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1. Zusammenfassung

Das allergische Kontaktekzem (ACD) ist eine unangenehme und weit verbreitete
Erkrankung, die durch wiederholten Hautkontakt (z.B. über Konsumgüter oder
Arbeitsmittel) mit einer hautsensibilisierenden Substanz ausgelöst werden kann
[5–7]. Um die Entstehung von ACD zu verhindern, ist eine sorgfältige Risikobe-
wertung des Hautsensibilisierungspotenzials neu entwickelter Chemikalien und
Substanzen erforderlich. In der Vergangenheit beruhte diese vor allem auf Ergeb-
nissen von Tierversuchen [8]. Inzwischen ist erwünscht (und teilweise auch
gesetzlich vorgeschrieben [9–13]), das Hautsensibilisierungspotenzial neuer Sub-
stanzen mit tierversuchsfreien Alternativen wie in-vitro und in-chemico Tests
sowie computergestützten Methoden einzuschätzen [14, 15]. Im Vergleich zu
experimentbasierten Testansätzen bieten hierbei computergestützte Methoden
mehrere Vorteile, darunter eine kürzere Testdauer und geringere Kosten. Sie
sind daher eine vielversprechende Säule für eine tierversuchsfreie Risikobewer-
tung des Hautsensibilisierungspotenzials kleiner Moleküle.

Ziel dieser Arbeit ist die Entwicklung und Bewertung zuverlässiger und an-
wendbarer computergestützter Methoden für die Vorhersage des Hautsensibili-
sierungspotenzials kleiner organischer Substanzen. Besonderes Augenmerk wird
auf Aspekte gelegt, die die Nutzbarkeit und Akzeptanz der entwickelten Modelle
für die Risikobewertung erhöhen. Dies beinhaltet insbesondere eine solide Daten-
basis für die Modellentwicklung und -bewertung, solide Größen zur Bestimmung
der Zuverlässigkeit der Vorhersagen und eine verbesserte Interpretierbarkeit der
Modelle.

In einem ausführlichen Übersichtsartikel [P1] haben wir zunächst die öffentlich
zugänglichen Daten zur Hautsensibilisierung sowie die vorhandenen Vorhersage-
programme und -ansätze zusammengefasst und diskutiert. Wir haben eine
Vielzahl unterschiedlicher Ansätze mit teilweise zueinander komplementären
Vor- und Nachteilen identifiziert, die eine vielversprechende Grundlage für die
computergestützte Vorhersage von Hautsensibilisierungspotenzial bilden. In der
Praxis wird jedoch keines der untersuchten Modelle als alleinstehender Ansatz
für die Risikobewertung akzeptiert.

In unserem ersten Projekt haben wir den größten öffentlich zugänglichen Local-
Lymph-Node-Assay (LLNA)-Datensatz (1416 Substanzen) zusammengestellt und
seine Relevanz für den chemischen Raum von Kosmetika, Arzneimitteln und
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2 1. Zusammenfassung

Pestiziden nachgewiesen. Auf der Grundlage dieses Datensatzes haben wir,
basierend auf maschinellen Lernverfahren (ML), 58 Modelle für die Vorher-
sage des binären Hautsensibilisierungspotenzials kleiner organischer Moleküle
entwickelt, optimiert und bewertet. Mit wenigen Ausnahmen erreichten die
optimierten Modelle eine vergleichbare Vorhersagekraft mit einer Genauigkeit
(ACC) von bis zu 0,76 und einem Matthews-Korrelationskoeffizienten (MCC)
von bis zu 0,55. Durch die Implementierung eines definierten Anwendungsbe-
reiches (AD) und zweier Zuverlässigkeitsgrößen konnten wir die Vorhersagekraft
der Modelle für eine Teilmenge unserer Daten bei gleichzeitiger Verringerung der
Efficiency/Coverage erhöhen. Als Ergebnis unserer Analyse wurden zwei der leis-
tungsfähigsten Modelle in der Skin Doctor Suite implementiert, einem über einen
Webserver öffentlich zugänglichen Programm für die Vorhersage des Hautsensi-
bilisierungspotenzials. Neben der eigentlichen Vorhersage gibt die Skin Doctor
Suite auch Informationen über den AD und die beiden Zuverlässigkeitsgrößen
einer jeden Substanz aus.

Im Anschluss an die Entwicklung der Skin Doctor Suite haben wir unseren
LLNA-Datensatz weiter verbessert, indem wir alle Moleküle zusätzlich einer
manuellen Qualitätsprüfung unterzogen. Damit ein ML-Modell für Risikobewer-
tung und Zulassung eingesetzt werden kann, ist eine definierte und mathematisch
belegte Zuverlässigkeit für jede einzelne Vorhersage vorteilhaft. Daher haben
wir eine unserer leistungsstärksten Kombinationen aus Modellierungsalgorith-
mus, Hyperparametern und Deskriptoren aus der Skin Doctor Suite verbessert,
indem wir das Modell in ein aggregiertes Mondrian conformal prediction (CP)-
Framework eingebettet haben. Dies ermöglicht die mathematisch robuste Berech-
nung der Zuverlässigkeit jeder einzelnen Vorhersage und umgeht die Notwen-
digkeit zusätzlicher Grenzwerte für die Definition des AD oder der Zuverläs-
sigkeitsgrößen. Wenn beispielsweise eine Error Significance von 0,20 zugelassen
wird, können ACC, MCC und Coverage/Efficiency von 0,78, 0,56 bzw. 0,82
erreicht werden. Dieses binäre Modell, Skin Doctor CP, wurde ebenfalls auf
unserem Webserver veröffentlicht. Um zwei verschiedene Klassen von Sensibil-
isierern (schwache bis mittlere und starke bis extreme Sensibilisierer) weiter zu
unterscheiden, wurde ein zusätzliches aggregiertes Mondrian CP Modell trainiert
und mit dem ursprünglichen Skin Doctor CP-Workflow zu einem ternären Mo-
dell kombiniert. Die ternäre Klassifizierung schien bei der Analyse der globalen
Leistung erfolgreich zu sein, zeigte jedoch deutliche Schwächen bei der lokalen
Leistung der unterrepräsentierten Klasse der starken bis extremen Sensibilisier-
ern. Diese und weitere Schwächen konnten auch in einem von Di et al. [16]
veröffentlichten ternären Modell festgestellt werden, indem dessen lokale Leis-
tungen näherungsweise berechnet wurden.

Für die Akzeptanz eines Modells in der Risikobewertung ist eine gute Inter-
pretierbarkeit von Vorteil. Darüber hinaus kann ein gut interpretierbares Modell
Einblicke in dessen Mechanismus sowie in den zugrundeliegenden biologischen
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Hintergrund geben. Um die Interpretierbarkeit unserer Modelle zu erhöhen,
haben wir in einer dritten Studie einen strengen Selektionsprozess auf einen
Satz von 750 berechneten Bioaktivitätsdeskriptoren angewendet. Auf diese
Weise haben wir zehn biologisch sinnvolle Deskriptoren identifiziert, die als
einzige Deskriptoren eines aggregierten Mondrian CP-Workflows Verwendung
fanden. Das endgültige Modell erreichte eine Vorhersagekraft, die mit der un-
serer früheren, weniger interpretierbaren Modelle vergleichbar ist (ACC von 0,76,
MCC von 0,53 und Coverage/Efficiency von 0,82, bei einer Error Significance von
0,20). Des Weiteren wurden der LLNA-Datensatz und drei Referenzdatensätze
(bestehend aus Kosmetika, Pharmazeutika und Pestiziden) in dem von den
diesen Deskriptoren aufgespannten chemischen Raum analysiert. Hierbei zeigte
sich eine hohe Eignung der ausgewählten Deskriptoren zur Beschreibung des
Sensibilisierungspotentials der untersuchten Moleküle.
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2. Abstract

Allergic contact dermatitis (ACD) is a common and distressful condition among
workers and consumers which is induced by the repeated contact of the skin to
a skin sensitizing substance [5–7]. To prevent the induction of ACD, a careful
risk assessment according the skin sensitization potential or potency of newly
developed chemicals and substances is required. Historically, skin sensitization
risk assessment was mainly conducted by animal experiments [8]. Currently, it is
desired (and partly legally required [9–13]) to assess skin sensitization potential
with non-animal alternatives such as in vitro and in chemico assays and com-
putational methods [14, 15]. Compared to testing approaches, computational
methods tout several advantages, including reduced testing time, and lower
costs. Thus, computational methods are a promising pillar for a non-animal
risk assessment of the skin sensitization potential and potency of small molecules.

In this thesis, we aim to support the development of reliable and applicable
computational tools for the prediction of skin sensitization potential and po-
tency of small molecules. Special emphasis is placed on aspects to increase the
models’ usability and acceptance for risk assessment by providing a solid data
basis for model development and evaluation, solid measures of reliability and
increased interpretability linked to the biological processes of the induction of
skin sensitization. We summarized and critically reviewed the publicly available
data for skin sensitization as well as the existing computational tools and ap-
proaches in an extensive review article [P1]. We identified a variety of different
approaches with partially complementary advantages and disadvantages, com-
prising a promising base for the computational prediction of skin sensitization
potential and potency. However, none of the models reviewed are presently
accepted as a standalone approach for risk assessment.

In our first project, we compiled the largest publicly available local lymph
node assay (LLNA) data set (1416 compounds) and demonstrated its relevance
for the chemical space covered by cosmetics, pharmaceuticals, and pesticides.
Based on this data set, we developed, optimized and evaluated 58 machine
learning (ML) models for the prediction of binary skin sensitization poten-
tial of small molecules. With few exceptions, the optimized models reached
comparable performance and did not exceed an accuracy (ACC) of 0.76, and
Matthews correlation coefficient (MCC) of 0.55. By implementing an applica-
bility domain (AD) and two measures of reliability we could increase models’

5



6 2. Abstract

predictivity for a subset of our data accompanied by a simultaneous decrease
of models’ coverage. As a result of our analysis, two of the best performing
models have been implemented as the Skin Doctor Suite, a publicly available
web server for the prediction of skin sensitization potential. The Skin Doctor
Suite also comprises AD information on every single molecule of interest as well
as the two reliability measures. All three of them are visualized with a simple
and intuitive color coding.

Following the development of the Skin Doctor Suite, we further refined our
LLNA data set with an additional manual data curation step. For a ML model
to be applicable for risk assessment and regulator purposes, a defined and math-
ematically proven reliability for every single prediction is advantageous. Thus,
we enhanced one of our best performing combinations of modeling algorithm,
hyperparameters, and set of descriptors from the Skin Doctor Suite by envelop-
ing the final model into an aggregated Mondrian conformal prediction (CP)
framework. This allows for the enumeration of the reliability of every single
prediction in a mathematically proven way and circumvents the need of any
additional cutoff values for the definition of the AD or the reliability measures.
For example, when allowing an error significance of 0.20, ACCs, MCCs, and
coverage/efficiency of 0.78, 0.56, and 0.82 could be realized, respectively. This
final binary classifier, Skin Doctor CP, was published on our web server. To
further differentiate two different classes of sensitizers (weak to moderate and
strong to extreme sensitizers), an additional classifier was trained and com-
bined with the original Skin Doctor CP workflow into a ternary classifier. The
ternary classification was successful when analyzed by the global performance,
but revealed non-negligible weaknesses in the local performance of the under-
represented class of strong to extreme sensitizers. Even more weaknesses could
be detected in a ternary model published by Di et al. [16] when estimating the
local performances of this model.

For a model to be accepted for risk assessment, a high interpretability is prefer-
able. Additionally, an interpretable model can contribute insights into the
mechanism of the model as well as the underlying biological background. To
promote the interpretability of our models, we applied a strict feature selection
process to a set of 750 calculated bioactivity descriptors in our third study. By
doing this, we identified ten biologically meaningful descriptors which are capa-
ble of serving as the only descriptors of an aggregated Mondrian CP workflow.
The final model resulted in a performance comparable to the one of our former,
less interpretable models (ACC of 0.76, MCC of 0.53, and coverage/efficiency
of 0.82, at an error significance of 0.20). An analysis of the LLNA data set
and three reference data sets (comprising molecules labeled as cosmetics, phar-
maceuticals, and pesticides) in the chemical space spanned by these descriptors
demonstrated high discriminative capacities of the descriptor set selected.



3. Introduction

Repeated exposure of the skin to a sensitizing substance can induce allergic
contact dermatitis (ACD). ACD manifests as often uncomfortable rashes or
skin lesions at the site of exposure and can result in itching, burning, and
pain [17]. In a large meta study conducted in 2007, about 20% of the general
population of North America and Western Europe were found to be allergic to
at least one contact allergen [5]. Depending on the study and the examined
profession, ACD is responsible for approximately 20% to 50% of reported cases
of occupational contact dermatitis (OCD) which is estimated to cause up to 30%
of all reported occupational diseases (0.5–1.9 cases of OCD per 1000 full-time
workers) [18]. For those affected, ACD can be a distressing problem resulting
in sick leaves and health expenses [6, 7]. To prevent the induction of this
condition, skin sensitization is an important endpoint for the safety assessment
of new chemicals and consumer products.

3.1 Background

The development of skin sensitization can be divided into two phases [19]: First,
during the induction phase, a cutaneous immune response is triggered by the
contact of the skin with the sensitizing substance and results in an immunolog-
ical priming. Secondly, during the elicitation phase, a new contact of the skin
with this substance results in a symptomatic immune response associated with
an inflammatory reaction at the site of the contact. The mechanisms behind the
induction of skin sensitization are described in the currently accepted skin sen-
sitization adverse outcome pathway (AOP) [20]. The pathway consists of eleven
steps that comprise four key events. The first key event or molecular initiating
event (MIE) is called haptenization and describes the molecular interaction of
the substance with skin peptides and proteins. Molecules that need activation
through autoxidation or enzymatic reactions prior to protein binding are called
pre- and pro-haptens, respectively [21]. Within the second and third key event,
activation of kertinocytes and dendritic cells are described, respectively. Finally,
the fourth key event deals with the proliferation of hapten-specific T cells. The
AOP does not only provide mechanistic insight in the processes behind skin
sensitization induction, but also helps to structure existing knowledge about
individual compounds and mixtures [22, 23].

7



8 3. Introduction

Traditionally, the skin sensitization potential of a substance is assessed by animal
or (very rarely) human in vivo studies. Since the early 1940s, animal experi-
ments on skin sensitization potential have been conducted on guinea pigs [8].
Defined experiments on this species, such as the Buehler Test and the guinea
pig maximization test (GPMT), have been available since the 1960s. After the
induction phase (occluded exposure in the case of the Buehler Test and a com-
bination of occluded exposure and intradermal injections in the case of GPMT)
both protocols assess skin sensitization potential by the visible investigation of
a patch test conducted on the flanks of the animals. Alternative experiments
conducted on mice, such as the mouse ear-swelling test (MEST), came into
focus several decades later. The MEST combines epidermal exposure with in-
tradermal injections within the induction phase. In the elicitation phase, one
of the mouse’s ears is exposed to the test substance and the swelling of the ex-
posed ear compared to the control is measured in the assays readout. All three
assays only provide an uncertain quantification of skin sensitization potential
(skin sensitization potency) and are thus better suited for binary classification
of skin sensitization potential.

Currently, the local lymph node assay (LLNA) conducted in mice has become
the method of choice for in vivo assessment of skin sensitization potential and
potency. After repeated contact of the mice with the substance of interest,
animals are sacrificed and the cell proliferation in draining lymph nodes is mea-
sured [24]. The concentration percentage of test compound that produces a
3-fold increase in cell proliferation is called the EC3 value. Compared to the
qualitative readouts from other animal experiments, the EC3 value presents
the advantage of providing a relatively stable and reproducible measure of skin
sensitization potency [25]. The quantitative assessment of potency compared
to a qualitative potential is desired since it reduces the need to completely
exclude skin sensitizing substances and could allow for their application in safe
concentrations [26]. The LLNA is also considered advantageous with respect
to animal welfare since the objective of the experiment is the induction phase
only [8].

Very rarely, measured data on skin sensitization potential from human clinical
trials are available [27,28]. Since they are usually conducted on less controlled
studies, they are considered less reliable than the corresponding animal exper-
iments [14]. Nevertheless, a comparison of human data and LLNA has been
conducted several times: The LLNA is reported to predict binary skin sensi-
tization potential in humans with a balanced accuracy between 0.58 and 0.88
depending on the study and the data analyzed [29]. Based on a carefully curated
data set provided by Cosmetics Europe [30] (in the original version comprising
128 substances), a balanced accuracy of 0.68 can be expected [29,30].
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While the LLNA is considered the gold standard for skin sensitization predic-
tion in terms of reliability, it is desired to replace in vivo experiments with
non-animal alternatives due to ethical reasons [14, 15]. This shift is also pro-
moted by regulatory authorities, for example in the EU (by e.g. EU Directive
2010/63/EU, REACH and the Cosmetic Products Regulation [9–11]) and the
US (by e.g. Tox21 and ToxCast program [12, 13]) direct towards non-animal
alternatives. To address the single key events from the skin sensitization AOP
without animal testing, several experimental in vitro and in chemico methods
are currently at hand. [8, 31, 32] Five of them are fully validated and covered
by an organisation for economic co-operation and development (OECD) guide-
line and two more are under review: The first key event can be addressed by
the direct peptide reactivity assay (DPRA) [33], while the second key event
can be addressed by KeratinoSens, LuSens, and SENS-IS [34]. The third key
event of the AOP can be addressed by IL8-Luc, Myeloid U937 skin sensiti-
sation test (U-Sens), human cell line activation test (h-CLAT) and genomic
allergen rapid detection (GARD) assay [35]. The fourth key event could in
theory be addressed by the human T-cell priming assay (hTCPA) [36]. In prac-
tice, this key event is usually not assessed by non-animal alternatives due to
experimental difficulties and a lack of verification data. Multiple key events
of the AOP can be covered by a combination of non-animal tests within so
called defined approaches (DAs) or integrated approaches to testing and assess-
ment (IATAs) [37–39]. This are promising routes to increase the reliability and
coverage of non-animal approaches.

In 2018, when our review article [P1] was published, the largest publicly avail-
able skin sensitization data set was collected and published by Alves et al. [40]
and comprised 1000 LLNA, 138 human, 194 DPRA, 190 KeratinoSens, 160
h-CLAT data points. At the same time, the best curated (but thus smaller)
data set was published by Cosmetics Europe [30]. This data set comprises
an almost complete matrix of LLNA, human, DPRA, KeratinoSens, h-CLAT,
U-Sens, SENS-IS data for 128 well-curated substances. Due to its relatively
small size, the data set is better suited for model evaluation than for model
building. Both data sets are further described and discussed in our review arti-
cle [P1]. A more recent LLNA data set published by Di et al. [16] is introduced
in chapter 3.5 of this thesis.

An advantage in terms of testing time and economic costs compared to any
testing method can be gained by the application of computational models [41].
A variety of different approaches to model skin sensitization potential and po-
tency in silico have been developed and refined in recent years. They can be
divided into three approaches: i) expert knowledge or rule-based approaches,
which encode expert knowledge on potential reactivity and reaction pathways
of a molecule of interest, ii) similarity based approaches, which are based on the
assumption that similar molecules will have similar biological properties, and
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iii) (quantitative) structure activity relationship ((Q)SAR) approaches, which
develop and apply mathematical functions to calculate the bioactivity of com-
pounds based on their molecular features. Depending on the mathematical
function describing the correlation between descriptors and skin sensitization
potential or potency, two types of (Q)SAR approaches can be further differenti-
ated into linear and non-linear models. While rule-based, similarity based and
linear (Q)SAR approaches can intuitively be interpreted by human investiga-
tors, non-linear machine learning (ML) based (Q)SAR models often are more
akin to a “black box”. Nevertheless, they have proven to be a powerful tool for
the prediction of skin sensitization potential and potency, since they are able
to capture complex correlations between molecular features and toxic activity.
Moreover, several computational prediction tools may be combined in hybrid
models or be integrated in IATA or DAs together with non-animal assays to
improve the predictivity and applicability of stand-alone approaches. However,
a strong dependency of the models’ performance and applicability on the qual-
ity and quantity of the underlying data can be observed for all theoretical
approaches predicting skin sensitization potential and potency [42,43].

Computational approaches to predict skin sensitization potential and potency
(including stand-alone models, hybrid models and models incorporating exper-
imental data) published before 2018 are extensively reviewed and discussed
within our review article [P1].

P1 Wilm, A., Kühnl, J., Kirchmair, J., Computational approaches for skin
sensitization prediction, Critical Reviews in Toxicology, 48(9) (2018) 738–
760
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Introduction

Skin sensitizers are substances able to induce T cell-mediated
type IV hypersensitivity immunoreactions in susceptible indi-
viduals after topical exposure. Repeated exposure eventually
results in clinical manifestations such as skin reddening and
itchy rashes, commonly termed allergic contact dermatitis
(ACD) (Kimber et al. 2011). ACD is a commonly observed
symptom among the general population. A large meta-study
reported a weighted average prevalence of 19.5% of ACD
involving at least one allergen, most commonly nickel, pres-
ervatives, and fragrances, in the general population (Thyssen
et al. 2007). ACD is also a major cause of occupational illness
(Lushniak 2004; Winkler et al. 2015), and its pervasiveness
among hairdressers and dental technicians, for example, is
well described (Goebel et al. 2018; Heratizadeh et al. 2018).
The mechanisms involved in the induction of skin sensitiza-
tion have been subject to extensive research and are rela-
tively well understood. The currently accepted adverse
outcome pathway (AOP) for skin sensitization comprises a
total of 11 steps. Of these, four steps are considered to be
key events: (i) molecular interaction of the substance with
skin peptides and proteins (“haptenization”; this is the
molecular initiating event (MIE)), (ii) activation and inflamma-
tory responses of keratinocytes, (iii) activation of the skin’s
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dendritic cells, and (iv) proliferation of hapten-specific T cells
(OECD 2012).

Most skin sensitizers are low-molecular-weight xenobiotic
chemicals that bind covalently to skin proteins through a
Michael addition, Schiff base formation, bimolecular nucleo-
philic substitution (SN2), nucleophilic aromatic substitution
(SNAr), or acyl transfer (Aptula and Roberts 2006; Roberts,
Aptula, et al. 2007; Chipinda et al. 2011; Enoch et al. 2011;
Roberts 2013). Another type of common sensitizers is metals
that form coordination complexes with skin proteins and, in
the case of nickel, can directly interact with receptors (e.g.
human Toll-like receptor 4; TCR) on immune cells (Garner
2004; Schmidt et al. 2010; Martin et al. 2011). Although some
substances bind to skin proteins directly, others need to
undergo activation through autoxidation (pre-haptens) or
enzymatic reactions (pro-haptens) (Karlberg et al. 2008). The
relevance of skin permeability in skin sensitization is a field
of active research and is not yet fully understood (Alves et al.
2015a; Fitzpatrick et al. 2017a, 2017b).

Human data on skin sensitization remain sparse and of
varying quality and reproducibility. From a regulatory point
of view, animal experiments for skin sensitization currently
constitute the most authoritative testing method for most
risk assessment and regulatory purposes. Three animal
experiments are accepted for regulatory purposes by the
Organization for Economic Co-operation and Development
(OECD): the guinea pig maximization test (GPMT), the
Buehler guinea pig test (BGPT), and the rodent local lymph
node assay (LLNA). Historically, the GPMT and BGPT have
been the methods of choice (Ezendam et al. 2016). They
have largely been succeeded by the LLNA, which is currently
considered the most advanced animal testing system and
serves as the primary reference method for the validation of
alternatives to animal testing (AATs) (Anderson et al. 2011).
Recent studies found that the LLNA correctly discriminates
human skin sensitizers from non-sensitizers in approximately
two out of three (Alves, Capuzzi, et al. 2018) to three out of
four cases (Hoffmann et al. 2018). Besides the identification
of a sensitization hazard, the LLNA also allows the determin-
ation of the skin sensitization potency of a substance as an
EC3 value. The EC3 value is the concentration at which a sub-
stance evokes a three-fold stimulation of cell proliferation
(measured in draining lymph nodes) in the treated groups
compared with the control group. Knowing the potency of a
substance is of high interest for risk assessment as this know-
ledge may allow the application of substances at a safe level
of exposure (Adler et al. 2011; Goebel et al. 2017; Kimber
et al. 2017).

The LLNA has significant error rates and outcomes can
vary considerably. For example, an analysis of 87 substances
for which binary LLNA results have been recorded from more
than one study (using the same vehicle) identified contradict-
ory outcomes for 19 (22%) of these substances (Dumont
et al. 2016). Discordance is higher when different solvents or
more than two potency classes are considered, as also
reported by Hoffmann (2015).

The LLNA and animal experiments, in general, evoke eth-
ical concerns, and their value for human risk assessment is
the subject of ongoing debate (Hartung 2013; Hartung 2017;

Alves, Capuzzi, et al. 2018; Hoffmann et al. 2018). Effective
since 2013, the European Union’s 7th amendment of the cos-
metics directive (EUR-Lex 2009) prohibits the sale of cosmet-
ics tested on animals. This leaves a challenging environment
for the European cosmetics industry as the risk assessment
for the qualification of cosmetic ingredients through alterna-
tive testing means such as in vitro, in chemico, and in silico
methods is a paradigm shift (Goebel et al. 2012; Ezendam
et al. 2016; Goebel et al. 2017; EUR-Lex 2009). Substantial
efforts have been made by academic researchers, individual
companies and associations from cosmetics, pharmaceutical
and fragrance industries as well as institutional laboratories
to replace animal experiments with a combination of alterna-
tive methods and assessment strategies in compliance with
the 3 R (refinement, reduction, and replacement of animal
usage in laboratory procedures) concept (Russell and Burch
1959; Basketter et al. 2012; Nendza et al. 2013; Johansson
and Lindstedt 2014; Reisinger et al. 2015; Bergers et al. 2016;
Ezendam et al. 2016).

Various non-animal testing methods for skin sensitization
are available today (Mehling et al. 2012; Thyssen et al. 2012;
Reisinger et al. 2015; Ezendam et al. 2016). Six testing meth-
ods, addressing the first three key events of the AOP, have
been accepted by the OECD for regulatory purposes so far:
The direct peptide reactivity assay (DPRA) addresses the MIE
of the AOP by measuring the reactivity of a compound
toward lysine or cysteine-containing peptides (OECD 2015a).
KeratinoSensTM (EURL ECVAM; KeratinoSens assay for the
testing of skin sensitizers.) and LuSens (EURL ECVAM;
LuSens Assay) address the second key event of the AOP by
measuring the activation of the transcription factor Nrf2 in
keratinocytes (OECD 2015b). The U937 cell line activation test
(U-SENSTM), human cell line activation test (h-CLAT), and
interleukin-8 reporter gene assay (IL-8 Luc assay) address the
third key event of the AOP (OECD 2017a). U-SENSTM and h-
CLAT assess the induction of cell surface marker (CD54/CD86)
expression in dendritic-like cells (U937 and THP-1, respect-
ively) as a measure for immunogenic cell activation, and the
IL-8 Luc assay measures dendritic cell activation through
changes in IL-8 cytokine secretion. In recent studies, these
non-animal testing methods obtained accuracies (or correct
classification rates, CCRs) in the range of 65% to 80% when
measured against LLNA and human data (Hirota et al. 2017;
Alves, Capuzzi, et al. 2018; Hoffmann et al. 2018).

Besides the OECD-accepted assays, several other promis-
ing approaches are in development and/or in the process of
validation. Some assays, such as the SENS-IS assay (Cottrez
et al. 2015) and the genomic allergen rapid detection (GARD)
assay (Johansson et al. 2011, 2013) utilize genomic biomarker
signatures to discriminate sensitizing from non-sensitizing
substances. Genes relevant to the SENS-IS prediction model
were identified by a combination of data mining, literature
review, and experimental determination and include (i) a
selection of 17 genes that contain a Keap1-Nrf2 signaling
pathway-activated antioxidant response element in their pro-
motor and (ii) 21 genes associated with several biological
processes (inflammation, danger signals, cell migration) rele-
vant to the activation of dendritic cells. Because of the use of
skin models, the SENS-IS assay integrates skin penetration
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and metabolism properties of substances although the epi-
dermis model may not completely reflect the in vivo situ-
ation. The prediction model of the GARD assay builds on a
gene panel selected by an unbiased, genome-wide profiling
of the transcriptional response of MUTZ-3 cells to a training
set of 20 sensitizing and 20 non-sensitizing substances. The
most descriptive genes were identified by principal compo-
nent analysis (PCA) of differentially expressed genes and sub-
sequent algorithm-based backward elimination (Johansson
et al. 2011, Johansson, Rydnert et al. 2014). The SENS-IS
assay, which is based on the EpiSkin skin model, addresses
keratinocyte activation as the second key event of the AOP,
whereas the GARD assay assesses the third key event by ana-
lyzing gene expression changes in a human myeloid leuke-
mia cell (MUTZ-3)-derived cell line. Both assays were reported
to show high accuracy for hazard identification (SENS-IS: 93%
and 91% compared with LLNA or human data, respectively
(Cottrez et al. 2016); GARD: 86% accumulated accuracy com-
pared with LLNA data (Johansson, Rydnert et al. 2014;
Johansson 2017)). Moreover, both assays were reported to
indicate in vivo potency. Other approaches to improve pre-
dictions are based on the integration of additional parame-
ters to existing testing concepts. For example, the peroxidase
peptide reactivity assay (PPRA) adds a peroxidase-dependent
oxidation of chemicals with the purpose to improve the
detection of pro-haptens with in chemico assays. Potential
differences of cell lines and primary cells regarding their
metabolic capacity and biological responses to external stim-
uli motivated the development of an optimized protocol for
the use of human peripheral blood monocyte-derived den-
dritic cells (Reuter et al. 2011). Hennen et al. (2011) reported
that co-culture of HaCaT cells and THP-1 cells increases the
response of THP-1 cells to skin sensitizers compared with
that of a monoculture of THP-1 cells. This pertains to the
induction of CD54 and CD86, which are readouts essential
for the h-CLAT prediction model. The added metabolic cap-
acity of HaCaT cells and the release of keratinocyte danger
signals are potential explanations (Hennen et al. 2011).
Although the metabolic capacities of cell-based in vitro
assays are limited, recent findings indicate that non-animal
testing methods are also able to identify sensitizers that
require activation through autoxidation or metabolism
(Patlewicz et al. 2016; Urbisch, Becker, et al. 2016).

Animal experiments by nature cover the whole process of
skin sensitization described in the AOP, including enzymatic
or physiological activation of the sensitizer. In contrast, non-
animal testing methods focus on single key events of the
AOP (Ezendam et al. 2016; Casati et al. 2018). Therefore, the
combination of different non-animal testing methods and
integration with in silico methods is recommended, in par-
ticular for the task of potency prediction (Raunio 2011;
Mehling et al. 2012; Johansson and Lindstedt 2014; Ezendam
et al. 2016; Goebel et al. 2017; OECD 2017a; Casati et al.
2018). Recent studies indicate that such strategies can yield
higher prediction accuracies in human hazard estimation
than animal experiments (van der Veen et al. 2014; Urbisch
et al. 2015; Alves, Capuzzi, et al. 2016; Benigni et al. 2016;
Ezendam et al. 2016). Addressing each key event of the AOP

individually can also be advantageous for the investigation of
the underlying mechanisms (Steiling 2016).

Computational methods promise the ability to predict the
skin sensitization potential of substances based solely on
their molecular structures. Compared with experimental
methods, computational approaches offer the advantage of
producing predictions quickly, thus enabling the interactive
optimization of compounds. In addition, these methods are
cost-effective (Leontaridou et al. 2016), do not require materi-
als for testing, and are not affected by difficulties common to
experimental approaches, such as limited solubility, aggre-
gate formation, and evaporation (Hartung 2013). Some recent
studies suggest that in silico tools could eventually outper-
form in vitro and in chemico tools, provided that sufficient
data will become available for model development (Asturiol
et al. 2016). In contrast to experimental methods, in silico
tools require defined molecular structures, which are not
always accessible, such as in the case of some natural prod-
ucts (Kleinstreuer et al. 2018). In addition, computational
methods are generally not applicable to mixtures and metals.
Their predictivity and applicability are limited by the quality
and quantity of available human, animal, and non-animal
data. Luechtefeld et al. (Luechtefeld, Rowlands, et al. 2018)
pointed out that future experimental testing efforts should,
therefore, focus on the generation of data that can improve
model development rather than individual compounds
of interest.

In 2008, Patlewicz and Worth produced two reviews that
provide a comprehensive overview of computational meth-
ods for skin sensitization prediction (Patlewicz and Worth
2008; Patlewicz et al. 2008). Recently, Alves et al. (Alves,
Capuzzi, et al. 2018) published a perspective on skin sensi-
tization prediction in which they discuss some of the most
relevant computational approaches and data sources.

This work is a comprehensive review of relevant computa-
tional approaches for skin sensitization prediction, with a
focus on methods and models that have been published
after the reviews of Patlewicz et al. and are accessible to
the public.

Data sets

Human data on skin sensitization should by nature be most
suitable for the development of predictive methods for this
endpoint in humans. However, human data remain scarce,
vary in quality, and are often difficult to interpret because
most of the available human data are no-observed-adverse-
effect-levels (NOAELs), which are difficult to interpret and
exploit in the context of model development (Politano and
Api 2008). Deriving potency information from human epi-
demiological data is more complex than deriving it from ani-
mal testing experiments as it is based on the weighted
analysis of (aggregated) exposure and the corresponding
number of sensitization incidences. In consequence, non-ani-
mal testing approaches and in silico models have primarily
been developed and validated based on animal data, in par-
ticular, LLNA data.
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In recent years, a large number of data sets of human, ani-
mal, and non-animal data on skin sensitization have been
used for model building. However, a closer look reveals that
few of these data sets contain significant amounts of new
measured data. Most of them are compiled from a few exist-
ing sources and thus have substantial overlaps with one
another. The most important differences between these data
sets is how the data were curated, conflicting information
was handled and class labels were assigned.

Here, we will focus on two of the most relevant data sets
on skin sensitization: the most comprehensive curated data
set on the skin sensitization potential of substances (compiled
by Alves et al.; Alves, Capuzzi, et al. 2018) and a high-density
data set of compounds relevant to cosmetic application (com-
piled by Cosmetics Europe; Hoffmann et al. 2018).

Data set compiled by Alves et al.

The Alves data set includes binary LLNA data for 1000 com-
pounds, DPRA data for 194 compounds, KeratinoSensTM data
for 190 compounds, h-CLAT data for 160 compounds, and
human data for 138 compounds. The data set was prepared
following an elaborate data curation protocol that includes,
among many other steps, the removal of entries with dis-
cordant biological outcomes for the same data type. The
provenance of the data is documented. Data concordance
and chemical space analyses provide additional information
on the consistency and coverage of the individual subsets.
For example, the authors found that 65% to 79% of the bin-
ary data recorded for any of the three non-animal testing
methods are in agreement with the LLNA outcomes. They
also reported that for 801 of the 1000 substances measured
in the LLNA no other types of data were available.

The LLNA data that is included in the Alves data set was
compiled from the work of Luechtefeld et al. (2016),
Jaworska et al. (2013), and from the NICEATM LLNA database
(ICCVAM 2013). LLNA data on 566 unique compounds (197
sensitizers and 369 non-sensitizers; after curation by Alves
et al.) originate from the Luechtefeld data set, representing a
collection of publically available in vivo and non-animal data
on the skin sensitization potential of (primarily) high-produc-
tion volume chemicals, all of which have been submitted for
the REACH registration process. The REACH data set (as eval-
uated by Luechtefeld et al.) contains information on close to
20 000 studies conducted on the skin sensitization potential
and potency of substances but requires further curation prior
to use for model development. The current version of the
REACH data set is available on the website of the European
Chemical Agency (ECHA; ECHA. Homepage) and can be fil-
tered through the OECD eChemPortal (OECD; eChemPortal).
Most recently, Fitzpatrick et al. (2018) extracted GPMT and
LLNA data on the skin sensitization potential of 1295 sub-
stances mainly from this database.

LLNA data on 145 substances included in the Alves data
set originate from the work of Jaworska et al. (2013). The aim
of Jaworska et al. was the compilation of a diverse, high-qual-
ity data set on the skin sensitization potency of substances
for which LLNA, in chemico and in vitro data (i.e. DPRA,

KeratinoSensTM, and a CD86 activation assay based on the
U937 cell line) are available. As such, the substances included
in this data set cover different potency classes (from non-sen-
sitizers to extreme sensitizers) and a wide range of physico-
chemical properties and usage classes (e.g. fragrances,
preservatives, dyes, dye precursors, and solvents). Jaworska
et al. applied strict quality filters. For example, they only
included data derived in agreement with the corresponding
OECD protocols and for which either a negative result or a
clear dose-response curve is reported.

The LLNA data for 516 substances (332 sensitizers and 184
non-sensitizers) included in the Alves data set originate from
the NICEATM LLNA database (ICCVAM 2013). The NICEATM
LLNA database is one of the most comprehensive collections
of EC3 data on a diverse range of chemicals. The database
has been compiled from, among other sources, the work of
Gerberick et al. (2005), the work of Kern et al. (2010) and
donated company data. The documentation of the data prov-
enance allows the lookup of the original sources of individual
data points. Importantly, the vehicle of each study is also
recorded, which can support the interpretation of discord-
ant data.

The Alves data set also contains human data on the skin
sensitization potential of 138 substances. These data origin-
ate from the ICCVAM human database (ICCVAM 2011) and
the Strickland data set (Strickland et al. 2017). The ICCVAM
human database consists of 302 substances that have been
compiled for the evaluation of LLNA potency prediction. The
Strickland data set consists of 96 substances covering a wide
area of product usages (e.g. manufacturing chemicals, food
additives, pharmaceuticals, fragrances, personal care prod-
ucts, pesticides, and cosmetics). In addition to human data,
the Strickland data set also contains LLNA data, outcomes
from non-animal testing approaches (DPRA, KeratinoSensTM,
and h-CLAT), as well as (primarily measured) data on six rele-
vant physicochemical properties for the same substances for
which human data are provided.

The non-animal testing results collected by Alves et al. ori-
ginate from the data set of Urbisch et al. (2015). The Urbisch
data set includes LLNA-derived EC3 values for 213 substances
for which information from at least two non-animal testing
methods was available. The data set covers substances from
diverse use contexts such as pharmaceuticals, pesticides, fra-
grances, and preservatives. The LLNA data are accompanied
– when available – by human data and results from non-ani-
mal testing methods (DPRA, KeratinoSensTM, LuSens assay, h-
CLAT, myeloid U937 skin sensitization test (MUSST), and
modified MUSST (mMUSST)).

Overall, the comprehensiveness and quality of the Alves
data set make it one of the most valuable resources for the
development of computational models. However, some infor-
mation that may be of value for the interpretation and mod-
eling of the data has not been transferred from the original
source into the Alves data set, such as potency information
(e.g. EC values or potency classes), data measured for mix-
tures, and information on repeated measurements. The docu-
mentation of data provenance allows the retrieval of such
information from the original sources.
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Cosmetics Europe data set

Cosmetics Europe, the trade association of the cosmetics
industry in Europe, compiled an almost complete matrix of
128 substances measured with the DPRA, KeratinoSensTM,
h-CLAT, U-SENSTM, and SENS-IS assays (Hoffmann et al.
2018). The data are accompanied by LLNA-derived potency
information, human potency categorization according to
Basketter et al. (six classes; Basketter et al. 2014), and infor-
mation on six (primarily measured) physicochemical proper-
ties associated with skin penetration and protein binding.

The substances included in this data set are of high rele-
vance to the cosmetic application and include 58 fragrances,
16 preservatives, 9 actives, 7 surfactants, 7 dyes, 6 pharma-
ceuticals, and 25 substances assigned to other categories.
Thirty-eight of these substances are Michael acceptors, 21 are
Schiff base electrophiles, 11 are SN2 electrophiles, 9 are acyl
transfer agents, and 2 are SNAr electrophiles (41 were not
assigned to a reaction domain). The substances have a
molecular weight between 30 and 605Da and a water solu-
bility (logS) between –7 and 2.

The LLNA data included in the Cosmetics Europe data set
were retrieved from several sources, including the NICEATM
LLNA database and a proprietary database from the Research
Institute for Fragrance Materials (RIFM). For 57 substances,
EC3 values were collected from more than one LLNA study
and merged using a newly developed, median-like location
parameter. Human data were collected from Basketter et al.
(2014) and Api et al. (2017), whereas non-animal testing data
were retrieved from, among others, Urbisch et al. (2015) and
Natsch et al. (2013). The non-animal testing data not only
comprise binary testing results but also several (partly quanti-
tative) outcomes for each testing method.

All data included in the Cosmetics Europe data set are
based on experiments following standard protocols, thereby
facilitating the comparability and reliability of the data.
Approximately one-third of the non-animal testing data were
newly generated by Cosmetics Europe. Any external data
were individually reviewed and cross-checked by a second
reviewer to ensure the high quality of the data.

The number of substances covered by the Cosmetics
Europe data set is comparable with that of other data sets
that include different data types (e.g. the data sets of
Strickland et al. (2017), Jaworska et al. (2013), and Urbisch
et al. (2015)). However, the Cosmetics Europe data set
includes significantly more results from non-animal testing
methods. Its high quality and consistency make it a valuable
resource, in particular for the benchmarking of new theoret-
ical and experimental methods for the prediction of the skin
sensitization potency of substances. In comparison with the
Alves data set, the Cosmetics Europe data set has a much
higher information density for individual substances and a
clear focus on substances relevant to the cosmetic applica-
tion. In contrast, the Alves data set is designed to cover the
largest possible chemical space. As such, the Alves data set is
particularly valuable for the development of machine learn-
ing models for the classification of substances into skin sensi-
tizers and non-sensitizers.

Computational methods for skin
sensitization prediction

In this section, we discuss important AATs to predict skin
sensitization that either are pure theoretical methods (e.g.
rule-based approaches, statistical models, machine learning,
models and hybrid models) or (can) include a computational
component. A schematic overview of these approaches is
provided in Figure 1. Additional information on the most
relevant in silico models is reported in Table 1.

(Q)SAR modeling approaches

(Q)SAR approaches aim to describe the correlation between
the structure and activity of compounds (Gleeson et al. 2012;
Cherkasov et al. 2014). In the current context, activity is the
skin sensitization potential or potency. Classification models
are primarily utilized for the categorization of compounds
according to their predicted skin sensitization potential
whereas regression models are most commonly used for the
quantitative prediction of potency. For risk assessment, quan-
titative predictions are clearly preferred over categorical mod-
els because the latter generally require to adopt the
assumption of maximum activity within the predicted cat-
egory (Adler et al. 2011; Goebel et al. 2017; Kimber et al.
2017). Where possible, a combination of regression and clas-
sification models can be of advantage with respect to the
accuracy, applicability domain (AD), and interpretability
of models.

Depending on the scale of the chemical space covered,
(Q)SAR models can either be local or global (Helgee et al.
2010). Local models cover a well-defined, narrow chemical
space within which they generally obtain high prediction
accuracy. In contrast, global models aim to cover the broad-
est possible chemical space and thus have a large AD, often
at the cost of prediction accuracy. As is true for most toxico-
logical endpoints, the relationships observed between chem-
ical structure and skin sensitization potency is not linear, in
particular for more diverse sets of data. It is, therefore, gener-
ally difficult to develop linear models for toxicity prediction
with a large AD. Nonlinear machine learning approaches
have proven particularly successful in this context but are
more difficult to interpret (Gleeson et al. 2012).

The OECD has defined guidelines for (Q)SAR models for
use in a regulatory environment (OECD 2014b). These include
that the models should have a defined endpoint, an unam-
biguous algorithm, a defined domain of applicability, appro-
priate measures of goodness-of-fit, robustness and
predictivity, and, if possible, should allow a mechanistic inter-
pretation. The latter is also important for the validation of
models because it reduces the risk of overfitting due to non-
causal but correlated features (Luechtefeld, Rowlands,
et al. 2018).

Whereas goodness-of-fit (how well the model accounts for
the variance of the response in the training data) and robust-
ness (how stable the model is when one or more instances
of training data are removed) of a model can be evaluated
internally during model development, predictivity (how well
the model can predict new data) can only be evaluated

CRITICAL REVIEWS IN TOXICOLOGY 5



externally on the basis of new data not used for model
development (OECD 2014b). This external evaluation requires
the available data to be split into a training and a test set
prior to modeling, and the test set must be used for model
evaluation only. Unfortunately, for a significant number of
available models, no such external tests have been con-
ducted, primarily because of the scarcity of data on skin sen-
sitization. Instead, only results for cross-validation or, in the
worst case, only the training data, are reported. The first may
lead to an overestimation of model performance; the latter
almost certainly will. But even in cases where external valid-
ation is carried out, analyses of the representativeness and
diversity of the test data with respect to the training data, as
well as the AD of a model, are all too often missed.

The AD of a model describes the property and/or struc-
tural space of substances for which a model can make reli-
able predictions. Consideration of the AD is therefore of the
essence to the application of any model. The AD is based on
the assumption that similar predictivity can be achieved for
substances that are similar to those in the training data. It is
therefore considered to depend on structural, physicochemi-
cal, and response information in the data used for training a

model, with the selection of important parameters also
depending on the modeling algorithm used (OECD 2014b). A
large number of different methods are available for the defin-
ition of the AD. For an overview of these techniques, the
reader is referred to the OECD’s Guidance Document on the
Validation of (Quantitative) Structure-Activity Relationship
[(Q)SAR] Models (OECD 2014b).

Several thousand molecular descriptors are at our disposal
today (Todeschini et al. 2009). They can be differentiated
according to the type of information they encode. 0D
descriptors encode properties that can be directly derived
from the chemical formula (e.g. molecular weight, number of
heavy atoms), whereas 1D descriptors capture the presence
or absence of substructures in a molecule. 2D descriptors are
derived from the molecular graph and encode the atom con-
nectivity of molecules. Finally, 3D descriptors are derived
from the 3D structure of molecules and capture, for example,
the molecular surface area or quantum chemical properties
such as HOMO-LUMO energies. For models to be mechanis-
tically interpretable and robust, the use of small sets of phys-
ically meaningful descriptors is preferred. Therefore, for the
development of skin sensitization models, experts often
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Figure 1. Overview of approaches for skin sensitization prediction that are either pure in silico models or can include a computational component.
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choose to work with descriptors encoding properties related
to the ability of a compound to penetrate the skin (e.g.
molecular weight, molecular volume, and logP) and react
with skin proteins (e.g. HOMO-LUMO energy gap, activation
energies, and reaction rates). A plethora of descriptor selec-
tion methods also is available that allow the automated
selection of small numbers of descriptors with high informa-
tion content.

Linear models
Chemical class or mechanism-based models. One of the earliest
examples of linear QSAR models for skin sensitization predic-
tion is the relative alkylation index (RAI) model developed by
Roberts and Williams (1982). This model allowed the quantita-
tive prediction of the sensitization potential of sultones as a
function of their reactivity toward proteins. In its most general
form, the original RAI model can be formulated as

RAI ¼ logDþ a logk þ b logP

with D being the molar dose, k the alkylation rate constant, P
the partition coefficient between a standard polar/nonpolar
solvent, and a and b being constant prefactors.

Since the publication of the initial RAI model, further RAI
models, applicable to a defined set of structurally closely related
chemicals, and quantitative mechanistic models (QMMs), applic-
able to a wider range of compounds that share similar reaction
chemistry, have been developed. For a comprehensive review
of these types of models, the reader is referred to the work of
Patlewicz and Worth (2008). More recently, the RAI/QMM con-
cept has been applied to predict the skin sensitization potency
of epoxides (Roberts, Aptula, et al. 2017), aldehyde Schiff bases
(Roberts, Schultz, et al. 2017), Michael acceptor electrophiles
(Roberts and Natsch 2009; Wondrousch et al. 2010) and mole-
cules undergoing aromatic substitutions (Roberts et al. 2011;
Ouyang et al. 2014; Roberts and Aptula 2014). Although the ori-
ginal RAI model required the experimental measurement of P
and k to derive the skin sensitization potential of a compound
of interest, more recent models either incorporate calculated p
values or neglect the parameter and derive k based on precal-
culated reactivity parameters (Roberts, Schultz, et al. 2017).

Enoch and Roberts (2013) reported a linear model for the
prediction of the potency (pEC3 value) of Michael acceptors
as a function of the available surface area at the site of reac-
tion and the stability of the expected reaction intermediate
(which correlates with the reaction rate k). The latter descrip-
tor is calculated from the sum of the ground state energies
of the query molecule and a probe, as well as the energy of
the charged intermediate using density functional theory
(DFT). The model was developed based on LLNA data for 33
Michael acceptors and predicted pEC3 values with an R2 of
0.79 (after the removal of several outliers).

Linear approaches for the prediction of aromatic substitu-
tions include a model by Promkatkaew et al. (2014), who
found a moderate correlation (r2¼ 0.64) between the energy
barriers (derived by modeling the reaction pathways with
DFT) and pEC3 values of 12 sensitizers. Interestingly, no cor-
relation was found between the HOMO�LUMO energy
(which is frequently used to encode chemical reactivity) andTa
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the pEC3, indicating that the HOMO�LUMO energy is not a
relevant attribute for this class of compounds and reactions.

All of these RAI/QMM models have in common that they are
based on only a few, mechanistically interpretable features,
which minimizes the risk of overfitting. However, the models
are derived from very small, focused data sets, which greatly
limit their AD. This limitation can be mitigated through combin-
ation with other models, provided that the reaction domains
and molecular classes of substances of interest can be correctly
assigned. Many hybrid approaches combine local linear models,
as described in the section “Hybrid in silico models.”

Models applicable to a wider range of chemical classes and
mechanisms. Linear models with a broader AD make use of
larger and more diverse data sets and often use feature
selection algorithms to identify a small subset of relevant
descriptors. The descriptors selected by these automated pro-
cedures are not necessarily physically meaningful or easily
interpretable. Manual refinements based on expert know-
ledge are therefore generally advised or even necessary. This
type of model is also limited by the fact that the relationship
between substances and their skin sensitization potency or
potential is not linear when observed on a larger scale.

More broadly applicable linear (Q)SAR models include a
categorical model for the prediction of skin and respiratory
sensitization potential (Warne et al. 2009). This model is
based on a data set of 119 compounds annotated with
GPMT and LLNA, as well as animal and human inhalation
data. Most of these data have been obtained from the Annex
I of the Dangerous Substances Directive of the European
Union (67/548/EEC). Linear regression was performed to
select the eight most relevant descriptors (representing
molecular orbital energies, differences thereof, and electro-
negativity) for the discrimination of skin sensitizers and non-
sensitizers from a set of 59 descriptors. Although the model
was able to correctly identify four of the five skin sensitizers
(and both respiratory sensitizers) from a test set of 17 sub-
stances, the ability of the model to discriminate skin from
respiratory sensitizers was insufficient. The poor discrimin-
ation between these types of sensitizers is likely linked to
shared chemical properties.

TOPKAT includes several categorical models for skin
sensitization. The original TOPKAT models are based on the
work of Enslein et al. (1997). A global model combines two lin-
ear binary equations, one to distinguish non-sensitizers and
sensitizers, and the other to further classify sensitizers into
weak and strong categories. This global model is comple-
mented by two local models, one covering aliphatic and
single-benzene-ring-containing chemicals, and the second
model covering the remaining aromatics. Historically, TOPKAT
is one of the first models for skin sensitization to include a
definition of the AD. For the original model, a specificity of
79% and a sensitivity of 82% were reported for an independ-
ent test set of 25 compounds. In addition to the original mod-
els, two newer, extensible models for the prediction of skin
sensitization based on a modified Bayesian learning method
are available (BIOVIA 2017a, 2017b). One of these models dif-
ferentiates sensitizers and non-sensitizers, and the other model
differentiates weak and strong sensitizers. Both extensible
models make use of seven molecular descriptors, including

logP, molecular weight, polar surface area, number of donors,
acceptors and rotational bonds, and an atom type fingerprint.
The classification model for sensitizers and non-sensitizers is
trained on GPMT data for 392 compounds and achieved a
ROC score of 0.77 in 10-fold cross-validation, whereas the
strong vs weak sensitizer model was trained with GPMT data
for 258 compounds and obtained a ROC value of 0.92 during
leave-one-out cross-validation.

More recently, Toropova and Toropov (2017) used the
Monte Carlo approach implemented in CORAL to derive four
continuous linear regression models from a training set of
147 compounds annotated with measured EC3 data. The
models were derived based on hybrid optimal descriptors
combining information calculated directly from SMILES
strings and from hydrogen-suppressed molecular graphs. The
best performing model obtained an r2 of 0.86 for the quanti-
tative prediction of EC3 values for an external test set of 29
compounds. The skin sensitization potency of compounds
was observed to increase with the presence of five-mem-
bered rings, aromatic six-membered rings, and double bonds.

Nonlinear models
In recent years a wide range of nonlinear approaches has
been explored to model the complex relationships between
substances and their skin sensitization potential and potency.
In particular, machine learning algorithms can account for
the nonlinear relationships observed in large and diverse
data sets. With increasing amounts of data, manual curation
by experts is often replaced with automated and less reliable
data curation procedures, which can have a negative impact
on the quality of data sets used for modeling.

Machine learning algorithms can deal with large numbers
of descriptors. Often, a substantial number of descriptors are
calculated and subjected to feature selection procedures
prior to or as part of the model generation process. The use
of large numbers of descriptors entails the risk of model
overfitting. In addition, the inclusion of descriptors that are
not physically meaningful adds to the black box character of
complex machine learning models, making it difficult if not
impossible to understand on which basis the algorithm
assigns a substance to a certain biological outcome. Taken
together, these issues often lead to the neglect or insufficient
definition of the AD of models, which is not only problematic
for the application of the individual models but also for the
perception and reputation of computational methods
in general.

Lu et al. (2011) used recursive partitioning to derive a
decision tree model for the binary classification of sensitizers
and non-sensitizers based on LLNA data for 295 compounds,
including, among others, Michael acceptors, SN2 and SNAr
electrophiles, Schiff base formers, and acyl transfer agents.
Eight quantum chemical and physicochemical descriptors
linked to chemical reactivity, hydrophobicity, and electrostatic
interaction, as well as a fragment descriptor, served as the
input for model building. The fragment descriptor encodes
the presence or absence of eight substructural features by a
single binary value. The final model correctly classified �80%
of all (25 and 37) compounds of two test sets.
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Alves et al. (2015b) derived random forest models for the
classification of skin sensitizers and non-sensitizers from a
curated and balanced subset of 127 sensitizers and 127 non-
sensitizers extracted from the NICEATM LLNA database. Two
types of models were developed, one based on 0D, 1D and
2D descriptors calculated with Dragon (Talete S.r.l. Dragon)
and the other based on 2D SiRMS descriptors (simplex repre-
sentation of molecular structure, encoding molecular struc-
ture by tetratomic fragments of fixed composition, structure,
chirality, and symmetry; Muratov et al. 2010). A consensus
model based on models derived from either type of descrip-
tor performed best on an external test set containing 152
sensitizers but only five non-sensitizers, with a CCR of 0.86.
Because of the strict definition of the AD applied in this test,
predictions were only made for 24% of the compounds of
the test set. A consensus model with a less stringent defin-
ition of the AD reached slightly lower predictivity (CCR
¼ 0.83) but higher coverage (50%) on the same test set. Five-
fold cross-validation on balanced data resulted in comparable
classification accuracies but significantly higher coverage
(coverage 39% and 70%, depending on the definition of the
AD). Based on this work, a free web service called Pred-Skin
was developed, which allows the prediction of the skin sensi-
tization potential of substances based on random forest
models derived from Morgan2 fingerprints (Braga et al.
2017). Two of these models are binary classification models
based on human skin sensitization data (for 109 compounds)
and LLNA data (for 515 compounds). During five-fold cross-
validation, these two models obtained CCRs of 0.80 and 0.84
for the two-thirds of all compounds that were within the AD.
A third model discriminating three potency categories based
on LLNA data obtained an accuracy of 0.76 and coverage of
78% under the same test scenario.

Yuan et al. (2009) developed a binary support vector
machine (SVM) classifier for the prediction of the skin sensi-
tization potential of substances based on LLNA and GPMT
data on 108 and 61 organic compounds (including, among
others, alkanes, aromatic hydrocarbons, alcohols, amines,
acids, and esters), respectively. Particle swarm optimization
(PSO) was used for the selection of important 2D molecular
descriptors from a set of 926. The final model was based on
six molecular descriptors corresponding to the number of
chlorine atoms, the molecular electronic structure, molecular
size, and hydrophobic properties. It obtained classification
accuracies of 89% and 90% on LLNA and GPMT data for 54
and 31 compounds in the two test sets, respectively.

Within the EU-funded CAESAR project (CAESAR. CAESAR
project), two global binary categorical models for the predic-
tion of the skin sensitization potential of compounds were
developed based on LLNA data compiled for 167 chemicals
(Chaudhry et al. 2010). One of the models was derived from
an in-house adaptive fuzzy partition algorithm. As part of this
approach, a hybrid method combining a genetic algorithm
with stepwise regression was used to select seven relevant
2D descriptors calculated with Dragon (i.e. the number of
nitrogen, double-bonded oxygen, and non-aromatic conju-
gated sp2 carbon atoms, as well as descriptors accounting
for topological features, charge, and valence connectivity).
The model obtained 90% classification accuracy on a test set

of 42 compounds (8 non-sensitizers and 34 sensitizers) and is
distributed as a component of VEGA (Benfenati et al. 2013;
CAESAR. Skin sensitization model). The other model was
derived with a multilayer perceptron neural network
algorithm trained on a slightly modified training set. For the
identical test set with a different threshold for the division
between sensitizers and non-sensitizers (resulting in 21
non-sensitizers and sensitizers each), an accuracy of 71% was
obtained with this model (which has not been implemented
in VEGA).

Rule-based approaches

Knowledge-based expert systems have a long record of suc-
cessful use in ADME (absorption, distribution, metabolism,
and excretion) and toxicity prediction. A key component of
these systems is dictionaries (sets of rules), which aim to
encode existing empirical knowledge distilled from in vitro
and in vivo data, as well as from clinical practice. These rules
generally link structural fragments to mechanisms of skin
sensitization but may also be more complex than simple
structural alerts. For example, they may also take into
account skin penetration, chemical reactivity, or steric accessi-
bility. Rule-based methods are easily interpretable and inher-
ently subjective.

The relevance of rule-based methods for skin sensitiza-
tion prediction stems to a significant extent from the spars-
ity and limited reliability of the available data, which poses
a bottleneck in model development. Whereas statistical
approaches and machines require a significant number of
instances to identify, support, and weigh patterns in the
data, experts may be able to derive valid rules from a lim-
ited number of observations. In the absence of sufficient
hard data, expert knowledge may allow artificial extension
of the scope of rule-based approaches. For example, experts
may implement rules stating that two chemical substruc-
tures behave similarly in a defined context (Enoch, Madden,
et al. 2008).

On the downside, in certain cases, expert bias may hin-
der corrections of rule-based systems or even the further
data collection. For example, molecules with a molecular
weight above 500Da have generally been assumed to be
too large to diffuse into the epidermis and cause skin sensi-
tization. As a consequence of this assumption, only a few
compounds with a molecular weight above 500Da have
been evaluated regarding their skin sensitization potential.
For example, among the of 211 compounds of the LLNA
data set compiled by Gerberick et al. (2005), only two com-
pounds have a molecular weight above 500Da, one of
which is a known skin sensitizer (Fitzpatrick et al. 2017a). It
is only more recently that awareness about the skin sensi-
tization potential of compounds with a molecular weight
above 500Da has been raised (Roberts et al. 2013; Alves
et al. 2015a; Fitzpatrick et al. 2017a; Luechtefeld, Rowlands,
et al. 2018).

In the context of skin sensitization prediction, rule-based
systems are nowadays more often part of hybrid computa-
tional models than used as individual models (see section
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“Hybrid in silico models”). However, several existing platforms
allow the screening of substances of interest for the presence
of structural features related to skin sensitization. One
example is ToxAlerts (Sushko et al. 2011, 2012), which pro-
vides, among others, structural alerts for potential skin sensi-
tizers based on sets of rules distilled from different sources
(Barratt et al. 1994; Payne and Walsh 1994; Gerner et al.
2004; Kazius et al. 2005). The rule set which was originally
implemented in the toxicity prediction model DEREK is also
included in ToxAlerts. The current version of DEREK, Derek
Nexus, includes additional modules for skin sensitization pre-
diction, for which reason the software is discussed in the sec-
tion “Hybrid in silico models.”

Another example of a rule-based system for the assign-
ment of substances to one or several skin sensitization reac-
tion domains (the “Skin Sensitisation Reactivity Domain”
module) has been implemented in Toxtree (Enoch, Madden,
et al. 2008; Toxtree). The rule set was derived from LLNA
data measured for 208 compounds and encodes substruc-
tures associated with the five established skin sensitizing
reaction domains. The structural alerts also take metabolism
and oxidation (but not bioavailability) into account. Toxtree
also features a set of 104 structural alerts for protein binding
related to acylation, Michael addition, Schiff base formation,
SN2 and SNAr (Enoch et al. 2011). As protein binding is the
first key event in the AOP for skin sensitization, these struc-
tural alerts might also be useful for the prediction of skin
sensitization.

The OECD QSAR Toolbox (OECD. The OECD QSAR
Toolbox) provides many profilers that may be used for
building chemical categories for subsequent read-across
(see section “Read-across”) within the software package. In
particular, the profilers for skin protein binding and general
protein binding are of relevance to the prediction of the skin
sensitization potential of compounds. Simulators of autoxida-
tion and skin metabolism are also implemented in the OECD
QSAR Toolbox and may be of value to the refinement of pre-
dictions. These simulators are also part of TIMES (OASIS-LMC;
TIMES-SS Software), which includes additional capabilities for
the assessment of biotransformations, information on the AD
and metabolic maps.

In general, structural alerts alone are an insufficient pre-
dictor of the skin sensitization potential or potency (Alves,
Muratov, et al. 2016). Toxtree and the profilers of OECD
QSAR Toolbox, for example, are not intended to be used as
predictors but rather as tools to assign substances of interest
to reaction domains (Enoch, Madden, et al. 2008; OECD. The
OECD QSAR Toolbox). Nevertheless, these tools are frequently
investigated as potential predictors, i.e. such that any sub-
stance matching structural alerts related to one of the reac-
tion domains is deemed a skin sensitizer (Urbisch, Honarvar,
et al. 2016; Verheyen et al. 2017). However, comparative stud-
ies have shown that structural alerts may be able to improve
predictions when used in combination with other approaches
(Teubner et al. 2013; Verheyen et al. 2017; see the section
“Comparative analyses of the performance of computational
models for skin sensitization prediction”).

Read-across

Read-across is an approach for the prediction of endpoint
information based on available data on the same endpoint of
related substances (Patlewicz et al. 2013; OECD 2014a;
Schultz et al. 2015). This method is a pillar of risk assessment
for many toxicological endpoints but does not necessarily
involve computation. Read-across can either be performed as
an analog approach, where – in the absence of a trend or
regular pattern of biological properties – a missing property
value of a compound of interest is predicted based on one
or several other compounds with known values for this prop-
erty, or as a grouping approach, in which predictions for a
compound of interest are derived from several structurally
related source compounds with similar properties or proper-
ties following a regular pattern (Patlewicz et al. 2017). Like
rule-based methods, read-across approaches are generally
easily interpretable and extendable with new data (e.g. in-
house data).

An example of a local read-across tool for the prediction
of the skin sensitization potency of alkenes reacting through
Michael addition has been implemented in VEGA (Enoch,
Cronin, et al. 2008). It is based on a database of Michael
acceptors with measured EC3 values and DFT-derived electro-
philicity indices (W). For any compounds of interest, the
potency is derived based on the EC3 values of compounds
with similar W.

Recently, Alves et al. (Alves, Golbraikh, et al. 2018) pub-
lished a multi-descriptor read-across (MuDRA) consensus
model that integrates read-across based on various types of
chemical descriptors and molecular fingerprints. In a test on
217 skin sensitizers and non-sensitizers, of which 42% were
within the AD and considered in the analysis, the consensus
model obtained a binary classification accuracy of 0.78. It is
not entirely clear whether the improved prediction accuracy
of the consensus approach over the best-performing individ-
ual model justifies the more complex approach.

Hybrid in silico models

Hybrid in silico models combine two or more of the above-
mentioned components with the aim to improve prediction
accuracy and the applicability of computational methods. For
example, the combination of complementary approaches
such as a reactivity model based on quantum mechanical cal-
culations with a rule-based approach can be particularly
beneficial for potency prediction. Importantly, the agreement
or disagreement of predictions from individual components
is not necessarily an indicator of reliability. For example, over-
laps in the training data, the knowledge base and/or model-
ing methods of the individual components can lead to
correlations (Rorije et al. 2013; Fitzpatrick et al. 2018).
Care must be taken to not wrongly interpret such correla-
tions as founded indications of the high reliability of
predictions.

In the context of skin sensitization prediction, the majority
of hybrid models are composed of two or more dependent
modules that may not be used individually. However, there
are also hybrid models in existence that integrate
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self-sufficient modules for skin sensitization prediction. These
are commonly referred to as consensus models.

An example of a hybrid model that integrates several
dependent models for the prediction of skin sensitization
potency is Derek Nexus (formally Derek for Windows or
DEREK; Barratt et al. 1994; Payne and Walsh 1994; Gerner
et al. 2004; Kazius et al. 2005). The core component of Derek
Nexus is an expert system based on 90 structural alerts for
the prediction of skin sensitization potential that also
includes functionality for verifying negative predictions by (i)
comparing them to the structures of compounds that are
known to be predicted as false-negatives by the model and
(ii) scanning them for substructures not covered by the train-
ing data (Williams et al. 2016). An additional component pre-
dicts EC3 values for any compounds triggering a skin
sensitization alert by calculating the weighted average of the
EC3 values of 3–10 nearest neighbors (of an LLNA data set
containing a total of 465 compounds) matching that alert
(Canipa et al. 2017). The molecular similarity of individual
pairs of molecules is evaluated based on an in-house radial
molecular fingerprint. A likelihood level ranging from
“certain” to “impossible” is provided together with the pre-
dicted EC3 value. For an external test set of 103 compounds,
Derek Nexus correctly predicted the EC3 values of half of all
tested compounds with less than a five-fold deviation from
the LLNA-derived value. In addition, the software correctly
assigns 64% of all tested compounds to one of the three cat-
egories of the Globally Harmonized System of Classification
and Labelling (GHS) recommended by the United Nations
Economic Commission for Europe (UNECE) for a standardized
classification of skin sensitizers and non-sensitizers according
to potency. The error rates differed significantly depending
on the skin sensitization alert triggered within Derek Nexus.
They were particularly high for metal and metal salts, as well
as for substituted phenols and their precursors. In a recent
evaluation (Chilton et al. 2018), Derek Nexus obtained a sen-
sitivity of 54% and a specificity of 77% when used to discrim-
inate between 302 skin sensitizers and 683 non-sensitizers
measured with different animal testing systems. Derek Nexus
can be combined with Meteor Nexus to also assess the skin
sensitization potential of likely metabolites.

The OECD QSAR Toolbox (OECD. The OECD QSAR
Toolbox) offers the combination of several rule-based pro-
filers (see section “Rule-based approaches”) with read-across
to find adequate analogs or build chemical categories. The
OECD QSAR Toolbox provides experimental data on various
endpoints for a large number of substances.

TIMES-SS (Dimitrov et al. 2005; Mekenyan et al. 2012;
OASIS-LMC, TIMES model for skin sensitization prediction) is a
hybrid model for the semi-quantitative prediction of the skin
sensitization potency of substances. The predictor is part of
the TIMES platform for toxicity prediction. TIMES includes a
large collection of models for the prediction of human
endpoints and metabolism. It also includes modules for the
prediction of autoxidation and volatility, which can support
the prediction of skin sensitization (Patlewicz, Kuseva,
Mehmed, et al. 2014). TIMES-SS was developed based on 875
substances annotated with GPMT, LLNA, and human and ani-
mal data. The model combines a skin metabolism simulator

with several local models for the assignment of three sensi-
tization classes. Substances of interest are analyzed through
420 hierarchical ordered transformations (sorted by probabil-
ity of occurrence) that link a source to a product structural
fragment. The transformations account for abiotic reactions,
covalent interaction with proteins and phase I and II meta-
bolic reactions. Whenever a covalent interaction with a skin
protein is predicted to occur, the compound is classified as
either a strong or a weak sensitizer (depending on the
triggered alert), or it is further analyzed by one of the several
local 3D QSAR models that differentiate between non-, weak,
and strong sensitizers. These 3D QSAR models take
parameters such as the HOMO and LUMO energies, the
HOMO-LUMO energy gap, molecular weight, electronegativ-
ity, hydrophobicity, and acceptor superdelocalizability as
input (Mekenyan et al. 2004).

The AD of TIMES-SS is defined by the value range of sev-
eral physicochemical properties and the structural and mech-
anistic domain covered by the training data. A representative
test set of 40 REACH-relevant chemicals was selected from
the European Inventory of Existing Commercial Chemical
Substances (EINECS), taking into account commercial
availability and structural diversity. The 40 compounds
(16 sensitizers and 24 non-sensitizers) were evaluated in sub-
sequent LLNA experiments. TIMES-SS correctly classified 30
compounds (9 sensitizers and 21 non-sensitizers) of the 40
compounds (Patlewicz et al. 2007; Roberts, Patlewicz,
et al. 2007).

Several models relevant to skin sensitization prediction
have also been implemented in the QSAR software CASE
Ultra (Klopman 1992; Graham et al. 1996; Chakravarti et al.
2012; Saiakhov et al. 2013). These include models for the
prediction of electrophilicity, protein binding (first key event
of the skin sensitization AOP; trained on 194 compounds),
the activation of the antioxidant response element (ARE) in
keratinocytes (second key event of AOP; trained on 185 com-
pounds), the activation of dendritic cells (third key event of
AOP; trained on 189 compounds), LLNA outcomes (trained
on 587 compounds) and ACD induction in humans and
guinea pigs (trained on 1032 compounds). All of these mod-
els are purely of statistical nature and were derived with an
algorithm based on the MultiCASE methodology (Klopman
1992). The algorithm generates a large number of structural
fragments from sets of molecules and identifies fragments of
statistical relevance for an endpoint of interest. Within this
process, a hierarchical approach is applied to divide the train-
ing set into logical subsets. In contrast to the structural alerts
used in most rule-based approaches, CASE Ultra not only
encodes structural fragments related to skin sensitization
(“biophores” or positive alerts) but also takes into account
fragments that are identified as hindering skin sensitization
(“biophobes” or deactivating alerts). Where feasible, local
models are developed for each group of compounds sharing
the same positive alert by stepwise linear regression incorpo-
rating, among others, logP, local charges, vapor pressure or
presence or absence of modulating structural fragments as
descriptors. The developers of CASE Ultra report 10-fold
cross-validation accuracies of 67% to 87% for the different
models relevant to skin sensitization prediction. The best
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performance was obtained with a model for the prediction
of human and guinea pig ACD. A tool to perform the
read-across analysis is also provided with CASE Ultra.

A quantitative hybrid model for the prediction of the skin
sensitization potency of compounds that combines expert
knowledge with a linear QSAR approach was developed by
Dearden et al. (2015). The hybrid model was developed
based on a curated set of 204 known sensitizers annotated
with measured EC3 values (non-sensitizers were not consid-
ered) from the data sets of Gerberick et al. (2005) and Kern
et al. (2010). The compounds were assigned to one of seven
different (pro-) reaction domains (i.e. acyl transfer, (pro-)
Michael addition, (pro-) Schiff base, SN2, and oxidation poten-
tial). Local linear QSAR models were derived for four (pro-)
reaction domains for which sufficient data were available.
From an initial set of 1600 descriptors (including logP, water
solubility, molar refractivity, surface area descriptors, vapor
pressure, Gasteiger charges, E-State descriptors, and fragment
descriptors), up to six descriptors were selected by a wrapper
method of stepwise multiple linear regression (MLR) for the
different local models. Although the potency of Michael
acceptors was found to be well described by reactivity and
(hydrophobic) surface area, the potency of substances in pro-
Michael, acyl transfer, and the combination of Schiff base
and pro-Schiff domains was found to correlate with several
descriptors representing hydrogen bonding. The potency of
Schiff bases correlated with polarity and molecular flexibility;
the potency of molecules undergoing SN2 reactions increased
with hydrophobicity and decreased with electron-donating
ability. A range of the values of the descriptors covered by
the training data is given for each local model as an indicator
of whether a compound of interest is within the AD of the
model. An R2 of 0.95 was reported for a set of 37 compounds
covering the same chemical space as the training data. The
compounds had previously been used for descriptor selection
but not for model training. The model is applicable only to
skin sensitizers that can be assigned based on expert know-
ledge to one of the reaction domains for which a local model
was retrieved.

Another approach combining a linear QSAR method with
an expert-curated set of rules has been implemented in the
CADRE-SS model for predicting the skin sensitization potency
of compounds (Kostal and Voutchkova-Kostal 2016; ToxFix).
The three-class categorical hybrid model consists of three
modules describing different steps in the sensitization pro-
cess. In the first module, the permeability coefficient (logKp)
is calculated by Monte Carlo simulation. The second module
uses a set of rules, encoded in a similar way as those imple-
mented in Toxtree, to assign the most likely reaction domain.
Compounds for which no reaction domain could be assigned
are assumed to be non-sensitizers. Any compounds predicted
as sensitizers are passed on to the third module, which calcu-
lates the chemical reactivity of compounds based on ground-
state, site-specific, or global physicochemical and quantum
mechanical descriptors, depending on the reaction domain
assigned. For each reaction domain, a linear model was
developed that takes the predictions of modules one (skin
permeability) and three (chemical reactivity) as input. In add-
ition, a rule-based approach was implemented to account for

the qualitative sensitizing potential of metal salts. CADRE-SS
was trained on a set of 384 chemicals annotated with LLNA
data. Confidence levels for the individual predictions are
derived from the range of the descriptors values observed
for the training set. Tested on a set of 100 compounds anno-
tated with human data, animal data or both, the model cor-
rectly assigned more than 90% of these compounds to one
of the three GHS skin sensitization potency categories. The
authors emphasize that, in contrast to other in silico tools for
the prediction of skin sensitization potential, CADRE-SS was
applicable to all compounds of this test set.

Very recently, Luechtefeld et al. (Luechtefeld, Marsh, et al.
2018) reported two binary classifiers of different complexity
for the prediction of the skin sensitization potential of
compounds. Both classifiers are based on the combination of
a fingerprint similarity analysis with machine learning.
The basic model generates 2D vectors that describe the
similarities of each of the substances in the database to the
closest sensitizing and non-sensitizing neighbors. These are
analyzed by logistic regression in a second, supervised
modeling step. The basic model obtained binary classification
accuracies of 68% during leave-one-out cross-validation on a
data set of 4783 compounds. The more complex model takes
dependencies between 19 different endpoints into account
(described by 74D vectors) and uses a random forest algo-
rithm for prediction. This model was tested with five-fold
cross-validation during which it obtained an accuracy of 84%
on a data set of 7670 compounds. Because of its ability to
handle missing data, the more complex model is more
widely applicable. Both models are available within the
proprietary platform REACHAcrossTM (Luechtefeld, Rowlands,
et al. 2018; UL).

An example of a consensus model for the discrimination
of sensitizers and non-sensitizers is a weight of evidence
approach developed by Ellison et al. (2010) that integrates
results from the OECD QSAR Toolbox, Derek for Windows,
the SMARTS pattern-based approach of Enoch et al. (Enoch,
Madden, et al. 2008), and the CAESAR global model. The abil-
ity of the model to predict binary LLNA data was tested on
44 compounds that were published shortly before the con-
sensus model was developed, for which reason the authors
assume that these compounds are not part of the training
data of any of the individual models. The consensus model
produced conclusive results for 26 of the 44 test compounds,
with 76% correct binary classifications. For 7 of the 44 test
compounds, the binary predictions from all four models were
in agreement and correct. For 18 compounds, the predictions
were inconclusive.

Very recently, Alves et al. (Alves, Capuzzi, et al. 2018)
reported a naive Bayes binary classification model for the
prediction of the skin sensitization potential that integrates
predictions from several in silico models provided within the
same publication. The model was trained on 138 compounds
annotated with human data and obtained a CCR of 89%. The
model has been published as a free KNIME workflow (Naive
Bayes Skin Sensitization Model v. 1.1).

Whereas hybrid in silico models integrate different compu-
tational methods and models, there are also approaches in
existence that integrate results from one or several testing
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methods (mostly in vitro or in chemico assays) and in silico
approaches to establish the skin sensitization potential or
potency of a compound of interest. These are discussed in
the section “Computational methods used in combination
with non-animal testing results.”

The SkinSensDB platform (Wang et al. 2017; Tung et al.
2018) not only provides data relevant to skin sensitization
(LLNA, human, DPRA/PPRA, KeratinoSensTM/LuSens, and
h-CLAT) but also includes functionality for the prediction of
the skin sensitization potential of compounds based on the
integration of these experimental data. For compounds of
interest, values for missing experimental data are derived by
a read-across approach. Using the stored or derived non-ani-
mal testing data as input, two different integrated testing
strategies can be utilized for the binary prediction of the skin
sensitization potential in the LLNA and in humans.
Depending on the selected minimum similarity threshold
acceptable for the read-across approach, accuracies of up to
81% and 89% were obtained for the prediction of LLNA
(�350 compounds) and human (�50 compounds) outcomes,
respectively.

Comparative analyses of the performance of
computational models for skin sensitization prediction

Comparing the performance of computational methods for
the prediction of skin sensitization is a non-trivial task. Most
models are derived from different, often undisclosed or
inaccessible data sets, which prohibit the design of an inde-
pendent, representative and universal benchmark data set.
Nevertheless, several studies have been published in recent
years that aim to compare the performance and applicability
of current in silico models. When considered with the neces-
sary caution, these reports provide relevant insights on the
scope and limitations of the individual models.

Teubner et al. (2013), for example, compared the perform-
ance of seven in silico models for the prediction of the skin
sensitization potential: VEGA, CASE Ultra, TOPKAT, Toxtree,
Derek Nexus, TIMES-SS, and the OECD QSAR Toolbox profilers
for protein binding, direct peptide depletion activity, and
keratinocyte gene expression. A data set of 100 compounds
(55 non-sensitizers and 45 sensitizers) meeting a number of
conditions was compiled for testing. The compounds were
required to have reliable animal or human data on their skin
sensitization potential available (i.e. adequate for GHS classifi-
cation) and a molecular weight of less than 500Da.
Importantly, to avoid overlaps with the (often inaccessible)
training data, only compounds that were not part of a high
production volume program and had not been reported in
scientific publications in the context of skin sensitization
were considered. The tested models correctly classified 23%
to 100% of all non-sensitizers and 55% to 100% of all sensi-
tizers that were within the AD of the individual models (i.e.
16% to 100% of the test compounds). The mechanistic mod-
els obtained slightly higher success rates than purely statis-
tical models. TIMES-SS turned out to be the most accurate
model (100% correct classification) but was, however, applic-
able to just 16% of the tested compounds. One of the main

conclusions drawn by the authors was that the tested models
identify skin sensitizers with sufficient accuracy only if they
bind to skin proteins without transformation or through a
well-established transformation route and do not contain any
rare structural features, functional groups, or atoms. None of
the models for potency prediction yielded a good correlation
with the experimentally determined GHS sensitization subca-
tegories. Overall, the authors concluded that the existing
models are not sufficiently accurate and broadly applicable
for a widespread application in skin sensitization prediction.

Ellison et al. (2010) developed a weight of evidence
approach using results from Derek for Windows, Enoch’s
SMARTS rules (Enoch, Madden, et al. 2008), OECD QSAR
Toolbox and CAESAR global models, which we discuss in
section “Hybrid in silico models.” For an LLNA data set of 19
sensitizers and 25 non-sensitizers, the individual models
yielded accuracies between 57% (CAESAR global models) and
70% (Derek for Windows). Because the testing data was pub-
lished only recently before the actual tests were conducted,
Ellison et al. assumed that there were no overlaps between
the training and testing data.

Urbisch et al. (Urbisch, Honarvar, et al. 2016) tested the
performance of the OECD QSAR Toolbox and TIMES-SS on a
data set of 213 and 111 compounds annotated with LLNA
and human skin sensitization data, respectively. Base accura-
cies for the OASIS profiler (71% and 70%) and the OECD
profiler (69% and 67%) – both implemented in the OECD
QSAR Toolbox – as well as for TIMES-SS (77% and 71%) were
reported according to LLNA and human data, respectively. By
a combination of the methods with modules or profilers for
predicting metabolism and autoxidation, the accuracy of the
best models based on the OECD QSAR Toolbox and TIMES-SS
reached 84% and 94%, respectively, in predicting LLNA out-
comes. Interestingly, the predictivity of these models was
lower for human data, with models based on the OECD
QSAR Toolbox and TIMES-SS reaching accuracies of up to
82% and 76%, respectively.

Verheyen et al. (2017) evaluated the ability of VEGA, CASE
Ultra, Toxtree, Derek Nexus, and the skin sensitization profiler
of the OECD QSAR Toolbox to discriminate skin sensitizers
from non-sensitizers. A test set of 160 substances (82 sensi-
tizers and 78 non-sensitizers) annotated with binary animal
or human data on skin sensitization was compiled from pub-
lic sources such as the Priority List of Hazardous Substances
(published by the Agency for Toxic Substances and Disease
Registry; ATSDR 2018) and the OECD’s eChemPortal (OECD,
eChemPortal). The major findings of this study are in agree-
ment with those of Teubner et al. The models correctly classi-
fied between 48% and 78% of the test compounds to which
the models were applicable, with rule-based models obtain-
ing better results than the statistical models. Predictions
could be obtained for 38% to 100% of the test compounds,
with rule-based models having higher coverage rates than
statistical models. The authors agreed with Teubner et al.
that coverage and predictivity of current computational
models are not satisfactory.

Rorije et al. (2013) studied and compared the ability of
the h-CLAT and five in silico models (i.e. MultiCASE, Derek
Nexus, TIMES-SS, TOPKAT, and the SMARTS rules of Enoch
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et al.; Enoch, Madden, et al. 2008) to predict LLNA outcomes.
An (incomplete) data matrix of 1045 compounds annotated
with binary human, LLNA, GPMT, in vitro, and/or in chemico
data served as the data basis for this analysis. The authors
concluded that neither the performance of h-CLAT nor that
of any of the in silico models is currently sufficient for
standalone risk assessment (even though the in vitro model
performed better than any of the in silico models and
reached levels of predictivity close to those of GPMT by
LLNA and vice versa). The performance indicators of the
individual models indicate that a combination of non-animal
testing approaches with in silico methods (see section
“Computational methods used in combination with non-ani-
mal testing results”) could yield models, which predict LLNA
outcomes with an accuracy comparable with the predictivity
of GPMT by LLNA and vice versa. For the combinations of
these methods, however, the authors found lower than
expected accuracies, which are likely related to dependencies
between the individual in silico tools caused by overlaps of
the knowledge bases or training data.

More recently, Fitzpatrick et al. (2018) evaluated the ability
of VEGA, Derek Nexus, and TIMES-SS to predict binary LLNA
and GPMT outcomes and compared their performance to the
correlation between GPMT and LLNA outcomes. On a test set
of 1295 unique compounds derived from eChemPortal, the
overall accuracies obtained by VEGA, Derek Nexus, and
TIMES-SS were 44%, 71%, and 67%. On a smaller test set of
515 unique compounds derived from the NICEATM LLNA
data set, the models obtained accuracies between 57% and
61%. For both data sets, accuracies increased when only con-
sidering substances that are within the AD of the models but
remained significantly lower than LLNA/GPMT predictivity,
which was in the range of 80% to 85%. The low accuracy of
VEGA was caused by a high sensitivity combined with a low
specificity (which is in agreement with previous findings;
Rorije et al. 2013). The authors detected 83 compounds for
which all three models produced wrong predictions. This
may be an indication of dependencies and bias shared
among the models and is in the line with previous reports
(Rorije et al. 2013), which found that the integration of
several in silico models does not necessarily lead to the
increase in accuracy that would be expected if all models
were independent of each other.

Computational methods used in combination with non-
animal testing results

When used on their own, modern theoretical and experimen-
tal AATs do not yet reach the regulatory acceptance require-
ments for skin sensitization risk assessment (Casati et al.
2018). Therefore, organizations such as the OECD encourage
the development of integrated approaches to testing and
assessment (IATAs), which can be described as human
expert-led, non-formalized weight of evidence approaches
amalgamating results obtained from different experimental
models and theoretical approaches (e.g. OECD 2017b, 2017c).

IATAs are designed to be flexible and open for interpret-
ation. New data are introduced in the decision process by an

iterative procedure. Defined approaches (DAs) to testing and
assessment, on the contrary, integrate information following
fixed data interpretation procedures (DIP). As such they do
not require or allow expert judgment but provide a defined
algorithm that draws conclusions from defined input
variables (Kleinstreuer et al. 2018). Two types of DAs are
established in skin sensitization prediction: integrated testing
strategies (ITSs) and sequential testing strategies (STSs)
(Ezendam et al. 2016). Whereas ITSs combine information
from multiple sources to reach a conclusion, STSs collect
information in a stepwise manner involving interim decisions.
Either type of DAs can be integrated into IATAs.

Obviously, the validity of the predictions made by IATAs
and DAs depends on the quality of the individual inputs
(Leontaridou et al. 2017). Alves et al. (Alves, Capuzzi, et al.
2018) recently showed that the binary outcomes of some of
the assays most commonly used in IATAs (i.e. h-CLAT, DPRA,
and KeratinoSensTM) can be predicted with QSAR models
with adequate accuracy. Similarly, Wijeyesakere et al. (2018)
reported on a rule-based approach that yielded 89% correct
predictions of binary DPRA outcomes of 162 substances.
Both of these studies show that further improvement of
these models could allow the use of calculated assay out-
comes as input variables for IATAs and DAs in the future.

Approaches integrating existing data with experimental
and/or computational approaches have been reviewed in
several recent publications (Rovida et al. 2015; Ezendam et al.
2016; Jaworska 2016; Kleinstreuer et al. 2018). Here, we focus
on those using computational methods to support data inte-
gration or that have been developed with the support of
computational approaches.

An example of a computer-assisted IATA for skin sensitiza-
tion risk assessment is the model developed by Patlewicz
et al. (Patlewicz, Kuseva, Kesova, et al. 2014). The expert user
is guided through a schematic workflow that collects the
available experimental information on skin sensitization
potential or potency (i.e. results from animal or non-animal
experiments), skin irritation, genotoxicity, and physicochemi-
cal properties. As part of this process, the expert user is often
requested to interpret the information collected as part of
the workflow or to generate additional experimental data.
Parts of the described workflow have been implemented as a
software prototype called IATA-SS. IATA-SS obtained a binary
classification accuracy of 74% on a test set of 100 com-
pounds (consisting of 45 sensitizers and 55 non-sensitizers)
that was previously compiled by Teubner et al. (2013).

Most DAs reported for skin sensitization prediction
are ITSs. One of the earliest types of ITSs are the so-called
“2-out-of-3” approaches (and variants thereof), which are
based on majority voting. These include the ITS of Urbisch
et al. (Urbisch, Honarvar, et al. 2016), which integrates results
from either the DPRA, OECD QSAR Toolbox, or TIMES-SS with
results from LuSens and h-CLAT. Interestingly, binary classifi-
cation accuracies did not differ substantially for the different
combinations of data. For example, the integration of the
OECD QSAR Toolbox with LuSens and h-CLAT reproduced
human data in 89% of all cases (covering 92 of the 111
compounds) and LLNA data in 91% of all cases (covering 141
of the 213 compounds). The integration of TIMES-SS with
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LuSens and h-CLAT resulted in better accuracy (up to 100%)
with coverages of only 13 to 20 compounds. Recently,
“2-out-of-3” approaches integrating results from several non-
animal testing methods have been challenged by “2-out-of-2”
approaches, for which comparable accuracies were reached
(Otsubo et al. 2017; Roberts and Patlewicz 2018). These find-
ings are in line with the general concern that the added
value of majority voting can be limited if the individual
assays differ in their performance (Johansson and Gradin
2017) or provide redundant data in terms of the biological
mechanisms assessed.

ITSs of higher complexity make use of statistical methods
or machine learning, often with the aim to also allow a
(semi-) quantitative prediction of skin sensitization potencies.
For example, Jaworska et al. (2011, 2013, 2015) developed a
Bayesian integrated testing strategy that takes calculated
physico-chemical properties related to bioavailability, in silico
potency predictions (performed with TIMES-SS) and results
from in vitro (KeratinoSensTM and h-CLAT) and in chemico
(DPRA) assays as input in a weight of evidence assessment.
The latest published version of this model (ITS-3; Jaworska
et al. 2015) was trained on LLNA data for a diverse set of 147
fragrances, preservatives, dyes, dye precursors, halogenated
alkanes, and solvents. The model was able to predict the
correct potency category (of four) for 53 of the 60 com-
pounds of a test set. All wrong predictions were caused by
misclassifications into a directly neighboring class. A recent
study showed for version 2 of this ITS that the TIMES-SS
(a commercial product) can be substituted by the structural
alerts set implemented in the protein binding for skin
sensitization profiler of the OECD QSAR toolbox (which is
free software and the structural alerts are related to those
covered by TIMES-SS) without a substantial decrease in pre-
diction accuracy (Fitzpatrick and Patlewicz 2017).

Luechtefeld et al. (2015) trained dose-informed random
forest/hidden Markov classification models on categorical
LLNA data compiled for 145 substances (mainly derived from
the Jaworska data set; see section “Data sets”). Up to 10
descriptors derived from different in vitro and in chemico
assays, as well as descriptors calculated with Dragon and pre-
dictions of skin sensitization performed with TIMES-SS, served
as input variables. For the best-performing models, the three
most important input variables originated from in vitro and
in chemico tests. The consideration of TIMES-SS predictions as
input variables had no advantage over the use of Dragon
descriptors. Accuracies for predicting the correct or neighbor-
ing potency category (of the four categories) were around
92% during stratified shuffle split cross-validation. The correct
category was assigned to up to 65% of the compounds,
depending on the input variables used.

Asturiol et al. (2016) derived classification trees from LLNA
data (partly accompanied by human data) collected for 269
substances (using 80% of the data for training and 20% for
testing). In vitro (KeratinoSensTM and h-CLAT) and in chemico
data (DPRA), as well as molecular descriptors (calculated with
Dragon) and in silico predictions (performed with Toxtree,
OECD QSAR Toolbox, Derek Nexus, VEGA, TIMES-SS, and
ADMET Predictor) were used as inputs. Interestingly, in con-
trast to the work of Luechtefeld et al., the prediction of

protein binding by TIMES-SS turned out to be the most dis-
criminating node for both of the two best-performing deci-
sion tree models, and neither of these models made use of
in vitro or in chemico data. The best-performing binary classi-
fication model obtained an accuracy of 83% on the test set.

Zang et al. (2017) developed several classification models
for the prediction of three categories of skin sensitization
potency based on 94 compounds annotated with LLNA or 63
compounds annotated with human data. The models were
derived using various machine learning algorithms (i.e. classi-
fication and regression tree, linear discriminant analysis, logis-
tic regression, and support vector machine) following either a
one-tiered approach (directly assigning one of three potency
classes to a compound) or a two-tiered approach (first divid-
ing compounds into non-sensitizers and sensitizers and then
differentiating between weak and strong sensitizers). Six
physicochemical properties (i.e. logP, water solubility, vapor
pressure, melting point, boiling point, and molecular weight)
and the results from three non-animal testing methods (i.e.
DPRA, h-CLAT and KeratinoSensTM) served as input for model
building. The best-performing models resulted from a two-
tiered SVM approach that took all input variables into
account. These models obtained accuracies of 88% and 81%
for the prediction of LLNA and human outcomes on two test
sets of 63 and 24 compounds, respectively.

Strickland et al. (2017) used different subsets of the same
types of input as Zang et al. (i.e. the three non-animal testing
methods and six physicochemical properties) in combination
with results obtained from the four protein binding profilers
implemented in the OECD QSAR Toolbox to develop models
based on logistic regression and a SVM for the prediction of
the human skin sensitization potential. The models were
trained on a set of 72 compounds for which results from
DPRA, KeratinoSensTM, h-CLAT, and LLNA, as well as human
data are available. A random forest model was used for fea-
ture selection. Cysteine depletion measured by the DPRA was
ranked as the most important feature, followed by other
non-animal testing outcomes and the predictions from the
OECD QSAR Toolbox. Of the six physicochemical properties,
only the use of logP resulted in better performance of the
linear regression and SVM model. The best models obtained
an accuracy of 92% on a test set of 24 compounds.

Natsch et al. (2015) developed two models based on linear
regression for the prediction of pEC3 values based on 244
compounds annotated with pEC3 values and tested on 68
compounds. One of the models used the reaction rate with
peptides, Nrf2-induction, and cytotoxicity in KeratinoSensTM

as the most distinguishing input variables, leading to an
adjusted r2 of 0.62. Interestingly, this model performed better
for weak and moderate sensitizers than for strong or extreme
sensitizers. The other model (a domain-based model) first
groups compounds by their reaction mechanism as predicted
by TIMES-SS and as measured by experimental adduct forma-
tion, and subsequently applies local regression for the differ-
ent reaction domains. This model led to the better prediction
for well-populated domains but resulted in poor predictivity
for less populated ones. Most recently, Natsch et al. (2018)
applied the domain-based model within an IATA to 22 exist-
ing and 7 new fragrance substances to derive EC3 values.
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Within that application, the local model for aldehydes was
slightly modified compared with the original publication. For
15 compounds with congruent human and LLNA data, an R2

of 0.67 was reported for potency prediction. For each predic-
tion on a substance of interest, uncertainty was assessed by
applying the model to a structurally similar molecule with
available LLNA data (from a database of more than 400 com-
pounds) and comparing predicted and experimental potency.
The no expected sensitization induction level (NESIL) was
thereby derived from predicted EC3 values.

Hirota et al. (2017) utilized artificial neural networks for
the prediction of LLNA EC3 values (binned into four potency
classes) by integrating results obtained from the h-CLAT,
DPRA, and KeratinoSensTM with predictions from Toxtree and
TIMES. Several models taking into account different combina-
tions of input variables were trained on 134 and tested on
28 compounds annotated with LLNA data. Models taking into
account predictions from TIMES (accuracy 71%) or Toxtree
alerts (accuracy 64%) obtained higher accuracies than the
two models based solely on experimental data (43%
and 50%).

ITSs may also be used to address the issue of a limited
predictivity of LLNA data for human skin sensitization. For
example, Alves et al. (Alves, Capuzzi, et al. 2016) combined
LLNA outcomes with QSAR results to predict the skin sensi-
tization potential in humans. Several binary QSAR models
using radial basis function interpolation and self-consistent
regression were developed for this purpose using a data set
of 109 compounds annotated with human and LLNA data. A
consensus model combining 10 of the best-performing QSAR
models in each fold resulted in the correct classification of
71% of all compounds into skin sensitizers and non-sensi-
tizers during five-fold cross-validation. In comparison, the
LLNA obtained a CCR of only 63% on this data. When
combining QSAR predictions with LLNA outcomes by only
considering compounds for which both approaches produced
concordant results, the CCR improved to 82% (five-fold cross-
validation), at the cost of the applicability of the approach,
which was reduced to 52% of the tested compounds.

Most DAs for skin sensitization prediction can be identified
as ITS, but STSs are also in existence. For example, van der
Veen et al. (2014) proposed an STS for the qualitative predic-
tion of human skin sensitization potential. The three-tiered,
independent Bayesian approach integrates results from in sil-
ico tools (MultiCASE, CAESAR, Derek Nexus, and OECD QSAR
Toolbox) with those from in chemico and in vitro assays
(peptide binding, gene signature, KeratinoSensTM, and h-
CLAT). The model was developed based on a set of 41 com-
pounds annotated with human and LLNA data and designed
to reflect various potency classes. In addition, compounds
known to cause false-positive or false-negative results in
LLNA (compared with human data) were included in the data
set. Depending on the results of each tier, results from one
to three non-animal testing methods were requested by the
approach. Within the first tier, QSAR models were applied
and, only if they resulted in an equivocal call, peptide bind-
ing was also tested. Depending on the result of this tier,
either KeratinosensTM or gene signature was tested in the
second tier of the approach. The third tier, comprising

h-CLAT results, was only performed when the first and
second tier were not in agreement. These interim decision
steps not only aim for a reduction of experiments but to
account for the predictive performance of the different
included methods. For human data, the three-tiered
approach obtained classification accuracies of 92% and
higher. In contrast, LLNA data only predicted 78% of the
human data correctly.

A further example of an STS is a binary classification
model for skin sensitization potential based on a decision
tree that integrates predictions from Derek Nexus with results
from a maximum of two of the five in chemico and in vitro
assays (i.e. DPRA, KeratinoSensTM, LuSens, h-CLAT, U-SENSTM)
(Macmillan et al. 2016). As part of this STS, for any compound
of interest that is within the AD of the assays, a two-tiered
majority voting approach is applied that takes into account
predictions from Derek Nexus and one or two assays. If the
outcome of the first assay is in accordance with the predic-
tions from Derek Nexus, no additional assay is used for
majority voting to reduce the number of required experi-
ments. In the case of discordant results, however, the second
assay decides the overall result. If a substance is outside of
the AD of both assays, only Derek Nexus is used for predic-
tion. The STS was tested with 20 different combinations of in
vitro and in chemico assays as input variables on a data set
of 213 compounds annotated with LLNA and, where avail-
able, also human data. The models reached a classification
accuracy of �80% to 90%, depending on the assay used
(median accuracy 85%). The authors note that the substances
evaluated in this study are not independent of the models
since 20% of them have been part of the Derek Nexus train-
ing set and an unknown portion of them is assumed to be
included in the training data of the assays. Nevertheless, the
authors state that removal of Derek Nexus training data from
the test set did not significantly alter the final results.

Kleinstreuer et al. (2018) evaluated six DAs for the
prediction of the skin sensitization potential and potency of
compounds based on the Cosmetics Europe data set
(see section “Data sets”). The best models reached binary
classification accuracies of up to 83 and 80% for LLNA and
human data, respectively (in comparison, prediction of
human skin sensitization based on LLNA data was correct for
only 68% of all tested compounds).

Outlook and conclusions

Today, a large number of in silico models for the prediction
of the skin sensitization potential and potency of substances
are in existence. The models are based on a variety of
approaches, each with its own advantages and disadvan-
tages. Currently, there is no single model or algorithm in
existence that consistently outperforms all others.

Rule-based approaches, read-across, and linear statistical
models score with good interpretability, and the latter may
also provide new mechanistic insights. Machine learning
approaches are generally more difficult to interpret or even
have the character of a black box, but they are generally
most suitable for modeling complex nonlinear relationships
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such as those observed for most toxicity endpoints, including
skin sensitization. Two major strategies that have been fol-
lowed successfully to increase the prediction accuracy of
models are the combination of different computational meth-
ods (hybrid models) and the amalgamation of theoretical
methods and experimental data (DAs and IATAs). Both strat-
egies have the potential to maximize accuracy and applicabil-
ity by combining information from different sources. When
working with these approaches and interpreting predictions,
it is, however, important to carefully consider possible corre-
lations between sources of information.

Molecular descriptors play a crucial role in the perform-
ance, applicability, and interpretability of models. Ideally,
models should be based on small sets of physically meaning-
ful descriptors to enable the interpretation of models and
minimize the risk of overfitting. In the context of machine
learning, in particular, feature selection algorithms are com-
monly utilized to select important features from large sets of
descriptors. This can yield better performing models but gen-
erally at the cost of interpretability. Among models for the
prediction of skin sensitization, a prevalence of descriptors
associated with the toxicological endpoint on a mechanistic
level is observed. These descriptors include structural
fragments or alerts that correspond to the five established
reaction domains, as well as descriptors linked to chemical
reactivity (e.g. molecular orbital energies) or skin penetration
(e.g. logP or molecular volume).

Whereas the existing molecular descriptors and modeling
techniques have come of age the limited availability of
reliable and relevant data remains a bottleneck for the
development of more accurate and widely applicable in silico
predictors of skin sensitization, particularly of potency.

Human data on skin sensitization remain extremely rare,
are mostly NOAELs that are difficult to interpret and vary in
quality. LLNA outcomes have been reported for a total of
more than 1000 substances. These are mostly binary data;
potency information is available in the public domain for
only a subset of a few hundred substances. A recent study
has shown that LLNA data populate regions in chemical
space not covered by any other type of skin sensitization
data (Alves, Capuzzi, et al. 2018). For these and other reasons,
most in silico models are derived from collections of LLNA
data. Although this increases the AD of models, it also caps
predictivity of human health to that of animal experiments,
which themselves are clearly limited (Alves, Capuzzi, et al.
2018; Hoffmann et al. 2018). High-quality data sets on skin
sensitization, such as those compiled by Hoffmann et al.
(2018) or Natsch et al. (2013), are available but small in size.
They generally include EC3 values accompanied by informa-
tion on non-animal testing results and human evidence.
These data sets are not sufficiently large for model training
but can be of high value as benchmark data sets for theoret-
ical and experimental approaches alike.

Much of the measured data on skin sensitization is propri-
etary company data. Because of the pressing problem of a
lack of data required to advance theoretical and experimental
AATs alike, new avenues are being explored that could allow
the distribution of proprietary data for model development
without contravening the interests of their owners. These

strategies include the use of machine learning algorithms on
encrypted data (Luechtefeld, Rowlands, et al. 2018), as well
as the allocation of data by so-called honest brokers. The lat-
ter has already resulted, for example, in the contribution of
data from nine Lhasa member organizations to the evalu-
ation of Derek Nexus (Chilton et al. 2018).

For computational models to be acceptable for use for
regulatory purposes, they should comply with the guidelines
for linear (Q)SAR models (OECD 2014b). Ideally, the data
used for model building and testing should be fully dis-
closed to ensure reproducibility and allow a detailed under-
standing of the AD, the verification of data, and the testing
of models with external data while excluding overlaps. In
recent years, significant efforts have been made to develop
in silico models for the prediction of skin sensitization that
satisfy the requirements for use in a regulatory environ-
ment. A growing acceptance of these methods (together
with other AATs) in risk assessment is observed. For
example, in April 2018 the EPA released a draft for the
acceptance of AATs for predicting skin sensitization, reason-
ing that substantial scientific evidence supports the use of
these new methodologies (U.S. EPA 2018). In addition, the
ECHA has recently promoted the use of AATs in REACH
applications (ECHA 2017).

A major determinant for the acceptance of AATs for regu-
latory purposes is their validation with robust protocols com-
plying with defined international standards. However, a
substantial number of models, even of those published
recently, are still not properly validated. All too often, only
evaluation results from cross-validation are reported, or, in
the worst case, from predictions on the training data.

Independent studies comparing the performance of mod-
els are an important cornerstone on the way to establishing
in silico models and other AATs as a major pillar of risk
assessment, but these studies are hindered by the scarcity
of data available for testing and the often undisclosed
training data. The development of well-characterized, high-
quality data sets is therefore essential for the robust,
comparative evaluation of theoretical and experimental
models alike.

Just like any modern AAT, in silico models are not yet suf-
ficiently reliable and broadly applicable to be used as a sin-
gle prediction method for risk assessment. They are also not
capable of predicting skin sensitization caused by mixtures,
and few approaches are applicable to metals. However, des-
pite all challenges, several studies have shown that in silico
models have the capacity to outperform animal testing
experiments, which have been accepted for regulatory pur-
poses for decades. With the increasing availability of experi-
mental data and advances in modeling techniques,
computational methods and other AATs are expected to
reach levels of accuracy and applicability that will make them
a primary tool for risk assessment in the foreseeable future.
In particular, integrated approaches combining in vivo, in
vitro, in chemico, and in silico data hold the promise to evolve
into powerful models for the prediction of the skin sensitiza-
tion potential and potency of substances in humans with
previously unmet accuracy and reach.
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3.2 (Q)SAR modeling and machine learning

Computational methods as discussed in our review article [P1] bear the potential
to provide fast and reliable predictions on skin sensitization potential and po-
tency without the need to conduct time consuming and expensive experiments.
Especially among the most recently reviewed approaches, the application of
ML algorithms in (Q)SAR approaches has proven a promising route within the
field: ML allows for high predictivity and applicability, can be combined with
automated measures of reliability, be easily updated when new data appear, and
be made available within intuitive programs or web applications that do not
require expert knowledge from the user. In the present chapter, we introduce
basic concepts of (Q)SAR and ML modeling and illustrate their methodological
background, like the computational encoding of molecules and the definition of
the applicability domain (AD) of the models. One popular way of mathemati-
cally defining the AD of ML models (in contrast to other subjective definitions),
is to embed ML models in a conformal prediction (CP) framework, which en-
sures the reliability of a model at a defined confidence level. The basic concept
of CP will also be introduced in section 3.2.4 of the present chapter.

3.2.1 (Q)SAR modeling

(Q)SAR approaches are based on the assumption that the biological activity of
a substance is related to its molecular structure and, hence, to the molecular
descriptors representing it [44]. Early (Q)SAR models tried to leverage the
relationship between a small number of preselected chemical descriptors and
the observed biological activity by applying simple regression or classification
methods. Due to their relative simplicity, these (Q)SAR models were usually
only applicable to a small group of chemicals. The earliest example of such
a model in the field of skin sensitization prediction was developed by Roberts
and Williams in the 1980s [45]: A linear equation derives the relative alkylation
index (RAI) (which serves as a quantitative measure of skin sensitization poten-
tial) of sultones from only three chemical descriptors. (More details on the RAI
concept and the models derived from it can be found in section ”Chemical class
or mechanism-based models” of our review article [P1].) Until today, the RAI
concept has successfully been applied to a variety of small classes of similar or
similar reacting molecules. However, these models have never achieved a degree
of generalization that allows their application without expert knowledge on the
potential reaction pathways of a molecule of interest.

To circumvent the limitations given by linear modeling, current (Q)SAR ap-
proaches make use of a variety of advanced ML algorithms. These algorithms
are capable of capturing also complex (non-linear) relationships between molecu-
lar descriptors and biological endpoints. Moreover, automated feature selection
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methods prior to or integrated in the ML algorithm allow for the unbiased
selection of input features from large sets of descriptors (see subsection 3.3.3).

3.2.2 Machine learning approaches

ML approaches are computational algorithms that automatically learn from
available training data in order to transfer the findings to new, unseen data.
ML approaches are thereby also capable of capturing relationships within the
data that are too complex for human detection. At the same time, when com-
bined with insufficient data, complex ML models are prone to the danger of
overfitting, which occurs when the model learns even from the noise of the
training data and can therefore not generalize to unseen data.

Depending on the absence or presence of a target variable, ML approaches can
be divided into unsupervised and supervised ML algorithms, respectively. Un-
supervised ML models are trained on unlabeled data (i.e. data without a target
variable) and aim to detect patterns that best separate or group the data. A
common application of unsupervised ML is data clustering, which groups similar
samples within each cluster. Common unsupervised clustering algorithms are
k-means [46] , which separates the data based on the distance of each sample to
the cluster centers, or hierarchical clustering [47], which iteratively merges sim-
ilar objects into clusters until a single cluster remains and the hierarchy of the
clusters can be observed in a dendrogram. Unsupervised ML algorithms are also
successfully applied for dimensionality reduction of unlabeled data. This allows,
for example, visualization of high dimensional data in a two dimensional space
while still capturing a large amount of information. Common examples for these
approaches are uniform manifold approximation and projection (UMAP) [48]
and principal component analysis (PCA) [49]. Within the UMAP approach,
data are projected into a lower dimensional space while maintaining the pair-
wise distance between samples. Within PCA, the multidimensional descriptor
space is transposed into a new basis of orthogonal vectors by maximizing the
explained variance of the first components (see Figure 3.1). In the case of skin
sensitization prediction, unsupervised ML algorithms offer the advantage that
they can be applied to data for which no skin sensitization data are available.
This allows, for example, the comparison between the LLNA data and common
reference data sets containing approved drugs, cosmetics, or pesticides in order
to analyze the chemical space coverage of the available data. Because unsuper-
vised ML algorithms are not biased by the experimentally assigned class labels,
they might also be utilized to detect potential outliers, whose experimental class
label might be questionable.

In contrast to unsupervised ML algorithms, supervised ML algorithms map
each sample to a specific label or target variable. This information allows the
extraction of patterns in existing data that can be used to predict the target
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Figure 3.1: Example of a PCA of a two dimensional data set [50]: With the PCA
the data set can be transposed into one dimension with only small information
loss.

variable of unseen data. Depending on the modeling task (classification or
regression), the available data and the descriptor space, the most favorable
supervised ML algorithms may be different. Commonly applied supervised ML
algorithms are linear regression, decision trees, random forest (RF) [51], k-
nearest neighbor (KNN) [52] or support vector machine (SVM) [53] algorithms,
among which linear regression is one of the simplest algorithms. It describes
the target variable as a linear combination of the descriptors. Because of its
simplicity, it is easy to interpret but fails in describing non-linear relations.
Moreover, it is prone to overfitting when the complexity of the model (i.e. the
number of descriptors with non-zero coefficients) is too high in comparison to
the number of available training instances. Another supervised ML algorithm
with low complexity is the KNN algorithm. It is based on the assumption that
similar instances will also have similar target variables. This algorithm predicts
the class label of an instance of interest based on the most common label
among its k nearest neighbors (see Figure 3.2). The number k of considered
neighbors is a freely defined parameter and the neighbors of each instance are
identified based on their distance (e.g. the Euclidean distance) in the descriptor
space. KNN models are highly sensitive to the number and characteristics of the
descriptors, and careful feature selection and scaling may be therefore needed
prior to their application. Irrelevant features may induce high amounts of noise
in the prediction and descriptors with a larger absolute span would have more
influence on the prediction than others. Special care has to be also undertaken
for unbalanced data, since otherwise the minority class will be underrepresented
in the descriptor space and hence have lower likelihood of being predicted.
Visual investigation of the neighboring instances considered for a decision can
assist human interpretation of the KNN model and its predictions. Another
basic ML algorithm is the decision tree: In a decision tree, the label of a
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Figure 3.2: Schematic example of a binary KNN classifier. In the case of the
solid line, the three nearest neighbors are considered. In the case of the dashed
line, the prediction is drawn from the class labels of the five nearest neighbors.
In both cases the majority of neighbors belong to the purple class, so the
compound of interest is predicted to belong to this class, too.

sample is predicted by following a branch of (mostly binary) decisions from
node to node until a leaf node (see Figure 3.3). The decision tree is capable of
capturing also simple but non-linear relations while still preserving a high degree
of interpretability. However, the disadvantage of this algorithm is its tendency
to overfit the training data. Complex relationships can also be described by
a RF model (see Figure 3.4). This model combines several single decision
trees that are trained on randomly selected subsets of descriptors and training
instances. A final prediction is derived from majority voting over all trees. In the
case of binary classification, the predicted probability is defined as the mean
over the results from the single trees, which is equivalent to the percentage
of trees that predict class 1. This predicted probability is often used as a
measure of reliability for the final prediction (section 3.2.3). Compared to single
decision trees, RF has the advantage of still describing complex relationships
while being less prone to overfitting. However, these advantages come at the
cost of higher computational effort and decreased interpretability. In a SVM
model, the descriptor space spanned by the training instances is divided by a
multidimensional hyperplane that separates instances with differing class labels
by the largest possible margin (see Figure 3.5). In this case, the distance of
a test substance to the hyperplane can serve as a measure of reliability of the
prediction. The characteristics of a SVM model strongly depend on its kernel
(i.e. the mathematical function utilized for separating the samples). A kernel
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Figure 3.3: Example of a simple decision tree. Leaves, nodes and branches of
the tree are marked.

Figure 3.4: Scheme of a RF model. Final decision is drawn by a majority
voting over all N trees included in the model.
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Figure 3.5: Schematic example of a two-dimensional SVM classifier: The blue
line separates the open and the filled data points from each other with the
maximum margin [54].

of higher complexity should achieve better performance on complex data, but
is, at the same time, more prone to overfitting. The interpretability of SVM
models is, as for other more complex ML models, relatively limited.

3.2.3 Applicability domain

The reliability of the predictions returned by a ML model is not evenly dis-
tributed in chemical space [55]. The AD of a model should always be defined
to differentiate reliable predictions (in domain) from unreliable ones (out of
domain). Two different main concepts for the definition of the AD have been
described [56]: novelty detection and confidence estimation. Novelty detection
defines the AD by the similarity of a query compound to the training data of
the model. This concept is based on the observation that the model’s reliability
decreases with decreasing similarity of the query compounds to the training
data. The characteristics of the novelty detection methods hence depend on
the definition of similarity applied in each case. In contrast to novelty detection
methods, confidence estimation approaches make direct use of the information
returned by the model (e.g. prediction probability returned by a RF model or
distance to the decision threshold returned by a SVM model). By doing this,
confidence estimation approaches can also identify predictions that are well
covered by the chemical space of the training data, but within a region where
prediction reliability is hampered by the vicinity of samples with conflicting class
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labels. In direct comparison, confidence estimation has proven advantageous in
AD definition when compared to novelty detection approaches [56].

3.2.4 Conformal Prediction

A confidence estimation method alternative to the classical AD definition is CP,
an algorithm processing the reliability of predictions returned by a ML model.
It offers the advantage of mathematically defining the AD without the need of
defining arbitrary thresholds as cutoffs. As long as the randomness assumption
of the samples holds true (an assumption that is also part of classical ML meth-
ods), a CP model will always return predictions with the user-defined reliability
1 − ε [57, 58]. The desired error significance ε is mathematically anchored in
the model itself and can be defined by the user for the specific task.

The basic implementation of CP is inductive CP (see Figure 3.6 A). In the
inductive CP framework, the available training data are divided into a proper
training set and a calibration set. A ML model (see section 3.2.2 for an overview
on different ML models) is trained on the proper training set only and then
applied to both the calibration and test sets. The probability estimates returned
by the ML model are processed within a nonconformity function to calculate an
α-value or nonconformity score for every instance of the calibration and test set.
In classification models, the inverse probability error function (Equation 3.1) or
margin error function (Equation 3.2) are the most commonly used nonconformity
functions:

α = P̂ (yi|x) (3.1)

α = 0.5− P̂ (yi|x)−maxy 6= yiP̂ (y|x)

2
(3.2)

with P̂ (yi|x) being the predicted class probability of class i and maxy 6=yiP̂ (y|x)
being the maximal class probability for any other class. Due to the consideration
of the class probabilities of the other classes, the margin error function is also
well suited for multiclass classification. In the case of regression, the absolute
error function (Equation 3.3) or the signed error function (Equation 3.4) are
commonly applied:

α = |yi − ŷi| (3.3)

α = yi − ŷi (3.4)

whereas y is the predicted value returned by the regression model.
Based on these α-values, the p-values (or calibrated probabilities) of the test
instances can be calculated as the relative rank of the test instance’s α-value
within the sorted list of α-values from the calibration set. A test sample will
be assigned a specific class label whenever the corresponding p-value exceeds
the desired significance level ε. Depending on the p-value of an instance and
the significance level, none, one, or multiple class labels can be assigned to it.
If no class label is assigned, the sample is considered to be outside of the AD
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Figure 3.6: Schematic workflow of different versions of CP: (A) inductive CP,
(B) Mondrian CP, and (C) aggregated CP.
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of the CP model.

Different modeling requirements can be addressed by different variants of CP
[59]. The most common variants are Mondrian CP and aggregated CP. Mon-
drian CP (see Figure 3.6 B) is best suited for modeling imbalanced data sets [60].
In this CP variant, individual lists of α-values are created for each class and
used to derive class-specific p-values. Hence, the relative ranks of the test α-
values do not depend on the prevalence of each class in the training data. The
aggregated CP variant (see Figure 3.6 C) was designed to reduce the effects
of not using the complete training set for the ML model and is therefore well
suited for small data sets. In aggregated CP, the splitting of the training set
into proper training and calibration data is repeated several times [61]. The
final p-values are then derived by averaging the p-values over all repetitions
(most commonly by the median, but also the maximal value or the mean for
example can be used). With this approach the number of data points not used
for modeling is reduced compared to an inductive CP workflow. This comes
along with a strong increase in computational effort depending on the numbers
of iterations N selected.

3.3 Computational representation of molecules

3.3.1 Representation of molecular structure

In order to be processed within a computational program, molecular structures
need to be transferred into a machine readable format. Two and three dimen-
sional molecular structures can, for example, be stored in high precision in Mol
files, structure data (SD) files or XYZ files (in the 2D case, usually the Z com-
ponent is artificially set to 0) [62]. In a XYZ file, each atom in a molecule is
described by its element symbol and its Cartesian coordinates. Atom connectiv-
ity is implicitly given by the distances resulting from the coordinates. In a Mol
file, the coordinate information is complemented with information on connec-
tivity and molecular and atomic properties, like charges and isomers. Several
Mol files can be combined in a single SD file. The SD format also allows for the
inclusion of additional information about each molecule, like alternative names,
experimental properties, or data sources. While these formats are capable of
capturing the molecular structure with high precision, they come along with
comparably large file sizes and the correspondingly higher computational effort
for processing them. Moreover, the exact molecular structure is often not known
and may change with the molecular environment (e.g. temperature, aggregation
state, solvation state, etc.), so that such highly precise formats are mainly useful
only if a detailed structure optimization of the compounds has been undertaken.

A lean alternative to formats capturing the exact structure of a molecule is given
by various line notation formats like international chemical identifier (InChI) [63]
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or simplified molecular-input line-entry system (SMILES) [64]. Both formats
capture the 2D (and partialy 3D) structure of a molecule by describing atom
types and connectivity between atoms. An approximated 2D structure can be
derived from this information by most molecule-processing programs without
explicit description of the exact atom positions. While InChI strings define the
protonation state of each atom (from which the bond types can be deducted),
SMILES strings explicitly define bond orders. Both formats share similar ad-
vantages and disadvantages: They both result in small and flexible structure
representations and can be read by computational programs in a shorter time
frame compared to the previously described, more information-rich formats like
Mol, SD or XYZ files. At the same time, InChI and SMILES strings can only
be interpreted by specialized programs and can cause a loss of information as
they are not able to capture some structural features. Compared to the InChI
notation, the SMILES notation is easier to interpret for human investigators.

3.3.2 Molecular descriptors

For a ML model to be applied to molecular data, molecules need to be encoded
in a machine readable format. This can be realized by so-called molecular or
chemical descriptors. The derivation and selection of a discriminative set of
molecular descriptors is crucial for development of a predictive (Q)SAR model.
To achieve this goal, a variety of different types of molecular descriptors is
available [65].

Molecular descriptors can be classified by the dimensionality of the molecu-
lar structure that is captured, as also pointed out in our review article [P1].
While 0D descriptors cover information derived from the chemical formula (e.g.
atom counts), 1D and 2D descriptors cover the absence or presence of certain
substructures and the atom connectivity, respectively. Finally, 3D descriptors
can be derived from the three dimensional structure of the molecule only (e.g.
quantum chemical properties or volume descriptors).

Binary information on the 0D, 1D and 2D structure of a molecule (e.g. absence
or presence of certain atom types, bond types, charges, or chemical subgroups)
can be assembled into so called fingerprints (i.e. Boolean bit strings), which can
be further divided into structural keys and hashed fingerprints. In structural
keys like molecular access system (MACCS) keys [66] (composed of 166 bits)
or PubChem fingerprints [67] (with 880 bits), each bit can be directly asso-
ciated with the absence or presence of exactly one molecular substructure or
fragment. Detailed lists for the translation between fingerprint and molecular
substructure are available and allow human interpretation. In contrast to struc-
tural keys, hashed fingerprints may encode the absence or presence of several
different fragments on the same bit. Hence, hashed fingerprints allow for the
representation of a higher number of features with the same number of bits
compared to structural keys. At the same time they lose interpretability, since
hashed fingerprints cannot be unambiguously linked to specific functional groups.
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Figure 3.7: Example of the generation of a circular fingerprint [71].

Hashed fingerprints can be divided into topological or path-based fingerprints
(e.g. Daylight fingerprint [68]), circular fingerprints (e.g. extended-connectivity
fingerprints (ECFP) [69], or Morgan fingerprints [70]), depending on the method
used for the enumeration of the encoded fragments. While topological finger-
prints encode the molecular paths that can be found starting from each atom
in the molecule, circular fingerprints (see Figure 3.7) encode the radial envi-
ronment of each atom up to a defined bond order. This cutoff bond order X
is usually indicated in the name of the fingerprint (i.e. ECFPX or MorganX).
In addition, fingerprints can be specialized due to specific molecular structural
features. For example, the chemistry development kit (CDK) extended fin-
gerprint [72] (which is also available via the pharmarceutical data exploration
laboratory (PaDEL) software [73] and is called PaDEL extended fingerprint in
this thesis) is a path based fingerprint that includes additional bits for different
numbers of rings and numbers of rings in fused ring systems. Analogously, the
79 bit CDK E-state fingerprint (called PaDEL estate fingerprint through this
thesis) encodes a molecule by the electrotopological state indices of its atoms.
Several popular descriptors and fingerprints can be created with the popular
software package RDKit, too [74].

Whereas fingerprints directly encode the structure of a molecule, other sets of
descriptors include calculated physicochemical properties that are mathemati-
cally derived from the molecular formula or structure. Prominent examples of
such non-binary descriptor sets are the descriptor sets provided by molecular
operating environment (MOE) [75], PaDEL [73, 76], and Dragon [77] software.
Each of these descriptor sets includes a variety of descriptors starting from
simple atom and ring types and counts to calculated molecular properties or
eigenvalues. A large overlap between the descriptors covered by these programs
can be observed. In this thesis, we call these sets of descriptors physicochemi-
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cal descriptors. While MOE (>400 descriptors) and Dragon (5,270 descriptors)
are proprietary tools, PaDEL (1,875 descriptors) is available as an open source
license and the application is free of charge. Several of the descriptors provided
are calculated from the 3D structure of the molecule. This requires structure
optimization prior to descriptor calculation. Since this demands high computa-
tional resources and the success strongly varies depending on the molecule and
the methods selected for optimization, the usage of such 3D descriptors is only
recommended if a significant increase in model’s performance is expected.

3.3.3 Feature standardization and feature selection

Non-binary descriptors like physicochemical descriptors can cover very different
ranges of values. To compare the weights given to a descriptor by a modeling
algorithm and for several feature selection and modeling algorithms to work
properly, feature standardization is needed in advance. Most commonly, this is
conducted by projecting the features to have their mean set to zero and their
variance set to unit variance at the same time. The standardized feature vector
x′ is derived by subtracting the mean of the feature vector x from the original
feature vector x and division by the standard deviation σ:

x′ =
x− x
σ

(3.5)

Not all descriptors are evenly suited for different modeling tasks. A careful
selection of the descriptors by rational consideration or computational feature
selection methods is advantageous. While the presence of additional relevant
descriptors can improve a model’s performance, the presence of irrelevant or
redundant descriptors increases modeling time as well as the danger of over-
fitting. Feature selection methods can be distinguished by the way they are
applied to the data of interest into filter, wrapper, and embedded methods
[78]. A filter method selects a subset of descriptors by optimizing a measure
independent of a ML algorithm. Prominent measures that are suitable for
such filter methods include mutual information, Pearson product moment, or
correlation coefficient. In contrast to filter methods, wrapper methods make
use of a ML algorithm to evaluate the suitability of a subset of descriptors
for the modeling task: A model is trained on every subset of descriptors and
gets evaluated on holdout data. Due to the high number of models to be
built, these methods are computationally more demanding than filter methods,
but the results are optimized for the modeling task. For wrapped feature
selection, any ML algorithm that is suitable for the specific modeling task can
be applied. Finally, embedded feature selection methods combine aspects of both
the filter and the wrapper method. The most prominent example of embedded
feature selection is least absolute shrinkage and selection operator (LASSO)
regression [79]. It minimizes the result of a linear cost function by minimizing
the coefficients of the different descriptors. Descriptors that encode irrelevant
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or redundant information will hereby yield coefficients close to zero and can be
discarded from the final model. When applying LASSO regression for feature
selection one should keep in mind that in the case of descriptors encoding
redundant information one descriptor could potentially be replaced by the other
in the final model. The model selects which descriptor to keep and which to
dismiss after optimizing the performance on the data it is trained on. A human
investigator might prefer a different decision.

3.4 Model performance evaluation

A variety of different measures is available for evaluation of models performance.
Most of the performance measures are calculated from the counts of true negative
(TN), false negative (FN), true postive (TP) and false positive (FP) predictions,
which can be retrieved from the confusion matrix of a binary classifier as depicted
in Figure 3.8.

Figure 3.8: Confusion matrix of a binary classifier.

Typical measures to characterize classical models are: accuracy (ACC), Matthews
correlation coefficient (MCC), F1 score, correct classification rate (CCR), sen-
sitivity, specificity, negative predictive value (NPV), positive predictive value
(PPV) and coverage. A CP model is usually characterized by the two measures
validity and efficiency.
The ACC is defined as the percentage of correct predictions within all predic-
tions. For a binary model this is defined as:

ACC =
TN + TP

TN + FN + TP + FP
(3.6)

The ACC is the most intuitive and therefore also the most common performance
measure for prediction models. Nevertheless, it does not represent the whole



3.4. Model performance evaluation 47

picture of the model’s performance, since it also depends on the fraction of each
class. Two alternative measures of reliability try to circumvent this downside:
The MCC, the F1 score and the CCR, which is also known as balanced ACC:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.7)

F1 =
TP

TP + 1
2
(FP + FN)

(3.8)

CCR =
sensitivity + specificity

2
(3.9)

With sensitivity and specificity reflecting the ability of the model to successfully
identify active or inactive compounds:

sensitivity =
TP

TP + FN
(3.10)

specificity =
TN

TN + FP
(3.11)

The percentage of correct predictions among all positive or among all negative
predictions is called PPV and NPV:

PPV =
TP

TP + FP
(3.12)

NPV =
TN

TN + FN
(3.13)

For a classical model, coverage is defined as the percentage of test compounds
for which a prediction within the AD of the model is returned.

Coverage =
TP + TN + FP + FN

Total number of test samples
(3.14)

For CP models, the most characteristic performance measure is validity. It is
defined as the percentage of predictions that include the true prediction. Since
a CP model can also predict more than one class to be true for a compound,
this also includes unambiguous predictions with the true class being predicted
among others. A model is considered valid, as long as the validity is close to the
expected value of 1− ε. Analogously to the definition of coverage of a classical
model, the efficiency of a CP model is defined as the percentage of distinct
predictions that are returned under the selected error significance ε. Validity
and efficiency can also be returned class wise (i.e. exclusively for molecules
assigned experimentally to a specific activity class). A CP model considered
valid should also be valid for any single class covered by the specific classifier.
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3.5 Approaches and data sets for the prediction of skin
sensitization potential and potency that are reported
after the publication of P1

Since our review article [P1] was published in 2018, several new developments in
the field of computational prediction of skin sensitization potential and potency
could be observed. On the one hand, Di et al. [16] collected, curated and
published a new LLNA data set comprising binary and quinary LLNA class
labels for 1007 compounds. In 2019 we could show that this data set includes
440 substances that are not present in the LLNA data set compiled by Alves
et al. in 2018 [2]. On the other hand, several new computational models or
updated versions of existing models have since been published. While most
of these models are based on existing collections of public data that have
been used previously or on proprietary data that cannot be investigated, Di et
al. [16] published models trained and tested on a new collection of LLNA data.
In addition to this, several tools to integrate existing knowledge and results
from non-animal testing approaches as well as from computational tools have
become available. A new development within this field is the relatively high
number of AOP related reasoning frameworks that do not return an unambiguous
prediction, but are meant as structuring and assisting frameworks for expert
decision-making.

3.5.1 New models for the prediction of skin sensitization potential

Several new computational models aim for the prediction of binary skin sensi-
tization potential in humans or animals. These will be shortly summarized in
the present subsection:

Di et al. [16] developed and compared 81 binary and ternary QSAR classifiers
for the prediction of binary and ternary skin sensitization potential. The models
are based on a new collection of 1007 LLNA data annotated with binary and
quinary skin sensitization potential. The high number of classifiers originates
from using all combinations between nine modeling algorithms (i.e. SVM, de-
cision tree, gradient boosting, RF, tree ensemble, probabilistic neural network,
multilayer perceptron, and fuzzy rules) and nine different molecular fingerprints
calculated with PaDEL software. The best binary and ternary models achieve
an ACC of 0.81 and 0.71 on the test set, respectively. In addition to these
global models, several local models only incorporating substances from one out
of five activity classes are presented. Their ACC on the test set ranges up to
0.89 and 0.85 (for two and three potency classes, respectively) for molecules
which are assigned by the authors to undergo Michael addition reactions (131
substances in total). An AD is defined and applied for all models. Closer
analysis of the ternary models by ourselves suggests, that the non-published
class-wise performance measures of the ternary models might be unacceptably
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low [2].

A free online tool called STopTox was published by Borba et al. [80] in 2020. It
provides binary ML models for six toxicity endpoints. One of these models is a
RF model trained on 1000 LLNA data points with Morgan EFCP4 fingerprints
(2048 bits) as descriptors. The model reaches a CCR of 0.70 in 5-fold external
cross-validation (CV).

Predicted binary outcomes for LLNA as well as for human skin sensitization
potential and the outcome of three non-animal testing approaches (DPRA,
KeratinoSens, h-CLAT) are also provided by the now updated version 3 of the
Pred-Skin webserver [81], which we previously discussed in our 2018 review,
albeit with an older version [40]. Predicted results from the five models are
integrated within a naive Bayes model to predict skin sensitization potential in
humans. While this approach takes advantage of a larger data basis originating
from different data sources, it does not require any additional testing for a new
substance to be predicted.

3.5.2 New models for the prediction of skin sensitization potency

Other approaches aim for the prediction of skin sensitization potency as given
by the EC3 value. Such quantitative prediction is advantageous, since it elim-
inates the need to exclude all sensitizers from a product, and allows for the
use of sensitizing molecules in a safe dose adjusted to the predicted potency.
Nevertheless, such quantitative models for skin sensitization prediction (if tested
correctly) do not reach sufficient performance for an all-encompassing applica-
tion. A main reason for this might be the relatively small number of data
points available for modeling and testing and the variance in the data available.
Two approaches to circumvent these limitations have been presented recently:
the reduction of the model’s applicability to a small and well defined class of
molecules (local model) [82] and the re-projection of predicted EC3 values into
two or more potency classes [83].

Gleeson et al. [82] developed a local model to predict skin sensitization potency
for molecules of the Schiff base domain. Reaction energies of 22 molecules with
Lysine sidechains were calculated with quantum mechanical methods. Based on
a training set of 14 molecules, a linear correlation between the reaction energy
combined with clogP and the pEC3 was derived. On the test set of 8 and 6
molecules r2 = 0.49 and r2 = 0.62 was derived, respectively. Weaknesses of
the model are explained by the neglection of protein-specific steric and elec-
tronic effects and possible differences in the immune response caused by different
adducts. In addition, the authors point out, that reactions could take place
from tautomeric states, sides of reaction, or metabolites not considered in the
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quantum mechanical calculation.

Kim et al. [83] reported on a linear correlation between the EC3 value and
several physicochemical properties of 212 skin sensitizers and 38 non-sensitizers
investigated. Highest correlation of the EC3 could be found to surface tension,
melting point, or boiling point with correlation coefficients of 0.65, 0.69 or 0.44,
respectively. P-values of the correlation are lower than 0.00001 for all three
of these properties. More recently [84], the authors evaluated the capacity
of these physicochemical properties to distinguish two (ACC=0.73) or three
(ACC=0.64) potency classes on a slightly larger data set of 305 sensitizers and 57
non-sensitizers. Results were compared with the prediction of skin sensitization
potential from Toxtree (ACC=0.70), Vega (ACC=0.81) and Danish EPA QSAR
(ACC=0.56).

3.5.3 New models that integrate results from non-animal testing ap-
proaches

A promising route for reliable skin sensitization prediction is the integration
of experimentally derived non-animal data (i.e. in vitro or in chemico testing
results) as descriptors for a computational model [81,85–87]. While these kind
of models show promising increases in applicability and reliability compared to
purely computational models, they suffer from the disadvantage of needing every
substance to be tested in more or several assays prior to the prediction. This
might be suitable for the evaluation of preselected and promising substances
but not for a first and comprehensive screening.

Natsch et al. [29], compared the predictivity of the two out of three DA (an
approach that considers a substance as skin sensitizer as soon as at least two
out of three non-animal testing approaches addressing the three first key events
from the skin sensitization AOP have tested positive). Already with this simple
rule based approach, balanced accuracies between 0.76 and 0.94 are reported
for the prediction of binary skin sensitization potential in humans. In the same
meta-study, the balanced ACC of the LLNA for human skin sensitization poten-
tial is reported with between 0.58 and 0.88 depending on the underlying data set.

Silva et al. [85], combined experimental non-animal data with computationally
derived molecular properties, fingerprints, and reactivity descriptors for linear
regression. The models to predict two, three and six potency classes achieved
accuracies of 1.00, 0.99 and 0.98, respectively. The models have to be viewed
with caution since they are built and tested on a low number of data points
(between 81 and 90 depending on the test case) in combination with a relatively
high number of descriptors (up to 386 depending on the test case). In addition,
the best performing test case includes a protein adduct formation descriptor
obtained by the TIMES-SS package software. Training data of TIMES-SS are
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not published and thus do not allow for a comparison with the test data eval-
uated here.

SkinSensDB [88,89], a free web server providing data on DPRA/PPRA, Kerati-
noSens/LuSens and h-CLAT as well as on human skin sensitization potential,
also includes functionalities to assist read-across assessment of human skin sen-
sitization potential [89]. Based on these data, Tung et al. published SkinSen-
sPred in 2019. SkinSensPred is an ensemble tree-based multitask learning model
that predicts human skin sensitization potential by leveraging the outcome of
DPRA/PPRA, KeratinoSens/LuSens, h-CLAT and human skin sensitization po-
tential as four simultaneous learning tasks [90]. The model can be assessed on
the SkinSensDB web server, too.

In 2019, Li et al. [86] developed SVM models with accuracies up to 0.91 and 0.69
to predict binary and ternary skin sensitization potential in humans, respec-
tively. The models incorporate a data-rebalancing ensemble learning algorithm
and make use of non-animal testing results as well as on six (mostly experi-
mentally derived) physicochemical properties as descriptors and are trained and
tested on 96 and 32 substances from the Cosmetics Europe data base.
In 2021, Ambe et al. [87] added chemical information to the descriptor set used
by Li et al. and achieved an r2 of 0.75 in predicting EC3 values with a CatBoost
based regression model on the Cosmetics Europe data set.

The Bayesian network integrated testing strategy (BN ITS-3) developed by
Jaworska et al. [91] in 2015 also makes use of experimental non-animal results
in combination with physicochemical parameters and structure-based predictions
by TIMES. This model was evaluated in 2020 by Otsubo et al. [92] on a test
set of 175 substances. The study derived ACCs of 0.93 and 0.66 for binary and
ternary classification, respectively.

3.5.4 Recent studies evaluating and comparing existing skin sensiti-
zation prediction tools

Several common tools for skin sensitization prediction were compared in 2020:
Golden et al. [93] evaluated the performance of eight computational tools for
the prediction of binary skin sensitization potential (Toxtree, PredSkin, OECD
QSAR Toolbox, REACHAcross, Danish QSAR Database, TIMES-SS, and Derek
Nexus) with respect to the experimental outcome in human studies from two
different data sources. These are the data set of Basketter et al. which comprises
131 highly curated substances (107 sensitizers and 24 non-sensitizers) annotated
with human skin sensitization potential and the HSDB data set which comprises
data on 375 substances on a screening level. Overall, most models investigated
yielded ACCs between 0.70 and 0.80, which is comparable to the ACC for the
LLNA predicting skin sensitization in humans (ACC between 0.74 and 0.82
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depending on the data source). Closer investigation of the mispredicted com-
pounds lead to the assumption that a combination of models could be beneficial.

Several models and data sources for the prediction of skin sensitization potential
were reviewed by Ta et al. in 2021 [94]. However, this review has to be
taken with caution, since not all models are labelled and cited correctly. In
2021, Sant́ın et al. [15] specifically focused on artificial intelligence (AI) for
toxicity prediction. Prediction of skin sensitization potential and potency is
also mentioned with two examples in the article, but not covered in detail.

3.5.5 New objectives and reasoning workflows for expert judgement

Currently, computational methods can also be used to structure information
and guide expert judgement. Several such reasoning frameworks have recently
become available for the skin sensitization endpoint [39,95,96]. Their structure
mainly follows the AOP for skin sensitization. Since those frameworks do not
return unambiguous predictions, quantitative evaluation of their performance is
not possible.

Expert judgment can also be assisted by increasing the usability of existing com-
putational tools. This can either be realized by providing additional programs
for the interpretability and plausibility estimation of existing predictions [97] or
by the unification of several computational tools into one platform [98]. With
SpheraCosmolife [98], a new platform for the risk assessment of cosmetic prod-
ucts has become available. It provides results from several VEGA models for
endpoints relevant for cosmetic products, which also includes the one for the
prediction of skin sensitization potential we previously discussed in our review
article [P1]. Overall, the platform aims to assist with finding a safe dose de-
pending on the product’s application.

Computational methods can not only be applied to identify potentially problem-
atic compounds, but can also help expand the understanding of mechanisms of
the processes underlying skin sensitization. In 2019, Di et al. [99] applied compu-
tational tools to identify 33 dermatitis-related targets and 12 dermatitis-related
pathways that might play a vital role in the induction of skin sensitization.
Such a mechanistic understanding might also help to promote computational
skin sensitization prediction tools in general, since they can help to interpret
and gauge existing predictions.



4. Aims of the present work

Skin sensitization is an important endpoint for the development and registra-
tion of new chemicals and consumer products. Ethical considerations as well
as regulatory requirements engender a shift from animal experiments towards
an advanced non-animal safety assessment. Compared to non-animal testing
approaches, computational approaches bear an advantage with respect to costs,
testing time, and testing facilities and can be applied at an early stage of prod-
uct development as well as alongside testing approaches. For computational
methods to be accepted in a regulatory context, stringent requirements on pre-
diction accuracy, measure of reliability and data quality are vital.
Within this thesis, we developed different computational models for
the prediction of skin sensitization potential of small substances while
focusing on increasing the model’s value for risk assessment and reg-
istration. Herein we extensively addressed the following questions:

1. Which computational models for the prediction of skin sensitiza-
tion potential and potency exist and what are their advantages
and limitations? The theoretical prediction of skin sensitization poten-
tial and potency has a long history, starting from the first RAI models
developed in the 1980s. Today, a variety of different approaches for the
computational prediction of skin sensitization potential and potency are
at hand. Nevertheless, no single prediction tool can be considered as a
sufficient standalone method for reliable skin sensitization prediction in
a regulatory context. Within a comprehensive review article, we inves-
tigated, structured, and qualitatively evaluated the available models and
their underlying methods. We could point out common or potential pitfalls
and formulate aims for possible future modeling approaches.

2. Which skin sensitization data are available and what is the largest
high quality data set we can compile? The predictivity and reliability
of a ML model strongly depend on the quantity and quality of the available
data. For the prediction of skin sensitization potential and potency, quality
and quantity of the data are highly limited. The best trade-off between
quality and quantity of skin sensitization data can be found when utilizing
LLNA data. With the aim of optimizing the data basis for further model
development and the evaluation process, we created and curated the so
far largest publicly available high quality LLNA data set. Importantly,
the manual investigation of every single molecule from the data set in
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common public available data sets ensured the highest possible standards
for the structures associated with entries in our data set.

3. How relevant is our data set for the chemical space of cosmetics,
approved drugs, and pesticides? A ML model can only be predictive
for molecules covering the same chemical space as the training data. In
order to prove the relevance of our models for molecules labeled as pesti-
cides, approved drugs, or cosmetics, we closely investigated the chemical
space covered by these reference data sets as well as by our LLNA data
set using pair-wise similarity analysis and PCA.

4. Can binary skin sensitization potential measured with the LLNA
be predicted by ML algorithms? With the aim of finding the best
combination of ML algorithms, hyperparameters, and descriptors, we de-
veloped, optimized, and evaluated hundreds of ML models for the pre-
diction of skin sensitization potential. The best performing models were
closely investigated regarding their performance and the descriptors se-
lected. Based on practical considerations, two of the best performing
models were selected as the primary Skin Doctor models. They have been
made applicable for public use via our web service new e-resource for
drug discovery (NERDD) as the Skin Doctor suite for skin sensitization
prediction.

5. Can we quantify the reliability of our ML models and flag the most
unreliable predictions? The reliability of a ML model is not equally
distributed over chemical space. Areas not (well) covered by training
instances as well as areas covered by molecules with diversified class labels
might have lower performance than that of the model’s average. For the
practical usability of a ML model, it is of highest importance to flag and
dismiss such unreliable predictions and to return the model’s reliability
based on the reliable predictions only. To reach this goal, we defined
an AD as well as two measures of reliability for our best performing
models and demonstrated their applicability on our test set. For each of
the reliability measurements, two different thresholds were suggested to
either only remove the most unreliable predictions or to further increase
model’s predictivity at the cost of a decreased coverage. Both measures
of reliability as well as the AD have been integrated into the Skin Doctor
suite web service.

6. Can we quantify the reliability of every single prediction returned
by our model in a mathematically proven way by enveloping the
model into a CP framework? For a ML model to be applied in risk
assessment, it is highly advantageous to not only know the overall perfor-
mance of the model, but also the expected reliability of a single prediction
for a compound of interest. With the aim of retrieving this information
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for every single prediction returned by our models, we enveloped one of
the best performing models from the Skin Doctor suite into an aggre-
gated Mondrian CP workflow. This procedure also supersedes the need
to define arbitrary thresholds for the separation of reliable and unreliable
predictions since its measure of reliability is mathematically proven and
derived from the model itself. The final CP model was published on our
web server under the name Skin Doctor CP.

7. Can we transfer our findings from binary classification of skin sen-
sitization potential to a ternary classification of non-sensitizers,
weak to moderate sensitizers, and strong to extreme sensitizers?
While most models available for skin sensitization prediction (including
the ones developed by us) only address binary skin sensitization poten-
tial, it is extremely desirable for risk assessment to also quantify the skin
sensitization potency of a compound, since this would allow for the usage
of less potent sensitizers in safe doses. To support this need, two different
approaches to shift our aggregated Mondrian CP model from a binary to
a ternary classifier were developed and closely investigated regarding their
opportunities and pitfalls. A close comparison with a ternary model for
skin sensitization prediction published by another group on a subset of
our data set concluded on the weaknesses that originate from the sparse
data basis and that cannot be fully compensated by our ML approach.

8. Is it possible to substitute the non-intuitive descriptors used for
modeling by a small and biologically meaningful set of alternative
descriptors to increase model’s interpretability? For a ML model
to be accepted by risk assessors and regulatory instances, human inter-
pretability is desirable. While in theory this aim can be supported by a RF
modeling algorithm, it is not supported by the large and partly unintuitive
sets of descriptors selected for our original Skin Doctor models. With the
aim of increasing the interpretability of our models, we substituted the
non-intuitive fingerprints by a set of bioactivity descriptors calculated as
the results from 375 CP model predicting the outcomes of variety of as-
says. A strict feature selection process reduced the number of descriptors
to the lowest possible value without losing too much information. The 10
bioactivity descriptors selected for the final model were also investigated
regarding their biological connotation as well as their possible link to the
skin sensitization AOP.
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5. Methods

To reach the aims outlined in chapter 4 of this thesis, we applied a variety
of computational methods, which will be outlined in the present chapter. For
more details on the computational methods applied, we refer to the Methods
sections in the corresponding papers [P2], [P3] and [P4], which are provided
and discussed in chapter 6 of this thesis.

5.1 Data resources

Within the present thesis, skin sensitization potential and potency of substances
are described by LLNA data. The LLNA data utilized within the present work
originate from two public available LLNA data sets: the data set collected by
Alves et al. [40] and the data set collected by Di et al. [16]. Both data sets
have been merged by us in 2019 while removing any compound with contra-
dicting class label. The resulting data set comprises 1416 unique compounds
with binary and partly quinary skin sensitization class labels and was the basis
for the original Skin Doctor models. Details on the creation of this data set
can be found in the corresponding publication [P2].

A further manual data curation step was introduced and described in 2020 by
us (for details see publication [P3]). Based on the CAS number or any other
identifier available from the original data sources [16,40], we visually inspected
the corresponding entries in common chemical databases or catalogs. We man-
ually removed all molecules from our data set for which we could not confirm
the chemical structure derived from our primary data sources. This includes
compounds with CAS numbers that lead to metal complexes, metal salts or
polymers. Molecules without a defined structure as well as molecules that are
linked to a structure different from the one in our primary data sources are also
removed from our data set. The same is true for multi-component structures
without a defined primary component. This additional data curation step re-
duced the size of the data set from 1416 to 1285 compounds while drastically
increasing the quality of the data contained. The refined data set can be re-
garded as the largest well curated LLNA data set that is available in the public
domain at present. It is the basis for our Skin Doctor CP model [P3] as well as
for the analogous model based on bioactivity descriptors published in 2021 [P4].
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In addition to the modeling data, several reference data sets have been utilized
for the investigation of chemical space. These include different versions of data
sets comprising cosmetics [100,101], approved drugs [102,103] or pesticides [101,
104]. In publication [P4], we developed 375 models for calculating bioactivity
descriptors. Assay data for model building are derived from the publication of
Alves et al. [40] and different sources listed in [105]. Additional information on
the data resources utilized in this work is provided in the Methods sections of
the respective publications [P2], [P3], and [P4].

5.2 Processing of molecular structures

All data sets utilized within the present thesis have undergone the identical au-
tomatized data curation and standardization pipeline comprising the following
steps: (i) the removal of counter ions and neutralization of the remaining entity
as described in the work of Stork et al. [106], (ii) standardization of tautomers
(utilizing the “TautomerCanonicalizer” method implemented in MolVS [107]),
(iii) removal of stereochemical information (which is not processed by the de-
scriptors applied and is not present for all original structures), (iv) representation
of molecules by canonical SMILES, and (v) deduplication based on canonical
SMILES (In cases of multiple instances with identical class label, we only kept
one. In cases of conflicting class labels, both entries were removed.).
Data sets utilized within publication [P4] have in addition undergone the data
curation pipeline as described in [105]. This adds (vi) the removal of molecules
containing any element other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br, and
I and (vii) the removal of molecules with less than four heavy atoms.

5.3 Molecular descriptors

Within the first Skin Doctor models [P2] we evaluated different sets of descriptors
and combinations thereof for their capacity to predict binary skin sensitization
potential. Since the MACCS key fingerprint (for details on this set of descriptors,
see section 3.3.2) consisting of only 166 bits turned out to be the best trade-off
between complexity and model’s performance, this was selected as descriptor for
the Skin Doctor CP models [P3]. In our latest study [P4] we derived calculated
bioactivity descriptors from 375 CP models. Those models are based on Morgan
fingerprints with a radius of 2 and a length of 2048 bits. An overview of the
descriptors investigated within this thesis can be found in Table 5.1.

All non-binary descriptors have been standardized with the StandardScaler func-
tion in scikit-learn [109]. This includes the shift of the mean of the descriptor
to zero as well as scaling to unit variance.
In [P4] feature selection was performed with LASSO regression. The LASSO
classifier was optimized with the scikit-learn LassoCV function (Linear model
module; random state = 43, cv = 10, max iter = 3000, n alphas = 200).
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Table 5.1: Descriptors used for model building and evaluation within this thesis.

Name
within this

thesis
Description

Number of
descrip-

tors/
length of

the
fingerprint

Calculated with

MOE 2D
0D, 1D and 2D

descriptors
206

MOE [75]; all descriptors
labeled as “2D

descriptors” in the MOE
software

PaDEL
0D, 1D and 2D

descriptors
1444

PaDEL [73,76]; this is
the full set of 0D, 1D

and 2D descriptors
implemented in PaDEL

software

MACCS MACCS key fingerprint 166 RDKit [74]

Morgan2
Morgan fingerprint with

a radius of 2 and a
length of 2048 bits

2048 RDKit [74]

OASIS
OASIS skin sensitization

protein binding
fingerprint

5 bit
fingerprint

OECD Toolbox [108]

PaDEL est PaDEL estate fingerprint 79 PaDEL [73,76]

PaDEL ext
PaDEL extended

fingerprint
1024 PaDEL [73,76]

Bioactivity
descriptors

Calculated p-values for
bioactivity in different

assays
750 calculated in house



60 5. Methods

More detail on molecular descriptors, scaling and feature selection methods uti-
lized within this work, can be found in the corresponding publications [P2],
[P3] and [P4].

5.4 Modeling algorithms and hyperparameter optimiza-
tion

Within the present work, several ML models were trained and tested on LLNA
data employing either a RF or SVM modeling algorithm implemented in scikit-
learn [109]. To ensure that models are tested on unseen data, our first LLNA
data set derived in [P2] was split into training (80%) and testing (20%) data
by stratified splitting with the train test split function of the model selection
module of scikit-learn [109] (data shuffling prior to data set splitting enabled).
To enable comparison between the different versions of our models, the split into
test and training set was kept constant through all our approaches, meaning that
the training and test set of the refined LLNA data set applied in [P3] and [P4]
are subsets of the training and test set of our first LLNA data set derived in [P2].

For the first Skin Doctor models [P2], a variety of RF and SVM models have
been developed and evaluated. The hyperparameters of the modeling algo-
rithms (RF: n estimators and max features; SVM: C and γ) were optimized
within a 10-fold CV on the training data only. In publication [P3] optimal hy-
perparameters derived from [P2] (n estimators = 1000, max features = “sqrt”,
random state = 43) were applied to the RF model underlying the CP workflow.
In publication [P4] n estimators of the RF model was set to 500 and all other
hyperparameters kept as default values.
For a detailed view on the ML methods utilized, we refere to the Methods
sections of the corresponding publications [P2], [P3] and [P4].

5.5 Reliability measures and definition of the applicability
domain

For the first Skin Doctor models published in [P2] we developed two measures
of reliability and one definition of the AD. As meaningful measures of relia-
bility, the distance of a prediction to the decision threshold and the number
of consecutive nearest neighbors with the same activity as predicted (measured
by the Tanimoto similarity calculated on Morgan2 fingerprints) have been de-
fined and tested in 10-fold CV and evaluated on the holdout data. For any
model investigated, the mean Tanimoto similarity to the five nearest neighbors
(measured from Morgan2 fingerprints) has proven as a conclusive measure of
the AD. In a strict setting, any compound with a mean similarity smaller
than 0.50 was considered out of domain. In a softened definition of the AD,
the cutoff was set to 0.75. Nevertheless, the exact number of the cutoff as
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well as the selection of the descriptor to define the AD and the number of
consecutive nearest neighbors with same activity as predicted is to some degree
arbitrary and not directly anchored within the specific model it is applied to.
To compensate these downsides, we replaced the reliability measures as well as
the definition of the AD by a CP workflow from 2020 on in publications [P3]
and [P4]. The Methods sections of publications [P2] provides more detailed
information on the implementation of the AD and the reliability measures of
the corresponding work.

5.6 Conformal prediction

In publication [P3] and [P4] we employed aggregated Mondrian CP to ensure
defined predictivity of our models.
Within our CP workflow, each training set was further divided into calibration
(20%) and proper training set (80%) by stratified splitting with the train test split
function of scikit-learn [109] (model selection module; data shuffling enabled).
Within our publications [P3] and [P4], this split was repeated 100 or 20 times,
respectively, with different random states applied.
Scikit-learn RF models (for technical details on the RF models, see section 5.4)
were trained on each proper training set and applied to the calibration and
test set. Non-conformity scores were calculated from the margin error function
(Equation 3.2) for each class separately (following the aggregated CP protocol).
The p-values of each substance from the test set were derived as the rela-
tive ranks of the corresponding non-conformity scores within the sorted lists of
non-conformity scores from each calibration set. The final p-values for each sub-
stance are derived as the median p-values from all 100 or 20 random splits into
proper training and calibration set, respectively. Within the present Mondrian
CP workflow, non-conformity scores and p-values are treated separately for each
activity class. More detailed information on the computational implementation
of the CP models is provided in the Methods sections of the corresponding
publications [P3] and [P4].
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6. Results

Assessing skin sensitization is important for the development and approval of new
substances and consumer products. Historically, the skin sensitization potential
of chemicals was determined using animal models. Currently, it is preferable to
predict skin sensitization using non-animal alternatives such as in chemico and
in vitro assays and computational models. Compared to testing approaches,
computational methods usually offer an advantage in testing time and financial
expenses and can therefore also be applied to a large number of compounds
during the early stages of development of drugs and cosmetics. Computational
models are particularly beneficial, as they are able to utilize and integrate a
variety of experimental data to make predictions. They can thereby also be
utilized to seek deeper understanding into the mechanistic background of the
skin sensitization AOP.

Today, a variety of computational tools to predict skin sensitization are available,
but none of them is capable of fully replacing experimental approaches for risk
assessment or regulatory approval. In this thesis, three different approaches to
further promote computational methods for skin sensitization prediction have
been presented.

6.1 Prediction of binary skin sensitization potential – eval-
uation of different combinations of machine learning
algorithms and descriptor sets

Computational methods are a promising approach to predict the skin sensitiza-
tion potential and potency of chemicals, minimizing the need of time consuming
and expensive laboratory or clinical tests. Nevertheless, for computational meth-
ods to be applicable for risk assessment or regulatory approval, a high degree
of well-defined predictivity is required. This includes methods to detect and
flag predictions made by the model which may be unreliable.

In the following study, the largest known LLNA data set, to date, was compiled.
This data set was used to train and test a variety of ML models to predict
the binary skin sensitization potential. To demonstrate the relevance of these
models, an extensive analysis was carried out to compare the chemical space
covered by the LLNA data set to that of three reference data sets containing
approved drugs, pesticides, and cosmetics. This comparison was conducted us-
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ing PCA and pairwise-similarity analyses.

In this work, a total of 58 different combinations of ML algorithms (i.e. SVM
or RF) and descriptor sets (one or two out of eight descriptor sets selected)
were used for model building. An extensive grid search was conducted to find
the optimal hyperparameters for the model for each of these combinations. The
optimized models were then compared to each other. A solid definition of the
AD and two additional measures of reliability were determined for the five best
performing models (as measured by the MCC). The AD and measures of reli-
ability were determined using a 10-fold CV and verified on the test set.

Finally, two complementary models and the corresponding AD and reliability
measures have been made accessible through a public web service known as the
Skin Doctor suite.
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Abstract: The ability to predict the skin sensitization potential of small organic molecules is of high
importance to the development and safe application of cosmetics, drugs and pesticides. One of the
most widely accepted methods for predicting this hazard is the local lymph node assay (LLNA).
The goal of this work was to develop in silico models for the prediction of the skin sensitization
potential of small molecules that go beyond the state of the art, with larger LLNA data sets and, most
importantly, a robust and intuitive definition of the applicability domain, paired with additional
indicators of the reliability of predictions. We explored a large variety of molecular descriptors and
fingerprints in combination with random forest and support vector machine classifiers. The most
suitable models were tested on holdout data, on which they yielded competitive performance
(Matthews correlation coefficients up to 0.52; accuracies up to 0.76; areas under the receiver operating
characteristic curves up to 0.83). The most favorable models are available via a public web service
that, in addition to predictions, provides assessments of the applicability domain and indicators of
the reliability of the individual predictions.

Keywords: skin sensitization potential; prediction; in silico models; machine learning; local lymph
node assay (LLNA); cosmetics; drugs; pesticides; chemical space; applicability domain

1. Introduction

Repeated exposure to reactive chemicals with skin-sensitizing properties can cause allergic contact
dermatitis (ACD) [1], an adverse cutaneous condition with a prevalence of ~20% among the general
population [2] and even higher prevalence among workers with chronic occupational exposure [3].
Understanding the skin sensitization potential of small organic molecules is therefore of essence to the
development and safe application of chemicals, including cosmetics and drugs.

Historically, animal tests have effectively been the only method for determining the skin
sensitization potential and potency of substances. The local lymph node assay (LLNA) is currently
considered to be the most advanced animal testing system [4]. In recent years, ethical considerations
and regulatory requirements have led to an intensification of the search for alternatives to animal
testing, in particular in the cosmetics industry [5]. New in vitro and in chemico methods have
been developed and evaluated [6–9], and computational approaches are starting to be recognized as
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important alternatives to animal testing [8–11]. The non-redundant combinatorial use of said methods
in defined approaches that assess several key events of the adverse outcome pathway (AOP) for skin
sensitization shows promising predictive capacity [12] and is currently evaluated in risk assessment
case studies.

The bottleneck in the development of in silico tools for the prediction of skin sensitization is
not related to technology but to the scarcity of available high-quality experimental data for model
development. Three strategies have been pursued to address this problem. The first one is to increase
the amount and coverage of data by employing data mining techniques to retrieve information from
various types of assays and sources [13,14]. Although this has been discussed as a promising strategy
to increase the applicability of models, it has also prompted controversial discussions regarding the
quality and relevance of the data [15,16]. The second strategy is to develop focused models based on
small, focused data sets of high-quality [17–21]. The third strategy is to pursue a middle way that aims
for a favorable balance between quantity and quality of the data. The LLNA data available in the public
domain are generally regarded as the most suitable source of information for this strategy [22–27].

The two largest curated collections of LLNA outcomes in the public domain are the data collections
of Alves et al. [28] and Di et al. [22]. The data were obtained from reliable sources and subjected
to deduplication procedures that reject discordant records. The data set of Alves et al. includes
(mainly) binary LLNA outcomes recorded for 1000 compounds. In addition, it contains human data
and outcomes from different types of in vitro and in chemico assays, although for substantially fewer
substances. Based on these data, the authors developed machine learning models for different assay
types and also a consensus model, all of which are available via an online platform (“PredSkin”) [19].
Their model for the prediction of binary LLNA outcomes reached a correct classification rate (CCR) of
0.77 during five-fold external cross-validation.

The data set published by Di et al. contains 1007 substances annotated with LLNA potency
classes [22]. Based on a subset of approximately 400 compounds for which an explicit reaction
mechanism could be derived with a structural alerts tool for protein binding implemented in the
OECD Toolbox [29], Di et al. developed a variety of models for the binary and ternary prediction of the
skin sensitization potential. These models included local models for four reaction domains as well as
global models. The best binary global model was reported to obtain an accuracy (ACC) of 0.84 during
cross-validation and an ACC of 0.81 on a test set.

Major challenges in the application of machine learning approaches for risk assessment are related
to the complexity of models that goes along with limited mechanistic interpretability. For these types
of models, transparency with respect to the applicability domain as well as the provision of confidence
estimates for individual predictions are of utmost importance to risk assessors, who ultimately are the
main stakeholders of these methods.

In this context, and building on the works of Alves et al. and Di et al., this study pursues four main
objectives to advance in silico capabilities for the prediction of the skin sensitization potential: (i) the
development of a detailed understanding of the chemical space covered by the available LLNA data
with respect to the chemical space of cosmetics, approved drugs and pesticides, (ii) the identification of
the most suitable (sets of) molecular descriptors for modeling, (iii) the maximization of the applicability
of the models by increasing the size and coverage of the data set used for model development, (iv) the
definition of robust measures of the models’ applicability domain as well as the provision of indicators
for the reliability of individual predictions, and (v) the provision of the most suitable models via a
public web service.

2. Results

2.1. Characterization of the LLNA Data Sets

In order to develop a detailed understanding of the relevance of the available LLNA data to
modeling the skin sensitization potential of xenobiotics, we analyzed the composition and molecular
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diversity of the LLNA data sets of Alves et al. and Di et al. In addition, we assessed how well the
individual LLNA data sets cover the chemical space of cosmetics, approved drugs and pesticides.

2.1.1. Data Set Composition

Whereas the data set compiled by Alves et al. is balanced (481 sensitizers; 519 non-sensitizers),
the data set of Di et al. contains almost twice as many non-sensitizers (n = 629) as sensitizers (n = 364;
Table 1). Roughly 40% of all compounds (567) are present in both data sets (Table 2). The LLNA data
set compiled by Alves et al. contains 7% of all substances listed in the cosmetics data set; coverage is
lower for approved drugs and pesticides (4% and 5%, respectively). The percentages are similar for
the LLNA data set of Di et al.: 5% overlaps with cosmetics, 3% with approved drugs and 4% with
pesticides. Merging the two LLNA data sets increases the number of unique compounds to 1416 and
the overlaps with cosmetics, approved drugs and pesticides to 8%, 5% and 5%, respectively.

2.1.2. Coverage of Chemical Space

Whereas only few of the cosmetics, approved drugs and pesticides listed in the reference data
sets are included in the LLNA data sets, principal component analysis (PCA) shows that the areas
in chemical space most densely populated with these xenobiotics are actually well-covered by the
merged LLNA data set (Figure 1). Nevertheless, scattered data points radiating from the area of high
data density towards the bottom and the top right corner of the PCA score plot indicate the existence
of drugs and cosmetic compounds without closely related substances listed in the merged data set.
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Figure 1. Score plot comparing the chemical space of compounds of the merged LLNA data set, 
cosmetics, approved drugs and pesticides. The plot is derived from a principal component analysis 
(PCA) based on 53 intuitive and physically meaningful molecular descriptors such as molecular 
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PCA score plot are primarily cosmetics with long aliphatic and often halogenated chains; towards the 
top right corner of the diagram these are primarily large drug molecules with strong aromatic 
components. The variance explained by the first two principal components is reported in the axis 
titles. Four compounds of the cosmetics reference set and eight compounds of the approved drugs 
reference set are not shown because they are off the chosen limits of the plot (these are complex and 
large molecules, with a molecular weight of 2800 Da and higher). 
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As shown in Figure 2, the merged LLNA data set covers cosmetics much better than approved drugs 
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Figure 1. Score plot comparing the chemical space of compounds of the merged LLNA data set,
cosmetics, approved drugs and pesticides. The plot is derived from a principal component analysis
(PCA) based on 53 intuitive and physically meaningful molecular descriptors such as molecular
weight and clogP (see Methods and Table S1 for details). Data points located in the lower parts of the
PCA score plot are primarily cosmetics with long aliphatic and often halogenated chains; towards
the top right corner of the diagram these are primarily large drug molecules with strong aromatic
components. The variance explained by the first two principal components is reported in the axis
titles. Four compounds of the cosmetics reference set and eight compounds of the approved drugs
reference set are not shown because they are off the chosen limits of the plot (these are complex and
large molecules, with a molecular weight of 2800 Da and higher).



Int. J. Mol. Sci. 2019, 20, 4833 4 of 23

Table 1. Overview of all data sets used in this work.

LLNA Data Set
Compiled by Alves et al.

LLNA Data Set
Compiled by Di et al.

Merged LLNA
Data Set

Cosmetic Substances and
Ingredients Data Set Approved Drugs Data Set Pesticides Data Set

Data source Chembench [30]1 Supporting information
of Di et al. [22]

LLNA data sets of
Alves et al. and Di et al. CosIng Database [31] “Approved Drugs” subset

of DrugBank [32,33]2
EU Pesticides
Database [34]

Number of compounds prior to
data preprocessing 1000 1007 1993 5937 2352 1383

Number of compounds after
data preprocessing 1000 9933 14164 (1132/284)5 46436 21557 8128

Number of sensitizers 481 364 572 (457/115)5 n/a n/a n/a
Number of non-sensitizers 519 629 844 (675/169)5 n/a n/a n/a

Number of Murcko scaffolds 312 354 453 856 1158 329
Proportion of compounds
without a Murcko scaffold 0.32 0.29 0.31 0.42 0.13 0.24

Proportion of singleton scaffolds 0.77 0.79 0.78 0.72 0.82 0.81
1 Chapel Hill, NC, United States. 2 Edmonton, Alberta, Canada. 3 Thirteen compounds were removed as part of the deduplication procedure; one compound was removed because of
conflicting activity assignments. 4 Five hundred and sixty-seven compounds were removed as part of the deduplication procedure; ten compounds were removed because of conflicting
activity assignments. 5 Number of compounds in the training set/test set prior to descriptor calculation. 6 One hundred and four compounds were removed by the salt filter because the
main component could not be unambiguously identified; 26 compounds were removed due to invalid input structure; 1164 compounds were removed as part of the deduplication
procedure. 7 Thirty-one compounds were removed by the salt filter because the main component could not be unambiguously identified; 166 compounds were removed as part of
the deduplication procedure. 8 The SMILES notation of 893 compounds present in the EU Pesticides Database were automatically retrieved with the Chemical Identifier Resolver [35].
Six compounds were removed by the salt filter because the main component could not be identified; 13 compounds were removed due to invalid input structure; 62 compounds were
removed as part of the deduplication procedure. Abbreviations: LLNA, local lymph node assay.

Table 2. Overlaps between the compounds contained in the LLNA data sets and the cosmetics, approved drugs and pesticides data sets.

Number of Compounds Data Set Compiled by Alves et al. Data Set Compiled by Di et al. Merged LLNA Data Set

Cosmetics 4643 324 252 387
Approved Drugs 2155 88 68 97

Pesticides 812 43 34 44

Abbreviations: LLNA, local lymph node assay.
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In addition to PCA analysis, the coverage of cosmetics, approved drugs and pesticides by the
merged LLNA data set was quantified based on the distribution of maximum pairwise similarities.
As shown in Figure 2, the merged LLNA data set covers cosmetics much better than approved drugs
and pesticides: over 30% of all cosmetics are represented by the respective nearest neighbor in the
merged LLNA data set with a minimum Tanimoto coefficient of 0.6, whereas this is the case for only
10% and 13% of all approved drugs and pesticides, respectively.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 27 
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Figure 3. Score plot comparing the chemical space of compounds of the local lymph node assay (LLNA)
data sets of Alves et al. and Di et al. The score plot was derived from a PCA based on the identical
setup described in the caption of Figure 1. Two data points are located outside the displayed intervals.
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2.1.3. Molecular Diversity

The molecular diversity of the merged LLNA data set and the reference data sets was assessed
in two different ways: by pairwise comparison of molecular structures and by counting of Murcko
scaffolds. Pairwise comparisons were again based on Tanimoto coefficients derived from Morgan2
fingerprints of a length of 2048 bits. The cosmetics data set exhibits a lower diversity compared to the
other data sets (Figure 4). This can be attributed, to some extent, to the larger size of the cosmetics
data set: 23% of all pairs of compounds in the cosmetic data set have fingerprints with a Tanimoto
coefficient of 0.8 or higher, whereas this percentage is 11% or lower for the merged LLNA, approved
drugs and pesticides data sets. Of all compounds included in the cosmetics data set, 220 have at least
one neighbor with identical molecular fingerprint. These are mostly pairs of molecules with long
aliphatic chains, differing only by the length of these chains (note that any duplicate molecules have
been removed during data preprocessing).
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Figure 4. Pairwise molecular similarity within the individual data sets (similarity quantified as Tanimoto
coefficient based on Morgan2 fingerprints with a length of 2048 bits).

The merged LLNA data set covers a total of 453 distinct Murcko scaffolds, which is roughly as
many as covered by the pesticides data set but only one-third and one-quarter of those covered by
the cosmetics and approved drugs data sets, respectively (Table 1). Taking into account the size of
the individual data sets, the approved drugs data set clearly is the most diverse data set. In contrast,
the cosmetics data set, which counts more molecular structures than all other data sets taken together,
is the least diverse data set. This is in part related to the fact that approximately 40% of all cosmetics
do not include a ring and, as such, do not have a Murcko scaffold.

Benzene is the most prominent Murcko scaffold across all data sets, with a prevalence of 27%,
28%, 10% and 23% among the merged LLNA, cosmetics, approved drugs and pesticides data sets.
Any other scaffolds are represented by only a few instances (Table S2). Note the high percentages of
singleton scaffolds (72% or higher) across all data sets, which, particularly in the case of the LLNA data
set, illustrate the scarcity of the data available for modeling.

2.2. Molecular Properties of Skin Sensitizers and Non-Sensitizers

The merged LLNA data set contains 572 skin sensitizers and 844 non-sensitizers. As shown in
Figure 5a, non-sensitizers cover a broader chemical space than sensitizers. A substantial number of
non-sensitizers are of higher molecular weight than sensitizers and have a stronger aromatic character
and larger topological polar surface area (Figure 5a,d). A cluster of skin sensitizers and non-sensitizers
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with long aliphatic and halogenated chains was identified, observed as a diagonal line in the lower left
of the score plot (Figure 5a,c). Interestingly, the compounds of this cluster can only be discriminated
in the “MOE 2D” descriptor space but not in the Morgan2 fingerprint space, since molecules with
identical halogen substitution but differing chain lengths can result in identical Morgan2 fingerprints.
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Prior to model development, the merged LLNA data set was divided into a training (80%) and 
test (20%) set (Table 3; see Methods for details). All possible combinations of machine learning 
approaches (random forest (RF) and support vector machine (SVM)) with up to two different sets of 
molecular descriptors (including molecular fingerprints) were systematically explored (Table 4). One 
type of descriptors to highlight is a new fingerprint that we derive from the “Protein binding alerts 
for skin sensitization by OASIS” profiler implemented in the OECD toolbox [29]. This profiler assigns 
compounds to eleven mechanistic domains associated with skin sensitization, five of which are 
represented by more than 20 instances in the training set (i.e., Michael addition, SN2 reaction, Schiff 

Figure 5. Principal component analysis (PCA) of the physicochemical properties of skin sensitizers
and non-sensitizers included in the merged local lymph node assay (LLNA) data set. The PCA is
based on the identical setup described in the caption of Figure 1. (a) Score plot, with the percentage of
variance explained by the individual principal components reported as part of the axis labels. Two data
points are located outside the displayed intervals. (b) Loadings plot (an enlarged version is provided
in Figure S1; the abbreviations of the individual molecular descriptors are explained in Table S1).
(c) Detailed view of the lower left region of the score plot, where mainly sensitizers are observed to
form a line of data points. These sensitizers are aliphatic, monohalogenated hydrocarbons that differ
primarily by chain length and halogen atom type. (d) Detailed view of the upper right part of the score
plot, where mainly non-sensitizing compounds are located, characterized by high molecular weight,
aromaticity and a large topological polar surface area.

2.3. Model Development

Prior to model development, the merged LLNA data set was divided into a training (80%) and
test (20%) set (Table 3; see Methods for details). All possible combinations of machine learning
approaches (random forest (RF) and support vector machine (SVM)) with up to two different sets
of molecular descriptors (including molecular fingerprints) were systematically explored (Table 4).
One type of descriptors to highlight is a new fingerprint that we derive from the “Protein binding
alerts for skin sensitization by OASIS” profiler implemented in the OECD toolbox [29]. This profiler
assigns compounds to eleven mechanistic domains associated with skin sensitization, five of which
are represented by more than 20 instances in the training set (i.e., Michael addition, SN2 reaction,
Schiff base formation, acylation, and nucleophilic addition). The new fingerprint encodes the presence
or absence of alerts matching one or several of these five mechanistic domains.
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Table 3. Overview of descriptor sets evaluated in this work.

Descriptor set Short Name
Number of

Descriptors/Length of
the Fingerprint

Calculated with Number of Successfully
Processed Molecules1

Training set Test set

0D, 1D and 2D descriptors MOE2D 206
MOE [36]; this set corresponds
to all descriptors listed as “2D

descriptors” in MOE
1132 284

Selection of 0D, 1D and 2D descriptors MOE2D_53 532 MOE [36] 1132 284

0D, 1D and 2D descriptors PaDEL 1444

PaDEL [37,38]; this is the
complete set of 0D, 1D and 2D

descriptors implemented in
PaDEL

1109 279

MACCS keys MACCS 166 RDKit [39] 1132 284
Morgan2 fingerprints Morgan2 2048 RDKit [39] 1132 284

OASIS skin sensitization protein binding
fingerprint OASIS 5 bit fingerprint OECD Toolbox [29] 1128 283

PaDEL estate fingerprint PaDEL_Est 79 PaDEL [37,38] 1132 284
PaDEL extended fingerprint PaDEL_Ext 1024 PaDEL [37,38] 1132 284

1 Descriptor calculation failed for individual compounds depending on the software used. For this reason, there are marginal differences in the composition of the individual data sets used
for model development. 2 Fifty-three manually selected, physically meaningful descriptors. A list of the selected descriptors can be found in Table S1. Abbreviations: MOE, Molecular
Operating Environment.
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Table 4. Overview of models and their performance during cross-validation.

Name Number of
Descriptors

Number of Compounds in
Training Data ACC ACC

STDEV MCC MCCSTDEV AUC CCR Se SP PPV NPV

SVM_MOE2D+OASIS 211 1128 0.78 0.054 0.55 0.109 0.83 0.78 0.77 0.78 0.71 0.83
SVM_PaDEL+MACCS 1610 1108 0.76 0.035 0.51 0.069 0.83 0.76 0.75 0.76 0.69 0.82
SVM_PaDEL+Morgan2 3492 1108 0.76 0.036 0.51 0.078 0.82 0.75 0.66 0.83 0.73 0.78

SVM_PaDEL+PaDEL-Ext 2468 1109 0.76 0.039 0.51 0.075 0.84 0.76 0.74 0.78 0.7 0.81
SVM_MOE2D+MACCS 372 1132 0.76 0.047 0.5 0.096 0.81 0.74 0.68 0.81 0.71 0.79
SVM_MOE2D+Morgan2 2254 1132 0.75 0.041 0.5 0.081 0.83 0.75 0.77 0.73 0.66 0.83
SVM_MOE2D+PaDEL 1680 1109 0.76 0.039 0.5 0.079 0.83 0.75 0.74 0.77 0.69 0.81

SVM_MOE2D+PaDEL-Est 285 1132 0.76 0.039 0.5 0.081 0.81 0.75 0.68 0.81 0.71 0.79
SVM_MOE2D+PaDEL-Ext 1230 1132 0.75 0.054 0.5 0.105 0.83 0.75 0.75 0.76 0.68 0.81

SVM_PaDEL 1444 1109 0.75 0.038 0.5 0.075 0.83 0.75 0.75 0.75 0.68 0.81
SVM_PaDEL+OASIS 1449 1109 0.75 0.038 0.5 0.075 0.83 0.75 0.75 0.75 0.68 0.81

SVM_PaDEL+PaDEL-Est 1523 1109 0.75 0.038 0.5 0.075 0.83 0.75 0.75 0.75 0.68 0.81
RF_PaDEL+MACCS 1610 1108 0.76 0.018 0.49 0.037 0.82 0.73 0.62 0.85 0.74 0.77
RF_PaDEL+Morgan2 3492 1108 0.76 0.02 0.49 0.042 0.82 0.74 0.64 0.84 0.73 0.77

RF_PaDEL+OASIS 1449 1109 0.76 0.02 0.49 0.043 0.82 0.74 0.62 0.85 0.74 0.77
RF_PaDEL+PaDEL-Ext 2468 1109 0.76 0.022 0.49 0.048 0.82 0.73 0.61 0.86 0.75 0.76

SVM_PaDEL-Est+MACCS 245 1132 0.75 0.051 0.49 0.106 0.81 0.74 0.69 0.8 0.7 0.79
RF_MOE2D+PaDEL 1680 1109 0.75 0.034 0.48 0.072 0.83 0.73 0.62 0.84 0.73 0.77

RF_Morgan2+PaDEL-Est 2127 1132 0.76 0.033 0.48 0.071 0.82 0.73 0.63 0.84 0.73 0.77
RF_PaDEL 1444 1109 0.75 0.015 0.48 0.033 0.82 0.73 0.62 0.84 0.73 0.76

RF_PaDEL-Est+OASIS 84 1128 0.75 0.043 0.48 0.091 0.8 0.74 0.65 0.82 0.72 0.78
SVM_MACCS+OASIS 171 1128 0.75 0.047 0.48 0.102 0.82 0.74 0.69 0.79 0.69 0.79

SVM_MOE2D 206 1132 0.74 0.037 0.48 0.067 0.82 0.74 0.75 0.74 0.66 0.82
SVM_Morgan2+PaDEL-Ext 3072 1132 0.75 0.044 0.48 0.09 0.82 0.74 0.68 0.8 0.7 0.79

RF_MACCS 166 1132 0.75 0.039 0.47 0.088 0.81 0.73 0.61 0.84 0.73 0.76
RF_MACCS+OASIS 171 1128 0.75 0.034 0.47 0.074 0.8 0.73 0.6 0.85 0.74 0.76

RF_PaDEL+PaDEL-Est 1523 1109 0.75 0.028 0.47 0.06 0.83 0.73 0.61 0.85 0.73 0.76
SVM_MACCS 166 1132 0.74 0.057 0.47 0.12 0.81 0.73 0.69 0.78 0.68 0.79

SVM_PaDEL-Est+OASIS 84 1128 0.74 0.048 0.47 0.099 0.8 0.74 0.71 0.76 0.67 0.8
SVM_PaDEL-Est+PaDEL-Ext 1103 1132 0.74 0.039 0.47 0.08 0.81 0.74 0.7 0.78 0.68 0.79

SVM_PaDEL-Ext 1024 1132 0.74 0.046 0.47 0.093 0.81 0.73 0.7 0.77 0.68 0.79
SVM_PaDEL-Ext+OASIS 1029 1128 0.74 0.036 0.47 0.072 0.82 0.74 0.7 0.77 0.68 0.79

RF_MOE2D+Morgan2 2254 1132 0.74 0.033 0.46 0.071 0.81 0.72 0.62 0.82 0.71 0.76
RF_PaDEL-Est+MACCS 245 1132 0.75 0.045 0.46 0.1 0.81 0.72 0.59 0.85 0.73 0.76
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Table 4. Cont.

Name Number of
Descriptors

Number of Compounds in
Training Data ACC ACC

STDEV MCC MCCSTDEV AUC CCR Se SP PPV NPV

RF_Morgan2 2048 1132 0.74 0.039 0.46 0.081 0.81 0.73 0.64 0.81 0.7 0.77
SVM_Morgan2+MACCS 2214 1132 0.74 0.058 0.46 0.117 0.8 0.73 0.68 0.78 0.68 0.78

SVM_PaDEL-Ext+MACCS 1190 1132 0.74 0.047 0.46 0.097 0.81 0.73 0.68 0.77 0.68 0.78
RF_MOE2D+OASIS 211 1128 0.74 0.041 0.45 0.09 0.81 0.71 0.6 0.83 0.71 0.75

RF_MOE2D+PaDEL-Est 285 1132 0.74 0.032 0.45 0.07 0.81 0.72 0.6 0.84 0.72 0.75
RF_MOE2D+PaDEL-Ext 1230 1132 0.74 0.017 0.45 0.037 0.82 0.72 0.58 0.85 0.73 0.75

RF_MOE2D 206 1132 0.73 0.036 0.44 0.078 0.81 0.71 0.59 0.83 0.71 0.75
RF_MOE2D+MACCS 372 1132 0.73 0.033 0.44 0.072 0.81 0.71 0.58 0.84 0.71 0.75
RF_Morgan2+MACCS 2214 1132 0.73 0.039 0.44 0.086 0.8 0.72 0.63 0.8 0.68 0.76
RF_Morgan2+OASIS 2053 1128 0.74 0.029 0.44 0.063 0.82 0.71 0.59 0.83 0.71 0.75

RF_Morgan2+PaDEL-Ext 3072 1132 0.73 0.036 0.44 0.081 0.81 0.71 0.56 0.85 0.72 0.74
SVM_MOE2D53 53 1132 0.71 0.037 0.44 0.069 0.78 0.72 0.76 0.68 0.62 0.81
SVM_PaDEL-Est 79 1132 0.72 0.037 0.44 0.073 0.77 0.72 0.71 0.73 0.64 0.79
RF_PaDEL-Est 79 1132 0.73 0.022 0.43 0.042 0.77 0.71 0.64 0.79 0.67 0.76

RF_PaDEL-Ext+MACCS 1190 1132 0.73 0.037 0.43 0.081 0.81 0.7 0.55 0.85 0.72 0.74
RF_PaDEL-Ext+OASIS 1029 1128 0.73 0.033 0.43 0.072 0.8 0.7 0.57 0.84 0.71 0.74

RF_PaDEL-Ext+PaDEL-Est 1103 1132 0.73 0.034 0.43 0.074 0.8 0.7 0.56 0.85 0.72 0.74
SVM_Morgan2+OASIS 2053 1128 0.73 0.038 0.43 0.089 0.8 0.69 0.51 0.88 0.75 0.73

SVM_Morgan2+PaDEL-Est 2127 1132 0.72 0.035 0.43 0.064 0.79 0.72 0.69 0.75 0.65 0.78
RF_MOE2D53 53 1132 0.73 0.039 0.42 0.086 0.78 0.7 0.58 0.83 0.69 0.74
RF_PaDEL-Ext 1024 1132 0.72 0.039 0.42 0.088 0.79 0.7 0.55 0.84 0.71 0.73
SVM_Morgan2 2048 1132 0.72 0.031 0.39 0.072 0.8 0.68 0.49 0.87 0.72 0.71

SVM_OASIS 5 1128 0.67 0.064 0.29 0.151 0.63 0.62 0.37 0.87 0.68 0.67
RF_OASIS 5 1128 0.66 0.054 0.27 0.122 0.64 0.63 0.43 0.82 0.62 0.68

Abbreviations: ACC, accuracy; AUC, area under the receiver operating characteristic curve; CCR, correct classification rate; MCC, Matthews correlation coefficient; NPV, negative
predictive value; PPV, positive predictive value; Se, sensitivity; Sp, specificity; STDEV, standard deviation.
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For any combination of machine learning algorithm and descriptor set(s), optimum hyperparameters
were identified via a grid search (Table 5). The grid search was performed within the framework of a
10-fold cross-validation, with Matthews correlation coefficient (MCC) [40] used as the scoring parameter.

Table 5. Overview of hyperparameters optimized by grid search.

Machine Learning Approach Parameter Explored Values

RF
n_estimators 1 10, 50, 100, 250, 500, 1000
max_features 2 ‘sqrt’, 0.2, 0.4, 0.6, 0.8, None

SVM
C 3 0.01, 0.1, 1, 10, 100, 1000

gamma 4 1, 0.1, 0.01, 0.001, 0.0001, 0.00001
1 Number of prediction trees. 2 Maximum depth of each tree. 3 Penalty parameter C of the error term. 4 Coefficient
for the radial basis function (rbf) kernel. Abbreviations: RF, random forest; SVM, support vector machine.

The outcomes of this grid search are summarized in Table S3. It can be seen that similar
hyperparameters tend to be selected by models based on related types and sets of molecular descriptors.
No strong preferences for specific hyperparameter values are apparent. This is likely related to the fact
that, within a broad value space, the hyperparameters only had a minor impact on model performance.

2.4. Model Performance

2.4.1. Measures for the Evaluation of Model Performance

Eight different measures were applied to describe the performance of the classifiers:

• Matthews correlation coefficient (MCC), which is regarded to be one of the best measures of binary
classification performance. It is robust against data imbalance and considers the proportion of
all four cases of predictions (i.e., true positive, false positive, true negative and false negative
predictions). Note that MCC values range from−1 to +1. A value of +1 indicates perfect prediction,
whereas a value of −1 indicates a prediction that is in total disagreement. A value of 0 indicates a
performance which is equal to random.

• ACC, which has been most commonly used by others to measure the performance of models
for the prediction of the skin sensitization potential. It is defined as the proportion of correct
predictions within all predictions made.

• Area under the receiver operating characteristic curve (AUC), which in this case quantifies the
ability to correctly rank compounds according to their skin sensitization potential. The AUC does
not rely on a decision threshold.

• Sensitivity (Se), which in this case quantifies the proportion of correctly identified skin sensitizers.
• Specificity (Sp), which in this case quantifies the proportion of correctly predicted non-sensitizers.
• Positive predictive value (PPV), which reports the proportion of true positive predictions among

all positive predictions.
• Negative predictive value (NPV), which reports the proportion of true negative predictions among

all negative predictions.
• CCR, which is the mean of Se and Sp.

2.4.2. Model Performance During Cross-Validation

Depending on the combination of machine learning algorithm (RF or SVM) and descriptor set(s)
used, MCC values ranged from 0.27 to 0.55, ACC values from 0.66 to 0.78, and AUC values from 0.63
to 0.84 (Table 4). The machine learning algorithms had only a minor impact on model performance.
The average MCC values obtained by RFs and SVMs were 0.45 and 0.48, respectively. Nevertheless,
the twelve predictors that obtained the highest MCC values are all based on SVMs. Most of the
observed variation in performance stemmed from the use of different descriptor sets.
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The best performance during cross-validation was obtained by the SVM_MOE2D+OASIS model.
This model yielded an MCC, ACC and AUC of 0.55, 0.78 and 0.83, respectively. The best model based
on a single set of descriptors was the SVM_PaDEL model. It reached an MCC, ACC and AUC of 0.50,
0.75 and 0.83, respectively. However, its lead over the corresponding RF model and other models
based on a single set of descriptors was small. For example, the best model based on a single type of
molecular fingerprint, RF_MACCS, obtained an MCC, ACC and AUC of 0.47, 0.75 and 0.81, respectively.
Models based on either machine learning algorithm in combination with “MOE 2D” descriptors or
MACCS fingerprints yielded comparable performance. Reduction of the full MOE2D descriptor set
to the subset of 53 interpretable MOE descriptors (previously used for analyzing the chemical space
coverage) led to a decline in MCC values by a maximum of 0.04. Caution needs to be exercised
when interpreting these small differences in performance because of the variance observed during
cross-validation. For example, for the SVM_MOE2D_53 model, the standard deviation observed for
the MCC during cross-validation was 0.069.

In most cases, the combination of two sets of molecular descriptors was beneficial to model
performance. Exceptions include models based on combinations of two sets of descriptors of the same
type (e.g., Morgan2 and MACCS fingerprints). These did not outperform the best models based on a
single set of descriptors. Also, combinations of 0D/1D/2D molecular descriptors with fingerprints did
not consistently outperform models based on a single set of descriptors, albeit nine out of twelve models
with MCC values greater than or equal to 0.5 are models combining non-binary molecular descriptors
(i.e., MOE2D or PaDEL) with molecular fingerprints. Tables S4 and S5 provide a comprehensive
overview of the impact of different combinations of descriptor sets on model performance.

Good performance was also obtained by models generated using non-commercial software only.
For example, the SVM_PaDEL+OASIS model obtained MCC, ACC and AUC values of 0.50, 0.75 and
0.83, respectively. With few exceptions, the OASIS fingerprint contributed positively to the performance
of models. For instance, adding the OASIS fingerprint to the SVM_MOE2D model led to an increase
of the MCC, ACC and AUC by 0.07, 0.04 and 0.01, respectively. Interestingly, with a total of just
84 bits, the RF_PaDEL−Est+OASIS model reached a level of performance that is comparable with
that of more complex models (MCC 0.48; ACC 0.75; AUC 0.80). However, when used on its own, the
OASIS fingerprint is not sufficient for good classification performance: the RF_OASIS and SVM_OASIS
models obtained the lowest MCC values across all models (i.e., 0.27 and 0.29, respectively).

2.4.3. In-Depth Analysis of Selected Models within the Cross-Validation Framework

Based on the cross-validation results, five of the most interesting models were selected for
additional studies:

• SVM_MOE2D+OASIS: the model with highest MCC.
• SVM_PaDEL+OASIS: a model performing comparable to the SVM_MOE2D+OASIS and based

on freely available software only.
• SVM_PaDEL: the best model based on a single set of molecular descriptors.
• RF_MACCS: the best model based on a single set of molecular fingerprints.
• SVM_PaDEL+MACCS: a model with good performance, combining the descriptor sets used by

the above two models.

Within the above-mentioned 10-fold cross-validation framework, we first analyzed how the
coverage of the query molecules by the training data affects model performance. For this analysis we
calculated the similarity between the individual query molecules and the one, three and five-nearest
neighbors in the training set. Two similarity measures were explored: Tanimoto coefficients in the
MACCS fingerprint space and negative Euclidean distances in the PaDEL descriptor space. The latter
did not correlate well with molecular similarity (likely caused by noise related to the large number
of molecular descriptors considered in this approach; Figure S2 and Table S6), for which reason we
decided to go ahead with the fingerprint-based distance measure.
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For all five models, a direct linear relationship was observed between MCC values and molecular
similarity. The relationship was consistent when considering different numbers of nearest neighbors
in the training data but tended to be more robust when taking more (i.e., 5) nearest neighbors into
account (Pearson correlation coefficient between 0.92 and 0.96 when considering five nearest neighbors).
As shown in Figure 6, for compounds dissimilar to those present in the training data (defined by
Tanimoto coefficients averaged over the five nearest neighbors of 0.5 or lower), MCC values were below
or around 0.4 for all five models. For compounds structurally related to the training data (defined by
Tanimoto coefficients of 0.7 or higher), MCC values were at least 0.5 or higher.
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as averaged Tanimoto coefficients based on MACCS fingerprints). (a) SVM_MOE2D+OASIS;
(b) SVM_PaDEL+OASIS; (c) SVM_PaDEL; (d) RF_MACCS; (e) SVM_PaDEL+MACCS. Pearson
correlation coefficients are reported in brackets in the figure legends. The number of compounds in
each bin is summarized in Table S7.
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Secondly, we investigated how changes to the decision threshold of the SVM and RF classifiers
(i.e., the value above which a compound is predicted to be a sensitizer) affect the sensitivity and
specificity of the models. As shown in Figure 7, both these metrics strongly depend on the selected
decision threshold. This allows users to define context-dependent thresholds. For example, in scenarios
where for a compound of interest any skin sensitization potential should be ruled out, users may opt
for lower decision thresholds to identify any hazard. In the case of the RF_MACCS model, lowering
the decision threshold to 0.3 results in a sensitivity of 0.84 and a specificity of 0.61 (Figure 7d).
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Figure 7. Matthews correlation coefficient (MCC), sensitivity and specificity as a function of the decision
threshold, for (a) SVM_MOE2D+OASIS; (b) SVM_PaDEL+OASIS; (c) SVM_PaDEL; (d) RF_MACCS;
(e) SVM_PaDEL+MACCS. Note that different X-axis scales are applied to the graphs illustrating the
performance of random forest (RF) and support vector machine (SVM) models.

Observing the predicted class probability can be of use for assessing the reliability of a prediction:
as shown in Figure 8, the reliability of predictions increases with the absolute distance between the
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class probability and the decision threshold. For SVM models, predictions with class probabilities
more than 0.5 away from the decision threshold had averaged MCC values between 0.63 and 0.67,
whereas predictions with class probabilities less than 0.5 away had averaged MCC values of just 0.20
to 0.29. For the RF_MACCS model, predictions with class probabilities more than 0.35 away from the
decision threshold had MCC values above 0.6, whereas predictions with class probabilities closer than
0.15 to the decision threshold had MCCs below 0.4. For the five investigated models, the Pearson
correlation coefficients for this relationship were between 0.92 and 0.98.
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class probabilities and the decision thresholds, for the (a) support vector machine (SVM) models and
(b) random forest (RF) model. The number of compounds in each bin is summarized in Table S8.

As a further way of analyzing the data, we looked into the reliability of predictions as a function
of the number of consecutive nearest neighbors in the training data that are of the same activity class
as the one predicted for a compound of interest. From Figure 9, it can be seen that predictions are
particularly reliable if the three nearest neighbors in the training data are of the identical class as the
class predicted for a compound of interest. The strongest correlation is observed for the RF_MACCS
model. For this model the MCC is close to zero for compounds where the predicted class is in conflict
with the class assigned to the nearest neighbor. In contrast, the MCC is above 0.6 for compounds where
the predicted class and the classes assigned to the three nearest neighbors are identical.

2.4.4. Performance of Selected Models on the Test Set

The performance of the five selected models was tested on holdout data. All models were stable,
with only minor losses in MCC, ACC and AUC when compared to the results from cross-validation
(Table 6). The largest losses in performance were observed for the RF_MACCS model, with MCC and
ACC values decreased by 0.06 and 0.03, respectively (AUC however +0.01).

By defining the applicability domain of the models to include any compounds with a minimum
Tanimoto coefficient of 0.75 averaged over the five-nearest neighbors in the training set (based on
MACCS fingerprints), MCC values increased, in the case of the RF_MACCS model from 0.41 to 0.59.
However, at the same time the coverage of the test set is reduced, in the case of RF_MACCS to 28%.

Defining the applicability domain with a cutoff of 0.50 rather than 0.75 led to only minor performance
improvements compared to the model without applicability domain definition. This is related to the
fact that only approximately 3% of the compounds of the test set are that dissimilar to the compounds
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in the training data. However, predictions for these compounds are unreliable (MCC values 0.2 or
lower). Therefore, it is important to observe the applicability domain of the individual models.
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Figure 9. Matthews correlation coefficient (MCC) as a function of the number of consecutive nearest
neighbors in the training data that are of the same activity class as the predicted class for a compound
of interest (molecular similarity quantified as Tanimoto coefficient based on MACCS fingerprints).
The number of compounds in each bin is summarized in Table S9. The graphs for SVM_PaDEL+OASIS
and SVM_PaDEL+MACCS are not shown because they are (almost) identical with that of SVM_PaDEL
and would overlap.

Table 6. Performance of selected models on the test set.

NAME

Mean Tanimoto
Similarity to the

Five Nearest
Neighbors

Number of
Compounds ACC MCC AUC CCR Se Sp PPV NPV

RF_MACCS ≥0 284 0.72 0.41 0.82 0.70 0.57 0.82 0.69 0.74
RF_MACCS ≥0.5 273 0.73 0.43 0.82 0.71 0.6 0.82 0.69 0.75
RF_MACCS ≥0.75 79 0.78 0.59 0.91 0.81 0.89 0.73 0.64 0.92
RF_MACCS <0.5 11 0.45 −0.29 0.60 0.42 0.00 0.83 0.00 0.50

SVM_MOE_2D+OASIS ≥0 283 0.76 0.52 0.83 0.76 0.81 0.72 0.66 0.85
SVM_MOE_2D+OASIS ≥0.5 273 0.76 0.53 0.84 0.77 0.82 0.72 0.67 0.86
SVM_MOE_2D+OASIS ≥0.75 79 0.81 0.64 0.89 0.84 0.93 0.75 0.67 0.95
SVM_MOE2D+OASIS <0.5 10 0.60 0.20 0.60 0.60 0.60 0.60 0.60 0.60

SVM_PaDEL ≥0 279 0.74 0.47 0.82 0.74 0.76 0.72 0.65 0.82
SVM_PaDEL ≥0.5 269 0.74 0.49 0.83 0.75 0.77 0.73 0.65 0.83
SVM_PaDEL ≥0.75 79 0.80 0.63 0.89 0.83 0.93 0.73 0.65 0.95
SVM_PaDEL <0.5 10 0.60 0.20 0.56 0.60 0.60 0.60 0.60 0.60

SVM_PaDEL+MACCS ≥0 279 0.75 0.50 0.82 0.75 0.78 0.73 0.66 0.83
SVM_PaDEL+MACCS ≥0.5 269 0.75 0.51 0.83 0.76 0.79 0.73 0.66 0.84
SVM_PaDEL+MACCS ≥0.75 79 0.80 0.63 0.89 0.83 0.93 0.73 0.65 0.95
SVM_PaDEL+MACCS <0.5 10 0.60 0.20 0.56 0.60 0.60 0.60 0.60 0.60
SVM_PaDEL+OASIS ≥0 279 0.74 0.48 0.82 0.74 0.76 0.73 0.65 0.82
SVM_PaDEL+OASIS ≥0.5 271 0.75 0.49 0.83 0.75 0.77 0.73 0.65 0.83
SVM_PaDEL+OASIS ≥0.75 79 0.80 0.63 0.89 0.83 0.93 0.73 0.65 0.95
SVM_PaDEL+OASIS <0.5 10 0.60 0.20 0.56 0.60 0.60 0.6 0.60 0.60

Abbreviations: ACC, accuracy; AUC, area under the receiver operating characteristic curve; CCR, correct classification
rate; MCC, Matthews correlation coefficient; NPV, negative predictive value; PPV, positive predictive value;
Se, sensitivity; Sp, specificity.

Besides the applicability domain definition, users are advised to consider two additional types of
information when judging the reliability of a prediction: (i) the distance between the predicted class
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probability from the decision threshold and (ii) the number of consecutive nearest neighbors that are of
the same activity class than the class predicted for a compound of interest.

Larger distances of the class probability to the decision threshold indicate higher reliability of the
prediction. For example, when considering only predictions with class probabilities 0.35 or further
away from the decision threshold, the MCC of the RF_MACCS model increases from 0.41 to 0.78
(this covers 23% of the test set; Table 7). Likewise, for the SVM models, MCC values increase from
approximately 0.5 to a maximum of 0.78 when considering predictions only if their class probability
is 1.25 or further away from the decision threshold (this covers 12% to 37% of the compounds in the
test set).

Table 7. Test set performance as a function of the distance of predicted class probabilities from the
decision threshold.

Name
Distance to

Decision
Threshold 1

Number of
Compounds ACC MCC AUC CCR Se Sp PPV NPV

RF-MACCS ≥0.15 175 0.85 0.67 0.46 0.84 0.81 0.87 0.76 0.90
RF-MACCS ≥0.35 66 0.91 0.78 0.42 0.89 0.85 0.93 0.85 0.93
RF-MACCS <0.15 109 0.51 0.04 0.42 0.52 0.32 0.72 0.55 0.50

SVM_MOE2D+OASIS ≥0.5 203 0.82 0.64 0.42 0.83 0.88 0.78 0.73 0.90
SVM_MOE2D+OASIS ≥1.25 106 0.89 0.76 0.41 0.89 0.89 0.88 0.81 0.94
SVM_MOE2D+OASIS <0.50 80 0.60 0.20 0.52 0.60 0.62 0.58 0.50 0.70

SVM_PaDEL ≥0.5 183 0.80 0.61 0.48 0.81 0.86 0.76 0.71 0.89
SVM_PaDEL ≥1.25 34 0.88 0.78 0.45 0.91 1.00 0.82 0.75 1.00
SVM_PaDEL <0.50 96 0.61 0.21 0.36 0.60 0.55 0.66 0.51 0.69

SVM_PaDEL+MACCS ≥0.5 183 0.80 0.62 0.49 0.82 0.88 0.75 0.71 0.90
SVM_PaDEL+MACCS ≥1.25 37 0.86 0.75 0.52 0.9 1.00 0.80 0.71 1.00
SVM_PaDEL+MACCS <0.50 96 0.65 0.27 0.39 0.63 0.58 0.69 0.55 0.71
SVM_PaDEL+OASIS ≥0.5 183 0.80 0.61 0.49 0.81 0.86 0.76 0.71 0.89
SVM_PaDEL+OASIS ≥1.25 34 0.88 0.78 0.45 0.91 1.00 0.82 0.75 1.00
SVM_PaDEL+OASIS <0.50 96 0.62 0.22 0.37 0.61 0.55 0.67 0.52 0.70
1 Distance of predicted class probabilities from the decision threshold. Abbreviations: ACC, accuracy; AUC, area
under the receiver operating characteristic curve; CCR, correct classification rate; MCC, Matthews correlation
coefficient; NPV, negative predictive value; PPV, positive predictive value; Se, sensitivity; Sp, specificity.

Predictions for query molecules that are consistent with the class assigned to the k-nearest
neighbors in the training data are more reliable than for those that are in conflict. This is also confirmed
by the results obtained for the test set (Table 8): Predictions that are in disagreement with the activity
class of the nearest neighbor resulted in MCC and ACC values no higher than 0.13 and 0.56, respectively.
MCC and ACC values increase to a maximum of 0.98 and 0.99 when considering predictions only if
they are consistent with three or more nearest neighbors.

2.4.5. Comparison of Model Performance to that of Existing Models

Major caveats must be considered when attempting to directly compare the performance reported
for existing models with those presented in this work. Not only do the underlying training and test
sets differ substantially, but also the protocols used for performance evaluation and the definitions
of the models’ applicability domains. Roughly summarized, Alves et al. reported their predictor
of binary LLNA outcomes to yield a CCR of 0.77 during external cross-validation [28]. Di et al.
reported their best global model for the binary prediction of LLNA outcomes, a SVM model based on
PaDEL-Ext descriptors (Ext-SVM), to have yielded an ACC of 0.84 during cross-validation and an ACC
of 0.81 on their test set (when considering the applicability domain according to their definition) [22].
In comparison, our best model (SVM_MOE2D+OASIS) yielded a CCR of 0.78 and identical ACC
during cross-validation (MCC 0.55), without consideration of the applicability domain. On the test
set, the SVM_MOE2D+OASIS model obtained a CCR of 0.76 and an MCC of 0.52. In this case,
the consideration of the applicability domain of the model (defined as including any compound with a
mean Tanimoto similarity to the five nearest neighbors in the training set of 0.50 or higher) did not
yield a further improvement of performance. The SVM_PaDEL and RF_MACCS models, which are
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available via a public web service, yielded comparable CCR values (0.74 and 0.70 without consideration
of the applicability domain; 0.75 and 0.71 with consideration of the applicability domain, respectively).
The latter model has the additional benefit of being based on a fingerprint with a length of only 166 bits.

Table 8. Test set performance as a function of the number of consecutive nearest neighbors with class
assignments consistent with the predicted class.

Name
Number of
Concordant
Neighbors1

Number of
Compounds ACC MCC AUC CCR Se Sp PPV NPV

RF_MACCS 0 87 0.33 -0.35 0.32 0.33 0.19 0.48 0.26 0.38

RF_MACCS ≥1 197 0.89 0.77 0.97 0.87 0.81 0.94 0.89 0.89

RF_MACCS ≥2 147 0.96 0.90 1.00 0.94 0.89 0.99 0.98 0.95

RF_MACCS ≥3 113 0.99 0.98 1.00 0.98 0.97 1.00 1.00 0.99

SVM_MOE2D+OASIS 0 85 0.56 0.13 0.56 0.57 0.62 0.51 0.55 0.58

SVM_MOE2D+OASIS ≥1 198 0.84 0.69 0.94 0.85 0.92 0.79 0.72 0.94

SVM_MOE2D+OASIS ≥2 146 0.91 0.81 0.99 0.92 0.95 0.89 0.79 0.98

SVM_MOE2D+OASIS ≥3 115 0.91 0.80 0.99 0.92 0.94 0.90 0.79 0.97

SVM_PaDEL 0 86 0.53 0.07 0.52 0.54 0.56 0.51 0.51 0.56

SVM_PaDEL ≥1 193 0.83 0.66 0.92 0.84 0.87 0.8 0.72 0.92

SVM_PaDEL ≥2 147 0.89 0.78 0.96 0.91 0.96 0.86 0.76 0.98

SVM_PaDEL ≥3 113 0.90 0.79 0.97 0.92 0.97 0.88 0.76 0.99

SVM_PaDEL+MACCS 0 86 0.55 0.10 0.53 0.55 0.59 0.51 0.52 0.57

SVM_PaDEL+MACCS ≥1 193 0.84 0.68 0.91 0.85 0.89 0.81 0.73 0.93

SVM_PaDEL+MACCS ≥2 147 0.90 0.80 0.96 0.92 0.96 0.88 0.79 0.98

SVM_PaDEL+MACCS ≥3 113 0.91 0.81 0.97 0.93 0.97 0.89 0.78 0.99

SVM_PaDEL+OASIS 0 86 0.53 0.07 0.52 0.54 0.56 0.51 0.51 0.56

SVM_PaDEL+OASIS ≥1 193 0.83 0.67 0.92 0.84 0.87 0.81 0.73 0.92

SVM_PaDEL+OASIS ≥2 147 0.9 0.79 0.96 0.91 0.96 0.87 0.77 0.98

SVM_PaDEL+OASIS ≥3 113 0.91 0.81 0.97 0.93 0.97 0.89 0.78 0.99
1 Number of consecutive nearest neighbors in the training data having the same activity class assigned as the
one predicted for the test compounds. Abbreviations: ACC, accuracy; AUC, area under the receiver operating
characteristic curve; CCR, correct classification rate; MCC, Matthews correlation coefficient; NPV, negative predictive
value; PPV, positive predictive value; Se, sensitivity; Sp, specificity.

2.5. Skin Doctor Web Service

The final RF_MACCS and SVM_PaDEL models, trained not on the cross-validation data set
but on the complete, preprocessed data set (1416 and 1388 compounds, depending on the number
of compounds for which descriptors could be successfully calculated) are provided via the New
E-Resource for Drug Discovery (NERDD) [41]. Queries can either be directly drawn or uploaded in
different formats. Users may change the default decision threshold to steer the model’s sensitivity and
specificity. Results are presented in a tabular overview and can be exported as a CSV file. For each
query they include information on (i) whether or not the query is within the applicability domain
of the model, (ii) the predicted activity classes, (iii) distances from the selected decision threshold,
(iv) mean similarity between the query compound and the five-nearest neighbors of the training set and
(v) number of consecutive nearest neighbors in the training data of which the activity label is consistent
with that of the prediction. The analysis and visualization of the corresponding effects presented in
this work may be used as guidance to choose the required confidence in the prediction, being aware of
the corresponding effects on the model’s applicability domain and the requirements for similarity.

Predictions are flagged with reliability warnings (a) if the mean similarity between the compound
of interest and the five nearest neighbors is less than 0.5, or (b) if the predictions are in conflict with the
activity of the nearest neighbor in the training data, or (c) if the distance to the decision threshold is
small (0.15 for the RF_MACCS model; 0.5 for the SVM_PaDEL model).
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3. Materials and Methods

3.1. Data Preparation

The LLNA data set compiled by Alves et al. was downloaded from Chembench. Binary class
labels (i.e., “sensitizer”, “non-sensitizer”) were obtained from the binary property “LLNA result” and
not altered. The LLNA data set of Di et al. was obtained from the supporting information associated
with their publication [22]. Binary class labels (i.e., “sensitizer”, “non-sensitizer”) were assigned based
on the information provided by the property “class”: any compounds with the value “negative” were
assigned the label “non-sensitizer”; any compounds with the value “weak”, “moderate”, “strong”
or “extreme” were assigned the label “sensitizer”. Reference data sets of cosmetic substances and
ingredients (hereafter “cosmetics”), approved drugs and pesticides were obtained from the EU CosIng
database, Drugbank and EU pesticides database.

All data sets were processed individually according to the following protocol: Any counterions
were removed and the remaining molecular structures neutralized as described in the work of
Stork et al. [42]. Tautomers were standardized with the “TautomerCanonicalizer” method implemented
in the “tautomer” class of MolVS [43]. This was followed by a deduplication of molecules based on
canonicalized SMILES. Stereochemical information was disregarded at this point, leading to conflicting
activity labels for one compound (which had different activity labels assigned to the two enantiomers).
This compound was removed from the data set.

A merged LLNA data set based on the LLNA data sets of Alves et al. and Di et al. was generated
by filtering duplicates based on canonical SMILES and removing any compounds with contradicting
class labels.

3.2. Descriptor Calculation

Molecular descriptors were computed with the Molecular Operating Environment (MOE) [36]
(“MOE descriptors”), RDKit [39] (Morgan and MACCS fingerprints) and PaDEL [37,38] (“PaDEL
descriptors” as well as the molecular fingerprints “PaDEL-Est” and “PaDEL-Ext”). “MOE 2D”
descriptors were calculated with default settings. Morgan fingerprints (2048 bits) were calculated with
a radius of 2. MACCS fingerprints were calculated with default settings. Also, the PaDEL descriptors
were calculated with default settings, with the exception of a maximum allowed runtime of 1000 s per
molecule. Structural alerts were computed with the OECD toolbox [29] using the “Protein binding
alerts for skin sensitization by OASIS” profiler with default settings. All non-binary descriptors were
scaled to unit variance and their mean shifted to zero prior to model building and data analysis using
the StandardScaler of scikit-learn [44].

3.3. Data Analysis

PCA was conducted with scikit-learn based on a subset of 53 physically meaningful, scaled “MOE
2D” descriptors (Table S1). RDKit was employed for generating Murcko scaffolds and calculating
molecular similarity.

3.4. Compilation of Data Sets for Model Development

The merged LLNA data set was divided into a training set (80%) and a test set (20%) by stratified
splitting with the train_test_split function of the model_selection module of scikit-learn (data shuffling
prior to data set splitting enabled). This procedure was assigned a random state of 43.

3.5. Model Generation

Models were generated with scikit-learn and a random_state value of 43. Default settings were
applied, with the exception of class_weight set to “balanced” for both RF and SVM. SVMs were
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used with a radial basis function (RBF) kernel. Optimal settings for n_estimators and max_features
(RF models) and C and gamma (SVM models) were derived during grid search.

3.6. Hardware and Software

All calculations were performed on Linux workstations running openSUSE Leap 15.0 and equipped
with Intel i5 processors (3.2 GHz) and 16 GB of main memory.

4. Conclusions

Building on the works of Alves et al. and Di et al., we have compiled a collection of 1416 compounds
annotated with binary LLNA outcomes. To our knowledge, this is the largest LLNA data set that
has been used for the development of models predicting the skin sensitization potential of small
organic molecules. As we show by chemical space analysis, those areas most densely populated by
cosmetics, approved drugs and pesticides are also well covered by this new LLNA data set. The
fraction of compounds covered by structurally related compounds in the new LLNA data set is
much higher for cosmetics (30%) than for approved drugs (10%) and pesticides (13%). Therefore, the
models are applicable to many compounds typically used in cosmetic products. However, there are
chemical classes of drugs and cosmetics that are not adequately represented by the available LLNA
data. This emphasizes the importance of considering the applicability domain of models.

An interesting observation to make was that a cluster of skin sensitizers and non-sensitizers
with long aliphatic and halogenated chains could only be discriminated in the “MOE 2D” descriptor
space but not in the Morgan2 fingerprint space, which should be taken into consideration for model
building. The best models derived from the new LLNA data set obtained MCC and ACC values of
up to 0.55 and 0.78 during cross-validation and of up to 0.52 and 0.76 on holdout data, respectively.
Importantly, some of the models based entirely on free software and/or molecular descriptors of low
complexity yielded comparable performance. We identified the RF_MACCS and SVM_PaDEL models
as our favorite models, yielding MCC values of 0.41 and 0.47 on the holdout data. Comparison to
existing models indicates that our models reach competitive performance. They are trained on a data
set consisting of almost 3.5 times as many compounds as the one used by Di et al. The full data set
used for modeling and testing is also 42% larger than that of Alves et al. given the fact that the data set
compiled by Di et al. holds in particular a diverse set of non-sensitizers not covered by Alves et al.
we expect that our models, as they are based on the amalgamated data set, are more widely applicable
and more reliable.

A major aspect of this work is the definition of an applicability domain for the individual models
and the elaboration of means to estimate the reliability of predictions. The applicability domain was
defined based on the mean similarity of a compound of interest to the five-nearest neighbors in the
training data (quantified in MACCS fingerprint space). The difference between the predicted class
probability and the decision threshold, as well as the number of consecutive nearest neighbors in the
training data having the same activity class assigned as the one predicted for the compound of interest
proved to be useful indicators of the reliability of predictions. We recommend considering predictions
as reliable if all of the following conditions are met:

1. The compound of interest is within the applicability domain of the model.
2. The distance between the predicted class probability and the decision threshold is at least 0.15 for

RF models and 0.5 for SVM models.
3. The predicted activity class for a compound of interest is in agreement with the class assigned to

the nearest neighbor in the training data.

The public web service, available at https://nerdd.zbh.uni-hamburg.de/, provides access to the
final RF_MACCS and SVM_PaDEL models (i.e., models trained on the complete LLNA data set).
Users are provided detailed information on whether or not a compound of interest fulfills the three
criteria itemized above. A warning is issued in case predictions are determined to be unreliable. Users
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may also adjust the decision threshold, allowing them, e.g., to increase the model’s sensitivity in
scenarios where it is desirable to flag even substances with a low likelihood of being skin sensitizers.

We hope that the models will be well received by the scientific community and will make a
contribution to the development and application of non-animal methods for the prediction of the skin
sensitization potential of small organic molecules.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/20/19/
4833/s1.
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88 6. Results

6.2 An aggregated Mondrian conformal prediction work-
flow to predict binary and ternary skin sensitization
potential

Most definitions of the AD of a ML model are based on a more or less arbi-
trarily selected cutoff value to separate unreliable and reliable predictions. One
mathematically sound approach that does not need such a cutoff parameter is
wrapping the ML model into a CP framework. The CP framework provides a
solid and mathematically proven reliability measure for every single prediction
returned by a valid model.

Most common ML models for skin sensitization prediction address binary skin
sensitization potential as the final target. Within such a binary setting, all
substances labeled as sensitizers have to be treated with care and possibly
be removed from final consumer products. In contrast to this, the prediction
of skin sensitization potency or at least more than two classes of skin sensiti-
zation potential would enable the usage of less severe sensitizers in limited doses.

In the following study, we further increased the quality of our data set for model
building and evaluation by applying an additional manual data curation step,
which included the manual inspection of each 2D structure in one or several
public chemical data sets. We, furthermore, enveloped one of our best perform-
ing ML models for the prediction of binary skin sensitization potential (now
trained on the slightly smaller but more carefully curated data set) into an ag-
gregated Mondrian CP framework to ensure mathematically defined reliability
for all individual predictions. In addition, we presented two different combina-
tions of our binary classifier with a second binary classifier to distinguish weak
to moderate from strong to extreme sensitizers. The binary model has been
made available as a web service named Skin Doctor CP.

We undertook a careful analysis of the models’ validity and efficiency, especially
with respect to single activity classes. Furthermore, the ternary model was
extensively compared to a ternary model published by Di et al. [16]. Ternary
class information retrieved from our data set was also utilized to demonstrate
that sensitizers wrongly predicted as non-sensitizers by our binary model are
most likely weak to moderate sensitizers and less likely to be strong to extreme
sensitizers, which should be beneficial for risk assessment.

P3 Wilm, A., Norinder, U., Agea, M. I., de Bruyn Kops, C., Stork, C.,
Kühnl, J., Kirchmair, J., Skin doctor CP: Conformal prediction of the
skin sensitization potential of small organic molecules, Chemical Research
in Toxicology, 34(2) (2020) 330–344
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ABSTRACT: Skin sensitization potential or potency is an
important end point in the safety assessment of new chemicals
and new chemical mixtures. Formerly, animal experiments such as
the local lymph node assay (LLNA) were the main form of
assessment. Today, however, the focus lies on the development of
nonanimal testing approaches (i.e., in vitro and in chemico assays)
and computational models. In this work, we investigate, based on
publicly available LLNA data, the ability of aggregated, Mondrian
conformal prediction classifiers to differentiate between non-
sensitizing and sensitizing compounds as well as between two
levels of skin sensitization potential (weak to moderate sensitizers,
and strong to extreme sensitizers). The advantage of the conformal prediction framework over other modeling approaches is that it
assigns compounds to activity classes only if a defined minimum level of confidence is reached for the individual predictions. This
eliminates the need for applicability domain criteria that often are arbitrary in their nature and less flexible. Our new binary classifier,
named Skin Doctor CP, differentiates nonsensitizers from sensitizers with a higher reliability-to-efficiency ratio than the
corresponding nonconformal prediction workflow that we presented earlier. When tested on a set of 257 compounds at the
significance levels of 0.10 and 0.30, the model reached an efficiency of 0.49 and 0.92, and an accuracy of 0.83 and 0.75, respectively.
In addition, we developed a ternary classification workflow to differentiate nonsensitizers, weak to moderate sensitizers, and strong to
extreme sensitizers. Although this model achieved satisfactory overall performance (accuracies of 0.90 and 0.73, and efficiencies of
0.42 and 0.90, at significance levels 0.10 and 0.30, respectively), it did not obtain satisfying class-wise results (at a significance level of
0.30, the validities obtained for nonsensitizers, weak to moderate sensitizers, and strong to extreme sensitizers were 0.70, 0.58, and
0.63, respectively). We argue that the model is, in consequence, unable to reliably identify strong to extreme sensitizers and suggest
that other ternary models derived from the currently accessible LLNA data might suffer from the same problem. Skin Doctor CP is
available via a public web service at https://nerdd.zbh.uni-hamburg.de/skinDoctorII/.

■ INTRODUCTION

Skin sensitizers are substances that have the potential to cause
allergic contact dermatitis (ACD) during repeated exposure.1

ACD is a major cause of occupational illnesses2,3 and can
severely diminish the quality of life of affected individuals.
Therefore, thorough safety assessment is required prior to
market release of new substances to prevent the induction of
occupational or product exposure-based ACD. Moreover, in
case of a skin sensitization hazard, potency information (i.e.,
the concentration required to induce skin sensitization) is key
to determine safe use concentrations that do not result in the
induction of skin sensitization.4

Historically, the skin sensitization potential and potency of
substances have been mainly assessed by in vivo studies on
animals and, rarely, complemented by confirmatory studies
using safe doses on humans. The local lymph node assay
(LLNA),5 conducted in mice, is today considered the most
advanced animal testing system for skin sensitization potential

and potency.6 In contrast to other animal assays, the LLNA
assesses solely the induction phase and delivers potency
information in the form of an EC3 value, which is considered
to be a quantitative measure of the skin sensitization potency.7

The EC3 value represents a concentration required to derive a
point of departure for quantitative risk assessment. However,
the predictive capacity of animal testing for humans is limited
(in general8 and also with regard to skin sensitization
prediction9), and ethical and practical considerations as well
as regulatory constraints have led to the development of
alternatives to animal testing. These alternatives comprise in
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chemico and in vitro testing methods,10−13 as well as in silico
tools that predict a compound’s skin sensitization potential
based on its chemical structure or properties calculated
therefrom.12−15 Nevertheless, the reliability and coverage of
the individual alternative approaches is still limited, primarily
due to the scarcity of available high-quality data for the
development and validation of methods. For this reason,
researchers have been exploring strategies for the combination
of multiple nonredundant assays to achieve or exceed the level
of predictive hazard or potency information provided by
animal model data.16 These combined approaches are known
as defined approaches (DAs) and as integrated approaches for
testing and assessment (IATAs) and have been recently
reviewed in ref 9. For the qualification of cosmetic compounds,
in silico predictions can contribute to the prioritization of
chemicals for efficacy testing and, subsequently, to early phases
of (tiered) safety assessment strategies. For the latter,
predictions can be used in “weight of evidence” considerations
for risk assessment such as the dermal sensitization threshold
approach17 or as input for DAs and IATAs. For a computa-
tional model to be accepted within a regulatory context, it
should fulfill the five validation principles outlined by the
OECD:18 a defined end point, an unambiguous algorithm, a
defined applicability domain (AD), appropriate measures of
goodness-of-fit, robustness, and predictivity, and, if possible, a
mechanistic interpretation.
In the context of in silico prediction tools, the AD of a

method defines the chemical space within which a method
produces results with a defined reliability.19,20 Most AD
definitions include a more or less arbitrary or user-defined
threshold to differentiate between reliable and unreliable
predictions based on similarity to training data or the class
probability returned by the modeling algorithm.21

An alternative for defining the reliability of a model for a
certain compound of interest, without the definition of an AD,
is offered by conformal prediction (CP).22−24 Whereas
classical, standalone machine learning models based on
support vector machines (SVMs), random forests (RFs), or

other methods return a distinct prediction for a compound of
interest (or, in the case of RF, a class probability, if desired), a
CP model returns statistically justified class membership
probabilities for each of the classes. Users may select a desired
confidence level, 1−ε, and CP will return an observed error
equal to, or very close to, the chosen error rate ε, as long as the
randomness assumption of the samples (an assumption that is
also made for classical machine learning models) holds true.
On the basis of the class probabilities and the selected
confidence level, the model determines whether a compound is
within the AD of the model. If it is within the AD, one or more
class labels will be assigned to the compound; if it is outside
the AD, no class label will be assigned (or, more precisely, the
compound will be assigned to the empty (null) class). As with
the AD of classical machine learning models, different
measures of the reliability of a prediction (conformity
measures) may be selected for the model. However, the CP
model offers the advantage that the manual selection of a cutoff
value for this measure is not required. Instead, it is deduced in
a straightforward mathematical way from the selected
confidence level.
Different variants of CP support different needs regarding

the characteristics of the modeling data, and the computational
effort that should be invested.25 A CP variant that has been
shown to perform favorably on imbalanced data is Mondrian
CP, because it treats each class independently of all other(s),
thereby ensuring the validity of each individual class without
the need for over- or under-sampling.26−28 An additional type
of CP is aggregated CP, which repeats the workflow several
times so that each training compound could be used as a
proper training and calibration compound.29 Aggregated CP is
therefore favorable for small data sets. The combination of
Mondrian CP and aggregated CP works particularly well on
small, imbalanced data sets.
In this study, we apply aggregated, Mondrian CP to develop

classifiers for the prediction of the skin sensitization potential
of small molecules. We start with the development of a binary
classifier that distinguishes nonsensitizers from sensitizers and

Figure 1. Overview of LLNA data sets and subsets employed in this study.
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then explore strategies to obtain a differentiation of weak to
moderate sensitizers from strong to extreme sensitizers. The
performance of the models is determined with thorough
validation protocols and compared to the performance of
existing in silico models. The final classifier, called “Skin
Doctor CP”, is available as a web service, free of charge for
academic use.

■ METHODS
Data Sets. For the purpose of model development and evaluation,

LLNA data sets on the skin sensitization potential of small organic
compounds (Figure 1) were derived from the data published by Alves
et al.30 and Di et al.31 (all data are provided as Supporting
Information, SI). The data set was prepared following a protocol
described previously,32 which includes the removal of counterions,
neutralization, standardization of tautomers, removal of stereo-
chemical information, and removal of duplicate compounds and
compounds with conflicting activity data based on canonical SMILES.
For the current work, we refined this protocol by discarding any
entries for which, based on the information provided by Alves et al.
and Di et al., the exact molecular structure of the compound in
question could not be conclusively confirmed. More specifically, we
discarded any entries that match at least one of the following criteria:

• the CAS number provided refers to a polymer, an unspecified
substance, or an incompletely defined substance (this concerns
49 and 60 entries of the data sets of Alves et al. and Di et al.,
respectively)

• the CAS number provided refers to a multicomponent
substance for which the relevant component could not be
unequivocally identified (this concerns 2 and 0 entries,
respectively)

• the CAS number provided refers to a metal complex (this
concerns 1 and 7 entries, respectively) or a metal salt (this
concerns 1 and 1 entries, respectively)

• the CAS number provided refers to a substance with a
molecular structure that is not consistent with the SMILES
notation provided (this concerns 5 and 5 entries, respectively)

• the CAS number, EC number, compound name, and any
further information provided did not allow to confirm the
molecular structure of the substance in question (this concerns
2 and 40 entries, respectively)

Further, multicomponent mixtures that have been tested negative
and for which the least represented component accounts for at least
one-third of the proportion of the major component were split into
separate entries, each assigned to the “nonsensitizer” class (this
concerns 7 and 15 entries of the data sets of Alves et al. and Di et al.,
respectively). In the case of two-component mixtures that (i) have
been tested positive, (ii) for which one component is listed as a

known nonsensitizer in the data sets of Alves et al. or Di et al., and
(iii) for which the known nonsensitizer accounts for at least one-third
of the mixture, the class label “sensitizer” was assigned to the other
component (this concerns 1 entry derived from the data set compiled
by Di et al.). The curated data set (Table SI_1) as well as the
substances removed by the manual data curation process
(Table SI_2) can be found in the SI published with this article.

Binary Data Set. The binary class labels of the data set were
retrieved by a protocol identical to the one published in ref 32.

Multiclass Data Sets. All compounds included in the data set of Di
et al.31 and approximately half of the compounds included in the data
set of Alves et al.30 are annotated with quinary LLNA data (Figure 1).
The quinary potency information was used to derive a ternary data set
(for the development of a ternary classifier) and a quinary data set
(for the evaluation of the binary classifier with regard to quinary class
memberships) following the identical data processing protocol of
Wilm et al.32

Compounds originating from the work of Alves et al. were assigned
class labels based on the “LLNA class” property, whereas compounds
sourced from the work of Di et al. were assigned class labels according
to the “Classes” property. Compounds labeled as “Nonsensitizer”
(Alves et al.) or “Negative” (Di et al.) were assigned the class label
“non-sensitizer”. For the compilation of the quinary data set, the class
labels “Weak”, “Moderate”, “Strong”, and “Extreme” sensitizers from
both sources were preserved. For the compilation of the ternary data
set, the quinary data were converted according to the following rules:
“Weak” and “Moderate” skin sensitizers from both sources were
assigned to the class “weak to moderate sensitizers”, whereas “Strong”
and “Extreme” skin sensitizers from both sources were assigned to the
class “strong to extreme sensitizers”. Compounds without data on
their skin sensitization potential were removed (220 compounds).
Following the conversion of the activity labels, three compounds were
removed from the data set because of conflicting class labels.

Determination of Functional Groups for Data Set Analysis.
The binary data set was analyzed with respect to the prevalence of the
functional groups in organic chemistry encoded by 309 SMARTS
patterns.33 SMARTS pattern matching was performed with RDKit.34

Any patterns matched by at least 20 out of the investigated
compounds (1285 in the case of data set analysis, 275 in the case
of performance analysis of the binary classifier) were included in the
analysis.

Descriptor Calculation. Skin Doctor CP uses MACCS keys
(166 bits), which have been identified as the most suitable descriptors
during the development of Skin Doctor.32 These descriptors are
calculated with RDKit.

Model Generation with Aggregated Mondrian Conformal
Prediction. Definition of Training and Test Sets. The binary data
set was divided into a training set (80% of the data) and a test set
(20% of the data). To maximize the comparability of the current
study with our previous work,32 we preserved the data set split.

Figure 2. Schematic workflow of the aggregated Mondrian CP model.
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However, because of the data set refinements described above (first
and foremost, the removal of potentially problematic compounds),
this means that the test set for the current study is effectively a subset
of the previous work (test set present work: 257 compounds; test set
previous work: 284 compounds). The 14 additional compounds that
resulted from the splitting of two-component mixtures were added to
the training set (training set present work: 1028 compounds; training
set previous work: 1132 compounds). For both multiclass data sets,
the same split into training and test sets was performed as on the
binary data set. Thus, the training and test sets of the multiclass data
sets are subsets of the training and test sets of the binary data set.
Each training set was divided into a proper training set (80%) and a

calibration set (20%) by stratified random splitting with the
train_test_split function of the model_selection module of scikit-
learn35 (data shuffling prior to data set splitting enabled), as shown in
Figure 2. A random forest model was derived with scikit-learn from
each proper training set (hyperparameters adopted from Wilm et al.,32

with n_estimators = 1000, max_features = “sqrt”, random_state = 43)
and applied to the calibration set.
Model Development Approach. Two binary aggregated Mondrian

CP models based on RF estimators were generated (technical details
of the CP approach are provided in the next subsection): one classifier

to distinguish nonsensitizers from sensitizers, and one classifier to
distinguish weak to moderate sensitizers from strong to extreme
sensitizers. The initial version of the classifier distinguishing
nonsensitizers from sensitizers was evaluated on the respective
training set within a 10-fold cross-validation framework. The second
and final version of this classifier was trained on the full training set
and evaluated on the corresponding test set. The performance of the
final binary classifier was also evaluated on the quinary test set with
regard to the quinary class membership. The classifier distinguishing
weak to moderate sensitizers from strong to extreme sensitizers was
trained and tested on all sensitizers included in the ternary training
and test sets, respectively.

Finally, both classifiers were combined in a two-step workflow.
First, the model distinguishing nonsensitizers from sensitizers (in its
final version) is applied to each compound of interest. Compounds
classified by that model as sensitizers (independent of the predicted
class membership of the nonsensitizing class) are then subjected to
predictions with the second classifier to distinguish weak to moderate
sensitizers from strong to extreme sensitizers. The two-step workflow
was evaluated by applying it to the ternary test set.

Figure 3. Schematic overview of the workflow underlying the ternary prediction of the skin sensitization potential of compounds. In the first step,
the binary model differentiating nonsensitizers from sensitizers (as described in the subsection “Development of Binary Classifier for Predicting
Skin Sensitization Potential”) is applied to a compound. Depending on the p-values and the selected significance level (a compound is considered
to belong to a certain class if the corresponding p-value exceeds the selected error significance), the compound is labeled “sensitizer”, “non-
sensitizer”, “both”, or “null”. For compounds labeled “non-sensitizer” or “null”, these predictions are final. Compounds labeled “sensitizer” or “both”
are forwarded to a second model for the discrimination of weak to moderate from strong to extreme sensitizers. Note that compounds labeled by
the first binary classifier as “both” and labeled by the second binary classifier as “weak to moderate sensitizer” or “strong to extreme sensitizer”
assigned to more than one class. Compounds labeled “sensitizer” by the first model and not assigned to any potency class by the second model are
automatically labeled as both weak to moderate sensitizers and as strong to extreme sensitizers. This procedure is to ensure consistent predictions
of the binary and the ternary classifiers. Note that this procedure increases the validity and decreases the efficiency of the second model (the
performance measures validity and efficiency are explained in the section “Performance metrics”).
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Technical Aspects of Conformal Prediction. Nonconformity
scores (α-values) for the calibration and test data were calculated
based on the following nonconformity function for each class i:

α = −
̂ | − ̂ |≠P y x max P y x

0.5
( ) ( )

2i
i i y y ii

with P̂(yi|xi) being the class probability for class i returned by the RF
model, and maxy≠yiP̂(y|xi) being the maximum class probability for
any other class returned by the RF model.
The α-values for each class (nonsensitizers and sensitizers, or weak

to moderate sensitizers and strong to extreme sensitizers) from the
calibration set were sorted, and p-values for each class were derived
for each test compound based on the rank of the corresponding α-
value of the test compound.
This procedure to derive p-values for each compound of the test set

by developing a RF model on the proper training data and applying it
to the calibration and test sets was repeated 100 times with different
splits into proper training and calibration data to achieve aggregated
CP. This was realized by random states (ranging from 0 to 99)
assigned to the function used to split the data into a proper training
and a calibration set. All 100 models were applied to the test data, and
the median p-values from all 100 runs were used as the final p-values
for the test data.
If the p-value of a test compound for a given class exceeded the

selected significance level ε, the compound was assigned to that class.
A compound may be assigned to a single class, to several classes, or to
no class, depending on the p-values and significance level.
Combined Workflow for Prediction of Ternary Skin

Sensitization Potential. Finally, the two binary models were
integrated into a workflow for the ternary classification of the skin
sensitization potential of compounds (Figure 3).
Within the workflow, the binary model is first applied to distinguish

nonsensitizers from sensitizers. If this model assigns a compound to
the sensitizer class (note that the compound may, in addition, be
assigned to the nonsensitizer class), it is forwarded to the second
classifier to differentiate weak to moderate from strong to extreme
sensitizers. To result in a ternary prediction, the predictions of the two
classifiers are combined in an array of three values (Booleans), one for
each potency class. The selection rules of this process are illustrated in
Figure 3.
Performance Metrics. For all models, the CP-specific measures

validity and efficiency were used for evaluation. In the context of CP,
validity is defined as the percentage of predictions that include the
true class of a compound. For a binary model, this includes distinct
predictions (i.e., predictions that predict exactly one class to be true)
for the true class as well as predictions that state both classes are true.
Analogous to a classical model, which returns correct predictions with
a defined reliability only for compounds that are within the AD of the
model, predictions made by a CP model can be considered valid as
long as the correct label is part of the returned prediction set. The
percentage of compounds for which a distinct prediction is obtained is
quantified as efficiency. As such, efficiency is equivalent with the
definition of coverage found for most non-CP models in the field of
toxicity prediction (and also consistent with the definition of coverage
used for the non-CP version of Skin Doctor).32 Analogous to the
definition of the AD in classical models, validity and efficiency were
calculated based on all predictions. In addition, the values of the
general performance measures accuracy (ACC), Matthews correlation
coefficient (MCC),36 correct classification rate (CCR, also known as
balanced accuracy), sensitivity (SE), specificity (SP), positive
predictive value (PPV) and negative predictive value (NPV) were
calculated based on all distinct predictions (i.e., all predictions that
assigned a compound to exactly one activity class). For the binary as
well as for the ternary model, class-wise validity and efficiency are the
validity and efficiency measured on a subset of the tested compounds
that have been experimentally determined to belong to the particular
potency class.
For the ternary model, we consider both overall and class-wise

performance, whereby overall performance refers to the mean values

for each of the performance measures from the three potency classes.
Class-wise performance measures are calculated individually for each
potency class. In the cases of the non-CP performance measures
(ACC, MCC, CCR, SE, SP, NPV, and PPV), class-wise performance
values are calculated by combining all experimental and predicted
class labels not belonging to the class of interest so that the
performance measure can be calculated as if defined for two classes.

■ RESULTS
Development of Binary Classifier for Predicting Skin

Sensitization Potential. The processed and refined data sets
of Alves et al. and Di et al. comprise binary activity data for a
total of 946 and 909 substances, respectively. Among those,
562 substances are listed in both data sets. After duplicate
removal (during which 7 unique substances, distributed over
15 entries, were removed because of conflicting class labels),
the (final) binary data set comprises 760 nonsensitizers and
525 sensitizers. The prepared data set was divided into a
training set (610 nonsensitizers and 418 sensitizers) and a test
set (150 nonsensitizers and 107 sensitizers) for model
development and evaluation, respectively (Table 1).

Generation of Initial Binary Classifier and Its Performance
during Cross-validation. An initial binary classifier was trained
on a set of 610 nonsensitizers and 418 sensitizers and tested
within a 10-fold cross-validation framework. The model was
valid at all of the four tested significance levels (ε = 0.05, 0.10,
0.20 and 0.30), meaning that the validity was equal or close to
1−ε. The standard deviations of the model validity and
efficiency were all below 0.04 and 0.05 (Table 2). The highest
standard deviation for each value was generally observed for
ε = 0.05. This observed trend is related to the comparably
small number of compounds for which the model returns
unambiguous results at this significance level.
Some of the models were overconservative (i.e., the validity

was higher than 1−ε), which is a known phenomenon of
aggregated CP classifiers at low significance levels (ε ≤ 0.40)
and is caused by an insufficient ability to properly rank the
compounds of interest based on the selected nonconformity
measure or one of the factors (modeling algorithm, type of
descriptors, etc.) contributing to it. Overconservativeness of
the model does not call into question the validity of the model
and might, on the contrary, be favorable with respect to the
reliability of predictions. Nevertheless, due to the trade-off
between error rate and efficiency with regard to choice of
significance level, overconservativeness coincides with an
unnecessarily low efficiency for the selected significance level.37

At a significance level of 0.05, the model obtained an ACC
of 0.88 and an MCC of 0.73 during cross-validation, with an
efficiency of 0.28. At a significance level of 0.30, predictions
could be made for almost all test compounds (96%), at the
cost of a reduced ACC and MCC (0.76 and 0.51, respectively).
Predictions of compounds being nonsensitizers were very
reliable. For significance levels from 0.05 to 0.30, the NPVs
were between 0.93 and 0.82, indicating that the model could
be particularly valuable in a regulatory context where harmful

Table 1. Composition of Binary Training and Test Data Sets

training set test set

nonsensitizers 610 150
sensitizers 418 107
total no. compounds 1028 257
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properties of substances in question should be ruled out with
high reliability.38 While for the four investigated significance
levels only minor differences were observed for SE (between
0.76 and 0.86) and SP (between 0.76 and 0.89), the PPV
(between 0.69 and 0.80) was lower than the NPV (between
0.82 and 0.93). Therefore, a negative prediction (non-
sensitizer) made by the model seems to be more reliable
than a positive prediction (sensitizer).
We also investigated model efficiency as a function of the

selected significance level (Figure 4). Efficiency is found to

increase steeply with low significance levels, reflecting the
ability of the model to make distinct, single label predictions
for an increasing amount of compounds (if we allow an
increasing amount of erroneous predictions). Maximum
efficiency is reached at a significance level of 0.28. Beyond
this significance level, efficiency again decreases. This reflects
the fact that the CP model will always guarantee an error rate
close to the significance level. If, for example, a significance of
0.5 is desired (which in the binary case corresponds to a
random model), predictions must be assigned to the empty
class to fulfill this criterion (since the underlying model would
have a better predictivity than 0.5).
Generation of Final Binary Classifier and Its Performance

on the Test Set. Following the CV studies, a final binary

classification model, which we call “Skin Doctor CP”, was
trained on the full training set and evaluated on a test set of
150 nonsensitizers and 107 sensitizers (Figure 1). The final
p-values of the test set compounds can be found in Table SI_4.

Overall Performance on the Test Set. The model was valid
for all four significance levels (Table 3). Although the validity
at the significance level of 0.3 was only 0.69, which is 0.01
lower than the expected validity of 1−ε, this value is within the
standard deviation observed for validities within CV. Therefore
we assume that this slight under-predictivity is caused by
statistical fluctuations and consider the model to be valid. The
validity and efficiency of the final model were comparable to
the values for the initial model (Table 3). The NPV (0.94 to
0.84) and SE (0.91 to 0.81) were higher than the PPV (0.83 to
0.65) and SP (0.88 to 0.70) for all of the four significance
levels. While SE and NPV only slowly decreased with
increasing error significance (ΔSE = 0.10 and ΔNPV = 0.10
between significance levels 0.05 and 0.30), SP and PPV
decreased more drastically (ΔSP = 0.18 and ΔPPV = 0.18 over
the range of significance levels). Therefore, negative
predictions produced by this model can be considered reliable
at all significance levels investigated, while positive predictions
should be considered less reliable at high significance levels.
The confusion matrices of the model (Figure 5) reveal that

the decrease in PPV observed with increasing error significance
originates from an increasing tendency of the model to predict
a compound to be a sensitizer (42%, 48%, 49%, and 51% of the
molecules were predicted to be sensitizers at an significance
level of 0.05, 0.10, 0.20, and 0.30, respectively), while the
percentage of experimentally determined sensitizers remained
comparably stable, between 38% and 41%.

Class-Wise Performance on the Test Set. To better
understand the performance of the model within the CP
setting, the class-wise validity and efficiency (i.e., the model’s
validity and efficiency calculated separately for each class of
compounds, nonsensitizers and sensitizers, in the test set) of
the binary classifier were analyzed for the selected significance
levels (Table 4).
The validity of the model was higher for sensitizers than for

nonsensitizers at all significance levels. A slight preference of
the model to produce positive predictions was observed that
increased proportionally with the significance level. Never-
theless, the difference in model validity between nonsensitizers

Table 2. Overall Performance during 10-Fold Cross-validation of Binary Aggregated Mondrian CP Classifier Differentiating
Nonsensitizers from Sensitizers1

ε validity efficiency ACC MCC CCR SE SP NPV PPV

0.05 0.96 (0.02) 0.28 (0.05) 0.88 (0.07) 0.73 (0.15) 0.87 (0.08) 0.86 (0.13) 0.89 (0.09) 0.93 (0.06) 0.80 (0.14)
0.10 0.91 (0.02) 0.51 (0.05) 0.83 (0.03) 0.66 (0.06) 0.84 (0.03) 0.84 (0.07) 0.83 (0.06) 0.89 (0.05) 0.76 (0.05)
0.20 0.82 (0.03) 0.83 (0.04) 0.78 (0.03) 0.56 (0.07) 0.78 (0.04) 0.78 (0.09) 0.78 (0.05) 0.84 (0.05) 0.71 (0.04)
0.30 0.73 (0.04) 0.96 (0.02) 0.76 (0.03) 0.51 (0.06) 0.76 (0.03) 0.76 (0.06) 0.76 (0.05) 0.82 (0.04) 0.69 (0.05)

1Standard deviation in brackets next to the values.

Figure 4. Efficiency of the binary classifier differentiating non-
sensitizers from sensitizers within 10-fold CV in dependence of the
significance level.

Table 3. Overall Performance of Binary Aggregated Mondrian CP Classifier, Differentiating Nonsensitizers from Sensitizers,
on the Test Set

ε validity efficiency ACC MCC CCR SE SP NPV PPV

0.05 0.96 0.32 0.89 0.78 0.89 0.91 0.88 0.94 0.83
0.10 0.91 0.49 0.83 0.66 0.84 0.90 0.78 0.92 0.72
0.20 0.82 0.79 0.77 0.55 0.78 0.84 0.72 0.88 0.65
0.30 0.69 0.92 0.75 0.51 0.76 0.81 0.70 0.84 0.65
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and sensitizers was relatively small and was highest (0.12) at
the significance level of 0.20.
The model was valid for the sensitizer class at all four

significance levels. For the nonsensitizer class, the model was
valid at the significance level of 0.05 and only slightly under-
predictive at the significance levels of 0.10 and 0.20. Since the
deviation from the expected validity is only 0.01 and 0.03,
which is within the standard deviations observed for the
validity of the models during cross-validation, we nevertheless
consider the model as valid for both classes at the significance
levels of 0.10 and 0.20. At the significance level of 0.30, the
validity of the nonsensitizing class was only 0.65. Because the
deviation from the expected validity of 0.70 is not within the

standard deviation observed during cross-validation (0.04), we
assume that this might not only be caused by statistical
fluctuations but might also originate from an underlying
systemic problem of the model. We therefore suggest that
predictions of sensitizer at this significance level be handled
with care.
Differences in efficiency between both classes were similar to

the differences observed for validity. The maximum difference
in efficiency (0.12) was found at the significance level of 0.20.

Analysis of Performance of Final Binary Classifier Based
on Quinary LLNA Data. False predictions are of varying
degrees of concern, depending on the specific application
scenario. In the regulatory context, false negative predictions
will be of primary concern, whereas false positive predictions
during the discovery phase may lead to a costly false
deprioritization of compounds. Moreover, there is a distinction
to be made between the false prediction of a weak skin
sensitizer as nonsensitizer, and the false prediction of an
extreme sensitizer as nonsensitizer. These types of distinction
were examined using the quinary LLNA data (Figure 6).
Quinary LLNA data are available for 124 nonsensitizers, 37

weak sensitizers, 29 moderate sensitizers, 10 strong sensitizers,
and 9 extreme sensitizers in the test set. At the significance
levels of 0.05, 0.10, 0.20, and 0.30, a distinct prediction could
be made for 22%, 53%, 90%, and 82% of compounds in this
subset of the binary test set, respectively.

Figure 5. Confusion matrices reporting the classification results for the final binary classifier on the test set.

Table 4. Class-Wise Performance of Binary Classifier
Differentiating Nonsensitizers from Sensitizers on the Test
Set

ε class validity efficiency

0.05 nonsensitizer 0.96 0.34
sensitizer 0.97 0.30

0.10 nonsensitizer 0.89 0.52
sensitizer 0.95 0.45

0.20 nonsensitizer 0.77 0.84
sensitizer 0.89 0.72

0.30 nonsensitizer 0.65 0.93
sensitizer 0.74 0.91
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The PPV of the quinary subset ranges from 85% at the
significance level of 0.05 to 64% and 68% at the significance
levels of 0.20 and 0.30. Compounds predicted as nonsensitizers
are correctly classified in 90% to 100% of the cases (NPV). At
all significance levels investigated, the majority of sensitizers
falsely predicted to belong to the nonsensitizing class belong to
the class of weak sensitizers. One moderate sensitizer (CAS
No. 5205−93−6, an amino functional methacrylamide
monomer that is a known skin irritant) was falsely predicted
as nonsensitizers at the significance levels of 0.10 or higher. In
addition, a strong sensitizer (CAS No. 106359−91−5, a
complex naphthalenetrisulfonic acid dye and known skin
irritant) has been misclassified as a nonsensitizer at the
significance level of 0.20. No extreme sensitizers have been
misclassified. Thus, there seems to be an inverse trend between
the potency of a sensitizer and the likelihood of it being falsely
predicted as a nonsensitizer, which is an encouraging result.
Analysis of Performance of Final Binary Classifier with

Respect to Functional Groups Present in the Test
Compounds. Using a collection of 309 SMARTS patterns
representing functional groups in organic chemistry, we
identified 35 such groups that are presented in at least 20
compounds of the test set (Table SI_5). At the significance
level 0.3, the binary classifier was found to perform particularly
well (ACC values between 0.83 and 0.90) on compounds that
contained at least one of the following functional groups:
1,5-tautomerizable moiety, amide, phenol, ketone, primary
alcohol, secondary amide, sulfonic acid (derivative), or
carboxylic acid (derivative). Among those, phenols are a

particularly interesting case as the number of nonsensitizers
and sensitizers among this group is nearly balanced (59% vs
41%). The model correctly identified 10 nonsensitizers and 9
sensitizers while only assigning three nonsensitizers and no
sensitizer to the wrong activity class. Note that the model
assigns 19% of the phenols to the empty class, which is the
highest percentage of empty predictions among the 35 selected
functional groups.
In contrast, we found low rates of prediction accuracies

(between 0.56 and 0.67) for compounds comprising a
heteroaromatic ring system with a nonbasic nitrogen atom,
carboxylic esters, and dialkylethers (for the individual groups of
compounds the ratio between nonsensitizers and sensitizers is
well balanced).
The tendencies observed for the significance level of 0.3

could also be recognized for the other significance levels that
we investigated but are based on weaker statistics.

Comparison of Model Performance with Skin Doctor. The
binary classifier enveloped in the CP framework presented in
this work was developed using the identical machine learning
method and hyperparameters as in one of the previously
reported “Skin Doctor” models.32 However, Skin Doctor CP is
trained on a modified training set and tested on a subset of the
test set compared to the original Skin Doctor models. This
limits direct comparability between the two approaches.
Nevertheless, a qualitative comparison was performed here to
estimate the main differences between the two approaches.
Whereas the CP model allows the definition of the error
significance level, the Skin Doctor model (“non-CP model”)

Figure 6. Distribution of the five potency classes among compounds predicted as nonsensitizers or sensitizers by the final binary classifier
differentiating nonsensitizers from sensitizers. The percentages reported in parentheses refer to the total number of compounds reported in each
column.
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features an AD definition that is based on the Tanimoto
coefficient, calculated using Morgan2 fingerprints and averaged
over the five nearest neighbors in the training set. Any
compound with a Tanimoto coefficient below a threshold
(usually 0.5) is considered to be outside of the AD.
When a Tanimoto coefficient of 0.5 is applied as the

threshold for the AD, the classical Skin Doctor model yields a
coverage of 0.96 for the test set (Table 5), which is comparable
to the efficiency of the CP model at a significance level of 0.3
(efficiency 0.92). In this setting, the classical Skin Doctor
model obtained an ACC of 0.73 and an MCC of 0.43, which is
comparable to the performance of the CP model (ACC = 0.75,
MCC = 0.51). When increasing the threshold of the AD to
0.75, the classical Skin Doctor model yielded a coverage of
0.28. This is comparable to the efficiency of the CP model at a
significance level of 0.05 (efficiency 0.32). In this setup, the CP
model clearly outperformed the non-CP model by obtaining an
ACC of 0.89 (vs 0.78) and an MCC of 0.78 (vs 0.59). At a
significance level of 0.2, the performance of the CP model is
comparable to that of the non-CP model with the strict
definition of the AD (ACC 0.77 vs 0.78 and MCC 0.55 vs
0.59), despite superior efficiency/coverage (0.79 vs 0.28).
In-depth analysis of model performance showed that for the

non-CP model the NPV increases with a stricter definition of
the AD, whereas the PPV does not. This means that a stricter
definition of the AD improves the reliability of the negative
predictions but not of the positive ones. Within Skin Doctor
CP, an increase in NPV from 0.84 to 0.94 and in PPV from
0.65 to 0.83 with decreasing error significance from 0.3 to 0.05
was found. Therefore, the use of Skin Doctor CP should in
general be advantageous over the use of the non-CP models of
Skin Doctor.
Development of Ternary Classifier for Predicting Skin

Sensitization Potential. In an attempt to extend the
capabilities of the machine learning approach to distinguish
between three potency classes (nonsensitizer, weak to
moderate sensitizer, and strong to extreme sensitizer), the
feasibility of a two-step ternary model was explored, in which
the (final) binary classifier forwards all compounds predicted
as sensitizers to a downstream binary classifier to discriminate
weak to moderate sensitizers from strong to extreme
sensitizers. To ensure the validity of the two-step approach,
the downstream binary model as well as the combined
workflow was evaluated separately using (a subset of) the
ternary data set. The composition of the full ternary training
and test sets is shown in Table 6.
The binary classifier distinguishing weak to moderate

sensitizers from strong to extreme sensitizers was developed
following the same protocol and identical hyperparameters as
described for the binary model distinguishing nonsensitizers
from sensitizers (RF with 1000 estimators, enveloped by
aggregate Mondrian CP; see Methods for details). This second

model was trained and evaluated on subsets of the ternary
training and test sets that comprise only sensitizing
compounds. Within these subsets, 81% and 78% of the
compounds in the training and test set belong to the class of
weak to moderate sensitizers, respectively, while 19% and 22%
of the compounds belong to the class of strong to extreme
sensitizers, respectively. Unfortunately, the number of
compounds in the training set (344) and test set (85) was
relatively small and not sufficient to produce statistically solid
evidence. The exact numbers in the following section should
therefore not be considered reliable results. Rather, they
should be considered as a proof of concept and an indication
of a route that could be followed in the future with a larger
database when more data become available.

Binary Classifier Distinguishing Weak to Moderate
Sensitizers from Strong to Extreme Sensitizers. The binary
model differentiating between weak to moderate sensitizers
and strong to extreme sensitizers (for p-values see Table SI_4)
was overconservative at all significance levels investigated
(Table 7; validity = 0.94, 0.88, and 0.75 at significance levels of
0.10, 0.20, and 0.30; note that the significance level of 0.05 was
not investigated since the efficiency of the model on the test
set was 8%). As expected for an overconservative model, the
efficiency of the model was comparably low (0.45, 0.71, and
0.98). At the three significance levels investigated, reasonably
high values for SE (between 0.79 and 1.00) and SP (between
0.73 and 0.84) were found. The prediction that a compound is
a weak to moderate sensitizer was highly reliable (NPV
between 0.92 and 1.00) for all significance levels investigated,
while a compound predicted to be a strong or extreme
sensitizer could belong with almost equal probability to each of
the two classes (PPV between 0.47 and 0.58). This strongly
limits the model’s applicability in any use case, but the model
could be improved by a larger data set that includes a higher
number of strong to extreme sensitizers when such data
become available.
The observation of low PPV was also supported by the

confusion matrices shown in Figure 7. The confusion matrices

Table 5. Overall Performance of Corresponding Non-CP Model “Skin Doctor”, Differentiating Nonsensitizers from
Sensitizers, on the Test Set

AD cutoff1 coverage2 ACC MCC CCR SE SP NPV PPV

0 1.0 0.72 0.41 0.70 0.57 0.82 0.74 0.69
≥0.5 0.96 0.73 0.43 0.71 0.60 0.82 0.75 0.69
≥0.75 0.28 0.78 0.59 0.81 0.89 0.73 0.92 0.64

1Defined as the mean Tanimoto similarity to the five nearest neighbors. 2Coverage of the classical Skin Doctor is defined as the percentage of
compounds in the test set that lie within the AD (i.e., for which a reliable prediction can be made by the model). This can be considered
comparable to the definition of efficiency applied in this work, which is defined as the percentage of distinct predictions.

Table 6. Composition of Ternary Training and Test Data
Sets

training set1 test set2

nonsensitizer 510 124
weak to moderate sensitizer 279 66
strong to extreme sensitizer 65 19
total no. compounds 854 209

1Compared to the binary training set, 173 compounds have been
removed because of missing multiclass labels and one compound has
been rejected because of conflicting ternary class labels. 2Compared
to the binary test set, 47 compounds have been removed because of
missing multiclass labels and one compound has been rejected
because of conflicting ternary class labels.
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revealed that only 18% to 23% of the distinct predictions were
made on strong to extreme sensitizers, which is the minority
class.
The classifier is overall overconservative, which is also

reflected in the class-wise validities, all of which are higher than
1−ε (Table 8). Class-wise validities and efficiencies are almost
balanced between both classes, with a maximum difference of
0.09 and 0.10 in validity and efficiency, respectively.

Combined Workflow for Ternary Classification of Skin
Sensitization Potential. Finally we combined, as a proof of
concept, the two binary models in one workflow for the
prediction of ternary skin sensitization potential and passed the
resulting boolean array (storing the class membership of each
compound to the three potency classes investigated) to our
evaluation workflow. Within our test set, there was no case
observed in which the first binary model predicted a
compound to be a sensitizer but the second binary model

predicted the compound to be neither a weak to moderate nor
a strong to extreme sensitizer. We therefore believe there is no
risk of artificially increasing the validity on this test set by
reporting the validity and efficiency of the combined workflow.

Overall Performance on the Test Set. The combined
workflow was valid overall, that is, in terms of the mean values
among the three potency classes (overall validity = 0.92 and
0.80), at the significance levels of 0.10 and 0.20. At the error
significance level of 0.30, the overall validity was only 0.66,
which is 0.04 below the expected validity of 0.70. Although this
value is still within the standard deviation observed for the
significance level of 0.30 during 10-fold CV, it is larger than the
deviations observed for other models and error significances
within this work. We therefore cannot be sure that this under-
predictiveness is only caused by statistical fluctuations and
consider the validity of the model at the significance level of
0.30 as questionable.
The efficiency of the combined workflow (values between

0.42 and 0.90) was lower than or equal to the efficiency of the
binary classifier differentiating between nonsensitizers and
sensitizers (values between 0.49 and 0.92) at the three
investigated significance levels (comparability of the two
models is limited since the combined workflow is evaluated
on only a subset of the data used for evaluation of the binary
classifier) and lower than the efficiency of the binary classifier
differentiating between weak to moderate and strong to
extreme sensitizers (values between 0.45 and 0.98).
Satisfactory ACC values (from 0.90 to 0.73 for the

significance levels investigated) and MCC values (from 0.78

Table 7. Overall Performance of Binary Model Distinguishing Weak to Moderate Sensitizers from Strong to Extreme
Sensitizers on the Test Set

ε validity efficiency ACC MCC CCR SE SP NPV PPV

0.10 0.94 0.45 0.87 0.70 0.92 1.00 0.84 1.00 0.58
0.20 0.88 0.71 0.83 0.63 0.87 0.92 0.81 0.97 0.57
0.30 0.75 0.98 0.75 0.45 0.76 0.79 0.73 0.92 0.47

Figure 7. Confusion matrix of the binary model distinguishing weak to moderate sensitizers from strong to extreme sensitizers on the test set.

Table 8. Class-Wise Performance of Binary Model
Distinguishing Weak to Moderate Sensitizers from Strong
to Extreme Sensitizers on the Test Set

ε class validity efficiency

0.10 weak to moderate sensitizers 0.92 0.47
strong to extreme sensitizers 1.00 0.37

0.20 weak to moderate sensitizers 0.86 0.71
strong to extreme sensitizers 0.95 0.68

0.30 weak to moderate sensitizers 0.74 0.97
strong to extreme sensitizers 0.79 1.00

Table 9. Overall Performance of Combined Workflow for Ternary Prediction of Skin Sensitization Potential on the Test Set1

ε validity efficiency ACC MCC CCR SE SP NPV PPV

0.10 0.92 0.42 0.90 0.78 0.91 0.91 0.93 0.92 0.84
0.20 0.80 0.71 0.80 0.63 0.79 0.79 0.89 0.87 0.71
0.30 0.66 0.90 0.73 0.54 0.70 0.70 0.86 0.84 0.64

1All performance measures are reported as the mean of the corresponding performance measure over all classes investigated.
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to 0.54 for the significance levels investigated) were achieved
on the ternary test set (Table 9).
Analysis of the confusion matrices of the combined

workflow on the test set (Figure 8) revealed that, at a
significance level of 0.10 and 0.20, only 7% (6 out of 88 and 10
out of 148, respectively) of the compounds with distinct
predictions were experimentally assigned as strong or extreme
sensitizers. Thus, we expect the model to have limited impact
on the prediction of strong to extreme sensitizers.
At a significance level of 0.30, which covers 90% of the test

data, only 10% (18 out of 188) of the compounds were
experimentally labeled as strong or extreme sensitizers. At the
same time, 31 compounds were predicted to belong to this
potency class. The likelihood of a compound predicted as
being a strong or extreme sensitizer to belong to any of the
three potency classes under investigation is almost equal for all
three classes. A prediction with such a high false positive rate is
not generally useful.
Class-Wise Performance on the Test Set. Since the low

efficiency and the high false positive rate of strong to extreme
sensitizers was not reflected by the overall performance
measures, class-wise performance measures for each class of
compounds were evaluated and summarized in Table 10.
At the significance levels of 0.10 and 0.20, the model was

class-wise valid to over-predictive for nonsensitizers and strong
to extreme sensitizers. With validities of 0.88 and 0.74, the
model was slightly under-predictive for weak to moderate
sensitizers at the significance levels of 0.10 and 0.20,
respectively. We assume that the model can nevertheless be
considered valid within the expected fluctuations on such a
small data set. At a significance level of 0.30, the model was
under-predictive for all classes investigated except non-

sensitizers. With the validities for weak to moderate sensitizers
and strong to extreme sensitizers being 0.58 and 0.63, the
model must be considered invalid for these classes at the
significance level of 0.30.
At all three significance levels, we observed a decrease in the

PPV and an increase in the NPV from nonsensitizers to
extreme sensitizers. These trends are related to the number of
samples of each class in the training and test sets. The more
samples of one class are present in a training set, the more
reliable positive predictions and the less reliable negative
predictions for that particular class become. While the PPV
becomes unacceptably low (0.50 and 0.39) for strong to
extreme sensitizers at significance levels of 0.2 and 0.3,
respectively, the NPV stays reasonably high for all classes
investigated (0.83 to 1.00 at ε = 0.10; 0.73 to 0.98 at ε = 0.20;
0.72 to 0.96 at ε = 0.30). Thus, a compound predicted to be a
strong to extreme sensitizer most likely does not belong to that
class, while the prediction that a compound is not a strong to
extreme sensitizer can be considered reliable at all significance
levels. This finding is supported by the reasonably high SE of
strong to extreme sensitizers, indicating that 98%, 94%, and
89% of the strong and extreme sensitizers are correctly
identified at the significance level of 0.10, 0.20, and 0.30,
respectively. These tendencies also reflect the prevalence of the
potency classes within the test set.
Within CP, a compound is assigned to a certain potency

class if the corresponding p-value exceeds the selected
significance level. Therefore, compounds with p-values in
between the significance levels investigated will alter class
membership when the significance level is altered. A prediction
will be constant throughout all significance levels investigated,
as long as the corresponding p-values are smaller than 0.10

Figure 8. Confusion matrix obtained with the combined workflow for the ternary prediction of the skin sensitization potential of all compounds of
the ternary test set.

Table 10. Class-Wise Performance of Combined Workflow for Ternary Prediction of Skin Sensitization Potential on the Test
Set

ε class validity efficiency SE SP PPV NPV

0.10 nonsensitizer 0.93 0.49 0.92 0.89 0.95 0.83
weak to moderate sensitizer 0.88 0.32 0.81 0.94 0.81 0.94
strong to extreme sensitizer 1.00 0.32 1.00 0.98 0.75 1.00

0.20 nonsensitizer 0.81 0.77 0.83 0.83 0.90 0.73
weak to moderate sensitizer 0.74 0.64 0.74 0.89 0.72 0.90
strong to extreme sensitizer 0.89 0.53 0.80 0.94 0.50 0.98

0.30 nonsensitizer 0.70 0.90 0.78 0.86 0.89 0.72
weak to moderate sensitizer 0.58 0.88 0.66 0.84 0.64 0.84
strong to extreme sensitizer 0.63 0.95 0.67 0.89 0.39 0.96
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(the lowest significance level investigated for the combined
workflow) or larger than 0.30 (the highest significance level
investigated in this work). The violin plots of the p-values
returned by the two binary classifiers (Figure 9) visualize the
distribution of p-values for each of the predicted classes within
the ternary test set. All four distributions of p-values
investigated show highest densities below 0.5. Compared
with the two p-value distributions returned by the classifier
that differentiates between nonsensitizers and sensitizers, the
two distributions returned by the classifier differentiating
between weak to moderate sensitizers and strong to extreme
sensitizers comprise a lower percentage of compounds with p-
values in extreme regions (below 0.05 or above 0.8). Thus,
predictions are more likely to change depending on the
significance level. The low-populated class of strong to extreme
sensitizers intensifies this tendency compared to the weak to
moderate sensitizing class.
Comparison of Ternary Classifier with Recently Published

Model by Di et al. The data set of Di et al.31 is one of the two
data resources employed for the testing and development of
Skin Doctor and Skin Doctor CP. Di et al. derived ternary in
silico models for the prediction of the skin sensitization
potential of compounds from their data. The model that they
selected as their best model uses MACCS keys just like ours,
but their modeling algorithm differs (CP+RF vs SVM), and
although similar, the data sets used for training and testing by
Di et al. and by us are not identical. This makes a direct
comparison of both models difficult. Indicators suggest that the
overall performance of both models is comparable. With a
coverage of 98% of the compounds of the test set, the model of
Di et al. was reported to obtain an ACC of 0.71, whereas our
model, at a significance level of 0.30, obtained an ACC of 0.73
on our test set (see Table 11 for details). At this significance
level, the efficiency of our model (90%) is lower than the
coverage of the Di et al. model (98%; recall that we consider
the efficiency of a CP classifier to represent a similar concept to
the coverage of a non-CP model). The efficiency of our model
decreases further at lower significance levels, to 42% and 71%
at the significance levels of 0.10 and 0.20, respectively.
However, at the significance levels of 0.10 and 0.20, our
combined workflow exhibits higher overall performance
(ACC = 0.90 and 0.80, respectively) than the Di et al. model
(ACC = 0.71).

From our investigations of the class-wise performance of our
own ternary classifier, we know that its capacity to discriminate
weak to moderate from strong to extreme sensitizers is
insufficient. Since this limitation is mainly caused by a lack of
LLNA data, we found it surprising that the ternary classifier of
Di et al. seems to not suffer from this problem. Therefore, we
reconstructed the ternary model published by Di et al. using
the identical training and testing data, the identical type of
descriptors (MACCS keys fingerprint) and the same modeling
algorithm (SVM, probability = True, gamma = 0.125). For this
reconstructed model, we found similar overall performances as
reported by Di et al., who did not publish any values pertaining
to the class-wise performance of their model. Like the original
model of Di et al., the reconstructed model achieved an ACC
of 0.80 on the external test set. On the test set, the
reconstructed model achieved an ACC of 0.70 (further
indicators: SE = 0.60, SP = 0.83, NPV = 0.83, and PPV =
0.67). Since we did not apply any AD, the reconstructed model
has a coverage of 100%. Di et al. report a coverage of 98% on
the test set and similar but slightly better performance
measures (see above). Differences in performance might
originate from our not applying any AD definition (in contrast
to Di et al.) and the usage of different modeling software with
perhaps different default values.
Of particular interest, however, is how the class-wise

performance of the reconstructed model compares to that of
our ternary classifier. This experiment reveals that the
reconstructed Di et al. model suffers from class-wise
unreliability just as our own ternary classifier does
(Tables 12 and 13). The SE of the reconstructed Di et al.
model is unsatisfyingly low for strong to extreme sensitizers

Figure 9. Violin plots of the distribution of p-values obtained for the ternary test set for the different classes of compounds as returned by the
binary classification models: (A) complete test set; (B) detailed view of the p-value distributions close to the investigated significance levels, only
considering p-values equal to or between 0.05 and 0.30. The median of the p-values for each potency class is indicated by a blue horizontal line.

Table 11. Comparison of Overall Performance Measures of
Best Ternary Model Reported by Di et al. and Our
Combined CP Workflow for Ternary Classification Applied

ACC SE SP NPV PPV
coverage/
efficiency

Di et al. 0.71 0.61 0.83 0.84 0.68 98%

combined CP workflow
at significance level of
0.3

0.73 0.70 0.86 0.84 0.64 90%

our reconstruction of the
model reported by Di
et al. (without AD
applied)

0.70 0.60 0.83 0.83 0.67 100%
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(0.30 on the test set and 0.05 on the external test set). The
confusion matrices (Figure 10) show that the model only very
rarely predicts that a compound belongs to the class of strong
to extreme sensitizers. This is a similar finding to what we
observed with our own CP-based ternary classifier (see above;
Table 10). These results indicate that also our reconstructed
Di et al. model is unable to properly differentiate between the
two classes of skin sensitizers.

■ CONCLUSION
In this work, we explored the scope and limitations of
aggregated Mondrian CP in the development of approaches for
the binary and ternary classification of compounds with respect
to their skin sensitization potential. First, we developed and
evaluated a binary classifier to differentiate nonsensitizers from
sensitizers. The CP model was found to be valid for all classes
at nearly all significance levels investigated and revealed to be
favorable in terms of the portion of compounds for which a
distinct or reliable prediction could be made compared to our
previously published non-CP RF model that was trained and
tested on the identical descriptors and a similar but slightly
larger data set.
Second, we developed and tested a binary classifier that

differentiates weak to moderate sensitizers from strong to

extreme sensitizers based on a data set containing all
sensitizing compounds with ternary class information from
our ternary data set. Although the model was valid both overall
and class-wise, and resulted in reasonable efficiencies, the
model must be taken with caution due to the low quantity of
data available for development and testing. The model was
found to be not sufficiently reliable when being applied to
strong to extreme sensitizers.
Finally, we integrated both binary classifiers within a

combined workflow to result in a ternary prediction of the
skin sensitization potential. We showed that the combined
workflow, which was overall valid at the significance levels of
0.10 and 0.20, suffered from poor PPV for strong and extreme
sensitizers at the significance levels of 0.20 and 0.30. This limits
the ability of the model to correctly identify compounds
belonging to that class. Investigation of a recent ternary model
published by others31 indicated that a low class-wise
performance despite satisfying overall performance might
also be a problem elsewhere and should be further investigated
when publishing models developed using the currently
available LLNA data.
From our studies, we conclude that aggregated Mondrian

CP is a favorable approach for small and imbalanced data sets
such as the LLNA data used in this work. This CP approach
seems to be capable of improving the reliability and efficiency/
coverage of binary classifiers for skin sensitization potential
compared to non-CP approaches. In addition, CP offers the
advantage of defined error rates that differentiate reliable from
unreliable predictions without the need for a manually set
threshold for a possible AD cutoff.
The ternary prediction of sensitizing potential would be

highly relevant in a real-world setting. Our analysis has
indicated that aggregated Mondrian CP provides benefits in
efficiency and performance compared to the non-CP approach
in this case as well. However, the amount of data currently
available is unfortunately too small to properly distinguish
different classes of sensitizing compounds, which strongly
limits the applicability and reliability of the model. For better
modeling, as well as for a statistically more solid evaluation of
the model, more data (especially on strong and extreme
sensitizers) are urgently needed.
Skin Doctor CP is available via a public web service at

https://nerdd.zbh.uni-hamburg.de/skinDoctorII.

Table 12. Class-Wise Performance of Reconstructed Non-
CP SVM MACCS Model on the Di et al. Test Set

class SE SP PPV NPV
number of
compounds

nonsensitizer 0.79 0.71 0.65 0.83 33
weak to moderate
sensitizer

0.72 0.79 0.76 0.76 39

strong to extreme
sensitizer

0.30 0.97 0.60 0.91 10

Table 13. Class-Wise Performance of Reconstructed Non-
CP SVM MACCS Model on the Di et al. External Test Set

class SE SP PPV NPV
number of
compounds

nonsensitizer 0.88 0.6 0.88 0.60 461
weak to moderate
sensitizer

0.59 0.88 0.54 0.90 115

strong to extreme
sensitizer

0.05 0.98 0.10 0.96 22

Figure 10. Confusion matrices of the reconstructed model of Di et al.
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6.3. Biologically meaningful descriptors 105

6.3 Maximising interpretability with a small selection of
biologically meaningful descriptors

The acceptance of a computational model for risk assessment also depends on
its transparency and interpretability [110]. For a ML model to be interpretable
by human beings, a comprehensible ML algorithm as well as a manageable
number of meaningful descriptors is needed.

In the following study, we utilized a set of 750 biologically meaningful descrip-
tors which encodes the predicted probabilities of a compound being active or
inactive in 375 different bioactivity assays. In order to decrease the number
of descriptors drastically, we established a strict and iterative feature selection
process utilizing a LASSO algorithm during a 10-fold CV protocol on our train-
ing data. A qualitative analysis of the ten final descriptors selected by the
algorithm was undertaken with respect to the possible biological relationships
between the descriptors (bioactivity assay activity) and the skin sensitization
AOP. The relevance of the descriptors selected was demonstrated by application
of PCA on our LLNA data set as well as on three reference data sets containing
cosmetics, approved drugs, and pesticides within the chemical space spanned
by the ten bioactivity descriptors. Furthermore, a PCA plot conducted of the
LLNA data set clearly shows the ability of the descriptor set to distinguish
between sensitizing and non-sensitizing substances.

As a proof of concept, the ten bioactivity descriptors, were applied in an ag-
gregated Mondrian CP framework and revealed performance measures similar
to the ones achieved in earlier studies, while increasing interpretability of the
model.
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mair conceptualized the work. A. Wilm developed the methodologies, with
contributions by M. Garcia de Lomana, N. Mathai, J. Kühnl, and J. Kirch-
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Abstract: In recent years, a number of machine learning models for the prediction of the skin sensi-

tization potential of small organic molecules have been reported and become available. These mod-

els generally perform well within their applicability domains but, as a result of the use of molecular 

fingerprints and other non-intuitive descriptors, the interpretability of the existing models is lim-

ited. The aim of this work is to develop a strategy to replace the non-intuitive features by predicted 

outcomes of bioassays. We show that such replacement is indeed possible and that as few as ten 

interpretable, predicted bioactivities are sufficient to reach competitive performance. On a holdout 

data set of 257 compounds, the best model (“Skin Doctor CP:Bio”) obtained an efficiency of 0.82 and 

an MCC of 0.52 (at the significance level of 0.20). Skin Doctor CP:Bio is available free of charge for 

academic research. The modeling strategies explored in this work are easily transferable and could 

be adopted for the development of more interpretable machine learning models for the prediction 

of the bioactivity and toxicity of small organic compounds. 

Keywords: skin sensitization; toxicity prediction; in silico prediction; machine learning; random 

forest; conformal prediction; bioactivity descriptors 

 

1. Introduction 

Substances that can induce allergic contact dermatitis after repeated contact to the 

skin are called skin sensitizers [1,2]. In order to prevent the induction of skin sensitization, 

exposure to skin sensitizers must be minimized [3–8]. The ability to detect and predict 

skin sensitizers is therefore of significant importance for several sectors of industry to de-

velop safe and efficacious functional small molecules [9]. 

Until recent years, strategies to assess the risk of small molecules to induce skin sen-

sitization relied on animal experiments. Historically, an important animal experiment to 

address skin sensitization potential is the guinea pig maximization test (GPMT), which 

was used to determine the percentage of test animals that develop contact allergy symp-

toms after repeated exposure to the test substance. Typically, a substance was classified 
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as a sensitizer if at least 15% of the guinea pigs developed allergic symptoms. The GPMT 

was later replaced by the murine local lymph node assay (LLNA) [10], an animal model 

measuring the proliferation rate of cells in the draining lymph node in mice. The LLNA is 

still regarded as the gold standard among the animal experiments to assess skin sensiti-

zation potential as it provides advantages concerning animal welfare (compared to other 

animal models) and additional information to quantify the skin sensitization potency of 

compounds (based on the EC3 value, defined as the substance concentration that induces 

a 3-fold stimulation of proliferation) [11,12]. 

Ambitious efforts are ongoing to fully replace animal experiments, and a diverse set 

of alternative experimental and theoretical methods have been developed [13,14] to assess 

skin sensitization potential and, to a limited degree, skin sensitization potency [15]. 

Among others, these approaches include non-animal testing methods (i.e., in vitro and in 

chemico assays) [16–19] and in silico methods [18–21]. 

Several OECD-validated non-animal testing methods address three out of four key 

events of the adverse outcome pathway of skin sensitization induction: The first key event, 

or molecular initiating event, describes the so-called haptenization, which is the covalent 

binding of the substance to skin proteins or peptides. This is experimentally assessed by 

the direct peptide reactivity assay (DPRA) [22]. The second key event, which is the activa-

tion of keratinocytes [23], is covered by the KeratinoSens and LuSens assays, while the 

third key event, which is the activation of the skin’s dendritic cells [24], is addressed, 

among others, by the U937 cell line activation test (U-SENS) and the human cell line acti-

vation test (h-CLAT). As all of these assays cover certain aspects of the adverse outcome 

pathway; none of them is suitable as a standalone methodology for the prediction of the 

skin sensitization potential of small molecules. 

Computational methods that predict skin sensitization can be classified into expert 

systems, similarity-based approaches, and (quantitative) structure–activity relationship 

(QSAR) approaches [20]. These approaches offer fast predictions at low cost, enabling 

their use also in early stages of research and development, where a large number of can-

didate compounds may be under investigation. To be accepted as a component of regula-

tory risk assessment, computational methods have to fulfill certain quality criteria. For 

example, according to the OECD [25], a model should have a defined endpoint, an unam-

biguous algorithm, a defined applicability domain, appropriate measures of goodness-of–

fit, robustness, and predictivity, and, if possible, a mechanistic interpretation. 

No particular non-animal testing method or individual computational model has so 

far yielded a level of performance, robustness, interpretability, and coverage to be ac-

cepted as a standalone approach for skin sensitization prediction in the regulatory context. 

The most promising strategy to advance alternative testing methods is the combination of 

experimental and computational tools [26] within defined approaches, integrated ap-

proaches for testing and assessment (IATAs; for a review of IATAs and defined ap-

proaches see ref. [27]), or in “weight of evidence” considerations [28]. 

In our previous work [29], we presented Skin Doctor CP, a random forest (RF) model 

for the prediction of LLNA outcomes for small molecules that complies with the above-

mentioned OECD principles to the furthest possible extent. The Skin Doctor CP model is 

trained on a set of 1278 compounds annotated with binary LLNA outcomes (i.e., skin sen-

sitizer and skin non-sensitizer). To the best knowledge of the authors, this data set repre-

sents the largest collection of high-quality LLNA data in the public domain at present. The 

data set has been characterized regarding its composition and chemical space coverage 

[29]. The RF model derived from this data set is wrapped into an aggregated Mondrian 

conformal prediction (CP) framework, which ensures predictivity and robustness by a 

mathematically founded measure of reliability [30–32]. More specifically, the CP frame-

work guarantees an observed prediction error of the model close to the error rate ε set by 

the user (this is as long as the randomness assumption of the samples holds true; an as-

sumption that is also made for any classical machine learning model). The CP framework 

will only return a predicted class membership for a substance if the prediction lies within 
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the desired confidence level 1-ε. The measure of reliability offered by the CP approach can 

guide the use of Safety Assessment Factors of different levels and serve as a powerful, 

mathematically founded alternative to applicability domain definitions [33]. 

Depending on the available data and computational capacities, different variants of 

CP may be developed [34]. In the case of LLNA prediction, the data available for model 

development are limited and imbalanced; hence, the use of an aggregated CP framework 

is advised. The aggregated CP framework repeats the framework several times with dif-

ferent proper training and calibration sets [35]. This reduces the variance in the model 

predictions and allows every datapoint of the training set to be used for model develop-

ment. It is therefore best suited for modeling small data sets. 

To address data imbalance in addition to data scarcity (such as in the case of the 

LLNA data modeled in our previous study), the combination of the aggregated CP frame-

work with Mondrian CP is advised. Mondrian CP is tailored to describe imbalanced data 

as it treats each of the classes independently and ensures the validity of their predictions 

[36–38]. This is especially beneficial in toxicity prediction, where the toxic class is usually 

the minority class and therefore more difficult to predict [39]. 

In addition to the OECD requirement for a model to produce results with defined 

reliability (which we address by using a CP framework), model interpretability is a further 

key factor to consider. Model interpretability depends on the types of descriptors em-

ployed in model building. Most of the existing models for the prediction of the skin sen-

sitization potential of compounds, including our Skin Doctor CP models, rely on molecu-

lar fingerprints [29,40–42]. Interpreting these fingerprints can prove challenging, but in 

general, some links between chemical patterns and the biological outcomes can be identi-

fied [43]. 

In an attempt to generate predictive models from physically meaningful (and hence 

more intuitive) descriptors, we previously investigated the capacity of physicochemical 

property descriptors to produce predictive models for the prediction of the skin sensitiza-

tion potential [44]. However, the models trained on physicochemical property descriptors 

do not perform as well as those trained on molecular fingerprints, and their interpretation 

is still challenging due to the high number of descriptors required to obtain models with 

an acceptable performance. 

Recent studies have shown that in silico models for the prediction of complex in vivo 

endpoints can benefit from the inclusion of measured or predicted biological data (i.e., in 

vivo and/or in vitro data) into the feature set. More specifically, descriptive models have 

been built on small sets of hand-picked biological descriptors relevant to the endpoint of 

interest [45], as well as on large sets of screening data that may or may not be directly 

related to the endpoint of interest [46–50]. There are several examples of in silico models, 

nearest neighbor approaches in particular, that are trained on predicted bioactivities 

[51,52]. For example, the RASAR models [53] are RF models that predict nine health haz-

ard endpoints (including the skin sensitization potential) based on the distances of a com-

pound of interest to its nearest active and inactive neighbors in reference data sets for 19 

toxicological outcomes. Another computational approach utilizes a reasoning framework 

to build an information-rich network based on assay knowledge, assay data, and pre-

dicted bioactivities [54]. The visualization of this network can provide guidance to re-

searchers for the assessment of the safety profile of small molecules. 

Recently, Norinder et al. [55] presented a CP framework that utilizes predicted bio-

activities as input for in silico models for bioactivity and cytotoxicity prediction. This ap-

proach has the advantage of improving a model’s predictivity by the use of bioactivity 

data without the need to perform additional experimental testing for a compound of in-

terest. A similar methodological framework was successfully applied to three in vivo tox-

icological endpoints (i.e., genotoxicity, drug-induced liver injury, and cardiological com-

plications) by some of us [56]. 
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The aim of this work is to investigate the capacity of predicted bioactivities to pro-

duce simple, interpretable machine learning models for the prediction of the skin sensiti-

zation potential of small organic compounds without compromising on performance. In 

order to reach this goal, we explored strategies to replace the molecular fingerprints 

(MACCS keys) used in Skin Doctor CP by a small set of predicted bioactivities. We se-

lected these predicted bioactivities using Lasso regression from a panel of 372 published 

CP models for compound toxicity prediction [56] plus three new, additional models for 

assays of direct relevance to skin sensitization (i.e., DPRA, KeratinoSens assay, and 

h-CLAT). The final classifiers for the prediction of the skin sensitization potential of com-

pounds were trained on 1021 compounds. They utilize only 10 predicted bioactivity de-

scriptors but perform comparably to the Skin Doctor CP models. The best model (“Skin 

Doctor CP:Bio”) is available free of charge for academic research purposes. 

2. Materials and Methods 

2.1. Data Sets and Data Processing 

2.1.1. Binary LLNA Data 

This work is based on the identical LLNA data set that was used for the development 

of Skin Doctor CP [29]. The random split into a training set (80%) and a test set (20%) was 

also preserved. The chemical structures were processed with a refined preprocessing pro-

tocol that was developed by Garcia de Lomana et al. [56]. This protocol includes the re-

moval of solvents and salts, annotation of aromaticity, neutralization of charges, and me-

somerization. Substances containing (i) different components with non-identical SMILES 

or (ii) fewer than four heavy atoms or (iii) elements other than H, B, C, N, O, F, Si, P, S, Cl, 

Se, Br, and I were removed from the data set. 

The use of the new structure preprocessing protocol led to the rejection of 7 com-

pounds of the training set (and none of the test set) because they do not fulfill the require-

ments for molecules to be composed of at least one carbon atom and to consist of at least 

four heavy atoms. The processed training set consists of 1021 compounds and the test set 

of 257 compounds. 

2.1.2. Non-Animal Data on Skin Sensitization 

For the calculation of additional bioactivity descriptors, chemical information, and 

binary assay data for 194 compounds measured in the DPRA, 190 compounds measured 

in the KeratinoSens assay and 160 compounds measured in the h-CLAT were collected 

from Alves et al. [57]. The chemical structures were preprocessed following the protocol 

described above. Preprocessing resulted in the removal of one particular substance (for-

maldehyde) that is present in all three data sets. The final KeratinoSens assay, h-CLAT, 

and DPRA data sets comprised 189, 159, and 193 compounds, respectively. 

2.1.3. Data for Chemical Space Analysis 

In preparation for chemical space comparison, the 7030 cosmetics and 4036 agro-

chemicals included in the CompTox Chemicals Dashboard [58] and the 2509 approved 

drugs included in DrugBank [59] were downloaded and processed following the protocol 

described above. This resulted in a data set of 4488 cosmetics, 2433 agrochemicals, and 

2227 approved drugs (the significant reductions are related to the fact that many of the 

listed cosmetics and agrochemicals are either inorganic salts or without a defined molec-

ular structure). 

2.2. Descriptor Calculation and Normalisation 

A set of 750 bioactivity descriptors related to 375 predicted binary assay outcomes 

was calculated for all compounds of the LLNA data set and the three reference data sets 

(the number of bioactivity descriptors is double that of the predicted binary assay out-

comes because the predicted class probabilities of the active and the inactive class were 
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included in the descriptor set independently from each other). More specifically, class 

probabilities for 372 bioactivity assays were calculated with aggregated Mondrian CP 

models that we trained on bioactivity assay data collected from ToxCast [60], eMolTox 

[61], the eChemPortal [62], and literature, following the identical protocol published by 

Garcia de Lomana et al. [56]. In addition, predicted class probabilities for three assays 

relevant to skin sensitization prediction (i.e., DPRA, KeratinoSens assay, h-CLAT) were 

computed using Mondrian CP models generated by applying the identical model gener-

ation framework as described for the other assays [56] to the three corresponding data sets 

retrieved from Alves et al. Prior to modeling, the standard scaler of the preprocessing 

module of scikit-learn [63] was used (with default settings) to normalize all bioactivity 

descriptors. The standard scaler was trained on the LLNA training set only and applied 

to the full LLNA data set (training and test set). In addition, MACCS keys were calculated 

with RDKit version 2020.09.1 [64] for all compounds in the LLNA data set. 

2.3. Model Development 

2.3.1. Aggregated Mondrian Conformal Prediction Modeling 

In preparation for model generation, each training set was divided into a proper 

training set (80%) and a calibration set (20%) by stratified random splitting utilizing the 

train_test_split function of the Model_selection module of scikit-learn (data shuffling was 

enabled prior to data set splitting). Then, a RF model was generated (with the Random-

ForestClassifier function of scikit-learn; all parameters kept default, except for n_estima-

tors = 500 and random_state = 43) and applied to the corresponding calibration and test 

set. 

From the prediction probabilities obtained for the calibration set and the test set, non-

conformity scores (α-values) were calculated following Equation (1): 

�� = 0.5 −
��(��|��) − ��������

�(�|��)

2
 (1)

where �� (yi|xi) is the class probability for class i returned by the model, and 

��������
�(�|��) is the maximum class probability for any other class returned by the 

model. 

The non-conformity scores of the calibration set were sorted class-wise (following the 

Mondrian conformal prediction protocol), and the relative ranks of the non-conformity 

scores of each compound of the test set in relation to these lists were retrieved as so-called 

p-values. 

Within the aggregated CP framework, the procedure was repeated for 20 times with 

different stratified random splits into a proper training and calibration set, altering the 

random state of the train_test_split function from 0 to 19. For every compound in the test 

set, a p-value was derived during each run. The median over the p-values obtained during 

all 20 runs was processed as the final p-value of the compound. The p-values denote the 

probability of a compound belonging to the corresponding activity class. The model as-

signs a compound to a specific activity class if the corresponding p-value exceeds the se-

lected error significance level ε. 

2.3.2. Measurement of Model Performance 

In this work, the classical performance measures (i.e., accuracy (ACC), Matthews cor-

relation coefficient (MCC) [65], correct classification rate (CCR), sensitivity (Sens), speci-

ficity (Spec), negative predictive rate (NPV), and positive predictive rate (PPV)) are calcu-

lated based exclusively on compounds that were assigned by the CP models to exactly 

one activity class, i.e., “sensitizer” or “non-sensitizer”. This is to enable the application of 

classic performance measures to CP and, at the same time, to ensure the comparability of 

the classical performance measures and the results reported for classical non-CP models 

elsewhere. 



Pharmaceuticals 2021, 14, 790 6 of 22 
 

 

In contrast, the CP-specific performance measures (i.e., validity and efficiency) are 

calculated for all models based on the full sets of compounds to fulfill the common defi-

nition of these measures and enable the comparison with other CP models. Validity is 

defined as the percentage of predictions that include the true class, independently of the 

prediction of the other class (i.e., it includes “true” predictions as well as “both” predic-

tions). A model is deemed to be valid if the validity is close or equal to the expected value 

of 1-ε. Efficiency can be understood as an equivalent to the term coverage for non-CP 

models. It is defined as the percentage of distinct predictions (i.e., predictions that predict 

exactly one class to be true). 

2.3.3. Feature Selection and Parameter Optimization 

For feature selection (Figure 1), 10-fold cross-validation (CV) was performed on the 

training set using the scikit-learn StratifiedKFold function (Model_selection module; 

n_splits = 10, shuffle = True, random_state = 43). 

 

Figure 1. Schematic representation of the workflow for feature selection. 

First, the relative importance of each feature within each fold of the CV was investi-

gated. Therefore, hyperparameters for a Lasso classifier were optimized by a 10-fold CV 

within each fold of the outer CV. This was achieved with the scikit-learn LassoCV function 

(Linear_model module; random_state = 43, cv = 10, max_iter = 3000, n_alphas = 200). The 

optimized Lasso classifier was then used to obtain the Lasso coefficients of all bioactivity 

descriptors within the corresponding fold. The relative importance of each descriptor was 

calculated as the absolute value of the mean Lasso coefficient calculated over all folds of 

the CV run. 

Second, the optimum number of bioactivity descriptors for model generation was 

determined. To do so, the 10-fold CV on the training data was repeated, this time without 

feature selection with Lasso. Instead, a varying number of the most important bioactivity 

descriptors (i.e., 1 to 66 descriptors; selected based on their coefficients obtained with 

Lasso) were selected for model building. The mean performance during 10-fold CV in 

dependence of the number of descriptors was used to select the number of features for the 

final model. 

3. Results and Discussion 

3.1. Identification of the Optimum Number of Bioactivity Descriptors for Model Building 

In order to identify the most suitable number of bioactivity descriptors n for model 

building, we investigated, within a 10-fold CV framework, the performance of models as 
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a function of the number of descriptors used (reflecting model interpretability/complex-

ity). Within each CV fold, we performed Lasso regression to rank the descriptors by their 

corresponding Lasso coefficients (Table S1) and selected the n most important descriptors 

for model building. In Figure 2, we show the improvement of model performance as more 

bioactivity descriptors are added. In particular, for the first 10 descriptors, a steep increase 

in MCC and efficiency is observed (see section “Measurement of model performance” of 

the Methods for important information on how, and in particular on what data, the indi-

vidual performance measures are calculated). Beyond 10 descriptors, the improvements 

in model performance are minor and reach a plateau at approximately 25 descriptors. This 

led us to the conclusion that models based on the 10 most relevant bioactivity descriptors 

offer the best balance between model performance and complexity (Table 1). Validity is 

close to the expected value of 1-ε for all the significance levels (i.e., ε = 0.05, 0.10, 0.20, and 

0.30) and numbers of descriptors (in this experiment, 1 to 66) investigated. 

 

Figure 2. Mean performance of 10-fold CV as a function of the number of bioactivity descriptors 

selected for model building at the significance level (A) � = 0.05, (B) � = 0.10, (C) � = 0.20 and 

(D) � = 0.30. The horizontal, dashed line indicates the validity expected from the selected signifi-

cance level ε; the vertical, dashed line marks the performance of models trained on 10 descriptors. 

Table 1. Ten-fold CV Performance of Models Based on 10 Bioactivity Descriptors 1. 

Error  

Significance ε 
Validity Efficiency ACC MCC CCR Sens Spec NPV PPV 

0.05 0.95 (0.03) 0.38 (0.06) 0.88 (0.06) 0.76 (0.12) 0.88 (0.05) 0.87 (0.08) 0.89 (0.08) 0.92 (0.06) 0.85 (0.11) 

0.10 0.89 (0.03) 0.61 (0.06) 0.83 (0.05) 0.66 (0.10) 0.83 (0.05) 0.83 (0.10) 0.83 (0.08) 0.88 (0.07) 0.77 (0.09) 

0.20 0.79 (0.05) 0.86 (0.04) 0.76 (0.06) 0.51 (0.12) 0.76 (0.06) 0.75 (0.09) 0.77 (0.08) 0.82 (0.07) 0.69 (0.07) 

0.30 0.69 (0.07) 0.92 (0.03) 0.74 (0.06) 0.47 (0.11) 0.74 (0.06) 0.72 (0.08) 0.75 (0.07) 0.79 (0.06) 0.67 (0.06) 
1 Standard deviation in parentheses. 

3.2. Investigation of the Ten Most Relevant Bioactivity Descriptors 

With 10 identified as the optimum number of bioactivity descriptors for model build-

ing, we reiterated the above-mentioned descriptor selection process on the full training 

set and analyzed the relevance and biological meaning of the 10 descriptors with the high-

est absolute Lasso coefficients averaged over the 10 folds of the CV (Table 2). 
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The bioactivity descriptor ranked first by the Lasso model is the ToxCast assay “BSK 

KF3CT ICAM1 down” (Lasso coefficient 0.074). This feature describes the expression of 

ICAM1 in human keratinocytes. This ToxCast assay is observed to correlate with predic-

tions for other keratinocytes and foreskin assays from the ToxCast BSK family (Kendall τ 

correlation coefficients between 0.77 and 0.79). The ICAM1 readout is also known as 

CD54, which is a readout of the skin sensitization-related h-CLAT. The underlying model 

shows good predictivity (validity = 0.80, efficiency = 0.83, MCC = 0.41 at the significance 

level of 0.20) The nine further bioactivity descriptors all have similar Lasso coefficients, 

between 0.036 and 0.051 (validities between 0.74 and 0.87; efficiencies between 0.51 and 

0.87; MCCs between 0.30 and 0.98, respectively). Among these are the three assays that 

we added to the descriptor set because of their direct relevance to skin sensitization: 

DPRA, KeratinoSens assay, and h-CLAT. As expected, a direct correlation between a pos-

itive outcome in any of these three assays and the probability of a compound being a skin 

sensitizer is identified by the Lasso model. The fact that these assays do not show a high 

correlation with any other bioactivity descriptors within our full set of descriptors under-

lines the fact that these descriptors may add important additional information on the skin 

sensitization potential of compounds. The models predicting these bioactivity descriptors 

are built on comparably small data sets (<200 compounds). This is reflected by a higher 

deviation of the significance of these models from the expected value of 0.80 at the inves-

tigated significance level of 0.20, compared to the other models. The MCCs of these mod-

els are between 0.30 and 0.54. 

The ToxCast assay “ATG NRF2 ARE CIS up” describes the activation of NRF2 in 

human liver cells. Being the fundamental concept of keratinocyte activation analysis via 

KeratinoSens and LuSens assay, Nrf2 activation is known to play a vital role in the regu-

lation of cellular cytoprotective responses, metabolism, and immune regulation. Included 

in the top-10 features are also the ToxCast assays “BSK 3C E-selectin down” and “BSK 4H 

uPAR down”, both of which describe inflammation-related biological processes in the en-

dothelium environment. As such, these assays might encode aspects of the immunological 

response of the human body. “BSK 3C E-selectin down” correlates with other assays as-

sociated with inflammation and immune reaction and which are often located in the en-

dothelium. While it shows a positive correlation with the skin sensitization potential 

(which might indicate an activation of compounds or increased bioavailability), “BSK 4H 

uPAR down” is one out of only two bioactivity descriptors (among the top-10 features) 

that show negative correlation with the skin sensitization potential. This assay may there-

fore report processes involving the deactivation of a compound or the reduction of its 

bioavailability. 

The chromosome aberration assay may not be directly linked to skin sensitization, 

but it may be relevant to the detection of reactive compounds. The feature is weakly cor-

related with other assays that are linked to the detection of reactive molecules (e.g., mam-

malian cell gene mutation assay or AMES mutagenicity assay). Chromosome aberration 

predictions show no strong correlation with any other descriptors in the set of models. 
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Table 2. Overview of the Top-10 Bioactivity Descriptors. 

Descriptor 

Name 
Assay Title 

Mean Lasso 

Coefficient ¹ 

σ (Lasso Co-

efficient) 

Correlation to Positive 

LLNA outcome ² 

5-Fold CV Performance at Significance Level of 0.20 
Most Correlating Assays ³ 

Validity Efficiency MCC 

p0 BSK KF3CT 

ICAM1 down 

Bioseek human keratinocytes and foreskin fibro-

blasts intercellular adhesion molecule 1 assay 
0.074 0.009 positive 0.80 0.83 0.41 

BSK KF3CT SRB down (0.79) 

BSK KF3CT TGFb1 down (0.78) 

BSK KF3CT MCP1 down (0.78) 

BSK KF3CT uPA down (0.78) 

BSK hDFCGF TIMP1 down (0.77) 

p1 BSK 4H 

uPAR down 

Bioseek human umbilical vein endothelium 

plasminogen activator, urokinase receptor assay 
0.051 0.045 negative 0.81 0.82 0.46 

BSK 3C uPAR down (0.83) 

BSK LPS SRB down (0.81) 

BSK 3C MCP1 down (0.81) 

BSK 4H SRB down (0.8) 

BSK SAg MCP1 down (0.8) 

p0 Chromosome 

aberration 
Chromosome aberration assay 0.049 0.010 positive 0.79 0.70 0.30 

Mammalian cell gene mutation (0.47) 

AMES (0.41) 

Inhibitors of Hepatocyte nuclear factor 4 

(HNF4) dimerization (0.35) 

Modulator of Muscarinic acetylcholine re-

ceptor M4 (−0.33) 

Modulator of Bradykinin B2 receptor 

(−0.33) 

p1 DPRA Direct peptide reactivity assay 0.047 0.013 positive 0.74 0.71 0.30 

h-CLAT (0.42) 

Inhibitors of Hepatocyte nuclear factor 4 

(HNF4) dimerization (0.31) 

KeratinoSens (0.31) 

Inhibit CYP2C19 Activity (−0.29) 

Modulator of Peroxisome proliferator-acti-

vated receptor gamma (−0.29) 

p1 Modulator of 

Dopamine D1  

receptor 

Modulator of Dopamine D1 receptor assay 0.045 0.006 positive 0.81 0.81 0.98 

Modulator of Alpha-2b adrenergic receptor 

(0.37) 

Modulator of Serotonin 1a (5-HT1a) recep-

tor (0.32) 

Modulator of Alpha-2a adrenergic receptor 

(0.31) 

Modulator of Serotonin 2a (5-HT2a) recep-

tor (0.31) 

Modulators of myocardial damage (0.3) 

p1 h-CLAT Human cell line activation test 0.043 0.013 positive 0.87 0.56 0.54 PGPinhibition (−0.48) 
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Caco2 (0.46) 

LTEA HepaRG DDIT3 up (−0.46) 

ATG TA CIS up (−0.46) 

Modulator of P2X purinoceptor 3 (−0.45) 

p1 BSK 3C  

E-selectin down 

Bioseek human umbilical vein endothelium se-

lectin E assay 
0.043 0.021 positive 0.79 0.77 0.41 

BSK 3C VCAM1 down (0.82) 

BSK 4H Pselectin down (0.81) 

BSK 4H VCAM1 down (0.81) 

BSK 3C MCP1 down (0.81) 

BSK 4H SRB down (0.79) 

p1 LTEA  

HepaRG APOA5 

dn 

LifeTech/Expression Analysis human HepaRG 

apolipoprotein A-V assay 
0.040 0.012 negative 0.82 0.77 0.51 

LTEA HepaRG CYP4A22 dn (0.78) 

LTEA HepaRG CYP4A11 dn (0.77) 

LTEA HepaRG FMO3 dn (0.76) 

LTEA HepaRG HMGCS2 dn (0.76) 

LTEA HepaRG GSTA2 dn (0.75) 

p1 KeratinoSens ARE-Nrf2 Luciferase test method 0.039 0.004 positive 0.82 0.51 0.31 

DPRA (0.31) 

h-CLAT (0.31) 

Inhibitors of Hepatocyte nuclear factor 4 

(HNF4) dimerization (0.29) 

Inhibit CYP1A2 Activity (0.27) 

Modulator of Monoamine oxidase A (0.27) 

p0 ATG NRF2 

ARE CIS up 

Attagene human HepG2 nuclear factor, 

erythroid 2-like 2 assay 
0.036 0.014 positive 0.81 0.87 0.55 

ATG PPARg TRANS up (0.67) 

ATG VDRE CIS up (0.66) 

ATG MRE CIS up (0.65) 

ATG PXR TRANS up (0.64) 

ATG AP 1 CIS up (0.64) 
1.Mean over the 10 folds of the CV. Note that the feature importance rankings of the Lasso model and the RF model may differ. 2.Correlation of the positive assay outcomes and the skin 

sensitization potentials measured in the LLNA. Since the probability of a compound to belong to the inactive class (p0) or the active class (p1) in a given assay are strongly correlated, 

either p0 or p1 is selected as an important descriptor by the Lasso model for that assay. Depending on whether p0 or p1 has been selected, and depending on the algebraic sign of the 

mean Lasso coefficient, a positive predicted assay outcome can either be associated with a positive or a negative LLNA result (i.e., if p0 has a positive correlation with the LLNA result 

this describes anticorrelation between the positive outcome of both endpoints). 3.Numbers in parentheses report the Kendall τ correlation coefficients between the descriptor and the 

(most) correlated assay. The full names of the assays are provided in Table S2. 
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3.3. Coverage of the Chemical Space Relevant to the Development of Cosmetics, Drugs and 

Agrochemicals 

In order to develop an understanding of to what extent the LLNA data set, which we 

will use to develop the in silico models, represents drugs, cosmetics, and agrochemicals 

in the feature space defined by the ten selected bioactivity descriptors, a principal compo-

nent analysis (PCA) was performed on the LLNA data set and the reference sets. As 

shown in the PCA scatter plot in Figure 3 (PCA loadings plot provided in Figure S1), the 

LLNA data set covers well the areas in feature space populated by cosmetics, approved 

drugs, and agrochemicals. 

 

Figure 3. PCA quantifying the coverage of the LLNA data by the reference sets of (A) cosmetics, (B) approved drugs, and 

(C) agrochemicals in the feature space of the 10 selected bioactivity descriptors. The percentages in parentheses report the 

variance explained by the respective principal component (PC). 

3.4. Analysis of the Distribution of Sensitizers and Non-Sensitizers in the Feature Space of the 

Ten Selected Bioactivity Descriptors 

To investigate the distribution of sensitizers and non-sensitizers within the feature 

space of the ten selected bioactivity descriptors, another PCA was performed, this time 

exclusively on the compounds of the LLNA data set (Figure 4). Three characteristic areas 

can be identified in the scatter plot resulting from this PCA (Figure 4A): Area 1, covering 

mainly sensitizers; Area 2, covering mainly non-sensitizers; and Area 3, showing intense 

mixing of sensitizers and non-sensitizers. 

 

Figure 4. LLNA data set analyzed by PCA in the feature space of the ten selected bioactivity de-

scriptors. (A) Scatter plot colored by the binary skin sensitization potential; (B) loadings plot of the 

ten descriptors. The percentages in parentheses report the variance explained by the respective prin-

cipal component (PC). Note that the axis sections differ for panels (A,B). 
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The corresponding loadings plot (Figure 4B) places the bioactivity descriptors for the 

three skin sensitization assays (h-CLAT, DPRA, and KeratinoSens assay) and the chromo-

some aberration assay in quadrant 2 (upper left). All four of these assays contribute posi-

tively to PC2 and, to a lower degree, negatively to PC1. Since a positive outcome in one 

or several of the skin sensitization assays should be correlated with a positive skin sensi-

tization potential, this is in agreement with the PCA scatter plot showing a high accumu-

lation of sensitizers in the upper left region. Since a positive outcome in the chromosome 

aberration assay is likely correlated with a reactive compound, it is also within the expec-

tations that it will shift a compound towards this Area 1 in the PCA scatter plot. 

For the remaining six bioactivity descriptors, higher PC1 and PC2 values are ex-

pected for compounds that are active in the corresponding assay. Thus, all ten bioactivity 

descriptors contribute positively to PC2. This means that every compound predicted to be 

positive in those bioactivity assays is moved towards Area 1 or 3 in the scatter plot. This 

comes along with the increased probability of a compound to be a skin sensitizer (i.e., to 

be located in Area 1). At the same time, every negative predicted assay outcome moves 

the compound towards Area 2, where we mainly expect non-sensitizers to be located, or 

Area 3, where no prevalence in activity is detected. This positive contribution to PC2 is 

higher for KeratinoSens, DPRA, chromosome aberration, h-CLAT, and ATG NRF2 than 

for the other five bioactivity descriptors. In Area 3, we observe intense mixing of skin 

sensitizers and non-sensitizers, hence posing a significant challenge to classification. 

3.5. Model Based on Ten Selected Bioactivity Descriptors 

Following the identification of the optimum model setup, a final, aggregated Mon-

drian CP model based on the ten selected bioactivity descriptors was derived from the full 

training set and evaluated on the holdout data set. From here on, we refer to this model 

as the SkinDoctor CP:Bio model. 

3.5.1. Performance on the Test Set 

Within the standard deviation expected from CV, the SkinDoctor CP:Bio model was 

valid at all four significance levels investigated (Table 3). The efficiencies of the model 

ranged from 0.39 to 0.95 and the MCCs ranged from 0.72 to 0.49, depending on the signif-

icance level. 

Class-wise performance analysis (Table 4) showed that the SkinDoctor CP:Bio model 

was valid for sensitizers and non-sensitizers at all significance levels investigated. The 

largest difference in validity between the two classes (0.08) was observed at the signifi-

cance level of 0.30. Efficiency was in general similar for both classes (largest difference 

0.04). 

Table 3. Performance of the model based on ten selected bioactivity descriptors on the test set. 

Error Sig-

nificance ε 
Validity Efficiency ACC MCC CCR Sens Spec NPV PPV 

0.05 0.95 0.39 0.86 0.72 0.86 0.84 0.88 0.88 0.84 

0.10 0.89 0.56 0.81 0.62 0.81 0.85 0.77 0.88 0.74 

0.20 0.81 0.82 0.76 0.53 0.77 0.80 0.74 0.83 0.69 

0.30 0.70 0.95 0.74 0.49 0.75 0.78 0.72 0.82 0.67 
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Table 4. Class-wise performance of the model based on ten selected bioactivity descriptors on the 

test set. 

Error Significance ε Class Validity Efficiency 

0.05 
Non-sensitizer 0.95 0.38 

Sensitizer 0.93 0.41 

0.10 
Non-sensitizer 0.87 0.55 

Sensitizer 0.92 0.58 

0.20 
Non-sensitizer 0.79 0.82 

Sensitizer 0.83 0.82 

0.30 
Non-sensitizer 0.67 0.94 

Sensitizer 0.75 0.95 

3.5.2. Comparison of the New Model with the Skin Doctor CP Model 

The previously developed Skin Doctor CP model [29] is trained on MACCS keys (166 

features), whereas the Skin Doctor CP:Bio model is trained on ten selected bioactivity de-

scriptors. All other differences in the data and protocols used for model building and test-

ing are minor (Table S3), thus enabling a direct, comparative assessment of the two feature 

types and their impact on model performance and behavior. 

On the holdout data set of 257 compounds measured in the LLNA (none of these 

compounds is part of the training set of either model), both the Skin Doctor CP model and 

the Skin Doctor CP:Bio model were valid at all significance levels investigated. For the 

sake of clarity, we focus our discussion here on the commonly applied significance level 

of 0.20; performance data on all significance levels are provided in Table S4. At the signif-

icance level of 0.20, the Skin Doctor CP and Skin Doctor CP:Bio models yielded validities 

of 0.82 and 0.81, respectively. The efficiencies (0.78 vs. 0.82) and MCCs (0.55 vs. 0.53) ob-

tained for the Skin Doctor CP and Skin Doctor CP:Bio models were also comparable. The 

differences in performance between the two models are slightly above the standard devi-

ation observed for the 10-fold CV experiments but small enough to consider the perfor-

mance of the two models similar. 

3.6. Combination of Bioactivity Descriptors with MACCS Keys in an Attempt to Improve Model 

Performance 

MACCS keys encode structural patterns of molecules and thus information that is 

very different from that encoded by the bioactivity descriptors. The use of MACCS keys 

in combination with the ten selected bioactivity descriptors could hence yield better mod-

els. However, a RF model derived from the combined set of MACCS keys and the ten 

selected bioactivity descriptors (n_estimators = 500; all other parameters default) did not 

yield better performance on the test set. 

Therefore, we generated a model trained exclusively on MACCS keys plus a model 

trained exclusively on the ten selected bioactivity descriptors (both models with n_esti-

mators = 500; all other parameters default), and, based on a simple set of rules (see Figure 

5), combined both models to form a consensus model. This set of rules follows the idea 

that only unambiguous predictions by the single models (i.e., predictions assigning a com-

pound to exactly one class) are considered. If one model returns an unambiguous predic-

tion or if both models return an unambiguous prediction and are in agreement, the un-

ambiguous prediction is reported as the final result. In all other cases, the consensus 

model does not return a prediction. 
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Figure 5. Architecture of the consensus model. 

Table 5 reports on the performance of this consensus model at different error signif-

icance levels. Note that because the consensus model does not fulfill the definitions of a 

pure CP model, validity and efficiency cannot be calculated for this model. 

When running the two CP models underlying the consensus approach at a signifi-

cance level of 0.20, the consensus approach reached a coverage of 0.89 and an MMC of 

0.54. Hence, compared to the Skin Doctor CP:Bio model (efficiency 0.82 and MCC 0.53 at 

a significance level of 0.20), the consensus model obtained only slightly better coverage 

while maintaining the MCC. 

A second, combined, model was constructed by averaging the p-values returned for 

each class by the model based on MACCS keys and the model based on bioactivity de-

scriptors. The model was valid to over-predictive at the four significance levels investi-

gated. At the significance level of 0.20, the validity was 0.82. The efficiency at this signifi-

cance level was 0.79 (vs. 0.82 for the Skin Doctor CP:Bio model) and the MCC was 0.56 

(vs. 0.53 for the Skin Doctor CP:Bio model). Hence, compared to the Skin Doctor CP:Bio 

model, this combined model obtains a slightly higher MCC, at the cost of efficiency. 

Table 5. Performance of the consensus and the combined models on the test set. 

Consensus Model Based on a Set of Rules 

Error signifi-

cance ε ¹ 

  

Coverage ACC MCC CCR Sens Spec NPV PPV 

0.05 0.51 0.86 0.72 0.86 0.84 0.88 0.88 0.84 

0.10 0.71 0.79 0.59 0.80 0.83 0.77 0.88 0.70 

0.20 0.89 0.77 0.54 0.78 0.82 0.73 0.85 0.68 

0.30 0.83 0.78 0.56 0.79 0.85 0.72 0.88 0.68 

Combined Model Based on Mean p-Values 

Error signifi-

cance ε 
Validity Efficiency ACC MCC CCR Sens Spec NPV PPV 

0.05 0.97 0.24 0.89 0.77 0.89 0.92 0.86 0.94 0.82 

0.10 0.93 0.46 0.86 0.72 0.87 0.94 0.80 0.95 0.76 

0.20 0.82 0.79 0.77 0.56 0.78 0.85 0.72 0.87 0.69 

0.30 0.71 0.95 0.75 0.50 0.76 0.80 0.72 0.84 0.66 
1 Error significance of the underlying model, not of the combined model itself. 
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In order to obtain a better understanding of the advantages and disadvantages of the 

two combined models over the single models, we investigated the relationship between 

classification performance (MCC) and coverage. From Figure 6, it can be seen that the 

combined models tend to obtain better MCC values at a given coverage than the single 

models. At higher coverages, the combined model based on averaged p-values has slightly 

better MCCs than the combined model based on the set of rules. A further advantage of 

the combined model based on p-value averaging is that users can select a confidence level; 

this is not possible with the combined model based on the set of rules. 

Overall, the p-value averaging approach seems to be preferable over the rule-based 

approach. Compared to the single model (i.e., the Skin Doctor CP:Bio model), the ad-

vantages of the combined approach with respect to performance are outweighed by the 

fact that the single model has much lower complexity and, hence, better interpretability. 

 

Figure 6. Relationship between MCC and coverage for the individual and the combined models. 

3.7. Investigation of the Influence of Experimental Skin Sensitization Assay Results on 

Predictivity 

Feature selection with Lasso and the RF algorithm identified the three bioactivity de-

scriptors derived from the three skin sensitization-specific assays (i.e., DPRA, 

KeratinoSens assay, h-CLAT) as important for modeling the LLNA. In order to obtain a 

better understanding of the role and significance of these three bioactivity descriptors, we 

investigated them from different perspectives. 

First, we determined the (5-fold) CV performance of the CP models for the DPRA, 

KeratinoSens assay, and h-CLAT descriptors on the (i) 194 compounds measured in the 

DPRA, (ii) 190 compounds measured in the KeratinoSens assay, and (iii) 160 compounds 

measured in the h-CLAT. The KeratinoSens and h-CLAT models (Table 6) were valid at a 

significance level of 0.2 (validities of 0.82 and 0.87, respectively) while the DPRA model 

showed a slight underperformance (validity 0.74). The efficiencies of the models were 

fairly low (0.51 to 0.71) in comparison to most of the other CP models for bioactivity pre-

diction. We assume that the low efficiency is related to the fact that the training sets for 

these CP models are small (<200 compounds). The other evaluated performance measures 

are within expectations (e.g., MCC between 0.30 and 0.54). Overall, we conclude from 

these results that the predicted assay outcomes from these three models could make a 

substantial contribution to models predicting the skin sensitization potential. 

Second, we investigated (by 10-fold CV on the full LLNA data set) whether the high 

importance attributed by Lasso to the skin sensitization-specific assays could be a result 

of overlaps in the training or test data of the LLNA model (SkinDoctor CP:Bio model) and 

the training data of the DPRA/KeratinoSens assay/h-CLAT models. For the overlapping 
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compounds, the p-values used as bioactivity descriptors should be accurate (since the ex-

perimental value of the in vitro assays is known) and therefore more informative. In order 

to investigate this, we determined the performance of the SkinDoctor CP:Bio model in 

dependence of the number of compounds overlapping between the LLNA data set (i.e., 

the test data within each fold) and the training data of the DPRA/KeratinoSens assay/h-

CLAT models. We found that six compounds of the LLNA data set were present also in 

exactly one of the DPRA/KeratinoSens assay/h-CLAT training sets, 45 compounds were 

present in exactly two of these assays, and 132 compounds in each of these three assays. 

Note that the number of compounds present in the LLNA data set and in exactly one of 

the three non-animal assay data sets is too low to make any meaningful observations, for 

which reason this case was not further pursued. For the remaining two subsets of com-

pounds, the performances of the models were comparable to each other as well as to the 

subset containing the compounds that are not present in any of three assay data sets (Table 

7). For this reason, we are confident that the importance attributed to the predicted DPRA, 

KeratinoSens assay, and h-CLAT outcomes is genuine and not a result of a bias in the data. 

Table 6. Five-fold CV performance of the CP models for DPRA, KeratinoSens assay, and h-CLAT at the significance level 

of 0.20 1. 

Assay to be 

Predicted 

No. Com-

pounds in 

Data Set 

Validity Efficiency ACC 
ACC (Sensi-

tizers) 

ACC (Non-

Sensitizers) 
F1 Score MCC 

DPRA 194 0.74 (0.09) 0.71 (0.14) 0.64 (0.07) 0.60 (0.06) 0.69 (0.20) 0.64 (0.07) 0.30 (0.18) 

KeratinoSens 190 0.82 (0.11) 0.51 (0.08) 0.67 (0.19) 0.66 (0.24) 0.68 (0.23) 0.64 (0.19) 0.31 (0.35) 

h-CLAT 160 0.87 (0.03) 0.56 (0.56) 0.78 (0.05) 0.76 (0.15) 0.75 (0.29) 0.74 (0.06) 0.54 (0.08) 
1 Standard deviation in parentheses. 

Table 7. Performance of the SkinDoctor CP:Bio model during 10-fold CV on the full LLNA data set in dependence of the 

number of skin sensitization assays for which experimental data are available. 

Error Sig-

nificance ε 
Validity Efficiency MCC Validity Efficiency MCC Validity Efficiency MCC 

 For Compounds Exclusive to the 

LLNA Data Set 

For Compounds Present in the LLNA Data Set Plus Exactly 

Two Three 

of the DPRA/KeratinoSens Assay/h-CLAT Training Sets 

0.05 0.97 0.33 0.77 0.98 0.44 0.79 0.98 0.45 0.77 

0.10 0.91 0.56 0.64 0.96 0.62 0.74 0.93 0.65 0.67 

0.20 0.81 0.83 0.52 0.91 0.84 0.66 0.86 0.81 0.51 

0.30 0.69 0.94 0.45 0.82 0.93 0.68 0.73 0.93 0.42 

Third, we tested the capacity of a model trained only on DPRA, KeratinoSens assay, 

and h-CLAT assay data to predict the outcomes of the LLNA. This experiment is particu-

larly interesting because a number of existing in silico models for the prediction of the 

skin sensitization potential are trained exclusively on data from these three assays [66–

68]. 

In five-fold CV, our CP model trained exclusively on DPRA, KeratinoSens assay, and 

h-CLAT assay data descriptors (n_estimators = 500; all other parameters default) was 

valid at all error significance levels investigated (Table 8), but its efficiency (0.21 at ε = 0.05; 

0.88 at ε = 0.30) and MCC (0.48 at ε = 0.05; 0.37 at ε = 0.30) were substantially lower than 

those of the CP model derived from the ten selected bioactivity descriptors. These results 

indicate that the bioactivity descriptors derived from other assays add relevant, additional 

information to the models that is needed to obtain good classifiers. 
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Table 8. Test set performance of the classifier trained exclusively on predicted values of the DPRA, KeratinoSens and h-

CLAT assays. 

Error Sig-

nificance ε 
Validity Efficiency ACC MCC CCR Sens Spec NPV PPV 

0.05 0.94 0.21 0.71 0.48 0.72 0.92 0.52 0.88 0.63 

0.10 0.90 0.40 0.75 0.51 0.76 0.82 0.69 0.84 0.67 

0.20 0.80 0.70 0.72 0.44 0.72 0.76 0.69 0.81 0.61 

0.30 0.72 0.88 0.68 0.37 0.69 0.71 0.66 0.78 0.59 

3.8. Impact of the Limitation of the Available Experimental Data on Model Performance 

Most of the freely available models for the prediction of the skin sensitization poten-

tial of small molecules are trained on LLNA data, and the evaluation reports for many of 

these models indicate that their performance is comparable [29,40,44,57]. It is plausible 

that the observed plateauing of model performance is related to the limited quantity and 

quality of the data available for model development. In order to investigate whether our 

classifiers could benefit from additional LLNA data, we investigated the relationship be-

tween model performance and the size of the training data. 

As expected, and shown in Figure 7, the performance of models increases with the 

number of training instances, regardless of the type of descriptors used. The MCCs of the 

models based on bioactivity descriptors improve from an average of 0.41 to an average of 

0.50, respectively. Consistent with our initial CV experiments, the use of more than ten 

bioactivity descriptors yields minor improvements in model performance that we believe 

are outweighed by higher model complexity. 

The MCC of the model based on MACCS keys improves from 0.28 (when trained on 

115 compounds) to 0.47 (when trained on 1150 compounds), indicating that the models 

trained on MACCS keys require substantially more training data than the models trained 

on bioactivity descriptors to obtain good performance. In this particular case, the MACCS 

keys model reaches a comparable performance to the model based on bioactivity de-

scriptors only when all the available LLNA data are used for modeling. This leaves the 

MACCS keys model clearly more data-hungry than the models based on predicted bioac-

tivities, with the benefit of showing the potential to surpass the model based on predicted 

bioactivities given the availability of sufficient amounts of data. 

 

Figure 7. Performance of the RF classifier (n_estimators = 500; all other parameters default) under-

lying the CP model as a function of the number of instances the model was trained on. 
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4. Conclusions 

In this work, we report on the development and validation of a new machine learning 

model for the prediction of the skin sensitization potential of small organic molecules: 

Skin Doctor CP:Bio. Whereas the previously reported models are mostly based on molec-

ular fingerprints (which in general are difficult to interpret), Skin Doctor CP:Bio utilizes 

just ten bioactivity descriptors to reach competitive performance. Most of these bioactivity 

descriptors are known to be directly or indirectly linked to skin sensitization, which adds 

to the interpretability of the model and supports its meaningfulness. 

At the significance level of 0.20, Skin Doctor CP:Bio obtained an efficiency of 0.82 and 

an MCC of 0.53 on the holdout data set of 257 compounds. These results demonstrate the 

good performance of the model and, hence, the relevance of the selected bioactivity de-

scriptors. Analysis of the LLNA training data projected into the new feature space proves 

that cosmetics, drugs, and agrochemicals are well embedded in the data, hence corrobo-

rating the relevance of the model to different industries. 

In an attempt to further improve model performance and coverage, we explored dif-

ferent strategies to exploit the information contained in molecular fingerprints (MACCS 

keys) and biological descriptors. The models obtained from these experiments showed 

minor improvements in performance that are outweighed by the costs of higher model 

complexity and limited interpretability. 

An important observation to make was that models based on MACCS keys are 

clearly more data-hungry than models based on predicted bioactivities. Only when using 

all of the available LLNA data, the model based on MACCs keys was able to catch up with 

the model based on predicted bioactivities. This highlights the relevance of the presented 

approach to the development of strategies to address the many questions in biology, phar-

macology, and toxicology where measured data are scarce. We believe that the modeling 

strategies presented in this work could be easily adopted to address many of these re-

search questions. The Skin Doctor CP:Bio model is available free of charge for academic 

research purposes. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/ph14080790/s1. Figure S1. Loadings plot for the PCA on the LLNA and the three refer-

ence data sets, based on the ten selected bioactivity descriptors; Table S1: Mean absolute lasso coef-

ficients and standard deviation σ retrieved from the 10-fold CV; Table S2: Full name of the assays 

with high correlation to the ten selected bioactivity descriptors; Table S3: Comparison of the Skin 

Doctor CP and Skin Doctor CP:Bio approaches; Table S4: Results of Skin Doctor CP on the test set. 
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Abbreviations 

ACC accuracy 

CCR correct classification rate 

CP conformal prediction 

CV cross validation 

DPRA direct peptide reactivity assay 

GPMT guinea pig maximization test 

h-CLAT human cell line activation test 

IATA integrated approach for testing and assessment 

LLNA local lymph node assay 

MCC Matthews correlation coefficient 

NPV negative predictive rate 

PC principal component 

PCA principal component analysis 

PPV positive predictive rate 

(Q)SAR (quantitative) structure activity relationship 

RF random forest 

Sens sensitivity 

Spec specificity 
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7. Conclusion

Skin sensitization is a complex endpoint that may result in the development of
ACD. In order to minimize this risk, skin sensitization should be addressed for
the development and approval of new chemicals or consumer products. Although
animal experiments have been considered the gold standard for the assessment
of skin sensitization potential and potency for decades, it is now desired and
partialy legally required to assess this endpoint by non-animal alternatives. To
that end, several in vitro and in chemico assays address the different key events
of the skin sensitization AOP experimentally. In addition, a variety of compu-
tational prediction tools are capable to predict the skin sensitization potential
(and to a limited degree potency) from existing data. Such non-testing methods
allow for a large number of compounds to be evaluated in a short time and
with low financial and logistical expenses. At the beginning of this thesis, we
extensively reviewed the existing data basis and the available computational
tools to predict skin sensitization potential and potency [P1]. Even though a
variety of computational tools for skin sensitization prediction are available,
none of them are capable of serving as a stand-alone method for risk assess-
ment. Transparency, defined reliability, and interpretability were identified as
three important pillars for a useful and applicable model for the prediction of
skin sensitization potential or potency.

Within this thesis, we aimed to advance computational methods for the predic-
tion of skin sensitization potential by the developing and evaluating predictive
and transparent ML models, accompanied by solid measures of reliability.

In our first study, we compiled and standardized the currently largest LLNA
data set comprising 1416 compounds labeled with binary skin sensitization po-
tential. A comparison of the new LLNA data set with three reference data sets
comprising cosmetics, approved drugs, and pesticides, respectively, revealed a
high overlap, especially between the LLNA data set and the cosmetics space
(30%, 10% and 13% overlap between the LLNA data set and cosmetics, approved
drugs, and pesticides, respectively). These findings indicate that a model built
on the LLNA data will be of high relevance for most molecules commonly used
in cosmetic products. Nevertheless, not all areas in chemical space covered by
the reference data sets are well represented by LLNA. Therefore, a solid defi-
nition of the AD is strongly needed for a model based on LLNA data. We also
evaluated the capability of different ML algorithms (SVM and RF) and different
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sets of descriptors (eight sets of binary and continuous descriptors and different
combinations of two of them) to correctly predict skin sensitization potential
measured in the LLNA. In total, 58 different ML models were optimized regard-
ing their hyperparameters and evaluated in 10-fold CV. By a clear margin, the
lowest performance was found for the SVM and RF models based on the five bit
long fingerprint encoding the absence or presence of five OASIS alerts for skin
sensitization (ACC of 0.67 and 0.66, respectively and MCC of 0.29 and 0.27,
respectively), whereas all other models showed comparable performance mea-
sures with ACCs between 0.71 and 0.76 and MCCs between 0.39 and 0.55. The
combination of two sets of descriptors was only beneficial compared to the single
descriptor sets if two complementary types of descriptors (i.e. physicochemi-
cal descriptors and structural fingerprint) were combined. In PCA a cluster of
halogenated aliphatic chains with differing class labels could be identified. Since
these molecules cannot be differentiated by Morgan2 fingerprints, physicochem-
ical descriptors will be needed to predict activity of these molecules. Finally,
five models were selected for further evaluation and complemented with a solid
definition of the AD (based on the mean Tanimoto similarity to the five nearest
neighbors in Morgan2 space) as well as two reliability measures (comprising
the distance to the models decision threshold and the number of nearest neigh-
bors with concurrent class label). Our findings could be confirmed on unseen
test data. Two models accompanied by their AD and reliability measures have
been implemented on a publicly available web server for easy and fast usability.
Compared to existing models, our models have the advantage of high coverage
and relevance due to the largest publicly available data basis and the advantage
of a solid definition of the AD and two transparent and well proven measures
of reliability that can select reliable predictions based on differently strict cutoffs.

In our second study, we refined our LLNA data set by an additional manual
data curation step. Consequently, we reduced the size of our binary data set
to 1285 compounds, while remarkably increasing the quality of the data. A
subset of the data was labeled with ternary class information and comprised
634 non-sensitizers, 345 weak to moderate sensitizers and 84 strong to extreme
sensitizers.
One of the best performing combinations of ML algorithms, descriptors, and
hyperparameters found in the previous study (a RF model based on MACCS
key fingerprint), was applied to the new data set and enveloped into a CP frame-
work. The model was valid on all error significances ε investigated (ε = 0.05,
0.10, 0.20 and 0.30). At an error significance ε of 0.05 high performance (ACC
and MCC of 0.89 and 0.78, respectively) could be achieved at the cost of re-
duced efficiency of 0.32. At an error significance ε of 0.30, a high efficiency of
0.92 could be achieved at still reasonable performance of ACC and MCC of 0.75
and 0.51, respectively. Investigation of the ternary class labels (if available),
revealed that, by far, most of the compounds falsely predicted as non-sensitizers
are experimentally assigned to the weak to moderate sensitizers (5% and 9%



131

of predictions at the significance of ε = 0.10 and 0.30, respectively), whereas
the more dangerous wrong prediction of strong to extreme sensitizers as non-
sensitizers occurs only rarely (0% and 2% of predictions at the significance of
ε = 0.10 and 0.30, respectively). To enable ternary classification, the binary
classifier was combined with a second binary CP classifier differentiating weak
to moderate from strong to extreme sensitizers. The combined model was over-
all valid at the error significance of ε = 0.20 and 0.30, but suffered from poor
PPV for strong and extreme sensitizers at the significance levels of 0.20 and
0.30. Nevertheless, comparison to another ternary classifier for skin sensitization
prediction based on a subset of our data revealed that shortcomings in class-
wise performance might be a general problem in multi-class prediction of LLNA
outcomes. The binary CP model differentiating sensitizers from non-sensitizers
was published on our web service under the name Skin Doctor CP.

In our third study, we evaluated the capacity of a newly developed set of 750
calculated bioactivity descriptors to describe skin sensitization potential of small
molecules measured in the LLNA. A strict feature selection process, allowed
us to select only ten of these descriptors for further modeling and analysis.
Three of the selected descriptors directly encoded for the predicted activity of
a molecule in three non-animal testing approaches related to skin sensitization
(DPRA, KeratinoSens assay, and h-CLAT). Also for most of the other selected
descriptors, a biological relation to the skin sensitization AOP could be ob-
served. Reconstruction of our CP framework with a RF model based on the
ten bioactivity descriptors only, achieved a performance comparable our former
model based on the less interpretable MACCS key fingerprint: ACC, MCC and
efficiency of the new model are 0.86, 0.72 and 0.39 at the error significance of
0.05 and 0.74, 0.49 and 0.95 at the error significance of 0.30, respectively. These
results underscore the relevance of the descriptors selected for the skin sensiti-
zation outcome and pave the way for more interpretable models. Two different
approaches combining the results from the old model based on MACCS key
fingerprints and the new model based on bioactivity descriptors did not achieve
a clear improvement of the final performance and are thus not recommended
for further usage.
In addition, high relevance of the LLNA data set for compounds labeled as
approved drugs, cosmetics, or pesticides could be demonstrated by a PCA in
the chemical space spanned by the ten bioactivity descriptors. To some extent,
a separation between sensitizers and non-sensitizers could be observed in the
PCA plot of the LLNA data set within this descriptor space, also demonstrating
the value of the selected descriptors. A further comparison of the MACCS key
model and the bioactivity model revealed that the performance of the former
is more dependent on the number of training samples available than the latter.
This makes the bioactivity descriptors also promising candidates for modeling
tasks with limited number of training instances.
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As for many other endpoints [43], predictivity of the ML models for skin sensi-
tization potential is strongly limited by the available experimental data. With
the current data basis we could neither develop nor identify a trustworthy model
with global ACCs higher than 0.8. In several examples, we demonstrated that
higher performance could be achieved by further limiting the applicability of
the models by a classic definition of the AD, an alternative reliability measure,
or the application of a desired level of error significance within a CP framework.
All these improvements come along with decreased coverage of the correspond-
ing models. A more substantial improvement in a model’s performance could
only be achieved with additional experimental data. Since further human or
animal data for cosmetic ingredients can only be expected in exceptional cases,
the inclusion of experimental non-animal data into the modeling process (as
for example in DAs or IATAs) could be a promising route to increase model’s
predictivity or coverage without a simultaneous decrease in the other corre-
sponding values. The simultaneous learning of several endpoints within one ML
model (called multi-task modeling) might also address the challenge resulting
from the limited data basis for skin sensitization prediction (as well as for other
toxicological endpoints) and increase model’s performance [111].

Apart from the quantity of the data available for modeling, the quality of these
data pose an upper limit for the predictivity of ML models. In this context,
computational methods can assist the evaluation and reliability assessment of
existing experimental data. For example, Roberts [112] reinterpreted existing
LLNA data also by the aid of chemistry-based read-across, which could be as-
sisted by computational tools. Similarly, our PCA of the LLNA data set in the
chemical space spanned by the ten bioactivity descriptors gives some insight
into regions with possible outliers. If applied carefully, computational methods
could therefore be applied to increase the quality of the existing data sets on
which future models could be built.

The bioactivity descriptors developed within this thesis demonstrated a promis-
ing alternative to classical descriptor sets for the development of a reliable and
interpretable model, especially when applied to a sparse data set. Transfer
of the 750 bioactivity descriptors combined with the feature selection process
might result in similarly small, interpretable, and biologically meaningful sets
of descriptors for other toxicological endpoints, which could support further
predictive modeling as well as the investigation of the chemical space and link-
age between modeling and the underlying biological processes. In the case of
small data sets, better performance and/or larger coverage might be achieved
by this process. The success achieved when applying the bioactivity descriptors
also demonstrates the possibilities that come along with small purposive sets
of descriptors in general. The development of new sets of descriptors which are
well suited for toxicology prediction might therefore also come into focus for
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further research.

This thesis has contributed to several valuable objectives on the way to an
animal-free assessment of skin sensitization potential and will be helpful in
paving the way for computational tools to become an accepted pillar in non-
animal risk assessment.
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[8] Thyssen, J. P., Giménez-Arnau, E., Lepoittevin, J.-P., Menné, T., Bo-
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Kern, P. S., Klaric, M., Kühnl, J., Lalko, J. F., Martinozzi-Teissier, S.,
Mewes, K., Miyazawa, M., Parakhia, R., van Vliet, E., Zang, Q., Pe-
tersohn, D., Non-animal methods to predict skin sensitization (I): the
cosmetics europe database, Critical Reviews in Toxicology, 48(5) (2018)
344–358, PMID: 29474128.

[31] Mehling, A., Eriksson, T., Eltze, T., Kolle, S., Ramirez, T., Teubner, W.,
van Ravenzwaay, B., Landsiedel, R., Non-animal test methods for pre-
dicting skin sensitization potentials, Archives of Toxicology, 86(8) (2012)
1273–1295.

[32] Reisinger, K., Hoffmann, S., Alépée, N., Ashikaga, T., Barroso, J., El-
combe, C., Gellatly, N., Galbiati, V., Gibbs, S., Groux, H., Hibatal-
lah, J., Keller, D., Kern, P. S., Klaric, M., Kolle, S., Kuehnl, J., Lam-
brechts, N., Lindstedt, M., Millet, M., Martinozzi-Teissier, S., Natsch, A.,
Petersohn, D., Pike, I., Sakaguchi, H., Schepky, A. G., Tailhardat, M.,
Templier, M., Van Vliet, E., Maxwell, G., Systematic evaluation of non-
animal test methods for skin sensitisation safety assessment, Toxicology
in Vitro, 29(1) (2015) 259–270.

[33] OECD, Test no. 442C: In chemico skin sensitisation: Assays addressing
the adverse outcome pathway key event on covalent binding to proteins,
OECD Guidelines for the Testing of Chemicals, 4 (2021) 40.

[34] OECD, Test no. 442D: In vitro skin sensitisation: ARE-Nrf2 Luciferase
test method, OECD Guidelines for the Testing of Chemicals, 4 (2018) 51.

[35] OECD, Test no. 442E: In vitro skin sensitisation: In vitro skin sensitisation
assays addressing the key event on activation of dendritic cells on the
adverse outcome pathway for skin sensitisation, OECD Guidelines for the
Testing of Chemicals, 4 (2018) 65.

[36] Richter, A., Schmucker, S. S., Esser, P. R., Traska, V., Weber, V., Dietz, L.,
Thierse, H.-J., Pennino, D., Cavani, A., Martin, S. F., Human T cell
priming assay (hTCPA) for the identification of contact allergens based
on naive T cells and DC–IFN-γ and TNF-α readout, Toxicology in vitro,
27(3) (2013) 1180–1185.

[37] Kleinstreuer, N. C., Hoffmann, S., Alépée, N., Allen, D., Ashikaga, T.,
Casey, W., Clouet, E., Cluzel, M., Desprez, B., Gellatly, N., Göbel, C.,
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9. Appendix

A Gefahrstoffe nach GHS

In this work no hazardous compounds according to the GHS (Globally Harmo-
nized System Of Classification and Labeling of Chemicals) were used.
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B Supporting information for publications originating from
this work

B.1 Supporting information for publication [P2]

This appendix contains the supporting information for the publication:

Wilm, A., Stork, C., Bauer, C., Schepky, A., Kühnl, J., Kirchmair, J., Skin
doctor: Machine learning models for skin sensitization prediction that provide
estimates and indicators of prediction reliability, International Journal of Molec-
ular Sciences, 20(19) (2019) 4833
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Figure S1. Enlarged version of the loadings plot from Figure 5B. For an explanation of the 
abbreviations see Table S1.   
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Figure S2. Correlation between molecular similarity measured as negative Euclidean distance in 
PaDEL space for the SVM_PaDEL model. Number of compounds in each bin are reported in Table 
S6. 
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Table S1. Descriptors Used for the PCA and Explanation of the Abbreviations. 

Descriptor Explanation 

apol Polarizabilities of all atoms in molecule (as sum) 

ast_fraglike Binary Astex fragment-likeness 

ast_violation Number of Astex fragment-likeness violations 

a_acc H-bond acceptor atom count 

a_acid Acidic atom count 

a_aro Aromatic atom count 

a_base Basic atom count 

a_count Atom count 

a_don H-bond donor count 

a_heavy Heavy atom count  

a_hyd Hydrophobic atom count 

a_IC Total atom information content 

a_ICM Mean atom information content 

a_nB Boron atom count 

a_nBr Bromine atom count 

a_nC Carbon atom count 

a_nCl Chlorine atom count 

a_nF Fluorine atom count 

a_nH Hydrogen atom count 

a_nI Iodine atom count 

a_nN Nitrogen atom count 

a_nO Oxygen atom count 

a_nP Phosphorus atom count 

a_nS Sulfur atom count 

bpol Bonded atom polarizability difference  

b_ar Number of aromatic bonds 

b_count Number of bonds 

b_double Number of double bonds 
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b_heavy Number of bonds between heavy atoms 

b_rotN Number of rotatable bonds 

b_rotR Fraction of rotatable bonds 

b_single Number of single bonds 

b_triple Number of triple bonds 

chiral Number of chiral centers 

density Molecular mass density 

FCharge Total charge of the molecule 

logP(o/w) Log of the octanol/water partition coefficient 

logS Log of the aqueous solubility (mol/L) 

mr Molecular refractivity 

PC+ Total positive partial charge 

PC- Total negative partial charge 

rings Number of rings 

TPSA Polar surface area (Å2) 

vdw_area Area of van der Waals surface (Å2) 

vdw_vol Van der Waals volume (Å3) 

vsa_acc Approximation to the sum of VDW surface areas (Å2) of pure hydrogen 
bond acceptors 

vsa_acid Approximation to the sum of VDW surface areas of acidic atoms (Å2) 

vsa_base Approximation to the sum of VDW surface areas of basic atoms (Å2) 

vsa_don Approximation to the sum of VDW surface areas of pure hydrogen bond 
donors 

vsa_hyd Approximation to the sum of VDW surface areas of hydrophobic atoms (Å2) 

vsa_other Approximation to the sum of VDW surface areas (Å2) of atoms typed as 
"other" 

vsa_pol Approximation to the sum of VDW surface areas (Å2) of polar atoms 

Weight Molecular weight 
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Table S2. Ten Most Prevalent Murcko Scaffolds in the LLNA Data Set.1  

 
LLNA of 

Alves et al. 
LLNA of 
Di et al. 

Merged 
LLNA 

Cosmetics Drugs Pesticides 

 30.12% 23.44% 27.04% 27.50% 10.72% 23.46% 

 1.32% 1.85% 1.73% 3.59% 0.21%  

 2.05% 1.56% 2.04% 3.55% 0.54% 0.49% 

 0.29% 0.28% 0.20% 0.30% 0.32% 2.75% 

 0.15% 0.14% 0.10% 0.07%  1.94% 

 1.75% 1.14% 1.53% 1.04% 0.80% 1.62% 

 1.90% 1.56% 1.53% 0.85% 0.75% 1.13% 

 0.15% 0.14% 0.10% 0.04% 1.39%  
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 0.58% 0.28% 0.51% 0.89% 0.38% 1.29% 

  0.14% 0.10% 0.07% 0.05% 1.29% 

 0.29% 1.28% 0.92% 0.15% 0.05% 1.13% 

 1.46% 1.56% 1.12% 0.11%   

 0.29% 0.28% 0.41% 1.04% 0.32%  
1 Reported are the percentages of compounds based on the indicated Murcko scaffolds among all compounds 
having a Murcko scaffold. 
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Table S3. Hyperparameters Selected During Grid Search.1 

 RF SVM 

Name n_estimators max_features C gamma 

MOE2D 250 0.4 1000 0.0001 

MOE2D53 250 0.4 1000 0.001 

Padel 250 0.8 1 0.001 

MACCS 1000 sqrt 1 0.1 

Morgan2 100 0.2 100 0.1 

OASIS 10 sqrt 1 0.1 

Padel-Est 1000 0.4 10 0.1 

Padel-Ext 100 0.4 1 0.01 

MOE2D+Padel 500 None 1 0.001 

MOE2D+MACCS 500 0.2 10 0.01 

MOE2D+Morgan2 500 0.4 10 0.001 

MOE2D+OASIS 100 None 100 0.001 

MOE2D+Padel-Est 1000 0.4 10 0.01 

MOE2D+Padel-Ext 1000 sqrt 10 0.001 

Padel+MACCS 500 0.4 1 0.001 

Padel+Morgan2 1000 0.2 100 0.001 

Padel+OASIS 500 0.6 1 0.001 

Padel+Padel-Est 1000 sqrt 1 0.001 

Padel+Padel-Ext 50 0.8 1 0.001 

MACCS+Morgan2 50 0.8 10 0.01 

MACCS+OASIS 50 None 1 0.1 

MACCS+Padel-Est 250 sqrt 1 0.1 

MACCS+Padel-Ext 50 0.2 1 0.01 

Morgan2+OASIS 100 sqrt 100 0.1 

Morgan2+Padel-Est 250 sqrt 10 0.01 

Morgan2+Padel-Ext 1000 sqrt 1 0.01 

OASIS+Padel-Est 50 0.4 10 0.1 

OASIS+Padel-Ext 1000 0.6 1 0.01 

Padel-Est+Padel-Ext 250 0.6 1 0.01 
1 Definitions of the individual descriptor sets are provided in Table 2. 
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Table S4. Matthews Correlation Coefficients for the RF Models.1  

 MOE2D PaDEL Morgan2 PaDEL-Ext PaDEL-Est MACCS OASIS 

MOE2D 0.44 0.48 0.46 0.45 0.45 0.44 0.45 

PaDEL  0.48 0.49 0.49 0.47 0.49 0.49 

Morgan2   0.46 0.44 0.48 0.44 0.44 

PaDEL-Ext    0.42 0.43 0.43 0.43 

PaDEL-Est     0.43 0.46 0.48 

MACCS      0.47 0.47 

OASIS       0.27 
1 The diagonal reports MCC values for models based on a single set of descriptors. 

Table S5. Matthews Correlation Coefficients for the SVM Models.1  

 MOE2D PaDEL Morgan2 PaDEL-Ext PaDEL-Est MACCS OASIS 

MOE2D 0.48 0.5 0.5 0.5 0.5 0.5 0.55 

PaDEL  0.5 0.51 0.51 0.5 0.51 0.5 

Morgan2   0.39 0.48 0.43 0.46 0.43 

PaDEL-Ext    0.47 0.47 0.46 0.47 

PaDEL-Est     0.44 0.49 0.47 

MACCS      0.47 0.48 

OASIS       0.29 
1The diagonal reports MCC values for models based on a single set of descriptors. 

Table S6. Number of Compounds with Specified negative Euclidean distance to 1, 3 and 5 Nearest 
Neighbors of SVM_PaDEL model in PaDEL space.  

 (-∞ ,-30] (-30,-25] (-25,-20] (-20,-15] (-15,-10] (-10,0] 

Similarity to 
nearest 

neighbor 138 112 193 267 259 140 

Mean 
similarity to 

3 nearest 
neighbors 174 148 237 295 207 48 

mean 
similarity to 

5 nearest 
neighbors 200 174 259 288 171 17 
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Table S7. Number of Compounds with Specified Mean Tanimoto Similarity to 1, 3 and 5 Nearest Neighbors. 

  Mean Tanimoto similarity 

Model Number of neighbors considered [0 ,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1] 

SVM_MOE2D+OASIS 1 24 89 218 327 244 226 

 3 38 140 339 334 154 123 

 5 53 207 374 289 140 65 

SVM_PaDEL+OASIS 1 19 92 198 320 252 228 

 3 34 134 317 343 164 117 

 5 44 204 362 297 132 70 

SVM_PaDEL 1 19 92 198 320 252 228 

 3 34 134 317 343 164 117 

 5 44 204 362 297 132 70 

RF_MACCS 1 25 89 207 335 242 234 

 3 38 138 329 344 168 115 

 5 56 204 374 296 135 67 

SVM_PaDEL+MACCS 1 19 92 198 320 252 228 

 3 34 134 317 343 164 117 

 5 44 204 362 297 132 70 
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Table S8. Number of Compounds with Specified Distances Between the Prediction Probability and the Decision Threshold. 

 Distance 

Model [0 ,0.25] (0.25 - 0.5] (0.5 - 0.75] (0.75 - 1] (1 - 1.25] (1.25 - 1.5] (1.5 - 1.75] (1.75,∞) 

SVM_MOE2D+OASIS 124 159 133 125 121 100 88 278 

SVM_PaDEL+OASIS 183 233 198 174 173 91 48 9 

SVM_PaDEL 180 238 193 177 172 92 47 10 

SVM_PaDEL+MACCS 182 237 198 172 174 90 48 8 

         

 [0 ,0.1] (0.1,0.15] (0.15,0.2] (0.2,0.25] (0.25,0.3] (0.3,0.35] (0.35,0.4] (0.4,0.5) 

RF_MACCS 237 134 126 128 126 113 73 195 

 

Table S9. Number of Compounds with Specified Numbers of Consecutive Nearest Neighbors with Same Activity as Predicted. 

Model 0 1 2 3 4 5 or more 

SVM_MOE2D+OASIS 308 201 142 102 71 304 

SVM_PaDEL+OASIS 295 213 124 94 83 300 

SVM_PaDELl 295 213 124 94 83 300 

RF_MACCS 329 187 135 104 78 299 

SVM_PaDEL+MACCS 294 213 124 94 83 301 
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B.2 Supporting information for publication [P3]

This appendix contains information on the supporting information for the pub-
lication:

Wilm, A., Garcia de Lomana, M., Stork, C., Mathai, N., Hirte, S., Norinder, U.,
Kühnl, J., Kirchmair, J., Predicting the skin sensitization potential of small
molecules with machine learning models trained on biologically meaningful de-
scriptors, Pharmaceuticals, 14(8) (2021) 790

The supporting information of this publication [P3] can be downloaded free
of charge from the following link:
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00253.
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Figure S1. Loadings plot for the PCA on the LLNA and the three reference data sets, based on the 
ten selected bioactivity descriptors.  

 

Table S1. Mean absolute Lasso coefficients and standard deviation σ retrieved from the  
10-fold cross-validation. 

Assay name 
Mean Lasso 
coefficient 

σ(Lasso 
coefficient) 

Correlation to 
positive assay 

outcome 

p0 BSK KF3CT ICAM1 down 0.074 0.0088 positive 

p1 BSK 4H uPAR down 0.051 0.0454 negative 

p0 CA 0.049 0.0096 positive 

p1 DPRA 0.047 0.0125 positive 

p1 Modulator of Dopamine D1 receptor 0.045 0.0064 positive 

p1-h-CLAT 0.043 0.0134 positive 

p1 BSK 3C Eselectin down 0.043 0.0210 positive 

p1 LTEA HepaRG APOA5 dn 0.040 0.0123 negative 

p1-KeratinoSens 0.039 0.0036 positive 

p0 ATG NRF2 ARE CIS up 0.036 0.0142 positive 

p0 Modulator of Muscarinic acetylcholine receptor M1 0.036 0.0145 positive 

p0 Inhibitors and Substrates of Cytochrome P450 2C9 0.032 0.0064 positive 
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p1 OT ER ERaERb 1440 0.026 0.0129 positive 

p1 AMES 0.026 0.0098 positive 

p1 LTEA HepaRG FABP1 dn 0.025 0.0144 negative 

p1 BSK hDFCGF IP10 down 0.025 0.0200 positive 

p1 Activators of the human pregnane X receptor (PXR) 
signaling pathway 

0.025 0.0164 negative 

p0 TOX21 RAR LUC Agonist 0.022 0.0095 negative 

p1 BSK LPS TNFa down 0.022 0.0212 negative 

p1 TOX21 MMP ratio up 0.022 0.0125 negative 

p1 TOX21 ERa BLA Agonist ratio 0.021 0.0154 negative 

p1 UPITT HCI U2OS AR TIF2 Nucleoli Antagonist 0.021 0.0145 positive 

p0 Modulator of Muscarinic acetylcholine receptor M4 0.020 0.0074 positive 

p0 OT AR ARSRC1 0480 0.020 0.0204 positive 

p1 Modulator of Melatonin receptor 1B 0.019 0.0069 negative 

p1 LTEA HepaRG ABCB1 up 0.019 0.0100 negative 

p0 Induce genoin human embryonic kidney cells 0.019 0.0092 negative 

p1 TOX21 HDAC Inhibition 0.018 0.0156 positive 

p0 Modulator of Monoamine oxidase A 0.018 0.0044 positive 

p0 TOX21 TR LUC GH3 Antagonist 0.017 0.0234 positive 

p0 Mutagenicity 0.016 0.0134 negative 

p0 LTEA HepaRG CYP2E1 dn 0.015 0.0167 positive 

p1 ATG RORE CIS up 0.015 0.0107 negative 

p1 ATG DR4 LXR CIS dn 0.014 0.0092 positive 

p1 Modulator of Androgen Receptor 0.013 0.0070 negative 

p1 Differential cyto(isogenic chicken DT40 Rev3 mutant 
cell line) 

0.013 0.0104 positive 

p1 Block Bile Salt Export Pump 0.013 0.0103 negative 

p0 Modulator of Adenosine A1 receptor 0.013 0.0066 negative 

p0 Agonist of the AP-1 signaling pathway 0.013 0.0166 positive 

p1 LTEA HepaRG CYP1A1 up 0.012 0.0093 positive 

p1 Inhibitors and Substrates of Cytochrome P450 2D6 0.012 0.0111 positive 

p1 TOX21 FXR BLA antagonist ratio 0.011 0.0182 positive 

p0 UPITT HCI U2OS AR TIF2 Nucleoli Agonist 0.011 0.0142 negative 
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p0 LTEA HepaRG CYP1A2 up 0.011 0.0087 positive 

p0 BSK 3C Eselectin down 0.011 0.0141 positive 

p0 Modulator of Platelet activating factor receptor 0.011 0.0072 negative 

p0 NHEERL ZF 144hpf TERATOSCORE up 0.011 0.0077 positive 

p1 Agonist of the RXR signaling pathway 0.010 0.0074 negative 

p1 TOX21 AP1 BLA Agonist ratio 0.010 0.0138 negative 

p0 TOX21 PR BLA Antagonist ratio 0.010 0.0125 negative 

p1 Caco2 0.009 0.0113 positive 

p1 BSK hDFCGF MCSF down 0.009 0.0069 positive 

p1 Differential cytoagainst isogenic chicken DT40 cell 
lines with known DNA damage response pathways  
Rad54Ku70 mutant cell line 

0.008 0.0086 positive 

p1 TOX21 AhR LUC Agonist 0.008 0.0107 negative 

p0 NCCT HEK293T CellTiterGLO 0.008 0.0096 positive 

p0 Antagonist of the retinoic acid receptor (RAR) 
signaling pathway 

0.008 0.0108 negative 

p1 TOX21 ERa LUC VM7 Agonist 0.008 0.0036 negative 

p1 ATG RXRb TRANS up 0.007 0.0065 positive 

p1 TOX21 MMP ratio down 0.007 0.0127 positive 

p1 Modulator of Calcitonin gene-related peptide type 1 
receptor 

0.007 0.0061 positive 

p0 Modulator of Glutamate NMDA receptor 0.007 0.0067 negative 

p0 Modulator of Neurokinin 2 receptor 0.007 0.0066 negative 

p1 BSK hDFCGF TIMP1 down 0.007 0.0139 positive 

p0 Modulator of Adenosine A3 receptor 0.007 0.0101 negative 

p1 ATG NRF2 ARE CIS up 0.006 0.0079 positive 

p1 Modulator of Dopamine transporter 0.006 0.0063 positive 

p1 ATG Ets CIS dn 0.006 0.0084 negative 

p0 Cytoin HepG2 cells  40 hour 0.006 0.0106 negative 

p1 ATG PBREM CIS up 0.006 0.0101 negative 

p0 Inhibit CYP1A2 Activity 0.006 0.0119 positive 

p1 LTEA HepaRG ALPP dn 0.006 0.0169 negative 

p1 CA 0.006 0.0104 positive 
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p0 Modulator of Neuronal acetylcholine receptor 
alpha4beta2 

0.006 0.0072 positive 

p0 Block Bile Salt Export Pump 0.005 0.0108 negative 

p1 TOX21 RXR BLA Agonist ratio 0.005 0.0060 negative 

p1 BSK BE3C IL1a down 0.005 0.0141 negative 

p0 Modulator of Melatonin receptor 1B 0.005 0.0040 negative 

p1 ATG HIF1a CIS up 0.005 0.0053 negative 

p0 Modulator of Receptor protein-tyrosine kinase  
erbB-2 

0.005 0.0084 positive 

p0 OT ER ERaERb 1440 0.005 0.0117 positive 

p0 Modulator of Cholecystokinin A receptor 0.005 0.0051 negative 

p1 Disruptors of the mitochondrial membrane potential 0.005 0.0069 positive 

p0 Modulator of Sodium channel protein type IX alpha 
subunit 

0.004 0.0046 negative 

p1 UPITT HCI U2OS AR TIF2 Nucleoli Agonist 0.004 0.0065 negative 

p0 BSK CASM3C MCP1 down 0.004 0.0074 positive 

p0 Modulator of GABA-A receptor alpha-1beta-
3gamma-2 

0.003 0.0059 negative 

p0 LTEA HepaRG CYP1A1 up 0.003 0.0075 positive 

p0 Modulator of Neuronal acetylcholine receptor 
protein alpha-7 subunit 

0.003 0.0060 negative 

p0 Cytoin HepG2 cells  32 hour 0.003 0.0070 negative 

p1 Modulator of Sodium channel protein type IX alpha 
subunit 

0.003 0.0033 negative 

p1 ATG C EBP CIS up 0.003 0.0055 negative 

p1 Modulator of Acetylcholinesterase 0.003 0.0034 positive 

p1 BSK hDFCGF Proliferation down 0.003 0.0044 positive 

p1 OT FXR FXRSRC1 1440 0.003 0.0085 negative 

p0 Modulator of Serotonin 7 (5-HT7) receptor 0.003 0.0050 positive 

p1 Modulator of GABA-A receptor alpha-2beta-
3gamma-2 

0.003 0.0038 negative 

p1 Antagonist of the estrogen receptor alpha (ER-alpha) 
signaling pathway 

0.003 0.0052 negative 

p1 ATG E Box CIS dn 0.003 0.0080 positive 

p1 Modulator of Serotonin 2b (5-HT2b) receptor 0.003 0.0046 negative 
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p1 ATG ERa TRANS up 0.003 0.0039 positive 

p1 TOX21 TSHR Agonist ratio 0.002 0.0061 positive 

p1 Modulator of Serotonin 7 (5-HT7) receptor 0.002 0.0026 negative 

p0 Modulator of Dopamine transporter 0.002 0.0044 positive 

p1 BSK SAg CD69 down 0.002 0.0068 positive 

p1 ATG BRE CIS up 0.002 0.0040 negative 

p1 ACEA ER 80hr 0.002 0.0052 negative 

p1 Modulator of Adenosine A1 receptor 0.002 0.0032 negative 

p1 APR HepG2 CellLoss 72h dn 0.002 0.0059 negative 

p0 Activators of the human pregnane X receptor (PXR) 
signaling pathway 

0.002 0.0043 negative 

p0 Modulator of Norepinephrine transporter 0.002 0.0030 positive 

p0 Modulator of Vascular endothelial growth factor 
receptor 2 

0.002 0.0054 positive 

p0 BSK CASM3C MCSF down 0.002 0.0029 positive 

p1 Modulator of Alpha-1a adrenergic receptor 0.002 0.0035 positive 

p1 BSK hDFCGF CollagenIII down 0.002 0.0034 positive 

p0 Modulator of Serotonin 2b (5-HT2b) receptor 0.002 0.0030 negative 

p0 Modulators of myocardial damage 0.002 0.0026 positive 

p0 Modulator of HERG 0.002 0.0048 negative 

p1 BSK CASM3C MCSF down 0.002 0.0048 positive 

p1 ATG PXR TRANS up 0.002 0.0048 positive 

p1 Modulator of Alpha-2a adrenergic receptor 0.002 0.0024 positive 

p0 Modulator of Serotonin 1b (5-HT1b) receptor 0.002 0.0037 negative 

p0 Modulator of Peroxisome proliferator-activated 
receptor gamma 

0.001 0.0041 negative 

p1 Modulator of P2X purinoceptor 7 0.001 0.0019 negative 

p0 Modulator of Cannabinoid CB2 receptor 0.001 0.0043 positive 

p0 Modulator of P2X purinoceptor 3 0.001 0.0042 positive 

p1 Activator the aryl hydrocarbon receptor (AhR) 
signaling pathway 

0.001 0.0028 negative 

p1 Modulator of Serotonin 1b (5-HT1b) receptor 0.001 0.0027 negative 

p1 ATG PPARg TRANS up 0.001 0.0028 positive 

p0 Modulator of Delta opioid receptor 0.001 0.0032 positive 
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p1 ATG ISRE CIS dn 0.001 0.0025 negative 

p1 Modulator of Histamine H1 receptor 0.001 0.0024 positive 

p1 Modulator of Platelet-derived growth factor receptor 
beta 

0.001 0.0026 positive 

p1 ACEA AR antagonist 80hr 0.001 0.0035 negative 

p1 DIO1 0.001 0.0032 positive 

p0 Differential cytoagainst isogenic chicken DT40 cell 
lines with known DNA damage response pathways  
Rad54Ku70 mutant cell line 

0.001 0.0033 positive 

p0 Modulator of Calcitonin gene-related peptide type 1 
receptor 

0.001 0.0032 negative 

p1 TOX21 ERR Agonist 0.001 0.0032 positive 

p1 TOX21 DT40 0.001 0.0032 positive 

p1 Modulator of Neuronal acetylcholine receptor 
alpha4beta2 

0.001 0.0014 negative 

p0 Caco2 0.001 0.0032 positive 

p1 TOX21 AR LUC MDAKB2 Agonist 0.001 0.0032 negative 

p1 Inhibitors of Hepatocyte nuclear factor 4 (HNF4) 
dimerization 

0.001 0.0031 positive 

p0 Modulator of Neurokinin 1 receptor 0.001 0.0029 negative 

p1 Modulator of Adenosine A2a receptor 0.001 0.0026 negative 

p1 Antagonist of the farnesoid-X-receptor (FXR) 
signaling pathway 

0.001 0.0021 negative 

p1 Modulator of Dopamine D2 receptor 0.001 0.0020 positive 

p0 AMES 0.001 0.0014 positive 

p0 LTEA HepaRG UGT1A1 up 0.001 0.0018 positive 

p1 Modulator of GABA-A receptor alpha-1beta-
3gamma-2 

0.001 0.0011 negative 

p0 TOX21 PGC ERR Agonist 0.001 0.0016 negative 

p1 TOX21 CAR Agonist 0.001 0.0016 negative 

p1 TOX21 DT40 657 0.001 0.0012 positive 

p0 Modulator of Angiotensin-converting enzyme 0.001 0.0016 positive 

p1 Antagonist of the vitamin D receptor (VDR) 
signaling pathway 

0.001 0.0015 positive 

p1 Modulator of Serotonin 4 (5-HT4) receptor 0.001 0.0011 negative 
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p0 ATG DR4 LXR CIS dn 0.000 0.0015 positive 

p0 TOX21 TSHR Agonist ratio 0.000 0.0014 positive 

p0 TOX21 MMP ratio up 0.000 0.0014 negative 

p1 Modulator of GABA-A receptor alpha-5beta-
3gamma-2 

0.000 0.0014 negative 

p1 ATG TA CIS up 0.000 0.0012 negative 

p1 Modulator of Alpha-1b adrenergic receptor 0.000 0.0012 positive 

p1 Agonist of H2AX 0.000 0.0012 positive 

p1 Modulator of Urotensin II receptor 0.000 0.0012 negative 

p1 Modulator of Adenosine A3 receptor 0.000 0.0012 negative 

p0 MammMutagenicity 0.000 0.0011 positive 

p0 Modulator of Serotonin 4 (5-HT4) receptor 0.000 0.0011 positive 

p0 LTEA HepaRG CYP7A1 dn 0.000 0.0010 positive 

p0 TOX21 HSE BLA agonist ratio 0.000 0.0009 negative 

p0 BSK CASM3C VCAM1 down 0.000 0.0009 positive 

p0 Bioavailability 0.000 0.0009 negative 

p1 Modulator of Serotonin transporter 0.000 0.0008 positive 

p1 Induce genoin human embryonic kidney cells 0.000 0.0008 negative 

p0 Modulator of Alpha-1a adrenergic receptor 0.000 0.0006 negative 

p1 Antagonist of the androgen receptor (AR) signaling 
pathway dup 

0.000 0.0006 negative 

p0 BSK hDFCGF IP10 down 0.000 0.0006 positive 

p1 Modulator of Angiotensin-converting enzyme 0.000 0.0006 positive 

p0 Modulator of Sigma opioid receptor 0.000 0.0006 positive 

p1 BSK 4H MCP1 down 0.000 0.0005 positive 

p0 Modulator of Vascular endothelial growth factor 
receptor 3 

0.000 0.0004 negative 

p0 BSK KF3CT TGFb1 down 0.000 0.0004 positive 

p1 ATG NF kB CIS dn 0.000 0.0003 positive 

p0 Modulator of Serotonin 3a (5-HT3a) receptor 0.000 0.0003 negative 

p1 ATG RARa TRANS dn 0.000 0.0003 positive 

p1 TOX21 p53 BLA p2 ratio 0.000 0.0002 positive 

p1 Modulator of Cannabinoid CB2 receptor 0.000 0.0002 positive 

p1 Cytoin HEK293 cells  32 hour 0.000 0.0002 positive 
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p1 Modulator of Serotonin 1a (5-HT1a) receptor 0.000 0.0001 negative 

p1 Modulator of Sigma opioid receptor 0.000 0.0001 positive 

p0 Modulator of P2X purinoceptor 7 0.000 0.0001 negative 

p0 Modulator of TNF-alpha 0.000 0.0001 negative 

p1 Antagonist of the estrogen receptor alpha (ER-alpha) 
signaling pathway dup 

0.000 0.0001 negative 

p0 ATG ISRE CIS dn 0.000 0.0000 negative 

p1 Inhibitors and Substrates of Cytochrome P450 3A4 0.000 0.0000 negative 
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Table S2. Full name of the assays with high correlation to the ten selected bioactivity descriptors.  

Descriptor Name Assay title 

AMES Ames test for mammalian environmental mutagenicity 

Caco2 Caco-2 permeability assay to investigate intestinal permeability 

Inhibit CYP1A2 Activity Inhibitors of CYP1A2 activity assay 

Inhibit CYP2C19 Activity Inhibitors of CYP2C19 activity assay 

Inhibitors of Hepatocyte nuclear 
factor 4 (HNF4) dimerization 

Inhibitors of Hepatocyte nuclear factor 4 (HNF4) dimerization 
assay 

Modulator of Alpha-2a adrenergic 
receptor Modulator of alpha-2a adrenergic receptor assay 

Modulator of Alpha-2b adrenergic 
receptor Modulator of alpha-2b adrenergic receptor assay 

Modulator of Bradykinin B2 
receptor Modulator of bradykinin B2 receptor assay 

Modulator of Monoamine oxidase A Modulator of monoamine oxidase A assay 

Modulator of Muscarinic 
acetylcholine receptor M4 Modulator of muscarinic acetylcholine receptor M4 assay 

Modulator of P2X purinoceptor 3 Modulator of P2X purinoceptor 3 assay 

Modulator of Peroxisome 
proliferator-activated receptor 
gamma 

Modulator of peroxisome proliferator-activated receptor 
gamma assay 

Modulator of Serotonin 1a (5-HT1a) 
receptor Modulator of serotonin 1a (5-HT1a) receptor assay 

Modulator of Serotonin 2a (5-HT2a) 
receptor Modulator of serotonin 2a (5-HT2a) receptor assay 

Modulators of myocardial damage Modulators of myocardial damage assay 

MammMutagenicity Mammalian cell gene mutation assay 

PGPinhibition P-glycoprotein (Pgp) inhibition assay 

ATG AP 1 CIS up 
Attagene human HepG2 FBJ murine osteosarcoma viral 
oncogene homolog|jun proto-oncogene assay 

ATG MRE CIS up 
Attagene human HepG2 metal-regulatory transcription factor 1 
assay 

ATG PPARg TRANS up 

Attagene TRANS-FACTORIAL HepG2 Human Peroxisome 
Proliferator-activated Receptor Gamma (PPARg) Activation 
Assay 

ATG PXR TRANS up Attagene human HepG2 nuclear receptor subfamily 1, group I, 
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member 2 assay 

ATG TA CIS up Attagene human HepG2 unspecified assay 

ATG VDRE CIS up 
Attagene human HepG2 vitamin D (1,25-dihydroxyvitamin 
D3) receptor assay 

BSK 3C MCP1 down 
Bioseek human umbilical vein endothelium chemokine (C-C 
motif) ligand 2 assay 

BSK 3C uPAR down 
Bioseek human umbilical vein endothelium plasminogen 
activator, urokinase receptor assay 

BSK 3C VCAM1 down 
Bioseek human umbilical vein endothelium vascular cell 
adhesion molecule 1 assay 

BSK 4H Pselectin down 
Bioseek human umbilical vein endothelium selectin P (granule 
membrane protein 140kDa, antigen CD62) assay 

BSK 4H SRB down 
Bioseek human umbilical vein endothelium selectin P (granule 
membrane protein 140kDa, antigen CD62) assay 

BSK 4H VCAM1 down 
Bioseek human umbilical vein endothelium vascular cell 
adhesion molecule 1 assay 

BSK hDFCGF TIMP1 down 
Bioseek human foreskin fibroblast TIMP metallopeptidase 
inhibitor 1 assay 

BSK KF3CT MCP1 down 
Bioseek human keratinocytes and foreskin fibroblasts 
chemokine (C-C motif) ligand 2 assay 

BSK KF3CT SRB down 
Bioseek human keratinocytes and foreskin fibroblasts 
unspecified assay 

BSK KF3CT TGFb1 down 
Bioseek human keratinocytes and foreskin fibroblasts 
transforming growth factor, beta 1 assay 

BSK KF3CT uPA down 
Bioseek human keratinocytes and foreskin fibroblasts 
plasminogen activator, urokinase assay 

BSK LPS SRB down 
Bioseek human umbilical vein endothelium and peripheral 
blood mononuclear cells unspecified assay 

BSK SAg MCP1 down 
Bioseek human umbilical vein endothelium and peripheral 
blood mononuclear cells chemokine (C-C motif) ligand 2 assay 

LTEA HepaRG CYP4A11 dn 
LifeTech/Expression Analysis human HepaRG cytochrome 
P450, family 4, subfamily A, polypeptide 11 assay 

LTEA HepaRG CYP4A22 dn 
LifeTech/Expression Analysis human HepaRG cytochrome 
P450, family 4, subfamily A, polypeptide 22 assay 

LTEA HepaRG DDIT3 up 
LifeTech/Expression Analysis human HepaRG DNA-damage-
inducible transcript 3 assay 

LTEA HepaRG FMO3 dn LifeTech/Expression Analysis human HepaRG flavin 



 

 12 

containing 
monooxygenase 3 assay 

LTEA HepaRG GSTA2 dn 
LifeTech/Expression Analysis human HepaRG glutathione S- 
transferase alpha 2 assay 

LTEA HepaRG HMGCS2 dn 
LifeTech/Expression Analysis human HepaRG 3-hydroxy-3- 
methylglutaryl-CoA synthase 2 (mitochondrial) assay 

 
 

Table S3: Comparison of the Skin Doctor CP and Skin Doctor CP:Bio approaches. 

 Skin Doctor CP Skin Doctor CP:Bio 

type of descriptors MACCS Keys Bioactivity descriptors 

number of descriptors 166 10 

n estimators 1000 500 

max features “sqrt” “auto” 

random state 43 43 

number of compounds in 
the test set 

257 257 

number of compounds in 
the training set 

1028 1021 
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Table S4: Results of Skin Doctor CP on the test set. 

Significance 
level ε Validity Efficiency ACC MCC CCR SE SP NPV PPV 

0.05 0.96 0.32 0.89 0.78 0.89 0.91 0.88 0.94 0.83 

0.10 0.91 0.49 0.83 0.66 0.84 0.90 0.78 0.92 0.72 

0.20 0.82 0.79 0.77 0.55 0.78 0.84 0.72 0.88 0.65 

0.30 0.69 0.92 0.75 0.51 0.76 0.81 0.70 0.84 0.65 
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