SAM+EA-ETPS on images of the LVIS test dataset displayed in Fig. 6.14. In general, the
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Table 6.4: Detailed results on the LVIS test dataset using pixel-precise segmentation mask proposals in
terms of Boundary Recall (BR) and Undersegmentation Error (UE). BRS/UES , BRM/UEM , and
BRL/UEL denote results on small, medium, and large objects. The systems in the first part of the
table do not use CNNs to generate proposals. The second part of the table contains systems based
on a ResNet-50 backbone, while the systems in the third part utilize a ResNet-34 backbone. Bold
font highlights the best results, while italic font indicates the second-best results.

Method BR↑ UE↓ BRS↑ UES↓ BRM↑ UEM↓ BRL↑ UEL↓

MCG 0.685 0.073 0.833 0.004 0.709 0.023 0.614 0.089
COB 0.734 0.059 0.823 0.005 0.738 0.021 0.686 0.068

DeepMask 0.488 0.087 0.727 0.006 0.622 0.024 0.308 0.109
SharpMask 0.561 0.080 0.782 0.005 0.681 0.023 0.383 0.100
FastMask 0.510 0.084 0.794 0.006 0.622 0.023 0.318 0.107
AttentionMask (Ch. 4) 0.568 0.070 0.840 0.005 0.644 0.020 0.389 0.091

AttentionMask (Ch. 4) 0.547 0.075 0.832 0.005 0.637 0.020 0.356 0.099
SAM+FH (Ch. 5) 0.681 0.068 0.864 0.004 0.726 0.019 0.557 0.090
SAM+EA-ETPS 0.680 0.068 0.862 0.004 0.727 0.018 0.555 0.092

qualitative results are similar between SAM+EA-ETPS and SAM+FH. Hence, the SAM+EA-
ETPS proposals adhere better to the object boundaries than the AttentionMask proposals as
visible throughout all examples in Fig. 6.14. The similarities between the SAM+EA-ETPS
and SAM+FH proposals are well visible from several examples in Fig. 6.14. In particular, the
last four examples are either almost identical (airplane example in the fifth row) or vary only
in minor details. For instance, both systems discover the tennis player in the seventh row.
However, SAM+FH misses parts of the tennis player’s boundary around the feet and the pants,
while SAM+EA-ETPS misses parts of the right forearm. Similar examples exist along the
boundaries of the clock in the sixth row and the zebra in the eighth row.

Apart from these similarities, a few examples show substantial differences between the
SAM+EA-ETPS and SAM+FH proposals. For instance, SAM+FH does not properly capture
the dog’s head and tail in the first example. In the case of the head, this is due to an
undersegmentation error as the detailed views of the proposal and the respective superpixel
segmentation in Fig. 6.15 reveal. The SAM+EA-ETPS proposal adheres to the head’s
boundary since EA-ETPS produces many small superpixels along the boundary (see Fig. 6.15).
A similar case is visible in the second row, where SAM+FH does not properly capture the
bear’s hind leg. Again, this is related to an undersegmentation error in the FH superpixel
segmentation (see Fig. 6.15). EA-ETPS captures this low-contrast boundary as the detailed
views in Fig. 6.15 show. Low-contrast boundaries are a general problem for FH as the example
in the third row demonstrates. The low-contrast bear is only roughly discovered by the
SAM+FH proposal similar to AttentionMask. In contrast, SAM+EA-ETPS successfully
segments the snout and discriminates all three visible legs (see annotation in the final column).
These improvements in low-contrast areas are also in line with the earlier findings in Sec. 6.3.2.
Another typical problem in FH superpixel segmentations is the existence of antenna-like
artifacts. Despite the post-processing in SAM, some artifacts remain as visible on the left-
hand side of the fire hydrant in the fourth example. Such issues do not exist in EA-ETPS due
to the compactness term in ETPS.

Overall, the qualitative results support the quantitative similarity between the proposals of
SAM+EA-ETPS and SAM+FH. However, some improvements along low-contrast boundaries
are visible
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Input image AttentionMask SAM+FH SAM+EA-ETPS Ground truth

Figure 6.14: Qualitative results of AttentionMask based on a ResNet-50 (see Ch. 4), SAM+FH (see Ch. 5),
and SAM+EA-ETPS on images of the LVIS test dataset. The arrows highlight prominent
differences between the systems. Filled colored contours denote discovered objects, while not
filled red contours denote missed objects. Note that only the best fitting proposal (highest
IoU) is visualized per annotated object. Input images and annotations taken from the LVIS
dataset [Gupta et al., 2019].
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(a) SAM+FH (b) SAM+EA-ETPS

Figure 6.15: Detailed views of selected qualitative results of SAM+FH (a) and SAM+EA-ETPS (b). The
blue boxes show upsampled crops of the proposal and the corresponding FH or EA-ETPS
superpixel segmentation. Red arrows denote undersegmentation errors in the FH superpixel
segmentations leading to imprecise proposals. Green arrows highlight the same areas in the
EA-ETPS superpixel segmentations and the proposals. Input images and annotations taken
from the LVIS dataset [Gupta et al., 2019]

6.5 Discussion

In this chapter, we introduced our novel edge-adaptive superpixel segmentation framework.
Our framework adapts the uniform distribution of superpixels in superpixel segmentations to
the different levels of detail in an image. As a result, the non-uniform distribution reduces the
oversegmentation of the superpixel segmentations. To estimate the level of detail found in image
areas, we calculate the edge density per pixel based on edge detection results. Subsequently,
we define image regions with similar edge densities through clustering. By segmenting each
cluster with an adapted superpixel resolution according to the edge density, we focus the
generation of superpixels on image details. Hence, we reduce the oversegmentation of superpixel
segmentation methods by adapting the distribution of superpixels.

Applying our edge-adaptive superpixel segmentation framework to SLIC and ETPS on five
challenging datasets revealed that our framework reduces the oversegmentation (low OE).
In contrast, the segmentation quality in terms of BR is either constant (ETPS) or even
improves (SLIC). These results indicate the ability of our framework to capture relevant image
details even in complex environments. Finally, the evaluation also showed that edge density is a
better surrogate for the levels of detail in images than saliency or depth.

Utilizing the proposed EA-ETPS superpixel segmentations in our object proposal generation
system SAM (see Ch. 5) leads to improvements over the results using ETPS on the complex
LVIS dataset. This shows the importance of changing the segmentation style for improving
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the results of SAM. Overall, the results of SAM+EA-ETPS are similar compared to the
original SAM (SAM+FH) with improvements in low-contrast regions. However, EA-ETPS
introduces five new parameters compared to the one parameter in FH. Hence, the optimization
of EA-ETPS is more time-consuming compared to FH.

Overall, our novel edge-adaptive superpixel segmentation framework allows superpixel seg-
mentation methods to reduce the oversegmentation while maintaining or improving the
segmentation quality. The reduced oversegmentation improves the downstream object pro-
posal generation with SAM compared to the original non-adaptive superpixel segmentations.
Some remaining challenges of superpixel segmentations like the high number of parame-
ters and the lack of incorporating high-level semantics will be addressed in the next chap-
ter.
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The edge-adaptive superpixel segmentation framework introduced in the previous chapter leads
to improved superpixel segmentation results for SLIC [Achanta et al., 2012] and ETPS [Yao
et al., 2015]. Moreover, the new EA-ETPS superpixel segmentations improve the object
proposal generation results using SAM (see Ch. 5) compared to the original ETPS superpixel
segmentations. However, SAM+EA-ETPS is unable to outperform the original SAM with
FH superpixel segmentations consistently. Additionally, for optimizing the nine parameters1

in EA-ETPS, a total of 8,640 combinations2 were evaluated. Hence, the optimization of
EA-ETPS for SAM is time-consuming. Different from superpixel segmentation methods like
EA-ETPS or ETPS, FH [Felzenszwalb and Huttenlocher, 2004] (see Sec. 3.1.2) has only one
parameter3. Hence, the optimization is less time-consuming. Additionally, FH superpixel
segmentations are well-suited for application in SAM since they exhibit less oversegmentation
than EA-ETPS and other superpixel segmentations.

However, due to the simplicity of FH, which merges pixels or groups of pixels based on the
distance in RGB space, FH exhibit a lower segmentation quality compared to EA-ETPS or
ETPS. This is also visible from the segmentation results on the LVIS dataset in Sec. 5.4.3.
Additionally, since we aim to segment entire objects that may consist of different colors while
sharing colors with adjacent background regions, utilizing only RGB information is suboptimal.

1Four parameters are inherited from ETPS.
2For computational reasons, we limit the number of values for γp and γb (see Eq. 3.1) as well as the iterations
per hierarchy level to three.

3We use the implementation utilized in Stutz et al. [2018] that has a second parameter for the minimum size
of each superpixel.
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(a) Superpixel segmentation by FH (b) Superpixel segmentation by our DeepFH

Figure 7.1: Superpixel segmentation results of FH [Felzenszwalb and Huttenlocher, 2004] (a) and our proposed
DeepFH superpixel segmentation method (b). The red arrows highlight areas where foreground
and background have similar colors, leading to undersegmentation errors in the FH superpixel
segmentation. In contrast, the proposed DeepFH superpixel segmentation method separates
foreground and background in those areas (green arrows) based on learned features. Input image
taken from the LVIS dataset [Gupta et al., 2019].

For instance, the marked areas in Fig. 7.1(a) highlight adjacent foreground and background
pixels with similar color. FH fails to properly capture the giraffe’s boundary in these areas
using only RGB information, leading to undersegmentation errors. However, if the semantics
of the pixels are known to FH, it would be able to capture the giraffe’s boundary even in these
areas. Therefore, FH needs semantically richer features to generate superpixel segmentations
with better segmentation quality while maintaining a low oversegmentation. Such superpixel
segmentations would subsequently also lead to improved object proposal generation results
with SAM.

To enhance FH with semantically rich features, we propose the novel CNN-based DeepFH
superpixel segmentation method. DeepFH augments the RGB features in FH with learned
CNN-based per-pixel features representing high-level semantics. Subsequently, the original
merging process of FH is applied to pixels or groups of pixels. We learn suitable features for
superpixel segmentation using an encoder-decoder architecture that estimates pixel affinities as
an auxiliary task similar to Tu et al. [2018]. However, in contrast to Tu et al. [2018], we do not
use the affinities directly but utilize the latent features of the encoder-decoder. Since DeepFH
employs the merging process of FH with improved features, it produces substantially less
oversegmentation than EA-ETPS or existing CNN-based superpixel segmentation approaches.
Hence, we generate superpixel segmentations based on high-level semantics that improve the
segmentation quality compared to FH (see Fig. 7.1(b)) while limiting the amount of oversegmen-
tation. Moreover, DeepFH introduces only one additional parameter for manual optimization
compared to the original FH. Altogether, our CNN-based DeepFH superpixel segmentations
will also boost the object proposal generation with SAM due to the favorable combination of
improved segmentation quality and limited oversegmentation.

In this chapter, we introduce our novel DeepFH superpixel segmentation method based on our
publication Wilms and Frintrop [2021]. First, in Sec 7.1, we describe the feature extraction
network, the training setup, and the integration of the learned features into FH. Subsequently,
we discuss the results of DeepFH on the superpixel segmentation task in Sec. 7.2. Section 7.3
presents the object proposal generation results of SAM with our new DeepFH superpixel
segmentations. The chapter concludes with a discussion of the advantages and limitations of
DeepFH in Sec. 7.4.
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Figure 7.2: System figure of our proposed encoder-decoder-based feature extractor to generate per-pixel
features in our DeepFH superpixel segmentation approach. First, the backbone network of the
encoder generates features using residual blocks (res blocks). Subsequently, the different feature
maps (different colors) are upsampled and concatenated. The final per-pixel features (turquoise
box) are extracted from the concatenated feature map using a 1× 1 convolution. During training,
the cosine distance between each pair of adjacent pixels represents the pixel affinity that is used
as an auxiliary output to train the network. Input image taken from the COCO dataset [Lin
et al., 2014].

7.1 DeepFH Superpixels

This section presents our novel DeepFH superpixel segmentation approach utilizing learned
CNN-based features for FH-style superpixel segmentations. DeepFH includes two new com-
ponents compared to the original FH. First, a lightweight feature extractor utilizes features
from different stages of an encoder-decoder network and generates a semantically rich feature
map at input image resolution (see Fig. 7.2). The architecture of the feature extractor and
the training strategy are described in Sec. 7.1.1. Second, in Sec. 7.1.2, we propose a new
distance for assessing the pixel similarity in FH that combines RGB features and the new
learned features. This allows a simple integration of the new features into FH. No further
changes to FH are necessary.

7.1.1 Feature Extractor

The feature extractor is the core novelty of DeepFH since it generates semantically rich
features. We utilize a simple encoder-decoder architecture to obtain such features and train
the system in a pixel affinity framework.
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Table 7.1: Architecture variations for the encoder (first part) and the decoder (second part) of our feature
extractor. Ours denotes the proposed architecture for both parts. The evaluation is conducted
w.r.t. the downstream task of object proposal generation using SAM. All results were generated on
the LVIS validation set. AR denotes the Average Recall for the first 10, 100, or 1000 proposals. We
use SAM with only five pyramid levels while the respective architecture is utilized for generating
DeepFH superpixel segmentations. The chosen architecture is highlighted in bold font.

Architecture AR@10↑ AR@100↑ AR@1000↑

Ours 0.102 0.229 0.335
ResNet-18 0.102 0.225 0.330
ResNet-34 0.102 0.226 0.332

Step-wise [Yang et al., 2020] 0.100 0.224 0.329

Architecture

The architecture of our feature extractor consists of a ResNet-based encoder with four stages
and a simple concatenation-based decoder. This is a typical style of architecture for learning
pixel affinity [Tu et al., 2018; Ahn and Kwak, 2018; Ahn et al., 2019]. As visible in Fig. 7.2,
the encoder comprises the first four stages of a ResNet-18 (see Appendix A.2). However, only
one residual block is utilized per stage, which leads to only nine trained layers in the encoder.
Since we use a batch size of 1 during training (see below), we replace the batch normalization
in the ResNet-18 with group normalization [Wu and He, 2018]. The encoder’s lightweight
design is more effective than the larger original ResNet-18 and ResNet-34 as the results in the
first part of Tab. 7.1 show. These findings are in line with CNN-based superpixel segmentation
systems that also use lightweight feature extractors with seven to ten layers [Tu et al., 2018;
Jampani et al., 2018; Yang et al., 2020].

Based on the lightweight encoder, the decoder extracts features from each encoder stage by
applying 1×1 convolutions. Thus, features from different semantic levels and spatial resolutions
prevent heavily blurred feature maps. The extracted feature maps from the different stages
are depicted as colored boxes in the top right of Fig. 7.2. After extraction, all feature maps are
upsampled to input image resolution using bilinear interpolation. Subsequently, we concatenate
the upsampled feature maps and generate the final 128D features per pixel (turquoise box
in Fig. 7.2) by utilizing another 1 × 1 convolution. The concatenation is more favorable
than a complex step-wise integration [Yang et al., 2020], as the results in the second part
of Tab. 7.1 indicate. The final features are used in DeepFH to augment the simple RGB
features.

Overall, our encoder-decoder-based feature extractor efficiently generates per-pixel features at
input image resolution for generating high-quality superpixel segmentations.

Training

To train the proposed feature extractor, we utilize pixel affinity as an auxiliary task. Pixel
affinity classifies adjacent pixels as part of the same segment or different segments, which is
highly related to the superpixel segmentation task. We determine the pixel affinity results on
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top of the extracted features (turquoise box in Fig. 7.2) by calculating the cosine distance δcos
between feature vectors fi, fj ∈ R128 of adjacent pixels pi,pj ∈ Ω as

δcos(fi, fj) = 1
π

arccos
(

fi · fj
‖fi‖‖fj‖

)
. (7.1)

The result of δcos(fi, fj) is the result of the pixel affinity calculation. If adjacent pixels belong
to the same segment, their distance should be 0, while adjacent pixels on different segments
should have a distance of 1. We learn this task in a classification framework using binary
cross entropy loss. Hence, while learning the affinity of adjacent pixels, the feature extractor
learns useful features for generating superpixel segmentations. Note that backpropagation
through the cosine distance is straightforward.

The ground truth for the pixel affinity calculation is generated based on the ground truth
from segmentation datasets. In the case of object proposal generation datasets, we first
overlay the different annotated objects to create an artificial ground truth segmentation. This
segmentation contains all boundaries from all annotated objects. Given such a ground truth
segmentation, the negative samples, i.e., pixels belonging to the same segment, will outnumber
the positive samples, pixels belonging to different segments. To counter this imbalance, we
use a negative sample mining strategy. Hence, for each positive sample, we randomly select
up to three negative samples. Overall, given an input image, this process selects suitable
pixels at the output level to train the feature extractor.

We train our feature extractor from scratch using the Adam optimizer [Kingma and Ba, 2015]
with an initial learning rate of 0.01, β1 = 0.9, and β2 = 0.999. Training the network from
scratch is similar to other CNN-based superpixel segmentation methods [Tu et al., 2018;
Jampani et al., 2018; Yang et al., 2020].

7.1.2 Extension of FH

After training, the feature extractor generates semantically rich per-pixel features from unseen
images. We use these semantically rich features, 128D vectors per pixel, to augment the
feature distance computation in the original FH. In FH, the feature distance between adjacent
pixels is defined as the Euclidean distance of the pixels’ RGB values (IRGB(p) : Ω → R3).
Hence, for pixels pi,pj ∈ Ω the original distance δFH is defined as

δFH(pi,pj) = ‖IRGB(pi)− IRGB(pj)‖2. (7.2)

To augment this simple feature distance with the new learned features, we add the cosine
distance between the extracted 128D feature vectors to δFH. Using the cosine distance instead
of the Euclidean distance [Ahn and Kwak, 2018; Ahn et al., 2019] matches the training and fits
the unnormalized high-dimensional feature vectors. This is further supported by the results
in Tab. 7.2 that compares the use of Euclidean distance and cosine distance in DeepFH. Thus,
our new combined feature distance δDeepFH is defined as

δDeepFH(pi,pj , fi, fj) = (1− α)δFH(pi,pj) + αδcos(fi, fj), (7.3)

with the weight α to balance the influence of the two components. Note that we assume the
individual RGB values in the interval of [0, 1]. This leads to two distances in the interval
of [0, 1], which simplifies the balancing. In our experiments, we set α = 0.2 since it leads to
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Table 7.2: Comparison of the cosine distance and the Euclidean distance for training the feature extractor
and the calculation of δDeepFH. The evaluation is conducted w.r.t. the downstream task of object
proposal generation with SAM. All results were generated on the LVIS validation set. AR denotes
the Average Recall for the first 10, 100, or 1000 proposals. We use SAM with only five pyramid
levels while the respective distance is utilized for generating DeepFH superpixel segmentations.
The chosen distance is highlighted in bold font.

Distance AR@10↑ AR@100↑ AR@1000↑

Cosine 0.102 0.229 0.335
Euclidean 0.101 0.223 0.327
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Figure 7.3: Results of SAM in terms of AR@10 (a), AR@100 (b), and AR@1000 (c) using DeepFH superpixel
segmentations with varying α on the downstream object proposal generation task. All results
were generated on the LVIS validation set. We use SAM with only five pyramid levels while
the respective α value (x-axis) is utilized for generating DeepFH superpixel segmentations. AR
denotes the Average Recall for the first 10, 100, or 1000 proposals.

optimized performance on the downstream object proposal generation task as the results in
Fig. 7.3 indicate.

Based on the new feature distance δDeepFH, we adapt the initial pixel similarity in FH, while
the remaining parts of FH stay unchanged. Thus, the merging of pixels in DeepFH is identical
to the original FH (see Sec. 3.1.2). This preserves the segmentation style, leading to superpixel
segmentations that exhibit limited oversegmentation while maintaining optimal results w.r.t.
the feature distance [Felzenszwalb and Huttenlocher, 2004].

7.2 Superpixel Segmentation Results

To show the benefit of the learned features, we first present the results of DeepFH compared to
the original FH on the superpixel segmentation task. Similar to Sec. 6.3 and Stutz et al. [2018],
we evaluate on the five challenging datasets BSD [Martin et al., 2001], SBD [Gould et al., 2009],
Fash [Yamaguchi et al., 2012], NYU [Silberman et al., 2012], and SUN [Song et al., 2015] (see
Sec. 2.1.2). To assess the superpixel segmentations’ quality, we use Boundary Recall (BR)
and Undersegmentation Error (UE) for different numbers of superpixels as introduced in
Sec. 2.1.3. Note that we do not compare DeepFH to other superpixel segmentation methods,
since this chapter aims to improve FH to generate better object proposal generation results
with SAM (see Sec. 7.3). A comparison of FH to other superpixel segmentation methods,
which also allows an assessment of the DeepFH results w.r.t. those methods, is presented
in Stutz et al. [2018].
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The dataset-specific parameter optimization for FH follows Stutz et al. [2018]. However, we
optimize the parameters for every number of superpixels individually. To choose the best
set of parameters, we use the Overall Segmentation Quality (OSQ) (see Sec. 2.1.3) on the
training data of the respective dataset. Since FH does not allow to set the desired number
of superpixels explicitly, we vary the parameters to generate superpixel segmentations with
various numbers of superpixels. Subsequently, we only consider results that deviate at most
10% from the desired number of superpixels similar to Sec. 5.3.1.

For DeepFH, the parameter optimization is conducted in two stages. First, we train the
feature extractor on 70% of the respective datasets’ training images while using the remaining
training images for validation. Since only up to 238 images are available per dataset, we
use the data augmentation strategy by Xie and Tu [2015] to increase the number of training
samples by a factor of 96. The data augmentation strategy includes resizing, flipping, and
rotating. Second, based on the trained feature extractor, we optimize the parameters of
DeepFH using the same framework as for FH.

In the following sections, we first discuss the quantitative results of DeepFH and FH on the
datasets BSD, SBD, Fash, NYU, and SUN in Sec. 7.2.1 before moving on to the qualitative
results in Sec. 7.2.2.

7.2.1 Quantitative Results

Figure 7.4 presents the quantitative results for FH and our DeepFH on the superpixel
segmentation task in terms of BR (left plots in Fig. 7.4) and UE (right plots in Fig. 7.4). On
the datasets Fash (third row) and SBD (second row), DeepFH outperforms FH in terms of
BR by 2.2% (Fash) and 2.0% (SBD) across the different numbers of superpixels. For the
remaining datasets, the improvement is between 0.6% (BSD) and 1.2% (SUN). In terms of
UE, the improvement is more significant with similar characteristics as for BR. For instance,
DeepFH outperforms FH by 7.1% on the SBD dataset in terms of UE. Therefore, DeepFH
generally captures more annotated boundaries than FH while reducing the leakage across the
missed boundaries.

Despite improvements across all datasets, the improvements on the individual datasets vary as
pointed out above. On the datasets Fash and SBD, DeepFH exhibits a stronger improvement
compared to the other three datasets. These results are related to the image composition and
the goal of the annotation process across the datasets. For instance, the images in the Fash
dataset share a simple scene composition with a single person in front of varying backgrounds.
The annotations are similar across the images since a limited set of garments and accessories
are annotated. Given this limited variability in scene composition and annotations, DeepFH
easily learns relevant features even from the few training images. For the SBD dataset, the
scene and annotations vary more. However, objects like boats, cars, people, and cows are
frequently reoccurring. This is different from the datasets NYU and SUN that feature a
diverse set of objects and more complex scene compositions.

Overall, DeepFH leads to improved superpixel segmentation results compared to FH. However,
the improvements vary between the datasets and are linked to the annotation style. Note
that DeepFH only trained on 139 to 166 original training images per dataset. Therefore,
better results are expected with more training data as in the case of the LVIS dataset (see
Sec. 7.3.1).



134 Chapter 7 DeepFH Superpixel Segmentation

B
SD

0.4

0.5

0.6

0.7

0.8

0.9

1

100 500 750 1000 1500 2000

B
ou

nd
ar

y 
R

ec
al

l (
B

R
)

Number of superpixels

FH

DeepFH

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

100 500 750 1000 1500 2000

U
nd

er
se

gm
en

ta
tio

n 
E

rr
or

 (
U

E
)

Number of superpixels

SB
D

0.4

0.5

0.6

0.7

0.8

0.9

1

125 250 375 500 750 1000

B
ou

nd
ar

y 
R

ec
al

l (
B

R
)

Number of superpixels

FH

DeepFH

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

125 250 375 500 750 1000

U
nd

er
se

gm
en

ta
tio

n 
E

rr
or

 (
U

E
)

Number of superpixels

Fa
sh

0.4

0.5

0.6

0.7

0.8

0.9

1

50 200 500 1000

B
ou

nd
ar

y 
R

ec
al

l (
B

R
)

Number of superpixels

FH

DeepFH

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 200 500 1000

U
nd

er
se

gm
en

ta
tio

n 
E

rr
or

 (
U

E
)

Number of superpixels

N
Y
U

0.4

0.5

0.6

0.7

0.8

0.9

1

200 500 1000 1500 2000

B
ou

nd
ar

y 
R

ec
al

l (
B

R
)

Number of superpixels

FH

DeepFH

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

200 500 1000 1500 2000

U
nd

er
se

gm
en

ta
tio

n 
E

rr
or

 (
U

E
)

Number of superpixels

SU
N

0.4

0.5

0.6

0.7

0.8

0.9

1

200 500 1000 1500 2000

B
ou

nd
ar

y 
R

ec
al

l (
B

R
)

Number of superpixels

FH

DeepFH

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

200 500 1000 1500 2000

U
nd

er
se

gm
en

ta
tio

n 
E

rr
or

 (
U

E
)

Number of superpixels

Figure 7.4: Quantitative superpixel segmentation results of our proposed DeepFH and FH [Felzenszwalb and
Huttenlocher, 2004] on the datasets BSD [Martin et al., 2001] (first row), SBD [Gould et al.,
2009] (second row), Fash [Yamaguchi et al., 2012] (third row), NYU [Silberman et al., 2012] (fourth
row), and SUN [Song et al., 2015] (fifth row). The results are evaluated in terms of Boundary
Recall (BR, left) and Undersegmentation Error (UE, right).
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Input image FH DeepFH Ground truth

Figure 7.5: Qualitative superpixel segmentation results of FH [Felzenszwalb and Huttenlocher, 2004] and the
proposed DeepFH on images from the test sets of the datasets SBD [Gould et al., 2009] (first
row), Fash [Yamaguchi et al., 2012] (second and third row), BSD [Martin et al., 2001] (fourth
row), and NYU [Silberman et al., 2012] (fifth row). All results within a row contain a similar
number of superpixels. The red arrows denote missed boundaries (undersegmentation errors),
while the green arrows highlight the successful recognition of those boundaries. Input images
and annotations taken from the datasets SBD [Gould et al., 2009], Fash [Yamaguchi et al., 2012],
BSD [Martin et al., 2001], and NYU [Silberman et al., 2012].
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7.2.2 Qualitative Results

After discussing the quantitative results, we present qualitative results of DeepFH and FH for
five images from the datasets BSD, SBD, Fash, and NYU in Fig. 7.5. The results show that
the DeepFH and FH superpixel segmentations are similar and share the same segmentation
style. This is important for the later application in SAM. The similarities between DeepFH
and FH are not surprising, since DeepFH utilizes the general scheme of FH with semantically
richer features.

Investigating the results in more detail reveals multiple differences between the DeepFH and
the FH superpixel segmentations. For instance, DeepFH recognizes more boundaries in low-
contrast areas. This behavior is visible from the results in the first row in Fig. 7.5, where FH
misses a part of the sail in a low-contrast area (red arrows) that DeepFH captures. Similarly,
in the second example, the woman’s white dress exhibits a low contrast w.r.t. the background.
Again, FH does not capture the boundary of the dress at several locations marked by the red
arrows. DeepFH captures most of the boundary by utilizing CNN-based features that do not
depend on color contrast. A similar setting is visible in the third row, where the boundary
between the woman’s jacket and the background is hard to see, even for humans. Still, DeepFH
captures the entire boundary as highlighted by the green arrows, while FH misses most of it.
An exception to this general improvement in low-contrast areas is the woman’s right foot in
the third row that neither system captures properly.

Besides low-contrast boundaries, highly textured areas pose another problem to the color-based
FH. For instance, the antelope in the fourth row is not properly segmented from the highly
textured background. DeepFH captures the boundary of the antelope except for one hoof since
the learned features are not strongly distracted by the texture. However, more complex envi-
ronments pose problems to both FH and DeepFH as the results in the final row highlight. Both
systems miss several annotated boundaries in the cluttered indoor environment. Nevertheless,
DeepFH captures more object boundaries than FH (see arrows).

Overall, the qualitative results showcase that the learned features in DeepFH improve the
superpixel segmentations in environments with low contrast or strong texture. This confirms
the advantage of the learned features compared to the simple RGB features used in FH.
Moreover, the style of the FH segmentations is kept. However, complex environments present
challenges to DeepFH as well.

7.3 Object Proposal Generation Results

The results on the superpixel segmentation task showed improvements of DeepFH in terms of
BR and UE over FH while maintaining the segmentation style. To investigate if these improve-
ments translate to better object proposals, we apply DeepFH in SAM.

For the evaluation of this combination on the object proposal generation task, we follow the
evaluation protocol described in Sec. 5.4. Hence, we train all systems on the COCO training
set and evaluate on the challenging LVIS test set featuring more precise annotations. To
train the feature extractor in DeepFH, we use the LVIS training set, while optimizing the
DeepFH parameters is conducted on the LVIS validation set. We use Average Recall (AR)
in its different variations (see Sec. 2.2.3) to assess how many objects are discovered and
how well they are segmented. A more detailed evaluation of the object proposals’ segmen-
tation quality is conducted using BR and UE as introduced in Sec. 5.4. Additionally, we
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Figure 7.6: Quantitative results of eight superpixel segmentation methods on the LVIS validation set in
terms of Boundary Recall (BR) (a), Undersegmentation Error (UE) (b), and Oversegmentation
Error (OE) (c) across 500 to 8000 superpixels. The superpixel segmentation methods are the
CNN-based approaches SEAL [Tu et al., 2018], SSN [Jampani et al., 2018], SpxFCN [Yang et al.,
2020], LNS [Zhu et al., 2021], and our proposed DeepFH as well as ETPS [Yao et al., 2015],
EA-ETPS (see Ch. 6), and FH [Felzenszwalb and Huttenlocher, 2004], which do not utilize CNNs.

define a set of measures to assess the effectiveness of the superpixel utilization in SAM (see
Sec. 7.3.3).

We compare SAM using DeepFH superpixel segmentations (SAM+DeepFH ) with SAM+FH (see
Ch. 5), SAM+EA-ETPS (see Ch. 6), AttentionMask (see Ch. 4), DeepMask [Pinheiro et al.,
2015], SharpMask [Pinheiro et al., 2016], and FastMask [Hu et al., 2017a]. In addition to
these CNN-based systems, we compare to MCG [Arbeláez et al., 2014; Pont-Tuset et al.,
2017] and COB [Maninis et al., 2016, 2017], which do not utilize CNNs for object proposal
generation, leading to precise object proposals. Since we use the identical evaluation frame-
work as in Sec. 5.4 and Sec. 6.4, the results of all methods except SAM+DeepFH stay
unchanged.

In the following, we first present the superpixel segmentation results of DeepFH, FH, and
several other superpixel segmentation methods on the LVIS dataset in Sec. 7.3.1. Additionally,
we discuss the effects of those superpixel segmentations on SAM. Section 7.3.2 presents the
quantitative and qualitative results of SAM+DeepFH compared to other object proposal
generation methods. Finally, in Sec. 7.3.3, we investigate the effective utilization of various
superpixel segmentations in SAM.

7.3.1 Influence of the Superpixel Segmentations

First, we assess the superpixel segmentation quality of DeepFH and other methods on the
challenging LVIS validation set in terms of BR, UE, and OE. Besides DeepFH, FH, EA-ETPS,
and ETPS we also compare the four CNN-based superpixel segmentation methods SEAL [Tu
et al., 2018], SSN [Jampani et al., 2018], SpxFCN [Yang et al., 2020], and LNS [Zhu et al.,
2021] discussed in Sec. 3.1.3. From the results in terms of BR (see Fig. 7.6(a)) and UE (see
Fig. 7.6(b)), it is visible that DeepFH outperforms FH in terms of segmentation quality.
In terms of BR, the improvement is 2.2%, while the improvement in terms of UE is up to
17.6%. However, the other CNN-based superpixel segmentation methods as well as ETPS
and EA-ETPS still mostly outperform DeepFH in BR and UE. In contrast, DeepFH and FH
outperform all other methods in terms of OE (see Fig. 7.6(c)) by limiting the oversegmentation.
Since the merging steps are identical in DeepFH and FH, the results in terms of OE are
similar between both methods.
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Table 7.3: Results of SAM (see Ch. 5) with eight different superpixel segmentation methods to create
superpixels. The superpixel segmentation methods in the first part of the table utilize CNNs:
SSN [Jampani et al., 2018], SEAL [Tu et al., 2018], SpxFCN [Yang et al., 2020], LNS [Zhu et al.,
2021], and DeepFH. In contrast, the methods in the second part do not utilize CNNs: EA-ETPS (see
Ch. 6), FH [Felzenszwalb and Huttenlocher, 2004], and ETPS [Yao et al., 2015]. We use SAM
with only five pyramid levels and generate the results on the LVIS validation set. AR denotes the
Average Recall for the first 10, 100, or 1000 proposals. Bold font highlights the best results, while
italic font indicates the second-best results.

Superpixel segmentation Number of superpixels AR@10↑ AR@100↑ AR@1000↑

DeepFH 8000− 500 0.102 0.229 0.335
SSN 8000− 500 0.101 0.224 0.319
SEAL 8000− 500 0.100 0.218 0.312
SpxFCN 8000− 500 0.093 0.210 0.303
LNS 8000− 500 0.095 0.210 0.296

EA-ETPS (Ch. 6) 8000− 500 0.101 0.224 0.323
FH (Ch. 5) 8000− 500 0.100 0.221 0.320
ETPS 8000− 500 0.097 0.214 0.311

The combination of DeepFH’s improved segmentation quality compared to FH and the
similar results in terms of OE translate into strong object proposal generation results for
SAM+DeepFH. As visible from Tab. 7.3, which shows the results of SAM with different
superpixel segmentations on the LVIS validation dataset, DeepFH outperforms all other applied
superpixel segmentations. Compared to the other CNN-based superpixel segmentations, the
improvement is 6.8% on average. EA-ETPS and FH, which also exhibit a relatively low OE,
are outperformed by 2.3% and 3.4%. These results confirm the findings from Sec. 5.4.3 that a
low OE has a strong positive effect on the results of SAM and compensates for an impaired
segmentation quality. Overall, DeepFH surpasses FH in terms of segmentation quality and
outperforms all other tested superpixel segmentation methods when applied in SAM for object
proposal generation.

7.3.2 Results on the LVIS Dataset

Quantitative Results

After showing the benefit of utilizing DeepFH in SAM, we compare the results of SAM+DeepFH
to other object proposal generation systems on the complex LVIS test dataset. Table 7.4 shows
the results in terms of AR that indicate a strong performance for SAM+DeepFH. In contrast
to the previously introduced SAM+FH and SAM+EA-ETPS, SAM+DeepFH outperforms all
other methods across all AR scores. This includes the highly precise COB proposals on large
objects. Compared to AttentionMask utilizing a ResNet-50 backbone, which is the best overall
system without superpixel-based refinement, the improvement is 12.7% for AR@100. Similar
to the previous results on the LVIS validation set, SAM+DeepFH outperforms SAM+FH
and SAM+EA-ETPS by 3.4% and 4.4% in terms of AR@100. Figure 7.7(a) presents a
more detailed analysis of the AR-based results w.r.t. several numbers of proposals. Those
results confirm the general improvements of SAM+DeepFH. Across all numbers of proposals,



7.3 Object Proposal Generation Results 139

Table 7.4: Results on the LVIS test dataset using pixel-precise segmentation mask proposals in terms of six
Average Recall (AR) measures. ARS , ARM , and ARL denote results on small, medium, and large
objects. See Tab. 2.1 for details on the AR variations. The systems in the first part of the table do
not use CNNs to generate proposals. The second part of the table contains systems based on a
ResNet-50 backbone, while the systems in the third part utilize a ResNet-34 backbone. Bold font
highlights the best results, while italic font indicates the second-best results.

Method AR@10↑ AR@100↑ AR@1k↑ ARS@100↑ ARM@100↑ ARL@100↑

MCG 0.048 0.131 0.237 0.031 0.204 0.462
COB 0.054 0.148 0.281 0.043 0.235 0.477

DeepMask 0.069 0.147 0.214 0.014 0.314 0.430
SharpMask 0.073 0.154 0.229 0.014 0.327 0.460
FastMask 0.069 0.161 0.256 0.055 0.296 0.386
AttentionMask (Ch. 4) 0.073 0.189 0.284 0.081 0.312 0.446

AttentionMask (Ch. 4) 0.076 0.185 0.271 0.083 0.305 0.423
SAM+FH (Ch. 5) 0.092 0.206 0.290 0.094 0.335 0.471
SAM+EA-ETPS (Ch. 6) 0.092 0.204 0.293 0.093 0.337 0.462
SAM+DeepFH 0.094 0.213 0.304 0.098 0.349 0.480

SAM+DeepFH outperforms all other methods in terms of AR by 3.3% (SAM+FH) to
54.0% (COB).

Table 7.5 presents the evaluation results in terms of BR and UE to analyze the boundary
adherence of the SAM+DeepFH proposals. Apart from the COB proposals, SAM+DeepFH
proposals adhere better to the annotated objects compared to all other methods. However,
COB misses more objects than SAM+DeepFH (see Tab. 7.4). Compared to AttentionMask,
the BR across all object sizes is improved by 23.2%, while the improvements w.r.t. SAM+FH
and SAM+EA-ETPS are 2.8% and 2.9%. The same trend is visible for the results on the
individual object sizes. This strong adherence to the object boundaries is also visible from
the results in Fig. 7.7(b), which presents the Recall (Rec) for high IoU values. SAM+DeepFH
constantly outperforms all other methods, including SAM+FH, SAM+EA-ETPS, and COB.
The latter is notable since SAM+FH and SAM+EA-ETPS were unable to outperform COB
on highly precise discoveries (IoU > 0.95).

Overall, the improved segmentation quality of DeepFH over FH and the improved OE
compared to EA-ETPS translate into object proposal generation results for SAM+DeepFH
that outperform all other systems.

Qualitative Results

To better understand the quantitative improvements of SAM+DeepFH, Fig. 7.8 depicts
qualitative results of AttentionMask, SAM+FH, and SAM+DeepFH on images from the
LVIS test set. Overall, the SAM+DeepFH proposals adhere better to the object boundaries
than AttentionMask’s proposals by utilizing the precise DeepFH superpixel segmentations.
The improvements are visible along many object boundaries across all results in Fig. 7.8.
For instance, the SAM+DeepFH proposals in the final two rows capture details like the
smaller giraffe’s ears and ossicones or the airplane’s wingtips that are missed by the coarse
AttentionMask proposals. In general, SAM+DeepFH shows improvements over AttentionMask
similar to SAM+FH and SAM+EA-ETPS.
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Figure 7.7: Detailed quantitative results on the LVIS test set. (a): Average Recall (AR) across various
numbers of object proposals for seven object proposal generation systems. (b): Recall (Rec) of
seven object proposal generation systems for objects discovered with an IoU of at least 0.8. The
results for AttentionMask are generated with a ResNet-50 backbone (R-50). Note that y-axes
are truncated at 0.4 (a) and 0.3 (b) for improved visibility. The results for SAM+DeepFH and
SAM+FH are almost at an identical level throughout the plots.

Table 7.5: Detailed results on the LVIS test dataset using pixel-precise segmentation mask proposals in
terms of Boundary Recall (BR) and Undersegmentation Error (UE). BRS/UES , BRM/UEM , and
BRL/UEL denote results on small, medium, and large objects. The systems in the first part of the
table do not use CNNs to generate proposals. The second part of the table contains systems based
on a ResNet-50 backbone, while the systems in the third part utilize a ResNet-34 backbone. Bold
font highlights the best results, while italic font indicates the second-best results.

Method BR↑ UE↓ BRS↑ UES↓ BRM↑ UEM↓ BRL↑ UEL↓

MCG 0.685 0.073 0.833 0.004 0.709 0.023 0.614 0.089
COB 0.734 0.059 0.823 0.005 0.738 0.021 0.686 0.068

DeepMask 0.488 0.087 0.727 0.006 0.622 0.024 0.308 0.109
SharpMask 0.561 0.080 0.782 0.005 0.681 0.023 0.383 0.100
FastMask 0.510 0.084 0.794 0.006 0.622 0.023 0.318 0.107
AttentionMask (Ch. 4) 0.568 0.070 0.840 0.005 0.644 0.020 0.389 0.091

AttentionMask (Ch. 4) 0.547 0.075 0.832 0.005 0.637 0.020 0.356 0.099
SAM+FH (Ch. 5) 0.681 0.068 0.864 0.004 0.726 0.019 0.557 0.090
SAM+EA-ETPS (Ch. 6) 0.680 0.068 0.862 0.004 0.727 0.018 0.555 0.092
SAM+DeepFH 0.700 0.066 0.870 0.004 0.735 0.018 0.590 0.087
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Input image AttentionMask SAM+FH SAM+DeepFH Ground truth

Figure 7.8: Qualitative results of AttentionMask based on a ResNet-50 (see Ch. 4), SAM+FH (see Ch. 5), and
SAM+DeepFH on images of the LVIS test dataset. The arrows highlight prominent differences
between the systems. Filled colored contours denote discovered objects, while not filled red contours
denote missed objects. Note that only the best fitting proposal (highest IoU) is visualized per
annotated object. Input images and annotations taken from the LVIS dataset [Gupta et al., 2019].

Comparing the SAM+DeepFH proposals to the SAM+FH proposals, several differences in
object boundary details are visible despite both systems’ generally high boundary adherence.
For instance, the dog’s hind legs in the first row are only entirely captured by SAM+DeepFH.
Typical areas of improvement for SAM+DeepFH compared to SAM+FH are low-contrast
object boundaries. This is similar to the qualitative results on the superpixel segmentation
task in Sec. 7.2.2. The second row presents a typical example where SAM+FH is unable to
properly capture the woman’s pants in the low-contrast environment. The low contrast leads
to an undersegmentation error in the FH superpixel segmentation as the detailed view in
Fig. 7.9 shows. Based on the learned features, DeepFH captures the pants’ boundary (see
Fig. 7.9), leading to a more precise object proposal. A similar case is visible in the third
row. An undersegmentation error between the white pillow and the white blanket leads to
an incomplete SAM+FH proposal for the blanket. DeepFH segments this area properly and
generates an object proposal that captures the entire blanket. More examples of such behavior
are visible along the front of the bed in the third row and the back of the bus in the fourth
row.
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(a) SAM+FH (b) SAM+DeepFH

Figure 7.9: Detailed views of selected qualitative results of SAM+FH (a) and SAM+DeepFH (b). The blue
boxes show upsampled crops of the proposal and the corresponding FH or DeepFH superpixel
segmentation. Red arrows denote undersegmentation errors in the FH superpixel segmentations
leading to imprecise proposals. Green arrows highlight the same areas in the DeepFH superpixel
segmentations and proposals. Input images and annotations taken from the LVIS dataset [Gupta
et al., 2019].

Another type of undersegmentation error in FH leads to imprecise SAM+FH proposals in the
fifth row of Fig. 7.8. As the detailed view in Fig. 7.9 shows, the FH superpixels do not capture
the entire boundary along the right side of the smaller giraffe. This undersegmentation error
in a highly textured area leads to the notch in the proposal. Similar effects are visible along
the boundaries of both giraffes. As visible in Fig. 7.9, the learned features allow DeepFH to
capture the complete boundary even in such highly textured environments, leading to the
more precise SAM+DeepFH proposal.

Despite the generally high quality of the SAM+DeepFH proposals, few errors remain. For
instance, individual superpixels are misclassified along the dog’s stomach in the first row or
the smaller giraffe’s hind legs in the fifth row. These errors are due to the misclassification by
the superpixel classifier and appear in SAM+FH as well (see Sec. 5.4.1). Hence, they are not
related to the DeepFH superpixel segmentations.

In general, the qualitative results of SAM+DeepFH confirm the improved adherence to the
object boundaries compared AttentionMask and SAM+FH. Moreover, the results show typical
cases of improvement w.r.t. SAM+FH like low-contrast object boundaries or textured areas.
These improvements highlight the benefit of the semantically rich learned features in DeepFH
and are in line with the findings of the evaluation on the superpixel segmentation task in
Sec. 7.2.2.
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Table 7.6: Results of SAM (see Ch. 5) in terms of Average IoU (AVGIoU), Achievable IoU (AIoU), and
Effectiveness (Eff) using eight superpixel segmentation methods to create superpixels. The
superpixel segmentation methods in the first part of the table utilize CNNs: SSN [Jampani
et al., 2018], SEAL [Tu et al., 2018], SpxFCN [Yang et al., 2020], LNS [Zhu et al., 2021], and
DeepFH. In contrast, the methods in the second part do not utilize CNNs: EA-ETPS (see Ch. 6),
FH [Felzenszwalb and Huttenlocher, 2004], and ETPS [Yao et al., 2015]. We use SAM with only
five pyramid levels and generate the results on the LVIS validation set. Bold font highlights the
best results, while italic font indicates the second-best results.

Superpixel segmentation AVGIoU↑ AIoU↑ Eff↑

DeepFH 0.455 0.790 57.6%
SSN 0.443 0.809 54.7%
SEAL 0.438 0.777 56.3%
SpxFCN 0.442 0.781 56.6%
LNS 0.437 0.766 57.1%

EA-ETPS (Ch. 6) 0.450 0.811 55.5%
FH (Ch. 5) 0.441 0.766 57.7%
ETPS 0.424 0.799 53.0%

7.3.3 Superpixel Segmentation Effectiveness

After presenting the results of SAM+DeepFH, we evaluate the effective use of the superpixel
segmentations in SAM+DeepFH and SAM in general. Specifically, we want to determine
bottlenecks that limit the results of SAM. To this end, we introduce three new measures for
evaluating object proposal generation results and superpixel segmentations. First, we propose
Average IoU (AVGIoU) to evaluate object proposal generation results. AVGIoU is similar to
ABO (see Sec. 2.2.3) and takes the IoU between each annotated object and the best fitting
proposal. Subsequently, the resulting IoUs are averaged across all objects in a dataset. This
assesses how well the annotated objects are segmented, similar to the evaluation in terms of
BR and UE. Second, we introduce Achievable IoU (AIoU) to evaluate how well superpixel
segmentations capture the boundaries of annotated objects. As discussed in Sec. 5.3.2, the
superpixel segmentations do not capture all annotated objects’ boundaries. Hence, the AIoU
measures the IoU between the annotated object and the best combination of superpixels
covering it. Similar to the AVGIoU, we calculate the AIoU per annotated object average
across the dataset. This definition of AIoU allows us to subsequently estimate an upper limit
for the AVGIoU given a perfect superpixel classifier in SAM. Finally, we combine both values
as the ratio of AVGIoU and AIoU coined Effectiveness (Eff):

Eff = AVGIoU
AIoU . (7.4)

Eff assesses how well SAM utilizes the superpixel segmentation capacity.

Table 7.6 shows the results of the evaluation of SAM utilizing various superpixel segmentations
based on AVGIoU, AIoU, and Eff. The results in terms of AVGIoU roughly correlate with the
AR-based results from Tab. 7.3 since AR and AVGIoU are closely related. Hence, DeepFH
outperforms all other superpixel segmentations in terms of AVGIoU when applied in SAM.
In terms of AIoU, EA-ETPS leads to the best results, followed by SSN. These results are
in line with the results from Fig. 7.6, evaluating the superpixel segmentations based on BR
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and UE. Therefore, EA-ETPS and SSN allow the best proposals given a perfect superpixel
classifier in SAM. However, the current superpixel classifier does not utilize this potential.
Therefore, FH and DeepFH exhibit the best Eff since they allow strong AVGIoU results given
a mediocre AIoU. This highlights again that the superpixel classifier in SAM prefers superpixel
segmentations with a low OE.

Another important finding from Tab. 7.6, which was not visible in previous results, is the
generally low Eff across all superpixel segmentation methods. With an Eff between 53.0% and
57.7%, the high quality of the superpixel segmentations is not fully utilized by SAM. Hence,
the superpixel segmentations allow better object proposals based on a more sophisticated
superpixel classifier. Overall, according to the results in Tab. 7.6, the main remaining
bottleneck in SAM is the quality of the superpixel classifier.

7.4 Discussion

This chapter presented DeepFH, our novel CNN-based extension of the traditional FH
superpixel segmentation method. Integrating semantically rich CNN-based features allows
DeepFH to overcome the limitations of FH, which is based on RGB features. Moreover,
DeepFH produces superpixel segmentations with low oversegmentation like FH while adding
only one manually tunable parameter. To learn CNN-based features for DeepFH, we proposed
an encoder-decoder architecture in a pixel affinity framework. Subsequently, the latent
features from the encoder-decoder are seamlessly integrated into FH by only adapting the
initial feature distance computation. Hence, the merging process and the resulting properties
of the superpixel segmentations are kept.

The results of DeepFH compared to FH on the superpixel segmentation task revealed improve-
ments on most of the complex datasets in terms of BR and UE. Despite limited training data,
DeepFH lifts the performance primarily on low-contrast contours, showcasing the advantage of
semantically rich features. Still, the style of segmentations is similar to FH keeping the overseg-
mentation on a relatively low level. The relatively low oversegmentation distinguishes DeepFH
from other superpixel segmentation methods like ETPS or EA-ETPS that produce stronger
results in terms of BR and UE but lead to more oversegmentation.

Utilizing the new DeepFH superpixel segmentations in our object proposal generation system
SAM (SAM+DeepFH) leads to the best result on the challenging LVIS dataset across all
AR measures. Additionally, DeepFH outperforms all other superpixel segmentation methods
tested with SAM. Compared to the original SAM (SAM+FH), improvements are mainly
visible along low-contrast object boundaries, similar to the superpixel segmentation results.
Finally, we introduced three new evaluation measures and showed that the main remaining
bottleneck in SAM is the superpixel classifier. For FH and DeepFH, only 57.7% and 57.6% of
the superpixel segmentation capacities are utilized by SAM.

Overall, our novel CNN-based DeepFH improves superpixel segmentation results compared
to FH utilizing learned features. Additionally, DeepFH is the first superpixel segmentation
method that combines learned CNN-based features with a low amount of oversegmentation.
Despite not outperforming all existing superpixel segmentation methods in overall segmenta-
tion quality, the limited oversegmentation improves the results of subsequent applications.
Hence, applying DeepFH in SAM leads to the best object proposal generation results among
existing methods. Still, even better results are possible using a more sophisticated superpixel
classifier.
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The previous four chapters introduced our object proposal generation systems AttentionMask
and SAM using different superpixel segmentations. We compared the results of our systems to
other systems based on Average Recall (AR) as typically done in object proposal generation.
Additionally, we calculated size-specific ARs for small, medium, and large annotated objects.
The detailed evaluation w.r.t. object size led to the development of AttentionMask since prior
systems exhibited subpar performances on small objects. Hence, detailed evaluations focusing
on specific object properties are important to better understand challenges in current object
proposal generation methods.

Similar to the size-specific evaluation, we investigate other object properties that impact the
performance of object proposal generation systems in this chapter. This extends our previous
evaluations and allows us to formulate challenges in object proposal generation that foster the
development of new methods. The lack of such a detailed evaluation of challenging object
properties beyond size is one of the limitations in object proposal generation discussed in the
introduction. Closest to such an evaluation is the work of Hosang et al. [2015], who evaluate
the robustness of pre-CNN object proposal generation methods under image transformations.
However, the results do not identify challenging object properties to guide object proposal
generation research.

To identify such challenging settings, we define six new properties for annotated objects
that strongly influence object proposal generation results. First, we measure the color
contrast of the object w.r.t. its surrounding and the textureness of an object to capture the
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visual appearance. Additionally, we characterize the shape of the annotated objects using
compactness, convexity, and eccentricity. Finally, we investigate the influence of the object
classes on the results. Based on these properties, we generate new property-specific ARs
similar to the existing size-specific ARs and evaluate modern object proposal generation
systems in more detail.

Overall, we extensively investigate the results of nine object proposal generation systems on
the challenging COCO and LVIS datasets w.r.t. six object properties. In the following, we
first introduce the six object properties and the general setup of the evaluation in Sec. 8.1.
In Sec. 8.2, we present the results of the nine systems w.r.t. each object property and
highlight links between different properties. To conclude this chapter, we summarize and
discuss the main findings in Sec. 8.3, stating four challenges in current object proposal
generation.

8.1 Experiment Setup

This section presents the setup of our extended evaluation. First, we define the object properties
used to generate property-specific results in Sec. 8.1.1. Subsequently, Sec. 8.1.2 introduces the
dataset selection and the evaluated object proposal generation methods. Finally, in Sec. 8.1.3,
we present the evaluation measures to assess the performance of the object proposal generation
methods w.r.t. to the previously defined object properties. Moreover, we discuss how to
estimate the dependency between different object properties.

8.1.1 Definition of Properties

We evaluate the object proposal generation results w.r.t. six properties of the annotated
objects described below. The six properties are the color contrast, the textureness, three
properties covering the object’s shape (compactness, convexity, and eccentricity), and the
object class.

Color Contrast

An essential property for discovering an object is the color contrast of the object w.r.t. its
surrounding. A strong color contrast supports discovering objects in humans and monkeys [Ra-
jalingham et al., 2018] as well as computer vision systems [Fan et al., 2020]. Therefore, we
measure the color contrast to assess its influence on the object proposal generation results. To
calculate the color contrast between the object and its surrounding, we consider two regions
and compare their color information. The two regions are the annotated object (green area in
Fig. 8.1(a)) and a 10 pixel wide region around the annotated object representing the surround-
ing (blue area in Fig. 8.1(a)). Note that varying the fixed width of the surrounding region based
on the annotated object’s size hardly changes the subsequent results.

To calculate the regions’ color information, we utilize the LAB colorspace and generate
normalized histograms with 16 bins per color channel. Hence, a descriptor of length 3 · 16
represents each region. We compare the two histogram-based descriptors using symmetric
Kullback-Leibler divergence to determine the color contrast. Thus, given the histogram-based
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(a) Color contrast ψcc (b) Compactness ψcomp

(c) Convexity ψconv (d) Eccentricity ψecc

Figure 8.1: Visualizations of the main elements for calculating the properties color contrast ψcc (a), compact-
ness ψcomp (b), convexity ψconv (c), and eccentricity ψecc (d).

descriptors of the annotated object hobj(xbin) and the surrounding region hsurr(xbin), we define
the color contrast ψcc as

ψcc =
3·16∑

xbin=1
hobj(xbin) log

(
hobj(xbin)
hsurr(xbin)

)
+

3·16∑
xbin=1

hsurr(xbin) log
(
hsurr(xbin)
hobj(xbin)

)
. (8.1)

Overall, low values for ψcc correspond to a low color contrast and vice versa.

Textureness

To complement the color contrast, we also measure the textureness of objects. This is
important since CNN-based systems tend to focus on texture when learning from natural
images [Geirhos et al., 2018a; Islam et al., 2021]. We utilize the Gray Level Co-occurrence
Matrix (GLCM) [Haralick et al., 1973] to capture the textureness of an object. GLCMs are
frequently used as texture descriptors in multiple applications [Christodoulou et al., 2003;
Schwartz et al., 2009; Peña-Barragán et al., 2011]. The GLCM Ad,θ is an accumulator of size
l × l for an image with l different gray levels. It accumulates how frequently combinations
of gray values occur in an image for pixels at a pre-defined distance d and a pre-defined
orientation θ. For instance, if the distance is 1 and the orientation is 0◦, we compare each
pixel with its lower neighbor. Hence, the two gray values g1 and g2 are extracted, and the
GLCM entries with these gray values as indices (Ag1,g2 and Ag2,g1) are incremented. If an
image is textureless, only the entries around the GLCM’s main diagonal are nonzero. In
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contrast, entries in other parts of the GLCM will be nonzero if the image features textured
areas. Note that a GLCM is constructed for one pair of d and θ. Hence multiple GLCMs are
necessary to capture textures with different orientations and scales. Based on the GLCM,
different values of Ad,θ are extracted, including the energy or the contrast to aggregate the
GLCM to one value [Haralick et al., 1973].

To measure the textureness of an annotated object with a GLCM, we convert the RGB image
to gray values and generate a GLCM on the area covered by the annotated object. For the
distance d, we use three values adapted to the size of the annotated object. In contrast, the
orientation θ is fixed to the values (0◦, 45◦, 90◦, and 135◦), independent of the object size.
Hence, we generate 12 GLCMs per annotated object. For each GLCM, we determine the
contrast ψd,θGLCM contrast of Ad,θ to represents the textureness. The contrast is the sum over
Ad,θ weighted by the gray value difference that each entry represents [Haralick et al., 1973].
Thus, the contrast is defined as

ψd,θGLCM contrast =
l∑

g1=1

l∑
g2=1

Ad,θ
g1,g2(g1 − g2)2. (8.2)

Low values for ψd,θGLCM contrast represent a low textureness and vice versa. Since we have 12
different GLCMs, we accumulate all ψd,θGLCM contrast results for the different combinations of d
and θ by taking the maximum and denoting it as ψtex. Therefore, we utilize the contrast of
the dominant GLCM across the different distances and orientations.

Object Shape

Following the definition of two properties derived from RGB or gray values, we now focus on
properties that only capture the object’s shape. Therefore, the following properties are all
defined based on a binary image representing the annotated object.

Compactness Compactness is a shape property that has previously been used for generating
object proposals [Yanulevskaya et al., 2014; Werner et al., 2015]. We measure the compactness
of an annotated object as circularity following a classic definition [Gonzalez and Woods,
2018] used by Werner et al. [2015] and others. Hence, the compactness ψcomp is defined
as

ψcomp = 4πaO
p2 . (8.3)

It compares the annotated object to a circle by calculating the ratio between the area of the
annotated object (aO) and the annotated object’s perimeter (p) as visualized in Fig. 8.1(b). If
the annotated object is a circle, ψcomp = 1. Accordingly, the score decreases if the annotated
object diverges from the circular shape.

Convexity The second shape property, convexity, has not only been used to generate object
proposals [Karpathy et al., 2013; Yanulevskaya et al., 2014; Werner et al., 2015] but also
supports perceptual grouping in human visual perception [Kanizsa and Gerbino, 1976]. To
measure the convexity of an annotated object, we follow a standard definition [Chaki and Dey,
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2020]1 used by Werner et al. [2015]. First, we calculate the convex hull H of the annotated
object O, visualized in Fig. 8.1(c) by the hatched blue area. Subsequently, convexity is the ratio
between the area of the annotated object aO and the convex hull aH :

ψconv = aO
aH

. (8.4)

Similar to compactness, high values for convexity correspond to objects that are convex and
vice versa.

Eccentricity As a final shape property, we measure how elongated an annotated object
is. This property is calculated as the eccentricity [Gonzalez and Woods, 2018], similar
to Werner et al. [2015]. To determine an annotated object’s eccentricity, we first determine
the eigenvalues (λ1 and λ2) and eigenvectors (e1 and e2) of the covariance matrix calculated
from the second-order central moments of the annotated object’s coordinates. As a result,
the larger eigenvalue λ1 is associated with the eigenvector e1 along the major axis of the
object. Accordingly, the smaller eigenvalue λ2 is associated with the eigenvector e2 along
the object’s minor axis. This is visualized in Fig. 8.1(d) with the eigenvectors scaled by the
eigenvalues. Finally, the ratio of the eigenvalues λ1 and λ2 is used to define the eccentricity
ψecc:

ψecc =
√

1− λ2
λ1
. (8.5)

If the eccentricity equals 0, the annotated object’s principal axes have the same length, similar
to a circle or a square. The more the eccentricity diverges from 0, the more elongated the
annotated object is.

Object Class

The final object property that we define is the object’s class2. For the COCO dataset [Lin
et al., 2014] and the LVIS dataset [Gupta et al., 2019], object classes are annotated such
that no further calculation or annotation is necessary. As described in Sec. 2.2.2, the COCO
dataset features annotated objects of 80 classes, while the LVIS dataset distinguishes 1723
classes with a higher level of detail.

8.1.2 Datasets and Methods

After defining the object properties, we present the datasets and object proposal generation
methods utilized in this chapter. As datasets, we use the challenging COCO [Lin et al., 2014]
and LVIS [Gupta et al., 2019] test datasets for our evaluation. However, the COCO dataset is
only used in the object class-specific evaluation, while all other evaluations are carried out on
the LVIS dataset. The LVIS dataset is more suitable for calculating the other object properties
since the annotations allow a more precise analysis of the object shapes and more accurately
distinguish foreground from background. In contrast, we omit the LVIS dataset for the object

1Chaki and Dey [2020] use the term solidity for this measure.
2We follow a very abstract concept of objects here and view the object class as an object property for a unified
presentation.
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Table 8.1: Classification of the evaluated object proposal generation methods w.r.t. to the use of superpixels
(second column), the use of a CNN (third column), and the concept followed for integrating the
CNN (fourth row). The concepts are the multi-shot concept and the one-shot concept described in
Sec. 3.2.3. If no CNN is utilized, neither concept is applied.

Method Superpixels CNN Concept

MCG 3 7 -
COB 3 7 -
DeepMask 7 3 multi-shot
SharpMask 7 3 multi-shot
FastMask 7 3 one-shot
AttentionMask 7 3 one-shot
SAM+FH 3 3 one-shot
SAM+EA-ETPS 3 3 one-shot
SAM+DeepFH 3 3 one-shot

class-specific evaluation due to the large number of classes. Note that despite the differences in
annotations, the property-specific results are similar on both datasets.

Given the object properties and the datasets, we compare the results of nine relevant object
proposal generation systems. Besides our proposed systems AttentionMask (see Ch. 4),
SAM+FH (see Ch. 5), SAM+EA-ETPS (see Ch. 6), and SAM+DeepFH (see Ch. 7), we also
evaluate MCG [Arbeláez et al., 2014; Pont-Tuset et al., 2017], COB [Maninis et al., 2016,
2017], DeepMask [Pinheiro et al., 2015], SharpMask [Pinheiro et al., 2016], and FastMask [Hu
et al., 2017a]. This allows us to capture the influence of superpixels, CNNs, and the one-shot
as well as the multi-shot concept on the results. Table 8.1 presents a classification of the
systems w.r.t. those categories.

8.1.3 Evaluation Measures

To assess the performance of the different object proposal generation methods, we use Average
Recall (AR) as described in Sec. 2.2.3, similar to the evaluations in Ch. 4 - Ch. 7. AR jointly
evaluates how many objects are discovered and how well they are segmented. Similar to
the definition of the size-specific ARs in Sec. 2.2.3, we use property-specific ARs for the
defined properties. For each property except for the object class, we sort all annotated objects
based on the property and split them into eight bins with equal cardinality. Hence, each
bin represents a range of property values from low values to high values. For the object
class-specific evaluation, we define a bin per object class, leading to 80 bins for the COCO
dataset. Subsequently, we report the AR@100 for the annotated objects of each bin generating
80 (object class) or 8 (other properties) property-specific results per object proposal generation
method.

In addition to the property-specific ARs, we also calculate the Pearson correlation coeffi-
cient [Illowsky and Dean, 2018] between different properties. This enables us to discover
dependencies between the properties that are hidden in the data. The Pearson correlation
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coefficient rψp,ψq measures the linear correlation between properties ψp and ψq across all n
annotated objects based on the covariance and the individual variances:

rψp,ψq =
n

n∑
i=1

(ψpi · ψqi)−
n∑
i=1

ψpi

n∑
i=1

ψqi√√√√√
n n∑

i=1
ψ2
pi
−
(

n∑
i=1

ψpi

)2
n n∑

i=1
ψ2
qi
−
(

n∑
i=1

ψqi

)2

, (8.6)

with ψpi denoting the value of the property ψp for the ith object. The result rψp,ψq is in
the interval of [−1, 1]. While values around 0 indicate no correlation, values closer to 1 or
−1 indicate a strong correlation or anti-correlation. For the interpretation of the Pearson
correlation coefficient, we use the rule of thumb by Hinkle et al. [2003]: If rψp,ψq is in the
range of −0.3 · · ·+ 0.3, there is no relevant correlation, while rψp,ψq < −0.9 or rψp,ψq > +0.9
indicate a strong (anti-) correlation. For the remaining ranges, intermediate interpretations
apply [Hinkle et al., 2003]. To generate significant results, we always use all 50,754 annotated
objects in the LVIS test dataset to generate rψp,ψq .

8.2 Results

Based on the previously described setup, we present the results of our extended evaluation in
this section. Similar to the description of the object properties, we discuss the influence of each
property individually. Additionally, we first discuss the influence of the object size on the results
using the same framework as a baseline for the subsequent analyses.

8.2.1 Size

The previous evaluations, e.g., in Sec. 4.4.1 and Sec. 7.3.2, showcased a strong influence of the
annotated object’s size on the object proposal generation results. This influence is highlighted
by the results in terms of the size-specific ARS , ARM , and ARL measures and is in line
with the findings of other authors [Pinheiro et al., 2015, 2016; Hu et al., 2017a]. To better
judge the influence of the other object properties described in Sec. 8.1.1, we apply the same
evaluation on the size of the annotated objects. Thus, we generate eight size-specific ARs for
each object proposal generation system. The results of this baseline experiment are visualized
in Fig. 8.2.

The results in Fig. 8.2 show that the performance of all systems degrades for small objects.
The average improvement in terms of AR@100 from the bin with the smallest objects to
the bin with the largest objects is 0.450 across all systems. These results are in line with
the results in the previous evaluations (see Sec. 4.4.1 or Sec. 7.3.2). Moreover, we are now
able to show that the smallest 12.5% of the objects in the LVIS test dataset (first bin) are
almost not discovered at all. Even the AR@100 for SAM+DeepFH is at a low level (0.003)
for these objects. Across most other bins, the results are similar compared to the previous
evaluations based on ARS , ARM , and ARL. To explain this general behavior, we refer to
Ch. 4.

Overall, the results in Fig. 8.2 support the previous size-specific results and serve as a baseline
for judging the influence of the other object properties.
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Figure 8.2: Size-specific results in terms of Average Recall (AR@100) on the LVIS test dataset for the nine
object proposal generation methods evaluated in this chapter. Note that log scale is applied
to the x-axis denoting the annotated object’s size, while the y-axis is truncated at 0.5 for
improved visibility. The results for SAM+FH and SAM+EA-ETPS are almost at an identical
level throughout the plot.
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Figure 8.3: Color contrast-specific results in terms of Average Recall (AR@100) on the LVIS test dataset for
the nine object proposal generation methods evaluated in this chapter. Note that log scale is
applied to the x-axis denoting the annotated object’s color contrast, while the y-axis is truncated
at 0.5 for improved visibility. The results for SAM+FH and SAM+EA-ETPS are almost at an
identical level throughout the plot.

8.2.2 Color Contrast

The first new object property we evaluate is the color contrast ψcc. The results of the
evaluation w.r.t. the color contrast in Fig. 8.3 show that the color contrast influences all
evaluated object proposal generation systems. However, this influence is not as strong as
the influence of the object size discussed above. On average, the AR@100 improves by 0.237
from the bin with the low-contrast objects to the bin with the high-contrast objects (0.450 for
size).

Analyzing the results in Fig. 8.3 in more detail shows that the color contrast does not influence
all systems equally. For instance, the improvement in terms of AR@100 between low-contrast
objects (first bin) and high-contrast objects (last bin) is 0.268 for MCG and only 0.183 for
FastMask. Similarly, the improvement between those two bins is 0.238 for AttentionMask
and 0.291 for SAM+FH. Hence, systems utilizing superpixels (MCG and SAM) benefit more
from a strong color contrast than pure CNN-based systems. This is due to the construction of
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Figure 8.4: Example images from the LVIS test dataset with objects exhibiting low color contrast (upper
two rows) and high color contrast (lower two rows). The first column shows the input image,
while the second column depicts the best fitting AttentionMask proposal for the annotated object
presented in the third column. Filled colored contours denote discovered objects, while not filled
red contours denote missed objects. Note that only the best fitting proposal (highest IoU) for one
annotated object per image is visualized. Input images and annotations taken from the LVIS
dataset [Gupta et al., 2019].

most superpixel segmentation methods that rely on color or brightness contrasts. Moreover,
it is possible to combine the positive effect of superpixels on high-contrast objects and the
stronger performance of CNN-based systems on low-contrast objects, as the results for the
SAM-based systems indicate.

To visualize the effect of low or high color contrast, we show qualitative results of AttentionMask
on both types of objects in Fig. 8.4. For the low-contrast objects (first and second row),
it is visible that AttentionMask has problems distinguishing the annotated object from the
similarly colored background. In the case of the sausage, AttentionMask is unable to discover
the object. In contrast, the elephant in the second example is discovered, but the elephant’s
extent is only roughly estimated. For instance, the cub next to the discovered elephant
is integrated into the proposal, while the opposite effect is visible on the rightmost leg.
The two examples in the lower part show high-contrast objects that AttentionMask easily
discovers.

No relevant correlation is evident when comparing the color contrast ψcc to the other object
properties. Hence, color contrast is not related to the other properties including the object size.
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Figure 8.5: Texture-specific results in terms of Average Recall (AR@100) on the LVIS test dataset for the
nine object proposal generation methods evaluated in this chapter. Note that log scale is applied
to the x-axis denoting the annotated object’s textureness, while the y-axis is truncated at 0.5 for
improved visibility. The results for SAM+FH and SAM+EA-ETPS are almost at an identical
level throughout the plot.

This is also supported by the qualitative results in Fig. 8.4 that include low and high color con-
trast for small (sausage and kite) and large (elephant and cat) objects.

Overall, the color contrast between the object and the surrounding substantially influences the
object proposal results. Additionally, superpixel-based object proposal generation methods
like MCG or SAM benefit more from a strong color contrast. The results also show that
it is possible to combine the positive effects of superpixels on high-contrast objects and of
CNN-based methods on low-contrast objects.

8.2.3 Textureness

Inspired by findings that show a strong focus of CNNs on texture [Geirhos et al., 2018a; Islam
et al., 2021], we investigate the influence of the object’s textureness ψtex on the results of object
proposal generation methods. The results in terms of the texture-specific ARs in Fig. 8.5
indicate a strong influence of the objects’ textureness. The improvement in terms of AR@100
from the low-textureness bin to the high-textureness bin is 0.421 across all methods. This is
similar to the influence of the size discussed previously (0.421 vs. 0.450). One explanation for
the strong influence of textureness on all CNN-based methods is the focus of such methods on
texture when learning from data as mentioned above. Hence, if only a weak texture exists,
the CNN-based systems will struggle to discover the objects.

This interpretation is also supported by the qualitative results in Fig. 8.6 that visualize
annotated objects with low and high textureness as well as the proposals generated by
AttentionMask. The wristband in the first example or the sheep in the background in the second
example have virtually no recognizable texture on the image plane. Hence, AttentionMask
misses both objects. In contrast, the sheep in the third example has a rich uniform texture
originating from its wool. Similarly, the bus in the final example features various textures
due to the windows, the wheel cap, and the advertisements. Hence, both objects have strong
textures that allow AttentionMask to discover them.

Besides the focus of CNNs on texture, another interpretation opens up when comparing the
size-specific results (see Fig. 8.2) and the texture-specific results (see Fig. 8.5) in detail. Both
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Figure 8.6: Example images from the LVIS test dataset with non-textured objects (upper two rows) and
textured objects (lower two rows). The first column shows the input image, while the second
column depicts the best fitting AttentionMask proposal for the annotated object presented in
the third column. Filled colored contours denote discovered objects, while not filled red contours
denote missed objects. Note that only the best fitting proposal (highest IoU) for one annotated
object per image is visualized. Input images and annotations taken from the LVIS dataset [Gupta
et al., 2019].

results are similar for most methods. Accordingly, the Pearson correlation coefficient between
the object size and textureness is 0.855 across all annotated objects. Hence, both properties
are strongly correlated. The strong correlation is the result of a lack of texture in small
objects due to the low resolution on the image plane. Even if an object originally has a rich
texture, this texture vanishes, as the object is projected onto the image plane since the spatial
resolution of the image is too coarse to capture the texture. This effect is visible from the
examples in Fig. 8.6. The texture of the sheep in the background in the second example is not
visible on the image plane due to the sheep’s size. In contrast, the large sheep in the third
row has a rich uniform texture. Thus, the size of an object and the object’s texture on the
image plane are closely related.

Overall, we derive a strong influence of textureness on object proposal generation results.
However, textureness and size are closely related in terms of correlation and causality. Given
that several systems are technically unable to learn small or tiny objects (e.g., see training
procedure of FastMask in Sec. 3.2.3), we assume that the influence of the size is stronger than
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Figure 8.7: Compactness-specific results in terms of Average Recall (AR@100) on the LVIS test dataset for
the nine object proposal generation methods evaluated in this chapter. Note that log scale is
applied to the x-axis denoting the annotated object’s compactness, while the y-axis is truncated
at 0.5 for improved visibility. The results for SAM+FH and SAM+EA-ETPS are almost at an
identical level throughout the plot.

the influence of textureness. Moreover, the results of MCG follow the general trend of the
CNN-based methods, although MCG does not utilize CNNs. Hence, the effect of the size is
likely to be more dominant.

8.2.4 Object Shape

After discussing the influence of color and texture, we investigate the shape properties of the
annotated objects in the subsequent sections. Note that the shape properties only rely on the
binary segmentation mask of the annotated object and do not consider color or texture at
all.

Compactness and Convexity

First, we jointly discuss the influence of compactness (ψcomp) and convexity (ψconv) on the
object proposal generation results since both properties measure similar yet slightly different
qualities. While compactness compares the object to a circle, convexity matches the object to
its convex hull. However, both properties prefer objects without significant notches in their
shape. The compactness-specific ARs in Fig. 8.7 and the convexity-specific ARs in Fig. 8.8
indicate a substantial influence of both properties on the overall results. Highly compact
or highly convex objects are generally easier to discover and vice versa. The strength of
the influence is similar to color contrast. For compactness, the results in terms of AR@100
increase on average by 0.184 from the lowest bin to the highest bin, while the increase for
convexity is 0.191 on average.

A closer look at both results reveals that the influence of compactness and convexity is
strongest on one-shot object proposal generation systems like AttentionMask. This results
from the strong downsampling in the one-shot concept discussed in Ch. 5. Therefore, the
segmentations are generated on a low resolution and subsequently upsampled through bilinear
interpolation. The interpolation leads to blob-like proposals as visible from the results of
AttentionMask in Fig. 8.9. For instance, AttentionMask only discovers the main part of the
kite in the first row with a blob-like proposal while omitting details like the tails. Similarly,
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Figure 8.8: Convexity-specific results in terms of Average Recall (AR@100) on the LVIS test dataset for
the nine object proposal methods evaluated in this chapter. Note that log scale is applied to
the x-axis denoting the annotated object’s convexity, while the y-axis is truncated at 0.5 for
improved visibility. The results for SAM+FH and SAM+EA-ETPS are almost at an identical
level throughout the plot.

AttentionMask misses details of the ships’ shape in the second row, like the antennas, the
bow, and the stern. These imprecise proposals lead to a more substantial drop in AR@100
on such objects for one-shot approaches. In contrast, the results in the third and fourth row
in Fig. 8.9 indicate that the blob-like proposals of AttentionMask match convex or compact
objects like the orange or the stop sign very well.

The results in Fig. 8.7 and Fig. 8.8 revealed similarities between compactness and convexity.
These similarities are supported by the Pearson correlation coefficient rψcomp,ψconv that indicates
a strong correlation (rψcomp,ψconv = 0.806) between compactness and convexity. This is plausible
since compactness and convexity assess similar properties as discussed above. Additionally,
perfect compactness (circle shape) will automatically lead to perfect convexity. In contrast,
high convexity does not automatically lead to high compactness as the baseball bat in the
final row of Fig. 8.9 shows. Besides the correlation between compactness and convexity,
only a medium correlation between compactness and eccentricity was found (rψcomp,ψecc =
0.589).

Overall, the results showcase a substantial influence of compactness and convexity on the object
proposal generation results. Moreover, the properties are closely related in terms of correlation,
which is in line with the properties’ definitions. The results also revealed that the influence of
both properties is stronger in one-shot object proposal generation systems. We attributed
this to the stronger downsampling in these systems and the subsequent interpolation-based
upsampling of the object proposals.

Eccentricity

The final shape property that we investigate is the eccentricity of an annotated object (ψecc).
Figure 8.10 presents the results for the eccentricity-specific ARs on the nine object proposal
generation methods. These results show an influence of similar strength compared to color
contrast, compactness, and convexity. However, the influence is inverted. Hence, low-
eccentricity objects, which do not have an elongated shape, are easier to discover than
high-eccentricity objects. The improvement from high-eccentricity objects to low-eccentricity
objects is 0.215 in terms of AR@100.
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Figure 8.9: Example images from the LVIS test dataset with non-compact and non-convex objects (first two
rows), compact and convex objects (third and fourth row) as well as non-compact but convex
objects (final row). The first column shows the input image, while the second column depicts
the best fitting AttentionMask proposal for the annotated object presented in the third column.
Filled colored contours denote discovered objects, while not filled red contours denote missed
objects. Note that only the best fitting proposal (highest IoU) for one annotated object per image
is visualized. Input images and annotations taken from the LVIS dataset [Gupta et al., 2019].
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Figure 8.10: Eccentricity-specific results in terms of Average Recall (AR@100) on the LVIS test dataset for
the nine object proposal generation methods evaluated in this chapter. Note that log scale is
applied to the x-axis denoting the annotated object’s eccentricity, while the y-axis is truncated
at 0.5 for improved visibility. The results for SAM+FH and SAM+EA-ETPS are almost at an
identical level throughout the plot.

Investigating the results further reveals that the performance of AttentionMask and FastMask
drops significantly with rising eccentricity. For the bin with the second-highest eccentricity,
both methods drop below SharpMask while dropping below all other methods on high-
eccentricity objects (last bin). Hence, AttentionMask and FastMask suffer most from elongated
objects. This effect results from of the systems’ design, extracting square windows (10× 10)
from the feature pyramid. Hence, the windows do not adapt to elongated objects. In contrast,
SharpMask and DeepMask use windows with multiple aspect ratios extracted from the image
pyramid, while MCG, COB, and the variations of SAM utilize superpixels to circumvent (MCG
and COB) or mitigate (SAM) the effect.

The influence of the eccentricity on AttentionMask is also visible in the qualitative results
in Fig. 8.11. The first two examples in Fig. 8.11 show typical low-eccentricity objects. Both
objects are discovered by AttentionMask since they fit into square windows. In contrast, the
objects in the final two examples do not fit into square windows due to the strong eccentricity.
As a result, AttentionMask misses the skis and only captures the upper part of the horse.
Missing the legs of the horse can result from two scenarios. First, the legs were not part of
the square window extracted from the feature pyramid. Second, the legs were included, but
the window was extracted from a pyramid layer that is supposed to discover larger objects.
Hence, the legs are too thin to get discovered. Note that both reasons are tied to the high
eccentricity of the object.

As previously discussed and visible from the first example in Fig. 8.11, eccentricity and
compactness are correlated (rψcomp,ψecc = 0.589). This correlation is apparent since several
objects with a low eccentricity have a circle-like shape, leading to high compactness. However,
as visible from the bear in the second example in Fig. 8.11, this is not the case for all
low-eccentric objects. No relevant correlation to any other discussed property was found for
eccentricity.

In general, the results w.r.t. the eccentricity of the objects indicate a substantial influence,
especially on AttentionMask and FastMask that discover objects based on square windows.
In contrast, the results of the superpixel-based approaches (e.g., SAM) that are not limited
by any windows and suffer less from elongated objects.
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Figure 8.11: Example images from the LVIS test dataset with low-eccentricity objects (upper two rows)
and high-eccentricity objects (lower two rows). The first column shows the input image, while
the second column depicts the best fitting AttentionMask proposal for the annotated object
presented in the third column. The black frames around the images in the final row are only
added for visualization and are not part of the image. Filled colored contours denote discovered
objects, while not filled red contours denote missed objects. Note that only the best fitting
proposal (highest IoU) for one annotated object per image is visualized. Input images and
annotations taken from the LVIS dataset [Gupta et al., 2019].



8.2 Results 161

Table 8.2: Class-specific results in terms of Average Recall for 100 proposals (AR@100) as well as class-specific
properties on the COCO test dataset. The AR@100 is the mean across the evaluated object
proposal generation methods on annotated objects of a specific class. Similarly, the properties ψcc,
ψtex, ψconv, ψecc, and the object size are averaged across the annotated objects of the respective
class. The final column denotes the number of annotations per class across the COCO training
dataset. The upper part of the table includes difficult object classes, while the central part shows
results on simple object classes. For comparison, we give the average across the 80 classes in the
final part of the table.

Class AR@100↑ Size ψcc ψtex ψconv ψecc No. of annotations

Ski 0.068 1,958 0.364 127.8 0.669 0.961 4,684
Fork 0.082 2,155 0.510 151.2 0.617 0.953 3,914
Sports ball 0.175 879 0.949 32.1 0.940 0.516 4,361

Bear 0.518 54,701 0.904 2,093.4 0.823 0.767 903
Elephant 0.537 28,832 0.601 1,470.7 0.753 0.746 3,880
Bus 0.559 44,390 0.385 2,222.3 0.899 0.730 4,321

Average 0.323 15,852 0.671 736.0 0.822 0.812 7,473

8.2.5 Object Class

Switching to high-level information, we investigate the influence of the annotated object class
on the class-agnostic object proposal generation results. Unlike the previous analyses, we
conduct this evaluation on the COCO test dataset with only 80 object classes. The class-
specific AR@100 for the 80 object classes in the COCO dataset varies between 0.068 (ski) and
0.609 (toilet) when averaged across the nine object proposal generation methods. Overall, the
per-class average in terms of AR@100 is 0.323 with a standard deviation of 0.127. The different
object proposal generation methods show similar patterns on different AR-levels across the
results on the different object classes. Therefore, we average the results of the different
methods for our subsequent analysis of the object classes’ influence.

After giving an overall impression, we will discuss the results of six object classes in more
detail. The first part of Tab. 8.2 shows the results for the three difficult classes ski, fork,
and sports ball. The difficulty is well documented by the low mean ARs across all proposal
methods, which are well below the average across all classes (see bottom row). For the
three classes and most other difficult classes, the low AR is related to the small size of the
annotated objects, which is in line with earlier findings. The average size of the annotated
objects across the three classes is well below 2,500 pixels, while the average across all classes
is 15,852. The small size is also visible from the results in Fig. 8.12, depicting objects of
the three classes in typical scenarios. Moreover, the color contrast for the object classes ski
and fork is low, while the eccentricity is high (see first four rows in Fig. 8.12). Since both
properties negatively impact the results, the low AR for those classes is easily explained by a
combination of multiple factors. In contrast, objects of the class sports ball are convex, have
a low eccentricity, and a high color contrast. Nevertheless, the results are subpar, since the
average size is very small, which is visible from the examples in Fig. 8.12 (final two rows).
Therefore, most object proposal generation systems are technically unable to discover those
objects.

The second part of Tab. 8.2 presents the results for the three simple object classes bear,
elephant and bus. A significant factor for the good results is again the object size that is well
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Figure 8.12: Example images from the COCO test dataset with objects from the difficult object classes
ski (first two examples), fork (third and fourth example), and sports ball (final two examples).
The first column shows the input image, while the second column depicts the best fitting
AttentionMask proposals for the annotated objects presented in the third column. Filled colored
contours denote discovered objects, while not filled red contours denote missed objects. Note
that only the best fitting proposal (highest IoU) per object and only the annotated objects
from the respective classes are visualized. Input images and annotations taken from the COCO
dataset [Lin et al., 2014].
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Figure 8.13: Example images from the COCO test dataset with objects from the simple object classes
bear (first two examples), elephant (third and fourth example), and bus (final two examples).
The first column shows the input image, while the second column depicts the best fitting
AttentionMask proposals for the annotated objects presented in the third column. Filled colored
contours denote discovered objects, while not filled red contours denote missed objects. Note
that only the best fitting proposal (highest IoU) per object and only the annotated objects
from the respective classes are visualized. Input images and annotations taken from the COCO
dataset [Lin et al., 2014].



164 Chapter 8 Extended Evaluation of Object Proposal Generation Systems

above average for the three classes. For instance, objects of the class bus are three times
larger than the average object. The above-average size is also visible from the qualitative
results of the three classes in Fig. 8.13. Most of the images are dominated by an instance
of one of the three classes, like the elephant in the third row or the bus in the fifth row.
Moreover, all classes have a below-average eccentricity, leading to better results as discussed
in Sec. 8.2.4. The objects of the class bear also feature a strong color contrast since the bears
are primarily black or brown, while the background is usually greenish (see first two rows in
Fig. 8.13). Hence, the good results on classes like bear, elephant, and bus are related to size,
color contrast, and eccentricity.

Another key finding from Tab. 8.2 is that the number of annotations per object class in the
training set does not substantially influence the results. All classes presented in Tab. 8.2 were
underrepresented in the training set. For instance, the object class bear is only represented
by 903 annotated objects across the training set (average: 7,473). Nevertheless, the result
in terms of AR@100 is among the best across all classes. In contrast, the class person is
overrepresented in the training dataset with 181,682 annotated objects. However, the result for
the class person is below-average (0.249 vs. 0.323), which implies that the systems generalize
well across the object classes.

Overall, the results on the 80 object classes in the COCO dataset vary. The differences are
similar across the object proposal generation systems and rooted in the properties described
previously, like size, color contrast, and eccentricity. Moreover, we showed that the number of
training samples per class has no major influence on the results.

8.3 Discussion

In this chapter, we presented our extended evaluation of nine object proposal generation
methods on the complex COCO and LVIS datasets. Inspired by the typical size-specific
evaluation, we extended the regular evaluation of object proposal generation methods by
investigating the influence of six object properties covering color contrast, texture, shape, and
the object class on the object proposal generation results. Additionally, we examined the
relations between the six properties and the relation to the object size. This detailed analysis
extends our previous evaluations and allows a better understanding of the current state of
object proposal generation.

The results of our evaluation confirm a strong influence of the object size on the results.
Specifically, the smallest 12.5% of the objects in the challenging LVIS test dataset are
almost not discovered at all. A similar influence is visible for the textureness of objects,
which is not surprising, since both properties are strongly related. Moreover, color contrast,
compactness, convexity, and eccentricity substantially influence the results. For the evaluated
systems, most of the observed effects are explained by the different characteristics of the
systems, like the inherent downsampling process in CNNs or the contrast-based generation of
superpixels. Additionally, the results show that our combination of CNNs and superpixels
in SAM accumulates the benefits of both processing styles for most properties. Finally, our
evaluation revealed that the influence of the different object classes is generally a combination
of the previously discussed properties. Moreover, the number of annotated objects per class
in the training dataset does not substantially influence the results.

Based on the extended evaluation, we formulate four novel challenges in object proposal genera-
tion that are related to methodological limitations of current approaches:
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Tiny objects The discovery of tiny objects, which are below approximately 100 pixels in size,
is a significant challenge since all systems almost completely ignore those objects. This is
related to the strong downsampling in CNN-based methods or insufficient segmentations
in superpixel-based methods.

Elongated objects The eccentricity of objects is another major factor for the performance
of object proposal generation approaches. Systems utilizing windows or even square
windows to roughly discover objects are impacted more than superpixel-based systems.

Complex object shapes The precise segmentation of complex object boundaries with many
details poses another challenge. As discussed in Ch. 5, the main reasons are the inherent
downsampling process in CNNs or insufficient segmentations, similar to the problem of
tiny objects discovery.

Low-contrast objects Discovering objects that have a low color contrast w.r.t. their sur-
rounding is another challenge for object proposal generation systems. This is similar to
standard object detection methods as both lack dedicated modules [Fan et al., 2020;
Zhai et al., 2021] for such scenarios.

Overall, the evaluation presented in this chapter revealed several object properties that
negatively influence the results of object proposal generation methods. These properties were
combined into four novel challenges in object proposal generation that point to new potential
research directions as we will discuss in Sec. 10.3.
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This chapter presents three applications of our efficient object proposal generation system
AttentionMask introduced in Ch 4. As discussed in the introduction, object detection is the
most common application for object proposals. According to Hosang et al. [2015], evaluating
object proposal generation systems based on Average Recall (AR) is a good surrogate to
assess the quality of subsequent object detection systems. Hence, we do not investigate
the application of our object proposal generation systems to standard object detection
systems.

Alternatively, we focus on three challenging, relevant real-world tasks to showcase Atten-
tionMask’s flexibility and robustness. First, in Sec. 9.1, we combine AttentionMask with a
tailored classifier for airline logo detection based on two bachelor theses [Heid, 2018; Sadeghi,
2019] and a cooperation with zeroG GmbH, which cumulated in a joint publication [Wilms
et al., 2020]. In our setting, this task challenges the robustness of AttentionMask due to
adverse weather conditions that significantly degrade the image quality. Additionally, we
apply AttentionMask to the challenging medical instrument segmentation in Sec. 9.2 based
on a bachelor thesis [Gerlach, 2021] and our joint publication [Wilms et al., 2022a]. In this
task, medical instruments have to be localized and segmented in images acquired during
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known and unknown types of minimally invasive surgeries. The images are degraded by blood,
smoke, and poor illumination, posing again challenges to AttentionMask’s robustness. Finally,
in Sec. 9.3, we present two AttentionMask variations for apple localization in a complex
orchard environment based on the bachelor thesis by Johanson [2021], which led to a joint
publication [Wilms et al., 2022b]. This application is challenging, since the apples are small
or tiny, and the images are substantially cluttered.

Overall, the three different applications pose significant challenges for AttentionMask in the ar-
eas of flexibility, robustness, and the discovery of small and tiny objects. Additionally, all three
applications are active research areas involving complex real-world data.

9.1 Airline Logo Detection

The localization and detection of logos, known as logo detection, is an object detection subtask.
Logo detection facilitates multiple applications like verifying ad visibility in social media [Gao
et al., 2014] or TV broadcasts [Tüzkö et al., 2018]. In recent years, several systems for logo
detection [Iandola et al., 2015; Bianco et al., 2017; Fehérvári and Appalaraju, 2019] and a
multitude of datasets [Romberg et al., 2011; Fehérvári and Appalaraju, 2019; Tüzkö et al.,
2018] were presented.

We argue that logo detection suffers from two drawbacks despite the strong research interest.
First, logo detection is mainly addressed by applying application-agnostic object detection
systems like Faster R-CNN [Ren et al., 2016] with minor modifications [Iandola et al., 2015;
Eggert et al., 2017; Su et al., 2017b]. However, logos are substantially different from general
objects. For instance, the color, shape, and pose variety is limited compared to typical
object classes like cats or dogs. Specifically, the color and the shape of the logos are usually
identical across one class. Since less intra-class variability exists, smaller networks with fewer
parameters are sufficient and increase the computational efficiency.

Second, most large-scale logo detection datasets contain clean images or perfect product
images [Hoi et al., 2015; Bianco et al., 2017; Fehérvári and Appalaraju, 2019]. While this is
sufficient for tasks in controlled indoor environments, it strongly impedes the applicability in
outdoor environments. This is visible from Fig. 9.1 that shows logo detection results on a
clean image (right) and an image degraded by adverse weather effects (left). On the clean
image, the logo on the airplane tail is easily visible and detected by all four systems. In
contrast, adverse weather effects like rain or fog make the detection more challenging, resulting
in missed or misclassified logos.

To investigate these two drawbacks in more detail, we turn to the detection of airline logos
on airplane tails as visualized in Fig. 9.1. This logo detection task is well-suited for this
analysis since many clean, high-quality images are available from online databases fueled
by planespotters1. Adding images showing the effects of adverse weather conditions is also
possible since airplanes are usually captured outdoors. Moreover, airline logos on airplane
tails are a good example of typical logos, as deformations of logos on the airplane tails are
impossible.

1For instance, the online database Planespotters.net hosts almost 900,000 high-quality images of airplanes.
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(a) Faster R-CNN (b) YOLOv3

(c) Proposed system without data augmentation (d) Proposed system with data augmentation

Figure 9.1: Comparison between the application-agnostic object detection systems Faster R-CNN [Ren et al.,
2016] (a) and YOLOv3 [Redmon and Farhadi, 2018] (b) as well as our proposed airline logo
detection system without (c) and with our data augmentation (d). The airline logo on the right
is easily detected by all systems (green frames). In contrast, the airline logos on the left are
degraded by rain and fog, which leads to missed or misclassified logos (red or missing frames)
except for our system with the proposed data augmentation. Input images taken from Heid
[2018] (left image) and Lin et al. [2014] (right image).

In this section, we propose a novel airline logo dataset, a tailored two-stage airline logo
detection system based on AttentionMask, and a learning-free data augmentation strategy
for adverse weather conditions to investigate the two drawbacks. First, in Sec. 9.1.1, we
review related work on the three proposed components: logo detection datasets, logo detection
systems, and handling adverse weather conditions in general object detection. Subsequently,
we introduce our novel airline logo dataset covering 7038 logos across 41 classes in Sec. 9.1.2.
Besides clean images, the dataset also contains challenging images degraded by adverse weather
conditions to test the robustness of logo detection systems. Section 9.1.3 presents our dedicated
two-stage airline logo detection system based on a variation of AttentionMask (see Ch. 4) and
a lightweight, tailored classifier. Moreover, we present a novel, learning-free data augmentation
strategy in Sec. 9.1.4 that imitates the effects of adverse weather conditions to improve the
results in the absence of degraded training data. Section 9.1.5 evaluates our tailored airline
logo detection system on the new dataset and compares the results to application-agnostic
object detection systems used in logo detection. This evaluation showcases the merit of a
tailored logo detection system and the severe effect of adverse weather conditions on the logo
detection results. Subsequently, we demonstrate the positive impact of our learning-free data
augmentation strategy for the detection on degraded images. Finally, we discuss the main
findings and limitations in Sec. 9.1.6.
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9.1.1 Related Work

This section briefly discusses relevant literature on logo detection datasets and logo detection
systems. Moreover, we discuss recent advances in general object detection under adverse
weather conditions.

Logo Detection Datasets

Datasets for logo detection started with a limited amount of images and classes due to the
substantial labeling effort. Proposing a logo detection dataset with bounding box annotations,
Kalantidis et al. [2011] collected 40 natural images for 27 logo classes each. Similarly, Romberg
et al. [2011] proposed a dataset covering 32 classes with 70 images per class. Driven by the
success of CNNs, larger datasets were proposed by Bianco et al. [2017] (7830 images), Hoi
et al. [2015] (more than 70,000 images), and Fehérvári and Appalaraju [2019] (almost 300,000
images). However, those datasets focus on clean product images with low complexity and a
low amount of clutter. Moving away from clean images, Su et al. [2017a] collect a dataset of
product images and more complex natural scenes. However, Su et al. [2017a] provide only
image-level annotations. Taking one step further, Tüzkö et al. [2018] propose a dataset (11,504
images) containing only natural scenes with complex settings.

Despite advances toward datasets with logos captured in more complex scenarios, logo detection
datasets are dominated by simple, clean product images. Hence, complex scenarios, e.g.,
including adverse weather conditions, which frequently occur in real-world applications, are
not well represented.

Logo Detection

Since the advent of deep learning, logo detection systems moved from hand-crafted fea-
tures [Romberg et al., 2011; Kalantidis et al., 2011] to CNNs. As discussed earlier, most
CNN-based logo detection systems are based on application-agnostic object detection methods
like Faster R-CNN [Ren et al., 2016]. Iandola et al. [2015] discover logos with Faster R-CNN
and classify them with a CNN-based classifier. Eggert et al. [2017] adapt Faster R-CNN’s
anchor boxes, detection heads, and backbone to improve results on small logos. Augmenting
the training data with synthetic images, Su et al. [2017b] employ Faster R-CNN for improved
logo detection results. Fehérvári and Appalaraju [2019] apply the application-agnostic object
detectors SSD and YOLO to discover logos. In contrast to those purely CNN-based approaches,
Bianco et al. [2017] apply Selective Search [Uijlings et al., 2013] to generate logo proposals
and classify them with a small CNN-based classifier.

Overall, CNN-based logo detection systems utilize either application-agnostic object detec-
tors (Faster R-CNN, SSD, and YOLO) or outdated components (Selective Search) to detect
logos. Hence, to the best of our knowledge, modern systems specifically tailored to detect
logos are lacking.
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Adverse Weather Conditions in Object Detection

The effects of adverse weather conditions like fog or rain on object detection systems gained
more and more attention in recent years. Several methods tackle the problem in a deep
learning-based domain adaptation framework to support object detection systems. Since the
methods rely on deep learning, they demand target domain data for training. For instance,
Chen et al. [2018] learn a domain classifier with Faster R-CNN to generate domain invariant
features, while Hsu et al. [2020] propose a synthetic intermediate domain to allow gradual
adaptation. Addressing the difference between global and local domain adaptation, Zhu et al.
[2019] and Saito et al. [2019] focus on the alignment of features in object regions. Different
from that, RoyChowdhury et al. [2019] generate pseudo-labels for unlabeled target domain
video data utilizing the results of an object detector and a temporal consistency constraint. In
a different line of research, Halder et al. [2019] propose a physics-based rendering framework
to augment source domain images with artificial rain streaks.

In general, most approaches on domain adaptation for adverse weather effects need target
domain data for training. However, this data might not be available or only sparsely included
in datasets.

9.1.2 PSLogos Dataset

As previously discussed, existing datasets for logo detection lack challenging image settings with
adverse weather conditions and other degradations. To overcome this limitation and assess the
quality of detectors on degraded images, we propose the novel PlaneSpottersLogos (PSLogos)
dataset. The PSLogos dataset contains 6563 images of airplanes with bounding box annotations
for 7038 airline logos on airplane tails. Most images in the dataset were collected from the
online database Planespotters.net2 and do not suffer from adverse weather conditions. To
complement these simple, clean images, we add more challenging images taken from the visitor
gallery at Hamburg Airport. These images suffer from adverse weather conditions like rain
or fog. Figure 9.2 depicts examples of airline logos on clean and degraded images like in the
PSLogos dataset to highlight the difference. The mixture of both image types makes the
PSLogos dataset a good foundation for investigating the aforementioned drawbacks in logo
detection.

As discussed above, the images in our PSLogos dataset originate from two sources. First it
comprises 6311 images captured at various airports worldwide downloaded from Planespot-
ters.net. These images are mostly clean and do not suffer from adverse weather effects. Second,
the dataset contains 252 images captured at Hamburg Airport that suffer from adverse weather
conditions. The images from Planespotters.net images are between 640× 480 and 1600× 1216
in size, while the other images are all of the size 3968× 2976. We manually annotated the
airline logos of 41 airlines on the airplane tails with bounding boxes. The annotations follow
a non-uniform distribution with 146 to 186 annotated logos per class.

We split the dataset into four distinct sets as outlined in Tab. 9.1. First, we split the images
based on the data source. The first three sets PS-TRAIN, PS-VAL, and PS-TEST consist of
the 6311 clean images from Planespotters.net. While PS-TRAIN is used for training, PS-VAL
is the validation set, and PS-TEST serves as the first test set of our dataset. Table 9.1

2Planespotters.net: https://www.planespotters.net

https://www.planespotters.net
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(a) Clean images

(b) Degraded images

Figure 9.2: Examples of airline logos on airplanes in clean images (a) and images degraded by multiple adverse
weather effects (b). The green boxes highlight the airline logos. Base images taken from Lin et al.
[2014] (a) and Heid [2018] (b)

Table 9.1: Overview of the proposed split of our PSLogos dataset with the number of images, annotations,
and classes per set. The final column denotes if the set is used for training, validation, or testing.

Set No. of images No. of annotations No. of classes Purpose

PS-TRAIN 4396 4517 41 Training
PS-VAL 625 665 41 Validation
PS-TEST 1290 1397 41 Testing
PS-HAM 252 459 13 Testing

Overall 6563 7038 41

presents the number of images and the number of annotated airline logos per set. Besides
these three sets with clean images, all 252 images captured at Hamburg Airport comprise
the PS-HAM set. This set is exclusively used for testing. As discussed above and visible
in Fig. 9.2(b), most images in this set are degraded by adverse weather effects. The most
common degradations are due to rainy or foggy conditions. While fog leads to a brightened
image, rainy weather induces three main effects. First, the images may be darker due to heavy
clouds. Second, the rain streaks reduce the contrast. Lastly, as visible in Fig. 9.2(b), the rain
leads to raindrops on the windows of the gallery that distort the image content locally. Hence,
these images present significant challenges to the robustness of logo detection methods. Since
the availability of airlines is limited at Hamburg Airport, only 13 airline classes are covered
across the 459 annotations (see Tab. 9.1).
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Figure 9.3: Overview of our proposed airline logo detection system based on tailored components. In the
first step (left), an adapted AttentionMask system generates airline logo proposals. Subsequently,
these proposals (center) are classified with our novel lightweight airline logo classifier to remove
background proposals and determine the airline class (right). Note that the classes Korean
Air, Delta, and China Airlines are not part of our PSLogos dataset and are only included for
visualization. Input image taken from Lin et al. [2014].

9.1.3 Airline Logo Detection System

In this section, we introduce our tailored airline logo detection system. The system, visualized
in Fig. 9.3, is separated into two distinct components for generating airline logo proposals
and classifying the proposals. To generate airline logo proposals, we use a variation of
AttentionMask (see Ch. 4) adapted to the airline logo detection task. Subsequently, we apply
our tailored airline logo classifier to the first n airline logo proposals. The lightweight classifier
assigns each proposal to an airline logo class or the background class. The subsequent sections
describe the individual components in more detail. For our learning-free data augmentation
strategy, see Sec. 9.1.4.

Airline Logo Proposal Generation

For generating airline logo proposals, we utilize our AttentionMask system described in Ch. 4.
As shown in the evaluation in Sec. 4.4, AttentionMask generates strong object proposal
generation results across all object sizes. Applying SAM (see Ch. 5) is not necessary in
this case, since we need box proposals for the subsequent classification and do not rely on
precise segmentation masks. To switch from general object proposal generation to airline logo
proposal generation, we adapt AttentionMask in three ways. First, we remove the pyramid
levels S8 and S16 from AttentionMask’s feature pyramid, which are designed to discover small
objects. Levels for small objects are not necessary, since the airline logos in our training set
are medium or large. Hence, S8 and S16 cannot learn to generate proposals leading to false
positives and reducing the computational efficiency.

Second, we change the output of AttentionMask from masks to boxes to match the demands
of our CNN-based classifier by generating tight bounding boxes around the generated masks.
Similarly, we change the targets for the segmentation from masks to boxes to train the system.
Third, we only utilize the best 10 proposals according to AttentionMask’s objectness score
and apply NMS since the number of airline logos per image is small. Finally, we train the new
AttentionMask variation on the PSLogos dataset with the same training regime described
in Sec. 4.3. Hence, we do not use weights pre-trained on the COCO dataset. We refer the
reader to Sadeghi [2019] for more details on the optimization of AttentionMask’s structure
and training.
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Figure 9.4: Architecture of our proposed airline logo classifier with four convolutional layers and three fully
connected layers. Note that the classes Korean Air and China Airlines are not part of our PSLogos
dataset and are only included for visualization. Input images taken from Lin et al. [2014].

Airline Logo Classification

To classify the airline logo proposals, we tailor an airline logo classifier to reflect the differences
between objects and logos. In this section, we give an overview of the study leading to our airline
logo classifier and subsequently present this classifier in more detail.

Study on the Airline Logo Classifier To tailor a classifier for airline logo detection,
we conduct a structured architecture search based on the general architecture of VGG
nets [Simonyan and Zisserman, 2015]. We choose VGG nets since VGG-19 leads to better
airline logo classification results than other standard image classification approaches like
ResNet-50 [He et al., 2016a] and InceptionV3 [Szegedy et al., 2016] as we will show in
Sec. 9.1.5. VGG net architectures follow simple design principles (see Appendix A.1). Layers
are grouped in stages that conclude with a max pooling layer. All layers within a stage have
the same number of kernels, while the number of kernels increases from stage to stage. We
follow these principles and vary the number of stages, the number of layers per stage, the
number of fully connected layers, and the number of kernels or neurons per layer. Overall, we
train and evaluate 11,218 small CNNs based on the annotated boxes of the PSLogos dataset
with simple data augmentations (horizontal flipping and rotation). All annotated boxes were
resized to 64× 64 pixels for training and evaluation. Based on the study results, we select the
classifier with the best classification performance. For more details on the study, see Heid
[2018].

Final Airline Logo Classifier As the result of the study, we propose our tailored airline
logo classifier based on the VGG-style architecture. Figure 9.4 presents the structure of the
classifier. It consists of four stages with one convolutional layer per stage followed by three
fully connected layers. The final fully connected layer has 42 neurons representing the 41
airline classes in the PSLogos dataset and the background class. This lightweight design
leads to an effective and efficient classification and is in line with the findings of Bianco et al.
[2017] on logo classification. To integrate the airline logo classifier into the overall system,
we resize the airline logo proposals to size 64× 64 and apply the classifier to each proposal.
Hence, the classifier assigns each proposal to one of the 41 airline classes or the background
class.
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(a) Fog (b) Heavy clouds/rain (c) Raindrops

Figure 9.5: Examples of our proposed data augmentation strategy. The first row depicts clean image patches,
while the second row visualizes the results of the data augmentations applied to the clean image
patches. For comparison, the final row shows images patches with real effects of fog (a), heavy
clouds or rain (b), and raindrops (c). Base images taken from Lin et al. [2014] (first two rows)
and Heid [2018] (final row).

9.1.4 Data Augmentation

To increase the robustness of our airline logo detection system w.r.t. the effects of adverse
weather conditions, we present a learning-free data augmentation strategy. The data augmen-
tations imitate the effects of fog, heavy clouds or rain as well as raindrops in the PS-HAM
images, which are not represented in the training data (PS-TRAIN). Since no training data
with adverse weather effects is available in our dataset, our data augmentation is learning-
free. This is different from most methods that handle adverse weather conditions in object
detection (see Sec. 9.1.1).

The first augmentation addresses fog that leads to a brighter image with reduced contrast.
To mimic this effect, we brighten each image with a random brightness component between
0.2 and 1. The color value of each pixel in the image is raised to the power of the brightness
component. Note that we expect color values in the range of [0, 1]. The application of this
augmentation leads to artificial fog reducing the contrast as visible in the second row in
Fig. 9.5(a). To model the effects of heavy clouds or rain, we apply standard contrast reduction
with random strength to the images. This reduces the contrast without brightening the image
by combining each pixel’s color values with the mean color values of the image using a random
blending factor. The results of this data augmentation and the effects of real heavy clouds or
rain are visible in Fig. 9.5(b) (second row vs. third row).

Finally, to imitate the effect of raindrops on a window between the camera and the airplane,
we apply local Gaussian blur to the image. We employ the blur by creating a blurred version
of the image using a Gaussian filter and extracting 25 to 125 circular areas of random diameter
from the blurred image. These circular, blurred image patches are the artificial raindrops and
replace the same area in the original image. This leads to local distortions as created by natural
raindrops. The second row in Fig. 9.5(c) visualizes the effect of the artificial raindrops on clean
images, while the third row in Fig. 9.5(c) depicts actual raindrops.

For training the two components of our airline logo detection system, we randomly apply one
of the three augmentations to each PS-TRAIN image. Overall, the simple learning-free data
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augmentation strategy imitates fog, dark clouds or rain, and raindrops increasing the system’s
robustness to such effects as we will discuss in the evaluation.

9.1.5 Experiments

To assess the quality of our proposed airline logo detection system, we evaluate the system
on our PSLogos dataset. Additionally, this evaluation investigates the differences between
using application-agnostic object detectors and a tailored system for logo detection as well as
the influence of adverse weather conditions on logo detection. Both were introduced above as
major drawbacks in logo detection.

For training, we utilize the PS-TRAIN training set and report the results on the test sets
PS-TEST with clean images and PS-HAM with degraded images. Unless noted, we only use
standard data augmentation methods (horizontal flipping and rotation). We compare our
airline logo detection system with the three application-agnostic object detection systems
Faster R-CNN [Ren et al., 2016] with FPN [Lin et al., 2017b], YOLOv3 [Redmon and Farhadi,
2018], and SSD [Liu et al., 2016a], which are frequently used in logo detection. All three
systems were trained on the PS-TRAIN training set, similar to our proposed system. Moreover,
we use a ResNet-50 [He et al., 2016a] backbone in all systems for a fair comparison. An
evaluation against other logo detection systems is impossible due to the lack of publicly
available code.

To evaluate the detection quality of the systems, we follow the logo detection literature [Su
et al., 2017b; Fehérvári and Appalaraju, 2019] and use mean Average Precision (mAPt) [Salton
and McGill, 1986; Everingham et al., 2010] with different IoU thresholds t. If no IoU threshold
is given, we average between 0.5 and 0.95. The mAPt calculates the area under the class-
specific precision-recall curves followed by an averaging across the different classes to assess
the detection quality. See Everingham et al. [2010] for a detailed definition of mean Average
Precision. Additionally, we use Average Recall (AR) as described in Sec. 2.2.3 to assess the
localization quality of the systems without the classification results.

Results on PS-TEST

First, Tab. 9.2 presents the quantitative results of the four systems on the PS-TEST test set
containing clean images. From the results, it is visible that all four systems perform very well
on PS-TEST. Even for precise detections (mAP0.75), all results are above 0.8, showcasing
the strong overall detection performance and the precise localization ability. Similarly, the
AR for the first 10 proposals (AR@10) is high with values above 0.7. Thus, the first few
proposals discover most logos precisely. When comparing the different systems, our airline
logo detection system outperforms the other three systems across all measures. In terms of
mAP, our system outperforms Faster R-CNN by 7.4% and SSD as well as YOLOv3 by at
least 1.4%. Highlighting the precise localization quality of our system, the improvement in
terms of mAP0.75 is up to 6.5%. Similarly, our system outperforms the other systems in terms
of AR@10 by 1.8% to 5.8%.

The qualitative results of our system on clean images of airplanes in Fig. 9.6 support these
quantitative results. On the left of Fig. 9.6, several successful detections of our system are
visualized. The images include challenging scenarios with partial occlusions, small logos,
multiple instances, or challenging poses. Still, typical errors exist, which are depicted on the
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Table 9.2: Results on the clean images of the PS-TEST test set in terms of mean Average Precision (mAPt)
measures using different IoU values t and Average Recall for the first 10 proposals (AR@10). Bold
font highlights the best results.

Method mAP↑ mAP0.50↑ mAP0.75↑ AR@10↑

SSD 0.691 0.888 0.848 0.724
YOLOv3 0.698 0.898 0.869 0.733
Faster R-CNN 0.659 0.925 0.826 0.705

Ours 0.708 0.929 0.880 0.746

Successful cases Failure cases

Figure 9.6: Qualitative results of our proposed airline logo detection systems on clean images of airplanes.
The green boxes denote all successful detections per image with the predicted class. Red boxes
denote all other detections that do not match airline logos on airplane tails. Input images taken
from Lin et al. [2014].

right of Fig. 9.6. Both cases show that our airline logo detection system mistakes parts of the
airplane like the wing or the winglets for an airplane tail. This is reasonable given the similar
shape and, in the case of the winglet, even a similar coloring. Nevertheless, these results are
unwanted and impair the detection performance.

After highlighting the strength of our overall system, we compare our tailored classifier to
the integrated classifiers in Faster R-CNN, YOLOv3, and SSD. To this end, we reclassify the
Faster R-CNN, YOLOv3, or SSD detections with our classifier. Table 9.3 presents the results
of this experiment on PS-TEST. It is visible that across all three systems, the tailored classifier
leads to improved detection results. For instance, the results of Faster R-CNN improve by
2.9% in terms of mAP when utilizing our classifier. Generally, the improvement is between
0.1% and 2.9% across the different measures and methods. Hence, the proposed tailored
classifier is better suited for airline logo detection compared to the integrated classifiers in the
object detection systems.

Overall, the results show a strong performance of all systems on the simple PS-TEST set.
Nevertheless, our system outperforms all three application-agnostic object detection systems
in localization, classification, and detection. This highlights the strength of a tailored logo
detection system. A remaining source of errors for our system are objects that have a similar
shape compared to airplane tails.
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Table 9.3: Results of SSD, YOLOv3, and Faster R-CNN with the integrated classifier and our tailored classifier
on the clean images of the PS-TEST test set in terms of mean Average Precision (mAPt) measures
using different IoU values t. Bold font highlights the best results per detection method.

Method Classifier mAP↑ mAP0.50↑ mAP0.75↑

SSD Integrated 0.691 0.888 0.848
SSD Ours 0.693 0.912 0.863

YOLOv3 Integrated 0.698 0.898 0.869
YOLOv3 Ours 0.699 0.901 0.873

Faster R-CNN Integrated 0.659 0.925 0.826
Faster R-CNN Ours 0.678 0.944 0.850

Table 9.4: Results on the degraded images of the PS-HAM test set in terms of mean Average Precision (mAPt)
measures using different IoU values t and Average Recall for the first 10 proposals (AR@10). DA
denotes the use of our data augmentation strategy, while tiled denotes the use of the test-time
tiling. Bold font highlights the best results without tiling, while italic font highlights the best
overall results.

Method DA mAP↑ mAP0.50↑ mAP0.75↑ AR@10↑

YOLOv3 7 0.101 0.157 0.129 0.104
YOLOv3 3 0.123 0.195 0.147 0.128
Faster R-CNN 7 0.118 0.225 0.102 0.134
Faster R-CNN 3 0.128 0.239 0.117 0.143

Ours 7 0.173 0.259 0.221 0.188
Ours 3 0.203 0.313 0.248 0.215

Ours (tiled) 3 0.282 0.455 0.326 0.348

Results on PS-HAM

Moving from the clean images in PS-TEST to the degraded images in PS-HAM, the results of
all systems drop significantly as visible from Tab. 9.4. The average drop for the detection
results is 80.1%, while the localization results decrease by 80.3% on average. For instance, the
mAP drops by 85.5% for YOLOv3, highlighting the significant difference between images in
PS-TEST and PS-HAM. Faster R-CNN and our system are slightly more robust, resulting in
drops of 82.1% and 75.6% in terms of mAP. Overall, despite significantly impaired results,
our airline logo detection system still outperforms all other methods by up to 80.8%. These
improvements highlight the strong robustness of our system.

Applying our data augmentation scheme, which imitates adverse weather effects, leads to
improved results across all systems (see Tab. 9.4). While Faster R-CNN improves by only
9.0% on average across the different measures, YOLOv3 and our proposed system improve
by 20.8% and 16.2%. This shows the benefit of the data augmentation scheme supporting
the detection under adverse weather conditions. Overall, our system with the proposed
data augmentation scheme outperforms YOLOv3 and Faster R-CNN by up to 68.8% and
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Table 9.5: Airline logo proposal generation results without classification on the validation set PS-VAL. AR
denotes the Average Recall for the first, first 10, or first 100 proposals. Bold font highlights the
best results.

Method AR@1↑ AR@10↑ AR@100↑

FastMask 0.652 0.747 0.757
AttentionMask (Ch. 4) 0.642 0.823 0.851

Ours 0.735 0.861 0.893

112.0%. To further improve the results and address the different relative sizes3 between the
airline logos in PS-TRAIN and PS-HAM, we apply a test-time tiling scheme to our airline
logo detection system. The tiling scheme applies our system on nine half-overlapping image
tiles as well as the entire image and finally merges the ten sets of airline proposals. Our
system with test-time tiling improves by another 44.4% compared to only applying the data
augmentation.

In general, our system outperforms the application-agnostic object detection systems YOLOv3
and Faster R-CNN on the challenging PS-HAM test set. Moreover, the proposed data
augmentation scheme improves the results of all methods on PS-HAM. However, the results
of our airline logo detection system drop by 56.9% on average compared to PS-TEST even
after test-time tiling and are currently far from satisfying.

Ablation Studies

After discussing the main results of the proposed airline logo detection system, we investigate
three design choices of our system in more detail. We discuss the choice of our proposal
generation system, the choice of our classifier, and the effects of each part of the proposed
data augmentation strategy.

Airline Logo Proposal Generation We chose AttentionMask to generate airline logo
proposals since it generated strong results in object proposal generation. To fit airline logo
proposal generation, we adapted AttentionMask by removing two pyramid levels. The choice
of AttentionMask and our adaptations are justified by the results in Tab. 9.5 comparing our
adapted AttentionMask to original AttentionMask and FastMask [Hu et al., 2017a] on the
PSLogos dataset. First, the results show the general improvement of original AttentionMask
over FastMask (up to +12.4%). Additionally, the results indicate another improvement of up
to 14.5% for the adapted AttentionMask over the original AttentionMask. Hence, choosing
AttentionMask over FastMask as the base system and adapting AttentionMask to the new
task lead to improved results.

Airline Logo Classification To further show the strength of our tailored airline logo clas-
sifier, we compare against the image classification systems VGG-19 [Simonyan and Zisserman,

3The relative size of the objects is more important than the absolute size since AttentionMask resizes the
input image to a fixed height/width.
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Table 9.6: Airline logo classification results without localization on the validation set PS-VAL in terms of
the Top-1 Error measuring the relative number of misclassifications. The number of parameters is
calculated based on 64× 64 input patches. Bold font highlights the best result/smallest amount
of parameters.

Method Top-1 Error↓ Number of parameters

Bianco et al. [2017] 0.050 395,337
InceptionV3 0.066 23,851,784
ResNet-50 0.084 25,636,712
VGG-19 0.029 45,367,336

Ours 0.012 2,857,321

Table 9.7: Airline logo detection results on the degraded images of the PS-HAM test set in terms of mean
Average Precision (mAPt) measures using different IoU values t. Standard augmentations include
noise, blur, and resizing, while our proposed augmentation strategy combines adding fog, heavy
clouds/rain, and raindrops. Bold font highlights the best results.

Augmentations mAP↑ mAP0.50↑ mAP0.75↑

No further augmentations 0.173 0.259 0.221
Standard augmentations 0.180 0.271 0.228

Only proposed raindrops 0.176 0.266 0.227
Only proposed fog 0.190 0.296 0.235
Only proposed heavy clouds/rain 0.193 0.305 0.236
All proposed augmentations 0.203 0.313 0.248

2015], ResNet-50 [He et al., 2016a], and InceptionV3 [Szegedy et al., 2016] as well as the
dedicated logo classifier4 proposed by Bianco et al. [2017]. We train all classifiers with the
annotated logos in PS-TRAIN and evaluate on the annotated logos in PS-VAL. The results in
Tab. 9.6 show that the proposed classifier outperforms VGG-19, ResNet-50, and InceptionV3
by 0.017 to 0.072 in terms of Top-1 Error. These results are intriguing since our classifier
only uses a fraction of those systems’ parameters. Moreover, our classifier also outperforms
the dedicated logo classifier proposed by Bianco et al. [2017]. Overall, the results imply that
a tailored classifier is better suited than application-agnostic classifiers for the problem of
airline logo classification in terms of efficiency and effectiveness.

Data Augmentation Finally, we discuss the influence of the individual steps in our data
augmentation strategy imitating adverse weather effects on the PS-HAM results. Additionally,
we compare our data augmentation strategy to a standard data augmentation strategy that
adds noise as well as blur, and resizes the image. As discussed previously, we apply horizontal
flipping and rotation to augment the data in all experiments. The results of our airline
logo detection system using the different data augmentations are presented in Tab. 9.7 and
indicate that all utilized augmentations improve the performance. However, our complete
data augmentation strategy outperforms the standard augmentations by up to 15.5% since

4Since no official code was published, we implemented the architecture described in the paper.
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our augmentations imitate the degradations in the PS-HAM images. Thus, the proposed
augmentations improve the results on PS-HAM individually and collectively outperforming
standard augmentation techniques.

9.1.6 Discussion

In this section, we introduced a new dataset for airline logo detection, a tailored airline logo
detection system based on AttentionMask, and a learning-free data augmentation strategy.
Our new dataset comprises simple, clean images and a test set that includes challenging images
degraded by adverse weather effects. This dataset fills a void in existing logo detection dataset
literature, which mainly covers clean images. The proposed airline logo detection system is
specifically tailored to the task of airline logo detection utilizing an adapted AttentionMask
variation and a novel, lightweight classifier. The tailored design enables us to examine the
differences between application-agnostic object detection systems and dedicated logo detection
systems. Finally, we proposed a learning-free data augmentation strategy imitating adverse
weather effects to compensate for the missing degraded training data.

Utilizing this setup, we investigated two drawbacks of logo detection systems discussed above.
First, we showed that a tailored system yields better results (up to +7.4%) than application-
agnostic object detectors commonly used in logo detection. Specifically, our tailored classifier
outperforms all other tested classifiers while using only a few layers by taking advantage of the
reduced intra-class variance of the airline logo classes. Similarly, our adapted AttentionMask
variation improves the discovery of airline logos compared to application-agnostic object
detection systems. Second, we showed a significant drop (up to -85.5%) in performance
for all systems when moving from simple, clean images to challenging images degraded by
adverse weather effects. Our learning-free data augmentation strategy counters this drop and
improves the detection results by up to 24.2%. Overall, our tailored system outperforms the
application-agnostic object detection systems showing solid robustness during localization
and classification. Nevertheless, adverse weather effects remain a significant problem for all
detection systems.

9.2 Medical Instrument Segmentation

We also apply AttentionMask to medical instrument segmentation in challenging intra-
operative images acquired in a minimally invasive surgery setup. Medical instrument seg-
mentation covers multiple formulations [Allan et al., 2019; Roß et al., 2021], while we only
consider the pixel-precise segmentation of individual instrument instances. This segmentation
of medical instruments during minimally invasive surgeries is a fundamental first step in
pipelines for applications like automatic surgical skill assessment [Lin et al., 2019] or automated
camera steering during interventions [Zhang and Gao, 2020].

Systems that segment medical instruments during minimally invasive surgeries have to deal
with challenges like smoke, blood, insufficient illumination [Roß et al., 2021], or highly textured
backgrounds [Pakhomov et al., 2019]. Furthermore, the types of minimally invasive surgeries
vary, implying a high demand for generalization capabilities. Driven by the success of semantic
segmentation and instance segmentation systems in computer vision [Long et al., 2015;
Chen et al., 2017; He et al., 2017a], several CNN-based approaches for medical instrument
segmentation were proposed. Tackling the pixel-precise segmentation of the individual
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instrument instances, most systems apply common instance segmentation approaches [González
et al., 2020; Ceron et al., 2021] such as Mask R-CNN [He et al., 2017a] or YOLACT++ [Bolya
et al., 2020]. To foster further research in this area, the ROBUST-MIS Challenge 2019 was
organized [Roß et al., 2021]. Most of the participants in the challenge also proposed systems
based on Mask R-CNN for the pixel-precise segmentation of the individual instruments [Roß
et al., 2021].

Inspired by the success of methods based on instance segmentation, we apply our object
proposal generation system AttentionMask to the task of medical instrument segmentation.
To improve the results, we propose a novel, dedicated post-processing module for selecting the
most promising instrument proposals. AttentionMask is well suited for medical instrument
segmentation due to the strong results on the object proposal generation task, the solid
robustness shown in the previous application on airline logo detection, and the class-agnostic
problem formulation.

In the following subsections, we will first introduce the ROBUST-MIS Challenge 2019
as the context for applying AttentionMask to medical instrument segmentation. Subse-
quently, we present our adapted variation of AttentionMask, including our dedicated post-
processing module, and evaluate the system on the challenge data of the ROBUST-MIS
Challenge 2019. Finally, we will discuss the strengths and weaknesses of the proposed
approach.

9.2.1 ROBUST-MIS Challenge 2019

Roß et al. organized the Robust Medical Instrument Segmentation (ROBUST-MIS) Challenge
2019 [Roß et al., 2021] to assess the current state of medical instrument segmentation and
foster further research. The challenge allows a fair comparison of methods, introduces a large
dataset with over 10.000 images, and includes images of varying complexity for a detailed
assessment of the systems’ capabilities. Overall, the challenge focuses on the robustness of
methods to image degradations by blood, smoke, and illumination as well as the generalization
abilities w.r.t. to different types of surgeries.

The challenge includes three tracks on sub-tasks of medical instrument segmentation. The
first track requires a binary segmentation (instrument vs. background) of the entire image.
Hence, instances are not distinguished. The second and third tracks demand a segmentation
mask (track 2) or a bounding box (track 3) for each instrument. We only consider track
2 in this work since it formulates the problem as a mask-based object proposal generation
task.

The challenge data [Maier-Hein et al., 2021] comprises 10.040 annotated images extracted from
videos of 30 minimally invasive surgeries that cover three types of surgeries. The annotations
are pixel-precise masks that label each visible medical instrument. 5.983 images of the overall
dataset are assigned to the training set, while the rest is utilized for testing. The images
in the test set are divided into three stages to assess the generalization capabilities of the
systems. The first stage includes images from patients and surgery types that were also part
of the training set, while the second stage comprises images from the same surgery types but
patients that were not part of the training set. Finally, the third stage is most challenging,
covering a surgery type that was unavailable for training.
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Overall, the ROBUST-MIS Challenge 2019 provides a complex, publicly available dataset for
medical instrument segmentation. Moreover, it presents a framework for a detailed assessment
of medical instrument segmentation approaches.

9.2.2 AttentionMask for Medical Instrument Segmentation

Different from existing methods [González et al., 2020; Isensee and Maier-Hein, 2020; Ceron
et al., 2021] based on instance segmentation or semantic segmentation, we consider the problem
of medical instrument segmentation as an object proposal generation task. This formulation
is reasonable since no classification is necessary in the context of the ROBUST-MIS Challenge
2019. Hence, we utilize our object proposal generation system AttentionMask to locate and
segment medical instruments. AttentionMask is a good foundation for segmenting medical
instruments, as it exhibits strong results in complex computer vision datasets and shows solid
robustness w.r.t. image degradations (see Sec. 9.1.5).

In contrast to the previous application on airline logo detection, we do not change the
architecture of AttentionMask. Removing levels from AttentionMask’s feature pyramid is
not beneficial for medical instrument segmentation in this context, since instruments of all
sizes appear in the training and test data of the ROBUST-MIS Challenge 2019. For training
AttentionMask, we customize the training regime by reducing the initial learning rate to
0.00001. Overall, we train AttentionMask for only 12 epochs on 80% of the training images
provided by the ROBUST-MIS Challenge 2019. The remaining training images serve as a
validation set.

Due to the large number of proposals that AttentionMask generates, we introduce a dedicated
three-stage post-processing module. The first stage of the post-processing module discards all
object proposals with a predicted objectness score below 0.8, as they are unlikely to cover any
instrument. Since the remaining proposals will strongly overlay due to the dense extraction of
windows in AttentionMask, we constitute groups of at least five object proposals that overlap.
Groups with less than five overlapping proposals or individual proposals are disregarded,
since they are unlikely to contain instruments. The third stage of our post-processing module
generates one final object proposal per group by incorporating all pixels that are part of
at least 10% of the group’s proposals. Applying the three-stage post-processing module
reduces the number of object proposals from 100 to 1.8 on average across the test set of the
ROBUST-MIS Challenge 2019. Note that post-processing is only necessary for the evaluation
in the ROBUST-MIS Challenge 2019 framework, since the pre-existing evaluation penalizes
additionally proposed instruments. In contrast, standard evaluation frameworks in object
proposal generation strongly focus on recall.

Overall, we adapt the training of AttentionMask and select the most promising proposals
with a three-stage post-processing module. These steps result in a variation of AttentionMask
for medical instrument segmentation.

9.2.3 Experiments

To evaluate the proposed variation of AttentionMask on medical instrument segmentation, we
utilize the complex dataset and the evaluation framework of the ROBUST-MIS Challenge
2019. We compare our AttentionMask variation to the challenge participants [Roß et al.,
2021] and the system of Ceron et al. [2021]. For our AttentionMask variation, we evaluate
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three versions. The first version does not utilize the proposed post-processing module, while
the second version uses the post-processing. Finally, we also evaluate a third version that
represents an upper limit of our AttentionMask variation utilizing an optimal ranking of the
proposals. For the optimal ranking, we only select the best matching proposal per annotated
instrument.

We evaluate all methods on the test set of the ROBUST-MIS Challenge 2019. As evaluation
measures, we follow the ROBUST-MIS Challenge 2019 and use the Multi-instance Dice
Similarity Coefficient (MI_DSC) and Multi-Instance Normalized Surface Dice (MI_NSD).
MI_DSC is based on DSC [Dice, 1945] and assesses the quality of a proposal compared
to an annotated instrument based on the overlap of the areas. The MI_NSD, based on
NSD [Nikolov et al., 2018], only considers the overlap of the boundary regions. To better
assess the robustness of the methods, we report the 5% quantile for both scores as in Roß
et al. [2021]. Hence, only the worst-case scenarios are considered to better evaluate the
applicability in clinical practice. Additionally, we present quantitative results in terms of
Average Recall (AR, see Sec. 2.2.3), similar to the other experiments presented throughout
this thesis. For the AR-based evaluation, we only evaluate the version of our AttentionMask
variation without the dedicated post-processing module to better match the typical evaluation
framework in object proposal generation.

Evaluation in the ROBUST-MIS Challenge 2019 Framework

First, we compare our AttentionMask variation to the participants of the ROBUST-MIS
Challenge 2019 and the system of Ceron et al. [2021]. Table 9.8 presents the results on
the most challenging third stage of the ROBUST-MIS Challenge 2019 test set in terms of
MI_DSC and MI_NSD. The results show that our AttentionMask variation with the dedicated
post-processing module outperforms two challenge participants in terms of MI_DSC and
three challenge participants in terms of MI_NSD. Additionally, the results show a strong
positive influence of the post-processing on the results. However, the results are well below
the best system (-54.8% in terms of MI_DSC), the participant www from the ROBUST-
MIS Challenge 2019. Assuming an optimal ranking of our object proposals selects only the
relevant proposals without duplicates, the results change drastically. Given this ranking,
our AttentionMask variation outperforms www by 67.8% in terms of MI_DSC and 74.3% in
terms of MI_NSD. These results showcase the great potential of our AttentionMask variation
for medical instrument segmentation but also indicate the subpar quality of the original
ranking.

Note that the results in Tab. 9.8 present 5% quantiles to assess the worst-case performance.
Therefore, MI_DSC or MI_NSD score of 0.00 do not imply that those methods are unable to
segment any medical instrument across the entire dataset. See Roß et al. [2021] for complete
results of the challenge participants.

Evaluation in the Object Proposal Generation Framework

To further investigate the suitability of our AttentionMask variation in the context of medical
instrument segmentation, we evaluate the system without the dedicated post-processing
module in an object proposal generation framework. First, we assess the generalization
capabilities of our proposed AttentionMask variation across the three stages of the ROBUST-
MIS Challenge 2019 test set in terms of AR. The results in Tab. 9.9 show that our system
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Table 9.8: Results on stage 3 of the ROBUST-MIS Challenge 2019 test set in terms of Multi-instance Dice
Similarity Coefficient (MI_DSC) and Multi-Instance Normalized Surface Dice (MI_NSD). All
results are 5% quantiles. The first part includes the participants of the ROBUST-MIS Challenge
2019, while the second part covers an independent system. All numbers for other systems were
taken from Roß et al. [2021] and Ceron et al. [2021]. Bold font highlights the best results, while
italic font indicates the best results using an optimal proposal ranking in our system.

Participant/Method MI_DSC↑ MI_NSD↑

VIE 0.00 0.00
caresyntax 0.00 0.00
fisensee [Isensee and Maier-Hein, 2020] 0.17 0.16
CASIA_SRL 0.19 0.27
SQUASH 0.22 0.26
Uniandes 0.26 0.29
www 0.31 0.35

Ceron et al. [2021] 0.31 0.34

Ours (without post-processing module) 0.00 0.00
Ours (with post-processing module) 0.14 0.19
Ours (with optimal ranking) 0.52 0.61

Table 9.9: Results of our proposed AttentionMask variation without the post-processing module on the
different stages of the ROBUST-MIS Challenge 2019 test set in terms of three Average Recall (AR)
measures.

Test set stage AR@1↑ AR@10↑ AR@100↑

Stage 1 0.182 0.471 0.533
Stage 2 0.214 0.502 0.554
Stage 3 0.156 0.420 0.497

generalizes well to unseen patients (stage 2) and the unseen surgery type (stage 3). In terms
of AR@10, the results vary between 0.420 and 0.507 for the different stages. Interestingly,
the results on stage 2 are better than those on stage 1, although the patients in stage 1 have
been part of the training set. This highlights our system’s strong generalization capabilities
and is different from the findings presented by Roß et al. [2021]. Moreover, the results in
Tab. 9.9 indicate that beyond the first 10 proposals, no major improvement is evident. Hence,
the rough ranking in our AttentionMask variation produces good results, while the detailed
ranking of the best proposals is suboptimal as shown above.

We further investigate the results of our AttentionMask variation w.r.t. the relative sizes of
instruments. This is similar to the evaluation based on size-specific measures ARS , ARM , and
ARL (see Sec. 2.2.3). To fit the ROBUST-MIS Challenge 2019 data, we define five relative
size ranges: instruments covering less than 1% (XS), 1%-2% (S), 2%-5% (M), 5%-10% (L),
and more than 10% (XL) of the image. Figure 9.7 presents the size-specific Recall (Rec) for
our system across different IoU levels on the three stages of the ROBUST-MIS Challenge 2019
test set. Across all stages, the Rec is only slightly affected by the relative size. A substantial
drop in results is visible only for tiny instruments (XS) at medium IoU levels. Hence, due
to AttentionMask’s focus on small objects, there is no major difference between discovering
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Figure 9.7: Recall (Rec) for the first 1000 proposals of our AttentionMask variation without the post-processing
module across the three stages of the ROBUST-MIS Challenge 2019 test set. The results are
split w.r.t. to different relative sizes of the annotated instruments. Size XS includes instruments
covering less than 1% of the image area, size S includes instruments covering 1%-2% of the image
area, size M includes instruments covering 2%-5% of the image area, size L includes instruments
covering 5%-10% of the image area, and size XL includes instruments covering more than 10% of
the image area.

tiny, small, medium, large, and extra large instruments. This behavior is different from the
findings of Roß et al. [2021] during the ROBUST-MIS Challenge 2019.

Further investigating the robustness, Fig. 9.8 depicts qualitative results of our AttentionMask
variation without the post-processing module in four challenging scenarios from the ROBUST-
MIS Challenge 2019 test data. Despite challenging conditions, our AttentionMask variation
segments most instruments across the images. The results in the first three rows indicate that
our system properly handles multiple instruments (first row), smoke (second row), or poor
illumination (third row). These observations are in line with the findings of Roß et al. [2021]
during the ROBUST-MIS Challenge 2019. However, some challenging scenarios persist as
the result in the final row indicates. For instance, partially occluded instruments that lead
to disconnected instrument parts on the image plane are not handled well by our system.
Similar observations were made by Roß et al. [2021] during the ROBUST-MIS Challenge
2019. Additionally, our system also misses the instruments’ tips on some occasions (second
row). These errors are related to the coarse proposals of AttentionMask as discussed in
Sec. 4.5.

Overall, our AttentionMask variation shows strong robustness, generalizes well and only
exhibits a slight drop in results on tiny instruments.

9.2.4 Discussion

This section presented the application of AttentionMask to medical instrument segmentation in
the context of the ROBUST-MIS Challenge 2019. The challenge data includes complex images
acquired during minimally invasive surgeries that demand strong generalization capabilities
and solid robustness to image degradations. Our adapted AttentionMask variation with the
dedicated post-processing module leads to promising results in the evaluation framework of
the ROBUST-MIS Challenge 2019. However, the suboptimal ranking of the object proposals
in AttentionMask, which is less relevant in object proposal generation, prevents the system
from outperforming state-of-the-art methods. In terms of object proposal generation measures,
our AttentionMask variation shows high-quality results across all instrument sizes and strong
robustness as well as generalization abilities. This is similar to the findings of Sec. 9.1.5
in the context of adverse weather conditions. Overall, the results present a very promising
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Input image Ours Ground truth

Figure 9.8: Qualitative results of our proposed AttentionMask variation without the post-processing module
on stage 3 of the ROBUST-MIS Challenge 2019 test set. Filled colored contours denote located
instruments, while not filled red contours denote missed instruments. Note that only the best
fitting proposal (highest IoU) is visualized per annotated instrument. Input image and annotations
taken from the ROBUST-MIS Challenge 2019 dataset [Roß et al., 2021; Maier-Hein et al., 2021].

foundation for further research on medical instrument segmentation that focuses on improving
the ranking of object proposals.

9.3 Apple Localization in Orchard Environments

Finally, we utilize AttentionMask for apple localization in complex orchard environments.
Apple localization or fruit localization/detection is regarded as a fundamental first step
in (semi-)automated yield estimation or fruit picking [Sa et al., 2016; Koirala et al., 2019b;
Häni et al., 2020]. For instance, yield estimation nowadays heavily relies on historical data
and manual sampling, making the process labor-intensive and inaccurate [Wang et al., 2013b;
Anderson et al., 2019]. By automating the sampling process, the reliability of such estimations
could increase and free up human resources [Anderson et al., 2019].

The MinneApple dataset [Häni et al., 2020] offers a publicly available dataset for apple
localization and counting with 1000 images of apple trees captured in complex orchards
environments (see Fig. 9.9). Some of the major challenges in such a setting are the high level
of clutter induced by the leaves, the small relative size of the apples, and the partial occlusions



188 Chapter 9 Applications of AttentionMask

Figure 9.9: Example images from the MinneApple dataset [Häni et al., 2020] depicting apples in complex
orchard environments. Challenges like a large amount of clutter or the small relative size of the
apples are well visible. Base images taken from the MinneApple dataset [Häni et al., 2020].

of several apples. Moreover, apples in the MinneApple dataset appear in different degrees of
ripeness, are clustered together, and are illuminated differently across the trees due to the
uncontrolled outdoor environment. Across the dataset, 41,325 apples are manually annotated
with pixel-precise masks. Overall, the MinneApple dataset presents realistic, complex images
for the task of apple localization.

To localize or detect fruits in such challenging scenarios, several systems have been proposed.
Mostly, they rely on application-agnostic object detection [Sa et al., 2016; Bargoti and
Underwood, 2017; Koirala et al., 2019b] or instance segmentation systems [Yu et al., 2019]
like Faster R-CNN [Ren et al., 2016] or Mask R-CNN [He et al., 2017a]. Koirala et al. [2019a]
present a review of recent approaches. Since the classification of the fruits is not necessary,
systems that only localize objects are a natural fit for fruit localization or fruit detection.
Hence, we apply our object proposal generation system AttentionMask to the problem of apple
localization in the context of the complex MinneApple dataset. AttentionMask is well-suited
for this application since it has shown promising results on small objects (see Sec. 4.4.1). To
locate the tiny apples on the trees, we propose two variations of AttentionMask based on an
extended feature pyramid and a tiling mechanism. Finally, our evaluation on the MinneApple
dataset shows the benefits of our proposed variations on small and tiny apples in cluttered,
complex environments.

9.3.1 Localizing Apples with AttentionMask

The examples in Fig. 9.9 show that the apples depicted in the MinneApple dataset are mainly
small or tiny. Overall, more than half of the apples are smaller than 22.52 pixels. Hence, we
apply AttentionMask to the problem of apple localization on the MinneApple dataset since it
has shown strong results in discovering small objects. However, several apples are too small
to fit the finest pyramid level S8 in AttentionMask. Therefore, we propose two variations of
AttentionMask for apple localization on the MinneApple dataset. While the first variation
extends the feature pyramid level, the second utilizes a tiling strategy.
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Figure 9.10: Overview of the proposed AttentionMask16
4 system for apple localization, based on AttentionMask.

Unlike original AttentionMask, we split the first part of the backbone, yielding a pyramid level
S4 to improve the localization of tiny apples. Moreover, we remove all pyramid levels above
S16. The system’s remaining parts, including SOAMs, window extraction, objectness scoring,
and segmentation, are identical to the original AttentionMask. Input image taken from the
MinneApple dataset [Häni et al., 2020].

AttentionMask16
4

The most natural way to enable AttentionMask to localize even smaller apples is the addition
of a pyramid level S4 as the new feature pyramid’s base level. In contrast to S8, the new
level S4 enables AttentionMask to localize tiny apples since the feature map at this level
is only downsampled by a factor of 4 w.r.t. the input image. To add S4, we split the first
part of the backbone network similar to the process described in Sec. 4.2.3 to introduce S8.
Consequently, the backbone network is split into three parts as visualized in Fig. 9.10 and
conv2 features (see Appendix A.2) are utilized for S4. Although these features are not as
semantically rich as the features from the deeper pyramid levels, they are sufficient since the
apples have a simple appearance.

On the other end of the feature pyramid, we remove all pyramid levels above S16, since
no apple in the training set is large enough to match a pyramid level above S16. These
modifications lead to AttentionMask16

4 as visualized in Fig. 9.10. All remaining components
and the training regime explained in Sec. 4.3 are kept.

Tiled AttentionMask

Besides introducing the new pyramid level S4, increasing the resolution of the input images
is another way to improve the localization of tiny apples. Hence, we tile the input image
resulting in 26 overlapping tiles covering the entire image similar to Bargoti and Underwood
[2017], Koirala et al. [2019b], and Häni et al. [2020]. The tiles have a third of the original
image’s width and a quarter of the original image’s height. This tiling allows a more detailed
processing of the original image, since AttentionMask resizes the input image to a fixed
height/width. Different from the test-time tiling for airline logo detection in Sec. 9.1.5, we
also utilize the tiling during training since training data from the same size distribution as
the test data is available.

The AttentionMask system itself is unchanged. Hence, we apply standard AttentionMask
to each tile. Finally, we merge the results, apply NMS and retain the best 100 proposals
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according to the objectness score. For training the system, we use the same training regime as
described for AttentionMask but reduce the learning rate to 0.00007. We denote this system
as Tiled AttentionMask.

9.3.2 Experiments

To assess the proposed AttentionMask variations, we evaluate the systems on the challenging
MinneApple dataset [Häni et al., 2020]. The MinneApple dataset comprises 1000 images,
however, while only 670 images include publicly available annotations. Therefore, we randomly
split the 670 images into 600 images for training, 40 images for validation, and 30 images for
testing. We follow the standard evaluation pipeline in object proposal generation and use
Average Recall (AR, see Sec. 2.2.3) to assess how many apples are localized and how well
they are localized. To better evaluate the performance on the tiny apples, we introduce a
new variation of the size-specific AR. In contrast to the original definition of ARS , which
considers all apples smaller than 322 pixels, we redefine ARS to consider only the size range
from 22.52 pixels to 322 pixels. All apples smaller than 22.52 pixels are incorporated into the
new ARXS .

Besides our two variations of AttentionMask, we evaluate original AttentionMask and FastMask
since both generate high-quality results on the object proposal generation task as demonstrated
in Sec. 4.4.1. Additionally, we apply the proposed tiling to FastMask (Tiled FastMask), showing
the general applicability of the idea.

Quantitative Results

Table 9.10 presents the quantitative results of AttentionMask and FastMask, AttentionMask16
4 ,

Tiled AttentionMask, and Tiled FastMask on our MinneApple test set. The results show that
FastMask is unable to locate any apples, since it lacks a pyramid level S8. In contrast, Atten-
tionMask locates several apples, leading to an AR@100 of 0.243. Adding the new pyramid level
S4 (AttentionMask16

4 ) improves the results of AttentionMask by 28.0% in terms of AR@100.
Applying the introduced tiling to AttentionMask (Tiled AttentionMask) further improves the
results (+ 25.1%), leading to an AR@100 of 0.415. Especially on tiny apples (ARXS@100),
Tiled AttentionMask exhibits substantial improvements over AttentionMask (+ 133.3%) and
AttentionMask16

4 (+ 92.1%). Applying the tiled processing to FastMask (Tiled FastMask)
enables the system to locate apples as well. However, the results stay below the level of
Tiled AttentionMask. Despite its strong performance, it is important to note that the tiling
significantly increases the GPU runtime. For Tiled AttentionMask, the GPU runtime is more
than 15 times higher compared to AttentionMask16

4 .

Overall, the results are strongly related to the size of the apples. The drop from small
apples (ARS@100) to tiny apples (ARXS@100) is 57.9% on average. Hence, despite the efforts
presented in Sec. 9.3.1, tiny apples are still substantially more challenging to localize compared
to small ones.

Qualitative Results

To better assess the performance of the different systems, Fig. 9.11 presents qualitative results
of AttentionMask, AttentionMask16

4 , Tiled FastMask, and Tiled AttentionMask. Overall,
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Table 9.10: Results of AttentionMask, FastMask, and the proposed variations on our MinneApple test set
in terms of five Average Recall (AR) measures. ARXS , ARS , and ARM denote results on tiny,
small, and medium apples. Note that large apples do not exist in the MinneApple dataset. The
first part of the table covers standard object proposal generation methods, while the second and
third part consist of the proposed variations. Bold font highlights the best results.

Method AR@10↑ AR@100↑ ARXS@100↑ ARS@100↑ ARM@100↑

AttentionMask (Ch. 4) 0.071 0.243 0.126 0.336 0.337
FastMask 0.000 0.000 0.000 0.000 0.000

AttentionMask16
4 0.099 0.311 0.153 0.386 0.570

Tiled FastMask 0.061 0.354 0.284 0.423 0.374
Tiled AttentionMask 0.073 0.415 0.294 0.500 0.549

Input image AttentionMask AttentionMask16
4 T-FastMask T-AttentionMask Ground truth

Figure 9.11: Qualitative results of AttentionMask, AttentionMask16
4 , Tiled FastMask (T-FastMask), and

Tiled AttentionMask (T-AttentionMask) on our MinneApple test set. Filled colored contours
denote located apples, while not filled red contours denote missed apples. Note that only the
best fitting proposal (highest IoU) is visualized per annotated apple. The red arrows denote
groups of missed apples, while the green arrows highlight the successful localization of those
apples. Input images and annotations taken from the MinneApple dataset [Häni et al., 2020].
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many apples are localized by the four systems, while even humans struggle to locate some
of the apples, which can be seen by several smaller apples not annotated in the ground
truth. Despite a low contrast between the yellow apples and the green leaves, the varying
illumination, or the clutter introduced by the omnipresent leaves, AttentionMask16

4 and Tiled
AttentionMask locate most apples in both examples. Typical failure cases for our variations
are related to leaves that severely occlude apples. Tiled FastMask is also able to locate most
apples. However, it still misses more tiny apples than Tiled AttentionMask due to the missing
pyramid level S8. In contrast, AttentionMask also misses several small or partially occluded
apples, which are mostly located by our variations. Overall, the qualitative results support
the quantitative results and highlight the improvements of the proposed AttentionMask
variations.

9.3.3 Discussion

In this section, we applied AttentionMask to apple localization in apple orchard environments
based on the MinneApple dataset. The dataset is challenging since the images depict complex
scenarios with a high level of clutter (leaves) as well as tiny and partially occluded apples. To
improve the discovery of tiny apples, we proposed two variations of AttentionMask based on
an extended feature pyramid and a tiling strategy. The evaluation showed that our variations
outperform the original AttentionMask and FastMask, especially on tiny apples. While the
tiling strategy results in a better localization performance, the extended feature pyramid is
computationally less demanding. Overall, both variations are able to locate a substantial
amount of apples in the complex MinneApple dataset. These results again highlight the
ability of AttentionMask to discover small objects and perform well in challenging application
scenarios.

9.4 Discussion

This chapter presented three applications of our object proposal generation system Attention-
Mask to relevant real-world tasks. All three applications involve uncontrolled environments,
leading to several challenges. In the airline logo detection task, mainly adverse weather
conditions pose a major challenge to AttentionMask. The medical instrument segmentation
data also suffers from multiple image degradations and demands strong generalization ca-
pabilities across different surgery types. Finally, the apple localization in complex orchard
environments requires locating tiny objects in cluttered scenes with high similarity between
target objects (apples) and clutter (leaves).

Despite these challenges, the proposed AttentionMask variations produce strong results
showcasing the versatility of AttentionMask. For instance, our tailored AttentionMask-based
airline logo detection system outperforms all other systems on the airline logo detection
task in our evaluation. Additionally, our system shows solid robustness w.r.t. the adverse
weather effects even without our proposed data augmentation. On the medical instrument
segmentation task, our AttentionMask variation produces very promising results that would
outperform all competitors given a better ranking of the object proposals. The promising
results are highlighted by our system’s strong robustness and generalization abilities. Finally,
on the task of apple localization in complex orchard environments, our AttentionMask
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variations show strong results on small and tiny objects despite a substantial amount of
clutter.

Overall, the three applications show AttentionMask’s versatility to produce strong results
across various image domains and under diverse challenging conditions outside typical object
proposal generation datasets. The main strengths are AttentionMask’s flexibility, robustness,
and a strong performance on small and tiny objects. Still, challenging scenarios, including the
ranking of proposals remain.
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This thesis presented novel approaches for object proposal generation that effectively address
limitations of previous approaches. After summarizing the thesis’s main contributions in
Sec. 10.1, we discuss important strengths and limitations of our newly developed methods in
Sec. 10.2. The thesis concludes in Sec. 10.3 with a discussion of potential directions for future
research based on the main results of this thesis.

10.1 Summary

In the introduction of this thesis, we defined object proposal generation as the class-agnostic
discovery of objects and identified two major limitations related to existing object proposal
generation methods: the discovery of small objects and the coarse segmentation masks of
object proposals. Throughout this thesis, we made several methodological contributions to the
areas of object proposal generation and superpixel segmentation that successfully tackle those
major limitations. Moreover, we also showed the versatile applicability of our contributions
and addressed three challenging application areas.

Object Proposal Generation

The discovery of small objects is one of the major challenges in object proposal generation. In
modern CNN-based systems, this is mainly caused by the inherent downsampling process in
CNNs that removes detailed spatial information necessary to discover small objects. To improve
the discovery of small objects, we proposed the novel CNN-based object proposal generation
system AttentionMask. AttentionMask is the first major methodological contribution of
this thesis and utilizes the concept of visual attention to enable a computationally efficient
processing pipeline. This efficient processing pipeline allows us to add a new dedicated module
that improves the discovery of small objects by reducing the downsampling. In our extensive
evaluation on a challenging dataset, AttentionMask outperforms all previously presented object
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proposal generation methods on small objects (+52.8%1) and objects of all sizes (+11.5%2).
Furthermore, AttentionMask is very efficient, showing its potential for utilization in various
real-world applications.

While demonstrating a strong performance in our evaluation, AttentionMask’s object proposals
only loosely adhere to the object boundaries. Similar effects are visible for other CNN-based
object proposal generation methods. Therefore, we addressed this limitation by introducing
Superpixel-based AttentionMask (SAM) as our second major methodological contribution.
SAM extends AttentionMask by utilizing a novel superpixel-based refinement that combines
the initial coarse AttentionMask proposals with highly precise superpixels in an end-to-end
learnable framework. While the highly precise superpixels capture fine details of objects, the
initial coarse CNN-based proposals support the discovery of entire objects. This innovative
combination addresses a major limitation of object proposal generation methods; the trade-off
between coarse proposals with high recall and precise proposals with low recall. Moreover,
our approach bridges the gap between traditional superpixel-based and modern CNN-based
object proposal generation approaches. The extensive evaluation shows the strong boundary
adherence of the object proposals generated with SAM and FH superpixels (SAM+FH) as
well as the improved overall object proposal generation results (+28.0%3) on challenging
datasets.

As a final contribution in the area of object proposal generation, we identified four object
properties that negatively impact the performance of object proposal generation methods:
(1) the objects’ size, (2) the objects’ aspect ratio, (3) the shape complexity of the objects, and
(4) the objects’ contrast. These findings improve the understanding of existing challenges in
object proposal generation.

Superpixel Segmentation

In addition to the direct contributions in the area of object proposal generation, we also
presented two major methodological contributions to improve superpixel segmentations that
support the object proposal generation with SAM. The thorough evaluation of SAM revealed
that superpixel segmentations with less oversegmentation are beneficial for the superpixel-
based refinement. To reduce the oversegmentation in modern superpixel segmentation methods,
we proposed a new edge-adaptive framework for superpixel segmentation. The edge-adaptive
framework adjusts the distribution of superpixels within an image to the different levels of detail
based on edge detection results. This greatly reduces the oversegmentation and adapts the
style of arbitrary superpixel segmentations to better fit SAM. We showed that the combination
of SAM and the edge-adaptive superpixels leads to improved object proposal generation results
when compared to the original non-adaptive superpixels.

The second contribution in the area of superpixel segmentation also aims to improve the
results of SAM. To this end, we augmented the color-based FH superpixel segmentation
method that limits oversegmentation by design with learned features to incorporate high-level
semantics. This led to our novel CNN-based DeepFH superpixel segmentation method. The
methods’ success is fueled by the use of suitable features that are learned end-to-end in a

1AttentionMask128
8 over FastMask in terms of ARS@100 on the COCO test set.

2AttentionMask128
8 over FastMask in terms of AR@100 on the COCO test set.

3SAM+FH over FastMask in terms of AR@100 on the LVIS test set.
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pixel affinity framework and are seamlessly embedded into FH. This methodological similarity
to FH leads to DeepFH superpixel segmentations that exhibit limited oversegmentation but
utilize semantically rich, learned features. Combining SAM with DeepFH (SAM+DeepFH)
produces high-quality object proposals in terms of recall and boundary adherence that
outperform existing object proposal generation approaches by at least 32.3 %4 on a challenging
dataset.

Applications

AttentionMask was extensively evaluated on three complex real-world tasks to showcase
its flexibility and robustness. First, we proposed a dedicated airline logo detection system
utilizing AttentionMask and a tailored classifier. The airline logo detection task demands high
robustness due to adverse weather effects that severely degrade the image quality in our data.
Second, we applied AttentionMask to medical instrument segmentation in images acquired
during minimally invasive surgeries. Those images are often degraded by blood, smoke, or
poor illumination, leading to a strong demand for robustness. Finally, we introduced a system
for localizing small and tiny apples in complex orchard environments using AttentionMask.
Images captured in orchard environments are challenging due to a substantial amount of
clutter. The results across all three tasks show our systems’ strong performance as well as the
strong robustness and flexibility of AttentionMask.

Overall, the combination of the thesis’s contributions leads to a novel object proposal generation
approach that innovatively unifies superpixels and CNNs to create high-quality object proposals
for objects in complex environments.

10.2 Strengths and Limitations

Our object proposal generation systems AttentionMask and SAM lead to strong results on
complex datasets like COCO and LVIS. These results are driven by the two major strengths
of our systems. First, AttentionMask utilizes attention to substantially improve the discovery
of small objects and objects of all sizes. Second, SAM significantly improves the boundary
adherence of coarse AttentionMask object proposals by utilizing our highly precise DeepFH
superpixels (SAM+DeepFH). This innovative combination bridges the gap between precise
proposals with low recall based on superpixels and coarse proposals with high recall based
on CNNs. Overall, the proposed systems advance the state-of-the-art in object proposal
generation and outperform all existing object proposal generation methods by at least 32.2%4

on challenging datasets. We hypothesize that the improved results in object proposal generation
will also translate to improvements in subsequent applications like object detection, as the
findings of Hosang et al. [2015] indicate.

Despite the strong performance compared to existing object proposal generation methods,
some limitations remain. For instance, around 40% of the objects in the COCO dataset are

4SAM+DeepFH over FastMask in terms of AR@100 on the LVIS test set.
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Figure 10.1: Result of SAM utilizing our DeepFH superpixel segmentations (SAM+DeepFH) on the image
from the introductory example (see Fig. 1.1(a)). SAM+DeepFH successfully discovers 58 of 67
cookies, including the attended cookie from the introductory example (red cross). However, 9
cookies are still missed by the system (IoU < 0.5). Since the input image is four times larger
than the images from the COCO dataset, we applied SAM+DeepFH on 9 partially overlapping
tiles and recombined the results. Moreover, we applied a model trained on the COCO dataset
that has no annotated cookies in the training dataset. Filled colored contours denote discovered
cookies, while not filled red contours denote missed cookies. Note that only the best fitting
proposal (highest IoU) is visualized per annotated cookie.

not discovered by the 100 most promising AttentionMask proposals. Moreover, our detailed
evaluation shows that tiny, elongated, complex-shaped, or low-contrast objects present major
challenges for our methods and all other object proposal generation methods. We, therefore,
conclude that even with the availability of state-of-the-art solutions, the discovery of objects
in complex scenes is still far from being solved.

Further limitations of the presented systems and object proposal generation systems in general
are the impaired ranking of object proposals and the lack of real-time processing. As our
evaluations show, the results of all object proposal generation systems improve when using more
proposals. Hence, the ranking of the object proposals is still suboptimal as discussed in the
introduction. This thesis did not try to improve the ranking, since object proposal generation
systems generally focus on a high recall rather than a high precision5 [Zitnick and Dollár, 2014;
Hosang et al., 2015]. However, an impaired ranking leads to highly-ranked proposals covering
background patches and degrade the results of subsequent applications like in our medical
instrument segmentation approach. Therefore, improving the ranking of object proposals is
still an open problem. Another remaining limitation is the processing time of object proposal
generation systems. Although AttentionMask is the fastest system to generate mask-based
object proposals without a dedicated backbone, its GPU runtime of 0.2s does not meet typical
real-time requirements. Hence, methodological or technical improvements are necessary for
object proposal generation systems to meet these requirements.

In summary, even though our proposed systems substantially improve the discovery of objects
and produce high-quality results on challenging datasets, some objects in complex scenarios are
still hard to discover. One such scenario is the introductory example described in Sec. 1 (see
Fig. 1.1). Recall that the goal of the object proposal generation method in this context

5Precision in this context assesses how many object proposals discover objects.
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is to discover all cookies with precise segmentation masks allowing subsequent methods to
determine the attended cookie. The result in Fig. 10.1 shows that most cookies are properly
discovered by our proposed system SAM using the precise DeepFH superpixel segmentations.
Nevertheless, due to the challenging scene composition with occlusions and complex-shaped
objects, 9 of the 67 cookies are missed by our system (IoU < 0.5) despite generally strong
results on complex datasets. This highlights the demand for further improvements in object
proposal generation.

10.3 Future Work

We conclude this thesis with a brief overview of potential research directions for extending
the presented work.

Challenging Object Properties

Our extended evaluation in Ch. 8 revealed four novel challenges in object proposal generation.
One of these challenges relates to elongated objects since they do not fit the square windows
frequently used for roughly localizing possible objects. One way to mitigate this problem is to
adaptively predict the aspect ratio per window [Ding et al., 2019; Wang et al., 2019]. In the
case of AttentionMask and SAM, this could dilate the 10× 10 grid points of a window along
the image axes. A more flexible alternative would be to learn a warping of the 10× 10 grid
points by employing a dedicated spatial transformer module [Jaderberg et al., 2015]. However,
the reprojection of the created proposal mask based on the warped window may not adhere
well to the object boundaries.

Two further challenges, the discovery of tiny and complex-shaped objects, are related to the
lack of spatial details in feature maps generated by CNN backbones. To circumvent this
problem, different backbones like the dilated residual network [Yu et al., 2017], the pyramid
vision transformer [Wang et al., 2021b], or the feature pyramid network [Lin et al., 2017b]
are worth exploring. In the latter two cases, the backbone itself could replace the feature
pyramid in AttentionMask, SAM, or FastMask, leading to a high-resolution feature pyramid.
However, the high-resolution feature pyramid would strongly increase the number of possible
windows for generating proposals. To compensate for this effect, a smart extraction policy
in combination with our SOAMs has to select a small subset of high attention windows for
efficient processing. Nevertheless, such an approach would require GPUs with more than
12 GB of memory, which are still rather expensive.

Superpixels and CNNs

The superpixel-based object proposal refinement in SAM leads to a better boundary adherence
for object proposals as we demonstrated in our experiments. However, only up to 57.7% of
the superpixel segmentations’ capacities were utilized, implying that a better integration of
superpixels and CNNs is necessary. In particular, the independent classification of individual
superpixels in SAM could be replaced by a joint classification of all superpixels in and around a
coarse proposal using Graph Convolutional Networks (GCNs) [Kipf and Welling, 2017]. GCNs
are well-suited for this task since they are not restricted to a regular, grid-like topology and
were successfully used in similar computer vision tasks like semantic segmentation [Lu et al.,
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2019; Zhang et al., 2019b] or instance segmentation [Li and Gupta, 2018]. Extending this idea,
a deeper integration of superpixels and CNNs in SAM is possible by replacing the window
extraction with a superpixel-based GCN module. Given a high-attention location in the feature
pyramid and a superpixel segmentation, the GCN module could generate a superpixel-based
foreground-background segmentation of this area in one step. This integration would avoid the
two-stage object proposal generation and refinement process in SAM.

Superpixel-based Refinement in Other Tasks

We designed our superpixel-based refinement system in SAM to improve coarse object proposals.
However, similar issues arise in other dense prediction tasks like instance segmentation [He
et al., 2017a; Liu et al., 2018], semantic segmentation [Lin et al., 2017a; Chen et al., 2017], or
video object segmentation [Perazzi et al., 2017; Lu et al., 2020]. To improve the coarse results
of CNN-based systems on such tasks, applying our superpixel-based refinement as a post-
processing step is a promising direction. This is especially relevant for instance segmentation
systems since other refinement strategies like CRFs or encoder-decoder architectures are not
feasible given the large amount of generated objects. Furthermore, this integration allows
class-specific superpixel segmentations, class-specific features, and a class-specific superpixel
classifier, which are likely to simplify the problem formulation. For instance, classifying a
superpixel as part of a giraffe or the background is easier than the class-agnostic case in object
proposal generation.

Application to Video Data

This thesis addressed object proposal generation in static images. In applications like pedestrian
detection [Geiger et al., 2012] or the previously discussed medical instrument segmentation [Roß
et al., 2021], video data is available as well. This offers potential extensions of our systems to
video data. Instead of applying our systems independently on each frame, temporal consistency
could be enforced by linking the proposals between frames [Horbert et al., 2015; Ošep et al.,
2020]. More challenging would be an online approach that tracks the proposals dynamically
based on newly acquired frames without incorporating knowledge from future frames. This
formulation is similar to online object tracking [Wu et al., 2013] but lacks an initial set of
objects. Thus, proposals are generated and tracked through time until they disappear or the
lack of temporal consistency disproves a proposal track. In this formulation, the recurrent
updating and spawning of several proposal tracks are major challenges.

Future of Object Proposal Generation

Recently, few papers have proposed new object proposal generation approaches [Lu et al.,
2018; Wang et al., 2019], while the interest in instance segmentation has grown [Lee and
Park, 2020; Xie et al., 2020]. Due to the reliance of instance segmentation methods on the
classification of objects, they are restricted to pre-selected object classes or the object classes
seen in training. As a result, those methods do not generalize as well to objects of classes
that were not part of the training data as class-agnostic methods [Pinheiro et al., 2015; Ošep
et al., 2020; Kim et al., 2022]. This lack of generalization ability in instance segmentation
has drawn attention recently with the introduction of the open-world instance segmentation
task [Wang et al., 2021a; Kim et al., 2022]. The task explicitly assesses the generalization
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ability by testing on object classes that are not annotated in the training data. Due to
their class-agnostic nature, object proposal generation methods are a promising direction to
approach this task. To further improve the generalization abilities of these methods, several
directions are possible, including data augmentation [Saito et al., 2021], generation of pseudo
annotations [Ahn et al., 2019; Laradji et al., 2019], moving the focus of CNNs from texture
to shape [Geirhos et al., 2018a], or integrating model-based approaches like saliency [Martín
García et al., 2015] or Gestalt principles [Werner et al., 2015] into CNNs. Overall, open-world
instance segmentation is a promising new application area for object proposal generation
systems.





Appendix A

CNN Backbone Networks in Computer
Vision

Convolutional Neural Networks (CNNs) have gained much attention in computer vision
since Krizhevsky et al. [2012] proposed AlexNet for image classification. The success was
driven by a large amount of data in image classification datasets like ImageNet [Russakovsky
et al., 2015] and the availability of powerful GPU hardware. After the seminal AlexNet
many other authors proposed CNNs for image classification [Simonyan and Zisserman, 2015;
He et al., 2016a; Szegedy et al., 2016]. Despite some differences, the general style of the
architectures is similar. CNNs for image classification first utilize convolutional layers to
extract a feature representation of input image followed by fully connected layers to predict
a class. Besides image classification, systems for other computer vision tasks utilize CNNs
as backbone networks to extract semantically rich features [Ren et al., 2016; Yang et al.,
2016; Chen et al., 2017; Hu et al., 2017a]. On top of the backbone, such systems add task-
dependent branches that utilize these features. Despite the differences between the tasks,
the classification networks are still useful backbones. For instance, since they are usually
pre-trained on large datasets like ImageNet, less task-specific data is necessary in a transfer
learning framework.

All CNN-based systems in this thesis utilize modified versions of either VGG nets [Simonyan
and Zisserman, 2015] or ResNets [He et al., 2016a] as a backbone. Therefore, we give a brief
introduction to VGG nets in Sec. A.1 and to ResNet in Sec. A.2. We will also introduce
common naming conventions for the subtypes of the networks and the network parts for a
simplified presentation.

A.1 VGG Nets

The seminal AlexNet [Krizhevsky et al., 2012] consists of only five convolutional layers with
kernel sizes up to 11× 11. The large kernel sizes lead to a larger receptive field for computing
features. An alternative to large kernel sizes is a stack of multiple layers with smaller kernels
sizes. Simonyan and Zisserman [2015] utilize this idea as a key component for their Visual
Geometry Group (VGG) nets. VGG nets use only 3× 3 kernels that are stacked to enlarge the
receptive field. For instance, five consecutive 3× 3 kernels have the same receptive field as one
11× 11 while reducing the number of parameters from 122 to 50. This change leads to deeper
networks with a simple architecture that only utilizes convolutional layers with 3× 3 kernels
and contributes to improved results [Simonyan and Zisserman, 2015].

Simonyan and Zisserman [2015] propose six networks for image classification based on this
idea. All six networks share the same general structure and mainly differ in the parameters of
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Figure A.1: Architecture of VGG-16 for image classification on the ImageNet dataset (1000 classes). Each
stage consists of 2-3 convolutional layers (blue) followed by a max pooling layer (green) at the end
of each stage. Finally, the learned features are classified using three fully connected layers (red).

the convolutional layers. One of these networks, VGG-161, serves as the backbone in many
computer vision systems [Girshick, 2015; Liu et al., 2016a; He et al., 2018]. The feature
extraction in VGG-16 consists of 13 convolutional layers with 3×3 kernels grouped into stages
as visualized in Fig. A.1. Within each stage, the layers have a fixed number of kernels from 64 in
the first stage to 512 in the final stage. Between stages, max pooling operations are introduced
to downsample the feature maps. Since the VGG nets are designed for image classification,
they conclude with fully connected layers and softmax. The remaining VGG nets consist of 8
to 16 convolutional layers that follow the same general structure.

Overall, VGG nets present a simple yet effective architecture for CNN backbones.

A.2 ResNet

Despite the success of VGG nets based on stacking layers, this concept leads to problems
like vanishing gradients or early saturation if many layers are stacked. Vanishing gradients
occur since the derivate of the loss function becomes smaller with every application of the
chain rule during backpropagation in deep networks. Hence, learning becomes more difficult
with every additional layer, as almost no gradient information reaches the early layers of the
network2. Early saturation describes the effect that very deep networks with many stacked
layers saturate at higher training errors than their shallower complements [He and Sun, 2015;
Srivastava et al., 2015]. Thus, the extra layers impair the results, which is surprising since
simple identity mappings in the extra layers would lead to results similar to the shallower
networks.

He et al. [2016a] learn residual mappings that improve learning in very deep networks to
address the aforementioned problems. Instead of only stacking layers, He et al. [2016a] define
blocks of stacked convolutional layers with skip connections as building blocks (see Fig. A.2).
The skip connection receives the same input as the first layer of the main branch and applies
an identity mapping. Since the result of the skip connection is added to the result of the main
branch’s final layer, the main branch learns a residual mapping. This reformulation of the
architecture improves learning in deep CNNs [He et al., 2016a] and serves as the fundamental

1Simonyan and Zisserman [2015] denote this network as architecture D.
2Note that other approaches to circumvent this problem exist [Glorot and Bengio, 2010; Ioffe and Szegedy,
2015].
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(a) Residual block in ResNet-18 and ResNet-34 (b) Residual block in ResNet-50

Figure A.2: Comparison of residual blocks in ResNet-18 and ResNet-34 (a) on the one hand and ResNet-50 (b)
on the other hand. While the residual block in (a) has only two layers in the main branch, the
residual block’s main branch in (b) has three layers (left). Both residual blocks have example
hyperparameters for input and output feature maps with 256 channels (256D). Figure adapted
from He et al. [2016a].

building block of the ResNet versions proposed by He et al. [2016a]. Similar to VGG nets,
ResNets are used as backbone networks in many computer vision systems [Pinheiro et al.,
2016; He et al., 2017a].

He et al. [2016a] propose ResNets with different numbers of learned layers n, denoted as
ResNet-n. We focus our discussion on the ResNets with 18, 34, and 50 layers since they are
utilized in different parts of this thesis. Other ResNets are described in He et al. [2016a]
and He et al. [2016b]. The basic components of ResNet-18, ResNet-34, and ResNet-50 are the
blocks with two to three convolutional layers in the main branch and a skip connection as
depicted in Fig. A.2. These building blocks, residual blocks, differ between ResNet-18 and
ResNet-34 on the one hand and ResNet-50 on the other hand. In ResNet-18 and ResNet-34,
the residual blocks have two convolutional layers with a fixed number of 3× 3 kernels (see
Fig. A.2(a)). ResNet-50 consists of residual blocks with a bottleneck in the main branch,
visualized in Fig. A.2(b). The bottleneck consists of a 1× 1 convolutional layer to reduce the
number of channels of the feature map, followed by a 3× 3 convolutional layer on the reduced
feature map, and a final 1× 1 convolutional layer to restore the original number of channels.
This structure improves the computational efficiency since the expensive 3× 3 convolutional
layer is applied to fewer channels. Still, the resulting feature maps have a larger capacity with
more channels.

Table A.1 presents a summary of the ResNet-18, ResNet-34 and ResNet-50 architectures. In
all three ResNet architectures, the residual blocks are grouped in four stages (conv2, conv3,
conv4, and conv5 ). The remaining stage, conv1, only consists of a 7× 7 convolutional layer.
Within the other four stages, the number of kernels per residual block is fixed. Additionally,
at the beginning of a stage, the feature map is downsampled by a factor of 2. Hence, the
feature map at the end of the stage conv5 represents the input image downsampled by a
factor of 25. Since the ResNets are designed for image classification, global average pooling, a
fully connected layer, and softmax conclude the networks.

Overall, ResNets allow deeper CNN backbones than VGG nets by stacking residual blocks.
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Table A.1: Schematic representation of ResNet-18, ResNet-34, and ResNet-50. Convolutional layers with k
kernels of size n× n are denoted as n× n, k. The kernel size and stride are given for max pooling
layers, while fully connected layers are specified with their number of neurons. ReLU is omitted in
the representation for brevity. The blocks for ResNet-18 and ResNet-34 in the stages conv2 -conv5
are two-layer residual blocks (see Fig. A.2(a)), while the blocks for ResNet-50 denote residual
blocks with bottlenecks (see Fig. A.2(b)). Table adapted from He et al. [2016a].

Stage Downsampling factor ResNet-18 ResNet-34 ResNet-50

conv1 ×2 7× 7, 64

conv2 ×4
Max pooling layer (3× 3, stride 2)[

3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3 ×8
[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

conv4 ×16
[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

conv5 ×32
[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 512
3× 3, 512
1× 1, 1024

× 3

Global average pooling
Fully connected layer (1000)

Softmax



Lists of Abbreviations, Names, and
Symbols

Abbreviations and Names

AR Average Recall (see Sec. 2.2.3)
AttentionMask Object proposal generation method proposed in Ch. 4
BR Boundary Recall (see Sec. 2.1.3)
BSD Berkeley Segmentation Dataset (see Sec. 2.1.2)
CNN Convolutional Neural Network
COB Object proposal generation and contour detection method [Mani-

nis et al., 2016, 2017]
COCO Microsoft Common Objects in Context dataset (see Sec. 2.2.2)
CRF Conditional Random Field
DeepFH Superpixel segmentation method proposed in Ch. 7
DeepMask Object proposal generation method [Pinheiro et al., 2015]
EA-ETPS Superpixel segmentation method proposed in Ch. 6
EA-SLIC Superpixel segmentation method proposed in Ch. 6
ETPS Superpixel segmentation method [Yao et al., 2015]
Fash Fashionista Dataset (see Sec. 2.1.2)
FastMask Object proposal generation method [Hu et al., 2017a]
FH Superpixel segmentation method [Felzenszwalb and Huttenlocher,

2004]
GPU Graphics Processing Unit
GT Ground Truth
IoU Intersection over Union (see Sec. 2.2.3)
LVIS Large Vocabulary Instance Segmentation dataset (see Sec. 2.2.2)
MCG Object proposal generation method [Arbeláez et al., 2014; Pont-

Tuset et al., 2017]
NMS Non-Maximum Suppression
NYU NYU Depth Dataset V2 (see Sec. 2.1.2)
OE Oversegmentation Error (see Sec. 2.1.3)
OSQ Overall Segmentation Quality (see Sec. 2.1.3)
Rec Recall in object proposal generation (see Sec. 2.2.3)
ResNet Residual Network (see Appendix A.2)
SAM Superpixel-based AttentionMask, object proposal generation

method proposed in Ch. 5
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SAM+FH SAM with FH superpixel segmentations (see Sec. 5.4)
SAM+DeepFH SAM with DeepFH superpixel segmentations (see Sec. 7.3)
SAM+EA-ETPS SAM with EA-ETPS superpixel segmentations (see Sec. 6.4)
SBD Stanford Background Dataset (see Sec. 2.1.2)
SharpMask Object proposal generation method [Pinheiro et al., 2016]
SLIC Superpixel segmentation method [Achanta et al., 2012]
SOAM Scale-specific Objectness Attention Module (see Sec. 4.2.2)
SUN SUN RGB-D Dataset (see Sec. 2.1.2)
UE Undersegmentation Error (see Sec. 2.1.3)

Symbols

rψp,ψq Pearson correlation coefficient between object properties (see
Sec. 8.1.3)

Ω Set of pixels in the image
p Pixel as vector of x- and y-coordinates
Sn Level of the feature pyramid (see Sec. 4.2.1 and Sec. 5.2.1)
S Superpixel segmentation (see Sec. 2.1.1)
Si Superpixel in S (see Sec. 2.1.1)
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