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Abstract

We consider the renormalization of operator matrix elements for exclusive hard scattering pro-
cesses in the chiral limit in the MS-scheme. For such processes, mixing with total derivative
operators has to be taken into account. By analyzing the renormalization structure of the operators
in the chiral limit, we construct a consistency relation between the elements of the corresponding
anomalous dimension matrices, which determine the scale-dependence of non-forward parton dis-
tributions. This relation, which is valid to all orders in the strong coupling αs, then forms the basis
for an algorithm to reconstruct the off-diagonal elements of such matrices. We apply the algorithm
to multiple cases. In the limit of a large number of quark flavors n f , we determine the anomalous
dimension matrices for Wilson operators to fifth order in the strong coupling. In the same approx-
imation, the anomalous dimensions for the transversity operators are presented to fourth order.
Finally, we also apply the algorithm to obtain some low-N results for the Wilson operators in full
QCD to fifth order in αs.

Zusammenfassung

Wir betrachten die Renormierung von Operatormatrixelementen für exklusive harte Streuprozesse
im chiralen Limit im MS-Schema. Für solche Prozesse muss die Mischung mit totalen Ableitungs-
operatoren berücksichtigt werden. Durch die Analyse der Renormierungsstruktur der Opera-
toren im chiralen Limit konstruieren wir eine Konsistenzrelation zwischen den Elementen der
entsprechenden Matrizen der anomalen Dimension, die die Skalenabhängigkeit von nicht-vorwärts
gerichteten Partonverteilungen bestimmen. Diese Beziehung, die für alle Ordnungen der starken
Kopplung αs gültig ist, bildet dann die Grundlage für einen Algorithmus zur Rekonstruktion der
Nebendiagonalelemente solcher Matrizen. Wir wenden den Algorithmus auf mehrere Fälle an. Im
Grenzfall einer groβen Anzahl von Quark-Flavors n f bestimmen wir die anomalen Dimensions-
matrizen für Wilson-Operatoren bis zur fünften Ordnung der starken Kopplung. In der gleichen
Näherung werden die anomalen Dimensionen für die Transversaloperatoren bis zur vierten Ord-
nung dargestellt. Schlieβlich verwenden wir diesen Algorithmus um einige Ergebnisse für niedrige
N für die Wilson-Operatoren in der vollständigen QCD bis zur fünften Ordnung in αs zu erhalten.
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Introduction

An interesting open question in modern particle physics is how the properties of hadrons, like pro-
tons and neutrons, are determined by the properties of their constituents, namely the quarks and
gluons (or partons, collectively). For example, while the spin of the proton is a well-measured
quantity, it is as-of-yet not clear how to theoretically describe this in terms of the angular momenta
of quarks and gluons. See e.g. the recent reviews [1–4] on this so-called proton spin puzzle. At
the experimental level, one can gain some insight by performing scattering experiments at high
energies. This way, one can probe the inner structure of the hadrons. Depending on the kinematics
of the scattering process at hand, different properties of the hadronic structure can be extracted.
One of the determining characteristics is whether the process is inclusive or exclusive, i.e. whether
we simply sum over all final states or identify certain final-state particles.

An important quantity available in scattering experiments is the cross-section. For inclusive
processes, this cross-section can be written as a convolution between a hard scattering kernel and a
forward distribution function. The hard kernel is typically some partonic sub-cross-section, which
can be calculated within the framework of perturbation theory. The forward distribution however
is non-perturbative. It encodes information about parton distributions within the proton and can
be described in terms of one kinematical parameter, e.g. the momentum fraction of the struck par-
ton. Such forward distributions typically have a simple probabilistic interpretation. For example,
the standard parton distribution functions (PDFs), accessible in inclusive deep-inelastic scattering
(ep→ eX), represent the probability of finding a parton within the proton with a certain momen-
tum. These PDFs characterize the longitudinal hadron structure and have been studied e.g. by
data collected from the HERA experiment [5, 6]. They will also be central objects to be studied
by the future Electron Ion Collider [7, 8]. The transverse structure of hadrons can be studied by
considering e.g. polarized Drell-Yan processes [9–13]. The corresponding forward distribution is
the so-called transversity distribution function (TDF). In a transversely polarized hadron, it rep-
resents the difference in probabilities of finding a parton polarized in the same direction as the
hadronic spin and finding one polarized in the opposite direction. Formally, distributions such as
PDFs and TDFs are defined as forward hadronic matrix elements of composite operators. These
operators are composed out of the fundamental fields of quantum chromodynamics (QCD), i.e.
quarks and gluons. Because of this, the scale-dependence of the distributions is determined by the
scale-dependence of these operators, which is set by their anomalous dimensions. Such anoma-
lous dimensions can be calculated perturbatively in the strong coupling αs by renormalizing the
corresponding forward partonic matrix elements of the operators.

In exclusive processes, at least one particle in the final state is explicitly identified. Examples
include deeply-virtual Compton scattering (ep→ epγ) and vector meson production (B→ eνρ).
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This means that there will be a non-zero momentum transfer to the target, which complicates parts
of the analysis. The hadron structure is again characterized by distributions. This time, however,
these distributions are non-forward. As a consequence, they do not have a simple probabilistic
interpretation and we need more than one kinematical parameter to describe them. The additional
ones are then related to the non-zero momentum transfer to the target. Two types of off-forward
distributions are particularly important. The first are the generalized parton distributions (GPDs),
accessible e.g. in deeply-virtual Compton scattering. They characterize transverse distributions of
partons within hadrons. Furthermore, they also allow for the determination of the contributions
of partonic angular momentum to the total hadronic spin [14]. The second are the so-called dis-
tribution amplitudes (DAs). These are related to vacuum-to-hadron transitions and are accessible
e.g. in ρ-meson production. Extensive reviews of the description of hadron structure in terms of
GPDs and DAs can be found e.g. in [14, 15]. At the formal level, GPDs and DAs are related to
off-forward hadronic matrix elements of composite operators, meaning that the initial and final
hadron have different momenta. The scale-dependence of the distributions is once again set by
the anomalous dimensions of the relevant operators. Contrary to the inclusive case, these are now
determined by renormalizing off-forward partonic matrix elements, i.e. the initial and final parton
have unequal momenta. Furthermore, because of the non-zero momentum transfer, the operators
can now mix under renormalization with total derivative operators. This implies that one has to
deal with anomalous dimension or mixing matrices. Moreover, one has to choose a basis for the
additional operators in order for the discussion to be non-ambiguous.

In this work, our main focus is on the anomalous dimensions in off-forward kinematics. These
have been studied for a long time, by different groups using different methods and different opera-
tor bases. For explicitness, let us discuss the situation for the flavor non-singlet Wilson operators.
For such operators, the three-loop evolution kernel is known [16]. The computation exploited
conformal symmetry [17] of the QCD Lagrangian which was first utilized in pioneering work for
the two-loop radiative corrections [18, 19]. In D = 4− 2ε dimensions and adopting the modified
minimal subtraction (MS) scheme conformal symmetry in QCD is exact for a specific number of
quark flavors n f at the critical coupling. In the physical four-dimensional theory the renormaliza-
tion group equations then inherit a conformal symmetry such that the generators of the conformal
transformations and the evolution kernel commute [20]. Consistency relations following from the
conformal algebra allow one to restore the L-loop triangular mixing matrix for the off-forward
anomalous dimensions from the L-loop forward anomalous dimensions and an (L−1)-loop result
for a so-called conformal anomaly [16, 21, 22].

Additional calculations exist that do not employ conformal symmetry. The one-loop anoma-
lous dimension matrix was derived in the MS renormalization scheme in [23, 24]. This compu-
tation employed a different operator basis than the one used in the conformal one. Finally, there
also exist fixed moment calculations of non-singlet quark operator matrix elements (OMEs) at
three-loop order. These were performed in the MS-scheme as well as in alternative ones, such
as the regularization invariant (RI) scheme, which are suitable for a direct application to hadronic
structure studies using lattice QCD [25, 26]. The operator basis chosen in these works differs from
those introduced above.

As the three branches of literature described above use different operator bases, direct com-
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parisons of the results are not possible. The goals of this thesis are now two-fold. The first is to
derive a new method to calculate the operator anomalous dimensions, which is based purely on the
renormalization structure of the operators in a specific basis. The second goal of this work is to
construct transformation formulae between the possible operator bases. This way, we can connect
as-of-yet unrelated results in the literature, which provides valuable cross-checks.

Outline of the thesis
The first three chapters of this work will provide some theoretical background. Chapter 1 provides
an overview of relevant concepts in quantum field theory (QFT) and QCD. The first part of this
chapter reviews basic concepts of QCD, after which we discuss some general aspects of renor-
malization. The last part of Chapter 1 deals with the operator product expansion (OPE), which is
important in the study of hard scattering processes. The second chapter of this work briefly summa-
rizes some important properties of two such processes, namely inclusive deep-inelastic scattering
(DIS) and exclusive deeply-virtual Compton scattering (DVCS). In Chapter 3, we give an overview
of important mathematical concepts. After introducing a number of special functions, which fre-
quently show up in QFT calculations, we discuss the concept of the binomial transform. This is a
type of transformation which acts on sequences, and will be of importance in later chapters. The
final section of Chapter 3 deals with the evaluation of finite sums. After reviewing telescoping
algorithms, we discuss the explicit calculation of certain types of single and double sums.

In Chapter 4, we discuss the renormalization of flavor non-singlet spin-N operators in the MS-
scheme in two kinematic regimes. First we review the renormalization in forward kinematics,
which is relevant for the analysis of inclusive processes. This allows one to extract the forward op-
erator anomalous dimensions, which determine the scale-dependence of forward distributions like
the PDF. Second we give an overview of the renormalization in the non-forward regime, which is
important for the operator analysis of exclusive processes. As in this case the operators can mix
with total derivative ones, we first need to choose a basis for the additional operators. Several
options will be discussed. After this, we pick a specific basis and implement the renormalization.
A detailed analysis will reveal useful relations between the operators, and in turn between their
anomalous dimensions. This ultimately leads to a consistency relation between the anomalous
dimensions, which forms the basis for a novel algorithm to construct the full off-forward mixing
matrices. These mixing matrices characterize the scale-dependence of non-forward parton distri-
butions like the GPD. Applications of this algorithm are discussed in the next two chapters. In
Chapter 5, we present the mixing matrices for Wilson operators. In the limit of a large number
of quark flavors, we construct these matrices to fifth order in the strong coupling αs. Beyond this
limit, the second order mixing matrix is presented in the limit of a large number of colors, and
low-N results to fifth order in αs in full QCD are derived. Chapter 6 discusses the determination
of the mixing matrix for the transversity operators, in the limit of a large number of quark flavors,
to fourth order in the strong coupling. Some recent progress, which is part of ongoing research, is
collected in Chapter 7 and we present a general conclusion and outlook in Chapter 8.

13
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Chapter 1

Overview of QCD, renormalization and the
OPE

Introduction
This chapter contains three main parts. The first one discusses some basic elements of quantum
chromodynamics, the non-Abelian gauge theory describing the strong interaction. After giving a
qualitative introduction, we introduce the QCD Lagrangian and study its symmetries. Finally, we
discuss the concept of factorization, which is of vital importance for the theoretical description of
scattering processes involving hadrons.

The second part of the chapter discusses general aspects of renormalization. After arguing why
it is necessary to regularize and renormalize quantities in quantum field theories, we discuss the
concept and some examples of renormalization schemes. These are important to give a consistent
physical definition of parameters such as masses and interaction strengths. Next we introduce the
renormalization group, along with the concept of QFT beta-functions and anomalous dimensions.
Finally, we say a few things about the renormalization of composite operators, which are important
quantities in the description of hadron structure.

In the third and final part of this chapter we take a look at the OPE by Wilson, and apply it
to the product of two electromagnetic currents. This is relevant for the calculation of hadronic
scattering cross sections.

1.1 QCD

1.1.1 Qualitative introduction

The strong interaction, which binds quarks and gluons inside the nucleon, is very successfully
described by QCD, which is a non-Abelian quantum gauge theory based on SU(3). Before the
advent of QCD, the strong interaction was described in terms of the so-called parton model [27].
Here, one assumes that protons are composed of non-interacting particles called partons. While
the parton model correctly predicts certain properties of hard scattering processes, like the scaling
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behaviour of structure functions, there are important deviations which cannot be explained within
the model. It is one of the great successes of QCD to solve the issues of the parton model in a
consistent way1.

The fundamental charge of QCD is called the color charge, which affects both quarks and glu-
ons. The fact that also the gauge bosons are charged, and hence can have self-interactions, is a
consequence of the non-Abelian nature of the theory. In contrast, gauge bosons in Abelian models
do not have such self-interactions, as is well known for e.g. the photon. These self-interactions are
vital for the property of asymptotic freedom, which all non-Abelian gauge theories enjoy [28, 29].
Asymptotic freedom implies that the interaction strength tends to zero for increasing energies. As
such, we can use perturbation theory to calculate physical quantities such as cross-sections at high
energies. The low-energy regime, however, is fundamentally non-perturbative, meaning that other
methods have to be called upon to make meaningful predictions. One successful framework for
such non-perturbative calculations is lattice gauge theory, which is based on the discretization of
spacetime.

An important example of a non-perturbative effect in QCD is confinement, which states that
color-charged particles (quarks and gluons) cannot be isolated. Instead, the strong interaction
works such that, when trying to separate two quarks, it is energetically more favorable to create
quark-anti-quark pairs which in turn form bound states with the initial partons. Hence, quarks will
always be bound up into colorless hadrons, either as mesons (quark-anti-quark pairs) or baryons
(bound states with three quarks). More exotic types of hadrons, such as bound states of five quarks,
are also possible [30] and have recently been confirmed to exist by the LHCb experiment [31].

1.1.2 The QCD Lagrangian
To study any quantum field theory, we need to specify the field content and the interactions between
the fields. This is neatly summarized in the Lagrange density2. The first ingredient for writing
down the Lagrange density of full QCD is the Lagrangian of a pure Yang-Mills interaction coupled
to fermionic matter

LmY M =−1
2

Tr FµνFµν +∑
f

ψ f (i /D−m f )ψ f . (1.1)

Here ψ f represents a quark of flavor f and Fµν is the gluon field strength defined as

Fa
µν = ∂µAa

ν−∂νAa
µ +gs f abcAb

µAc
ν. (1.2)

The trace in Eq.(1.1) is with respect to the SU(3)color generators, and we have left the sum over the
color degrees of freedom of the quarks implicit (ψ ≡ ψi, i = 1,2,3). The covariant derivative is
defined as

Dµ ≡ ∂µ− igsAµ. (1.3)

Here and in the following, we will usually suppress the color indices of the gluon fields

(Aµ)i j ≡ Aa
µ(T

a)i j→ Aµ. (1.4)

1In the next chapter, we give a more detailed description of the parton model, its successes and its failures.
2As is custom in high-energy physics, we will use the terms Lagrange density and Lagrangian interchangeably.
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The generators of SU(3)color are written as T a
i j where i and j run from one to three (corresponding

to the fundamental representation) and a from one to eight (corresponding to the adjoint repre-
sentation). These matrices form a basis for the 3× 3 Hermitean matrices and constitute a Lie
algebra

[T a,T b] = i f abcT c. (1.5)

f abc are the totally anti-symmetric structure constants, and we use the normalization

Tr(T aT b)≡ TFδ
ab =

1
2

δ
ab. (1.6)

This implies that the gluonic part of Eq.(1.1) can also be written as

Lgluon =−
1
4

Fa
µνFa,µν. (1.7)

Instead of gs, we will often use

αs ≡
g2

s
4π

(1.8)

or
as ≡

αs

4π
(1.9)

for the strong coupling constant.

In many applications it is useful to consider an arbitrary color gauge group SU(Nc) instead of
the physical SU(3)color. Nc then represents the number of colors. The reason for doing this is that
practical calculations simplify in the so-called leading-color limit, Nc → ∞. This is also called
the planar limit, as it entails discarding all non-planar Feynman diagrams (i.e. diagrams with line
crossings) in a perturbative calculation. In this more general case, the fundamental representation is
Nc-dimensional and the adjoint one (N2

c −1)-dimensional. A common choice for the normalization
of the structure constants is

∑
c,d

f acd f bcd = Ncδ
ab. (1.10)

The quadratic Casimir operators for SU(Nc), which correspond to the (most common) color factors
in QCD calculations, are generally defined as

T a
R T a

R ≡C2(R)1 (1.11)

for some representation R. Specifically, we have

CF =
N2

c −1
2Nc

(1.12)

for the fundamental representation and
CA = Nc (1.13)

for the adjoint one. In the following, we assume to be working with this more general gauge group
unless stated otherwise3.

3The more general SU(Nc) model will still be referred to as QCD though.
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Feynman rules

The QCD Feynman rules can be derived using the standard path integral approach. We do not
derive them here, but just list them for completeness4. See e.g. [33] for more details.

pν,b µ,a =− i
p4 (p2gµν−ξpµ pν)δab

pj i =
iδi j

/p−m+ iε
m→0−−−→

i/p
p2 + iε

δ
i j

j

i

µ,a = igsγ
µT a

i j

p
k

q

ν,b

µ,a

ρ,c = gs f abc[gµν(k− p)ρ +gρν(p−q)µ +gµρ(q− k)ν]

4The Feynman diagrams were drawn using TIKZ-FEYNMAN [32].
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σ,d

µ,a

ρ,c

ν,b

=−ig2
s [ f

abe f cde(gµρgνσ−gµσgνρ)

+ f ace f bde(gµνgρσ−gµσgνρ)

+ f ade f bce(gµνgρσ−gµρgνσ)]

For the three-gluon vertex, we assumed all momenta to be incoming. The factor ξ in the
expression for the gluon propagator is the arbitrary covariant gauge parameter. Note that in the
literature one often uses 1−ξ in the definition of the propagator. In our conventions, the Feynman
gauge corresponds to ξ = 0. For the quark propagator, we have given the expressions for the
massive and massless cases.

Gauge fixing and ghosts

As is well known, in order to properly define the propagator of a gauge boson, the gauge has to
be fixed. The reason for this is that, if we want to determine the propagator of a spin-one gauge
boson, we have to solve the following momentum-space equation

(−k2gµν + kµkν)Aµ = Jν (1.14)

with Jν some external current to which the gauge field couples. To determine the propagator, we
now would have to take the inverse of −k2gµν + kµkν. However, this operator is actually non-
invertible, as one of its eigenvalues is zero. The origin of the problem can be traced back to gauge
invariance. Under the gauge transformation

Aµ→ Aµ +∂µα(x), (1.15)

with α(x) an arbitrary scalar function, physical quantities remain unchanged. As such, different
values of Aµ lead to the same current Jµ. The way to solve this issue is by selecting a particular
gauge. This is done by adding a Lagrange multiplier to the Lagrangian density corresponding to
the condition we want to impose. For example, if we want to use the Lorenz condition,

∂ ·A = 0, (1.16)

we add the following gauge-fixing piece to the Lagrangian

Lgauge =−
1
2ξ

(∂ ·A)2. (1.17)
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In Abelian models like quantum electrodynamics (QED), this is enough to solve the issue unam-
biguously. However, more work has to be done to obtain a consistent non-Abelian model. The
problem is that the gauge-fixing condition makes it possible for the longitudinal component of the
gluon field (∂ ·A), which is unphysical, to interact with the transverse one, which is physical5. So,
we need to get rid of these unphysical contributions. A consistent way of doing this was found by
Fadeev and Popov in the late sixties [34]. The basic idea is to add fictitious fields to the Lagrangian
called ghosts. These are anti-commuting, colored scalar fields which transform under the adjoint
representation of SU(Nc). Every time a gluon loop appears in a Feynman diagram, one also has to
include the same diagram with the gluons replaced by ghosts. This leads to an exact cancellation of
the unphysical longitudinal components of the gluons. The Fadeev-Popov ghost part of the QCD
Lagrangian can be written as

Lghost =−η
a
∂ ·Dac

η
c (1.18)

with η and η the ghost fields. We also need two additional Feynman rules describing the ghost
propagator and the ghost-ghost-gluon vertex. These are

pb a =
iδab

p2 + iε

p

ηc

η
a

µ,b =−gs f abc pµ

Note that vertices with more than one occurrence of η or η cannot appear because of their
anti-commuting nature. The complete Lagrangian density of QCD is now

LQCD = LmYM +Lgauge +Lghost. (1.19)

It should be noted that introducing additional non-physical ghosts is only necessary when working
in a covariant gauge. When using physical gauges, like the class of axial gauges, there is no
possibility for the non-physical components of the gluon field to propagate, and hence there is
no need to introduce ghosts. However, the downside is that the form of the gluon propagator
is usually more complicated in such gauges. For this reason, we will always employ a general
covariant gauge, including ghosts when necessary.

5This does not happen in QED because of the Abelian equations of motion, which tell us that the unphysical
components of the photon field obey a free field equation.
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1.1.3 Symmetries
QCD possesses a number of interesting symmetries, which we now briefly discuss. In this section
we work with physical QCD, based on SU(3)color. Obviously, before choosing a particular gauge,
the QCD Lagrangian is invariant under SU(3)color gauge transformations. It is this gauge sym-
metry which determines the interactions of the fields, as we saw in the previous section. Being a
relativistic quantum field theory, QCD also enjoys invariance under Poincaré transformations (col-
lection of Lorentz transformations and translations) and under the combined discrete symmetries
CPT (charge conjugation, parity and time reversal). However, it is not necessary for the theory to
be separately invariant under such discrete symmetries. To see this, consider the effect of adding
the so-called θ-term to the Lagrangian

Lθ = θ
g2

s
64π2 FµνF̃µν (1.20)

with F̃µν the dual field strength

F̃µν ≡ 1
2

ε
µνρσFρσ. (1.21)

As this additional term obeys all the continuous symmetries mentioned above, we can (and should)
incorporate it into the QCD Lagrangian. Its inclusion does not influence the classical equations
of motion, nor does it have any perturbative effects. The reason for this is that we can write the
θ-term as a total derivative. Written as a color trace we have

Tr FµνF̃µν = ∂ ·K (1.22)

with

Kµ ≡ 2 ε
µνρσTr

(
Aν∂ρAσ−

2igs

3
AνAρAσ

)
(1.23)

the Chern-Simons current.

This additional term does not obey all the discrete symmetries. Particularly, it breaks T, P and
CP. The physical effect of this term is to give an electric dipole moment (EDM) to the neutron.
Remember that electric dipole moments are sensitive probes for P-violation. To see this, recall that
the Hamiltonian of a non-relativistic spin-S particle in an electromagnetic field is given by

H =−µ
~B ·~S
|~S|
−d

~E ·~S
|~S|

. (1.24)

Now, as the electric field is a vector while the magnetic field and the spin are axial vectors, we
have

P(~E ·~S) =−~E ·~S, (1.25)

P(~B ·~S) = ~B ·~S. (1.26)

From this it follows that the electric dipole moment d characterizes P-violation. The experimental
upper limit for the neutron EDM is6

dneutron < 2.9 ·10−26 e cm (1.27)
6For a recent overview of general considerations of EDMs, see e.g. [35].
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which in turn requires θ to obey7

|θ|< 10−10. (1.28)

There is no a priori reason to expect θ to be this small, and the issue has been dubbed the strong
CP-problem. A possible solution was offered by Peccei and Quinn in 1977 [37]. They proposed
to introduce a novel scalar field which is charged under a new global U(1) symmetry, now called
Peccei-Quinn (PQ) symmetry. It is also assumed that this U(1) symmetry is anomalous. The
scalar field is then supposed to undergo spontaneous symmetry breaking, similarly to the Brout-
Englert-Higgs (BEH) field. The associated pseudo-Goldstone boson is called the axion a. After
the symmetry is broken, the remaining Lagrangian contains the following two terms

L ∼ g2
s

64π2 FµνF̃µν

(
θ+χ

a
fa

)
. (1.29)

We recognize the first term as the one associated to the strong CP-problem. The second one appears
because of the assumption that the PQ symmetry is anomalous. The constant χ in this term is
related to the PQ charge of the quarks, while fa is the decay constant of the axion. Analogously to
the BEH field, the vacuum expectation value of the axion is non-vanishing. Instead we have

〈a〉=− faθ

χ
. (1.30)

One can then perform a redefinition of the axion field

a→ a+ 〈a〉 (1.31)

to cancel the θ parameter, hence solving the strong CP-problem dynamically. While this procedure
is very promising from a theoretical standpoint, the axion is yet to be observed8. Experiments all
over the globe are searching for this elusive particle, including MADMAX [38, 39] and ALPS
II [40, 41] at DESY.

Let us now zoom in on the quark sector of the model,

Lψ = ∑
f

ψ f (i /D−m f )ψ f . (1.32)

It is easy to see that Lψ is invariant under a global U(1) symmetry

ψ→ eiα
ψ (1.33)

with associated Noether current
jµ
B =

1
3

ψγ
µ
ψ. (1.34)

7In this discussion, we implicitly assumed the quarks to be massless. Otherwise, the physical θ parameter receives
contributions from the quark mass matrix. An in-depth discussion of this subject is outside the scope of this text, see
e.g. [36] for a more accurate treatment.

8Its interaction strength with standard model particles would be very small. While this makes observing it chal-
lenging, it also makes it a good candidate for dark matter.
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This corresponds to the baryon number, which is conserved in the standard model9. It is an exam-
ple of a so-called accidental symmetry, originating from the fact that we do not include operators
in the Lagrangian of dimension larger than four. There are no new interactions associated to such
accidental symmetries.

Let us now assume that the three lightest quark flavors are actually exactly massless, i.e.

mu = md = ms = 0. (1.35)

Defining

q≡

u
d
s

 (1.36)

the Lagrangian describing the quark sector of QCD, for these three flavors, reduces to

Lq = qi /Dq (1.37)

and enjoys an additional SU(3) symmetryu
d
s

→U

u
d
s

 . (1.38)

This is called flavor symmetry, denoted by SU(3)f. Here U represents an arbitrary SU(3) matrix. In
reality, the masses of the up- and down-quark are pretty similar (mu,md ∼ 1 MeV) while the mass
of the strange quark is about two orders of magnitude larger, ms ∼ 100 MeV. Hence a better ap-
proximation would be to only assume the up- and down-quarks to be massless. The corresponding
symmetry group is SU(2) f and SU(2) f ⊂ SU(3) f . This is known as isospin. It can also be viewed
as a symmetry relating the proton and the neutron, in that they can be regarded as two states of one
particle dubbed the nucleon. Isospin then allows one to distinguish these two states.

Finally, we consider chiral symmetry. For this, we introduce the two chiral projection operators

PR/L =
1± γ5

2
(1.39)

obeying

P2
R/L = PR/L,

PR/LPL/R = 0. (1.40)

We then form right- and left-handed quarks as

ψR = PRψ,

9Conservation of baryon number implies that the proton is stable. Conversely, if the conservation law is violated
the proton could decay, which is possible according to certain models looking for beyond the standard model physics.
An example of this is the class of grand unified theories.
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ψL = PLψ. (1.41)

Rewriting the quark kinetic term of the QCD Lagrangian in terms of ψR and ψL yields

ψi /Dψ = ψRi /DψR +ψLi /DψL, (1.42)

which implies that the QCD interactions conserve chirality. Conversely, the left- and right-handed
components mix for the mass term,

mψψψ = mψψLψR +mψψRψL. (1.43)

We now introduce the so-called chiral transformation, which acts on the quark fields as

ψ→ eiαγ5ψ, (1.44)

ψ→ ψeiαγ5 . (1.45)

It is straightforward to see that this transformation leaves the kinetic term invariant, while the mass
term transforms as

mψψψ→ mψψeiαγ5ψ. (1.46)

Hence we only have exact chiral symmetry if all quarks are massless. The Noether current associ-
ated with chiral symmetry is

jµ
A = ψγ

µ
γ5ψ. (1.47)

Since the symmetry only holds exactly in the massless limit, the axial current jµ
A is only conserved

in this limit,
∂µ jµ

A = 2imψψγ5ψ. (1.48)

In QCD, chiral symmetry is spontaneously broken. As per the Goldstone theorem [42, 43], we
then expect the appearance of massless (Goldstone) bosons. With chiral symmetry only being an
approximate symmetry in the real world, these bosons obtain a relatively low mass, and can be
identified with the pions.

Another important property of chiral symmetry is that it is anomalous. While at the classical
level the axial current is conserved (assuming exactly massless quarks), the quantum current has a
non-vanishing divergence given by

∂ · jA =
g2

s
16π2 n f TrFµνF̃µν (1.49)

with n f the number of massless quark flavors. The anomaly, known as the chiral or Adler-Bell-
Jackiw (ABJ) anomaly, is generated at the one-loop level by triangle diagrams, see Fig.1.1. Note
that it is only present for the flavor singlet axial current, i.e. if the quark fields in Eq.(1.47) are of
the same flavor. Adler and Bardeen showed in the late sixties that the ABJ anomaly is one-loop
exact, i.e. it does not receive additional radiative corrections [44].
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g g

Figure 1.1: Triangle diagram that generates the ABJ anomaly. Note that there is also a second diagram
with all fermion arrows reversed. The cross represents an insertion of the axial current operator.

1.1.4 Note on factorization
QCD enjoys the property of factorization, which signifies a decoupling of high- and low-energy
properties of scattering processes10. As a simple illustration, consider the creation of a photon
from a pp-collision, cf. Fig.1.2. The cross section for this process can be written as

σ[p(p1)p(p2)→ γ
∗]

=
∫

dx1

∫
dx2 ∑

q,q′
fp→q(x1,µ2

F) fp→q′(x2,µ2
F)σ̂[q(x1 p1)q′(x2 p2)→ γ

∗]

≡∑
q,q′

fq(µ2
F)⊗ fq′(µ

2
F)σ̂[qq′→ γ

∗] (1.50)

where in the second line we introduced a more compact representation in terms of convolutions.
σ̂ represents the hard scattering subprocess of a quark-anti-quark pair going into a virtual pho-
ton γ∗ and can be calculated using perturbation theory. The function f , representing the PDF, is
non-perturbative and depends on the factorization scale µF

11. It represents the probability to find
a quark or gluon carrying a certain fraction of the momentum of the parent hadron. We discuss
PDFs in more detail in the next chapter in the context of deep-inelastic scattering. At the level
of Feynman diagrams, factorization is a consequence of general diagrams having subgraphs with
large (perturbative) or low (PDFs) virtuality. One then factorizes the low virtuality parts. The
corrections to this procedure scale as inverse powers of the hard scale.

Instead of working with the convolutions in Eq.(1.50), it is often more convenient to work with
the Mellin moments of the corresponding quantities. The Mellin moment of some function f (x) is
defined as

M [ f ](N)≡
∫ 1

0
dx xN−1 f (x). (1.51)

10See e.g. [45] and references therein.
11For simplicity, we have suppressed here the dependence of the PDF on the renormalization scale µ.

25



�
p1

p2

x2p2

x1p1

p+

p+

γ∗

S

S

H

Figure 1.2: Sketch of the production of a photon during a pp-collision. S denotes the non-perturbative
region, characterized by the PDF, and H the perturbative one. The latter represents the hard partonic
subprocess. The diagram was drawn using FEYNMF [46].

The advantage of working in Mellin N-space is that convolutions, such as those appearing in
Eq.(1.50), turn into products

M [ f1⊗ f2](N) = M [ f1](N) ·M [ f2](N), (1.52)

which are easier to handle.

1.2 Renormalization
This part of the chapter is dedicated to renormalization. After discussing some generalities, we
review the renormalization of non-abelian gauge theories and the renormalization of composite
operators.

1.2.1 Quantum corrections and infinities
To set the stage, we consider a one-loop self-energy diagram for some scalar particle of mass m.

I ≡
p

p+ k

k

p
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As the momentum k running through the loop is arbitrary, we have to integrate over all possible
k-values. Hence

I ∼
∫ d4k

(k2−m2 + iε)((k+ p)2−m2 + iε)
(1.53)

where we ignore any possible prefactors. For large values of k this becomes, using polar coordi-
nates,

I k→∞−−−→
∫

∞

0

k3dk
k4 =

∫
∞

0

dk
k
→ ∞. (1.54)

We see that our simple one-loop diagram diverges for large energies, and it is said to have a UV-
divergence. This would naively imply that whatever model it originated from has no physical
meaning. Fortunately, this type of issue can be solved by the process of renormalization. The
basic idea of renormalization is to absorb the infinities associated to quantum corrections in the
parameters of the theory. In light of this, a theory is called renormalizable if this can be done
consistently and using a finite number of parameters. In a non-renormalizable theory, one would
need an infinite amount of parameters in order to get rid of all divergences12. We then distinguish
between bare parameters, which are those that appear in the initial expression for the Lagrangian
and are divergent (and hence non-physical) and renormalized parameters, which are finite. Suppose
for example that our model contains some parameter φ. Multiplicative renormalization then entails

φ
b =

(
1+

δφ

φ

)
φ≡ Zφφ. (1.55)

Here and in the following, bare quantities will be denoted with superscript b. δφ represents the
counterterm to φ, which is how the divergent terms are absorbed in order to make φ finite. Zφ is
called the renormalization factor or Z-factor of φ. When the parameter represents some field of the
model, it is common to use the square root of the Z-factor, e.g. for some fermion field ψ we would
have

ψ
b =
√

Z2ψ. (1.56)

This way the corresponding propagator, which consists of two fields, only has one power of Z2.
As an aside, note that it is not actually strictly necessary to renormalize the fields if we are only
interested in making physical observables, like S-matrix elements, finite. However, the advantage
is that field renormalizations also render the Green’s functions of the theory UV-finite.

1.2.2 Regularization
Before implementing the renormalization, one first has to regularize the model. The purpose of
regularization is to transform the divergent integrals, which are mathematically ill-defined, into
finite well-defined ones. This is done by introducing a regulator, which is to be removed after
renormalization is completed. There is no unique way of doing this, but physical observables
should be independent of the regulator. A physically intuitive method for regulating loop integrals
is the introduction of a high-energy cut-off Λ,∫

∞

0
d4k→

∫
Λ

0
d4k. (1.57)

12This does not mean that non-renormalizable theories have no predictive power, as can be seen within the frame-
work of effective field theories.

27



After renormalization the limit Λ→ ∞ is taken. In practical calculations, one often chooses not to
regularize using such a cut-off as it breaks certain symmetries like Lorentz and gauge invariance.
Nowadays, regularization is often done using a method called dimensional regularization or dim-
reg for short [47–50]13. Dimreg is based on the observation that the divergences in loop integrals
are often only present in four dimensions, and disappear for lower values of the spacetime dimen-
sion. The central idea of dimreg is then to analytically continue the spacetime dimension from
four to D ≡ 4− 2ε, with ε a small positive constant14. The divergences are then translated into
terms proportional to 1/ε, and after renormalization one takes the limit ε→ 0. While physically
less intuitive, dimreg keeps Lorentz and gauge invariance intact. If our model contains some di-
mensionless coupling parameter α, it is often preferable to keep this coupling dimensionless, also
in D dimensions. To achieve this, we introduce an arbitrary mass-parameter µ and redefine

α→ µ2ε
α (1.58)

in the D-dimensional theory. As µ is arbitrary, it does not have a direct physical interpretation.

1.2.3 Renormalization schemes
The process of renormalization has two main goals. The first is to absorb infinities coming from
quantum corrections into the bare free parameters of the model, rendering it finite. The second is
to give a physical meaning to these parameters. Within perturbation theory this has to be repeated
order per order. In practice this can be a bit tricky, as the procedure is not unique. The ambiguity
arises from the freedom to choose how to deal with finite terms of loop integrals. While the
counterterms are enough to fix all the divergent parts, one can choose what to do with the finite
pieces. Different choices then amount to different renormalization schemes. To illustrate this, let
us assume we have some parameter φ with a counterterm of the form

δφ =
a1

ε
+a2ε

0 +O(ε). (1.59)

The terms proportional to ε vanish when we send D→ 4, and the 1/ε piece is independent of the
renormalization scheme. Hence, the only ambiguity is in how we choose to deal with the terms
proportional to ε0. For the sake of argument, assume the parameter under consideration to be a
mass. One possible renormalization scheme is then the on-shell scheme, which fixes the finite
terms by positing the physical mass to correspond to the pole of the corresponding propagator. If
we are to use the on-shell scheme, it has to be checked whether or not there exists an on-shell
definition (or if one makes sense). This is not of any concern in QED, but it is an issue in QCD
because of the non-existence of free quarks. Alternatively one can use the minimal subtraction
(MS) scheme, which nullifies the finite piece in the counterterm

δφ
MS =

a1

ε
. (1.60)

In the modified minimal subtraction (MS) scheme, one also subtracts the Euler-Mascheroni con-
stant γE and a factor of ln4π, which commonly appear in the calculation of loop integrals

δφ
MS =

a1

ε
− γE + ln4π. (1.61)

13An in-depth discussion of all the nitty-gritty details of dimensional regularization is beyond the scope of this text.
A good overview is provided in e.g. chapter 4 of [51].

14Incidentally, dimreg can also deal with infrared divergences by choosing ε to be a small negative number.
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An advantage of the MS-scheme is that it is mass-independent, meaning that the renormalization
factors do not depend on any of the masses in the model. The price we pay is that renormalized
quantities will depend on the arbitrary energy scale µ, called the renormalization scale. This de-
pendence is called the running of the quantity at hand. So, in QCD, we speak of running masses
m(µ2) and the running coupling αS(µ2). This means that these parameters are not constant, but that
they, due to loop-induced quantum corrections, depend on the energy scale of the process under
consideration.

As a final remark we want to emphasize that, while choosing a renormalization scheme boils
down to giving a definite physical definition of the parameters in the Lagrangian, it is possible
to relate a quantity calculated in scheme A to the same quantity calculated in scheme B. This is
of vital importance for the comparison of theoretical predictions with experimental data, and for
comparing quantities renormalized on the lattice to the corresponding quantities renormalized in
the continuum limit.

1.2.4 The renormalization group
Since the parameter µ is completely arbitrary, physical observables should not depend on it. Hence

µ2 d
dµ2 Θ = 0 (1.62)

with Θ some observable (e.g. an S-matrix element). This invariance under a change of µ constitutes
the so-called renormalization group (RG). Another realization of the RG is the following. Assume
we have some bare quantity Γb which depends on some bare coupling ab (e.g. ab

s in QCD). The
corresponding renormalized function is then

Z Γ(a(µ2),µ2) = Γ
b(a). (1.63)

Since the bare quantity on the right-hand side is independent of the renormalization scale, chang-
ing µ to µ′ should not affect the left-hand side. This leads to the so-called Callan-Symanzik equa-
tion [52, 53] [

µ2 ∂

∂µ2 +µ2 ∂a
∂µ2

∂

∂a
+

1
Z

µ2 dZ
dµ2

]
Γ(a(µ2),m(µ2),µ2) = 0. (1.64)

The physical content of this equation is that a change in the renormalization scale is accompanied
by a change of the parameters of the model, in a way such that physical observables remain the
same15. We now introduce the RG parameters

µ2 ∂a
∂µ2 ≡ β(a), (1.65)

− 1
Z

µ2 dZ
dµ2 ≡ γ(a), (1.66)

15The distant cousin of Laplace’s demon, having access to all-order results, would see no change when the scale µ
was changed. Mere humans, however, usually have to work order per order in perturbation theory, in which case there
will be residual effects under such changes. These changes are always one order higher than the considered one; e.g.
in a calculation at order a there will be a residual of order a2.
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which are characteristic for the model under consideration, and do not depend on specific physical
observables. β(a) is called the beta-function of the model, and encodes how the coupling varies
when the energy scale is changed. Hence, it gives us a way of determining when the model can
be handled using perturbation theory (small coupling), and when non-perturbative effects become
important (large coupling). The β-function can be expanded in powers of the coupling

β(a) =−εa−β0a2−·· ·=−εa+β
D=4. (1.67)

We assumed here to be working in dimensional regularization with D = 4−2ε. Of note is that the
D-dimensional β-function already starts running at order a, while in the physical four-dimensional
spacetime it starts running at order a2. As the beta-function is measurable16 (as the comparison
of the values of the coupling strength at different energy scales), it should not depend on the
gauge parameter. If the interaction strength is not scale-dependent, β(a) = 0, the model under
consideration is said to be conformal17. Let us now briefly compare the properties of the beta-
function in QED and QCD. In QED, we write the expansion of the D-dimensional beta-function
as

β
QED(ae) =−ae(ε+β

QED
0 ae + . . .) (1.68)

with
ae =

αe

4π
(1.69)

and αe the fine-structure constant. The one-loop coefficient is

β
QED
0 =−4

3
n f . (1.70)

Since n f is positive, β
QED
0 < 0, meaning that the coupling strength increases with increasing energy

scale. So, we expect the low-energy regime to be well-described by perturbation theory, while for
high energies non-perturbative effects have to be taken into account. At some finite value of the
energy, the coupling strength of QED blows up. This is called the Landau pole of QED, denoted
by ΛQED, and its value is

ΛQED ∼ 10280GeV. (1.71)

At this energy scale, perturbation theory completely breaks down.

In QCD, the beta-function is expanded in the strong coupling as

β
QCD(as) =−as(ε+β

QCD
0 as +β

QCD
1 a2

s +β
QCD
2 a3

s + . . .). (1.72)

Its one-loop coefficient is

β
QCD
0 =

11
3

CA−
2
3

n f . (1.73)

16For this, one needs to consider a process which is sensitive to the coupling. For QCD, examples include hadronic
decays of the Z-boson and electron-positron annihilation into hadrons.

17Note that renormalization also introduces a scale in such conformal models. This phenomenon is called dimen-
sional transmutation, and it tells us that generically quantum corrections break conformal invariance. A small number
of models is able to retain conformal invariance even after inclusion of quantum corrections. A well-known example
is N = 4 super-Yang-Mills theory.
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With CA = 3 and n f = 6, β
QCD
0 > 0, which implies that the coupling strength decreases for increas-

ing energies. This phenomenon is called asymptotic freedom. Hence at high energies, perturbation
theory provides an accurate tool to describe the strong interaction in terms of quarks and glu-
ons. Conversely, the low-energy regime is dominated by non-perturbative physics. The scale at
which perturbation theory breaks down is the Landau pole of QCD, ΛQCD, which is of the or-
der of 2 · 102 MeV. The coefficients of the QCD beta-function are known up to five-loop order
[28, 29, 54–60]. For further use, we also quote here the two- and three-loop coefficients

β
QCD
1 =

34
3

C2
A−2CFn f −

10
3

CAn f , (1.74)

β
QCD
2 =

2857
54

C3
A +C2

Fn f −
205
18

CFCAn f −
1415
54

C2
An f +

11
9

CFn2
f +

79
54

CAn2
f . (1.75)

The function γ, defined in Eq.(1.66), is called the anomalous dimension of Γ and encodes the
behaviour Γ when changing the energy scale. Like the beta-function, it is a perturbative function,
i.e. we can write

γ = aγ
(0)+a2

γ
(1)+ . . . . (1.76)

1.2.5 Renormalization in QCD
Let us now focus on the MS-scheme, which is the scheme we will use for the remainder of this
text, in dimensional regularization. In this renormalization scheme, the Z-factors do not depend
on any dimensionful parameters and can be written as a series in the coupling constant and inverse
powers of ε

Z = δΓ,tree +∑
i

ai
i

∑
j=1

zi j

ε j . (1.77)

We introduced here the object δΓ,tree which is one if Γ has non-trivial tree-level contributions and
zero otherwise. In general, the Z-factors can also depend on the gauge parameter ξ. Hence the
definition of the anomalous dimensions in the MS-scheme can be rewritten as

γα = βZ−1 dZ
da

+ξγ3Z−1 dZ
dξ

. (1.78)

In QCD, γ3 is the anomalous dimension of the gluon field which renormalizes as

Aµ
b =

√
Z3Aµ. (1.79)

Also the strong coupling as has to be renormalized

ab
s = Zaas. (1.80)

The 1
ε
-poles of Za correspond to the expansion parameters of the QCD beta-function, cf. Eq.(1.72).

When using a general covariant gauge, the gauge parameter ξ has to be renormalized as well. As
the gauge parameter appears through the gluon propagator, it renormalizes with the same Z-factor
as the gluon, i.e.

(1−ξ)b = Z3(1−ξ). (1.81)
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When combining Eq.(1.78) with the series expansions of the Z-factors and anomalous dimensions,
it can be used to derive the explicit expressions for zi j in Eq.(1.77) in terms of RG parameters. For
example, the quark wave function renormalization constant,

ψb =
√

Z2ψ, (1.82)

can be easily derived. Up to order a3
s we find

Z2 =1+
as

ε
γ
(0)
2 +

a2
s

2ε

{1
ε
[(γ

(0)
2 −β0)γ

(0)
2 − γ

(0)
3 (1−ξ)g211]+ γ

(1)
2

}
+

a3
s

3ε

{ 1
ε2

[(1
2

γ
(0)
2 −

3
2

β0

)
(γ

(0)
2 )2 +β0γ

(0)
2

− 1
2

γ
(0)
3 [γ

(0)
3 −g311(1−ξ)](1−ξ)g211−

3
2

γ
(0)
3 (1−ξ)(γ

(0)
2 −β0)g211

]
+

1
ε

[3
2

γ
(1)
2 γ

(0)
2 −β0γ

(1)
2 −β1γ

(0)
2 − γ

(1)
3 (1−ξ)g211

− 1
2

γ
(0)
3 (1−ξ)(2ξg222 +g221)

]
+ γ

(2)
2

}
.

(1.83)

Here the quantities gi jk are defined via

γ
(i)
α =

i+1

∑
j=0

ξ
jgα ji (1.84)

with α = 2 for quarks and α = 3 for gluons. The QCD anomalous dimensions are well-known and,
up to order a3

s , their coefficients read

γ
(0)
2 =ξCF −CF , (1.85)

γ
(1)
2 =

3
2

C2
F −

17
2

CFCA +CFn f +
5
2

ξCFCA−
1
4

ξ
2CFCA, (1.86)

γ
(2)
2 =− 3

2
C3

F −C2
FCA

(
12ζ3−

143
4

)
−CFC2

A

(
− 15

2
ζ3 +

10559
144

)

− 3
2

C2
Fn f +

1301
72

CFCAn f −
5
9

CFn2
f −ξ

[
CFC2

A

(
− 3

2
ζ3−

371
32

)

+
17
8

CFCAn f

]
−ξ

2

(
3
8

ζ3 +
69
32

)
CFC2

A +
5

16
ξ

3CFC2
A (1.87)

for quarks and

γ
(0)
3 =

5
3

CA−
2
3

n f +
1
2

CAξ, (1.88)

γ
(1)
3 =

23
4

C2
A−2n fCF −

5
2

CAn f +
15
8

C2
Aξ− 1

4
C2

Aξ
2, (1.89)

γ
(2)
3 =−C3

A

(
3
2

ζ3−
4051
144

)
+n fC2

F −CFCAnF

(
12ζ3 +

5
36

)
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−n fC2
A

(
−9ζ3 +

875
36

)
+

11
9

n2
fCF +

19
9

n2
fCA

−ξ

[
C3

A

(
− 9

8
ζ3−

127
16

)
+n fC2

A

]
−ξ

2C3
A

(
3
16

ζ3 +
27
16

)
+

7
32

ξ
3C3

A (1.90)

for gluons.

1.2.6 Renormalization of local composite operators
In particle physics, local composite operators (LCOs) and their matrix elements have an important
rôle to play. By a local composite operator, we mean a product of fields and their derivatives,
all of which are evaluated at the same spacetime point. A particularly important example is the
electromagnetic current

jµ(x) = ψ(x)γµ
ψ(x). (1.91)

In the following, the argument x will usually be omitted. We will mainly be interested in gauge
invariant LCOs, although it is not hard to imagine non-gauge invariant ones. Examples in non-
Abelian gauge theories include LCOs involving ghost fields or partial derivatives acting on the
gauge field. There are multiple ways LCOs appear in the context of particle physics. One is in the
calculation of cross-sections of processes like deep-inelastic scattering and deeply-virtual Comp-
ton scattering, which will be discussed in the next chapter. LCOs can also be used to study hadron
structure, i.e. to determine how the properties of quarks and gluons influence hadronic properties
like spin, mass, etc.

A priori, one might expect that renormalizing the fundamental fields appearing in the La-
grangian would be enough to also render the matrix elements of LCOs finite. Unfortunately, this
is not the case. Instead, we need to introduce a separate renormalization for the operators as well.
So, if we have some bare operator O, we have to renormalize it as

O = ZO [O]. (1.92)

When renormalizing LCOs, we leave out the superscript b for bare operators and put square brack-
ets around the renormalized ones. The scale-dependence of LCOs is determined by their anoma-
lous dimension

d
dlnµ2 [O] = γ[O]. (1.93)

which in turn can be extracted from the Z-factor as

γ =−Z−1
O

dZO
dlnµ2 . (1.94)

At order aL
s , the L-loop anomalous dimension can be read off from the 1/ε-pole of the Z-factor as

ZO ∼
aL

s
L

γ
(L−1)+ . . . . (1.95)
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The higher-order poles in ε of the Z-factor are completely determined in terms of lower-order RG-
parameters. A particularly straightforward example is the renormalization of conserved currents,
like e.g. the electromagnetic one in Eq.(1.91). Because it is conserved, ∂µ jµ = 0, it does not receive
any quantum corrections. This implies that its anomalous dimension vanishes to all orders, such
that

jµ = [ jµ]. (1.96)

A complication that can arise when renormalizing composite operators is the issue of operator
mixing. This becomes relevant when there are multiple operators of the same dimension18 carrying
the same quantum numbers. The renormalization then goes as

O = ∑
O ′

ZOO ′[O ′], (1.97)

where the renormalization factors ZOO ′ will now depend on the anomalous dimensions of all rele-
vant operators. The diagonal elements, ZOO , start with 1×a0 while the off-diagonal elements only
start at O(a), i.e.

ZOO ′ = δO,O ′+O(a). (1.98)

A consistent study now requires one to choose a basis for the operators. In doing so, it is important
to make sure that the basis is complete, and that all operators are independent of one another. This
can be tricky because of the use of equations of motion or integration by parts when the operators
contain derivatives. One way to check the completeness of the selected basis is by analyzing the
Lorentz structure of Green’s functions, as different operators may lead to different Lorentz struc-
tures by their Feynman rules. The full renormalization of all operators is most conveniently written
as a matrix equation. For example, if we have two operators O1 and O2 their renormalization is
written as (

O1
O2

)
=

(
Z11 Z12
Z21 Z22

)(
[O1]
[O2]

)
(1.99)

where we abbreviate ZOiO j by Zi j. The matrix of Z-factors, which we will denote by Ẑ, is often
called the mixing matrix. We can now also define the anomalous dimension matrix (ADM) by
generalizing Eq.(1.94):

γ̂≡−Ẑ−1

(
d

dlnµ2 Ẑ

)
. (1.100)

Because of this relation between γ̂ and Ẑ, we will also use the term mixing matrix when referring
to the ADM.

The way to calculate such operator anomalous dimensions in practice is by calculating matrix
elements of the operator, e.g. by inserting it into a quark or gluon two-point function. The di-
vergences in these bare matrix elements can then be related to the anomalous dimensions using
Eq.(1.92) or Eq.(1.97). This will be discussed in more detail in a later chapter, when we discuss
the operators relevant for the analysis of scattering of a lepton off a proton.

18When operators are built out of massive fields, they can also mix with lower-dimensional operators under renor-
malization. The mismatch of the dimension is then fixed by introducing the mass parameter raised to the appropriate
power. In this work, we do not consider this case.
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1.3 Operator products
Having summarized the basic elements of QCD, renormalization and local operators, we now turn
to the topic of evaluating products of local operators. These are relevant for the analysis of hard
scattering processes. Specifically, suppose we have two local operators O1 and O2. The question
we want answered is how to evaluate the time-ordered product T O1(x)O2(y) when x→ y. The
situation is problematic when x = y, as then the operator product is ill-defined. The solution, called
the operator product expansion, was found by Wilson in the late sixties [61], and later proven in
perturbation theory by Zimmerman [62]. The main idea of the OPE is that a time-ordered product
of two local operators can be expanded in a series of regular (i.e. finite) local operators. These
operators are multiplied by functions, called Wilson coefficients, encoding the singularity of the
operator product as x→ y

lim
x→y

T O1(x)O2(y) =
∞

∑
n=0

Cn(x− y)On

(
x− y

2

)
. (1.101)

In order for both sides of the relation to be consistent, the quantum numbers of the On have to
correspond to those of O1O2. Furthermore, if the operators on the left-hand side are invariant under
some gauge transformations, the operators on the right should also be invariant. For simplicity but
without loss of generality, we can set y = 0. The simplest example of such an expansion is the
time-ordered product of two scalar fields, T φ(x)φ(0). A straightforward application of Wick’s
theorem gives

T φ(x)φ(0) = φ(x)φ(0)+ : φ(x)φ(0) : (1.102)

where : φ(x)φ(0) : denotes the normal-ordered product. The Wick contraction of two fields just
corresponds to the propagator

φ(x)φ(0) = 〈0|T φ(x)φ(0)|0〉, (1.103)

such that the first term in Eq.(1.102) is singular as x→ 0. So the Wilson coefficient here is just the
propagator while the operator is the identity. In the second term, the Wilson coefficient is simply
one, multiplied by the normal product which is regular when x→ 0.

In practical calculations, one often prefers to work in momentum space, in which case the OPE
becomes ∫

d4x eiq·xO1(x)O2(0) =
∞

∑
n=0

Cn(q)On(0). (1.104)

An important application of the OPE is to the product of two currents19,

T jµ(x) jν(0) = T [ψ(x)γµ
ψ(x)][ψ(0)γν

ψ(0)], (1.105)

which is a basic building block in the analysis of hard scattering processes like DIS. In the dis-
cussion that follows, we will work to leading order in the strong coupling αs. This simplifies the
analysis while still giving all the relevant operators in the expansion. Note that this means that the

19This discussion is heavily influenced by [63].
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quarks are effectively free. This approximation is known as the parton model, and we will discuss
this in some detail in the next chapter. To lighten the notation, we also omit the time-ordering
operator T . As in our simple example in Eq.(1.102), we can apply Wick’s theorem to the product
of currents. Focusing on the most singular terms in the limit of x→ 0 we have

jµ(x) jν(0)∼ : ψ(x)γµ
ψ(x)ψ(0)γν

ψ(0) : + : ψ(x)γµ
ψ(x)ψ(0)γν

ψ(0) : . (1.106)

As it will be easier to draw conclusions from a momentum expansion, we now perform a Fourier
transformation. Furthermore, as both term in Eq.(1.106) give similar results, we focus on the first
one. So we have∫

d4x eiq·x : ψ(x)γµ
ψ(x)ψ(0)γν

ψ(0) : = : ψγ
µ i(i/∂+/q)
(i∂+q)2 γ

ν
ψ(0) : . (1.107)

This is of course just the quark propagator with momentum p+ q, where p is the momentum
through the quark line (and identified as i∂) and q comes from the Fourier transform. With an
application to hard scattering processes in mind, we now assume that q is much larger than all
other scales. Assuming the momentum q to be spacelike, which it will be in DIS, we expand the
denominator in Eq.(1.107) for Q2 ≡−q2� p2. This is just a simple application of the geometric
series

−1
Q2−2iq ·∂+∂2 =

−1
Q2

1

1− 2iq·∂−∂2

Q2

=
−1
Q2

∞

∑
n=0

(
2iq ·∂−∂2

Q2

)n

. (1.108)

In the limit p2/Q2� 1, we can ignore terms coming from ∂2/Q2 such that the expansion simplifies
to

−1
Q2−2iq ·∂+∂2 =

−1
Q2

∞

∑
n=0

(
2iq ·∂

Q2

)n

. (1.109)

Hence the product of currents becomes

jµ(x) jν(0) =
−1
Q2 ψγ

µi(i/∂+/q)γν
∞

∑
n=0

(
2iq ·∂

Q2

)n

ψ. (1.110)

More simplifications can be introduced if we assume the hard scattering to only include the elec-
tromagnetic interaction. In this case, the interaction should be parity conserving and the hadronic
tensor, giving rise to the product of currents, should be symmetric in its Lorentz indices. Hence,
we can symmetrize Eq.(1.110) to give

jµ(x) jν(0) =
−i
Q2 ψ[2γ

µ(i∂ν)−gµν
/q]

∞

∑
n=0

(
2iq ·∂

Q2

)n

ψ. (1.111)

We have discarded a term proportional to /∂ψ on account of the Dirac equation. Now recall the
ingredients of the Wilson OPE. On the one hand, we have the Wilson coefficients, which are
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c-functions incorporating the short-distance physics. On the other hand, we have the operators,
which are assumed to be regular. With Q2 providing a hard scale, it follows from Eq.(1.111) that
the Wilson coefficients should be of the form

Cµ1...µn ∼ 2n

Q2n+1 qµ1 . . .qµn . (1.112)

To extract the operators, we note that these are expected to be gauge invariant. Hence, any partial
derivative should be replaced by a covariant one. The operators are also expected to have n open
Lorentz indices. This means that they would have several components that transform differently
under Lorentz transformations. Furthermore, these components would behave differently under
renormalization. Fortunately, to a good approximation, we can focus on those operators that have
spin n, implying that they are fully symmetric in their Lorentz indices and traceless. This is because
operators of dimension d and spin s are suppressed by(

1
Q2

)d−s

≡

(
1

Q2

)t

. (1.113)

Here t ≡ d− s is called the twist of the operator [64]. So, the operators with the least amount of
suppression are the leading-twist ones, which are those with maximal spin. The lowest value of the
twist is two for the present case. Taking all of these considerations into account, the local operators
appearing in the expansion of two currents are the spin-N, twist-two quark operators20

Oµ1...µN ≡ Sψγµ1Dµ2 . . .DµN ψ. (1.114)

Here S denotes symmetrization of the Lorentz indices and subtraction of the traces, which is how
we select the leading-twist contributions; see e.g. [23] for more details.

We have focused our discussion on free-field quark contributions which are flavor singlet.
However, in the full form of the OPE of two electromagnetic currents, there will be two additional
contributions. The first is the set of spin-N twist-2 flavor non-singlet quark operators,

ONS
µ1...µN

≡ Sψλ
α

γµ1Dµ2 . . .DµN ψ. (1.115)

λα represent the generators of the flavor group SU(n f ) with n f the number of active quark flavors.
The second is the set of spin-N twist-two gluon operators, which appear once we move away from
the free-field assumption (i.e. when working in full QCD instead of the parton model)

OG
µ1...µN

≡ SFνµ1Dµ2 . . .DµN−1F ν
µN

. (1.116)

As discussed above, Fadeev-Popov ghost fields have to be introduced into non-Abelian gauge
theories to avoid propagation of non-physical components of the gauge fields. This implies that,
complementary to Eq.(1.116), we also have to take into account ghost operators. However, we
shall not need them in this work, and hence do not consider them any further.

20Because of the second term in Eq.(1.107) only operators with N even end up contributing to the DIS expansion.
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Chapter 2

Scattering experiments

Introduction
If we want to further our understanding of proton structure, we need to perform scattering experi-
ments at energies which are high enough such that the internal degrees of freedom can be resolved.
At the LHC, this is done by scattering two proton beams off each other. Since protons are not
elementary particles but are composed of quarks and gluons, which feel the strong interaction,
starting of with two hadronic states leads to a complicated collection of particles in the detector,
which has to be disentangled. A cleaner way of looking inside the proton is by scattering elemen-
tary particles, like electrons, off protons. In this chapter, we consider two such processes, namely
deep-inelastic scattering and deeply-virtual Compton scattering. Both processes are well-studied
and involve probing the proton using the electromagnetic interaction.

In the first part of the chapter, we provide a basic overview of DIS. We start by defining the
kinematics of the process, after which we review the calculation of the inclusive cross-section us-
ing the OPE. Next, we make a small detour and consider a comparison with the parton model.
Historically, the parton model was introduced before the advent of QCD. It assumes the proton to
be composed of non-interacting fermions. While it makes some accurate predictions, we will see
that deviations arise between parton model predictions and experimental data. The great success
of QCD is that it is able to explain away all these discrepancies. Finally, the matrix elements of the
operators arising from the OPE are used to define the standard PDFs, whose the scale-dependence
is related to that of the operators. As we saw in the previous chapter, the scale-dependence of
composite operators is determined by their anomalous dimensions which can be calculated pertur-
batively in the strong coupling αs. As most of the content of this chapter can be found in standard
QFT textbooks, e.g. [33, 36, 65], an attempt is made to keep the discussion relatively brief.

The second part of the chapter deals with a non-forward extension of DIS, namely DVCS. This
is an exclusive process. As such, it gives access to non-forward (off-diagonal) parton distributions,
which are not accessible in inclusive processes. The knowledge gained by these new distributions
is of vital importance for our understanding of hadronic structure. After defining the process and
its kinematics, we argue that the same operators as those in DIS appear in the study of DVCS. As
before, a connection is made between these operators and non-perturbative functions describing
the inner proton structure, which this time are the GPDs. The content of this part is mostly based
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�p+(p)

e−(k)

}Γ(pΓ)

e−(k′)

γ∗(q)

Figure 2.1: Sketch of the DIS process, where the proton structure is probed by a high-energy photon. For
inclusive DIS, we sum over all hadronic final states, collectively denoted by Γ. The diagram was drawn
using FEYNMF [46].

on the review [14] and the original paper by Ji [66].

2.1 Deep-inelastic scattering

2.1.1 Kinematics
In DIS,

e p→ e p,

an electron is scattered off a proton at high energy, see e.g. Fig.2.1. The proton structure is then
probed by the exchanged virtual gauge boson, which we will assume to be a photon1. The spacelike
momentum of this virtual photon will be denoted by q and corresponds to the electron momentum
transfer, k− k′. Note that this quantity is experimentally observable; all that needs to be done is
measure the momentum and energy of the final-state electron. We will also assume the virtuality
to be large, i.e. Q2 ≡ −q2 is large2. This implies that it is able to probe the partonic structure of
the proton and hence provide insight into how its properties emerge from those of the constituent
quarks and gluons. If the center-of-mass energy of the process is much greater than the proton mass
mp ∼ 1 GeV, the proton breaks apart, leading to a shower of hadrons ending up in the detector. In
this case we have MΓ ≡ p2

Γ
> mp, which leads to the requirement Q2 < 2(p · q). In inclusive

DIS, one is not interested in the specific hadrons appearing in the final state and they are simply
summed. We denote this generic collection of hadronic final states by Γ.

To describe the DIS process, we need to introduce two invariants (i.e. Lorentz invariant quan-
tities). One obvious choice is the virtuality Q2. For the second variable one could e.g. choose

ν≡ p ·q
mp

. (2.1)

In the rest frame of the proton, ν corresponds to the energy difference between the initial and final
state electrons, E−E

′
. In practice though, it is more common to use

x≡ Q2

2νmp
(2.2)

1It could also be a Z- or W -boson, where in the latter case the final-state electron should be replaced by a final-state
neutrino.

2Note that for a real photon Q2 = 0.
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instead of ν. This is the so-called Bjorken-x variable. For physical processes one has 0 ≤ x ≤ 1,
where x = 1 corresponds to elastic scattering. In the parton model, it corresponds to the fraction of
the proton’s momentum carried by the struck parton.

As the proton is probed by a (virtual) photon, the relevant interaction is simply the electromag-
netic one, i.e.

Lint = e jµAµ (2.3)

with Aµ the photon field and jµ the standard electromagnetic current

jµ = ∑
f

Q f ψ f γ
µ
ψ f . (2.4)

We sum over all fermions ψ f of flavor f and charge Q f .

2.1.2 The inclusive cross-section
To study inclusive DIS in practise, we need to determine its cross-section, σDIS. A straightforward
calculation shows that the differential cross-section can be written as

d2
σDIS

dΩdE ′
=

α4
e

Q4
E ′

E
LµνW µν (2.5)

with αe the fine-structure constant. The tensors appearing on the right-hand side are the leptonic
tensor, Lµν, and the hadronic one, W µν. They encode different properties of the process. In order
for the representation of the cross-section as a factorized quantity to be valid, we implicitly as-
sumed to be working in the Bjorken limit, i.e. Q2,ν→ ∞ while x remains constant.

The leptonic tensor Lµν encodes information about the polarization of the initial and final state
electrons and of the off-shell photon. With the kinematics as in Fig.(2.1), one can easily convince
oneself that it is given by

Lµν =
1
2

Tr[/k′γµ/kγν] = 2[k′µkν + k′νkµ−gµν(k′ · k)+ iεµναβ kαqβ]. (2.6)

For unpolarized scattering, the last term in Eq.(2.6) is absent. The hadronic tensor W µν rep-
resents the purely hadronic part of the process, γ∗p→ Γ. It contains useful information about the
structure of the proton, encoded in its form factors and structure functions. The amplitude of this
sub-process can be shown to be proportional to the matrix element of the electromagnetic current,

M (γ∗p→ Γ)∼ 〈Γ| jµ |p〉 . (2.7)

The hadronic tensor, written in momentum space, is then

Wµν =
∫

d4x eiq·x 〈p| jµ(x) jν(0) |p〉 , (2.8)

in which we used the completeness relation

∑
Γ

|Γ〉〈Γ|= 1. (2.9)
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Using general arguments (e.g. Lorentz covariance), one can write down the generic form of the
hadronic tensor in terms of structure functions. The spin-independent part is

W S
µν =−W1

(
gµν +

qµqν

Q2

)
+

1
m2

p
W2

(
pµ +

p ·q
Q2 qµ

)(
pν +

p ·q
Q2 qν

)
(2.10)

and the spin-dependent one

W A
µν =

i
m2

p
εµνλσqλ

[
sσ

(
G1 +

ν

mp
G2

)
− s ·q

m2
p

pσG2

]
, (2.11)

with sµ the proton spin vector. Note that the spin-independent hadronic tensor is symmetric in its
Lorentz indices, while the spin-dependent one is anti-symmetric. This was to be expected, as W S

µν

corresponds to the purely electromagnetic part of the interaction, which is parity conserving. W A

on the other hand is obtained from polarized scattering, coming from the weak interaction which
is parity violating. The structure functions Wi and Gi depend in general on the two invariants Q2

and x. If we ignore the mass of the electron, which we can do at the high energies we consider
here, the terms proportional to qµ drop out once contracted with the leptonic tensor. To see this,
consider first the terms in the hadronic tensor which are proportional to qµqν. Contacting with Lµν

and using momentum conservation to write q = k− k′ this leads to

4m2
e [(k · k′)−m2

e ]

which vanishes in the limit of me→ 0. A similar conclusion holds for the terms of the form pµqν

which give
4m2

e [(k
′ · p)− (k · p)].

Eq.(2.8) implies that the calculation of the hadronic tensor for inclusive DIS is equivalent to the
calculation of a matrix element of a product of two electromagnetic currents, which can be dealt
with using the OPE, cf. Section 1.3. There we derived that this product can be written as a sum of
spin-N, twist-two quark operators

Oµ1...µN ≡ Sψγµ1Dµ2 . . .DµN ψ, (2.12)

where S selects the twist-two components. Note however that there is a small caveat in this dis-
cussion. The expansion we derived in Chapter 1 was for the time-ordered product of two currents.
However, the product appearing in the hadronic tensor is not time-ordered. Fortunately this does
not prove to be an issue. We can simply apply the optical theorem to relate the rate of γ∗p→ Γ to
the imaginary part of the forward scattering rate of γ∗p→ γ∗p. Specifically we have

Wµν = 2 Im Tµν (2.13)

with
Tµν = i

∫
d4x eiq·x〈p|T jµ(x) jν(0)|p〉. (2.14)

The product of currents in this final equation does allow for an application of the OPE as explained
in Chapter 1.

The final step in the calculation of the inclusive DIS cross-section is to sandwich the operators
in Eq.(2.12) between two proton states,

〈p|Oµ1...µN |p〉 ∼MN(Q) pµ1 . . . pµN . (2.15)
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The parton model

Before continuing with our main discussion, we want to briefly comment on the so-called parton
model, historically first introduced by Feynman in the late sixties [27]. We still consider the
scattering of an electron off a proton in the Bjorken limit, but now assume that the proton (and
all other hadrons for that matter) are simply built up from free, non-interacting partons. The
expansion of the hadronic tensor in terms of structure functions, Eq.(2.10), remains valid in this
simplified model. For convenience, we also introduce the reduced structure functions defined as

F1(x,Q2)≡W1(x,Q2),

F2(x,Q2)≡ ν

m2
p
W2(x,Q2). (2.16)

The F1 structure function is also called the transverse structure function, while the combination

FL ≡ F2−2xF1 (Q2→ ∞) (2.17)

is the longitudinal one. They describe the absorption of transversly and longitudinally polarized
virtual photons, respectively. Rewriting the decomposition of the (spin-independent) hadronic
tensor in terms of the structure functions Fi gives

W S
µν =−F1

(
gµν +

qµqν

Q2

)
+

1
ν

F2

(
pµ +

p ·q
Q2 qµ

)(
pν +

p ·q
Q2 qν

)
. (2.18)

Within the parton model, these structure functions Fi can be written in terms of the parton distri-
bution functions fq(x), which can be interpreted to give the probability to find a parton of type q
inside the proton with momentum xp (0 ≤ x ≤ 1). We omit writing here the dependence of the
PDFs on the factorization scale µF . The F2 structure function then becomes

F2(x,Q2) = x∑
q

Q2
q fq(x). (2.19)

Important to note here is that this only involves electrically charged partons within the proton.
Hence we only take into account quarks and anti-quarks, which are assumed to be non-interacting,
and ignore gluons. The F1 structure function can be directly related to the F2 one using the so-called
Callan-Gross relation [67]

F2(x,Q2) = 2xF1(x,Q2), (2.20)

which expresses that the partons are spin-1/2 fermions. Experimental data on this is shown in
Fig.2.2. For x & 0.2, we see that the data nicely follow the Callan-Gross relation. However, for
lower values of x, discrepancies appear, which the parton model cannot explain. The solution to
this conundrum presents itself when combining the parton model with perturbative QCD, leading
to the QCD-improved parton model. Within this framework, the low-x behaviour of the structure
functions is dominated by gluonic contributions.

Written in terms of the longitudinal structure function FL, the Callan-Gross relation is simply
the statement that FL exactly vanishes in the parton model, which we can interpret as the inability
of the spin-1/2 partons to absorb longitudinally polarized virtual photons. When considering the
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Figure 2.2: Historical plot demonstrating the Callan-Gross relation. Figure taken from [68, 69].

QCD-improved model, higher-order corrections break the Callan-Gross relation, i.e. FL 6= 0 start-
ing from order αs.

The structure functions Fi have yet another remarkable property. Namely, in the Bjorken limit,
they actually become independent of Q2, i.e.

Fi(x,Q2)
Q2→∞−−−−→
x fixed

Fi(x). (2.21)

This behaviour is called Bjorken scaling [70]. Some historical measurements that demonstrate this
scaling behaviour are shown in Fig.2.3. It demonstrates that the electron scatters off point-like
partons within the proton3.

At low and high values of the Bjorken variable, the scaling behaviour of the structure func-
tions break downs and logarithmic corrections in Q2 become important. These corrections can be
calculated explicitly within the QCD-improved parton model.

2.1.3 Parton distribution functions
The parton distribution functions are non-perturbative functions characterizing long-range physical
effects. They are universal, in the sense that they do not depend on the process under consideration,

3If the scattering was instead off an extended object, there would be an additional Q2-dependent form factor.
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Figure 2.3: Historical plot demonstrating Bjorken scaling in DIS data. Figure taken from [71].

and encode the longitudinal momentum and polarization carried by partons within fast-moving
hadrons. They can be related to the hadronic matrix elements in Eq.(2.15) as [36]

fq(x) =
1
π

∑
n

Im Mn

xn . (2.22)

Non-perturbative techniques have to be employed for their determination, see e.g. [72, 73] and [74–
79] for recent progress in lattice QCD. It is also possible to extract them directly from experiment,
see e.g. [80]. PDFs have been studied in detail using data gathered by the HERA collider [5, 6], and
they are one of the central objects to be studied by the planned Electron Ion Collider (EIC) [7, 8].
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�p+(p)

e−(k)

p+(p′)

γ(q′)

e−(k′)

γ∗(q)

Figure 2.4: Sketch of the DVCS process, where the proton structure is probed by a high-energy virtual pho-
ton, which is accompanied by the production of a real photon. The diagram was drawn using FEYNMF [46].

Scale-dependence

Besides the PDFs themselves, it is also important to understand how changing the energy scale
(say of the experiment) affects the PDFs. The PDF scale-dependence is neatly summarized in the
well known DGLAP equation [81–83]

d fa(x,µ2)

dlnµ2 =
∫ 1

x

dy
y

Pab(y) fb

(x
y
,µ2
)
. (2.23)

Pab represent the QCD splitting functions. Because of the direct relation between PDFs and local
spin-N operators, cf. Eq.(2.22), the scale-dependence of PDFs is related to the scale-dependence of
the operators, the latter being determined by the operator anomalous dimension, cf. Eq.(1.93). For
practical purposes we focus on the flavor non-singlet quark operators, cf. Eq.(1.115). The operator
anomalous dimension enters the DGLAP equation through the splitting function. Specifically, the
two quantities are related through a Mellin transformation

γNS(N) =−
∫ 1

0
dx xN−1PNS(x). (2.24)

The explicit calculation of operator anomalous dimensions will be discussed in detail in Chapter 4.

2.2 Deeply-virtual Compton scattering

2.2.1 Kinematics
As was the case for DIS, the DVCS process,

e p→ e p γ,

involves studying the structure of the proton by scattering a high-energy electron off it. However,
different from DIS, we also take into account the production of a real photon γ. This implies that
there has to be a non-zero momentum transfer to the target proton, see Fig.2.4. Another difference
with DIS is that the nucleon survives the process, i.e. it is not broken apart.

Because of the non-zero momentum transfer, we need to introduce more invariants to fully
describe DVCS. In total, four such invariants are needed:
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• The Mandelstam variable t, which corresponds to the invariant momentum transfer

t = (p− p′)2, (2.25)

• the photon virtuality, Q2 =−q2, which is again assumed to be large,

• the momentum-fraction x carried by the struck parton and

• the average hadron momentum

χ =
1
2
(p+ p′). (2.26)

2.2.2 Cross-section
As before we assume the proton structure to be probed by the electromagnetic interaction, cf. Eq.(2.3).
In the Bjorken limit, the DVCS cross-section also factorizes into a leptonic part and a hadronic one.
As the expressions for the corresponding leptonic and hadronic tensors are considerably more com-
plex than in the DIS case, and since we do not actually need their exact forms in the following, we
do not quote them here. Instead, we refer the interested reader to [66]. Here we will just give a
brief overview of some of the similarities and differences with the analysis of DIS.

• The hadronic tensor can again be written as a matrix element of a time-ordered product of
electromagnetic currents

Tµν = i
∫

d4x ei(q+q′)·x 〈p′
∣∣T jµ(x) jν(0) |p〉 . (2.27)

Note that now the initial and final states do not have the same momentum, and that both the
momentum of the virtual photon and of the real one (q′) appear in the expression. As the
same operator product appears as in DIS, the same spin-N operators, and their anomalous
dimensions, have to be considered. The difference with DIS is that these now have to be
considered in off-forward kinematics, i.e. between states of unequal momenta. This implies
that also operators with external total derivatives can contribute.

• At the end of the calculation, the unpolarized Compton amplitude is written in terms of two
off-forward distributions denoted by H and E, depending on the Dirac structure. These are
the GPDs and can be interpreted as matrix elements of quark operators. Using lightcone
coordinates, cf. Appendix A, we have [14, 66]∫ dz−

2π
eixχ+z− 〈p′

∣∣ψ(−z/2)γ+ψ(z/2) |p〉 ∼ H(x,χ, t)ψ(p′)γ+ψ(p) (2.28)

+E(x,χ, t)ψ(p′)
iσ+ν∆̃ν

2mp
ψ(p)

+higher twist

where as before we focus on the leading-twist contributions. The variable ∆̃ is defined such
that

t = ∆̃
2. (2.29)
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Note that the operator appearing in Eq.(2.28) is non-local. It is always possible to relate such
a non-local operator to local ones by means of a Taylor expansion,

O(x;z1,z2) = ∑
m,k

zm
1 zk

2
m!k!

[ψ(x)(
←−
D ·n)m/n(n ·

−→
D )k

ψ(x)], (2.30)

see e.g. [16]. Here n is an arbitrary light-like vector.

2.2.3 Properties of GPDs

While the standard PDFs only depend on one kinematic variable, namely x, the off-forward GPDs
depend on three such variables, with the additional two being related to the non-zero momentum
transfer. It can be shown that in the forward limit, where p = p′ (and assuming the initial- and
final state protons to have the same helicity), the GPDs reduce to the forward distributions, e.g.
H(x,0,0) = fq(x) for x > 0 [14]. Another difference between PDFs and GPDs is their interpreta-
tion. As diagonal (i.e. forward) matrix elements, PDFs have a simple probabilistic interpretation.
However, since GPDs correspond to non-diagonal (non-forward) matrix elements, this no longer
works. Instead, GPDs reflect the interference between nucleon amplitudes with different parton
configurations. This implies that they form important probes for momentum correlations between
partons in the proton [14, 84].

While the finite momentum transfer to the target is dominated by its longitudinal component,
it is possible for a small transverse component to appear as well. Information about the transverse
structure of the proton will then also be encoded in the GPDs. When combined with the longi-
tudinal information, GPDs hence create the possibility for a fully three-dimensional description
of proton (or more generally hadron) structure. See e.g. [85] for more details about this exciting
application and [86] for an overview of recent progress.

Moments and local operators

Instead of considering the matrix elements themselves, it is also interesting to study the effect of
integrating the GPDs over (powers of) x, i.e. calculating their Mellin moments. These moments
turn out to be extremely valuable, as they are related to form factors of local quark operators. In
the simplest case we just consider∫ 1

−1
dx H(x,χ, t) and

∫ 1

−1
dx E(x,χ, t).

These are nothing more than the Dirac and Pauli form factors for the standard electromagnetic
current ∫ 1

−1
dx H(x,χ, t) = F1(t) (2.31)∫ 1

−1
dx E(x,χ, t) = F2(t) (2.32)
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defined as 〈
p′
∣∣ψ(0)γµ

ψ(0) |p〉= ū(p′)

[
F1(t)γµ +F2(t)

iσµα∆̃α

2mp

]
u(p). (2.33)

In the same fashion, the higher moments of GPDs are related to form factors of operators with
additional covariant derivatives [14]. These are exactly the local spin-N, twist-two operators that
also appeared in the analysis of DIS, cf. Eq.(2.12).

Scale-dependence

Like PDFs, GPDs are non-perturbative quantities, meaning that they have to be calculated on the
lattice or extracted from experiments. But, as we have just seen, also GPDs are related to spin-N
twist-two operators, which implies that their scale-dependence will once again be determined by
the scale-dependence of the operators. For example, for the scale-dependence of the generalized
distribution H we have

d
dlnµ2 H(x,χ, t) =

1
|χ|

∫ 1

−1
dyV (x,y)H(y,χ, t). (2.34)

This is the so-called ERBL evolution equation [87–90]. The evolution kernel V (x,y) is a general-
ization of the splitting function in the forward limit. As such, it can be related to a Mellin transform
of operator anomalous dimensions [91]

∫ 1

0
dx xN V (x,y) =−

N

∑
k=0

γN,k yk. (2.35)

Here γN,k denote the elements of the anomalous dimension matrix γ̂. They represent the mixing
into total derivative operators, which is relevant for off-forward kinematics. The renormalization
of the spin-N operators and the extraction of the corresponding anomalous dimensions, both in
forward and off-forward kinematics, will be discussed in detail in Chapter 4.
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Chapter 3

Mathematical background

Introduction
Before continuing with our main discussion, we first give an overview of mathematical concepts
and special functions which will be necessary in the coming chapters. The first section deals with
special functions. Here we review the definitions and some properties of harmonic sums, the Euler-
Gamma functions and Gegenbauer polynomials. After this, we introduce the binomial transform,
which is a special type of transformation acting on sequences. Finally, we review useful concepts
and algorithms for the evaluation of finite sums.

3.1 Special functions

3.1.1 Harmonic sums
Harmonic sums at argument N can be defined recursively as [92, 93]

S±m(N) =
N

∑
i=1

(±1)i

im
,

S±m1,m2,...,md(N) =
N

∑
i=1

(±1)i

im1
Sm2,...,md(i). (3.1)

An associated quantity is the weight w of harmonic sums, which is

w≡∑
i
|mi|. (3.2)

We will also use the concept of weight when dealing with denominators in N. Specifically, we
associate a weight ω to denominators of the form

1
(N +α)ω

(α ∈ N). (3.3)

The harmonic numbers, S1(N), are known to diverge in the limit of large N. We have

S1(N)−−−→
N→∞

lnN + γE +O

(
1
N

)
(3.4)
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with γE the Euler-Mascheroni constant, γE ≈ 0.577. The higher-weight harmonic sums are finite
in the limit of large N and correspond to the Riemann-zeta function

ζn =
∞

∑
i=1

1
in
. (3.5)

3.1.2 Euler-Gamma and polygamma functions
The Euler-Gamma function Γ(z) can be considered to be the analytical continuation of the factorial
to complex numbers. It obeys [94]

zΓ(z) = Γ(z+1) (3.6)

and has isolated poles for z ∈ Z−. As such, we can define an analytic continuation of binomial
coefficients as follows (

N
r

)
=

Γ(N +1)
Γ(r+1)Γ(N− r+1)

. (3.7)

The Gamma function also has an integral representation,

Γ(z) =
∫

∞

0
dx xz−1e−x, (3.8)

which is valid for Re(z) > 0. When the argument is a half-integer number, the Gamma function
obeys

Γ

(
N +

1
2

)
=

(2N)!
4NN!

√
π (n ∈ N). (3.9)

Important associated functions are the polygamma functions, which are the logarithmic derivatives
of the Gamma function

ψ
(m) ≡ dm+1

dzm+1 lnΓ(z). (3.10)

When the polygamma functions are evaluated in an argument N ∈ N0, they are related to the
harmonic sums. We have

ψ
(0)(N) =−γE +S1(N−1) (3.11)

and
ψ
(m)(N) = (−1)mm!

[
ζm+1−Sm+1(N−1)

]
(m > 0). (3.12)

The Gamma function often shows up in QFT calculations. This is because, when calculating
loop integrals in dimensional regularization, it is a natural object to appear. For example, in D
dimensions, the area of the unit-sphere is∫

ΩD =
2πD/2

Γ(D/2)
. (3.13)

In dimensional regularization, the poles as ε→ 0 are usually incorporated in the appearing Gamma
functions. A typical example of this is

∫ dD k
(2π)D

1
k2 + ∆̃2

=
1

(4π)D/2
Γ(2−D/2)

Γ(2)

(
1
∆̃

)2−D/2

(3.14)
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which is singular for D→ 4. Hence we need to know how the Gamma function behaves near z = 0.
We have

Γ(ε) =
1
ε
− γE +O(ε). (3.15)

3.1.3 Gegenbauer polynomials
Gegenbauer polynomials can be defined in terms of the hypergeometric function 2F1 as [94]

Cν
N(z) =

(2ν)N

N! 2F1

(
−N,N +2ν;ν+

1
2

;
1
2
− z

2

)
(3.16)

with
(x)N ≡ x(x−1) . . .(x−N +1) (3.17)

the rising factorial or Pochhammer symbol. Recall that the generalized hypergeometric function is
defined as

mFn(a1, . . . ,am;b1, . . . ,bn;z) =
∞

∑
i=0

(a1)i . . .(am)i

(b1)i . . .(bn)i

zi

i!
. (3.18)

In the case of a negative first argument, as in Eq.(3.16), the series does not go all the way to infinity.
Instead we have

2F1(−N,m;a,z) =
N

∑
i=0

(−1)i
(

N
i

)
(m)i

(a)i
zi. (3.19)

This then allows one to write down a series representation of the Gegenbauer polynomials in terms
of the Gamma function

Cν
N(z) =

Γ(ν+1/2)
Γ(2ν)

N

∑
l=0

(−1)l Γ(2ν+N + l)
l!(N− l)!Γ(ν+1/2+ l)

(
1
2
− z

2

)l

. (3.20)

In a QFT context, they appear naturally when analyzing composite operators in the presence of
conformal symmetry. Particularly important are then the Gegenbauer polynomial with ν = 3/2,
relevant for the description of quark operators

C3/2
N (z) =

1
2N!

N

∑
l=0

(−1)l
(

N
l

)
(N + l +2)!
(l +1)!

(1
2
− z

2

)l
(3.21)

and the one with ν = 5/2 for the description of gluon operators

C5/2
N (z) =

1
12N!

N

∑
l=0

(−1)l
(

N
l

)
(N + l +4)!
(l +2)!

(
1
2
− 1

2
z
)l

. (3.22)

3.2 The binomial transform
Suppose we have some sequence {ak}. Its binomial transform bN is then defined as [95]

bN ≡
N

∑
k=0

(
N
k

)
ak. (3.23)
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The inverse transformation is

aN =
N

∑
k=0

(−1)N−k
(

N
k

)
bk. (3.24)

To see this, we can substitute Eq.(3.23) into Eq.(3.24)

N

∑
k=0

(−1)N−k
(

N
k

)
bk =

N

∑
k=0

(−1)N−k
(

N
k

) k

∑
j=0

(
k
j

)
a j. (3.25)

Next we change the order of summation in the right-hand side

N

∑
k=0

(−1)N−k
(

N
k

)
bk =

N

∑
j=0

(−1)N
(

N
j

)
a j

N

∑
k= j

(−1)k
(

N− j
k− j

)
(3.26)

in which we used the identity (
N
l

)(
l
k

)
=

(
N
k

)(
N− k
l− k

)
. (3.27)

Changing now the summation indices k→ k− j and j→ N− j we find

N

∑
k=0

(−1)N−k
(

N
k

)
bk =

N

∑
j=0

(−1) j
(

N
j

)
aN− j

j

∑
k=0

(−1)k
(

j
k

)
. (3.28)

Finally using that
j

∑
k=0

(−1)k
(

j
k

)
= δ j,0 (3.29)

we obtain the required result. �

The so-called symmetric binomial transform is also quite common. It is defined as

bN ≡
N

∑
k=0

(−1)k
(

N
k

)
ak (3.30)

with inversion

aN =
N

∑
k=0

(−1)k
(

N
k

)
bk. (3.31)

A variant with k→ k− 1 is also used sometimes. These equations imply that the (symmetric)
binomial transform is a type of conjugation; applying the transformation twice is equivalent to the
identity transformation. The binomial transform is also closely connected to the finite difference
operator ∆aN ≡ aN+1−aN . We have

(−1)N
∆

Na0 =
N

∑
k=0

(−1)k
(

N
k

)
ak. (3.32)

This can be easily shown by induction. The base case N = 0 trivially gives a0 = a0. Let us then
assume that Eq.(3.32) is true for some N ∈ N. For N +1 the left-hand side is

∆
N+1a0 = ∆(∆Na0) =

N

∑
k=0

(−1)N−k
(

N
k

)
(ak+1−ak). (3.33)
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The right-hand side is
N+1

∑
k=0

(−1)N+1−k
(

N +1
k

)
ak. (3.34)

Using the identity (
N
k

)
=

(
N−1

k

)
+

(
N−1
k−1

)
(3.35)

we can rewrite this as

N+1

∑
k=0

(−1)N+1−k
(

N
k

)
ak +

N+1

∑
k=0

(−1)N+1−k
(

N
k−1

)
ak. (3.36)

Next we shift the summation index in the second sum by one, giving

N+1

∑
k=0

(−1)N+1−k
(

N
k

)
ak +

N

∑
k=−1

(−1)N−k
(

N
k

)
ak+1. (3.37)

Noting now that the first sum vanishes for k = N+1 and the second one for k =−1 this reduces to

N

∑
k=0

(−1)N−k
(

N
k

)
(ak+1−ak). (3.38)

This concludes the proof. �

Sequences with the property
N

∑
k=0

(−1)k
(

N
k

)
ak = aN (3.39)

are called invariant or self-conjugate sequences. For example, using the symmetric binomial trans-
form with the sign factor (−1)k+1, the sequence

{
S1(N)
(N+1)

}
is self-conjugate.

Assume we have some polynomial f (x) of maximal degree N. Then the binomial transform of

f (x− k)
y+ k

(y 6=−N) (3.40)

can be calculated using Melzak’s formula [96, 97]

N

∑
k=0

(−1)k
(

N
k

)
f (x− k)

y+ k
=

N! f (x+ y)
y(y+1) . . .(y+N)

. (3.41)

For example, if f (x) = 1 we find

N

∑
k=0

(−1)k
(

N
k

)
1

y+ k
=

1
y

(
N + y

y

)−1

. (3.42)
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The binomial transform also has interesting properties for division by the discrete variable. As-
suming {bN} is the transform of {aN} we have [95]

N

∑
k=1

(
N
k

)
ak

k+λ
=

N

∑
m=1

(m+1)(m+2) . . .N
(λ+m)(λ+m+1) . . .(λ+N)

bm. (3.43)

For λ = 0,1 this reduces to
N

∑
k=1

(
N
k

)
ak

k
=

N

∑
m=1

bm

m
(3.44)

and
N

∑
k=1

(
N
k

)
ak

k+1
=

1
N +1

N

∑
m=1

bm. (3.45)

This can be directly related to binomial transforms involving harmonic sums. Starting from

N

∑
k=1

(−1)k−1
(

N
k

)
= 1 (3.46)

and applying Eq.(3.44) we find

N

∑
k=1

(−1)k−1
(

N
k

)
1
k
= S1(N). (3.47)

In turn, a second application of Eq.(3.44) leads to

N

∑
k=1

(−1)k−1
(

N
k

)
1
k2 = S1,1(N). (3.48)

Eqs.(3.43) and (3.47) can be combined to obtain the following general expression

N

∑
k=1

(−1)k−1
(

N
k

)
S1(k)
k+λ

=
N

∑
m=1

(m+1)(m+2) . . .N
(λ+m)(λ+m+1) . . .(λ+N)m

. (3.49)

We can also consider multiplication with the discrete variable, which obeys [95]

N

∑
k=0

(
N
k

)
kpak = (N∇)pbN (p ∈ N and N ≥ p) (3.50)

with ∇ the backward difference operator

∇ak ≡ ak−ak−1. (3.51)

Finally, we consider the binomial transform of the product of two sequences. Assume we have
two sequences {aN} and {cN} with binomial transforms {bN} and {dN} respectively. Then the
following identity holds [95]

N

∑
k=0

(
N
k

)
akck =

N

∑
m=0

(
N
m

)
dm∇

mbN . (3.52)
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A useful consequence involving harmonic numbers is

N

∑
k=0

(−1)k−1
(

N
k

)
S1(k)ck = (−1)N−1S1(N)dN +

N−1

∑
m=0

(−1)mdm

N−m
. (3.53)

More relations involving binomial transforms can be found in [95] and in Appendices E and F
of [92].

3.3 Evaluating finite sums
The problem of evaluating finite sums will show up frequently in the course of this text. This
section gives an overview of some important concepts which will be useful. After briefly reviewing
the telescoping and creative telescoping algorithms, we comment on the use of the MATHEMATICA

package SIGMA [98, 99] to evaluate complicated sums. In the final section of this chapter we
discuss the evaluation of some single and double sums which will appear in later chapters.

3.3.1 Telescoping algorithms
The telescoping algorithm is a well-known method for evaluating finite sums. Suppose we want to
evaluate the following sum

N

∑
k=a

f (k) (3.54)

with a,N ∈ N and a≤ N. Now, if we can find a function g(N) such that

f (k) = ∆g(k)≡ g(k+1)−g(k) (3.55)

then

N

∑
k=a

f (k) =
N

∑
k=a

g(k+1)−
N

∑
k=a

g(k)

= g(N +1)−g(a). (3.56)

The finite difference operator ∆ is similar to the derivative operator in continuum calculus. As
such, the telescoping algorithm can be considered to be the discrete version of the fundamental
theorem of calculus,

g = D f ≡ d
dx

f ⇒
∫ b

a
dx g(x) = f (b)− f (a). (3.57)

The telescoping function g(N) in Eq.(3.55) can be found by application of Gosper’s algorithm [100],
which is applicable if

g(N)

g(N−1)
(3.58)

is a rational function of N. The algorithm consists of three main steps. Say we want to calculate
the telescoping function for some sequence {aN}

aN = ∆b(N). (3.59)

57



It is assumed that {aN} is a hypergeometric sequence, that is

aN+1

aN
= q(N) (3.60)

with q(N) a rational function of N. The steps of Gosper’s algorithm can then be summarized as
follows

1. Determine three functions f (x),g(x) and h(x) such that

q(x) =
f (x+1)

f (x)
g(x)

h(x+1)
(3.61)

and
gcd[g(x),h(x+n)] = 1 (n ∈ N0). (3.62)

2. Solve the so-called Gosper equation,

f (x) = g(x)y(x+1)−h(x)y(x), (3.63)

for the polynomial y(x).

3. If such a polynomial solution does not exist, it means that the sum in question does not have
a hypergeometric closed form. Otherwise, the telescoping function is determined by

t(x) =
h(x)
f (x)

y(x) (3.64)

where we introduced t(x) via
b(N) = t(N)a(N). (3.65)

More details can e.g. be found in [101].

Classical telescoping works when dealing with sequences that depend on one variable only.
When we want to determine a closed form for a summation of a sequence depending on two
variables, we can use the creative telescoping algorithm by Zeilberger [102]. The idea is similar
to that of classical telescoping. Suppose we want to calculate a closed form expression for the
summation

b

∑
k=a

f (N,k)≡ S(N). (3.66)

The way to go about this is by attempting to find functions c0(N), . . . ,cd(N) and a function g(N,k)
such that

g(N,k+1)−g(N,k) = c0(N) f (N,k)+ ...+ cd(N) f (N +d,k). (3.67)

Summing both sides, and applying classical telescoping to the left-hand side, then gives

g(N,b+1)−g(N,a) = c0(N)
b

∑
k=a

f (N,k)+ ...+ cd(N)
b

∑
k=a

f (N +d,k). (3.68)
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This leads to an inhomogeneous recursion relation for the original sum of the form

q(N) = c0(N)S(N)+ ...+ cd(N)S(N +d). (3.69)

Typically, one starts this procedure at d = 0, which is equivalent to classical telescoping. The value
of d is then increased stepwise until a solution to Eq.(3.68) is found. The creative telescoping
algorithm can be applied when the sequence under consideration is holonomic. A sequence {aN}
is said to be holonomic if there exist polynomials p0(x), . . . , pr(x) such that the following recursion
relation is obeyed [101]

p0(N)aN + p1(N)aN+1 + · · ·+ pr(N)aN+r = 0 (N ∈ N, pr(N) 6= 0). (3.70)

For example, the harmonic numbers {S1(N)} form a holonomic sequence since

(N +1)S1(N)− (2N +3)S1(N +1)+(N +2)S1(N +2) = 0. (3.71)

More details on the summation algorithms reviewed here can e.g. be found in the excellent
books [103, 104].

3.3.2 Evaluating sums using SIGMA

The types of sums that will have to be evaluated throughout this text can be dealt with using the
MATHEMATICA package SIGMA [98, 99]. The workflow followed by SIGMA can be summarized
as follows

• When given a sum to evaluate, SIGMA will generate a recurrence for it using (creative)
telescoping, which it subsequently solves.

• In general, the obtained recurrences are inhomogeneous. The corresponding solution is then
the set of solutions for the homogeneous recurrence, supplemented by a particular solution.

• For the final closed-form expression of the summation problem at hand, SIGMA determines
that particular linear combination of the recurrence solutions that has the same initial values
as the given sum.

Let us see how this works in practice. In Chapter 4, a type of sum we will be interested in is

N−k

∑
j=0

(−1) j
(

N− k
j

)
f ( j+ k). (3.72)

Here the function f contains harmonic sums and denominators in its arguments. In this example
we take

f (N) =
S1(N +1)

N +1
. (3.73)

To simplify the input for SIGMA , we define

Nk ≡ N− k. (3.74)
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First, we feed the sum to SIGMA using the SIGMASUM function. SIGMA also has built-in

functions for powers and binomials, namely SIGMAPOWER and SIGMABINOMIAL.

in[1] := sum = SigmaSum[SigmaPower[-1,j]*SigmaBinomial[Nk,j]S[1,k+j+1]/(k+j+1),{j,0,Nk}]

out[1] :=
Nk
∑.

j=0

 Nk

j


.

(−1)
j
.
(

1
1+ j+k +S[1, j+k]

)
1+ j+k

Next, we generate the corresponding recurrence using GENERATERE. The input required here
is the quantity for which we want to generate the recurrence, and the quantity in terms of which
the recurrence should be written.

in[2] := rec = GenerateRE[sum,Nk]

out[2] :=
{
(1+Nk)2SUM[Nk]+

(
−8−3k−8Nk−2kNk−2Nk2)SUM[1+Nk]+ (3+ k+Nk)2SUM[2+Nk] == 0

}
We see that in this particular case, we find a homogeneous recurrence of second order. Next

we solve the recurrence using SOLVERECURRENCE. To simplify the output, we also use TOSPE-
CIALFUNCTION to transform products to factorials and Pochhammer symbols.

in[3] := solrec = SolveRecurrence[rec[[1]],SUM[Nk]]//ToSpecialFunction

out[3] :=


{

0, Nk!.
(2+k)Nk

}
,


0,

Nk!.


Nk
∑.

ι1=1
1
ι1

−1−k −

Nk
∑.

ι1=1
1

1+k+ι1
−1−k


(2+k)Nk


,{1,0}


Finally, we need to determine the appropriate linear combination of the solutions of the recur-

rence. This is done using FINDLINEARCOMBINATION.

in[4] := sol = FindLinearCombination[solrec,sum,2]//ToSpecialFunction

out[4] := Nk!.
(1+k)2(2+k)Nk

+
Nk!.

(
Nk
∑.

ι1=1
1
ι1

)
(−1−k)(2+k)Nk

−
Nk!.

(
Nk
∑.

ι1=1
1

1+k+ι1

)
(−1−k)(2+k)Nk

+ Nk!.S[1,k]
(1+k)(2+k)Nk

The output can be simplified further using SIGMAREDUCE, and the remaining sums can be
expressed in terms of harmonic numbers using the TOWER command. This leads to

in[5] := Sol = SigmaReduce[sol,Nk,Tower→{S[1,Nk],S[1,Nk+k]}]/.Nk→N-k

out[5] :=
(−k+N)!.

(
1

(1+k)(1+N)
− S[1,N]
−1−k +

S[1,−k+N]
−1−k

)
(2+k)−k+N

Hence, we find that

N−k

∑
j=0

(−1) j
(

N− k
j

)
S1( j+ k+1)

j+ k+1
=

(N− k)!
(k+1)(k+2)N−k

(
1

N +1
−S1(N− k)+S1(N)

)
. (3.75)
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3.3.3 Explicit single and double sums

In this section we discuss some explicit single and double sums that will be useful to us throughout
this work.

Single sums

As discussed above, the binomial transforms of some simple functions are

N

∑
j=0

(−1) j
(

N
j

)
=δN,0 (3.76)

N

∑
j=0

(−1) j
(

N
j

)
1

m+ j
=

1
m

(
N +m

m

)−1

(3.77)

N

∑
j=0

(−1) j
(

N
j

)
S1(m+ j) = − 1

N

(
N +m

N

)−1

(3.78)

N

∑
j=0

(−1) j
(

N
j

)
1

(m+ j)2 =
1
m

(
N +m

N

)−1

[S1(N +m)−S1(m−1)] (3.79)

N

∑
j=0

(−1) j
(

N
j

)
S2(m+ j) = − 1

N

(
N +m

N

)−1

[S1(N +m)−S1(m)], (3.80)

see also [95] and appendix F of [92]. Binomial transforms of higher powers of 1/(m+ j) can be
calculated using differentiation. For example, differentiating both sides of Eq.(3.79) with respect
to m we find

N

∑
j=0

(−1) j
(

N
j

)
1

( j+m)3

=
1

2m

(
N +m

N

)−1(
S2(m+N)−S2(m+1)+ [S1(m−1)−S1(m+N)]2

)
.

(3.81)

Binomial transforms of the form S1(N)
N+m (m ∈ N+) can be evaluated using

N

∑
j=0

(−1) j
(

N
j

)
S1(m+ j)

m+ j
=

1
m

(
N +m

N

)−1

[S1(N +m)−S1(N)]. (3.82)

To apply this formula, we need to synchronize the harmonic sums, meaning that its argument
should match the denominator. For example

N

∑
j=0

(−1) j
(

N
j

)
S1(m+ j)
m+ j+1

→
N

∑
j=0

(−1) j
(

N
j

)(
S1(m+ j+1)

m+ j+1
− 1

(m+ j+1)2

)
. (3.83)

Note that the second sum is just of the type (3.79).
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Double sums

In Chapter 4 and beyond, we will be interested in double sums of the form
N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
f (l, j). (3.84)

Here f (l, j) represents a function consisting of harmonic sums and denominators in its arguments.
Generally, these sums can simply be computed using SIGMA . However, in certain cases the result
of the inner sum is already quite complicated, such that the full double sum becomes non-trivial.
In such cases, it is advisable to take a closer look at the structure of the summand f (l, j) to see
whether simplifications can be made. For example, consider functions of the form

f (l, j) =
g(l, j)
(l− j)m (m ∈ N0 and l 6= j). (3.85)

g(l, j) is either one or some (product of) harmonic sum(s) with unshifted argument(s)1. To evaluate
the sum Eq.(3.84) for such a function, we note that this function class closes on itself. By this we
mean that, after evaluating the double sum, we do not expect the appearance of shifted denomina-
tors. Furthermore, the weight of the result is limited by the weight of the summand. Hence, the
number of structures that can appear in the final answers is limited, and we can simply calculate
the sum for fixed (N,k)-values and then make a fit using an appropriate basis. This basis is simply
the set of functions of type Eq.(3.85), up to the appropriate weight. Let us, as an example, consider
the case

f (l, j) =
S1(l− j)
(l− j)2 . (3.86)

The inner sum is then
N

∑
l= j+1

(−1)l
(

N
l

)
S1(l− j)
(l− j)2 ≡ S(N, j). (3.87)

To feed this sum to SIGMA , we get rid of the j in the lower limit by shifting l→ l− j− 1 such
that

S(N, j) =
N′

∑
l=0

(−1)N′+ j+1−l
(

N′+ j+1
l

)
S1(N′− l +1)
(N′− l +1)2 . (3.88)

We have defined
N′ ≡ N− j−1 (3.89)

and introduced an additional shift, l → N′− l. The SIGMA result is a complicated expression,
including terms such as

N′

∑
i=1

S1(i+ j)2

i
, (3.90)

which cannot be simplified further. Instead, if we apply the fitting method described above, we
quickly find

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
S1(l− j)
(l− j)2 =−S2(N− k)

N− k
. (3.91)

1By shifted arguments or denominators, we mean arguments or denominators of the type N +m or k +m with
m ∈ N0.
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The basis used to obtain this result was{
S1(N)

(N− k)2 ,
S1(k)

(N− k)2 ,
S1(N)2

N− k
,
S1(k)2

N− k
,
S2(N)

N− k
,

S2(k)
N− k

,
S1(N)S1(k)

N− k
,

S1(N)

N− k
,

S1(k)
N− k

,
S1(N− k)
(N− k)2 ,

S1(N− k)2

(N− k)
,
S2(N− k)
(N− k)

,
1

(N− k)3 ,

S1(N− k)
(N− k)

,
1

(N− k)2 ,
1

N− k

}
.

(3.92)

Another nice application is obtained by choosing

f (l, j) =
1

(l− j)m (m > 0). (3.93)

The fitting method allows us to derive the following all-m expression

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
1

(l− j)m =−S1m(N− k)
N− k

(3.94)

with
S1m(N− k)≡ S1,1, ...,1︸ ︷︷ ︸

m−1

(N− k) (3.95)

and S11(N− k)≡ 1.

The fitting method seems to fail however for the following two sums we encounter in Chapter 5

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
S1(l)

(l− j)2 (3.96)

and
N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
S1( j)
(l− j)2 . (3.97)

Let us consider the sum in Eq.(3.97) in some detail. Because of the appearance of S1( j), it is
simpler to first consider the inner sum over l, i.e.

N

∑
l= j+1

(−1)l
(

N
l

)
1

(l− j)2 . (3.98)

This can be calculated using the standard SIGMA methods. While not giving the full result here,
we note that it includes

N j

∑
i=1

S1(i+ j)
i

, N j ≡ N− j−1 (3.99)

63



for which no closed form is known. This implies that the final result of the full double sum will
include terms proportional to

N

∑
j=k

(−1)k
(

j
k

) N j

∑
i=1

S1(i+ j)
i

, (3.100)

which explains why the fitting method did not work in this case2. We can now try to continue
calculating the outer sum using SIGMA . Unfortunately, this does not work, as SIGMA is not able
to find a recursion when terms such as the one in Eq.(3.99) appear. So, we need to find a different
method for evaluating Eq.(3.97).

To gain some more insight into the problem, we consider the summation for fixed values of k
while leaving N arbitrary:

k ∑
N
j=k(−1)k( j

k

)
∑

N
l= j+1(−1)l(N

l

) S1( j)
(l− j)2

N−1 0−S1(N−1)

N−2 1− 3
4S1(N−2)

N−3 5
4 −

11
18S1(N−3)

N−4 95
72 −

25
48S1(N−4)

N−5 191
144 −

137
300S1(N−5)

N−6 28259
21600 −

49
120S1(N−6)

It is clear that the harmonic number corresponds to S1(k). Maybe less clear but easy to check
is that its coefficient corresponds to −S1(N−k)

N−k . So we have

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
S1( j)
(l− j)2 = F(N,k)− S1(k)S1(N− k)

N− k
(3.101)

for some unknown function F(N,k) of N and k. We expect F to only depend on one argument,
namely N− k, i.e.

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
S1( j)
(l− j)2 = F(N− k)− S1(k)S1(N− k)

N− k
. (3.102)

Let us then consider the simpler case of k = 0,
N

∑
j=0

N

∑
l= j+1

(−1)l
(

N
l

)
S1( j)
(l− j)2 = F(N). (3.103)

2Note that we have encountered a similar non-reducible sum, Eq.(3.90), when trying to calculate the sum in
Eq.(3.87). However, as this non-reducible sum drops out in the final result, the fitting method works. Hence, the
break-down of this method points to the non-cancellation of such non-reducible sums.
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While the inner sum is still the same, the outer one is much easier to handle and can be calculated
with SIGMA , up to one small caveat. During the calculation, one encounters terms of the form

A≡
N

∑
j=0

g1(N, j)
N− j

(3.104)

and

B≡
N

∑
j=0

g2(N, j)
j(N− j)

(3.105)

for some functions g1 and g2. While the poles at j = 0 and j = N are known to be spurious,
SIGMA does not seem to interpret them as such and gives an “Infinite expression 1

0 encountered"
error. This is easily fixed by changing the summation limits as to exclude the spurious poles, and
then re-adding the (finite) limits,

A =
N−1

∑
j=0

g1(N, j)
N− j

+ lim
j→N

[g1(N, j)
N− j

]
B =

N−1

∑
j=1

g2(N, j)
j(N− j)

+ lim
j→0

[ g2(N, j)
j(N− j)

]
+ lim

j→N

[ g2(N, j)
j(N− j)

]
.

(3.106)

Finally we have all we need to calculate Eq.(3.103). The result is

F(N) =
1

N3 [−4−2(−1)N ]+
1

N2 [2−2(−1)NS1(N)−S1(N)]

+
1
N
[−(−1)NS1(N)2 +2S−2(N)−S1(N)+S1(N)2 +S2(N)]

+(−1)NS1(N)2 +S−3(N)+2S−2,1(N)−S2,1(N)+4S3(N)

−N
N

∑
j=0

(−1) j
(

N−1
j

)
S1( j)
N− j

N− j−1

∑
i=1

S1( j+ i)
i+1

.

(3.107)

Remember that the expression for F(N) is valid for k = 0, and originates from F(N− k). Hence,
in order to calculate the full double sum in Eq.(3.97) we started with, all we have to do is take the
expression for F(N) we just calculated, replace N by N− k and substitute back into Eq.(3.102).
This finally leads to

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
S1( j)
(l− j)2 =

1
(N− k)3 [−4−2(−1)N−k]+

1
(N− k)2 [2

−2(−1)N−kS1(N− k)−S1(N− k)]+
1

N− k
[−(−1)N−kS1(N− k)2 +2S−2(N− k)

−S1(N− k)+S1(N− k)2 +S2(N− k)]+(−1)N−kS1(N− k)2 +S−3(N− k)

+2S−2,1(N− k)−S2,1(N− k)+4S3(N− k)− S1(k)S1(N− k)
N− k

− (N− k)
N−k

∑
j=0

(−1) j
(

N− k−1
j

)
S1( j)

N− k− j

N−k− j−1

∑
i=1

S1( j+ i)
i+1

.

(3.108)
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This expression was tested for a large set of (N,k)-values. Note that, in contrast to the other sums
discussed so far, negative-index harmonic sums appear in the final result. Let us now briefly discuss
the other double sum for which the fitting method did not work, Eq.(3.96). Again analyzing fixed
k-values while keeping N arbitrary, we find that the following rewriting holds

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
S1(l)

(l− j)2 = F(N− k)− S1(N)S1(N− k)
N− k

(3.109)

with F(N− k) exactly the same function as before. Hence we can immediately write down the
result:

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
S1(l)

(l− j)2 =
1

(N− k)3 [−4−2(−1)N−k]+
1

(N− k)2 [2

−2(−1)N−kS1(N− k)−S1(N− k)]+
1

N− k
[−(−1)N−kS1(N− k)2 +2S−2(N− k)

−S1(N− k)+S1(N− k)2 +S2(N− k)]+(−1)N−kS1(N− k)2 +S−3(N− k)

+2S−2,1(N− k)−S2,1(N− k)+4S3(N− k)− S1(N)S1(N− k)
N− k

− (N− k)
N−k

∑
j=0

(−1) j
(

N− k−1
j

)
S1( j)

N− k− j

N−k− j−1

∑
i=1

S1( j+ i)
i+1

.

(3.110)

Again we tested this expression for a large set of (N,k)-values.
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Chapter 4

Renormalization of non-singlet spin-N
operators

Introduction
In this chapter, we investigate the renormalization of the spin-N non-singlet quark operators ap-
pearing in the OPEs of DIS and DVCS. Throughout this chapter, we work in the leading-twist
approximation. As was discussed before, this works well at high energies, as higher-twist contri-
butions are suppressed by inverse powers of the hard scale. Furthermore, we explicitly assume all
quarks to be massless, i.e. we work in the chiral limit. Renormalizing the relevant operators will
give access to their anomalous dimensions, which characterize the scale-dependence of (general-
ized) parton distributions. As such, they form an important input parameter for past and future
experiments and lattice calculations.

While the operators relevant for the calculation of cross-sections in DIS and DVCS are the
same, there exist important differences at the level of their renormalization. These are a direct
consequence of the difference in kinematics between the two processes. In DIS, we need to con-
sider forward kinematics, meaning that there is no momentum transfer to the target proton. At
the level of the operator renormalization, the consequence of this is that the matrix elements to
be calculated involve operator vertices with zero momentum flow. In turn, this implies a simple
multiplicative renormalization, and the extraction of the anomalous dimensions is straightforward.
These anomalous dimensions then determine the scale-dependence of the PDF. In DVCS however,
the kinematics is off-forward. As we explicitly take into account the production of a real photon,
the momenta of the initial and final state proton necessarily differ. In this case, we have to consider
matrix elements that involve operator vertices with a non-zero momentum flow. This complicates
the extraction of the anomalous dimensions, as now the operators mix with total derivative opera-
tors. In this case, the anomalous dimensions are related to the scale-dependence of the off-forward
parton distributions, i.e. GPDs.

We first set up the notation for the operator matrix elements and discuss their calculation. Next
we review the renormalization of the operators in forward and off-forward kinematics. Because of
the operator mixing in the latter case, we first have to choose a particular operator basis. Several
options will be discussed. After this, we implement the operator renormalization in a specific
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basis and show that, in this basis, useful relations exist between the operators. These in turn lead
to a consistency relation between the corresponding anomalous dimensions, which can be used to
construct the mixing matrix when the forward anomalous dimensions and the bare matrix elements
of the relevant operators are known.

4.1 Calculation of operator matrix elements
To calculate the anomalous dimensions of the operators, we consider the following partonic Green’s
function

Ai j ≡ 〈 j(p1)|Oi(p3)| j(p2)〉. (4.1)

We focus our attention in this chapter on the Wilson flavor non-singlet quark operators ONS
µ1...µN

,
cf. Eq.(1.115). As such, we only need to take quarks as external fields, j = q. The general form of
the relevant Green’s function is then

〈ψ(p1)|ONS
µ1...µN

(p3)|ψ(p2)〉, (4.2)

cf. Fig.4.1.

⊗

p1 p2

p3

Figure 4.1: General form of the Green’s functions to determine the operator anomalous dimensions.

As mentioned above, we will consider two kinematic regions, namely forward and off-forward
kinematics. In forward kinematics, relevant for DIS, we identify the momenta of the external
quarks such that there is no net momentum flow through the operator vertex. That is, in the forward
limit we consider the Green’s functions

〈ψ(p1)|ONS
µ1...µN

(0)|ψ(−p1)〉. (4.3)

In off-forward kinematics, there should be a non-zero momentum flow through the operator vertex.
A priori, this requires us to consider the general three-point function depicted in Fig.4.1. However,
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we can simplify the calculation by nullifying one of the external momenta. This way, the three-
point functions effectively reduce to two-point ones1. The Green’s functions are then of the form

〈ψ(p)|ONS
µ1...µN

(−p)|ψ(0)〉. (4.4)

In practical calculations, we contract the operators ONS
µ1...µN

with a tensor constructed out of lightlike
vectors

ON ≡ ∆
µ1 . . .∆µN ONS

µ1...µN
(4.5)

with ∆2 = 0. This has two advantages. The first is that it gets rid of all open Lorentz indices, which
simplifies the calculation of the loop integrals. The second is that this contraction automatically
projects out the leading-twist contributions. In this notation, the conserved vector current is repre-
sented by O1.

The calculation of the Green’s functions in Eqs.(4.3) and (4.4) is completely automated, and
follows a well-established workflow. First, the Feynman diagrams are generated using QGRAF [105].
QGRAF allows for the generation of topologies based on a given list of propagators and interaction
vertices. The propagators and vertices we use are the standard QCD ones, cf. Section 1.1.2, with
the addition of the relevant operator vertices. It should be noted that, while we deal exclusively
with quark operators, the operators can still have gluons attached to them. These come from the
covariant derivatives inside the operators and are necessarily connected to internal vertices. From
the perturbative expansion of the operators it is easy to see that, at the L-loop level, operator ver-
tices with at most L gluons have to be included. For example, at one-loop, we need to include two
operator vertices, cf. Fig.4.2.

Figure 4.2: Operator vertices appearing at one loop, along with their Feynman rules [106]. All momenta
are taken to be incoming and q = ∑i pi.

In QGRAF, the operator vertices can be included by introducing an associated field, with the
requirement that this ‘operator field’ cannot appear as an internal line. Since in both kinematic
regimes under consideration the external quarks are off-shell, we in principle also have to include

1Two-point functions are easier to deal with than three-point ones, as they lead to simpler loop integrals. However,
working with the more general three-point functions would mean having access to the full result and its Lorentz
structure, which makes it easier to check completeness of the operator basis in the case of mixing.
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diagrams with self-energy corrections on the external legs. However, it is possible to discard such
diagrams and instead multiply the result with the quark wave function renormalization factor Z2
during renormalization. The advantage of this is that the remaining Feynman diagrams are one-
particle-irreducible.

When the diagrams are generated, the next step is to actually calculate them. There are many
packages and programs available for such calculations; we will employ the FORM [107, 108] pro-
gram FORCER [109]. FORCER allows for the efficient calculation of massless propagator-type
diagrams up to the four-loop level. It does this by reducing the loop integrals to a combina-
tion of master integrals within the framework of integration by parts (IBP). One of the reasons
FORCER is efficient is that it automatically tries to reduce topologies to simpler ones, like one-
loop integrals. Efficient solutions are known for these, and hence it is not necessary to explicitly
solve IBP equations. Another important property of FORCER is that it, like its three-loop cousin
MINCER [110, 111], works in the so-called G-scheme [112]. To explain this, we note that in both
programs the general solution of one-loop massless propagator-type diagrams is written in terms
of the G-function [113], which is defined in terms of the Euler-Gamma function as

G(α,β,n,σ)∼ Γ(α+β−σ−D/2)Γ(D/2−α+n−σ)Γ(D/2−β+σ)

Γ(α)Γ(β)Γ(D−α−β+n)
. (4.6)

Here D = 4−2ε denotes the spacetime dimension in dimensional regularization. In loop calcula-
tions, it is often convenient to then factor out a power of εG(1,1,0,0) per momentum integration.
In turn, this factor can be set to one by redefining the surface of the D-dimensional unit sphere. This
defines the G-scheme. At the end of the calculation, the results should then be transformed to a
renormalization scheme of choice. For us this will be the MS-scheme. Before we can use FORCER,
however, we first have to properly massage the output we get from QGRAF. This is done in a FORM
program called convdia, whose original form is due to P. Nogueira and J. Vermaseren [114, 115].
Its main duties can be summarized as follows.

• Identify the topologies of the diagrams and discard tadpoles2.

• When considering higher-order corrections, a large number of diagrams is obtained by in-
serting lower-loop propagators into a diagram. For example, at the two-loop level, diagrams
of the following type appear

Instead of calculating such diagrams from scratch, one can just insert the gluon propagator
to the appropriate order. This has the form of the standard gluon propagator, with the mo-

2These lead to scaleless integrals and hence vanish in dimensional regularization.
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mentum in the denominator now being ε-dependent (i.e. the expression is proportional to
k−2ε). The recognition of this type of diagram is done in convdia.

• Determination of the color factor associated to each diagram. This is based on the algorithms
presented in [116].

Once all this is done, convdia collects diagrams with the same topology and color factor into
so-called meta-diagrams. This is done for computational efficiency. More details on the use of
FORM for the calculation of Feynman diagrams can be found in [115]. The handling of these
meta-diagrams is performed with the database program MINOS [117], which creates a database of
diagrams before the calculation and a database of computed integrals afterwards. The final step
of the process consists in substituting the Feynman rules and letting FORCER do its magic. We
perform all diagram calculations using a general covariant gauge ξ. While this does increase the
complexity of the computations, it also provides us with a cross-check, as the operator anomalous
dimensions should be gauge-independent.

In the discussion above, we explicitly assumed to be working in Mellin N-space, cf. Sec-
tion 1.1.4. In the leading-twist approximation, the Mellin moment N of the operators just corre-
sponds to their Lorentz spin. The results from the procedure above are then fixed moments of the
bare OME under consideration. In particular, this means that the operator anomalous dimensions
will also be written as a function of the Mellin moment N. Note that the corresponding variable in
momentum space would be the momentum fraction x carried by the struck parton. In the case of
off-forward kinematics, an additional parameter will be necessary. We will generically denote this
new parameter by k, and in N-space it counts the number of total derivatives acting on the operator.
A possible corresponding momentum variable is the skewedness, which gives a measure for the
momentum transfer to the target.

When the Feynman diagram computation is completed, we need to implement the renormaliza-
tion in order to render the matrix elements finite and to extract the anomalous dimensions. We will
employ the MS-renormalization scheme. First, the bare interaction strength and gauge parameter
have to be replaced by their renormalized versions, cf. Eqs.(1.80) and (1.81). Next, the operator
renormalization has to be implemented. This will be the topic of the remainder of this chapter.

It will be useful to have a running example throughout this chapter to illustrate the calculations
and concepts we introduce. The one-loop calculation provides a natural candidate to this end.
Hence, before moving on to the operator renormalization, let us briefly consider the calculation of
the one-loop matrix elements. The relevant Feynman diagrams are shown in Fig.4.3. In the case
of forward kinematics the result for the bare matrix element is

〈ψ(p1)|ON(0)|ψ(−p1)〉= 1+
asCF

ε

(
4S1(N)+

2
N +1

−4+ξ

)
+ . . . (4.7)

The dots represent finite terms and higher-order corrections. Note the appearance of the gauge
parameter ξ.
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Figure 4.3: One-loop Feynman diagrams. In the forward limit, p2 =−p1, and one should include the second
diagram with the gluon closing on the other quark line. In the off-forward limit we set p2 = 0. As explained
before, diagrams with self-energy corrections on the external lines are not included. The Feynman diagrams
were drawn using TIKZ-FEYNMAN [32].

In off-forward kinematics, with p2 = 0, we find

〈ψ(p1)|ON(−p1)|ψ(0)〉= 1+
asCF

ε

(
2S1(N)− 2

N +1
−2+ξ

)
+ . . . (4.8)

4.2 Operator renormalization I: Forward limit

In the forward limit, the operators simply renormalize multiplicatively

ON+1 = Z2ZN,N [ON+1]. (4.9)

Renormalized operators are written with square brackets. As explained above, we include the
quark wave function renormalization factor to account for the self-energy corrections on the off-
shell external lines. The derivation of the renormalization factors in terms of anomalous dimen-
sions and the QCD beta-function follows the same procedure as described in Chapter 1. Up to
order a3

s we find3

ZN,N = 1+
as

ε
γ
(0)
N,N +

a2
s

2ε

{
1
ε
(γ

(0)
N,N−β0)γ

(0)
N,N + γ

(1)
N,N

}

+
a3

s
6ε

{
1
ε2 (γ

(0)
N,N−β0)(γ

(0)
N,N−2β0)γ

(0)
N,N +

1
ε
(3γ

(0)
N,N−2β0)γ

(1)
N,N

− 2
ε

β1γ
(0)
N,N +2γ

(2)
N,N

}
.

(4.10)

3Comparing with Eq.(2.24), we have γNS(N) = γN−1,N−1.
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A special case of Eq.(4.9) occurs when N = 0,

O1 = Z2Z0,0[O1]. (4.11)

Since O1 is simply the conserved vector current, O1 = ψλα/∆ψ, it is finite to all orders in as, i.e.
Z0,0 = 1 and

O1 = Z2[O1]. (4.12)

In general, the application of the renormalization equation Eq.(4.9) to the one-loop bare OME in
Eq.(4.7) leads to

γ
(0)
N,N =CF

(
4S1(N)+

2
N +1

+
2

N +2
−3

)
. (4.13)

Note that the dependence on the gauge parameter ξ has dropped out, as expected. Beyond one-
loop order, quite a lot is known about these forward anomalous dimensions. Up to the three-loop
level, they are completely determined, see [118–121]. At four loops, there exist complete results
in the limit of large n f [122, 123] and some low fixed moments in full QCD [124–126]. Fixed
moments, up to N = 16, are also known for a general gauge theory SU(Nc) in the planar limit
(Nc→ ∞) [106]. Finally, even at the five-loop level there is partial information available concern-
ing the large-n f limit4 [122] and low fixed moments [127].

Because of this relatively large set of known moments in forward kinematics, some general
statements can be made about the anomalous dimensions at L loops. The basic building blocks of
the L-loop anomalous dimension are harmonic sums and denominators of weight up to w = 2L−1.
A more detailed analysis reveals that there is also a relation between the structure of the expression
and the color factor and powers of n f multiplying it. In particular, if we have some term pro-
portional to powers of CF and CA, the maximum weight of the multiplying factor will be 2L− 1.
However, for every factor of n f , the maximal weight reduces with one, down to weight L for the
leading-n f terms. The maximal weight also reduces in the presence of the Riemann-zeta function
ζn; to 2L− n− 1 in general and to L− n for the leading-n f terms. The reason for these sim-
plifications in the leading-n f limit is that, when considering a Feynman diagram expansion, the
leading-n f terms originate from those L-loop diagrams that have the maximal amount of one-loop
insertions.

As the anomalous dimension in Mellin space is a function of harmonic sums, the corresponding
splitting function in x-space, cf. Eq.(2.24), can be written in terms of harmonic polylogarithms
(HPLs). These are recursively defined as [128]

H0(x) = lnx, H±1(x) =∓ ln(1∓ x) (4.14)

Hm1...mw(x) =

{
1
w! lnw x if mi = 0∫ x
0 dz fm1(z)Hm2...mw(z) otherwise

(4.15)

f0(x) =
1
x
, f±1(x) =

1
1∓ x

. (4.16)

4In fact, [122] presents the all-order result for the anomalous dimensions in the large-n f limit.
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Figure 4.4: The one-loop splitting function on a normal scale and on a logarithmic one. We have introduced
a normalization of 1

4π
.

For example at one-loop order, the splitting function is given by

P(0)(x) = 2CF

[
1+ x2

(1− x)+
+

3
2

δ(1− x)

]
. (4.17)

The plus-prescription for some test function f (x) is defined as

∫ 1

0
dx

f (x)
(1− x)+

≡
∫ 1

0
dx

f (x)− f (1)
1− x

. (4.18)

It cancels the divergence at x = 1 if f (1) is sufficiently smooth. This x = 1 divergence of the
splitting function is associated to soft gluon emissions. The x-space behaviour of the splitting
function is depicted in Fig.4.4.

4.3 Operator renormalization II: Off-forward limit

We now discuss the operator renormalization for off-forward kinematics. As mentioned before,
this allows for the possibility of mixing with total derivative operators. A consequence of this
mixing is that now we have to consider anomalous dimension matrices. Hence, before we can
discuss the actual renormalization, we first have to choose an appropriate basis for the additional
operators. Several options exist in the literature, and we will discuss three of them in some detail.
The first, which is predominantly used in calculations that involve conformal symmetry [16, 19,
87], is based on an expansion of the operators in terms of Gegenbauer polynomials. The other two
bases select the operators based on the number of (total) derivatives, and are commonly used to
connect continuum quantities to lattice ones for non-perturbative studies, see e.g. [25, 72].
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4.3.1 Operator bases
The Gegenbauer basis

We start our discussion by introducing renormalized non-local light-ray operators [O]. These act
as generating functions for local operators as [16]

[O](x;z1,z2) = ∑
m,k

zm
1 zk

2
m!k!

[ψ(x)( ~D ·∆)m/∆(∆ ·~D)k
ψ(x)]. (4.19)

Here, ∆ is an arbitrary light-like vector. For simplicity, the x-dependence will be omitted in the
following, writing O(z1,z2) ≡ O(0;z1,z2). The evolution of these light-ray operators under RG-
flow can be written as (

µ2
∂µ2 +β(as)∂as +H (as)

)
[O](z1,z2) = 0 (4.20)

with µ the renormalization scale and H (as) the so-called evolution operator. This is an integral
operator, which acts on the light-cone coordinates of the fields [129]

H (as)[O](z1,z2) =
∫ 1

0
dα

∫ 1

0
dβ h(α,β)[O](zα

12,z
β

21) (4.21)

with zα
12 ≡ z1(1−α)+ z2α. h(α,β) represents the evolution kernel, the moments of which corre-

spond to the anomalous dimensions of the local operators in Eq.(4.19),

γN,N =
∫ 1

0
dα

∫ 1

0
dβ(1−α−β)N−1h(α,β). (4.22)

N represents the total number of covariant derivatives appearing in the operator.

The non-local light-ray operators in Eq.(4.19) can be expanded in a basis of local operators in
terms of the Gegenbauer polynomials, see e.g. [19, 87]

OG
N,k = (∆ ·∂)k

ψ(x)/∆C3/2
N

(
~D ·∆−∆ ·~D
~∂ ·∆+∆ ·~∂

)
ψ(x). (4.23)

Here, k ≥ N is the total number of derivatives, and we use the superscript G to emphasize that
the operators belong to the Gegenbauer basis. Expanding the Gegenbauer polynomial with the
differential operators then gives, cf. Eq.(3.21)

(∂z1 +∂z2)
kC3/2

N

(
∂z1−∂z2

∂z1 +∂z2

)
=

1
2N!

N

∑
l=0

(−1)l
(

N
l

)
(N + l +2)!
(l +1)!

k−l

∑
j=0

(
k− l

j

)
(∂z1)

k−l− j(∂z2)
l+ j

(4.24)

with k ≥ N, such that the local operators become

OG
N,k =

1
2N!

N

∑
l=0

(−1)l
(

N
l

)
(N + l +2)!
(l +1)!

k−l

∑
j=0

(
k− l

j

)
ψ(x)/∆( ~D ·∆)k−l− j(∆ ·~D)l+ j

ψ(x). (4.25)

75



The evolution equation for the renormalized operators [OG
N,k] is

(
µ2

∂µ2 +β(as)∂as

)
[OG

N,k] =
N

∑
j=0

γ
G
N, j[O

G
j,k]. (4.26)

The mixing of the operators manifests itself in the appearance of the sum on the right-hand side.
The mixing matrix5, denoted by γ̂N+1, is triangular in the Gegenbauer basis, γ

G
N, j = 0 if j > N.

Furthermore, its diagonal elements correspond to the forward anomalous dimensions, γN,N . Note
that γN,N do not depend on the chosen basis for total derivative operators. Hence we can simply
write

γ
B
N,N ≡ γN,N (4.27)

in any basis for derivative operators B . The Gegenbauer mixing matrix is currently known com-
pletely up to the three-loop level [16].

The total derivative basis

Another approach is to identify the operators by counting powers of derivatives. To this end we
write

OD
p,q,r = (∆ ·∂)p

{
(∆ ·D)q

ψ /∆(∆ ·D)r
ψ

}
, (4.28)

see e.g. [130, 131]. Here we have already selected the leading-twist contributions by contracting
all Lorentz indices with light-like ∆. The indices p, q and r count the powers of the respective
derivatives, and the superscript D denotes that the operators are written in the total derivative
basis. Because of the chiral limit, the partial derivatives act as

OD
p,q,r = OD

p−1,q+1,r +OD
p−1,q,r+1. (4.29)

This defines a recursion for the bare operators, which is solved by

OD
p,q,r =

p

∑
i=0

(
p
i

)
OD

0,p+q−i,r+i. (4.30)

Another consequence of the chiral limit is that left and right derivative operators renormalize with
the same renormalization constants

OD
k,0,N =

N

∑
j=0

ZD
N,N− j[Ok+ j,0,N− j],

OD
k,N,0 =

N

∑
j=0

ZD
N,N− j[Ok+ j,N− j,0].

(4.31)

Note that these statements do not hold beyond the chiral limit, as in that case left- and right-handed
fermions obey different equations of motion. This would lead to corrections proportional to the

5We denote the elements of the ADM for spin-(N +1) operators as γN,k and the matrix itself as γ̂N+1.
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quark masses. As usual, the operator anomalous dimensions are derived from the renormalization
factors as

γ
D
N,k =−(Z

D
N, j)

−1
d ZD

j,k

dlnµ2 . (4.32)

The mixing matrix is also triangular in the total derivative basis (γD
N,k = 0 if k > N), with the di-

agonal elements being the standard forward anomalous dimensions. When considering the actual
renormalization in the following sections, we will mainly use this basis for the derivative operators.

It is possible to relate the operator bases introduced so far. For this, we first note that Eq.(4.19)
can be written as

O(z1,z2) = ∑
m,k

zm
1 zk

2
m!k!

OD
0,m,k. (4.33)

Using Eqs.(4.23), (4.24) and (4.30) this becomes

OG
N,k =

1
2N!

N

∑
l=0

(−1)l
(

N
l

)
(N + l +2)!
(l +1)!

OD
k−l,0,l. (4.34)

The evolution equation for the operators [OG
N,k], Eq.(4.26), then leads to a relation between the

mixing matrices in the two bases

N

∑
j=0

γ
G
N, j[O

G
j,N ] =

1
2N!

N

∑
l=0

(−1)l
(

N
l

)
(N + l +2)!
(l +1)!

l

∑
j=0

γ
D
l,l− j[O

D
N−l+ j,0,l− j], (4.35)

where we have also used the renormalization equation Eq.(4.31). Using Eq.(4.34) for renormalized
operators this becomes

N

∑
j=0

γ
G
N, j

(
1

2 j!

j

∑
l=0

(−1)l
(

j
l

)
( j+ l +2)!
(l +1)!

[OD
N−l,0,l]

)

=
1

2N!

N

∑
j=0

(−1) j
(

N
j

)
(N + j+2)!
( j+1)!

j

∑
l=0

γ
D
j,l[O

D
N−l,0,l].

(4.36)

Upon comparing the coefficients of the operators [OD
N−l,0,l], we finally find

N

∑
j=0

(−1) j ( j+2)!
j!

γ
G
N, j =

1
N!

N

∑
j=0

(−1) j
(

N
j

)
(N + j+2)!
( j+1)!

j

∑
l=0

γ
D
j,l. (4.37)

To get the expression on the left-hand side, we evaluated the sum

j

∑
l=0

(−1)l
(

j
l

)
( j+ l +2)!
(l +1)!

= (−1) j( j+2)! . (4.38)

Note that this is not a relation between specific elements of the ADMs in both bases. E.g., it is
not enough to know γ

G
2,0 to determine γD

2,0. It can, however, be used as a consistency condition
and cross-check. By the first point we mean that, if the ADM is known in one basis, we can use
Eq.(4.37) to constrain its functional form in the other basis. This type of consistency check allows
us to connect previously unrelated results in the literature.
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The Geyer basis

The third and final basis for derivative operators we discuss is due to B. Geyer and friends [23, 24].
The local operators are defined as

OGeyer
N,k ≡ ψ/∆( ~D+~D)N−k( ~D−~D)k

ψ (4.39)

with N and k odd. The contraction with an arbitrary light-like vector ∆ is understood, i.e.

D≡ ∆
µDµ (4.40)

with ∆2 = 0.

The ADM in this basis shares the same properties as those in the previous two bases, i.e. it
is triangular and its diagonal elements are the forward anomalous dimensions. As we did for the
Gegenbauer basis, we want to relate the operators, and correspondingly their anomalous dimen-
sions, in the Geyer basis to those in the total derivative one. To accomplish this we first use6

OD
0,N−k,k = (−1)k

k

∑
j=0

(−1) j
(

k
j

)
OD

j,N− j,0, (4.41)

which can be derived in the same way as Eq. (4.30). It is then straightforward to see that, for k = 0,
the operators defined above correspond to total derivatives of the vector current, i.e.

OGeyer
N,0 = OD

N,0,0. (4.42)

For arbitrary k-values, we can apply the binomial theorem (twice) together with Eq.(4.41). This
leads to the following relation between the bare operators

OGeyer
N,k =

N−k

∑
i=0

k

∑
j=0

(−1)i
(

N− k
i

)(
k
j

) i+ j

∑
l=0

(−1)l
(

i+ j
l

)
OD

l,N−l,0. (4.43)

The corresponding relation for the renormalized operators reads

[OGeyer
N,k ] =

N−k

∑
i=0

k

∑
j=0

(−1)i
(

N− k
i

)(
k
j

) i+ j

∑
l=0

(−1)l
(

i+ j
l

) N−l

∑
m=0

(−1)m
γ

D
N−l,m

×
m

∑
n=0

(−1)n
(

m
n

)
[OD

N−m+n,0,m−n].

(4.44)

In the following, we focus on diagonal operators OGeyer
N,N , the evolution equation for which is

µ2 d
dµ2 OGeyer

N,N =
N

∑
k=0

1− (−1)k

2
γ

Geyer
N,k [OGeyer

k,N ] (4.45)

6Note that there is a factor of (−1) j missing in Eq.(2.25) in [132].
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with N odd. Furthermore, specializing to the one-loop case7 we find, using Eq. (4.44) for k = N,

γ
(0)
N,N +

N−1

∑
j=0

1− (−1) j

2
γ

Geyer,(0)
N, j = (−1)N−1

N

∑
l=0

2l(−1)l
(

N
l

)
γ

D,(0)
l,0 (4.46)

for odd N. A similar relation can be derived for even values of N, corresponding to the anomalous
dimensions of odd-spin operators,

γ
(0)
N,N +

N−1

∑
j=0

1+(−1) j

2
γ

Geyer,(0)
N, j = (−1)N

N

∑
l=0

2l(−1)l
(

N
l

)
γ

D,(0)
l,0 . (4.47)

These are the sought-after relations between the Geyer and total derivative bases.

4.3.2 Renormalization in the total derivative basis
Having discussed some possible bases for total derivative operators, we are now in a position to
actually implement the operator renormalization in off-forward kinematics. This is important for
operator analyses of hard exclusive processes. The corresponding anomalous dimensions charac-
terize the scale-dependence of the generalized parton distributions. Throughout this section, we
will employ the total derivative basis.

The renormalization of the spin-(N +1) operator obeys

OD
N+1 = Z2

(
ZN,N [OD

N+1]+ZD
N,N−1[∂OD

N ]+ · · ·+ZD
N,0[∂

NOD
1 ]
)

(4.48)

such that, for the full set of spin-(N +1) operators, we now find a matrix equation
OD

N+1
∂OD

N
...

∂NOD
1

 = Z2


ZN,N ZD

N,N−1 ... ZD
N,0

0 ZN−1,N−1 ... ZD
N−1,0

...
... ...

...
0 0 ... 1




[OD
N+1]

[∂OD
N ]

...
[∂NOD

1 ]

 . (4.49)

Note that the n× n bottom-right submatrix is equivalent to the complete mixing matrix for the
renormalization of spin-n operators. For example, the bottom-right 2×2 submatrix is(

Z1,1 ZD
1,0

0 1

)
(4.50)

which exactly corresponds to the mixing matrix for the spin-two operators {OD
2 ,∂OD

1 }.

The derivation of the renormalization factors in terms of the RG-parameters is similar to the
forward case, with some important differences. As before, the basis for this is the formal definition
of the anomalous dimensions in terms of the Z-factors, cf. Eq.(4.32). However, this is now a matrix
equation, such that the calculation requires us to determine the inverse matrix of renormalization

7The higher-order anomalous dimensions in the Geyer basis have not been calculated.
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factors. It is helpful to consider a simple example before tackling the general problem. As such,
we focus on the renormalization of the spin-two operators,(

OD
2

∂OD
1

)
=

(
Z1,1 ZD

1,0
0 1

)(
[OD

2 ]

[∂OD
1 ]

)
. (4.51)

The equation to solve is then

β

Z1,1

(
1 −ZD

1,0
0 Z1,1

)(
∂Z1,1
∂as

∂ZD
1,0

∂as
0 0

)
=

(
γ1,1 γD

1,0
0 0

)
. (4.52)

Substituting the relevant expansions, up to O(a3
s ), it is straightforward to solve this matrix equation.

The results are

Z1,1 =1+
as

ε
γ
(0)
1,1 +

a2
s

2ε

[1
ε
(γ

(0)
1,1−β0)γ

(0)
1,1 + γ

(1)
1,1

]
+

a3
s

3ε

[ 1
2ε2 [2β

2
0γ

(0)
1,1

−3β0(γ
(0)
1,1)

2 +(γ
(0)
1,1)

3]+
1
2ε

[−2β1γ
(0)
1,1−2β0γ

(1)
1,1 +3γ

(0)
1,1γ

(1)
1,1]+ γ

(2)
1,1

]
, (4.53)

ZD
1,0 =

as

ε
γ

D,(0)
1,0 +

a2
s

2ε

[1
ε
(γ

(0)
1,1−β0)γ

D,(0)
1,0 + γ

D,(1)
1,0

]
+

a3
s

3ε

[ 1
2ε2 [2β

2
0γ

D,(0)
1,0

−3β0γ
D,(0)
1,0 γ

(0)
1,1 +(γ

(0)
1,1)

2
γ

D,(0)
1,0 ]+

1
2ε

[−2β1γ
D,(0)
1,0 −2β0γ

D,(1)
1,0

+2γ
(0)
1,1γ

D,(1)
1,0 + γ

(1)
1,1γ

D,(0)
1,0 ]+ γ

D,(2)
1,0

]
. (4.54)

As expected, Eq.(4.53) agrees with the previously derived result for the Z-factors in the forward
limit, cf. Eq.(4.10). One can relatively easily repeat this exercise for higher moments. The only
difference is that the matrix equations become bigger and more tedious to solve. In general we
find, up to O(a3

s ),

ZD
N,k =

as

ε
γ

D,(0)
N,k +

a2
s

2ε

{
(γN,N + γ

(0)
k,k −β0)γ

D,(0)
N,k +

1
ε

N−1

∑
i=k+1

γ
D,(0)
N,i γ

D,(0)
i,k + γ

D,(1)
N,k

}

+
a3

s
6ε

{
2
ε2 β

2
0γ

D,(0)
N,k −

3
ε2 β0

(
γ

D,(0)
N,k (γ

(0)
N,N + γ

(0)
k,k)+

N−1

∑
i=k+1

γ
D,(0)
N,i γ

D,(0)
i,k

)

+
1
ε2

N

∑
i=k

i

∑
j=1

γ
D,(0)
N,i γ

D,(0)
i, j γ

D,(0)
j,k − 2

ε
β1γ

D,(0)
N,k −

2
ε

β0γ
D,(1)
N,k

+
1
ε

N

∑
i=1

(2γ
D,(0)
N,i γ

D,(1)
i,k + γ

D,(1)
N,i γ

D,(0)
i,k )+2γ

D,(2)
N,k

}
(4.55)

with k 6= N. The operator mixing manifests itself in the appearance of sums of anomalous dimen-
sions, starting at O(a2

s ).

Let us now take a look at what happens at one-loop order. Recall that in Section 4.1 we
calculated the bare OME to be

〈ψ(p1)|ON(−p1)|ψ(0)〉= 1+
asCF

ε

(
2S1(N)− 2

N +1
−2+ξ

)
+ . . . . (4.56)
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In the forward limit, this was enough to fix the one-loop anomalous dimension for all values of
N, cf. Eq.(4.13). This is not the case however in the off-forward limit because of mixing. For
simplicity, we start with the spin-two operators, cf. Eq.(4.51). The singular part of the one-loop
OME is

asCF

ε

(
1
3
+ξ

)
. (4.57)

According to Eq.(4.48), this has to match

Z2

(
Z1,1[OD

2 ]+ZD
1,0[∂OD

1 ]
)
. (4.58)

At the one-loop level, the renormalized operators can just be replaced by one, [O] = 1. Hence we
find

asCF

ε

(
1
3
+ξ

)
= γ

(0)
2 + γ

(0)
1,1 + γ

D,(0)
1,0 . (4.59)

With γ
(0)
2 =CF(ξ−1) and γ

(0)
1,1 = 8/3CF this leads to

γ
D,(0)
1,0 =−4

3
CF . (4.60)

A similar calculation for the spin-three operators yields

γ
D,(0)
2,1 + γ

D,(0)
2,0 =−2CF . (4.61)

So, we do not seem to have enough information to disentangle γ
D,(0)
2,1 from γ

D,(0)
2,0 . Obviously the

situation gets worse for higher-spin operators. We will see in the next section that this issue can be
resolved because of relations between the anomalous dimensions in the total derivative basis.

4.3.3 Constraints on the anomalous dimensions

As we saw in the previous section, a naive implementation of the renormalization in off-forward
kinematics is not enough to disentangle the anomalous dimensions. In this section, we discuss
certain relations that exist between the operators in the total derivative basis, which lead to cor-
responding relations between the anomalous dimensions. This will culminate in an algorithm to
construct the full (N,k) dependence of the anomalous dimensions, with the required input being
the bare matrix elements of the operators without total derivatives and the forward anomalous di-
mensions. As before, we will use the one-loop calculations as a running example throughout this
section.

Successive application of Eq.(4.29) to OD
N,0,0 allows us to derive the following relation between

bare operators

OD
0,N,0− (−1)N

N

∑
j=0

(−1) j
(

N
j

)
OD

j,0,N− j = 0. (4.62)
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Upon using the renormalization equations, Eq.(4.31), this leads to a connection between the renor-
malized operators

N

∑
k=0

N

∑
j=k

[
(−1)k

(
j
k

)
ZD

N, j− (−1) j
(

N
j

)
ZD

j,k

]
[OD

N−k,0,k] = 0. (4.63)

Now, since the coefficient of [OD
N−k,0,k] has to vanish for each value of k, this is equivalent to a

relation between the renormalization constants

∀k :
N

∑
j=k

[
(−1)k

(
j
k

)
ZD

N, j− (−1) j
(

N
j

)
ZD

j,k

]
= 0 (4.64)

which in turn implies a relation between the anomalous dimensions

∀k :
N

∑
j=k

[
(−1)k

(
j
k

)
γ

D
N, j− (−1) j

(
N
j

)
γ

D
j,k

]
= 0. (4.65)

This is a general statement, valid to all orders in as.

We can now discover useful dependencies between the anomalous dimensions by choosing
specific values for k in Eq.(4.65). Consider for example k = N − 1. In the mixing matrix, this
corresponds to the next-to-diagonal (NTD) elements {γD

1,0,γ
D
2,1, . . . ,γ

D
N,N−1}. From our general

relation, it follows that these NTD elements can be directly related to the forward anomalous
dimensions8

γ
D
N,N−1 =

N
2
(γN−1,N−1− γN,N). (4.66)

At one-loop order, using the expression for the forward anomalous dimensions Eq.(4.13), we find

γ
D,(0)
N,N−1 = 2CF

(
1

N +2
−1

)
. (4.67)

This reproduces the value for γ
D,(0)
1,0 we calculated in the previous section. For the spin-three sector,

it gives

γ
D,(0)
2,1 =−3

2
CF . (4.68)

Combined with the condition we found for the renormalization of spin-three operators at one loop,
Eq.(4.61), this leads to

γ
D,(0)
2,0 =−1

2
CF . (4.69)

Hence with the inclusion of the relation for the NTD elements, we are able to fix the one-loop
spin-three mixing matrix completely. It is not enough however to fix the matrices for higher spins.
For example, at spin-four we end up with

γ
D,(0)
3,1 + γ

D,(0)
3,0 =−13

15
CF . (4.70)

8This relation was pointed out to us for low-N operators by J. Gracey in a private correspondence.
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Another interesting choice for k in Eq.(4.65) is k = 0,

N

∑
j=0

[
γ

D
N, j− (−1) j

(
N
j

)
γ

D
j,0

]
= 0. (4.71)

With a bit of algebra we can rewrite this as

γ
D
N,0 = (−1)N

[ N

∑
i=0

γ
D
N,i−

N−1

∑
j=1

(−1) j
(

N
j

)
γ

D
j,0

]
. (4.72)

Hence, for moment N, we can write γD
N,0 in terms of γD

M,0 (M < N) and the sum of the elements in
the N-th row of the mixing matrix. Now, from the renormalization equation, Eq.(4.48), it can be
seen that this sum is related to the 1/ε-pole of the bare9 matrix element of OD

N+1. We will denote
this by B(N +1). Hence we have

γ
D
N,0 = (−1)N

[
B(N +1)−

N−1

∑
j=1

(−1) j
(

N
j

)
γ

D
j,0

]
. (4.73)

Using now that the binomial transform acts as a conjugation, cf. Section 3.2, we can rewrite this
as

γ
D
N,0 =

N

∑
i=0

(−1)i
(

N
i

)
B(i+1), (4.74)

This relation implies that, whenever we are able to calculate the bare matrix elements of ON+1
(which does not have total derivatives acting on it), we can use these to recursively determine the
last column of the mixing matrix. We again emphasize that this is an all-order statement. Although
one might expect similar relations to hold for different values of k, this unfortunately is not the case,
since for k 6= 0 the corresponding expression does not involve the sum of the anomalous dimensions
by itself, but instead a weighted version of this. For example, the k = 1 relation involves

N

∑
i=0

iγD
N,i, (4.75)

which we cannot relate to the bare OMEs.

Let us again apply our findings to the one-loop case. At this order, the singular part of the bare
matrix elements corresponds to

N

∑
i=0

γ
D,(0)
N,i + γ

(0)
2 = B(0)(N +1)+ γ

(0)
2 . (4.76)

Comparing with Eq.(4.56) then leads to

B(0)(N +1) =CF

(
2S1(N +1)− 2

N +2
−1
)
. (4.77)

9But the bare coupling constant and gauge parameter should already be replaced by their renormalized versions.
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Hence, according to Eq.(4.74), the last column of the mixing matrix is determined by

γ
D,(0)
N,0 =CF

N

∑
i=0

(−1)i
(

N
i

)(
2S1(i+1)− 2

i+2
−1
)
. (4.78)

These sums are easily evaluated using the results of Chapter 3, and we find

γ
D,(0)
N,0 = 2CF

(
1

N +2
− 1

N

)
. (4.79)

This agrees with the previously found expressions in the spin-two and spin-three sectors. Further-
more for the spin-four sector it implies

γ
D,(0)
3,0 =− 4

15
CF (4.80)

and hence, cf. Eq.(4.70),

γ
D,(0)
3,1 =−3

5
CF . (4.81)

So, with the relations we derived for the elements in the NTD and the last column, we can com-
pletely fix the one-loop mixing matrix of spin-four operators. Of course, this statement is also valid
beyond one-loop. Starting from the spin-five sector, there is not enough information to disentangle
the anomalous dimensions.

Before continuing with our discussion, we want to mention that Eq.(4.71) can be used to derive
an alternative relation between the anomalous dimensions in the Gegenbauer and total derivative
bases. For, if we substitute Eq.(4.71) into Eq.(4.37) we obtain

N

∑
j=0

(−1) j ( j+2)!
j!

γ
G
N, j =

1
N!

N

∑
j=0

(−1) j
(

N
j

)
(N + j+2)!
( j+1)!

j

∑
l=0

(−1)l
(

j
l

)
γ

D
l,0. (4.82)

Let us now have a closer look at the general consequences of Eq.(4.74). Because the binomial
transform works as a conjugation, we have

N

∑
j=0

(−1) j
(

N
j

)
γ

D
j,0 =

N

∑
j=0

(−1) j
(

N
j

) j

∑
i=0

(−1)i
(

j
i

)
B(i+1) = B(N +1) (4.83)

and hence

B(N +1) =
N

∑
j=0

(−1) j
(

N
j

)
γ

D
j,0. (4.84)

This is just Eq.(4.65) for k = 0, see Eq.(4.71). Using this conjugation, we can repeat what we did
for k = 0 in the previous section for arbitrary k. The result is

γ
D
N,k =

N

∑
l=k

(−1)l
(

N
l

) l

∑
j=k

(−1)k
(

j
k

)
γ

D
l, j. (4.85)

84



It will be useful to split off the diagonal piece of the mixing matrix, since this is known (at least in
certain limits as discussed above)

γ
D
N,k =

(
N
k

)N−k

∑
j=0

(−1) j
(

N− k
j

)
γ j+k, j+k

+
N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
γ

D
l, j.

(4.86)

This is a very powerful relation. The only assumption made in its derivation was that we work in
the chiral limit. In this limit, the relation is a direct consequence of the renormalization structure of
the operators. This means that it can be used as an order-independent consistency check. Namely,
if the mixing matrix in the total derivative basis has been obtained using some different method, its
elements have to obey Eq.(4.86). Alternatively, it can be used to construct the full mixing matrix.
To explicitly see this, let us put all the terms on the same side

γ
D
N,k−

(
N
k

)N−k

∑
j=0

(−1) j
(

N− k
j

)
γ j+k, j+k−

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
γ

D
l, j = 0. (4.87)

Now, assuming we know the forward anomalous dimensions, we can, at least in principle, calculate
the first sum. Then, based on the structure of the result, we can construct an Ansatz for the off-
diagonal elements. The self-consistency of this Ansatz can then be checked by substituting it back
into Eq.(4.87). The next-to-diagonal and the last column elements serve as boundary conditions
in this procedure. This leads to the following 4-step algorithm for the determination of the mixing
matrix:

1. Starting from the diagonal elements and the bare OMEs in Eq.(4.56), determine the all-N
expressions for the elements in the NTD and last column of the mixing matrix.

2. Next, calculate the sum (
N
k

)N−k

∑
j=0

(−1) j
(

N− k
j

)
γ j+k, j+k. (4.88)

Based on the structure of the result, we can construct an Ansatz for the off-diagonal elements.

3. Calculate the double sum

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
γ

D
l, j (4.89)

of the Ansatz and collect everything into Eq.(4.87). This leads to a system of equations in
the unknown coefficients of the Ansatz. The system is furthermore subject to the condition
that the final result for γD

N,k should reduce to the previously found expressions for k = N−1
and k = 0. This ensures uniqueness of the result.

4. If the system of equations can be solved consistently, we have found the final expression for
the elements of the mixing matrix. If not, there will be some remaining terms in Eq.(4.87).
We can then use the structure of these terms to adapt the Ansatz, leading us back to step 3.
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In the next chapters we will apply this algorithm to the calculation of the off-forward anomalous
dimensions of non-singlet quark operators.

So far we only considered flavor non-singlet Wilson operators, which appear in the OPEs of
DIS and DVCS. However, the concepts and methods introduced in this chapter do not actually
depend on the Dirac structure of the operators. That is, Eq.(4.87) is valid for the mixing of any
quark operator of the type

O = ψλ
α

ΓDµ1 . . .DµN ψ (4.90)

into total derivative operators. This will be illustrated in Chapter 6, where we will calculate the
mixing matrix for the transversity operator, for which Γ is identified with a commutator of two
Dirac matrices.
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Chapter 5

Anomalous dimensions of Wilson operators1

Introduction
We now apply the algorithm derived in the previous chapter to calculate the anomalous dimensions
of the non-singlet quark operators appearing in the OPE of DIS and DVCS. The anomalous dimen-
sions will be presented in the total derivative basis. When possible, these results will be connected
to results in the Gegenbauer and Geyer bases. For most of this chapter we work in the leading-n f
limit, n f → ∞, which introduces some simplifications in the structure of the mixing matrix. In this
limit, we calculate the mixing matrix up to the five-loop level. Beyond the leading-n f limit, we
present the two-loop mixing matrix in the leading-color limit. For the sake of explicitness, we will
always accompany the general expressions with the mixing matrix for spin-five operators. Finally,
we present fixed moments up to order a5

s in full QCD.

The calculations of the anomalous dimensions in off-forward kinematics have a long history.
In the Gegenbauer basis, the evolution kernel for the conformal calculation is known up to order
a3

s [16–20]. The main bottleneck in this type of calculations is the determination of the conformal
anomaly. For the total derivative basis, only low fixed moment results up to order a3

s were known
before the advent of the algorithm discussed in this text. These calculations were done in the MS-
scheme as well as in the regularization invariant (RI) scheme [25, 26]. The latter renormalization
scheme is well suited for direct comparisons with lattice results. Finally, in the Geyer basis, the
mixing matrix is known to order as [23, 24].

5.1 The leading-n f limit
Before discussing the results, we want to briefly comment on the leading-n f limit. As was dis-
cussed in Section 4.2, the L-loop forward anomalous dimensions contain harmonic sums and de-
nominators up to weight 2L− 1. This maximum weight reduces to L for the leading-n f terms.
Moreover, the leading-n f part of the anomalous dimensions will only contain positive-index har-
monic sums. Negative-index sums are generated when the set of Feynman diagrams to be consid-
ered also contains non-planar ones, i.e. diagrams with line crossings. However, as the leading-n f
limit only considers diagrams with a maximum number of one-loop insertions, such non-planar

1The results of this chapter were originally presented in [132].
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diagrams are absent. Because of the form of the conjugation relation, Eq.(4.87), and its connec-
tion to the forward anomalous dimensions, we expect these simplifications to also hold for the
off-diagonal elements of the ADM. This implies two simplifications for the application of our
algorithm:

1. the number of possible structures in the off-diagonal part decreases considerably compared
to the generic case,

2. in the absence of negative-index harmonic sums, the complexity of the sums we need to
evaluate in Eq.(4.87) is greatly reduced.

5.2 One-loop anomalous dimensions
Let us first apply the algorithm to the one-loop OMEs. The corresponding expressions for the
elements in the NTD and the last column have already been determined in the previous chapter,
cf. Eqs.(4.67) and (4.79). For step two of the algorithm, we need to calculate(

N
k

)N−k

∑
j=0

(−1) j
(

N− k
j

)
γ
(0)
j+k, j+k

=CF

(
N
k

)N−k

∑
j=0

(−1) j
(

N− k
j

){
4S1( j+ k)+

2
j+ k+2

+
2

j+ k+1
−3

}
. (5.1)

Using the expressions presented in Chapter 3 we find(
N
k

)N−k

∑
j=0

(−1) j
(

N− k
j

)
γ
(0)
j+k, j+k =CF

(
−2(k+1)

N +2
+

2(k+2)
N +1

− 4
N− k

)
. (5.2)

Based on this result, we can now posit an Ansatz for the off-diagonal part of the mixing matrix.
The simplest possibility is

γ
D,(0)
N,k =CF

(
a1

N +2
+

a2

N +1
+

a3

N− k

)
(5.3)

with ai ∈ Q. Next we calculate the double sum in Eq.(4.89) for this Ansatz, giving

1
CF

N

∑
j=k

(−1)k
(

j
k

) N

∑
l= j+1

(−1)l
(

N
l

)
γ

D,(0)
l, j =a1

[−2− k
N +1

+
2+ k
N +2

]
− a2

N +1
− a3

N− k
. (5.4)

Substituting into the conjugation relation, Eq.(4.87), leads to

( a1

N +2
+

a2

N +1
+

a3

N− k

)
=

(
−2(k+1)

N +2
+

2(k+2)
N +1

− 4
N− k

)
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+a1

[−2− k
N +1

+
2+ k
N +2

]
− a2

N +1
− a3

N− k
. (5.5)

Solving for the unknowns and matching to the NTD and last column finally yields2

γ
D,(0)
N,k =CF

(
2

N +2
− 2

N− k

)
. (5.6)

Hence the mixing matrix for the spin-five operators is of the following form

γ̂
D,(0)
N=5 = CF



91
15 −5

3 −2
3 −1

3 −1
6

0 157
30 −8

5 −3
5 − 4

15

0 0 25
6 −3

2 −1
2

0 0 0 8
3 −4

3

0 0 0 0 0


. (5.7)

This agrees with the fixed moments calculated in [25]. In the Gegenbauer basis, the one-loop
mixing matrix is simply diagonal [87, 133], i.e.

γ
G ,(0)
N,k = 0. (5.8)

This means that at one-loop, the operators do not mix and hence simply renormalize multiplica-
tively. The spin-five mixing matrix is then

γ̂
G ,(0)
N=5 = CF



91
15 0 0 0 0

0 157
30 0 0 0

0 0 25
6 0 0

0 0 0 8
3 0

0 0 0 0 0


. (5.9)

Combining this information with the expression in the total derivative basis, we have checked that
the consistency relation connecting both bases, cf. Eq.(4.82), holds. Finally, at the one-loop level,
we can also cross-check Eq.(5.6) with the corresponding expression in the Geyer basis. The result
in the Geyer basis is [23, 24]3

γ
G,(0)
N,k =−2CF

[
1

(N +1)(N +2)
+2

k+1
(N− k)(N +1)

]
. (5.10)

With our one-loop expression, the consistency relations for the Geyer basis, cf. Eqs.(4.46) and
(4.47), are obeyed. For completeness, we also quote the mixing matrix for spin-five operators in

2Here and in the following, it is understood that γN,k implies k 6= N.
3The expression presented here has an additional factor of -2 compared to [23, 24]. This is a consequence of

different conventions used in defining the anomalous dimensions.
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this basis

γ̂
G,(0)
N=5 = CF



91
15 −49

15 −19
15 −3

5 − 4
15

0 157
30 −31

10 −11
10 −13

30

0 0 25
6 −17

6 −5
6

0 0 0 8
3 −7

3

0 0 0 0 0


. (5.11)

5.3 Two-loop anomalous dimensions
Beyond order as in perturbation theory, also the mixing matrix in the Gegenbauer basis gets non-
trivial off-diagonal elements. The general expression is [16, 18]

γ̂
G(as) = G

{
[γ̂G(as), b̂]

(
1
2

γ̂
G(as)+β(as)

)
+[γ̂G(as), ŵ(as)]

}
. (5.12)

Here [·, ·] represents the usual matrix commutator. The quantity G is defined as

G{M̂}N,k =−
MN,k

a(N,k)
. (5.13)

Finally we have

a(N,k) =(N− k)(N + k+3), (5.14)
bN,k =−2kδN,k−2(2k+3)ϑN,k (5.15)

with ϑ the discrete step-function,

ϑN,k ≡

{
1 if N− k > 0 and even
0 else.

(5.16)

The appearance of the step-function is a consequence of the fact that only CP-even operators are
considered in the Gegenbauer basis. The matrix ŵ(as) is the so-called conformal anomaly, and can
be calculated perturbatively in the strong coupling

ŵ(as) = asŵ(0)+a2
s ŵ(1)+ . . . . (5.17)

It represents the fact that, for physical QCD, conformal symmetry is broken by quantum correc-
tions. If one is interested in the ADM at order aL

s , the conformal anomaly is only needed up to
order aL−1

s [21]. Currently its analytic expression in Mellin (N,k)-space is known up to order
a2

s [22].

At two-loop order, the general expression Eq.(5.12) reduces to [16]

γ
G ,(1)
N,k = −

γ
(0)
N,N− γ

(0)
k,k

a(N,k)

{
−2(2k+3)

(
β0 +

1
2

γ
(0)
k,k

)
ϑN,k +w(0)

N,k

}
(5.18)
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for the off-diagonal elements of the mixing matrix. Since we concentrate on the leading-n f con-
tributions, we only have to take into account the terms proportional to β0. The corresponding
spin-five mixing matrix is then

γ̂
G ,(1)
N=5 = −n fCF



7783
1350 0 133

135 0 13
15

0 13271
2700 0 11

9 0

0 0 415
108 0 5

3

0 0 0 64
27 0

0 0 0 0 0


. (5.19)

Let us now discuss the application of our algorithm in the total derivative basis. The leading-n f
piece of the two-loop forward anomalous dimension is

γ
(1)
N,N =

4
3

n fCF

[
1
4
+

11
3

( 1
N +1

)
−
( 1

N +1

)2
− 11

3

( 1
N +2

)
+
( 1

N +2

)2
− 10

3
S1(N +1)+2S2(N +1)

]
. (5.20)

Applying Eq.(4.66) leads to the following expression for the elements of the NTD

γ
D,(1)
N,N−1 =

4
3

n fCF

(
1

(N +2)2 −
25
6

1
N +2

+
2

N +1
− 1

2N
+

5
3

)
. (5.21)

According to the renormalization pattern of the quark operators, Eq.(4.48), the 1/ε-pole of the bare
matrix elements should correspond to

1
2

(
B(1)(N +1)+ γ

(1)
2

)
(5.22)

where we recall that

B(L)(N +1)≡
N

∑
i=0

γ
(L)
N,i. (5.23)

A calculation of the leading-n f Feynman diagrams gives

B(1)(N +1) =
2
3

S2(N +1)− 10
9

S1(N +1)− 2
3

1
(N +2)2 −

16
9

N +1
N +2

+2. (5.24)

Using Eq.(4.74) and the methods described in Chapter 3 we then find

γ
D,(1)
N,0 =

4
3

(
1

N +2
− 1

N +1

)
S1(N +2)+

4
3

1
N +1

S1(N +1)

− 4
3

1
N

S1(N)− 44
9

1
N +2

+
8
3

1
N +1

+
20
9

1
N
. (5.25)
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Next we calculate the sum of the diagonal elements, Eq.(4.88),(
N
k

)N−k

∑
j=0

(−1) j
(

N− k
j

)
γ
(1)
j+k, j+k

=n fCF

[
− 4

3
1

(N +2)2 (k+1)+
1

(N +1)2 (2+ k)+
4
3

1
N +2

(
14
3
+

11
3

k

+(k+1)[S1(k)−S1(N)]

)
− 4

3
1

N +1

(
13
9
+

11
9

k+(k+2)[S1(k)

−S1(N)]

)
+

8
3

1
N− k

(
5
3
+[S1(k)−S1(N)]

)]
.

(5.26)

Based on this result, we choose the following basis for the off-diagonal elements{
1

(N +2)2 ,
1

(N +1)2 ,
S1(N)

N +2
,

S1(k)
N +2

,
S1(N)

N +1
,

S1(k)
N +1

,
S1(N)

N− k
,

S1(k)
N− k

,

1
N +2

,
1

N +1
,

1
N− k

}
.

(5.27)

The corresponding double sums can be evaluated using SIGMA . Solving the system of equations
following from the conjugation relation then leads to the following expression for the two-loop
anomalous dimensions

(5.28)
γ

D,(1)
N,k =

4
3

n fCF

{(
S1(N)− S1(k)

)( 1
N + 2

− 1
N − k

)
+

5
3

1
N − k

+
2

N + 1
− 11

3
1

N + 2
+

1
(N + 2)2

}
.

We have tested the consistency of this expression with the Gegenbauer moments using Eq.(4.82).
Furthermore, we find agreement with the results for spin-two and -three operators presented in [25].
The spin-five ADM is

γ̂
D,(1)
N=5 = n fCF



−7783
1350

17
10

82
135

23
90

43
540

0 −13271
2700

362
225

13
25

106
675

0 0 −415
108

53
36

13
36

0 0 0 −64
27

32
27

0 0 0 0 0


. (5.29)

It is instructive to also express the Gegenbauer anomalous dimensions in terms of harmonic sums
and denominators. Such an expression can be easily found using our conjugation relation. As
we checked that our result in the total derivative basis is consistent with the Gegenbauer moments
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using Eq.(4.82), we can now use the same relation to write down the general (N,k) expression
in the Gegenbauer basis. The procedure is the following. First, we construct an Ansatz of the
appropriate weight. Then we can feed this Ansatz and the last column in the total derivative basis
to the consistency relation connecting both bases, Eq.(4.82). This fixes most, but not all, of the
unknown coefficients in the Ansatz. A unique expression is obtained by matching the result to a
low number of fixed moments, which can be calculated using Eq.(5.12). We find

(5.30)
γ

G ,(1)
N,k =

8
3

n fCF

a(N,k)
ϑN,k

{
− 2
(

S1(N)− S1(k)
)
(2k + 3)

− (2k + 3)
( 1

N + 1
+

1
N + 2

)
+ 4 +

1
k + 1

− 1
k + 2

}
.

5.4 Three-loop anomalous dimensions

The Gegenbauer anomalous dimensions are again determined by Eq.(5.12). Explicitly we have

γ̂
G ,(2) = G

{
[γ̂G ,(1), b̂]

(1
2

γ̂
G ,(0)+β0

)
+[γ̂G ,(1), ŵ(0)]+ [γ̂G ,(0), b̂]

(1
2

γ̂
G ,(1)+β1

)
+[γ̂G ,(0), ŵ(1)]

}
. (5.31)

As mentioned above, the three-loop Mellin space expression for the conformal anomaly is cur-
rently not known. Moreover, in the literature only implicit expressions like Eq.(5.31) are given.
The expansions presented in this work in terms of harmonic sums are new.

As before, in the leading-n f limit it suffices to take into account only the term proportional to
β0. In terms of harmonic sums we then find

γ
G ,(2)
N,k =

32
9

n2
fCF

a(N,k)
ϑN,k

{
−
(

S1(N)−S1(k)
)2

(2k+3)

+
(

S1(N)−S1(k)
)
(2k+3)

(5
3
− 1

N +1
− 1

N +2

)
+
(

S1(N)−S1(k)
)(

4+
1

k+1
− 1

k+2

)
+(2k+3)

(
− 1

6
1

N +1
− 1

2
1

(N +1)2

+
11
6

1
N +2

− 1
2

1
(N +2)2

)
− 10

3
+

2
N +1

+
1

N +1
1

k+1
− 5

6
1

k+1
− 1

2
1

(k+1)2

+
2

N +2
− 1

N +2
1

k+2
+

5
6

1
k+2

+
1
2

1
(k+2)2

}
. (5.32)
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For the spin-five operators this implies

γ̂
G ,(2)
N=5 = n2

fCF



−215621
121500 0 10339

12150 0 329
1350

0 −384277
243000 0 793

810 0

0 0 −2569
1944 0 59

54

0 0 0 −224
243 0

0 0 0 0 0


. (5.33)

Consider now the operators in the total derivative basis. The three-loop forward anomalous dimen-
sions are, in the leading-n f limit

γ
(2)
N,N =

8
9

n2
fCF

(
− 2

3
S1(N)− 10

3
S2(N)+2S3(N)+

1
(N +1)3

+
1
3

1
(N +1)2 −

14
3

1
N +1

+
1

(N +2)3 −
11
3

1
(N +2)2

+
4

N +2
+

17
8

)
.

(5.34)

Applying Eq.(4.66) then leads to

γ
D,(2)
N,N−1 =

8
9

n2
fCF

(
1

(N +2)3 −
1

2N2 +
2

(N +1)2 −
25
6

1
(N +2)2

+
11
6

1
N
− 19

3
1

N +1
+

35
6

1
N +2

+
1
3

)
.

(5.35)

Next we determine the last column of the mixing matrix. From the calculation of the bare matrix
elements and Eq.(4.74) we find

γ
(2)
N,0 =

8
9

n2
fCF

(
1

(N +2)3 +
S1(N +1)
(N +2)2 +

S1,1(N)

N +2
−

S1,1(N)

N

+
2S1(N +1)

N +1
+

1
(N +2)2 −

11
3

S1(N +2)
N +2

+
5
3

S1(N)

N
− 5

3
1

N +1
+

4
3

1
N +2

+
1
3

1
N

)
.

(5.36)

Using the remaining steps of our algorithm fixes the final form of the off-diagonal entries to be

(5.37)

γ
D,(2)
N,k =

4
9

n2
fCF

{(
S1(N)− S1(k)

)2( 1
N + 2

− 1
N − k

)
+ 2
(

S1(N)− S1(k)
)(5

3
1

N − k

+
2

N + 1
− 11

3
1

N + 2
+

1
(N + 2)2

)
+
(

S2(N)− S2(k)
)( 1

N + 2
− 1

N − k

)
+

2
3

1
N − k

− 26
3

1
N + 1

+
4

(N + 1)2 +
8

N + 2
− 22

3
1

(N + 2)2 +
2

(N + 2)3

}
.
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Hence for spin five we have

γ̂
D,(2)
N=5 = n2

fCF



−215621
121500

3131
8100

1312
6075

1181
8100

4841
48600

0 −384277
243000

3947
10125

734
3375

4411
30375

0 0 −2569
1944

259
648

151
648

0 0 0 −224
243

112
243

0 0 0 0 0


. (5.38)

It was checked that the three-loop expressions presented here obey the consistency relation in
Eq.(4.82). Additionally, the results in the total derivative basis agree with the analytical calculation
of the spin-two matrix in [25] and a numerical calculation of the spin-three one in [26].

5.5 Four-loop anomalous dimensions

We begin our discussion in the total derivative basis. Starting at this order in perturbation theory,
factors of the Riemann-zeta function start contributing, cf. Eq.(3.5). In particular, at order a4

s we
expect ζ3 to appear. Now, since the zeta-function carries its own weight, the remaining factor
multiplying it will be of lower weight. At four loops, the leading-n f term has wmax = 4, such
that the factor multiplying ζ3 in this approximation will only have wmax = 1. Hence, using our
algorithm the determination of such a term has the complexity of a one-loop calculation. We
quickly find

γ
D,(3)
N,k

∣∣∣∣
ζ3

=
32
27

n3
fCFζ3

(
1

N +2
− 1

N− k

)
(5.39)

and for the spin-five operators

γ̂
D,(3)
N=5

∣∣∣∣
ζ3

= n3
fCFζ3



1456
405 −80

81 −32
81 −16

81 − 8
81

0 1256
405 −128

135 −16
45 − 64

405

0 0 200
81 −8

9 − 8
27

0 0 0 128
81 −64

81

0 0 0 0 0


. (5.40)
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For the terms without ζ3 our algorithm yields

γ
D,(3)
N,k =

8
27

n3
fCF

{
1
3

(
S1(N)− S1(k)

)3( 1
N + 2

− 1
N − k

)
+
(

S1(N)− S1(k)
)2(5

3
1

N − k

+
2

N + 1
− 11

3
1

N + 2
+

1
(N + 2)2

)
+
(

S1(N)− S1(k)
)(

S2(N)− S2(k)
)( 1

N + 2

− 1
N − k

)
+ 2
(

S1(N)− S1(k)
)(1

3
1

N − k
− 13

3
1

N + 1
+

2
(N + 1)2 +

4
N + 2

− 11
3

1
(N + 2)2 +

1
(N + 2)3

)
+
(

S2(N)− S2(k)
)(5

3
1

N − k
+

2
N + 1

− 11
3

1
N + 2

+
1

(N + 2)2

)
+

2
3

(
S3(N)− S3(k)

)( 1
N + 2

− 1
N − k

)
+

2
3

1
N − k

+
2

N + 1

− 26
3

1
(N + 1)2 +

4
(N + 1)3 −

8
3

1
N + 2

+
8

(N + 2)2 −
22
3

1
(N + 2)3 +

2
(N + 2)4

}
,

(5.41)

such that

γ̂
D,(3)
N=5 = n3

fCF



−10064827
10935000

154397
729000

30097
273375

18049
243000

285967
4374000

0 −17813699
21870000

191989
911250

32683
303750

237557
2733750

0 0 −23587
34992

2401
11664

1477
11664

0 0 0 −1024
2187

512
2187

0 0 0 0 0


. (5.42)

Let us now turn to the mixing matrix in the Gegenbauer basis. At this order in perturbation theory,
the Gegenbauer anomalous dimensions are not given in the literature. However, they can be cal-
culated in the same way as the lower-order ones. In particular, they are calculable in terms of the
one-loop beta function and the three-loop forward anomalous dimensions. Since these quantities
do not depend on ζ3, we can immediately conclude that

γ
G ,(3)
N,k

∣∣∣∣
ζ3

= 0 . (5.43)

As in the total derivative basis, this parallels the one-loop expressions. For the spin-five operators
this means that we simply have

γ̂
G ,(3)
N=5

∣∣∣∣
ζ3

= n3
fCFζ3



1456
405 0 0 0 0

0 1256
405 0 0 0

0 0 200
81 0 0

0 0 0 128
81 0

0 0 0 0 0


. (5.44)
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For the determination of the ζ3-independent terms as a function of harmonic sums we follow the
same procedure as in the previous sections, leading to

γ
G ,(3)
N,k =

64
27

n3
fCF

a(N,k)
ϑN,k

{
− 2

3

(
S1(N)− S1(k)

)3
(2k + 3) +

(
S1(N)− S1(k)

)2
(2k + 3)

(5
3

− 1
N + 1

− 1
N + 2

)
+
(

S1(N)− S1(k)
)2(

4 +
1

k + 1
− 1

k + 2

)
+
(

S1(N)

− S1(k)
)
(2k + 3)

(1
3
− 1

3
1

N + 1
− 1

(N + 1)2 +
11
3

1
N + 2

− 1
(N + 2)2

)
+
(

S1(N)

− S1(k)
)(
− 20

3
+

4
N + 1

+
2

N + 1
1

k + 1
− 5

3
1

k + 1
− 1

(k + 1)2 +
4

N + 2

− 2
N + 2

1
k + 2

+
5
3

1
k + 2

+
1

(k + 2)2

)
+ (2k + 3)

(7
3

1
N + 1

− 1
6

1
(N + 1)2

− 1
2

1
(N + 1)3 −

2
N + 2

+
11
6

1
(N + 2)2 −

1
2

1
(N + 2)3 −

1
3

(
S3(N)− S3(k)

))
− 2

3

+
2
3

1
N + 1

+
2

(N + 1)2 +
1

(N + 1)2
1

k + 1
− 5

3
1

N + 1
1

k + 1
− 1

N + 1
1

(k + 1)2

− 8
3

1
k + 1

+
5
6

1
(k + 1)2 +

1
2

1
(k + 1)3 −

22
3

1
N + 2

+
2

(N + 2)2 −
1

(N + 2)2
1

k + 2

+
5
3

1
N + 2

1
k + 2

+
1

N + 2
1

(k + 2)2 +
5
3

1
k + 2

− 5
6

1
(k + 2)2 −

1
2

1
(k + 2)3

}
(5.45)

and

γ̂
G ,(3)
N=5 = n3

fCF



−10064827
10935000 0 394793

1093500 0 65923
121500

0 −17813699
21870000 0 36491

72900 0

0 0 −23587
34992 0 797

972

0 0 0 −1024
2187 0

0 0 0 0 0


. (5.46)

5.6 Discussion of the results in the total derivative basis
Having presented the leading-n f anomalous dimensions up to order a4

s , we can make some general
statements for the ζ-independent terms of the L-loop off-diagonal elements of the mixing matrix.
For this discussion it is convenient to define

b0 ≡−β0

∣∣∣∣
n f

=
2
3

n f . (5.47)

• The leading-n f anomalous dimensions are simple combinations of harmonic sums and de-
nominators. Denominators in k+m are absent, while the denominators in N come with the
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shifts m = 1,2,−k. The prefactors of the appearing structures are simple rational numbers,
which can be written as

a ·2b

3c (5.48)

with a∈Z and b,c∈N. Furthermore, the maximum power of denominators in N is wmax = L
while the maximum power of denominators in N− k is simply one.

• Except for 1
N−k , pure functions in N−k are absent. With a pure function we mean a structure

of the form
f (N− k)
(N− k)m . (5.49)

A nice consequence of this is that, when considering k = N− 1, the only way a constant
can appear is through a denominator 1

N−k in the full (N,k) expression. Explicitly, we can
identify

α · constant in NTD ⇐⇒ α

N− k
in γ

D
N,k. (5.50)

A similar reasoning applies to the 1
N term in γD

N,0.

• The prefactor of 1
(N+2)L can be written as

2CFbL−1
0 . (5.51)

• Starting at order a2
s a term of the form SL−1(N)−SL−1(k) appears with prefactor

bL−1
0

L−1
γ

D,(0)
N,k (L > 1). (5.52)

Similarly we also find a term of the form [S1(N)−S1(k)]L−1 with prefactor

bL−1
0

(L−1)!
γ

D,(0)
N,k (L > 1). (5.53)

• The prefactors of the differences [S1(N)−S1(k)]α, with 0 < α < L−1 can be determined as
a function of the prefactors of the [S1(N)− S1(k)]α−1 terms in the (L− 1)-loop anomalous
dimension. Specifically we have

b0

α
γ

D,(L−2)
N,k

∣∣∣∣
[S1(N)−S1(k)]α−1

(0 < α < L−1). (5.54)

This also works for products of differences of harmonic sums. For example, the prefactor
of [S2(N)−S2(k)][S1(N)−S1(k)] at four loops corresponds to b0 times the prefactor of the
[S2(N)−S2(k)] term at three loops. It is likely that the prefactors of [Sα(N)−Sα(k)] follow
a similar pattern. However, not enough information is available at this point to make strong
claims.
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• Finally, we can say something about denominators in N. If at the L-loop level the term

1
(N +m)δ

(m = 1,2) (5.55)

appears, then the (L+1)-loop expression will contain the term

b0

(N +m)δ+1 (δ 6= L). (5.56)

From the above considerations it follows that, if the L-loop anomalous dimensions are known, we
can predict most of the structures and their prefactors appearing in the (L+1)-loop expression. The
small number of unknowns that remain can then be fixed using the consistency relation, Eq.(4.87).
As the leading-n f terms of the forward anomalous dimensions are known to all orders in perturba-
tion theory, cf. [122], it is then, in principle, possible to reconstruct the full (N,k) dependence of
the ζ-independent terms of the mixing matrix to all orders.

5.6.1 Application: Five-loop anomalous dimensions
To illustrate the discussion presented above, we calculate the ζ-independent part of the leading-n f
terms of the five-loop mixing matrix. To achieve this we also need the five-loop forward anomalous
dimension, which is presented in [122]. Following the steps described above, only six terms remain
whose prefactors are unknown. These are{

1
N +2

,
1

N +1
,

1
N− k

,

[S2(N)−S2(k)]
(1

3
1

N− k
− 13

3
1

N +1
+

2
(N +1)2 +

4
N +2

− 11
3

1
(N +2)2 +

1
(N +2)3

)
,

[S3(N)−S3(k)]
(5

3
1

N− k
+

2
N +1

− 11
3

1
N +2

+
1

(N +2)2

)
,

[S2(N)−S2(k)]2
( 1

N +2
− 1

N− k

)}
. (5.57)

Evaluating the consistency relation, Eq.(4.87), for (N,k)-pairs up to N = 4 we then find

γ
D,(4)
N,k =

16
81

n4
fCF

{
1

12

(
S1(N)−S1(k)

)4( 1
N +2

− 1
N− k

)
+

1
3

(
S1(N)−S1(k)

)3(5
3

1
N− k

+
2

N +1
− 11

3
1

N +2
+

1
(N +2)2

)
+

1
2

(
S1(N)−S1(k)

)2(
S2(N)−S2(k)

)( 1
N +2

− 1
N− k

)
+
(

S1(N)−S1(k)
)2(1

3
1

N− k
− 13

3
1

N +1
+

2
(N +1)2 +

4
N +2

−11
3

1
(N +2)2 +

1
(N +2)3

)
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+
(

S1(N)−S1(k)
)(

S2(N)−S2(k)
)(5

3
1

N− k
+

2
N +1

− 11
3

1
N +2

+
1

(N +2)2

)
+

2
3

(
S1(N)−S1(k)

)(
S3(N)−S3(k)

)( 1
N +2

− 1
N− k

)
+
(

S1(N)−S1(k)
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3
1

N− k
+

2
N +1

− 26
3

1
(N +1)2 +

4
(N +1)3 −

8
3

1
N +2

+
8

(N +2)2 −
22
3

1
(N +2)3 +

2
(N +2)4

)
+

1
4

(
S2(N)−S2(k)

)2( 1
N +2

− 1
N− k

)
+
(

S2(N)−S2(k)
)(1

3
1

N− k
− 13

3
1

N +1
+

2
(N +1)2 +

4
N +2

−11
3

1
(N +2)2 +

1
(N +2)3

)
+

2
3

(
S3(N)−S3(k)

)(5
3

1
N− k

+
2

N +1

−11
3

1
N +2

+
1

(N +2)2

)
+

1
2

(
S4(N)−S4(k)

)( 1
N +2

− 1
N− k

)
+

2
3

1
N− k

−2
3

1
N +1

+
2

(N +1)2 −
26
3

1
(N +1)3 +

4
(N +1)4 −

8
3

1
(N +2)2 +

8
(N +2)3

−22
3

1
(N +2)4 +

2
(N +2)5

}
(5.58)

and

γ̂
D,(4)
N=5 = n4

fCF



−562208549
984150000

8899139
65610000

1705289
24603750

2955389
65610000

15359729
393660000

0 − 990930013
1968300000

11153243
82012500

1831571
27337500

12500059
246037500

0 0 −259993
629856

27955
209952

15439
209952

0 0 0 − 5504
19683

2752
19683

0 0 0 0 0


. (5.59)

A suggestion for the prefactor of [Sα(N)−Sα(k)] in the L-loop anomalous dimension is then4

b0

(
2
3

)L+α−4

γ̃
(L−1)
N,k

∣∣∣∣
[Sα−1(N)−Sα−1(k)]

(α 6= 0,1,L−1). (5.60)

γ̃ denotes that we only take into account the denominator structure and not the numerical prefactor
multiplying it.

5.7 Anomalous dimensions beyond the leading-n f limit
So far, we have focused our discussion on the anomalous dimensions in the leading-n f limit.
While this provides valuable checks of previous calculations, and extensions to higher orders in
perturbation theory, the results in this limit are not phenomenologically useful, at least not by

4There is a typo in [132]. Eq.(4.41) there should be replaced by Eq.(5.60) here.
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themselves. However, our method is in no way limited to this approximation, as we will now
demonstrate. We present here two extensions. First, we present the two-loop mixing matrix in the
leading-color limit. Second, we present some low-N results in full QCD up to order a5

s .

5.7.1 Two-loop anomalous dimensions in the leading-color limit
The leading-color limit (Nc→ ∞), while more general than the leading-n f one, is still somewhat
simpler than the generic QCD case. The simplicity associated with the leading-n f limit manifests
itself in three ways: (1) only harmonic sums with positive indices appear, (2) because of the low
maximum weight, the number of structures that could potentially contribute is reduced and (3) if
we increase the order in as by one, the maximum weight is also increased by one. In the leading-
color limit, point (1) remains true. However, now the structures will generically have weight 2L−1
at L loops, and an increase in loop-order changes the maximum weight by more than one. Another
difference comes from the details of the operator renormalization. In the leading-n f limit, the 1/ε-
pole of the bare OMEs was simply determined by the operator anomalous dimensions. However,
beyond this limit, the 1/ε-pole can also get contributions from the finite (i.e. O(ε0)) terms in the
one-loop matrix elements. As we will see below, this has no significant consequences for our al-
gorithm.

To illustrate this, we present here the two-loop mixing matrix in the leading-color approxima-
tion. The two-loop anomalous dimension can be decomposed as follows

γ
D,(1)
N,k = γ

D,(1)
N,k

∣∣∣∣
n f

+ γ
D,(1)
N,k

∣∣∣∣
LC

+ γ
D,(1)
N,k

∣∣∣∣
SLC

. (5.61)

The first term represents the leading-n f piece discussed in the previous sections. The leading color

term, represented by γ
D,(1)
N,k

∣∣∣∣
LC

, is proportional to CFNc/2 while the subleading one, γ
D,(1)
N,k

∣∣∣∣
SLC

is

proportional to CF/(2Nc). Hence in the limit Nc→∞, the latter can be neglected. The leading-color
limit provides a good approximation to the full two-loop anomalous dimension. This is illustrated
in Fig.5.1, which compares the full two-loop forward anomalous dimension to the leading-color
limit in x-space. Hence, it is expected that also the leading-color mixing matrix provides a good
approximation to the full matrix, making it a useful limit to consider for phenomenological studies.
As already mentioned above, the 1/ε-pole of the two-loop matrix elements gets contributions from
the finite O(ε0) terms at one-loop. Collecting this in the quantity F (N) we find

F (N) =CF

(
4

(N +1)2 +
2S1(N)

N +1
−S1(N)2−3S2(N)− 6

N +1
+4

)
. (5.62)

For completeness, we give here the pole-structure of the two-loop matrix elements in full QCD.
There are three distinct contributions: those proportional to CFn f , to C2

F and CFCA. The first simply
corresponds to the leading-n f quantity discussed above. The other two are new and we have

1
2

(
N

∑
i=0

γ
D,(1)
N,i + γ

(1)
2

∣∣∣∣
C2

F

)
+

N

∑
i=0

(
γ

D,(0)
N,i +δN,iγ

(0)
2

)
F (i+1) (5.63)
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Figure 5.1: x-space comparison between the full two-loop forward anomalous dimension and the leading-
color limit. We have employed the three-flavor scheme and included a normalization factor of 1

16π2 .

Figure 5.2: Feynman rule for the quark operator with two additional gluons, cf. [106]. The momenta are
taken to be incoming and q = ∑i pi.

for the 1/ε-pole proportional to C2
F and

1
2

(
N

∑
i=0

γ
D,(1)
N,i + γ

(1)
2

∣∣∣∣
CFCA

)
(5.64)

for the pole proportional to CFCA. They are related to the (sub)leading color pieces by

γ
D,(1)
N,k

∣∣∣∣
LC
∼C2

F (5.65)

and

γ
D,(1)
N,k

∣∣∣∣
SLC
∼CF

(
CF −

CA

2

)
. (5.66)

We also have a new operator vertex to take into account, namely the one with two gluons attached
to it, cf. Fig.5.2.
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We now concentrate on the leading-color limit. The forward anomalous dimension is

γ
(1)
N,N

∣∣∣∣
LC

=
CFNc

2

[
− 43

6
− 4

(N +1)3 +
1

(N +1)2

[
− 44

3
−8S1(N)

]
+

1
N +1

[
− 32

9
−8S2(N)

]
− 4

(N +2)3

+
1

(N +2)2

[
− 20

3
−8S1(N)

]
+

1
N +2

[568
9
−8S2(N)

]
+

536
9

S1(N)−16S1,2(N)− 52
3

S2(N)−16S2,1(N)

+16S3(N)

]
(5.67)

such that, using Eq.(4.66),

γ
D,(1)
N,N−1

∣∣∣∣
LC

=
CFNc

2

[
S1(N)

( 4
N +2

− 8
(N +2)2 +

4
N

)
+S2(N)

(
8− 8

N +2

)
− 268

9
− 100

3
1

N +1
+

598
9

1
N +2

− 14
3

1
(N +2)2 −

4
(N +2)3

+
16
3

1
N
− 2

N2

]
.

(5.68)

Application of our algorithm then leads to

γ
D,(1)
N,k

∣∣∣∣
LC

= 4
CFNc

2

{(
S1(N)−S1(k)

)2

N− k

+
(
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)( 1
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+
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2

(
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1
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−13
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− 2
(N +2)2
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(

S1(N− k)−S1(k)
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+

1
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k+1

− 1
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1
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(

S2(N)−S2(k)
)( 1
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− 1
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)
−2S2(k)

( 1
N +2
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)
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9
1
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6
1

N +1
− 1

(N +1)2

− 1
(N +1)2

1
k+1

− 1
2

1
N +1

1
k+1

+
1
2

1
k+1

1
N +2

+
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1
N +2

− 5
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1
(N +2)2
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(N +2)2

}
. (5.69)
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For illustration, we quote the corresponding mixing matrix for spin-five operators

γ̂
D,(1)
N=5

∣∣∣∣
LC

=
CFNc

2



654173
13500 −2551

216 −7999
1800 −1439

600 −511
300

0 255313
6000 −12881

1125 −39133
9000 −2936

1125

0 0 15085
432 −1615

144 −673
144

0 0 0 640
27 −320

27

0 0 0 0 0


. (5.70)

To mimic the discussion for the leading-n f part, we have written the expression in Eq.(5.69) in
terms of differences of harmonic sums. By comparing the expressions in both limits, we see two
differences for the anomalous dimensions. First, there is the appearance of denominators in k+1 in
the leading-color expression. Second, we now also have higher powers of denominators in N− k.
A final useful property of the leading-color expression is that the coefficients of the highest-weight
terms are simple integers. This can be helpful when trying to determine higher-order expressions.

The algorithm should also be applicable to the subleading-color part of the anomalous dimen-
sions, which originates from non-planar Feynman diagrams. However, these non-planar diagrams
can generate harmonic sums with negative indices. This complicates the evaluation of the neces-
sary sums, and we leave this to future studies.

5.7.2 Spin-five ADM in full QCD
We now present the mixing matrix for spin-five operators,

γ4,4 γD
4,3 γD

4,2 γD
4,1 γD

4,0
0 γ3,3 γD

3,2 γD
3,1 γD

3,0
0 0 γ2,2 γD

2,1 γD
2,0

0 0 0 γ1,1 γD
1,0

0 0 0 0 0

 , (5.71)

in full QCD. This means that we identify CA = 3 and CF = 4/3. The expressions for a general
gauge group SU(Nc) can be found in Appendix B. Before presenting the results, we review the
relevant identities used in their derivation.

Relevant identities

When the forward anomalous dimensions are known, the elements in the NTD can be directly
calculated from them, cf. Eq.(4.66). Furthermore, if the anomalous dimensions are known in the
Gegenbauer basis, we can use Eq.(4.82) to determine the elements of the last column in the total
derivative basis. For the discussion at hand, we need γD

2,0,γ
D
3,0 and γD

4,0, which can be calculated as

γ
D
2,0 =

1
30

(
γ

G
2,0 +6γ2,2 +30γ

D
1,0

)
γ

D
3,0 =

1
140

(
−3γ

G
3,1−10γ3,3−90γ

D
1,0 +210γ

D
2,0

)
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γ
D
4,0 =

1
630

(
γ

G
4,0 +6γ

G
4,2 +15γ4,4 +210γ

D
1,0−840γ

D
2,0 +1260γ

D
3,0

)
. (5.72)

Moreover we can use Eq.(4.71) to express γD
3,1 in terms of known quantities

γ
D
3,1 = 3γ

D
2,0−3γ

D
1,0−2γ

D
3,0− γ

D
3,2− γ3,3. (5.73)

Unfortunately, at N = 5 not enough information is available to fix the full mixing matrix. In
particular, there is no way to disentangle γD

4,1 from γD
4,2. Nevertheless, we can again use Eq.(4.71)

to derive a relation between the two

γ
D
4,1 + γ

D
4,2 =−4γ

D
1,0 +6γ

D
2,0−4γ

D
3,0− γ

D
4,3− γ4,4. (5.74)

With this information available, we can calculate the complete spin-two mixing matrix to five-
loop order. The entry γD

2,1 in the spin-three matrix can also be determined to the same order.
When using the available three-loop anomalous dimensions in the Gegenbauer basis, cf. [16], the
total derivative mixing matrix for spin-four operators can be calculated to order a3

s . The relevant
expressions for the fixed-N forward anomalous dimensions can be found in [106, 124–126] (four
loops) and [127] (five loops). At order a3

s , we only have access to the leading-n f term of γD
4,2. The

remaining terms will be collected in γ̃D
4,2.

Results

γ4,4 = 8.08889 as +(98.1994−7.68691 n f )a2
s

+(1720.94−279.180 n f −2.36621 n2
f )a3

s

+(31273.3−7626.41 n f +277.106 n2
f +4.53473 n3

f )a4
s +O(a5

s ) (5.75)

γ
D
4,3 = −2.22222 as +(−23.8255+2.26667 n f )a2

s

+(−410.760+68.9025 n f +0.515391 n2
f )a3

s

+(−6915.76+1844.48 n f −76.8389 n2
f −1.30057 n3

f )a4
s +O(a5

s ) (5.76)

γ
D
4,2 = −0.888889 as +

(
−8.88778+ γ

D,(1)
4,2

∣∣∣∣
SLC

+0.809877 n f

)
a2

s

+

(
γ̃

D,(2)
4,2 +0.287956 n2

f

)
a3

s +O(a4
s ) (5.77)

γ
D
4,1 = −0.444444 as +

(
−4.46178− γ

D,(1)
4,2

∣∣∣∣
SLC

+0.340741 n f

)
a2

s

+

(
−234.566+40.5252 n f +0.194403 n2

f − γ̃
D,(2)
4,2

)
a3

s +O(a4
s ) (5.78)

γ
D
4,0 = −0.222222 as +(−3.41128+0.106173 n f )a2

s

+(−61.8523+7.90849 n f +0.132812 n2
f )a3

s +O(a4
s ) (5.79)

γ3,3 = 6.97778 as +(86.2867−6.55358 n f )a2
s
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+(1515.56−244.729 n f −2.10852 n2
f )a3

s

+(27815.4−6704.17 n f +238.687 n2
f +3.88444 n3

f )a4
s +O(a5

s ) (5.80)

γ
D
3,2 = −2.13333 as +(−23.1028+2.14519 n f )a2

s

+(−405.973+67.6368 n f +0.51977 n2
f )a3

s

+(−7071.4+1807.36 n f −74.6209 n2
f −1.23872 n3

f )a4
s +O(a5

s ) (5.81)

γ
D
3,1 = −0.8 as +(−8.66775+0.693333 n f )a2

s

+(−142.057+25.4966 n f +0.289975 n2
f )a3

s +O(a4
s ) (5.82)

γ
D
3,0 = −0.355556 as +(−5.27039+0.209383 n f )a2

s

+(−95.1612+12.9537 n f +0.193624 n2
f )a3

s +O(a4
s ) (5.83)

γ2,2 = 5.55556 as +(70.8848−5.12346 n f )a2
s

+(1244.91−199.637 n f −1.762 n2
f )a3

s

+(23101.2−5499.27 n f +188.94 n2
f +3.05863 n3

f )a4
s

+(547791−147144 n f +11176.3 n2
f +77.4206 n3

f −0.636764 n4
f )a5

s

+O(a6
s ) (5.84)

γ
D
2,1 = −2 as +(−22.5556+1.96296 n f )a2

s

+(−385.466+66.1992 n f +0.532922 n2
f )a3

s

+(−6437.94+1751.72 n f −71.158 n2
f −1.1502 n3

f )a4
s

+(−147044+43307.7 n f −3728.02 n2
f −15.8471 n3

f +0.293057 n4
f )a5

s

+O(a6
s ) (5.85)

γ
D
2,0 = −0.666667 as +(−9.50617+0.481481 n f )a2

s

+(−170.654+24.8232 n f +0.3107 n2
f )a3

s +O(a4
s ) (5.86)

γ1,1 = 3.55556 as +(48.3292−3.16049 n f )a2
s

+(859.448−133.438 n f −1.22908 n2
f )a3

s

+(16663.2−3747.55 n f +117.781 n2
f +1.90843 n3

f )a4
s

+(400747−103837 n f +7448.29 n2
f +61.5735 n3

f −0.343707 n4
f )a5

s

+O(a6
s ) (5.87)

γ
D
1,0 = −1.77778 as +(−24.1646+1.58025 n f )a2

s

+(−429.724+66.7191 n f +0.61454 n2
f )a3

s

+(−8331.61+1873.78 n f −58.8907 n2
f −0.954217 n3

f )a4
s

+(−200373+51918.3 n f −3724.15 n2
f −30.7867 n3

f +0.171853 n4
f )a5

s

+O(a6
s ) (5.88)

The values for γ
D,(2)
2,1 and γ

D,(2)
2,0 at order a3

s can be compared with those presented in [26], where
the authors used numerical methods for their determination. We find agreement with their values

106



of γ
D,(2)
2,1 and γ

D,(2)
2,0 , in the latter case within the uncertainties of their numerical result5

γ
D,(2)
2,0

∣∣∣∣
ref. [26]

= −170.641(12)+24.822(2)n f +0.3107(1)n2
f . (5.89)

We remind the reader that the results presented here are written in the MS-scheme. When trans-
formed to the RI-scheme, they will be useful for hadronic structure studies in the framework of
lattice QCD.

5The numerical errors in the parentheses in Eq. (5.89) have been provided by the authors of [26] in private com-
munication.
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Chapter 6

Anomalous dimensions of transversity
operators1

Introduction

Wilson operators, which we have discussed in previous chapters, are important in the study of
the longitudinal structure of hadrons. However, there is also the transverse hadron structure to
consider. This is less well-studied, both theoretically and phenomenologically. The transverse
hadronic structure can be analyzed by considering hadronic matrix elements of so-called transver-
sity operators, which are just the Wilson operators with the Dirac matrix replaced by a commutator
of two Dirac matrices. The matrix elements of these operators are again to be calculated non-
perturbatively, see e.g. [135–137] for recent progress in lattice QCD. They are related to the TDF
of partons inside hadrons. Assuming we have a transversely polarized hadron, the TDF represents
a measure of the difference in probabilities of finding a parton polarized parallel to the nucleon
spin and an oppositely polarized one. Such distributions are relevant for processes like polarized
Drell-Yan [9–13] and semi-inclusive deep-inelastic scattering [10, 138]. As was the case for PDFs,
the scale-dependence of the TDF is related to the anomalous dimensions of the corresponding op-
erators, which can be calculated in perturbation theory. The forward anomalous dimensions are
known to third order in the strong coupling [10, 121, 139–148]. A related non-forward distribution
is the so-called transverse distribution amplitude, which is related to vacuum-to-hadron transi-
tions. Contrary to PDFs and GPDs, such distribution amplitudes are obtained by sandwiching
the transversity operator between a hadronic state and the vacuum state. They are accessible in
vector-meson production processes and can be studied e.g. by analyzing data collected at BELLE

II [149]. As was the case for GPDs, their scale-dependence is determined by the ERBL equation,
cf. Eq.(2.34). The corresponding off-forward anomalous dimension matrices are known to first
order in the strong coupling [10, 139–141]. In momentum space, the evolution kernels were cal-
culated to two-loop order in [150, 151].

As mentioned in Chapter 4, the consistency relation between the anomalous dimensions in the
total derivative basis, cf. Eq.(4.87), does not depend on the Dirac structure of the corresponding
quark operators. As such, we can use the methods of Chapter 4 to determine the anomalous dimen-

1The results of this chapter were originally presented in [134].
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sions of the transversity operator, including mixing with total derivative operators. For simplicity,
we focus our attention on the leading-n f approximation, which implies that we can follow the dis-
cussion presented in Section 5.6. The resulting anomalous dimensions will be presented to order
a4

s . However, as the leading-n f term of the forward transversity anomalous dimension is known to
all orders, cf. [145], it would be easy to push the calculation of the mixing matrix to higher orders
as well. We will also present the mixing matrices in the Gegenbauer basis. Fixed moments can be
calculated using Eq.(5.12). In turn, these fixed moments can be used to check our results in the
total derivative basis, cf. Eq.(4.82). If this consistency relation holds, it can subsequently be used
to derive the full (N,k)-dependence of the Gegenbauer ADMs. These results will also be presented
to fourth order in the strong coupling.

6.1 Transversity operators
The transversity operators are defined as

OT
µν1...νN

= Sψλ
α

σµν1Dν2 . . .DνN ψ (6.1)

with
σµν =

1
2
[γµ,γν]. (6.2)

As in previous chapters, we consider only leading-twist flavor non-singlet operators. When calcu-
lating the partonic matrix elements of these operators, we again contract with a tensor composed
of lightlike vectors, ∆ν1 . . .∆νN and ∆2 = 0. Contrary to the Wilson OMEs, there will be one un-
contracted Lorentz index left in the transversity matrix elements. This means that the analysis of
these objects becomes more complicated. However, as we only consider the leading-n f limit in
this chapter, we only need to calculate the one-loop OMEs to extract the corresponding anomalous
dimensions. The higher-order anomalous dimensions are then determined by implementing the
discussion of Section 5.6.

In off-forward kinematics, the operators in Eq.(6.1) mix with total-derivative ones. In the total
derivative basis, we write these additional operators generically as

OD,T
p,q,r = S∂

µ1 . . .∂µp(Dν1 . . .Dνqψ)λα
σ

µν(Dλ1 . . .Dλrψ) (6.3)

such that

OD,T
k,0,N =

N

∑
j=0

ZD,T
N,N− j[O

D,T
k+ j,0,N− j]. (6.4)

The corresponding anomalous dimensions are

γ
D,T
N,k =−(ZD,T

N, j )
−1

d ZD,T
j,k

dlnµ2 . (6.5)

In the Gegenbauer basis, the transversity operators are written as

OG ,T
N,k = (∆ ·∂)k

ψ(x)
1
2
[γµ, /∆]C3/2

N

(←
D ·∆−∆·

→
D

←
∂ ·∆+∆·

→
∂

)
ψ(x) (6.6)

and the corresponding off-diagonal entries of the mixing matrix can be calculated using Eq.(5.12).
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6.2 One-loop anomalous dimensions
At this order, we need to perform the calculation of the matrix elements of the operators in Eq.(6.1)
explicitly. The Feynman diagrams are exactly those that appear in the one-loop calculation of the
Wilson OMEs, cf. Fig.4.3. Likewise, the Feynman rules of the transversity operators correspond
to those of the Wilson operators with the replacement

/∆→ 1
2
[γµ, /∆]. (6.7)

Using PACKAGE-X in MATHEMATICA [152] we find

BT,(0)(N +1) =CF

(
2

N +1
+2S1(N)−1

)
(6.8)

such that, applying Eq.(4.74),

γ
D,T,(0)
N,0 =CF

(
2

N +1
− 2

N

)
. (6.9)

The value of γ
D,T,(0)
1,0 agrees with a previous calculation in [25]. The one-loop forward anomalous

dimension was calculated in [10, 139–141] and reads

γ
T,(0)
N,N =CF

(
4

N +1
+4S1(N)−3

)
. (6.10)

Note that, contrary to the Wilson operators, the N = 1 transversity operator does not correspond
to a conserved current, such that γT

0,0 6= 0. The all-k expression can then be determined using the
conjugation relation in Eq.(4.87). The result is

γ
D,T,(0)
N,k =CF

(
2

N +1
− 2

N− k

)
. (6.11)

For N = 5 this implies that

γ̂
D,T,(0)
N=5 = CF



92
15 −8

5 −3
5 − 4

15 − 1
10

0 16
3 −3

2 −1
2 −1

6

0 0 13
3 −4

3 −1
3

0 0 0 3 −1

0 0 0 0 1


. (6.12)

The complete one-loop mixing matrix was also calculated in [10, 139–141] using different meth-
ods, and we find full agreement with these results. As mentioned in Chapter 5, the one-loop mixing
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matrix in the Gegenbauer basis is diagonal, such that

γ̂
G ,T,(0)
N=5 = CF



92
15 0 0 0 0

0 16
3 0 0 0

0 0 13
3 0 0

0 0 0 3 0

0 0 0 0 1


. (6.13)

We have checked that Eq.(4.82) is obeyed.

6.3 Two-loop anomalous dimensions
At two-loop order, the leading-n f term of the forward anomalous dimension reads [142–144]

γ
T,(1)
N,N =

8
9

n fCF

(
3S2(N +1)−5S1(N +1)+

3
8

)
. (6.14)

We now follow the discussion of Section 5.6. The only difference with the Wilson anomalous
dimensions there is that now the maximal shift in the forward anomalous dimension is N + 1
instead of N +2. This leads to

γ
D,T,(1)
N,k =

4
3

n fCF

{
1

(N +1)2 +[S1(N)−S1(k)]

(
1

N +1
− 1

N− k

)}

+n fCF

(
a1

N +1
+

a2

N− k

) (6.15)

where a1,a2 ∈Q are a priori unknown. They can be fixed however by using the consistency relation
in Eq.(4.87), and we find

γ
D,T,(1)
N,k =

4
3

n fCF

{
1

(N +1)2 +[S1(N)−S1(k)]

(
1

N +1
− 1

N− k

)

− 5
3

(
1

N +1
− 1

N− k

)}
.

(6.16)

The corresponding value for γ
D,T,(1)
1,0 agrees with the one in [25]. The N = 5 mixing matrix is then

γ̂
D,T,(1)
N=5 = n fCF



−7981
1350

352
225

73
150

106
675

23
900

0 −277
54

17
12

13
36

7
108

0 0 −113
27

32
27

5
27

0 0 0 −3 7
9

0 0 0 0 −13
9 .


. (6.17)
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Fixed moments of the Gegenbauer mixing matrix can be computed using Eq.(5.12), and to two-
loop accuracy we find for N = 5

γ̂
G ,T,(1)
N=5 = n fCF



−7981
1350 0 −14

15 0 −11
15

0 −277
54 0 −10

9 0

0 0 −113
27 0 −4

3

0 0 0 −3 0

0 0 0 0 −13
9


. (6.18)

We checked that the two-loop result in the total derivative basis and the Gegenbauer moments are
consistent with one another2. As such, the relation in Eq.(4.82) can now be used to reconstruct the
full (N,k)-dependence of the Gegenbauer mixing matrix. We find

γ
G ,T,(1)
N,k =−16

3
n fCF

a(N,k)
ϑN,k

{
(3+2k)

(
S1(N)−S1(k)+

1
N +1

)
− 1

k+1
−2

}
. (6.19)

6.4 Three-loop anomalous dimensions
The forward anomalous dimension at three-loop order was calculated in [145–147]. Its leading-n f
term is

γ
T,(2)
N,N =16n2

fCF

(
17

144
− 1

27
S1(N +1)− 5

27
S2(N +1)

+
1
9

S3(N +1)− 1
18

1
(N +1)(N +2)

)
.

(6.20)

Of note is the appearance of a new structure, namely a weight-one denominator in N +2. This has
to be accounted for when applying the method. We find

γ
D,T,(2)
N,k =

4
9

n2
fCF

{
2

(N +1)3 +[S2(N)−S2(k)]

(
1

N +1
− 1

N− k

)

+[S1(N)−S1(k)]2
(

1
N +1

− 1
N− k

)
+

2[S1(N)−S1(k)]
(N +1)2

− 10
3
[S1(N)−S1(k)]

(
1

N +1
− 1

N− k

)
− 10

3
1

(N +1)2

− 8
3

1
N +1

+
2

N +2
+

2
3

1
N− k

}
(6.21)

2While only presenting the N = 5 Gegenbauer moments here, the consistency check was performed up to N = 50.
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and for N = 5

γ̂
D,T,(2)
N=5 = n2

fCF



−209297
121500

52
125

2951
13500

3511
30375

2701
81000

0 −7361
4860

149
360

611
3240

533
9720

0 0 −301
243

94
243

25
243

0 0 0 −23
27

7
27

0 0 0 0 −1
3


. (6.22)

We agree with [25] for the value of γ
D,T,(2)
1,0 . The Gegenbauer ADM can again be calculated using

Eq.(5.12), and for N = 5 we find

γ̂
G ,T,(2)
N=5 = n2

fCF



−209297
121500 0 511

675 0 253
1350

0 −7361
4860 0 65

81 0

0 0 −301
243 0 20

27

0 0 0 −23
27 0

0 0 0 0 −1
3


. (6.23)

Consistency between the Gegenbauer moments and the result in the total derivative basis was
explicitly checked. As before, we can then use Eq.(4.82) to derive the full (N,k)-dependence of
the off-diagonal elements of the Gegenbauer mixing matrix. The result is

γ
G ,T,(2)
N,k =

32
9

n2
fCF

a(N,k)
ϑN,k

{
(3+2k)

(
2S1(N)S1(k)−2[S1,1(N)+S1,1(k)]+ [S2(N)

+S2(k)]
)
− (3+2k)

(
2

S1(N)−S1(k)
N +1

+
1

(N +1)2

)
+

(
S1(N)−S1(k)

+
1

N +1

)(
2

k+1
+9+

10k
3

)
− 1

(k+1)2 −
11
3

1
k+1

− 10
3

}
.

(6.24)

6.5 Four-loop anomalous dimensions
Finally, we consider the mixing matrix to fourth order in the strong coupling. The corresponding
leading-n f forward anomalous dimension was calculated in [145]

γ
T,(3)
N,N =

32
27

n3
fCF

(
S4(N +1)− 5

3
S3(N +1)− 1

3
S2(N +1)− 1

3
S1(N +1)

+
1
2

1
(N +2)2 −

1
2

1
(N +1)2 −

5
6

1
N +2

+
5
6

1
N +1

+
131
96

+ζ3

[
2(N +1)− 3

2

])
.

(6.25)
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Application of our method then yields

γ
D,T,(3)
N,k =

16
27

n3
fCF

{
1

(N +1)4 −
5
3

1
(N +1)3 +[S1(N)−S1(k)]

(
1

(N +1)3

− 5
3

1
(N +1)2 −

4
3

1
N +1

+
1

N +2
+

1
3

1
N− k

)
+

(
[S1(N)−S1(k)]2 +S2(N)

−S2(k)

)(
1
2

1
(N +1)2 −

5
6

1
N +1

+
5
6

1
N− k

)
+

(
1

N +1
− 1

N− k

)(
1
6
[S1(N)

−S1(k)]3 +
1
2
[S2(N)−S2(k)][S1(N)−S1(k)]+

1
3
[S3(N)−S3(k)]

)

− 4
3

1
(N +1)2 +

4
3

1
N +1

+
1

(N +2)2 −
5
3

1
N +2

+
1
3

1
N− k

}

(6.26)

and

γ̂
D,T,(3)
N=5 = n3

fCF



− 9829939
10935000

12058
50625

166537
1215000

249257
2733750

277787
7290000

0 −341107
437400

8123
32400

40237
291600

49891
874800

0 0 −1340
2187

575
2187

212
2187

0 0 0 − 85
243

53
243

0 0 0 0 7
81


(6.27)

for the ζ3-independent terms. The structure multiplying ζ3 in Eq.(6.25) has a maximum weight of
one. Hence using our algorithm, the determination of the ζ3-terms in the off-forward anomalous
dimensions is no more complex than a one-loop calculation. We find

γ
D,T,(3)
N,k

∣∣∣∣
ζ3

=
32
27

ζ3n3
fCF

(
1

N +1
− 1

N− k

)
(6.28)

and, for the spin-five mixing matrix,

γ̂
D,T,(3)
N=5

∣∣∣∣
ζ3

= ζ3n3
fCF



1472
405 −128

135 −16
45 − 64

405 − 8
135

0 256
81 −8

9 − 8
27 − 8

81

0 0 208
81 −64

81 −16
81

0 0 0 16
9 −16

27

0 0 0 0 16
27


. (6.29)
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The corresponding mixing matrices in the Gegenbauer basis are

γ̂
G ,T,(3)
N=5 = n3

fCF



− 9829939
10935000 0 22057

60750 0 45311
121500

0 −341107
437400 0 683

1458 0

0 0 −1340
2187 0 136

243

0 0 0 − 85
243 0

0 0 0 0 7
81


(6.30)

and

γ̂
G ,T,(3)
N=5

∣∣∣∣
ζ3

= ζ3n3
fCF



1472
405 0 0 0 0

0 256
81 0 0 0

0 0 208
81 0 0

0 0 0 16
9 0

0 0 0 0 16
27


. (6.31)

The consistency check, Eq.(4.82), was again explicitly checked to hold. In turn this implies that

γ
G ,T,(3)
N,k =

64
27

n3
fCF

a(N,k)
ϑN,k

{
− 3+2k

3

(
S3(N)−S3(k)+2[S1(N)−S1(k)]3

)
+[S1(N)−S1(k)]2

(
9+

10
3

k+
2

k+1
− 2(3+2k)

N +1

)
+[S1(N)−S1(k)]

(
− 17

3

+
2
3

k− 22
3

1
k+1

− 2
(k+1)2 +

2
3

27+10k
N +1

+
4

(N +1)(k+1)
− 2(3+2k)

(N +1)2

)

+
1

(k+1)3 −
2

(N +1)(k+1)

(
11
3
+

1
k+1

− 1
N +1

)
− 3+2k

(N +1)3 +
11
3

1
(k+1)2

+
1
3

27+10k
(N +1)2 +

5
2

1
k+1

− 5
6

5−2k
N +1

− 1
2

1
k+2

− 1
2

3+2k
N +2

− 2
3

}
.

(6.32)

To conclude, we reiterate that the method used in this chapter can be easily applied to derive the
higher-order leading-n f anomalous dimensions as well. However, going beyond the leading-n f
limit is more complicated. In the total derivative basis, this involves calculating the higher-order
matrix elements of the transversity operator in off-forward kinematics. In the Gegenbauer basis,
one would need to calculate the transversity conformal anomaly at two-loop order and beyond (the
one-loop transversity conformal anomaly corresponds to the one-loop Wilson one, cf. [19]). These
points are left for future studies.
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Chapter 7

Ongoing research

In this final chapter, we collect some recent research results, which are as-of-yet unpublished. In
the first section, we derive another consistency relation for the off-forward anomalous dimensions.
Contrary to before, this relation does not originate from physical considerations, but instead from
mathematical ones. The next section introduces a relation between the off-forward anomalous
dimensions for the gluon operator, which is valid to one-loop order. In the final section we consider
the renormalization of polarized flavor non-singlet quark operators in the leading-n f limit.

7.1 A mathematics based relation for the anomalous dimen-
sions

Consider some sequence {ak} with associated sum

AN ≡
N

∑
k=0

ak. (7.1)

Then, according to Eq.(14) of [153], the following identity holds

N

∑
k=0

(−1)k
(

N +1
k

)
Ak = (−1)N

(
N + s−1

N

)
AN +

N−1

∑
k=0

(−1)k+1
(

N + s−1
k

)
ak+1 (7.2)

with s ∈ C \ Z−. We have introduced a shift in indices compared to [153] to start the summations
at zero. We can now apply Eq.(7.2) to the elements of the ADM. Identifying as usual

N

∑
j=0

γN, j ≡ B(N +1) (7.3)

we have

N

∑
k=0

(−1)k
(

N + s
k

) k

∑
j=0

γN, j− (−1)N
(

N + s−1
N

)
B(N +1) =

N

∑
j=0

(−1) j
(

N + s−1
j−1

)
γN, j. (7.4)
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Assuming B(N +1) and γN,N to be known, we split off these quantities, leading to

(−1)N
(

N + s−1
N−1

)(
B(N +1)− γN,N

)
=

N−1

∑
j=0

(−1) j

[(
N + s−1

j−1

)
γN, j−

(
N + s

j

) j

∑
i=0

γN,i

]
.

(7.5)

The right-hand side of this identity depends only on the off-diagonal part of the ADM. With an
Ansatz, this then gives a system of equations different from the one we get from using the con-
sistency relation in Eq.(4.87). Furthermore, as the systems of equations for different s-values are
equivalent, we can stick to a particular value. The simplest case is s = 0 which gives

(−1)N
(

B(N +1)− γN,N

)
=

N−1

∑
j=0

(−1) j

[(
N−1
j−1

)
γN, j−

(
N
j

) j

∑
i=0

γN,i

]
. (7.6)

As a check, we consider the one-loop Wilson quantities in the total derivative basis. With

B(0)(N +1) =CF

(
2S1(N +1)− 2

N +2
−1

)
(7.7)

and

γ
(0)
N,N =CF

(
4S1(N)+

2
N +2

+
2

N +1
−3

)
(7.8)

the left-hand side of Eq.(7.6) becomes

2(−1)NCF

(
1−S1(N)− 2

N +2

)
. (7.9)

The off-diagonal terms of the one-loop ADM are given by

γ
D,(0)
N,k = 2CF

(
1

N +2
− 1

N− k

)
. (7.10)

Evaluating the corresponding sums on the right-hand side of Eq.(7.6) then exactly reproduces
Eq.(7.9). The relation was also explicitly checked to hold for the two-loop leading-color anomalous
dimensions, cf. Eq.(5.69).

7.2 A one-loop relation for gluon operators
We consider matrix elements of the spin-N twist-two gluon operator

OG
µ1...µN

≡ SFνµ1Dµ2 . . .DµN−1F ν
µN

. (7.11)

These operators will be contracted with a tensor of light-like ∆, which we denote as

∆
µ1 . . .∆µN Fνµ1Dµ2 . . .DµN−1F ν

µN
→ F D . . .D︸ ︷︷ ︸

N−1

F (7.12)
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for notational simplicity. Under renormalization, this operator mixes with the quark flavor singlet
operator of the same dimension, cf. Eq.(1.114). Moreover, in the case of off-forward kinematics,
there is also mixing with total derivative operators. Throughout this section, we work exclusively
in the total derivative basis. To avoid cluttering the notation too much, we omit the superscript D
on the anomalous dimensions. For explicitness, we consider the insertion of the gluon operator into
a quark two-point function. In this case, the odd-N matrix elements vanish in the forward limit.
This is because odd-N gluon operators can be written as a linear combination of total derivative
operators. For example, for the simple case of N = 3 we just have

FDF = ∂F2− (DF)F (7.13)

and hence
2FDF = ∂F2. (7.14)

Note that this would work for any spin-N operator of the type

(field )D . . .D( field). (7.15)

The matrix elements of even-spin gluon operators are non-trivial and require an explicit calcu-
lation. Throughout this section, all such calculations are performed using PACKAGE-X. With no
contributions of self-energy corrections at one-loop order, the 1/ε-pole of the bare OME corre-
sponds to the anomalous dimension in the forward limit. This gives

γ
(0),gq
N,N = 2CF

(
− 1

N +2
+

2
N +1

− 2
N

)
(7.16)

for odd N, as expected. The 1/ε-pole in the off-forward limit is

B(N) =CF

(
2

N +1
− 2

N
− 1

N−1

)
(7.17)

which should correspond to the sum of anomalous dimensions, with the argument appropriately
shifted

B(N +1) =
N

∑
i=0

γN,i. (7.18)

For N = 2 this gives

γ
(0),gq
1,0 =

4
3

CF . (7.19)

This is exactly what we would have expected from the relations in the non-singlet sector. However,
rather than assuming that these would generalize to gluon operators in the singlet sector, we follow
a different strategy. Eq.(7.14), as a relation at the operator level, is always valid. When considering
forward kinematics, it leads to the conclusion that the matrix elements of odd-N operators vanish.
In off-forward kinematics, it implies that for N = 3 we only have to take into account one of the
gluon operators, as the other one is not independent. For arbitrary odd N-values, it means that
we have (N− 2) independent gluon operators. Inserting the gluon operator in a quark two-point
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function, we then have (N− 2) gluon operators mixing into N quark operators. For example, for
N = 3 we can replace the matrix equation(

FDF
∂F2

)
=

(
Zgq

22 Zgq
21 Zgq

20
0 Zgq

11 Zgq
10

)[ψγD2ψ]
[∂ψγDψ]
[∂2ψγψ]

 (7.20)

by one of the two rows only. Eq.(7.14) holds for bare gluon operators. Introducing the renormal-
ization then leads to a relation between the anomalous dimensions

γ
(0),g
2,1 =

γ
(0),g
1,1 + γ

(0),g
1,0

2
− γ

(0),g
2,2 − γ

(0),g
2,0 . (7.21)

This relation only holds at one-loop order, where we can simply put all renormalized operators
equal to one1. As it is independent of the external legs of the matrix element, we do not spec-
ify them. An interesting feature of Eq.(7.21) is that it does not hold in the non-singlet sector.
This implies that we cannot simply take the relations between the anomalous dimensions in the
non-singlet sector and apply them to those of the gluon operators. Nevertheless, also the gluon
anomalous dimensions are not all independent. Generalizing Eq.(7.14) to arbitrary N we have

2FDNF−∂

N−1

∑
i=0

(−1)i(DN−1−iF)(DiF) = 0 (N odd). (7.22)

For our purposes, it is more convenient to have operators with covariant derivatives only acting on
one field strength. It is straightforward to make this transformation, and we find

2FDNF−∂FDN−1F−
N−1

∑
i=1

(−1)i
(

N−1
i−1

)
∂

N−iFDiF = 0 (N odd). (7.23)

This relation holds for bare operators. The corresponding one between the renormalized operators
gives a relation between the anomalous dimensions. Again we assume to work at one-loop order,
such that we can put [O]≡ 1. We then find

2
N+1

∑
i=0

γ
(0),g
N+1,i−

N

∑
i=0

γ
(0),g
N,i −

N−1

∑
i=1

(−1)i
(

N−1
i−1

) i+1

∑
j=0

γ
(0),g
i+1, j = 0 (N odd). (7.24)

Note that, while the last relation only holds for odd N-values, it does mix odd and even moments.
Our result Eq.(7.17) obeys this condition.

7.2.1 Extension to even-N operators
Let us now see whether we find a similar condition between the anomalous dimensions when
starting from even-spin operators. A similar calculation as above shows that the following operator
identity holds

N−1

∑
i=0

(−1)i
(

N
i

)
∂

N−iFDiF = 0 (N even). (7.25)

1At higher orders, the finite pieces of the renormalized operators will give additional non-trivial contributions.
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This in turn leads to a relation between the anomalous dimensions

N−1

∑
i=0

(−1)i
(

N
i

) i+1

∑
j=0

γ
(0),g
i+1, j = 0 (N even). (7.26)

Our diagram result, Eq.(7.17), obeys this relation. Unfortunately, this does not actually seem to
contain new information about the anomalous dimensions. With the identification of Eq.(7.18) this
is equivalent to

CB(N +2) = (−1)NB(N +2) (N even) (7.27)

with

C f (N)≡
N

∑
i=0

(−1)i
(

N
i

)
f (i). (7.28)

Recall that for the non-singlet quark operators, the transform of B was related to the last column,

CB(N +1) = γN,0 (non-singlet case). (7.29)

We could then define an adapted transformation C̃

C̃ f (N)≡
N

∑
i=0

(−1)N−i
(

N
i

)
f (i), (7.30)

such that B is invariant when N is even

C̃B(N +2) = B(N +2). (7.31)

From our discussion in Chapter 3, we see that this corresponds to the inverse binomial transform,
cf. Eq.(3.24).

7.3 Renormalization of polarized non-singlet operators

7.3.1 Introduction
We consider the renormalization of polarized flavor non-singlet quark operators in the leading-n f
limit, including mixing with total derivative operators. The operators of interest are defined as

OA
µ1...µN

= Sψλ
α

γµ1γ5Dµ2 . . .DµN ψ. (7.32)

In forward kinematics, the corresponding anomalous dimensions determine the scale-dependence
of the polarized PDFs through the DGLAP equation, cf. Eq.(2.23). These distributions can be stud-
ied by analyzing data from longitudinally polarized DIS experiments [154], collected e.g. by the
HERMES and COMPASS collaborations. See e.g. [155] and references therein. For the case of off-
forward kinematics, the corresponding mixing matrices characterize, through the ERBL equation
introduced in Eq.(2.34), the scale-dependence of polarized GPDs [14] and polarized distribution
amplitudes. An example of the latter is associated to the γγ∗→ π0 transition [156–159], which has
been studied e.g. by analyzing data from the CLEO II detector [160]. These distributions form
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important ingredients to gain insight into the proton spin puzzle.

Let us briefly summarize the current knowledge about the polarized non-singlet anomalous di-
mensions. The forward anomalous dimensions are known to three-loop order [82, 161–167, 121]
in full QCD and to all orders in the leading-n f limit [168, 169]. For off-forward kinematics, the
Gegenbauer evolution kernel was determined to three-loop order in [170]. Finally, the one-loop
anomalous dimensions were also calculated in the Geyer basis [23].

As is well known, care has to be taken when dealing with γ5 in the framework of dimensional
regularization. The reason is that its standard definition involves the anti-symmetric tensor εµνρσ,
which is a fundamentally four-dimensional object, i.e. it does not have a well-defined continuation
to D = 4− 2ε dimensions. A plethora of possible γ5 prescriptions has been developed over time,
see e.g. [171–176]. We employ here the so-called Larin scheme [176], in which one defines γ5 as

γ5 =
i

4!
εµνρσγ

µ
γ

ν
γ

ρ
γ

σ. (7.33)

When dealing with massless quarks, this is equivalent to the ’t Hooft-Veltman scheme [171].
Within this scheme we have

γµγ5 =
i
6

εµνρσγ
ν
γ

ρ
γ

σ (7.34)

which means that the polarized operators can be written as

OA
N =

i
6

ψ∆
µ1εµ1νρσψγ

ν
γ

ρ
γ

σ(∆ ·D)N−1
ψ. (7.35)

As before, we have selected the leading-twist contributions by contracting with ∆µ1 . . .∆µN for
∆2 = 0.

An important consequence of the definition Eq.(7.33) is that γ5 no longer anti-commutes with
D-dimensional Dirac matrices. This leads to a violation of the Ward identities. In particular, while
the non-singlet current OA

1 is conserved, its Z-factor in the MS-scheme is no longer equal to one.
Instead, some non-zero anomalous dimension is generated. The way to fix this is by introducing
an additional finite renormalization factor Z5. The renormalization of the polarized current then
follows

J ≡ OA
1 = Z5ZA

0,0[J]. (7.36)

The scale-dependence of the current is determined by its anomalous dimension

d
dlnµ2 [J] = γJ[J] (7.37)

which in turn is determined from the renormalization factor as

γJ =−Z−1
J

dZJ

dlnµ2 . (7.38)

The renormalization group equation for Eq.(7.36) is then

0 = µ2 d
dµ2 (Z5ZA

0,0)+ γJ. (7.39)
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We can rewrite this as

0 = β(as)
∂Z5

∂as
−Z5γ

A
0,0 + γJ (7.40)

with

γ
A
0,0 =−(ZA

0,0)
−1 dZA

0,0

dlnµ2 . (7.41)

Note the difference in interpretation of the RG-parameters in Eq.(7.40). The anomalous dimension
γJ determines the scale-dependence of the polarized current. As this is a conserved quantity, we
set γJ ≡ 0 to all orders in as. The anomalous dimension γA

0,0 is extracted from the renormalization
of the matrix elements of J and is non-zero starting from order a2

s . This is caused by the violation
of the anti-commutativity of γ5 with the D-dimensional Dirac matrices. Using the perturbative
expansions

Z5 = 1+ z(0)5 as + z(1)5 a2
s + z(2)5 a3

s + . . . (7.42)

and
γ

A
0,0 = γ

A,(0)
0,0 as + γ

A,(1)
0,0 a2

s + γ
A,(2)
0,0 a3

s + . . . , (7.43)

we can determine the finite renormalization factor Z5 order per order from Eq.(7.40). Because the
first term in Eq.(7.40) is multiplied by the beta-function, whose perturbative expansion starts at
order a2

s , we need to know the anomalous dimension γA
0,0 to order (L+ 1) to obtain Z5 to L-loop

order. For example, at leading order, the equation to solve is

a2
s

(
β0z(0)5

1+asz
(0)
5

+ γ
A,(1)
0,0

)
= 0 (7.44)

which leads to
z(0)5 =−4CF . (7.45)

Here we used that [177]

γ
A,(1)
0,0 =

44
3

CFCA−
8
3

n fCF . (7.46)

The finite renormalization factor Z5 is currently known to three-loop order [166].

7.3.2 One-loop anomalous dimensions
At the one-loop level, the operator matrix elements are easily calculated using e.g. PACKAGE-X in
MATHEMATICA. The Feynman rules are the same as those of the unpolarized non-singlet operators,
cf. [106], with the replacement

/∆→ i
6

∆
µ
εµνρσγ

ν
γ

ρ
γ

σ. (7.47)

Both in forward and off-forward kinematics, we then find that the anomalous dimensions corre-
spond to those of the unpolarized operators, i.e.

γ
A,(0)
N,N =CF

(
4S1(N)+

2
N +2

+
2

N +1
−3

)
(7.48)
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and

γ
D,A,(0)
N,k =CF

(
2

N +2
− 2

N− k

)
. (7.49)

Note that this implies that γ
A,(0)
0,0 = 0, as it should be.

In the following, we once again focus the leading-n f limit in the total derivative basis. For the
calculation of the off-forward anomalous dimensions, we can then follow the same strategy as we
did in the determination of the transversity anomalous dimensions.

7.3.3 Higher-order anomalous dimensions
The leading-n f part of the two-loop forward anomalous dimensions is [163–165]

γ
A,(1)
N,N =

4
3

n fCF

[
1
4
+

11
3

( 1
N +1

)
−
( 1

N +1

)2
− 11

3

( 1
N +2

)
+
( 1

N +2

)2
− 10

3
S1(N +1)+2S2(N +1)

]
.

Note that this is exactly the same expression as for the unpolarized operators, cf. Eq.(5.20). Hence
also the off-diagonal part of the mixing matrix is the same as for the Wilson operators, i.e.

γ
D,A,(1)
N,k =

4
3

n fCF

{(
S1(N)−S1(k)

)( 1
N +2

− 1
N− k

)
+

5
3

1
N− k

+
2

N +1
− 11

3
1

N +2

+
1

(N +2)2

}
.

(7.50)

Also at higher orders in αs, the leading-n f terms of the forward polarized and unpolarized anoma-
lous dimensions coincide. As such, the off-forward mixing matrices in this limit are identical. This
implies that Eqs.(5.37), (5.39), (5.41) and (5.58) are valid for the three- to five-loop unpolarized
and polarized ADMs.
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Chapter 8

Conclusions and outlook

In this thesis, we considered the renormalization of non-singlet quark operators appearing in exclu-
sive hard scattering processes, allowing for mixing with total derivative operators. For a consistent
study of such mixing, a basis has to be chosen for the additional derivative operators. We have
discussed three options, which appeared in separate branches of the literature. The first one was
based on an expansion in terms of Gegenbauer polynomials, while the others were based on count-
ing derivatives. It was shown that, using appropriate transformations, the anomalous dimensions
in distinct bases can be related to one another. This connects previously unrelated branches of
the literature, and provides non-trivial cross-checks of the respective calculations. In the Gegen-
bauer basis, this lead to an independent check of the three-loop evolution kernel of the Wilsonian
non-singlet quark operators. In the Geyer basis, it provides a check of the one-loop anomalous
dimensions of the same operators. The expressions in terms of harmonic sums in the Gegenbauer
and total derivative bases presented in this thesis are new.

Moreover, by performing a detailed analysis of the renormalization structure of the operators
in the chiral limit, we have derived consistency relations between the off-forward anomalous di-
mensions in the total derivative basis. This allowed us to derive, in the leading-n f limit, the Wilson
mixing matrices up to the five-loop level and the transversity matrices to four loops. Furthermore,
we have presented the mixing matrices for low-spin Wilson operators in full QCD. All these results
are presented in the MS-scheme. When transformed to the regularization-invariant scheme, they
will also be useful for the study of hadronic structure on the lattice.

The main algorithm presented in this thesis, i.e. the combination of consistency relations with
explicit Feynman diagram calculations, is nicely suited for automation using computer algebra
programs. Examples given in the text are the computation of Feynman graphs using FORCER in
FORM or PACKAGE-X in MATHEMATICA and symbolic summation using SIGMA .

As the consistency relation for the anomalous dimensions derived in this work is a direct conse-
quence of the renormalization structure of the operators, it should be straightforward to generalize
to other types of operators. A particularly interesting application of this type would be the deter-
mination of the mixing matrices for the flavor singlet operators in QCD. Besides the mixing with
total derivatives operators in off-forward kinematics, one would also have to take into account here
the mixing between same-dimension quark and gluon operators. Furthermore, there would also be
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contributions from equation of motion and non-gauge invariant operators. The long-term goal of
this would be to extend the calculation to the polarized singlet sector, where one also has to take
into account that (a) the spin-one current is anomalous and (b) an additional finite renormalization
factor has to be introduced because of the properties of the Dirac matrix γ5. These aspects are left
for future studies.
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Appendix A

Conventions

In this appendix, we briefly summarize some of the conventions used in this thesis.

• Throughout this work we use natural units, i.e. h̄ = c = 1.

• For the Minkowski spacetime metric, we use the mostly-minus convention

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.1)

• The totally anti-symmetric tensor is defined as

ε
µνρσ =


0 (if two indices are equal)
1 (if µνρσ = 0123)
−1 (if µνρσ = 1023).

(A.2)

• Certain calculations are most conveniently done using lightcone coordinates. For some four-
vector v≡ (v0,v1,v2,v3) these are defined as

v± =
1√
2
(v0± v3) (A.3)

~v = (v1,v2). (A.4)

Four-dimensional integration measures in turn are rewritten as

d4z = dz+dz−d2~z. (A.5)
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Appendix B

SU(Nc) Wilson anomalous dimensions

Here we present the off-diagonal elements of the spin-five Wilson mixing matrix for a general
gauge group SU(Nc). Starting from the four-loop level, the following color factors contribute

dabcd
F dabcd

A
NF

=
(N2

c +6)(N2
c −1)

48
, (B.1)

dabcd
F dabcd

F
NF

=
(N4

c −6N2
c +18)(N2

c −1)
96N3

c
, (B.2)

dabcd
A dabcd

A
NA

=
N2

c (N
2
c +36)
24

. (B.3)

The subscripts F and A denote the fundamental and adjoint representation, and NF = Nc and NA =
N2

c − 1 represent their dimensions. Hence in QCD dabcd
F dabcd

A /NF = 5/2, dabcd
F dabcd

F /NF = 5/36
and dabcd

A dabcd
A /NA = 135/8.

B.1 Two-loop anomalous dimensions

γ
D,(1)
4,3 = −191

30
CFCA +

997
1080

C2
F +

17
10

n fCF , (B.4)

γ
D,(1)
4,2 = −7999

1800
C2

F + γ
D,(1)
4,2

∣∣∣∣
SLC

+
82

135
n fCF , (B.5)

γ
D,(1)
4,1 =

5339
225

CFCA−
37769
27000

C2
F +

23
90

n fCF − γ
D,(1)
4,2

∣∣∣∣
SLC

, (B.6)

γ
D,(1)
4,0 = − 931

1080
CFCA +

14
675

C2
F +

43
540

n fCF , (B.7)

γ
D,(1)
3,2 = −1391

225
CFCA +

343
375

C2
F +

362
225

n fCF , (B.8)

γ
D,(1)
3,1 = −211

100
CFCA−

1153
9000

C2
F +

13
25

n fCF , (B.9)
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γ
D,(1)
3,0 = −958

675
CFCA +

772
3375

C2
F +

106
675

n fCF , (B.10)

γ
D,(1)
2,1 = −53

9
CFCA +

9
16

C2
F +
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36

n fCF , (B.11)

γ
D,(1)
2,0 = −97
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CFCA +
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C2
F +
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36

n fCF , (B.12)

γ
D,(1)
1,0 = −188

27
CFCA +

56
27

C2
F +

32
27

n fCF . (B.13)

B.2 Three-loop anomalous dimensions

γ
D,(2)
4,3 = CFC2
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ζ3

)
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FCA
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, (B.14)
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A

(
− 2331353

129600
+
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FCA
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B.3 Four-loop anomalous dimensions
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