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1 Introduction

When making simple perceptual decisions we produce specific responses based on

an interpretation of incoming sensory information (??). Imagine walking on a street

crowded with people and seeing a remotely familiar person from distance. You scan

characteristic traits of the person’s face, clothes, and gait in order to discern if you in-

deed know the person in question. The outcome of this decision then elicits a spe-

cific response, e.g. greeting. During this process, the brain needs to pass information

from cue specific sensory neurons to action effector specific neurons through several

intermediate stages with integrative function, that have been characterized in extensive

studies of behaving non-human primates (?????). The flow of information during such

simple perceptual decisions can be approximated as follows: Neurons in sensory corti-

cal areas track the evidence valueof presented stimuli, for example, sensory information

regarding the color or shape of the face. Neurons in higher cortical areas – such as in

the parietal and frontal cortices – integrate the subsequently incoming pieces of infor-

mation over time (?). This accumulated evidence can be conceptualized as a decision

variable. Finally, in motor and motor preparatory cortices, a signature of this decision

variable can be traced in the form of a gradual build-up of choice predictive activity

(??). Once this activity reaches a threshold, the decision-maker commits to a decision

in the form of a prompted motor response.

In distinct contexts, decision-makers can be required to come up with different re-

sponses given the exact same sensory input. Adaptive cognitive behavior thus requires

i) the arbitrary mapping of sensory inputs to motor outputs and ii) the ability to change

these mappings flexibly when contextual changes demand it. For example, in the case

of discerning a familiar person among the crowd, the elicited response can drastically

vary depending on the contextual setting or on the current status of your relationship

with that person. In such scenarios, the information flow during decision-formation

needs to be routed flexibly from cue-specific sensory neurons to action effector-specific

neurons. Critically, in the real world, decisions are corrupted by various sources of un-

certainty: ”Expected uncertainty” arises from the inherent noisiness of sensory infor-

mation itself. Moreover, environmental contexts are often unstable and can undergo

sudden changes giving rise to a second form of uncertainty coined ”unexpected un-

certainty” (?). When the context changes unexpectedly, which sensorimotor mapping
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is currently appropriate can itself be subject to a decision-making process that results in

a covert belief state. Thus, the information flow from sensory neurons to action effector-

specific neuronsdepends on thebelief state regarding the current state of the uncertain

environmental context. A change in belief state potentially entails a complete reversal

of information flow between cue-specific sensory neurons and action effector-specific

motor neurons.

An influential theory maintains that the brain accomplishes adaptive flexibility of

decision-making through a top-down signal carrying information about the mapping

of motor responses onto perceptual interpretations of the sensory signal (????). How-

ever, previous studies that entailed different stimulus-response mappings and, thus,

required a flexibly routed flow of information from sensory to motor areas explicitly

instructed the rewarded stimulus-response mapping (??). In contrast, in more ecolog-

ical scenarios this contingency is not instructed but highly uncertain and requires the

decision-maker to entertain an ongoingly updated belief about it. We hypothesize,

that flexible behavioral adaptation under uncertainty about a hidden state of the en-

vironment requires i) a belief updating process, which keeps track of the evidence for

competing hypotheses regarding the state of the environment (i.e. the context) and ii)

a simple decision-making process which interprets and reacts to sensory cues depen-

dent on current belief state regarding the context. These two processes should be cou-

pled functionally in the sense that the latent belief state regarding the context shapes

the information flow from cue-specific sensory neurons to action effector-specificmotor

neurons in the low-level decision-making process.

In thebelow study,wewere interested in investigatinghow thebrain flexibly changes

the flow of information of a decision-making process based on a volatile belief regard-

ing the state of the environment. We, therefore, constructed a task, in which the same

visual stimuli required different responses depending on context-dependent response

rules. The rule-defining context was uncertain and could potentially change at any

given time. Specifically, participants had to infer from a noisy stream of cues presented

on the timescale of tens of seconds, which of two possible task rules was the currently

active one. Throughout the task, a simple visual grating was shown and the currently

active task rule had to be applied. Critically, the rewarded rule could switch at any

time without being explicitly signaled to the participants. Our task was partially de-

rived from a recent normative Bayesian model of evidence accumulation in changing
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environments (?). In this framework, a belief variable about a hidden state of the world

is updatedwith each new arriving piece of evidence by discounting the prior belief and

adding the new evidence. The discounting of the prior belief depends on the expected

”hazard rate”, i.e. the probability of the state of the world to change. In our task, hidden

states of the world represented the task rules, that had to be inferred and applied. The

following rationale motivated our task design: First, the visual-choice task required a

complete reversal of information flow between task-relevant neural populations in vi-

sual andmotor cortical areas. Second, the volatility anduncertainty of the rewarded task

rule made some form of belief signal necessary. Third, using the normative Bayesian

model of evidence accumulation by Glaze et al. (2015) enabled us to track this hidden

belief variable behaviorally. And finally, the different timescales of the slow belief up-

dating process and the fast sensorimotor decisions allowed a disentanglement of the

neural correlates of these intertwined processes.

By combining this novel task with 3 Tesla functional magnetic resonance imaging

(fMRI) and pupillometry we tried to probe into two questions. First, we were interested

in the brain areas that are involved in the two coupled decision-making processes. Sec-

ond, based on a large body of evidence, positing that neuromodulatory brainstem nu-

clei are involved in monitoring the statistical nature of the environment (????) and pro-

viding a signal for adaptive behavior accordingly (??), we aimed to investigate the role

of neuromodulatory brainstem centers in the interplay between these two levels of de-

cision making. This thesis will be structured as follows. First, I will briefly summarize the

progress made over the last decades in the field of decision neuroscience, particularly

focusing on decision-making in uncertain environments. Next, I will review three neu-

romodulatory systems and their respective effect on cognition and decision-making. I

will, moreover, highlight challenges in measuring neural activity in the brainstem and

briefly review the role of pupillometry as a proxy for activity in brainstem arousal sys-

tems. This introductory section is followed by results, methods, and discussion of the

conducted study, which constitutes the centerpiece of this thesis.

1.1 Information integration in decision making

Decision-making can be understood as the process of deliberation between multiple

alternatives leading to the commitment to a choice. We continuously need to take a

plethora of decisions varying in scope and timescale. It comprises complex decisions
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(”Is the suspect in a judicial trial guilty?”) as well as ordinary everyday decisions (”Should

I wear a rain jacket today?”).

Inmost decisions, we have to deal with various sources of uncertainty. One substan-

tial source of uncertainty – termed ”expected uncertainty” (?) – originates from the in-

herent unreliability (i.e. noisiness) of the information we gather in our decision-making.

For example, when deciding whether to wear a rain jacket today we might base our

decision on the weather forecast we checked in the morning, which is inherently prob-

abilistic and thus ”noisy”. A fruitful strategy for reducing the ”noise” of our decisions

caused by this kind of uncertainty is to base our decisions on multiple pieces and dif-

ferent sources of evidence (???). For example, before dressing, we might supplement

our evidence gathered from the forecast with a glimpse out of the window to check if

the sky is blue or cloudy right now.

The combination of multiple pieces of evidence in the formation of a decision re-

quires a mechanism of integration. On a conceptual level, decision-making can thus

be dissected into the following components: A single piece of evidence is associated

with an evidence value. For example, seeing a blue sky is associated with a significant

evidence value in favor of the hypothesis that it will not rain in the next hour. The entirety

of currently available pieces of evidence is aggregated into a quantity that keeps track

of the current overall balance of evidence. In the context of decision-making theory,

this quantity is referred to as the decision variable (?). Finally, a decision rule defines

how the decision variable is transformed into a discrete decision. Different contexts

can require different decision rules. For example, in a court ruling – where the conse-

quences of a wrong decision are grave – the conviction of the suspect requires a certain

body of proof. The respective decision rule would state, that a decision is taken only af-

ter considering all accessible sources of evidence and when the decision variable has

reached a certain magnitude. On the contrary, in the above example regarding the

choice of clothes for a walk outside, time can be the constraining factor requiring a de-

cision rule with a set time limit and a higher rate of acceptable errors. These principal

constituents of a decision – the evidence value of consecutive pieces of evidence se-

quentially integrated into a decision variable resulting in the commitment to a decision

based on a decision rule – have been formalized in numerous models and applied in

a range of fields. One prominent example is the sequential probability ratio test (?), of

which an independently developed version helped Alan Turing decrypt the setting of
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German Enigma machines in World War II, a breakthrough allowing to decode thou-

sands of encrypted military messages per day (??). Critically, related models – most

prominently the drift-diffusion model (?) – have been shown to capture behavioral data

in a variety of decision-making studies (??). This insight raises the question of how the

integration of evidence is mechanistically implemented in the brain.

Seminal studies in non-humanprimatesperformingbasic (mostly perceptual) decision-

makingparadigmshavegenerated importantmechanistic insights over the last decades.

For example, researches showed that the evidence value associatedwith an ambiguous

visual stimulus in a perceptual decision-making task was encoded in the middle tem-

poral area (MT), a part of the extrastriate visual cortex tuned for visual motion direction

(???). In higher association cortices (e.g. in the lateral intraparietal sulcus) a signature of

thedecision variablewas found, namely response-selective activity rampingup towards

a threshold, upon which the animal indicated the choice through a saccade (???). Non-

invasive recordings of neural mass activity in humans complemented these findings.

For example, gamma-band activity in magnetoencephalography (MEG) recordings of

the visual cortex reflected visual motion coherence of a random dot motion stimulus

(?), while a choice-predictive build-up of activity resembled a decision variable in mo-

tor regions (????).

To conclude, during decision-making, which naturally requires the accumulation

and integration of pieces of evidence, information needs to be passed from sensory

areas across association cortices and ultimately to motor cortical areas responsible for

eliciting the response. Across this processing hierarchy, a temporally integrated track

record of evidence emerges – the decision variable – ultimately resulting in the commit-

ment to a decision. Studying basic decision-making schemes has yielded insights into

the neural nodes of this processing hierarchy. Typically, however, studies used a static

stimulus-response mapping (e.g. left visual motion reported with left-directed saccade

or button-press) and thus a preset route of information flow. In our study, we were inter-

ested in how the brain reconfigures itself to reroute this information flow in cases where

the stimulus-response mapping can change dynamically.

1.2 Decision-making in uncertain environments

Growing knowledge about the neural basis of the most basic (often perceptual) deci-

sions has paved the way for investigating mechanisms of decision-making under more
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ecological conditions. A distinct feature of most real-world decision-making scenarios

regards the volatility of the world surrounding us. That is, the state of natural environ-

ments can often change covertly and unpredictably. Consider the above example of

dressing for a walk outside. You have seen a predominantly blue sky while casting a

glance through the window and your flatmate has asserted that the weather was splen-

did when he went for a walk in the morning. You accumulate these two pieces of in-

formation and choose a light summer jacket when leaving the flat. However, on the

street, you sense a series of raindrops on your skin and the sky appears clouded. These

two sensations – water on your skin and a grey sky – could potentially be explained

by a state-change of the environment (i.e. from ”good weather” to ”rainfall”). This fea-

ture of most natural environments – the possibility of sudden unpredictable changes –

distinguishes decision-making in many ecological settings from most decision-making

studies, in which the underlying signal eliciting the noisy stimulus typically stays static

throughout a decision trial (?). Incorporating the possibility of sudden state-changes of

the underlying ground truth into experiments introduces a second form of uncertainty

termed ”unexpected uncertainty”, i.e. uncertainty, which is not due to the noisy nature

of the stimulus itself, but results from a potential change in the underlying source which

generated the sensory signal (?). Whereas variance in a new observation caused by the

stochastic nature of the stimulus itself (i.e. ”expected uncertainty”) is in principle not dis-

tinguishable from variance in a new observation caused by a state change (i.e. ”unex-

pected uncertainty”), the potential implications for evidence accumulation are severe:

A change of the underlying state of the environment renders (most) past information

practically irrelevant, while high amounts of stochastic noise require smoothing of our

estimate by averaging over many samples.

An intuitive approach to reducing ”unexpected uncertainty” (i.e. uncertainty due

to a potential change-point) is to discount past information and attach more weight to

more recent evidence. By balancing the impact of prior information and new incom-

ing information, the decision-maker governs the trade-off between the computational

goals of identifying anunderlying signal precisely anddetectingpossible change-points

reliably. When the environment can be assumed to be perfectly stable – as in classical

decision-making tasks – perfect accumulation (i.e. linear integration) of evidence sam-

ples is the optimal accumulation strategy (?). However, when past experiences suggest

that the environment tends to change, one should adapt the influence of prior informa-
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tion and new evidence on the decision variable based on an estimate of the volatility of

the environment (?). Such adaptive balancing of prior information and new evidence

has been shown to drive behavior in a range of decision-making tasks that require ev-

idence accumulation in a changing environment (????). These recent normative mod-

els of evidence accumulation in changing environments incorporate an update-rule by

which new incoming evidence and prior information are integrated non-linearly into

the newly updated belief regarding the hidden state of the environment based on the

probability that a change-point in the hidden state has occurred (??). For example,

following a supposed change-point new evidence should be up-weighted while prior

information should be discountedmore strongly. This dynamic updating can be formu-

lated in amore intuitiveway asmodulation effects of statisticalmeasures of surprise (un-

expectedness of a new observation) and uncertainty regarding the previous belief on

the weighting of new samples (??). The influence of a surprising sample should be up-

weighted, as it is indicative of a change-point. Similarly, while increased uncertainty re-

garding the previous belief prevails, new incoming evidence should be also conceded

enhanced impact. A line of research combining imaging and computational model-

ing is beginning to unravel the neural underpinnings of decision-making in changing

environments. Neural correlates encoding these statistical measures have been found

especially in the anterior cingulate cortex (ACC) and the parietal cortex (???). Using

MEG, Murphy et al. showed elegantly how the neural encoding of prior information,

new evidence value, and the decision variable ismodulated by surprise and uncertainty

(?).

1.3 Hierarchical decision-making

When we infer the current state of the environment surrounding us, we are usually not

asked to directly report the outcome of this inference process – as it is the case in most

decision-making experiments. Instead, the outcome of this inference process guides

our decisions in that environment. What results is another hallmark of goal-directed

behavior in natural environments, that is, hierarchically organized decision-making pro-

cesses (?). Specifically, higher-level decisions or inference processes over long time

scales determine abstract strategies or beliefs regarding our environment. Low-level

decisions, which depend on these higher-level strategies or beliefs, result in concrete

actions and guide our responses to incoming stimuli. The requirement of our complex
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world to computemultiple intertwined decisions at varying levels of abstraction and on

distinct time scales is reflected in hierarchical principles of organization observed in the

neocortex in several recent studies. For example, Murray et al. showed that the tem-

poral structure in electrophysiological data exhibits a hierarchical gradient from early

sensory cortices to higher association cortices (?). Furthermore, the representation of

rules in lateral frontal cortex has been observed to follow a rostro-caudal gradient re-

garding the abstractness of rules (??). Specifically, more abstract rules, i.e. rules more

distant from concrete action such as rules about the choice of rules, were represented

in more anterior parts of the lateral frontal cortex. Finally, patterns of fMRI signal were

found to reflect a hierarchy of reward structures in the medial prefrontal cortex, with ac-

tivity in more anterior and posterior parts reflecting changes in reward structure across

task blocks and trials, respectively (?). Recent studies have probed into the dynamics

of decision-making in hierarchical environments (????). Several of these studies used

task paradigms that entailed a volatile higher-level decision rule determining how to

respond in a low-level perceptual decision-making task (??). Specifically, participants

were asked to respond to noisy stimuli applying one of two uncertain and volatile re-

sponse rules. After each sample, participants were given feedback on the correctness

of the response. In these task paradigms feedback was ambiguous as errors could re-

sult from both a hidden rule switch or from an erroneous stimulus identification. Behav-

ioral analyses revealed that confidence, i.e. the decision-maker’s belief in the correct-

ness of her choice, provides a critical signal for distinguishing between these potential

sources of errors (?). On the level of neural implementation, the anterior cingulate cor-

tex was found to accumulate evidence for a switch in the underlying environment as

the source of errors (?).

As another example of a hierarchical decision-making scenario, our experiment re-

lates to this line of research. However, our task design differs from the above-reviewed

studies in several points. First, we do not provide direct feedback regarding the correct-

ness of responses. Second, we do not interrogate the decision-maker’s confidence in

decisions. Finally and most importantly, in our task, the two (hierarchically intertwined)

decision processes operate on two distinct sources of sensory input presented on vary-

ing time scales: A regular stream of sampled noisy cues presented over the course of

tens of seconds informs the top-level inference process whereas the low-level deci-

sion operates on unambiguous grated stimuli interlaced with variable intervals. This
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approach enables us to disentangle the two decision processes and facilitates relating

the two processes to neural data independently.

1.4 Neuromodulation of decision-making in uncertain environments

Neuromodulators describe specific systems of neurotransmitters that have been impli-

cated influentially over the last decades inmodulating cognitive function, behavior, and

global brain state in highly specificmanners. Anatomically, these neuromodulatory sys-

tems comprise small nuclei in the brainstem and the basal forebrain with widespread

ascending projections throughoutmost of the cortex. At the level of targeted synapses,

the involved neurotransmitters typically do not directly participate in the signal trans-

mission in the formof eliciting apostsynaptic excitatory or inhibitory potential but rather

alter the response properties of the targeted neurons, therebymodulating signal trans-

mission. Neuromodulatory systems have been linked to the regulation of the global

brain state, arousal, or attention. More recently, however, studies have also demon-

strated more specific and temporally highly precise effects on cognitive operations,

including decision-making. The neuromodulatory systems reviewed in the following

include the noradrenergic locus coeruleus (LC-NE), the dopaminergic ventral tegmen-

tal area (VTA-DA), and the acetylcholinergic basal forebrain (BF-ACh). The serotonergic

dorsal raphenuclei aswell as histamine,which havebeen furthermore identified as neu-

romodulators, will be omitted in the scope of this thesis as little is known about them in

the context of inference and decision-making.

The locus coeruleus (LC) comprises a few thousand neurons in the rostral pons,

constitutes the main source of norepinephrine (NE) in the central nervous system, and

entertains widespread projections throughout almost the entire brain (?). LC-NE func-

tion has been influentially conceptualized in terms of two operation modes that impact

decision-making distinctly, namely a fast (phasic) and a slow (tonic) release mode (?).

Phasic bursts of LC activity and consecutive NE release have been demonstrated to

be closely time-locked to salient stimuli in elementary decision-making tasks (??). This

phasic activity has been proposed to facilitate the exploitation of profitable behavior (?)

and has been shown to reduce the bias of decision-makers towards one of two alterna-

tive choices, thereby significantly enhancing task performance (?). LC-NE activity in the

tonic mode, i.e. fluctuations of NE release on a time scale of seconds to minutes, is hy-

pothesized to engender exploration of alternative (task) strategies potentially through
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an increase in gain at targeted synapses in a temporally non-specific manner (??). In-

triguingly, the activity of the LC-NE neuromodulatory system has been formulated as

signaling ”unexpected uncertainty”, i.e. uncertainty that does not arise from the intrin-

sic stochasticity of a sensory signal (”expected uncertainty”) but fromapotential change

in the underlying source which generated the sensory signal (?). Increased NE-release

due to increased ”unexpected uncertainty” could serve the decision-maker to disen-

gage from a previously profitable strategy and reorient attention to other features or

the environment or new incoming evidence (???).

The acetylcholine (ACh)-releasing neurons that reside in multiple nuclei in the basal

forebrain and entertain widespread projections to the entire cortex (??) constitute an-

other neuromodulatory system relevant for inference problems in settings of uncer-

tainty. On a conceptual level, ACh has been hypothesized to signal ”expected uncer-

tainty”, that is uncertainty arising due to the stochastic nature of a noisy stimulus or cue

(?). Thus, NE and ACh can be regarded as counterparts presumably mediating two dis-

tinct signals of uncertainty – ”unexpected” and ”expected uncertainty”, respectively –

associated with a particular cue or piece of information. From a Bayesian standpoint of

optimal inference, both sources of uncertainty should impact the balancing of prior be-

lief and new information in the form of upweighting new pieces of evidence (??). This

notion finds empirical support in the finding that ACh projections to the primary vi-

sual cortex increase the signal-to-noise ratio by enhancing bottom-up thalamo-cortical

sensory input while simultaneously suppressing top-down cortico-cortical connections

(???).

As a third neuromodulatory system that is potentially relevant in the context of our

study, dopaminergic neurons in the ventral tegmental area (VTA) entertain strong pro-

jections to the prefrontal cortex and have been studied extensively in the context of

reward processing. Robust insights stem from classical conditioning experiments, in

which monkeys were presented visual cues, which were deterministically followed by

a reward. Before the animal learned the cue-reward contingency dopamine (DA) mid-

brain neurons fired in response to the (unexpected) reward. After learning, increased

firing rates of DA neurons were observed after the cue, not the reward itself, and fir-

ing rates decreased when an expected reward was absent (??). These striking find-

ingsmotivated the established framework of DAneurotransmission reflecting so-called

reward-prediction errors (i.e. a computational measure of the discrepancy between ex-
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pected and actual reward) used in reinforcement learning models to update internal

estimates of values of certain states or actions and thereby driving learning and fu-

ture behavior (?). Critically, influential theories of prefrontal cortex function (especially

regarding adaptive behavior) have assigned a key role to DA signaling (?). The frame-

work posits that the prefrontal cortex (PFC) is involved in guiding adaptive behavior

by instantiating and maintaining higher-order sets of goals or rules which modulate

the processing of (sensory) input (?). An apt illustration (and experimental paradigm)

is the well-established Stroop-task in which participants are asked to denote the color

of a word, which states the name of a color, printed in another (conflicting) color (e.g.

the word ”blue” printed in red ink) – either by attending to the written word or the ink

color (??). The same sensory input in this paradigm elicits converse responses based

on a predefined task set (”word” or ”ink color”) – supposedly maintained in PFC.When

environments are volatile and tend to change, they warrant updates of goals or task

strategies to engender adaptive behavior. In such scenarios, the rule center in the form

of the PFC needs to balance the trade-off between i) maintaining a strategy robustly

in the face of irrelevant stimuli (distractors) and ii) remaining responsive to salient sig-

nals of the environment. It has been hypothesized that the ample DA projections to

PFC – signaling discrepancies between anticipated reward and actual reward – consti-

tute a temporal gating mechanism to afford updates of strategies or goals when the

environment demands it and stabilize a specific task set in the meantime (????).

The above highlighted theoretical frameworks, which implicate the LC-NE, the BF-

ACh, and the VTA-DA neuromodulatory systems in decision-making and inference un-

der uncertainty and in volatile environments,motivated us to particularly probe into the

activity of these systems in our study.

1.5 Challenges of brainstem fMRI and pupil diameter as a proxy for neuro-

modulatory arousal systems

Recording theneural activity in neuromodulatory brainstemcenters non-invasively poses

several challenges. First, the relatively small size of neuromodulatory nuclei (e.g. the

LC; Keren et al., 2009) and the anatomical position in the brainstem, which is prone to

physiological nuisance due to adjacent blood vessels and pulsatile cerebrospinal fluid

(?), pose substantial challenges for fMRI imaging of these structures (??). Second, in-

ferring the activity of particular neuromodulatory systems (such as the LC-NE) from the
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fMRI signal in the identified region (e.g. the LC) is hampered by the fact that most of

these nuclei also contain various other functional types of neurons such as populations

of inhibiting interneurons (?). Third, the temporal resolution of fMRI data is inherently

low and prevents the analysis of rapid fluctuations of neural activity such as phasic trial-

related responses in neuromodulatory brainstem nuclei. The first problem can be ad-

dressed by adhering to recently advanced imaging techniques comprising brainstem-

specific acquisition parameterizations and nuisance regression protocols (?). A poten-

tial approach of surpassing the latter limitations relies on supplementing the imaging

data with pupillometric data, i.e. the recordings of pupil diameter at a high temporal

resolution, which serves as a reliable proxy for the neural activity in neuromodulatory

arousal systems (???). The diameter of the pupil is controlled by two intertwined path-

ways comprising various brainstem nuclei and circuits that regulate the tone of two

muscles – the iris dilator muscle and the iris sphincter muscle – through sympathetic

and parasympathetic nerve fibers, respectively. The primary function of the pupil can

be described analogously to a camera shutter as governing the amount of light that

enters the eye and ensuring the optimal illumination of the retina. In this sense, the

amount of incoming light constitutes the major influence on pupil diameter, effecting

a pupil constriction as a response to increased luminance through the pupillary light

reflex (?). However, it is long known that pupil size is not solely determined by the

amount of incoming light and that the pupil diameter tends to fluctuate significantly

even under constant luminance. Early studies of pupillometry (i.e. the quantification

of pupil diameter and reactivity) argued that these non-luminance mediated pupil re-

sponses reflect neural activity associated with behavioral correlates such as arousal,

attention, or cognitive effort (??). A recent line of research has related non-luminance

mediated fluctuations of pupil diameter to transitions in cortical brain state (???) In-

triguingly, the noradrenergic LC can be regarded as a prime candidate effector of these

non-luminancemediated pupil dilations, as its neurons project to both the sympathetic

pathway activating the iris dilator muscle as well as to the Edinger-Westphal nucleus

to inhibit the constriction pathway (?). Consistent with this are various decision-making

studies that related changes in pupil diameter to behavioral readouts compatible with

current theories of LC-NE neuromodulation (????????). Corroborating the hypothesis

that non-luminance mediated pupil responses reflect in large parts the activity in the

LC-NE neuromodulatory system, recent direct evidence stems from i) imaging studies
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that relate fMRI signal strength in the LC to baseline pupil diameter (?) or task-evoked

changes in pupil diameter (?), ii) electrophysiological studies reporting pupil dilations

directly elicited by microstimulation (??) or optogenetic activation (?) of noradren-

ergic LC neurons and iii) measurements of activity at cortical NE axons originating in

the LC (?). The latter study related activity in cortical noradrenergic axons in particular

to fast phasic changes in pupil diameter, which were best reflected in a strong cross-

correlation between LC-NE activity and the first derivative of pupil diameter (?). How-

ever, non-luminance-mediated fluctuations of pupil diameter have also been related

to activity in subcortical structures other than the LC. These comprise in particular the

BF-ACh (??) and the VTA-DA neuromodulatory systems (?). Critically, recent analysis

approaches (??) and refined knowledge of how cognitive input signals to the pupillary

apparatus (temporally) relate to changes in pupil diameter (?) facilitate the inference

of cognitive processes from pupillometric data. In sum, fluctuations of pupil diameter

constitute a reliable proxy for activity in a network of subcortical arousal systems. Within

this network, evidence for a causal connection of pupil diameter and LC-NE activity is

particularly strong. Importantly, the high temporal resolution of pupillometric data en-

ables relating this proxy of neural activity to trial-wise behavioral readouts, which would

otherwise exceed the sparse temporal resolution of fMRI.

2 Results

In the present study, we were interested in themechanisms of how the brain configures

itself and reroutes information flowduring decision-making dynamically when required

by an uncertain and changing environment. We, therefore, tailored a task in which a

simple sensorimotor decision was coupled to a higher-level belief updating process

regarding the current state of the environment. We used computational modeling to

gain insights into the slow belief updating process and we then deployed functional

MRI and pupillometry to pinpoint neural signatures of the belief updating process and

the coupled sensorimotor decisions. The results section will be structured as follows:

First, we will describe the approach and the results of the computational modeling of

the belief updating process. We will then relate these computational insights to neural

data using two approaches, i) general linear modeling and ii) epoch-based analyses of

the low-level sensorimotor decisions. Finally, we will relate one candidate mechanism,
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namely neuromodulation through brainstem nuclei, to the coupling of the two decision

processes, again utilizing general linear modeling as well as model-free analyses.

2.1 Task, participants, descriptive behavior

22 Subjects (median age 27, range 21–44, eight male) performed our task in three ses-

sions, of which the first session was a purely behavioral training session and was not

considered in subsequent behavioral modeling results. One participant dropped out

after the training session due to incompatibility of his glasses with the eye tracker in the

MRI scanner and a second participant was excluded from further analyses as 31.8% of

given responses were invalid button presses.

In the main condition of the task (”Inferred rule”, see Figure 1a), participants were

asked to respond to visual cues with one of two alternative sensorimotor rules. The two

rules mapped two potential responses (left or right button press) onto two potential

visual cues (a horizontally or vertically oriented grating). Which rule (i.e. cue-response

mapping) was correct changed covertly but noisy information about the correct map-

ping was presented in the form of horizontally displaced dots. Specifically, the dots

appeared with varying horizontal distance from a fixation cross and the position was

sampled from one of two possible, overlapping normal distributions. Observation of

multiple consecutive dots allowed the observer to infer the currently active distribu-

tion, i.e. the distribution dot positions were drawn from. With irregular intervals, a vi-

sual stimulus (choice cue) – with vertical or horizontal orientation – was presented and

the participant was required to respond with a left or right button-press. The rewarded

answer depended on the distribution which had generated the last-seen sample, that

is, each distribution was coupled to a cue-response mapping (i.e. rule). For example,

when the dots were sampled from the left distribution, participants had to respondwith

a left button press for vertical gratings and a right button press for horizontal gratings

(”Rule 1”), and vice versa, when the dot position was drawn from the right distribution

(”Rule 2”). Critically, the active distribution – and thereby the rewarded cue-response

mapping – changed with a probability of 1/70 (hazard rate) between consecutive dots.

In a reduced version of the task (”Instructed rule”), participants were instructed about

the correct cue-response mapping. This version of the task was used to i) train partici-

pants on these mappings, which stayed constant across all blocks and sessions, and ii)

as a control condition, in which stimuli and responses were matched with the full task
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variant, but uncertainty concerning the true rule was eliminated.

In the main task condition (”Inferred rule”), subjects had on average 79.7% correct

trials (±5.7%SD; Figure 1c) and amean reaction time of 863ms±91.3ms SD (Figure 1b).

Two-sample t-tests showed no significant differences in reaction time and performance

between two scanning sessions in the ”Inferred rule” condition. Across all sessions and

runs, we observed a strong dependence of reaction times on stimulus identity regard-

less of the applied rule (Supplementary Figure 1). Specifically, subjects responded sig-

nificantly faster to vertical compared to horizontal choice cues. Importantly, reaction

times did not covary significantly with the applied rule (Supplementary Figure 1). In

the control condition (”Instructed rule”), where participants were informed about the

correct stimulus-response mapping rule, participants reached an average of 98.3% of

rewarded trials (±0.2% SD; Figure 1c) and amean reaction time of 781ms±17.1ms SD

(Figure 1b). Two-sample t-tests showed that both reward rate and reaction time differed

significantly across task conditions, that is participants performed better and faster in

the control condition, which was expected as the ”Instructed rule” condition did not in-

volve uncertainty regarding the correct rule. In sum, participants performed well in all

sessions and results were not biased by a significant learning effect between sessions

as deduced from similar performance and reaction time across scanning sessions.

2.2 Normative model of belief updating captures participants’s behavior

Next, we were interested in how well a Bayesian normative model of evidence accumu-

lation explained our participants’ inference about the correct rule. We build on recent

normative accounts of decision-making in changing environments,which postulate that

human decision-makers solve suchlike problems likely by applying some form of non-

linear belief updating rule (??). In principle, these models entertain a belief variable

about a hidden state of the environment and an update rule, that governs, how new

evidence is integrated into this belief variable. As we intentionally refrained from in-

structing participants about how to optimally solve the task, we were at first interested

to see if the participants’ behavior could indeed be captured by such a belief updating

process at all. Therefore, we fitted a specific normative model for evidence accumu-

lation in two-alternative forced choice tasks with a changing hidden state (?) to each

participant’s behavioral data, i.e. the participant’s responses and the observed samples

(dot positions).
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Figure 1: Behavioral task. a Top left: Participants are presented a continuous stream of
small points (”samples”) on the imagined central horizontal axis. Top right: The position
of these points is sampled from one of two overlapping normal distributions; Critically,
the active generating distribution can change at any time with the fixed probability of
1/70. Bottom left: From time to time a horizontal cue grating is presented upon which
participants have to respondwith left or right button press. Bottom right: The rewarded
cue-response mapping (”Rule 1” or ”Rule 2” corresponds with the currently active gen-
erating distribution, that is when points were lastly sampled from the left distribution,
participants had to respond with left button press to a vertical grating and with right
button press to a horizontal grating. b and c show the percentage of rewarded trials
(performance) and reaction times in the ”Inferred rule” (full task) and the ”Instructed
rule” (control) condition. Group average (N = 20); single data points, individual sub-
jects; error bars, 2x s.e.m; statistics, two-sample t-test. d Showspercentageof rewarded
trials in the ”Inferred rule” condition pooled across bins of trials with similar distance to
the closest change-point. X-axis denotes lower limit of bins, each bin contains 5 sample
positions. Group average across subjects; error bars, 2x s.e.m;
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The applied Bayesianmodel normatively describes a belief updating process in un-

certain environments, which are characterized by i) two competing hypotheses about

an underlying ground truth and ii) instability regarding the correctness of one of those

(i.e. the environment can switch from one state to the other). The normative model

by Glaze et al. (2015) entertains an ongoing belief about the current state of the en-

vironment, which is updated after each new incoming piece of evidence using a be-

lief update rule. Specifically, at each time step, the belief in one of the two possible

states of the environment Ln is updated by discounting the prior belief non-linearly

and then adding the evidence value for one of the two possible states (i.e. the log-

likelihood ratio) associated with the new incoming sample. In our task setting, the two

possible states of the environment comprised the two overlapping normal distribu-

tions, from which dot samples were potentially drawn and which were associated with

distinct stimulus-response mappings. Importantly, the non-linear discounting of the

prior belief in the normative model depends on the subjective estimate of the volatility

of the environment, i.e. the probability that a fundamental change in the environment

occurs (hazard rate H).When the environment is assumed to be perfectly stable (H = 0),

the model results in perfect accumulation of samples. When the environment changes

with a probability of 50% after each trial (H = 0.5), the prior belief is completely dis-

counted such that the new belief equals the current incoming piece of evidence. Gen-

erally speaking, the higher one believes the risk of a change point to occur to be – i.e.

the higher the subjective estimate of H – , the more is the previous belief discounted,

granting higher impact to the current sample (see Figure 2c). In Bayesian terms, the

hazard rate governs the natural trade-off between sensitivity to switches and strength

of the current belief by balancing prior and likelihood ratio. Figure 2a exemplifies this

trade-off by contrasting the course of the belief estimates of two hypothetical observers

with different hazard rates given the same evidence: The ”alert” observer (red,H = 0.1)

reacts faster to a change in the generating distribution, however, this happens at the

expense of various ”false-alarms” (i.e. sign changes of the belief estimate despite the

absence of an actual change point). The ”conservative” observer (blue, H = 0.001) de-

velops robust beliefs during longer streaks of stable environments but reacts sluggishly

to changes.

We fitted this model to the participants’ responses and the observed cues sepa-

rately per subject and session using a Bayesian inference approach with two free pa-
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Figure 2: Normative model (?) reflects participants behavior. a shows 200 simulated
cues and the updated belief variable of two hypothetical observers using different es-
timates of the hazard rate. b depicts how the translation of the posterior belief on the
ordinate into the discounted prior belief ψ depends on the hazard rate H. c shows how
the belief variable translates into choice probabilities, scaled by internal noise V. d left
Modal values of Bayesian posterior distributions of internal noise parameter fitted sep-
arately per subject and session. centerModal values of Bayesian posterior distributions
of hazard rates fitted separately per subject and session. Red horizontalmarks true gen-
erative hazard rate. Colors distinguish high from low 50% of hazard rate estimates used
for conditioning in the right panel. left and center: Group average (N = 20); single data
points for individual subjects; error bars depict 2x s.e.m. right shows fitted estimates of
Ln around state changes conditioned on fitted hazard rate. e Performance (% correct
responses) of participants, normative model and alternative heuristics. Light grey, ac-
tual participants; dark grey, participants average; green (dots and bar), participants fits
of the normative model; blue, ideal normative model equipped with true generative
hazard rate and no internal noise; yellow, linear integration of all evidence samples; or-
ange, decision based only on last observed evidence sample; red, linear accumulation
of all evidence samples since last decision. Error bars, 2x s.e.m; statistics, two-sample
t-test.
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rameters, the hazard rate H and a parameter representing internal noise. For all par-

ticipants and all sessions, the posterior distributions of the fitted hazard rates peaked

between 0 and 0.1 (Figure 2d). Moreover, the majority of these fitted subjective hazard

rates were closely scattered around the true hazard rate used in the generative process

(H = 1/70), suggesting, that participants made accurate assumptions about the sta-

tistical process underlying the presented samples. Two-sample t-tests confirmed that

the modal values of fitted posterior distributions of the hazard rate across subjects did

not vary significantly between the two scanning sessions (”Session 1” and ”Session 2”,

Figure 2d). Similarly, Bayesian posterior distributions of the second free parameter of

the model, internal noise, peaked at reasonable estimates mostly between 1 and 2 and

showed no significant difference between the two scanning sessions in a two-sample

t-test (Figure 2d).

To investigate whether the model by Glaze et al. (2015) indeed captured the par-

ticipants’ behavior adequately, we compared the participants’ performance to three

alternative models and heuristics, i) a ”last-sample heuristic” (i.e. taking into account

only the last observed dot position), ii) perfect accumulation of all observed samples,

and iii) a model, which accumulated all samples since the last choice (”reset accumu-

lation”). As depicted in Figure 2e, participants performed significantly better than ex-

pected from last-sample heuristic (mean 57.9% ± 2.9% SD; T=15.38, p<10-15), from

perfect accumulation (mean 59.0%±2.3% SD; T=15.22, p<10-15) as well as from ”reset

accumulation” (mean 74.7%±2.9% SD; T=3.51, p<0.01). While participants performed

significantly worse than the ideal observer, i.e. the normative model equipped with

the true generative hazard rate and no internal noise (mean 83.7% ±1.4% SD; T=3.06,

p<0.01), there was no significant difference in performance between participants’ and

the normative model equipped with the individual fits of the participants’ hazard rates

and internal noise estimates (mean 79.4%±4.7% SD; T=0.22, p=0.83). These latter dif-

ferences might be explained by lacking knowledge about the true hazard rate as well

as internal noise and lapses of attention. In sum, themajority of subjects performed the

task adequately, reaching a mean of 79.7% rewarded trials. Moreover, comparisons to

alternative heuristics suggest that subjects base their choices on several samples of ev-

idence thereby implying some form of belief updating process. Finally, the employed

Bayesian model of belief updating – which is able to capture such belief updating pro-

cesses (?) – could be fitted successfully to the behavioral data. This allowed us to access
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computational variables such as the participants’ ongoing latent belief about the active

distribution or the evidence strength associated with new incoming samples through-

out the task and relate them to neural signals in further analyses.

2.3 Cortical correlates of sensorimotor decision

Theprevious analyses indicated that themajority of participants solvedour task through

dynamic belief updating and we were able to capture this process with an established

computational model (?). We were next interested in neural correlates of the two in-

tertwined decision processes, namely the high-level belief updating captured by the

Bayesian model of belief updating and the low-level sensorimotor decision. We, there-

fore, recorded functional MRI and pupillometry of participants performing our task.

To relate behavioral data to neural activity, we formulated a general linear model

(GLM) capturing the relevant components of both decision processes as follows: The

low-level decision process comprised in essence three elements, i) the presented stim-

ulus (i.e. trial cue), ii) the given response and iii) the applied rule (i.e. the result of the

high-level belief updating process). Each of these three components afforded two pos-

sible conditions: The trial cue could be either horizontal or vertical, participants could

respond with a left or right button press, and one of two possible mappings of these

responses onto stimuli would be rewarded as the correct rule. However, as one of these

three componentswould always carrymutual informationwith theother two (e.g. if sub-

jects responded with a left button press to a vertical stimulus, the applied rule would

per definition be ”Rule 1” and vice versa), four possible combinations of choice cue, re-

sponse and applied rule resulted. As trial cue and response were moreover hardly dis-

cernible given the temporal resolution of functional MRI (TR = 1.9s), we accounted for

the low-level decision in our GLMwith a boxcar regressor lasting from onset (i.e. show-

ing of the trial cue) to the response (i.e. button press) dummy-coded for the four possi-

ble cue-response combinations. The higher-level belief updating process, on the other

hand, could be captured by the following components. First, the continuously updated

belief regarding the currently active distribution (corresponding to the rewarded rule)

quantified as Ln in the Bayesianmodel of belief updating; Second, the evidence carried

by each new incoming sample quantified as the log-likelihood ratio (LLR) of each new

sample. The latent belief variable L, as well as the evidence value LLR, were included

both as a signed variable and as the magnitude of these quantities (i.e. belief strength
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and evidence strength, respectively). Finally, the recent insight that evidence accumu-

lation in dynamic environments is critically modulated by the change-point probability

(CPP) of new evidence – i.e. the probability that the new sample constitutes a change

point (?) – motivated us to also include this measure in our general linear model.

We fitted these regressors in a single general linearmodel to the preprocessed fMRI

signal in each voxel as follows:

fMRI signalvox = β0,vox + β1,voxLabs + β2,voxLsigned + β3,voxLLRabs

+ β4,voxLLRsigned + β5,voxCPP+ β6,voxtrialhoriz,left

+ β7,voxtrialhoriz,right + β8,voxtrialvert,left

+ β9,voxtrialvert,right + β10,voxtrialmissed (1)

Where Ldenotes the latent belief regarding the active distribution, LLR the evidence

value of each sample, and CPP the change-point probability and, where boldface re-

gressors and the response variable denote column vectors, in which each element cor-

respond to a repetition time of the fMRI acquisition. To pool the resulting beta coeffi-

cients across participants, we averaged them across all vertices from a set of anatomi-

cally and functionally defined regions of interest (ROIS) spanning the entire cortical sur-

face (?). We chose this procedure because we treated these ROIS as functional units.

This approach enabled us to first delineate cortical regions involved in the two inter-

twined decision processes. In the remainder, cursive abbreviations in brackets refer to

cortical labels according to this parcellation.

We first assessed the beta-weights of our regression model across regions of the

cortical surface according to an anatomical and functional parcellation of the human

cerebral cortex (?). In the ”Inferred rule” task condition the low-level sensorimotor de-

cision – in our general linear model formulated as a boxcar regressor with four possible

states compliant with possible cue-response combinations (”trial”) – was significantly

correlated with a widespread pattern of cortical activity which seemingly reflected the

different elements of the sensorimotor decision, namely cue, response and rule ap-

plication (Fig. 3a). First, among the cortical areas positively correlated with the sen-

sorimotor choice on average – i.e. irrespective of the choice grating orientation and

the direction of the button-press – were all stages of the visual cortex. This probably

reflected the processing of the choice cue, a screen-spanning high-contrast grating.
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Among visual cortices, t-statistics were highest in V1-V4 followed by specific areas of

ventral and dorsal stream visual cortex and MT and neighboring areas.

Second, the low-level decision was on average (i.e. irrespective of response direc-

tion and cue orientation) correlated with a network of higher cortical areas including

premotor, prefrontal, and cingulate cortex as well as areas in the parietal and tempo-

ral cortex. Negatively correlated brain areas included parts of the anterior cingulate

and medial prefrontal cortex, the posterior cingulate cortex, and the temporal cortex.

Third, analysis of contrasts of correlation beta weights between right and left choice re-

vealed for both choice directions a pronounced lateralized pattern of correlated activity

in the contralateral somatosensory andmotor cortex as well as in adjacent cortical areas

(Fig. 3b). Specifically, activity lateralized to the left somatosensory cortex during right

button-press and to the right somatosensory cortex during left button-press. This later-

alized activity during the participants’ response presumably reflected preparatory and

executive activity of themotor-response and served as a sanity check for our regression

model.

As stated above, the low-level decision comprises the cognitive operations of i)

identifying the stimulus, ii) retrieval of the believed rule mapping, and iii) application

of this rule, i.e. the response. We were interested to see whether the pattern of activa-

tion during the low-level sensorimotor decision reflected in the regression results was

deviant in our control condition, in which the correct rule did not have to be inferred

but was disclosed to participants. We, therefore, fitted a reduced version of our GLM

to the control data and computed contrast maps of the choice regressor beta-weights

between the ”Inferred rule” condition and the ”Instructed rule” control condition. We

found several clusters of brain areas on the cortical surface, which were correlated sig-

nificantly stronger with the low-level sensorimotor decision in the ”Inferred rule” condi-

tion compared to the ”Instructed rule” condition (Fig. 3c). Among these were areas in

the frontal and opercular cortex (AVI, FOP5), in the dorsal cingulate and superior pari-

etal cortex (POS2, PCV, 7Pm, RSC), the inferior parietal cortex (IP1, IP2), and in the ante-

rior cingulate cortex (8BM,a32pr). We controlled for thepossibility that thedifference in

regression beta-weights in these brain regions was caused by the necessarily different

formulation of the general linearmodel (i.e. computational parameters such as belief or

log-likelihood of samples were not available in the control condition) by supplement-

ing a model-free analysis based on fMRI signals during choice epochs (-2 to 12s from
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Figure 3: Trial-evoked cortical responses. a left: Trial-evoked responses for ”Inferred
rule” condition. Left hemisphere in the top row, right hemisphere below. Names of ar-
eas according to the cortical parcellation (?) with highest correlation across both hemi-
spheres are annotated in the top left row. right: Trial-evoked responses for ”Instructed
rule” condition. bChoice-related response lateralization computed as subtractionof re-
gression beta-weights of lateralized responses (i.e. left-right button press) for each con-
dition. Results depicted on both hemispheres. c Difference in trial-evoked responses
between ”Inferred rule” and ”Instructed rule” condition. Names of cortical areas sig-
nificantly stronger activated in ”Inferred rule” condition across both hemispheres are
denoted in the top row. All panels: FDR-corrected t-statistic across subjects of regres-
sion beta-weight.
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the onset of the choice) in these candidate regions (Supplementary Fig. 2). Indeed,

baseline-corrected fMRI signals were significantly higher during choice epochs in the

”Inferred rule” condition compared to the ”Instructed rule” control condition, thereby

confirming our initial finding in the general linear model (Figure 3c). We, thus, identi-

fied a set of cortical regions in the parietal and frontal cortex, which were significantly

more active during choices that relied upon an inferred stimulus-response mapping

compared to a directly instructed one.

We, next, conditioned the trial-evoked time courses of fMRI signal in these identified

cortical regions on the participants’ belief strength regarding the active distribution.

We therefore separately visualized the trial-evoked fMRI signal epochs in trials with the

lowest and highest 40% of the belief magnitude according to the normative Bayesian

model (fitted individually to each subject’s responses) directly before the trial (Figure

4a). This analysis revealed a significant inverse scaling in a subset of these cortical ar-

eas. Specifically, in areas in the inferior parietal (IP1, IP2), the anterior cingulate (8BM)

and the opercular cortex (AVI) neural responses during choice formation were signifi-

cantly higher when the participants’ belief strength was relatively weak. In other words,

responses in these brain regions were larger during low-level sensorimotor decisions,

in which the participants were more uncertain about the correct rule. As a behavioral

correlate of this finding, reaction times of decisions were inversely correlated with bins

of belief strength before a decision (Figure 4b).

To sum up, we found a correlation between the low-level decision and various cor-

tical brain areas, including a pronounced visual component and motor lateralization.

Moreover, several higher cortical areas were correlated with the sensorimotor choice,

potentially reflecting the retrieval of the correct rule inferred in the higher-level deci-

sion process. Importantly, a subset of these higher cortical areas was significantly more

active during inference trials compared to instructed rule trials and scaled with uncer-

tainty regarding the correct rule, i.e. the outcome of the higher-level decision process.

2.4 Cortical correlates of the belief updating process

After having identified cortical brain areas active during the formation of the low-level

sensorimotor decision, we were next interested in cortical signatures of the higher-

level belief updating process. We, therefore, inspected the regression beta-weights

in cortical surface regions of three regressors provided by the same general linear
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Figure 4: Cortical signature of inference coupling. a Shows time courses of trial-evoked
activity in areas significantly more active during trials of the ”Inferred rule” condition
(compare Fig. 3c) conditioned on belief strength (lowest 40% vs. highest 40%) before
trial onset. Shading, bootstrapped 95%-CI; statistics, cluster-based permutations test
at p < 0,05. b Shows reaction time binned by belief strength before trial onset. Error
bars, 2x s.e.m.; statistics, linear regression.
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model formulated above (Equation 1). The regressors that we postulated to capture the

higher-level belief-updating process included i) the participants’ continuous latent be-

lief strength regarding the currently active distribution (i.e. Ln in the normative model),

ii) the magnitude of the evidence value associated with each new sample (i.e. the log-

likelihood ratio in the normativemodel) and iii) the change-point probability associated

with each new sample. The first two regressors were directly acquired from fitting the

normative Bayesian model of belief updating (?) to the participants’ data, while the

change-point probability was computed according to a recent study, which found this

measure to govern the weighting of new incoming evidence in the model (?).

The magnitude of the log-likelihood ratio, i.e. the magnitude of the evidence value

associated with each sample, was positively correlated with activity in the anterior part

of the intraparietal sulcus (AIP) while exhibiting a whole-cortex spanning pattern of

significantly negative correlated areas including early and higher visual cortices, so-

matosensory and motor cortices as well as regions in temporal, parietal and frontal

cortices (Figure 5a). We furthermore assessed correlates of the signed log-likelihood

ratio, i.e. not the magnitude but the actual evidence for a sample to be drawn from one

of the two distributions in comparison to the other (Figure 5d). Two clusters of corti-

cal areas showed a significant lateralized response, that is, a positive correlation in one

hemisphere and a negative correlation in the other. These clusters comprised areas in

themedial temporal cortex (MT andMST) as well as areas in the dorsal visual stream (V7

and V3B). The medial temporal cortex is a well-studied part of the brain and has been

canonically associated with the encoding of motion direction (?), but also perceived

spatial locationof objects (?). Thedorsal visual streamhasbeen classically framedas the

”where”-pathway of visual processing, endowed with extracting and integrating spatial

visual information (?). The positive correlation of the signed log-likelihood ratio with

these areas in the left hemisphere and the negative correlation with the same areas in

the right hemisphere indicates that these areas are activated when samples appear on

the contralateral side of the fixation cross. Belief magnitude was positively correlated

with visual areas (V2, V6) and an adjacent posterior cingulate cortex area (ProS) as well

as auditory association cortex across both hemispheres. Additionally, belief strength

was positively correlated with activity in areas in the frontal (47m), the opercular (FOP),

and the insular cortex (Ig) of the left hemisphere. Moreover, belief magnitudewas nega-

tively correlatedwith a cluster of cortical regions spanning parts of inferior and superior
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Figure 5: Cortical signature of belief updating. a Regression coefficients of magnitude
of log-likelihood ratio of new samples. b Regression coefficients of magnitude of up-
dated belief variable. c Regression coefficients of change-point probability associated
with new evidence samples. d Regression coefficients of signed LLR of new samples.
e Regression coefficients of signed belief variable. All panels: FDR-corrected t-statistic
across subjects of regression beta-weights.

parietal cortex (IP1, IP2, AIP, PFm) as well as orbitofrontal cortex (AVI), anterior cingu-

late cortex (8BM), and sensorimotor related area 6ma (Figure 5b). The signed belief

magnitude correlated negatively with two clusters of cortical areas in the medial tem-

poral and the prefrontal cortex of the left hemisphere without a respective correlate of

significant correlation in the right hemisphere (Figure 5e) The change-point probability

associated with new incoming samples was positively correlated with activation in the

medial temporal cortex and surrounding areas (MT, MST, FST) as well as premotor ar-

eas (6a, FEF, 6r, PEF). Moreover, the change-point probability was negatively correlated

with visual areas (especially cortical areas constituting the ventral stream of the higher

visual cortices), primary motor and somatosensory cortices, areas in the temporal and

parietal cortex as well as anterior cingulate and medial prefrontal cortical areas (Figure

5c).

By employing this analysis we tried to disentangle cortical signatures of the slow

belief updating process regarding the current state of the environment (i.e. the cur-

rently ”active” distribution and the associated stimulus-response rule). We, therefore,

evaluated the correlation of cortical fMRI signal with several computational regressors,
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namely the belief regarding the active distribution (belief strength and signed belief),

the evidence value of new samples (again, evidence strength and signed evidence

value), and the change-point probability associated with new samples. In sum, we

found i) a correlate of the signed evidence value of samples in the medial temporal

cortex and the dorsal visual stream ii) increased activation of the medial temporal cor-

tex and the prefrontal area 6a following samples with a high change-point probability,

iii) a correlate of the evidence strength with an area in anterior intraparietal sulcus and

iv) a signature of belief strength regarding the rule in areas surrounding visual cortex.

2.5 Brainstem nuclei reflect sensorimotor decision in ”Inferred rule” trials

We considered neuromodulatory brainstem centers such as the noradrenergic locus

coeruleus (LC-NE) as candidate regions to be involved in the interplay between the low-

level sensorimotor decision and the high-level belief updating. This was motivated by

several insights: First, neuromodulatory brainstem nuclei entertain a widespread pat-

tern of ascending projections which makes them anatomically well-suited structures

for modulating cortical activity (??). Second, they are capable of shaping neural pa-

rameters such as synaptic gain (?) and the excitation/inhibition-ratio (??) – two mecha-

nisms on the circuit-level, which are intriguing as they have been postulated to critically

modulate cortical processing in decision-making (???). And third, brainstem arousal

networks have been implicated in various decision-making studies including such that

investigate decision-making under uncertainty in changing environments (???).

To test this hypothesis, we first investigated if activity in neuromodulatory brainstem

nuclei was correlated with the behavioral regressors representing the two decision-

processes, namely the trial-regressor for the sensorimotor-decision and belief strength

(|Ln|), evidence strength (|LLR|), and change-point probability for the higher-level be-

lief updating process. Specifically, we delineated the following subcortical nuclei in

the MRI data using probabilistic atlases: Noradrenergic locus coeruleus (LC), acetyl-

cholinergic basal forebrain (BF), serotonergic dorsal raphe nuclei (DRN), and dopamin-

ergic substantia nigra (SNc) and ventral tegmental area (VTA). None of these brainstem

nuclei was correlated positively with any of the computational regressors reflecting

the higher-level belief updating process, namely belief strength, evidence strength,

or change-point probability. Only evidence strength was negatively correlated with

activity in sublenticular BF to a significant extent (p<.05, FDR-corrected t-test; Supple-
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mentary Figure 3). However, several of the delineated subcortical nuclei exhibited ro-

bust correlations with the sensorimotor decision (”Choice”). Specifically, these nuclei

included LC (p<0.001, FDR-corrected t-test), DRN (p<0.001, FDR-corrected t-test) and

SNc (p<0.001, FDR-corrected t-test). Moreover, septal BF was negatively correlated

with the low-level sensorimotor decision (p<0.01, FDR-corrected t-test; Supplemen-

tary Figure 3). To pinpoint the nature of this association between neuromodulatory

brainstem nuclei and the low-level decision, we next extracted epochs of fMRI signal

in these delineated nuclei in the time window of -2 to 12s from the onset of the choice

grating cue. Again, we found robust responses following choice onset in LC, DR, and

SNc (p<.05, cluster-based permutations test), corroborating our findings from our gen-

eral linear model. Paralleling our approach for the cortical regions of interest, we then

separated the choice epochs during the ”Inferred rule” task condition from those in the

”Instructed rule” control condition and observed significant differences in responses in

LC, SNc, DR, and sublenticular BF (p<.05, cluster-based permutation tests; Figure 6a).

This finding indicated that activity in these subcortical regions of interest was stronger

when the applied rule was the result of a higher-level inference process compared to

control trials in which the correct rule was instructed.

To conclude,while brainstemactivitywas only slightly negatively correlatedwith one

of our computational regressors reflecting the higher-level belief updating process, we

observed a robust relation between a network of brainstem centers and the low-level

sensorimotor choice in our general linear model. Moreover, a second model-agnostic

analysis approach revealed that this increase in brainstem activity was especially pro-

nouncedwhen the low-level sensorimotor decisionwas coupled to a higher-level belief

updating process.

2.6 Pupil responses reflect change-point probability of evidence samples

Up to this point, we were able to delineate cortical areas involved in both the sen-

sorimotor decision and the higher-level belief updating. Moreover, we showed that

both cortical regions, as well as neuromodulatory brainstem centers, were active during

the low-level sensorimotor choice and, critically, even more so when the sensorimotor

choice was coupled to the outcome of a higher-level decision. Using pupillometry, we

were now interested in establishing a connection between the dynamics of the high-

level belief updating process and neuromodulatory brainstem systems. Two features of
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b

Figure 6: Brainstem activation reflects sensorimotor decision. a Trial-evoked fMRI sig-
nal responses in subcortical nuclei conditioned on task condition. b Trial-evoked fMRI
signal responses in subcortical nuclei with single trials conditioned on measure of trial-
evoked phasic pupil response (i.e. mean of the first derivative of the pupil diameter in
the time window of -1 to 1.5s from sample onset; highest 40% vs. lowest 40% of trial-
evoked pupil response). All panels: Shading, bootstrapped 95%-CI; statistics, cluster-
based permutations test.
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Figure 7: Pupil reflects surprise about new samples. a top: Mean pupil diameter upon
presentation of new samples averaged across subject and split by measure of phasic
pupil reaction, i.e. mean of the first derivative of the pupil diameter in the time window
of -1 to 1.5s from sample onset. bottom Mean of first derivative of pupil diameter in
the same time window again split by phasic pupil measure. Shading, bootstrapped
95% CI. b Difference between mean time course of first derivative of pupil epoch of
highest 30% of phasic pupil measure and mean first derivative of pupil epoch across
all phasic pupil measure bins. Shading, bootstrapped 95%-CI; statistics, cluster-based
permutations test.

the tracking of pupil diameter allowed for establishing this link. First, non-luminance-

mediated responses of pupil diameter have been shown to reflect activity of various

neuromodulatory systems including LC-NE (????), BF-ACh (??) and VTA-DA (?). Sec-

ond, pupillometry acquires data of pupil diameter at a vastly higher temporal resolution

compared to fMRI. The latter is a key advantage of pupillometry over direct imaging of

fMRI signal in the brainstem and enabled us to relate the fluctuations in pupil diameter

to the fast presentation of single evidence samples. We thereby aimed to establish a

connection between properties of the higher-level belief updating process and brain-

stem arousal systems.

Previous studies have shown that neuromodulatory activity in the noradrenergic lo-

cus coeruleus is reflected especially in the first derivative of the pupil diameter (?). We,

therefore, chose in line with previous studies (??) the first temporal derivative of the
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pupil diameter as a measure of pupil-linked phasic arousal (Figure 7a). We first estab-

lished the relation between the first derivative of pupil diameter and neuromodulatory

brainstem nuclei in our data by conditioning the before extracted choice epochs of

fMRI signal in brainstem nuclei on the mean change rate in pupil diameter (i.e. first

derivative) during -1 to 1.5s from the response. This comparison yielded a robustly

stronger fMRI signal during choices with high evoked pupil response compared to tri-

als with low evoked pupil response in LC, SNc, DR, and sublenticular BF (p<.05, cluster-

based permutations test; Figure 6b). Next, we extracted epochs of pupil diameter time

courses aroundeachevidence sample shownduring thehigh-level belief updatingpro-

cess. We conditioned these pupil time series on the change-point probability associ-

ated with each sample and then compared for each subject sample epochs with high

change-point probability (highest 30%) with the mean pupil response for all samples.

We observed a highly significant elevation of the first derivative of the pupil diameter

around 700ms following the onset of the sample in surprising epochs compared to

the average, i.e. the pupil dilated faster following surprising samples of evidence in

comparison to the general pupil reaction upon presentation of a sample (Figure 7b).

This finding indicated a connection between a network of brainstem arousal systems

reflected in the first temporal derivative of pupil diameter and samples of evidence as-

sociated with a high change-point probability presented during the high-level belief

updating process.

3 Discussion

Decision-making, understood as the deliberate selection of an action plan or a belief

among several alternatives based on the accumulation of evidence regarding the pos-

sible outcomes, is one of the fundamental modules which constitute cognition (?). De-

cisions are made at various levels of abstraction and timescales, ranging from fast per-

ceptual decisions to high-level value judgments. Increasing insights into the neural

mechanisms of the most basic perceptual decision making in the last decades now af-

ford the interrogation of the neural mechanisms that underlie decision making in more

ecological conditions – such as environments that are uncertain and undergo sudden

changes (??). Here we probed into the dynamics of hierarchical decision-making, nec-

essary in a setting in which the state of an uncertain and unstable environment deter-
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mines the best behavioral strategy for more basic sensorimotor decisions. We showed

that the participants’ behavior was well captured by a dynamic belief updating process

(?). Using general linear modeling of fMRI data, we identified cortical regions that were

involved in the low-level sensorimotor choice and the application of the inferred rule

and areas that reflected computational quantities of the slow belief updating process.

Finally, using pupillometry and brainstem fMRI, we established specific patterns of ac-

tivity of neuromodulatory brainstem regions in both the slow belief updating process

as well as the fast sensorimotor decisions.

3.1 Evidence accumulation in changing environments

First of all, our findings replicate important previous insights from studies of decision

making in changing environments and show that critical dynamics also hold when the

decision is decoupled from the direct motor response. Inferring the generative distri-

bution and the rewarded response rule in our task required evidence accumulation in

a noisy and volatile environment. The Bayesian normative framework, which we har-

nessed in our behavioral analyses, posits that the optimal observer combines a prior

belief – non-linearly discounted dependent on the assumed hazard rate – with new in-

coming evidence to form the new belief about the state of an uncertain environment

(?). We were able to show that this computational framework captures our participants’

behavior regarding the belief updating process adequately and outperforms a variety

of alternative heuristics (Figure 2). In the normative model, through the non-linear dy-

namics of the discounting, evidence accumulation in unstable environments exhibits

a particular sensitivity to the computational variables of change-point probability and

uncertainty (?). In particular, the influence of evidence samples associated with a high

change-point probability on the final choice is upweighted in comparison to samples

in-line with the current belief (i.e. with a low change-point probability). Unraveling

neural underpinnings of these computational insights, Murphy et al. indicates that the

upweighting of sensory evidence might be mediated by the phasic activity of brain-

stem arousal systems (?). Again, our finding that pupil-linked brainstem arousal sys-

tems are activated following evidence samples indicative of change-points (Figure 7)

corroborates this account and is in line with other studies regarding the role of pupil-

linked arousal systems in changing environments (??). Importantly, our results provide

evidence for these computational and neurobiological accounts of evidence accumu-
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lation in volatile environments in novel task conditions. Whereas other tasks statically

mapped inferred environmental context onto responses (????), our task design decou-

ples these two. That is, in our task the inferred context is not directly interrogated but

conveys information about the rewarded task rule in a coupled sensorimotor decision.

Our results thereby indicate that the non-linear dynamics of evidence accumulation as

outlined by previous research (??) hold also formore abstract decisions that are decou-

pled from a motor response. Our finding raises the question of where the evidence in-

tegration takes place. When the possible decision outcomes are directly mapped onto

motor responses, a neural signature of accumulated evidence is found most promi-

nently in the gradual build-up of choice predictive activity in the motor cortex (?????).

Theoretical (??) as well as empirical research (???) suggests that evidence accumu-

lation might be realized in a distributed fashion across multiple nodes of the cortical

hierarchy. The decision variable in our task can be behaviorally tracked as the belief in

the current state of the environment. However, we do not find plausible cortical areas

in which activity is significantly correlated with belief strength. One possible explana-

tion might be the discrepancy between the timescale of belief accumulation, which is

determined by the frequency of evidence sample presentation of approximately 2/s,

and the temporal resolution of fMRI, defined by the repetition time of 1.9 s. As another

possibility, the sensitivity of our general linear modeling approach might not be suf-

ficiently high to detect neural signatures of more subtle computational variables such

as the inferred belief about the state of the environment. For example, competing hy-

potheses (e.g. beliefs) could be represented in the same population of neurons in a

distributed fashion. Univariate approaches (such as the standard general linear model)

evaluate changes in voxel-wise neural activity in response to certain task manipulations

(such as a change in belief). In contrast, multivariate approaches (such as multivariate

pattern analysis) are able to detect patterns of fMRI signal across a set of voxels. Mul-

tivariate approaches could thus be able to discern the distributed coding of different

hypotheses in a cortical region, which is not paralleled by a change in the mean activity

of the involved voxels and is, thus, not necessarily detectable in a univariate analysis.

Future studies could, therefore, complement our findings by employing neuroimaging

techniques with superior temporal resolution such as MEG as well as more sensitive

analysis approaches such as multivariate pattern analysis.
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3.2 Correlates of sensorimotor choice and task rule

Using general linear modeling we found a network of cortical brain areas significantly

correlated with the low-level sensorimotor decision (Figure 3). Among those cortical

brain regions with the strongest correlation were visual areas – plausibly reflecting the

high-contrast choice cue – but also various higher association cortical regions includ-

ing the inferior parietal (IP0, IP2), the superior parietal (LIPd, AIP), the anterior cingulate

(p32pr) and adjacent (SCEF), the premotor (6r) and the frontal (FOP4, FOP5) cortex. We

present two possible explanations for these observed activity patterns, namely i) the ac-

tivation of attention networks and ii) the representation of inferred task rule sets. First,

the pattern of neural correlates of the sensorimotor decision in the cortex might reflect

the activation of canonical attention networks (??). The presentation of the choice cue

constitutes a highly salient yet temporally unexpected stimulus that interrupts ongo-

ing evidence accumulation in the slower belief updating process and warrants reori-

entation of attention to the low-level sensorimotor choice. Seminal studies of attention

have identified two distinctive functional networks of attention at both task and rest

(???): Regions including the intraparietal sulcus and the frontal eye field in both hemi-

spheres constitute the dorsal attention network, while cortical regions including the

temporoparietal junction and the inferior frontal gyrus of the right hemisphere form

the ventral attention network. The dorsal attention network has been classically associ-

ated with top-down directed attention, while the ventral attention network is recruited

when unexpected salient sensory signals require a shift of attention (??). Reorienting

attention to new demands – such as processing an unexpected stimulus – probably de-

pends uponboth attention system, the ventral attention systemmight act as an interrupt

signal inducing the dorsal attention system to shift attention to the novel stimulus (??).

A correlation of activity in these functional networks with the onset of the choice cue is,

therefore, neurophysiologically highly plausible and, indeed, the pattern of activation

observed during sensorimotor decisions matches the key nodes of both attention sys-

tems.

Second, the pattern of neural correlates of the sensorimotor decision could also re-

flect the retrieval of a task rule. Intriguingly, the pattern of cortical activation during

sensorimotor choice in our task maps with a host of empirical studies that have used

experimental settings, in which different task rules had to be applied to identical stim-

uli in order to identify neural signatures of such task rules (?). For example, several

38



fMRI-studies in humans found especially the lateral anterior prefrontal cortex (anatom-

ically overlapping with the inferior frontal sulcus) but also areas in the parietal cortex

to contain rule-specific information (????????). Some of these fMRI studies were able

to identify rule-specific patterns of activation in these regions using multivariate de-

coding approaches (?????), others found rule-specific patterns of interactions between

different regions in the prefrontal cortex (???). In line with this, studies conducted in

non-human primates have found rule-selectivity in a frontoparietal network of neural

populations (???). Moreover, the high temporal resolution of neural recording studies

afforded insights into how task rules are established and updated in the face of chang-

ing contexts. Johnston et al. shows that neurons in the anterior cingulate cortex are

especially predictive of task rule shortly after a new rule has been established, while

the dorsolateral prefrontal cortex is more constantly predictive of task rule suggesting

that theACCmight be involved in updating task rules and dorsolateral PFC inmaintain-

ing them (?). Another extensive study examining temporal evolution of task information

across brain regions shows that information about the task rule (dissociated from the

cue itself) first transiently evolves in the inferior temporal cortex and the visual area V4

to then evolve in sustained activation in dorsolateral the PFC and the lateral intraparietal

cortex, fromwhere it spreads across the sensorimotor pathway (?). In the light of this line

of research, significant activation in prefrontal and parietal regions during the low-level

sensorimotor decisions in our task could be interpreted as retrieval and application of

task rule sets. We extended these results by comparing correlated cortical activity dur-

ing sensorimotor choices with our control condition, in which participants were directly

instructed on the rewarded rule (”Instructed rule”). We, thereby, delineated cortical re-

gions that were significantly more active when the task rule was inferred compared to

when it was instructed (Figure 4). In particular, the ACC was among these cortical ar-

eas, which were significantly more active during trials of the ”Inferred rule” condition.

ACC has been hypothesized to reflect contextual information that is relevant for the

outcome of actions and to be involved in mapping these contexts to behavioral strate-

gies (???). As discussed above, when such action-reward contingencies change, ACC

has been found to show context-selectivity especially shortly after the change – thereby

presumably inducing the update of a formerly maintained action strategy (?). Thus, our

finding that ACC is more active during inferred rule trials indicates that the task rule is

updated when the onset of the choice grating prompts the formation of a decision and
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the commitment to a response. We, moreover, found that in a subset of the regions

more active during choices in the ”Inferred rule” condition compared to the instructed

condition, activity during the sensorimotor choice covaried with uncertainty regarding

the inferred rule (Figure 4). An intriguing hypothesis comprises that these differential

responses could reflect the encoding of decision uncertainty in these brain regions (?).

In an economic decision-making paradigm, fMRI signal responses in posterior midline

cortical regions expressed so-called second-order uncertainty, i.e. uncertainty about

the currently active action-outcome contingency (?). Another study showed a negative

correlation between confidence (i.e. the complement of uncertainty) and fMRI signal

responses in the ACC and the inferior frontal gyrus among others which also aligns

with our findings (?). Prominently, work from rats performing an odor categorization

task showed that a large proportion of neurons in the orbitofrontal cortex encode deci-

sion uncertainty caused by noisy task cues (?). However, it is difficult to distinguish en-

codings of (variable types of) uncertainty from secondary effects of top-down attention

discussed above, as decisions with higher uncertainty are naturally more demanding.

Consistent with this alternative explanation, various of these regions – in particular the

intraparietal sulcus and the anterior-medial PFC – are also involved in cognitive control

and frontoparietal attention networks described above (???). Task rule representation,

reorientation of attention, and effects of variable types of uncertainty are not mutually

exclusive explanations for our observed patterns of cortical activation during sensori-

motor choice but could be regarded as complementary. Further analyses should aim

at isolating the effects of rule representation through decoding rule information from

different cortical brain areas or by measuring the temporal evolution of connectivity

between stimulus- and response-specific cortical areas as a marker of instantiation of a

rule.

3.3 Encoding of task rule and coupling of decision processes

Thus far, we aimed at pinpointing mechanisms of both constituent processes, i.e. i)

the slow belief updating process resulting in a belief regarding the state of the envi-

ronment and ii) the fast sensorimotor decision, in which the information flow relies on

the presumed context. Next, we were interested in the coupling mechanism, i.e. how

the dynamic and uncertain belief about the environment shapes the information flow

in the sensorimotor decisions. Theoretically, the coupling could be instantiated in vari-
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able ways. Two intuitive instantiations comprise i) the explicit encoding of belief in a

rule area and ii) the implicit encoding of the rule in the form of (functional) connectiv-

ity of associated sensory and motor areas. First, evidence accumulation regarding the

state of the environment could result in a latent belief state which is encoded explicitly

in some form of rule area – for example in the prefrontal cortex. Upon presentation of

the cue signaling the sensorimotor choice, this latent variable could be read out and

translated into the according rule which in turn shapes the information flow in the fast

decision from sensory to motor cortical areas. Broadly in line with this hypothesis is a

recent reinforcement learning study in which errors could be either due to the noisy

nature of the stimulus or a covert state change that manifested as a reversed rewarded

rule similar to our task (?). The authors showed that ACC in monkeys performing the

task encoded accumulated evidence for a rule switch and wasmoreover predictive of a

behavioral switch in the upcoming choice (?). Second, instead of culminating in an ab-

stract representation of the decision outcome in the form of an explicit rule encoding,

the belief updating process could also result in the affordance of an action plan (???).

Precisely, the ongoing belief accumulation could instantiate the associated task rules

”on the fly”, for example in the form of continuously manipulating the functional linkage

of prefrontal regionswith target-specific and response-specific regions in the visual and

motor cortex, respectively. In the case of perceptual decision-making, a large host of

research indicates such a more direct processing hierarchy: Instead of computing the

decision variable abstractly and then converting the readout into a motor response,

perceptual decisions rather entail information integration from sensory to motor ar-

eas, whereby sensory evidence is transformed directly into a motor plan. Therefore,

characteristic signatures of a decision variable are typically in premotor and motor re-

gions associated with the modality of the response report (Donner et al., 2009; Gold

and Shadlen, 2007 reviews seminal findings in non-human primates). Critically, in our

task, there is no direct mapping of decision outcome onto motor response. Hence, in

analogy to perceptual decision making, the outcome of the slow belief accumulation

process in our task could consist of competing provisional action intentions – as in the

formof fluctuating instantiations of the task rules. In our data,we did not find a clear sig-

nature of an explicit belief encoding area (see Fig. 5b). On the one hand, this could be

interpreted as indicative of an implicit encoding of the rule in the form of connectivity

between sensory and motor cortical areas. On the other hand, the lack of this finding
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could also be due to the above-discussed limitations of our general linear modeling

approach. Indeed, most studies that found representations of task rules in higher cor-

tical areas used decoding approaches such as multivariate pattern analysis to estimate

information about the task rule contained in specific brain regions (??????). One study

specifically showed that different behavioral contexts could be reliably decoded from

PFC even when overall population activity was at the baseline level (?). In sum, our anal-

yses can not distinguish reliably between the two putative coupling mechanisms. To

probe deeper into these possible mechanistic instantiations of the coupling between a

higher-order belief updating process and fast sensorimotor decisions is a prospect of

further research. A possible approach could comprise examining the functional con-

nectivity between cue-specific sensory and response-specific motor cortical areas and

relating this ongoing measure of ”rule instantiation” to higher cortical regions.

3.4 Role of neuromodulatory brainstem centers

Finally, we found neuromodulatory brainstem nuclei to be involved in the process of

hierarchical decision-making at several stages in our experiment. First, various subcor-

tical structures – in particular serotonergic DRN, dopaminergic SNc, and noradrenergic

LC – were significantly active during sensorimotor choices in the inference condition, as

indicated by both general linear modeling and epoch based analyses (Figure 6). Sec-

ond, we linked phasic responses of pupil-linked arousal systems to the presentation of

surprising evidence samples (Figure 7).

Our first observation, that various brainstem regions are significantly active during

sensorimotor responses, is in line with influential accounts of neuromodulation – es-

pecially in the case of the LC-NE system. It has been shown that LC neurons respond

phasically to salient target stimuli (?). A seminal account of LC function states that this

phasic response contributes to optimal behavior by increasing the gain of neurons at

multiple processing stages in a modulatory fashion (?). LC thereby enhances the pro-

cessing of the relevant stimulus by acting as a temporal filter (?). This framework can

account for our finding of LC responses to the choice cue qualitatively observed in both

task conditions. Another influential theory posits noradrenergic LC neurons to specifi-

cally fire in response to (temporally) unpredictable task-relevant stimuli instantiating a

”network reset” signal (??). In particular, in the inference condition, this might interrupt

the ongoing belief accumulation regarding the state of the environment and shift the
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attention to the target stimulus. This notion of ”network reset” signal also resonates

with the function of the ventral attention network mentioned above, which is activated

when salient but unexpected stimuli warrant a reorientation of attention, and alignswith

some of the cortical regions active during sensorimotor choice (??). In fact, it has been

hypothesized that LC responses to unexpected salient stimuli drive activity in the ventral

attention network (??). In comparison to the inference task condition, in the ”Instructed

rule” condition the choice cue is temporally much more predictable and warrants less

of an attentional shift. This complies with our observation that LC activity is significantly

higher during sensorimotor decisions that rely on inferred rules than during instructed

sensorimotor choices.

Besides LC, we also observed robust responses of subcortical dopaminergic struc-

tures – most pronounced in SNc, but qualitatively also present in VTA. According to

established theories of DA function dopaminergic midbrain structures signal reward

prediction errors, i.e. the difference between predicted reward and actual reward (??).

In accordance with this framework, the firing rate of dopaminergic midbrain neurons

has been found to increase in response to unexpected rewards, mirroring a positive

difference between the expected and the received reward. Although in our task partici-

pants do not receive a direct reward, the choice cuesmaybe interpreted as conditioned

stimuli that have been learned to relate to the amount of the remuneration distributed

at the end of a run. Indeed, influential studies show, that after learning stimulus-reward

contingencies dopamine neurons respond to the conditioned stimulus instead of the

reward itself (?). Again, the unexpectedness of the choice cue in the ”Inferred rule”

condition might explain the significantly higher responses of dopaminergic neurons in

comparison to the ”Instructed rule” condition. From a functional perspective, activation

of dopaminergic midbrain structures could promote the allocation of limited resources

to further engage in profitable behavior – in our case in attending to the presented

choice cue and responding with button-press (?).

Our second result regarding pupil dilations relies on the insight that non-luminance-

mediated responses of pupil diameter reflect activity in various neuromodulatory brain-

stem centers including BF-ACh (??), VTA-DA (de Gee et al., 2017), and in particular

LC-NE (?????). Our finding that pupil-linked arousal systems are activated upon pre-

sentation of evidence samples associated with a high change-point probability is con-

sistent with canonical theories about LC as well as recent mechanistic insights into deci-
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sion making in changing environments (?????): A high change-point probability of ev-

idence samples is naturally accompanied by an increase of ”unexpected uncertainty”,

that is, uncertainty not due to the probabilistic nature of a stimulus itself (”expected un-

certainty”), but which arises due to a possible change in the environment. Influential

computational accounts relate phasic LC-NE activity to such ”unexpected uncertainty”

(??). The effect of phasic LC activity is an upweighting of bottom-up processing relative

to top-down feedback in order to learn efficiently about the environment and reduce

this form of uncertainty (??). Thus, in the context of evidence accumulation in changing

environments, samples associatedwith a high change-point probability elicit phasic ac-

tivation of pupil-linked arousal systems, which in turn induce an upweighting of the pre-

sented evidence (???). This mechanism gives rise to the non-linear dynamics observed

in belief updating in changing environments (??). In sum, our results indicate that neu-

romodulatory brainstem centers – in particular, the LC-NE system – play a critical role in

hierarchical decision making by i) upweighting the impact of evidence samples with a

high change-point probability on evidence accumulation and ii) redirecting attentional

resources when required.

With a rich methodological approach comprising fMRI, pupillometry, and compu-

tational modeling of behavioral and neural data, our study affords important insights

into decision making in more ecological conditions as constituted by multiple decision

levels and a volatile and uncertain environment. Nevertheless, the reader should ac-

knowledge several limitations of this study. First, the fMRI signal – which relies primarily

on detecting oxygenated (and deoxygenated) hemoglobin – is only a proxy for neu-

ral mass activity, which gives rise to inevitable limitations in relating one to the other

(Logothetis, 2008). Second, we performed analyses at the level of anatomical labels

(?), which acts as a form of (anatomically informed) spatial smoothing. Future studies

should aim at identifying effects on a voxel level. Third, despite huge advances over the

last decades, elements of the complex interplay of cortical and subcortical influences

on pupil diameter remain unclear (?). Thus, inferring neural activity (e.g. in the LC) from

changes in pupil diameter, therefore, entails an irreducible level of uncertainty. Finally,

we found a strong correlationbetweenparticipants’ reaction times and choice cue iden-

tity, indicating that participants were able to process vertical choice stimuli faster than

horizontal stimuli. This makes intuitive sense, as for vertical stimuli the requested re-

sponse side corresponds with the side of the generative distribution, irrespective of
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the applied rule. Although this should not affect our further analyses – as the rules itself

did not bias reaction times – future studies should aim to prevent this bias by orthogo-

nalizing generative distributions and response directions. Fruitful prospects for future

research could comprise harnessing imaging techniques with higher temporal resolu-

tion such as MEG especially supplemented with state-of-the-art source reconstruction

techniques (??). Moreover, different analysis approaches including functional connec-

tivity analysis and decoding based approaches such as multivariate pattern analysis

could promisingly complement our study and probe into the questions regarding the

mechanism of coupling, that our study raises.

3.5 Outlook

In the here described study we deployed a novel decision-making task that coupled a

higher-level inference process regarding the uncertain state of a volatile environment

to a simple visual orientation discrimination task without uncertainty. Our task was con-

structed as such that a latent change in the environment resulted in a reversed map-

ping of stimulus and rewarded response in the simple visual discrimination task. We

fitted a normative model of belief updating in changing environments to the data us-

ing a Bayesian posterior sampling approach, which allowed us to assess an ongoing

estimate of the participants belief regarding the state of the uncertain environment.

Subsequently, we related neural data in the form of fMRI signal to both ongoing com-

putational quantities of the higher-level inference process (i.e. belief updating) as well

as the low-level visual discrimination decisions. We, therefore, combined a general lin-

ear modeling approach with model-free analyses of fMRI time courses. We focused

in these analyses on fMRI signals in neuromodulatory brainstem centers and comple-

mented our analyses with pupillometric data, which constitute an established proxy for

activity in brainstem arousal systems. A futile approach for deepening the insights into

hierarchical decision-making in volatile environments should evaluate our data from

the perspective of functional networks of neuronal populations. For example, multi-

variate pattern classification could be harnessed to define voxels in retinotopically or-

ganized visual cortical areas that encode the orientation of the grating stimulus as well

as areas in the parietal and frontal cortex that are selective for the motor response.

Spontaneous co-fluctuations between the resulting grating orientation specific activ-

ity patterns in visual cortex and the response specific activity patterns in motor corti-
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cal areas could then be evaluated as functional instantiations of the inferred rule. This

measure could be related to the continuous estimate of the current belief regarding

the state of the environment in the top-level inference process, which is accessible to

the experimenter through the model-fitting implemented in the present study. Future

studies should further relate changes in these patterns of co-fluctuation to neural activ-

ity in neuromodulatory brainstem areas as well as to pupillometric data as a proxy for

such neuromodulatory systems. Furthermore, future studies should complement our

findings by acquiring neural mass data of participants performing our task with using

recording modalities with higher temporal resolution such as MEG. Thereby, analytic

limitations caused by the relatively poor temporal resolution of functional MRI could

be surpassed. For example, neural mass data recorded with MEG could be related to

the computational quantities that change at a much higher rate than the fMRI acquisi-

tion time such as the participants’ belief or the change-point probability of evidence

samples.

4 Methods

4.1 Participants

A total of 22 participants (median age 27, range 21 – 44, eight male) took part in our

experiment, out of which all but one completed three sessions: one behavioral and

two MRI sessions. Another participant was excluded from analyses for continuously

poor performance such that in total 20 out of 22 tested participants were considered

for further analyses. All participants were healthy individuals with normal or corrected

to normal vision recruited via the recruitment pool of the Institute for Neurophysiol-

ogy and Pathophysiology of the University Hospital Hamburg-Eppendorf. Exclusion

criteria included a current or past diagnosis of mental or neurological illness, use of

illegal substances, above-average consumption of alcohol as well as non-compatibility

with the MRI scanner. Participants gave written informed consent and the study was

approved by the Ethics committee of the Hamburg Medical Counsil. The experiment

comprised three sessions, one behavioral training session and two sessions in the MRI-

scanner. Participants were remunerated with 10 Euros per hour, fixed 20 Euros for a

blood sample, moreover 10 Euros for completing all three sessions and an additional

flexible amount, which depended on task performance during all three sessions and
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could result in a maximum bonus of 30 Euros.

4.2 Task

Our main task condition comprised a simple two-alternative forced choice (2AFC) task

coupled to an inference problem inwhich participants had to infer the correct rule to be

rewarded in the 2AFC task. Specifically, participants were shown a stream of small iso-

luminant dots (samples) appearing at a frequency of 2 Hz and with a duration of 100ms

on the imaginary central horizontal of the screen. The distance of samples to the cen-

tral fixation cross was variable and was sampled from one of two possible overlapping

Gaussian normal distributions with equal variance (σleft = σright = 1; arbitrary units)

and means symmetric to the fixation cross (µleft = −0.5, µright = 0.5; arbitrary units).

Sample positions were drawn from the same distribution (generative distribution) until

a change point occurred, which could happen at any time point with the probability

of 1/70 (hazard rate). As distributions were overlapping participants were not able to

judge with certainty from a single sample, which distribution was the generative one.

However, by taking several consecutive samples into account, participants could infer

the generative distribution. From time to time (on average every 16.5 s; range 6.8 – 29.6

s), a horizontal or vertical grating stimulus appeared upon which participants were re-

quired to respondwith a left or right button press. Which responsewas to be rewarded,

depended on the currently generative distribution. That is, the left distribution corre-

sponded to ”Rule 1” (vertical grating – left button press/ horizontal grating – right but-

ton press) and the right distribution with opposite ”Rule 2” (vertical grating-right button

press/ horizontal grating-left button press). The response rules stayed constant across

all three sessions andparticipantswere instructed at the beginning of eachblock,which

distribution corresponded with which response rule. In a reduced version of the task,

participants were instructed the currently active distribution and only had to apply it to

the choice stimuli (horizontal or vertical). This task condition served as a control con-

dition for some analyses and for a training purpose, such that participants memorized

the correspondence of active distribution and rewarded response rule. We refer to the

full and the reduced task conditions as ”Inferred rule” and ”Instructed rule”.
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4.3 Stimuli

All stimuli were created using Matlab and the Psychophysics Toolbox Version 3 (?) and

presented on a medium grey background. The evidence samples consisted of a light

grey circle with a radius of 0.1 d.v.a. and a surrounding dark grey ring with a total radius

of 0.14 d.v.a. The sample points were located on the central horizontal with the distance

from the fixation cross sampled from one of two distributions as described above. The

choice stimulus was a circular Gabor patch with full black and white contrast and sharp

edges with either vertical or horizontal orientation and a spatial frequency of 1.2 cycles

per d.v.a. The stimulus had a radius of 13.85 d.v.a. and spanned across the full height

of the screen. The Gabor patch was interrupted by a circle of 2.5 d.v.a. in the grey

background color, which surrounded the fixation cross in the middle of the screen. The

fixation mark was a white symmetric cross in the center of the screen with a length of

0.51 d.v.a. and a thickness of 0.05 d.v.a. In the MRI scanner stimuli were presented on

an MRI-compatible LCD screen with a resolution of 1920x1080 pixels at a refresh rate

of 60 Hz. The screen was positioned at an approximate distance of 60 cm and viewed

through a surface mirror that was mounted on top of the head coil. In the training

session in the psychophysics lab stimuli were presented on a VIEWPixx monitor (VPixx

Technologies, Saint-Bruno, Quebec, Canada) with the same resolution and refresh rate

as the monitor in the MRI scanner. In the scanner, participants reported left or right

choices with their left or right hand, respectively, using two MRI-compatible button in-

terfaces (Current Designs, Philadelphia, Pennsylvania, USA). At the end of each run,

participants received feedback regarding their performance in the form of percentage

correct choices, added monetary reward, and accumulated total monetary reward.

4.4 Procedure

Theexperiment consistedof three sessions, one training session and two sessions in the

MRI scanner. The MRI sessions took place on the same testing day with a break of 105

minutes in between sessions, the training session took place 1-2 days before the MRI

sessions. During the training session, participants first performed a run, in which the

rule was continuously instructed and had to be applied to memorize the rules. Mean-

while, a retinotopic wedge stimulus was shown to familiarize participants with retino-

topic mapping runs in the scanner. Next, participants performed one instructed rule
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run, in which the participants were still informed about the correct rule, but had to

memorize it during the following trials. Afterward, participants performed five runs of

the full task condition in which the correct rule had to be inferred (”Inferred rule” condi-

tion). Before each run, participants were shown a visualization of the mappings of rules

onto generative distributions to avoid error trials due to false rule association. In each

MRI session, we first ran three blocks of retinotopic mapping, after which participants

performed three blocks of the full inference task condition on average lasting 609 s

(SD = 0.54s) and including 36.0 choices (SD = 1.94) and, thereafter, two blocks of the

”Instructed rule” condition on average lasting 604 s (SD = 6.40s) and including 56.5

choices (SD = 1.44). As during the training session, participants were reminded of the

correct rule-distribution mapping before each run.

4.5 Behavioral model

We used a recently established normative model for inference problems in noisy and

volatile environments to capture the high-level belief updating process necessary in

our task to infer the currently generative distribution and the associated rewarded re-

sponse rule (?). In principle, the model entertains a belief variable regarding the state

of the environment with two mutually exclusive possible states and governs through

an update rule how new evidence and prior belief are integrated into a newly updated

belief. Specifically, at each time step n (defined by a new arriving piece of evidence),

the belief Ln is updated by adding the log-likelihood ratio LLRn of sample Xn to the

discounted prior belief ψ(Ln−1, H):

Ln = ψ(Ln−1, H) + LLRn (2)

LLRn is computed as the ratio of the probabilities of the sample Xn to be observed

under each of the two states of the environment, on the logarithmic scale. In our task,

the states represent the two normal distributions, from which the dot position is poten-

tially sampled. Accordingly,

LLRn = log(normal(Xn | µ1, σ
2
1)) − log(normal(Xn | µ2, σ

2
2)) (3)

Critically, the prior belief ψ(Ln−1, H) depends on the posterior belief after the pre-

vious sample Ln−1 and the subject’s estimate of the hazard rate H, i.e. the risk of the
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currently ”active” distribution to switch.

ψ(Ln−1, H) = Ln−1 + log

[
1−H

H
+ exp(−Ln−1)

]
− log

[
1−H

H
+ exp(Ln−1)

]
(4)

This discounting is a non-linear transformation and constitutes the key difference of

this model in comparison to canonical evidence accumulation models such as perfect

accumulation (?). From equation 4 follows, that the hazard rate H scales the translation

of the previous posterior belief Ln−1 into the current prior belief ψ(Ln−1, H). WhenH =

0, ψ equals Ln−1, resulting in perfect accumulation of samples. On the other extreme,

when H = 0.5, the two terms in equation (4) cancel out and Ln equals LLRn. Thus,

H balances the impact of new evidence and prior belief on the current and thereby

governs the tradeoff between the precision of the belief and the sensitivity to change-

points (Figure 2a-c).

Choice probabilities were computed from the posterior belief Ln following a logistic

function scaled by a free parameterV , representing internal noise in the neural circuitry:

pn,left = 1/(1+ exp(−Ln/V)) (5)

4.6 Model fitting

We fitted the above described normative model of belief updating to our data using

a Bayesian modeling approach. Bayesian statistical approaches seek to provide the

probability distribution of a parameter over the possible parameter space (i.e. the pos-

terior distribution) given certain observed data and prior knowledge about the param-

eter. Specifically, Bayesian techniques compute posterior distributions of parameters

according to Bayes’ theorem, which states

P(parameter | data) =
P(data | parameter)P(parameter)

P(data)
(6)

Due to the denominator term in this equation, the posterior distribution cannot be

solved by calculus, giving rise to the necessity of sampling algorithms. The rationale

behind these is to first sample (random) parameter values and then decide on whether

to accept or reject these parameter values based on the log-posterior (i.e. the result of

the numerator of the equation). By repeating these steps many times, one can approx-
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imate the exact posterior distribution. To keep the sampling process efficient, a proper

algorithm strives to keep both rejection rates and autocorrelation between consecutive

proposed parameter values as low as possible. Rejections are counterproductive as

they imply the use of computing power (proposing a parameter value and calculating

its log-posterior) without gaining insight into the posterior distribution. Autocorrelation

impedes the sampler in exploring the whole parameter space, thus decreasing effec-

tive sampling size and making the sampler less efficient. However, modern sampling

algorithms deal with these constraints,making Bayesianmethods efficient and feasible.

In our analyses, we used the Bayesian modeling language Stan (PyStan: the Python in-

terface to Stan, Version 2.17.1.0) which uses a Hamiltonian Monte Carlo algorithm for

sampling (?). Hamiltonian Monte Carlo, a specific type of Markov Chain Monte Carlo

algorithms, harnesses laws fromHamiltonianmechanics in order to propose parameter

values in the first place that aremore likely to be accepted. We fitted themodel with the

hazard rate H and the internal noise V as the only free parameters for each subject and

each session independently. As priors we used a uniform distribution over the whole

possible parameter space between 0 and 1 for H and a broad Gaussian normal distri-

bution centered on 1 (σ = 50) with a lower bound of 1 for V. The choice of these highly

uninformative priors was motivated by our lack of solid a priori knowledge about the

subjects’ behavior. We used four sampling chains with 5000 sampling iterations each,

of which the first 50% were considered as warm-up samples and were not used to de-

termine the posterior distribution. This Bayesian fitting procedure yielded a posterior

distribution for both parameters for each subject and session. For further analyses such

as computing the belief of the normative model Ln across time, we used the modal val-

ues of the posterior distributions, i.e. the most probable parameter values.

4.7 Alternative models

We compared the normative Bayesian model of belief updating to three alternative

models or heuristics: i) perfect accumulation of all samples seen throughout the run

(equals H = 0), ii) a heuristic of choosing only on basis of the last-seen sample (equals

H = 0.5) and iii) perfect accumulation between choices and a reset after each choice

(”reset accumulation”). We ran these models on the actual data of all participants and

then compared performance, i.e. the percentage of rewarded trials, between these

alternative models, the normative model (equipped with the true generative H = 1/70
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as well as with the fitted H of participants) and the actual performance of participants.

4.8 Computational parameters of the belief updating process

We used the model fits to extract relevant computational measures that capture the

belief updating process and could in later steps be correlated with neural data. These

measureswere belief,LLR and change-point probability. We computed time courses of

the updated belief variable Ln according to the normative model and used the subject

and session-specific fits of the hazard rate H and we computed time courses of LLR

according to sample positions and Equation 3. Moreover we computed a measure of

change-point probability (CPP), derived from the normative model, at each time point

n as follows:

CPPn =
H[N(Xn | S1)p(S2,n−1) + (N(Xn | S2)p(S1,n−1)]

H[N(Xn | S1)p(S2,n−1) + (N(Xn | S2)p(S1,n−1)]
+ (1−H)[N(Xn | S2)p(S2,n−1) + (N(Xn | S1)p(S1,n−1)]

(7)

(Equation 8)

where Xn denoted the value (in our case dot position) of a new evidence sample

and S1 and S2 the two possible generative distributions with respective mean and vari-

ance µ1,σ
2
1 and µ2,σ

2
2. Two reasons motivated our choice of this computational quantity

(?): First, the dynamics of this measure are easy to grasp in the context of the normative

model. For example, in the case that the LLRn of a new sample n contradicts the pre-

vious belief Ln−1 this measure will naturally yield a high change-point probability CPP.

On the other hand, if a new sample is neutral in regards to the two possible generative

distributions (LLR = 0), this measure of CPP equals the model’s hazard rate H, which

intuitively makes sense as it constitutes the general probability of a change-point to

occur. Second, CPP has been found to upweight the impact of a sample on the final

choice (?).

4.9 FMRI data acquisition

We used a 3T Siemens Prisma scanner with a 32-channel head coil for data acquisi-

tion. The cardiac cycle and respiratory rate were recorded at a frequency of 1000 Hz.

We recorded echo-planar imaging (EPI)-images for two types of runs, main experi-

mental runs, and retinotopic mapping runs. EPI-images for main experimental runs

were acquired with the following parameters: 62 slices of 2 mm thickness, TR = 1.9s,

52



TE = 28ms, FA = 70◦, in − planeresolution = 2x2mm. EPI-images for the retino-

topic mapping runs were acquired with the following parameters: 26 slices of 2 mm

thickness, TR = 0.88s, TE = 28ms, FA = 50◦, in − planeresolution = 2x2mm. More-

over, a T1-weighted anatomical scan was acquired in a MPRAGE sequence and with

the following parameters: voxelsize = 1x1x1mm, TR = 2.3s, TE = 2.98ms, FA = 9◦. Fi-

nally, we obtained B0-fieldmaps with the following parameter: voxelsize = 2x2x2mm,

TR = 0.678s, TE1 = 5.42ms, TE2 = 7.88ms, FA = 40◦.

4.10 FMRI preprocessing

The functional MRI data were preprocessed using the recently introduced preprocess-

ing pipeline fMRIPrep(?). fMRIPrep is based on Nipype, a python software package

used to construct workflows for fMRI analysis, and exploits functionality from several

well-established programs, including ANTs, FSL, AFNI, and FreeSurfer. The fMRIPrep

pipeline consists of two major workflows, for pre-processing anatomical images and

functional EPI-images respectively. Specifically, T1-weighted (T1w) anatomical images

were corrected for intensity non-uniformity and skull stripped using N4BiasFieldCor-

rection (Tustison et al. 2010) and antsBrainExtraction.sh (both ANTs v2.1.0) respec-

tively. The cortical surface was reconstructed using FreeSurfer’s recon-all functional-

ity (FreeSurfer v6.0.1, Dale et al. 1999). In a customized procedure similar to Mind-

Boggle (?), the resulting brain matter segmentations of ANTs and FreeSurfer were rec-

onciliated. The T1w image was then registered to MNI 152 Nonlinear Asymmetrical

template version 2009c through nonlinear registration (?) using antsRegistration (ANTs

v2.1.0). Finally, fast (FSL v5.0.9) was used for the segmentation of white matter and

cerebrospinal fluid (?). Functional EPIs were corrected for slice timing and head mo-

tion using 3dTshift (AFNI v16.2.07, Cox and Hyde 1997) and mcflirt (FSL v5.0.9, Jenk-

inson et al. 2002). Furthermore, B0-fieldmaps were used to correct for susceptibility

distortion via fugue (FSL v5.0.9, Jenkinson 2003), and the images were co-registered to

T1w-space, MNI152-space, and FreeSurfer Surface space using boundary-based regis-

tration (?) bbregister (FreeSurfer v6.0.1). The transformations that resulted from these

different corrections and co-registration procedures were applied together in one sin-

gle step using antsApplyTransforms (ANTS v2.1.0) using Lanczos interpolation.
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4.11 General linear model

We constructed a multiple linear regression model to predict time courses of single-

voxel fMRI signal by a set of behavioral parameters. In detail, this set of predictors

comprised i) the sensorimotor choice, quantified as a boxcar regressor lasting from the

onset of the choice cue until response reported by button press, ii) the log-likelihood

ratio of each incoming sample of evidence computed according to Equation 3, iii) pos-

terior belief Ln according to Equation 2 and iv) change-point probability as in Equation

8. The categorical choice regressor was dummy-coded for the four possible stimulus-

response combinations aswell as for non-responses, the other three continuous regres-

sors were included in the signed form as well as in absolute form (magnitude). All be-

havioral regressors were convolved with a canonical hemodynamic impulse response

function, resampled to the EPI acquisition frequency (TR = 1.9s) and normalized per

session and subject by z-scoring.

fMRI signalvox = β0,vox + β1,voxLabs + β2,voxLsigned + β3,voxLLRabs

+ β4,voxLLRsigned + β5,voxCPP+ β6,voxtrialhoriz,left

+ β7,voxtrialhoriz,right + β8,voxtrialvert,left

+ β9,voxtrialvert,right + β10,voxtrialmissed (1 revisited)

4.12 Cortical regression results

For cortical regression results, we extracted data on FreeSurfer’s cortical surface from

the 3-dimensional regression results in subject-specific T1w-space using functionality

from the python package nilearn (nilearn, version 0.6.0; Abraham et al., 2014). We av-

eraged across vertices within each cortical region according to a surface-based corti-

cal parcellation (?) to compare regression results across subjects. We further averaged

across the two sessions per subject, t-tested across subjects, and averaged the resulting

t-statistic across hemispheres for visualization. For all cortical figures, t-statistics were

corrected for multiple comparisons using FDR-correction (?).
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4.13 Delineation of brainstem ROIs

We used probabilistic atlases to delineate the brainstem regions of locus coeruleus (?),

dorsal raphe (?), ventral tegmental area, substantia nigra (Pauli et al. 2018) and the

basal forebrain (Zaborszky et al. 2008). The latter was furthermore divided in a sub-

lenticular part and a septal part (Zaborszky et al. 2008). The atlases were transformed

fromMNI152-space to subject-specific T1w-space using the antsApplyTransforms func-

tionality from the Advanced Normalization Tools (ANTs v2.1.0) toolbox. To compute

ROI-level time series we extracted voxels above a threshold of 0.01 and calculated a

weighted average of these voxels over time. To obtain ROI-specific regression results

we also calculated the weighted average of the product of the probabilistic atlas and

the three-dimensional beta maps resulting from the regression analyses. In analogy to

the cortical results, we averaged across sessions, t-tested across subjects and corrected

for multiple comparisons using FDR-correction (?).

4.14 Pupil data acquisition and preprocessing

Eye data were acquired using an EyeLink 1000 Long Range Mount (SR Research, Os-

goode,Ontario, Canada) positioned outside theMRI scanner and redirected to the par-

ticipants’ pupil via a mirror, which was attached to the head coil. Eye data was recorded

at a frequency of 1000 Hz, the tracker was calibrated once at the beginning of each

session and EyeLink’s in-house software was used to keep track of the pupil. Blinks and

other periods, during which the participant’s lids were closer, were identified by thresh-

olding the pupil diameter. The detected periods were interpolated linearly. Detection

of blinks and interpolation was controlled and corrected manually. A third-order But-

terworth filter (0.01-6 Hz) was applied and the time series was z-scored.

4.15 Epoch based analyses

Throughout our analyses, we deployed several epoch-based analysis approaches com-

bining pupil data as well as fMRI data with behavioral parameters.

Choice epochs. We extracted choice epochs from cortical areas (Figure 4 and Sup-

plementary Figure 2) as well as from brainstem ROIs (Figure 6) in both ”Inferred rule”

runs as well as ”Instructed rule” control runs. Cortical ROIs were chosen based on the

results from our general linear model and extracted using the HCP MMP 1.0 atlas, an
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in-vivo parcellation of the human cortex with 180 areas per hemisphere (?). Specifically,

from the time courses of these cortical ROIs we extracted choice epochs as the fMRI sig-

nal from -2 to 12 s in reference to the onset of the choice stimulus (vertical or horizontal).

We discarded all epochs containing blinks in the concurrent pupil data and considered

only subjects with at least 30 remaining blink-free trials. Applying this conservative ap-

proach to the epoch-based analysis, 17 subjects remained for the inference condition

and 14 subjects remained for the ”Instructed rule” condition. In analyses, in which both

conditions were compared, only data of the remaining 14 subjects were used. Choice

epochs were then binned by either task condition (Figure 6a), belief strength (i.e. the

belief magnitude after the last sample seen before the decision; highest 40% vs. low-

est 40%; Figure 4a) or our measure of pupil modulation (mean first derivative of pupil

from -1 to 1.5s from choice; highest 40% vs. lowest 40%; Figure 6b) averaged per sub-

ject and bin and then averaged across subjects per bin. Differences in resulting time

courses between bins were statistically tested using cluster-based permutations tests.

Sample EpochsMoreover,weextractedpupil epochdata aroundeach sample shown

during the belief updating period. Specifically, we again used the first derivative of

pupil diameter (Figure 7a), which has been shown to especially covary with noradren-

ergic neuromodulatory systems (?). Per subject, we conditioned these pupil epochs

based on the surprise (i.e. change-point probability) associated with the shown sam-

ple and subtracted the average across all surprise bins from the 30% most surprising

samples. Afterward,we averaged across subjects and used cluster-based permutations

tests to test against zero (Figure 7b).
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5 Summary

In the present study we probed into the dynamics of hierarchical decision-making, nec-

essary for adaptive behavior in a setting in which the state of an uncertain and unstable

environment determines thebest behavioral strategy formorebasic sensorimotor deci-

sions. We combined a novel decision-making taskwith fMRI and pupillometry. Through

sophisticated Bayesian computational modeling of behavioral data we showed that the

participants’ behavior was well captured by a dynamic belief updating process regard-

ing the state of the uncertain environment and we gained access to continuous esti-

mates of computational quantities of this updating process. By relating these compu-

tational readouts to fMRI signal through general linear modeling and model-free anal-

yses, we identified i) brain regions in which activity reflected important components of

the belief updating process and the basic sensorimotor decisions as well as ii) cortical

brain areas that were significantlymore active in trials that required a coupling of the ba-

sic decisions to the belief updating process. Critically, brainstem imaging revealed that

activity in certain neuromodulatory brainstem centers was also enhanced during such

trials that required a coupling. Finally, pupillometry allowed us to relate pupil diame-

ter - an established proxy for brainstem arousal systems - to change-point probability,

a measure for the probability that the underlying environment has undergone a state

change.

Die vorliegendeStudiebeschäftigt sichmit hierarchischenEntscheidungsfundungs-

prozessen. Diese sind für adaptivesVerhalten notwendig,wenneine unsichere und sich

verändernde Umwelt die optimale Reaktion auf Umweltreize und damit die Strategie in

basalen Entscheidungen bestimmt. Wir kombinierten hierfür ein neuartiges Entschei-

dungsfindungsexperiment mit funktionaler MRT und Pupillometrie. Durch Bayesianis-

che rechengestützte Modellierung von Verhaltensdaten konnten wir zeigen, dass sich

das Entscheidungsverhaltender Proband:innendurchein normativesModell vonGlauben-

saktualisierung beschreiben lässt. Wir setzten Parameter dieses Modells in Relation zu

fMRT-Signalen und konnten so zum einen kortikale Hirnareale identifizieren, die sowohl

Komponentendes ProzessesderGlaubensaktualisierungals auchder basalenEntschei-

dungen reflektierten, sowie zumanderenArealedarstellen, die signifikant aktiverwaren,

wenn die basalen Entscheidungen hierarchisch von dem Glauben bezüglich des Zus-
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tandes der volatilen Umwelt abhingen. Ferner konnten wir mittels fMRT-Bildgebung

des Hirnstamms zeigen, dass auch die Aktivität in bestimmten neuromodulatorischen

Hirnstammkernen signifikant höher war, wenn basale Entscheidungen hierarchisch an

einen solchen übergordneten Glauben gekoppelt waren. Zuletzt konnten wir mittels

Pupillometrie dieGrößedes Pupillendurchmessers – einen etablierten Proxy für imHirn-

stamm lokalisierte Erregungsnetzwerke – mit einem Maß für die Wahrscheinlichkeit

eines grundlegenden Zustandswechsels der volatilen Umwelt korrelieren.
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6 Abbreviations

ACC anterior cingulate cortex

ACh acetylcholine

BF-ACh acetylcholinergic basal forebrain

CCP change-point probability

DA dopamine

DRN dorsal raphe nuclei

EPI echo-planar imaging

fMRI functional magnetic resonance imaging

GLM general linear model

LC locus coeruleus

LC-NE noradrenergic locus coeruleus

LLR log-likelihood ratio

MEGmagnetoencephalography

MTmiddle temporal area

NE norepinephrine

PFC prefrontal cortex

ROIS regions of interest

SNc substantia nigra

TR repetition time

VTA ventral tegmental area

VTA-DA dopaminergic ventral tegmental area

2AFC two-alternative forced choice
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7 Supplementary Materials

Supplementary Figure 1: top left: Reaction times of participants in trials in which par-
ticipants applied ”Rule 1” split by the identity of the choice cue (i.e. ”horizontal” or
”vertical”). top right: Reaction times of participants in trials in which participants ap-
plied ”Rule 2” split by the identity of the choice cue. center left: Reaction times of
participants in trials with a horizontally grated choice stimulus split by applied rule (i.e.
”Rule 1” or ”Rule 2”). center right: Reaction times of participants in trials with a vertically
grated choice stimulus split by applied rule. top and center: boxplot depicts median
and quartiles across participants; single data points depict single participants’ means;
statistics two-sample t-test. bottom left: % correct trials across sessions. bottom right:
Reaction times across sessions. bottom row: mean and 2x s.e.m depicted; single data
points show single participants; statistics across session 2 and 3: two-sample t-test.
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Supplementary Figure 2: Time courses of trial-evoked activity in areas significantly
more active during trials of the ”Inferred rule” condition (compare Fig. 3c) conditioned
on task condition (”Inferred rule” vs. ”Instructed rule”). Shading, bootstrapped 95%-CI;
statistics, cluster-based permutations test at p < 0,05.

Supplementary Figure 3: Regression coefficients of selected regressors from the gen-
eral linear model (see Eq. 1) for neuromodulatory brainstem centers. Mean and
2xs.e.m. across participants depicted. T-tests for significance against zero. * p<0.05; **
p<0.01; *** p<0.001
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